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3

Introduction

1 INTRODUCTION

One of the major objectives in the field of automatic image analysis when applied to marine sciences is to detect, 

identify, and track sea floor characteristics in underwater video footage acquired by fixed or towed cameras. This 

includes the possibility of using these techniques for future work on Remotely Operated Vehicles (ROVs) and Autono-

mous Underwater Vehicles (AUVs). Recently, the analysis of still photographs and video clips in marine sciences has 

mostly been performed manually by investigation of a determined subset of the data available (e.g., Kostylev et al., 

2001). Automatic feature detection has been applied in marine sciences but the implementation of suitable algorithms 

is particularly complicated  (e.g. Guinan et al., 2009, Jerosch et al., 2006, Lüdtke et al., accepted, Purser et al., 2009). If 

video data comes from a towed system, algorithms have to deal with inadequate battery-powered lighting, and varying 

speed, pitch, roll and altitude of the camera above the sea floor. The quality of a video stream coming from a ship-

powered ROV is enhanced by a more stable speed, more constant height over ground, and more homogenous lighting 

conditions. What both systems have in common is that the algorithms have to track a broad spectrum of known and 

unknown features living on the sea floor.

Digital image processing provides powerful tools for fast and precise analysis of large image data sets in marine 

and geoscientific applications. Facing the increasing amount of georeferenced image and video data acquired by 

ROVs, AUVs, and towed systems, a method of automatic image analysis is required. A new and rapidly-evolving ap-

plication is the combination of video footage and georeferenced frame extraction for sea floor habitat mapping. 

This Open File describes mapping sea floor features efficiently from video footage providing a guideline for every 

required step. This is achieved by

1. developing  a method to extract single frames from the video footage and make them suitable for Geographical 

Information Systems (GIS) (georeferencing the frames automatically), and

2. applying the Geospatial Image Database and Analysis System GIDAS (Lüdtke et al., accepted) on HD video 

frames from the Labrador Shelf, GIDAS provides an approach for a fully automatic detection and the quantifi-

cation of sediment texture on sea floor images/frames on the Labrador Shelf. This is performed based on the 

extraction of textural features from the images and a statistical classification of these features using machine 

learning techniques. The approach includes a quality control based on a crossvalidation of the predictions.

3.  Furthermore, the mapping of the results and discussing GIDAS of being a suitable technique for sedimentological 

seabed mapping forms the concluding scope of the Open File report.
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3 DATA ACQUISITION - VIDEO FOOTAGE LABRADOR SHELF 2010

The Labrador Shelf seabed is known for numerous curvilinear iceberg scours and sub circular iceberg-generated pits 

(Barrie, 1980, Bass and Woodworth-Lynas, 1988, Todd et al., 1988). The scouring potential of an iceberg depends on 

Figure 2 GSCA DeepImager system. 

Figure 1 The red rectangle highlights the area of 
investigation on the Labrador Shelf.

The GSCA DeepImager camera system (Figure 2) is mounted on an integrated sled which successfully completed 

shallow water testing (up to 280 m) on the CCGS Matthew on two cruises (Makkovik Bank, St. Anne’s Bank). It is 

deployed from the stern of the vessel and low-

ered to the seabed.  As the camera system ap-

proaches the seabed, individual components 

are turned on (lights, cameras, etc.) in order to 

minimize power consumption and maximize 

bottom time. 

The HD camera is a downward-looking 

vertical camera which shoots through an opti-

cally-corrected domed viewport to eliminate 

distortion and magnification associated with 

other flat port systems. A viewfinder image of 

several factors like its size, shape, drift velocity, and the drag coeffi-

cient. The scour size depends on the sediment type, its shear strength, 

and the bathymetry (Charia et al., 1980).

To study the effect of icebergs on the seabed, six video transects 

were recorded on the Labrador Shelf (CCGS Matthew 2010–037) 

with the following system and settings:

Camera Name:    GSCA DeepImager
Video Resolution:   HD 1080i
Still Image Resolution:   12.0 MegaPixel
Pressure case viewport:   Optically corrected dome port
System Pressure rating: 4000 m tested.  MBES 300 m (Multi 
   beam Echo Sounder rated for a pressure  
   of 300 m)
Scale Lasers:    2 x 532 nm 5 mW green lasers
Attitude Sensor:    HMR3000 (heading, pitch and roll)
Pressure Sensor:    Valeport IPS
MultiBeam:    Imagenex 837 DeltaT (120 degree swath)
Max. Dive Time:  2 hours on a single charge (tested)
Typical Operation:   Vessel drifts with the system suspended
   1–3 m from the seabed
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Figure 3 Typical seabed still images of sandy and gravelly areas from the Labrador Shelf which were extracted from HD video 
footage. The resolution of these images allows identification of benthic species and sediment types.

what the HD camera sees is viewable on the vessel in real time. This view is used to control the camera system’s alti-

tude above the seabed by means of an operator-controlled remote winch, to judge focus, lighting, etc.  

The HD camera is also capable of shooting still images while recording HD video. The operator can shoot indi-

vidual stills or set the system to automatically collect stills every 15 seconds (recommended mode). Both stills and HD 

video are downloaded when the camera system returns to the surface.  HD video, still imagery and multibeam data is 

georeferenced upon completion of the dive.

Figure 3 shows typical seabed still images of sandy and gravelly areas from the Labrador Shelf which were extract-

ed from HD video footage. The resolution of these images (see section 3.3) allows identification of benthic species 

and sediment types. For this Open File we have used video data crossing a fresh ice scour (CCGS Matthew 2010–037, 

station 6). 

50 cm

50 cm

50 cm

50 cm

50 cm

50 cm
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3 METHODS

3.1 PREPARING THE DATA SETS   

3.1.1 Trimming and Metadata of Video Footage

The HD videos contain many minutes of data that is unusable (deck footage, falling through the water, coming out 

of the water, etc.); video with the extension *.m2ts have to be trimmed into usable data (only shots of the ocean floor) 

using video-editing software such as Picture Motion Browser. Depending on the length of the transect, there is usually 

more than 1 file (*.m2ts) per transect. 

Metadata was extracted containing information in 1 second intervals about the transect (date, time stamp, camera 

settings) as an *.srt file using DVMP Pro 5.

*.srt file example      1
00:00:00,000 --> 00:00:00,700
             11:32:44    60    12dB  AWB   
             05/09/2009  f1.8  0.10  ~ON   
00:00:00;00              AUTO  AUTO        
2
00:00:00,700 --> 00:00:01,701
             11:32:45    60    12dB  AWB   
             05/09/2009  f1.8  0.30  ~ON   
00:00:00;21              AUTO  AUTO        
3
00:00:01,701 --> 00:00:02,702
             11:32:46    60    12dB  AWB   
             05/09/2009  f1.8  0.90  ~ON   
00:00:01;21              AUTO  AUTO 

The information contained within the HD metadata is required externally as an *.srt file for the production of the 

time stamp and the connection with navigation data. An overlay of the metadata is only displayed in the video when 

the metadata (*.srt) and video (*.m2ts, *.avi, and others) have the same name and are located in the same folder. 

3.1.2 Scale

Georeferenced frame extraction can be used on both HD (*.m2ts) and Campod videos (*.avi) as long as the video 

start and end times are known. In order to extract them using the VIDEO-FRAME-GEOREFERNCING-TOOL, the pixel size 

must be defined in metres (assuming the pixel height is identical to the pixel width). 

Calculation of the video scale in meters is done using knowledge of the distance between lasers (10 cm):
 457 pixels ↔ 10 cm = 0.1 m 
     1 pixels ↔ (0.1 / 457) m = 0,0012642225031605563 m

Freeware such as GIMP or IMAGEJ is used to measure the number of pixels between the camera lasers at the begin-

ning, middle and end of the video. The averaged pixel size is applied to the whole station.
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3.1.3 Navigation

Navigation files are made from the files produced by the Track Point. Track Point is a USBL (Ultra Short Base 

Line) subsea acoustic positioning device. Typically, gear which is either lowered or towed from a vessel will use 

USBL to position the instrument relative to the vessel.  The vessel is equipped with a Trackpoint USBL system and the 

lowered target would be equipped with a Track Point Beacon. The system sends out an acoustic ping which is received 

by the beacon on the target. The target beacon responds and this response is detected by the USBL system on the ves-

sel. The response ping is timed and corrected for the speed of sound in water thus giving a range to the target.  The 

USBL system on the vessel also has three transducers in the head aligned very close together (hence the term “Ultra 

Short Baseline”) which are used to triangulate the response ping thus deriving a bearing to the target. Final real-world 

positioning is further derived by knowing where on the vessel the USBL system is installed.

Track Point documents timestamp, geolocation and sometimes depth. Both the movie and navigation files must 

have at least the same starting point (time stamp). Navigation must be in the following format: time y x  (Note: tab-

separated and without header):

● time: OriginalDates hours minutes seconds as long integer: ODHHMMSS (e.g. 248092412)
● y: latitude in UTM coordinates in meters e.g., 4897298.22
● x: longitude in UTM coordinates in meters e.g., 690325.73

Example of a navigation file: OriginalDatesTime, y, x (day-of-year 240, beginning time code of 11:58:50):
240115850 4911909.452 665504.3892
240115852 4911905.084 665498.677
240115854 4911903.72 665493.128
240115900 4911898.815 665492.5344

Figure 4 The JPEG MERGE TOOL.

3.2 GEOREFERENCING STILL PHOTOGRAPHS 

GSC NAVNET JPEG MERGE V1.2 

Still photographs coming from Campod have to be 

encoded with their spatial location in the image (jpeg) 

header. This has to be done with GSC NAVNET JPEG 

MERGE V1.2 (Figure 4) which embeds the geographical 

and UTM coordinates from Trackpoint navigation files 

into the headers of the jpeg exchangeable image file 

format (Exif). It also creates a *.csv file that is used to 

load the positioning information into ED (GSC Expe-

dition Database).
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E.g.: Cruise ID: 2009039 - Stn: 0073 Position: Lat: 44.214952, Lon: -66.610855, E: 690856.29, N: 4898523.31, 

zone: 19

IRFANVIEW 

In order to use GIDAS, the high resolution still photographs must be resized with IRFANVIEW before georeferencing to 

avoid long processing times. The following series of operations are performed on each folder containing images:

● File - Batch Conversion/Rename 
● Work as Batch Conversion
● Advanced
● Resize - Set new size - set long side to 1024
● Add all images in a folder
● Start Batch

Figure 5 The IMAGE-GEOREFERENCING-TOOL.

Note: In order to determine a Course over Ground 
(COG) the tool sorts the images alphabetically.

The  tool uses the UTM coordinates (e.g., E: 

690856.29, N: 4898523.31, zone: 19) coming from 

the jpg header after applying GSC NAVNET JPEG 

MERGE V1.2. to generate a world file for each image 

in the folder. 

This tool is a result of the cooperation with the 

TZI (Germany).

IMAGE-GEOREFERENCING-TOOL

 Open GenerateWorldFiles.jar (Figure 5) and enter three parameters: the path to the folder containing the images, 

the width, and the height of a pixel in metres. Usually the width and height of a pixel have identical values.  

The pixel sizes can be determined as follows:

● same calculation of the image scale in metres as for the videos (see section 3.1.3)
● pixelWidth  =  pixelHeight    = <laser distance in metres> / <laser distance in pixel>
    0.0012642225031605563 m =               0.1 m                    /                    457
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3.3 EXTRACTING GEOREFERENCED FRAMES FROM VIDEO FOOTAGE 

Providing trimmed video footage and navigation as well as metadata (averaged scale and heading) are the last steps 

to generate georeferenced frames from videos using the VIDEO-FRAMEGEOREFERENCINGING-TOOL (Figure 6).

Running the tool - Guideline

1. Include system variables path (location of the tool): e.g., F:\VideoFrameGeoreferencingTool

● ‘My Computer’ right click ‘Properties’ 
● ‘System Properties’, ‘Advanced’ click ‘Environment Variables’
● choose ‘edit’ the variable ‘path’ in the ‘System Variables’
● add the path to the tool location at the end - Note: avoid space characters after the semicolon

Note: you just have to do this once before the first usage

2. Open panel
● ‘Start’
● ‘Run’
● type in open: ‘cmd’

3. Usage

● type in simple command line interface for the software library

Figure 6 Example how to apply the VIDEO-FRAME-GEOREFERENCING-TOOL.

HANDLING:
   gvcmd  [-r <f>] [-T <f>] [-t <f>] [-y <f>] [-x <f>] [-s <f>] [-v] ...
          [--] [--version] [-h] <video> <posfile>

WHERE:
   -r <f>,  --rotation <f>

     camera rotation in radian (Radian = measured angle x 2 x 3.14159265 / 360)
   -T <f>,  --length <f>
     length of the video in seconds
   -t <f>,  --start <f>
     Number of seconds to skip at the beginning of the video file.
   -y <f>,  --scaley <f>
     Pixel size in the y-direction in map units.
   -x <f>,  --scalex <f>
     Pixel size in the x-direction in map units.
   -s <f>,  --skip <f>
     Number of seconds to skip between frames.
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   -v,  --verbose  (accepted multiple times)
     Increase verbosity
   --,  --ignore_rest
     Ignores the rest of the labeled arguments following this flag.
   --version
     Displays version information and exits.
   -h,  --help
     Displays usage information and exits.
   <video>
     (required)  Video file from which to read.
   <posfile>

      (required)  Whitespace-separated or tab CSV file from which to read way points.

HELP

gvcmd --help

EXAMPLES

gvcmd -v -y -0.0012642225031605563 -x 0.0012642225031605563 -s 0.1 F:\TZI\VideoFrameGeoreferencing-
Tool\Test\ST73_VerticalCam\St73_extr.avi F:\TZI\VideoFrameGeoreferencingTool\Test\ST73_VerticalCam\
JD248_UTM.txt

gvcmd -r 5.2883 -v -y -0.00220980 -x 0.00220980 -s 12.0 F:\BIO\Regions\LabradorShelf\Matthew2010\
St06\20100725142235_trimmed.avi F:\BIO\Regions\LabradorShelf\Matthew2010\St06\st6nav.tx

4. Results

Results consisting of video frame jpegs and their respective world files are stored in the same folder as the video 

footage file. They can be imported into a GIS, be overlaid on multibeam data, e.g., in ARCSCENE, or used in other image 

software for further (automatic) analysis such as GIDAS that requires georeferenced images.

20100725142235_trimmed.avi
20100725142235_trimmed.avi_0.jgw
20100725142235_trimmed.avi_0.jpg
20100725142235_trimmed.avi_1.jgw
20100725142235_trimmed.avi_1.jpg

3.4 GIDAS - GEOSPATIAL IMAGE DATABASE AND ANALYSIS SYSTEM

The Geospatial Image Database and Analysis System GIDAS was originally developed for the automatic recogni-

tion of characteristic sea floor features in organic-rich sediments or submarine mud volcanoes (Lüdtke et al. accepted, 

Jerosch et al, 2006). Such features are  bacteria mats and tube worms, as well as gas related features like small pock-

marks in a muddy sea floor or carbonate precipitations. Within the generic framework of GIDAS the analysis of geore-

ferenced images in general is possible and was tested on Labrador Shelf imagery in this study. GIDAS is equipped with 

useful basic functionality, e.g. manual annotation based on a generic classification scheme, GIS file export, access to 

image metadata, coordinate transformation and basic rendering of maps using the OPENMAP toolkit (http://www.open-
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map.org). GIDAS is still under development (TZI, Germany). 

In the following sections 3.4.1 through 3.4.7, every step in the use of GIDAS is described. The keyboard commands 

are given in the GIDAS Guideline section 3.5.

Figure 7 GIDAS screen shot. A generic grid is the basis for the annotation of sea floor features.

3.4.1 Getting Started

In order for GIDAS to be used, Java and postgre SQL with PostGIS and pgAdmin3 options have to be installed. pg-

Admin3 is used to create databases also used by GIDAS. Once the database has been created on pgAdmin3, it must be 

initialized through GIDAS in order to link them both and to import GIDAS data (tables, modules,...) to the database.

 Before the database has been initialized, schemes used for annotating (color-based identifying using hexadecimal 

color codes) must be created as *.xml files and copied into the appropriate GIDAS folder (F:\...\gidas_runtime\sedi-

ment\schema).
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Example of a *.xml multiclass scheme on sediment texture:

<?xml version=“1.0“ encoding=“UTF-8“?>
<schema name=“sediments_multiclass (jerosch10)“> scheme name will appear in GIDAS

<class name=“mud“ color=“00ff00“/>   choose class names and colors
<class name=“sand“ color=“d5c90d“/>
<class name=“gravel“ color=“00ffff“/>
<class name=“cobbles“ color=“0000ff“/>
<class name=“boulders“ color=“ffffff“/>
<class name=“shells“ color=“ff0000“/>
<class name=“Don‘t care“ color=“000000“/>
</schema>

Also, before the database has been initialized, grids used for annotation (for the detection of certain items more 

than one grid sizes might be useful) have to be created. The grid name will appear in GIDAS. Choose the same UTM 

system as for your imagery data coded as SRID (Spatial Reference Identifier). cx and cy define a location in appropri-

ate UTM coordinates near the center of the investigation area. sx and sy define the grid cell sizes in x- and y- direction 

in metres (0.07 = 7 cm). The *.xml files must be created and then copied into the appropriate GIDAS folder (F:\...\gi-

das_runtime\sediment\grid).

Example of a *.xml grid on sediment texture:

<?xml version=“1.0“ encoding=“UTF-8“?>
<grid name=“BoF, 0.07 x 0.07m, NAD 83, UTM zone 20N“ srid=“26920“ cx=“307180“ cy=“4990388“    

       sx=“0.07“ sy=“0.07“>
</grid>

Note: The easiest way to create the scheme and grid files would be to copy existing files and to modify them respec-

tively.

 3.4.2 Data Import and Preparation

Image folders are imported into the database previously created in PGADMIN3 (see section 3.5.1) on GIDAS using the 

correct SRID (Spatial Reference Identifier) following their projection (Note: GIDAS only works on georeferenced im-

ages) using a metric coordinate system such as Universal Transverse Mercator (UTM).  

Once importing has completed, the image region of all the photos must be extracted (using the “extract image 

region” analysis) in order for annotations to occur. If the SRID is incorrectly given when importing, then the image 

region will not be extracted; if the image region is not extracted, then annotations cannot be made. The necessity of 

separating areas with data from areas that contain no data when working with video mosaics. If the program is not 

given the proper georeference (re: SRID), then the grids will not appear on the images and annotating will be impos-

sible. However, two different drop-down menus appear where you can choose the scheme and grid. Annotating can 

then begin by clicking into the cells and overlaying transparent colors according to the previously defined schemes.  
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The purpose of using different grid sizes is to detect the sea floor features most accurately. The decision of the 

best fitting grid can be made by selecting a test data set of images covering all features to be detected and then to run 

through the whole process for a couple of grid cell sizes. The external analysis tool WEKA (see section 3.4.4) will tell 

the user which grid cell size would provide the best prediction results for sediment classes or species in the images of 

the test data set. This grid size should be used for additional annotations which produce the training data set that will 

be used for the prediction on the full data set.  

3.4.3 Annotation and Feature Export of Training Data Set

GIDAS allows the user to annotate image regions based on a georeferenced raster. Users can define the projection 

and the grid cell size of that raster as well as an appropriate classification scheme for the data set. Then users can label 

the grid cells and apply the classes of the scheme. 

The machine-learning approach relies on the statistics of the provided label information. For example, if starfish are 

only labeled on reddish sea floors, then the machine learning will not be able to generalize well on other types of sea 

floor and thus will not be able to detect starfish on, for example, greenish sea floors. The necessary number of labeled 

cells to specify a class can be tested by the help of cross-validation. In general, the more information that is available, 

the better the system will be able to generalize to new image data. Ideally, the labels for a specific class should cover 

all possible appearances for that class. It is recommended to start initially with the test data set of images which were 

also used to test the best grid cell size (see section 3.4.2) and then continue in order to generate the training data set 

with even more images selected randomly by using the Next Image button (see Figure 4).

Note that annotation should be done as consistently as possible for the best application of the machine learning 

algorithm. It is strongly recommended to backup the database regularly (see section 3.5.6).

All cells become analyzed within GIDAS and their texture properties are expressed as 49 texture features such as 

contrast, minimum and maximum gray level, texture line-likeness and directionality, etc. The annotated cells of the 

training data set are furthermore assigned to their appropriate classification class and exported as an *.arff file which is 

a text file with 49 numbers for each cell. Then, GIDAS uses WEKA as an external analysis tool to explore the best model 

of classifiers (e.g., Support Vector Machine, K-nearest neighbors, etc.) to create the training data set. It provides, there-

fore, the possibility to implement not only one but a collection of machine learning algorithms for data mining tasks. 

To determine how many images have been annotated, use PGADMIN3 and apply the following SQL command to the 

database: SELECT COUNT(DISTINCT image) FROM sediment_annotated_cell.
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spective scheme class. WEKA learns the annotations and generates a model (file of type *.model). This model provides 

quality control by means of crossvalidatation which removes one cell from the training data set and predicts the value 

of the removed cell. The process is then sequentually applied to each cell. The successful percentage of prediction  

determines the best classifier which is used to generate the *.model file and later imported into GIDAS. 

The Detailed Accuracy By Class provides metrics for evaluating the correctness of a pattern recognition algorithm. 

Precision and recall can be seen as extended versions of accuracy, a simple metric that computes the fraction of 

instances for which the correct result is returned. The set of possible labels for a given instance is divided into two 

subsets, one of which is considered relevant for the purposes of the metric. Recall is then calculated as the fraction 

of correct-instances among all instances that actually belong to the relevant subset, while precision is the fraction of 

correct instances among those that the algorithm believes to belong to the relevant subset.

It is possible to interpret precision and recall not as ratios but as probabilities. Precision is the probability that a 

(randomly selected) retrieved document is relevant. Recall is the probability that a (randomly selected) relevant docu-

ment is retrieved in a search.

 According to Baldi et al. (2000), the precision for a class is the number of true positives (TP) divided by the total 

number of elements labeled as belonging to the positive class. For example, the number of items correctly labeled as 

belonging to the positive class (TP) divided by the sum of true positives and false positives (FP). FPs are items incor-

rectly labeled as belonging to the class. Recall in this context is defined as the number of true positives divided by the 

total number of elements that actually belong to the positive class (i.e., the sum of true positives and false negatives, 

which are items which were not labeled as belonging to the positive class but should have been).

In information retrieval, a perfect precision score of 1.0 means that every result retrieved by a search was relevant 

Figure 8 WEKA screen shot showing the feature distribution.

3.4.4 Machine Learning Toolkit WEKA

WEKA, developed by Hall et al. (2009), 

is an open source machine learning toolkit 

that contains tools for data pre-processing, 

classification, regression, clustering, asso-

ciation rules, and visualization. It is also 

well-suited for developing new machine 

learning schemes by applying Support 

Vector Machines, K-nearest neighbours 

classifier, C4.5 decision trees, and others 

(Lüdtke et al., accepted). WEKA analyzes 

the similarities of the grid cells using the 

49 features and then puts them in the re-
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with no indication that all relevant documents were retrieved. Conversely, a perfect recall score of 1.0 means that all 

relevant documents were retrieved by the search, but this does not indicate how many irrelevant documents were also 

retrieved.

Often, there is an inverse relationship between precision and recall, where it is possible to increase one at the cost 

of reducing the other. For example, an information retrieval system (such as a search engine) can often increase its 

recall by retrieving more documents, at the cost of increasing the number of irrelevant documents retrieved (decreas-

ing precision). Similarly, a classification system for deciding whether or not, say, a fruit is an orange, can achieve high 

precision by only classifying fruits with the exact right shape and color as oranges, but at the cost of low recall due to 

the number of false negatives from oranges that did not quite match the specification.

Usually, precision and recall scores are not discussed in isolation. Instead, either of the values for one measure are 

compared for a fixed level at the other measure (e.g., precision at a recall level of 0.75) or both are combined into a 

single measure, such as the F-measure. The F-measure is the weighted harmonic mean of precision and recall (Baldi 

et al., 2000) and is the number to be used for the estimation of class and model quality. Learn more about WEKA at 

http://www.cs.waikato.ac.nz/ml/weka/.

3.4.5 Model Application on GIDAS: Annotations and Predictions

The model produced by WEKA is imported into GIDAS and is used to predict classes on the annotated images using 

the correct schema and grid size. At this point the user is able to see where the predictions were made, correct or not, 

by switching between prediction and annotation screens. The model is then applied to the remaining data set.

3.4.6 GIS Performance of the Results

 The data regions (grid cells) of the georeferenced images are extracted as polygons and transformed into world 

coordinates. The polygons are annotated with both the results of the automatic predicted values (presence or absence 

of certain features, quantitative analysis) as well as with the annotated values and exported as a GIS layer (shape file) 

for further processing. A nearest neighbourhood analysis on the cells allows the program to dissolve the huge amount 

of polygons to bigger multi-part polygons within the GIS. Furthermore, a backup option allows the results (annota-

tions and predictions) and the images to be saved efficiently.

GIDAS is still under development through a cooperative arrangement with the Bedford Institute for Oceanography 

(BIO, Canada), the Center for Computing Technologies/University of Bremen (TZI, Germany), and the Alfred We-

gener Institute (AWI, Germany).
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3.5 GIDAS - GUIDELINE

3.5.1 Getting Started

PC AND IMAGE PREPARATION

● georeference images (see sections 3.2 and 3.3)
● install JAVA, POSTGRE SQL including PostGIS and PGADMIN3 options
● copy the GIDAS software (gidas-runtime folder) to an appropriate location

Note: still photographs should be resized before georeferencing e.g. with IRFANVIEW freeware (see section 3.3).

CLASSIFICATION SCHEME

● go to the GIDAS folder (F:\...\gidas_runtime\sediment\schema)
● make one or more copies of an existing scheme and modify the new schema individually

GRID DEFINITION

● go to the appropriate GIDAS folder (F:\...\gidas_runtime\sediment\grid)
● make one or more copies of an existing grid and modify the new grids individually

Note: It is recommended to create different schemes and grids to be able to identify the best fitting grid (depending 
on what features are focussed on; e.g. it would not be possible to identify cobbles applying a 2 cm grid). When the  
database first is initialized, GIDAS does not provide the possibility to add new schemes or grids subsequently.

SERVER/DATABASE GENERATION IN POSTGRE SQL
● open PGADMIN3
● File - Add Server
 Name    individually (e.g.‘Bay of Fundy’)
 Host   localhost
 Port   5432
 SSL   keep blank
 Maintenance DB  postgres
 Username  postgres
 Password same as for POSTGRE SQL installation
 for the remaining options keep the default 

● double click on New Server (e.g. ‘Bay of Fundy’)
● right mouse click on Databases - New Database
 Name   individually (e.g.‘BoF1’)
 Owner  postgres
 Encoding UTF8
 Template template_postgis
 for the remaining options keep the default 
● close pgAdmin3

GIDAS DATABASE ADMINISTRATION

● open start_dbadmin.bat (F:\GIDAS\...\gidas_runtime)
● rider: Initialize  
 Display name: individually (e.g. ‘BoF_sediments’)
 Host   localhost
 Port   5432
 Database name ‘Bof1’ (as defined in PGADMIN3)
 User: postgres 
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 PW: same as for POSTGRE SQL installation

● Initialize button (scroll right). Initialization will be finished as soon the button turns white again from gray.
● close GIDAS DATABASE ADMINISTRATION

● check PGADMIN3. Database ‘Bay of Fundy’- schemes - public - tables should show defined schemes, grids,
classes,... in the distinct tables of the database (table-like button above allows to view the data of the selected 
table) 

● close PGADMIN3

3.5.2 Data Import and Preparation

GIDAS

● start.bat  in F:\...\GIDAS\gidas_runtime (the new database e.g. ‘BoF_sediments’ should appear automatically)

IMPORT OF IMAGES

● right click on Directories, an under-directory of your database (Import directory tree)
● choose the folder containing the georeferenced images and the corresponding SRID

(e.g. 26920 = UTM 20 NAD1983; 26921 = UTM 21 NAD1983)

Note: At that level, all commands (e.g. Batch analyses) are applied to all sub-directories!

DATA REGION

● right click on Directories (Batch Analysis)
● Extract data regions (shows image data regions in a yellow frame after the batch analysis)

EXTRACT 49 FEATURES PER CELL

● right click on Directories (Batch Analysis)
● choose the appropriate grid
● Extract features per cell 
● repeat this procedure for each grid you want to be tested

3.5.3 Annotation and Feature Export of Training Data Set

ANNOTATION

● click on an image and recognize the four tabs in the lower part of the GIDAS window: 
 View  Annotation and Prediction
  Analysis Batch analysis applied to just one image
 Histogram Histogram of the image
 Metadata Metadata of the image

● click View and then Sediment classification and see four evident tabs
 Image Data Regions 
 Data Segments  
 Image Features  
 Annotation/Prediction 
● click Annotation/Prediction
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● choose both, the annotation scheme and the grid
● start to annotate by clicking on the grid cells, more clicks would change the classification classes

Note: By keeping the mouse pressed and by dragging it, the annotation would extend and therefore accelerate the 
process significantly. Start with the test data set which should include all classes (see section 3.4.2) and then continue  
the annotation of more images which are selected randomly by using the Next Image button (see Figure 4).

ARFF-EXPORT

● to export the annotation joined with the cell features click right on Directories (Multi Image Analysis)
● Export training data as ARFF (will create a train.arff file in F:\...\GIDAS\gidas_runtime)

Note: It is recommended to rename the train.arff  because GIDAS would overwrite it applying the next *.arff export.

3.5.4 WEKA

WEKA CLASSIFICATION MODEL 
● got to F:\...\GIDAS\gidas_runtime\lib\modules\sediment
● weka.jar opens the WEKA GUI 
● Explorer
● open file and navigate to the created  *.arff (e.g. train.arff)
● classify (next rider)
● Classifier - Choose (keep the rest default)
 - choose a classifier, either a machine learning function (e.g. SMO, a sequential minimal optimiza-
    tion algorithm for training a support vector classifier applying PolyKernel) or a decision tree classifier
 - by clicking on the name of the classifier you get more tuning options for the classifier
● start
● save model (right click on model in result list) as e.g. ‘BoF1.model’

Note: try different classifiers and compare the percentage of correctly classified instances (cells) applying cross-vali-
dation to identify the best fitting model.

 - SMO with different Kernel, Gamma, try to tune the complexity (higher)
 - RandomForest (Decision Trees, vary number of trees), J48 (C45)
 - For more information on tuning the classifiers see Lüdtke et al. (accepted)

EXAMPLE OF A CLASSIFIER OUTPUT (THIS SUMMARY IS GIVEN AT THE END OF THE WEKA ANALYSIS)

=== Summary ===
Correctly Classified Instances 38               90.4762 %
Incorrectly Classified Instances 4                 9.5238 %
Kappa statistic    0.8014
Mean absolute error  0.2459
Root mean squared error                  0.3276
Relative absolute error  110.6115 %
Root relative squared error  100.5808 %
Total Number of Instances               42     
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The Summary provides a number of statistical mean values accomplished by a cross-validation for measuring the 

differences between values predicted by the WEKA model and the values actually observed. 

=== Detailed Accuracy By Class ===
                 TP        FP    Precision   Recall    F-Measure     Class
                 0.9       0.031      0.9       0.9         0.9                    17
                 1          0.2          0.9       1            0.947                18
                 0          0             0          0            0                       19
                 0          0             0          0            0                       20
                 0.5       0             1          0.5         0.667                21
   0.91     0.136      0.89     0.91       0.887    (Weighted Avg.)

Note: The numerical Id of class 17 etc. can be identified (e.g. mud) in the sediment_annotation_schema_class table of 
the database in PGADMIN3.

=== Confusion Matrix ===
  a   b   c  d  e   <-- classified as
  9   1   0  0  0 |  a = 17
  0  27  0  0  0 |  b = 18
  0   0   0  0  0 |  c = 19
  1   0   0  0  0 |  d = 20
  0   2   0  0  2 |  e = 21

Note: The numerical Id of class a is 17 and can be identified (e.g. mud) in the sediment_annotation_schema_class table 
of the database in PGADMIN3.

The Confusion Matrix shows the distribution of the predictions, e.g. that 9 of 10 cells have been assigned to class 

a, and 1 to class d. 

3.5.5 Model Application on GIDAS: Annotations and Predictions

MODEL IMPORT AND APPLICATION 
● applying prediction on just one image
 - go to Analysis (next to View) in the lower area of the GIDAS window
 - click on Prediction and select the appropriate scheme, model (open model manager, import and name
    model) and grid
 - run (execute arrow under the View tab)
 - click again on the View rider and switch between prediction and annotation

● applying prediction on the whole data set (Directory) or by individual station (sub-directory; e.g. Stn. 6)
 - go to Directory or sub-directory - right click - Batch Analysis
 - click on Prediction and select the appropriate scheme, model (open model manager, import a *.model file
   and specify a model name) and grid
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3.5.6 GIDAS Database Backup 

It is highly recommended to backup the databases regularly. This can be done as follows:

GIDAS DATABASE ADMINISTRATION

● start_dbadmin.bat in F:\...\GIDAS\gidas_runtime (all existing databases should appear automatically)
● left click on database to select the database to be saved
● press Backup button
● choose the folder storing the GIDAS database copies

3.5.7 GIS Performance of the Results

GIS-EXPORT

● shape file export on the whole data set (Directory) or one station (e.g. folder: Stn.6)
● go to Directory or sub-directory - right click - Multipart Analysis
● Export labels

Note: At that level the export will store both the annotations and the predictions per cell. Each cell will be a single 
polygon. A nearest neighbourhood analysis on the cells allow the combination of many polygons to bigger multi-part 
polygons within the GIS (dissolve command). 

The export function can also be used to export annotations before the WEKA-model is applied in GIDAS. An export 

shape file will be created in the  F:\...\GIDAS\gidas_runtime folder. It is recommended to rename the export shape file 

because GIDAS would overwrite it while applying the next label export. 
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4 RESULTS FOR THE LABRADOR SHELF

4.1 GEOREFERENCED IMAGES EXTRACTED FROM HD VIDEO FOOTAGE DISPLAYED IN 3D

For this Open File we used video data from station 6 acquired on the Labrador Shelf in 2010 onboard the CCGS

Matthew 2010–037. The HD camera started to record the seabed in a 3–5 m deep and 20-30 m wide fresh ice scour 

on the Labrador Shelf (see the red line appearing in Figure 9). The transect consists of 21 min 57 sec of video with an 

averaged speed over ground of 0.22 metres per second. The movie covers a distance of 285 m and a mean swath width 

of 2.85 m, therefore, an area of 812 m2 in a water depth of 134–140 m.

The trimmed video footage and correctly formatted navigation were used to apply the VIDEO-FRAMEGEOREFERENCING-

ING-TOOL (section 3.3) and to generate georeferenced frames from the video. The mean pixel size in x- and y-direction 

in metres (according to UTM 21N (WGS84) coordinates) were calculated as x = y = 0.00220980.  A value of 5.2883 

was used for the camera rotation (heading). The number of seconds skipped between frames was defi ned as 12 to avoid 

an overlap of the georeferenced frames, resulting in a frame frequency of 1 frame / 12 sec. The results in this section 

are based on 110 georeferenced images extracted from the video footage of station 6.

Zooming into Figure 9 (see Figure 10a) these georeferenced images can be observed on the transect. They are fully 

georeferenced, meaning each pixel of the image has UTM coordinates. As a result, the images can be draped over  the 

morphology of the sea fl oor three dimensionally. Zooming in even more (see Figure 10b) enables the recognition of 

features like rocks in the images, still draped over the seabed.

Figure 9 The video transect visualized as a 285 m red line in distance on the 3D multibeam. It crosses a 3–5 m deep and 20–30 m 
wide fresh ice scour on the Labrador Shelf (see Figure 6). 
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Figure 10 Zooming slightly into (A) so-called georeferenced images can be seen on the transect (navigation shown as red dots). 
Zooming in even more (B) enables the recognition of features like rocks in the images. 

A

B
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4.2 AUTOMATED DETECTION OF SEDIMENT TYPES ON GEOREFERENCED IMAGERY

4.2.1 Methodological Settings: Classification Scheme and Grid Sizes

The generation of georeferenced images extracted from video footage allows the exact spatial determination of 

seabed features identified on these images. For further analysis this imagery is imported into GIDAS. The annotation 

(Figure 11) is performed by zooming into the images and by manual determination of image areas being either “mud 

or sand” (green), “granules or pebbles” (light blue), “cobbles” (dark blue), “boulders” (white) and “urchins” on sand 

(red). Brittle stars on sand have been assigned to be “mud or sand” and other benthic fauna to be ignored (black). The 

class “don’t care” determines negligible observations of other species or blurry image regions.

Figure 11 Application of the Wentworth (1922) sediment classification system in GIDAS (above). Scale is given by the overlay of a 
15 x 15 cm grid in UTM 21N (WGS84) coordinates. The lower image shows the non-annotated image.
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7 cm - 16 images 15 cm - 32 images 25 cm - 32 images

Correctly Classified Instances 10,322 76.18% 3850 71.67% 1117 65.3216 %

Incorrectly Classified Instances 3227 23.82% 1522 28.33% 593 34.6784 %

Kappa statistic                         0.5074 0.5338  0.4748

Mean absolute error                      0.2316 0.2324 0.2347

Root mean squared error                 0.3249 0.3261 0.3296

Relative absolute error                129.14% 105.52% 98.928  %

Root relative squared error            108.53% 98.31% 95.7399 %

Total Number of Instances              13549 5372 1710

Total Number of Instances per image 847 168 54

Table 1 Statistical mean values resulting from the application of a machine learning model to the three (7, 15 and 25 cm grid) train-
ing data sets given in the summary of the WEKA software. The general trend of the prediction quality is given by absolute numbers 
and percentages of correct and incorrect classified cells after a cross-validation. 

Grain sized is to be determined after Wentworth (1922). This can be performed with the help of the overlaid metric 

grid cells projected in UTM 21N (WGS84) coordinates (Figure 11). 

In this study “mud and sand” have been combined into one class, therefore, are defined as < 0.2 cm. The term “gran-

ules or pebbles” represents a grain size range from 0.2–6.4 cm, “cobbles” 6.4–25.6 cm and “boulders” > 25.6 cm.

In order to test the advantages of different grid cell sized applying the same classification scheme, this study analy-

ses the results of a 7, 15 and 25 cm grid. For the 15 and 25 cm grid, the same 32 images have been fully annotated. In 

the case of the 7 cm grid just 16 of the 32 images have been used for annotation (Table 1) to avoid a large population 

of grid cells (instances) and to maintain statistical comparability. 

4.2.2 WEKA - Summary

The annotated cells provide the basis for WEKA as a collection of machine learning algorithms for data mining tasks. 

In this study 13,579 cells of the 7 cm grid, 5372 cells of the 15 cm grid, and 1710 cells of the 25 cm grid were anno-

tated. Best results were found by implementing a sequential minimal optimization algorithm (SMO) (Platt, 1998)  for 

training a support vector classifier. 

The analysis summary provided by WEKA supplies a number of frequently-used statistical measures accomplished 

by cross-validation. Therefore, differences between the values predicted and the values actually observed were mea-

sured and serve to aggregate individual differences into single measures of predictive power. 

The statistical values in Table 1 consider the mean values of all classes gathered into one analysis and do not allow  

estimations of single classes. The general trend of the prediction quality is given by absolute numbers and percentages 

of correct and incorrect classified cells after a cross-validation. Cross-validation is a method to estimate how accurately 

a predictive model will perform in practice. It predicts a sub-data set of the training data set by using the remaining data 

set. To reduce variability, multiple iterations of cross-validation are performed using different partitions, and the valida-

tion results are averaged over each iteration. Examination of the percentages of correctly classified instances in this study 

shows that the 7 cm grid is the best size to extract the sediment types from the images, with a value of 76.18 % correctly 

classified instances.  
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ID Class
TP FP Precision Recall F-Measure

7 15 25 7 15 25 7 15 25 7 15 25 7 15 25

a mud or sand 0.94 0.91 0.89 0.29 0.19 0.25 0.85 0.80 0.69 0.94 0.91 0.89 0.90 0.85 0.78

b granules or pebbles 0.72 0.82 0.81 0.17 0.25 0.23 0.55 0.64 0.64 0.72 0.82 0.81 0.62 0.72 0.71

c cobbles 0 0.18 0.37 0 0.02 0.03 0 0.54 0.53 0 0.18 0.37 0 0.26 0.44

d boulders 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e urchins 0 0.05 0.05 0 0 0.01 0 0.49 0.36 0 0.05 0.05 0 0.09 0.08

f don‘t care 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Weighted Average 0.76 0.72 0.65 0.22 0.17 0.18 0.66 0.67 0.58 0.76 0.72 0.65 0.71 0.67 0.59

4.2.3 WEKA - Detailed Accuracy By Class 

Compared to the general investigation of the cross-validation, a more detailed view of the prediction accuracy was 

performed by means of analyzing statistical measures by class.

F-measure is a measure of a test’s accuracy. It considers both the precision and the recall of the test to compute the 

score. Precision is the number of correct results divided by the number of all returned results and recall is the number 

of correct results divided by the number of results that should have been returned. The F-measure can be interpreted as 

a weighted average of the precision and recall, where an F-measure reaches its best value at 1 and worst score at 0.

According to the F-measures in Table 2, the results of this study are reasonable for the classes “mud or sand” and 

“granules or pebbles”. However, the results proved to be poor at identifying “cobbles” and useless for the identifica-

tion of “boulders”, “urchins” and “bedrock”. The value for cobbles improves with increasing grid cell size, while the 

measures for “mud or sand” gets worse. 

Table 2 Metrics to evaluate the correctness of a pattern recognition algorithm. Precision can be seen as a measure of exactness or 
fidelity, whereas recall is a measure of completeness. True positive (TP) is the number of items correctly labeled as belonging to the 
positive class;  false positives (FP) are items incorrectly labeled as belonging to the class. F-measure is a weighted harmonic mean 
of precision and recall and most suitable for quality estimation and comparison.

4.2.4 WEKA - Confusion Matrix 

The issue of prediction accuracy is strongly related to the frequency of occurrences of each class. When a cell in 

doubt is assigned to the biggest class of the training data set, the probability of a correct classification is larger than if it 

is assigned to a less frequently occurring class. The probability increases with the percentage of  the class in the train-

ing data set. Therefore, it is important to know these numbers to be able to interpret the results properly. For a better  

comparison of the class sizes, Table 3 shows the distribution of the instances assigned to classes for the three models 

(“Total of Instances” and “% of Total”). The optimal distribution would be evenly distributed instances in order to 

avoid weighted percentages in the predictions. This problem is reflected by the percentage of “% Wrong” instances 

that are incorrectly predicted. 

The 7 cm grid is obviously not feasible at all to recognize classes other than “mud or sand” and “granules or 

pebbles”. This model achieves the best results for these two classes respectively, but is not reasonable to make any 
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statement about any other class. The prediction results of this model is 

dealing with two instead of six classes which increases the probability of 

a correct assignment for them. This has to be taken into account by mak-

ing a decision about the best model. 

The 15 and the 25 cm grid both have their advantages and disadvan-

tages. Both show a better distribution of the classes compared to the 7 

cm grid but still have a high accuracy rate (F-measures) in predicting 

“cobbles”, “boulders” and “urchins”. The 25 cm grid is the only model 

reaching an approximative good value for cobbles while the 15 cm grid 

supplies better predictive values with regard to “mud or sand” and  “gran-

ules or pebbles”.  

Furthermore, the confusion matrix in Table 3 shows in which class the 

wrong instances have been assigned to.

4.2.5 GIS PERFORMANCE

GIDAS provides both the annotated and the predicted values as a shape 

file. The export of the resulting shape file can take several hours depend-

ing on the number of images and the grid cell size (number of cells to be 

exported), because each cell will be exported as a single polygon. 

The visualization of the results highlights the differences in the three 

chosen models. The upper part of Figure 12 shows  the annotations on 

the three training data sets, respectively: manually determined image ar-

eas being either “mud or sand” (orange), “granules or pebbles” (blue), 

“cobbles” (red), “boulders” (yellow), and “urchins” (green). The class 

“don‘t care” in black determines negligible observations as other species 

or blurry image regions. 

 The lower part of Figure 12 visually presents the predictions applied 

to the remaining data set. Therefore, the model developed by WEKA on the 

basis of the training data sets were imported to GIDAS. GIDAS is able to as-

sign the model to the full data set and to generate a shape file of the results 

(annotations and predictions). 

All three models are able to identify sedimentological transition areas 

from fine sediment (“mud or sand” in orange) to coarse fractions (“gran-
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Figure 12 GIS performance 
of the results.
Upper three panels: Annota-
tions on training data sets: 
manually determined image 
areas being either “mud or 
sand” (orange), “granules or 
pebbles” (dark blue), “cob-
bles” (red), “boulders” (yel-
low), and “urchins” (green). 
Black color determines neg-
ligible (“don‘t care“) and  
light blue non-annotated im-
ages areas.
Lower three panels: Results 
of the prediction model de-
veloped by WEKA applied to 
the remaining data set by 
means of GIDAS.

PREDICTION

ANNOTATION

7 cm

7 cm

25 cm

15 cm

15 cm

25 cm

granules or pebbles

granules or pebbles

granules or pebbles

granules or pebbles

granules or pebbles

granules or pebbles
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PREDICTION

ANNOTATIONFigure 13 Detailed GIS per-
formance of the results.
Upper three panels: Annota-
tions on training data sets. 
The manually determined 
image areas being either 
“mud or sand” (orange), 
“granules or pebbles” (blue), 
“cobbles” (red), “boulders” 
(yellow), and “urchins” 
(green). The class “don‘t 
care” in black determines 
negligible image areas. 
Lower three panels: Predic-
tion model developed by 
WEKA applied to the remain-
ing data set by means of 
GIDAS overlain onto georef-
erenced video frames.

7 cm

7 cm

25 cm

15 cm

15 cm

25 cm

granules or pebbles

granules or pebbles

granules or pebbles

granules or pebbles

granules or pebbles

granules or pebbles
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Figure 14 3D-visualization of the 15 cm grid prediction results.

ules or pebbles” in blue). The 7 cm grid gives no information about any additional class, the 15 cm grid predicts some 

“cobbles” and “urchin” areas, but the confidence in these areas is not high (see % Wrong in Tables 3 and F-measure in 

Table 2). This particular prediction inaccuracy is strongly related to the low rate of occurrences of these classes. The 

only model making a statement on all annotated classes is the 25 cm grid, although the frequency of some classes is 

so low that they are not recognizable in Figure 12. 

Zooming into a section of the transect (see Figure 13), the differences in the annotation as well as in the predic-

tions become more visible. The transition from fine- to coarse-grained sediments are observable even by eye on the 

non-annotated images. Exemplarily, the 3D-visualization of the 15 cm grid results highlights the correlation between 

sediment composition and the fresh ice scour on the Labrador Shelf (see Figure 14). 

granules or pebbles
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5 SUMMARY AND DISCUSSION

This Open File provides a method for gathering and mapping sea floor features from video footage. It provides a 

guideline through the essential procedure which starts with the video and ends with the visualization of the automati-

cally-extracted image information in a GIS. 

To accomplish this, single frames of the footage have to be extracted and then georeferenced automatically by 

means of the VIDEOGEOREFERENCINGTOOL, which writes world files for each image. Thus, these images are fully geore-

ferenced and can be visualized in 3D, draped on the contour of the seabed. 

The Geospatial Image Database and Analysis System GIDAS (Lüdtke et al., accepted) is designed to work with geo-

referenced images. It is a generic software that allows the use to define the classification schemes and the cell sizes 

used for the annotation of the image features. These cells are part of a georeferenced grid. A set of 49 low-level image 

features are assigned per cell which describes their visual properties such as contrast, roughness, and texture. Image 

features are “classical statistical” and “structural textural” attributes which are widely applied to image classification 

tasks in different domains (Haralick et al., 1973; Haralick, 1979; Tamura et al., 1978; Wu and Chen, 1992). 

With these features, a prediction model is generated using WEKA which is a collection of machine learn-

ing algorithms for data mining tasks. The quality of the model is assessed by cross-validation. This technique is 

mainly used in settings where the goal is prediction and testing the accuracy of a predictive model in practice.  

The best results were found by implementing a sequential minimal optimization algorithm (SMO) (Platt, 1998) for 

training a support vector classifier. 

After the application of the WEKA model to the remaining data set in GIDAS, every single grid cell is assigned to a 

class of the classification scheme. Both, annotations and predictions can be visualized in GIDAS as well as exported as 

GIS-readable shape files. 

The complete procedure is summarized in Figure 15. The processing path follows the wide gray line which starts 

with the data acquisition and georeferencing, crosses the analysis framework GIDAS for annotation purpose, corre-

sponds to the support vector machine in WEKA, implements GIDAS again applying the WEKA model, and ends with the 

visualization in a GIS.   

 The quality of the fully automatic detection and quantification of sediment texture with GIDAS depends strongly on 

grid cell sizes and the sizes of the features to be detected. All three models, the 7, 15 and 25 cm grid, provide reason-

able results for “mud or sand” and “granules or pebbles” and were able to identify transition zones in the sediments 

from fine- to coarse-grained sediments. The numbers resulting from the cross-validations show that the 25 cm grid 

would be the best one to include the cobbles into the analysis. An even bigger cell size would possibly improve the 

results for cobbles, but may be at the expense of the other classes. None of the analyzed grid cell sizes is apparently 

Figure 15 on page 31 Summary of the method.
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Z Z Z Z Z Z Z Z Z Z Z Z Z Raster data is obtained by collecting still 
photographs and video footage. The lo-
cation information delivered with them 
is usually a pair of coordinates for each 
image coming from a navigation system 
referred to a time stamp. Thus, to use the 
raster data sets in conjunction with other 
spatial data, you may need to georeference 
them to a map coordinate system. A map 
coordinate system is defi ned using a map 
projection (a method by which the curved 
surface of the earth is portrayed on a fl at 
surface). Georeferenced raster data may be 
viewed, queried, and analyzed with other 
geographic data. 

Single frame e.g. every 10 seconds extracted and georeferenced from the 
video streams (*m2ts or *.avi) and the navigation input using the VIDEO-
FRAME-GEOREFERENCING-TOOL developed in cooperation with the TZI.

High Defi nition Camera
- digital (*.m2ts) data 
- time stamp extraction using DVMP-

PRO-5.0 software
- conversion to uncompressed *.avi 

using EMICSOFT MTS CONVERTER for 
video mosaicking purpose

Campod Camera
- video tapes
- time stamp on screen
- digitization to uncompressed 

*.avi 

VIDEO FOOTAGE

STILL PHOTOGRAPHS

HD Camera mount-
ed onto Campod 
Heavy (DFO)

Camera system at-
tached to the DFO 
Campod frame 

Time stamp and 
coordinates

Navigation

GEOREFERENCING

Image space
units: pixel Coordinate space

units: meters, feet, 
others

Machine learning is a scientifi c discipline that is con-
cerned with the design and development of algorithms 
that allow computers to change behavior based on data, 
such as from sensor data or databases. A major focus of 
machine learning research is to automatically learn to 
recognize complex patterns and make intelligent deci-
sions based on data. Hence, machine learning is closely 
related to fi elds such as statistics, probability theory, data 
mining, pattern recognition, artifi cial in-
telligence, adaptive control, and theoreti-
cal computer science. 
The computational analysis of machine 
learning algorithms and their perfor-
mance is a branch of theoretical com-
puter science. Because training sets 
(annotations) are fi nite and the future is 
uncertain, learning theory usually does 
not yield absolute guarantees of the per-
formance of algorithms. Instead, proba-
bilistic bounds on the performance are 
quite common. 

All images, annotations and predictions, 
projections,... are stored in a postgis data 
base analysis in PgAdminIII for further 
analysis in GIDAS. 
GIDAS is equipped with useful basic func-
tionality, e.g. manual annotation based on 
a generic classifi cation scheme, GIS fi le ex-
port, access to image metadata, coordinate 
transformation or basic rendering of maps 
using the OPENMAP (tm) toolkit (http://www.
openmap.org).

GIDAS allows the user to annotate image regions based on a geo-
referenced raster. Experts can defi ne the projection, the grid cell 
size and label the overlaying raster cells as the appropriate scheme 
class (classifi cation). Also the labels are coming from a generic 
system which can be modifi ed individually by the expert.
The machine-learning approach relies on the statistics of the pro-
vided label information. For example, if starfi sh are only labeled 
on reddish sea fl oors, then the machine will not be able to gen-
eralize well on other types of sea fl oor and thus will not be able 
to detect starfi sh on, let’s say, greenish sea fl oors. The necessary 
number of labeled cells to specify a class can be tested by the 
help of cross-validation. In general, the more information that is 
available, the better the system will be able to generalize to new 
image data. Ideally, the labels for a specifi c class should cover all 
possible appearances for that class.

ANALYSIS FRAMEWORK GIDAS

APPLY PREDICTION MODEL IN GIDAS

GIDAS GIS-TOOL: 
POLYGON-EXPORT OF ANNO-
TATIONS AND PREDICTIONS

Performing the model on the remaining data set to automatically 
detect sediment types or sponges in images which have not been 
assessed before.

MACHINE LEARNING IN WEKA

GIDAS Computes texture
            features

Further analysis and habitat mapping by means 
of a GIS or  statistical analysis software.

Expert Annotation within 
GIDAS

Single still photographs can be georeferenced using the IMAGE-GEOREFERENC-
ING-TOOL developed in cooperation with TZI as long as the geoinformation is 
stored in the image header (after performing GSC NAVNET JPEG MERGE,.

The expert labels expressed 
as texture features of the 
‘training data set’ are used 
to generate a quality con-
trolled model applying a 
machine learning algorithm 
using an external open-
source software (WEKA).

All cells become analyzed within GIDAS and their 
texture properties are expressed as 49 texture fea-
tures (as contrast, minimum and maximum gray 
level, texture line-likeness and directionality,...). 
The annotated cells of the training data set are fur-
thermore assigned to their appropriate classifi ca-
tion class and exported as an *.arff- fi le (text fi le 
with 49 numbers for each cell). 
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suited to predict boulders or urchins. 

GIDAS is a suitable technique for sedimentological seabed mapping restricted to grain sizes smaller than boulders.

Remarks

●  grid cells that are numerous and too small may lead to mistakes in annotation; the users eyes get tired and cause 

inattentive annotation

●  the smaller the cell the better the prediction for small sea floor features and vice versa

●  the full image annotation of a certain percentage of the data set provides the frequency distribution of each fea-

ture class; this may lead to the awareness that not all classes can be found by automatic detection

●  combined results of fully automated predictions and manual annotations (in case of rarely appearing features)  

can yield significant improvements in the final outcome

●  using the results of more than one grid cell size (while detecting the same sea floor features) is not recom-

mended

●  the focus on evenly distributed classes regarding the annotation of the training data set would improve the sig-

nificance of the metrics for evaluating the correctness of a pattern recognition algorithm (Table 2), the confusion 

matrix (Table 3) and the annotation regarding the frequency of instances by class 

●  the F-measure (Table 2) is most suitable for quality estimation of the prediction model and for comparison of 

the single classes

●  the confusion matrix in Table 3 indicates to which class the incorrectly-predicted instances have been assigned

Marine research in epibenthic sea floor communities relies strongly on the use of high resolution cameras to ana-

lyze the species composition and their correlation to depth and sediments, as well as their spatial distribution. How-

ever, the video material currently can not often be used to its full potential as the analysis is time- and labor-intensive 

and requires the input of taxonomic experts. 

Automatic image analysis is mainly based on classic image processing techniques using color, texture, and shape 

features. Different analysis approaches have different strength. Our ongoing work focusses on testing existing ap-

proaches using the video material from the Bay of Fundy where is a good chance in texture recognition for grain sizes 

and benthic species that cover large areas (e.g., Bryozoa/Hydrozoa mixtures).
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