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7BAbstract …….. 

This technical memorandum is an addendum to TM 2012-008, “State of the art concerning 

memory acquisition: A detailed examination of Linux, BSD and Solaris live memory 

acquisition.”  It examines in detail two additional software tools, Volatility’s Pmem and LiME’s 

Linux kernel memory drivers, both of which can be used for the memory acquisition of Linux-

based live computer systems.  The authors then compare them with Fmem and Second Look, the 

two best Linux-based memory acquisition tools as per TM 2012-008.  Fmem and Second Look 

are analysed using the same methodology as for Pmem and LiME.  This memorandum also 

amends information pertaining to the faulty memory acquisition of Fmem as conducted in the 

previous study.  Additionally, certain inaccuracies were made in TM 2012-008.  This specific text 

corrects them.  As such, it should now be considered the authoritative reference concerning 

Linux, UNIX and BSD memory acquisition, although the experiments as conducted in TM 2012-

008 will continue to remain valid.  Finally, upon completing the analysis of these tools, the 

authors recommend the use of LiME for investigative fieldwork.  However, other tool-specific 

recommendations are found and examined in the Conclusion. 

17BRésumé …..... 

Ce mémorandum technique est un addenda au TM 2012-008, “State of the art concerning 

memory acquisition: A detailed examination of Linux, BSD and Solaris live memory 

acquisition”.  Il examine en détail deux outils logiciels additionnels qui peuvent être utilisés pour 

l’acquisition de mémoire sur des ordinateurs Linux en exécution, plus spécifiquement les pilotes 

de mémoire du noyau Pmem (de Volatility) et LiME.  Les auteurs les comparent par la suite avec 

Fmem et Second Look, les deux meilleurs outils d’acquisition de mémoire sous Linux selon le 

TM 2012-008.  Fmem et Second Look ont été analysés en utilisant la même méthodologie que 

pour Pmem et LiME.  Ce mémorandum corrige également les informations relatives à 

l’acquisition de mémoire fautive de Fmem telle que menée dans l’étude précédente.  De plus, 

certaines inexactitudes ainsi portées ont été inscrites dans le TM 2012-008.  Le présent texte les 

corrige aussi.  À ce titre, il doit être considéré comme la référence faisant autorité en ce qui 

concerne l’acquisition de mémoire sous Linux, UNIX et BSD, bien que les expériences menées 

dans le TM 2012-008 demeurent valides.  Finalement, après avoir complété l’analyse de ces 

outils, les auteurs recommandent l’utilisation de LiME pour le travail d’enquête.  Cependant, des 

recommandations spécifiques à d’autres outils sont aussi examinées dans la conclusion. 
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8BExecutive summary  

The definitive guide to Linux-based live memory acquisition 

tools: An addendum to "State of the art concerning memory 

acquisition software: A detailed examination of Linux, BSD and 

Solaris live memory acquisition"  

Carbone, Richard and Bourdon-Richard, Sébastien; DRDC Valcartier TM 2012-

319; Defence R&D Canada – Valcartier; September 2013. 

Two additional Linux-based memory acquisition tools came out only months after the initial 

UNIX-based memory acquisition work was completed (TM 2012-008).  The authors found it 

pertinent to conduct additional memory acquisition experiments against them to determine which 

Linux-specific memory acquisition tool (s) is (are) the most appropriate choice (s).  As of this 

time and to the best knowledge of the authors, this document is the most detailed analysis and 

comparison of its type available in the public literature. 

This memorandum also amends information pertaining to the faulty memory acquisition of Fmem 

as conducted in TM 2012-008.  The original acquisition was inaccurate.  Based on the new 

technical memory acquisition, information provided in this memorandum concerning the 

determination of the correct size for a Linux-based memory dump, the authors have decided that 

reacquiring memory using Fmem would be of benefit to all concerned parties.  Moreover, certain 

inaccuracies were made in TM 2012-008.  Therefore, in correcting them and re-conducting the 

Fmem-based memory acquisition experiments, the authors are confident to state that this current 

document can be considered the authoritative text on Linux, UNIX and BSD memory acquisition.  

This document supersedes the background material provided in TM 2012-008, but does not in any 

way negate the memory acquisition experiments conducted therein, with the exception of Fmem, 

which has been redone herein. 

The two new Linux-specific memory acquisition tools examined are Volatility’s Pmem and 

LiME’s LKM.  Both are similar in functionality to Fmem and Second Look, as seen in TM 2012-

008.  However, Pmem is a recent Linux LKM initiative, while LiME is geared towards the 

acquisition of memory running atop Linux and Linux-based devices (such as Android).  The 

authors then compared the memory acquisition results for Pmem, LiME, Fmem and Second 

Look, all while considering the analysability of these memory images using the Volatility 

memory analysis framework.  As with the original research work, the experiments were 

conducted against modern x86, x86 PAE and x64 Linux systems.   

Based on these comparisons and analyses, the authors have determined that LiME is best suited 

for investigative forensic fieldwork.  Moreover, they reiterate their overall findings obtained for 

Solaris and BSD as per TM 2012-008. 

This specific work is a joint effort between Defence Research and Development Canada (DRDC) 

Valcartier and the Royal Canadian Mounted Police (RCMP).  It was carried out over a period of 

several months as part of the Live Computer Forensics project, an agreement between DRDC 

Valcartier and the RCMP (SRE-09-015, 31XF20). 
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The results of this project will also be of great interest to the Canadian Forces Network 

Operations Centre (CFNOC), the RCMP’s Integrated Technological Crime Unit (ITCU), the 

Sûreté du Québec and other cyber investigation teams. 
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16BSommaire ..... 

The definitive guide to Linux-based live memory acquisition 

tools: An addendum to "State of the art concerning memory 

acquisition software: A detailed examination of Linux, BSD and 

Solaris live memory acquisition"  

Carbone, Richard and Bourdon-Richard, Sébastien ; DRDC Valcartier TM 2012-

319 ; R & D pour la défense Canada –  Valcartier; septembre 2013. 

Deux autres outils d’acquisition de mémoire pour Linux ont été publiés quelques mois seulement 

après que le travail initial sur l’acquisition de mémoire pour Unix ait été achevé (TM 2012-008).  

Les auteurs ont trouvé pertinent de mener des expériences d’acquisition de mémoire 

supplémentaires sur ceux-ci afin de déterminer quel (s) outil (s) d’acquisition de mémoire est 

(sont) le plus approprié (s) pour Linux.  À ce jour et au meilleur des connaissances des auteurs, ce 

document contient les comparaisons et analyses d’outils les plus détaillées de ce type disponibles 

dans la littérature publique.   

Ce mémorandum corrige également les informations relatives à l’acquisition de mémoire erronée 

avec Fmem, telle qu’utilisée pour le TM 2012-008.  Sur la base d’une nouvelle technique 

d’acquisition, car l’acquisition initiale était inexacte, et suite aux informations fournies dans le 

présent mémorandum relatives à l’évaluation de la taille exacte d’une image mémoire sous Linux, 

les auteurs ont décidé qu’effectuer à nouveau l’acquisition de mémoire à l’aide de Fmem serait 

bénéfique pour tous les partis concernés.  De plus, certaines inexactitudes ont été inscrites dans le 

TM 2012-008.  Par conséquent, en les corrigeant et en effectuant à nouveau les expériences 

d’acquisition de mémoire avec Fmem, les auteurs sont convaincus de pouvoir affirmer que ce 

document peut être considéré comme texte de référence pour l’acquisition de mémoire sur Linux, 

UNIX et BSD.  Il remplace donc les informations de base fournies dans le TM 2012-008, mais ne 

nie d’aucune façon les expériences d’acquisition de mémoires dans celui-ci, à l’exception de 

Fmem, qui a été refaite dans le présent document. 

Les deux nouveaux outils d’acquisition de mémoire spécifiques à Linux examinés sont Pmem de 

Volatility et LiME.  Ceux-ci ont des fonctionnalités similaires à Fmem et Second Look, comme le 

montre le TM 2012-008.  Cependant, Pmem est une initiative récente d’un module chargeable du 

noyau Linux, tandis que LiME est orientée vers l’acquisition de mémoire sur des appareils 

fonctionnant sous Linux ou basés sur Linux (p. ex. Android).  Les auteurs ont ensuite comparé les 

résultats d’acquisition de mémoire pour Pmem, LiME, Fmem et Second Look, tout en considérant 

l’analysabilité de ces images mémoires en utilisant le cadriciel d’analyse mémoire Volatility.  

Comme pour le travail de recherche original, les expériences ont été menées sur des systèmes 

Linux x86, x86 PAE et x64 récents.   

Sur la base de ces comparaison et analyses, les auteurs ont déterminé que LiME est le mieux 

adapté pour les enquêtes informatiques judiciaires.  De plus, ils réitèrent l’ensemble de leurs 

résultats obtenus pour Solaris et BSD selon le TM 2012-008.   
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Ce travail spécifique est un effort conjoint entre Recherche et développement pour la défense 

Canada (RDDC) Valcartier et la Gendarmerie royale du Canada (GRC). Il a été réalisé sur une 

période de plusieurs mois dans le cadre du projet "Live Computer Forensics", qui est un accord 

entre RDDC Valcartier et la GRC (SRE-09-015, 31XF20). 

Les résultats de ce projet seront aussi d’un grand intérêt pour le Centre d'opérations des réseaux 

des Forces canadiennes (CORFC), le Groupe intégré de la criminalité technologique (GICT) de la 

GRC, la Sûreté du Québec (SQ), ainsi que d’autres équipes d’enquête de cyberattaques. 
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13BDisclaimer and use policy  

The reader should neither construe nor interpret the work described herein by the authors as an 

endorsement of the aforementioned techniques and capacities as suitable for any specific purpose, 

construed, implied or otherwise. 

Furthermore, the authors of this technical memorandum absolve themselves in all ways 

conceivable with respect to how the reader may use, interpret or construe this technical 

memorandum.  The authors assume absolutely no liability or responsibility, implied or explicit.  

Moreover, the onus is on the reader to be properly equipped and knowledgeable in the application 

of digital forensics. 

Finally, the authors, DRDC Valcartier and the RCMP are henceforth absolved of all wrongdoing, 

whether intentional, unintentional, construed or misunderstood on the part of the reader.  If the 

reader does not agree to these terms, then this technical memorandum should be readily returned 

to DRDC Valcartier.  Only if the reader agrees to these terms should he or she continue in reading 

it beyond this point.  It is further assumed by all participants that if the reader has not read said 

Disclaimer, upon reading this technical memorandum and has acted upon its contents, then the 

reader assumes all responsibility for any repercussions that may result from the information and 

data contained herein. 
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14BRequirements, assumptions and exclusions  

It is assumed that the reader is altogether familiar with digital forensics and the various 

techniques and methodologies associated thereto.  This technical memorandum is not an 

introduction to digital forensics, its techniques or methodologies.  However, this technical 

memorandum will endeavour to present an adequate and technically oriented background to 

enable the reader to carry out and implement the work and analysis conducted herein. 

This present work examines x86, x86 PAE and x64 based Linux, BSD and UNIX-based systems 

only.  However, the term x86 is used interchangeably in certain portions of this text to generically 

represent both x86 and x86 PAE.  When PAE specifics are discussed, the use of the x86 PAE is 

used. 

This endeavour has been conducted primarily using a Windows-based system while secondary 

result validation was carried out using a Linux-based system.  As such, regardless of the reader's 

own specific set-up, the reader should arrive at the same overall results as those presented herein, 

assuming that the guest operating systems are similarly configured and that the same 

virtualisation technology is used.  All operating systems examined have been fully virtualised. 

Two primary Windows systems were used for memory experimentation, one at DRDC Valcartier 

and the other at the RCMP.  Technical details concerning the computer system used for 

experimentation at the RCMP can be found in Annex A.1, while those concerning the computer 

system used at DRDC Valcartier can be found in Annex A.2.  Details for the technical 

configuration used for Fmem memory acquisition, as conducted at DRDC Valcartier, can be 

found in Annex A.3.  The authors used their own departmentally provided computer systems to 

conduct the experimentation against a set of prebuilt and preconfigured VirtualBox-based virtual 

machines (see annexes B and C for details).  As such, Mr. Bourdon-Richard carried out the LiME 

experiments at the RCMP, while Mr. Carbone carried out the Pmem and Fmem trials at DRDC. 

All guest operating systems were tested under Oracle VirtualBox 4.2.0 (Linux and Windows 

version) with the appropriate VirtualBox Extension Pack installed (see Annex B and C for 

details).  The exception to this are the Fmem memory experiments that were redone in this 

memorandum which continued using Oracle VirtualBox 4.1.0, as was used in the original 

experiments in TM 2012-008.  VMware Workstation, another very popular choice for operating 

system virtualisation, was not used so that the reader would have not to rely on commercially 

licensed software in order to validate the results obtained by the authors. 

It is important to emphasize that should memory acquisition of a physical, non-virtualised x86 or 

x64 based system fail, it may be possible to acquire that system's memory using the cold boot 

attack [1], since this technique is not affected by the underlying operating system.  However, the 

success of the cold boot attack should be considered as experimental at best [2].  As such, the 

investigator must be realistic in his expectations for acquiring memory using this technique. 

Red Hat 9 Linux is not examined in this work.  In TM 2012-008, it was clearly demonstrated that 

it would not support and compile LKM-based modules without, at a minimum, recompiling the 

kernel and possibly changing portions of the source code to accommodate the various memory 

acquisition tools. 
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15BTarget audience 

This technical memorandum has been written for the computer forensic investigator who may 

have to perform a Linux-based memory acquisition at one time or another in the function of his or 

her duties.  Although information exists across the Internet, bringing them together into a 

coherent and comprehensive manner was a matter of some undertaking on the part of the authors. 

This technical memorandum is not, however, an examination of computer memory analysis.  This 

specific field of research is outside the scope of this work and warrants an altogether separate 

technical discussion of the subject matter. 
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1 18BBackground 

1.1 22BContext 

This subsection provides the necessary context to understand how this memorandum ties in with 

its sister report, TM 2012-008.  

1.1.1 Objective 

The objective of this technical memorandum is to pick up where its sister document, TM 2012-

008, left off.  Specifically, the latter technical memorandum carried out an in-depth examination 

of Linux, BSD and Solaris-based memory acquisition, while this one is entirely Linux-specific. 

However, this specific technical memorandum has a twofold purpose.  Its primary objective is to 

examine two new Linux-specific memory acquisition tools, which only recently have gathered 

enough attention to make them worthwhile to examine.  The second objective is to correct certain 

oversights conducted in TM 2012-008.  Of these oversights, the Fmem memory acquisition tool 

will be re-examined.  It has come to the authors’ attention that relying on /proc/meminfo for 

determining the correct upper memory address to use for memory acquisition is incorrect.  

Instead, /proc/iomem should be used. 

Finally, this memorandum will examine the acquisition-based experimental results obtained using 

Pmem, LiME and Fmem, and compare them to those obtained for Second Look (see TM 20120-

008 for details) in order to determine which tool is the most suitable for field use by forensic 

investigators.  To this end, the Volatility memory analysis framework will be used. 

1.1.2 Historical note to past Linux memory forensics analyses 

It is important to point out that when TM 2012-008 was written, the Volatility framework offered 

rudimentary Linux memory support and as such, the acquired memory images from TM 2012-

008 were assessed as best as they could be.  Memory analysis efforts at that time were manual in 

nature and were therefore more subjective.  However, using string counts and automated string-

based byte offset analysis, it was still possible to largely determine in an objective manner 

whether a given memory image was adequately populated with data and structures.  Moreover, all 

memory images obtained thereto were visually examined for specific cues and patterns applicable 

only to memory dumps. 

Even though Second Look offered a memory analysis framework, it was not used at that time, as 

it was found to be too unstable.  Moreover, while the Volatility framework of that time did 

support Linux memory dumps, its Linux memory support was found to be unusable for most of 

the required analyses.  
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1.2 23BLinux operating system background 

This subsection examines the background of the various Linux-based operating systems 

experimented upon in this work. 

1.2.1 Fedora/Fedora Core Linux 

Generating no revenue, Fedora Core Linux is developed in its entirety by the open source 

community, although it is sponsored by Red Hat Inc.  Having taken up the mantle of Red Hat 

Linux, it continues to be freely available.  Moreover, it comes available in both x86 and x64 

flavours.  Specifically, the x86-based version is by default an x86 PAE kernel, although the user 

has the ability to install an x86-only kernel instead.  The x64 kernel is bundled with a full x64 

distribution.  Fedora Core is also a RPM-based distribution. 

Despite being very popular, it continues to remain behind Ubuntu and Linux Mint in terms of its 

adoption [7, 8].  The distribution is considered a technology adoption leader as it continuously 

incorporates new capabilities as they become available in subsequent distribution releases.  Its 

release schedule is approximately every six months. 

At the time of the final revision of this memorandum, the current release was version 19, although 

when this work had commenced in mid-2012, version 17 was the current Fedora distribution.  

The very first version of Fedora was released in November 2003, just several months before Red 

Hat 9 became end-of-life.  The history of Fedora Linux, developed by the community under the 

umbrella of the Fedora Project, is somewhat convoluted.  It is noteworthy to state that all versions 

of Fedora Linux prior to version 7 are known as Fedora Core Linux, while those as of version 7 

are known as Fedora Linux.  Within this document and TM 2012-008, the authors refer this 

operating system as Fedora Core. 

This work examines memory acquisition tools under both Fedora Core 15 and 17, although all 

results are equally applicable to Fedora 18 and 19.  Fedora Core 15, although two cycles out of 

revision from the version of Fedora used for these experiments (version 17) was used in TM 

2012-008.  Fedora Core 18 and 19 were released in January and June 2013, respectively. 

Red Hat continues to invest and support the Fedora Project, since it uses it as a testing ground for 

assessing technologies that may eventually be incorporated into Red Hat's Enterprise Linux 

products. 

1.2.2 Ubuntu  

Ubuntu is a Debian-based Linux operating system.  The Ubuntu initiative is sponsored by UK 

technology company Canonical that is owned by South African Mark Shuttleworth.  Unlike 

Fedora, commercially sponsored but generating no actual revenue, Ubuntu generates revenue by 

providing Ubuntu-related technical support and services.  However, the Ubuntu operating system 

itself is entirely free of charge. 

Perhaps due to the Ubuntu philosophy, it is currently among the most popular Linux desktops in 

use today [8].  Its first release was October 2004 and its release schedule is approximately every 
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six months.  The current version, 13.04, was released April 2013.  However, the authors have 

chosen to work with Ubuntu 12.04 LTS, released in April 2012, as it will be officially supported 

by Canonical for a period of five years. 

This work examines memory acquisition tools under both Ubuntu 11.14 and 12.04 LTS.  Ubuntu 

11.04, now several revisions behind the current release, was used in TM 2012-008, as neither 

Ubuntu 11.10 nor 12.04 were available when experimentation began under said report.  However, 

the experiments and results as carried out in this specific memorandum are equally applicable to 

Ubuntu 13.04. 

Ubuntu is available as both an x86 and x64 operating system and is very desktop friendly, more 

so than many other Linux distributions.  By default, the x86-based distribution does not provide a 

PAE-based kernel, although compiled versions of PAE kernels are available from the Ubuntu 

repository for installation.  Moreover, while Ubuntu is largely Debian-based, some closed source 

programs and drivers are bundled with it. 

The Ubuntu Foundation, created in July 2005, ensures that Ubuntu will continue to remain a well-

funded Linux distribution in order for the community to continue developing and supporting it.  

Ubuntu has also become actively involved in recent cloud computing initiatives by providing 

specific cloud-based technologies in its latest Ubuntu Server release. 

1.3 24BParticulars concerning memory acquisition and analysis 

This subsection examines particular issues concerning computer memory, its acquisition and 

volatility. 

1.3.1 Forensically capturing memory 

Physically capturing memory under Linux is not particularly difficult, assuming the necessary 

acquisition software and hardware are available.  All modern Linux distributions fully support 

USB mass storage devices.  However, correctly recognizing these devices and mounting them 

may at times be precarious, depending on the underlying kernel and the level of hardware support 

provided therein. 

Of course, investigators need not be confined only to USB mass storage.  Modern Linux kernels 

fully support FireWire standards 1394a and 1394b.  However, the level of support offered by the 

underlying kernel is entirely dependent on its maturity.  Moreover, production systems may have 

their support for these devices altogether disabled in order to prevent employee data exfiltration.  

As such, the investigator must be prepared and capable of saving memory dumps wherever 

necessary or possible, depending on the underlying circumstances. 

If the investigator finds that USB or FireWire-based mass storage device support is either not 

available in the operating system or has been disabled, then memory acquisition could be carried 

out over the network using NFS.  Since many of these systems find themselves in networked 

environments, NFS is often a workable solution.  It is important to be aware that older versions of 

NFS have readily attainable upper file size limits.  Newer implementations of NFS including 
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versions 3 and 4 support 64-bit file sizes, but differing operating systems may impose other 

unknown constraints. 

Moreover, the use of NFS requires that both the target and remote systems be configured to 

support it.  Otherwise, the investigator will have to configure it manually.  Generally, even for 

systems that do not have NFS enabled by default, it is not particularly difficult to get it working 

and should not require any system reboots.  However, operating system variations may again 

impose differing limitations. 

With the exception of LiME and Helix 3 Pro, none of the other tools examined in this work or in 

TM 2012-008 innately have the ability to stream memory dump-files directly across the network.  

Other tools can do so, but only after making use of intermediary tools (e.g. rsh, ssh, etc.).  LiME 

is an exception in comparison to all these tools in that its network capability is directly integrated 

into its LKM.  The investigator needs only to specify the appropriate network parameters to the 

LiME LKM to save a dump to another system elsewhere on the network. 

The use of Windows file sharing atop Linux operating systems is not examined herein, although it 

is possible.  The software components required for this may necessitate installation, since they are 

generally not considered an integral part of most Linux operating systems. 

Although swap space is used by most Linux systems, it is not acquired within this work or in any 

of the various experiments.  Unlike physical computer memory (RAM), swap space acquisition 

occurs like any other disk partition from a live system.  As such, in so long as the investigator has 

root privileges, he can readily acquire all of a system's swap space. 

1.3.2 Computer memory volatility 

It is important to consider the volatility of computer memory when attempting to acquire it.  

Furthermore, it does not matter if the computer system is running DOS, UNIX, Windows, or any 

other operating system.  The fact that an individual, in this case a computer forensic investigator, 

runs a memory acquisition program atop the computer system changes the state of the underlying 

system.  This is a universal principle, commonly known as the Observer Effect, and follows 

through for all cases where a physical intervention is made against a given computer system [3, 

4]. 

In the case of computer memory acquisition, in order to obtain a copy of the system’s memory, 

the investigator must interact with the system (in order to observe it) and then run some program, 

command, or utility to acquire its memory.  This process irreversibly changes the running state of 

the computer system and as such, certain bytes of information that may contain evidence may be 

permanently lost.  However, it is logical to conclude that the more memory a given system has, 

the less likely this is to occur, as evidence is apt to be spread out across said memory.  However, 

no matter the care and consistency of the steps used by the investigator, some data will inevitably 

be lost with no way of discerning what it was. 

However, computer memory acquired through diligence should ultimately hold up to court-based 

challenges, in so long as the investigator understands the actions he carried out and their potential 

impact on the underlying system.  This is, of course, where open source software shines in 

contrast to closed proprietary acquisition software [5]. 
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1.4 25BLinux memory specifics 

This subsection examines the various peculiarities concerning Linux memory management, which 

is unlike the memory management of Solaris and BSD. 

1.4.1 Details 

PAE-enabled processors allow x86 PAE-capable Linux kernels to use a 36-bit memory-

addressing scheme, thereby allowing the system to address up to a maximum of 62 GiB 0F

1

 RAM 

[9, 10].  However, if a given distribution does not install a PAE-enabled kernel, one is usually 

available from the distribution's software repository, as was the case with Ubuntu, whose PAE 

kernel and corresponding source code headers had to be manually downloaded, installed and 

whose boot loader had to be reconfigured.  However, these are rather trivial and well 

documented1F

2

 reconfiguration operations. 

Unlike the various x86 and x64 based BSD operating systems, Linux has been PAE-capable since 

kernel 2.3.23, released in October 1999 [9].  As such, it is common to find many x86 Linux 

kernels with PAE support compiled directly in, although this varies widely by distribution and 

user preferences.  Some distributions, running 2.4.x, 2.6.x or 3.x kernels will by default, install a 

PAE-based kernel.  Sometimes, it is set as the default bootable kernel and other times it is not.  

Moreover, some users prefer the use of PAE kernels while others do not.  As such, it is difficult to 

determine whether a given x86 Linux operating system supports PAE in its current running state.  

However, it does make sense to use PAE-enabled kernels on any system running an x86 Linux 

distribution with close to or more than 4 GiB RAM, in order to make the most of available 

resources. 

All x64 Linux kernels support more than 4 GiB RAM, unlike certain BSD distributions that by 

default do not.  The configuration details for the Linux-based virtual machines examined herein 

can be found in annexes B and C.  From these experiments, it is clearly demonstrated that PAE-

enabled kernels do in fact detect and use memory above the 32-bit based memory limit (4 GiB 

RAM).  As such, Linux-based PAE memory allocation is straightforward since the amount of 

memory supported by x86 PAE and x64 Linux systems are uniform below 62 GiB RAM. 

However, direct memory acquisition under Linux is not as straightforward as it was under BSD.  

The reasons for this are examined next. 

1.4.2 Linux memory acquisition 

Memory acquisition under Linux is not particularly obvious at first glance.  Unlike with BSD and 

Solaris operating systems, modern Linux systems no longer give direct memory access, 

                                                      
1

 36-bit memory addressing can access up to a maximum of 64 GiB RAM although the last 2 GiB RAM 

are reserved while the first 62 GiB RAM can be used for main memory [7]. 

2

 The largest and most popular Linux documentation repository is The Linux Documentation Project (see 

http://tldp.org/ for more details).  
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necessitating the need for memory drivers, including but not limited to Second Look, Fmem, 

LiME and Pmem. 

Memory device /dev/mem is a direct interface to physical memory, while /dev/kmem provides 

access to the kernel's virtual address space [17].  Although they are similar, it is advised that 

where both are present, memory be acquired first from /dev/mem prior to attempting /dev/kmem, 

which should only be used in the event the former fails.  The ability to use these will vary by 

distribution and kernel version. 

For a variety of reasons, direct access to physical (/dev/mem) and kernel memory (/dev/kmem and 

/proc/kcore, respectively) has been limited.  In 2.6.x and 3.x kernels, the restriction appears to be 

caused by the CONFIG_STRICT_DEVMEM kernel structure [11, 12, 13 and 14].  Why memory 

access is limited under a 2.4.x kernel (at least for Red Hat 9) is not well understood at this time, 

since it does not suffer from this restriction.  This restriction limits the extent to which DD and 

Memdump can be used for memory acquisition. 

Modern 2.6.x and 3.x kernels no longer have a /dev/kmem memory pseudo-device, although 

/dev/mem continues to be present.  This pseudo-device was removed in 2.6.x and 3.x kernels, due 

to its prevalence in Linux-based rootkit attacks.  Thus, by removing the device, rootkits could no 

longer have immediate and direct access to the kernel's memory address space.  [11, 12, 13, 14 

and 16] 

Even though device /dev/mem continues to be available under Linux, it is generally not possible 

to acquire memory beyond the first one megabyte of memory, due to the aforementioned reasons.  

However, under kernel 2.4.x, it is possible to acquire significantly more memory, at least under 

Red Hat 9, but still less than the total amount actually detected by the operating system.  

Availability will undoubtedly vary by kernel, its generation (2.4.x, 2.6.x or 3.x) and distribution.  

Linux memory acquisition-based experimental results are available in Annex D.  Specifics for 

Red Hat 9 can be found in TM 2012-008. 

Although Linux 2.4.x kernels do continue to support both /dev/kmem and /dev/mem memory 

devices, support for memory device /dev/kmem can be reactivated for some 2.6.x and 3.x kernels 

by recompiling it in.  Unfortunately, a concise list of which distributions permit this device's 

recompilation is not currently available.  Notwithstanding this, for distributions shipping with 

kernels where this option is removed, a publicly available kernel patch reactivates this feature 

[15].  Experimentation conducted by the authors confirms that Fedora Linux and Ubuntu systems 

have their /dev/kmem device disabled, but they can be reactivated upon selecting the appropriate 

kernel compilation-based configuration options. 

Linux provides several kernel-specific structures for accessing system memory.  These include 

/proc/kcore, /proc/kallsyms and /proc/ksyms.  Both /proc/kallsyms and /proc/ksyms refer to the 

same kernel symbol table that is used by the kernel itself and the various LKM modules.  As 

such, this structure has limited value for memory acquisition2F

3

.  However, /proc/ksyms exists only 

under 2.4.x kernels, whereas /proc/kallsyms has superseded the former under 2.6.x and 3.x 

                                                      
3

 However, this structure may have significantly more value when conducting a manual memory analysis, 

which is not examined herein. 
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kernels.  Linux kernel pseudo-files /proc/ksyms and /proc/kallsyms provide the same functionality 

as the BSD and Solaris' /dev/ksyms device.  [18, 19, 20 and 21] 

On the other hand, pseudo-file /proc/kcore is a representation of physical memory stored using 

the ELF core file format.  As such, memory dumps obtained from this pseudo-file are best left for 

use with the system debugger, GDB.  In instances where /dev/mem or /dev/kmem are available, 

they are preferred over /proc/kcore.  The total physical length of memory from kernel structure 

/proc/kcore is the size of detected memory 3F

4

 plus 4 KiB 4F

5

.  Moreover, /proc/kcore enables the 

acquisition, at least to some extent, of hardware-reserved computer memory.  [18, 21] 

Dumping memory from /dev/mem will result in the acquisition of hardware-reserved computer 

memory, while acquisition from /dev/kmem will not. 

Direct access to device and kernel structures generally requires the investigator to have root 

privileges on the target system. 

1.4.3 Operating system-specific differences concerning /dev/mem and 

/dev/kmem 

The UNIX memory device /dev/mem is found under most major UNIX systems including all 

BSD, Linux and Solaris operating systems.  This memory device is a direct interface to physical 

memory, including all hardware associated I/O 5F

6

 devices and their operating system accessible 

hardware memory.  Although memory device /dev/kmem is similar to /dev/mem, it does not 

provide direct physical memory access.  Instead, it provides an interface to the kernel's virtual 

address space.  It is important to understand, however, that the kernel’s virtual address space 

memory is similar to physical memory, except that no hardware-reserved memory will be 

accessible through this interface. 

Moreover, while /dev/mem represents actual physical byte offsets in physical memory, /dev/kmem 

does not.  Instead, it is representative only of the byte offsets in the kernel's memory space. 

Thus, when attempting to acquire computer memory from a UNIX-based system, it is preferred to 

acquire memory from /dev/mem prior to acquire it from /dev/kmem.  Specifically, memory device 

/dev/kmem should only be attempted when acquisition from /dev/mem fails or if /dev/mem is not 

available on the current system.  Moreover, it is important that investigators understand that 

Linux 2.6.x and 3.x kernels do not by default support /dev/kmem and /dev/mem, typically limiting 

memory dumps to one MiB.  As such, kernel memory interface /proc/kcore can instead be used.  

However, the investigator is warned.  This pseudo-device has very serious limitations. 

It is important to understand that Linux pseudo-file memory interface /proc/kcore, while similar, 

is not the same as memory device /dev/kmem or /dev/mem.  Specifically, the latter provides an 

                                                      
4

 Detected memory size is based on the MemTotal value found in kernel pseudo-file /proc/meminfo. 

5

  The extra 4 KiB are for ELF data structure overhead. 

6

  I/O device memory is the memory found on peripheral devices within a computer system.  For example, 

consider video card memory, network interface buffers, etc. 
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interface to physical memory in ELF format, while the two former pseudo-devices provide direct 

access to physical memory with and without hardware-reserved memory, respectively. 

1.5 26BMemory acquisition software background 

1.5.1 LiME 

1.5.1.1 Background 

LiME (Linux Memory Extractor) was developed by Joe Sylve, Andrew Case, Lodovico Marziale 

and Golden G. Richard III as a project to improve memory acquisition under Linux and minimize 

the interaction between kernel and the user space [23].  LiME is an open source LKM that allows 

an investigator to acquire memory against Linux and Android-based platforms.  The module, 

operating within the kernel, enables memory acquisition to be dumped to the filesystem or over 

the network, without the need for intermediary network communication tools (e.g. Netcat).  

However, the scope of this evaluation does not cover memory acquisitions over the network or 

with Android devices.  In this memorandum, version 1.1-r14of LiME was used. 

Unlike other memory acquisition tools for Linux, LiME does not need a memory driver in order 

to map memory pages into user space or access them using tools such as DD.  This 

implementation minimizes the memory footprint.  Non-author specific tests comparing Fmem and 

LiME (formerly DMD) against a virtual Android device showed that approximately 99% of pages 

were correctly captured using LiME.  Fmem succeeded in capturing about only 80% of said 

memory pages [23]. 

In order to capture memory, the module’s source code must first be compiled (see Figure 1) and 

then inserted into kernel space with root privileges (see Figure 2).  LiME requires two arguments 

in order to be correctly inserted into kernel space.  These arguments are described below: 

• path= 

o This can be either a filename for writing the acquisition to a filesystem object or a 

TCP port (use format tcp:<port>) to acquire memory directly over the network. 

• format=  

o raw 

� Acquire all “System RAM” ranges with no padding for other devices. 

o padded 

� Starts from physical address 0 (zero) and pad all non-“System RAM” ranges with 

binary zero. 

o lime 

� Acquires all “System RAM” ranges with no padding for other devices and 

prepend each memory address range with address space information. 
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Figure 1: LiME LKM compilation under Ubuntu 12.04 x86 

 

Figure 2: LiME memory acquisition under Ubuntu 12.04 x86 

The scope of this evaluation was limited to acquiring memory against various Linux systems 

directly to an external hard drive formatted using NTFS.  Each Linux system was acquired using 

the raw, padded and lime formats.  After compiling LiME against each test system, the 

commands used to acquire memory were, per system, as follows: 

$ insmod ./lime-[VERSION].ko “path=/ext_hdd_path/mem.raw format=raw” 

$ insmod ./lime-[VERSION].ko “path=/ext_hdd_path /mem.padded format=padded” 

 $ insmod ./lime-[VERSION].ko “path=/ext_hdd_path /mem.lime format=lime” 

1.5.1.2 Overall impression during acquisition 

LiME was stable throughout the authors-based testing and as such, they recommend its use.  

Investigators should use it either with the padded or lime formats.  It is not recommended, 

however, to acquire memory using the raw format as memory analysis tools (e.g. Volatility) will 

not be able to analyze it unless the investigator pads it manually.  Interestingly, the lime format is 

supported by Volatility but not by Second Look, a commercial competitor to Volatility.  LiME 

does not require user-based tools for memory acquisition.  Instead, memory is acquired at the 

time the LKM is loaded into kernel space. 

During this evaluation and while using the lime format, the authors observed an odd behavior 

regarding the performance of the acquisition.  Specifically, even if the lime format writes less 

information to the disk than the padded format, acquisition using this format was noticeably 

slower than the padded format.  The root cause of this, however, has not been thoroughly 

investigated by the authors. 
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Ideally, it is recommended to use the padded format with LiME.  Commonly used Linux memory 

analysis tools will support memory padded-based dumps, while not affecting performance (as 

compared to using the lime format). 

The NTFS kernel driver was used in all LiME-based acquisitions to connect an external storage 

device to each virtual machine, in order to store the variously dumped memory images in a 

readily accessible fashion for analysis.  This likely explains why all LiME acquisitions were so 

slow.  Only this series of experiments used NTFS.  See Annex D.1 for details. 

1.5.2 Pmem 

1.5.2.1 Background 

Written by Michael Cohen of the Volatility project, the current version used in this memorandum 

was obtained with the source code of Volatility 2.2.  Pmem is a Linux memory device driver, 

similar in capability to the memory drivers found in Second Look and Fmem.  The driver, upon 

successfully loading into kernel space, provides a system-based device against which memory 

dumps may be obtained.  A memory driver is required in order to map memory pages into user 

space from kernel space so that acquisition can be carried out using standard user-based tools 

such as DD. 

 

Figure 3: Pmem LKM compilation under Fedora Core 17 x64 
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It has come to the attention of the authors that depending on the underlying operating system, 

dwarf version (debugging file format) and other changes caused by various system updates, that 

the compilation of Pmem carried out when issuing the standard compilation command make may 

result in one or more compiler warnings.  Generally, these warnings can be ignored.  However, 

attempting to compile Pmem alone by issuing the command “make pmem” may prevent the 

compiler from presenting these warnings.  This bug is related to the version of dwarf, not the 

compiler.  Although dwarf is use by the compiler, it is not the compiler per se. 

Throughout all the experiments conducted against Pmem, only when compiling it using make 

against Fedora 15 x64 with the default distribution kernel and GCC compiler did the compiler 

issue an error (see Annex D.2.3 for details).  Specifically, the message was “ERROR: Attribute 

56 (DW_AT_data_member_location)”.  However, specifying make pmem did not result in this 

error, as the kernel dwarf module is not compiled according to Pmem’s Makefile.  See Figure 3 

for a screenshot detailing the make-based compilation of Pmem, where the dwarf module is also 

compiled.  For a list of make options, refer to Pmem’s Makefile. 

To load the driver into kernel space however, the driver’s source code must be compiled and then 

loaded by the root user (or loaded by a user with sudo capability).  Memory dumps can only be 

obtained by the root user (or user using sudo).  Compiling the Pmem memory driver is done using 

the make command, as seen in Figure 3. 

Ideally, memory dumps should be acquired in the following fashion using 4 KiB sized pages, as 

seen below: 

$  dd if=/dev/pmem of=/capture_device/dump.pmem bs=4K count=MEM_IN_KIB/4KIB 

MEM_IN_KIB is the last addressable “System RAM” address obtained from /proc/iomem.  The 

abovementioned command is sufficient for directly reading from memory and dumping it to a 

user-designated file.  Since the correct block size and count parameters have been specified, the 

final size of the memory dump should be equal to the product of the specified byte size and count 

parameters. 

However, this ideal memory dumping method was not used by the authors in order to test the 

tool’s robustness.  Instead, they used the last command shown in Figure 4: 

 

Figure 4: Pmem memory acquisition under Fedora Core 17 x64 

Using the aforementioned command, the authors were able to determine if the memory driver 

could stop dumping memory upon reaching the detected operating system memory limit.  As it 

turns out, this was in fact the case.  Only PAE Linux-based systems failed to acquire correctly the 

underlying system’s memory. 

However, Pmem did not work “out of the box.”  Instead, a minor source code change was 

required.  Specifically, the following change was made to file ./volatility-2.2/tools/linux/module.c: 

as shown next: 
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 Line 70  #include <linux/net_namespace.h> 

This line was changed to: 

 Line 70  #include <net/net_namespace.h> 

Implementing this single change enabled the Pmem kernel driver to compile correctly across 

Ubuntu 11.04 and 12.04 (x86, x86 PAE and x64, respectively) as well as Fedora Core 15 and 17 

(x86 PAE and x64, respectively). 

1.5.2.2 Overall impression during acquisition 

Pmem is easier to use than LiME, as it has only one dump format.  However, unlike LiME, which 

worked against all the target operating systems, Pmem did not.  Specifically, it did not work 

against x86 PAE-based systems.  As such, is not suitable for use in the field.  For detailed 

acquisition information, consult Annex D.2. 

1.5.3 Fmem 

1.5.3.1 Background 

The technical details of Fmem memory acquisition have already been fully examined in TM 

2012-008.  Additional details concerning the correct use of (/proc/iomem over /proc/meminfo) for 

determining the appropriate upper memory address to use for acquisition is examined in Annex 

E.2. 

Because the original experiments in TM 2012-008 were carried out against Ubuntu 11.04 (x86, 

x86 PAE and x64) and Fedora 15 (x86 PAE and x64), all Fmem memory acquisition experiments 

conducted in this work were carried out against these very same operating systems only.  

Acquisition and experimentation against Ubuntu 12.04 and Fedora 17 have not been done in order 

to maintain consistency between the aforementioned report and this one. 

1.5.3.2 Overall impression during acquisition 

Based on the experimental results obtained in Annex D.3, Fmem was found to be fast and 

accurate.  It was able to acquire memory up to the maximum limit of the physical RAM as 

defined by /proc/iomem.  This was done without error or issue.  Thus, it can be considered 

suitable for field use. 

The authors have conducted the experiments using Fmem 1.6-1, the same version used in TM 

2012-008.  However, the tool has not changed since that time. 
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1.5.4 Second Look 

For details concerning the background and use of Second Look, consult TM 2012-008 and Annex 

E.1, respectively.  Volatility-based memory analysis conducted herein has been conducted against 

the original Second Look memory images acquired as per TM 2012-008.   

By default, Second Look will attempt to use the system’s kernel crash driver, if it is present.  If 

not, then the investigator must compile Second Look’s provided crash driver, pmad.c, in order to 

carry out a memory dump. 

1.5.4.1 Overall impression during acquisition 

Memory acquisition using Second Look proved to be fast and easy.  By far, Second Look is the 

fastest memory acquisition tool examined both in TM 2012-008 and herein.  Moreover, it is able 

to acquire the correct amount of memory as per /proc/iomem.  Acquisitions for all operating 

systems succeeded without issue. 

1.6 27BA note about the Linux kernel crash driver 

The Linux kernel crash driver or LKM, found precompiled on supporting systems as crash.ko, is 

loaded into kernel space using the modprobe command if the investigator does not know where it 

is located or using the insmod command otherwise.  It is another memory access driver (or LKM) 

for directly accessing the computer system’s physical memory.  It does not appear to be included 

in the standard Linux kernels.  Instead, it seems to be available only with Red Hat-based Linux 

distributions including, but not necessarily limited to, Red Hat and Fedora (the authors have not 

confirmed its existence under CentOS).  However, other distributions (such as Ubuntu) may also 

have this feature supported by applying external patches to the distribution’s kernel source code 

[11]. 

Upon having been loaded into kernel space, the crash LKM creates /dev/crash, a temporary new 

device that can be used to read from memory or dump it.  The device can be removed from kernel 

space by unloading it using the rmmod command.  

Some confusion exists between the Linux crash driver and the Linux crash project, both of which 

are distinct yet interdependent, although both were written by David Anderson of Red Hat.  The 

Linux crash driver, while not officially a part of the Linux kernel, is found distributed with 

modern Red Hat-based distributions.  Moreover, it is compiled with the stock kernels provided 

through these distributions and it can be used in tandem with the Linux crash project.  Recall that 

modern 2.6.x and 3.x kernels no longer support /dev/kmem (by default) and limited access is 

provided to /dev/mem.  Thus, using /dev/crash, the Linux crash framework has complete and 

unmitigated access to the system’s physical memory. 

In contrast to the Linux crash driver, the crash project is an endeavour to provide a system crash-

based analysis framework.  This framework has the ability to debug a live running system or 

investigate the cause of system kernel panic that was saved to a core-file or dump-file for post-

mortem analysis.  The framework has the ability to read memory from /dev/mem, /proc/kcore and 

/dev/crash, but only from the latter if the crash LKM has been loaded into kernel space.  Recall 
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that the ability to read from these memory devices will vary, as examined in Section 1.4.3.  Many 

distributions, including Ubuntu, have repository crash packages available for installation, but they 

do not include the kernel crash driver.  However, it can be applied as a kernel patch. 

The authors have prepared a table that examines all the operating systems experimented upon in 

both this work and in TM 2012-008 to validate if the Linux kernel crash driver, crash.ko, is 

available to the investigator for immediate use (e.g. memory capture).  Virtual machines and 

guest operating system specifics can be found in Annex B. 

Table 1: Operating system support for the Linux kernel crash driver 

Operating system Compiled kernel crash driver 

Ubuntu 11.04 x86 Not included / not available 

Ubuntu 11.04 x86 PAE Not included / not available 

Ubuntu 11.04 x64 Not included / not available 

Ubuntu 12.04 x86 Not included / not available 

Ubuntu 12.04 x86 PAE Not included / not available 

Ubuntu 12.04 x64 Not included / not available 

Red Hat 9.0 Not included / not available 

Fedora 15 x86 PAE Compiled and included in kernel source code 

Fedora 15 x64 Compiled and included in kernel source code 

Fedora 17 x86 PAE Compiled and included in kernel source code 

Fedora 17 x64 Compiled and included in kernel source code 

As can be seen from this table, only the Red Hat and Fedora-based distributions actually support 

the /dev/crash pseudo-device without the need for patching and recompiling the underlying 

kernel.  Thus, based on this information, the authors recommend that investigators do not use this 

mechanism for memory capture, as it may not always be present. 

However, in order to read and dump memory from /dev/crash, the correct memory address offsets 

and ranges must be used, as per /proc/iomem.  Otherwise, attempting to address memory that is 

non-addressable as “System RAM” will result in a read error.  This is due to this memory being 

non-RAM memory.  Specifically, it is hardware memory and cannot be directly accessed by the 

operating system or kernel. 
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1.7 28BMemory impact of kernel crash drivers 

The LKM or drivers found with Fmem, Pmem and Second Look’s Pmad are all various forms of 

Red Hat’s Linux kernel crash driver, albeit each with its own distinct  peculiarities.  It is known 

that the Linux kernel crash driver is well suited for kernel debugging in the event of system or 

kernel panic, where the kernel’s memory space is written out to a corefile.  However, it is not 

currently known if these crash drivers are forensically sound in the way they acquire memory 

from a given system.  No research work has been published to date concerning this subject matter 

and as such, the authors cannot conjecture further with regard to their forensic reliability. 

The extent to which use of a LKM or kernel memory driver impacts memory have not been 

studied, neither by the authors nor in the available literature.  Thus, the authors cannot state with 

certainty what the potential impact may be of using these drivers and the user space tools required 

to dump memory, e.g. DD.  However, the implementation of LiME was designed to minimize its 

memory footprint because it does not need a memory driver in order to map memory pages into 

user space and dump it using tools such as DD. 
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2 19BMemory acquisition issues and concerns 

2.1 29BThe Volatility framework 

This subsection examines the various issues surrounding the use of the Volatility memory 

framework. 

2.1.1 Using Volatility to determine the integrity of the acquired memory 

dumps 

In previous memory acquisition work (TM 2012-008 and TM 2011-215), the main author used 

string counts6F

7

, highest byte offsets 7F

8

 and visual inspection of memory dumps as his primary 

methods of determining if a given memory dump appeared to be valid.  This was because 

memory analysis tools such as Volatility provided little functional support for Linux.  Only since 

Volatility 2.2 has Linux support become more robust.  Specifically, this particular version of 

Volatility is capable of performing various analyses against Linux-based memory dumps.  

Besides Volatility, another option examined in TM 2012-008 was Second Look.  While it worked 

well against some memory images, it failed with others. 

Using Volatility 2.2 and through the generation of Linux-based kernel profiles, as examined in 

[22], it is possible to objectively determine whether a given memory dump image is intact and 

faithfully represents the contents of memory.  In this work, a Linux-based memory image is 

deemed successfully analysed using Volatility if a process listing succeeds against it using 

Volatility’s linux_pslist plugin. 

For example, to examine an Ubuntu 11.04 x86-based memory dump using the Volatility 

linux_pslist plugin, the following command can be used: 

$ python vol.py -f Ubuntu-11.04-32-bit.lime --profile=LinuxUbuntu-11_04-32bitsx86 

linux_pslist 

This command instructs the Volatility framework to perform a Linux-based process listing using 

a specific Linux kernel profile.  An example of this can be seen in Figure 5. 

Unlike for Windows-based memory analyses using Volatility, Linux system profiles must be 

generated prior to analysis.  Volatility includes Windows profiles 8F

9

 dating back to Windows 2000 

and as recent as Windows 7 and Server 2008, both for 32 and 64-bit (Windows 8 and Windows 

Server 2012 memory support is not yet available in Volatility 2.2).  However, complicating 

                                                      
7

 String counts included 7, 8, 16 and 32-bit strings as determined using the UNIX strings command. 

8

 Highest byte offset is based against the highest string found a given bit depth.  For example, the last 7-bit 

string found within a given memory dump image would be considered the highest byte offset for that 

specific bit depth.  

9

 Currently, Volatility 2.2 does not support Windows 8 systems.  However, newer non-production versions 

of Volatility may include support for Windows 8 based systems. 



 

 

DRDC Valcartier TM 2012-319 17 

 

 

 

 

matters for the generation of Linux distribution specific profiles is the fact that most distributions 

offer regular kernel updates, as compared to Windows that does not.  Thus, even if the Volatility 

developers were to include default Linux profiles, they would be of limited benefit to 

investigators, as Linux systems vary widely.  Fortunately, Linux profile generation is not 

particularly difficult and the Volatility developers have provided information for doing so [24]. 

 

Figure 5: Example process listing from a Linux memory dump using Volatility 

2.1.2 Issues using Volatility  

The authors determined early on that the Volatility 2.2 framework had specific support related 

issues with respect to Fedora-based operating systems, which can be found annexes D and G.  

The exception to this is Volatility 2.3 SVN revision r2574, which works against Fedora lime and 

padded-based memory dumps.  However, all other Fedora-based memory dumps obtained using 

Pmem, Fmem and Second Look were found to be non-functional when analysed with Volatility.  

In cases where Volatility did not succeed in examining a given memory image, string counts of 7, 

8, 16 and 32 bits were conducted against said memory images in order to verify whether it was 

sufficiently populated with data and structures.  Moreover, string byte offsets analysis of the 

aforementioned memory images lent additional credence to a memory image’s intactness. 

The LiME-based acquisitions were analysed with Volatility 2.3 SVN r2754.  Interestingly, even 

though Fedora memory dumps could not typically be analysed using Volatility 2.2 or 2.3, the lime 

and padded memory dumps obtained under Fedora 15 and 17 (x86, x86 PAE and x64) were 

found to be analysable under Volatility 2.3 SVN r2574.  However, it must be stated that Volatility 

2.3 SVN r2754 lacked adequate support for Fedora 15 x64-based memory dumps.  The secondary 
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author proposed a modified version for Volatility’s file dwarf.py to rectify this specific issue 9F

10

.  

This fix was found to work and was used herein for all Volatility 2.3 SVN r2574-based analyses. 

A full listing of all memory dumps obtained herein and the specific versions of Volatility (2.2 or 

2.3 SVN r2574) used against them can be found in Annex G.  This annex provides a detailed 

comparison of which dumps could be successfully analysed using Volatility.  This information 

may help serve the reader in his own attempts with Linux-based memory acquisition analysis. 

2.1.3 About generating kernel profiles 

Although Volatility does not include many Linux kernel profiles, in order to overcome this, the 

Volatility team has provided documentation for generating Linux kernel profiles.  This 

information can be found at 179Hhttp://code.google.com/p/volatility/wiki/LinuxMemoryForensics. 

However, using Linux kernel profiles for Fedora-based systems was at times problematic even 

though these Fedora profiles were generated correctly as per the Volatility team’s instructions.  In 

certain circumstances, when using a Fedora-based kernel profile, Volatility would not function 

correctly, as documented in Annex D as per the analyses found in Section 3.  For more 

information, the secondary author’s Volatility message board posting can be found at 

180Hhttps://code.google.com/p/volatility/issues/detail?id=355#c4. 

2.2 30BExamining memory dump sizes and other issues 

This subsection examines how memory dumps, as based on their size, should be considered as 

complete or inadequate.  This is not a straightforward task, as it depends largely on the underlying 

operating system and architecture. 

Although this specific memorandum directly examines Linux memory acquisitions (LiME, Pmem 

and Fmem), it is nevertheless a continuation of TM 2012-008, and as such, will address not only 

determining the appropriate memory dump size for Linux, but also for x86 and x64 based Solaris 

and BSD operating systems. 

2.2.1 The PCI hole problem and memory acquisition 

The examination of the “PCI Hole” issue [25] was not directly examined in TM 2012-008.  This 

problem, commonly known as the 3 GiB barrier, has been plaguing x86-based operating systems 

for years.  The only way to avoid it is to migrate to an x64 architecture and operating system. 

In essence, the problem is related to the manner in which PC-based computer memory (RAM 10F

11

) 

found between 3 and 4 GiB is mapped out for usage exclusively by the system’s hardware.  

                                                      
10

 For more information, consult the secondary author’s post available at 

https://code.google.com/p/volatility/issues/detail?id=367. 

11

 RAM denotes the physical memory modules inserted into a computer’s motherboard and does not take 

into account processor cache, video card memory or any other form of memory-based computing 

technology. 
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Computer memory is mapped linearly.  Fortunately, almost all RAM and some I/O 11F

12

 memory is 

accessible or addressable 12F

13

, in one form or another, from the operating system kernel.  However, 

the kernel does not typically make all the RAM available to non-kernel processes, and even then, 

it is not known 13F

14

 if all kernel processes will have access to it.  Thus, under modern Linux 

systems, it is only through a kernel memory driver that this kernel memory can be fully accessed 

and acquired.  

Ultimately, the problem relates to how RAM and I/O memory are mapped out in a typical x86-

based computer system.  RAM is allocated in linearly mapped blocks, found interspersed among 

I/O memory (TM 2012-008 provides a depiction of this in its Annex D against an Intel i7 980X 

based system equipped with 24 GiB RAM).  Testing this and many other physical and virtual 

machines using three specific operating systems, namely Linux x86, x86 PAE and x64, resulted 

in differing results with respect to the mapping of physical RAM (“System RAM”) and of the 

underlying I/O hardware.  Specifically, under x86 Linux, RAM was available up to 3,583.94 MiB 

while under x86 PAE-based Linux, it is available up the 62 GiB memory limit.  Under x64 Linux, 

no practical limitations are in effect. 

More specifically, a 32-bit operating system will be able to address RAM up to that system’s 32-

bit memory limit which is always less than 4 GiB RAM.  The distinction must be made between 

the operating system, user-land tools and applications, and the kernel, which always has full 

access to all computer-based RAM.  However, in order to access RAM above the 32-bit operating 

system limit, a memory device driver is required, which in some cases is provided through system 

pseudo-devices.  These specifics are examined within this discussion. 

Thus, the PCI hole problem affects different operating systems in various ways, all of which 

depends on the underlying kernel, how it maps hardware into memory and its ability to provide 

direct memory access.  Thus, it can be concluded that based on experimentation, PC operating 

system support for x86, x86 PAE and x64 memory addressing differs according to the underlying 

kernel in use.  These results apply equally to Linux, Solaris, BSD and even Windows NT-based 

systems (XP, Vista, Windows 7, etc.). 

It is important to be aware that some operating systems, specifically BSD variants, provide direct 

physical memory access via kernel memory device /dev/mem.  However, this pseudo-device is 

only accessible to the root user.  BSD’s /dev/mem device behaves precisely as a memory driver.  

In tests carried out in TM 2012-008, all the x86 BSD variants were able to fully acquire their host 

virtual machine’s memory including the hardware-reserved portion of RAM, as per a manual 

analysis of each system’s memory dump.  Unfortunately, no x86 PAE-based BSD systems were 

                                                      
12

 I/O memory denotes memory belonging to peripheral devices such as disk caches, buffers on network 

interfaces, video card memory, etc. 

13

 There are limitations to this, however.  For example, a video card with 1 GiB onboard card graphics 

generally makes only a portion of its overall memory available to the kernel.  Nevertheless, portions of it 

are available to the system. 

14

 More research is required in order to determine to what extent various kernel processes of Linux, Solaris 

and BSD have full and unfettered access to this memory.  Documentation is too sparse and inconsistent 

to draw and firm conclusions at this point.  Only full source code analysis of the various kernels and 

(continued from Footnote 15) subsystems will answer this question, and this requires an in-depth 

knowledge of kernel design and implementation. 
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available for testing, as PAE-enabled kernels must be compiled after the installation of a given 

BSD distribution and as such, this approach was not undertaken by the authors.  It was also 

determined that x64 BSD systems could also have their full physical memory acquired, with the 

exception of x64 OpenBSD, which for the tested version therein, did not support 64-bit memory 

allocation. 

The reader must understand that without being fully versed in the finer details of operating system 

kernel and virtual memory management internals, including the underlying platform’s hardware 

architecture, it is impossible to determine definitively how memory will be mapped and managed.  

Frankly, few people know these details intricately enough and fewer still have written about it 

outside of hardware manufacturers’ engineering manuals.  Moreover, quality publicly available 

literature is even rarer and both hardware and operating system vendors do not typically provide 

this level of detail in their system engineering guides obtained when purchasing their systems.  

Thus, the authors are basing their assertions in this section on both the very limited available 

literature, the various memory drivers’ source code (Fmem, Second Look, Pmem and LiME) and 

other memory acquisition programs (Memdump and Helix 3 Pro R3). 

As with BSD, UNIX systems such as Solaris were found to provide a readily accessible memory 

device, /dev/mem, which provides unmitigated memory access for x64 Solaris systems, but not 

for x86 PAE 14F

15

 systems, as based on Memdump-based memory acquisitions.  Specifically, when 

running an x64 Solaris kernel, no difficulty was encountered during memory acquisition.  Thus, 

direct memory access under Solaris appears superior to that of Linux, at least when comparing 

x64-based Solaris and Linux systems. 

However, for x86-based Solaris PAE systems, as based on tests conducted in TM 2012-008, it 

was determined that acquisition against a system ceased when the memory dump grew to 3,583 

MiB in size.  This appears to indicate that memory beyond this limit was dedicated to the 

system’s hardware and was made inaccessible by the kernel, as it was entirely available under the 

x64 kernel.  Thus, at least for x86 PAE Solaris, memory between 3,583 MiB and 4 GiB will 

likely remain inaccessible.  It is known that both the x64 and x86 PAE systems recognized 

exactly the same amount of memory, as based on results obtained from Solaris’ prtconf command 

and from David W. Noon’s C code program [26].  The former command recognized 8,192 MiB 

while the latter program recognized 8,191.559 MiB RAM.  Tests against prtconf appear to 

indicate that this program provides the full amount of physical RAM while Noon’s code provides 

the amount of memory seen by the kernel. 

Thus, taking into account the fact that under BSD, Memdump could fully acquire memory from 

the underlying x86-based system, including hardware-reserved memory between 3 and 4 GiB, it 

can be reasonably concluded that Solaris has a built-in mechanism which prevents access to this 

region of memory in its x86 PAE incarnation.  However, since there were no x86 PAE instances 

of BSD to compare against, the authors do not want to draw too many conclusions.  Specifically, 

since Memdump was compiled as an x86 program under x86 PAE Solaris, it could not, by its very 

design, access memory beyond 4 GiB without changing its 32-bit read () calls to pread64 () or 

llseek () and read ().  The reader may ask why not use DD?  This was tried in TM 2012-008 and 

the results were utterly disappointing. 

                                                      
15

 Modern x86-based Solaris no longer provides standard 32-bit memory addressing (non-PAE) kernels. 
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2.2.2 Defining the correct memory dump size for BSD 

Based on the experimentation conducted in TM 2012-008, the following recommendations are in 

line with this report’s results.  BSD memory acquisition, at least for x86 and x64 operating 

systems, should be considered complete when the memory dump is the same size as the amount 

of physical RAM, as reported by the virtual machine’s settings or the computer’s BIOS.  It is 

possible that the memory dump will continue to grow beyond this size.  If this occurs, then extract 

only the amount of memory that corresponds to the physical RAM of the underlying system from 

that memory image. 

Moreover, experimentation confirms that memory acquisition of x86 BSD systems will acquire 

the hardware-reserved portion of physical RAM.  Regarding x86 PAE kernels for BSD systems, 

no recommendations are available at this time. 

Finally, since direct memory access is available via /dev/mem, DD and Memdump can be used, 

but preference should be given to Memdump. 

2.2.3 Defining the correct memory dump size for Solaris 

Under x86 and x64 Solaris, the Solaris kernel is able to see and access all the system’s physical 

RAM, except a very small portion several hundred KiB in size which is reserved 15F

16

.  Using 

Memdump, the only successful memory acquisition tool tested for Solaris, the investigator can 

expect x64 Solaris memory acquisitions to be the same size as that reported by Noon’s C program 

[26].  Where x86 PAE acquisitions are concerned, the memory dumps to be acquired are expected 

to be up to the hardware-reserved memory limit of x86, which can vary according to the 

underlying hardware.  However, an accurate estimate would be that the latter half of the fourth 

GiB of RAM would be set aside for hardware.  Acquisition of memory beyond 4 GiB for x86 

PAE systems is possible.  However, it requires that the Memdump tool is modified to use an x64 

read () or some other system call that has the ability to go beyond the limitations of the standard 

32-bit read () used by Memdump. 

Obviously, these results do not apply to non-x86 based Solaris.  32-bit Solaris on SPARC will not 

follow the same memory addressing ranges due to hardware-based architectural differences.  

Moreover, Solaris, like BSD, does not provide a Linux-like /proc subsystem with which to query 

the system about its memory ranges.  Instead, various operating system-specific diagnostic suites 

such as SunVTS can be used. 

2.2.4 Defining the correct memory dump size for Linux 

Under Linux, the memory reported by /proc/iomem is always larger than the memory reported by 

/proc/meminfo.  This is because /proc/iomem reports memory based upon the actual addressing of 

physical memory (RAM) and other I/O memory, whereas memory reported by /proc/meminfo is 

                                                      
16

 For a detailed discussion of this reason, please refer to the examination of ACPI and BIOS INT 0x15 

EAX=0xE820 as examined in more detail in Section 2.2.4, specifically the discussion concerning 

reserved mapped memory for the ACPI and BIOS. 
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based upon the memory the kernel reserves for the system.  The memory reported by 

/proc/meminfo never equals the full amount of physical RAM allocated to the system.  However, 

when adding up the “System RAM” memory address ranges as per /proc/iomem (see calculations 

and example below for more information), the memory reported therein is equal or very close to 

the actual amount of physical memory. 

There is always a difference between the amounts of memory reported by /proc/iomem and 

/proc/meminfo, with the latter being the smaller of the two.  This difference is due to the kernel 

reserving memory for itself that is not made available to the rest of the operating system.  The 

exact contents of this kernel-reserved memory are not fully understood at this time, but it appears 

to contain only kernel subsystems.  Moreover, this kernel-reserved memory does not contain 

hardware-reserved memory, as based on many observations conducted by the authors using x86, 

x86 PAE and x64 virtual machines with varying size of memory.  In the authors’ observations, a 

difference in memory sizes was maintained between /proc/iomem and /proc/meminfo. 

In order to better understand this memory difference, consider an Ubuntu 12.04 x86 with exactly 

4 GiB of allocated RAM running within a virtual machine.  It reports 3,616,096 KiB RAM from 

MemTotal as per /proc/meminfo while the last addressable RAM memory address according to 

/proc/iomem is 3,669,952 KiB.  This 53,856 KiB memory difference has been reserved by the 

kernel for its own subsystems.  Moreover, based on the addressable memory range as seen in 

/proc/iomem, memory between 3,669,952 KiB and 4,194,304 KiB is not available, even though 

the x86 virtual machine has been allocated exactly 4 GiB RAM.  This is altogether normal, as it 

was set aside for hardware-reserved memory (memory reserved for the computer’s hardware) and 

under an x86 Linux operating system, this region is off-limits. 

Thus, when conducting a memory acquisition against this x86 Linux operating system using a 

memory driver or LKM, all physical memory up to 3,669,952 KiB should be acquired.  Of 

course, x86 Linux systems equipped with less than 4 GiB RAM will have differing amounts of 

available memory and the location and address ranges of memory set aside for hardware-reserved 

memory will vary accordingly. 

Acquisition against x86-based Linux PAE and x64 systems should be acquired up to the upper 

memory “System RAM” address as per /proc/iomem.  However, since the other non-Linux 

UNIX-based systems examined in TM 2012-008 do not provide a Linux-like /proc subsystem, 

complete memory acquisitions for them are different, as examined in sections 2.2.2 and 2.2.3. 

The highest accessible “System RAM” page reported by /proc/iomem should be used to define 

the correct dump size for Linux systems.  The logic behind this assertion is that on Linux, only 

/proc/iomem provides the true memory ranges for RAM.  When adding up these ranges manually 

(see the calculation below), they add up to the full amount of physical RAM minus several 

hundred kibibytes reserved for the BIOS and ACPI mappings (this is examined further on in this 

text).  Thus, a memory dump that respects /proc/iomem will dump all RAM and pad with zeroes 

all non-RAM I/O memory ranges, as done by all the tools examined in this work (Pmem, LiME 

padded dumps, Second Look and Fmem).  However, at an absolute minimum, a memory dump 

that is equal to the total size of the RAM memory (e.g. LiME raw dump) ranges as per 

/proc/iomem is also acceptable, although it is not the preferred dump size as it does not see 

memory in quite the same way the CPU does. 
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In order to analyze memory dumps and correctly convert virtual to physical linear-based memory 

addressing, memory analysis software must have the same view as the CPU does as per [27].  

This is the true reason why a memory dump should be equal to the size of the highest accessible 

“System RAM” page reported by /proc/iomem.  An example of this can be found in the 

calculation below and in Figure 6.  This calculation is based on an x64 virtual machine allocated 

with exactly 8 GiB RAM.  It would have the following “System RAM” /proc/iomem output: 

9FBFFh + 1 – 10000h =                 588,800 

DFFEFFFFh + 1 – 100000 =        3,756,982,272 

21FFFFFFFh + 1 – 100000000 =    4,831,838,208 

--------------------------------------------- 

Total “System RAM” =            8,589,409,280 

Thus, a system allocated with exactly 8 GiB RAM (equal to 8,589,934,592 bytes) will not have 

exactly that same amount of memory seen available as “System RAM.”  This is shown in the 

above calculation as the addition of the “System RAM” memory ranges actually adds up to 

8,589,409,280 bytes of physical RAM.  There is a very small difference between the two (exactly 

513 KiB or 525,312 bytes).  This difference is related to the memory map defined by the BIOS 

(BIOS INT 0x15 EAX=0xE820 16F

17

).  The memory map defines what the different regions of 

physical memory are used for.  Some regions are reserved and cannot be used by the operating 

system.  For example, the BIOS can reserve memory for Real Mode IVT (Interrupt Vector 

Table), BDA (BIOS data area) and EBDA (Extended BIOS Data Area) [28]. 

                                                      
17

 See http://www.brokenthorn.com/Resources/OSDev17.html for more information. 
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Figure 6: Example output from /proc/iomem from a system with 8 GiB RAM 

In the previous example, 459,776 bytes (1,048,576 – 588,800) were reserved in the “Low” 

memory region (e.g. < 1 MiB).  In addition, 65,536 bytes were reserved for the ACPI table 

(/proc/iomem memory addresses found between 0xDFFF0000 – 0xDFFFFFFF) as seen in the 

figure below.  There is a total of 525,312 bytes (459,776 + 65,536) of reserved RAM and these 

memory ranges cannot be used by the OS nor displayed as “System RAM” by /proc/iomem.  

Thus, in a relatively straightforward manner, using DD and a Linux memory driver or LKM, it is 

possible to acquire precisely17F

18

 all physical RAM memory ranges as per /proc/iomem. 

Incidentally, under x64 Solaris, this is the same reason why a very small portion was not 

accessible to Memdump.  The difference between the amount of physical memory and the size of 

the memory dump-file was 462,848 bytes (as per TM 2012-008) and this occurred for the same 

reasons enumerated above, with the exception that the Solaris kernel was able to “see” slightly 

more of these mappings than the Linux kernel. 

In order to validate which Linux memory acquisition-based software tool is capable of acquiring 

memory up to the limit defined by /proc/iomem, a comparative analysis has been conducted 

herein.  This study compares the best Linux acquisition tools as determined by TM 2012-008 

(Second Look) against those examined herein (LiME, Pmem and Fmem). 

                                                      
18

 This includes the bs, skip and count parameters (lesser used parameters can also be used).  
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2.2.5 Memory mapping 

Unlike other operating systems that limit the investigator’s ability to query the system concerning 

its memory and hardware I/O mapping, Linux makes this information readily available through 

/proc/iomem.  Other systems such as BSD and Solaris do not directly provide this ability.  On 

these systems, in order to query memory and hardware I/O mapping, third party or custom kernel 

querying software is required.  Under Windows, the registry can be queried for this information, 

but it is not obvious to locate. 

To provide a more thorough understanding of memory mapping, several examples will be used.  

Consider the example of an Ubuntu 11.04 x86-based operating system allocated exactly 4 GiB 

RAM whose memory is mapped at the following locations: 

00010000 – 0009fbff or 8FBFF bytes = 588,799 bytes 

00100000 – dffeffff or DFEEFFFF bytes = 3,756,982,271 bytes 

Total memory = 3,757,571,070 bytes or exactly 3,583 MiB 

Now the example of an Ubuntu 11.04 x86 PAE-based operating system allocated exactly 4 GiB 

RAM whose memory is mapped at the following locations: 

00010000 – 0009fbff or 8FBFF bytes = 588,799 bytes 

00100000 – dffeffff or DFEEFFFF bytes = 3,756,982,271 bytes 

100000000 – 11fffffff or 1FFFFFFF bytes = 536,870,911 bytes 

Total memory = 4,294,441,981 bytes which is 525,315 bytes shy of exactly 4 GiB 

Finally, consider the example of an Ubuntu 11.04 x64-based operating system allocated exactly 4 

GiB RAM whose memory is mapped at the following locations: 

00010000 – 0009fbff or 8FBFF bytes = 588,799 bytes 

00100000 – dffeffff or DFEEFFFF bytes = 3,756,982,271 bytes 

100000000 – 11fffffff or 1FFFFFFF bytes = 536,870,911 bytes 

Total memory = 4,294,441,981 bytes which is 525,315 bytes shy of exactly 4 GiB 

Thus, based on these examples, it is easy to see and understand why x86 PAE and x64 RAM-

based memory addressing is the same, up to the PAE limit of 62 GiB.  However, beyond the PAE 

limit of 62 GiB RAM, an x64 operating system must be used. 

While understanding the amount of RAM available to a given operating system, be it x86, x86 

PAE or x64, it is important to differentiate between memory allocation and memory mapping.  

Memory allocation refers to the amount of memory a given computer system, physical or virtual 

in nature, has access to while memory mapping refers to the linear mapping of address ranges 
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representing RAM and hardware I/O.  Thus, even though in some memory mappings RAM goes 

beyond the size of its allotment, this by no means indicates that the system has been somehow 

overcommitted. 

More specifically, looking back at the previous example of Ubuntu 11.04 x64, the final memory 

address for its physical memory is 0x11fffffff (or 4,831,838,207 bytes).  This virtual computer 

system certainly does not have this amount of memory or “System RAM” available as exactly 4 

GiB RAM (or 4,294,967,296 bytes) was allocated to it.  What the reader must consider is that all 

hardware in a computer system has its own memory.  Some of this memory is derived from 

specific hardware I/O components mapped into the operating system by the kernel, while some of 

it is altogether unavailable.  In addition, even if hardware memory is addressable, it does not 

guarantee its availability to the kernel or its subsystems. 

Thus, understanding how these address ranges tie into the expected memory dump sizes a given 

memory acquisition is quintessential to quantifying that dump’s suitability for use in an 

investigation. 

Unfortunately, when investigating BSD and Solaris-based systems, because they both lack similar 

mechanisms to /proc/iomem, it is not possible to determine how their memory is specifically 

mapped. 

However, based on [27], it becomes apparent that it is in fact the underlying BIOS and processor 

that maps the various memory regions, including hardware I/O memory and RAM, and that this 

process has nothing to do with the operating system kernel.  Instead, the kernel must manage 

memory through its virtual memory manager and ensure that memory (i.e. RAM and hardware 

I/O memory), is made available to the appropriate subsystem or user application.  Thus, the 

kernel maps the various physical memories into the operating system for use by the various 

subsystems.  Consequently, all PC operating systems have their memory mapped the same way.  

However, the manner in which the kernel portrays this memory to the underlying operating 

system and subsystems is an altogether different subject far outside the scope of this work. 

Finally, these memory mappings will vary from system to system according to the underlying 

hardware, chipsets, processors, associated I/O components and other attached peripherals.   
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3 20BExperimental outcomes and evaluations 

3.1 31BResults and analyses 

This section examines in detail the experimental results found in Annex D and the analyses 

conducted in annexes F and G.  Where possible, attempts were made to provide meaningful 

insight into the various results obtained herein.  Moreover, the following analyses provide brief 

commentaries and recommendations for each tool. 

3.1.1 LiME 

This subsection examines LiME-specific memory acquisition and the subsequent analysis of 

acquired memory dumps using Volatility 2.3 SVN r2754.  Additional information concerning 

LiME can be found in Section 1.5.1 and annexes D.1, F.1 and G.1.1. 

3.1.1.1 Technical background 

In order to determine if a given LiME memory dump successfully acquired all of a system’s 

memory, the dump size was compared to the system’s memory map as established by the kernel’s 

memory range as per /proc/iomem.  For example, consider the memory range for the Ubuntu 

11.04 x86-based test system: 

$ cat /proc/iomem | grep “System RAM” 

00010000 - 0009FBFF : System RAM 

00100000 - DFFEFFFF : System RAM 

These ranges translate to: 

 65,536 to 654,335 

 1,048,576 to 3,758,030,847 

These ranges are informative for LiME in order to instruct it as to which address it should stop 

dumping memory from.  Of course, this depends on the type of LiME memory dump desired by 

the investigator, as examined in the following three subsections. 

3.1.1.1.1 Raw memory dump 

During the memory acquisition experiments, the authors considered a successful raw memory 

dump to be equivalent to the sum of the size of the “System RAM” ranges established by 

/proc/iomem.  For example, considering the aforementioned Ubuntu 11.04 x86-based test system, 

to determine if a raw memory dump was successful, the sum of the “System RAM” ranges must 

be added together to establish a final memory size.  Thus, this Ubuntu system yields the following 

accessible memory ranges as shown next: 
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0009FBFF + 1 – 00010000 = 8FC00 (588,800 bytes) 

DFFEFFFF + 1 – 00100000 = DFEF0000 (3,756,982,272 bytes) 

Together, these two ranges yield a total of 3,757,571,072 bytes of acquirable system memory.   

3.1.1.1.2 Padded memory dump 

Unlike a raw-based memory acquisition, a padded memory dump is complete when the dump is 

equivalent to the size of the last memory address range, as determined by examining /proc/iomem 

(“System RAM” based entries).  For example, when considering the aforementioned Ubuntu 

11.04 x86-based system, a padded memory dump is successful when it is equal to the size of the 

last abovementioned memory system-based range, as seen below: 

DFFEFFFF + 1 = DFFF0000 (3,758,030,848 bytes) 

Thus, for the Ubuntu 11.04 x86-based system, a successful padded-based memory acquisition 

would be 3,758,030,848 bytes in size.  This type of dump is called padded because the memory 

ranges that, according to /proc/iomem, contain non-System RAM memory are padded with binary 

zero. 

3.1.1.1.3 Lime memory dump 

Finally, a successful lime-based memory acquisition occurs when a given memory dump is 

equivalent to the sum of all the acquirable system memory ranges, as per “System RAM” found 

by examining /proc/iomem, plus a fixed-sized header of 32 bytes for each individual memory 

range.  For example, consider the Ubuntu 11.04 x86-based system.  A complete memory dump, 

as per the sum of the aforementioned memory ranges was found to the 3,757,571,072 bytes in 

size.  However, since two memory ranges are involved, two 32-byte headers are to be added to 

the dump’s size as shown below: 

0009FBFF + 1 – 00010000 = 8FC00 (588,800 bytes) 

DFFEFFFF + 1 – 00100000 = DFEF0000 (3,756,982,272 bytes) 

2 x 32 byte headers = 64 bytes 

This yields a final memory dump size of 3,757,571,136 bytes. 

3.1.1.2 Memory acquisition results 

The various LiME modules compiled and loaded without incident for each operating system 

examined herein.  However, acquiring and analysing LiME memory acquisitions is more 

complicated than for any other memory acquisition tool examined throughout this work.  This is 

because LiME has three memory acquisition modes, as examined in the preceding subsection.  

When examining the table below and the experimental results found in Annex D.1, the technical 

background concerning LiME memory dumps as found in Section 3.1.1.1 must be considered to 
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establish whether a given memory dump was successful.  It was found the LiME memory 

acquisition succeeded with one caveat, i.e. it was consistently one memory page (4 KiB) short in 

acquiring a given PAE-based system’s memory. 

For all other memory dumps, the acquired memory dumps were of the expected size.  Specifics 

for the raw, padded and lime memory dumps can be found in the table below, as based on the 

results obtained in Annex D.1.  

Table 2: LiME-based experimental results summary for memory acquisition-based dump size 

Operating System Raw format  Padded format  Lime format 

Ubuntu 11.04 x86 Complete Complete Complete 

Ubuntu 11.04 x86 PAE Missing 4,096 bytes Missing 4,096 bytes Missing 4,096 bytes 

Ubuntu 11.04 x64 Complete Complete Complete 

Ubuntu 12.04 LTS x86 Complete Complete Complete 

Ubuntu 12.04 LTS x86 

PAE 
Missing 4,096 bytes Missing 4,096 bytes Missing 4,096 bytes 

Ubuntu 12.04 LTS x64 Complete Complete Complete 

Fedora Core 15 x86 PAE  Missing 4,096 bytes Missing 4,096 bytes Missing 4,096 bytes 

Fedora Core 15 x64 Complete Complete Complete 

Fedora Core 17 x86 PAE Missing 4,096 bytes Missing 4,096 bytes Missing 4,096 bytes 

Fedora Core 17 x64 Complete Complete Complete 

3.1.1.3 Analysis using Volatility 

Analysis of the LiME padded and lime dumps succeeded in all cases for all the various operating 

systems against which memory was acquired, even though the PAE-based memory dumps were 

one memory page short (4 KiB).  LiME memory dumps were examined using Volatility 2.3 SVN 

r2754.  Only LiME’s raw memory dumps were not examined herein as it is not currently 

supported by Volatility.   

Volatility therefore succeeded in providing a complete process listing for each memory dump 

image, including all Ubuntu and Fedora based memory images. 

It is important to note that in order for Fedora 15 x64 to be supported by Volatility, the secondary 

author had to modify dwarf.py, as previously mentioned in Section 2.1.2. 

For more information concerning Volatility-based analysis, refer to Annex G.1.1 and Section 

2.1.3. 
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3.1.1.4 Recommendations 

The authors highly recommend the use of LiME.  Investigators should consider using the padded 

format as it can be analysed using known Linux memory analysis tools (Volatility and Second 

Look) and is as fast as or faster than the lime format to acquire.  The fact that LiME is 

consistently one memory page short for PAE-based operating systems does not appear to pose 

any problems to memory analyses of these memory dump images. 

3.1.2 Pmem 

This subsection examines Pmem-specific memory acquisition and the subsequent analysis of its 

memory dumps using Volatility 2.2 and 2.3 SVN r2574.  Additional details concerning Pmem 

can found in Section 1.5.2 and annexes D.2, F.1 and G.1.2. 

3.1.2.1 Memory acquisition results 

The Pmem source code had to be modified for each operating system in order for it to compile 

correctly, as examined in Section 1.5.2.1.  Although the source code was successfully compiled 

for every operating system examined using Pmem, an error was raised by the compiler for Fedora 

15 x64 (see Annex D.2.3 for more information).  Nevertheless, the module did produce a 

functional LKM for said operating system. 

In acquiring memory from each operating system, it was discovered that Pmem had significant 

acquisition-based problems when dumping memory from PAE-based systems.  This issue was 

without regard to the specific distribution as it occurred for both Ubuntu and Fedora-based 

operating systems. 

Not once did Pmem result in a memory dump with the expected size.  Instead, issues were found 

for each memory dump.  Even though memory acquisition appeared to succeed at first glance 

against Ubuntu 11.04 x86, it was quickly discovered that this memory dump was over 58,000,000 

bytes short of a complete memory dump.  Recall that a complete memory dump is based upon 

/proc/iomem.  Furthermore, it was soon discovered that all memory dumps against the x86 and 

x64 systems were consistently one byte short, indicating a persistent acquisition bug innate to 

Pmem. 

Memory acquisition specifics for Pmem can be found in Annex D.2, but they have been 

summarised in the following table.  
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Table 3: Pmem-based experimental results summary for memory acquisition 

Operating System Memory dump size Comments 

Ubuntu 11.04 x86 Missing 58,044,416 bytes 
This dump was short by 58,044,416 bytes.  

This error is likely due to a bug with Pmem. 

Ubuntu 11.04 x86 PAE 
Missing 8,589,934,593 

bytes 

This dump failed.  Far too little memory 

was acquired to be of use with Volatility. 

Ubuntu 11.04 x64 Missing 1 byte 
This dump was short by 1 byte.  This error 

is likely due to a bug with Pmem. 

Ubuntu 12.04 LTS x86  Missing 1 byte 
This dump was short by 1 byte.  This error 

is liked due to a bug with Pmem. 

Ubuntu 12.04 LTS x86 

PAE 

Missing 8,589,934,593 

bytes 

This dump failed.  Far too little memory 

was acquired to be of use with Volatility. 

Ubuntu 12.04 LTS x64  Missing 1 byte 
This dump was short by 1 byte.  This error 

is likely due to a bug with Pmem. 

Fedora Core 15 x86 PAE  
Missing 8,589,934,593 

bytes 

This dump failed.  Far too little memory 

was acquired to be of use with Volatility. 

Fedora Core 15 x64 Missing 1 byte 
This dump was short by 1 byte.  This error 

is likely due to a bug with Pmem. 

Fedora Core 17 x86 PAE 
Missing 8,589,934,593 

bytes 

This dump failed.  Far too little memory 

was acquired to be of use with Volatility. 

Fedora Core 17 x64 Missing 1 byte 
This dump was short by 1 byte.  This error 

is likely due to a bug with Pmem. 

3.1.2.2 Analysis using Volatility 

Analysis of Pmem-based memory dumps was conducted using both Volatility 2.2 and 2.3 SVN 

r2574.  They were both found to be effective against Ubuntu x86 and x64-based memory dumps 

only.  Efforts to analyse memory images originating from Fedora-based systems failed as these 

memory dump images were incomplete.  Moreover, since all memory images obtained using 

Pmem against x86 PAE-based Ubuntu and Fedora systems were altogether incomplete, no overall 

assessment concerning Volatility’s analysis capabilities against x86 PAE-based Fedora and 

Ubuntu systems could be determined as this time. 

Analysis of Fedora x64 memory images (versions 15 and 17, respectively) failed against both 

Volatility 2.2 and 2.3 SVN r2574.  However, it must be noted that analysis using both Volatility 

frameworks with Fedora 17 x64 never actually failed.  Instead, it failed to output any analyses 

after more than 10 hours of processing, which essentially is considered a failure.  Thus, there was 

no manner in which to get either framework to function correctly with Fedora without rewriting 

the supporting Volatility code.  Upon having completed the various experiments and analyses, the 
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secondary author discovered that the reason Volatility could not analyse the intact 18F

19

 Fedora 

Pmem-based memory images was due to the improper generation of kernel-based profiles as 

examined in Section 2.1.3. 

Using string and byte-offset analyses for the x86 PAE memory images were altogether 

inconclusive.  However, analyses for the other two Fedora x64 systems (versions 15 and 17, 

respectively) indicated that these memory images appeared intact and populated with data and 

structures. 

For more information concerning Volatility-based analysis, refer to Annex G.1.2. 

3.1.2.3 Recommendations 

Pmem, although a somewhat capable memory acquisition tool, is not yet ready for field use.  

More specifically, it should not be used for forensic acquisition against any Linux system that is 

running a PAE-enabled kernel.  Doing so will likely result in an incomplete memory dump image. 

However, it could be used against x86 and x64 Linux running 2.6.x and 3.x generation kernels.  

Nevertheless, the authors are of the opinion that better memory acquisition tools exist. 

3.1.3 Fmem 

This subsection re-examines the Fmem memory acquisitions (as carried out anew in this work) 

and their subsequent analysis using Volatility 2.2 and 2.3 SVN r2754.  Additional information 

concerning Fmem is found in annexes D.3, E.2, F.1 and G.1.3. 

3.1.3.1 Memory acquisition results 

The Fmem module compiled without error or warning for all operating systems it was tested 

against.  Memory acquisition was straightforward.  The investigator had only to execute the script 

run.sh in order to load correctly the compiled module into kernel space at which time the memory 

dump could be initiated as per Annex E.2.  Unlike Pmem and LiME, Fmem produced memory 

dump images that were all the expected size. 

Memory acquisition specifics for Fmem can be found in Annex D.3, but they have been 

summarised in the following table.  

 

                                                      
19

 Fedora 15 and 17 x86 PAE Pmem-based memory dumps resulted in incomplete acquisitions that were 

entirely insufficient for analysis with Volatility or any other memory analysis framework.  Only Fedora 

based x64 Pmem acquisitions were intact. 
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Table 4: Fmem-based experimental results summary for memory acquisition 

Operating System Memory dump size Comments 

Ubuntu 11.04 x86 Complete 
Memory dump is the correct size 

and completed without issue 

Ubuntu 11.04 x86 PAE Complete 
Memory dump is the correct size 

and completed without issue 

Ubuntu 11.04 x64 Complete 
Memory dump is the correct size 

and completed without issue 

Fedora Core 15 x86 PAE Complete 
Memory dump is the correct size 

and completed without issue 

Fedora Core 15 x64 Complete 
Memory dump is the correct size 

and completed without issue 

3.1.3.2 Analysis using Volatility 

Fmem-based Volatility memory analysis, using version 2.2, succeeded without issue for the 

various memory dumps obtained against Ubuntu 11.04 x86, x86 PAE and x64. 

Analysis of Fedora 15 x86 PAE and x64 memory images failed against both Volatility 2.2 and 2.3 

SVN r2574.  It is likely that the only way to get the kernel profile to work would have been to 

rewrite the supporting Volatility code.  Based on a discovery by the secondary author examined 

in Section 2.1.3, it was realized that Volatility could not analyse the Fedora-based Fmem memory 

images.  This was due to the improper creation of the kernel profiles, as based on the Volatility 

team’s current instructions pertaining to kernel profile generation.  However, an examination of 

the Fedora 15 memory images using strings and byte-offsets indicated that they appeared intact 

and populated with data and structures. 

For more information concerning Volatility-based analysis, refer to Annex G.1.3. 

3.1.4 Second Look 

This subsection examines Second Look-specific memory acquisitions (as conducted in TM 2012-

008) and the subsequent analysis of said memory dumps using Volatility 2.2 and 2.3 SVN r2754.  

Details can be found in Section 1.5.4 and annexes D.4, F.1 and G.1.4. 

3.1.4.1 Memory acquisition results 

Although the memory acquisition experiments for Second Look were conducted in TM 2012-008, 

the analysis of these acquisitions as per the aforementioned report was not particularly detailed.  

Thus, based on the results obtained in Annex C.5 as per TM 2012-008, it can be said that the 

pmad LKM for Second Look compiled without issue and was readily loaded into kernel space.  

Memory acquisition using the provided secondlook-memdump.sh acquisition script succeeded in 

dumping the expected amount of memory as per /proc/iomem.  In memory acquisition 
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experiments using Second Look, it was found that its acquisitions were by far the fastest of the 

tools compared herein.  

Memory acquisition specifics for Second Look can be found in Annex C.5 of TM 2012-008, but 

they have been summarised in the following table.  

Table 5: Second Look-based experimental results summary for memory acquisition 

Operating System Memory dump size Comments 

Ubuntu 11.04 x86 Complete 
Memory dump is the correct size 

and completed without issue 

Ubuntu 11.04 x86 PAE Complete 
Memory dump is the correct size 

and completed without issue 

Ubuntu 11.04 x64 Complete 
Memory dump is the correct size 

and completed without issue 

Fedora Core 15 x86 PAE Complete 
Memory dump is the correct size 

and completed without issue 

Fedora Core 15 x64 Complete 
Memory dump is the correct size 

and completed without issue 

3.1.4.2 Analysis using Volatility 

Second Look Volatility 2.2 memory analysis succeeded without issue for the various memory 

dumps obtained against Ubuntu 11.04 x86, x86 PAE and x64.     

Analysis of Fedora 15 x86 PAE and x64 memory images failed against both Volatility 2.2 and 2.3 

SVN r2574.  There was no manner in which to get the Fedora kernel profiles working without 

rewriting Volatility’s code base.  After having completed the various Fedora memory acquisitions 

and analyses, the secondary author discovered that the reason Volatility could not support these 

memory images was due to the improper creation of the kernel profiles as examined in Section 

2.1.3.  However, examination of the Fedora 15 memory images using strings and byte-offsets 

indicated that they appeared intact and populated with data and structures. 

For more information concerning Volatility-based analysis, refer to Annex G.1.4. 
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4 21BConclusion and final tool assessment for Linux, 

BSD and Solaris UNIX 

4.1 32BSolaris 

Where Solaris x64 memory acquisitions are concerned, Memdump is the tool of choice.  It works 

as expected for x64-based Solaris systems.  However, when x86-based systems are encountered, 

memory acquisition will transpire up to the memory address where hardware-reserved computer 

memory is located, often found between 3.3 to 3.5 GiB RAM.  Experimentation thus far has 

clearly demonstrated that memory acquired using this tool is valid and intact.  However, it is not 

known if this tool will provide the same results atop SPARC-based systems although it is very 

likely that it remains the case. 

4.2 33BBSD 

x86-based BSD systems are also best served by using Memdump.  For all x86-based systems 

encountered through experimentation in this work, memory acquisition occurred without issue 

and was able to fully acquire all memory for each operating system: FreeBSD, NetBSD and 

OpenBSD, up to each system’s 32-bit memory limit (4 GiB RAM). 

Where x64 BSD systems were concerned memory acquisition was less straightforward.  Under 

x64 OpenBSD, the maximum detected and supported memory size was 4 GiB RAM, even though 

an x64 kernel was running.  This is a known issue with the default OpenBSD x64 kernel, which 

incidentally is the most likely to be encountered by investigators.  For this specific operating 

system, the memory dump conducted using Memdump was acquired without difficulty up to 4 

GiB RAM.  As for x64-based FreeBSD and NetBSD operating systems, Memdump will 

successfully acquire all the operating system’s memory.  With x64-based FreeBSD and OpenBSD 

systems, once all the operating system’s memory is acquired and up to the detected memory limit, 

the dump file will continue filling up with binary zeroes until either the partition where the dump-

file is located fills up or the investigator stops the program’s execution.  Extraction of memory 

from these dump files is done by copying out the acquired data up to each operating system’s 

detected memory limit.  This operation can be readily carried out using the UNIX DD command. 

4.3 34BLinux 

4.3.1 Assessment of overall tool suitability 

In all, eight memory acquisition tools, drivers and LKM were examined throughout this 

memorandum and in TM 2012-008.  These tools included (in alphabetical order) DD, Fmem, 

Helix3 Pro, LiME, Memdump, Pmem, Second Look and X-Ways Capture.  Most of these tools 

were found to be insufficient, particularly DD, Helix3 Pro, Memdump, Pmem and X-Ways 

Capture.  X-Ways Capture was the worst of the list and should be avoided at all costs.   
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Due to the lack of useable /dev/mem and /dev/kmem based pseudo devices, LKM or memory 

drivers that operate from kernel space must be used.  However, since DD, Helix3 Pro, Memdump 

and X-Ways Capture rely on /dev/mem or /dev/kmem for memory acquisition, they were not to be 

considered in this assessment. 

LKMs and memory drivers running from kernel space have full access to the same memory that 

the kernel does.  However, getting these LKMs or memory drivers to work on the target system 

generally requires the use of a compiler.  Obviously, compiling software invariably changes the 

system state, but to what extent, nobody knows.  Currently, Fedora and Red Hat based systems 

have readily available kernel crash drivers that are loadable at any time by the root user using the 

insmod crash command.  However, because the implementation of this crash driver is not 

uniform amongst distributions, it is best not to rely on it.  As such, the assessments made by the 

authors herein renounce the use of such a crash driver. 

4.3.2 Assessment of acquisition speed 

Based on the experimental results obtained herein, Second Look appeared to be the fastest tool.  

However, to be fair, LiME was acquired using the Linux kernel’s NTFS driver that is 

significantly slower than the NTFS-3 G FUSE filesystem driver.  Moreover, LiME-based dumps 

were saved to an external USB 2.0 device mounted by the virtual machine, while for Pmem, 

Fmem and Second Look, memory dumps were saved to the virtual disks of the underlying virtual 

machines.  Therefore, writing to this external device was significantly slower than writing to a 

virtual disk.  Thus, based on these results, the authors will not draw conclusions at this time with 

respect to which memory acquisition tool was faster.  Instead, they will emphasize on the 

acquisition correctness and reliability over speed. 

4.3.3 Assessment of prior Fmem and Second Look experiments 

The reason Fmem and Second Look memory acquisitions were not carried out against x86 and 

x64 based Fedora 17 and Ubuntu 12.04 systems were that the authors had no concerns about their 

ability to function correctly.  Acquiring memory under these two operating systems went without 

error in TM 2012-008.  However, since both Pmem and LiME were the new tools to be examined 

and tested in this memorandum, the onus was on them to perform up to the expectations delivered 

by Fmem and Second Look.  The fact that Fmem memory acquisition experiments were carried 

out a second time in this work does not undermine the tool’s capability.  Instead, it demonstrates 

that the original experiments conducted in TM 2012-008 were incorrectly executed. 

4.3.4 Assessment of tool acquisition 

LiME was specifically designed to minimize its memory footprint.  It does not need a memory 

driver in order to map memory pages into user space and dump them using tools such as DD. 

In terms of size-based correctness as per /proc/iomem, Fmem and Second Look delivered 

memory acquisitions of the correct size every time without error.  LiME was a close third and 

when its dumps were not exactly the same size as physical memory, it was never more than one 

page short (4 KiB).  The same cannot be said for memory images acquired using Pmem and it is 

to be considered altogether unacceptable for x86 PAE-based memory acquisition.  However, its 
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x86 and x64 acquisitions were generally off by one byte of memory, with the exception of 

Ubuntu 11.04 x86 (which was off by 58,044,416 bytes).  This was clearly due to an error in 

Pmem’s assessment of memory size. 

However, in some cases, LiME came up short in certain acquisitions, and even though it is very 

unlikely that any data of value was left out, this issue could be argued in court. 

4.3.5 Volatility memory image assessment 

Only LiME-based lime and padded formatted memory acquisitions were fully analysable using 

Volatility 2.3 SVN r2754.  Those from Second Look, Pmem and Fmem had varying degrees of 

success, regardless of their analysis using Volatility 2.2 or 2.3.  The reason the LiME memory 

images were successfully analysed using Volatility, in comparison to its counterparts (Second 

Look, Fmem and Pmem), is that the secondary author proposed a change to Volatility 2.3, which 

provided some missing capability.  However, making additional modifications in order to get 

Volatility correctly supports the other tools’ memory dumps was not a realistic endeavour and 

was not undertaken. 

4.3.6 Conclusion 

Based on all the various experiments conducted by the authors, both in this memorandum and in 

TM 2012-008, the authors have concluded that LiME should be considered as the investigator’s 

primary Linux-based memory acquisition tool.  This conclusion is despite the fact that Second 

Look and Fmem yielded accurate memory acquisitions in comparison to LiME, which was very 

close and never more than one memory page short.  This is primarily due to LiME’s 

implementation that minimizes its memory footprint [23]. 

The forensic accuracy of kernel crash based drivers has not yet been proven.  Although they are 

likely sufficient to pass forensic reliability assessments, the authors cannot make this assertion at 

this time, due to insufficient information and evidence supporting this position. 

Thus, erring to the side of caution, the authors are recommending the use of LiME before any 

other Linux-based memory acquisition tool.  Barring the inability for an investigator to get LiME 

functioning correctly, due to its need to be compiled, the authors would then feel comfortable 

recommending the use of Second Look as an alternative.  If Second Look is to be used, the Pmad 

driver can be used if the investigator is able to load it into kernel space.  Because it is not 

currently known if crash drivers are forensically sound and the supplied Pmad driver was always 

used in lieu of the underlying system’s kernel crash driver during the tests, the authors can only 

recommend using Second Look’s Pmad driver to acquire memory.  
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Annex A 0BComputer systems used for experimentation 

A.1 Dedicated workstation configuration for LiME acquisition 

(RCMP) 

In order to conduct the various LiME-based experiments against an assortment of prebuilt and 

preconfigured VirtualBox-based virtual machines (see Annex B for details), the following 

computer system configuration was used. 

Table A.1: Host computer configuration for LiME memory acquisitions 

Computer model MacBook Pro 

Processors Intel Core i7 2720QM @ 2,200 MHz 

Physical RAM 16,384 KB RAM 

Swap C:\Pagefile.sys 

Operating System Windows Seven Professional SP1 64-bit 

Virtualization Software Oracle VirtualBox 4.2.0 r80737 with Extension Pack 

Graphics adapter AMD Radeon HD 6750M 

Graphics driver Catalyst 11.1 (Driver: v 8.812-110104a-116524C-Apple) 

Monitor LTN170CT10 Color LCD – 17” 

Floppy  N/A 

USB 3 USB ports 

Keyboard French Canada Multilanguage (Apple) 

Mouse USB optical mouse 

FireWire 1 FireWire ports (no attached devices) 

Thunderbolt 1 Thunderbolt port (no attached devices) 

DVD Drive MATSHITA DVD-R UJ-898 

Hard drive 1 - TOSHIBA MK7559GSXF (750 GB) 

Sound card Cirrus Logic CS4206A 

Network cards 1) Broadcom NetXtreme BCM57765 Gigabit Ethernet PCIe 

2) Broadcom 802.11n Network Adapter 
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A.2 Dedicated workstation configuration for Pmem 

acquisition (DRDC) 

In order to conduct the various LiME-based experiments against an assortment of prebuilt and 

preconfigured VirtualBox-based virtual machines (see Annex B for details), the following 

computer system configuration was used. 

Table A.2: Host computer configuration for carrying out Pmem memory acquisitions 

Computer model Dell OptiPlex 990 

Processors Intel Core i7 2600 @ 3,400 MHz 

Physical RAM 16,384 KB RAM 

Swap F:\Pagefile.sys 

Operating System Windows Seven Professional SP1 64-bit 

Virtualization Software Oracle VirtualBox 4.2.0 r80737 with Extension Pack 

Graphics adapter AMD Radeon HD 5670 

Graphics driver Catalyst 12.10  

Monitor 2 BenQ 19” monitors 

Floppy  N/A 

USB 10 USB ports 

Keyboard U.S. International English 

Mouse USB optical mouse 

FireWire N/A 

Thunderbolt N/A 

DVD Drive Pioneer DVD-RW DVR-111D USB Device 

Hitachi-LG HL-DT-ST DVD+-RW GH70N 

Hard drives 1 – Seagate ST95005620AS (500 GB) 

1 – Seagate ST31500541AS (1.5 TB) 

1 – RevoDrive PCIe SSD (120 GB) 

Sound card RealTek HD  

Network card Intel 82579LM Gigabit Ethernet PCIe 
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A.3 Dedicated workstation configuration for Fmem 

acquisition (DRDC) 

In order to conduct the various LiME-based experiments against an assortment of prebuilt and 

preconfigured VirtualBox-based virtual machines (see Annex B for details), the following 

computer system configuration was used.  

Table A.3: Host computer configuration for carrying out Pmem memory acquisitions 

Computer model Dell Precision 690 Workstation 

Processors Dual Xeon 3.20 GHz w/HyperThreading (8 logical processors) 

Physical RAM 22.00 GiB RAM 

Swap None 

Operating System Linux Fedora Core 14, x64 

Virtualization Software Oracle VirtualBox 4.1.0 with Extension Pack 

Graphics adapter NVidia GeForce GTX 460 

Graphics driver NVidia driver 270.41.06 

Monitor 1) Dell E196FP LCD display (19”) 

2) BenQ FP992 LCD display (19”) 

Floppy  1.44 MB floppy drive 

USB 8 USB ports 

Keyboard USB US English keyboard 

Mouse USB optical mouse 

FireWire 2 FireWire ports (no attached devices) 

Thunderbolt N/A 

DVD Drive Hitachi CD-RW drive 

Philips CD-RW/DVD-RW drive 

Hard drives 1 – Seagate ST95005620AS (500 GB) 

1 – Seagate ST31500541AS (1.5 TB) 

1 – RevoDrive PCIe GB SSD (120 GB) 

 

1 – Seagate 7,200 RPM SATA (1.5 TB) 

3 – Hitachi 7,200 RPM SATA in RAID 5 (2 TB) 

8 – Seagate 7,200 RPM SATA drive in RAID 5 (2 TB) 

Sound card Sigma Tel HD sound card 
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Network card 1 – Broadcom NetXtreme Gigabit Ethernet 

1 –  1394 Net Adapter 

Host adapters 2x Vantec PCIe E-SATA host adapters 
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Annex B 1BVirtualBox and operating system 

configurations for Pmem and LiME 

B.1 Configuration for Ubuntu 11.04 Linux 

The following are the technical details for the configuration of the three Ubuntu-based operating 

systems (x86, x86 PAE and x64) experimented upon in this work. 

Table B.1: Ubuntu 11.04 VirtualBox virtual machine configuration details 

VirtualBox configuration x86 OS x86 PAE OS x64 OS 

VirtualBox version 4.2.0 4.2.0 4.2.0 

VirtualBox VT-x, AMD-V, 

Nested Paging, PAE/NX enabled 
Yes Yes Yes 

VirtualBox IO APIC enabled Yes Yes Yes 

VirtualBox allocated memory 8,388,608 KiB 8,388,608 KiB 8,388,608 KiB 

VirtualBox allocated processors 2 processors 2 processors 2 processors 

VirtualBox hard disk drive size 

(using SATA controller) 
20.00 GB 20.00 GB 20.00 GB 

VirtualBox floppy drive 

allocated 
None None None 

VirtualBox optical drive 

allocated (using IDE controller) 
1 CD/DVD drive 1 CD/DVD drive 1 CD/DVD drive 

VirtualBox allocated monitors  1 monitor 1 monitor 1 monitor 

VirtualBox allocated video 

memory 
128 MiB 128 MiB 128 MiB 

VirtualBox 3D acceleration 

enabled 
Yes Yes Yes 

VirtualBox 2D acceleration 

enabled 
No No No 

VirtualBox network adapter 

enabled 

Intel Pro/1000 MT 

Desktop 

Intel Pro/1000 MT 

Desktop 

Intel Pro/1000 MT 

Desktop 

VirtualBox sound adapter 

enabled 

PulseAudio / ICH 

AC 97 

PulseAudio / ICH 

AC 97 

PulseAudio / ICH 

AC 97 

VirtualBox serial ports enabled  No No No 

VirtualBox USB enabled Yes Yes Yes 

VirtualBox USB 2.0 (EHCI) 

enabled 
Yes Yes Yes 
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B.2 Configuration for Ubuntu 12.04 Linux 

The following are the technical details for the configuration of the three Ubuntu-based operating 

systems (x86, x86 PAE and x64) experimented upon in this work. 

Table B.2: Ubuntu 12.04 VirtualBox virtual machine configuration details 

VirtualBox configuration x86 OS x86 PAE OS x64 OS 

VirtualBox version 4.2.0 4.2.0 4.2.0 

VirtualBox VT-x, AMD-V, 

Nested Paging, PAE/NX enabled 
Yes Yes Yes 

VirtualBox IO APIC enabled Yes Yes Yes 

VirtualBox allocated memory 8,388,608 KiB 8,388,608 KiB 8,388,608 KiB 

VirtualBox allocated processors 4 processors 4 processors 2 processors 

VirtualBox hard disk drive size 

(using SATA controller) 
25.00 GB 25.00 GB 25.00 GB 

VirtualBox floppy drive 

allocated 
None None None 

VirtualBox optical drive 

allocated (using IDE controller) 
1 CD/DVD drive 1 CD/DVD drive 1 CD/DVD drive 

VirtualBox allocated monitors  1 monitor 1 monitor 1 monitor 

VirtualBox allocated video 

memory 
128 MiB 128 MiB 128 MiB 

VirtualBox 3D acceleration 

enabled 
Yes Yes Yes 

VirtualBox 2D acceleration 

enabled 
No No No 

VirtualBox network adapter 

enabled 

Intel Pro/1000 MT 

Desktop 

Intel Pro/1000 MT 

Desktop 

Intel Pro/1000 MT 

Desktop 

VirtualBox sound adapter 

enabled 

PulseAudio / ICH 

AC 97 

PulseAudio / ICH 

AC 97 

PulseAudio / ICH 

AC 97 

VirtualBox serial ports enabled  No No No 

VirtualBox USB enabled Yes Yes Yes 

VirtualBox USB 2.0 (EHCI) 

enabled 
Yes Yes Yes 
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B.3 Configuration for Fedora Core 15 Linux 

The following are the technical details for the configuration of the Fedora Core-based operating 

systems (x86 PAE and x64) experimented upon in this work. 

Table B.3: Fedora Core 15 VirtualBox virtual machine configuration details 

VirtualBox configuration x86 PAE OS x64 OS 

VirtualBox version 4.2.0 4.2.0 

VirtualBox VT-x, AMD-V, Nested 

Paging, PAE/NX enabled 
Yes Yes 

VirtualBox IO APIC enabled Yes Yes 

VirtualBox allocated memory 8,388,608 KiB 8,388,608 KiB 

VirtualBox hard disk drive size 

(using SATA controller) 
52.34 GB 52.34 GB 

VirtualBox allocated processors 2 processors 2 processors 

VirtualBox floppy drive allocated None None 

VirtualBox optical drive allocated 

(using IDE controller) 
1 CD/DVD drive 1 CD/DVD drive 

VirtualBox allocated monitors  1 monitor 1 monitor 

VirtualBox allocated video memory 128 MiB 128 MiB 

VirtualBox 3D acceleration enabled Yes Yes 

VirtualBox 2D acceleration enabled No No 

VirtualBox network adapter enabled 
Intel Pro/1000 MT 

Desktop 

Intel Pro/1000 MT 

Desktop 

VirtualBox sound adapter enabled PulseAudio / ICH AC 97 PulseAudio / ICH AC 97 

VirtualBox serial ports enabled  No No 

VirtualBox USB enabled Yes Yes 

VirtualBox USB 2.0 (EHCI) enabled Yes Yes 
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B.4 Configurations for Fedora Core 17 Linux 

The following are the technical details for the configuration of the Fedora Core-based operating 

systems (x86 PAE and x64) experimented upon in this work. 

Table B.4: Fedora Core 17 Linux VirtualBox virtual machine configuration details 

VirtualBox configuration x86 PAE OS x64 OS 

VirtualBox version 4.2.0 4.2.0 

VirtualBox VT-x, AMD-V, Nested 

Paging, PAE/NX enabled 
Yes Yes 

VirtualBox IO APIC enabled Yes Yes 

VirtualBox allocated memory 8,388,608 KiB 8,388,608 KiB 

VirtualBox hard disk drive size 

(using SATA controller) 
25.00 GB 25.00 GB 

VirtualBox allocated processors 4 processors 4 processors 

VirtualBox floppy drive allocated None None 

VirtualBox optical drive allocated 

(using IDE controller) 
1 CD/DVD drive 1 CD/DVD drive 

VirtualBox allocated monitors  1 monitor 1 monitor 

VirtualBox allocated video memory 128 MiB 128 MiB 

VirtualBox 3D acceleration enabled Yes Yes 

VirtualBox 2D acceleration enabled No No 

VirtualBox network adapter enabled 
Intel Pro/1000 MT 

Desktop 

Intel Pro/1000 MT 

Desktop 

VirtualBox sound adapter enabled PulseAudio / ICH AC 97 PulseAudio / ICH AC 97 

VirtualBox serial ports enabled  No No 

VirtualBox USB enabled Yes Yes 

VirtualBox USB 2.0 (EHCI) enabled Yes Yes 
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B.5 VirtualBox guest operating system configuration 

B.5.1 Configuration for Ubuntu 11.04 Linux 

The following details the various detected hardware for the Ubuntu virtualized guest operating 

systems (x86, x86 PAE and x64) experimented upon in this work.  Please note that the x86 PAE 

kernel is not quite the same version as the kernel used for the x86 and x64 implementation of 

Ubuntu, but the authors do not see this as being a potential source of interference in their results. 

Table B.5: Ubuntu 11.04 Linux guest operating system details 

Operating system 

details 

x86 OS x86 PAE OS x64 OS 

Operating system 

kernel version 

2.6.38-8-generic #42-

Ubuntu SMP Mon Apr 

11 03:31:50 UTC 2011 

i686 i686 i386 

GNU/Linux  

2.6.38-10-generic-pae 

#46-Ubuntu SMP Tue 

Jun 28 16:54:49 UTC 

2011 i686 i686 i386 

GNU/Linux  

2.6.38-8-generic #42-

Ubuntu SMP Mon Apr 

11 03:31:24 UTC 2011 

x86_64 x86_64 x86_64 

GNU/Linux  

Memory detected 3,613,268 KiB 8,265,044 KiB 8,194,124 KiB 

Processors detected 2 processors 2 processors 2 processors 

Hard drive detected 

and all partitions 

accessible 

Yes Yes Yes 

Optical drive detected 

and accessible 
Yes Yes Yes 

Network adapter 

functioning correctly 
Yes Yes Yes 

USB detected Yes Yes Yes 

VirtualBox Guest 

Additions installed 
Yes Yes Yes 

Version 4.2.0 4.2.0 4.2.0 
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B.5.2 Configuration for Ubuntu 12.04 Linux 

The following details the various detected hardware for the Ubuntu virtualized guest operating 

systems (x86 and x64) experimented upon in this work. 

Table B.6: Ubuntu 12.04 Linux guest operating system details 

Operating system 

details 

x86 OS x86 PAE OS x64 OS 

Operating system kernel 

version 

3.2.0-32-generic #51-

Ubuntu SMP Wed Sep 

26 21:32:50 UTC i686 

i686 i386 GNU/Linux 

3.2.0-32-generic #51-

Ubuntu SMP Wed Sep 

26 21:54:23 UTC i686 

i686 i386 GNU/Linux 

3.2.0-32-generic #51-

Ubuntu SMP Wed 

Sep 26 21:33:09 UTC 

x86_64 x86_64 

x86_64 GNU/Linux 

Memory detected 3,616,096 KiB 8,272,916 KiB 8,178,624 KiB 

Processors detected 4 processors 4 processors 4 processors 

Hard drive detected and 

all partitions accessible 
Yes Yes Yes 

Optical drive detected and 

accessible 
Yes Yes Yes 

Network adapter 

functioning correctly 
Yes Yes Yes 

USB detected Yes Yes Yes 

VirtualBox Guest 

Additions installed 
Yes Yes Yes 

Version 4.2.0 4.2.0 4.2.0 
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B.5.3 Configuration for Fedora Core 15 Linux 

The following details the various detected hardware for the Fedora Core virtualized guest 

operating systems (x86 and x64) experimented upon in this work. 

Table B.7: Fedora Core 15 guest operating system details 

Operating system details x86 PAE x64 OS 

Operating system kernel 

version 

2.6.41.10-3.fc15.i686.PAE 

#1 SMP Mon Jan 23 

15:36:55 UTC 2012 i686 

i686 i386 GNU/Linux 

2.6.41.10-3.fc15.x86_64 

#1 SMP Mon Jan 23 

15:46:37 UTC 2012 

x86_64 x86_64 x86_64 

GNU/Linux 

Memory detected 8,273,772 KiB 8,179,108 KiB 

Processors detected 2 processors 2 processors 

Hard drive detected and all 

partitions accessible 
Yes Yes 

Optical drive detected and 

accessible 
Yes Yes 

Network adapter functioning 

correctly 
Yes Yes 

USB detected Yes Yes 

VirtualBox Guest Additions 

installed 
Yes Yes 

Version 4.2.0 4.2.0 
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B.5.4 Configuration for Fedora Core 17 Linux 

The following details the various detected hardware for the Fedora Core virtualized guest 

operating systems (x86 and x64) experimented upon in this work. 

Table B.8: Fedora Core 17 guest operating system details 

Operating system details x86 PAE x64 OS 

Operating system kernel 

version 

3.6.1-1.fc17.i686.PAE #1 

SMP Wed Oct 10 12:32:58 

UTC 2012 i686 i686 i386 

GNU/Linux 

3.6.1-1.fc17.x86_64 #1 SMP 

Oct 10 12:13:05 UTC 2012 

x86_64 x86_64 x86_64 

GNU/Linux 

Memory detected 8,290,544 KiB 8,178,556 KiB 

Processors detected 4 processors 4 processors 

Hard drive detected and all 

partitions accessible 
Yes Yes 

Optical drive detected and 

accessible 
Yes Yes 

Network adapter functioning 

correctly 
Yes Yes 

USB detected Yes Yes 

VirtualBox Guest Additions 

installed 
Yes Yes 

Version 4.2.0 4.2.0 
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Annex C 2BVirtualBox and operating system 

configurations for Fmem 

The virtual machines used for Fmem memory acquisition are the same ones used for Fmem in 

TM 2012-008, i.e., Oracle VirtualBox version 4.1.0 with Expansion Pack.  For additional details, 

consult TM 2012-008. 
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Annex D 3BExperimental results 

D.1 LiME 

In this sub-annex, the experimental results obtained using the LiME tool are examined.  This tool 

was used against all of the various x86 and x64 Linux operating systems examined herein. 

D.1.1 Ubuntu Linux 11.04 

Table D.1: Memory dump results for Ubuntu 11.04 Linux x86 using LiME 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 
3,613,268 KiB (3,528.58 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

 

Last address in memory range = 3,758,030,848 

 

Size of System RAM = 3,757,571,072 bytes 

(3583.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Raw dump  

Time (Last Write Time - Create Time) 00:11:51 

Dump file size 3,757,571,072 bytes (3,583.50 MiB) 

Did Volatility linux_pslist command 

succeed? 
No 

Padded dump  

Time (Last Write Time - Create Time) 00:15:44 

Dump file size 3,758,030,848 bytes (3,583.94 MiB) 

Did Volatility linux_pslist command 

succeed? 
Yes 
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Lime dump  

Time (Last Write Time - Create Time) 00:17:08 

Dump file size 
3,757,571,136 bytes (includes 2x 32-byte headers) 

(3,583.50 MiB) 

Did Volatility linux_pslist command 

succeed? 
Yes 

 Notes 

The LiME module compiled, loaded and dumped 

memory without incident.  Memory dump sizes 

were as expected. 

 

Volatility 2.3 SVN-based memory analysis was 

successful for the padded and lime memory 

dumps.  However, the raw memory dump could 

not be assessed using Volatility. 

  Table D.2: Memory dump results for Ubuntu 11.04 Linux x86 PAE using LiME 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 
8,265,044 KiB (8,071.33 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504 

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Raw dump  

 Time (Last Write Time - Create Time) 00:34:18 

Dump file size 8,589,405,184 bytes (8,191.50 MiB) 
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Did Volatility linux_pslist command 

succeed? 
No 

Padded dump  

Time (Last Write Time - Create Time) 00:44:41 

Dump file size 9,126,801,408 bytes (8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 
Yes 

Lime dump  

Time (Last Write Time - Create Time) 00:42:48 

Dump file size 
8,589,405,280 bytes (includes 3x 32-byte headers) 

(8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 
Yes 

 Notes 

The LiME module compiled and loaded without 

incident, but failed to dump all the system’s 

memory (one memory page is missing).  This 

appears to be a PAE-related memory driver issue.  

 

Volatility 2.3 SVN-based memory analysis was 

successful for the padded and lime memory 

dumps.  However, the raw memory dump could 

not be assessed using Volatility. 

Table D.3: Memory dump results for Ubuntu 11.04 Linux x64 using LiME 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 
8,194,124 KiB (8,002.07 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 
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Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504 

 

Size of System RAM = 8,589,409,280 bytes 

(8191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Raw dump  

Time (Last Write Time - Create Time) 00:20:14 

Dump file size 8,589,409,280 bytes (8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 
No 

Padded dump  

Time (Last Write Time - Create Time) 00:29:01 

Dump file size 9,126,805,504 bytes (exactly 8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 
Yes 

Lime dump  

Time (Last Write Time - Create Time) 00:31:04 

Dump file size 
8,589,409,376 bytes (includes 3x 32-byte headers) 

(8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 
Yes 

 Notes The LiME module compiled, loaded and dumped 

memory without incident.  Memory dump sizes 

were as expected. 

 

Volatility 2.3 SVN-based memory analysis was 

successful for the padded and lime memory 

dumps.  However, the raw memory dump could 

not be assessed using Volatility. 
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D.1.2 Ubuntu Linux 12.04 

Table D.4: Memory dump results for Ubuntu 12.04 Linux x86 using LiME 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

3,616,096 KiB (3,531.34 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

 

Last address in memory range = 3,758,030,848 

 

Size of System RAM = 3,757,571,072 bytes 

(3,583.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Raw dump  

Time (Last Write Time - Create Time) 00:11:56 

Dump file size 3,757,571,072 bytes (3,583.50 MiB) 

Did Volatility linux_pslist command 

succeed? 

No  

Padded dump  

Time (Last Write Time - Create Time) 00:14:51 

Dump file size 3,758,030,848 bytes (3,583.94 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes  

Lime dump  

Time (Last Write Time - Create Time) 00:15:15 

Dump file size 3,757,571,136 bytes (includes 2x 32-byte headers) 

(3,583.50 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes  
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 Notes The LiME module compiled, loaded and dumped 

memory without incident.  Memory dump sizes 

were as expected.  

 

Volatility 2.3 SVN-based memory analysis was 

successful for the padded and lime memory 

dumps.  However, the raw memory dump could 

not be assessed using Volatility. 

Table D.5: Memory dump results for Ubuntu 12.04 Linux x86 PAE using LiME 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,272,916 KiB (8,079.02 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504 

 

Size of System RAM = 8,589,409,280 bytes 

(8191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Raw dump  

Time (Last Write Time - Create Time) 00:32:00 

Dump file size 8,589,405,184 bytes (8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 

No 

Padded dump  

Time (Last Write Time - Create Time) 00:39:40 

Dump file size 9,126,801,408 bytes (8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes 
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Lime dump  

Time (Last Write Time - Create Time) 00:41:18 

Dump file size 8,589,405,280 bytes (includes 3x 32-byte headers) 

(8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes 

 Notes The Lime module compiled, loaded without 

incident but failed to dump all the system’s 

memory (one memory page is missing).  This 

appears to be a PAE-related memory driver issue.  

 

Volatility 2.3 SVN-based memory analysis was 

successful for the padded and lime memory 

dumps.  However, the raw memory dump could 

not be assessed using Volatility. 

Table D.6: Memory dump results for Ubuntu 12.04 Linux x64 using LiME 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,178,624 KiB (7,986.94 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504 

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification? No  

Is root access needed? Yes 

Raw dump  

Time (Last Write Time - Create Time) 00:20:58 

Dump file size 8,589,409,280 bytes (8,191.50 MiB) 
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Did Volatility linux_pslist command 

succeed? 

No 

Padded dump  

Time (Last Write Time - Create Time) 00:30:43 

Dump file size 9,126,805,504 bytes (exactly 8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes  

Lime dump  

Time (Last Write Time - Create Time) 00:30:36 

Dump file size 8,589,409,376 bytes (includes 3x 32-byte headers) 

(8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes  

 Notes The LiME module compiled, loaded and dumped 

memory without incident.  Memory dump sizes 

were as expected.  

 

Volatility 2.3 SVN-based memory analysis was 

successful for the padded and lime memory 

dumps.  However, the raw memory dump could 

not be assessed using Volatility. 

D.1.3 Fedora Core 15 Linux 

Table D.7: Memory dump results for Fedora Core 15 Linux x86 PAE using LiME 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,266,212 KiB (8,072.47 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 
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Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504 

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Raw dump  

Time (Last Write Time - Create Time) 00:33:45 

Dump file size 8,589,405,184 bytes (8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 

No 

Padded dump  

Time (Last Write Time - Create Time) 00:44:20 

Dump file size 9,126,801,408 bytes (8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes 

Lime dump  

Time (Last Write Time - Create Time) 00:42:47 

Dump file size 8,589,405,280 bytes (includes 3x 32-byte headers) 

(8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes 

 Notes The Lime module compiled, loaded without 

incident but failed to dump all the system’s 

memory (one memory page is missing).  This 

appears to be a PAE-related memory driver issue.  

 

Volatility 2.3 SVN-based memory analysis was 

successful for the padded and lime memory 

dumps.  However, the raw memory dump could 

not be assessed using Volatility. 
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Table D.8: Memory dump results for Fedora Core 15 Linux x64 using LiME 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,194,780 KiB (8,002.71 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504 

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Raw dump  

Time (Last Write Time - Create Time) 00:18:15 

Dump file size 8,589,409,280 bytes (8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 

No 

Padded dump  

Time (Last Write Time - Create Time) 00:25:29 

Dump file size 9,126,805,504 bytes (exactly 8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes 

Lime dump  

Time (Last Write Time - Create Time) 00:26:09 

Dump file size 8,589,409,376 bytes (includes 3x 32-byte headers) 

(8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes 
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 Notes The LiME module compiled, loaded and dumped 

memory without incident.  Memory dump sizes 

were as expected.  

 

Volatility 2.3 SVN-based memory analysis (with 

the modified dwarf.py file) was successful for the 

padded and lime memory dumps.  However, the 

raw memory dump could not be assessed using 

Volatility. 

D.1.4 Fedora Core 17 Linux 

Table D.9: Memory dump results for Fedora Core 17 Linux x86 PAE using LiME 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,290,544 KiB (8,096.23 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504 

 

Size of System RAM = 8,589,409,280 bytes 

(8191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Raw dump   

Time (Last Write Time - Create Time) 00:34:16 

Dump file size 8,589,405,184 bytes (8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 

No 

Padded dump   

Time (Last Write Time - Create Time) 00:45:07 

Dump file size 9,126,801,408 bytes (8,704 MiB) 
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Did Volatility linux_pslist command 

succeed? 

Yes  

Lime dump   

Time (Last Write Time - Create Time) 00:34:29 

Dump file size 8,589,405,280 bytes (includes 3x 32-byte headers) 

(8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes  

Notes The Lime module compiled, loaded without 

incident, but failed to dump all the system’s 

memory (one memory page is missing).  This 

appears to be a PAE-related memory driver issue.  

 

Volatility 2.3 SVN-based memory analysis was 

successful for the padded and lime memory 

dumps.  However, the raw memory dump could 

not be assessed using Volatility. 

Table D.10: Memory dump results for Fedora Core 17 Linux x64 using LiME 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,178,556 KiB (7,986.87 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504 

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification? No 

Root access needed? Yes 

Raw dump  

Time (Last Write Time - Create Time) 00:17:33 
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Dump file size 8,589,409,280 bytes (8,191.49 MiB) 

Did Volatility linux_pslist command 

succeed? 

No 

Padded dump  

Time (Last Write Time - Create Time) 00:23:29 

Dump file size 9,126,805,504 bytes (exactly 8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes 

Lime dump  

Time (Last Write Time - Create Time) 00:22:07 

Dump file size 8,589,409,376 bytes (includes 3x 32-byte headers) 

(8,191.50 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes 

 Notes The LiME module compiled, loaded and dumped 

memory without incident.  Memory dump sizes 

were as expected.  

 

Volatility 2.3 SVN-based memory analysis was 

successful for the padded and lime memory 

dumps.  However, the raw memory dump could 

not be assessed using Volatility. 
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D.2 Pmem 

In this sub-annex, the experimental results obtained using the LiME tool are examined.  This tool 

was used against all of the various x86 and x64 Linux operating systems examined herein. 

D.2.1 Ubuntu Linux 11.04 

Table D.11: Memory dump results for Ubuntu 11.04 Linux x86 using Pmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

3,613,268 KiB (3,528.58 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

 

Last address in memory range = 3,758,030,848

 

Size of System RAM = 3,757,571,072 bytes 

(3583.50 MiB) 

Does tool perform hash verification?  No 

Is root access needed? Yes 

Device /dev/pmem 

Time required to dump 00:00:49 

Dump file size 3,699,986,432 (3,528.58 MiB) 

Did Volatility linux_pslist command 

succeed 

Yes 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

N/A 

Notes The Pmem kernel module compiled, loaded and 

dumped memory without incident. 

 

Volatility 2.2 memory analysis proceeded without 

error.  Therefore, memory acquisition and 

analysis was successful for Ubuntu 11.04 x86 

Linux. 
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Table D.12: Memory dump results for Ubuntu 11.04 Linux x86 PAE using Pmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,265,044 KiB (8,071.33 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification?  No 

Is root access needed? Yes 

Device /dev/pmem 

Time required to dump 00:00:05 

Dump file size 536,870,911 bytes (512 MiB) 

Did Volatility linux_pslist command 

succeed? 

No 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

3,349,797 / 20,494,464 / 146,161 / 4,405 

Notes The Pmem kernel module compiled, loaded 

without incident, but failed to dump all the 

system’s memory.  This appears to be a PAE-

related memory driver issue. 

 

Volatility 2.2 and 2.3 SVN r2574memory 

analysis failed using the linux_pslist plugin.  

However, string analysis indicates the memory 

image is highly populated and therefore, it is at 

least a partial memory dump. 

 

Attempts to use other plugins including 

linux_netstat, linux_memmap, and linux_lsmod 

all failed as well.  Thus, it can be reasonably 

concluded that this memory image is incomplete 

and therefore, not entirely intact for Volatility 2.2 

or 2.3 to work with. 
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Table D.13: Memory dump results for Ubuntu 11.04 Linux x64 using Pmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,194,124 KiB (8,002.07 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504

 

Size of System RAM = 8,589,409,280 bytes 

(8191.50 MiB) 

Does tool perform hash verification?  No 

Is root access needed? Yes 

Device /dev/pmem 

Time required to dump 00:01:51 

Dump file size 9,126,805,503 bytes (8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

N/A 

Notes The Pmem kernel module compiled, loaded and 

dumped memory without incident. 

 

Volatility 2.2 memory analysis proceeded 

correctly and without error.  Therefore, memory 

acquisition and analysis was successful for 

Ubuntu 11.04 x64 Linux. 

D.2.2 Ubuntu Linux 12.04 

Table D.14: Memory dump results for Ubuntu 12.04 Linux x86 using Pmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

3,616,096 KiB (3,531.34 MiB) 
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RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

 

Last address in memory range = 3,758,030,848

 

Size of System RAM = 3,757,571,072 bytes 

(3,583.50 MiB) 

Does tool perform hash verification?  No 

Is root access needed? Yes 

Device /dev/pmem 

Time required to dump 00:00:39 

Dump file size 3,758,030,847 bytes (3,583.94 MiB) 

Does Volatility linux_pslist command 

succeed? 

Yes 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

N/A 

Notes The Pmem kernel module compiled, loaded and 

dumped memory without incident. 

 

Volatility 2.2 memory analysis proceeded without 

error.  Therefore, memory acquisition and 

analysis were successful for Ubuntu 12.04 x86 

Linux. 

Table D.15: Memory dump results for Ubuntu 12.04 Linux x86 PAE using Pmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,272,916 KiB (8,079.02 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 
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Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504

 

Size of System RAM = 8,589,409,280 bytes 

(8191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Device /dev/pmem 

Time required to dump 00:00:05 

Dump file size 536,870,911 bytes (512 MiB) 

Did Volatility linux_pslist command 

succeed? 

No 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

165,954 / 932,510 / 87 / 27 

Notes The Pmem kernel module compiled, loaded 

without incident, but failed to dump all the 

system’s memory.  This appears to be a PAE-

related memory driver issue. 

 

Volatility 2.2 and 2.3 SVN r2574 memory 

analysis failed using linux_pslist plugin.  

However, string analysis indicates the memory 

image was only partially populated.  Therefore, it 

appears to constitute a partial memory dump. 

 

Attempts to use other plugins including 

linux_netstat, linux_memmap, and linux_lsmod 

all failed as well.  Thus, it can be reasonably 

concluded that this memory image is incomplete 

and therefore, not intact for Volatility 2.2 or 2.3 

to work with. 

Table D.16: Memory dump results for Ubuntu 12.04 Linux x64 using Pmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,178,624 KiB (7,986.94 MiB) 
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RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification?  No 

Is root access needed? Yes 

Device /dev/pmem 

Time required to dump 00:01:27 

Dump file size 9,126,805,503 bytes (8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

N/A 

Notes The Pmem kernel module compiled, loaded and 

dumped memory without incident. 

 

Volatility 2.2 memory analysis proceeded without 

error.  Therefore, memory acquisition and 

analysis were successful for Ubuntu 12.04 x64 

Linux. 

D.2.3 Fedora Core 15 Linux 

Table D.17: Memory dump results for Fedora Core 15 Linux x86 PAE using Pmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,273,772 KiB (8,079.86 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 
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Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification?  No 

Is root access needed? Yes 

Device /dev/pmem 

Time required to dump 00:00:05 

Dump file size 536,870,911 bytes (512 MiB) 

Did Volatility linux_pslist command 

succeed? 

No 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

179,243 / 1,223,123 / 61 / 16 

Notes The Pmem kernel module compiled, loaded 

without incident, but failed to dump all the 

system’s memory.  This appears to be a PAE-

related memory driver issue. 

 

Volatility 2.2 and 2.3 SVN r2574 memory 

analysis failed using linux_pslist plugin. 

However, string analysis indicates the memory 

image was only partially populated.  Therefore, it 

constitutes a partial memory dump. 

 

Attempts to use other plugins including 

linux_netstat, linux_memmap, and linux_lsmod

all failed as well.  Thus, it can be reasonably 

concluded that this memory image is incomplete 

and therefore, not intact for Volatility 2.2 or 2.3 

to work with. 

Table D.18: Memory dump results for Fedora Core 15 Linux x64 using Pmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,179,108 KiB (7,987.41 MiB) 
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RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Device /dev/pmem 

Time required to dump 00:01:06 

Dump file size 9,126,805,503 bytes (8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 

No 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

4,926,699 / 389,941,195 / 86,605 / 3,521 

Notes The Pmem kernel module succeeded in 

compiling, but reported multiple errors “ERROR: 

Attribute 56 (DW_AT_data_member_location)

…”. 19F

20

 Once compiled, the module was able to 

load and dump memory without incident.  The 

origin of this error is examined in detail in 

Section 1.5.2.1. 

 

It was determined that Volatility 2.2 and 2.3 SVN 

r2574 do not work with Fedora 15 x64.  The 

linux_pslist, linux_cpuinfo, linux_netstat, 

linux_memmap, linux_lsmod were used to no 

avail. 

 

However, based on the number of strings 

extracted from the memory image, it can be 

concluded that it was intact, but there is a 

Volatility-specific issue with respect to Fedora 

memory image support. 

                                                      
20

 For more information, see Section 1.5.2 for details concerning compilation. 
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D.2.4 Fedora Core 17 Linux 

Table D.19: Memory dump results for Fedora Core 17 Linux x86 PAE using Pmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,290,544 KiB (8,096.23 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504

 

Size of System RAM = 8,589,409,280 bytes 

(8191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Device /dev/pmem 

Time required to dump 00:00:05 

Dump file size 536,870,911 bytes (512 MiB) 

Did Volatility linux_pslist command 

succeed? 

No 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

151,836 / 795,968 / 58 / 21 

Notes The Pmem kernel module compiled, loaded 

without incident, but failed to dump all the 

system’s memory.  This appears to be a PAE-

related memory driver issue. 

 

Volatility 2.2 and 2.3 SVN r2574 memory 

analyses failed using the linux_pslist plugin. 

However, string analysis indicates that the 

memory image was only partially populated. 

Therefore, it constitutes a partial memory dump. 

 

Attempts to use other plugins, including 

linux_netstat, linux_memmap, and linux_lsmod

failed as well.  Thus, it can be reasonably 

concluded that this memory image is incomplete 
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and therefore, not intact for Volatility 2.2 or 2.3 

to work with. 

Table D.20: Memory dump results for Fedora Core 17 Linux x64 using Pmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,178,556 KiB (7,986.87 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Device /dev/pmem 

Time required to dump 00:01:27 

Dump file size 9,126,805,503 bytes (8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 

No.  The command did not terminate after more 

than 10 hours of processing. 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

4,774,419 / 30,682,552 / 150,834 / 7,112 

Notes The Pmem kernel module compiled, loaded and 

dumped memory without incident. 

 

After more than 10 hours of processing using the 

linux_pslist Volatility 2.2 and 2.3 SVN r2574 

plugin, it was determined that the plugin had not 

yet completed processing the memory image.  It 

is likely that this is a Volatility-based issue, 

specific either to this version of Fedora, or to the 

incorrect kernel profile generation (see Section 

2.1.3 for details). 

 

However, upon using the linux_cpuinfo plugin, 
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all 4 virtual processors were seen by the plugin, 

indicating that the memory image appeared to be 

partially intact.  

 

Additional plugins were run against the memory 

image, including linux_netstat, linux_memmap, 

linux_lsmod and several others, all of which 

succeeded under Volatility 2.2 and 2.3 SVN 

r2574. 

 

However, based on the number of strings 

extracted from the memory image, it can be 

concluded that the memory image is intact, but 

that there is a Volatility-specific issue with 

respect to Fedora memory image support. 
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D.3 Fmem 

In this sub-annex, the experimental results obtained using the LiME tool are examined.  This tool 

was used against all of the various x86 and x64 Linux operating systems examined herein. 

D.3.1 Ubuntu Linux 11.04 

Table D.21: Memory dump results for Ubuntu 11.04 Linux x86 using Fmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

3,613,268 KiB (3,528.58 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

 

Last address in memory range = 3,758,030,848

 

Size of System RAM = 3,757,571,072 bytes 

(3583.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Device /dev/fmem 

Time required to dump 00:00:11 

Dump file size 3,758,030,848 bytes (3,583.94 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

N/A 

Notes Acquisition occurred without error or warning. 

Moreover, it was very fast, taking only 11 

seconds for the dump. 

 

Analysis using Volatility 2.2 completed without 

error and was able to provide a full detailed 

process listing. 

 

It can be concluded that this memory acquisition 

was successful. 
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Table D.22: Memory dump results for Ubuntu 11.04 Linux x86 PAE using Fmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,265,044 KiB (8,071.33 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Device /dev/fmem 

Time required to dump 00:01:28 

Dump file size 9,126,805,504 bytes (8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 

Yes 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

N/A 

Notes Acquisition occurred without error or warning. 

Moreover, it was relatively fast, taking only 88 

seconds for the dump. 

 

Analysis using Volatility 2.2 completed without 

error and was able to provide a full detailed 

process listing. 

 

It can be concluded that this memory acquisition 

was successful. 

Table D.23: Memory dump results for Ubuntu 11.04 Linux x64 using Fmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,194,124 KiB (8,002.07 MiB) 
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RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 

Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504

 

Size of System RAM = 8,589,409,280 bytes 

(8191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Device /dev/fmem 

Time required to dump 00:01:06 

Dump file size 9,126,805,504 bytes 

Did Volatility linux_pslist command 

succeed? 

Yes 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

N/A 

Notes Acquisition occurred without error or warning. 

Moreover, it was relatively fast, taking only 66 

seconds for the dump. 

 

Analysis using Volatility 2.2 completed without 

error and was able to provide a full detailed 

process listing. 

 

It can be concluded that this memory acquisition 

was successful. 

D.3.2 Fedora Core 15 Linux 

Table D.24: Memory dump results for Fedora Core 15 Linux x86 PAE using Fmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,273,772 KiB (8,079.86 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 
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Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Device /dev/fmem 

Time required to dump 00:01:05 

Dump file size 9,126,805,504 bytes (exactly 8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 

No 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

3,667,870 / 48,728,386 / 18,443 / 2,978 

Notes The Fmem driver succeeded in dumping the full 

amount of system memory without error or 

warning. 

 

Attempts to use Volatility 2.2 and 2.3 SVN r2574 

were unable to analyse the memory image. 

However, the memory image itself does appear to 

be intact.  String count verification indicates that 

the memory image is populated with kernel and 

operating system data and structures. 

Table D.25: Memory dump results for Fedora Core 15 Linux x64 using Fmem 

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB) 

Detected memory 

(cat /proc/meminfo | grep MemTotal) 

8,179,108 KiB (7,987.41 MiB) 

RAM memory addresses 

(cat /proc/iomem | grep “System RAM”) 

00010000 - 0009FBFF 

00100000 - DFFEFFFF 

100000000 - 21FFFFFFF 
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Total system memory, last address and  

memory ranges as per /proc/iomem 

00010000 - 0009FBFF + 1 = 588,800 

00100000 - DFFEFFFF + 1 = 3,756,982,272 

100000000 - 21FFFFFFF +1 = 4,831,838,208 

 

Last address in memory range = 9,126,805,504

 

Size of System RAM = 8,589,409,280 bytes 

(8,191.50 MiB) 

Does tool perform hash verification? No 

Is root access needed? Yes 

Device /dev/fmem 

Time required to dump 00:01:01 

Dump file size 9,126,805,504 bytes (exactly 8,704 MiB) 

Did Volatility linux_pslist command 

succeed? 

No 

If no, how many strings were detected?  

(7-bit / 8-bit / 16-bit / 32-bit) 

8,032,777 / 75,249,462 / 370 / 724 

Notes The Fmem driver succeeded in dumping the full 

amount of system memory without error or 

warning. 

 

Attempts to use Volatility 2.2 and 2.3 SVN r2574 

were unable to analyse the memory image. 

However, the memory image itself does appear to 

be intact.  String count verification indicates that 

the memory image is populated with kernel and 

operating system data and structures. 
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D.4 Second Look 

The experimental results obtained for Second Look can be found in TM 2012-008, Annex C.5.  

For information concerning the success or failure of using Volatility 2.2 and 2.3 SVN r2574 

against the various Second Look memory images as per TM 2012-008, consult Annex G.1.4, 

where a detailed table summarizes these results. 
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Annex E 4BCorrections and clarifications to TM 2012-008 

This specific annex examines certain technical omissions and corrections as they pertain to TM 

2012-008.  They have been provided here in the interest of clearing up specific oversights made 

by the primary author when redacting the aforementioned memorandum.  

E.1 Second Look memory acquisition specifics 

In TM 2012-008, the specifics of how memory acquisition was conducted with respect to Second 

Look were left vague.  Thus, the primary author of this technical memorandum (and the sole 

author of TM 2012-008) has undertaken the task of correcting certain omissions. 

Specifically, the Second Look memory acquisition script, secondlook-memdump.sh, by default, 

attempts to load the running kernel’s crash driver into kernel space.  However, not all Linux 

distribution kernels are compiled with one (see Section 1.6 for details).  The script loads the 

Linux kernel crash driver by running command modprobe crash and upon its successful loading, 

proceeds with memory acquisition.  However, in the event that the script is unable to load the 

crash driver as it may been missing or damaged, the investigator can compile the Second Look 

supplied crash driver.  The supplied crash 20F

21

 driver, pmad.c, is compiled by calling the make 

program from within the same directory as the driver’s source code, which will compile the 

source code according the provided Makefile.  Upon its compilation, the driver is loaded using 

insmod command and then the memory acquisition script, secondlook-memdump.sh, is run 

another time, with a user-supplied memory device, as shown below: 

 $ insmod pmad.ko 

 $ ./secondlook-memdump.sh  acquisition_file_name.dd  /dev/pmad 

The supplied driver, pmad, once loaded into kernel space, creates kernel device /dev/pmad from 

which the acquisition can be conducted against.  Once the acquisition has been completed, the 

driver can be unloaded using the rmmod command. 

Finally, throughout all the experimentation conducted in TM 2012-008 where Second Look was 

investigated, the supplied pmad driver was always used in lieu of the underlying system’s kernel 

crash driver.  This was done in order to ensure uniformity between the various distributions. 

However, the results obtained in TM 2012-008 as they stand for Second Look continue to remain 

valid.  They should not be considered in any way anomalous. 

E.2 Fmem memory acquisition specifics 

As previously stated, the memory acquisition experiments conducted using Fmem in TM 2012-

008 were done using /proc/meminfo as the basis for the upper memory address.  However, based 

                                                      
21

 Pmad is very similar to the Fedora kernel-based crash memory driver. 
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on the detailed examination concerning the optimal memory dump sizes (see Section 2.2.4 for 

details), it has been concluded that the upper memory address-based limit should be derived from 

/proc/iomem. 

Thus, the Fmem-based experiments as carried out in TM 2012-008 have been redone using the 

same test operating systems as originally used therein.  These included Fedora Core 15 x86 PAE 

and x64, as well as Ubuntu x86, x86 PAE and x64.  The results from these newer experiments can 

be found in Annex D.3. 

The new memory acquisition experiments carried out herein are for the most part the same as in 

TM 2012-008.  The LKM must be compiled and inserted into memory using the run.sh script 

provided with the tool.  Once loaded and using the final “System RAM” memory address 

obtained from /proc/iomem and an appropriate block size, memory acquisition can commence.  

For example, consider a computer system equipped with exactly 8 GiB RAM: 

 $ dd if=/dev/fmem bs=1K count=8912896 of=memory_dump.dd 

In this example, the count of 8,912,896 is the highest available “System RAM” address as per 

/proc/iomem, divided by a block size (BS) of 1 KiB. 

E.3 Clarification to the acquisition of hardware-reserved RAM 

In TM 2012-008, the primary author referred extensively to hardware-reserved memory, also 

commonly known as physical memory (or RAM) set aside for use by the computer’s hardware.  

This memory is accessible to the Linux kernel, its drivers and LKMs and is often acquired during 

a memory dump.  However, the I/O memory specific to hardware devices (hardware buffers, 

cache, etc.) is dangerous to access and may result in a system crash.  Neither this memorandum 

nor TM 2012-008 makes any effort to examine whether the physical memory inherent to a 

computer’s hardware is acquired. 
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Annex F 5BLinux-based memory acquisition tool 

comparison 

F.1 Tool comparison 

Upon examining in detail, the results obtained in Annex D for the numerous experiments 

conducted herein against the various Ubuntu and Fedora Core operating systems, memory 

acquisition tool specific tables have been prepared.  These tables emphasize the difference 

between the tools with respect to their actual dump sizes for the various operating systems they 

were tested against.  Moreover, since many of the dumps were not the expected size as per the 

last “System RAM” memory address found in /proc/iomem, memory size differences or deltas 

have been provided in the following tables. 

Table F.1: Second Look memory acquisition results (from TM 2012-008) 
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Table F.2: Fmem memory acquisition results 
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Table F.3: LiME padded format-based memory acquisition results 
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Table F.4: LiME lime format-based memory acquisition results 
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Table F.5: Pmem memory acquisition results 
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Annex G 6BAcquisition result analysis using Volatility 

G.1 Analysis using Volatility 

The following tables summarise the Volatility-based analyses obtained against the various 

memory images acquired from Pmem, LiME, Fmem and Second Look.  Volatility 2.2 and 2.3 

SVN r2574 were used for the various memory analyses. 

G.1.1 LiME-based Volatility memory analysis 

The Volatility memory analysis for the LiME-based memory acquisitions is summarised by the 

following table: 

Table G.1: Volatility LiME padded and dump formats memory analyses 

Operating system Analysis using Volatility 

2.3 SVN r2754 

Ubuntu Linux 11.04 x86 Succeeded for both padded 

and lime dumps 

Ubuntu Linux 11.04 x86 PAE Succeeded for both padded 

and lime dumps 

Ubuntu Linux 11.04 x64 Succeeded for both padded 

and lime dumps 

Ubuntu Linux 12.04 x86 Succeeded for both padded 

and lime dumps 

Ubuntu Linux 12.04 x86 PAE Succeeded for both padded 

and lime dumps 

Ubuntu Linux 12.04 x64 Succeeded for both padded 

and lime dumps 

Fedora 15 x86 PAE Succeeded for both padded 

and lime dumps 

Fedora 15 x64 Succeeded for both padded 

and lime dumps 

Fedora 17 x86 PAE Succeeded for both padded 

and lime dumps 

Fedora 17 x64 Succeeded for both padded 

and lime dumps 

G.1.2 Pmem-based Volatility memory analysis 

The Volatility memory analysis for the Pmem-based memory acquisitions is summarised by the 

following table: 
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Table G.2: Volatility Pmem memory analyses 

Operating system Analysis using 

Volatility 2.2 

Analysis using Volatility 

2.3 SVN r2754 

Ubuntu Linux 11.04 x86 Succeeded Was not required 

Ubuntu Linux 11.04 x86 PAE Failed – incomplete 

memory image 

Failed – incomplete 

memory image 

Ubuntu Linux 11.04 x64 Succeeded Was not required 

Ubuntu Linux 12.04 x86 Succeeded Was not required 

Ubuntu Linux 12.04 x86 PAE Failed – incomplete 

memory image 

Failed – incomplete 

memory image 

Ubuntu Linux 12.04 x64 Succeeded Was not required 

Fedora 15 x86 PAE Failed – incomplete 

memory image 

Failed – incomplete 

memory image 

Fedora 15 x64 Failed Failed 

Fedora 17 x86 PAE Failed – incomplete 

memory image 

Failed – incomplete 

memory image 

Fedora 17 x64 Failed Failed 

G.1.3 Fmem-based Volatility memory analysis 

The Volatility memory analysis for the Fmem-based memory acquisitions is summarised by the 

following table: 

Table G.3: Volatility Fmem memory analyses 

Operating system Analysis using 

Volatility 2.2 

Analysis using Volatility 

2.3 SVN r2754 

Ubuntu Linux 11.04 x86 Succeeded Was not required 

Ubuntu Linux 11.04 x86 PAE Succeeded Was not required 

Ubuntu Linux 11.04 x64 Succeeded Was not required 

Fedora 15 x86 PAE Failed Failed 

Fedora 15 x64 Failed Failed 
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G.1.4 Second Look-based Volatility memory analysis 

The Volatility memory analysis for the Second Look-based memory acquisitions is summarised 

by the following table: 

Table G.4: Volatility Second Look memory analyses 

Operating system Analysis using 

Volatility 2.2 

Analysis using Volatility 

2.3 SVN r2754 

Ubuntu Linux 11.04 x86 Succeeded Was not required 

Ubuntu Linux 11.04 x86 PAE Succeeded Was not required 

Ubuntu Linux 11.04 x64 Succeeded Was not required 

Fedora 15 x86 PAE Failed Failed 

Fedora 15 x64 Failed Failed 

G.2 Implications of using Volatility for Linux-based memory 

analysis 

Based on the analyses conducted herein using Volatility 2.2 and 2.3 SVN r2574, an important 

implication of using Volatility stands out above the rest.  Properly acquired Ubuntu-based 

memory images are analysable using Volatility, whereas those obtained using Fedora are not, 

with the exception of those obtained images using LiME (padded and lime formats).  The reason 

for the inability of both Volatility frameworks to analyse intact Fedora-based memory dumps 

appears to be caused by the incorrect generation of kernel-based profiles, as examined in Section 

2.1.3. 
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List of symbols/abbreviations/acronyms/initialisms  

’9X ’95, ’95A, ’95B, ’95C, ’98 and ’98SE (Second Edition) 

2D Two-Dimensional 

3D Three-Dimensional 

4K 4 KiB 

AMD Advanced Micro Devices 

AMD-V Advanced Micro Devices-Virtualisation 

ACPI Advanced Configuration and Power Interface 

APIC Advanced Programmable Interrupt Controller 

BDA BIOS Data Area 

BIOS Basic Input/Output System 

BSD Berkeley Software Distribution 

CD Compact Disc 

CFNOC Canadian Forces Network Operations Centre 

CORFC Centre d'opérations des réseaux des Forces canadiennes 

DND Department of National Defence 

DOS Disk Operating System 

DRDC Defence Research & Development Canada 

DVD Digital Versatile Disc or Digital Video Disc 

DVR Digital Video Recorder 

EBDA Extended BIOS Data Area 

EHCI Enhanced Host Controller Interface 

ELF Executable and Linkable Format 

FOSS Free and Open Source Software 

FTP File Transfer Protocol 

FUSE Filesystem in USEr space 

GB Gigabyte (10
9 

bytes) 

GDB GNU Debugger 

GiB Gibibyte 

GICT Groupe intégré de la criminalité technologique 
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GNU GNU Not UNIX 

GRC Gendarmerie Royale du Canada 

HD High Definition 

I/O or IO Input/Output 

INT Interrupt 

ITCU Integrated Technological Crime Unit 

IVT Interrupt Vector Table 

KiB Kibibyte 

LCD Liquid Crystal Display 

LiME Linux Memory Extractor 

LKM Linux Kernel Module 

LTS Long Term Support 

MHz Megahertz 

MiB Mebibyte 

N/A Not Available 

NFS Network File System 

NTFS New Technology File System 

OS Operating System 

PAE Physical Address Extension 

PAE/NX Physical Address Extension / No eXecute 

PC Personal Computer 

PCI Peripheral Component Interconnect 

PCIe PCI (Peripheral Component Interconnect) Express 

RAM Random Access Memory 

RC Release Candidate 

RCMP Royal Canadian Mounted Police 

RDDC Recherche et développement pour la défense Canada 

RPM Red Hat Package Manager 

Rsh Remote Shell 

SMP Symmetric Multi-Processing 

SP1 Service Pack 1 
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SPARC Scalable Processor ARChitecture 

SQ Sûreté du Québec 

SSD Solid State Disk 

Ssh Secure Shell 

TB Terabyte 

TM Technical Memorandum 

UK United Kingdom 

USB Universal Serial Bus 

UTC Coordinated Universal Time 

VT-x Virtualisation x86 

x64 Refers to the 64-bit PC architecture 

x86 Refers to the 32-bit PC architecture 

x86 PAE Refers to the 32-bit PAE PC architecture 
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