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Geochemistry of snow around the copper smelter at
Rouyn-Noranda, Quebec: comparison of 1998 and
2001 surveys

D.A. Kliza!, G.F. Bonham-Carter', and C. Zdanowicz>

Kliza, D.A., Bonham-Carter, G.F., and Zdanowicz, C., 2005: Geochemistry of snow around the
copper smelter at Rouyn-Noranda, Quebec: comparison of 1998 and 2001 surveys; in Metals in
the Environment Around Smelters at Rouyn-Noranda, Quebec, and Belledune, New Brunswick:
Results and Conclusions of the GSC MITE Point Sources Project, (ed.) G.F. Bonham-Carter;
Geological Survey of Canada, Bulletin 584, 25 p.

Abstract: Two snow surveys were conducted (1998 and 2001) in the region surrounding the copper
smelter at Rouyn-Noranda, Quebec.

Total loading rates of metals per year (ng/cm?a) were determined for a large suite of elements, of which
13 (Cu, Pb, Zn, Cd, As, Sb, S, Ag, Ni, Al, Mg, Fe, Mn) are reported on here. The spatial distributions of
loading rates of smelter-derived metals from both survey years show a bull’s-eye pattern centred on the
smelter, skewed northeast and southeast of the smelter as a consequence of the prevailing wind directions.
Most element patterns can be divided into two parts, a proximal part close to the smelter with high loading
rates dominated by deposition of smelter-emitted metals and a distal part in which loading rates approach an
ambient background level and metals are predominantly from non-smelter sources. The radius of the area
obviously affected by metal emissions is usually about 50 km. The differences in deposition rates for
smelter-derived metals (Cu, Pb, Zn, As, Cd) between the two sampling years may be explained in part by
changes in reported emissions between 1998 and 2001.

All samples were thawed and filtered. Dissolved and particulate fractions were analyzed separately. The
proportion of total metal in dissolved form provides an indication of potential bioavailability. It differs
among elements, between years for the same element (due to changes in filter size), and, for some elements,
with distance from the smelter.

Résumé : Deux études portant sur la neige ont été respectivement menées en 1998 et en 2001 dans la
région de la fonderie de Rouyn-Noranda (Québec).

On a calculé les taux de charge totaux annuels (ng/cm?/a) d’un grand nombre d’éléments, dont 13 (Cu, Pb,
Zn,Cd, As, Sb, S, Ag, Ni, Al, Mg, Fe et Mn) font I’objet du présent article. Du point de vue spatial, les taux de
charge en métaux émis par la fonderie et établis pendant les deux études susmentionnées sont répartis
concentriquement depuis la fonderie, mais en biais vers le nord-est et le sud-est en raison des vents
prédominants. La plupart des éléments ont pu étre répartis en deux groupes, un a proximité de la fonderie, ol
les taux de charge élevés se rattachent surtout a des métaux émis par la fonderie, et un autre a une plus grande
distance de la fonderie, ou les taux de charge se rapprochent des concentrations de fond et se rattachent
principalement a des métaux qui ne sont pas issus de la fonderie. Le rayon de la zone ou il est évident que des
émissions de métaux ont été déposées mesure dans I’ensemble environ 50 km. Les différences de taux de
dépot de métaux émis par la fonderie (Cu, Pb, Zn, As et Cd) relevées entre les deux années d’échantillonnage
peuvent s’expliquer en partie par des variations d’émissions rapportées de 1998 a 2001.

Tous les échantillons ont été dégelés et filtrés. Les fractions dissoutes et particulaires ont fait 1’objet
d’analyses distinctes. La proportion de métaux dissous est un indice de leur biodisponibilité potentielle. Elle
varie selon les éléments, d’une année a une autre pour un élément donné (en raison de 1’ utilisation de filtres
de différentes dimensions) et, dans le cas de certains éléments, selon la distance par rapport a la fonderie.

1 Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, Canada K1A OE8
2 Geological Survey of Canada, 562 Booth Street, Ottawa, Ontario, Canada K1A OE4
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BACKGROUND

In certain environments, snow is an excellent sampling medium
for studies of metals and other substances transported in the
atmosphere. In many parts of Canada, precipitation falls as
snow during the winter, usually November to April. Barring
the occurrence of melting periods, the resulting snowpack
records a sequence of precipitation events (wet deposition)
and dry atmospheric fallout (dry deposition), thereby provid-
ing a sample of atmospheric deposition integrated over the
time from first snow until the time of collection. Consequently,
chemical and mineralogical investigations of regional snow-
pack (and ice) are becoming widely used in regions with suf-
ficiently cold winters as a medium to characterize emissions
from industrial, urban, and other sources (e.g. Barrie and Vet,
1984; Dick and Peel, 1985; Shewchuk, 1985; Wolff and Peel,
1985; Chan and Lusis, 1986; Philips et al., 1986; Gorzelska,
1989; Grosch and Georgii, 1989; Landsberger et al., 1989;
Jickells et al., 1992; Wolff, 1992; Lazareva et al., 1993;
Malakov and Senilov, 1993; Hinkley, 1994; Ayras et al.,
1995; Niskavaara et al., 1996; Reimann et al., 1996; Viklander,
1996; Hinkley etal., 1997; Viskari etal., 1997; Yakhnin et al.,
1997; Gregurek et al., 1998; Hudson and Golding, 1998;
Sakalys et al., 1999; Ingersoll, 2000; Kaasik et al., 2000;
Rosman et al., 2000; Sherrel et al., 2000; Simonetti et al.,
2000a, b). The chemical composition of snow changes both
spatially and temporally due to various factors such as the
local sources of material emitted to the atmosphere
(including anthropogenic and natural sources), weather con-
ditions, topography, forest cover, redistribution by wind, and
others (Colbeck, 1981; Wolff, 1992; Reimann et al., 1996). In
order to determine the extent of contamination of the environ-
ment around a point source, it is necessary to determine the
ambient background of atmospheric fallout (i.e. the loading
rate in the absence of the smelter) in the study area. Once this
ambient background is established, the spatial patterns of
chemical elements deposited in snow (corrected for ambient
background) provide information about the influence of the
point source, the distance of transport of emissions deposited
during the winter months, the loading rates of metals with dis-
tance and direction from the smelter, and the availability of
smelter-derived metals in readily soluble form.

As part of the Geological Survey of Canada’s Metals in
the Environment (GSC MITE) initiative, tWwo snow surveys
(1998 and 2001) were completed around the Horne smelter, a
copper smelter that has been operating since 1927 in the
Quebec town of Rouyn-Noranda (Fig. 1). Their purpose was
to characterize the chemical footprint of smelter emissions
transported by the atmosphere. The winter 1998 snow survey
successfully defined the size of the footprint around the
Horne smelter and provided a comprehensive picture of
metal distribution in the snow — how metal levels change
with distance from the source and what processes controlled
metal deposition (Telmer et al., 2004). The 1998 sampling
distribution was restricted mainly to samples along three
radial traverses (northwest, northeast, and south), and the far-
thest sample was 50 km from the smelter. This left some
uncertainties about the spatial representivity of the survey.
Would a second survey provide a similar pattern? Is 50 km a
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great enough distance to reach ambient background levels? If
samples were not restricted to radial traverses, would the radial
deposition pattern observed in the 1998 survey change shape?

In addition to changes in the sampling pattern, some
minor changes were made to the site selection and laboratory
protocol used in 1998. The 2001 sites were restricted mainly
to locations on frozen lake surfaces to avoid the possibility of
contamination from the soil surface and ‘wicking’ of metals
from the ground upward into the snow by capillary action. The
1998 samples were thawed and filtered using 0.45 pum filter
paper, whereas the filter size for the 2001 samples was
0.1 wm. Thus the proportion of ‘soluble’ to ‘particulate’ frac-
tions differs to some degree between the two years due to this
change in filter size, and this must be considered in the
interpretation.

MATERIALS AND METHODS

Regional snowpack

Two snow surveys (1998, 2001) involved collecting 160
samples over approximately 75 000 km? of the area surround-
ing the Horne smelter (Fig. 1). The sample density was higher
close to the smelter and decreased with increasing radial
distance from Rouyn-Noranda. All samples were collected
before mid-March to avoid the spring melt. Ideally, sampling
in mid-March in this region of Quebec provides a measure of
total wintertime accumulation. Details of both surveys have
been documented in Kliza et al. (2000, 2002).

In 1998, snow was collected between March 10 and 12
within a 50 km radial area around the smelter (Fig. 1). A total
of 82 sites were sampled and at every tenth site, a field dupli-
cate was collected, giving a total of 93 samples. Where practi-
cal, sampling was done on a 9 km? grid close to the smelter,
and along three radial traverses, with a sample spacing of
about 3 km. Samples were collected by helicopter or truck. Sites
were not restricted to lake surfaces or type of location, except
that sample locations were always at least 25 m from aroad.

The snowpack in the 1998 survey incorporates about 129
days of atmospheric metal accumulation from November 5 to
March 12. The mean snow depth was 81 cm, and the snow
was typically dry and heterogeneous, and composed of two
types of snow. Generally, the top section was made up of soft
“fluffy’ snow whereas the bottom section was composed of
hard granular snow crystals. A total of 183.7 mm of snow pre-
cipitation was reported at the Rouyn-Noranda airport weather
station, with rare days of wet precipitation mixed with snow
not accumulating more than 2 mm. The wind direction for
these four winter months was dominantly to the south and
southeast as demonstrated by the wind rose for that time
period (Fig. 2).

The 2001 snow survey used a different radial sampling
scheme designed to fill in some gaps in the 1998 coverage,
and in particular to provide information about the area farther
than 50 km from the smelter. A total of 57 sites were
sampled, out to a distance of approximately 275 km from
Rouyn-Noranda (Fig. 1). The samples were concentrated in
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Figure 1. Location map showing sample sites for 1998 and 2001 surveys. Note that the 1998
survey was restricted to a maximum distance of 50 km from the Horne smelter and concentrated
on three radial traverses, whereas the 2001 survey extended to 275 km from the smelter and
provided more coverage east and southeast of the smelter.
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Figure 2. Wind roses for winter 1997-1998 and 2000-2001. The length of each 10° sector shows the
proportion of time that wind was blowing toward that direction. The roses were drawn using the program by
Baas (2000). Data from Rouyn-Noranda airport (YUY).
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the southeast quadrant in the dominant wind direction for the
winter months, as established from historical wind records.
Most samples were collected by helicopter, using preselected
sites on the surfaces of relatively small frozen lakes, thus
eliminating contamination by soil and minimizing effects of
ground vegetation. Any slush existing at the lake—snow inter-
face was excluded. At most stations, samples were taken
about 10 m from the landing point in undisturbed, relatively
clean snow. At 11 of the 57 sites, a duplicate sample was
taken, giving a total of 67 samples.

The 2001 snow was dry and light and visually homoge-
nous. Pack depth varied from 19 to 96 cm, averaging 64 cm
depth. A total of 142.5 mm of snow was reported at the
Rouyn-Noranda airport. Snowpack samples represented three
months (about 99 days) of snow accumulation. For this
period (November 17 to February 23), temperatures remained
at or below freezing with no melting events. Figure 2
illustrates that the dominant winds were from the northwest
(37.8 %) and southwest (33.5%).

Sample handling and processing methods

Procedures for sampling snow are described in detail in Kliza
etal. (2000, 2002). At each sample site, snow depth was mea-
sured with a plastic measuring stick. Samples were collected
using an 8.26 cm outer diameter, clear Lexan (polycarbonate)
tube approximately 1 m in length. The inner diameter of the
tubes changed slightly between the two surveys (1998 = 8.9
cm, 2001 = 8.8 cm), and this difference was considered in
computing deposition loading rate per unit area of ground.
The snow tube was cleaned at each site by dipping it into the
snowpack three times to remove any contaminating dust or
moisture. The tube was then pressed through the snow to the
ice of the frozen lake surface, forcing the snow up into the
tube. For samples taken on a soil surface, the tube was
stopped approximately 3 cm from the surface, the depth pre-
determined by a preliminary probe. A polycarbonate plate
was used to plug the bottom of the core tube so as to ensure
that no sample was lost during withdrawal. Each snow sam-
ple was put into a clear, 0.1 mm thick polyethylene bag mea-
suring 30 cm by 46 cm. The plastic bag was then folded over,
rolled, and sealed with white plastic electrical ties to make the
bag airtight and prevent contamination during storage.
Sample bags were packed around with snow in Styrofoam
coolers for transport to the laboratory and then transferred to
a freezer unit.

All processing was carried outin a ‘Class 100’ clean room
at the Geological Survey of Canada in Ottawa. Samples were
brought out to thaw approximately 24 h before the day of
preparation. The outside of each sample bag was thoroughly
washed with deionized water and checked for any punctures
or cracks. Samples were weighed to determine the total mass
of snow. Each sample bag was placed into another unused
bag in order to contain the snow meltwater in case the sample
bag leaked. To begin melting, samples were placed on a
countertop until slushy (approximately 6 h). Partly melted
samples were subsequently moved to a refrigerator to continue
melting at temperatures of approximately 4°C for 12 h.
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Sample preparation involved the separation of dissolved
and suspended particulate matter using a vacuum filter appa-
ratus. The 1998 samples were filtered through preweighed
Durapore® membrane filters at the conventional boundary
(0.45 um) for dissolved material. The 2001 samples were fil-
tered through stacked 0.45 and 0.1pum Durapore® membrane
filters to ensure the collection of fine atmospheric dust, met-
als bound in colloids, metal organic complexes, inorganic
complexes, and free inorganic ions. The membranes were
stacked to prevent clogging of the 0.1 um filter by straining
off the coarse fraction first. The stacked membranes were
dried and analyzed in combination, as the sample was too
small to analyze the 0.1 to 0.45 um fraction separately. The
volume of filtrate was recorded to provide a measure of the
amount of snow in the sample. The filtered meltwater was
separated into aliquots. One aliquot was preserved by acidifi-
cation with 0.4% HNOj;. The filter membranes were placed in
a covered Petrie dish to dry, then weighed. Tables 1 and 2
summarize the list of elements, instrumentation, and detection
limits.

The filtered meltwater contains the fraction of the deposited
material that occurs in dissolved, rather than particulate,
form, and therefore provides an estimate of the most readily
available metals (potentially important for impact studies).
However, the particulate fraction may also contain metalsin a
relatively available form (particularly in the 0.45 to 2 um, for
example), so the total loading values (combining the two
fractions) may give a more reliable picture of metal deposi-
tion for use in impact studies. The total load provides an
estimate of the total dry and wet deposition of material
(including aerosol particles) accumulated since the first
snowfall of the winter.

Table 1. List of elements analyzed in meltwater, showing
analytical method and detection limit.

Symbol Element Method Units Detection
limit
Ag Silver ICP-MS ppb  0.05,, 0.005,
Al Aluminium ICP-MS ppb 2,
As Arsenic ICP-MS ppb 0.1,
Ca Calcium ICP-ES ppm 0.02,,
Cd Cadmium ICP-MS ppb  0.05,, 0.02,
Cr Chromium ICP-MS ppb 0.1,
Cu Copper ICP-MS ppb 0.1,
Fe Iron ICP-MS ppb 5,
Mg Magnesium ICP-ES ppm 0.005,,
Mn Manganese ICP-MS ppb 0.1,
Na Sodium ICP-ES ppb 504,
Ni Nickel ICP-MS ppb 0.2,
Pb Lead ICP-MS ppb  0.01,,
S Sulphur ICP-ES ppm 0.15,, 0.05,
Sb Antimony ICP-MS ppb  0.01,,
Zn Zinc ICP-MS ppb 0.5,
11998 snow samples (<0.45 um)
22001 snow samples (<0.1 um)
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Table 2. List of elements analyzed in particulate fraction,
showing analytical method and detection limit.

Symbol Element Method Units Detection
limit
Ag Silver ICP-MS ppb  0.001,,0.0001,
Al Aluminium ICP-MS ppb  0.04,,0.1,
As Arsenic Hydride-ICP-MS,, ppb  0.0044, 0.2,
ICP-MS,
Ca Calcium ICP-ES ppb 044,
Cd Cadmium ICP-MS ppb  0.001,, 0.0004,
Cr Chromium ICP-ES ppb  0.02,
Cu Copper ICP-MS ppb  0.002,,
Fe Iron ICP-ES ppb 0.1y,
Mg Magnesium ICP-ES ppb 0.1y,
Mn Manganese ICP-MS ppb  0.002,,
Na Sodium ICP-ES ppb 14,
Ni Nickel ICP-MS ppb  0.004,,
Pb Lead ICP-MS ppb  0.0002, ,
S Sulphur ICP-ES ppb 112
Sb Antimony ICP-MS ppb  0.0002,, 0.002,
Zn Zinc ICP-MS ppb  0.014,
1998 snow samples (> 0.45 um)
22001 snow samples (> 0.1 um)

Laboratory methods

Table 1 lists the elements determined by inductively coupled
plasma (ICP) emission and mass spectrometric methods on
filtered meltwater, after preservation with 0.4% nitric acid.
Detection limits for some elements differ a little between the
two years. Table 2 lists the elements determined by the same
methods, after dissolution of the filtered particulates with a
hydrofluoric acid-aqua regia mix. Again, detection limits for
some elements differ between survey years. Dissolved
organic carbon values were determined for the filtered but
unpreserved aliquots and pH was determined on unfiltered
samples. These results are not shown here, but are available in
Kliza et al. (2000, 2002).

Concentration data (ppb) were recalculated to total mass
of metal deposited per unit area of ground per year (ng/cm?a)
using the sampling tube cross-section area and sample vol-
ume and annualized assuming that the deposition rate is con-
stant over a year at each location. In this way, the two years
can be compared even though the period of deposition repre-
sented by the samples, and the tube cross-sections, differ
between years. Combined total-load data are given for each
year (Table 3,4), with a ‘% soluble’ field following each ele-
ment field to indicate the proportion of the total that is either
less than 0.45 pum (1998) or less than 0.01 wm (2001).

RESULTS AND DISCUSSION

The results are summarized for four aspects of the work, as
follows: 1) maps showing spatial patterns observed in the
metal-loading data; 2) summary statistics from fitting models
to the data for both years; 3) comparison of metal concentra-
tion values with those reported in the literature and their
classification according to a published scheme; and 4) informa-
tion on metal solubility and how this changes with distance
from the smelter.

D.A. Kliza et al.

Spatial and multivariate patterns

Figure 3 shows a series of maps for the 1998 and 2001 sur-
veys by element, with the sample locations superimposed.
Spatial interpolation was carried out using an inverse-distance
weighting method (an option in Vertical Mapper™; an add-on
program to MapInfo® GIS; see Northwood Geoscience,
1999, p. 24-28), to convert the element values known at the
sample locations to a continuous geochemical surface. These
surfaces were then colour-coded using a colour ramp ranging
from blue (low values) to red (high values), controlled by
percentiles of deposition rate for each element, as shown in
Figure 3. Thus, the 90t percentile is shown approximately by
the transition from yellow to green and the 50t percentile is
approximately at the blue—green transition. Although the
interpolation error on these maps differs from place to place
depending mainly on the local sample density, the maps give
a graphical representation of the main spatial patterns present
in the data. Dot plot maps (requiring no spatial interpolation)
are also available in Kliza et al. (2000, 2002).

Although a radial bull’s-eye pattern centred on Rouyn-
Noranda is prominent for most elements (the top 10% of the
data loading rates usually occur within 10 km of the smelter),
some exceptions exist. For example, many elements have ele-
vated rates about 40 km east of the smelter where a sample
was taken close to the main east-west road (see for example,
Zn values in the 2001 survey in Figure 3). This sample was
taken close to a road and was almost certainly contaminated
by road dust. The interpolation procedure produced a large
‘high’ on the geochemical surface simply because there were
no other nearby samples to constrain the estimation proce-
dure. Had interpolation been carried out by kriging, the
kriging variance in this area would have indicated great
uncertainty, because the interpolated values were affected by
a single point only.

The effect of prevailing wind direction on these maps is
not as great as might be expected. There is some suggestion
on certain maps (Sb for example) of a southeastward elonga-
tion of the contours. However, this is uncertain and may be
controlled at least in part by the uneven sampling distribution
pattern

As described by Telmer et al. (2004), three spatial pat-
terns describe the distribution of elements in snow around the
Horne smelter. First, a strong to moderate smelter-centric
pattern exists for some metals that normally occur in low con-
centrations in snow (e.g. Pb, Cu, As) and are known to be at
significant levels in the smelter emissions. A second pattern
presents little or no relationship to the smelter, but is gov-
erned more by other sources of variation such as weathering
of rocks, dust, road dust, urban emissions, highway emis-
sions, and others (e.g. Al, Mg). A third pattern represents a
mixture of both factors. This inference is supported partly by
single element patterns, but also by multi-element patterns
derived by multivariate statistical analysis.

A principal-components analysis of 13 elements in the
2001 data (log transformed to stabilize the variance) shows
that the first two principal components define two major fac-
tors (Fig. 4). Samples can be considered in terms of mixtures
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of two end members — a smelter end member and a geologi-
cal end member. The elements lie along a general trend
between these two extremes, as shown on a plot of PC-1 ver-
sus PC-2 (Fig. 4). For example, As, Sb, Cu, Ag, Pb, and Cd lie
close to the smelter end member, whereas Al, Mg, Mn, and Fe
are associated with the geological end member. Sulphur,
zinc, and nickel lie somewhere between these two groups,
with some influence from both factors. Sulphur appears to lie
off the main trend, possibly indicating a somewhat different
chemical behaviour. This interpretation is similar to the one
made by Telmer et al. (2004) on the basis of the 1998 snow
survey and confirms that the 2001 data behave comparably to
the 1998 data.

Summary statistics

Because of the strong radial pattern in the element maps,
two-dimensional plots of each element versus distance from
the smelter provide good summaries of the spatial distribu-
tions and models fitted to the data values give useful sum-
mary statistics about key parameters that help to characterize
the distance of transport of emissions from the smelter. For
example, the plot for copper (Fig. 5a) shows that Cu values
decrease rapidly by three orders of magnitude within a dis-
tance of about 40 km from the smelter. Note that the 1998 and
2001 surveys show good agreement where they both overlap
(within 50 km from the smelter), but the 2001 values taken
beyond 50 km indicate that deposition rates continue to
decrease and therefore the ambient background levels from
the 1998 data are somewhat biased upward.

Background values shown on the plot and ‘distance to
background’ values are derived from a model fitted by non-
linear least squares to the data (Bonham-Carter and McMartin,
1997; Bonham-Carter and Kettles, 2001). The model satisfies
the relationship

X

y=po+h2" +e W
where y is the natural logarithm of the metal deposition rate
(ug/cm?/a; please note that Tables 3 and 4 and Figure 3 show
metal loading rates in ng/cm?/a, whereas the modelling and
statistical results are reported in [Lg/cm?/a), X is the distance
from smelter (km), B, is the natural log of the deposition rate
at an infinite distance from the smelter, (B, + 3,) is the natural
log deposition rate very close to the smelter (at x = 0), A is the
‘half distance’ at which the natural log deposition rate has
dropped to (B + 3;)/2, and € is an error term. By fitting this
model to the data, estimates of the three parameters and
their standard errors can be obtained. The estimated metal
concentration, ¢, is then

—X

&=exp(y) =exp(By + B, 2 1 ). @)

The ambient background deposition rate toward which
the model tends with increasing distance from the smelter is
exp(B,) ng/cm?a. The distance to background can be arbi-
trarily defined as the distance (x;) km at which the modelled
value reaches the background value plus one standard error of
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Figure 4. Principal components scores based on an analysis
of elements from 2001 snow data. PC-1 is dominated by
smelter metals and PC-2, by elements associated with
weathering of silicate minerals.

the background (because this is an exponential model, the
model value never actually reaches the background value
until at an infinite distance from the smelter, but of course it
approaches background much closer). The expression for this
value is given by

SE(B,) 3)
2 131

where SE(f3)) is the standard error of B, obtained from the fit-
ting process. The value of x; is not the final distance travelled
by elements from the smelter; rather, it is a relative measure
for comparing element behaviour and is the distance beyond
which the variability in the background effectively makes it
statistically difficult to separate elements from a smelter from
other sources of elements in the atmosphere. Undoubtedly a
significant proportion of the smelter loading travels farther
than this distance, as discussed by Bonham-Carter et al. (2005).

x, =—Alog

Table 5 summarizes the values of the model parameters
generated by fitting equation (1) to the 1998 and 2001 data for
each element. Figure 5 provides plots of element-loading ver-
sus distance with both years on the same graph, and models
for both years superimposed. In both the table and plots, the
samples close to the road running east of Rouyn-Noranda and
suspected of being contaminated by road dust, have been
excluded from the analysis (sample numbers RNO1-50,
RNO1-51, RNO1-52, RNO1-53, RNO1-54, RNO1-55, and
RNO1-56). Table 6 summarizes the background and distance
parameters, with the elements in the order of increasing dis-
tance of transport, based on 1998 data. A column for each
year also shows the median values for samples collected
within 50 km of the smelter. A comparison of 1998 and 2001
medians (more than 50 km), background, and distance values
is shown as three columns of ratios.
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The following paragraphs summarize the results for each
element, beginning with the smelter-related elements. Note
that in Table 6, the most ‘smelter-centric’ elements (Cu, Pb,
Sb, As, Zn) are at the bottom of the table, because the travel
distance (size of smelter footprint) is greatest for these ele-
ments. Elements such as Mg, Al, S, Fe, and to some extent Ni,
Ag, and Cd have a smaller footprint size and the influence of
the smelter gets ‘lost’ in background at shorter distances from
the smelter.

Because the median values within 50 km may be affected
by the different spatial distribution of samples between the
two years, an inset in Figure 5 shows a plot of the median
metal-loading rates for 10 km intervals, starting from the
smelter and increasing to 50 km, between 1998 and 2001.

Copper

Perhaps not surprisingly, copper (Fig. 5a) has the largest
smelter footprint (approximately 50 km for 1998, approxi-
mately 58 km for 2001), consistent with the fact that the
Horne is a copper smelter (although lead emissions are much
higher than copper emissions — see Table 7). Copper back-
ground value is approximately 0.067 pg/cm?/a (1998) but is
lower at approximately 0.044 pg/cm?/a for 2001. This is
because the distal samples taken in the 2001 survey at dis-
tances of more than 50 km from the smelter show that the
background value is lower than what would be obtained from
samples taken only out to 50 km from the smelter (as was the
case in 1998). In fact, the data for samples taken within 50 km
of the smelter are remarkably similar in both years, as is
confirmed on the inset medians plot for Cu.

Lead

Lead (Fig. 5b) has the next largest smelter footprint (approxi-
mately 50 km for 1998, approximately 46 km for 2001).
Major differences occur between the two years, with 1998
levels being higher than 2001 levels at every distance. For
example, the median Pb loading rate for samples closer than
50 km from the smelter is 1.060 pg/cm?a in 1998 and 0.103
ng/cm?ain 2001, or 10 times lower in 2001. The inset medi-
ans plot shows that this difference is systematic, with consis-
tently higher 1998 medians over each 10 km interval. The
reason for this is uncertain. Lead emissions were 150 tonnes/a
in 1998 and 65.3 tonnes/ain 2001, or 2.5 times lower in 2001;
however, this difference appears to be insufficient to explain
the differences in lead content in snow between the two years.

Antimony

The two Sb curves (Fig. 5c¢) give similar estimates of back-
ground (0.0022 pg/cm?a vs. 0.0019 pg/cm?a) and similar
footprint radii (approximately 47 and 41 km), but the median
values out to 50 km indicate a systematically larger loading in
1998. Emissions data were not available for this metal, but the
reduction in loading rates in values is likely related to a
decrease in emissions.
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Table 5. Summary of model parameters fitted to element data for the 1998 and 2001 snow surveys.
Element 1 2 3 4 5 6 7 8 9 10

[Year Bo SE(B,) By SE(B,) A SE(A) exp(Bo+B+) exp(Bo) X, Res

unit km km pg/cm?/a pg/lcm?/a km
Cu-1998 -2.699 0.144 6.710 0.180 8.96 0.65 55.2020 0.0673 49.6 0.432
Cu-2001 -3.146 0.197 6.635 0.629 11.46 1.90 33.4817 0.0430 58.2 0.837
Pb-1998 -2.552 0.258 5.935 0.252 10.92 1.42 29.4593 0.0779 49.4 0.601
Pb-2001 -3.547 0.162 5.752 0.648 9.23 1.62 9.0703 0.0288 47.6 0.750
Zn-1998 -2.282 0.137 4.775 0.207 7.76 0.82 12.0975 0.1021 39.7 0.477
Zn-2001 -2.265 0.158 4.801 0.848 6.79 1.62 12.6291 0.1038 33.5 0.809
Cd-1998 -5.894 0.162 3.728 0.231 8.08 1.26 0.1146 0.0028 36.6 0.541
Cd-2001 -5.356 0.116 4.109 0.772 5.39 1.27 0.2874 0.0047 27.7 0.629
As-1998 -3.846 0.173 5.622 0.220 8.83 0.94 5.3441 0.0214 441 0.527
As-2001 -4.449 0.169 5.844 0.756 8.27 1.58 4.0350 0.0117 423 0.816
Sb-1998 -6.113 0.221 6.020 0.242 9.87 1.15 0.9112 0.0022 471 0.587
Sb-2001 -6.266 0.175 6.564 0.820 7.88 1.42 1.3472 0.0019 41.2 0.858
Al-1998 0.792 0.061 1.734 0.272 3.11 0.76 12.5034 2.2078 15.0 0.354
Al-2001 0.713 0.170 1.311 0.740 8.54 7.21 7.5685 2.0401 25.1 0.815
Fe-1998 0.308 0.080 3.379 0.260 3.99 0.52 39.9249 1.3607 21.6 0.420
Fe-2001 0.043 0.198 3.710 0.978 7.45 2.75 42.6488 1.0439 315 0.988
Mg-1998 -0.353 0.113 1.180 0.364 4.04 214 2.2864 0.7026 13.7 0.594
Mg-2001 -0.563 0.177 2.371 0.636 10.30 4.56 6.0982 0.5695 38.5 0.789
S-1998 2.150 0.143 0.680 0.239 7.16 5.77 16.9455 8.5849 16.1 0.535
S-2001 1.977 0.088 0.977 0.311 10.39 5.50 19.1825 7.2210 36.1 0.389
Column 1. Background parameter () fitted in equation (1), units are in natural logarithms (ug/cmz/a).
Column 2. Standard error of B, obtained by fitting, units same as in column 1.
Column 3. Source parameter ( B,) fitted in equation (1), units same as in column 1.
Column 4. Standard error of 3, obtained by fitting, units same as in column 1.
Column 5. Half-distance parameter (A) fitted in equation (1).
Column 6. Standard error of A lobtained by fitting.
Column 7. Loading rate (ug/cm?/a) close to smelter, i.e. modelled value at distance = 0 km from smelter.
Column 8. Ambient background loading rate (pg/cmz/a) far away from smelter, i.e. modelled value at distance = « km from smelter.
Column 9. Distance, x, (km), at which modelled loading rate is within one standard error of ambient background loading rate.
Column 10. Residual standard error, with 79 degrees of freedom (1998) or 47 degrees of freedom (2001) as measure of fit, units
same as in column 1.

Table 6. Median values less than 50 km from smelter, ambient background levels, and distance to background (x,) summary,
with elements sorted by increasing distance based on 1998 data.

1998 2001 Ratio: 1998 value/2001 value
Median Background Distance Median Background Distance Median Background Distance
Element <50 km exp(Bo) X, <50 km exp(B o) X, <50 km exp(B,) X,
(ng/cm?/a) (km) (ng/cm?/a) (km)

Mg 0.767 0.7026 13.7 0.805 0.5695 35.1 0.95 1.19 0.39
Al 2.583 2.2078 15.0 2.605 2.0401 22.4 0.99 1.06 0.67
S 11.471 8.5849 16.1 10.976 7.2210 31.4 1.05 1.16 0.51
Fe 1.964 1360.7 21.6 1.986 1.0439 29.3 0.99 1.26 0.74
Ni 0.0195 0.0121 24.9 0.0203 - - 0.96 - -
Ag 0.0047 0.0016 35.7 0.0011 - - 4.3 - -
Cd 0.0088 0.0028 36.6 0.0076 0.047 27.7 1.2 0.60 1.31
Zn 0.457 0.1021 39.7 0.197 0.1038 32.9 2.3 0.97 1.21
As 0.152 0.0214 44 1 0.037 0.0117 42.8 4.1 1.83 1.03
Sb 0.0238 0.0022 471 0.0071 0.0019 415 3.4 1.15 1.13
Pb 1.006 0.0779 49.4 0.103 0.0288 45.8 9.8 2.60 1.08
Cu 0.661 0.0673 49.6 0.275 0.0430 57.8 2.4 1.52 0.86

*Model did not converge for Ni, Ag for 2001 or for Mn for either year.
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Table 7. Summary of annual emissions from the Horne smelter from 1994 to 2001. Data supplied by Noranda, Inc.

1994 1995 1996 1997 1998 1999 2000 2001
(tonnes/a) (tonnes/a) (tonnes/a) (tonnes/a) (tonnes/a) (tonnes/a) (tonnes/a) (tonnes/a)

Feed 853 551 881 025 934 187 896 863 881283 829 017 787 696 840 233

SO, 154 000 172 000 148 000 144 000 112 500 94 000 90 000

Particulates 770 940 1200 870 920 720 620 595
Pb 260 340 300 197 150 100 80 65.3
Zn 62 85 85 55 39 23 19 17.8
Cd 3 3 2 1.4 2.4 1.6 2.2 2.5
As 19 29 63 55 78 64 59 97.9
Cu 70 58 65 50 70 69 59 1.7

Arsenic Silver

Median As values (Fig. 5d) within 50 km of the smelter are
about four times higher in 1998 than in 2001 (0.152 pug/cm?a
for 1998 versus 0.037 pg/cm?a for 2001), although the foot-
print radius is about the same for both years (approximately
44 and 43 km). The inset medians plot shows that the higher
values in 1998 occur at least up to the 40 to 50 km distance
interval. The background estimate is definitely higher for
1998, although only by a factor of 1.8. The emission tonnages
for this element actually increased over the sampling period,
from 78 tonnes/a in 1998 to 98 tonnes/a in 2001, counter to
the trends shown in the snow data. Annual arsenic emissions
have likely been insufficiently resolved over time to be sure
whether the drop shown in the snow data can be accounted for
by the change in emission rates.

Zinc

Zinc values (Fig. 5e) in snow appear to be similar for both
sampling years, as shown from the two curves and the back-
ground levels. However, the median values for distances less
than 50 km are 0.457 pg/cm?/ain 1998 and 0.197 ug/cm?ain
2001, a decrease by a factor of more than two. The medians
plot shows that the higher 1998 Zn values occur within the
first 20 km; beyond this point the differences are small.
Notice that the footprint radius is somewhat less in 2001
(drop from approximately 40 km to approximately 33 km).
Over the interval 1998 to 2001, zinc emissions decreased
from 39 tonnes/a to 18 tonnes/a, consistent with the drop in
median values from snow.

Cadmium

The median loading rates for Cd (Fig. 5f) in samples taken
within 50 km of the smelter are similar in both sampling years
(0.0089 pg/cm?a in 1998 and 0.0076 pg/cm?a in 2001),
although background levels increased over this time interval
from 0.0028 pg/cm?/a to 0.0047 pg/cm?/a; this can also be
seen in the medians plot. The distal samples have a higher
cadmium content in 2001 than would be expected from the
1998 data. Emission figures indicate essentially the same val-
ues for both years (2.4 tonnes in 1998, 2.5 tonnes in 2001).
Increased background values could be due to an increase in
cadmium in other air masses that controlled the ambient
background, although no independent evidence exists to
support this.
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Median Ag values at less than 50 km from the smelter (not
shown in Fig. 5) decreased from 0.0047 pg/cm?/ain 1998 to
0.0011 pg/cm?a in 2001.

Nickel

Median Ni values (not shown on Fig. 5) remained essentially
unchanged in 1998 and 2001.

Iron

Although background values for Fe (Fig. 5g) were lower in
2001 than in 1998, the median value at distances under 50 km
from the smelter remained similar in both sampling years.

Sulphur

For some reason, S values between 25 and 50 km from the
smelter are bimodal in the 1998 data, with modes of about
2 ng/cm?/a and 15 pg/cm?a (Fig. Sh). Sulphur is erratic and its
presence is not readily explained in terms of a smelter origin.

Aluminium

The Al data show a similar pattern and level for both 1998 and
2001 (Fig. 5i).

In summary, it is interesting to note (Table 6, final col-
umn) that the 1998:2001 footprint ratio is generally larger for
the smelter-centric elements than for the non-smelter ele-
ments. The only exception is Cu. The loading rates for Cu, Pb,
Sb, As, Zn, and Cd are all higher within 50 km of the smelter,
and these elements have a somewhat larger footprint radius
than Ni, Fe, S, Al, and Mg. Background levels are generally
higher in the 1998 data than in the 2001 data (except for Cd
and Zn), mainly because sampling was restricted to a 50 km
radius in 1998, which proved to be too close to the smelter to
obtain an unbiased estimate of background values.
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Figure 5.

Plots of metal-loading versus distance for ele-
ments in snow. Note the log scale for the y-axis.
The model (equation (1)) fitted to the 1998 data is
shown as a solid line and to the 2001 data, as a dot-
ted line. Loading units are expressed as ug/cm%a
(cf. the ng/cm?/a units in Tables 3 and 4).
‘Background’ values are fitted ambient background
values of the model at an infinite distance from the
smelter. ‘Background distance’ values (equation
(2)) reflect the distance at which the model value
first reaches a level within 1 standard error of back-
ground. This distance is referred to as the ‘footprint
radius’ and is not to be confused with the limit of
transport of the metal. Inset diagrams summarize
median metal levels at five distance intervals
between 1998 and 2001 sampling years, and fa-
cilitate a comparison of the surveys. The straight
line is for a 1:1 correlation.
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Comparison of Rouyn-Noranda metal
concentration values from snow with
values reported in the literature

It is instructive to see how the snow chemistry around
Rouyn-Noranda compares with results reported from other
parts of the world. Table 8 summarizes metal levels from a
variety of snow surveys and provides a comparison with val-
ues from this study. Note that the comparison is on the basis
of concentrations, not loading rates, because of the insuffi-
cient number of published loading rates. Metal concentration
levels in bulk precipitation were grouped by Galloway et al.
(1982) into three classes, i.e. urban, rural, and remote, as
shown in Table 8 and Figure 6.

In general, the class ranges of Galloway et al. (1982) over-
lap. For example, although Cu values can range from 6.8 to
120 ppb in his urban class, rural samples can range from 0.4 to
150 ppb, i.e. some rural values can even exceed the urban
range. Similarly, remote samples can contain as much as 0.85
ppb or as little as 0.035 ppb, again demonstrating an overlap
with the rural class.

In general, the Rouyn-Noranda snows have metal levels
higher than the range typical of remote sites. On the other
hand, the range of metal levels around Rouyn-Noranda are
for the most part typical of those of the urban and remote
classes of Galloway et al. (1982). Copper values within 25
km of the smelter are typical of urban values, except for sam-
ples from within about 12 km of the smelter, where levels can
be higher than expected for an urban setting. Lead levels out
to about 50 km from the smelter are typical of urban values,
with most values exceeding the urban maximum, even close
to the smelter. Cadmium levels in samples within 20 km of
Rouyn-Noranda are also typical of an urban environment;
beyond this distance, they are typical of rural environments.
Zinc levels exceed the urban range within 10 km of the
smelter, but are typical of rural values beyond 50 km.

We conclude that within 10 to 15 km from the smelter,
some metal levels (Cu, Zn) in the Rouyn-Noranda surveys
exceed values typical of precipitation in urban environments,
being more characteristic of industrial sites such as smelters
in the Kola Peninsula (Reimann and de Caritat, 1998) and the
Belledune smelter in New Brunswick (Pilgrim and Hughes,
1994).

Metal solubility

One of the important questions for studies of metals being
deposited around smelters is the proportion of the metal
deposited that is bioavailable. Bioavailability is a complex
and difficult factor to measure and is beyond the scope of this
study. However, it is possible to examine the relative proportions
of dissolved and particulate material for each element, because
each sample was thawed and filtered, with the filtrate and
residue being analyzed separately.
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Figure 7 shows graphs of the dissolved/(dissolved +
particulate) ratio for 12 elements as a function of distance
from the smelter. A novel presentation of the solubility
information is made by Telmer et al. (2004), using a more
complete suite of elements than the one summarized here. The
2001 data were obtained using a finer filter than in 1998
(0.1 um instead of 0.45 um), so, as a general rule, one would
expect a higher proportion of material to show up in the fil-
trate in the 1998 data, and therefore the ‘solubility’, as the
termis used here, would normally be higher for the 1998 sam-
ples than the 2001 samples. This does not always occur, how-
ever. Median solubility ratios are summarized by year in
Table 9.

In general, the solubility—distance curves have several
different characteristics, depending on the element.

1. Elements that are very insoluble, with little change with
distance from the smelter. Aluminum (Fig. 7a) is the least
soluble element reported here, although for some reason
the 2001 samples were often more soluble than the 1998
samples, despite the finer filter used for 2001 samples.
Iron (Fig. 7b) is also mostly in the particulate fraction (i.e.
very insoluble), with no obvious differences between
years. There is a suggestion of solubility increasing with
distance from the smelter, but this is not pronounced.
Both Fe and Al usually have at least 80% of the total
element in particulate form.

2. Elements that are moderately soluble, with little systematic
change in solubility with increasing distance from the
smelter; the solubility is usually within a characteristic
range. This includes Ni (not shown), Pb (Fig. 7¢), Cu
(Fig.7d), and As (Fig. 7e), with Ni being the least soluble
of this group and As the most soluble.

3. Magnesium (Fig. 7f) behaves differently in that solubility
can occur across a wide range of values from about 20 to
90%, with no obvious change with distance from the
smelter.

4. Elements that become more soluble with distance from
the smelter. These include Ag (Fig. 7g), Sb (Fig. 7h), Zn
(Fig. 71), and possibly Mn (Fig. 7j). The 1998 data show
Mn solubility changing from about 40% close to the
smelter to 90% at 50 km. However, solubility in the 2001
data at distances greater than 50 km appears to decrease
again, or at least to become much more variable. For both
1998 and 2001, Ag shows a marked trend, with solubility
in 2001 being less than in 1998, particularly at great
distances from the smelter. Antimony and zinc (although
noisier) show a similar trend.

5. Elements that are very soluble, with only a weak change
in solubility with distance. Sulphur (Fig. 7k) is the best
example of this (a few samples within about 5 km of the
smelter have solubilities in the 40 to 80% range, but
beyond 10 km, more than 90% of sulphur is in solution).
Cadmium (Fig. 71) also is highly soluble at all distances.
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Table 9. Median values of the soluble:total
ratio for 1998 and 2001, in order of increasing
value, based on 1998 values. Values
approaching 1 indicate very high solubility;
values approaching 0 indicate very low

solubility.

Element 1998 2001
Al 0.05 0.14

Fe 0.01 0.17

Ag 0.23 0.39

Ni 0.35 0.30

Sb 0.32 0.32

Mg 0.41 0.51

Cu 0.42 0.70

Zn 0.40 0.68

Pb 0.78 0.66

As 0.73 0.63

Mn 0.72 0.73

Cd 0.88 0.95

S 0.95 0.94

CONCLUSIONS

In general, the 2001 snow data confirm the conclusions
drawn from the data collected in 1998 as discussed by Telmer
et al. (2004).

1. Metals emitted from the smelter show a large, approximately
circular, footprint in snow around the Horne smelter at
Rouyn-Noranda. After subtracting the effects of ambient
background levels of element deposition from the
atmosphere, the influence of the smelter can be recognized
reliably only to about 50 km from Rouyn-Noranda. This
is not the maximum distance travelled by smelter
emissions; rather, it is the distance at which the influence
of the smelter emissions, after deposition, can be
distinguished reliably from other sources of material in
the atmosphere. As shown by Bonham-Carter et al.
(2005) from a comparison of loading rates between snow,
peat, and soil, the amount of metal in the geochemical
anomaly around the smelter is insufficient to account for
the known emission tonnages. This suggests that some
smelter emissions travel well beyond the obvious smelter
footprint, but become so dilute that the influence of the
smelter cannot be seen on the ground beyond 50 km.

2. Levels of metals in snow around the Rouyn-Noranda
smelter as compared to published studies from other parts
of the world suggest that metals concentrations are higher
than a range of values typical for snow in an urban
environment only out to a maximum distance of 15 and 20
km from the smelter.

3. Estimates of solubility show different behaviour between
elements. Some elements such as S and Cd are highly sol-
uble and their impact on the environment may be greater
than less soluble elements such as Fe and Al. Of the toxic
metals being emitted by the smelter, about 90% of Cd in
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snow is soluble, 65 to 75% of Pb and As are soluble, and
Cu is more variable, with annual medians ranging from
42% to 70% soluble.
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