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ABSTRACT

The report provides a summary of the organic facies, source rock type and maturation of
organic-carbon-rich sediments (black shale, nannofossil chalk, and limestone) of Middle Jurassic
(Callovian) to Late Cretaceous (Coniacian) age from various DSDP and ODP Sites of central
North Atlantic. Major anoxic events occurred during the Callovian, Aptian-Albian, and
Cenomanian-Turonian which resulted in abundant organic-rich shale and limestone on both sides
of the central North Atlantic. Potential oil-prone (Kerogen Type ITA-IIB), condensate-prone
(Kerogen Type IIB), and gas-prone (Kerogen Type III) source rocks are common on both sides
of the Atlantic. Proportionately, the eastern North Atlantic has more oil-prone source rocks
(Kerogen Type ITA-IIB). Sites 603, 635, 367, 547, 398, 400 have abundant oil-prone source
rocks. About 10-15% of the organic-rich claystone and nannofossil chalks are nonsource
(Kerogen Type 1V) for hydrocarbons. The presence of several horizons of better source rocks in
Callovian and Cenomanian-Turonian age sediments, and higher maturity levels, suggest that there
is good potential for crude oil, condensate, and gas reservoirs to be found within 3000m
(sediment depth from the sea floor) (for crude oil) to 3500m (condensate) depth in the continental

margin of the central North Atlantic region.

INTRODUCTION

In the deep ocean basin, organic matter is being transported through a thick oxidizing
water column. It is therefore believed that bathyal and abassal zone rocks retain only refractory
organic matter. Contrary to the common belief, continental margin (slopes and rises) rocks can
be productive source rocks (SR) to generate crude oil, condensate, and gas (Dow, 1978).
Examples of older deep basin source rocks are the Mid-Cretaceous La Luna Formation of
Venezuela, Miocene Monterrey Formation from southern California, and Permian Spraberry or
Wolfcampian Formations from West Texas which are correlated to several crude oils from those
basins.

Study of the nature and origin of organic matter from the continental margins of the
central North Atlantic was initiated from the wells drilled by Glomar Challanger under the
control of Deep Sea Drilling Project controlled by the Scripps Institution of Oceanography, La
Jolla, California during 1968 to 1984. Some COST wells which were drilled prior to DSDP, also
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added more information. The Ocean Drilling Program (ODP) started drilling in 1985 in the deep
basins of the world. However, with one exception, none of the ODP sites penetrated the Jurassic-
Cretaceous sediments of the central North Atlantic.

The deep ocean sedimentary basins of the North Atlantic were developed as a result of
the breakup of Pangea and formation of the North Atlantic ocean during the early Mesozoic. The
oldest rock was possibly a Triassic shale in Site 547 of the eastern North Atlantic (Hinz et al.,
1982). On both sides of the N. Atlantic, the amount and type of black shale and limestone
(probable SR for oil and gas) changé markedly with location and age. However, they are
concentrated mainly in narrow geological age ranges: Mid to Late Jurassic (Callovian-
Kimmeridgian); late Early Cretaceous (Aptian-Albian) or early Late Cretaceous (Cenomanian-
Turonian) age. A wealth of data are available to define source rock type and maturation from
various sediments of Jurassic-Cretaceous age from the central North Atlantic (Dow, 1978;
Erdman and Schorno, 1978; Kendrick et al., 1978a, 1978b; Deroo et al., 1978a, 1978b, 1979a,
1679b, 1980a, 1980b; Habib, 1979, 1983; Tissot et al., 1979, 1980; Welte et al., 1979; Simoneit,
1679; Timofeev and Bogolyubova, 1979; Cornford, 1979, 1980: Boutefeu, 1980; Tissot and Pelet,
1981; Summerhayes, 1981, 1986; Herbin et al., 1983, 1986; Summerhayes and Masran, 1983;
Hartung et al., 1984; Mukhopadhyay et al., 1984; Rullkotter et al., 1984a, 1984b, 1986, 1987;
Rullkotter and Mukhopadhyay; 1984, 1986; Tyson, 1984; Stein, 1986, 1991). The objective of
the present report is to synthesize various data from the DSDP wells (both sides of the central
North Atlantic) in order to assess the source rock potential and maturation of Jurassic-Cretaceous

sediments which may generate and migrate crude oil and gas to nearby structures.

DATA BASIS

The information used in this review of the amount, type, and maturation of various
Jurassic-Cretaceous sediments are based on : (a) results of the writer’s geochemical analyses and
(b) data extracted from the published DSDP [Initial Report volumes; various other articles
published in a variety of journals; and one ODP Scientific Results volume. A series of organic-
rich rocks from various DSDP Sites from both sides of the central North Atlantic were selected.
Those DSDP Sites are: western Atlantic - 101, 105, 144, 386, 387, 390, 391, 392, 417, 418, 534,
603; eastern North Atlantic - 120, 135, 137, 138, 367, 368, 369, 370, 398, 400, 402, 415, 416,
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545, 547, 549, 550, 551; ODP Leg 101 (Site 635) (Fig. 1).

ACCUMULATION OF ORGANIC MATTER IN CONTINENTAL MARGIN

Relating the types of organic matter (OM) found in deep ocean basin sediments to their
origin requires a knowledge of sediment transport and depositional mechanisms. In a general
sense, it is evident that the accumulation of organic carbon in the recent deep basin is related to
the amount of suspended particulate OM and transformed particulate OM (from the degradation
of dissolved OM by bacteria). Table 1 shows the distribution of particulate organic carbon (pg/1)
and total particulate organic matter (ug/l) in the various basins of the world with an emphasis on
the Atlantic Ocean. Accordingly, the average preserved total organic carbon in deep ocean
sediment is 0.3 (wt. %). The discrepancy between the amount of total organic matter (ug/l) and
total organic carbon (wt. %) in deep sea sediments is dependent on the settling velocity of the
organic particles. Table 2 illustrates the settling velocities of quartz or calcite, vitrinite, inertinite
(fusinite), and amorphous liptinite or alginite (organic aggregates). Amorphous liptinite, derived
from the degradation of pﬁytoplankton, in the form of fecal pellets would have similar or higher
settling velocity to that of fusinite. This data suggest (a) typical pelagic or hemipelagic deep sea
sediments contain too little OM (<0.5%) to be effective source rock, (b) the type of OM present
is not likely to be good hydrocarbon source rock due to degradation of liptinite during distal
transport or during settling through the water column where benthonic reworking leaves only the
refractory and inert organic matter. Dow (1978), however, demonstrated that the total organic
carbon content of recent bathyal and abyssal sediments from the Gulf of Mexico is as high as
0.6% (wt. %) which is 50% greater than threshold values (0.4%) for a source rock (Fig. 2).

Investigation of the deep marine basin sediments from Jurassic-Cretaceous (DSDP wells)
of the central North Atlantic have indicated that some different mechanisms were being
encountered by which the "normal case"” of sedimentation in deep ocean basin is bypassed to
yield potential hydrocarbon source rocks (Welte et al., 1979). In various DSDP wells, there are
abundant Mid-Jurassic to Late Cretaceous black shales or limestone, on both sides of the present
central North Atlantic ocean, with TOC content greater than 0.7%. These dark colored organic-
carbon-rich rocks are possibly related to some form of sporadic or global anoxic events.

Two models are generally proposed for the development of those anoxia. Several authors
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favour ocean-wide stagnation in the deep ocean similar to the Black Sea (Thiede and van Andel,
1677; Demaison and Moore, 1980; Arthur et al., 1984). In this model, anoxic events with the
development of good Type II or II-III (ITA and IIA-IIB) source rocks are formed in a silled basin
where oxygen demand for oxidation of OM exceeds the already reduced oxygen supply (Fig. 3A).
On the other hand, in the productivity model, which is being favoured by most scientists, anoxic
events are formed by different mechanisms and generate excellent Type IIA, HA-IIB, IIB
(Classical Type II and II-III, Tissot and Welte, 1984) and III kerogens (Tissot et al., 1979; Welte
et al., 1979; Habib, 1979, 1983; Rullkotter et al, 1984a, 1984b; Degens et al., 1986; Rullkotter
and Mukhopadhyay, 1986). However, in the second model, nonsource refractory kerogens (Type
IV) are common along with the better source rocks. The mechanism for the deposition and
preservation of OM in deep ocean basins are (Fig. 3B):

- Eolian transport followed by settling through the water body (mainly sporinite and
fusinite).

- Formation of mid-ocean anoxia by phytoplankton bloom in an upwelling region (mainly
tal- and larﬁalginite with AOM 1 and 2).

- Sinking of autochthonous biomass (zoo and phytoplankton, terrestrial exinite, vitrinite
and fusinite) produced in near surface waters (mainly oxidized AOM 1 and
alginite).

- Turbidite flow or slumping - dumping the shallow marine sediments to deep ocean sites
(mixture of terrestrial and marine macerals).

- Sinking of amorphous organic matter as fecal pellets formed in a shallow marine
environment (mainly as AOM 2 and AOM 3).

- Settling of suspended organic matter transported by deep ocean bottom currents in the

nepheloid layer.

ORGANIC CARBON, SOURCE ROCK TYPE, AND MATURATION
Organic Carbon

Organic-carbon-rich rocks of Mid-Jurassic (Callovian) age were observed on both sides
of North Atlantic (Site 534A in the west and 547B in the east) (Fig. 4). Later deposition of black

shale and limestone was concentrated mainly in the Early to Middle Cretaceous (Barremian to
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Coniacian). Although the major concentration of black shale is restricted to Mid-Cretaceous, it
is evident that the occurrences of black shale are not contemporaneous (Fig. 4).

In each Site, the distribution of average organic carbon content closely follows the
distribution of dark-colored rocks (Fig. 5). An average of >1% TOC was observed in Mid-
Jurassic (Callovian) and Barremian through Turonian age sediments on both sides of the North
Atlantic. In Sites 603, 105, 144, 367 and 356, the average TOC content is greater than 3% within
Cenomanian-Turonian rocks. Since black shales account for only 5-25% of the entire lithologic
column, which contains abundant organic-lean (<0.3%) interbedded green and red claystones, the
average TOC per stage varies between 1 and 3%. Some thin Cenomanian to Turonian age black
shale layers in Sites 367, 144, 105, 603 contain more than 5% TOC (Stein, 1986). The highest
TOC content of black shale was observed in Site 367 (33.3%) of the eastern North Atlantic
(Summerhayes, 1981) and in Site 105 (13.6%) of the western North Atlantic (Deroo et al.,
1978a). The organic carbon accumulation rate at the sediment-water interface, which controls the
total organic carbon content in older deep marine rocks, is higher in the eastern basin (20 to 100
gm/cm™/Ma™) in Mid-Cretaceous compared to the western basins (18 to 50 gm/cm™/Ma™) (Stein,
1686).

Kerogen Type

The types of organic matter as seen in the continental margin sediments are quite similar
to those in shallow marine and lacustrine facies (Jones, 1987; Mukhopadhyay and Wade, 1990)
which form Kerogen Types IIA, ITA-IIB, IIB, III and IV source and nonsource rocks. However,
the nature of the OM in some of the Kerogen Types (IIA, IIA-IIB, and IV) are different from
their shallow marine counterpart. As an example, the maceral AOM 2 of Kerogen Type 1IA
source rock in the shallow marine environment, is highly fluffy and shows strong fluorescence.
Compared to that, AOM 2 in the deep marine environment, is in the form of oval-shaped fecal
pellets and shows much less fluorescence. Type IV nonsource rock in the deep basin is mainly
derived from oxidized alginite, AOM, and fusinite.

For distal transport, marine organic matter (lamalginite [dinoflagellate, acritarch, and
coccolith], AOM 2) has low resistance to oxidation compared to terrestrial exinite (sporinite,

cutinite, and resinite). Therefore, Kerogen Type IIA, in a deep marine environment, is only
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preserved by an oxygen deficient regime caused either by upwelling or a high sedimentation rate
(Muller and Suess, 1979; Arthur et al., 1984; Rullkotter and Mukhopadhyay, 1986).

At this time, it is a matter of controversy as to how the terrestrial liptinites are well
preserved in a deep marine environment. Summerhayes (1981) suggested that distance from the
shore plays an important role in controlling the amount of terrestrial OM; better preserved OM
is nearer to the coast. Others have suggested that terrestrial OM in distal marine environments
is mainly controlled by turbidity flows and slumps (Degens et al,, 1986; Rullkotter and
Mukhopadhyay, 1984, 1986). The rapid burial of organic-rich sediments on the continental rise
increases the ampunt of hydrogen and carbon compared to its decomposition to carbon dioxide
and water. Under those circumstances, oxygen depletion starts which forms a temporary anoxia
in the deep marine basin. This leads to the formation of organic-carbon-rich black shale with
Kerogen Type IIA-IIB and IIB. Callovian black shales at Sites 534A and 547B are examples of
this type. Habib (1983), on the other hand, suggested that terrestrial organic matter derived black
shale originated mainly from the deposition of fecal pellets.

Comparing the source rock types at various Sites, it is observed that there is a distinct
linear relationship between hydrogen index (in mg HC/g TOC) and the ratio of terrestrial and
marine organic matter (Fig.6). Except for minor variations, it is evident that marine organic
matter enhances the hydrogen content in a source rock.

Figures 7 and 8 clearly illustrate that marine OM is more abundant in the eastern Atlantic
compared to the western Atlantic. Distinct differences in the Kerogen Type were observed in
different parts of the north Atlantic Basin (Figs. 7, 8, and 9), although they contain similar types
of organic matter. As an example, Callovian black shale from both sides of the Atlantic (534A
and 547B) contain abundant AOM 2 as fecal pellets and have mixed macerals (Fig. 8; Tables 3
and 5). Samples from the west show less fluorescence compared to the east suggesting partial
oxidation of AOM 2 (as fecal pellets) during transport forming dominant Kerogen Type IIB.
Aptian to Turonian organic-carbon-rich rocks from eastern Sites 545, 416, 370, 367, 137 contain
mixed terrestrial and marine macerals forming Kerogen Type IIA and IIA-IIB, whereas late
Jurassic and Valanginian to Albian claystones from eastern Sites 549, 402, 400, 547, 416 contain
mainly terrestrial liptinite and humic OM forming Kerogen Type IIB and III. Aptian to Turonian

organic-rich rocks from western Sites 534, 105, 386, 387, are mainly Kerogen Type IIB and III
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with minor proportions of Kerogen Type IIA-IIB and IIA. On the other hand, western Sites 603,
415, and 416, of the same age, contain more Kerogen Type ITA-IIB.

Kerogen Types of various source/nonsource rocks were determined from various DSDP
Sites using a pseudo-van Krevelen plot‘ (H/C vs. O/C and hydrogen index vs. oxygen index)
(Figs. 10 and 11). Sites 398, 367, 368 contain more AOM 2 forming Kerogen Type ITA-1IB
compared to the black shales from Sites 400 and 402 (mainly Kerogen Types III and IV). Lower
Barremian to lower Maestrichtian sediments from Sites 549, 550 and 551 contain mainly vitrinite
and refractory macerals (fusinite, oxidized alginite of Kerogen Type III and IV (Hartung et al.,
1984). In general, however, with the exception of Sites 400, 402, 550, and 551, Aptian to
Turonian SR’s in the eastern North Atlantic have more oil-prone Kerogen Type IIA-IIB SR than
their western counterpart. Some organic-carbon-rich black shales (TOC = 1-3%) from both areas,
however, contain Type IV Kerogen (having refractory macerals) which suggests that in the deep
basin, TOC content is not the only decisive factor to form a better source rock. Figure 9 shows
a comparable picture of organic matter types from both sides.

Detailed analyses of organic-rich rocks from specific sites show some sequential
variability of organic-carbon and kerogen type (Figures 12-17); Figs. 12-15 are from three
western Sites (105, 534, and 603) and Figs. 16-17 are from two eastern Sites (545 and 547). In
Site 534, some peaks in TOC content are observed in Callovian and Barremian-Aptian age
sediments. The comparable hydrogen index vs. oxygen index plot shows only a few samples with
Kerogen Type IIA-1IB, most are Kerogen Type III (Fig. 13).

Table 3, 4, and 5 shows the organic facies and source rock potential of Callovian through
Turonian rocks from Sites 534, 603, and 547. It shows that in Site 534, the best SR is in the
Callovian and Berriasian to upper Barremian section (Fig. 13; Table 3). The organic matter in
Site 603, on the continental rise off Cape Hatteras, shows peaks in organic carbon content and
hydrogen index values in the Valanginian and Cenomanian-Coniacian forming Kerogen Type IIA-
II3 and B which are derived mainly from mixed macerals (AOM 2, saprovitrinite, and
lamalginite) (Fig. 14; Tablé 4). An organic-carbon-rich section, approximately 8 m thick, from
the late Cenomanian in Site 105, also contains similar kerogen type and organic facies (Fig. 15).
In comparison to Jurassic-Cretaceous sediments of the western Atlantic, organic matter in Sites

545 and 547 shows two peaks of better SR quality (one at Mid-Jurassic and one Albian) which
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forms Kerogen Type IIA-IIB (<5%), IIB (25%), and the rest Kerogen Type IIIL. (Figs. 16 and 17).
Table 5 shows that the best SR’s in Site 547 occur in the Callovian and Albian. A comparison
of organic facies, sedimentological and organic geochemical characteristics of the Callovian
(Table 6) and the Albian (Table 7) SR’s from Sites 534 (west) and 547 (east) suggest that the
eastern source rocks are of better quality.

In ODP Site 635, the Albian-Cenomanian section is organic-carbon-rich (TOC: 0.55-
4.05%); with the hydrogen indices of those sediments varying between 58 and 454 mg HC/g
TOC (Katz, 1988). A plot of HI vs. OI shows most of the SR’s lie between Kerogen Type II and
III, suggesting abundance of Kerogen Type IIA-IIB an IIB (Katz, 1988).

The Pliocene to Pleistocene sections of Baffin Bay and Labrador Sea (ODP Sites 645,
646, and 647) and from Northwest Africa (ODP Sites 658, 657, and 659) are extremely organic-
carbon-rich and have Kerogen Type IIA and IIA-IIB, and IIB which are partially formed in an
upwelling zone (Stein, 1991). However, those sediments were not considered to be productive

source rocks because of their extremely low maturation (T,,.°C: 405 to 425°).

Maturation
Mean random reflectance (% R,) and T,,,, (°C) are the two main parameters used for the
study of maturation of these sediments. Figures 18, 19, and 20 showed the reflectance profile
versus depth of sediments from Sites 391, 534A, 545, and 547A. A comparable maturation profile
of sediments from the Angola Basin (Site 530A, Leg 75) was also demonstrated (Fig. 21).
The following shows the depths below the sea floor at which 0.5% R, (minimum
threshold for abundant generation of liquid hydrocarbons, Tissot and Welte, 1984) were reached

at various Sites.

Sites Depth of 0.5% R,

Site 386 - 950 m (0.37% R,) (Kendrik et al., 1978)
Site 391 ~ 950 m (Dow, 1978)

Site 397 ~ 1450 m (Kendrick et al., 1978a)

Site 398 ~ 1700 m (Kendrick et al., 1978a)

Site 534A ~ 1500 m (Rullkotter et al., 1986)

Site 547A ~ 950 m (Rullkotter et al., 1984b)
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Site 530A "~ 1150 m (Rullkotter et al, 1984a)

Site 545A ~ 950 m (from T,,.; Rullkotter et al., 1984b)
Site 0.45% R
415 and 416 ~ 1600 m (Kendrick, 1978b)

All the above data suggest that Continental Margin Basins of the Atlantic Ocean have
considerably higher temperatures compared to the shelf "basins” (example: Cohasset D-42
[Scotian Shelf] = 0.5% R, at 2500 m). Figures 22 A and B show a plot of T,,,,(°C) versus depth
from two eastern Atlantic DSDP Sites; both figures show an uniform increase of T, values from
360 (equivalent R, = 0.25%) to 430°C (equivalent R, = 0.5%) (Tissot and Welte, 1984).

Considering the presence of a fair number of Kerogen Type IIA-IIB and abundant
Kerogen Type IIB source rocks on both sides of North Atlantic during Callovian, Albian-Aptian,
and Cenomanian-Turonian and a higher heat flow compared to shelf, oil, condensate, and gas

should be common in reservoirs below 3500 m in the continental rise sediments.

CONCLUSION

* In contrast to general belief, deep ocean basins showed pulses of an anoxic environment
during Mid-Late Jurassic (Callovian to Kimmeridgian) and Mid-Cretaceous (Barremian-Turonian
with peaks at Albian and Cenomanian in the east and Cenomian to Turonian in the west). Those
anoxic events are possibly caused by upwelling and turbidity current. Fresh AOM 2 and
terrestrial exinites, mostly in the form of fecal pellets and alginite from shallow marine
sediments, were transported to deeper basin by slumping and turbidity flow.

* Organic-carbon-rich black shales, nannofossil chalk and calcareous claystones are
concentrated at four distinct geological times within the Mesozoic: (a) Callovian-Oxfordian - both
sides; (b) Berriasian-Hauterivian: mainly to the west; (¢) Albian-Aptian: mainly east; (d)
Cenomanian-Turonian: both sides. Most source rocks have 1-5% TOC on both sides of the
Atlantic. High TOC content is not always related to marine organic matter (lamalginite, AOM
1 and 2); some of them are derived from refractory nonsource macerals. Highest TOC content
(33.3% was observed in Site 367 in the eastern Atlantic.

* In general, eastern Atlantic deep marine basins have a fair number of oil and condensate

source rocks (Kerogen Type IIA-IIB and IIB) of Albian-Aptian and Cenomanian-Turonian age
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whereas a majority of western Atlantic SR’s in Cenomanian-Turonian are condensate and gas-
prone. Sporadic good oil source rocks (Kerogen Type IIA-IIB) in Berriasian-Hauterivian, Albian-
Aptian and especially Cenomanian-Turonian in the western Atlantic also observed (example: Sites
105, 391, and 534A). In Site 603 (continental rise off Cape Hatteras) several good Kerogen Type
ITA-IIB SR’s were observed. Typical Kerogen Type IIA SR’s (HI = 550 to 750 mg HC/g TOC)
are extremely rare in deep sea basins of the central North Atlantic. About 10-15% of organic-rich
claystone and nannofossil chalks are nonsource (Kerogen Type IV).

* In the deep marine environment, most pelagic and hemipelagic sediments contain less
than 1.0% TOC due to low diversity of organic species and degradation of organic carbon in the
water column during their transport. The organic matter is mostly oxidized vitrinite and refractory
inertinites, which are formed due to their high settling velocity compared to AOM 2 and alginite;
those OM are gas-prone or nonsource. On the other hand, better quality source rocks (Kerogen
Type ITA-IIB and 1IB), in deep marine environments, are being formed in one of the following
ways: (a) the presence of high sedimentation rate and transportation of OM by turbidity currents
and slumping, (b) formation of a mid-oceanic anoxia caused by the high concentration of
phytoplanktons in a nutient-rich upwelling zone, (¢) AOM 2, formed in an anoxic environment
within the shallow marine zone, is being transported as fecal pellets, and (d) the organic matter
is formed in an anoxic enviroment within a silled basin (similar to deep sediments in the Black
Sea).

* Continental margin SR’s on both sides of the central North Atlantic have sustained
considerably higher paleotemperatures (based on vitrinite reflectance) compared to the Shelf
sediments which is possibly due to their closeness to the rifting centre. The presence of several
horizons of good source rocks in Callovian and Cenomanian-Turonian age sediments, and higher
heat flows, imply the possible existence of crude oil and condensate within 3000 m of the

sediment water interface.
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Total particulate matter and particulate organic carbon
variation with depth: a compilation of literature data

(bracketed values: ranges, unbracketed: means ).

Sources:
a) Brewer et al. (Atlantic)15
b) Menzel and Ryther (Pacific + Atlantic)18

Biscaye and Eittreim (Atlantic)11

McMaster et al. (Atlantic, W. African coast)16
5

Milliman (Atlantic, W. African coast)
T

Wenzel (world mean)
31
17

Karl et al. {(Cariaco Trench)

Gordon (NW Atlantic)32

Parsons and Seki22

)

)

)

e)

f)

g) Huntsman and Barber (Atlantic, W. African coast )

h)

)

)

) Riley (review, N. Atlantic)Eo
)

19

McIver (worldwide)

Particulate Total particulate
organic carbon ( mg/1) matter ( mg/l)
Surface waters, 30(15-52)2 50° 20-80%
eg. O - LOO m (140-420)° 12(95-145)9 140(16-670)%
(100-300)8 (100-250)% (250-750)¢
Mid and deep 5-10P 4(0.5-33)Y 20(12-25)%
waters, e.g. 400 m 10(3-10)F (20)F 3-5°
60(50-75)" (16-50)"
Nepheloid layer, (1.6-3.0)" 20-200%
e.g. <1000 m from 150c
deep sea floor (320)d

sediment accumulation and

lithification

)m

Deep sea sediments (0.3% Corg

Table 1



Settling velocities of spheroidal particles of 10 am diameter

calculated from Stokes law

. 20
experimental values

Settling Time to settle
velocity through 4000 m of
(m sec ') water (yrs)
. a -6 5.0
10 am quartz or calcite 62x10 ,
(density 2,6 g/cc)
.. a -6 L
10 am fusinite 23x10 5,
(density 1,6 g/cc)
e e a -6
10 mm vitrinite 12x10 10,9
(density = 1,3 g/cc)
. -6
5 - 15 um organic 3 to 6x10 22,0
aggregates
Table 2
GAS oIt : B
.60+ j
ORG.
el
WT. %

ot T S
NON-SOURCE

.20+

[
NER!TIC i BATHYAL { ABYSSAL
T T T T

i 2 3 4 6
ENV. ZONES

Mean organic-carbon values in various Gulf
Coast environmental zones. Bars represent standard de-
viation of mean and approximate range in values.
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A. STAGNATION MODEL
ANOXIC SILLED BASIN

0 2 4 6 8
Aerobic /

0,(mi/1)

(e.g. BLACK SEA)

B. PRODUCTIVITY MODEL

Eolian dust

Fluviatile transport

High b|oproduchv1ty
)6

S \\\\\\\\

0

Deep ocean

N &) <‘—,__:__—u—

Sedimentary O ~ currents

® Ptanktonic OM

o Terrigenous OM

SLOPE RISE ABYSSAL PLAIN

LAND  SHELF
General models for the deposition of organic-carbon-rich sediments.
A. Stagnation model of the type “Black Sea”

B. Productivity model, including influences of oxygen-minimum layer, terrigenous input and turbidity currents

(modified after Cornford, 1979).
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Hydrogen index (mg HC/g corg)

200

DSDP Site 534 organofacies types

HI
Stratigraphic age Lithology Cure (") (mghe/g Co) Dominant macerals
Valanginian- Grey limestone; 07 1.8 55 Vilrim}c: umorphogs marine
Cenomanian calcarcous claystone; OM (fecal pclAlcls). mutﬂmllu‘
carbonaceous reeyeled oxidized spores
claystone
Callovian Black nannofossil 28 218 Amorphous marine OM;
claystone amorphous humic OM:

vitrinite: spores, pollen
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Table 3

Great Abaco Mb.
Bermuda Rise Fm. ® Hole 534A
Plantagenet Fm.
C26 to C16 — Maestrichtian to Miocene

Hatteras Fm.

O Hole 391C
C10 to C4 — late Aptian to
Cenomanian

® Hole 534A
C46 to C25 — Albian to Cenomanian

Blake-Bahama Fm.

O Hole 391C
C44 to C11 — early Aptian to late
Tithonian

® Hole 534A
C92 to C47 — Berriasian to upper
Barremian

Cat Gap Fm.
O Hole 391C
C52 to C45 — early Tithonian
& Hole 534A

C11 to €92 — early Oxfordian to

late Tithonian

Unnamed fm.

® Hole 534A
C127 to C112 — early Catllovian to
early Oxfordian

Oxygen index (mg CO5/g Corg)

Diagrams of pyrolyses of the different formations for Holes 391C and 534A (the radii of the cir-

cles are proportional to the total organic carbon content). (C26 = Core 26.)
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DSDP Site 603 organofacies types

HI
Stratigraphic age Lithology Core (%) (mche/g Cor) Dominant macerals
Santonian Variegated claystone  1.55 18 7897 recycled vitrinite
Coniacian Variegated claystone 8.5 346 > 509 sapropelinite
~late Turonian (fecal peliets)
Turonian Black carbonaceous  6-14.5 >400 50%, degraded liptinite
~Cenomanian claystone (fecal pellets?), phytoclasts
Barremian Dark grey 1-38 50-75 primary vitrinite with pyrite
carbonaceous (unusual association)
claystone
Berriasian- Nannofossil limestone 1.5-60 =300 saprovitrinite (coal)

-Valanginian

Table 4

Age

Subb.

Depth) 123 4

N

Organic Carbon (%)
5 6 7 89

Hydrogen Index (mg hc/g Corg)
) 100 200 300 400

Pliocene 4

e. Pliocene

I. Miocene

late

middl

Miocene

5001
€ °

middie

Miocene

Eocene

1000+

?

antonian =

Con.-Tur. -

Cenoman.

Albia

n

Barremian

Hauterivian

15001

Valanginian

Val.—-Berr.

. u
’
14.5]

12.0
i

384

60.2

¢ e OGP
w  Shipboard

Organic carbon and hydrogen index values (from Rock-Eval pyrolysis) for deep sea sediments from

DSDP Site 603 off Cape Hatteras. Circles indicate frozen organic geochemistry panel samples taken at regular

intervals, squares represent small-size samples picked from organic-carbon-rich strata onboard DV Glomar
Challenger.
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Sedimentological, organic pe
Callovian (tentative at Site 547) black s
(Mazagan Escarpment); sedimentology

trographic and organic geochemical characteristics of two
hales from DSDP Sites 534 (Biake Bahama Basin) and 547
data from Sheridan ef al. (1983) and Hinz er al. (1984)

Sample
Site-Core-Section (Interval)

534A-125-5 (127-131 cm)

547B-15-2 (8-12 cm)

Sub-bottom depth

Sedimentology

Corg
Hydrogen index

Maceral composition

Nonaromatic
hydrocarbon
composition

1619.8 m

Black nannofossil claystone, partly
laminated, partly massive or with
graded texture; laminae are
discontinuous concentrations of fine
organic material and pyrite/Fe oxide
particies and/or nannofossil micrite;
common pyrite nodules, minor
bioturbation; synsedimentary
slumping, folds, shear planes;
abundant flattened elongate claystone
intraclasts with phosphate
concretions, fish debris, plant debris;
slope deposition likely (10-15°C
inclination of beds);
Callovian-Oxfordian sediment
topography (seismic reflection) shows
ridges and troughs with 100 m relief
(i.e. local oxygen depletion possible)

2.81%
238 mg he g Corg ™

Amorphous unstructured liptinite
(sapropelinite IT) with small
liptodetrinite, unicellular algae
(minor), spores, vitrinite, minor
inertinite

Dominant pristane and
C,«-isoprenoid, abundant hopenes

and diasterenes. n-alkane maximum at

n-C,s, minor long chain n-alkanes,
significant concentrations of short
chain isoprenoids (C;3~Cis. Cia)s
phytane (<€ pri), 17B(H) hopanes and
17a(H) hopanes

847.6 m

Grayish black fissile claystone within
nodular micrite matrix; upward
gradation from pale yellowish brown
micrite nodules in darker yellowish
brown claystone matrix followed by
darkening matrix with fewer and
smaller nodules with olive gray
claystone underlying
organic-matter-rich black shale on
top; black shale nonbioturbated,
bioturbation increasing downwards,
common pyrite; similar intervals
below Core 547B-17 are severely
disturbed tectonically indicating
occasional downslope shifting of still
moderately soft sediment

4.75%
345 mg hc g Copp ™!

Biodegraded phyto- and zooclasts
mixed with exinite (sapropelinite 11},
spores, vitrinite, minor inertinite

Dominant long chain n-alkanes
(maximum at n-C»;), abundant
shortchain n-alkanes (maximum at
n-C,7). phytane, pristane (phy/pri>1),
hopenes and 173(H) hopanes

Sedimentalogical, organic petrographi i i isti

al. phic and organic geochemical characterist i

claystones from DSDP Sites 534 (Blake Bahama Basin) and 547 (Mazagan Escarp;:;tl)c'ss:::litxgn?ol?(;un
information from Sheridan er al. (1983) and Hinz ef al. (1984) ' &

) Sample
Site-Core-Section (Interval)

534A-34-1 (141-150 cm)

547B-6-1 (77-84 cm)

Sub-bottom depth

Sedimentology

C
Hydrogenindex

org

Maceral composition

Nonaromatic
hydrocarbon
composition

832.5m

Greenish black carbonaceous clay-
stone, common pyrite, silty stringers in
background sediment, abundant
quartz, smectite + kaolinite in clay
minerals (terrigenous); indications for
downslope transport (e.g.
calciturbidites)

1.70%
35mghcgC,,~"
Am(?rphous humic matter (major
portion converted to micrinite).
recycled spores; minor phytoclasts,
sapropelinite Il and vitrinite

Long chain n-alkanes dominant
(maximum at n-C.y), strong
odd-over-even predominance.

pristan.e and phytane minor (pri =
phy). significant concentrations of

178(H) hopanes and hopenes

772.8 m

Dark greenish clay mudstone/clay-
stone with conglomeratic intervals,
mudstone indistinctly laminated with
flattened burrows containing pyrite,
conglomeratic intervals contain highly
flattened and stretched
mudstone/claystone clasts with locally
associated slump folds: hemipelagic
sedimentation on slope with abundant
resedimentation

1.87%
244 mg hc g Cope ™!

Large phytoclasts, unicellular algae
(r_mnor). spores, sapropelinite II,
vitrinite (minor)

Sterenes and steradienes dominant,
abundant pristane and phytane (pri <
phy), intermediate concentration of
n-alkanes (maxima at n-C,, and
n-Csy). significant concentrations of
diasterenes, 17B(H) hopanes and
hopenes

Table 6

Table 7
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Temperatures of maximum pyrolysis yield (T, from Rock-
Eval pyrolysis) versus depth for DSDP Site 545 sediments. Closed
symbols indicate shipboard data, open symbols are from shore-
based studies.
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Temperatures of maximum pyrolysis yield (Tpay from Rock-
tival pyrolysis) versus depth for DSDP Site 547 sediments. Closed
symbols indicate shipboard data, open symbols are from shore-
based studies. Arrows indicate values in excess of 450°C.
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