

35BThe definitive guide to Linux-based live

memory acquisition tools

An addendum to "State of the art concerning memory acquisition

software: A detailed examination of Linux, BSD and Solaris live

memory acquisition"

Richard Carbone

Certified Hacking Forensic Investigator (EC-Council)

Certified Incident Handler (SANS)

DRDC Valcartier

Sébastien Bourdon-Richard

Certified Incident Handler (SANS)

Integrated Technological Crime Unit

Royal Canadian Mounted Police

Defence R&D Canada – Valcartier

Technical Memorandum

DRDC Valcartier TM 2012-319

September 2013

Principal Author

Richard Carbone

Forensic Investigator

Approved by

Guy Turcotte

Head/Mission Critical Cyber Security Section

Approved for release by

Christian Carrier

Chief Scientist

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2013

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,

2013

DRDC Valcartier TM 2012-319 i

7BAbstract ……..

This technical memorandum is an addendum to TM 2012-008, “State of the art concerning

memory acquisition: A detailed examination of Linux, BSD and Solaris live memory

acquisition.” It examines in detail two additional software tools, Volatility’s Pmem and LiME’s

Linux kernel memory drivers, both of which can be used for the memory acquisition of Linux-

based live computer systems. The authors then compare them with Fmem and Second Look, the

two best Linux-based memory acquisition tools as per TM 2012-008. Fmem and Second Look

are analysed using the same methodology as for Pmem and LiME. This memorandum also

amends information pertaining to the faulty memory acquisition of Fmem as conducted in the

previous study. Additionally, certain inaccuracies were made in TM 2012-008. This specific text

corrects them. As such, it should now be considered the authoritative reference concerning

Linux, UNIX and BSD memory acquisition, although the experiments as conducted in TM 2012-

008 will continue to remain valid. Finally, upon completing the analysis of these tools, the

authors recommend the use of LiME for investigative fieldwork. However, other tool-specific

recommendations are found and examined in the Conclusion.

17BRésumé ….....

Ce mémorandum technique est un addenda au TM 2012-008, “State of the art concerning

memory acquisition: A detailed examination of Linux, BSD and Solaris live memory

acquisition”. Il examine en détail deux outils logiciels additionnels qui peuvent être utilisés pour

l’acquisition de mémoire sur des ordinateurs Linux en exécution, plus spécifiquement les pilotes

de mémoire du noyau Pmem (de Volatility) et LiME. Les auteurs les comparent par la suite avec

Fmem et Second Look, les deux meilleurs outils d’acquisition de mémoire sous Linux selon le

TM 2012-008. Fmem et Second Look ont été analysés en utilisant la même méthodologie que

pour Pmem et LiME. Ce mémorandum corrige également les informations relatives à

l’acquisition de mémoire fautive de Fmem telle que menée dans l’étude précédente. De plus,

certaines inexactitudes ainsi portées ont été inscrites dans le TM 2012-008. Le présent texte les

corrige aussi. À ce titre, il doit être considéré comme la référence faisant autorité en ce qui

concerne l’acquisition de mémoire sous Linux, UNIX et BSD, bien que les expériences menées

dans le TM 2012-008 demeurent valides. Finalement, après avoir complété l’analyse de ces

outils, les auteurs recommandent l’utilisation de LiME pour le travail d’enquête. Cependant, des

recommandations spécifiques à d’autres outils sont aussi examinées dans la conclusion.

ii DRDC Valcartier TM 2012-319

This page intentionally left blank.

DRDC Valcartier TM 2012-319 iii

8BExecutive summary

The definitive guide to Linux-based live memory acquisition

tools: An addendum to "State of the art concerning memory

acquisition software: A detailed examination of Linux, BSD and

Solaris live memory acquisition"

Carbone, Richard and Bourdon-Richard, Sébastien; DRDC Valcartier TM 2012-

319; Defence R&D Canada – Valcartier; September 2013.

Two additional Linux-based memory acquisition tools came out only months after the initial

UNIX-based memory acquisition work was completed (TM 2012-008). The authors found it

pertinent to conduct additional memory acquisition experiments against them to determine which

Linux-specific memory acquisition tool (s) is (are) the most appropriate choice (s). As of this

time and to the best knowledge of the authors, this document is the most detailed analysis and

comparison of its type available in the public literature.

This memorandum also amends information pertaining to the faulty memory acquisition of Fmem

as conducted in TM 2012-008. The original acquisition was inaccurate. Based on the new

technical memory acquisition, information provided in this memorandum concerning the

determination of the correct size for a Linux-based memory dump, the authors have decided that

reacquiring memory using Fmem would be of benefit to all concerned parties. Moreover, certain

inaccuracies were made in TM 2012-008. Therefore, in correcting them and re-conducting the

Fmem-based memory acquisition experiments, the authors are confident to state that this current

document can be considered the authoritative text on Linux, UNIX and BSD memory acquisition.

This document supersedes the background material provided in TM 2012-008, but does not in any

way negate the memory acquisition experiments conducted therein, with the exception of Fmem,

which has been redone herein.

The two new Linux-specific memory acquisition tools examined are Volatility’s Pmem and

LiME’s LKM. Both are similar in functionality to Fmem and Second Look, as seen in TM 2012-

008. However, Pmem is a recent Linux LKM initiative, while LiME is geared towards the

acquisition of memory running atop Linux and Linux-based devices (such as Android). The

authors then compared the memory acquisition results for Pmem, LiME, Fmem and Second

Look, all while considering the analysability of these memory images using the Volatility

memory analysis framework. As with the original research work, the experiments were

conducted against modern x86, x86 PAE and x64 Linux systems.

Based on these comparisons and analyses, the authors have determined that LiME is best suited

for investigative forensic fieldwork. Moreover, they reiterate their overall findings obtained for

Solaris and BSD as per TM 2012-008.

This specific work is a joint effort between Defence Research and Development Canada (DRDC)

Valcartier and the Royal Canadian Mounted Police (RCMP). It was carried out over a period of

several months as part of the Live Computer Forensics project, an agreement between DRDC

Valcartier and the RCMP (SRE-09-015, 31XF20).

iv DRDC Valcartier TM 2012-319

The results of this project will also be of great interest to the Canadian Forces Network

Operations Centre (CFNOC), the RCMP’s Integrated Technological Crime Unit (ITCU), the

Sûreté du Québec and other cyber investigation teams.

DRDC Valcartier TM 2012-319 v

16BSommaire

The definitive guide to Linux-based live memory acquisition

tools: An addendum to "State of the art concerning memory

acquisition software: A detailed examination of Linux, BSD and

Solaris live memory acquisition"

Carbone, Richard and Bourdon-Richard, Sébastien ; DRDC Valcartier TM 2012-

319 ; R & D pour la défense Canada – Valcartier; septembre 2013.

Deux autres outils d’acquisition de mémoire pour Linux ont été publiés quelques mois seulement

après que le travail initial sur l’acquisition de mémoire pour Unix ait été achevé (TM 2012-008).

Les auteurs ont trouvé pertinent de mener des expériences d’acquisition de mémoire

supplémentaires sur ceux-ci afin de déterminer quel (s) outil (s) d’acquisition de mémoire est

(sont) le plus approprié (s) pour Linux. À ce jour et au meilleur des connaissances des auteurs, ce

document contient les comparaisons et analyses d’outils les plus détaillées de ce type disponibles

dans la littérature publique.

Ce mémorandum corrige également les informations relatives à l’acquisition de mémoire erronée

avec Fmem, telle qu’utilisée pour le TM 2012-008. Sur la base d’une nouvelle technique

d’acquisition, car l’acquisition initiale était inexacte, et suite aux informations fournies dans le

présent mémorandum relatives à l’évaluation de la taille exacte d’une image mémoire sous Linux,

les auteurs ont décidé qu’effectuer à nouveau l’acquisition de mémoire à l’aide de Fmem serait

bénéfique pour tous les partis concernés. De plus, certaines inexactitudes ont été inscrites dans le

TM 2012-008. Par conséquent, en les corrigeant et en effectuant à nouveau les expériences

d’acquisition de mémoire avec Fmem, les auteurs sont convaincus de pouvoir affirmer que ce

document peut être considéré comme texte de référence pour l’acquisition de mémoire sur Linux,

UNIX et BSD. Il remplace donc les informations de base fournies dans le TM 2012-008, mais ne

nie d’aucune façon les expériences d’acquisition de mémoires dans celui-ci, à l’exception de

Fmem, qui a été refaite dans le présent document.

Les deux nouveaux outils d’acquisition de mémoire spécifiques à Linux examinés sont Pmem de

Volatility et LiME. Ceux-ci ont des fonctionnalités similaires à Fmem et Second Look, comme le

montre le TM 2012-008. Cependant, Pmem est une initiative récente d’un module chargeable du

noyau Linux, tandis que LiME est orientée vers l’acquisition de mémoire sur des appareils

fonctionnant sous Linux ou basés sur Linux (p. ex. Android). Les auteurs ont ensuite comparé les

résultats d’acquisition de mémoire pour Pmem, LiME, Fmem et Second Look, tout en considérant

l’analysabilité de ces images mémoires en utilisant le cadriciel d’analyse mémoire Volatility.

Comme pour le travail de recherche original, les expériences ont été menées sur des systèmes

Linux x86, x86 PAE et x64 récents.

Sur la base de ces comparaison et analyses, les auteurs ont déterminé que LiME est le mieux

adapté pour les enquêtes informatiques judiciaires. De plus, ils réitèrent l’ensemble de leurs

résultats obtenus pour Solaris et BSD selon le TM 2012-008.

vi DRDC Valcartier TM 2012-319

Ce travail spécifique est un effort conjoint entre Recherche et développement pour la défense

Canada (RDDC) Valcartier et la Gendarmerie royale du Canada (GRC). Il a été réalisé sur une

période de plusieurs mois dans le cadre du projet "Live Computer Forensics", qui est un accord

entre RDDC Valcartier et la GRC (SRE-09-015, 31XF20).

Les résultats de ce projet seront aussi d’un grand intérêt pour le Centre d'opérations des réseaux

des Forces canadiennes (CORFC), le Groupe intégré de la criminalité technologique (GICT) de la

GRC, la Sûreté du Québec (SQ), ainsi que d’autres équipes d’enquête de cyberattaques.

DRDC Valcartier TM 2012-319 vii

9BTable of contents

0HAbstract …….. 218Hi

1HRésumé …..... 219Hi

2HExecutive summary 220Hiii

3HSommaire 221Hv

4HTable of contents 222Hvii

5HList of figures 223Hxi

6HList of tables 224Hxii

7HAcknowledgements 225Hxiv

8HDisclaimer and use policy 226Hxv

9HRequirements, assumptions and exclusions.. 227Hxvi

10HTarget audience 228Hxvii

11H1 Background... 229H1

12H1.1 Context 230H1

13H1.1.1 Objective.. 231H1

14H1.1.2 Historical note to past Linux memory forensics analyses 232H1

15H1.2 Linux operating system background.. 233H2

16H1.2.1 Fedora/Fedora Core Linux... 234H2

17H1.2.2 Ubuntu ... 235H2

18H1.3 Particulars concerning memory acquisition and analysis .. 236H3

19H1.3.1 Forensically capturing memory ... 237H3

20H1.3.2 Computer memory volatility.. 238H4

21H1.4 Linux memory specifics .. 239H5

22H1.4.1 Details .. 240H5

23H1.4.2 Linux memory acquisition... 241H5

24H1.4.3 Operating system-specific differences concerning /dev/mem and /dev/kmem 242H7

25H1.5 Memory acquisition software background .. 243H8

26H1.5.1 LiME.. 244H8

27H1.5.1.1 Background.. 245H8

28H1.5.1.2 Overall impression during acquisition ... 246H9

29H1.5.2 Pmem ... 247H10

30H1.5.2.1 Background.. 248H10

31H1.5.2.2 Overall impression during acquisition ... 249H12

32H1.5.3 Fmem ... 250H12

33H1.5.3.1 Background.. 251H12

34H1.5.3.2 Overall impression during acquisition ... 252H12

35H1.5.4 Second Look .. 253H13

36H1.5.4.1 Overall impression during acquisition ... 254H13

viii DRDC Valcartier TM 2012-319

37H1.6 A note about the Linux kernel crash driver ... 255H13

38H1.7 Memory impact of kernel crash drivers... 256H15

39H2 Memory acquisition issues and concerns.. 257H16

40H2.1 The Volatility framework .. 258H16

41H2.1.1 Using Volatility to determine the integrity of the acquired memory dumps 259H16

42H2.1.2 Issues using Volatility.. 260H17

43H2.1.3 About generating kernel profiles ... 261H18

44H2.2 Examining memory dump sizes and other issues .. 262H18

45H2.2.1 The PCI hole problem and memory acquisition .. 263H18

46H2.2.2 Defining the correct memory dump size for BSD ... 264H21

47H2.2.3 Defining the correct memory dump size for Solaris.. 265H21

48H2.2.4 Defining the correct memory dump size for Linux ... 266H21

49H2.2.5 Memory mapping... 267H25

50H3 Experimental outcomes and evaluations... 268H27

51H3.1 Results and analyses .. 269H27

52H3.1.1 LiME.. 270H27

53H3.1.1.1 Technical background.. 271H27

54H3.1.1.2 Memory acquisition results.. 272H28

55H3.1.1.3 Analysis using Volatility.. 273H29

56H3.1.1.4 Recommendations.. 274H30

57H3.1.2 Pmem ... 275H30

58H3.1.2.1 Memory acquisition results.. 276H30

59H3.1.2.2 Analysis using Volatility.. 277H31

60H3.1.2.3 Recommendations.. 278H32

61H3.1.3 Fmem ... 279H32

62H3.1.3.1 Memory acquisition results.. 280H32

63H3.1.3.2 Analysis using Volatility.. 281H33

64H3.1.4 Second Look .. 282H33

65H3.1.4.1 Memory acquisition results.. 283H33

66H3.1.4.2 Analysis using Volatility.. 284H34

67H4 Conclusion and final tool assessment for Linux, BSD and Solaris UNIX 285H35

68H4.1 Solaris 286H35

69H4.2 BSD .. . 287H35

70H4.3 Linux .. . 288H35

71H4.3.1 Assessment of overall tool suitability.. 289H35

72H4.3.2 Assessment of acquisition speed.. 290H36

73H4.3.3 Assessment of prior Fmem and Second Look experiments............................... 291H36

74H4.3.4 Assessment of tool acquisition .. 292H36

75H4.3.5 Volatility memory image assessment .. 293H37

76H4.3.6 Conclusion ... 294H37

77HReferences 295H39

DRDC Valcartier TM 2012-319 ix

78HAnnex A Computer systems used for experimentation... 296H43

79HA.1 Dedicated workstation configuration for LiME acquisition (RCMP) 297H43

80HA.2 Dedicated workstation configuration for Pmem acquisition (DRDC)......................... 298H44

81HA.3 Dedicated workstation configuration for Fmem acquisition (DRDC)......................... 299H45

82HAnnex B VirtualBox and operating system configurations for Pmem and LiME 300H47

83HB.1 Configuration for Ubuntu 11.04 Linux.. 301H47

84HB.2 Configuration for Ubuntu 12.04 Linux.. 302H48

85HB.3 Configuration for Fedora Core 15 Linux... 303H49

86HB.4 Configurations for Fedora Core 17 Linux ... 304H50

87HB.5 VirtualBox guest operating system configuration ... 305H51

88HB.5.1 Configuration for Ubuntu 11.04 Linux.. 306H51

89HB.5.2 Configuration for Ubuntu 12.04 Linux.. 307H52

90HB.5.3 Configuration for Fedora Core 15 Linux... 308H53

91HB.5.4 Configuration for Fedora Core 17 Linux... 309H54

92HAnnex C VirtualBox and operating system configurations for Fmem 310H55

93HAnnex D Experimental results .. 311H57

94HD.1 LiME ... 312H57

95HD.1.1 Ubuntu Linux 11.04... 313H57

96HD.1.2 Ubuntu Linux 12.04... 314H61

97HD.1.3 Fedora Core 15 Linux.. 315H64

98HD.1.4 Fedora Core 17 Linux.. 316H67

99HD.2 Pmem... 317H70

100HD.2.1 Ubuntu Linux 11.04... 318H70

101HD.2.2 Ubuntu Linux 12.04... 319H72

102HD.2.3 Fedora Core 15 Linux.. 320H75

103HD.2.4 Fedora Core 17 Linux.. 321H78

104HD.3 Fmem... 322H81

105HD.3.1 Ubuntu Linux 11.04... 323H81

106HD.3.2 Fedora Core 15 Linux.. 324H83

107HD.4 Second Look.. 325H86

108HAnnex E Corrections and clarifications to TM 2012-008 .. 326H87

109HE.1 Second Look memory acquisition specifics .. 327H87

110HE.2 Fmem memory acquisition specifics ... 328H87

111HE.3 Clarification to the acquisition of hardware-reserved RAM 329H88

112HAnnex F Linux-based memory acquisition tool comparison.. 330H89

113HF.1 Tool comparison.. 331H89

114HAnnex G Acquisition result analysis using Volatility... 332H93

115HG.1 Analysis using Volatility ... 333H93

116HG.1.1 LiME-based Volatility memory analysis ... 334H93

117HG.1.2 Pmem-based Volatility memory analysis .. 335H93

118HG.1.3 Fmem-based Volatility memory analysis .. 336H94

x DRDC Valcartier TM 2012-319

119HG.1.4 Second Look-based Volatility memory analysis ... 337H95

120HG.2 Implications of using Volatility for Linux-based memory analysis 338H95

121HBibliography... 339H97

122HList of symbols/abbreviations/acronyms/initialisms ... 340H98

DRDC Valcartier TM 2012-319 xi

10BList of figures

123HFigure 1: LiME LKM compilation under Ubuntu 12.04 x86 .. 341H9

124HFigure 2: LiME memory acquisition under Ubuntu 12.04 x86 ... 342H9

125HFigure 3: Pmem LKM compilation under Fedora Core 17 x64... 343H10

126HFigure 4: Pmem memory acquisition under Fedora Core 17 x64.. 344H11

127HFigure 5: Example process listing from a Linux memory dump using Volatility 345H17

128HFigure 6: Example output from /proc/iomem from a system with 8 GiB RAM............................ 346H24

xii DRDC Valcartier TM 2012-319

11BList of tables

129HTable 1: Operating system support for the Linux kernel crash driver ... 347H14

130HTable 2: LiME-based experimental results summary for memory acquisition-based dump size.. 348H29

131HTable 3: Pmem-based experimental results summary for memory acquisition............................. 349H31

132HTable 4: Fmem-based experimental results summary for memory acquisition............................. 350H33

133HTable 5: Second Look-based experimental results summary for memory acquisition.................. 351H34

134HTable A.1: Host computer configuration for LiME memory acquisitions 352H43

135HTable A.2: Host computer configuration for carrying out Pmem memory acquisitions 353H44

136HTable A.3: Host computer configuration for carrying out Pmem memory acquisitions 354H45

137HTable B.1: Ubuntu 11.04 VirtualBox virtual machine configuration details................................. 355H47

138HTable B.2: Ubuntu 12.04 VirtualBox virtual machine configuration details................................. 356H48

139HTable B.3: Fedora Core 15 VirtualBox virtual machine configuration details.............................. 357H49

140HTable B.4: Fedora Core 17 Linux VirtualBox virtual machine configuration details 358H50

141HTable B.5: Ubuntu 11.04 Linux guest operating system details.. 359H51

142HTable B.6: Ubuntu 12.04 Linux guest operating system details.. 360H52

143HTable B.7: Fedora Core 15 guest operating system details ... 361H53

144HTable B.8: Fedora Core 17 guest operating system details ... 362H54

145HTable D.1: Memory dump results for Ubuntu 11.04 Linux x86 using LiME................................ 363H57

146HTable D.2: Memory dump results for Ubuntu 11.04 Linux x86 PAE using LiME....................... 364H58

147HTable D.3: Memory dump results for Ubuntu 11.04 Linux x64 using LiME................................ 365H59

148HTable D.4: Memory dump results for Ubuntu 12.04 Linux x86 using LiME................................ 366H61

149HTable D.5: Memory dump results for Ubuntu 12.04 Linux x86 PAE using LiME....................... 367H62

150HTable D.6: Memory dump results for Ubuntu 12.04 Linux x64 using LiME................................ 368H63

151HTable D.7: Memory dump results for Fedora Core 15 Linux x86 PAE using LiME 369H64

152HTable D.8: Memory dump results for Fedora Core 15 Linux x64 using LiME............................. 370H66

153HTable D.9: Memory dump results for Fedora Core 17 Linux x86 PAE using LiME 371H67

154HTable D.10: Memory dump results for Fedora Core 17 Linux x64 using LiME........................... 372H68

155HTable D.11: Memory dump results for Ubuntu 11.04 Linux x86 using Pmem............................. 373H70

156HTable D.12: Memory dump results for Ubuntu 11.04 Linux x86 PAE using Pmem 374H71

157HTable D.13: Memory dump results for Ubuntu 11.04 Linux x64 using Pmem............................. 375H72

158HTable D.14: Memory dump results for Ubuntu 12.04 Linux x86 using Pmem............................. 376H72

DRDC Valcartier TM 2012-319 xiii

159HTable D.15: Memory dump results for Ubuntu 12.04 Linux x86 PAE using Pmem 377H73

160HTable D.16: Memory dump results for Ubuntu 12.04 Linux x64 using Pmem............................. 378H74

161HTable D.17: Memory dump results for Fedora Core 15 Linux x86 PAE using Pmem 379H75

162HTable D.18: Memory dump results for Fedora Core 15 Linux x64 using Pmem 380H76

163HTable D.19: Memory dump results for Fedora Core 17 Linux x86 PAE using Pmem 381H78

164HTable D.20: Memory dump results for Fedora Core 17 Linux x64 using Pmem 382H79

165HTable D.21: Memory dump results for Ubuntu 11.04 Linux x86 using Fmem............................. 383H81

166HTable D.22: Memory dump results for Ubuntu 11.04 Linux x86 PAE using Fmem 384H82

167HTable D.23: Memory dump results for Ubuntu 11.04 Linux x64 using Fmem............................. 385H82

168HTable D.24: Memory dump results for Fedora Core 15 Linux x86 PAE using Fmem 386H83

169HTable D.25: Memory dump results for Fedora Core 15 Linux x64 using Fmem 387H84

170HTable F.1: Second Look memory acquisition results (from TM 2012-008).................................. 388H89

171HTable F.2: Fmem memory acquisition results ... 389H89

172HTable F.3: LiME padded format-based memory acquisition results ... 390H90

173HTable F.4: LiME lime format-based memory acquisition results.. 391H90

174HTable F.5: Pmem memory acquisition results ... 392H91

175HTable G.1: Volatility LiME padded and dump formats memory analyses.................................... 393H93

176HTable G.2: Volatility Pmem memory analyses.. 394H94

177HTable G.3: Volatility Fmem memory analyses.. 395H94

178HTable G.4: Volatility Second Look memory analyses... 396H95

xiv DRDC Valcartier TM 2012-319

12BAcknowledgements

The authors would like to thank Mr. Philippe Charland for peer reviewing this text and providing

helpful comments in order to improve it.

DRDC Valcartier TM 2012-319 xv

13BDisclaimer and use policy

The reader should neither construe nor interpret the work described herein by the authors as an

endorsement of the aforementioned techniques and capacities as suitable for any specific purpose,

construed, implied or otherwise.

Furthermore, the authors of this technical memorandum absolve themselves in all ways

conceivable with respect to how the reader may use, interpret or construe this technical

memorandum. The authors assume absolutely no liability or responsibility, implied or explicit.

Moreover, the onus is on the reader to be properly equipped and knowledgeable in the application

of digital forensics.

Finally, the authors, DRDC Valcartier and the RCMP are henceforth absolved of all wrongdoing,

whether intentional, unintentional, construed or misunderstood on the part of the reader. If the

reader does not agree to these terms, then this technical memorandum should be readily returned

to DRDC Valcartier. Only if the reader agrees to these terms should he or she continue in reading

it beyond this point. It is further assumed by all participants that if the reader has not read said

Disclaimer, upon reading this technical memorandum and has acted upon its contents, then the

reader assumes all responsibility for any repercussions that may result from the information and

data contained herein.

xvi DRDC Valcartier TM 2012-319

14BRequirements, assumptions and exclusions

It is assumed that the reader is altogether familiar with digital forensics and the various

techniques and methodologies associated thereto. This technical memorandum is not an

introduction to digital forensics, its techniques or methodologies. However, this technical

memorandum will endeavour to present an adequate and technically oriented background to

enable the reader to carry out and implement the work and analysis conducted herein.

This present work examines x86, x86 PAE and x64 based Linux, BSD and UNIX-based systems

only. However, the term x86 is used interchangeably in certain portions of this text to generically

represent both x86 and x86 PAE. When PAE specifics are discussed, the use of the x86 PAE is

used.

This endeavour has been conducted primarily using a Windows-based system while secondary

result validation was carried out using a Linux-based system. As such, regardless of the reader's

own specific set-up, the reader should arrive at the same overall results as those presented herein,

assuming that the guest operating systems are similarly configured and that the same

virtualisation technology is used. All operating systems examined have been fully virtualised.

Two primary Windows systems were used for memory experimentation, one at DRDC Valcartier

and the other at the RCMP. Technical details concerning the computer system used for

experimentation at the RCMP can be found in Annex A.1, while those concerning the computer

system used at DRDC Valcartier can be found in Annex A.2. Details for the technical

configuration used for Fmem memory acquisition, as conducted at DRDC Valcartier, can be

found in Annex A.3. The authors used their own departmentally provided computer systems to

conduct the experimentation against a set of prebuilt and preconfigured VirtualBox-based virtual

machines (see annexes B and C for details). As such, Mr. Bourdon-Richard carried out the LiME

experiments at the RCMP, while Mr. Carbone carried out the Pmem and Fmem trials at DRDC.

All guest operating systems were tested under Oracle VirtualBox 4.2.0 (Linux and Windows

version) with the appropriate VirtualBox Extension Pack installed (see Annex B and C for

details). The exception to this are the Fmem memory experiments that were redone in this

memorandum which continued using Oracle VirtualBox 4.1.0, as was used in the original

experiments in TM 2012-008. VMware Workstation, another very popular choice for operating

system virtualisation, was not used so that the reader would have not to rely on commercially

licensed software in order to validate the results obtained by the authors.

It is important to emphasize that should memory acquisition of a physical, non-virtualised x86 or

x64 based system fail, it may be possible to acquire that system's memory using the cold boot

attack [1], since this technique is not affected by the underlying operating system. However, the

success of the cold boot attack should be considered as experimental at best [2]. As such, the

investigator must be realistic in his expectations for acquiring memory using this technique.

Red Hat 9 Linux is not examined in this work. In TM 2012-008, it was clearly demonstrated that

it would not support and compile LKM-based modules without, at a minimum, recompiling the

kernel and possibly changing portions of the source code to accommodate the various memory

acquisition tools.

DRDC Valcartier TM 2012-319 xvii

15BTarget audience

This technical memorandum has been written for the computer forensic investigator who may

have to perform a Linux-based memory acquisition at one time or another in the function of his or

her duties. Although information exists across the Internet, bringing them together into a

coherent and comprehensive manner was a matter of some undertaking on the part of the authors.

This technical memorandum is not, however, an examination of computer memory analysis. This

specific field of research is outside the scope of this work and warrants an altogether separate

technical discussion of the subject matter.

xviii DRDC Valcartier TM 2012-319

This page intentionally left blank.

DRDC Valcartier TM 2012-319 1

1 18BBackground

1.1 22BContext

This subsection provides the necessary context to understand how this memorandum ties in with

its sister report, TM 2012-008.

1.1.1 Objective

The objective of this technical memorandum is to pick up where its sister document, TM 2012-

008, left off. Specifically, the latter technical memorandum carried out an in-depth examination

of Linux, BSD and Solaris-based memory acquisition, while this one is entirely Linux-specific.

However, this specific technical memorandum has a twofold purpose. Its primary objective is to

examine two new Linux-specific memory acquisition tools, which only recently have gathered

enough attention to make them worthwhile to examine. The second objective is to correct certain

oversights conducted in TM 2012-008. Of these oversights, the Fmem memory acquisition tool

will be re-examined. It has come to the authors’ attention that relying on /proc/meminfo for

determining the correct upper memory address to use for memory acquisition is incorrect.

Instead, /proc/iomem should be used.

Finally, this memorandum will examine the acquisition-based experimental results obtained using

Pmem, LiME and Fmem, and compare them to those obtained for Second Look (see TM 20120-

008 for details) in order to determine which tool is the most suitable for field use by forensic

investigators. To this end, the Volatility memory analysis framework will be used.

1.1.2 Historical note to past Linux memory forensics analyses

It is important to point out that when TM 2012-008 was written, the Volatility framework offered

rudimentary Linux memory support and as such, the acquired memory images from TM 2012-

008 were assessed as best as they could be. Memory analysis efforts at that time were manual in

nature and were therefore more subjective. However, using string counts and automated string-

based byte offset analysis, it was still possible to largely determine in an objective manner

whether a given memory image was adequately populated with data and structures. Moreover, all

memory images obtained thereto were visually examined for specific cues and patterns applicable

only to memory dumps.

Even though Second Look offered a memory analysis framework, it was not used at that time, as

it was found to be too unstable. Moreover, while the Volatility framework of that time did

support Linux memory dumps, its Linux memory support was found to be unusable for most of

the required analyses.

2 DRDC Valcartier TM 2012-319

1.2 23BLinux operating system background

This subsection examines the background of the various Linux-based operating systems

experimented upon in this work.

1.2.1 Fedora/Fedora Core Linux

Generating no revenue, Fedora Core Linux is developed in its entirety by the open source

community, although it is sponsored by Red Hat Inc. Having taken up the mantle of Red Hat

Linux, it continues to be freely available. Moreover, it comes available in both x86 and x64

flavours. Specifically, the x86-based version is by default an x86 PAE kernel, although the user

has the ability to install an x86-only kernel instead. The x64 kernel is bundled with a full x64

distribution. Fedora Core is also a RPM-based distribution.

Despite being very popular, it continues to remain behind Ubuntu and Linux Mint in terms of its

adoption [7, 8]. The distribution is considered a technology adoption leader as it continuously

incorporates new capabilities as they become available in subsequent distribution releases. Its

release schedule is approximately every six months.

At the time of the final revision of this memorandum, the current release was version 19, although

when this work had commenced in mid-2012, version 17 was the current Fedora distribution.

The very first version of Fedora was released in November 2003, just several months before Red

Hat 9 became end-of-life. The history of Fedora Linux, developed by the community under the

umbrella of the Fedora Project, is somewhat convoluted. It is noteworthy to state that all versions

of Fedora Linux prior to version 7 are known as Fedora Core Linux, while those as of version 7

are known as Fedora Linux. Within this document and TM 2012-008, the authors refer this

operating system as Fedora Core.

This work examines memory acquisition tools under both Fedora Core 15 and 17, although all

results are equally applicable to Fedora 18 and 19. Fedora Core 15, although two cycles out of

revision from the version of Fedora used for these experiments (version 17) was used in TM

2012-008. Fedora Core 18 and 19 were released in January and June 2013, respectively.

Red Hat continues to invest and support the Fedora Project, since it uses it as a testing ground for

assessing technologies that may eventually be incorporated into Red Hat's Enterprise Linux

products.

1.2.2 Ubuntu

Ubuntu is a Debian-based Linux operating system. The Ubuntu initiative is sponsored by UK

technology company Canonical that is owned by South African Mark Shuttleworth. Unlike

Fedora, commercially sponsored but generating no actual revenue, Ubuntu generates revenue by

providing Ubuntu-related technical support and services. However, the Ubuntu operating system

itself is entirely free of charge.

Perhaps due to the Ubuntu philosophy, it is currently among the most popular Linux desktops in

use today [8]. Its first release was October 2004 and its release schedule is approximately every

DRDC Valcartier TM 2012-319 3

six months. The current version, 13.04, was released April 2013. However, the authors have

chosen to work with Ubuntu 12.04 LTS, released in April 2012, as it will be officially supported

by Canonical for a period of five years.

This work examines memory acquisition tools under both Ubuntu 11.14 and 12.04 LTS. Ubuntu

11.04, now several revisions behind the current release, was used in TM 2012-008, as neither

Ubuntu 11.10 nor 12.04 were available when experimentation began under said report. However,

the experiments and results as carried out in this specific memorandum are equally applicable to

Ubuntu 13.04.

Ubuntu is available as both an x86 and x64 operating system and is very desktop friendly, more

so than many other Linux distributions. By default, the x86-based distribution does not provide a

PAE-based kernel, although compiled versions of PAE kernels are available from the Ubuntu

repository for installation. Moreover, while Ubuntu is largely Debian-based, some closed source

programs and drivers are bundled with it.

The Ubuntu Foundation, created in July 2005, ensures that Ubuntu will continue to remain a well-

funded Linux distribution in order for the community to continue developing and supporting it.

Ubuntu has also become actively involved in recent cloud computing initiatives by providing

specific cloud-based technologies in its latest Ubuntu Server release.

1.3 24BParticulars concerning memory acquisition and analysis

This subsection examines particular issues concerning computer memory, its acquisition and

volatility.

1.3.1 Forensically capturing memory

Physically capturing memory under Linux is not particularly difficult, assuming the necessary

acquisition software and hardware are available. All modern Linux distributions fully support

USB mass storage devices. However, correctly recognizing these devices and mounting them

may at times be precarious, depending on the underlying kernel and the level of hardware support

provided therein.

Of course, investigators need not be confined only to USB mass storage. Modern Linux kernels

fully support FireWire standards 1394a and 1394b. However, the level of support offered by the

underlying kernel is entirely dependent on its maturity. Moreover, production systems may have

their support for these devices altogether disabled in order to prevent employee data exfiltration.

As such, the investigator must be prepared and capable of saving memory dumps wherever

necessary or possible, depending on the underlying circumstances.

If the investigator finds that USB or FireWire-based mass storage device support is either not

available in the operating system or has been disabled, then memory acquisition could be carried

out over the network using NFS. Since many of these systems find themselves in networked

environments, NFS is often a workable solution. It is important to be aware that older versions of

NFS have readily attainable upper file size limits. Newer implementations of NFS including

4 DRDC Valcartier TM 2012-319

versions 3 and 4 support 64-bit file sizes, but differing operating systems may impose other

unknown constraints.

Moreover, the use of NFS requires that both the target and remote systems be configured to

support it. Otherwise, the investigator will have to configure it manually. Generally, even for

systems that do not have NFS enabled by default, it is not particularly difficult to get it working

and should not require any system reboots. However, operating system variations may again

impose differing limitations.

With the exception of LiME and Helix 3 Pro, none of the other tools examined in this work or in

TM 2012-008 innately have the ability to stream memory dump-files directly across the network.

Other tools can do so, but only after making use of intermediary tools (e.g. rsh, ssh, etc.). LiME

is an exception in comparison to all these tools in that its network capability is directly integrated

into its LKM. The investigator needs only to specify the appropriate network parameters to the

LiME LKM to save a dump to another system elsewhere on the network.

The use of Windows file sharing atop Linux operating systems is not examined herein, although it

is possible. The software components required for this may necessitate installation, since they are

generally not considered an integral part of most Linux operating systems.

Although swap space is used by most Linux systems, it is not acquired within this work or in any

of the various experiments. Unlike physical computer memory (RAM), swap space acquisition

occurs like any other disk partition from a live system. As such, in so long as the investigator has

root privileges, he can readily acquire all of a system's swap space.

1.3.2 Computer memory volatility

It is important to consider the volatility of computer memory when attempting to acquire it.

Furthermore, it does not matter if the computer system is running DOS, UNIX, Windows, or any

other operating system. The fact that an individual, in this case a computer forensic investigator,

runs a memory acquisition program atop the computer system changes the state of the underlying

system. This is a universal principle, commonly known as the Observer Effect, and follows

through for all cases where a physical intervention is made against a given computer system [3,

4].

In the case of computer memory acquisition, in order to obtain a copy of the system’s memory,

the investigator must interact with the system (in order to observe it) and then run some program,

command, or utility to acquire its memory. This process irreversibly changes the running state of

the computer system and as such, certain bytes of information that may contain evidence may be

permanently lost. However, it is logical to conclude that the more memory a given system has,

the less likely this is to occur, as evidence is apt to be spread out across said memory. However,

no matter the care and consistency of the steps used by the investigator, some data will inevitably

be lost with no way of discerning what it was.

However, computer memory acquired through diligence should ultimately hold up to court-based

challenges, in so long as the investigator understands the actions he carried out and their potential

impact on the underlying system. This is, of course, where open source software shines in

contrast to closed proprietary acquisition software [5].

DRDC Valcartier TM 2012-319 5

1.4 25BLinux memory specifics

This subsection examines the various peculiarities concerning Linux memory management, which

is unlike the memory management of Solaris and BSD.

1.4.1 Details

PAE-enabled processors allow x86 PAE-capable Linux kernels to use a 36-bit memory-

addressing scheme, thereby allowing the system to address up to a maximum of 62 GiB 0F

1

 RAM

[9, 10]. However, if a given distribution does not install a PAE-enabled kernel, one is usually

available from the distribution's software repository, as was the case with Ubuntu, whose PAE

kernel and corresponding source code headers had to be manually downloaded, installed and

whose boot loader had to be reconfigured. However, these are rather trivial and well

documented1F

2

 reconfiguration operations.

Unlike the various x86 and x64 based BSD operating systems, Linux has been PAE-capable since

kernel 2.3.23, released in October 1999 [9]. As such, it is common to find many x86 Linux

kernels with PAE support compiled directly in, although this varies widely by distribution and

user preferences. Some distributions, running 2.4.x, 2.6.x or 3.x kernels will by default, install a

PAE-based kernel. Sometimes, it is set as the default bootable kernel and other times it is not.

Moreover, some users prefer the use of PAE kernels while others do not. As such, it is difficult to

determine whether a given x86 Linux operating system supports PAE in its current running state.

However, it does make sense to use PAE-enabled kernels on any system running an x86 Linux

distribution with close to or more than 4 GiB RAM, in order to make the most of available

resources.

All x64 Linux kernels support more than 4 GiB RAM, unlike certain BSD distributions that by

default do not. The configuration details for the Linux-based virtual machines examined herein

can be found in annexes B and C. From these experiments, it is clearly demonstrated that PAE-

enabled kernels do in fact detect and use memory above the 32-bit based memory limit (4 GiB

RAM). As such, Linux-based PAE memory allocation is straightforward since the amount of

memory supported by x86 PAE and x64 Linux systems are uniform below 62 GiB RAM.

However, direct memory acquisition under Linux is not as straightforward as it was under BSD.

The reasons for this are examined next.

1.4.2 Linux memory acquisition

Memory acquisition under Linux is not particularly obvious at first glance. Unlike with BSD and

Solaris operating systems, modern Linux systems no longer give direct memory access,

1

 36-bit memory addressing can access up to a maximum of 64 GiB RAM although the last 2 GiB RAM

are reserved while the first 62 GiB RAM can be used for main memory [7].

2

 The largest and most popular Linux documentation repository is The Linux Documentation Project (see

http://tldp.org/ for more details).

6 DRDC Valcartier TM 2012-319

necessitating the need for memory drivers, including but not limited to Second Look, Fmem,

LiME and Pmem.

Memory device /dev/mem is a direct interface to physical memory, while /dev/kmem provides

access to the kernel's virtual address space [17]. Although they are similar, it is advised that

where both are present, memory be acquired first from /dev/mem prior to attempting /dev/kmem,

which should only be used in the event the former fails. The ability to use these will vary by

distribution and kernel version.

For a variety of reasons, direct access to physical (/dev/mem) and kernel memory (/dev/kmem and

/proc/kcore, respectively) has been limited. In 2.6.x and 3.x kernels, the restriction appears to be

caused by the CONFIG_STRICT_DEVMEM kernel structure [11, 12, 13 and 14]. Why memory

access is limited under a 2.4.x kernel (at least for Red Hat 9) is not well understood at this time,

since it does not suffer from this restriction. This restriction limits the extent to which DD and

Memdump can be used for memory acquisition.

Modern 2.6.x and 3.x kernels no longer have a /dev/kmem memory pseudo-device, although

/dev/mem continues to be present. This pseudo-device was removed in 2.6.x and 3.x kernels, due

to its prevalence in Linux-based rootkit attacks. Thus, by removing the device, rootkits could no

longer have immediate and direct access to the kernel's memory address space. [11, 12, 13, 14

and 16]

Even though device /dev/mem continues to be available under Linux, it is generally not possible

to acquire memory beyond the first one megabyte of memory, due to the aforementioned reasons.

However, under kernel 2.4.x, it is possible to acquire significantly more memory, at least under

Red Hat 9, but still less than the total amount actually detected by the operating system.

Availability will undoubtedly vary by kernel, its generation (2.4.x, 2.6.x or 3.x) and distribution.

Linux memory acquisition-based experimental results are available in Annex D. Specifics for

Red Hat 9 can be found in TM 2012-008.

Although Linux 2.4.x kernels do continue to support both /dev/kmem and /dev/mem memory

devices, support for memory device /dev/kmem can be reactivated for some 2.6.x and 3.x kernels

by recompiling it in. Unfortunately, a concise list of which distributions permit this device's

recompilation is not currently available. Notwithstanding this, for distributions shipping with

kernels where this option is removed, a publicly available kernel patch reactivates this feature

[15]. Experimentation conducted by the authors confirms that Fedora Linux and Ubuntu systems

have their /dev/kmem device disabled, but they can be reactivated upon selecting the appropriate

kernel compilation-based configuration options.

Linux provides several kernel-specific structures for accessing system memory. These include

/proc/kcore, /proc/kallsyms and /proc/ksyms. Both /proc/kallsyms and /proc/ksyms refer to the

same kernel symbol table that is used by the kernel itself and the various LKM modules. As

such, this structure has limited value for memory acquisition2F

3

. However, /proc/ksyms exists only

under 2.4.x kernels, whereas /proc/kallsyms has superseded the former under 2.6.x and 3.x

3

 However, this structure may have significantly more value when conducting a manual memory analysis,

which is not examined herein.

DRDC Valcartier TM 2012-319 7

kernels. Linux kernel pseudo-files /proc/ksyms and /proc/kallsyms provide the same functionality

as the BSD and Solaris' /dev/ksyms device. [18, 19, 20 and 21]

On the other hand, pseudo-file /proc/kcore is a representation of physical memory stored using

the ELF core file format. As such, memory dumps obtained from this pseudo-file are best left for

use with the system debugger, GDB. In instances where /dev/mem or /dev/kmem are available,

they are preferred over /proc/kcore. The total physical length of memory from kernel structure

/proc/kcore is the size of detected memory 3F

4

 plus 4 KiB 4F

5

. Moreover, /proc/kcore enables the

acquisition, at least to some extent, of hardware-reserved computer memory. [18, 21]

Dumping memory from /dev/mem will result in the acquisition of hardware-reserved computer

memory, while acquisition from /dev/kmem will not.

Direct access to device and kernel structures generally requires the investigator to have root

privileges on the target system.

1.4.3 Operating system-specific differences concerning /dev/mem and

/dev/kmem

The UNIX memory device /dev/mem is found under most major UNIX systems including all

BSD, Linux and Solaris operating systems. This memory device is a direct interface to physical

memory, including all hardware associated I/O 5F

6

 devices and their operating system accessible

hardware memory. Although memory device /dev/kmem is similar to /dev/mem, it does not

provide direct physical memory access. Instead, it provides an interface to the kernel's virtual

address space. It is important to understand, however, that the kernel’s virtual address space

memory is similar to physical memory, except that no hardware-reserved memory will be

accessible through this interface.

Moreover, while /dev/mem represents actual physical byte offsets in physical memory, /dev/kmem

does not. Instead, it is representative only of the byte offsets in the kernel's memory space.

Thus, when attempting to acquire computer memory from a UNIX-based system, it is preferred to

acquire memory from /dev/mem prior to acquire it from /dev/kmem. Specifically, memory device

/dev/kmem should only be attempted when acquisition from /dev/mem fails or if /dev/mem is not

available on the current system. Moreover, it is important that investigators understand that

Linux 2.6.x and 3.x kernels do not by default support /dev/kmem and /dev/mem, typically limiting

memory dumps to one MiB. As such, kernel memory interface /proc/kcore can instead be used.

However, the investigator is warned. This pseudo-device has very serious limitations.

It is important to understand that Linux pseudo-file memory interface /proc/kcore, while similar,

is not the same as memory device /dev/kmem or /dev/mem. Specifically, the latter provides an

4

 Detected memory size is based on the MemTotal value found in kernel pseudo-file /proc/meminfo.

5

 The extra 4 KiB are for ELF data structure overhead.

6

 I/O device memory is the memory found on peripheral devices within a computer system. For example,

consider video card memory, network interface buffers, etc.

8 DRDC Valcartier TM 2012-319

interface to physical memory in ELF format, while the two former pseudo-devices provide direct

access to physical memory with and without hardware-reserved memory, respectively.

1.5 26BMemory acquisition software background

1.5.1 LiME

1.5.1.1 Background

LiME (Linux Memory Extractor) was developed by Joe Sylve, Andrew Case, Lodovico Marziale

and Golden G. Richard III as a project to improve memory acquisition under Linux and minimize

the interaction between kernel and the user space [23]. LiME is an open source LKM that allows

an investigator to acquire memory against Linux and Android-based platforms. The module,

operating within the kernel, enables memory acquisition to be dumped to the filesystem or over

the network, without the need for intermediary network communication tools (e.g. Netcat).

However, the scope of this evaluation does not cover memory acquisitions over the network or

with Android devices. In this memorandum, version 1.1-r14of LiME was used.

Unlike other memory acquisition tools for Linux, LiME does not need a memory driver in order

to map memory pages into user space or access them using tools such as DD. This

implementation minimizes the memory footprint. Non-author specific tests comparing Fmem and

LiME (formerly DMD) against a virtual Android device showed that approximately 99% of pages

were correctly captured using LiME. Fmem succeeded in capturing about only 80% of said

memory pages [23].

In order to capture memory, the module’s source code must first be compiled (see Figure 1) and

then inserted into kernel space with root privileges (see Figure 2). LiME requires two arguments

in order to be correctly inserted into kernel space. These arguments are described below:

• path=

o This can be either a filename for writing the acquisition to a filesystem object or a

TCP port (use format tcp:<port>) to acquire memory directly over the network.

• format=

o raw

� Acquire all “System RAM” ranges with no padding for other devices.

o padded

� Starts from physical address 0 (zero) and pad all non-“System RAM” ranges with

binary zero.

o lime

� Acquires all “System RAM” ranges with no padding for other devices and

prepend each memory address range with address space information.

DRDC Valcartier TM 2012-319 9

Figure 1: LiME LKM compilation under Ubuntu 12.04 x86

Figure 2: LiME memory acquisition under Ubuntu 12.04 x86

The scope of this evaluation was limited to acquiring memory against various Linux systems

directly to an external hard drive formatted using NTFS. Each Linux system was acquired using

the raw, padded and lime formats. After compiling LiME against each test system, the

commands used to acquire memory were, per system, as follows:

$ insmod ./lime-[VERSION].ko “path=/ext_hdd_path/mem.raw format=raw”

$ insmod ./lime-[VERSION].ko “path=/ext_hdd_path /mem.padded format=padded”

 $ insmod ./lime-[VERSION].ko “path=/ext_hdd_path /mem.lime format=lime”

1.5.1.2 Overall impression during acquisition

LiME was stable throughout the authors-based testing and as such, they recommend its use.

Investigators should use it either with the padded or lime formats. It is not recommended,

however, to acquire memory using the raw format as memory analysis tools (e.g. Volatility) will

not be able to analyze it unless the investigator pads it manually. Interestingly, the lime format is

supported by Volatility but not by Second Look, a commercial competitor to Volatility. LiME

does not require user-based tools for memory acquisition. Instead, memory is acquired at the

time the LKM is loaded into kernel space.

During this evaluation and while using the lime format, the authors observed an odd behavior

regarding the performance of the acquisition. Specifically, even if the lime format writes less

information to the disk than the padded format, acquisition using this format was noticeably

slower than the padded format. The root cause of this, however, has not been thoroughly

investigated by the authors.

10 DRDC Valcartier TM 2012-319

Ideally, it is recommended to use the padded format with LiME. Commonly used Linux memory

analysis tools will support memory padded-based dumps, while not affecting performance (as

compared to using the lime format).

The NTFS kernel driver was used in all LiME-based acquisitions to connect an external storage

device to each virtual machine, in order to store the variously dumped memory images in a

readily accessible fashion for analysis. This likely explains why all LiME acquisitions were so

slow. Only this series of experiments used NTFS. See Annex D.1 for details.

1.5.2 Pmem

1.5.2.1 Background

Written by Michael Cohen of the Volatility project, the current version used in this memorandum

was obtained with the source code of Volatility 2.2. Pmem is a Linux memory device driver,

similar in capability to the memory drivers found in Second Look and Fmem. The driver, upon

successfully loading into kernel space, provides a system-based device against which memory

dumps may be obtained. A memory driver is required in order to map memory pages into user

space from kernel space so that acquisition can be carried out using standard user-based tools

such as DD.

Figure 3: Pmem LKM compilation under Fedora Core 17 x64

DRDC Valcartier TM 2012-319 11

It has come to the attention of the authors that depending on the underlying operating system,

dwarf version (debugging file format) and other changes caused by various system updates, that

the compilation of Pmem carried out when issuing the standard compilation command make may

result in one or more compiler warnings. Generally, these warnings can be ignored. However,

attempting to compile Pmem alone by issuing the command “make pmem” may prevent the

compiler from presenting these warnings. This bug is related to the version of dwarf, not the

compiler. Although dwarf is use by the compiler, it is not the compiler per se.

Throughout all the experiments conducted against Pmem, only when compiling it using make

against Fedora 15 x64 with the default distribution kernel and GCC compiler did the compiler

issue an error (see Annex D.2.3 for details). Specifically, the message was “ERROR: Attribute

56 (DW_AT_data_member_location)”. However, specifying make pmem did not result in this

error, as the kernel dwarf module is not compiled according to Pmem’s Makefile. See Figure 3

for a screenshot detailing the make-based compilation of Pmem, where the dwarf module is also

compiled. For a list of make options, refer to Pmem’s Makefile.

To load the driver into kernel space however, the driver’s source code must be compiled and then

loaded by the root user (or loaded by a user with sudo capability). Memory dumps can only be

obtained by the root user (or user using sudo). Compiling the Pmem memory driver is done using

the make command, as seen in Figure 3.

Ideally, memory dumps should be acquired in the following fashion using 4 KiB sized pages, as

seen below:

$ dd if=/dev/pmem of=/capture_device/dump.pmem bs=4K count=MEM_IN_KIB/4KIB

MEM_IN_KIB is the last addressable “System RAM” address obtained from /proc/iomem. The

abovementioned command is sufficient for directly reading from memory and dumping it to a

user-designated file. Since the correct block size and count parameters have been specified, the

final size of the memory dump should be equal to the product of the specified byte size and count

parameters.

However, this ideal memory dumping method was not used by the authors in order to test the

tool’s robustness. Instead, they used the last command shown in Figure 4:

Figure 4: Pmem memory acquisition under Fedora Core 17 x64

Using the aforementioned command, the authors were able to determine if the memory driver

could stop dumping memory upon reaching the detected operating system memory limit. As it

turns out, this was in fact the case. Only PAE Linux-based systems failed to acquire correctly the

underlying system’s memory.

However, Pmem did not work “out of the box.” Instead, a minor source code change was

required. Specifically, the following change was made to file ./volatility-2.2/tools/linux/module.c:

as shown next:

12 DRDC Valcartier TM 2012-319

 Line 70 #include <linux/net_namespace.h>

This line was changed to:

 Line 70 #include <net/net_namespace.h>

Implementing this single change enabled the Pmem kernel driver to compile correctly across

Ubuntu 11.04 and 12.04 (x86, x86 PAE and x64, respectively) as well as Fedora Core 15 and 17

(x86 PAE and x64, respectively).

1.5.2.2 Overall impression during acquisition

Pmem is easier to use than LiME, as it has only one dump format. However, unlike LiME, which

worked against all the target operating systems, Pmem did not. Specifically, it did not work

against x86 PAE-based systems. As such, is not suitable for use in the field. For detailed

acquisition information, consult Annex D.2.

1.5.3 Fmem

1.5.3.1 Background

The technical details of Fmem memory acquisition have already been fully examined in TM

2012-008. Additional details concerning the correct use of (/proc/iomem over /proc/meminfo) for

determining the appropriate upper memory address to use for acquisition is examined in Annex

E.2.

Because the original experiments in TM 2012-008 were carried out against Ubuntu 11.04 (x86,

x86 PAE and x64) and Fedora 15 (x86 PAE and x64), all Fmem memory acquisition experiments

conducted in this work were carried out against these very same operating systems only.

Acquisition and experimentation against Ubuntu 12.04 and Fedora 17 have not been done in order

to maintain consistency between the aforementioned report and this one.

1.5.3.2 Overall impression during acquisition

Based on the experimental results obtained in Annex D.3, Fmem was found to be fast and

accurate. It was able to acquire memory up to the maximum limit of the physical RAM as

defined by /proc/iomem. This was done without error or issue. Thus, it can be considered

suitable for field use.

The authors have conducted the experiments using Fmem 1.6-1, the same version used in TM

2012-008. However, the tool has not changed since that time.

DRDC Valcartier TM 2012-319 13

1.5.4 Second Look

For details concerning the background and use of Second Look, consult TM 2012-008 and Annex

E.1, respectively. Volatility-based memory analysis conducted herein has been conducted against

the original Second Look memory images acquired as per TM 2012-008.

By default, Second Look will attempt to use the system’s kernel crash driver, if it is present. If

not, then the investigator must compile Second Look’s provided crash driver, pmad.c, in order to

carry out a memory dump.

1.5.4.1 Overall impression during acquisition

Memory acquisition using Second Look proved to be fast and easy. By far, Second Look is the

fastest memory acquisition tool examined both in TM 2012-008 and herein. Moreover, it is able

to acquire the correct amount of memory as per /proc/iomem. Acquisitions for all operating

systems succeeded without issue.

1.6 27BA note about the Linux kernel crash driver

The Linux kernel crash driver or LKM, found precompiled on supporting systems as crash.ko, is

loaded into kernel space using the modprobe command if the investigator does not know where it

is located or using the insmod command otherwise. It is another memory access driver (or LKM)

for directly accessing the computer system’s physical memory. It does not appear to be included

in the standard Linux kernels. Instead, it seems to be available only with Red Hat-based Linux

distributions including, but not necessarily limited to, Red Hat and Fedora (the authors have not

confirmed its existence under CentOS). However, other distributions (such as Ubuntu) may also

have this feature supported by applying external patches to the distribution’s kernel source code

[11].

Upon having been loaded into kernel space, the crash LKM creates /dev/crash, a temporary new

device that can be used to read from memory or dump it. The device can be removed from kernel

space by unloading it using the rmmod command.

Some confusion exists between the Linux crash driver and the Linux crash project, both of which

are distinct yet interdependent, although both were written by David Anderson of Red Hat. The

Linux crash driver, while not officially a part of the Linux kernel, is found distributed with

modern Red Hat-based distributions. Moreover, it is compiled with the stock kernels provided

through these distributions and it can be used in tandem with the Linux crash project. Recall that

modern 2.6.x and 3.x kernels no longer support /dev/kmem (by default) and limited access is

provided to /dev/mem. Thus, using /dev/crash, the Linux crash framework has complete and

unmitigated access to the system’s physical memory.

In contrast to the Linux crash driver, the crash project is an endeavour to provide a system crash-

based analysis framework. This framework has the ability to debug a live running system or

investigate the cause of system kernel panic that was saved to a core-file or dump-file for post-

mortem analysis. The framework has the ability to read memory from /dev/mem, /proc/kcore and

/dev/crash, but only from the latter if the crash LKM has been loaded into kernel space. Recall

14 DRDC Valcartier TM 2012-319

that the ability to read from these memory devices will vary, as examined in Section 1.4.3. Many

distributions, including Ubuntu, have repository crash packages available for installation, but they

do not include the kernel crash driver. However, it can be applied as a kernel patch.

The authors have prepared a table that examines all the operating systems experimented upon in

both this work and in TM 2012-008 to validate if the Linux kernel crash driver, crash.ko, is

available to the investigator for immediate use (e.g. memory capture). Virtual machines and

guest operating system specifics can be found in Annex B.

Table 1: Operating system support for the Linux kernel crash driver

Operating system Compiled kernel crash driver

Ubuntu 11.04 x86 Not included / not available

Ubuntu 11.04 x86 PAE Not included / not available

Ubuntu 11.04 x64 Not included / not available

Ubuntu 12.04 x86 Not included / not available

Ubuntu 12.04 x86 PAE Not included / not available

Ubuntu 12.04 x64 Not included / not available

Red Hat 9.0 Not included / not available

Fedora 15 x86 PAE Compiled and included in kernel source code

Fedora 15 x64 Compiled and included in kernel source code

Fedora 17 x86 PAE Compiled and included in kernel source code

Fedora 17 x64 Compiled and included in kernel source code

As can be seen from this table, only the Red Hat and Fedora-based distributions actually support

the /dev/crash pseudo-device without the need for patching and recompiling the underlying

kernel. Thus, based on this information, the authors recommend that investigators do not use this

mechanism for memory capture, as it may not always be present.

However, in order to read and dump memory from /dev/crash, the correct memory address offsets

and ranges must be used, as per /proc/iomem. Otherwise, attempting to address memory that is

non-addressable as “System RAM” will result in a read error. This is due to this memory being

non-RAM memory. Specifically, it is hardware memory and cannot be directly accessed by the

operating system or kernel.

DRDC Valcartier TM 2012-319 15

1.7 28BMemory impact of kernel crash drivers

The LKM or drivers found with Fmem, Pmem and Second Look’s Pmad are all various forms of

Red Hat’s Linux kernel crash driver, albeit each with its own distinct peculiarities. It is known

that the Linux kernel crash driver is well suited for kernel debugging in the event of system or

kernel panic, where the kernel’s memory space is written out to a corefile. However, it is not

currently known if these crash drivers are forensically sound in the way they acquire memory

from a given system. No research work has been published to date concerning this subject matter

and as such, the authors cannot conjecture further with regard to their forensic reliability.

The extent to which use of a LKM or kernel memory driver impacts memory have not been

studied, neither by the authors nor in the available literature. Thus, the authors cannot state with

certainty what the potential impact may be of using these drivers and the user space tools required

to dump memory, e.g. DD. However, the implementation of LiME was designed to minimize its

memory footprint because it does not need a memory driver in order to map memory pages into

user space and dump it using tools such as DD.

16 DRDC Valcartier TM 2012-319

2 19BMemory acquisition issues and concerns

2.1 29BThe Volatility framework

This subsection examines the various issues surrounding the use of the Volatility memory

framework.

2.1.1 Using Volatility to determine the integrity of the acquired memory

dumps

In previous memory acquisition work (TM 2012-008 and TM 2011-215), the main author used

string counts6F

7

, highest byte offsets 7F

8

 and visual inspection of memory dumps as his primary

methods of determining if a given memory dump appeared to be valid. This was because

memory analysis tools such as Volatility provided little functional support for Linux. Only since

Volatility 2.2 has Linux support become more robust. Specifically, this particular version of

Volatility is capable of performing various analyses against Linux-based memory dumps.

Besides Volatility, another option examined in TM 2012-008 was Second Look. While it worked

well against some memory images, it failed with others.

Using Volatility 2.2 and through the generation of Linux-based kernel profiles, as examined in

[22], it is possible to objectively determine whether a given memory dump image is intact and

faithfully represents the contents of memory. In this work, a Linux-based memory image is

deemed successfully analysed using Volatility if a process listing succeeds against it using

Volatility’s linux_pslist plugin.

For example, to examine an Ubuntu 11.04 x86-based memory dump using the Volatility

linux_pslist plugin, the following command can be used:

$ python vol.py -f Ubuntu-11.04-32-bit.lime --profile=LinuxUbuntu-11_04-32bitsx86

linux_pslist

This command instructs the Volatility framework to perform a Linux-based process listing using

a specific Linux kernel profile. An example of this can be seen in Figure 5.

Unlike for Windows-based memory analyses using Volatility, Linux system profiles must be

generated prior to analysis. Volatility includes Windows profiles 8F

9

 dating back to Windows 2000

and as recent as Windows 7 and Server 2008, both for 32 and 64-bit (Windows 8 and Windows

Server 2012 memory support is not yet available in Volatility 2.2). However, complicating

7

 String counts included 7, 8, 16 and 32-bit strings as determined using the UNIX strings command.

8

 Highest byte offset is based against the highest string found a given bit depth. For example, the last 7-bit

string found within a given memory dump image would be considered the highest byte offset for that

specific bit depth.

9

 Currently, Volatility 2.2 does not support Windows 8 systems. However, newer non-production versions

of Volatility may include support for Windows 8 based systems.

DRDC Valcartier TM 2012-319 17

matters for the generation of Linux distribution specific profiles is the fact that most distributions

offer regular kernel updates, as compared to Windows that does not. Thus, even if the Volatility

developers were to include default Linux profiles, they would be of limited benefit to

investigators, as Linux systems vary widely. Fortunately, Linux profile generation is not

particularly difficult and the Volatility developers have provided information for doing so [24].

Figure 5: Example process listing from a Linux memory dump using Volatility

2.1.2 Issues using Volatility

The authors determined early on that the Volatility 2.2 framework had specific support related

issues with respect to Fedora-based operating systems, which can be found annexes D and G.

The exception to this is Volatility 2.3 SVN revision r2574, which works against Fedora lime and

padded-based memory dumps. However, all other Fedora-based memory dumps obtained using

Pmem, Fmem and Second Look were found to be non-functional when analysed with Volatility.

In cases where Volatility did not succeed in examining a given memory image, string counts of 7,

8, 16 and 32 bits were conducted against said memory images in order to verify whether it was

sufficiently populated with data and structures. Moreover, string byte offsets analysis of the

aforementioned memory images lent additional credence to a memory image’s intactness.

The LiME-based acquisitions were analysed with Volatility 2.3 SVN r2754. Interestingly, even

though Fedora memory dumps could not typically be analysed using Volatility 2.2 or 2.3, the lime

and padded memory dumps obtained under Fedora 15 and 17 (x86, x86 PAE and x64) were

found to be analysable under Volatility 2.3 SVN r2574. However, it must be stated that Volatility

2.3 SVN r2754 lacked adequate support for Fedora 15 x64-based memory dumps. The secondary

18 DRDC Valcartier TM 2012-319

author proposed a modified version for Volatility’s file dwarf.py to rectify this specific issue 9F

10

.

This fix was found to work and was used herein for all Volatility 2.3 SVN r2574-based analyses.

A full listing of all memory dumps obtained herein and the specific versions of Volatility (2.2 or

2.3 SVN r2574) used against them can be found in Annex G. This annex provides a detailed

comparison of which dumps could be successfully analysed using Volatility. This information

may help serve the reader in his own attempts with Linux-based memory acquisition analysis.

2.1.3 About generating kernel profiles

Although Volatility does not include many Linux kernel profiles, in order to overcome this, the

Volatility team has provided documentation for generating Linux kernel profiles. This

information can be found at 179Hhttp://code.google.com/p/volatility/wiki/LinuxMemoryForensics.

However, using Linux kernel profiles for Fedora-based systems was at times problematic even

though these Fedora profiles were generated correctly as per the Volatility team’s instructions. In

certain circumstances, when using a Fedora-based kernel profile, Volatility would not function

correctly, as documented in Annex D as per the analyses found in Section 3. For more

information, the secondary author’s Volatility message board posting can be found at

180Hhttps://code.google.com/p/volatility/issues/detail?id=355#c4.

2.2 30BExamining memory dump sizes and other issues

This subsection examines how memory dumps, as based on their size, should be considered as

complete or inadequate. This is not a straightforward task, as it depends largely on the underlying

operating system and architecture.

Although this specific memorandum directly examines Linux memory acquisitions (LiME, Pmem

and Fmem), it is nevertheless a continuation of TM 2012-008, and as such, will address not only

determining the appropriate memory dump size for Linux, but also for x86 and x64 based Solaris

and BSD operating systems.

2.2.1 The PCI hole problem and memory acquisition

The examination of the “PCI Hole” issue [25] was not directly examined in TM 2012-008. This

problem, commonly known as the 3 GiB barrier, has been plaguing x86-based operating systems

for years. The only way to avoid it is to migrate to an x64 architecture and operating system.

In essence, the problem is related to the manner in which PC-based computer memory (RAM 10F

11

)

found between 3 and 4 GiB is mapped out for usage exclusively by the system’s hardware.

10

 For more information, consult the secondary author’s post available at

https://code.google.com/p/volatility/issues/detail?id=367.

11

 RAM denotes the physical memory modules inserted into a computer’s motherboard and does not take

into account processor cache, video card memory or any other form of memory-based computing

technology.

DRDC Valcartier TM 2012-319 19

Computer memory is mapped linearly. Fortunately, almost all RAM and some I/O 11F

12

 memory is

accessible or addressable 12F

13

, in one form or another, from the operating system kernel. However,

the kernel does not typically make all the RAM available to non-kernel processes, and even then,

it is not known 13F

14

 if all kernel processes will have access to it. Thus, under modern Linux

systems, it is only through a kernel memory driver that this kernel memory can be fully accessed

and acquired.

Ultimately, the problem relates to how RAM and I/O memory are mapped out in a typical x86-

based computer system. RAM is allocated in linearly mapped blocks, found interspersed among

I/O memory (TM 2012-008 provides a depiction of this in its Annex D against an Intel i7 980X

based system equipped with 24 GiB RAM). Testing this and many other physical and virtual

machines using three specific operating systems, namely Linux x86, x86 PAE and x64, resulted

in differing results with respect to the mapping of physical RAM (“System RAM”) and of the

underlying I/O hardware. Specifically, under x86 Linux, RAM was available up to 3,583.94 MiB

while under x86 PAE-based Linux, it is available up the 62 GiB memory limit. Under x64 Linux,

no practical limitations are in effect.

More specifically, a 32-bit operating system will be able to address RAM up to that system’s 32-

bit memory limit which is always less than 4 GiB RAM. The distinction must be made between

the operating system, user-land tools and applications, and the kernel, which always has full

access to all computer-based RAM. However, in order to access RAM above the 32-bit operating

system limit, a memory device driver is required, which in some cases is provided through system

pseudo-devices. These specifics are examined within this discussion.

Thus, the PCI hole problem affects different operating systems in various ways, all of which

depends on the underlying kernel, how it maps hardware into memory and its ability to provide

direct memory access. Thus, it can be concluded that based on experimentation, PC operating

system support for x86, x86 PAE and x64 memory addressing differs according to the underlying

kernel in use. These results apply equally to Linux, Solaris, BSD and even Windows NT-based

systems (XP, Vista, Windows 7, etc.).

It is important to be aware that some operating systems, specifically BSD variants, provide direct

physical memory access via kernel memory device /dev/mem. However, this pseudo-device is

only accessible to the root user. BSD’s /dev/mem device behaves precisely as a memory driver.

In tests carried out in TM 2012-008, all the x86 BSD variants were able to fully acquire their host

virtual machine’s memory including the hardware-reserved portion of RAM, as per a manual

analysis of each system’s memory dump. Unfortunately, no x86 PAE-based BSD systems were

12

 I/O memory denotes memory belonging to peripheral devices such as disk caches, buffers on network

interfaces, video card memory, etc.

13

 There are limitations to this, however. For example, a video card with 1 GiB onboard card graphics

generally makes only a portion of its overall memory available to the kernel. Nevertheless, portions of it

are available to the system.

14

 More research is required in order to determine to what extent various kernel processes of Linux, Solaris

and BSD have full and unfettered access to this memory. Documentation is too sparse and inconsistent

to draw and firm conclusions at this point. Only full source code analysis of the various kernels and

(continued from Footnote 15) subsystems will answer this question, and this requires an in-depth

knowledge of kernel design and implementation.

20 DRDC Valcartier TM 2012-319

available for testing, as PAE-enabled kernels must be compiled after the installation of a given

BSD distribution and as such, this approach was not undertaken by the authors. It was also

determined that x64 BSD systems could also have their full physical memory acquired, with the

exception of x64 OpenBSD, which for the tested version therein, did not support 64-bit memory

allocation.

The reader must understand that without being fully versed in the finer details of operating system

kernel and virtual memory management internals, including the underlying platform’s hardware

architecture, it is impossible to determine definitively how memory will be mapped and managed.

Frankly, few people know these details intricately enough and fewer still have written about it

outside of hardware manufacturers’ engineering manuals. Moreover, quality publicly available

literature is even rarer and both hardware and operating system vendors do not typically provide

this level of detail in their system engineering guides obtained when purchasing their systems.

Thus, the authors are basing their assertions in this section on both the very limited available

literature, the various memory drivers’ source code (Fmem, Second Look, Pmem and LiME) and

other memory acquisition programs (Memdump and Helix 3 Pro R3).

As with BSD, UNIX systems such as Solaris were found to provide a readily accessible memory

device, /dev/mem, which provides unmitigated memory access for x64 Solaris systems, but not

for x86 PAE 14F

15

 systems, as based on Memdump-based memory acquisitions. Specifically, when

running an x64 Solaris kernel, no difficulty was encountered during memory acquisition. Thus,

direct memory access under Solaris appears superior to that of Linux, at least when comparing

x64-based Solaris and Linux systems.

However, for x86-based Solaris PAE systems, as based on tests conducted in TM 2012-008, it

was determined that acquisition against a system ceased when the memory dump grew to 3,583

MiB in size. This appears to indicate that memory beyond this limit was dedicated to the

system’s hardware and was made inaccessible by the kernel, as it was entirely available under the

x64 kernel. Thus, at least for x86 PAE Solaris, memory between 3,583 MiB and 4 GiB will

likely remain inaccessible. It is known that both the x64 and x86 PAE systems recognized

exactly the same amount of memory, as based on results obtained from Solaris’ prtconf command

and from David W. Noon’s C code program [26]. The former command recognized 8,192 MiB

while the latter program recognized 8,191.559 MiB RAM. Tests against prtconf appear to

indicate that this program provides the full amount of physical RAM while Noon’s code provides

the amount of memory seen by the kernel.

Thus, taking into account the fact that under BSD, Memdump could fully acquire memory from

the underlying x86-based system, including hardware-reserved memory between 3 and 4 GiB, it

can be reasonably concluded that Solaris has a built-in mechanism which prevents access to this

region of memory in its x86 PAE incarnation. However, since there were no x86 PAE instances

of BSD to compare against, the authors do not want to draw too many conclusions. Specifically,

since Memdump was compiled as an x86 program under x86 PAE Solaris, it could not, by its very

design, access memory beyond 4 GiB without changing its 32-bit read () calls to pread64 () or

llseek () and read (). The reader may ask why not use DD? This was tried in TM 2012-008 and

the results were utterly disappointing.

15

 Modern x86-based Solaris no longer provides standard 32-bit memory addressing (non-PAE) kernels.

DRDC Valcartier TM 2012-319 21

2.2.2 Defining the correct memory dump size for BSD

Based on the experimentation conducted in TM 2012-008, the following recommendations are in

line with this report’s results. BSD memory acquisition, at least for x86 and x64 operating

systems, should be considered complete when the memory dump is the same size as the amount

of physical RAM, as reported by the virtual machine’s settings or the computer’s BIOS. It is

possible that the memory dump will continue to grow beyond this size. If this occurs, then extract

only the amount of memory that corresponds to the physical RAM of the underlying system from

that memory image.

Moreover, experimentation confirms that memory acquisition of x86 BSD systems will acquire

the hardware-reserved portion of physical RAM. Regarding x86 PAE kernels for BSD systems,

no recommendations are available at this time.

Finally, since direct memory access is available via /dev/mem, DD and Memdump can be used,

but preference should be given to Memdump.

2.2.3 Defining the correct memory dump size for Solaris

Under x86 and x64 Solaris, the Solaris kernel is able to see and access all the system’s physical

RAM, except a very small portion several hundred KiB in size which is reserved 15F

16

. Using

Memdump, the only successful memory acquisition tool tested for Solaris, the investigator can

expect x64 Solaris memory acquisitions to be the same size as that reported by Noon’s C program

[26]. Where x86 PAE acquisitions are concerned, the memory dumps to be acquired are expected

to be up to the hardware-reserved memory limit of x86, which can vary according to the

underlying hardware. However, an accurate estimate would be that the latter half of the fourth

GiB of RAM would be set aside for hardware. Acquisition of memory beyond 4 GiB for x86

PAE systems is possible. However, it requires that the Memdump tool is modified to use an x64

read () or some other system call that has the ability to go beyond the limitations of the standard

32-bit read () used by Memdump.

Obviously, these results do not apply to non-x86 based Solaris. 32-bit Solaris on SPARC will not

follow the same memory addressing ranges due to hardware-based architectural differences.

Moreover, Solaris, like BSD, does not provide a Linux-like /proc subsystem with which to query

the system about its memory ranges. Instead, various operating system-specific diagnostic suites

such as SunVTS can be used.

2.2.4 Defining the correct memory dump size for Linux

Under Linux, the memory reported by /proc/iomem is always larger than the memory reported by

/proc/meminfo. This is because /proc/iomem reports memory based upon the actual addressing of

physical memory (RAM) and other I/O memory, whereas memory reported by /proc/meminfo is

16

 For a detailed discussion of this reason, please refer to the examination of ACPI and BIOS INT 0x15

EAX=0xE820 as examined in more detail in Section 2.2.4, specifically the discussion concerning

reserved mapped memory for the ACPI and BIOS.

22 DRDC Valcartier TM 2012-319

based upon the memory the kernel reserves for the system. The memory reported by

/proc/meminfo never equals the full amount of physical RAM allocated to the system. However,

when adding up the “System RAM” memory address ranges as per /proc/iomem (see calculations

and example below for more information), the memory reported therein is equal or very close to

the actual amount of physical memory.

There is always a difference between the amounts of memory reported by /proc/iomem and

/proc/meminfo, with the latter being the smaller of the two. This difference is due to the kernel

reserving memory for itself that is not made available to the rest of the operating system. The

exact contents of this kernel-reserved memory are not fully understood at this time, but it appears

to contain only kernel subsystems. Moreover, this kernel-reserved memory does not contain

hardware-reserved memory, as based on many observations conducted by the authors using x86,

x86 PAE and x64 virtual machines with varying size of memory. In the authors’ observations, a

difference in memory sizes was maintained between /proc/iomem and /proc/meminfo.

In order to better understand this memory difference, consider an Ubuntu 12.04 x86 with exactly

4 GiB of allocated RAM running within a virtual machine. It reports 3,616,096 KiB RAM from

MemTotal as per /proc/meminfo while the last addressable RAM memory address according to

/proc/iomem is 3,669,952 KiB. This 53,856 KiB memory difference has been reserved by the

kernel for its own subsystems. Moreover, based on the addressable memory range as seen in

/proc/iomem, memory between 3,669,952 KiB and 4,194,304 KiB is not available, even though

the x86 virtual machine has been allocated exactly 4 GiB RAM. This is altogether normal, as it

was set aside for hardware-reserved memory (memory reserved for the computer’s hardware) and

under an x86 Linux operating system, this region is off-limits.

Thus, when conducting a memory acquisition against this x86 Linux operating system using a

memory driver or LKM, all physical memory up to 3,669,952 KiB should be acquired. Of

course, x86 Linux systems equipped with less than 4 GiB RAM will have differing amounts of

available memory and the location and address ranges of memory set aside for hardware-reserved

memory will vary accordingly.

Acquisition against x86-based Linux PAE and x64 systems should be acquired up to the upper

memory “System RAM” address as per /proc/iomem. However, since the other non-Linux

UNIX-based systems examined in TM 2012-008 do not provide a Linux-like /proc subsystem,

complete memory acquisitions for them are different, as examined in sections 2.2.2 and 2.2.3.

The highest accessible “System RAM” page reported by /proc/iomem should be used to define

the correct dump size for Linux systems. The logic behind this assertion is that on Linux, only

/proc/iomem provides the true memory ranges for RAM. When adding up these ranges manually

(see the calculation below), they add up to the full amount of physical RAM minus several

hundred kibibytes reserved for the BIOS and ACPI mappings (this is examined further on in this

text). Thus, a memory dump that respects /proc/iomem will dump all RAM and pad with zeroes

all non-RAM I/O memory ranges, as done by all the tools examined in this work (Pmem, LiME

padded dumps, Second Look and Fmem). However, at an absolute minimum, a memory dump

that is equal to the total size of the RAM memory (e.g. LiME raw dump) ranges as per

/proc/iomem is also acceptable, although it is not the preferred dump size as it does not see

memory in quite the same way the CPU does.

DRDC Valcartier TM 2012-319 23

In order to analyze memory dumps and correctly convert virtual to physical linear-based memory

addressing, memory analysis software must have the same view as the CPU does as per [27].

This is the true reason why a memory dump should be equal to the size of the highest accessible

“System RAM” page reported by /proc/iomem. An example of this can be found in the

calculation below and in Figure 6. This calculation is based on an x64 virtual machine allocated

with exactly 8 GiB RAM. It would have the following “System RAM” /proc/iomem output:

9FBFFh + 1 – 10000h = 588,800

DFFEFFFFh + 1 – 100000 = 3,756,982,272

21FFFFFFFh + 1 – 100000000 = 4,831,838,208

Total “System RAM” = 8,589,409,280

Thus, a system allocated with exactly 8 GiB RAM (equal to 8,589,934,592 bytes) will not have

exactly that same amount of memory seen available as “System RAM.” This is shown in the

above calculation as the addition of the “System RAM” memory ranges actually adds up to

8,589,409,280 bytes of physical RAM. There is a very small difference between the two (exactly

513 KiB or 525,312 bytes). This difference is related to the memory map defined by the BIOS

(BIOS INT 0x15 EAX=0xE820 16F

17

). The memory map defines what the different regions of

physical memory are used for. Some regions are reserved and cannot be used by the operating

system. For example, the BIOS can reserve memory for Real Mode IVT (Interrupt Vector

Table), BDA (BIOS data area) and EBDA (Extended BIOS Data Area) [28].

17

 See http://www.brokenthorn.com/Resources/OSDev17.html for more information.

24 DRDC Valcartier TM 2012-319

Figure 6: Example output from /proc/iomem from a system with 8 GiB RAM

In the previous example, 459,776 bytes (1,048,576 – 588,800) were reserved in the “Low”

memory region (e.g. < 1 MiB). In addition, 65,536 bytes were reserved for the ACPI table

(/proc/iomem memory addresses found between 0xDFFF0000 – 0xDFFFFFFF) as seen in the

figure below. There is a total of 525,312 bytes (459,776 + 65,536) of reserved RAM and these

memory ranges cannot be used by the OS nor displayed as “System RAM” by /proc/iomem.

Thus, in a relatively straightforward manner, using DD and a Linux memory driver or LKM, it is

possible to acquire precisely17F

18

 all physical RAM memory ranges as per /proc/iomem.

Incidentally, under x64 Solaris, this is the same reason why a very small portion was not

accessible to Memdump. The difference between the amount of physical memory and the size of

the memory dump-file was 462,848 bytes (as per TM 2012-008) and this occurred for the same

reasons enumerated above, with the exception that the Solaris kernel was able to “see” slightly

more of these mappings than the Linux kernel.

In order to validate which Linux memory acquisition-based software tool is capable of acquiring

memory up to the limit defined by /proc/iomem, a comparative analysis has been conducted

herein. This study compares the best Linux acquisition tools as determined by TM 2012-008

(Second Look) against those examined herein (LiME, Pmem and Fmem).

18

 This includes the bs, skip and count parameters (lesser used parameters can also be used).

DRDC Valcartier TM 2012-319 25

2.2.5 Memory mapping

Unlike other operating systems that limit the investigator’s ability to query the system concerning

its memory and hardware I/O mapping, Linux makes this information readily available through

/proc/iomem. Other systems such as BSD and Solaris do not directly provide this ability. On

these systems, in order to query memory and hardware I/O mapping, third party or custom kernel

querying software is required. Under Windows, the registry can be queried for this information,

but it is not obvious to locate.

To provide a more thorough understanding of memory mapping, several examples will be used.

Consider the example of an Ubuntu 11.04 x86-based operating system allocated exactly 4 GiB

RAM whose memory is mapped at the following locations:

00010000 – 0009fbff or 8FBFF bytes = 588,799 bytes

00100000 – dffeffff or DFEEFFFF bytes = 3,756,982,271 bytes

Total memory = 3,757,571,070 bytes or exactly 3,583 MiB

Now the example of an Ubuntu 11.04 x86 PAE-based operating system allocated exactly 4 GiB

RAM whose memory is mapped at the following locations:

00010000 – 0009fbff or 8FBFF bytes = 588,799 bytes

00100000 – dffeffff or DFEEFFFF bytes = 3,756,982,271 bytes

100000000 – 11fffffff or 1FFFFFFF bytes = 536,870,911 bytes

Total memory = 4,294,441,981 bytes which is 525,315 bytes shy of exactly 4 GiB

Finally, consider the example of an Ubuntu 11.04 x64-based operating system allocated exactly 4

GiB RAM whose memory is mapped at the following locations:

00010000 – 0009fbff or 8FBFF bytes = 588,799 bytes

00100000 – dffeffff or DFEEFFFF bytes = 3,756,982,271 bytes

100000000 – 11fffffff or 1FFFFFFF bytes = 536,870,911 bytes

Total memory = 4,294,441,981 bytes which is 525,315 bytes shy of exactly 4 GiB

Thus, based on these examples, it is easy to see and understand why x86 PAE and x64 RAM-

based memory addressing is the same, up to the PAE limit of 62 GiB. However, beyond the PAE

limit of 62 GiB RAM, an x64 operating system must be used.

While understanding the amount of RAM available to a given operating system, be it x86, x86

PAE or x64, it is important to differentiate between memory allocation and memory mapping.

Memory allocation refers to the amount of memory a given computer system, physical or virtual

in nature, has access to while memory mapping refers to the linear mapping of address ranges

26 DRDC Valcartier TM 2012-319

representing RAM and hardware I/O. Thus, even though in some memory mappings RAM goes

beyond the size of its allotment, this by no means indicates that the system has been somehow

overcommitted.

More specifically, looking back at the previous example of Ubuntu 11.04 x64, the final memory

address for its physical memory is 0x11fffffff (or 4,831,838,207 bytes). This virtual computer

system certainly does not have this amount of memory or “System RAM” available as exactly 4

GiB RAM (or 4,294,967,296 bytes) was allocated to it. What the reader must consider is that all

hardware in a computer system has its own memory. Some of this memory is derived from

specific hardware I/O components mapped into the operating system by the kernel, while some of

it is altogether unavailable. In addition, even if hardware memory is addressable, it does not

guarantee its availability to the kernel or its subsystems.

Thus, understanding how these address ranges tie into the expected memory dump sizes a given

memory acquisition is quintessential to quantifying that dump’s suitability for use in an

investigation.

Unfortunately, when investigating BSD and Solaris-based systems, because they both lack similar

mechanisms to /proc/iomem, it is not possible to determine how their memory is specifically

mapped.

However, based on [27], it becomes apparent that it is in fact the underlying BIOS and processor

that maps the various memory regions, including hardware I/O memory and RAM, and that this

process has nothing to do with the operating system kernel. Instead, the kernel must manage

memory through its virtual memory manager and ensure that memory (i.e. RAM and hardware

I/O memory), is made available to the appropriate subsystem or user application. Thus, the

kernel maps the various physical memories into the operating system for use by the various

subsystems. Consequently, all PC operating systems have their memory mapped the same way.

However, the manner in which the kernel portrays this memory to the underlying operating

system and subsystems is an altogether different subject far outside the scope of this work.

Finally, these memory mappings will vary from system to system according to the underlying

hardware, chipsets, processors, associated I/O components and other attached peripherals.

DRDC Valcartier TM 2012-319 27

3 20BExperimental outcomes and evaluations

3.1 31BResults and analyses

This section examines in detail the experimental results found in Annex D and the analyses

conducted in annexes F and G. Where possible, attempts were made to provide meaningful

insight into the various results obtained herein. Moreover, the following analyses provide brief

commentaries and recommendations for each tool.

3.1.1 LiME

This subsection examines LiME-specific memory acquisition and the subsequent analysis of

acquired memory dumps using Volatility 2.3 SVN r2754. Additional information concerning

LiME can be found in Section 1.5.1 and annexes D.1, F.1 and G.1.1.

3.1.1.1 Technical background

In order to determine if a given LiME memory dump successfully acquired all of a system’s

memory, the dump size was compared to the system’s memory map as established by the kernel’s

memory range as per /proc/iomem. For example, consider the memory range for the Ubuntu

11.04 x86-based test system:

$ cat /proc/iomem | grep “System RAM”

00010000 - 0009FBFF : System RAM

00100000 - DFFEFFFF : System RAM

These ranges translate to:

 65,536 to 654,335

 1,048,576 to 3,758,030,847

These ranges are informative for LiME in order to instruct it as to which address it should stop

dumping memory from. Of course, this depends on the type of LiME memory dump desired by

the investigator, as examined in the following three subsections.

3.1.1.1.1 Raw memory dump

During the memory acquisition experiments, the authors considered a successful raw memory

dump to be equivalent to the sum of the size of the “System RAM” ranges established by

/proc/iomem. For example, considering the aforementioned Ubuntu 11.04 x86-based test system,

to determine if a raw memory dump was successful, the sum of the “System RAM” ranges must

be added together to establish a final memory size. Thus, this Ubuntu system yields the following

accessible memory ranges as shown next:

28 DRDC Valcartier TM 2012-319

0009FBFF + 1 – 00010000 = 8FC00 (588,800 bytes)

DFFEFFFF + 1 – 00100000 = DFEF0000 (3,756,982,272 bytes)

Together, these two ranges yield a total of 3,757,571,072 bytes of acquirable system memory.

3.1.1.1.2 Padded memory dump

Unlike a raw-based memory acquisition, a padded memory dump is complete when the dump is

equivalent to the size of the last memory address range, as determined by examining /proc/iomem

(“System RAM” based entries). For example, when considering the aforementioned Ubuntu

11.04 x86-based system, a padded memory dump is successful when it is equal to the size of the

last abovementioned memory system-based range, as seen below:

DFFEFFFF + 1 = DFFF0000 (3,758,030,848 bytes)

Thus, for the Ubuntu 11.04 x86-based system, a successful padded-based memory acquisition

would be 3,758,030,848 bytes in size. This type of dump is called padded because the memory

ranges that, according to /proc/iomem, contain non-System RAM memory are padded with binary

zero.

3.1.1.1.3 Lime memory dump

Finally, a successful lime-based memory acquisition occurs when a given memory dump is

equivalent to the sum of all the acquirable system memory ranges, as per “System RAM” found

by examining /proc/iomem, plus a fixed-sized header of 32 bytes for each individual memory

range. For example, consider the Ubuntu 11.04 x86-based system. A complete memory dump,

as per the sum of the aforementioned memory ranges was found to the 3,757,571,072 bytes in

size. However, since two memory ranges are involved, two 32-byte headers are to be added to

the dump’s size as shown below:

0009FBFF + 1 – 00010000 = 8FC00 (588,800 bytes)

DFFEFFFF + 1 – 00100000 = DFEF0000 (3,756,982,272 bytes)

2 x 32 byte headers = 64 bytes

This yields a final memory dump size of 3,757,571,136 bytes.

3.1.1.2 Memory acquisition results

The various LiME modules compiled and loaded without incident for each operating system

examined herein. However, acquiring and analysing LiME memory acquisitions is more

complicated than for any other memory acquisition tool examined throughout this work. This is

because LiME has three memory acquisition modes, as examined in the preceding subsection.

When examining the table below and the experimental results found in Annex D.1, the technical

background concerning LiME memory dumps as found in Section 3.1.1.1 must be considered to

DRDC Valcartier TM 2012-319 29

establish whether a given memory dump was successful. It was found the LiME memory

acquisition succeeded with one caveat, i.e. it was consistently one memory page (4 KiB) short in

acquiring a given PAE-based system’s memory.

For all other memory dumps, the acquired memory dumps were of the expected size. Specifics

for the raw, padded and lime memory dumps can be found in the table below, as based on the

results obtained in Annex D.1.

Table 2: LiME-based experimental results summary for memory acquisition-based dump size

Operating System Raw format Padded format Lime format

Ubuntu 11.04 x86 Complete Complete Complete

Ubuntu 11.04 x86 PAE Missing 4,096 bytes Missing 4,096 bytes Missing 4,096 bytes

Ubuntu 11.04 x64 Complete Complete Complete

Ubuntu 12.04 LTS x86 Complete Complete Complete

Ubuntu 12.04 LTS x86

PAE
Missing 4,096 bytes Missing 4,096 bytes Missing 4,096 bytes

Ubuntu 12.04 LTS x64 Complete Complete Complete

Fedora Core 15 x86 PAE Missing 4,096 bytes Missing 4,096 bytes Missing 4,096 bytes

Fedora Core 15 x64 Complete Complete Complete

Fedora Core 17 x86 PAE Missing 4,096 bytes Missing 4,096 bytes Missing 4,096 bytes

Fedora Core 17 x64 Complete Complete Complete

3.1.1.3 Analysis using Volatility

Analysis of the LiME padded and lime dumps succeeded in all cases for all the various operating

systems against which memory was acquired, even though the PAE-based memory dumps were

one memory page short (4 KiB). LiME memory dumps were examined using Volatility 2.3 SVN

r2754. Only LiME’s raw memory dumps were not examined herein as it is not currently

supported by Volatility.

Volatility therefore succeeded in providing a complete process listing for each memory dump

image, including all Ubuntu and Fedora based memory images.

It is important to note that in order for Fedora 15 x64 to be supported by Volatility, the secondary

author had to modify dwarf.py, as previously mentioned in Section 2.1.2.

For more information concerning Volatility-based analysis, refer to Annex G.1.1 and Section

2.1.3.

30 DRDC Valcartier TM 2012-319

3.1.1.4 Recommendations

The authors highly recommend the use of LiME. Investigators should consider using the padded

format as it can be analysed using known Linux memory analysis tools (Volatility and Second

Look) and is as fast as or faster than the lime format to acquire. The fact that LiME is

consistently one memory page short for PAE-based operating systems does not appear to pose

any problems to memory analyses of these memory dump images.

3.1.2 Pmem

This subsection examines Pmem-specific memory acquisition and the subsequent analysis of its

memory dumps using Volatility 2.2 and 2.3 SVN r2574. Additional details concerning Pmem

can found in Section 1.5.2 and annexes D.2, F.1 and G.1.2.

3.1.2.1 Memory acquisition results

The Pmem source code had to be modified for each operating system in order for it to compile

correctly, as examined in Section 1.5.2.1. Although the source code was successfully compiled

for every operating system examined using Pmem, an error was raised by the compiler for Fedora

15 x64 (see Annex D.2.3 for more information). Nevertheless, the module did produce a

functional LKM for said operating system.

In acquiring memory from each operating system, it was discovered that Pmem had significant

acquisition-based problems when dumping memory from PAE-based systems. This issue was

without regard to the specific distribution as it occurred for both Ubuntu and Fedora-based

operating systems.

Not once did Pmem result in a memory dump with the expected size. Instead, issues were found

for each memory dump. Even though memory acquisition appeared to succeed at first glance

against Ubuntu 11.04 x86, it was quickly discovered that this memory dump was over 58,000,000

bytes short of a complete memory dump. Recall that a complete memory dump is based upon

/proc/iomem. Furthermore, it was soon discovered that all memory dumps against the x86 and

x64 systems were consistently one byte short, indicating a persistent acquisition bug innate to

Pmem.

Memory acquisition specifics for Pmem can be found in Annex D.2, but they have been

summarised in the following table.

DRDC Valcartier TM 2012-319 31

Table 3: Pmem-based experimental results summary for memory acquisition

Operating System Memory dump size Comments

Ubuntu 11.04 x86 Missing 58,044,416 bytes
This dump was short by 58,044,416 bytes.

This error is likely due to a bug with Pmem.

Ubuntu 11.04 x86 PAE
Missing 8,589,934,593

bytes

This dump failed. Far too little memory

was acquired to be of use with Volatility.

Ubuntu 11.04 x64 Missing 1 byte
This dump was short by 1 byte. This error

is likely due to a bug with Pmem.

Ubuntu 12.04 LTS x86 Missing 1 byte
This dump was short by 1 byte. This error

is liked due to a bug with Pmem.

Ubuntu 12.04 LTS x86

PAE

Missing 8,589,934,593

bytes

This dump failed. Far too little memory

was acquired to be of use with Volatility.

Ubuntu 12.04 LTS x64 Missing 1 byte
This dump was short by 1 byte. This error

is likely due to a bug with Pmem.

Fedora Core 15 x86 PAE
Missing 8,589,934,593

bytes

This dump failed. Far too little memory

was acquired to be of use with Volatility.

Fedora Core 15 x64 Missing 1 byte
This dump was short by 1 byte. This error

is likely due to a bug with Pmem.

Fedora Core 17 x86 PAE
Missing 8,589,934,593

bytes

This dump failed. Far too little memory

was acquired to be of use with Volatility.

Fedora Core 17 x64 Missing 1 byte
This dump was short by 1 byte. This error

is likely due to a bug with Pmem.

3.1.2.2 Analysis using Volatility

Analysis of Pmem-based memory dumps was conducted using both Volatility 2.2 and 2.3 SVN

r2574. They were both found to be effective against Ubuntu x86 and x64-based memory dumps

only. Efforts to analyse memory images originating from Fedora-based systems failed as these

memory dump images were incomplete. Moreover, since all memory images obtained using

Pmem against x86 PAE-based Ubuntu and Fedora systems were altogether incomplete, no overall

assessment concerning Volatility’s analysis capabilities against x86 PAE-based Fedora and

Ubuntu systems could be determined as this time.

Analysis of Fedora x64 memory images (versions 15 and 17, respectively) failed against both

Volatility 2.2 and 2.3 SVN r2574. However, it must be noted that analysis using both Volatility

frameworks with Fedora 17 x64 never actually failed. Instead, it failed to output any analyses

after more than 10 hours of processing, which essentially is considered a failure. Thus, there was

no manner in which to get either framework to function correctly with Fedora without rewriting

the supporting Volatility code. Upon having completed the various experiments and analyses, the

32 DRDC Valcartier TM 2012-319

secondary author discovered that the reason Volatility could not analyse the intact 18F

19

 Fedora

Pmem-based memory images was due to the improper generation of kernel-based profiles as

examined in Section 2.1.3.

Using string and byte-offset analyses for the x86 PAE memory images were altogether

inconclusive. However, analyses for the other two Fedora x64 systems (versions 15 and 17,

respectively) indicated that these memory images appeared intact and populated with data and

structures.

For more information concerning Volatility-based analysis, refer to Annex G.1.2.

3.1.2.3 Recommendations

Pmem, although a somewhat capable memory acquisition tool, is not yet ready for field use.

More specifically, it should not be used for forensic acquisition against any Linux system that is

running a PAE-enabled kernel. Doing so will likely result in an incomplete memory dump image.

However, it could be used against x86 and x64 Linux running 2.6.x and 3.x generation kernels.

Nevertheless, the authors are of the opinion that better memory acquisition tools exist.

3.1.3 Fmem

This subsection re-examines the Fmem memory acquisitions (as carried out anew in this work)

and their subsequent analysis using Volatility 2.2 and 2.3 SVN r2754. Additional information

concerning Fmem is found in annexes D.3, E.2, F.1 and G.1.3.

3.1.3.1 Memory acquisition results

The Fmem module compiled without error or warning for all operating systems it was tested

against. Memory acquisition was straightforward. The investigator had only to execute the script

run.sh in order to load correctly the compiled module into kernel space at which time the memory

dump could be initiated as per Annex E.2. Unlike Pmem and LiME, Fmem produced memory

dump images that were all the expected size.

Memory acquisition specifics for Fmem can be found in Annex D.3, but they have been

summarised in the following table.

19

 Fedora 15 and 17 x86 PAE Pmem-based memory dumps resulted in incomplete acquisitions that were

entirely insufficient for analysis with Volatility or any other memory analysis framework. Only Fedora

based x64 Pmem acquisitions were intact.

DRDC Valcartier TM 2012-319 33

Table 4: Fmem-based experimental results summary for memory acquisition

Operating System Memory dump size Comments

Ubuntu 11.04 x86 Complete
Memory dump is the correct size

and completed without issue

Ubuntu 11.04 x86 PAE Complete
Memory dump is the correct size

and completed without issue

Ubuntu 11.04 x64 Complete
Memory dump is the correct size

and completed without issue

Fedora Core 15 x86 PAE Complete
Memory dump is the correct size

and completed without issue

Fedora Core 15 x64 Complete
Memory dump is the correct size

and completed without issue

3.1.3.2 Analysis using Volatility

Fmem-based Volatility memory analysis, using version 2.2, succeeded without issue for the

various memory dumps obtained against Ubuntu 11.04 x86, x86 PAE and x64.

Analysis of Fedora 15 x86 PAE and x64 memory images failed against both Volatility 2.2 and 2.3

SVN r2574. It is likely that the only way to get the kernel profile to work would have been to

rewrite the supporting Volatility code. Based on a discovery by the secondary author examined

in Section 2.1.3, it was realized that Volatility could not analyse the Fedora-based Fmem memory

images. This was due to the improper creation of the kernel profiles, as based on the Volatility

team’s current instructions pertaining to kernel profile generation. However, an examination of

the Fedora 15 memory images using strings and byte-offsets indicated that they appeared intact

and populated with data and structures.

For more information concerning Volatility-based analysis, refer to Annex G.1.3.

3.1.4 Second Look

This subsection examines Second Look-specific memory acquisitions (as conducted in TM 2012-

008) and the subsequent analysis of said memory dumps using Volatility 2.2 and 2.3 SVN r2754.

Details can be found in Section 1.5.4 and annexes D.4, F.1 and G.1.4.

3.1.4.1 Memory acquisition results

Although the memory acquisition experiments for Second Look were conducted in TM 2012-008,

the analysis of these acquisitions as per the aforementioned report was not particularly detailed.

Thus, based on the results obtained in Annex C.5 as per TM 2012-008, it can be said that the

pmad LKM for Second Look compiled without issue and was readily loaded into kernel space.

Memory acquisition using the provided secondlook-memdump.sh acquisition script succeeded in

dumping the expected amount of memory as per /proc/iomem. In memory acquisition

34 DRDC Valcartier TM 2012-319

experiments using Second Look, it was found that its acquisitions were by far the fastest of the

tools compared herein.

Memory acquisition specifics for Second Look can be found in Annex C.5 of TM 2012-008, but

they have been summarised in the following table.

Table 5: Second Look-based experimental results summary for memory acquisition

Operating System Memory dump size Comments

Ubuntu 11.04 x86 Complete
Memory dump is the correct size

and completed without issue

Ubuntu 11.04 x86 PAE Complete
Memory dump is the correct size

and completed without issue

Ubuntu 11.04 x64 Complete
Memory dump is the correct size

and completed without issue

Fedora Core 15 x86 PAE Complete
Memory dump is the correct size

and completed without issue

Fedora Core 15 x64 Complete
Memory dump is the correct size

and completed without issue

3.1.4.2 Analysis using Volatility

Second Look Volatility 2.2 memory analysis succeeded without issue for the various memory

dumps obtained against Ubuntu 11.04 x86, x86 PAE and x64.

Analysis of Fedora 15 x86 PAE and x64 memory images failed against both Volatility 2.2 and 2.3

SVN r2574. There was no manner in which to get the Fedora kernel profiles working without

rewriting Volatility’s code base. After having completed the various Fedora memory acquisitions

and analyses, the secondary author discovered that the reason Volatility could not support these

memory images was due to the improper creation of the kernel profiles as examined in Section

2.1.3. However, examination of the Fedora 15 memory images using strings and byte-offsets

indicated that they appeared intact and populated with data and structures.

For more information concerning Volatility-based analysis, refer to Annex G.1.4.

DRDC Valcartier TM 2012-319 35

4 21BConclusion and final tool assessment for Linux,

BSD and Solaris UNIX

4.1 32BSolaris

Where Solaris x64 memory acquisitions are concerned, Memdump is the tool of choice. It works

as expected for x64-based Solaris systems. However, when x86-based systems are encountered,

memory acquisition will transpire up to the memory address where hardware-reserved computer

memory is located, often found between 3.3 to 3.5 GiB RAM. Experimentation thus far has

clearly demonstrated that memory acquired using this tool is valid and intact. However, it is not

known if this tool will provide the same results atop SPARC-based systems although it is very

likely that it remains the case.

4.2 33BBSD

x86-based BSD systems are also best served by using Memdump. For all x86-based systems

encountered through experimentation in this work, memory acquisition occurred without issue

and was able to fully acquire all memory for each operating system: FreeBSD, NetBSD and

OpenBSD, up to each system’s 32-bit memory limit (4 GiB RAM).

Where x64 BSD systems were concerned memory acquisition was less straightforward. Under

x64 OpenBSD, the maximum detected and supported memory size was 4 GiB RAM, even though

an x64 kernel was running. This is a known issue with the default OpenBSD x64 kernel, which

incidentally is the most likely to be encountered by investigators. For this specific operating

system, the memory dump conducted using Memdump was acquired without difficulty up to 4

GiB RAM. As for x64-based FreeBSD and NetBSD operating systems, Memdump will

successfully acquire all the operating system’s memory. With x64-based FreeBSD and OpenBSD

systems, once all the operating system’s memory is acquired and up to the detected memory limit,

the dump file will continue filling up with binary zeroes until either the partition where the dump-

file is located fills up or the investigator stops the program’s execution. Extraction of memory

from these dump files is done by copying out the acquired data up to each operating system’s

detected memory limit. This operation can be readily carried out using the UNIX DD command.

4.3 34BLinux

4.3.1 Assessment of overall tool suitability

In all, eight memory acquisition tools, drivers and LKM were examined throughout this

memorandum and in TM 2012-008. These tools included (in alphabetical order) DD, Fmem,

Helix3 Pro, LiME, Memdump, Pmem, Second Look and X-Ways Capture. Most of these tools

were found to be insufficient, particularly DD, Helix3 Pro, Memdump, Pmem and X-Ways

Capture. X-Ways Capture was the worst of the list and should be avoided at all costs.

36 DRDC Valcartier TM 2012-319

Due to the lack of useable /dev/mem and /dev/kmem based pseudo devices, LKM or memory

drivers that operate from kernel space must be used. However, since DD, Helix3 Pro, Memdump

and X-Ways Capture rely on /dev/mem or /dev/kmem for memory acquisition, they were not to be

considered in this assessment.

LKMs and memory drivers running from kernel space have full access to the same memory that

the kernel does. However, getting these LKMs or memory drivers to work on the target system

generally requires the use of a compiler. Obviously, compiling software invariably changes the

system state, but to what extent, nobody knows. Currently, Fedora and Red Hat based systems

have readily available kernel crash drivers that are loadable at any time by the root user using the

insmod crash command. However, because the implementation of this crash driver is not

uniform amongst distributions, it is best not to rely on it. As such, the assessments made by the

authors herein renounce the use of such a crash driver.

4.3.2 Assessment of acquisition speed

Based on the experimental results obtained herein, Second Look appeared to be the fastest tool.

However, to be fair, LiME was acquired using the Linux kernel’s NTFS driver that is

significantly slower than the NTFS-3 G FUSE filesystem driver. Moreover, LiME-based dumps

were saved to an external USB 2.0 device mounted by the virtual machine, while for Pmem,

Fmem and Second Look, memory dumps were saved to the virtual disks of the underlying virtual

machines. Therefore, writing to this external device was significantly slower than writing to a

virtual disk. Thus, based on these results, the authors will not draw conclusions at this time with

respect to which memory acquisition tool was faster. Instead, they will emphasize on the

acquisition correctness and reliability over speed.

4.3.3 Assessment of prior Fmem and Second Look experiments

The reason Fmem and Second Look memory acquisitions were not carried out against x86 and

x64 based Fedora 17 and Ubuntu 12.04 systems were that the authors had no concerns about their

ability to function correctly. Acquiring memory under these two operating systems went without

error in TM 2012-008. However, since both Pmem and LiME were the new tools to be examined

and tested in this memorandum, the onus was on them to perform up to the expectations delivered

by Fmem and Second Look. The fact that Fmem memory acquisition experiments were carried

out a second time in this work does not undermine the tool’s capability. Instead, it demonstrates

that the original experiments conducted in TM 2012-008 were incorrectly executed.

4.3.4 Assessment of tool acquisition

LiME was specifically designed to minimize its memory footprint. It does not need a memory

driver in order to map memory pages into user space and dump them using tools such as DD.

In terms of size-based correctness as per /proc/iomem, Fmem and Second Look delivered

memory acquisitions of the correct size every time without error. LiME was a close third and

when its dumps were not exactly the same size as physical memory, it was never more than one

page short (4 KiB). The same cannot be said for memory images acquired using Pmem and it is

to be considered altogether unacceptable for x86 PAE-based memory acquisition. However, its

DRDC Valcartier TM 2012-319 37

x86 and x64 acquisitions were generally off by one byte of memory, with the exception of

Ubuntu 11.04 x86 (which was off by 58,044,416 bytes). This was clearly due to an error in

Pmem’s assessment of memory size.

However, in some cases, LiME came up short in certain acquisitions, and even though it is very

unlikely that any data of value was left out, this issue could be argued in court.

4.3.5 Volatility memory image assessment

Only LiME-based lime and padded formatted memory acquisitions were fully analysable using

Volatility 2.3 SVN r2754. Those from Second Look, Pmem and Fmem had varying degrees of

success, regardless of their analysis using Volatility 2.2 or 2.3. The reason the LiME memory

images were successfully analysed using Volatility, in comparison to its counterparts (Second

Look, Fmem and Pmem), is that the secondary author proposed a change to Volatility 2.3, which

provided some missing capability. However, making additional modifications in order to get

Volatility correctly supports the other tools’ memory dumps was not a realistic endeavour and

was not undertaken.

4.3.6 Conclusion

Based on all the various experiments conducted by the authors, both in this memorandum and in

TM 2012-008, the authors have concluded that LiME should be considered as the investigator’s

primary Linux-based memory acquisition tool. This conclusion is despite the fact that Second

Look and Fmem yielded accurate memory acquisitions in comparison to LiME, which was very

close and never more than one memory page short. This is primarily due to LiME’s

implementation that minimizes its memory footprint [23].

The forensic accuracy of kernel crash based drivers has not yet been proven. Although they are

likely sufficient to pass forensic reliability assessments, the authors cannot make this assertion at

this time, due to insufficient information and evidence supporting this position.

Thus, erring to the side of caution, the authors are recommending the use of LiME before any

other Linux-based memory acquisition tool. Barring the inability for an investigator to get LiME

functioning correctly, due to its need to be compiled, the authors would then feel comfortable

recommending the use of Second Look as an alternative. If Second Look is to be used, the Pmad

driver can be used if the investigator is able to load it into kernel space. Because it is not

currently known if crash drivers are forensically sound and the supplied Pmad driver was always

used in lieu of the underlying system’s kernel crash driver during the tests, the authors can only

recommend using Second Look’s Pmad driver to acquire memory.

38 DRDC Valcartier TM 2012-319

This page intentionally left blank.

DRDC Valcartier TM 2012-319 39

References

[1] Halderman, J. Alex, Schoen, Seth D., Heninger, Nadia, et al. Lest We Remember: Cold Boot

Attacks on Encryption Keys. Research paper. Published in Proceedings 2008 USENIX

Security Symposium. February 2008. Princeton University.

181Hhttp://citp.princeton.edu/pub/coldboot.pdf.

[2] Carbone, Richard. An in-depth analysis of the cold boot attack: Can it be used for sound

forensic memory acquisition? Technical memorandum. TM-2010-296. Defence R&D

Canada – Valcartier. January 2011. 182Hhttp://pubs.drdc.gc.ca/PDFS/unc105/p534323_A1b.pdf.

[3] Wikipedia. Observer effect (information technology). Online encyclopaedia. Wikimedia

Foundation. April 2012.

183Hhttp://en.wikipedia.org/wiki/Observer_effect_(information_technology).

[4] Wikipedia. Observer effect (physics). Online encyclopaedic article. Wikimedia Foundation

Inc. October 2012. 184Hhttp://en.wikipedia.org/wiki/Observer_effect_(physics).

[5] Carbone, Richard and Charpentier, Robert. Life-Cycle Support for Information Systems

Based on Free and Open Source Software. Technical paper. Document No.: I-136.

Presented to: 11
th

 International Command and Control Research and Technology Symposium,

Cambridge UK. September 2006.

185Hhttp://www.dodccrp.org/events/11th_ICCRTS/html/papers/136.pdf.

[6] Wikipedia. Caldera OpenLinux. Online encyclopaedic article. Wikimedia Foundation Inc.

September 2011. 186Hhttp://en.wikipedia.org/wiki/Caldera_OpenLinux.

[7] Wikipedia. Fedora (operating system). Online encyclopaedic article. Wikimedia Foundation

Inc. August 2011. 187Hhttp://en.wikipedia.org/wiki/Fedora_(operating_system).

[8] Berkholz, Donnie. Ranking Linux distributions, and the decline of traditional distros.

Redmonk. Informational web site. 188Hhttp://redmonk.com/dberkholz/2013/05/20/ranking-linux-

distributions-and-the-decline-of-the-traditional-distros/.

[9] Wikipedia. Physical Address Extension. Online encyclopaedic article. Wikimedia

Foundation Inc. July 2011. 189Hhttp://en.wikipedia.org/wiki/Physical_Address_Extension.

[10] Wikipedia. x64. Online encyclopaedic article. Wikimedia Foundation Inc. July 2011.

190Hhttp://en.wikipedia.org/wiki/x64.

[11] Levy, Jamie. JL's stuff: /dev/crash Driver. Blog. Gleeda.blogspot.com. August 2009.

Gleeda.blogspot.com. 191Hhttp://gleeda.blogspot.com/2009/08/devcrash-driver.html.

[12] Van de Ven, Arjan. X86: introduce /dev/mem restrictions with a config option. LWN.net.

Jan 2008. 192Hhttp://lwn.net/Articles/267427/.

40 DRDC Valcartier TM 2012-319

[13] Lineberry, Anthony. Malicious Code Injection via /dev/mem. Technical report. Anthony

Lineberry. March 2009. 193Hhttp://www.blackhat.com/presentations/bh-europe-

09/Lineberry/BlackHat-Europe-2009-Lineberry-code-injection-via-dev-mem.pdf.

[14] Rintel, Lubomir. Bug 492803 – Please disable CONFIG_STRICT_DEVMEM. Bug report.

Redhat Bugzilla. Unknown date. 194Hhttps://bugzilla.redhat.com/show_bug.cgi?id=492803.

[15] Engelhardt, Jan. LKML: Arjan van de Ve: Re: [PATCH] make /dev/kmem a config option.

Blog. Linux Kernel Mailing List. February 2008. 195Hhttps://lkml.org/lkml/2008/2/10/328.

[16] Ubuntu. Security/Features – Ubuntu Wiki. Informational web site. Ubuntu. June 2011.

196Hhttps://wiki.ubuntu.com/Security/Features.

[17] Man Pages Project. Mem(4) Man Page. Linux/UNIX man page. Man Pages Project.

November 1992.

[18] Man Pages Project. Proc(5) Man Page. Linux/UNIX man page. Man Pages Project.

October 2010.

[19] Oracle Corporation. Mem(7D) Man Page. Solaris man page. Oracle Corporation.

February 2002.

[20] Oracle Corporation. Man pages section 7: Device and Network Interfaces. Reference

manual. Part No.: 819-2254-33. Oracle Corporation. 2010.

197Hhttp://download.oracle.com/docs/cd/E19082-01/819-2254/.

[21] Kernel developers. THE /proc FILESYSTEM. Linux kernel documentation. June 2009.

198Hwww.kernel.org/doc/Documentation/filesystems/proc.txt.

[22] Hale, Michael. LinuxMemoryForensics: Instructions on how access and use the Linux

support. Informational web site. Volatility. October 2012.

199Hhttp://code.google.com/p/volatility/wiki/LinuxMemoryForensics.

[23] Sylve, Joe; Case, Andrew et al. Acquisition and analysis of volatile memory from android

devices. Technical paper. Journal of Digital Investigation 2012. Department of Computer

Science (University of New Orleans) and Digital Forensics Solutions. 2012.

200Hhttp://www.memoryanalysis.net/research/android-memory-analysis-DI.pdf.

[24] Volatility Framework Team. LinuxMemoryForensics: Instructions on how access and use

the Linux support. Online resource. 2012.

201Hhttp://code.google.com/p/volatility/wiki/LinuxMemoryForensics.

[25] Wikipedia. PCI hole. Online encyclopaedic article. Wikimedia Foundation Inc. January

2013. 202Hhttp://en.wikipedia.org/wiki/PCI_hole.

[26] Noon, David W. In response to - Why does code fail to find *exact* amount of RAM??

Informational web site. Mombu.com. 203Hhttp://www.mombu.com/programming/hpux/t-why-

does-code-fail-to-find-exact-amouut-of-ram-1573802.html.

DRDC Valcartier TM 2012-319 41

[27] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual: Volume

3A: System Programming Guide, Part 1. Page 3-7. Technical reference guide. Intel

Corporation. May 2011. 204Hhttp://download.intel.com/design/processor/manuals/253668.pdf.

[28] OSDev.org. Memory Map (x86). Online technical reference. OSDev.org. May 2012.

205Hhttp://wiki.osdev.org/Memory_Map_(x86).

42 DRDC Valcartier TM 2012-319

This page intentionally left blank.

DRDC Valcartier TM 2012-319 43

Annex A 0BComputer systems used for experimentation

A.1 Dedicated workstation configuration for LiME acquisition

(RCMP)

In order to conduct the various LiME-based experiments against an assortment of prebuilt and

preconfigured VirtualBox-based virtual machines (see Annex B for details), the following

computer system configuration was used.

Table A.1: Host computer configuration for LiME memory acquisitions

Computer model MacBook Pro

Processors Intel Core i7 2720QM @ 2,200 MHz

Physical RAM 16,384 KB RAM

Swap C:\Pagefile.sys

Operating System Windows Seven Professional SP1 64-bit

Virtualization Software Oracle VirtualBox 4.2.0 r80737 with Extension Pack

Graphics adapter AMD Radeon HD 6750M

Graphics driver Catalyst 11.1 (Driver: v 8.812-110104a-116524C-Apple)

Monitor LTN170CT10 Color LCD – 17”

Floppy N/A

USB 3 USB ports

Keyboard French Canada Multilanguage (Apple)

Mouse USB optical mouse

FireWire 1 FireWire ports (no attached devices)

Thunderbolt 1 Thunderbolt port (no attached devices)

DVD Drive MATSHITA DVD-R UJ-898

Hard drive 1 - TOSHIBA MK7559GSXF (750 GB)

Sound card Cirrus Logic CS4206A

Network cards 1) Broadcom NetXtreme BCM57765 Gigabit Ethernet PCIe

2) Broadcom 802.11n Network Adapter

44 DRDC Valcartier TM 2012-319

A.2 Dedicated workstation configuration for Pmem

acquisition (DRDC)

In order to conduct the various LiME-based experiments against an assortment of prebuilt and

preconfigured VirtualBox-based virtual machines (see Annex B for details), the following

computer system configuration was used.

Table A.2: Host computer configuration for carrying out Pmem memory acquisitions

Computer model Dell OptiPlex 990

Processors Intel Core i7 2600 @ 3,400 MHz

Physical RAM 16,384 KB RAM

Swap F:\Pagefile.sys

Operating System Windows Seven Professional SP1 64-bit

Virtualization Software Oracle VirtualBox 4.2.0 r80737 with Extension Pack

Graphics adapter AMD Radeon HD 5670

Graphics driver Catalyst 12.10

Monitor 2 BenQ 19” monitors

Floppy N/A

USB 10 USB ports

Keyboard U.S. International English

Mouse USB optical mouse

FireWire N/A

Thunderbolt N/A

DVD Drive Pioneer DVD-RW DVR-111D USB Device

Hitachi-LG HL-DT-ST DVD+-RW GH70N

Hard drives 1 – Seagate ST95005620AS (500 GB)

1 – Seagate ST31500541AS (1.5 TB)

1 – RevoDrive PCIe SSD (120 GB)

Sound card RealTek HD

Network card Intel 82579LM Gigabit Ethernet PCIe

DRDC Valcartier TM 2012-319 45

A.3 Dedicated workstation configuration for Fmem

acquisition (DRDC)

In order to conduct the various LiME-based experiments against an assortment of prebuilt and

preconfigured VirtualBox-based virtual machines (see Annex B for details), the following

computer system configuration was used.

Table A.3: Host computer configuration for carrying out Pmem memory acquisitions

Computer model Dell Precision 690 Workstation

Processors Dual Xeon 3.20 GHz w/HyperThreading (8 logical processors)

Physical RAM 22.00 GiB RAM

Swap None

Operating System Linux Fedora Core 14, x64

Virtualization Software Oracle VirtualBox 4.1.0 with Extension Pack

Graphics adapter NVidia GeForce GTX 460

Graphics driver NVidia driver 270.41.06

Monitor 1) Dell E196FP LCD display (19”)

2) BenQ FP992 LCD display (19”)

Floppy 1.44 MB floppy drive

USB 8 USB ports

Keyboard USB US English keyboard

Mouse USB optical mouse

FireWire 2 FireWire ports (no attached devices)

Thunderbolt N/A

DVD Drive Hitachi CD-RW drive

Philips CD-RW/DVD-RW drive

Hard drives 1 – Seagate ST95005620AS (500 GB)

1 – Seagate ST31500541AS (1.5 TB)

1 – RevoDrive PCIe GB SSD (120 GB)

1 – Seagate 7,200 RPM SATA (1.5 TB)

3 – Hitachi 7,200 RPM SATA in RAID 5 (2 TB)

8 – Seagate 7,200 RPM SATA drive in RAID 5 (2 TB)

Sound card Sigma Tel HD sound card

46 DRDC Valcartier TM 2012-319

Network card 1 – Broadcom NetXtreme Gigabit Ethernet

1 – 1394 Net Adapter

Host adapters 2x Vantec PCIe E-SATA host adapters

DRDC Valcartier TM 2012-319 47

Annex B 1BVirtualBox and operating system

configurations for Pmem and LiME

B.1 Configuration for Ubuntu 11.04 Linux

The following are the technical details for the configuration of the three Ubuntu-based operating

systems (x86, x86 PAE and x64) experimented upon in this work.

Table B.1: Ubuntu 11.04 VirtualBox virtual machine configuration details

VirtualBox configuration x86 OS x86 PAE OS x64 OS

VirtualBox version 4.2.0 4.2.0 4.2.0

VirtualBox VT-x, AMD-V,

Nested Paging, PAE/NX enabled
Yes Yes Yes

VirtualBox IO APIC enabled Yes Yes Yes

VirtualBox allocated memory 8,388,608 KiB 8,388,608 KiB 8,388,608 KiB

VirtualBox allocated processors 2 processors 2 processors 2 processors

VirtualBox hard disk drive size

(using SATA controller)
20.00 GB 20.00 GB 20.00 GB

VirtualBox floppy drive

allocated
None None None

VirtualBox optical drive

allocated (using IDE controller)
1 CD/DVD drive 1 CD/DVD drive 1 CD/DVD drive

VirtualBox allocated monitors 1 monitor 1 monitor 1 monitor

VirtualBox allocated video

memory
128 MiB 128 MiB 128 MiB

VirtualBox 3D acceleration

enabled
Yes Yes Yes

VirtualBox 2D acceleration

enabled
No No No

VirtualBox network adapter

enabled

Intel Pro/1000 MT

Desktop

Intel Pro/1000 MT

Desktop

Intel Pro/1000 MT

Desktop

VirtualBox sound adapter

enabled

PulseAudio / ICH

AC 97

PulseAudio / ICH

AC 97

PulseAudio / ICH

AC 97

VirtualBox serial ports enabled No No No

VirtualBox USB enabled Yes Yes Yes

VirtualBox USB 2.0 (EHCI)

enabled
Yes Yes Yes

48 DRDC Valcartier TM 2012-319

B.2 Configuration for Ubuntu 12.04 Linux

The following are the technical details for the configuration of the three Ubuntu-based operating

systems (x86, x86 PAE and x64) experimented upon in this work.

Table B.2: Ubuntu 12.04 VirtualBox virtual machine configuration details

VirtualBox configuration x86 OS x86 PAE OS x64 OS

VirtualBox version 4.2.0 4.2.0 4.2.0

VirtualBox VT-x, AMD-V,

Nested Paging, PAE/NX enabled
Yes Yes Yes

VirtualBox IO APIC enabled Yes Yes Yes

VirtualBox allocated memory 8,388,608 KiB 8,388,608 KiB 8,388,608 KiB

VirtualBox allocated processors 4 processors 4 processors 2 processors

VirtualBox hard disk drive size

(using SATA controller)
25.00 GB 25.00 GB 25.00 GB

VirtualBox floppy drive

allocated
None None None

VirtualBox optical drive

allocated (using IDE controller)
1 CD/DVD drive 1 CD/DVD drive 1 CD/DVD drive

VirtualBox allocated monitors 1 monitor 1 monitor 1 monitor

VirtualBox allocated video

memory
128 MiB 128 MiB 128 MiB

VirtualBox 3D acceleration

enabled
Yes Yes Yes

VirtualBox 2D acceleration

enabled
No No No

VirtualBox network adapter

enabled

Intel Pro/1000 MT

Desktop

Intel Pro/1000 MT

Desktop

Intel Pro/1000 MT

Desktop

VirtualBox sound adapter

enabled

PulseAudio / ICH

AC 97

PulseAudio / ICH

AC 97

PulseAudio / ICH

AC 97

VirtualBox serial ports enabled No No No

VirtualBox USB enabled Yes Yes Yes

VirtualBox USB 2.0 (EHCI)

enabled
Yes Yes Yes

DRDC Valcartier TM 2012-319 49

B.3 Configuration for Fedora Core 15 Linux

The following are the technical details for the configuration of the Fedora Core-based operating

systems (x86 PAE and x64) experimented upon in this work.

Table B.3: Fedora Core 15 VirtualBox virtual machine configuration details

VirtualBox configuration x86 PAE OS x64 OS

VirtualBox version 4.2.0 4.2.0

VirtualBox VT-x, AMD-V, Nested

Paging, PAE/NX enabled
Yes Yes

VirtualBox IO APIC enabled Yes Yes

VirtualBox allocated memory 8,388,608 KiB 8,388,608 KiB

VirtualBox hard disk drive size

(using SATA controller)
52.34 GB 52.34 GB

VirtualBox allocated processors 2 processors 2 processors

VirtualBox floppy drive allocated None None

VirtualBox optical drive allocated

(using IDE controller)
1 CD/DVD drive 1 CD/DVD drive

VirtualBox allocated monitors 1 monitor 1 monitor

VirtualBox allocated video memory 128 MiB 128 MiB

VirtualBox 3D acceleration enabled Yes Yes

VirtualBox 2D acceleration enabled No No

VirtualBox network adapter enabled
Intel Pro/1000 MT

Desktop

Intel Pro/1000 MT

Desktop

VirtualBox sound adapter enabled PulseAudio / ICH AC 97 PulseAudio / ICH AC 97

VirtualBox serial ports enabled No No

VirtualBox USB enabled Yes Yes

VirtualBox USB 2.0 (EHCI) enabled Yes Yes

50 DRDC Valcartier TM 2012-319

B.4 Configurations for Fedora Core 17 Linux

The following are the technical details for the configuration of the Fedora Core-based operating

systems (x86 PAE and x64) experimented upon in this work.

Table B.4: Fedora Core 17 Linux VirtualBox virtual machine configuration details

VirtualBox configuration x86 PAE OS x64 OS

VirtualBox version 4.2.0 4.2.0

VirtualBox VT-x, AMD-V, Nested

Paging, PAE/NX enabled
Yes Yes

VirtualBox IO APIC enabled Yes Yes

VirtualBox allocated memory 8,388,608 KiB 8,388,608 KiB

VirtualBox hard disk drive size

(using SATA controller)
25.00 GB 25.00 GB

VirtualBox allocated processors 4 processors 4 processors

VirtualBox floppy drive allocated None None

VirtualBox optical drive allocated

(using IDE controller)
1 CD/DVD drive 1 CD/DVD drive

VirtualBox allocated monitors 1 monitor 1 monitor

VirtualBox allocated video memory 128 MiB 128 MiB

VirtualBox 3D acceleration enabled Yes Yes

VirtualBox 2D acceleration enabled No No

VirtualBox network adapter enabled
Intel Pro/1000 MT

Desktop

Intel Pro/1000 MT

Desktop

VirtualBox sound adapter enabled PulseAudio / ICH AC 97 PulseAudio / ICH AC 97

VirtualBox serial ports enabled No No

VirtualBox USB enabled Yes Yes

VirtualBox USB 2.0 (EHCI) enabled Yes Yes

DRDC Valcartier TM 2012-319 51

B.5 VirtualBox guest operating system configuration

B.5.1 Configuration for Ubuntu 11.04 Linux

The following details the various detected hardware for the Ubuntu virtualized guest operating

systems (x86, x86 PAE and x64) experimented upon in this work. Please note that the x86 PAE

kernel is not quite the same version as the kernel used for the x86 and x64 implementation of

Ubuntu, but the authors do not see this as being a potential source of interference in their results.

Table B.5: Ubuntu 11.04 Linux guest operating system details

Operating system

details

x86 OS x86 PAE OS x64 OS

Operating system

kernel version

2.6.38-8-generic #42-

Ubuntu SMP Mon Apr

11 03:31:50 UTC 2011

i686 i686 i386

GNU/Linux

2.6.38-10-generic-pae

#46-Ubuntu SMP Tue

Jun 28 16:54:49 UTC

2011 i686 i686 i386

GNU/Linux

2.6.38-8-generic #42-

Ubuntu SMP Mon Apr

11 03:31:24 UTC 2011

x86_64 x86_64 x86_64

GNU/Linux

Memory detected 3,613,268 KiB 8,265,044 KiB 8,194,124 KiB

Processors detected 2 processors 2 processors 2 processors

Hard drive detected

and all partitions

accessible

Yes Yes Yes

Optical drive detected

and accessible
Yes Yes Yes

Network adapter

functioning correctly
Yes Yes Yes

USB detected Yes Yes Yes

VirtualBox Guest

Additions installed
Yes Yes Yes

Version 4.2.0 4.2.0 4.2.0

52 DRDC Valcartier TM 2012-319

B.5.2 Configuration for Ubuntu 12.04 Linux

The following details the various detected hardware for the Ubuntu virtualized guest operating

systems (x86 and x64) experimented upon in this work.

Table B.6: Ubuntu 12.04 Linux guest operating system details

Operating system

details

x86 OS x86 PAE OS x64 OS

Operating system kernel

version

3.2.0-32-generic #51-

Ubuntu SMP Wed Sep

26 21:32:50 UTC i686

i686 i386 GNU/Linux

3.2.0-32-generic #51-

Ubuntu SMP Wed Sep

26 21:54:23 UTC i686

i686 i386 GNU/Linux

3.2.0-32-generic #51-

Ubuntu SMP Wed

Sep 26 21:33:09 UTC

x86_64 x86_64

x86_64 GNU/Linux

Memory detected 3,616,096 KiB 8,272,916 KiB 8,178,624 KiB

Processors detected 4 processors 4 processors 4 processors

Hard drive detected and

all partitions accessible
Yes Yes Yes

Optical drive detected and

accessible
Yes Yes Yes

Network adapter

functioning correctly
Yes Yes Yes

USB detected Yes Yes Yes

VirtualBox Guest

Additions installed
Yes Yes Yes

Version 4.2.0 4.2.0 4.2.0

DRDC Valcartier TM 2012-319 53

B.5.3 Configuration for Fedora Core 15 Linux

The following details the various detected hardware for the Fedora Core virtualized guest

operating systems (x86 and x64) experimented upon in this work.

Table B.7: Fedora Core 15 guest operating system details

Operating system details x86 PAE x64 OS

Operating system kernel

version

2.6.41.10-3.fc15.i686.PAE

#1 SMP Mon Jan 23

15:36:55 UTC 2012 i686

i686 i386 GNU/Linux

2.6.41.10-3.fc15.x86_64

#1 SMP Mon Jan 23

15:46:37 UTC 2012

x86_64 x86_64 x86_64

GNU/Linux

Memory detected 8,273,772 KiB 8,179,108 KiB

Processors detected 2 processors 2 processors

Hard drive detected and all

partitions accessible
Yes Yes

Optical drive detected and

accessible
Yes Yes

Network adapter functioning

correctly
Yes Yes

USB detected Yes Yes

VirtualBox Guest Additions

installed
Yes Yes

Version 4.2.0 4.2.0

54 DRDC Valcartier TM 2012-319

B.5.4 Configuration for Fedora Core 17 Linux

The following details the various detected hardware for the Fedora Core virtualized guest

operating systems (x86 and x64) experimented upon in this work.

Table B.8: Fedora Core 17 guest operating system details

Operating system details x86 PAE x64 OS

Operating system kernel

version

3.6.1-1.fc17.i686.PAE #1

SMP Wed Oct 10 12:32:58

UTC 2012 i686 i686 i386

GNU/Linux

3.6.1-1.fc17.x86_64 #1 SMP

Oct 10 12:13:05 UTC 2012

x86_64 x86_64 x86_64

GNU/Linux

Memory detected 8,290,544 KiB 8,178,556 KiB

Processors detected 4 processors 4 processors

Hard drive detected and all

partitions accessible
Yes Yes

Optical drive detected and

accessible
Yes Yes

Network adapter functioning

correctly
Yes Yes

USB detected Yes Yes

VirtualBox Guest Additions

installed
Yes Yes

Version 4.2.0 4.2.0

DRDC Valcartier TM 2012-319 55

Annex C 2BVirtualBox and operating system

configurations for Fmem

The virtual machines used for Fmem memory acquisition are the same ones used for Fmem in

TM 2012-008, i.e., Oracle VirtualBox version 4.1.0 with Expansion Pack. For additional details,

consult TM 2012-008.

56 DRDC Valcartier TM 2012-319

This page intentionally left blank.

DRDC Valcartier TM 2012-319 57

Annex D 3BExperimental results

D.1 LiME

In this sub-annex, the experimental results obtained using the LiME tool are examined. This tool

was used against all of the various x86 and x64 Linux operating systems examined herein.

D.1.1 Ubuntu Linux 11.04

Table D.1: Memory dump results for Ubuntu 11.04 Linux x86 using LiME

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)
3,613,268 KiB (3,528.58 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

Last address in memory range = 3,758,030,848

Size of System RAM = 3,757,571,072 bytes

(3583.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Raw dump

Time (Last Write Time - Create Time) 00:11:51

Dump file size 3,757,571,072 bytes (3,583.50 MiB)

Did Volatility linux_pslist command

succeed?
No

Padded dump

Time (Last Write Time - Create Time) 00:15:44

Dump file size 3,758,030,848 bytes (3,583.94 MiB)

Did Volatility linux_pslist command

succeed?
Yes

58 DRDC Valcartier TM 2012-319

Lime dump

Time (Last Write Time - Create Time) 00:17:08

Dump file size
3,757,571,136 bytes (includes 2x 32-byte headers)

(3,583.50 MiB)

Did Volatility linux_pslist command

succeed?
Yes

 Notes

The LiME module compiled, loaded and dumped

memory without incident. Memory dump sizes

were as expected.

Volatility 2.3 SVN-based memory analysis was

successful for the padded and lime memory

dumps. However, the raw memory dump could

not be assessed using Volatility.

 Table D.2: Memory dump results for Ubuntu 11.04 Linux x86 PAE using LiME

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)
8,265,044 KiB (8,071.33 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Raw dump

 Time (Last Write Time - Create Time) 00:34:18

Dump file size 8,589,405,184 bytes (8,191.50 MiB)

DRDC Valcartier TM 2012-319 59

Did Volatility linux_pslist command

succeed?
No

Padded dump

Time (Last Write Time - Create Time) 00:44:41

Dump file size 9,126,801,408 bytes (8,704 MiB)

Did Volatility linux_pslist command

succeed?
Yes

Lime dump

Time (Last Write Time - Create Time) 00:42:48

Dump file size
8,589,405,280 bytes (includes 3x 32-byte headers)

(8,191.50 MiB)

Did Volatility linux_pslist command

succeed?
Yes

 Notes

The LiME module compiled and loaded without

incident, but failed to dump all the system’s

memory (one memory page is missing). This

appears to be a PAE-related memory driver issue.

Volatility 2.3 SVN-based memory analysis was

successful for the padded and lime memory

dumps. However, the raw memory dump could

not be assessed using Volatility.

Table D.3: Memory dump results for Ubuntu 11.04 Linux x64 using LiME

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)
8,194,124 KiB (8,002.07 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

60 DRDC Valcartier TM 2012-319

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Raw dump

Time (Last Write Time - Create Time) 00:20:14

Dump file size 8,589,409,280 bytes (8,191.50 MiB)

Did Volatility linux_pslist command

succeed?
No

Padded dump

Time (Last Write Time - Create Time) 00:29:01

Dump file size 9,126,805,504 bytes (exactly 8,704 MiB)

Did Volatility linux_pslist command

succeed?
Yes

Lime dump

Time (Last Write Time - Create Time) 00:31:04

Dump file size
8,589,409,376 bytes (includes 3x 32-byte headers)

(8,191.50 MiB)

Did Volatility linux_pslist command

succeed?
Yes

 Notes The LiME module compiled, loaded and dumped

memory without incident. Memory dump sizes

were as expected.

Volatility 2.3 SVN-based memory analysis was

successful for the padded and lime memory

dumps. However, the raw memory dump could

not be assessed using Volatility.

DRDC Valcartier TM 2012-319 61

D.1.2 Ubuntu Linux 12.04

Table D.4: Memory dump results for Ubuntu 12.04 Linux x86 using LiME

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

3,616,096 KiB (3,531.34 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

Last address in memory range = 3,758,030,848

Size of System RAM = 3,757,571,072 bytes

(3,583.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Raw dump

Time (Last Write Time - Create Time) 00:11:56

Dump file size 3,757,571,072 bytes (3,583.50 MiB)

Did Volatility linux_pslist command

succeed?

No

Padded dump

Time (Last Write Time - Create Time) 00:14:51

Dump file size 3,758,030,848 bytes (3,583.94 MiB)

Did Volatility linux_pslist command

succeed?

Yes

Lime dump

Time (Last Write Time - Create Time) 00:15:15

Dump file size 3,757,571,136 bytes (includes 2x 32-byte headers)

(3,583.50 MiB)

Did Volatility linux_pslist command

succeed?

Yes

62 DRDC Valcartier TM 2012-319

 Notes The LiME module compiled, loaded and dumped

memory without incident. Memory dump sizes

were as expected.

Volatility 2.3 SVN-based memory analysis was

successful for the padded and lime memory

dumps. However, the raw memory dump could

not be assessed using Volatility.

Table D.5: Memory dump results for Ubuntu 12.04 Linux x86 PAE using LiME

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,272,916 KiB (8,079.02 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Raw dump

Time (Last Write Time - Create Time) 00:32:00

Dump file size 8,589,405,184 bytes (8,191.50 MiB)

Did Volatility linux_pslist command

succeed?

No

Padded dump

Time (Last Write Time - Create Time) 00:39:40

Dump file size 9,126,801,408 bytes (8,704 MiB)

Did Volatility linux_pslist command

succeed?

Yes

DRDC Valcartier TM 2012-319 63

Lime dump

Time (Last Write Time - Create Time) 00:41:18

Dump file size 8,589,405,280 bytes (includes 3x 32-byte headers)

(8,191.50 MiB)

Did Volatility linux_pslist command

succeed?

Yes

 Notes The Lime module compiled, loaded without

incident but failed to dump all the system’s

memory (one memory page is missing). This

appears to be a PAE-related memory driver issue.

Volatility 2.3 SVN-based memory analysis was

successful for the padded and lime memory

dumps. However, the raw memory dump could

not be assessed using Volatility.

Table D.6: Memory dump results for Ubuntu 12.04 Linux x64 using LiME

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,178,624 KiB (7,986.94 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Raw dump

Time (Last Write Time - Create Time) 00:20:58

Dump file size 8,589,409,280 bytes (8,191.50 MiB)

64 DRDC Valcartier TM 2012-319

Did Volatility linux_pslist command

succeed?

No

Padded dump

Time (Last Write Time - Create Time) 00:30:43

Dump file size 9,126,805,504 bytes (exactly 8,704 MiB)

Did Volatility linux_pslist command

succeed?

Yes

Lime dump

Time (Last Write Time - Create Time) 00:30:36

Dump file size 8,589,409,376 bytes (includes 3x 32-byte headers)

(8,191.50 MiB)

Did Volatility linux_pslist command

succeed?

Yes

 Notes The LiME module compiled, loaded and dumped

memory without incident. Memory dump sizes

were as expected.

Volatility 2.3 SVN-based memory analysis was

successful for the padded and lime memory

dumps. However, the raw memory dump could

not be assessed using Volatility.

D.1.3 Fedora Core 15 Linux

Table D.7: Memory dump results for Fedora Core 15 Linux x86 PAE using LiME

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,266,212 KiB (8,072.47 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

DRDC Valcartier TM 2012-319 65

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Raw dump

Time (Last Write Time - Create Time) 00:33:45

Dump file size 8,589,405,184 bytes (8,191.50 MiB)

Did Volatility linux_pslist command

succeed?

No

Padded dump

Time (Last Write Time - Create Time) 00:44:20

Dump file size 9,126,801,408 bytes (8,704 MiB)

Did Volatility linux_pslist command

succeed?

Yes

Lime dump

Time (Last Write Time - Create Time) 00:42:47

Dump file size 8,589,405,280 bytes (includes 3x 32-byte headers)

(8,191.50 MiB)

Did Volatility linux_pslist command

succeed?

Yes

 Notes The Lime module compiled, loaded without

incident but failed to dump all the system’s

memory (one memory page is missing). This

appears to be a PAE-related memory driver issue.

Volatility 2.3 SVN-based memory analysis was

successful for the padded and lime memory

dumps. However, the raw memory dump could

not be assessed using Volatility.

66 DRDC Valcartier TM 2012-319

Table D.8: Memory dump results for Fedora Core 15 Linux x64 using LiME

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,194,780 KiB (8,002.71 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Raw dump

Time (Last Write Time - Create Time) 00:18:15

Dump file size 8,589,409,280 bytes (8,191.50 MiB)

Did Volatility linux_pslist command

succeed?

No

Padded dump

Time (Last Write Time - Create Time) 00:25:29

Dump file size 9,126,805,504 bytes (exactly 8,704 MiB)

Did Volatility linux_pslist command

succeed?

Yes

Lime dump

Time (Last Write Time - Create Time) 00:26:09

Dump file size 8,589,409,376 bytes (includes 3x 32-byte headers)

(8,191.50 MiB)

Did Volatility linux_pslist command

succeed?

Yes

DRDC Valcartier TM 2012-319 67

 Notes The LiME module compiled, loaded and dumped

memory without incident. Memory dump sizes

were as expected.

Volatility 2.3 SVN-based memory analysis (with

the modified dwarf.py file) was successful for the

padded and lime memory dumps. However, the

raw memory dump could not be assessed using

Volatility.

D.1.4 Fedora Core 17 Linux

Table D.9: Memory dump results for Fedora Core 17 Linux x86 PAE using LiME

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,290,544 KiB (8,096.23 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Raw dump

Time (Last Write Time - Create Time) 00:34:16

Dump file size 8,589,405,184 bytes (8,191.50 MiB)

Did Volatility linux_pslist command

succeed?

No

Padded dump

Time (Last Write Time - Create Time) 00:45:07

Dump file size 9,126,801,408 bytes (8,704 MiB)

68 DRDC Valcartier TM 2012-319

Did Volatility linux_pslist command

succeed?

Yes

Lime dump

Time (Last Write Time - Create Time) 00:34:29

Dump file size 8,589,405,280 bytes (includes 3x 32-byte headers)

(8,191.50 MiB)

Did Volatility linux_pslist command

succeed?

Yes

Notes The Lime module compiled, loaded without

incident, but failed to dump all the system’s

memory (one memory page is missing). This

appears to be a PAE-related memory driver issue.

Volatility 2.3 SVN-based memory analysis was

successful for the padded and lime memory

dumps. However, the raw memory dump could

not be assessed using Volatility.

Table D.10: Memory dump results for Fedora Core 17 Linux x64 using LiME

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,178,556 KiB (7,986.87 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Root access needed? Yes

Raw dump

Time (Last Write Time - Create Time) 00:17:33

DRDC Valcartier TM 2012-319 69

Dump file size 8,589,409,280 bytes (8,191.49 MiB)

Did Volatility linux_pslist command

succeed?

No

Padded dump

Time (Last Write Time - Create Time) 00:23:29

Dump file size 9,126,805,504 bytes (exactly 8,704 MiB)

Did Volatility linux_pslist command

succeed?

Yes

Lime dump

Time (Last Write Time - Create Time) 00:22:07

Dump file size 8,589,409,376 bytes (includes 3x 32-byte headers)

(8,191.50 MiB)

Did Volatility linux_pslist command

succeed?

Yes

 Notes The LiME module compiled, loaded and dumped

memory without incident. Memory dump sizes

were as expected.

Volatility 2.3 SVN-based memory analysis was

successful for the padded and lime memory

dumps. However, the raw memory dump could

not be assessed using Volatility.

70 DRDC Valcartier TM 2012-319

D.2 Pmem

In this sub-annex, the experimental results obtained using the LiME tool are examined. This tool

was used against all of the various x86 and x64 Linux operating systems examined herein.

D.2.1 Ubuntu Linux 11.04

Table D.11: Memory dump results for Ubuntu 11.04 Linux x86 using Pmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

3,613,268 KiB (3,528.58 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

Last address in memory range = 3,758,030,848

Size of System RAM = 3,757,571,072 bytes

(3583.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/pmem

Time required to dump 00:00:49

Dump file size 3,699,986,432 (3,528.58 MiB)

Did Volatility linux_pslist command

succeed

Yes

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

N/A

Notes The Pmem kernel module compiled, loaded and

dumped memory without incident.

Volatility 2.2 memory analysis proceeded without

error. Therefore, memory acquisition and

analysis was successful for Ubuntu 11.04 x86

Linux.

DRDC Valcartier TM 2012-319 71

Table D.12: Memory dump results for Ubuntu 11.04 Linux x86 PAE using Pmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,265,044 KiB (8,071.33 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/pmem

Time required to dump 00:00:05

Dump file size 536,870,911 bytes (512 MiB)

Did Volatility linux_pslist command

succeed?

No

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

3,349,797 / 20,494,464 / 146,161 / 4,405

Notes The Pmem kernel module compiled, loaded

without incident, but failed to dump all the

system’s memory. This appears to be a PAE-

related memory driver issue.

Volatility 2.2 and 2.3 SVN r2574memory

analysis failed using the linux_pslist plugin.

However, string analysis indicates the memory

image is highly populated and therefore, it is at

least a partial memory dump.

Attempts to use other plugins including

linux_netstat, linux_memmap, and linux_lsmod

all failed as well. Thus, it can be reasonably

concluded that this memory image is incomplete

and therefore, not entirely intact for Volatility 2.2

or 2.3 to work with.

72 DRDC Valcartier TM 2012-319

Table D.13: Memory dump results for Ubuntu 11.04 Linux x64 using Pmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,194,124 KiB (8,002.07 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/pmem

Time required to dump 00:01:51

Dump file size 9,126,805,503 bytes (8,704 MiB)

Did Volatility linux_pslist command

succeed?

Yes

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

N/A

Notes The Pmem kernel module compiled, loaded and

dumped memory without incident.

Volatility 2.2 memory analysis proceeded

correctly and without error. Therefore, memory

acquisition and analysis was successful for

Ubuntu 11.04 x64 Linux.

D.2.2 Ubuntu Linux 12.04

Table D.14: Memory dump results for Ubuntu 12.04 Linux x86 using Pmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

3,616,096 KiB (3,531.34 MiB)

DRDC Valcartier TM 2012-319 73

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

Last address in memory range = 3,758,030,848

Size of System RAM = 3,757,571,072 bytes

(3,583.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/pmem

Time required to dump 00:00:39

Dump file size 3,758,030,847 bytes (3,583.94 MiB)

Does Volatility linux_pslist command

succeed?

Yes

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

N/A

Notes The Pmem kernel module compiled, loaded and

dumped memory without incident.

Volatility 2.2 memory analysis proceeded without

error. Therefore, memory acquisition and

analysis were successful for Ubuntu 12.04 x86

Linux.

Table D.15: Memory dump results for Ubuntu 12.04 Linux x86 PAE using Pmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,272,916 KiB (8,079.02 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

74 DRDC Valcartier TM 2012-319

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/pmem

Time required to dump 00:00:05

Dump file size 536,870,911 bytes (512 MiB)

Did Volatility linux_pslist command

succeed?

No

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

165,954 / 932,510 / 87 / 27

Notes The Pmem kernel module compiled, loaded

without incident, but failed to dump all the

system’s memory. This appears to be a PAE-

related memory driver issue.

Volatility 2.2 and 2.3 SVN r2574 memory

analysis failed using linux_pslist plugin.

However, string analysis indicates the memory

image was only partially populated. Therefore, it

appears to constitute a partial memory dump.

Attempts to use other plugins including

linux_netstat, linux_memmap, and linux_lsmod

all failed as well. Thus, it can be reasonably

concluded that this memory image is incomplete

and therefore, not intact for Volatility 2.2 or 2.3

to work with.

Table D.16: Memory dump results for Ubuntu 12.04 Linux x64 using Pmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,178,624 KiB (7,986.94 MiB)

DRDC Valcartier TM 2012-319 75

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/pmem

Time required to dump 00:01:27

Dump file size 9,126,805,503 bytes (8,704 MiB)

Did Volatility linux_pslist command

succeed?

Yes

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

N/A

Notes The Pmem kernel module compiled, loaded and

dumped memory without incident.

Volatility 2.2 memory analysis proceeded without

error. Therefore, memory acquisition and

analysis were successful for Ubuntu 12.04 x64

Linux.

D.2.3 Fedora Core 15 Linux

Table D.17: Memory dump results for Fedora Core 15 Linux x86 PAE using Pmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,273,772 KiB (8,079.86 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

76 DRDC Valcartier TM 2012-319

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/pmem

Time required to dump 00:00:05

Dump file size 536,870,911 bytes (512 MiB)

Did Volatility linux_pslist command

succeed?

No

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

179,243 / 1,223,123 / 61 / 16

Notes The Pmem kernel module compiled, loaded

without incident, but failed to dump all the

system’s memory. This appears to be a PAE-

related memory driver issue.

Volatility 2.2 and 2.3 SVN r2574 memory

analysis failed using linux_pslist plugin.

However, string analysis indicates the memory

image was only partially populated. Therefore, it

constitutes a partial memory dump.

Attempts to use other plugins including

linux_netstat, linux_memmap, and linux_lsmod

all failed as well. Thus, it can be reasonably

concluded that this memory image is incomplete

and therefore, not intact for Volatility 2.2 or 2.3

to work with.

Table D.18: Memory dump results for Fedora Core 15 Linux x64 using Pmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,179,108 KiB (7,987.41 MiB)

DRDC Valcartier TM 2012-319 77

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/pmem

Time required to dump 00:01:06

Dump file size 9,126,805,503 bytes (8,704 MiB)

Did Volatility linux_pslist command

succeed?

No

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

4,926,699 / 389,941,195 / 86,605 / 3,521

Notes The Pmem kernel module succeeded in

compiling, but reported multiple errors “ERROR:

Attribute 56 (DW_AT_data_member_location)

…”. 19F

20

 Once compiled, the module was able to

load and dump memory without incident. The

origin of this error is examined in detail in

Section 1.5.2.1.

It was determined that Volatility 2.2 and 2.3 SVN

r2574 do not work with Fedora 15 x64. The

linux_pslist, linux_cpuinfo, linux_netstat,

linux_memmap, linux_lsmod were used to no

avail.

However, based on the number of strings

extracted from the memory image, it can be

concluded that it was intact, but there is a

Volatility-specific issue with respect to Fedora

memory image support.

20

 For more information, see Section 1.5.2 for details concerning compilation.

78 DRDC Valcartier TM 2012-319

D.2.4 Fedora Core 17 Linux

Table D.19: Memory dump results for Fedora Core 17 Linux x86 PAE using Pmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,290,544 KiB (8,096.23 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/pmem

Time required to dump 00:00:05

Dump file size 536,870,911 bytes (512 MiB)

Did Volatility linux_pslist command

succeed?

No

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

151,836 / 795,968 / 58 / 21

Notes The Pmem kernel module compiled, loaded

without incident, but failed to dump all the

system’s memory. This appears to be a PAE-

related memory driver issue.

Volatility 2.2 and 2.3 SVN r2574 memory

analyses failed using the linux_pslist plugin.

However, string analysis indicates that the

memory image was only partially populated.

Therefore, it constitutes a partial memory dump.

Attempts to use other plugins, including

linux_netstat, linux_memmap, and linux_lsmod

failed as well. Thus, it can be reasonably

concluded that this memory image is incomplete

DRDC Valcartier TM 2012-319 79

and therefore, not intact for Volatility 2.2 or 2.3

to work with.

Table D.20: Memory dump results for Fedora Core 17 Linux x64 using Pmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,178,556 KiB (7,986.87 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/pmem

Time required to dump 00:01:27

Dump file size 9,126,805,503 bytes (8,704 MiB)

Did Volatility linux_pslist command

succeed?

No. The command did not terminate after more

than 10 hours of processing.

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

4,774,419 / 30,682,552 / 150,834 / 7,112

Notes The Pmem kernel module compiled, loaded and

dumped memory without incident.

After more than 10 hours of processing using the

linux_pslist Volatility 2.2 and 2.3 SVN r2574

plugin, it was determined that the plugin had not

yet completed processing the memory image. It

is likely that this is a Volatility-based issue,

specific either to this version of Fedora, or to the

incorrect kernel profile generation (see Section

2.1.3 for details).

However, upon using the linux_cpuinfo plugin,

80 DRDC Valcartier TM 2012-319

all 4 virtual processors were seen by the plugin,

indicating that the memory image appeared to be

partially intact.

Additional plugins were run against the memory

image, including linux_netstat, linux_memmap,

linux_lsmod and several others, all of which

succeeded under Volatility 2.2 and 2.3 SVN

r2574.

However, based on the number of strings

extracted from the memory image, it can be

concluded that the memory image is intact, but

that there is a Volatility-specific issue with

respect to Fedora memory image support.

DRDC Valcartier TM 2012-319 81

D.3 Fmem

In this sub-annex, the experimental results obtained using the LiME tool are examined. This tool

was used against all of the various x86 and x64 Linux operating systems examined herein.

D.3.1 Ubuntu Linux 11.04

Table D.21: Memory dump results for Ubuntu 11.04 Linux x86 using Fmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

3,613,268 KiB (3,528.58 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

Last address in memory range = 3,758,030,848

Size of System RAM = 3,757,571,072 bytes

(3583.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/fmem

Time required to dump 00:00:11

Dump file size 3,758,030,848 bytes (3,583.94 MiB)

Did Volatility linux_pslist command

succeed?

Yes

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

N/A

Notes Acquisition occurred without error or warning.

Moreover, it was very fast, taking only 11

seconds for the dump.

Analysis using Volatility 2.2 completed without

error and was able to provide a full detailed

process listing.

It can be concluded that this memory acquisition

was successful.

82 DRDC Valcartier TM 2012-319

Table D.22: Memory dump results for Ubuntu 11.04 Linux x86 PAE using Fmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,265,044 KiB (8,071.33 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/fmem

Time required to dump 00:01:28

Dump file size 9,126,805,504 bytes (8,704 MiB)

Did Volatility linux_pslist command

succeed?

Yes

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

N/A

Notes Acquisition occurred without error or warning.

Moreover, it was relatively fast, taking only 88

seconds for the dump.

Analysis using Volatility 2.2 completed without

error and was able to provide a full detailed

process listing.

It can be concluded that this memory acquisition

was successful.

Table D.23: Memory dump results for Ubuntu 11.04 Linux x64 using Fmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,194,124 KiB (8,002.07 MiB)

DRDC Valcartier TM 2012-319 83

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/fmem

Time required to dump 00:01:06

Dump file size 9,126,805,504 bytes

Did Volatility linux_pslist command

succeed?

Yes

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

N/A

Notes Acquisition occurred without error or warning.

Moreover, it was relatively fast, taking only 66

seconds for the dump.

Analysis using Volatility 2.2 completed without

error and was able to provide a full detailed

process listing.

It can be concluded that this memory acquisition

was successful.

D.3.2 Fedora Core 15 Linux

Table D.24: Memory dump results for Fedora Core 15 Linux x86 PAE using Fmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,273,772 KiB (8,079.86 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

84 DRDC Valcartier TM 2012-319

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/fmem

Time required to dump 00:01:05

Dump file size 9,126,805,504 bytes (exactly 8,704 MiB)

Did Volatility linux_pslist command

succeed?

No

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

3,667,870 / 48,728,386 / 18,443 / 2,978

Notes The Fmem driver succeeded in dumping the full

amount of system memory without error or

warning.

Attempts to use Volatility 2.2 and 2.3 SVN r2574

were unable to analyse the memory image.

However, the memory image itself does appear to

be intact. String count verification indicates that

the memory image is populated with kernel and

operating system data and structures.

Table D.25: Memory dump results for Fedora Core 15 Linux x64 using Fmem

Virtual machine allocated RAM 8,388,608 KiB (8,192 MiB)

Detected memory

(cat /proc/meminfo | grep MemTotal)

8,179,108 KiB (7,987.41 MiB)

RAM memory addresses

(cat /proc/iomem | grep “System RAM”)

00010000 - 0009FBFF

00100000 - DFFEFFFF

100000000 - 21FFFFFFF

DRDC Valcartier TM 2012-319 85

Total system memory, last address and

memory ranges as per /proc/iomem

00010000 - 0009FBFF + 1 = 588,800

00100000 - DFFEFFFF + 1 = 3,756,982,272

100000000 - 21FFFFFFF +1 = 4,831,838,208

Last address in memory range = 9,126,805,504

Size of System RAM = 8,589,409,280 bytes

(8,191.50 MiB)

Does tool perform hash verification? No

Is root access needed? Yes

Device /dev/fmem

Time required to dump 00:01:01

Dump file size 9,126,805,504 bytes (exactly 8,704 MiB)

Did Volatility linux_pslist command

succeed?

No

If no, how many strings were detected?

(7-bit / 8-bit / 16-bit / 32-bit)

8,032,777 / 75,249,462 / 370 / 724

Notes The Fmem driver succeeded in dumping the full

amount of system memory without error or

warning.

Attempts to use Volatility 2.2 and 2.3 SVN r2574

were unable to analyse the memory image.

However, the memory image itself does appear to

be intact. String count verification indicates that

the memory image is populated with kernel and

operating system data and structures.

86 DRDC Valcartier TM 2012-319

D.4 Second Look

The experimental results obtained for Second Look can be found in TM 2012-008, Annex C.5.

For information concerning the success or failure of using Volatility 2.2 and 2.3 SVN r2574

against the various Second Look memory images as per TM 2012-008, consult Annex G.1.4,

where a detailed table summarizes these results.

DRDC Valcartier TM 2012-319 87

Annex E 4BCorrections and clarifications to TM 2012-008

This specific annex examines certain technical omissions and corrections as they pertain to TM

2012-008. They have been provided here in the interest of clearing up specific oversights made

by the primary author when redacting the aforementioned memorandum.

E.1 Second Look memory acquisition specifics

In TM 2012-008, the specifics of how memory acquisition was conducted with respect to Second

Look were left vague. Thus, the primary author of this technical memorandum (and the sole

author of TM 2012-008) has undertaken the task of correcting certain omissions.

Specifically, the Second Look memory acquisition script, secondlook-memdump.sh, by default,

attempts to load the running kernel’s crash driver into kernel space. However, not all Linux

distribution kernels are compiled with one (see Section 1.6 for details). The script loads the

Linux kernel crash driver by running command modprobe crash and upon its successful loading,

proceeds with memory acquisition. However, in the event that the script is unable to load the

crash driver as it may been missing or damaged, the investigator can compile the Second Look

supplied crash driver. The supplied crash 20F

21

 driver, pmad.c, is compiled by calling the make

program from within the same directory as the driver’s source code, which will compile the

source code according the provided Makefile. Upon its compilation, the driver is loaded using

insmod command and then the memory acquisition script, secondlook-memdump.sh, is run

another time, with a user-supplied memory device, as shown below:

 $ insmod pmad.ko

 $./secondlook-memdump.sh acquisition_file_name.dd /dev/pmad

The supplied driver, pmad, once loaded into kernel space, creates kernel device /dev/pmad from

which the acquisition can be conducted against. Once the acquisition has been completed, the

driver can be unloaded using the rmmod command.

Finally, throughout all the experimentation conducted in TM 2012-008 where Second Look was

investigated, the supplied pmad driver was always used in lieu of the underlying system’s kernel

crash driver. This was done in order to ensure uniformity between the various distributions.

However, the results obtained in TM 2012-008 as they stand for Second Look continue to remain

valid. They should not be considered in any way anomalous.

E.2 Fmem memory acquisition specifics

As previously stated, the memory acquisition experiments conducted using Fmem in TM 2012-

008 were done using /proc/meminfo as the basis for the upper memory address. However, based

21

 Pmad is very similar to the Fedora kernel-based crash memory driver.

88 DRDC Valcartier TM 2012-319

on the detailed examination concerning the optimal memory dump sizes (see Section 2.2.4 for

details), it has been concluded that the upper memory address-based limit should be derived from

/proc/iomem.

Thus, the Fmem-based experiments as carried out in TM 2012-008 have been redone using the

same test operating systems as originally used therein. These included Fedora Core 15 x86 PAE

and x64, as well as Ubuntu x86, x86 PAE and x64. The results from these newer experiments can

be found in Annex D.3.

The new memory acquisition experiments carried out herein are for the most part the same as in

TM 2012-008. The LKM must be compiled and inserted into memory using the run.sh script

provided with the tool. Once loaded and using the final “System RAM” memory address

obtained from /proc/iomem and an appropriate block size, memory acquisition can commence.

For example, consider a computer system equipped with exactly 8 GiB RAM:

 $ dd if=/dev/fmem bs=1K count=8912896 of=memory_dump.dd

In this example, the count of 8,912,896 is the highest available “System RAM” address as per

/proc/iomem, divided by a block size (BS) of 1 KiB.

E.3 Clarification to the acquisition of hardware-reserved RAM

In TM 2012-008, the primary author referred extensively to hardware-reserved memory, also

commonly known as physical memory (or RAM) set aside for use by the computer’s hardware.

This memory is accessible to the Linux kernel, its drivers and LKMs and is often acquired during

a memory dump. However, the I/O memory specific to hardware devices (hardware buffers,

cache, etc.) is dangerous to access and may result in a system crash. Neither this memorandum

nor TM 2012-008 makes any effort to examine whether the physical memory inherent to a

computer’s hardware is acquired.

DRDC Valcartier TM 2012-319 89

Annex F 5BLinux-based memory acquisition tool

comparison

F.1 Tool comparison

Upon examining in detail, the results obtained in Annex D for the numerous experiments

conducted herein against the various Ubuntu and Fedora Core operating systems, memory

acquisition tool specific tables have been prepared. These tables emphasize the difference

between the tools with respect to their actual dump sizes for the various operating systems they

were tested against. Moreover, since many of the dumps were not the expected size as per the

last “System RAM” memory address found in /proc/iomem, memory size differences or deltas

have been provided in the following tables.

Table F.1: Second Look memory acquisition results (from TM 2012-008)

�������	
��
�����

��������������	�

������������ ���������� ������ ��������
���

���������	
���
�� ����
�
�
�
�
 ����
�
�
�
�

�

���������	
���
������ ������

���
� ������

���
�
�

���������	
������ ������

���
� ������

���
�
�

�����������
������ ������

���
� ������

���
�
�

�������������� ������

���
� ������

���
�
�

Table F.2: Fmem memory acquisition results

�������	
��
�����

��������������	�

������������ ���������� ������ ��������
���

���������	
���
�� ����
�
�
�
�
 ����
�
�
�
�

�

���������	
���
������ ������

���
� ������

���
�
�

���������	
������ ������

���
� ������

���
�
�

�����������
������ ������

���
� ������

���
�
�

�������������� ������

���
� ������

���
�
�

90 DRDC Valcartier TM 2012-319

Table F.3: LiME padded format-based memory acquisition results

�������	
��
�����

��������������	�

������������ ���������� ������ ��������
���

���������	
���
�� ����
�
�
�
�
 ����
�
�
�
�
�
�

���������	
���
������ ������

���
� ������

���

� ���
���

���������	
������ ������

���
� ������

���
��
�

���������	
���
�� ����
�
�
�
�
 ����
�
�
�
�

�

���������	
���
������ ������

���
� ������

���

� ���
���

���������	
������ ������

���
� ������

���

�
�

�����������
������ ������

���
� ������

���

� ���
���

�������������� ������

���
� ������

���
��
�

�����������
������ ������

���
� ������

���

� ���
���

�������������� ������

���
� ������

���
��
�

Table F.4: LiME lime format-based memory acquisition results

�������	
��
�����

���������
�����

���� ���������� ������ ��������
����

���������	
���
�� ����������
��� ��������������
� ��

���������	
���
������
��
���
���

�
��
���
���

� ���
��� ��

���������	
������
��
���
���

�
��
���
������
� ��

���������	
���
�� ����������
��� ��������������
� ��

���������	
���
������
��
���
���

�
��
���
���

� ���
��� ��

���������	
������
��
���
���

�
��
���
������
� ��

�����������
������
��
���
���

�
��
���
���

� ���
��� ��

��������������
��
���
���

�
��
���
������
� ��

�����������
������
��
���
���

�
��
���
���

� ���
��� ��

��������������
��
���
���

�
��
���
������
� ��

DRDC Valcartier TM 2012-319 91

Table F.5: Pmem memory acquisition results

�������	
��
�����

��������������	�

������������ ���������� ������ ��������
����

���������	
���
�� ����
�
�
�
�
 �������
����� ��
�
�������

���������	
���
������ ������

���
� ����
�
���� �
��
����������

���������	
������ ������

���
� ������

���
� ���

���������	
���
�� ����
�
�
�
�
 ����
�
�
�
�� ���

���������	
���
������ ������

���
� ����
�
���� �
��
�����������

���������	
������ ������

���
� ������

���
� ���

�����������
������ ������

���
� ����
�
���� �
��
����������

�������������� ������

���
� ������

���
� ���

�����������
������ ������

���
� ����
�
���� �
��
����������

�������������� ������

���
� ������

���
� ���

92 DRDC Valcartier TM 2012-319

This page intentionally left blank.

DRDC Valcartier TM 2012-319 93

Annex G 6BAcquisition result analysis using Volatility

G.1 Analysis using Volatility

The following tables summarise the Volatility-based analyses obtained against the various

memory images acquired from Pmem, LiME, Fmem and Second Look. Volatility 2.2 and 2.3

SVN r2574 were used for the various memory analyses.

G.1.1 LiME-based Volatility memory analysis

The Volatility memory analysis for the LiME-based memory acquisitions is summarised by the

following table:

Table G.1: Volatility LiME padded and dump formats memory analyses

Operating system Analysis using Volatility

2.3 SVN r2754

Ubuntu Linux 11.04 x86 Succeeded for both padded

and lime dumps

Ubuntu Linux 11.04 x86 PAE Succeeded for both padded

and lime dumps

Ubuntu Linux 11.04 x64 Succeeded for both padded

and lime dumps

Ubuntu Linux 12.04 x86 Succeeded for both padded

and lime dumps

Ubuntu Linux 12.04 x86 PAE Succeeded for both padded

and lime dumps

Ubuntu Linux 12.04 x64 Succeeded for both padded

and lime dumps

Fedora 15 x86 PAE Succeeded for both padded

and lime dumps

Fedora 15 x64 Succeeded for both padded

and lime dumps

Fedora 17 x86 PAE Succeeded for both padded

and lime dumps

Fedora 17 x64 Succeeded for both padded

and lime dumps

G.1.2 Pmem-based Volatility memory analysis

The Volatility memory analysis for the Pmem-based memory acquisitions is summarised by the

following table:

94 DRDC Valcartier TM 2012-319

Table G.2: Volatility Pmem memory analyses

Operating system Analysis using

Volatility 2.2

Analysis using Volatility

2.3 SVN r2754

Ubuntu Linux 11.04 x86 Succeeded Was not required

Ubuntu Linux 11.04 x86 PAE Failed – incomplete

memory image

Failed – incomplete

memory image

Ubuntu Linux 11.04 x64 Succeeded Was not required

Ubuntu Linux 12.04 x86 Succeeded Was not required

Ubuntu Linux 12.04 x86 PAE Failed – incomplete

memory image

Failed – incomplete

memory image

Ubuntu Linux 12.04 x64 Succeeded Was not required

Fedora 15 x86 PAE Failed – incomplete

memory image

Failed – incomplete

memory image

Fedora 15 x64 Failed Failed

Fedora 17 x86 PAE Failed – incomplete

memory image

Failed – incomplete

memory image

Fedora 17 x64 Failed Failed

G.1.3 Fmem-based Volatility memory analysis

The Volatility memory analysis for the Fmem-based memory acquisitions is summarised by the

following table:

Table G.3: Volatility Fmem memory analyses

Operating system Analysis using

Volatility 2.2

Analysis using Volatility

2.3 SVN r2754

Ubuntu Linux 11.04 x86 Succeeded Was not required

Ubuntu Linux 11.04 x86 PAE Succeeded Was not required

Ubuntu Linux 11.04 x64 Succeeded Was not required

Fedora 15 x86 PAE Failed Failed

Fedora 15 x64 Failed Failed

DRDC Valcartier TM 2012-319 95

G.1.4 Second Look-based Volatility memory analysis

The Volatility memory analysis for the Second Look-based memory acquisitions is summarised

by the following table:

Table G.4: Volatility Second Look memory analyses

Operating system Analysis using

Volatility 2.2

Analysis using Volatility

2.3 SVN r2754

Ubuntu Linux 11.04 x86 Succeeded Was not required

Ubuntu Linux 11.04 x86 PAE Succeeded Was not required

Ubuntu Linux 11.04 x64 Succeeded Was not required

Fedora 15 x86 PAE Failed Failed

Fedora 15 x64 Failed Failed

G.2 Implications of using Volatility for Linux-based memory

analysis

Based on the analyses conducted herein using Volatility 2.2 and 2.3 SVN r2574, an important

implication of using Volatility stands out above the rest. Properly acquired Ubuntu-based

memory images are analysable using Volatility, whereas those obtained using Fedora are not,

with the exception of those obtained images using LiME (padded and lime formats). The reason

for the inability of both Volatility frameworks to analyse intact Fedora-based memory dumps

appears to be caused by the incorrect generation of kernel-based profiles, as examined in Section

2.1.3.

96 DRDC Valcartier TM 2012-319

This page intentionally left blank.

DRDC Valcartier TM 2012-319 97

Bibliography

Anderson, David. White Paper: Red Hat Crash Utility. White paper. 2008. Red Hat.

206Hhttp://people.redhat.com/anderson/crash_whitepaper/.

Open Source University, Red Hat Academy. Device Memory Buffers and /proc/iomem – Red

Hat Academy 2.0. Informational web site. Red Hat Enterprise Linux 4 training course. Red Hat

Inc. 207Hhttps://osu.redhat.com/content/courses/rha130-4/section_0002/tag_lessons/section_0002/

section_0001/tag_resource/section_0003?set_language=en.

Oracle Corporation. Oracle VM VirtualBox User Manual. Guide. Version 4.2.0. Oracle

Corporation. 2012. 208Hhttp://download.virtualbox.org/virtualbox/UserManual.pdf.

Wikipedia. 3 GB barrier. Online encyclopaedic article. Wikimedia Foundation Inc. December

2012. 209Hhttp://en.wikipedia.org/wiki/3_GB_barrier.

Wikipedia. 64-bit. Online encyclopaedic article. Wikimedia Foundation Inc. July 2011.

210Hhttp://en.wikipedia.org/wiki/64-bit.

Wikipedia. Fedora (operating system). Online encyclopaedic article. Wikimedia Foundation

Inc. October 2012. 211Hhttp://en.wikipedia.org/wiki/Fedora_(operating_system).

Wikipedia. Linux. Online encyclopaedic article. Wikimedia Foundation Inc. October 2012.

212Hhttp://en.wikipedia.org/wiki/Linux.

Wikipedia. Physical Address Extension. Online encyclopaedic article. Wikimedia Foundation

Inc. July 2011. 213Hhttp://en.wikipedia.org/wiki/Physical_Address_Extension.

Wikipedia. Physical Address Extension. Online encyclopaedic article. Wikimedia Foundation

Inc. July 2011. 214Hhttp://en.wikipedia.org/wiki/Physical_Address_Extension.

Wikipedia. Red Hat Linux. Online encyclopaedic article. Wikimedia Foundation Inc. October

2012. 215Hhttp://en.wikipedia.org/wiki/Red_Hat_Linux.

Wikipedia. Ubuntu (operating system). Online encyclopaedic article. Wikimedia Foundation

Inc. October 2012. 216Hhttp://en.wikipedia.org/wiki/Ubuntu_(operating_system).

Wikipedia. X86_64. Online encyclopaedic article. Wikimedia Foundation Inc. August 2011.

217Hhttp://en.wikipedia.org/wiki/X86_64.

98 DRDC Valcartier TM 2012-319

List of symbols/abbreviations/acronyms/initialisms

’9X ’95, ’95A, ’95B, ’95C, ’98 and ’98SE (Second Edition)

2D Two-Dimensional

3D Three-Dimensional

4K 4 KiB

AMD Advanced Micro Devices

AMD-V Advanced Micro Devices-Virtualisation

ACPI Advanced Configuration and Power Interface

APIC Advanced Programmable Interrupt Controller

BDA BIOS Data Area

BIOS Basic Input/Output System

BSD Berkeley Software Distribution

CD Compact Disc

CFNOC Canadian Forces Network Operations Centre

CORFC Centre d'opérations des réseaux des Forces canadiennes

DND Department of National Defence

DOS Disk Operating System

DRDC Defence Research & Development Canada

DVD Digital Versatile Disc or Digital Video Disc

DVR Digital Video Recorder

EBDA Extended BIOS Data Area

EHCI Enhanced Host Controller Interface

ELF Executable and Linkable Format

FOSS Free and Open Source Software

FTP File Transfer Protocol

FUSE Filesystem in USEr space

GB Gigabyte (10
9

bytes)

GDB GNU Debugger

GiB Gibibyte

GICT Groupe intégré de la criminalité technologique

DRDC Valcartier TM 2012-319 99

GNU GNU Not UNIX

GRC Gendarmerie Royale du Canada

HD High Definition

I/O or IO Input/Output

INT Interrupt

ITCU Integrated Technological Crime Unit

IVT Interrupt Vector Table

KiB Kibibyte

LCD Liquid Crystal Display

LiME Linux Memory Extractor

LKM Linux Kernel Module

LTS Long Term Support

MHz Megahertz

MiB Mebibyte

N/A Not Available

NFS Network File System

NTFS New Technology File System

OS Operating System

PAE Physical Address Extension

PAE/NX Physical Address Extension / No eXecute

PC Personal Computer

PCI Peripheral Component Interconnect

PCIe PCI (Peripheral Component Interconnect) Express

RAM Random Access Memory

RC Release Candidate

RCMP Royal Canadian Mounted Police

RDDC Recherche et développement pour la défense Canada

RPM Red Hat Package Manager

Rsh Remote Shell

SMP Symmetric Multi-Processing

SP1 Service Pack 1

100 DRDC Valcartier TM 2012-319

SPARC Scalable Processor ARChitecture

SQ Sûreté du Québec

SSD Solid State Disk

Ssh Secure Shell

TB Terabyte

TM Technical Memorandum

UK United Kingdom

USB Universal Serial Bus

UTC Coordinated Universal Time

VT-x Virtualisation x86

x64 Refers to the 64-bit PC architecture

x86 Refers to the 32-bit PC architecture

x86 PAE Refers to the 32-bit PAE PC architecture

DOCUMENT CONTROL DATA

(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

 1. ORIGINATOR (The name and address of the organization preparing the document.

Organizations for whom the document was prepared, e.g. Centre sponsoring a

contractor's report, or tasking agency, are entered in section 8.)

Defence R&D Canada – Valcartier

2459 Pie-XI Blvd North

Quebec (Quebec)

G3J 1X5 Canada

 2. SECURITY CLASSIFICATION

(Overall security classification of the document

including special warning terms if applicable.)

UNCLASSIFIED

(NON-CONTROLLED GOODS)

DMC A

REVIEW: GCEC JUNE 2010

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)

in parentheses after the title.)

The definitive guide to Linux-based live memory acquisition tools: An addendum to "State of the

art concerning memory acquisition software: A detailed examination of Linux, BSD and Solaris

live memory acquisition"

 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Carbone, Richard and Bourdon-Richard, Sébastien

 5. DATE OF PUBLICATION

(Month and year of publication of document.)

September 2013

 6a. NO. OF PAGES

(Total containing information,

including Annexes, Appendices,

etc.)

122

 6b. NO. OF REFS

(Total cited in document.)

28

 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,

e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Memorandum

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence R&D Canada – Valcartier

2459 Pie-XI Blvd North

Quebec (Quebec)

G3J 1X5 Canada

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research

and development project or grant number under which the document

was written. Please specify whether project or grant.)

 31XF20 MOU RCMP "Live Forensics"

 9b. CONTRACT NO. (If appropriate, the applicable number under

which the document was written.)

 10a. ORIGINATOR'S DOCUMENT NUMBER (The official document

number by which the document is identified by the originating

activity. This number must be unique to this document.)

DRDC Valcartier TM 2012-319

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be

assigned this document either by the originator or by the sponsor.)

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

 12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the

Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement

audience may be selected.))

Unlimited

 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable

that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification

of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include

here abstracts in both official languages unless the text is bilingual).

(U) This technical memorandum is an addendum to TM 2012-008, “State of the art concerning

memory acquisition: A detailed examination of Linux, BSD and Solaris live memory acquisition.”

It examines in detail two additional software tools, Volatility’s Pmem and LiME’s Linux kernel

memory drivers, both of which can be used for the memory acquisition of Linux-based live

computer systems. The authors then compare them with Fmem and Second Look, the two best

Linux-based memory acquisition tools as per TM 2012-008. Fmem and Second Look are analysed

using the same methodology as for Pmem and LiME. This memorandum also amends information

pertaining to the faulty memory acquisition of Fmem as conducted in the previous study.

Additionally, certain inaccuracies were made in TM 2012-008. This specific text corrects them. As

such, it should now be considered the authoritative reference concerning Linux, UNIX and BSD

memory acquisition, although the experiments as conducted in TM 2012-008 will continue to

remain valid. Finally, upon completing the analysis of these tools, the authors recommend the use

of LiME for investigative fieldwork. However, other tool-specific recommendations are found and

examined in the Conclusion.

(U) Ce mémorandum technique est un addenda au TM 2012-008, “State of the art concerning

memory acquisition: A detailed examination of Linux, BSD and Solaris live memory acquisition”.

Il examine en détail deux outils logiciels additionnels qui peuvent être utilisés pour l’acquisition de

mémoire sur des ordinateurs Linux en exécution, plus spécifiquement les pilotes de mémoire du

noyau Pmem (de Volatility) et LiME. Les auteurs les comparent par la suite avec Fmem et Second

Look, les deux meilleurs outils d’acquisition de mémoire sous Linux selon le TM 2012-008. Fmem

et Second Look ont été analysés en utilisant la même méthodologie que pour Pmem et LiME. Ce

mémorandum corrige également les informations relatives à l’acquisition de mémoire fautive de

Fmem telle que menée dans l’étude précédente. De plus, certaines inexactitudes ainsi portées ont

été inscrites dans le TM 2012-008. Le présent texte les corrige aussi. À ce titre, il doit être

considéré comme la référence faisant autorité en ce qui concerne l’acquisition de mémoire sous

Linux, UNIX et BSD, bien que les expériences menées dans le TM 2012-008 demeurent valides.

Finalement, après avoir complété l’analyse de ces outils, les auteurs recommandent l’utilisation de

LiME pour le travail d’enquête. Cependant, des recommandations spécifiques à d’autres outils sont

aussi examinées dans la conclusion.

14.KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be

helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model

designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a

published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select

indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

BSD; Computer Forensics; Crash driver; DD; Digital Forensics; Fmem; FreeBSD; Helix 3 Pro;

Kernel crash driver; LiME; Linux; Memdump; Memory Acquisition; NetBSD; OpenBSD; Pmem;

Second Look; Solaris; UNIX; Volatility; X-Ways Capture

