| | | | | Τ | $\overline{}$ | Τ | | Geotechnical Parameters | | | | | | | Typical | | | |--|---------------------------------|-------------------------------------|---|--|----------------------------|--|---------------------------------|-------------------------|---|---------------------------------|---------------------------------------|----------------------------------|--------------------------------------|--|---|---|---| | | Sedime | ent Unit* | Lithology with simplified vertical stratigraphic sequence differentiation | Geologic Setting | Distribution
Nature | Nature of upper
surface | Cone
resistance
(MPa)**** | Unit Weight
(kN/m3) | Undrained
Shear
Strength
(kPa) | Moisture
Content
(%)**** | Plasticity
Index
(PI)**** | Friction
Ratio, Rf
(%)**** | Internal
Friction Angle
(deg.) | Perceived Engineering Factors | Sediment
Thickness
Range | Comments on thickness | Sediment
mobility** | | | 7. post-glacial sand and gravel | sand; minor silt
and gravel | fine silty sand with gravel and shells | below paleo-low-stand***; Smooth-surfaced blanket deposit, sand dominated in some areas and gravel dominated in others, usually overlying glacial till. Reaches several meters thick, such as partially filling iceberg scours but locally thins to zero, yielding patchy distribution where gravelly underlying surface protrudes | blanket | near planar; minor relief
where iceberg scoured | 5 - 10 | 16 - 20 | 20 | ainly accordir | ng to gravel co | n < 1 | | loose sediment; some sediment suspension and redistribution; low repose angles | 0 to 3 m | sand mainly accumulated in local
topographic lows (e.g. base of
paleo iceberg scours); thins
gradually toward greater water
depths | rare, small
bedforms; little
mobility | | | | sand dominant | medium to coarse sand and fine gravel and
some shells, well sorted. Includes
occasional superimposed fine gravel and
shell patches | above paleo-low-stand***; distribution largely a function of bedform distribution stemming from during period of lower sea-level; shoreface-connected sand ridges represent largest sand bodies; elsewhere thin and patchy with patchyness controlled by bedform type and degreee of development | | near planar; minor relief
where iceberg scoured;
(less than 2 m) or large
bedforms (less than 1 m),
o rsmall bedforms (cm to
10s cm) or sand ridges (up
to several m) | <15 | 18.0 - 21.0 | | 15 - 20 | | < 1 | 36 - 42 | loose sediment; some sediment suspension and redistribution; low repose angles | m thick, but can occur up to 10 m | sand thickness mainly a function
of the height of moribund sand
ridges; very thin in ridge troughs
up to many m thick at ridge apex;
only cms to 10s cm thick in
sandwaves and ripples | rare, small
bedforms | | | | gravel dominant | gravel cobbles and boulders, minor sand;
local erosional remnants of till | basal gravel lag from paleo-coastal
working; well developed near <i>paleo-low-stand***</i> | , | near planar; minor relief
where iceberg scoured | | 20.0 - 22.5 | | 20 | | | 38 - 45 | boulders on upper surface and possibly
embedded in cohesive matrix (till) below;
unlikely that "hardground" (see unit 3) also
occurs in this unit | 1 to 2m | thickness of gravel lag
unresolved; likely < 1 m but may
be up to a few metres | n/a | | 2. Total Quaternary section 4. uppermost Till and post-till muds | | 8. post-glacial
marine mud | Cohesive and soft silt and clay with minor sand. Rare Ice-Rafted Detritus (IRD) including gravel | Soft clay and silt ponded in basins Restricted to inner bays and deepest parts of Downing Basin, unmapped occurrences are also present in small mid-self basins. Smooth surfaces are Soft clay and silt ponded in basins; up to 15 m thick; restricted to inner bays and deepest parts of large and small shelf-situated basins; subtly conformable to onlapping internal stratification. | continuous
blanket | generally smooth;
occassionaly relict iceberg-
scoured (not unit 9) or
local thin sand with minor
gravel | | 17.5 - 19.5 | 10 - 90;
typically < 35 | 20 - 65 | | | | uppermost muds are soft; limited area of shallow gas in glacial sediments | 1 to 10 m, locally
thicker in fjords
and fjord-like
bays | generally continuous blanket,
strong trend to thickening
basinward | rare; possibly thin sand mobility layer a base of steepest slopes but this is likely relict | | | dppermost im and post | 5. glacimarine
mud | Cohesive, poorly sorted sandy, silty clay
with rare IRD-derived gravel | Mud-dominated deposits; proximal and distal proglacial, rapidly deposited in quiescent (sub-glacial or sub-sea-ice). Poorly sorted, cohesive, relatively barren, sandy, clayey, silt, with minor gravel. Can be laminated or banded on local and regional scales. Conformably overlies basal unit. Generally confined to large and small basins and channels. Local unconformities in channel infill in shallow central shelf area | continuous
blanket | Smooth, unscoured (by paleo icebergs) surface for proximal, stratified, draped muds; Occurrences above paleo- iceberg scour depth are turbated, some completely, and have iceberg scour pattern with surface relief of metres | | | | | | | | numerous narrow glacial sediment-filled
buried channels, both mapped and
unrecognized represent a contrast with
adjacent, non- channelized surroundings | 1 to 10's of m | generally continuous blanket,
strong trend to thickening
basinward | rare; possibly thin sand mobility layer a base of steepest slopes but this is likely relict | | | | latest
(uppermost) till | generally cohesive diamict (poorly sorted
clay and silt with gravel cobble and
boulders embedded in the matrix), boulder | thin(<15m) on outer and inner shelf; locally thick (>80m) in shelf-crossing | blanket, sheet or
ridge | Glacial sculpting (depositional and erosional) creates regional ridges and troughs and channels with tens of m relief across many km. NE NL shelf area has examples of very high roughness due to glacitectonics. Local smaller scale roughness due to relict iceberg scour with several metres relief across 10's to 100's metres | 6 - 20 | 18.0 - 20.0 | typically less
than 100;
some tills
< 25; can be
over 500 | 16 - 45
typically
30 - 40 | N/A; | 3 - 8 | 35 - 43 | spatially variable overburden thickness; Overburden is cohesive with boulders, mostly concentrated at seabed; extent of weakest tills is restricted; relict iceberg scours with cobble/boulder berms create relief of metres over horizontal spans of 10s to 100s m; no surficial sand mobility with exception of rare, small fields; numerous communications cables | highly variable (0
to 100s m);
generally thickest
in shelf-crossing
troughs | locally reduced confidence identifying overburden thickness due to strong acoustic scattering with highest resolution seismic systems | | | | 3. Til | concentrated gravel, cobble and bou | can be larger than 1 m diameter, more concentrated gravel, cobble and boulder content at upper surface; possibly gravel layers, especially where tills are stacked; local overlying sand veneer | | | | 30-60 | 21.0 - 22.5 | 110 to 170
typical; 200
and > 500
locally | 19-20 | effective
cohesion 25
to 35 kPa | | 32 - 46 | as above but high strength may also be a factor; "hardground" experienced in outer shelf areas- may be largely a digenetic "bedrock" phenomenon (de-watering, cementation?) but may also be an old (high strength) till phenomenon | | | | ^{*} generic and stratigraphic classification as in Section 6.1 of report ^{**} Sediment mobility modeling suggests seabed stress sufficient to mobilize the sediment on a frequent basis (during most storms) in areas shallower than 100m. Similarity of textural details over multiple years suggests little uni-directional or long-distance flux. ^{***}Paleo-low-stand of sea-level during the latesst and post-glacial phase of low sea-level was situated at about 110 m in outer shelf, 75 m in inner shelf, 50 m in southern NL inner bays ^{****}From Sonnichsen and King, 2002