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Small area estimation under a Fay-Herriot model with 
preliminary testing for the presence of random area effects 

Isabel Molina, J.N.K. Rao and Gauri Sankar Datta1 

Abstract 

A popular area level model used for the estimation of small area means is the Fay-Herriot model. This model 
involves unobservable random effects for the areas apart from the (fixed) linear regression based on area level 
covariates. Empirical best linear unbiased predictors of small area means are obtained by estimating the area 
random effects, and they can be expressed as a weighted average of area-specific direct estimators and 
regression-synthetic estimators. In some cases the observed data do not support the inclusion of the area 
random effects in the model. Excluding these area effects leads to the regression-synthetic estimator, that is, a 
zero weight is attached to the direct estimator. A preliminary test estimator of a small area mean obtained after 
testing for the presence of area random effects is studied. On the other hand, empirical best linear unbiased 
predictors of small area means that always give non-zero weights to the direct estimators in all areas together 
with alternative estimators based on the preliminary test are also studied. The preliminary testing procedure is 
also used to define new mean squared error estimators of the point estimators of small area means. Results of a 
limited simulation study show that, for small number of areas, the preliminary testing procedure leads to mean 
squared error estimators with considerably smaller average absolute relative bias than the usual mean squared 
error estimators, especially when the variance of the area effects is small relative to the sampling variances. 

 
Key Words: Area level model; Empirical best linear unbiased predictor; Mean squared error; Preliminary testing; Small 

area estimation. 

 
 

1  Introduction 
 

A basic area-level model, called the Fay-Herriot (FH) model, is often used to obtain efficient 
estimators of area means when the sample sizes within areas are small. This model involves unobservable 
area random effects, and the empirical best linear unbiased predictor (EBLUP) of a small area mean is 
obtained by estimating the associated random effect. The EBLUP is a weighted combination of a direct 
area-specific estimator and a regression-synthetic estimator that uses all the data. An estimator of the 
mean squared error (MSE) of the EBLUP was obtained first by Prasad and Rao (1990) using a moment 
estimator of the random effects variance and later by Datta and Lahiri (2000) for the restricted maximum 
likelihood (REML) estimator of the variance. Rao (2003, Chapter 7) gives a detailed account of EBLUPs 
and their MSE estimators for the FH model. 

Sometimes the observed data do not support the inclusion of the area effects in the model. Excluding 
the area effects leads to the regression-synthetic estimator. Using this idea, Datta, Hall and Mandal (2011) 
proposed to do a preliminary test for the presence of the area random effects at a specified significance 
level, and then to define the small area estimator depending on the result of the test. If the null hypothesis 
of no area random effects is not rejected, the model without the area effects is considered to estimate the 
small area means, i.e., the regression-synthetic estimator is used. If the null hypothesis is rejected, the 
usual EBLUP under the FH model with area effects is used. Datta et al. (2011) remarked that the above 
preliminary test estimator (PTE) could lead to significant efficiency gains over the EBLUP, particularly 
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when the number of small areas is only modest in size. For preliminary testing, they considered a 
normality-based test as well as a bootstrap test that avoids the normality assumption. 

When the estimated area effects variance is zero, the EBLUP becomes automatically the regression-
synthetic estimator. However, the estimated MSE obtained by Prasad and Rao (1990) or Datta and Lahiri 
(2000) does not reduce to the estimated MSE of the regression-synthetic estimator. Thus, the usual MSE 
estimators are biased for small random effects variance. For this reason, we propose MSE estimators of 
the EBLUP based on the preliminary testing procedure. If the random effects variance is not significant 
according to the test, we consider the MSE estimator of the synthetic estimator. Otherwise, we consider 
the usual MSE estimators of the EBLUP. 

The EBLUP attaches zero weight to the direct estimates for all areas when the estimated area effects 
variance is zero. On the other hand, survey practitioners often prefer to attach a strictly positive weight to 
the direct estimates, because the latter make use of the available area-specific unit level data and also 
incorporate the sampling design. Li and Lahiri (2010) introduced an adjusted maximum likelihood (AML) 
estimator of the variance of random effects that is always positive and therefore leads to EBLUPs giving 
strictly positive weights to direct estimators. As we shall see, a price is paid in terms of bias when using 
the EBLUP based on the AML estimator. We propose here alternative small area estimators that always 
give a positive weight to the direct estimators but with a smaller bias. 

This paper studies empirically the properties of PTEs of small area means, in comparison with the 
usual EBLUPs and other proposed estimators. In particular, we study the choice of the significance level 
for the area estimates and for the MSE estimates based on the preliminary test (PT). EBLUPs based on the 
AML estimator of the random effects variance of Li and Lahiri (2010), which give non-zero weights to the 
direct estimators in all areas, are also studied and compared to PT versions of AML (PT-AML). Different 
MSE estimators of these PT-AML estimators are also studied with respect to relative bias. Based on 
simulation results, the EBLUPs and the associated MSE estimators that performed well are recommended. 
Finally, coverage and length of normality-based prediction intervals, obtained using the EBLUPs and the 
associated MSE estimators, are examined. 

The paper is organized as follows. Section 2 describes the FH model and the EBLUPs of small area 
means. Section 3 comments on MSE estimation. PTEs of small area means and MSE estimators based on 
the PT are introduced in Section 4. Section 5 describes small area estimators and associated MSE 
estimators under AML estimation of the area effects variance. Alternative estimators that also attach 
positive weights to direct estimators together with proposed MSE estimators are introduced in Section 6. 
Section 7 reports the results of the simulation study. Finally, Section 8 gives some concluding remarks. 

 
2  Estimation of small area means  
 

Consider a population partitioned into m  areas and let i  be the mean of the variable of interest for 

area , = 1, , .i i m  We assume that a sample is drawn independently from each area. Let iy  be a design-

unbiased direct estimator of i  obtained using survey data from the sampled area .i  Direct estimators are 

very inefficient for areas with small sample sizes. We study small area estimation under an area level 
model, in which the values of area level covariates are available for all areas. The basic model of this type 
is the Fay-Herriot model, introduced by Fay and Herriot (1979), to estimate per capita income for small 
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places in the United States. This model consists of two parts. The first part assumes that direct estimators, 
,iy  of small area means, ,i  are design unbiased, satisfying 

  
ind

= ,    0, ,    = 1, , .i i i i iy e e N D i m    (2.1) 

Here, the sampling variance  = Vari i iD y   is assumed to be known for all areas = 1, , .i m  In 

practice, the ’siD  are ascertained from external sources or by smoothing the estimated sampling variances 

using a generalized variance function method (Fay and Herriot 1979). 

In the second part, the Fay-Herriot model treats i  as random and assumes that a p- vector of area 

level covariates, ,x i  linearly related to ,i  is available for each area ,i  i.e., 

  
iid

= ,    0, ,    = 1, , ,i i i iv v N A i m x β   (2.2) 

where iv  is the random effect of area ,i  assumed to be independent of ie  and 0A   is the variance of 

the random effects. Observe that marginally, 

  
ind

, ,    = 1, , .i i iy N D A i m x β   (2.3) 

Letting    1 1= , , , = , ,m my y  y X x x   and  1= diag , , ,D mD D  model (2.3) may be 

expressed in matrix notation as   ,N Ay Xβ Σ  with   = ,Σ D I mA A  where Im  denotes the 

m m  identity matrix. If A  is known, the componentwise best linear unbiased predictor (BLUP) of 

 1= , ,θ m
   is given by 

              1
1= , , = ,mA A A A A A A   θ Xβ Σ y Xβ     (2.4) 

where 

 

      

   

11 1

1

1 1

=1 =1

m m

i i i i i i
i i

A A A

A D A D y

 


 

 

    
 
 

β X Σ X X Σ y

x x x



 (2.5) 

is the weighted least squares (WLS) estimator of .β  In practice, however, A  is not known. Substituting a 

consistent estimator Â  for A  in the BLUP (2.4), we get the EBLUP given by 

    1
1

ˆ ˆˆ ˆ ˆ ˆˆ= , , = ,m A    θ Xβ Σ y Xβ  (2.6) 

where  ˆ ˆ=β β A  and ˆˆ = .Σ D I mA  For the thi  area, the EBLUP of i  can be expressed as a convex 

linear combination of the regression-synthetic estimator ˆx βi  and the direct estimator ,iy  as 

     ˆ ˆ ˆ ˆ= 1 ,i i i i iB A B A y  x β  (2.7) 
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where the weight attached to the regression-synthetic estimator ˆx βi  is given by  ˆ ,iB A  where 
   = .i i iB A D A D  Observe that the weight increases with the sampling variance .iD  Thus, when 

the direct estimator is not reliable, i.e., iD  is large as compared with the total variance ˆ ,iA D  more 

weight is attached to the regression-synthetic estimator ˆ.x βi  On the other hand, when the direct estimator 

is efficient, iD  is small relative to ˆ ,iA D  and then more weight is given to the direct estimator .iy  

Several estimators of A  have been proposed in the literature including moment estimators without 
normality assumption, ML estimator and restricted (or residual) ML estimator (REML) estimator. The ML 

estimator of A  is  *
ML ML

ˆ ˆ= max 0, ,A A  where *
MLÂ  can be obtained by maximizing the profile likelihood 

function given by 

      1 2 1
= exp ,

2PL A c A A   
 

Σ y P y   

where c  denotes a generic constant and 

           11 1 1 1= .A A A A A
    P Σ Σ X X Σ X X Σ   

The REML estimator of A  is  *
RE RE

ˆ ˆ= max 0, ,A A  where *
REÂ  is obtained by maximizing the 

restricted/residual likelihood, given by 

        1 2 1 21
RE

1
= exp .

2
L A c A A A

     
 

X Σ X Σ y P y   

In this paper, we focus on the REML estimator REÂ  which is frequently used in practice, and we denote 

by  RE RE,1 RE,
ˆ ˆˆ = , ,θ m

   the EBLUP given in (2.6) obtained with RE
ˆ ˆ= .A A  

 
3  Mean squared error  
 

Note that the BLUP  
i A  of the small area mean i  is a linear function of .y  Hence, its MSE can be 

easily calculated and it is given by the sum of two terms: 

       
1 2MSE = ,i i iA g A g A    

where  
1ig A  is due to the estimation of the random area effect iv  and  

2ig A  is due to the estimation of 

the regression parameter ,β  with 

 
    
      

1

12 1
2

1 ,

.

i i i

i i i i

g A D B A

g A B A A


 

  x X Σ X x
  

However, the EBLUP ˆ
i  given in (2.7) is not linear in y  due to the estimation of the random effects 

variance .A  Using a moments estimator of ,A  Prasad and Rao (1990) obtained a second order correct 

approximation for the MSE of the EBLUP. Later, Datta and Lahiri (2000) and Das, Jiang and Rao (2004) 
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obtained second order correct MSE approximations under ML and REML estimation of .A  When using 
the REML estimator of ,A  their approximation to the MSE, for large ,m  is given by 

          1
RE, 1 2 3

ˆMSE = ,i i i ig A g A g A o m      (3.1) 

where 

    
 

 

 

RE2
3 RE

2

=1

2
=  and  = .i i m

i
i

i

V A
g A B A V A

A D
A D 


  

Note that as        1
1 2, = 1 , =i im g A O g A O m    and    1

3 = ,ig A O m   so  
1ig A  is the 

leading term in the MSE for large .m  However, for small  
1, iA g A  is approximately zero and then 

 
3ig A  might be the leading term for small .m  For example, taking only one covariate  = 1p  with 

constant values = 1ix  and constant sampling variances = , = 1, ,iD D i m  and letting = 0,A  we 

obtain    
1 20 = 0, 0 =i ig g D m  and  

3 0 = 2 ;ig D m  that is,  
3 0ig  is twice as large as  

2 0 .ig  

Datta and Lahiri (2000) obtained an estimator of the MSE of the EBLUP RE,
ˆ

i  given by 

        RE, 1 RE 2 RE 3 RE
ˆ ˆ ˆ ˆmse = 2 .i i i ig A g A g A    (3.2) 

The MSE estimator (3.2) is second-order unbiased in the sense that 

       1
RE, RE,

ˆ ˆmse = MSE .i iE o m      

In the case that = 0,A  the BLUP RE,i  of i  becomes the regression-synthetic estimator 

 
SYN,

ˆ = 0 .x βi i
   But surprisingly, the approximation to the MSE of the EBLUP given in (3.1) can be 

very different from the MSE of the synthetic estimator. Note that the latter is  

        
SYN, 2 2 3

ˆMSE = 0 < 0 0 ,i i i ig g g    

because  
3 0ig  is strictly positive even for = 0.A  In fact, in the simple example with only one covariate 

 1p   with constant values = 1ix  and constant sampling variances = , = 1, , ,iD D i m  we have 

   
SYN, 2

ˆMSE = 0 =i ig D m  whereas the approximation to the MSE of the EBLUP given in (3.1) with 

= 0A  gives      
RE, 2 3

ˆMSE 0 0 = 3 ,i i ig g D m    three times larger. It turns out that (3.1) is not a 

good approximation of the MSE of the EBLUP when = 0A  and, instead, we should use 

   
RE, 2

ˆMSE = 0 .i ig  Moreover, since for = 0A  this quantity does not depend on any unknown 

parameter, we can take it also as MSE estimator, i.e., we can take    
RE, 2

ˆmse = 0 .i ig  

In practice, the true value of A  is not known but we have the consistent estimator RE
ˆ .A  When 

RE
ˆ = 0,A  the EBLUP becomes the regression-synthetic estimator for all areas, that is 

  
RE, SYN,

ˆ ˆ= = 0 , = 1, , .i i i i m  x β    

In this case,  1 RE
ˆ = 0ig A  for all areas and the MSE estimator given in (3.2) reduces to 
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         RE, 2 3 2 SYN,
ˆ ˆmse = 0 2 0 > 0 = MSE , = 1, , .i i i i ig g g i m     

Thus, the MSE estimator given in (3.2) can be seriously overestimating the MSE for RE
ˆ = 0.A  To reduce 

the overestimation, we consider a modified MSE estimator of RE,
ˆ

i  given by 

  
     

2 RE
0 RE,

1 RE 2 RE 3 RE RE

ˆif = 0,ˆmse =
ˆ ˆ ˆ ˆ2 if > 0,

i
i

i i i

g A

g A g A g A A


 

 
 (3.3) 

where     11
2 2= 0 = , = 1, , .i i i ig g i m

 x X D X x   

In fact, for A  close to zero, it may happen that 2ig  is closer to the true MSE than the full MSE 

estimator  RE,
ˆmse ,i  but the question of when is A  close enough to zero arises. This question motivates 

the use of a preliminary testing procedure of = 0A  to define alternative MSE estimators of the EBLUP 

in Section 4. 

 
4  Preliminary test estimators  
 

The estimator of A  used in the EBLUP of i  introduces uncertainty, which might not be negligible for 

small .m  Indeed, the term 3ig  in the MSE estimator (3.2) arises due to the estimation of .A  However, 

when the value of A  is small enough relative to the sampling variances, this uncertainty could be avoided 
by using the regression-synthetic estimator  0x βi   instead of the EBLUP. Datta et al. (2011) proposed a 

small area estimator based on a preliminary testing procedure of 0 : = 0H A  against 1 : > 0.H A  When 

0H  is not rejected, the regression-synthetic estimator is taken as the estimator of ;i  otherwise, the usual 

EBLUP is used. They proposed the test statistic 

    1
PT PT

ˆ ˆ= ,T  y Xβ D y Xβ   

where   11 1
PT

ˆ =β X D X X D y
    is the WLS estimator of β  obtained assuming that 0 : = 0H A  is true. 

The test statistic T  is distributed as 2
m pX   with m p  degrees of freedom under 0 .H  Then, for a 

specified significance level ,  the PTE of θ  defined by Datta et al. (2011) is given by 

  
2

PT ,

PT PT,1 PT, 2
RE ,

ˆ if ;
ˆ ˆˆ = , , =

ˆ if > ,

m p

m

m p

T X

T X

 

 

  


Xβ
θ

θ
   

where 2
,m pX    is the upper - point of 2 .m pX   The PTE is especially designed to handle cases with a 

modest number of small areas, say 15.m    

Here we propose to use the PT procedure for the estimation of MSE of the EBLUP, by considering 
only the MSE of the synthetic estimator 2ig  whenever the null hypothesis is not rejected and the full MSE 

estimate otherwise. But observe that the test statistic T  in the PT procedure does not depend on the 

estimator of .A  This means that, even when 0H  is rejected, it may happen that RE
ˆ = 0.A  Thus, here we 

define the PT estimator of the MSE of the EBLUP RE,
ˆ

i  as 
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  
     

2
2 , RE

PT RE, 2
1 RE 2 RE 3 RE , RE

ˆif or = 0,
ˆmse =

ˆ ˆ ˆ ˆ2 if > and > 0.

i m p

i

i i i m p

g T X A

g A g A g A T X A

 

 

 
 

 (4.1) 

 
5  Adjusted maximum likelihood 
 

The estimation methods for A  described in Section 2 might produce zero estimates. In this case, the 
EBLUPs will give zero weight to the direct estimators in all areas, regardless of the efficiency of the direct 
estimator in each area. On the other hand, survey sampling practitioners often prefer to give always a 
strictly positive weight to direct estimators because they are based on the area-specific unit level data for 
the variable of interest without the assumption of any regression model. For this situation, Li and Lahiri 
(2010) proposed the AML estimator that delivers a strictly positive estimator of .A  This estimator, 

denoted here AML
ˆ ,A  is obtained by maximizing the adjusted likelihood defined as 

   
AML = .PL A A L A  

The EBLUP given in (2.6) with AML
ˆ ˆ=A A  will be denoted hereafter as  AML AML,1 AML,

ˆ ˆˆ = , , .θ m
   

Note that AMLθ̂  assigns strictly positive weights to direct estimators. 

Li and Lahiri (2010) proposed a second order unbiased MSE estimator of AML,
ˆ

i  given by  

 
       

   
AML, 1 AML 2 AML 3 AML

2
AML AML AML

ˆ ˆ ˆ ˆmse 2

ˆ ˆ ,

i i i i

i

g A g A g A

B A b A

   


 (5.1) 

where  
AMLb A  is the bias of AMLÂ  and it is given by 

 
    

  

1

AML 2

trace 2
= .

trace

A A A
b A

A





 P Σ

Σ
 

 
6  Combined estimators 
 

The strictly positive AML estimator of A  has typically a larger bias than ML or REML estimators for 
A  small relative to the ’s.iD  Thus, if we still wish to obtain a small area estimator that attaches a strictly 

positive weight to the direct estimator, to reduce the mentioned bias it will be better to use the AML 
estimator only when strictly necessary; that is, either when data does not provide enough evidence against 

= 0A  or when the resulting REML estimator of A  is zero. This section introduces two small area 
estimators of θ  that give a strictly positive weight to the direct estimator, which are obtained as a 

combination of the EBLUP based on the AML method and the EBLUP based on REML estimation. 

In the first combined proposal, the AML method is used to estimate A  when the preliminary test does 
not reject the null hypothesis and in the second combined proposal, when the REML estimate is non 
positive. Specifically, the first combined estimator, called hereafter PT-AML, is defined by 
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2

AML , RE

PTAML 2
RE , RE

ˆ ˆif or = 0,
ˆ =

ˆ ˆif > and > 0.

m p

m p

T X A

T X A

 

 





θ
θ

θ
 (6.1) 

The second combined estimator, called REML-AML, is given by 

 AML RE
REAML

RE RE

ˆ ˆif = 0,ˆ =
ˆ ˆif > 0,

A

A





θ
θ

θ
 (6.2) 

see Rubin-Bleuer and Yu (2013). For the estimation of MSE of REAML
ˆ ,θ  these authors proposed 

    
 

AML, RE
REAML,

RE, RE

ˆ ˆmse if = 0,ˆmse =
ˆ ˆmse if > 0.

i
i

i

A

A

  


 (6.3) 

Using  AML ,
ˆmse i  when RE

ˆ = 0A  leads to substantial overestimation if the true value of A  is small 

because AML,
ˆ

i  will be closer to the regression-synthetic estimator. Hence, we propose the alternative 

MSE estimator 

  
 

2 RE
0 REAML,

RE, RE

ˆif = 0,
ˆmse =

ˆ ˆmse if > 0.

i
i

i

g A

A

 


 (6.4) 

Again, since for small  RE,
ˆ, mse iA   might still be overestimating the true MSE of REAML,

ˆ ,i  we consider 

also the following PT estimator 

    

2
2 , RE

PT REAML, 2
RE, , RE

ˆif or = 0,
ˆmse =

ˆ ˆmse if > and > 0.

i m p

i

i m p

g T X A

T X A

 

 

 


 (6.5) 

 
7  Simulation experiments 
 

A simulation study was designed with the following purposes in mind: 
 

(a) To study the properties, in terms of bias and MSE, of the PT estimators as   varies for fixed A  
and as A  varies for fixed .  We would like to see which values of   are adequate for a 
given .A  

(b) To compare the PTEs with the EBLUPs based on REML and with the EBLUPs based on AML.  

(c) To study the performance of the proposed MSE estimators in terms of relative bias and also in 
terms of coverage and length of prediction intervals. 

(d) To compare the three introduced small area estimators that give strictly positive weight to the 
direct estimator for all areas, namely EBLUP based on AML, PT-AML and REML-AML 
estimators. 

 

To accomplish the above goals, data were generated from the Fay-Herriot model given by (2.1)-(2.2) 
with a constant mean, that is, with = 1, =βp   and = 1, = 1, , .x i i m  We let = 0  without loss of 
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generality, number of areas = 15m  and = 1, = 1, , .iD i m  The simulation study was repeated for 

increasing values of the model variance,  0.01, 0.02, 0.05, 0.1, 0.2,1 ,A   and also for six significance 

levels of the test of 0 : = 0H A  against 0 : > 0,H A  namely  = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 .  For each 

combination of A  and ,  the following steps were performed for each simulation run = 1, , L   with 
= 10,000L  runs: 

1. Generate data from the assumed model with constant zero mean; i.e., 

 
       

         

ind

ind

,    0, ,

,    0, ,    = 1, , .

i i i

i i i i i

v v N A

y e e N D i m

 

  

  

    




  

2. Calculate the following estimators of :θ  the EBLUP based on REML estimation of 
 

RE
ˆ, ,θA   

the PT estimate 
 

PT
ˆ ,θ   the EBLUP based on AML estimation of 

 

AML
ˆ, ,θA   the combined PT-

AML estimate 
 

PTAMLθ̂   and the REML-AML estimate 
 

REAML
ˆ .θ   

3. For each area = 1, , ,i m  calculate: the three estimates of the MSE of the EBLUP RE,
ˆ

i  given 

in (3.2), (3.3) and (4.1), denoted respectively by        RE , 0 RE ,
ˆ ˆmse , msei i    and 

   PT RE ,
ˆmse ,i  and the three estimates (6.3), (6.4) and (6.5) of the MSE of the combined small 

area estimator REAML,
ˆ ,i  denoted        REAML, 0 REAML,

ˆ ˆmse , msei i    and    PT REAML,
ˆmse i  

respectively. 

4. For each area = 1, , ,i m  obtain the normality-based 1    prediction intervals for the small 

area mean i  based on the three considered MSE estimators of the EBLUP: 

 

       

       

       

RE, 2 RE,

0, RE, 2 0 RE,

PT, RE, 2 PT RE,

ˆ ˆCI mse ,

ˆ ˆCI mse ,

ˆ ˆCI mse ,

i i i

i i i

i i i

Z

Z

Z







  

  

  

  

  

  







  

where 2Z   is the upper 2 - point of a standard normal distribution.  

5. Repeat Steps 1-4 for = 1, , ,L   for = 10,000.L  Then, for each small area estimator 

 RE , PT , AML, PTAML, REAML,
ˆ ˆ ˆ ˆ ˆ ˆ, , , , , = 1, , ,i i i i i i i m         compute its empirical bias and MSE 

as 

               2

=1 =1

1 1ˆ ˆ ˆ ˆ= ,    MSE = .
L L

i i i i i iB
L L

           

 

  

Then obtain the average over areas of absolute biases and MSEs as  

        
=1 =1

1 1ˆ ˆˆ ˆAB = ,    AMSE = MSE .
m m

i i
i i

B
m m

  θ θ   
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6. Calculate the relative bias of each MSE estimator,  ˆmse ,i  as follows 

           
=1

1ˆ ˆ ˆ ˆRB mse = mse MSE MSE .
L

i i i iL

 
     

 
 


  

Calculate the average over areas of the absolute relative biases as 

      
=1

1 ˆˆARB mse = RB mse .
m

i
im

θ   

7. For each type of prediction interval       CI = , ,i i iL U    for 
        0, PT,CI CI , CI , CIi i i i     given 

in Step 4, calculate the empirical coverage rate (CR) and the average length (AL) as 

 
    

      
=1

# CI 1
CR(CI ) = ,    AL CI = .

L
i i

i i i iU L
L L

 


 
 



  

Finally, average over areas the coverage rates and average lengths, as 

        
=1 =1

1 1
CR CI = CR CI ,    AL CI = AL CI .

m m

i i
i im m    

 
Figures 7.1 and 7.2 plot the average MSEs of the PTEs for each  0.05, 0.1, 0.2 ,A   together with the 

average MSE of the EBLUPs based on REML and AML, against the significance level .  Note that when 
A  is small, for large   the PT procedure is rejecting 0H  more often and therefore the PTE becomes 

more often the usual EBLUP, whereas for small   the PT procedure rejects 0H  less often and the 

regression-synthetic estimator is then more often used. In contrast, for a large value of ,A  the PTE 

becomes the EBLUP more frequently regardless of .  The absolute biases of the estimators are not shown 
here because they are roughly the same for all the PTEs across   values. The reason for this is that when 

the model holds, both components of the PTE, the synthetic estimator and the EBLUP, are unbiased for 
the target parameter. Note that the synthetic estimator is unbiased even when > 0.A  The first conclusion 
arising from Figures 7.1 and 7.2 is that the MSE of the PTE is practically constant across 0.1.   See 
also that the average MSE of the PTE for a given   increases with A  because the PTE reduces to the 
EBLUP more often as A  increases and the MSE of the EBLUP increases with .A  Observe also that the 
PTE and the EBLUP based on REML perform very similarly for 0.2.   However, for < 0.2,  the 

PTE becomes more efficient than the EBLUP as soon as A  moves close to the null hypothesis 
 < 0.1 ,A  which agrees with the remark of Datta et al. (2011). 

Turning to the EBLUP based on AML, Figures 7.1 and 7.2 show that its average MSE is significantly 
larger than that of the other two estimators, but the differences with the other ones decrease as A  
increases. This is due to bias of the AML estimator of A  for small .A  We shall study later the combined 

small area estimators PT-AML and REML-AML, which use the EBLUP based on AML only when null 
hypothesis is not rejected or when the realized estimate of A  is zero. 



Survey Methodology, June 2015 11 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
Figure 7.1 Average MSEs of PTE, EBLUP based on REML and EBLUP based on AML against ,  for a) 

= 0.05A  and b) = 0.1.A  

 
 

Datta et al. (2011, page 366) recommended 0.2   for the PTE. Moreover, the literature on PT 
estimation for fixed effects models suggests that a good choice of   in terms of bias and MSE is 

= 0.2  (Bancroft 1944; Han and Bancroft 1968). But the above results suggest that for 0.2,   the 

PTE is practically the same as the EBLUP and therefore one might choose to always use the EBLUP. 
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Figure 7.2 Average MSEs of PTE, EBLUP based on REML and EBLUP based on AML against ,  for 
= 0.2.A  

 

Now we study the properties of the PT for MSE estimation in terms of .  Figure 7.3 plots the average 
absolute relative bias of the MSE estimators  PT RE ,

ˆmse i  labelled PT, against the significance level ,  

for each value  0.05, 0.1, 0.2,1 .A   When   is taken very small < 0.1,  the null hypothesis 

0 : = 0H A  is less often rejected and  PT RE ,
ˆmse i  becomes often 2 ,ig  which leads to underestimation. 

For   large  > 0.2 ,  the null hypothesis is more often rejected and  PT RE ,
ˆmse i  becomes the usual 

MSE estimator of the EBLUP, which severely overestimates the true MSE for small .A  The value 
= 0.2  appears to be a good compromise choice, with an average absolute relative bias around 10% for 

0.1A   and 20% for = 0.05.A  

 

 

 

 

 

 

 

 

 

 
 
Figure 7.3 Average over areas of absolute relative biases of the MSE estimator  PT RE,

ˆmse ,i  labelled PT, 

for  0.05, 0.1, 0.2, 1A   against significance level .  
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The above results suggest that = 0.2  is a good choice when using the PT procedure to estimate the 

MSE of the usual EBLUP. This has been more thoroughly studied by looking at the (signed) relative 
biases of  PT RE ,

ˆmse i  for each area. These results are plotted in Figures 7.4 and 7.5 with four plots, one 

for each value of  0.05, 0.1, 0.2,1 .A   The figures appearing in the legends of these plots are the 

significance levels   for the PT MSE estimator  PT RE ,
ˆmse .i  These plots confirm our previous 

observations: the MSE estimator based on the PT,  PT RE ,
ˆmse ,i  underestimates  RE ,

ˆMSE i  for small 

  and overestimates for large .  It turns out that  PT RE ,
ˆmse i  with = 0.2  is a good candidate for all 

values of .A  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.4 Relative biases of  PT RE,

ˆmse ,i  for each significance level  0.05, 0.1, 0.2, 0.3, 0.4, 0.5 ,   

against area ,i  for a) = 0.05A  and b) = 0.1.A  
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Figure 7.5 Relative biases of  PT RE,

ˆmse ,i  for each significance level  0.05, 0.1, 0.2, 0.3, 0.4, 0.5 ,   

against area ,i  for a) = 0.2A  and b) = 1.A  
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bias over 50% for < 0.2A  and exponentially growing as A  tends to zero. The conclusion is that, when 

0H  is not rejected, even if the realized estimate of A  is positive, it seems better to omit the 3ig  term in 

the MSE estimator and consider only 2 .ig  
 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.6 Average over areas of absolute relative biases of MSE estimators  PT RE,
ˆmse i  with = 0.2,  

labelled PT,  RE,
ˆmse i  labelled REML and  0 RE,

ˆmse i  labelled REML0, against .A  
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AML estimator is very close to it. For MSE estimation, we focus on REML-AML because of its better 
performance. 

 

 

 

 

 

 

 

 

 

 
 
Figure 7.7 Average over areas of MSEs of PT-AML estimator with = 0.2,  EBLUP based on AML and 
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For the combined estimator REML-AML, Figure 7.8 shows that the MSE estimator based on the PT, 

 PT REAML ,
ˆmse ,i  which uses only 2ig  whenever RE

ˆ = 0A  or the null hypothesis is not rejected, has 

average absolute relative bias less than 10% for 0.1A   and it is smaller than the corresponding values 
for  REAML,

ˆmse i  and  0 REAML ,
ˆmse ,i  especially for 0.4.A   

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7.8 Average over areas of absolute relative biases of the MSE estimators  REAML,
ˆmse ,i  

 0 REAML,
ˆmse i  and  PT REAML,

ˆmse ,i  labelled respectively REML-AML, REML-AML0 and 

PT, against .A  

 
Finally, we analyze the average over areas of coverage rates and average lengths of normality-based 
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Figure 7.9 shows the coverage rates of these three types of intervals, where the MSE estimators based on 
the PT procedure were obtained taking = 0.2, 0.3.  It seems that the good relative bias properties of the 

MSE estimator based on the PT,  PT RE ,
ˆmse ,i  for small A  cannot be extrapolated to coverage based on 

normal prediction intervals, showing undercoverage especially for = 0.2.A  In this case, taking a larger 
significance level = 0.3  reduces a little the undercoverage of the prediction intervals obtained using 

 PT RE ,
ˆmse .i  Still, the coverage rates of  0 RE ,

ˆmse i  are better for all values of .A  As expected, the 

usual MSE estimator  RE ,
ˆmse i  provides overcoverage for small values of ,A  which is due to the severe 

overestimation of the MSE. On the other hand, the intervals showing undercoverage also lead to shorter 
prediction intervals as shown by Figure 7.10. 
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literature for this problem. For example, Chatterjee, Lahiri and Li (2008) proposed prediction intervals 
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procedure to find the calibrated quantiles. Diao, Smith, Datta, Maiti and Opsomer (2014) have recently 
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obtained prediction intervals with second order correct coverage rate avoiding the use of resampling 
procedures and using the full MSE estimator. Obtaining prediction intervals with accurate coverage using 
other MSE estimates is still a challenge and it is out of scope of this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9 Average over areas of coverage rates of normality-based prediction intervals for i  using the 

MSE estimators    RE, 0 RE,
ˆ ˆmse , msei i   and  PT RE,

ˆmse i  with = 0.2, 0.3,  labelled 

respectively REML, REML0 and PT, against .A  

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.10 Average over areas of average lengths of normality-based intervals for i  using the MSE 

estimators    RE, 0 RE,
ˆ ˆmse , msei i   and  PT RE,

ˆmse i  with = 0.2, 0.3,  labelled respectively 

REML, REML0 and PT, against .A  

 

   
   

   
   

   
  C

ov
er

ag
e 

N
or

m
al

 C
on

fi
de

nc
e 

In
te

rv
al

 
 0.

80
   

   
   

   
 0

.8
5 

   
   

   
   

0.
90

   
   

   
   

  0
.9

5 
   

   
   

   
 1

.0
0 

   
   

   
   

 1
.0

5 

 

   0.0                        0.2                         0.4                       0.6                        0.8                        1.0 
 

A 

 

            REML                            PT alpha = 0.3 
 

            REML0                          PT alpha = 0.2

   
   

   
 A

ve
ra

ge
 L

en
gt

h 
N

or
m

al
 C

on
fi

de
nc

e 
In

te
rv

al
 

    
1.

5 
   

   
   

   
   

   
   

2.
0 

   
   

   
   

   
   

   
2.

5 
   

   
   

   
   

   
  3

.0
   

   
   

   
   

   
   

 3
.5

 

 

   0.0                        0.2                         0.4                       0.6                        0.8                        1.0 
 

A 

 

            REML                            PT alpha = 0.3 
 

            REML0                          PT alpha = 0.2 



18 Molina, Rao and Datta: Small area estimation under a Fay-Herriot model with preliminary testing 
 

 
Statistics Canada, Catalogue No. 12-001-X 

This simulation study described above was repeated for several patterns of unequal sampling variances 
.iD  Although results are not reported here, conclusions are very similar as long as the variance pattern is 

not extremely uneven. 

 
8  Conclusions  
 

The following major conclusions may be drawn from the results of our simulation study on the 
estimation of small area means, based on the Fay-Herriot area-level model when the number of areas is 
modest in size  say = 15 :m  1) Under the Fay-Herriot model with a value of random effects variance, 

,A  clearly away from zero, the PTE does not seem to noticeably improve efficiency relative to the usual 
EBLUP unless the significance level is taken small ( 0.1   in our simulation study). 2) Our simulation 

results indicate that using the PT procedure with a moderate ,  in particular = 0.2,  to estimate the 

MSE of the usual EBLUP leads to a reduction in bias as compared with the usual MSE estimator. Hence, 
we recommend the use of  PT RE ,

ˆmse ,i  given by (4.1), to estimate the MSE of the EBLUP. 3) Among 

the estimators that attach a strictly positive weight to the direct estimator for all areas, we recommend the 
combined estimator REML-AML given by (6.2), because it achieves slightly higher efficiency than the 
EBLUP based on AML and the PT-AML given by (6.1). 4) For estimating the MSE of the recommended 
REML-AML estimator, the estimator  PT REAML,

ˆmse i  given by (6.5) performs better than the alternative 

ones. 5) Our results on prediction intervals, based on normal theory, indicate that the good performance of 
the proposed MSE estimators may not translate to coverage properties of these intervals. Construction of 
prediction intervals that lead to accurate coverages, using the proposed MSE estimates, appears to be a 
difficult task. 

Smooth alternatives to the preliminary test estimates in the case of location parameters have been 
proposed in the literature using weighted means of the estimates obtained under the null and alternative 
hypotheses, with weights depending on the test statistic, see e.g., Saleh (2006). Mean squared error 
estimates of this kind have not been studied and we leave this subject for further research. 
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Small area estimation combining information from  
several sources 

Jae-kwang Kim, Seunghwan Park and Seo-young Kim1 

Abstract 

An area-level model approach to combining information from several sources is considered in the context of 
small area estimation. At each small area, several estimates are computed and linked through a system of 
structural error models. The best linear unbiased predictor of the small area parameter can be computed by the 
general least squares method. Parameters in the structural error models are estimated using the theory of 
measurement error models. Estimation of mean squared errors is also discussed. The proposed method is 
applied to the real problem of labor force surveys in Korea. 

 
Key Words: Area-level model; Auxiliary information; Measurement error models; Structural error model; Survey 

integration. 

 
 

1  Introduction 
 

Combining information from different sources is an important problem in statistics. In survey 
sampling, combining information from multiple surveys can improve the quality of small area estimates. 
The source of information can come from a probability sample with direct measurements, from another 
probability sample with indirect measurements (such as self-reported health status), or from auxiliary 
area-level information. Many approaches of combining information, such as the multiple-frame and 
statistical matching methods, require access to individual level data, which is not always feasible in 
practice. 

We consider an area-level model approach to small area estimation when there are several sources of 
auxiliary information. Pfeffermann (2002) and Rao (2003) provided thorough reviews of methods used in 
small area estimation. Lohr and Prasad (2003) used multivariate models to combine information from 
several surveys. Ybarra and Lohr (2008) considered the small area estimation problem when the area-level 
auxiliary information has measurement errors. Merkouris (2010) discussed the small area estimation by 
combining information from multiple surveys. Raghunathan, Xie, Schenker, Parsons, Davis, Dodd and 
Feuer (2007) and Manzi, Spiegelhalter, Turner, Flowers and Thompson (2011) used Bayesian hierarchical 
models to combine information from multiple surveys for small area estimation. Kim and Rao (2012) 
considered a design-based approach to combining information from two independent surveys. 

To describe the setup, suppose that the finite population consists of H  subpopulations, denoted by 

1 , , ,HU U  and that we are interested in estimating the subpopulation totals =
h

h ii U
X x

  of a variable 

x  for each area h.  We assume that there is a survey that measures ix  from the sample but its sample size 

is not large enough to obtain estimates for hX  with reasonable accuracy. Consider one of the surveys, 

called survey A,  as the main survey, and let hX̂  denote a design-consistent estimator of hX  obtained 
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from survey A. Often, we compute = ,
h

h ia ii A
X̂ w x

  where hA  is the set of sample A  for 

subpopulation h  and iaw  is the weight of unit i  in sample A. 

In addition to the main survey, suppose that there is another survey, called survey B,  that measures a 

rough estimate for .ix  Let 1iy  be the measurement taken from survey B. We may assume that 1iy  is a 

rough measurement of ix  with some level of measurement error. Thus, we may assume  

 1 0 1 1=i i iy x e     (1.1) 

for some  0 1, ,   where  2
1 10, .i ee   Model (1.1) is variable-specific and the linear regression 

assumption or equal variance assumptions can be relaxed later. If    0 1, = 0,1 ,   then model (1.1) 

means that there is no measurement bias. Note that model parameters  0 1,   in (1.1) are not area 

specific, but may be different for groups of areas, as demonstrated in the Korean labor force survey 
application in Section 5. Separate regression models for different groups may lead to smaller model errors 
and thus improve the statistical efficiency of the proposed method. From survey B,  we can obtain another 

estimator 1 1
ˆ =

h
h ib ii B

Y w y
  of ,hX  where ibw  is the weight of unit i  in the sample from survey B  and 

hB  is the -B sample for subpopulation .h  Note that 1̂hY  can be obtained, for each area, if the same areas 

are identified in both surveys A  and B. Model (1.1) can be used to combine information from the two 

surveys. 

Finally, another source of information can be the Census information. Census information does not 
suffer from coverage error or sampling error. But, it may have measurement errors and it does not provide 
updated information for each month or year. Let 2iy  be the measurement for unit i  from the Census. The 

subpopulation total 2 2=
h

h ii C
Y y

  is available when hC  is the set of Census C  for subpopulation .h  

Table 1.1 summarizes the major sources of information that we can consider into small area estimation. 

 
Table 1.1 
Available information for small area estimation 
 

Data  Observation Area level estimate  Properties  

Survey A  direct obs.  ix   ˆ ˆ ˆ,h hX V X  Sampling error (large) 

Survey B  aux. obs.  1iy   1 1
ˆ ˆ ˆ,h hY V Y  Bias 

Measurement error 
Sampling error 

Census aux. obs.  2iy  2hY  Measurement error 
No updated information 

 
In this paper, we consider an area-level model approach for small area estimation combining all 

available information. The proposed approach is based on the measurement error models, where the 
sampling errors of the direct estimators are treated as measurement errors, and all the other auxiliary 
information are combined through a set of linking models. The proposed approach is applied to the small 
area estimation problem for labor force surveys in Korea, where three estimates are combined to produce 
small area estimates for unemployment rates. 



Survey Methodology, June 2015 23 
 

 
Statistics Canada, Catalogue No. 12-001-X 

The paper is organized as follows. In Section 2, the basic setup is introduced and the small area 
estimation problem is viewed as a measurement error model prediction problem. In Section 3, parameter 
estimation for the area level small area model is discussed. In Section 4, estimation of mean squared error 
is briefly discussed. In Section 5, the proposed method is applied to the labor force survey data in Korea. 
Concluding remarks are made in Section 6. 

 
2  Basic theory 
 

In this section, we first introduce the basic theory for combining the information for small area 
estimation. We first consider the simple case of combining two surveys. Assume that there are two 
surveys, survey A  and survey B,  obtained from separate probability sampling designs. The two surveys 
are not necessarily independent. From survey A,  we obtain a design unbiased estimator 

,
ˆ =

h
h a ia ii A

X w x
  and its variance estimator  ˆ ˆ .hV X  From survey B,  we obtain a design unbiased 

estimator 1 1
ˆ =

h
h ib ii B

Y w y
  of 1 1= .

h
h ii U

Y y
  The sampling error of  1

ˆ ˆ,h hX Y  can be expressed by 

the sampling error model  

 
11

ˆ
=

ˆ
h h hh

h h hh

X N aX

Y N bY

          
    

 (2.1) 

and ha  and hb  represent the sampling errors associated with ˆ
h hX N  and 1̂h hY N  such that 

 
   
   

Cov ,0
, .

Cov ,0
h h h h

h h h h

a V a a b

b a b V b
     

          
  

Our parameter of interest is the population total hX  of x  in area .h  

From (1.1), we obtain the following area level model:  

 1 0 1 1= ,h h h hY N X e      (2.2) 

where    1 1 1 1, , , = 1, , , .h h h h i i ii U h
N X Y e x y e

  We can express (2.2) in terms of population mean  

 1 0 1 1= ,h h hY X e     (2.3) 

where    1
1 1 1 1, , = , , .

h
h h h h i i ii U

X Y e N x y e
  If we use a nested error model  

 1 =hi h hie u   (2.4) 

where  20,h e   and  20, ,hi uu   then  2
1 ,0, ,h e he  2 2 2

, = .e h e u hN     The nested error 

model is quite popular in small area estimation (e.g., Battese, Harter and Fuller 1988) and it assumes that 

  2
1 1Cov , =hi hj ee e   for .i j  Because hN  is often quite large, we can safely assume that 

 2 2
1 ,0, = .h e h ee    The model (2.2) is called structural error model because it describes the structural 
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relationship between the two latent variables 1hY  and .hX  The two models, (2.1) and (2.2), are often 

encountered in the measurement error model literature (Fuller 1987). Thus, the model for small area 
estimation can be viewed as a measurement error model, as suggested by Fuller (1991) who originally 
used the measurement error model approach in the unit-level modeling for small area estimation. 

Now, if we define    1
1 1̂

ˆ, = , ,h h h h hy x N Y X  combining (2.1) and (2.3), we have  

 1 10 1 1
=

0 1
h h h

h h h

y b e

x X a

                    
 

which can also be written as  

 1 0 11= .
1

h h h
h

h h

y b e
X

x a

               
 (2.5) 

Thus, when all the model parameters in (2.5) are known, the best estimator of hX  can be computed by  

         
1

1 1
1 1 1 1 0

ˆ = ,1 ,1 ,1 ,h h h h hX V V y x


        (2.6) 

where hV  is the variance-covariance matrix of  1 , .h h hb e a   The variance of ˆ
hX  is given by 

     1
1

1 1,1 ,1 .hV


    The estimator in (2.6) can be called the Generalized Least Squares (GLS) 

estimator because it uses the technique of the generalized least squares method in the linear model theory. 
The GLS method is useful because it is optimal and it can incorporate additional sources of information 
naturally. For example, if another estimator 2hy  for 2hY  is also available and satisfies  

 2 0 1 2=h h hY X e     

and  

 2 2= ,h h hy Y c  

then the extended GLS model is written as  

 
2 0 1 2

1 0 1 1=

1

h h h

h h h h

h h

y c e

y X b e

x a

        
                   
     

 (2.7) 

and the GLS estimator can be obtained by  

         
1

1 1
2 1 1 2 1 1 1 1 2 2 0 1 0

ˆ = , ,1 , ,1 , ,1 , ,h h h h h hX V V y y x


             

where 2hV  is the variance-covariance matrix of  2 1, , .h h h h hc e b e a    The GLS estimator has 

variance      1
1

1 1 2 1 1, ,1 , ,1 .hV


      If 2hy  is independent of  1, ,h hx y  the efficiency gain by 

incorporating 2hy  into GLS in terms of relative variance can be expressed as  
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   

 
  

     

1
2 2 1

1 1
2 1

ˆ ˆ
= ,

ˆ ˆ

h h h

h h h

V X V X V y

V X V X V y



 

 


 
 

where     2
2 1 2 1= .h h hV y V c e    The gain is high if both the sampling variance of 2hy  and the 

model variance  2hV e  are small. If 1 = 0,  then there is no gain. 

 

Remark 1 Note that model (2.5) can also be written as  

 
   1

1 11 1 0 1
= .

1
h hh

h
hh

b ey
X

ax

              
    

 (2.8) 

The GLS estimator obtained from (2.8), which is the same as the GLS estimator obtained from (2.5), can 
be expressed as  

  ˆ = 1h h h h hX x x      (2.9) 

where  1
1 1 0=h hx y    and  

 

   
     

   
     

2
, 1

2 2
, 1 1

Cov ,
=

2Cov ,

Cov ,
= .

2 Cov ,

h h h
h

h h h h

e h h h h

e h h h h h

V x x x

V x V x x x

V b a b

V b V a a b




 

   
     

 
 

 

The estimator ,hx  when computed with estimated parameter  0 1
ˆ ˆ ˆ= , ,    is called the synthetic 

estimator and the optimal estimator in (2.9) is often called the composite estimator. It can be shown that, 
ignoring the effect of estimating ,  the variance of the composite estimator is equal to  

        ˆ = 1 Cov ,h h h h h h hV X X V x x x       (2.10) 

and, as 1,h   the composite estimator is more efficient than the direct estimator. 

 
3  Parameter estimation 
 

Now, we discuss estimation of the model parameters in (2.3). The GLS estimator of  0 1= ,    can 

be obtained by minimizing  

  
 
 

2
1 0 1*

0 1
=1 1 0 1

, = .
H

h h

h h h

y x
Q

V y x

   
 

     (3.1) 

Since  

      2
1 0 1 , 1 1= ,1 ,1 ,h h e h hV y x           (3.2) 
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where  2
, 1=e h hV e  and   = , ,h h hV a b   we can express  

      2*
0 1 1 1 0 1

=1

, = ,
H

h h h
h

Q w y x        (3.3) 

where        1
2

1 , 1 1= ,1 ,1 .h e h hw


       Now, by solving * = 0,Q   we have  

 0 1
ˆ ˆ= w wy x    (3.4) 

and 

 
        

      

1 1 1
=1

1
2

1
=1

ˆ ,
ˆ = ,

ˆ

H

h h w h w h h
h

H

h h w h
h

w x x y y C a b

w x x V a

   


  




 (3.5) 

where  

        
1

1 1
=1 =1

ˆ ˆ, = , .
H H

w w h h h h
h h

x y w w x y


 
  

 
   

Note that the weight  1hw   depends on 1.  Thus, the solution (3.5) can be obtained by an iterative 

algorithm. Once 1̂  is computed by (3.5), then 0̂  is obtained by (3.4). 

Now, we discuss the estimation of model variance 2
, .e h  The simplest method is the Method of 

Moments (MOM). That is, we can use  

         2 2 2
1 0 1 1 1 ,2 , =h h h h h h e hE y x V a C a b V b           (3.6) 

to obtain an unbiased estimator of 2
, .e h  Under the nested error model in (2.4), we have 2 2

, =e h e   and  

         2 2 2
1 0 1 1 12 , = .h h h h h h eE y x V a C a b V b           (3.7) 

Thus, similarly to Fuller (2009), the MOM estimator of 2
e  can be obtained by  

       22
1 0 1 1 1

=1

ˆ ˆ ˆ ˆ= ,1 ,1ˆ
H

e h h h h
h

y x           (3.8) 

where  

      12
1 1

ˆ ˆ,1 ,1ˆh e h


         

and 
=1

= 1.
H

hh
  Because h  depends on 2 ,ˆ e  the solution (3.8) can be obtained iteratively, using 

2 = 0ˆ e  as an initial value. Fay and Herriot (1979) used an alternative method which is based on the 

iterative solution to nonlinear equation:  
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 

   

2

1 0 1

2=1
1 1

ˆ ˆ
= 2.

ˆ ˆ,1 ,1

H
h h

h
e h

y x
H

   


    
   

Writing the above equation as  2 = 2,eg H   a Newton-type method for   = 0g   with 2= e   can 

be obtained by  

    
  

   1 1
= 2t t t

t
H g

g
     

 
 (3.9) 

where 

  
 
    

2

1 0 1

2
=1

1 1

ˆ ˆ
= .

ˆ ˆ,1 ,1

H
h h

h
h

y x
g

   
  

    
   

Assuming 2 2
, ,e h e    we now describe the whole parameter estimation procedure as follows: 

 

Step 1 Compute the initial estimator of  0 1,   by setting 2 = 0ˆ e  in (3.4) and (3.5).  

Step 2 Based on the current value of  0 1
ˆ ˆ, ,   compute 2ˆ e  using the iterative algorithm in (3.9).  

Step 3 Use the current value of 2 ,ˆ e  compute the updated estimator of  0 1,   by (3.4) and (3.5).  

Step 4 Repeat [Step 2]-[Step 3] until convergence.  

 

The proposed parameter estimation method estimates 0 1= ( , )    by the GLS and estimates 2
e  by 

the MOM iteratively. Note that the estimation of   is based on data from all areas. If separate regression 

models are used, then the proposed parameter estimation method can be applied to the groups of areas. 
Instead of this separate iterative estimation method, we can also consider another method based on 
maximum likelihood estimation (MLE) under parametric distributional assumptions. See Carroll, Rupert, 
and Stefanski (1995) and Schafer (2001) for further discussion of MLE for parameters in the measurement 
error models. 

 

Remark 2 If 2 2
, =e h e   is not true, we can consider some alternative model such as  

  20, .h h ee X   (3.10) 

To check whether model (3.10) holds, one can compute  

        
2 2

1 0 1 1 1
ˆ ˆ ˆ ˆ ˆ= 2 ,h h h h h h hy x V a C a b V b           (3.11) 

and plot h  on .hx  If the plot shows a linear relationship, then (3.10) can be treated as a reasonable 

model. Under model (3.10), we can obtain 2
e  by a ratio method:  
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 2 =1

=1

=ˆ
ˆ

H

h h
h

e H

h h
h

X

 







 (3.12) 

where  

      12
1 1

ˆ ˆ ˆ,1 ,1ˆh h e hX


        

with 
1

= 1,
H

hh
  ˆ

hX  is defined in (2.9), and h  is defined in (3.11). Because h  also depends on 2 ,e  

the solution (3.12) can be obtained iteratively. 

 

Remark 3 We can also consider a transformation  * =h hx T x  and  *
1 1=h hy T y  to improve the 

approximation to asymptotic normality. To check the departure from normality, plot  ha hn V x  on .hx  If 

the plot shows some structural relationship of hx  then the normality assumption can be doubted. Now, 

consider the following transformation  

    = log .T x x  (3.13) 

Note that the asymptotic variance of  * =h hx T x  is equal to  

  
 

 *
2

1
.h h

h

V x V x
x

   

Such transformation is a variance stabilizing transformation and is useful when we want to improve the 
approximation to normality. 

Once the GLS estimator *ˆ
hX  of *

hX  is obtained, then we need to apply the inverse transformation to 

obtain the best estimator of    1 * *= := .h h hX T X Q X  Simply applying the inverse transformation will 

lead to biased estimation. To correct for the bias, we can use a second-order Taylor linearization. Using a 
Taylor expansion, we have  

            2* * * * * *1ˆ ˆ ˆ
2h h h h h h h hQ X Q X Q X X X Q X X X      

and so, if we use  *ˆ
hQ X  as an estimator for  *= ,h hX Q X  we have, ignoring the smaller order terms,  

       * * *1ˆ ˆ= .
2h h h hE Q X X Q X V X  

For the transformation in (3.13), we have    * *= exph hQ X X  and so  * = .h hQ X X  Thus, 

 *ˆ ˆ= ,h hX Q X  we have  

    *1ˆ ˆ
2h h h hE X X X V X   
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and the bias-corrected estimator of hX  is  

  , *

ˆ
ˆ = ,

ˆ1 0.5
h

h bc

h

X
X

V X
 (3.14) 

where  *ˆ
hV X  is computed by the MSE estimation method which will be discussed in Section 4.  

 
4  MSE estimation 
 

We now discuss mean squared error (MSE) estimation of the GLS estimator ˆ
hX  which is given by 

(2.9). Note that the GLS estimator is a function of  0 1,   and 2 .e  If the model parameters are known, 

then the MSE of ˆ
hX  is equal to      1 = 1 Cov , ,h h h h h hM V x x x      as discussed in Remark 1. 

That is, writing  2
0 1= , , e     and  ˆ ˆ= ,h hX X   the actual prediction for hX  is computed by 

 ˆ ˆ ˆ= .eh hX X   To account for the effect of estimating the model parameters, we first note the following 

decomposition of  *ˆMSE :hX  

 
      2

1 2

ˆ ˆ ˆ ˆMSE = MSE

=: ,

eh h eh h

h h

X X E X X

M M

 


 

which was originally proved by Kackar and Harville (1984) under normality assumptions. The first term, 

1 ,hM  is of order 1 ,hn  where hn  is the size of ,hA  and the second term, 2 ,hM  is of order 1 n  with 

1
= .

H

hh
n n

  The second term is often much smaller than the first term. 

We consider a jackknife approach to estimate the MSE. Use of the jackknife for bias-corrected 
estimation was originally proposed by Quenouille (1956). Jiang, Lahiri and Wan (2002) provided a 
rigorous justification of the jackknife method for the MSE estimation in small area estimation. The 
following steps can be used for the jackknife computation. 

 

Step 1 Calculate the thk  replicate  ˆ k  of ̂  by deleting the thk  area data set  1,k kx y  from the full data 

set   1, ; = 1, 2, , .h hx y h H  This calculation is done for each k  to get H  replicates of :
  ˆ ; = 1, ,k k H   which, in turn, provide H  replicates of ˆ :hX    ˆ ; = 1, 2, , ,k

hX k H   where 

    ˆ ˆ ˆ= .k k
h hX X   

 
Step 2 Calculate the estimator of 2hM  as  

   2

2
=1

1 ˆ ˆˆ = .
H

k
h h h

k

H
M X X

H


  (4.1) 

Step 3 Calculate the estimator of 1hM  as  

         JK JK
1

ˆ ˆ ˆ= 1 Cov ,h h h h h hM V x x x      (4.2) 
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where  JKˆ h  is a bias-corrected estimator of h  given by  

 

    

   
     

JK

=1

2
1

2 2
1 1

1
ˆ ˆ ˆ ˆ= ,

ˆ Cov ,ˆ
ˆ = ,

ˆ ˆ2 Cov ,ˆ

H
k

h h h h
k

e h h h
h

e h h h h

H

H

V b a b

V b V a a b


     

   


     


 

and  

  
       

            

2
1

22
1 1

ˆ Cov ,ˆ
ˆ = .

ˆ ˆ2 Cov ,ˆ

k k
e h h hk

h k k k
e h h h h

V b a b

V b V a a b

 


  

   


     
 

 

Remark 4 For the transformation in (3.13), we use the bias-corrected estimator in (3.14) and its MSE 

estimation method needs to be changed. Using ,
ˆ

eh bcX  to denote the bias-corrected estimator in (3.14) 

evaluated at ˆ ,  we can have the  

 

   
  

    
 

,

*

2* *

2 *

ˆ ˆMSE = MSE

ˆ= MSE

ˆMSE

ˆ= MSE ,

eh bc eh

eh

h eh

h eh

X X

Q X

Q X X

X X

 



 

where the first equality follows that ,
ˆ ˆ

h bc hX X  is of order  1 .p hO n   The MSE of *ˆ ,hX  the EGLS 

estimator of *
hX  after transformation, is computed by (4.1) and (4.2). Once  *ˆMSE ehX  is estimated, we 

should multiply it by 2ˆ
hX  to obtain the MSE estimator of the back-transformed EGLS estimator ,

ˆ .eh bcX  

 
5  Application to Korean Labor Force survey 
 

We now consider an application of the proposed method to the labor force surveys in Korea. In Korea, 

two different labor force surveys are used to obtain information about employment. One is the Korean 

Labor Force (KLF) survey and the other is the Local Area labor force (LALF) survey. The KLF survey 

has about 7K sample households but LALF has about 200K sample households. Because LALF is a large-

scale survey employing a lot of part time interviewers, there is a certain level of measurement errors in the 

LALF survey. We assume that the KLF has no measurement error, although it has significant sampling 

errors at the small area level. The KLF sample is a second-phase sample from the LALF sample. Thus, the 
sampling errors for two survey estimates are correlated. Let hX  be the (true) unemployment rate for area 

.h  The small area level we considered is called “Gu”. The number of “Gu” in Korea is 229. 
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We observe hx  from KLF survey and 1hy  from the LALF survey. To construct linking models, we 

first partition the population into two regions, urban region and rural region, based on the proportion of the 

households working on agricultural practice. Within each region, we build models separately (same model 

but allows for different parameter) and estimate the model parameters separately. The structural model is  

 1=h h hY X e   (5.1) 

with  20, .h ee   Here, we set 0 = 0  to guarantee that the GLS estimator of hX  is nonnegative. The 

sampling error model remains the same. In this case, 1  can be estimated by  

 
    

    

1 1
=1

1
2

1
=1

ˆ ,
ˆ = .

ˆ

H

h h h h h
h

H

h h h
h

w x y C a b

w x V a

 


 




 (5.2) 

The sampling variance of  ,h ha b  is computed using the method of reversed two-phase sampling 

described in the Appendix. The model variance is estimated by the method of moment technique in (3.8) 

with 0
ˆ = 0.  The GLS estimator can be computed by (2.9) with 1

1 1
ˆ= .h hx y  

In addition to the two surveys, we can also use the Census information. The GLS model incorporating 

the three sources of information can be expressed as  

 
2 1 2

1 1 1=

1

h h

h h h h

h h

Y e

y X b e

x a

     
                

    

 

where 2hY  is the census result for area .h  Because the Census estimate does not suffer from sampling 

error, we have only model error 2he  which represents the error when we model  2 1= .h hE Y X  The 

model parameters can be obtained using the method in Section 3 with   = diag 0, , .h h hV a b  The 

GLS estimator of hX  can be obtained easily. The MSE part can be computed by using the fact that  

  
1

1 2 1

1 1 1 1
ˆ = :=

1 1

h

h h h h h

h

e

V X X V b e M

a

       
                           

 

and applying the jackknife method for bias correction. 

Figure 5.1 presents the plot of the unemployment rate of KLF against LALF for urban areas. From 

Figure 5.1, we can find that there is a linear structural relationship between KLF and LALF. Instead of the 
usual residual ˆ

he  in the structural error model, ˆhv  are used as the residuals in the regression model with 

measurement errors, where 1 1
ˆ= .ˆh h hv y x   Figure 5.2 contains a plot of ˆhv  against ˆ

hX  for urban area. 

The plot shows that the assumption of equal variance 2
e  is slightly violated. The heteroscedastic variance 

model in Remark 2 was also considered but the results did not change significantly. 
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Figure 5.1 Plot of unemployment rate for KLF and LALF survey for urban area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.2 Plot of residuals against estimated values for urban area. 

 
Table 5.1 presents the performance of the small area estimates in terms of the MSE estimates. We 

considered four different estimators of .hX  KLF represents the result derived using only Korea Labor 

Force survey, LALF represents the result using only Local Area Labor Force survey, GLS 1 represents the 
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result for combining both surveys KLF and LALF, and GLS 2 represents the result for combining KLF, 
LALF and the Census data. Table 5.1 shows that the GLS 2 method provides the smallest mean squared 
errors. 

 
Table 5.1 
Quartile of the MSE performance of the small area estimates for the 229 areas 
 

MSE 1st Q Median  3rd Q  Mean 
KLF 0.0000630 0.0001210 0.0002395 0.0002476 

LALF 0.0001123 0.0001330 0.0001695 0.0001482 
GLS 1 0.0000444 0.0000738 0.0001210 0.0000893 
GLS 2 0.0000405 0.0000543 0.0000721 0.0000575 

 
6  Concluding remark 
 

In this paper, a small area estimation problem is treated as a measurement error model prediction 
problem where the covariates, which are the direct estimates for small areas, are subject to sampling 
errors. In our measurement error model approach, the sampling errors of the direct estimators are treated 
as measurement errors and the structural error model can be used to link the other auxiliary estimates to 
the direct estimators. The proposed model is actually the opposite of the model of Ybarra and Lohr (2008), 
where the direct estimator is treated as a dependent variable in the regression model and the nonsampling 
errors of auxiliary estimates are treated as measurement errors. 

In our approach, each auxiliary estimate is treated as a dependent variable in the regression model 
using the direct estimate as the covariate and the sampling error of the direct estimator is treated as 
measurement error. The measurement error variance is easy to estimate because it is essentially the 
sampling variance of the direct estimate. The measurement error model approach is also very useful when 
there are several sources of auxiliary information of area-levels. Unlike the Bayesian approach, the 
resulting estimator does not rely on parametric model assumptions about the structural error model and is 
still optimal in the sense of minimizing the mean squared errors among the class of unbiased estimators 
that are linear in the available data. 

In the example of the Korean labor survey application, two sample estimates and the Census 
information are used to compute the GLS estimates for small area parameters and the two sample 
estimates are correlated due to the two-phase sampling structure. We simply used linear regression models 
for the linking models, mainly for the sake of computational simplicity. Instead of the linear model, one 
may consider a generalized linear model to improve model prediction power. Such extension would 
involve the theory for nonlinear measurement error models. Further investigation on this extension will be 
a topic of future research. 
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Appendix 
 
Reversed two-phase sampling 
 

In the classical two-phase sampling, the second-phase sample  2A  is a subset of the first-phase 

sample  1 .A  We consider another type of sampling design that has a reversed structure of the two-phase 

sampling design. In the reversed two-phase sampling design, we have the following sampling steps: 

 

Step 1 From the finite population, we select the first-phase sample 1A  of size 1.n  

 
Step 2 In the second-phase sample, we select 2A  from 1U A  of size 2 .n  The final sample A  consists of 

1A  and 2 .A  That is, 1 2=A A A  and 1 2= = .A n n n  

 

The reversed two-phase sampling is used when the sample is augmented by an additional sampling 
procedure. 

To discuss parameter estimation under reversed two-phase sampling, let  1 1= Pri i A   be the 

first-order inclusion probability for 1.A  Let  2 |1 2 1= Pr c
i i A A   be the conditional first-order inclusion 

probability for 2A  given 1 1= .cA U A  To compute the inclusion probability for ,A  

        1 2 1 1Pr = Pr Pr Pr .c ci A i A i A A i A      

Thus, we can use  1 1 2 |1= 1i i i i       to compute the Horvitz-Thompson estimator of the form  

 ,HT

1ˆ = .r i
i A i

Y y
   (A.1) 

Note that, instead of (A.1), we can consider the following class of estimators:  

  
 

 
1 2

1 2
1 2 |1 1

1 1ˆ ˆ ˆ= 1 := 1 .
1w i i

i A i Ai i i

Y W y W y WY W Y
 

   
      (A.2) 

Since 1̂Y  and 2Ŷ  are both unbiased for ,Y ˆ
wY  is also unbiased regardless of the choice of .W  A 

reasonable choice of W  is 1= .W n n  

Under simple random sampling in both designs, the two estimators are equal to ˆ = ,nY Ny  where ny  

is the sample mean of y  in .A  Writing 
1

1
1 1= ii A

y n y
  and 

2
2 2= ,ii A

y y n
  we have  

  1 2= 1ny Wy W y   (A.3) 

where 1 .W n n  Using  

   2
1

1

1 1
  yV y S

n N
   
 

 (A.4) 
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where  
1

1 1= ,


 c

c
ii A

y y N n  we have, for 1= ,W n n  

   21 1
= .n yV y S

n N
  
 

 (A.5) 

Also,  

      2
1 1 1 2

1 1
Cov , = Cov , 1 = .n yy y y Wy W y S

n N
    
 

 (A.6) 

If 1=W n n  does not hold, then (A.5) and (A.6) do not hold. 

In the KLF application in Section 5, since x  and y  are measuring the same item, we may assume 
2 2= =x y xyS S S  and the variance-covariance matrix of the sampling errors can be smoothed as   

  
1 1

21
1 1

, = .h h y

n n
V a b S

n n

 

 

 
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Observed best prediction via nested-error regression with 
potentially misspecified mean and variance 

Jiming Jiang, Thuan Nguyen and J. Sunil Rao1 

Abstract 

We consider the observed best prediction (OBP; Jiang, Nguyen and Rao 2011) for small area estimation under 
the nested-error regression model, where both the mean and variance functions may be misspecified. We show 
via a simulation study that the OBP may significantly outperform the empirical best linear unbiased prediction 
(EBLUP) method not just in the overall mean squared prediction error (MSPE) but also in the area-specific 
MSPE for every one of the small areas. A bootstrap method is proposed for estimating the design-based area-
specific MSPE, which is simple and always produces positive MSPE estimates. The performance of the 
proposed MSPE estimator is evaluated through a simulation study. An application to the Television School and 
Family Smoking Prevention and Cessation study is considered. 

 
Key Words: Designe-based MSPE; Heteroscedasticity; Model misspecification; OBP; Small area estimation; TVSFP. 

 
 

1  Introduction 
 

Observed best prediction (OBP; Jiang, Nguyen and Rao 2011) is a new method for small area 
estimation (SAE; e.g., Rao 2003). It is motivated by the fact that the best linear unbiased prediction 
(BLUP) is a hybrid of best prediction (BP) and maximum likelihood (ML) estimation, while the main 
interest in SAE is typically a prediction problem. The OBP derives parameter estimation based on a purely 
predictive consideration, leading to the so-called best predictive estimator (BPE) of the model parameters. 
The development of the OBP in Jiang et al. (2011) mainly focuses on the Fay-Herriot model (Fay and 
Herriot 1979). Another important class of SAE models is the nested-error regression (NER) model, 
introduced by Battese, Harter and Fuller (1988). The NER model may be expressed as  

 = ,ij ij i ijy x v e     (1.1) 

= 1, , , = 1, , ,ii m j n   where the ’siv  are the area-specific random effects and ’sije  are errors which 

are assumed to be independent and normally distributed with mean zero,   2var =i vv   and 

  2var = ,ij ee   where 2
v  and 2

e  are unknown. Under the NER model, the small area mean, assuming 

infinite population, is =i i iX v    for the thi  small area, where iX  is the population mean of the ’sijx  

(assumed known; e.g., Rao 2003). It is seen that i  is a (linear) mixed effect. Let 2 2= .v e    Then, the 

best predictor (BP) of ,i  is obtained by minimizing the model-based mean squared prediction error 

(MSPE),  

   2
E ,M i i  


 (1.2) 
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where E M  denotes expectation under the assumed NER model, and i


 denotes a predictor of .i  By 

normal theory (e.g., Jiang 2007, page 237), the BP is given by  

    = E = ,
1

i
i M i i i i i

i

n
y X y x

n  

      
 

  (1.3) 

where  
1

= ,
i

i ij j n
y y

 
  and   are the true parameters, 1

=1
= in

i i ijj
y n y

   and 1

=1
= .in

i i ijj
x n x

   The 

traditional best linear unbiased prediction (BLUP) method is based on (1.3) with   replaced by its ML 

estimator, assuming that   is known; and the empirical BLUP (EBLUP) is derived from the BLUP with 
  replaced by a consistent estimator. 

The OBP procedure (Jiang et al. 2011) derives estimators of   and ,  namely the BPE, by minimizing 

the observed, design-based MSPE, which is completely different from the traditional methods such as 
maximum likelihood (ML) and restricted maximum likelihood (REML; e.g., Jiang 2007). Throughout this 
paper, we assume that the samples are drawn via simple random sampling, without replacement, from 

each small area, which is what the design-based approach is based upon. Write  = , .    Note that, in 

practice, the small area populations are finite. Following Jiang et al. (2011), we consider a super-
population NER model. Suppose that the subpopulations of responses  , = 1, ,ik iY k N  and auxiliary 

data  , = 1, , , = 1, ,ikl iX k N l p   are realizations from corresponding super-populations that are 

assumed to satisfy the NER model. It follows that  

 = ,   = 1, , ,   = 1, , ,ik ik i ik iY X v e i m k N       (1.4) 

where , iv  and ike  satisfy the same assumptions as in (1.1). Under the finite-population setting, the true 

small area mean is 1

=1
= = iN

i i i ikk
Y N Y   (as opposed to =i i iX v    under the infinite-population 

setting) for 1 .i m   Furthermore, write = .i i ir n N  Then, the finite-population version of the BP 

(1.3) has the expression (e.g., Rao 2003, Section 7.2.5)  

      = E = 1 ,
1

i
i M i i i i i i i

i

n
y X r r y x

n  

            
  (1.5) 

where E M  denotes (conditional) expectation under the assumed super-population NER model, and   and 
  are the true parameters. Note that the BP is model-dependent. 

In practice, any assumed model is subject to misspecification. Jiang et al. (2011) considers 
misspecification of the mean function, while assuming that the variance-covariance structure of the data is 
correctly specified. However, the latter, too, may be misspecified in practice. In this paper, we extend the 
potential model misspecification to both the mean function and the variance-covariance structure. One 
possible misspecification of the variance-covariance structure is heteroscedasticity, defined in terms of 

  2var =ij ie   for area ,1 ,i i m   where the 2 ’si  are unknown and possibly different. However, in 

spite of the potential model misspecification, there are reasons that one cannot “abandon” the assumed 
model, and the model-based BP. First, the assumed model and BP are relatively simple to use, and 
therefore, attractive to practitioners; in particular, they utilizes simple relationship (linear) between the 
response and auxiliary variables. For example, in contrast to (1.4), which may subject to misspecification 
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of the mean function, ,ikX    one may assume = ,ik ik i ikY v e    where the ik  are completely 

unspecified, unknown constants. The latter model is almost always correct, but is useless, because it does 
not utilize any relationship between Y  and X  at all. In fact, in practice, if auxiliary data are available, it 
is often “politically incorrect” not to use them. Secondly, even though there is a concern about the model 
misspecification, it often lacks (statistical) evidence on why something else is more reasonable, or whether 
a complication is necessary. For example, sometimes there is a concern about the normality assumption, 
but there is no indication on why an alternative distribution, say, 5 ,t  is more reasonable. As another 

example, suppose that one fits a quadratic model and finds that the coefficient of the quadratic term is 
insignificant. Then, one is not sure whether the complication of quadratic modeling is necessary as 
opposed to linear modeling. Thus, as far as this paper is concerned, we are not attempting to change the 
assumed model, or the BP, (1.5), based on the assumed model. In particular, we assume a single 
parameter, ,  in (1.5) for the ratio 2 2 ,v e   rather than considering a heteroscedastic NER model such as 

in Jiang and Nguyen (2012), and Nandram and Sun (2012). Our goal is to find a better way to estimate the 
parameters, ,  under the assumed model that are involved in (1.5), so that the resulting BP, (1.5), is more 

robust against model misspecifications. We do so by considering an objective MSPE that is not model-
dependent, defined as follows. Let  1= i i m    denote the vector of small area means, and 

1
= i i m 

      the vector of BPs. Note that i  depends on ,  that is,  = .i i     The design-based 

MSPE is  

       22

=1

MSPE = E = E .
m

i i
i

           (1.6) 

Note that the E  in (1.6) is different from the E M  in (1.2), (1.3), or (1.5) in that E  is completely model-

free; namely, the expectation in (1.6) is with respect to the simple random sampling from the areas, which 
has nothing to do with the assumed model. Jiang et al. (2011) showed that the MSPE in (1.6) has an 
alternative expression, which is a key idea of the OBP. Namely, we have     MSPE = E ,Q     

where   does not depend on ,  and  

      2 2

=1 =1

1
= 2 = .ˆ

1

m m
i

i i i i i i
i ii

r
Q y X b Q

n 

           
   (1.7) 

In (1.7),   is considered as a parameter vector, rather than the true parameter vector,    = 1 2i ib a  

with       1= 1 1 .i i i i ia r r n n        Furthermore, 2ˆ i  is a design-unbiased estimator of 2
iY  that 

has the following expression:  

 
 

  22 2

=1 =1

1 1
= .ˆ

1

i in n
i

i ij ij i
j ji i i

N
y y y

n N n 


  

   (1.8) 

The BPE of ˆ, ,   is the minimizer of  Q   with respect to .  For the reader’s convenience, the 

derivations of (1.7) and (1.8) are provided in the Appendix. Also note that the BP is based on the (model-
based) area-specific MSPE (so it is optimal for every small area, if the assumed model is correct), while 
the BPE is based on the (design-based) overall MSPE. This is because we do not want the estimator of   

to be area-dependent. One reason is that area-dependent estimators are often unstable due to the small 
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sample size from the area, while an estimator obtained by utilizing all of the areas, such as the BPE 
defined in this paper, tends to be much more stable. 

The consideration of the design-based MSPE, as we do in this paper, is due to the fact that the design-
based MSPE is completely model-free. Note that, in Jiang et al. (2011), where the authors considered the 
Fay-Herriot model, it is not possible to evaluate the design-based MSPE, because the actual samples from 
the areas are not available (only summaries of the data are available at the area level). Thus, instead, the 
authors considered model-based MSPE under the most general, or least restrictive, model, which simply 
assumes that the mean function is ,i  where i  is completely unknown, for the thi  small area. In general, 

there is a “rule of thumb” on what kind of MSPE one should consider. Essentially, the rule is that one 
should make the MSPE as model-free as possible, so that it would be objective and (relatively) robust to 
model-misspecifications. 

In Section 2, we first consider a simulated example in which we compare the design-based predictive 
performance of the OBP with that of the EBLUP. Such comparisons were made in Jiang et al. (2011) 
under the Fay-Herriot model, but has never been done under the NER model. Furthermore, the simulation 
setting involves misspecification of both the mean function and the variance function, which, again, has 
not been considered. The simulation results show that the OBP can outperform the EBLUP not just in the 
overall design-based MSPE but also in the (design-based) area-specific MSPE for every one of a large 
number of small areas. This is clearly something that has never been discovered. For example, in Jiang 
et al. (2011), the OBP is shown to outperform the EBLUP in the overall MSPE but not necessarily for 
every small area. 

An important problem of practical interest is estimation of the area-specific MSPEs, here the design-
based MSPEs. In Section 3, we propose a bootstrap estimator for the area-specific MSPE, which has the 
advantage of simplicity and always being positive. Another simulation study is carried out to evaluate the 
performance of the proposed MSPE estimator. An application to the Television School and Family 
Smoking Prevention and Cessation Project (TVSFP) is discussed in Section 4.  

 
2  Simulation studies: OBP vs EBLUP 
 
2.1  A demonstration 
 

We first use a simple simulated example to demonstrate the potential impact of model misspecification 
in terms of the design-based predictive performance of the OBP and the EBLUP. Consider a case where a 
single covariate, ,ijx  is thought to be linearly associated with the response ijy  through the following NER 

model:  

 = ,   = 1, , ,   = 1, , 5ij ij i ijy x v e i m j      (2.1) 

(so we have = 5,1in i m   in this case), where   is an unknown coefficient, and ,i ijv e  are the same 

as in (1.1). Thus, in particular, there is a belief that the mean response should be zero when the value of 
the covariate is zero. 
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We consider three different sample sizes: 50, = 100m  or 400  in conjunction with two different true 

values of : = 0.5b b  or 1.0 , where b  is defined below. Thus, there are six cases, each being a 
combination of the sample size and b  value. In each case, an x  subpopulation is generated from the 
normal distribution with mean equal to 1 and standard deviation equal to 0.1 .0 .32  The y

subpopulation is then generated from the following super-population heteroscedastic NER model:  

 = ,   = 1, , ,   = 1, ,1,000ik i ikY b v e i m k     (2.2) 

(so the subpopulation size is = 1,000, ),1iN i m   where iv  is generated from the normal distribution 

with mean 0 and standard deviation 0.1 0.32; ije  is generated from the normal distribution with mean 

0 and standard deviation ,i  where 2
i  are generated independently from the Uniform  0.05, 0.15  

distribution (so that range for i  is approximately from 0.22 to 0.39); and the ’siv  and ’sike  are 

generated independently. It is seen that the assumed NER model is misspecified in terms of both the mean 
and the variance functions. Once the x  and y  subpopulations are generated, they are fixed throughout the 

simulations. 

In each simulation, we draw a simple random sample of size 5 from  1, ,1,000  that determines the 

samples ijx  and , = 1, , 5,ijy j   for each .i  This is repeated for = 1,000K  simulation runs. We make 

same-data comparisons of the OBP and EBLUP, with the ML estimator of   for the latter, in terms of 

both the overall and area-specific MSPEs. The overall MSPE is defined as  ˆMSPE =  

    22

=1
ˆ ˆE = E ,

m

i ii
       where  1= i i m    is the vector of true small area means with 

= ,i iY  and  
1

ˆ ˆ= i i m 
   is the vector of predicted values (either by OBP or by EBLUP). Note that the 

same measure has been used in Jiang et al. (2011). Table 2.1 reports the overall MSPE results, where the 

MSPE is evaluated empirically by         221 1

=1 =1 =1
ˆ ˆ= ,

K K mk k k k
i ik k i

K K          and   =k  

 
1

k
i i m 

    and    
1

ˆ ˆ=k k
i i m 

     are the   and ̂  in the thk  simulation run, respectively. It is seen that 

the percentage increase in the overall MSPE of the EBLUP over the OBP ranges between around 20% to 
almost 1,000%, depending on the sample size and value of .b  The patterns shown here are consistent with 

those in Jiang et al. (2011) under the Fay-Herriot model, where model-based predictive performances are 
evaluated. However, the gain by the OBP is much more significant, for = 100m  and = 400,m  than 

those reported in Jiang et al. (2011).  

 
Table 2.1 
Overall empirical MSPE (% Increase is EBLUP over OBP) 
 

 m  b  OBP EBLUP % Increase 
 50 0.5 0.130 0.161 24 
50 1.0 0.503 0.598 19 
100 0.5 0.076 0.277 264 
100 1.0 0.396 1.077 172 
400 0.5 0.096 0.965 905 
400 1.0 0.393 4.046 930  
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As for the area-specific MSPEs, following Jiang et al. (2011), we use boxplots to exhibit the 
distributions of the area-specific MSPEs associated with both methods. See Figure 2.1. The plots reveal 
details not shown by the overall MSPEs. For example, it might be wondered whether the percentage 
increase by the EBLUP in the overall MSPE is simply due to the increased number of areas adding 
together. A simple calculation suggests that this may not be true, for example,  400 50 19%  is only 

 152% not 930% .  A more explicit explanation is given in Figure 2.1. For example, comparing the case 

of = 50, = 1m b  with that of = 400, = 1,m b  it is seen that while there is a considerable overlap 

between the boxplots of OBP and EBLUP in the former case, the boxplots are completely separated in the 
latter case; in other words, the largest area-specific MSPE of the OBP is smaller than the smallest area-
specific MSPE of the EBLUP. This pattern cannot be simply credited to adding or duplicating the areas. In 
fact, in the latter case, the OBP is doing much better than the EBLUP not just overall, but also for every 
one of the 400 small areas. This is clearly something never reported before. For example, in the first 
simulated example of Jiang et al. (2011), the authors found that the OBP has smaller MSPE compared to 
the EBLUP for half of the small areas while the EBLUP has smaller MSPE compared to the OBP for the 
other half; similar patterns were found in the second simulated examples in Jiang et al. (2011).  

The estimation of the area-specific MSPEs of the OBP is considered in Section 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 Area-specific Empirical MSPEs (Boxplots). Upper Left: = 50, = 0.5;m b  Upper Right: 

= 50, = 1.0;m b  Middle Left: = 100, = 0.5;m b  Middle Right: = 100, = 1.0;m b  Lower Left: 
= 400, = 0.5;m b  Lower Right: = 400, = 1.0.m b  
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2.2  Further considerations 
 

The situation considered in Subseciton 2.1 might be a little extreme (and this is why we call it a 
“theoretical demonstration”). In practice, the assumed model may not be completely wrong, or may be 
close to be correct. In this subsection we first consider a case where the assumed model is “partially 
correct”. Namely, the slope in (2.1) is nonzero (so the assumed model is correct in this regard); the 
intercept is nonzero, but its value is much smaller compared to those considered in Subsection 2.1 (so the 
assumed model is wrong, but not “terribly wrong”). More specifically, the true underlying model is  

 0 1= ,   = 1, , ,   = 1, ,1,000,ij ik i ikY b b X v e i m k      (2.3) 

as opposed to (2.2), where 0 1= 0.2, = 0.1;b b  the iv  are generated independently from the normal 

distribution with mean 0 and standard deviation 0.1; and ike  are generated from the heteroscedastic 

normal distribution as in Subseciton 2.1. In addition to the overall MSPE, we also report contribution to 

the MSPE due to “bias” and “variance”. Let ˆ= ,i i id     and  k
id  be id  based on the thk  simulated 

data set, 1 .k K   We define the empirical bias and variance for the thi  small area as 
 1

=1
=

K k
i ik

d K d   and     212

=1
= 1 ,

K k
i i ik

v K d d   respectively. Let MSPE i  denote the 

empirical MSPE for the thi  small area. It is easy to show that the overall empirical MSPE is  

  22

=1 =1 =1

1
MSPE = .

m m m

i i i
i i i

K
v d

K


    

Thus, the bias and variance contribution to the overall MSPE are defined as  2

=1

m

ii
d  and 2

=1
,

m

ii
v  

respectively. Results based on 0= 1,00K  simulation runs are presented in Table 2.2. As we can see, for 
the smaller , = 50,m m  OBP performs (slightly) worse than the EBLUP, but for the larger , = 100m m  
and = 400,m  OBP performs (slightly) better, and its advantage increases with .m  As for the bias, 

variance contribution, OBP seems to have smaller bias, and smaller variance for larger 
 = 100, 400 .m m  

 
Table 2.2 
Overall Empirical MSPE (bias, variance contribution): Assumed model is partially correct; % Increase is 
MSPE of EBLUP over MSPE of OBP (negative number indicates decrease) 
 

 m  OBP EBLUP % Increase 
 50 0.421 (0.224, 0.197) 0.405 (0.238, 0.167) -4.0 
100 0.733 (0.448, 0.285) 0.748 (0.457, 0.291) 2.1 
400 2.745 (1.847, 0.899) 2.848 (1.878, 0.971) 3.8  

 
Next, we consider a case where the assumed model is actually correct. Namely, the true underlying 

model is (2.3) with 0 = 0;b  the errors ike  are homoscedastic with variance equal to 0.1, and everything 

else is the same as the case considered above. Results based on 0= 1,00K  simulation runs are presented 
in Table 2.3. This time, we see that the EBLUP performs slightly better than OBP under different ,m  but 

the difference is diminishing as the sample size increases. As for the bias, variance contribution, EBLUP 
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seems to have smaller variance, and smaller bias for larger  = 100, 400 ,m m  but its advantages in both 

bias and variance shrink as m  increases.  

 
Table 2.3 
Overall Empirical MSPE (bias, variance contribution): Assumed model is correct; % Increase is MSPE of 
EBLUP over MSPE of OBP (negative number indicates decrease) 
 

 m  OBP EBLUP % Increase 
 50 0.335 (0.204, 0.131) 0.330 (0.205, 0.125) -1.4 
100 0.749 (0.457, 0.292) 0.746 (0.456, 0.290) -0.4 
400 2.796 (1.800, 0.997) 2.794 (1.799, 0.996) -0.1  

 
In summary, the simulation results suggest that, when the assumed model is slightly misspecified, OBP 

may not outperform EBLUP when ,m  the number of small areas, is relatively small; however, OBP is 

expected to outperform EBLUP when m  is relatively large, and the advantage of OBP over EBLUP 
increases with m  (recall the definition of the overall MSPE). On the other hand, when the assumed model 

is correct, EBLUP is expected to perform better than OBP, although the difference may be ignorable; and 
the advantage of EBLUP over OBP is disappearing as m  increases. These findings, along with those in 

Subsection 2.1, are very much in line with those of Jiang et al. (2011; Section 4) under the Fay-Herriot 
model.  

 
3  Estimation of area-specific MSPE 
 

The design-based area-specific MSPE is defined as  

    2ˆ ˆMSPE = E ,i i i     (3.1) 

where and hereafter E  represents the design-based expectation, and ˆ
i  is the OBP of ,i  given by (1.5) 

with  = ,     replaced by its BPE,  ˆˆ ˆ= , .    As noted in Jiang et al. (2011), it is difficult to 

obtain second-order unbiased area-specific MSPE estimator under potential model misspecification. This 
is because the standard asymptotic techniques used in this area, such as the Prasad-Rao linearization 
method (Prasad and Rao 1990), and the jackknife method (Jiang, Lahiri and Wan 2002), are no longer 
applicable when the underlying model is misspecified. Jiang et al. (2011) used a different technique to 
derive a linearization MSPE estimator which is second-order unbiased. However, the latter is not 
guaranteed nonnegative. Furthermore, the leading term of this MSPE estimator is an (1)O  function of the 

area-specific data, rather than all the data. More precisely, the leading term for the estimated MSPE of ˆ ,i  

where ˆ
i  is the OBP of the thi  small area mean, ,i  is    2ˆ ˆ2 1 ,i i i iy D B     under the Fay-Herriot 

model, where iy  is the observation from the thi  area (the direct estimator), iD  is the (known) sampling 

variance,  ˆ ˆˆ = ,i iB A A D  and Â  is the BPE for the variance of the area-specific random effect. This 

is the leading term because its order is (1),O  while the rest of the terms in the expression of the estimated 
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MSPE are of the order  1O m   or lower. Because iy  is an observation from a single small area, it has a 

relatively large variance, that is, the variance is  1 ,O  if in  is bounded. On the other hand, the BPE Â  is 

obtained using data from all the small areas, and therefore has a relatively (much) smaller variance; and 

ˆ
i  is a mixture of iy  and the BPEs. As a result,   2ˆ

i iy   is the main contributor to the variance, which 

can be quite large due to the variation of .iy  On the other hand, the term  ˆ2 1i iD B   can be negative. 

Thus, as a result of the high variation of   2ˆ ,i iy   there is a non-vanishing probability (as m  increases) 

that the leading term, hence the estimated MSPE, is negative. If we are to take a similar linearization 
approach under the NER model, we can derive a second-order unbiased MSPE estimator that involves iy   

in its leading term, which is based on data from a single small area. Then, once again, we run into the 
problem of large variation and non-vanishing probability of negative value for the MSPE estimator. 

Jiang et al. (2011) also used a parametric bootstrap method to obtain an alternative MSPE estimator; 
however, the justification for the use of this method is questionable given the potential model 
misspecification. Here we propose to use the nonparametric bootstrap following Efron’s original idea 
(Efron 1979). The method does not rely on the NER model, hence is not affected by the model 
misspecification. Therefore, the current method is better justified. Furthermore, the proposed MSPE 
estimator is guaranteed nonnegative, and positive with probability one, which is a major advantage over 
the linearization MSPE estimator of Jiang et al. (2011). 

Suppose that the small area subpopulations, or the ’s,iN  are large enough, so that the sampling from 

the subpopulations can be treated approximately as with replacement. Let  = , , = 1, ,ij ij ij iz x y j n   

denote the (original) samples from the thi  small area, 1 .i m   We then draw samples, 

      = , , = 1, , ,a a a
ij ij ij iz x y j n

 
  

  with replacement, from  , = 1, , ,ij iz j n  independently for 

1 .i m   Suppose that B  bootstrap samples are drawn, yielding samples 
    = ,1 ,1 ,1 .a a

ij iz z j n i m a B       The bootstrapped version of the BP (1.5) is  

         = 1 ,
1

ia a a
i i i i i i

i

n
X r r y x

n  

               
  (3.2) 

where   and   are the same population parameters for   and ,  respectively, as for the original 

population. Note that the original samples of ijz  are assumed to satisfy the same NER model, (1.4), with 

 ik ikX Y  replaced by   .ij ijx y  Because the original samples are treated as the bootstrap population, 

following Efron’s original idea, the population parameters, , ,   for the bootstrap samples are the same as 

those for the original samples. Nevertheless, as mentioned, the proposed bootstrap procedure is 
nonparametric in the sense that the assumed model, (1.4), plays no role in drawing the bootstrap samples. 
In particular, the BPE of   and ,  based on the original samples, are not used anywhere in the 

bootstrapping; and the population quantities of interest are ,1 ,iY i m   whose bootstrap analogies are 

,1 .iy i m    This is different from the parametric bootstrap of Jiang et al. (2011), where the BPE of the 

model parameters, based on the original samples, are used to draw bootstrap samples under the assumed 
model. Also note that, because the iX  are known, they are treated as known constants, and therefore do 
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not change during the bootstrapping (it does not make sense to “estimate” something that one already 
knows). Other than those, the procedure follows closely the standard bootstrap idea (e.g., Efron and 
Tibshirani (1993); also see Chatterjee, Lahiri and Li (2008) for an application to small area estimation). 

The bootstrap estimator of    2ˆ ˆMSPE = Ei i iY    is  

      2

=1

1ˆ ˆMSPE = ,
B

a
i i i

a

y
B     (3.3) 

where  ˆ a
i  is (3.2) with ,   replaced by their BPE based on the bootstrapped samples. 

 

Note. One might be concerned that, because the ’sin  may be small in typical SAE problems, there may 

not be many distinct bootstrap samples for each small area. However, the data consist of not just one, but 
many small areas. When all of the small areas are combined, there are, still, a lot of distinct bootstrap 
samples, even if the ’sin  are small. 
 

We evaluate the performance of the proposed MSPE estimator by considering the simulated example 
of Subection 2.1 with 5= 0.b  but under smaller sample sizes. Namely, we start with the basic sample 
size = 10m  and = 5,in  and then either increase ,in  from 5 to 10, or increase ,m  from 10 to 20. We 

first consider the design-based bias of   ˆMSPE .i  Two finite populations are generated, and then fixed, 

so that the finite population for = 10m  is a subpopulation of the finite population for = 20.m  Table 3.1 

reports, for the first ten small areas (these are all the small areas that are common under different values of 
),m  the simulated true MSPE (MSPE), obtained the same way as in Section 2, the simulated mean of 

    ˆMSPE MSPE ,i  and the percentage relative bias (%RB) defined as  

 E MSPE True MSPE
100 ,

True MSPE

    
  

 

where the expectation is based on the simulations. Another measure of performance is the square root of 
the mean squared error (RMSE) over the simulations, defined as  

 2

,

=1

1
MSPE MSPE

K

i k i
kK

  

for the thi  small area, where MSPE i  is the true MSPE for the thi  small area (which does not depend on 

),k  evaluated over the simulations, and  ,MSPE i k  is the MSPE estimate based on the thk  simulated data 

set. We consider = 100B  as the number of bootstrap samples used to evaluate the MSPE estimator, 

(3.3). All results are based on 1,000 simulation runs. It is seen that, overall, the results improve when 
either in  or m  increase, but, in terms of %RB, the improvement is more universal, or effective, when in  

increases. This is mainly due to the fact that, as in  increases, the sample provides a better approximation 

to the population; hence, the bootstrap distribution better approximates to the population distribution. Also 
note that, depending on the area, the sign of the RB can be either positive or negative. This is mainly due 
to the area-to-area difference (recall that the populations are fixed) as well as the bootstrap errors. To 
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obtain some overall measures, we report the mean and standard deviation (s.d.) of the %RBs over the ten 
small areas as follows: = 10, = 5 :im n  mean = 4.2%,  s.d. = 14.8%; = 10, = 10 :im n  mean = 1.5%,  

s.d. = 4.2%; = 20, = 5 :im n  mean = 0.6%,  s.d. = 8.1%.  The boxplots of the %RBs are presented in 

Figure 3.1. The plots further illustrate the pattern of improvement. On the other hand, in terms of RMSE, 
the improvement is much more significant when m  increases than when in  increases. This is because 

having a larger m  reduces the MSPEs, in general; hence, natually, the correponding MSPE estimates also 

drop. In other words, both the estimator and the parameter (the MSPE) decrease, which typically results in 
a reduction in RMSE. The summary and boxplots for RMSE are omitted.  

In addition, the %RB and RMSE in Table 3.1 fluctuates quite a bit from area to area. This is mainly 
due to the area to area difference. Recall the small area populations are generated each with population 
size 1,= 000,iN  and then fixed throughout the simulation. Although the superpopulation used to 

generate the small area populations, including X  and ,Y  are the same, there are still some differences in 

the generated finite populations, especially because the population size, ,iN  is not very large. 
 

Table 3.1 
Empirical Performance of MSPE  
 

m  in  i  MSPE MSPE  %RB RMSE i  MSPE MSPE  %RB RMSE 

10 5 1 0.041 0.042 4.5 0.103 6 0.034 0.043 26.3 0.070 
10 10 1 0.036 0.036 -0.4 0.068 6 0.034 0.036 6.4 0.070 
20 5 1 0.031 0.032 4.1 0.051 6 0.028 0.031 12.5 0.046 
10 5 2 0.046 0.038 -16.1 0.078 7 0.032 0.040 25.4 0.078 
10 10 2 0.035 0.033 -4.1 0.078 7 0.033 0.034 2.7 0.068 
20 5 2 0.031 0.029 -7.2 0.050 7 0.030 0.031 3.6 0.055 
10 5 3 0.038 0.042 10.2 0.121 8 0.042 0.042 -0.4 0.150 
10 10 3 0.037 0.036 -1.7 0.091 8 0.033 0.035 7.5 0.067 
20 5 3 0.031 0.032 4.4 0.052 8 0.030 0.031 4.1 0.058 
10 5 4 0.056 0.052 -7.6 0.121 9 0.050 0.042 -15.0 0.074 
10 10 4 0.037 0.040 6.3 0.072 9 0.034 0.034 -1.0 0.063 
20 5 4 0.040 0.035 -11.3 0.068 9 0.034 0.030 -11.1 0.049 
10 5 5 0.033 0.037 11.8 0.066 10 0.041 0.043 3.1 0.082 
10 10 5 0.032 0.033 2.5 0.066 10 0.034 0.033 -2.9 0.073 
20 5 5 0.024 0.025 2.9 0.052 10 0.035 0.033 -7.9 0.062 

 

 

 

 
 

 

 

 

 

 

 

Figure 3.1 Boxplots of %RB. 1 : = 10, = 5; 2 : = 10, = 10; 3 : = 20, = 5.i i im n m n m n  
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We conclude this section with some comments on the theoretical side. While there have been extensive 
studies on MSPE estimation in SAE since Prasad and Rao’s seminal paper (Prasad and Rao 1990), the 
vast majority of these work focus on the model-based MSPEs. See, for example, Datta, Kubokawa, 
Molina and Rao (2011), Lahiri (2012), and Torabi and Rao (2012) for some recent work on design-based 
MSPE estimation in SAE. As noted in Jiang et al. (2011), under possible model misspecification, the 
model-based area-specific MSPE is not consistently estimable, and this is true for the design-based, area-
specific MSPE as well. The reason is that, when the model is misspecified in terms of the mean function, 
the MSPE is not a function of a finite number of parameters (such as , ,   and 2 ).e  In fact, because we 

operate under possible model misspecification, the quantities such as 2 ,1iY i m   are involved in the 

expressions of the area-specific MSPEs, which should all be treated as unknown parameters. Furthermore, 
the effective sample size for estimating 2

iY  is ,in  if the assumed model fails. It follows that 2
iY  cannot 

be consistently estimated using data from the area alone, if in  is bounded. Generally speaking, if the 

MSPE can be estimated consistently, the difference between the MSPE estimator and the MSPE is 

 1 2
P ;O m   therefore, the bias is typically  1O m   without bias correction. On the other hand, if the 

(area-specific) MSPE cannot be consistently estimated, the difference between the MSPE estimator and 
the MSPE is typically   1 2

P ,iO m n   where  = min , ,m n m n  hence the bias is typically 

  1 ,iO m n   without the bias correction. The bootstrap MSPE estimator, MSPE,  has the latter 

property, plus that it is always nonnegative. Although it is possible to bias-correct MSPE  to reduce the 

order of the bias to   1
io m n   (e.g., Hall and Maiti 2006), the nonnegative property may be lost after 

the bias correction. In view of the above discussion, it seems that, under the potential model 
misspecification, it is reasonable to define the first and second-order unbiasedness of an area-specific 
MSPE estimator in terms of   1

iO m n   and   1 ,io m n   instead of the traditional  1O m   and 

 1o m   (e.g., Rao 2003).  

 
4  An application 
 

We consider an application of the methods developed in the previous sections to the TVSFP data. For a 
complete description of the TVSFP study, see Hedeker, Gibbons and Flay (1994). The original study was 
designed to test independent and combined effects of a school-based social-resistance curriculum and a 
television-based program in terms of tobacco use prevention and cessation. The subjects were seventh-
grade students from Los Angeles (LA) and San Diego in the State of California in the United States. The 
students were pretested in January 1986 in an initial study. The same students completed an immediate 
postintervention questionnaire in April 1986, a one-year follow-up questionnaire (in April 1987), and a 
two-year follow-up (in April 1988). In this analysis, we consider a subset of the TVSFP data involving 
students from 28 LA schools, where the schools were randomized to one of four study conditions: (a) a 
social-resistance classroom curriculum (CC); (b) a media (television) intervention (TV); (c) a combination 
of CC and TV conditions; and (d) a no-treatment control. A tobacco and health knowledge scale (THKS) 
score was one of the primary study outcome variables, and the one used for this analysis. The THKS 
consisted of seven questionnaire items used to assess student tobacco and health knowledge. A student’s 
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THKS score was defined as the sum of the items that the student answered correctly. Only data from the 
pretest and immediate postintervention are available for the current analysis. More specifically, the data 
only involved subjects who had completed the THKS at both of these time points. On the one hand, the 
Complete-record data set up an ideal “before-afterˮ situation; on the other hand, the missing data, that is, 
those from subjects who had completed the questionnaire at only one time point, might have provided 
additional useful information. For example, it is possible that a subject did not complete the follow-up 
because he or she did not find the program helpful. Unfortunately, the incomplete data were not available. 
As a result, there is a potential risk of selection bias for the complete-record-only analysis. In all, there 
were 1,600 students from the 28 schools, with the number of students from each school ranging from 18 to 
137. 

Hedeker et al. (1994) carried out a mixed-model analysis based on a number of NER models to 
illustrate maximum likelihood estimation for the analysis of clustered data. Here we consider a problem of 
estimating the small area means for the difference between the immediate postintervention and pretest 
THKS scores (the response). Here the “small areaˮ is understood as a number of major characteristics 
(e.g., residential area, teacher/student ratio) that affect the response, but are not captured by the covariates 
in the model (i.e., linear combination of the CC, TV and CCTV indicators). Note that, traditionally, the 
words “small areasˮ correspond to small geographical regions or subpopulations, for which adequate 
samples are not available (e.g., Rao 2003), and such information as residential characteristics or 
teacher/student ratios would be used as additional covariates. However, such characteristic information are 
not available. This is why we define these unavailable information as “area-specificˮ, so that they can be 
treated as the (small-area) random effects. This is consistent with the fundamental features of the random 
effects that are often used to capture unobservable effects or information (e.g., Jiang 2007), and extends 
the traditional notion of small area estimation. Thus, a small area is the seventh graders in all of the U.S. 
schools that share the similar major characteristics as a LA school involved in the data over a reasonable 
period of time (e.g., five years) so that these characteristics had not changed much during the time and 
neither had the social/educational relevance of the CC and TV programs. There are 28 LA schools in the 
TVSFP data that correspond to 28 sets of characteristics, so that the data are considered random samples 
from the 28 small areas defined as above. As such, each small area population is large enough so that 

0,1 28.i in N i    Recall that the ’sin  in the TVSFP sample range from 18 to 137, while the ’siN  

are expected to be at least tens of thousands. Note that the only place in the OBP where the knowledge of 

iN  is required is through the ratio .i in N The proposed NER model can be expressed as (1.1) with 

0 1 ,1 2 ,2 3 ,1 ,2= ,ij i i i ix x x x x          where ,1 = 1ix  if CC, and 0  otherwise; ,2 = 1ix  if TV, and 0  

otherwise. It follows that all the auxiliary data ix  are at the area level; as a result, the value of iX  is 

known for every .i  

As noted, the sample sizes for some small areas are quite large, but there are also areas with relatively 
(much) smaller sample sizes. This is quite common in real-life problems. Because the auxiliary data are at 
area-level, we have = ;i iX x    thus, it is easy to show that the BP (1.5) can be expressed as  

 
1

= 1 .
1 1

i i
i i i i i

i i

n r
r r y x

n n

            
  

It is seen that, when in  is large, the BP is approximately equal to ,iy  the design-based estimator, which 

has nothing to do with the parameter estimation. Therefore, when in  is large, there is not much difference 
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between the OBP and the EBLUP. On the other hand, when in  is small or moderate, we expect some 

difference between the OBP and the EBLUP in terms of the MSPE. However, it is difficult to tell how 
much difference there is in this real data example. Our simulation results in Section 2 show that the 
difference between OBP and EBLUP in terms of the MSPE depends on to what extent the assumed model 
is misspecified. It should be noted that the response, ,ijy  is difference in the THKS scores, and possible 

values of the THKS score are integers between 0 and 7. Clearly, such data is not normal. The potential 
impact of the nonnormality is two-fold. On the one hand, it is likely that the NER model, as proposed by 
Hedeker et al. (1994), is misspecified, in which case expression (1.5) is no longer the BP, and the 
Gaussian ML (REML) estimators are no longer the true ML (REML) estimators. On the other hand, even 
without the normality, (1.5) can still be justified as the best linear predictor (BLP; e.g., Searle, Casella and 
McCulloch 1992, Section 7.3). Furthermore, the Gaussian ML (REML) estimators are consistent and 
asymptotically normal even without the normality assumption (Jiang 1996; also see Jiang 2007, Chapter 
1). Other aspects of the NER model include homoscedasticity of the error variance across the small areas. 
Figure 4.1 shows the histogram of the sample variances of the 28 small areas. The bimodal shape of the 
histogram suggests potential heteroscedasticity in the error variance, yet another type of possible model 
misspecification. Therefore, the OBP method is naturally considered.  

 
 

 

 

 

 

 

 

 

 

 
Figure 4.1 Histogram of sample variances; a kernel density smoother is fitted. 

 
We carry out the OBP analysis for the 28 small areas and the results are presented in Table 4.1. The 

BPE of the parameters are 0 1
ˆ ˆ= 0.206, = 0.687,  2 3

ˆ ˆ= 0.213, = 0.288,    and ˆ = 0.003.  

Although interpretation may be given for the parameter estimates, there is a concern about possible model 
misspecification (in which case the interpretation may not be sensible), as noted earlier. Regardless, our 
main interest is prediction, not estimation; thus, we focus on the OBP. In addition to the OBPs, we also 

computed the corresponding MSPE,  and their square roots as the measures of uncertainty. As a 

comparison, the EBLUPs for the small areas as well as the corresponding square roots of the MSPE 
estimates, MSPE,  using the Prasad-Rao method (P R;  Prasad and Rao 1990) are also included in the 

table. It is seen that the OBPs are all positive, even for the small areas in the control group. As for the 

1.5                  2                  2.5                 3                  3.5 
 

sample variance 

 

F
re

qu
en

cy
 

    
   

0 
   

   
   

   
  2

   
   

   
   

   
4 

   
   

   
   

   
6 

   
   

   
   

  8
  



Survey Methodology, June 2015 51 
 

 
Statistics Canada, Catalogue No. 12-001-X 

statistical significance (here “significanceˮ is defined as that the OBP is greater in absolute value than 2 
times the corresponding square root of the MSPE estimate), the small area means are significantly positive 
for all of the small areas in the (1,1) group. In contrast, none of the small area mean is significantly 
positive for the small areas in the (0,0) group. As for the other two groups, the small area means are 
significantly positive for all the small areas in the (1,0) group; the small area means are significantly 
positive for all but two small areas in the (0,1) group. There are 7, 8, 7 and 7 small areas in the (0,0), (0,1), 
(1,0) and (1,1) groups, respectively. 

 
Table 4.1 
OBP, EBLUP, measures of uncertainty for TVSFP data (Part 1) 
 

ID CC TV OBP MSPE  EBLUP MSPE  
403 1 0 0.886 0.171 0.913 0.121 
404 1 1 0.844 0.296 0.856 0.121 
193 0 0 0.215 0.207 0.217 0.120 
194 0 0 0.221 0.137 0.221 0.134 
196 1 0 0.878 0.171 0.907 0.124 
197 0 0 0.225 0.158 0.223 0.126 
198 1 1 0.771 0.220 0.807 0.131 
199 0 1 0.426 0.142 0.453 0.130 
401 1 1 0.826 0.133 0.844 0.127 
402 0 0 0.188 0.171 0.199 0.123 
405 0 1 0.394 0.147 0.432 0.129 
407 0 1 0.508 0.300 0.508 0.133 
408 1 0 0.871 0.240 0.903 0.123 
409 0 0 0.230 0.125 0.227 0.136 

 
Table 4.2 
OBP, EBLUP, measures of uncertainty for TVSFP data (Part 2) 
 

ID CC TV OBP MSPE  EBLUP MSPE  
 410 1 1 0.778 0.304 0.813 0.124 
411 0 1 0.409 0.195 0.444 0.115 
412 1 0 0.913 0.219 0.930 0.126 
414 1 0 0.929 0.257 0.941 0.127 
415 1 1 0.869 0.199 0.872 0.135 
505 1 1 0.790 0.154 0.818 0.136 
506 0 1 0.389 0.169 0.428 0.134 
507 0 1 0.426 0.148 0.452 0.135 
508 0 1 0.411 0.108 0.442 0.136 
509 1 0 0.915 0.097 0.929 0.143 
510 1 0 0.880 0.119 0.905 0.143 
513 0 0 0.185 0.215 0.197 0.123 
514 1 1 0.866 0.144 0.870 0.140 
515 0 0 0.180 0.102 0.192 0.143 

 
Comparing the OBP with the EBLUP, the values of the latter are generally higher, and their 

corresponding MSPE estimates are mostly lower. In terms of statistical significance, the EBLUP results 
are significant for the (1,1), (1,0) and (0,1) groups, and insignificant for the (0,0) group. It should be noted 
that the P R  MSPE estimator for the EBLUP is derived under the normality assumption, while in this 
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case the data is clearly not normal, as noted earlier. Thus, the measure of uncertainty for the EBLUP may 
not be accurate. In particular, just because the (square roots of the) MSPEs for the EBLUPs are lower, 
compared to those for the OBPs, it does not mean the corresponding true MSPEs for the EBLUPs are 
lower than those for the OBPs. In fact, our simulation results (see Section 2) have shown otherwise. It is 
also observed that the MSPE estimates for the EBLUPs are more homogeneous cross the small areas. This 
may be due to the fact that the P R  MSPE estimator for EBLUP is obtained assuming that the NER 
model is correct, while the proposed MSPE estimator for OBP does not use such an assumption. 

In conclusion, in spite of the potential difference in the small area characteristics, the CC and TV 
programs appear to be successful in terms of improving the students’ THKS scores (whether the improved 
THKS score means improved tobacco use prevention and cessation is a different matter though). It also 
seems apparent that the CC program was relatively more effective than the TV program. Without the 
intervention of any of these programs, the THKS score did not seem to improve in terms of the small area 
means. In terms of the statistically significant results, when CC = 0 and TV = 0, the THKS score did not 
seem to improve; when CC = 1, the THKS score seemed to improve; and, when CC = 0 and TV = 1, the 
improvement of the THKS score was not so convincing.  
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Appendix 
 

A.1. OBP under nested-error regression. The design-based MSPE is given by (1.6). Note that all the E,  
and later P,  are design-based, assuming simple random sampling. Note that 

        2 2 2E = E 2 E .i i i i i i               Furthermore, note that  E =i iy    and 

 E =i ix X  ( iy   and ix   are design-unbiased estimators of their corresponding subpopulation means). 

Thus, we have  

    
2

2 2

2 2

2 2 2 2
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= 1 1 .
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i i i i

i i e i v

i e i i i v
i i

i i ie i v e i v

n n n
X X

N N n

n n n n
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                  
                       



 

Thus, using the notation introduced below (1.7), we have  

        2 2 21
E = E 2 .

1
i

i i i i i i i
i

r
X b

n

           
 

   (A.1) 
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We can express the unknown i  in (A.1) by  E .iy   We also need a design-based unbiased estimator of 
2 ,i  which is given by (1.8). In other words, we have  2 2= E .ˆi i   To show the design-unbiasedness of 

(1.8), note that 

 

 

2 2

=1 =1

2 2

=1 =1

1 1
E = E 1

1 1
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i i

i i
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 
 

where iI  is the set of sampled indexes corresponding to the thi  small area. Also, we have  
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


 

Thus, after combining things together, we get  

   
   

2 2 2 2

=1

1 1
E = 1 1 = .ˆ

1 1

iN
i i i i

i ik i i
ki i i i i

N n N n
Y

N n N n N

                   
  
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It follows that the right side of (A.1) can be expressed as  

   2 2

=1

1
E 2 .ˆ

1

m
i

i i i i i
i i

r
y b

n 

             
 X  

The BPE is obtained by minimizing the expression inside the expectation, which is (1.7). 
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A method of determining the winsorization threshold, with 
an application to domain estimation 

Cyril Favre Martinoz, David Haziza and Jean-François Beaumont1 

Abstract 

In business surveys, it is not unusual to collect economic variables for which the distribution is highly skewed. 
In this context, winsorization is often used to treat the problem of influential values. This technique requires the 
determination of a constant that corresponds to the threshold above which large values are reduced. In this 
paper, we consider a method of determining the constant which involves minimizing the largest estimated 
conditional bias in the sample. In the context of domain estimation, we also propose a method of ensuring 
consistency between the domain-level winsorized estimates and the population-level winsorized estimate. The 
results of two simulation studies suggest that the proposed methods lead to winsorized estimators that have 
good bias and relative efficiency properties. 

 
Key Words: Conditional bias; Robust estimation; Winsorized estimator; Influential values. 

 
 

1  Introduction 
 

In business surveys, it is not unusual to collect economic variables for which the distribution is highly 
skewed. In this context, we often face the problem of influential values in the selected sample. These 
values are typically very large, and their presence in the sample tends to make classical estimators very 
unstable. 

It is possible to guard against the impact of influential values at the design stage by selecting with 
certainty the potentially influential units. For example, in business surveys, it is customary to use a 
stratified simple random sampling without-replacement design containing one or more take-all strata that 
are usually composed of large units. Unfortunately, it is seldom possible to completely eliminate the 
problem of influential values at the design stage. The strata in business surveys are usually formed using a 
geography variable, a size variable (for example, number of employees) and a classification variable (for 
example, the North American Industry Classification System (NAICS) code). In a survey that collects 
dozens of variables of interest, it is not unlikely that some of them will have little or no correlation with 
the stratification variables, which may result in the presence of influential values. This is the case in 
particular in Statistics Canada’s environmental surveys, such as the Agricultural Water Survey, one of 
whose objectives is to measure the quantity of water used by Canadian farms for irrigation. It turns out 
that water consumption in a given year has little correlation with the stratification variables, since 
consumption depends in part on the weather conditions affecting the sampled farms. Another example is 
the Industrial Water Survey, one of whose objectives is to measure the quantity of water used. In the case 
of mining companies, the consumption of water for ore extraction is strongly correlated with the 
geophysical characteristics of the land, which are not taken into account by the stratification variables. 

Another problem that leads to influential values in the sample is the presence of stratum jumpers, 
which arises when the stratification information collected in the field is different from the information in 
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the sampling frame. These differences are usually due to errors in the frame (for example, an outdated 
frame). A stratum jumper is a unit that is not in the stratum that it would have been assigned to if the 
information in the frame had been accurate. If a unit with a large value is assigned to a take-some stratum, 
it will have a large value for the variable of interest and possibly a large sampling weight, which will 
potentially make it very influential. In practice, it is not unusual to have between 5% and 10% stratum 
jumpers. 

Classical estimators (such as the expansion estimator) exhibit (virtually) no bias, but they can be very 
unstable in the presence of a influential values. Robust estimators are constructed so as to limit the impact 
of influential values, which leads to estimators that are more stable but potentially biased. The objective is 
to develop robust estimation procedures whose mean square error is significantly smaller than that of 
classical estimators when there are influential values in the population but which do not suffer a serious 
loss of efficiency when there are none. The treatment of influential values usually strikes a trade-off 
between bias and variance. 

Winsorization is a method often used in business surveys to treat influential values. It involves 
decreasing the value and/or weight of one or more influential units to reduce their impact. Two forms of 
winsorization are considered: standard winsorization and the winsorization described by Dalén (1987) and 
Tambay (1988). These methods are described in Section 4. Whichever type is used, winsorization requires 
the determination of a constant that corresponds to the threshold above which large values are reduced. 
The choice of this constant is crucial, as a poor choice may lead to winsorized estimators that have a larger 
mean square error than classical estimators. The problem of choosing the constant has been studied by 
Kokic and Bell (1994) and Rivest and Hurtubise (1995), among others. In the case of a stratified simple 
random sampling without-replacement design, these researchers determined the constant that minimizes 
the estimated mean square error of the winsorized estimators. For repeated surveys, they suggest using 
historical data collected in previous iterations. Kokic and Bell (1994) determined the optimal value of the 
constant by setting up a common mean model in each stratum and minimizing the winsorized estimator’s 
mean square error with respect to both the model and the sampling design. Clark (1995) generalized the 
results obtained by Kokic and Bell (1994) to the case of a ratio estimator and by calculating the mean 
square error with respect to the model only. 

First, we consider a different criterion, which involves finding the constant that minimizes the largest 
estimated conditional bias in the sample. As we explain in Section 2, the conditional bias associated with a 
unit is a measure of influence that takes into account the sampling design used. The proposed method has 
the advantage of being simple to apply in practice. In addition, unlike the methods proposed in the 
literature, it does not require historical information or a model describing the distribution of the variable of 
interest in each stratum. Robust estimation based on the conditional bias is presented in Section 3. 

In Section 5, we deal with the problem of domain estimation, which is an important problem in 
practice. We apply a robust method separately in each domain of interest. A population-level estimator 
can easily be produced by aggregating the robust estimators obtained at the domain level. However, since 
it is defined as the sum of estimators that are all biased, the aggregate estimator could have a large bias. 
This point was raised by Rivest and Hidiroglou (2004). We propose a three-step approach: First, apply a 
robust method separately in each domain of interest to produce initial estimates. Independently, produce 
an initial robust estimate at the population level. Lastly, using a method similar to calibration (e.g., Deville 
and Särndal 1992), modify the initial estimates so as to ensure consistency between the robust estimates 
obtained at the domain level and the robust estimate obtained at the population level. The problem of 
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consistency for domains has been studied in the context of small area estimation; for example, see You, 
Rao and Dick (2004) and Datta, Gosh, Steorts and Maple (2011). 

We conclude this section with a discussion of the concept of robustness in classical statistics and 
robustness in finite populations. In classical statistics, we deal with infinite populations, for which we 
want to estimate the mean, say. In this context, an outlier is a value that was generated under a different 
model from the one under which the majority of the observations were generated. The presence of outliers 
in the sample can be attributed to the fact that the population from which the sample is generated is a 
mixture of distributions or that some observations are subject to measurement errors. In classical statistics, 
we usually want to conduct inferences about the population of inliers. The aim is therefore to construct 
estimators that are robust in the sense that they are not seriously affected by the presence of outliers in the 
sample. In this context, it is desirable to construct robust estimators that have a high breakdown point 
and/or a bounded influence function. In finite populations, measurement errors are corrected at the 
verification stage, and it is assumed that there are none left at the estimation stage. The aim is to conduct 
an inference about the “total” population, which includes both outliers and inliers. In other words, in 
contrast to classical statistics, we are not just interested in the population of inliers. In this context, 
estimators that have a high breakdown point and/or a bounded influence function are generally not 
appropriate because they can lead to large biases. We will give preference to estimators that are robust in 
the sense that (i) they are more stable than classical estimators in the presence of influential values and 
almost as efficient as classical estimators in their absence, and (ii) they converge to classical estimators as 
the sample size and the population size increase. Simulation studies are presented in Section 6. Section 7 
concludes with a discussion. 

 
2  Measure of influence: Conditional bias 
 

Consider a finite population of individuals, denoted by ,U  of size .N  We want to estimate the total for 

the variable of interest ,y  denoted by = .ii U
t y

  From the population we select a sample ,S  of 

(expected) size ,n  using the sampling design   .p S  A classical estimator of t  is the expansion estimator, 

also known as the Horvitz-Thompson estimator, ˆ = ,i ii S
t d y

  where 1i id    is the sampling weight 

of unit i  and i  denotes its probability of inclusion in the sample. Although the expansion estimator, ˆ,t  

is design-unbiased for ,t  it can be highly unstable in the presence of influential values. 

To measure the impact (or influence) that a sampled unit has on the expansion estimator, we use the 
concept of conditional bias of a unit; see Moreno-Rebollo, Muñoz-Reyez and Muñoz-Pichardo (1999), 
Moreno-Rebollo, Muñoz-Reyez, Jimenez-Gamero and Muñoz-Pichardo (2002) and Beaumont, Haziza 
and Ruiz-Gazen (2013). Let iI  be the sample selection indicator variable for unit i  such that = 1iI  if 

i S  and = 0,iI  otherwise. The conditional bias of the estimator t̂  associated with a sampled unit is 

defined as  

  HT
1

ˆ= = 1 = ,ij i j
i p i j

j U i j

B E t I t y


    
    

  (2.1) 
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where ij  is the joint probability of inclusion of units i  and j  in the sample. In general, the conditional 

bias (2.1) is unknown, since the values of the variable of interest are observed only for the sampled units. 
In practice, the conditional bias must be estimated. We consider the conditionally unbiased estimator (for 
example, see Beaumont et al. 2013): 

 

HT
1

,

ˆ =

= ( 1) .

ij i j
i j

j S j ij

ij i j
i i j

j S j i j ij

B y

d y y



 

    
   

    
     




 (2.2) 

This estimator is conditionally unbiased in the sense that  HT HT
1 1

ˆ = 1 = .p i i iE B I B  We make the 

following remarks on the conditional bias and its estimator: (i) The conditional bias (2.1) and its estimator 
(2.2) depend on the inclusion probabilities i  and the joint inclusion probabilities .ij  In other words, the 

conditional bias is a measure that takes the sampling design into account. (ii) If = 1,i  then HT
1 = 0iB  

and, similarly, HT
1

ˆ = 0.iB  That is, when = 1,i  unit i  is selected in all possible samples, and 

consequently    ˆ ˆ= 1 = = 0,p i pE t I t E t t   since t̂  is a design-unbiased estimator of .t  A unit 

selected systematically in the sample therefore has no influence and does not contribute to the variance of 
ˆ.t  (iii) The estimated conditional bias (2.2) depends on the second-order inclusion probabilities, .ij  For 

some designs, these probabilities may be difficult to calculate, in which case approximations will be used. 
For sampling designs that belong to the class of high-entropy designs (e.g., Berger 1998), a number of 
approximations of the second-order inclusion probabilities have been proposed in the literature; for 
example, see Haziza, Mecatti and Rao (2008). An alternative solution is to calculate approximations of the 

ij  using Monte Carlo methods; see Fattorini (2006) and Thompson and Wu (2008). 

For a stratified simple random sampling design, the conditional bias (2.1) associated with sampled unit 
i  in stratum h  is given by  

  HT
1 = 1 ,

1
h h

i i Uh
h h

N N
B y y

N n
     

 (2.3) 

where hn  denotes the size of the sample selected in stratum 1, = ,
h

Uh h ii U
h y N y

  and hU  denotes the 

population of units in stratum h  of size , = 1, , .hN h H  The estimator of the conditional bias (2.2) 

reduces to  

 HT
1

ˆ = 1 ,
1

h h
i i Sh

h h

n N
B y y

n n
     

 

where 1=
h

Sh h ii S
y n y

  and hS  is the sample in stratum .h  

For a Poisson design, the conditional bias of sampled unit i  is given by  

    HT = 1 = 1 .i i i iB I d y  (2.4) 
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In contrast to the simple random sampling without-replacement design, the conditional bias (2.4) is known 
for all units in the sample, since it does not depend on finite population parameters. 

 
3  Robust estimation based on the conditional bias 
 

To guard against the undue influence of certain units, it is advisable to construct robust estimators of 
the total ,t  that is, estimators that reduce the impact of the most influential units. We consider a class of 

estimators of the form 

 ˆ ˆ= ,Rt t    (3.1) 

where   is a certain random variable. As we will see in Section 4, the winsorized estimators considered 
can be written in form (3.1). As in Beaumont et al. (2013), we want to determine the value of   that 
minimizes the maximum estimated conditional bias of ˆ

Rt  in the sample. Formally, we are seeking the 

value of   that minimizes  

  1
ˆ ,max

R
i

i S
B


 (3.2) 

where 1
ˆ R

iB  denotes the estimated conditional bias of ˆ
Rt  associated with sampled unit .i  This conditional 

bias is given by  

 
 

 
1

HT
1

ˆ= = 1

= = 1

R
i p R i

i p i

B E t I t

B E I


 

 (3.3) 

which is estimated by  

 HT
1 1

ˆ ˆ= ,R
i iB B    (3.4) 

where HT
1

ˆ
iB  is a conditionally unbiased estimator of HT

1 .iB  If we note that   is a conditionally unbiased 

estimator of  = 1 ,p iE I  it follows that the estimator of the conditional bias (3.4) is conditionally 

unbiased for 1 .R
iB  In other words, we have  1 1

ˆ = 1 = .R R
p i i iE B I B  

Beaumont et al. (2013) showed that the value of   that minimizes (3.2) is given by  

 opt min max

1 ˆ ˆ= ,
2

B B    

where  HT
min 1

ˆ ˆ= min i S iB B  and  HT
max 1

ˆ ˆ= max .i S iB B  Estimator (3.1) then becomes 

  min max

1 ˆ ˆˆ ˆ= .
2Rt t B B   (3.5) 

Beaumont et al. (2013) demonstrated that under certain regularity conditions, the estimator (3.5) is design-
consistent; that is,  ˆ = .R pt t O N n  
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4  Application to winsorized estimators 
 

Estimator (3.5) can be written in alternative forms, which can make it easier to implement in some 
cases. We consider the winsorized form. This form has been widely studied in the literature. As mentioned 
in Section 1, standard winsorization is distinguished from Dalén-Tambay winsorization. 

Standard winsorization involves decreasing the value of units that are above a particular threshold, 
taking their weight into account. Let iy  be the value of variable y  for unit i  after winsorization. We have  

 

if 

=
if >

i i i

i

i i
i

y d y K

y K
d y K

d







  (4.1) 

where > 0K  is the winsorization threshold. The standard winsorized estimator of the total t  is given by  

 
 

ˆ =

ˆ= ,

s i i
i S

t d y

t K



 

 
 (4.2) 

where  

   = max 0, .i i
i S

K d y K


    

Hence, the estimator (4.2) can be written in the form (3.1). An alternative is to express ŝt  as a weighted 

sum of the initial values using modified weights: 

ˆ = ,s i i
i S

t d y

   

where  

 

min ,

= .
i

i
i i

i

K
y

d
d d

y

 
 
   (4.3) 

If  min , =i i iy K d y  (that is, if unit i  is not influential), then = .i id d  Thus, the weight of a non-

influential unit is not modified. In contrast, the modified weight of an influential unit is less than id  and 

may even be less than 1. It is worth noting that a unit with a value of = 0iy  presents no particular 

problems, since its contribution to the estimated total, ˆ ,st  is zero. In this case, an arbitrary value can be 

assigned to the modified weight .id  

In the case of Dalén-Tambay winsorization, the values of the variable of interest after winsorization are 
defined by 

 

if 

= .1
if >

i i i

i
i i i

i i i

y d y K

y K K
y d y K

d d d




      

  (4.4) 
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This leads to the winsorized estimator of the total :yt  

 
 

DT
ˆ =

ˆ= ,

i i
i S

t d y

t K


 

 
 (4.5) 

where  

 
 

 
1

= max 0, .i
i i

i S i

d
K d y K

d


    

Estimator (4.5) can also be written in the form (3.1). As in the case of ˆ ,st  an alternative is to express 

DTt̂  as a weighted sum of the initial values using modified weights: 

DT
ˆ = ,i i

i S

t d y

   

where  

  
min ,

= 1 1 .
i

i
i i

i

K
y

d
d d

y

 
 
    (4.6) 

As in the case of the standard winsorized estimator, the weight of a non-influential unit is not modified. 
Unlike standard winsorization, Dalén-Tambay winsorization guarantees that the modified weights will not 
be less than 1. Once again, a unit with a value of = 0iy  presents no particular problems, since its 

contribution to the estimated total, DT
ˆ ,t  is zero. In this case, an arbitrary value can be assigned to the 

modified weight .id  

Since the standard and Dalén-Tambay winsorized estimators are of the form (3.1), the optimal constant 

optK  that minimizes (3.2) is obtained by solving  

   min max

1 ˆ ˆ=
2

K B B    

or  

   min max
ˆ ˆ

max 0, = ,
2j j j

j S

B B
a d y K




  (4.7) 

where = 1ja  in the case of ŝt  and  = 1j j ja d d  in the case of DT
ˆ .t  It is shown in the Appendix 

that a solution to equation (4.7) exists under the following conditions: 
 

1. 0;  andij i j      

2.  min max

1 ˆ ˆ 0.
2

B B   
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Condition 1 is satisfied for most one-stage designs used in practice, such as stratified simple random 
sampling and Poisson sampling. Condition 2 implies that ˆ

Rt  must be less than or equal to ˆ,t  since by 

construction, a winsorized estimator cannot be greater than the Horvitz-Thompson estimator. It is 
generally expected that Condition 2 will be satisfied in most skewed populations encountered in business 
surveys and social surveys. It is also shown in the Appendix that the solution to equation (4.7) is unique if 
the above conditions are met and if 0iy   for .i S  The Appendix contains a brief description of an 

algorithm for finding the solution to equation (4.7). 

It should be noted that while the value optK  is different for each type of winsorized estimator used, the 

resulting robust estimators are identical. In other words, we have  

     min max
opt DT opt

ˆ ˆ
ˆ ˆ ˆ ˆ= = = .

2s R

B B
t K t K t t


  (4.8) 

To compare the influence of each population unit with respect to the (non-robust) expansion estimator, 
ˆ,t  and its robust version (4.8), we carried out a simulation study. For that purpose, we generated two 

populations, each of size 100.N   One population was generated according to a normal distribution with 

mean 4,108 and standard deviation 1,500, and the other was generated according to a lognormal 
distribution with mean 4,108 and standard deviation 7,373. From each population we selected 

500,000M   samples according to two sampling designs: (i) a simple random sampling without-
replacement design of size 10,n   and (ii) a Bernoulli design of expected size 10.n   First, we 

calculated the conditional bias of the Horvitz-Thompson estimator for a simple random sampling without-
replacement design, given in (2.3) and for a Bernoulli design, given in (2.4). Note that the conditional bias 
of the Horvitz-Thompson estimator does not have to be approximated by simulation since all the 
population parameters are known. The conditional bias associated with unit i  of the robust estimator 

given in (3.3) was approximated as follows: Out of the 500,000 selected samples, we identified those 
which contained unit .i  In each of these samples, we calculated the error, ˆ .Rt t  Finally, we calculated 

the average value of ˆ
Rt t  over all the samples containing unit .i  

The results for the simple random sampling without-replacement design for the normal and lognormal 
distributions are shown in Figures 4.1 (a) and 4.1 (b) respectively. The results for the Bernoulli sampling 
design for the normal and lognormal distributions are shown in Figures 4.1 (c) and 4.1 (d) respectively. In 
each figure, the absolute value of the conditional bias of ˆ

Rt  is shown in relation to the absolute value of 

the conditional bias of t̂  for each population unit. The units above the first bisectrix have a conditional 
bias associated with ˆ

Rt  whose absolute value is greater than that of the conditional bias associated with ˆ.t  

Looking first at the results for simple random sampling without replacement, we see that the behaviour of 
the absolute value of the conditional bias of ˆ

Rt  is similar to that of the absolute value of the conditional 

bias of ˆ,t  which indicates that the influence of the units is not altered significantly after robustification of 

the expansion estimator. This result is not surprising since the population does not contain any highly 
influential units. In the case of the lognormal distribution, we see that the influence of the values that have 
a high conditional bias associated with t̂  has been reduced significantly. On the other hand, we note that 
for the majority of the data, the conditional bias of ˆ

Rt  is slightly higher than that of ˆ.t  Turning to the 

results for Bernoulli sampling, we see that in the case of the normal population, the influence of most units 
has been reduced, since the absolute value of the conditional bias of ˆ

Rt  is significantly lower than the 
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absolute value of the conditional bias of ˆ.t  In the case of the lognormal distribution, the results are similar 

to those obtained with simple random sampling without replacement for the same distribution. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 Absolute value of the conditional biases of the robust and non-robust estimators 

 
 

5  Robust estimation of domain totals 
 

In practice, we usually want to produce estimates for population domains as well as an estimate at the 
global level. Let =

g
g ii U

t y
  be the total of the y variable in domain .g  We assume that the 

domains form a partition of the population such that 
=1

= = ,
G

i gi U g
t y t

   where G  is the number of 

domains. Let gS  be the set of sampled units in domain .g  The expansion estimator of gt  is given by 

ˆ = .
g

g i ii S
t d y

  We have the consistency relation 
=1

ˆ ˆ= .
G

gg
t t  

In the presence of influential values, we can apply a robust procedure separately for each domain using 
the method described in Section 3, which leads to G  robust estimators, ,

ˆ .R gt  A robust estimator of the 
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total at the population level,  agg
ˆ ,Rt  is easily obtained by aggregating the robust estimators ,

ˆ .R gt  Thus, we 

have  agg ,=1
ˆ ˆ= .

G

R R gg
t t  The consistency relation between the domain-level estimates and the 

population-level estimate is therefore satisfied. However, aggregating G  robust estimators, each suffering 
from a potential bias, may produce a highly biased aggregate robust estimator,  agg

ˆ .Rt  In most cases, the 

bias of  agg
ˆ

Rt  will be negative, since each of the ,
ˆ

R gt  estimators has a negative bias. 

To avoid having an estimator with an unacceptable bias, we first compute the robust estimator (4.8), 

,
ˆ ,R gt  for each domain. Then, we independently compute a robust estimator of the total t  in the population, 

,0
ˆ ,Rt  given by (4.8). In this case, however, the consistency relation is no longer necessarily satisfied. In 

other words, we have ,0 ,=1
ˆ ˆ ,

G

R R gg
t t   in general. It is therefore necessary to force consistency between 

the robust domain estimates and the aggregate robust estimate using a method similar to calibration. To do 
so, we compute final robust estimates *

,
ˆ , = 0,1, .., ,R gt g G  that are as close as possible to the initial robust 

estimates ,
ˆ ,R gt  based on a particular distance function, and that satisfy the calibration equation  

 * *
, ,0

=1

ˆ ˆ= .
G

R g R
g

t t  (5.1) 

In the case of the generalized chi-square distance function, we are seeking final robust estimates, *
,

ˆ ,R gt  

such that  

 
 2*

, ,

=0 ,

ˆ ˆ

ˆ2

G
R g R g

g g R g

t t

q t


  (5.2) 

is minimized subject to (5.1). The coefficient gq  in the above expression is a weight assigned to the initial 

estimate in domain ,
ˆ, ,R gg t  and is interpreted as its importance in the minimization problem. Using the 

Lagrange multipliers method, we can easily obtain a solution to this minimization problem. The solution is 
given by 

 
,

* =0
, , ,

,
=0

ˆ
ˆ ˆ ˆ= ,

ˆ

G

h R h
h

R g R g g g R gG

h R h
h

t
t t q t

q t


 



 (5.3) 

where 0 = 1   and = 1,g  for = 1, , .g G  

We make the following remarks: (i) If = 0,gq  then the final robust estimate *
,

ˆ
R gt  is identical to the 

initial robust estimate ,
ˆ .R gt  Thus, if we want to ensure that the initial estimate in domain g  is not 

modified excessively, we simply associate it with a small value of .gq  This point is also illustrated 

empirically in Section 6.2. (ii) Note that like the initial robust estimates at the domain level, ,
ˆ ,R gt  for 

= 1, , ,g G  the initial robust estimate at the population level, ,0
ˆ ,Rt  can also be modified. (iii) If 0 = 0q  
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(in other words, the initial robust estimate for the population level is not modified) and =gq q  for 

= 1, , ,g G  where q  is a strictly positive constant, expression (5.3) simplifies to  

 
 

,0*
, ,

agg

ˆ
ˆ ˆ= .

ˆ
R

R g R g
R

t
t t

t

 
 
 

 (5.4) 

In this case, the initial estimates ,
ˆ

R gt  are all modified by the same factor,  ,0 agg
ˆ ˆ .R Rt t  (iv) How can we set 

the values of gq  in practice? It seems natural to adopt the following choice: 

     
=1

ˆ ˆ= CV CV ,
G

g g g
g

q t t  

where   ˆCV gt  is the estimated coefficient of variation (CV) associated with domain .g  For example, in a 

repeated survey, the estimated CV observed in a previous iteration can be used. This choice of gq  is based 

on the fact that we will not want to make a large change in the initial estimate associated with a domain 
that has a small estimated CV. In such a domain, the problem of influential values is clearly less serious, 
and the initial robust estimate ,

ˆ
R gt  is expected to be relatively close to the actual total .gt  In other words, 

the robust estimator ,
ˆ

R gt  should have low bias and be relatively stable. It therefore makes sense not to 

attempt to change the initial robust estimate substantially. (v) In (5.2), we used the generalized chi-square 
distance, which leads to the linear method. In the literature on calibration (e.g., Deville and Särndal 1992), 
there are a number of other calibration methods. In particular, there is the Kullback-Leibler distance, 
which leads to the exponential method and the logit and truncated linear methods. Using the last two 
methods, we can specify positive bounds 1C  and 2C  such that *

1 , , 2
ˆ ˆ .R g R gC t t C   In other words, we 

ensure that the ratio *
, ,

ˆ ˆ
R g R gt t  falls within the interval between 1C  and 2 .C  Note that the calibration 

procedure may lead to *
,

ˆ ˆ 0,R g gt t   for a certain ,g  which is counterintuitive. In this case, we simply 

include the constraint *
,

ˆ ˆ
R g gt t  for = 1, , ,g G  in the calibration procedure. (vi) An alternative is to 

express *
,

ˆ
R gt  as a weighted sum of the initial values using modified weights: 

* *
,

ˆ = ,
g

R g i i
i S

t d y

   

where  

,
* =0

,
=0

ˆ

= 1
ˆ

G

h R h
h

i i g g G

h R h
h

t
d d q

q t

 
 

  
 
 
 




   

and id  is given by either (4.3) or (4.6). We can also write the estimator *
,

ˆ
R gt  as a weighted sum with the 

initial weights using modified values: 

* *
,

ˆ = ,
g

R g i i
i S

t d y

   
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where  

,
* = 0

,
=0

ˆ

= 1 ,    
ˆ

G

h R h
h

i i g g G

h R h
h

t
y y q i g

q t

 
 

   
 
 
 




   

and iy  is given by either (4.1) or (4.4). (vii) We may want to find the winsorization thresholds 

, = 1, , ,gK g G  such that the standard winsorized estimator or the Dalén-Tambay winsorized estimator 

is equal to *
,

ˆ .R gt  We can follow a procedure similar to the one in Section 4, and we can use an algorithm 

similar to the one in the Appendix. A necessary condition for the existence of a solution is that 
*

,
ˆ ˆ 0.g R gt t   (viii) With the proposed calibration procedure, more than one partition of the population 

can be dealt with jointly. For example, we may be interested in publishing both provincial estimates and 
industry estimates. If so, we simply insert the following calibration equations into the calibration 
procedure: 

* *
, ,0

=1

ˆ ˆ= ,
G

R g R
g

t t  

* *
, ,0

=1

ˆ ˆ= ,
L

R l R
l

t t  

where G  and L  denote the number of provinces and the number of industries respectively. The method 

can also be applied to more than two partitions of the population. 

 
6  Simulation studies 
 

6.1  Winsorization in a simple random sampling without-replacement design  
 

We carried out a simulation study to examine the properties of several robust estimators using 11 
populations. The first 10 of size 5,000N   consists of a variable of interest .y  In each population, the 

y values were generated according to the following model: 

= ,i i i iY U V   

where ,i iU   and iV  are random variables whose distributions are described in Table 6.1. Population 1 

was generated according to a normal distribution. Populations 2 through 5 were generated using a mixture 
of normal distributions with contamination rates ranging from 0.5% to 5%. Populations 6 through 8 were 
generated according to skewed distributions. Populations 9 and 10 were generated using a mixture of 
lognormal distributions with contamination rates equal to 0.5% and 5%. Population 11 of size 5,000N   

is from the information technology survey produced by the French National Institute for Statistics and 
Economic Studies (INSEE) in 2011. One of the survey’s objectives is to estimate the e-commerce sales of 
French companies. We use the “sales” variable in our simulation. The distribution of y  in each 
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population is plotted in Figure 6.1. In addition, Table 6.2 presents a number of descriptive statistics for 
each of the populations used. For confidentiality reasons, the units for Population 11 are not shown in the 
plot. Similarly, there are no descriptive statistics for Population 11 in Table 6.2. 

In each population, we selected 5,000M   samples according to a simple random sampling without-
replacement design of size 100,300n   and 500.  For each sample, we calculated the expansion 

estimator t̂  and the robust estimator (4.8). Let    1 , , ny y  be the values of the y variable arranged in 

ascending order. We also calculated the first-, second- and third-order winsorized estimators, where the 
thp  order winsorized estimator is obtained by replacing the p  largest values in the sample with the 

value   , = 1, 2, 3.n py p  In a classical statistical context, Rivest (1994) showed that the first-order 

winsorized estimator has good mean-square-error properties for a large class of skewed distributions. 

As a measure of the bias of an estimator ˆ ,  we calculated the Monte Carlo relative bias (in 

percentage): 

 
 ( )

=1
MC

1 ˆ
ˆBR = 100,

M

m
m

t
M

t

 
 


 

where  
ˆ

m  denotes the estimator ̂  in sample , = 1, , 5,000.m m   We also calculated the relative 

efficiency of the robust estimators with respect to the expansion estimator, ˆ :t  

 
 

 

2

( )
=1

MC
2

( )
=1

1 ˆ
ˆRE = 100.

1
ˆ

M

m
m

M

m
m

t
M

t t
M

 
 






 

The results are shown in Table 6.3. 

The results presented in Table 6.3 show that the once-winsorized estimator has lower bias and is 
generally more efficient than the two times and three times winsorized estimators, which is consistent with 
the results obtained by Rivest (1994). It is interesting to compare the robust estimator ˆ

Rt  and the once-

winsorized estimator. In the case of Population 1, which does not contain any influential values, we see 
that both estimators have low bias and are as efficient as the expansion estimator. In the case of the 
populations with a mixture of normal distributions (Populations 2 to 5), we observe that the once-
winsorized estimator is less efficient than the robust estimator in every scenario except for Population 5 
with 300.n   In fact, the once-winsorized estimator is less efficient than the expansion estimator in 
every scenario except for Population 2 with 100.n   The robust estimator is more efficient than the 

expansion estimator except in Populations 4 and 5, for which we observe values of relative efficiency 
ranging from 91% to 102%. In the case of the populations with a mixture of lognormal distributions 
(Populations 9 and 10), we see that the bias and efficiency performance of the once-winsorized estimator 
and the robust estimator is very similar in all scenarios. The same is true for the skewed populations 
(Populations 6 to 8), for which the two estimators produce similar results. In the case of Population 11, the 
robust estimator has a lower bias than the once-winsorized estimator for 100,n   though it is less 
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efficient (41% versus 47%). For 300n   and 500,n   the robust estimator has a lower bias and is 

significantly more efficient than the once-winsorized estimator. 

 
Table 6.1 
Models used to generate the populations 
 

Population  iU  distribution Mixture  i  distribution iV  distribution 

1  2,000; 500   No     

2  2,000; 500   Yes   0.005     50,000; 10,000  

3  2,000; 500   Yes   0.01     50,000; 10,000  

4  2,000; 500   Yes   0.02     50,000; 10,000  

5  2,000; 500   Yes   0.05     50,000; 10,000  

6   og log 2,000 ;1.2�    No       

7   og log 2,000 ;1.5 �    No       

8  rechet 2,000;2.5;2.1 �    No       

9   og log 2,000 ;1.2 �    Yes   0.05    og (log 5,000 ; 1.2) �  

10   og log 2,000 ;1.2 �    Yes   0.05    og (log 5,000 ; 1.2) �  

 
 

 

Table 6.2 
Descriptive statistics for the ten simulated populations 
 

Descriptive Population 

statistic 1 2 3 4 5 6 7 8 9 10 

min  132.3 314.9 105.3 275.9 187.4 23.6 7.6 2,000.9 20.5 26.6 

max  3,968 79,506 78,526 80,540 78,690 252,612 379,751 2,159 305,612 1.3×106 

1Q   1,639 1,667 1,664 1,666 1,685 883 743 200 920 913 

Median  1,986 1,993 1,997 2,015 2,053 1,996 1,981 2,002 2,167 2,041 

3Q   2,330 2,337 2,339 2,349 2,421 4,505 5,337 2,004 5,018 4,927 

Mean  1,985 2,267 2,536 2,976 4,661 4,005 6,118 2,004 4,738 7,883 

Standard deviation 503 3,709 5,506 7,119 11,470 7,353 17,190 5.89 9,796 33,111 

Skewness   0.0 14.0 10.2 7.3 4.3 4.2 11.6 11.8 12.1 18.4 

Kurtosis  3 209 109 56 20 19 196 228 267 570 

CV  0.25 1.6 2.2 2.4 2.5 1.8 2.8 2.9×10-3 2.0 4.2 
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Figure 6.1 Distribution of the variable of interest in the 11 populations. 
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Table 6.3 
Monte Carlo relative bias (in %) and relative efficiency (in parentheses) of several estimators 
 

Population   n    ˆ
Rt    Winsorization 

      Once  Two times Three times 
    100  -0.1(100) -0.1(100) -0.2(101) -0.3(102) 
1   300  0.0(100) -0.0(100) -0.0(100) -0.1(100) 
   500  0.0(100) -0.0(100) -0.0(100) -0.0(100) 

    100  -4.9(59) -7.5(87) -10.7(65) -11.9(55) 
2   300  -2.9(87) -3.0(129) -6.8(158) -9.5(169) 
   500  -1.9(96) -1.2(122) -3.6(175) -6.5(226) 

    100  -6.9(74) -8.9(122) -16.5(119) -20.0(107) 
 3  300  -3.5(99) -1.9(122) -5.6(171) -10.6(232) 
   500  -2.4(102) -0.9(107) -2.2(130) -4.5(186) 

    100  -7.6(91) -6.2(131) -15.5(169) -24.4(194) 
 4  300  -2.9(101) -0.6(103) -2.1(118) -4.4(154) 
   500  -2.0(102) -0.6(102) -1.1(101) -1.8(108) 

    100  -5.7(102) -1.1(104) -4.1(126) -9.7(173) 
 5  300  -2.2(102) -0.4(100) -0.8(101) -1.4(102) 
   500  -1.2(100) -0.1(100) -0.3(100) -0.5(101) 

    100  -5.7(79) -5.4(75) -8.2(80) -10.6(89) 
 6  300  -2.6(84) -2.6(79) -3.9(81) -5.1(88) 
   500  -2.0(86) -2.0(81) -3.0(82) -3.8(88) 

    100  -8.4(72) -9.3(73) -14.7(72) -18.7(79) 
7   300  -4.5(86) -4.4(95) -7.8(91) -10.2(95) 
   500  -3.5(94) -3.1(105) -6.0(106) -8.1(109) 

    100  -0.0(69) -0.0(75) -0.0(77) -0.0(85) 
 8  300  -0.0(82) -0.0(88) -0.0(87) -0.0(95) 
   500  -0.0(88) -0.0(96) -0.0(94) -0.0(100) 

    100  -5.7(73) -5.8(71) -9.5(72) -12.4(80) 
 9  300  -3.5(87) -3.5(85) -5.4(88) -6.8(98) 
   500  -2.4(88) -2.4(88) -3.8(90) -4.9(97) 

    100  -13.5(68) -15.0(70) -24.6(76) -31.7(89) 
10   300  -7.5(80) -7.2(79) -12.1(85) -16.3(97) 
   500  -5.3(85) -5.1(83) -8.4(91) -11.4(103) 

    100  -22.8(47) -32.6(41) -42.0(42) -47.7(47) 
11   300  -14.7(65) -20.0(77) -29.6(68) -34.3(75) 
   500  -11.3(76) -14.6(96) -24.3(90) -29.3(97) 

 
6.2  Winsorization in a stratified simple random sampling without-

replacement design  
 

We also tested the calibration method described in Section 5. We generated a population of size 
5,000,N   which we divided into five strata, 1 5, , ,U U  of size 1 5, , ,N N  respectively; see Table 6.4 

for the values of .hN  In each stratum, we generated a variable of interest y  according to a lognormal 

distribution with parameters  log 2,000  and 1.5.   

From the population we selected 5,000M   samples according to a stratified simple random 
sampling without-replacement design. In stratum ,hU  we selected a sample hS  of size hn  according to a 

simple random sampling without-replacement design; see Table 6.4 for the sizes hn  and the 

corresponding sampling fractions, .h h hf n N  
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The objective here is to estimate the total in the population, = ,ii U
t y

  and the stratum totals 

= ,  = 1, , .
h

h ii U
t y h H

   In other words, in our example, the strata correspond to domains of interest. 

Since the strata form a partition of the population, we have the consistency relation, 
=1

= .
H

hh
t t  

Similarly, the expansion estimators satisfy the consistency relation 
=1

ˆ ˆ= ,
H

hh
t t  where ˆ = i ii S

t d y
  

and ˆ =
h

h i ii S
t d y

  with i h hd N n  if .hi U  

For each sample, we first computed the robust estimator (4.8) in each stratum and aggregated the 

robust estimates to produce an aggregate robust estimate,  agg ,=1
ˆ ˆ= .

H

R R hh
t t  Independently, we 

computed the robust estimator (4.8), denoted ,0
ˆ ,Rt  at the population level. To ensure that the consistency 

relation (5.1) was satisfied, we performed the calibration procedure described in Section 5 to obtain the 
final robust estimates *

,
ˆ , = 0, , 5.R ht h   We used four systems of coefficients :hq  (1) 0 = 0q  and 

1 5= = = 1;q q  (2) 0 = 0q  and  1= 1 ,h h hq n f   = 1, , 5;h   (3) 0 = 0q  and 

   2 1 2ˆ= CV = 1 ,h h h h h h hq t N f n S t  where    1 22 = 1 ,  = 1, , 5;
h

h h i Uhi U
S N y y h


    (4) 

0 = 0q  and     2 1 2ˆ ˆ= CV = 1 ,h h h h h h hq t N f n s t  where 

   1 22 = 1 ,  = 1, , 5.
h

h h i Shi S
s n y y h


    We make the following remarks on the choice of the 

coefficients :hq  (i) For all four systems, we assigned a weight 0 = 0q  to estimate ,0
ˆ ,Rt  which is 

equivalent to making no change in the robust estimate at the population level. In other words, we have 
*

,0 ,0
ˆ ˆ= .R Rt t  (ii) The first weighting system assigns an equal weight to all strata regardless of the sample 

size or sampling fraction. (iii) In the case of the second system, the coefficient hq  is a function of the 

sample size hn  and the sampling fraction ,hf  but it is independent of the intra-stratum variability 2 .hS  

(iv) In the third and fourth systems, the choice of hq  depends on the actual CV and the estimated CV 

respectively, for the reasons mentioned in Section 5.  

 
Table 6.4 
Characteristics of the strata 
 

  Stratum   1   2   3   4   5  

hN    2,000   1,500   1,000   400   100  

hn    20   75   100   80   80 

hf    0.01   0.05   0.1   0.2   0.8 

 
For each robust estimator, we computed the Monte Carlo relative bias (as a percentage) and the relative 

efficiency (with respect to the expansion estimator); see Section 6.1. The results are presented in 
Table 6.5. 

The results show that the initial robust estimators ,
ˆ

R ht  are biased, as expected. The bias is larger in 

strata with a small sampling fraction. For example, in Stratum 1, for which 1 ,= 1%f  the relative bias of 

1,
ˆ

ht  is 11.9%,  compared with only 1.5%  in Stratum 5, for which 5 .= 80%f  We also note that the 

initial robust estimators are all more efficient than the corresponding expansion estimator, with relative 
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efficiency values ranging from 57% to 97%. The aggregate estimator  agg
ˆ

Rt  obtained by summing the 

initial estimators ,
ˆ , = 1, , 5R ht h   shows a modest bias with a value equal to 5.7%  but is more efficient 

than the population-level expansion estimator ˆ,t  with a relative efficiency of 87%. 

The population-level winsorized estimator, ,0
ˆ ,Rt  shows a small bias with a value equal to 2.8%  and 

is significantly more efficient than the expansion estimator, with a relative efficiency of 81%. The final 
estimators *

,
ˆ

R ht  obtained using the system of coefficients = 1hq  for 1, ,5h    all have lower bias than 

the initial estimator ,
ˆ ,R ht  except for Stratum 5. This is due to the fact that we force the sum of the final 

estimates *
,

ˆ
R ht  to calibrate on a low-bias estimator. On the other hand, the decrease in the bias is 

accompanied by a slight decrease in efficiency. For example, in Stratum 4, the relative efficiency is 63% 
for the robust estimator ,4

ˆ
Rt  and 66% for the final estimator *

,4
ˆ .Rt  In the case of Stratum 5, the first system 

of coefficients is clearly unsuitable, since it leads to a change in the estimate for this stratum, like all the 
other strata, when this stratum has a very high sampling fraction of 80%. In fact, for this system of 
coefficients, the estimator *

,5
ˆ

Rt  is less efficient than the expansion estimator, with a relative efficiency of 

104. The second choice of coefficients ,hq  which takes the sampling fraction hf  and the sample size hn  

into account, leads to some interesting results. The final robust estimator in Stratum 1, *
,1

ˆ ,Rt  has an 

appreciably lower bias than the initial estimator ,1
ˆ

Rt  and the final estimator based on the first system of 

coefficients, at the cost of a slight loss of efficiency. For Stratum 5, the estimator *
,5

ˆ
Rt  has a low bias (a 

relative bias of 0.8%)  and the same 97% efficiency as the initial estimator ,5
ˆ .Rt  The third and fourth hq  

weighting systems lead to similar relative bias and relative efficiency results. For Stratum 1, they lead to 
lower relative biases than the first weighting system, at the cost of a slight loss of efficiency. For Strata 2, 
3 and 4, all four systems of coefficients exhibit similar relative bias and relative efficiency. For Stratum 5, 
the final estimators are virtually unbiased and no less efficient that the expansion estimator. 

 
Table 6.5 
Monte Carol relative bias (in %) and relative efficiency (in parentheses) of the robust estimators at the global 
level and the stratum level 
 

Global estimator 
 agg

ˆ
Rt  *

,0 ,0
ˆ ˆ=R Rt t  *

,0 ,0
ˆ ˆ=R Rt t  *

,0 ,0
ˆ ˆ=R Rt t  *

,0 ,0
ˆ ˆ=R Rt t  

 -5.7(87) -2.8(81) -2.8(81) -2.8(81) -2.8(81) 
   *

,
ˆ

R ht  

  
,

ˆ
R ht  1hq    1 1h h hq n f   ˆCVh hq t    ˆCVh hq t  

 1 -11.9(57) -9.1(60) -0.9(67) -5.7(62) -6.7(64) 
 2 -6.3(74) -3.4(76) -3.3(76) -3.3(76) -3.1(78) 
Stratum 3 -6.0(69) -3.1(70) -3.8(69) -3.2(70) -3.2(70) 
 4 -6.6(63) -3.7(66) -4.2(65) -3.3(66) -3.4(70) 
 5 -1.5(97) 1.5(104) -0.8(97) -0.2(98) 0.1(99) 

 
7  Discussion 
 

This paper outlined a proposed method for determining the threshold for winsorized estimators. This 
method has the advantage of being simple to apply in practice and can be used for sampling designs with 
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unequal probabilities. We also proposed a calibration method that satisfies a consistency relation between 
the domain-level winsorized estimates and a population-level winsorized estimate. Although we applied 
the method in the case of winsorized estimators, it can be used with any type of robust estimator.  
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Appendix 
 

We want to show that there exists a solution to the equation  

    min max
ˆ ˆ

ˆ ˆ= max 0, = =
2j j j R

j S

B B
K a d y K t t




    

under the conditions 0ij i j      and  1
min max2

ˆ ˆ 0.B B   

First, we arrange the units in order from the smallest value of = , ,i i ib d y i S  to the largest, so that 

unit 1 has the smallest value of ib  and unit n  the largest value. We begin by considering the case 

of  1
min max2

ˆ ˆ = 0.B B  We have to solve the equation   = 0,K  and we can easily see that this 

equation is satisfied for all .nK b  

We now turn to the case of  1
min max2

ˆ ˆ > 0.B B  We note first that the function  K  is continuous 

and piecewise linear for 0 .nK b   The pieces are defined by the intervals 1 , , = 1, ..., ,j jb b j n  

where 0 = 0.b  We also note that  
=

0 = > 0,
n

j jj m
a b   where m  is the smallest index such that 

0.mb   By the intermediate value theorem, there is a solution to equation (4.7) if we can show that  

      min max
=

1 ˆ ˆ= 0 < 0 = .
2

n

n j j
j m

b B B a b      (A.1) 

The first inequality follows directly from the condition  1
min max2

ˆ ˆ > 0.B B  To prove the second 

inequality, we first note that  1
min max max2

ˆ ˆ ˆ .B B B   If we use the estimator of the conditional bias (2.2) 

and the condition 0,ij i j      we observe that  max
ˆ 1 ,k kB d y   index k  being associated with 

the unit that has the largest estimated conditional bias. For the Dalén-Tambay winsorized estimator, the 

last inequality can be rewritten as max
ˆ .k kB a b  It follows that  

=
0 = ,

n

k k j jj m
a b a b    which 

completes the proof that there is a solution to equation (4.7). For the standard winsorized estimator, we 
can also easily show that max

ˆ
k kB a b  and therefore that a solution exists. In addition, if the , ,iy i S  

are all positive, the function  K  is monotonically decreasing for 0 nK b   and the solution is 

unique. 
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To find the solution opt ,K  we find the largest index l  such that    1
min max2

ˆ ˆ ,lb B B    for .l n  

The solution can then be calculated by linear interpolation between points lb  and 1;lb   that is,  

   
   

   
   

1 opt opt
opt 1

1 1

= ,l l
l l

l l l l

b K K b
K b b

b b b b



 

     


     
 

where    1
opt min max2

ˆ ˆ= .K B B    
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Modified regression estimator for repeated business surveys 
with changing survey frames 

John Preston1 

Abstract 

Composite estimation is a technique applicable to repeated surveys with controlled overlap between successive 
surveys. This paper examines the modified regression estimators that incorporate information from previous 
time periods into estimates for the current time period. The range of modified regression estimators are 
extended to the situation of business surveys with survey frames that change over time, due to the addition of 
“births” and the deletion of “deaths”. Since the modified regression estimators can deviate from the generalized 
regression estimator over time, it is proposed to use a compromise modified regression estimator, a weighted 
average of the modified regression estimator and the generalised regression estimator. A Monte Carlo 
simulation study shows that the proposed compromise modified regression estimator leads to significant 
efficiency gains in both the point-in-time and movement estimates. 

 
Key Words: Changing survey frames; Composite estimation; Modified regression; Repeated surveys; Rotating samples. 

 
 

1  Introduction 
 

The method of composite estimation has been used extensively in rotating panel household surveys to 
improve the efficiency of movement estimates, by giving more weight to the “common” rotation groups. 
Most of the existing composite estimators, such as the AK-composite estimator (Gurney and Daly 1965), 
the best linear unbiased estimator (BLUE) (Yansaneh and Fuller 1998), and the B1 estimator (Bell 2001), 
require that all primary sampling units in the population can be assigned randomly to rotation groups. 
These composite estimators have not been widely adopted for business surveys, as the concept of rotation 
groups does not translate well to repeated business surveys. Rotating panel designs are not well suited to 
repeated business surveys due to the highly dynamic nature of the survey frames, with changes caused by 
the addition of population “births” and the deletion of population “deaths” to the survey frame, as well as 
changes in classification information on the survey frame over time.  

A typical example of this type of repeated business survey is the Quarterly Business Indicators Survey 
(Australian Bureau of Statistics (ABS) 2012b), where the sampling frame is updated quarterly to take 
account of new businesses and changes in the characteristics of businesses. Furthermore, approximately 
one-twelfth of the sampled sector units is rotated out of the survey and is replaced by other units, in order 
to spread the reporting workload equitably. 

The modified regression estimator which was first introduced by Singh (1994) appears to be the most 
appropriate type of composite estimator suitable to the situation of changing survey frames. The earliest 
modified regression estimators were the MR1 estimator (Singh and Merkouris 1995; Singh 1996), and the 
MR2 estimator (Singh, Kennedy, Wu and Brisebois 1997). The former has been found to perform better 
for point-in-time estimates, while the later has been found to perform better for movement estimates. A 
compromise between these two modified regression estimators, called the composite modified regression 
estimator, was suggested by Fuller and Rao (2001). This composite modified regression estimator has 
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been studied by Singh, Kennedy and Wu (2001), Gambino, Kennedy and Singh (2001), Bell (2001) and 
Beaumont and Bocci (2005).  

All of these modified regression estimators perform best when units in the population are unchanged 
between the previous and current time periods. This will not be too problematic for a typical monthly 
household survey where the birth, death and net migration rates are relatively low. For example in 
Australia during 2011-12, the average monthly birth rate was 0.11%, the average monthly death rate was 
0.05%, and the average monthly net migration rate was 0.08% (ABS 2012a). However, it will be more 
problematic for a typical quarterly business survey where the birth and death rates are much larger. For 
example in Australia during 2011-12, the average quarterly birth or entry rate of businesses was 3.38% 
and the average quarterly death or exit rate of businesses was 3.28% (ABS 2012c). 

If there are significant changes in the population over time, then these modified regression estimators 
will be unsuitable in their present form, as these estimators can accrue serious biases over time. These 
modified regression estimators can be extended to the situation of changing survey frames by making 
adjustments to the composite auxiliary variables, after first adding “births” into the population at the 
previous time period, and adding “deaths” into the population at the current time period to create a 
“pseudo-population”. These “pseudo-populations” will satisfy the requirement that the units in the 
population remain unchanged between the previous and current time periods. 

Section 2 describes the generalised regression estimator and modified regression estimators, as well as 
a weighted average of these two estimators which leads to significant efficiency gains in both the point-in-
time and movement estimates. An extension to the modified regression estimator for changing survey 
frames is also outlined in Section 3. The findings of a simulation study are reported in Section 4. Some 
concluding remarks are provided in Section 5. 

 
2  Modified regression estimation  
 

Consider a finite population 
 tU  at time t  partitioned into H  non-overlapping strata 

     

1 , , , , ,t t t
h HU U U   where  t

hU  is comprised of  t
hN  units. A simple random sample without 

replacement  t
hs  of  t

hn  units is selected with inclusion probabilities         t t t t
i h h hn N i U    within 

each stratum h  at time ,t  leading to a total sample    

1

Ht t
hh

s s


   of size    

1
.

Ht t
hh

n n


   An unbiased 

estimate of the population total    
 

1 t
h

Ht t
ih i U

Y y
 

    is given by the Horvitz-Thompson (HT) 

estimator      
 HT 1

ˆ ,t
h

Ht t t
i ih i s

Y w y
 

    where    
1t t

i iw    is the design weight for unit i  at time t  and 
 t
iy  is the value for the variable of interest y  for unit i  at time .t  Assume that there exists a set of 

auxiliary variables  tx  at time t  for which the population totals 
   

 t

t t
ii U

 X x  are known and  t
ix  

are known for every 
  .ti s  

The generalised regression (GR) estimator (Särndal, Swensson and Wretman 1992) is a model assisted 
estimator, designed to improve the accuracy of the estimates by using auxiliary variables that are 
correlated with the variable of interest. The GR estimator is given by: 

 
          

GR HT GRHT
ˆˆ ˆ ˆ Tt t tt tY Y   βX X  (2.1) 
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where  

GR
ˆ tβ  is the vector of linear regression model parameters given by: 

 
 

     

 
 

     

 
 

1
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t t

t t t T t t t
t i i i i i i

t t
i s i si i

w w y

c c



 

   
    
   
 

x x x
β  (2.2) 

and  t
ic  are specified factors that relate to the variance structure of the linear regression model associated 

with the GR estimator        

GR
ˆ ,t t T t t

i i iy   x β  with    0,t
i

E        2Var tt
ii

c   and 
    Cov 0,t t
i j    for all .i j  The GR estimator can also be written as: 

      

 
GR

ˆ
t

t t t
i i

i s

Y w y


    (2.3) 

where      t t t
i i iw w g   and  t

ig  is the g weight for unit i  at time t  given by: 
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     

 
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

 
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 
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xx x
X X  (2.4) 

At time 1t   define a set of composite auxiliary variables  tz  for which “pseudo-benchmark”, totals 
 tZ  (based on the key survey estimates at time 1)t   are known and  t

iz  can be derived for every 
  .ti s  The modified regression (MR) estimator is the GR estimator where the variables in the regression 

model are the auxiliary variables  tx  and the composite auxiliary variables 
  .tz  The MR estimator given 

by: 

 
                

MR HT MRHT HT
ˆˆ ˆ ˆ ˆ, ,

Tt t tt t t tY Y   βX Z X Z  (2.5) 

where  

MR
ˆ tβ  is the vector of linear regression model parameters given by: 
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The MR estimator can also be written as: 

      

 
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ˆ
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t t t
i i

i s

Y w y


    (2.7) 

where      t t t
i i iw w g   and  t

ig  is the g weight for unit i  at time t  given by: 
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x zx z x z
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 (2.8) 

The key to the effectiveness of MR estimator is the definition of the composite auxiliary variables. 
Ideally, the values for the composite auxiliary variables at time ,t  would be equal to the values for the key 

survey variables at time 1.t   However, due to the rotation of units into and out of sample from one time 
period to the next, values for the key survey variables at time 1t   will be missing by design for those 
units in the sample at time t  which were not in the sample at time 1.t   
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There are several possible techniques available to define the composite auxiliary variables. The earliest 
modified regression estimators were the MR1 estimator (Singh and Merkouris 1995; Singh 1996), and the 
MR2 estimator (Singh, Kennedy, Wu and Brisebois 1997) which used values for the composite auxiliary 
variables given respectively by: 

  
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     

 
     
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and  
 1
MR
t

h
Y  are the composite regression estimators of the population mean in stratum h  for key survey 

variables at time 1.t   

The MR1 values for the composite auxiliary variables use a mean imputation method to impute for the 
missing values, while the MR2 values use a reverse historical imputation method to impute for the missing 
values and then modify the non-imputed values so that the HT estimator of the composite auxiliary 

variables    
 
 

 HT MR 21
ˆ

t
h

Ht t t
i ih i s

w
 

  Z z  at time t  is unbiased for the corresponding key survey variables 
 1tY  at time 1.t   

The MR1 estimator has been found to perform better for point-in-time estimates, while the MR2 
estimator has been found to perform better for movement estimates. Fuller and Rao (2001) proposed an 
alternative estimator that provides a compromise between improving point-in-time estimates and 
improving movement estimates by using values for the composite auxiliary variables given by: 

  
   

 
 

 
 

MR MR1 MR 21 .t t t
i i i    z z z  (2.11) 

The composite auxiliary variable (2.11) requires a decision on the choice of ,  which will depend on 

the correlations over time for the key survey variables, and the relative importance of the point-in-time 
and movement estimates.  

Beaumont and Bocci (2005) proposed a refinement to the composite auxiliary variable, which they 
proffered did not require an arbitrary choice of :  
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 (2.12) 

The MRR values for the composite auxiliary variables use a reverse historical imputation method to 
impute for the missing values and then modify the imputed values so that the HT estimator of the 

composite auxiliary variables    

 
 

 HT MRR1
ˆ

t
h

Ht t t
i ih i s

w
 

  Z z  at time t  is unbiased for the corresponding 

key survey variables 
 1tY  at time 1.t   
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The MR estimators can deviate from the GR estimator over time (Fuller and Rao 2001). In a repeated 
survey this “drift” problem will be characterized by a substantial deviation which extends over time 
between the MR estimator and the GR estimators, while in a simulation study it will be characterized by a 
reduction over time in the relative efficiency of the MR estimator compared to the GR estimators. A 
potential solution to the “drift” problem would be to use a weighted average of the MR estimator and the 
GR estimator (Bell 1999) given by: 

        

MRC GR MR
ˆ ˆ ˆ1 .t t tY Y Y      (2.13) 

The compromise modified regression (MRC) estimator should also provide a compromise between the 
efficiency gains in the point-in-time and movement estimates, as the MR estimators will generally perform 
better than the GR estimator for movement estimates, but will not always perform better for point-in-time 
estimates; in particular the MR2 and MRR estimators. 

The MRC estimator requires a decision on the choice of .  Using linearization (or Taylor series) 
methods to approximate the variance of (2.13), a relatively straight forward expression for   can be found 

which minimises the variance on the movement estimates while maintaining the variance on the point-in-
time estimates produced using GR estimator.  

The current MR estimators perform best when units in the population are unchanged between the 
previous and current time periods. If there are significant changes in the population over time, then these 
modified regression estimators will be unsuitable in their present form, as these estimators can accrue 

serious biases over time. While a simple factor 
 

 

 
  1

1
t t

h h

t t
i ii s i s

w w


    could be applied to the MR1, 

MR2 and MRR values to account for the changes in the population size in stratum h  between time 1t   
and time ,t  these modified regression estimators still can accrue considerable biases over time. 

 
3  Modified regression estimation for changing survey frames 
 

The MR estimators can be extended to the situation of changing survey frames by adding “births” into 
the population at the previous time period, and adding “deaths” into the population at the current time 
period to create a “pseudo-population” (Diagram 3.1). These “pseudo-populations” will satisfy the 
requirement that the units in the population remain unchanged between the previous and current time 
periods. A full description of the extension to the MR estimator for changing survey frames is outlined 
below. 

Consider a dynamic population which changes over time due to the addition of “births” and the 
deletion of “deaths”. At time ,t  the union of  t

hU  and  1t
hU   can be divided into three components. The 

first component consists of units in the population in stratum h  at time 1t   but not at time ,t  referred to 

as the “death” population  1t
dhU   in stratum ,h  comprised of  1t

dhN   units. The second component consists 

of units in the population in stratum h  at time 1t   and time ,t  referred to as the “common” population 
   1t t
ch chU U   in stratum ,h  comprised of    1t t

ch chN N   units. The third component consists of units in the 

population in stratum h  at time t  but not at time 1,t   referred to as the “birth” population  t
bhU  in 

stratum ,h  comprised of  t
bhN  units. Those units in the population which change stratum between time 

1t   and t  are included in the “death” population  1t
dhU   under their stratum at time 1t   and are also 

included in the “birth” population  t
bhU  under their stratum at time .t  
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Diagram 3.1 Standard and pseudo populations and samples 

 
At time 1t   define the “pseudo-population”    * 1 *t t

h hU U   in stratum h  as the union of  t
hU  and 

 1 ,t
hU   comprised of          * 1 * 1 1t t t t t

h h dh ch bhN N N N N       units. It is important to note that the 

“pseudo-population”  * 1t
hU   at time 1t   is different to the “pseudo-population”  * 1t

hU   at time ,t  as the 

“pseudo-population”  * 1t
hU   at time 1t   is based on the union of  2t

hU   and  1 ,t
hU   while the “pseudo-

population”  * 1t
hU   at time t  is based on the union of  1t

hU   and  
.t

hU  Hence the “pseudo-populations” for 

the current and previous time periods need to be calculated at each time period. Define the “pseudo-
values” for the variable of interest y  for unit i  at time 1t   and time t  as: 
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and define the “pseudo-values” for the auxiliary variables x  for unit i  at time 1t   and time t  as: 
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(a) Standard Population and Sample at time t-1 and t 
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(b) Pseudo Population and Sample at time t-1 and t 
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At time 1t   denote  * 1t
hs   and  * t

hs  as the “pseudo-samples” in stratum ,h  where  * 1t
hs   consists of 

all units selected in the original sample  1t
hs   in stratum h  at time 1t   plus a random sample of units 

 t
bhs  from the “birth” population  t

bhU  in stratum h  at time t  selected with inclusion probabilities 
        1 1 1 1 ,t t t t
i h h hn N i U       and  * t

hs  consists of all units selected in the original sample  t
hs  in 

stratum h  at time t  plus a random sample of units  1t
dhs   from the “death” population  1t

dhU   in stratum h  

at time 1t   selected with inclusion probabilities 
         .t t t t
i h h hn N i U    Let  * 1t

hn   and  * t
hn  

denote the sample sizes in the “pseudo-samples”  * 1t
hs   and  * t

hs  respectively. Once again it is important to 

note that the “pseudo-sample”  * 1t
hs   at time 1t   is different to the “pseudo-sample”  * 1t

hs   at time ,t  as 

the “pseudo-sample”  * 1t
hs   at time 1t   includes a random sample of units from the “birth” population at 

time 1,t   while the “pseudo-sample”  * 1t
hs   at time t  includes a random sample of units from the 

“death” population at time 1.t   Hence the “pseudo-samples” for the current and previous time periods 

need to be calculated at each time period.  

The choice of an appropriate sample selection technique, for the selection of the additional random 
samples of units from the “birth” and “death” populations, will depend on the sample selection technique 
used to select the original samples. Many repeated business surveys select their samples using a 
permanent random number (PRN) selection technique, to enable some control of the rotation of units into 
and out of sample from one time period to the next. Consider the simplest case where the original samples 

 1t
hs   and  t

hs  in stratum h  described by 
       1 1 1& ,t t t
h i h hi U R S E      and 

  &t
hi U  

    , ,t t
i h hR S E   where  t

hS  and  t
hE  are the selection interval start and end points in stratum h  at time 

,t  and iR  is the permanent random number for unit .i  In this case the “pseudo-samples”  * 1t
hs   and  * t

hs  

in stratum h  are described by 
       * 1 1 1& ,t t t
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       * & , .t t t

h i h hi U R S E    

This selection technique will give a similar amount of overlap between the samples from the “death” 
population at time 1t   and t  and between the samples from the “birth” population at time 1t   and t  
as between the samples from the “common” population at time 1t   and .t  Clearly the amount of 

overlap between the samples from the “death” and “birth” populations will affect the behaviour of the 
estimates and optimising the amount of overlap could be investigated. 

Define the “pseudo-design weights”    * 1 11t t
i iw     for all units in the “pseudo-sample”  * 1t

hs   and 
   * 1t t

i iw    for all units in the “pseudo-sample”  * .t
hs  Since the “pseudo-design weights” for the 

original sampled units are equal to the original design weights and the “pseudo-values” for the variable of 
interest are equal to zero for the additional sampled units from the “birth” and “death” populations, then 

the HT estimator      
 *

* * *
HT 1

ˆ
t

h

Ht t t
i ih i s

Y w y
 

    based on the “pseudo-sample”, “pseudo-values” and 

“pseudo-design weights” is equivalent to the HT estimator      
 HT 1

ˆ
t

h

Ht t t
i ih i s

Y w y
 

    based on the 

original sample, original values and original design weights. Hence the inclusion of these additional 
sampled units into the “pseudo-sample” from the “birth” and “death” populations will not introduce any 
extra variability into the point-in-time estimates. 

The proposed MR estimator for the special case of changing survey frames can be written as: 

      

 *

* * *
MR

ˆ
t

t t t
i i

i s

Y w y


    (3.1) 
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where      * * *t t t
i i iw w g   and  * t

ig  is the “pseudo g weight” for unit i  at time t  given by: 

 

            
           

 
 

    
 

*

* * *
HT HT

1 * ** * * * *

ˆ ˆ1 , ,

,, ,

t

Tt t t t t
i

T t tt t t t t
i ii i i i i

tt
ii s i

g

w
cc





  

 
  

 


X Z X Z

x zx z x z

 
 (3.2) 

and the MR1, MR2 and MRR values for the “pseudo-composite auxiliary variables” are given by: 

  
 

           

 

 

 

 

   

         

 

 

 

 

    
 

   

* 1

* 1

* * 1

1, * 1 * * 1 * * 1

1, * 1 * * 1 * * 1
*

*
MR1

*

1,
*

\

, if  and \

, if  and \
t

h

t t
h h
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where    
 

 
  1

11,
t t

h h

t tt t
i ih i s i s

w wR 


     is a correction factor applied to the MR1, MR2 and MRR 

values to account for the relative change in the population size in stratum h  between time 1t   and time 
.t  The other adjustments to the MR2 and MRR values were made to ensure that the HT estimator for the 

“pseudo-composite auxiliary variables”      
 *

* * *
HT 1

ˆ
t

h

Ht t t
i ih i s

w
 

  Z z  at time t  is unbiased for the 
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corresponding key survey variables  1tY  at time 1.t   A simple proof of the unbiasedness of the HT 

estimator for the “pseudo-composite auxiliary variables” is shown in the Appendix. 

The HT estimator      
 *

* * *
HT 1

ˆ
t

h

Ht t t
i ih i s

Y w y
 

    is equivalent to      
 HT 1

ˆ
t

h

Ht t t
i ih i s

Y w y
 

    since the 

“pseudo-values” for the variable of interest are equal to zero for the additional sampled units from the 

“birth” and “death” populations. Similarly the GR estimator      
 *

* * *
GR 1

ˆ
t

h

Ht t t
i ih i s

Y w y
 

     is equivalent 

to      
 GR 1

ˆ
t

h

Ht t t
i ih i s

Y w y
 

     since the “pseudo-values” for the variable of interest and the auxiliary 

variables are equal to zero for the additional sampled units from the “birth” and “death” populations. 

However, the MR estimator      
 *

* * *
MR 1

ˆ
t

h

Ht t t
i ih i s

Y w y
 

     is not equivalent to  

MR
ˆ tY   

   
 

1 t
h

H t t
i ih i s

w y
     since the “pseudo-values” for the composite auxiliary variables are not equal to zero 

for the additional sampled units from the “birth” and “death” populations. 

The proposed procedure of adding “births” into the population at the previous time period and adding 
“deaths” into the population at the current time period is performed independently at each time period, so 
there is no accumulation of “births” and “deaths” in the “pseudo-population” over time. 

 
4  Simulation study  
 

A Monte Carlo simulation study was conducted to examine the performance of the proposed composite 
regression estimator. Ten artificial populations were created for the simulation study. Firstly, a base 
population (Population I) was generated to resemble the physical appearance of typical monthly business 
surveys conducted over a five year time period. Secondly, six additional populations (Populations II to 
VII) were each generated by modifying one of six key characteristics of the base population to help 
determine whether this particular characteristic had an impact on the performance of the proposed 
composite regression estimator. Finally, three supplementary populations (Populations VIII to X) were 
generated to examine the impact of auxiliary variables on the performance of the proposed composite 
regression estimator. A brief description of the ten artificial populations is given in Table 4.1. 

The population totals at time t  for the various artificial populations were produced using the time 

series model: 

        

2 3
t t t tY T S I       

where 
   

,t tT S  and 
 tI  are the trend, seasonality and irregular components of the time series given by: 

        1,000 5 1 50 1 cos 1 18tT t t         

         25 sin 6 cos 6 cos 3tS t t t        

 
   25t tI     

with 2 1   for all artificial populations, except Population II (high seasonal series) where 2 4,   and 

3 1   for all artificial populations, except Population III (high irregular series) where 3 4,   and 
   0,1 .t N   The original 

       ,t t tT S I   seasonally adjusted 
    t tT I  and trend 

  tT  

series for the base artificial population are presented in Figure 4.1. 
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Table 4.1 
Description of the artificial populations 
 

Artificial Populations Population Descriptions 
Population I Base Series 
Population II High Seasonal Series 
Population III High Irregular Series 
Population IV High Population Rotation Series 
Population V High Sample Rotation Series 
Population VI High Unit Variation Series 
Population VII Low Unit Correlation Series 
Population VIII Base Auxiliary Correlation Series 
Population IX High Auxiliary Correlation Series 
Population X Low Auxiliary Correlation Series 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1 Time series for population I 
 

All ten artificial populations were partitioned into five strata; four take-some strata  1, , 4h    and 

one take-all strata  5 .h   The stratum population sizes at time t  were chosen as 
 t
hN   

    11 0.5 1 ,t
hN T T     where hN  is the stratum population for all artificial populations at time 1, 

selected to yield a skewed population often associated with typical business. 

The expected population rotation rates between time 1t   and time ,t  due to the addition of “births” 
and the deletion of “deaths”, were specified as  4 1 ,hR   where hR  is the probability of a unit being 

“deathed” in the population for the base artificial population at any time period. A value of 4 1   was 

used for all artificial populations, except Population IV (high population rotation series) where 4 2   

was used. The stratum sample sizes at time t  were set to  t
h hn n  for the take-some strata, and 

   t t
h hn N  for the take-all strata, where hn  is the stratum population at time 1. 

The planned sample rotation rates between time 1t   and time t  were specified as  5 1 ,hr   

where hr  is equal to the inverse of the number of consecutive survey cycles a unit is expected to be in the 

sample given no population rotation, for the base artificial population at any time period (e.g., a planned 
sample rotation rate of 0.0417 equates to 24 survey cycles). A value of 5 1   was used for all artificial 
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populations, except Population V (high sample rotation series) where 5 2   was used. The actual 

sample rotation rates will depend on these planned sample rotation as well as any unplanned sample 
rotation caused by the population rotation. The expected population rotation rates and the planned stratum 
sample rotation rate were selected to yield population and sample rotation rates similar to those often 
encountered in typical business surveys. 

The stratum averages and stratum population variances at time t  were specified respectively as 
      0.2t t t
h hy Y N  and        22 2

6
t t t

h h h hS S y y   with 6 1   for all artificial populations, except 

Population VI (high unit variation series) where 6 4.   The stratum population correlations between 

time t  and time t k  were defined using an exponential decay model, 
      7, exp 0.02t kt
h hy y k     

with 7 1   for all artificial populations, except Population VII (low unit correlation series) where 

7 4.   The stratum population correlations between the variable of interest and the auxiliary variable at 

time t  were defined as 
      8, 1 1t t
h h hx y       with 8 1   for Population VIII (base auxiliary 

correlation series), 8 0.5   for Population IX (high auxiliary correlation series), 8 1.5   for 

Population X (low auxiliary correlation series) and not applicable for all other artificial populations. 

The variables of interest  t
hiy  and auxiliary variables  t

hix  for unit i  in stratum h  at time t  were 

generated from multivariate lognormal distributions with means  
,t

hy  variances  2t
hS  and correlation 

coefficients 
    , .t kt
h hy y   The stratum level characteristics of , , ,h h h hN n R r  and 2

hS  are given by the 

values presented in Table 4.2. 

A total of 10,000S   independent simulations were conducted for each of the ten artificial 
populations. In each of these simulations, stratified random samples  t

hs  of size  t
hn  were selected from 

the population  t
hU  using a permanent random number (PRN) selection technique at each time period, 

1, , 60.t    At each time period, 1,t   the “pseudo-populations”,  * 1t
hU   and  * ,t

hU  and “pseudo-

samples”,  * 1t
hs   and  * ,t

hs  were identified, and the various MR estimators were evaluated. These included 

the MR1 estimator  0 ;   the MR2 estimator  1 ;   the MR estimator using 0.25, 0.5   and 
0 75;.  the MRR estimator and the MRC estimator, with a compromise between the HT estimator and the 

MRR estimator for Populations I to VII and the GR estimator and the MRR estimator for Populations VIII 
to ,X  using 0.25, 0.5   and 0 75. .  

 

Table 4.2  
Stratum characteristics 
 

h  
hN  hR  hn  hr  2

hS  h  

S1 8,000 0.0150 12 0.042 0.4 0.85 
S2 1,600 0.0125 18 0.042 3 0.75 
S3 320 0.0100 24 0.042 20 0.65 
S4 64 0.0075 30 0.000 125 0.55 
S5 16 0.0025 16 0.000 625 0.95 

 
The performance of the various MR estimators for the point-in-time and movement estimates were 

compared using their relative biases and the relative efficiencies with respect to the HT estimator for all 
artificial populations and also with respect to the GR estimator for Populations VIII to X. The relative 
biases and relative efficiencies of variable of interest y  at time t  for the point-in-time and movement 

estimates were calculated as: 
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where  ˆ t
sY  is the estimator for variable of interest y  at time t  for the ths  simulation sample,  

*
ˆ tY  is the 

HT or GR estimator for variable of interest y  at time ,t  and 
  ˆMSE tY  and 

    1ˆ ˆMSE ttY Y   are the 

mean squared errors for variable of interest y  at time t  for the point-in-time and movement estimates 

given by: 
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The relative biases of the point-in-time estimates for the MR1, MR2 and MRR estimators, averaged 
over the twelve months within each of the five years, for Population I (base series) are shown in Table 4.3. 
The proposed MR estimators (MR1-P, MR2-P, MRR-P) were compared against the current MR estimators 
(MR1-C, MR2-C, MRR-C), and the adjusted MR estimators (MR1-A, MR2-A, MRR-A), where a 
correction factor was applied to the MR values to account for the relative change in the population size in 
stratum h  between time 1t   and time .t  
 

Table 4.3 
Average relative bias (%) of point-in-time estimates for population I 
 

 Year 1 Year 2 Year 3 Year 4 Year 5 

HT 0.024 -0.032 -0.015 -0.003 -0.005 

MR1-C -0.909 -2.871 -2.292 -2.836 -4.122 

MR2-C -0.918 -3.432 -3.449 -4.502 -6.820 

MRR-C -0.919 -3.437 -3.458 -4.515 -6.839 

MR1-A 0.064 -0.129 0.002 -0.062 -0.068 

MR2-A 0.169 0.024 0.039 -0.109 -0.317 

MRR-A 0.152 -0.027 -0.014 -0.174 -0.410 

MR1-P 0.009 -0.066 -0.040 -0.051 -0.054 

MR2-P 0.022 -0.053 -0.028 -0.039 -0.034 

MRR-P 0.020 -0.056 -0.030 -0.039 -0.036 
 

The current MR estimators exhibit substantial negative biases which compound over time. While the 
adjusted MR estimator removes the majority of these biases, the MR2-A and MRR-A estimators still 
display small negative biases which compound over time. On the other hand, the relative biases of the 
proposed MR estimator are negligible, with no apparent change in the magnitude of the relative biases 
over the five years. 
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Table 4.4 presents the absolute relative biases and relative efficiencies of the estimators for Population 
I (base series), averaged over the twelve months within each of the five years. The average absolute 
relative biases of the point-in-time and movement estimates were negligible for all of the estimators, and 
there was no appreciable change in the magnitude of the relative biases in any of the estimators over the 
five years. For the point-in-time estimates, the MR1 estimator performed better than the HT estimator, 
while the MR2 and MRR estimators performed poorer than the HT estimator. The relative efficiency of 
the MR2 and MRR estimators declined substantially over the five years, which suggests that these 
estimators are susceptible to the “drift” problem. The presence of the “drift” problem is evident by 
observing the relationship between the point-in-time estimates at the start of the first year  1t   and 
those at the start of the third year  25t   from the simulation samples (Figure 4.2). 

It can be seen that there are positive correlations between the point-in-time estimates at the start of the 
first and third years for the MR1, MR2, MRR and MR  0.75   estimators, signifying that once these 

estimators vary greatly from the true population totals, then there is a high likelihood that they will 
continue to drift further from the true population totals over time. While the correlations for the MR1 
estimator are lower than those for the MR2 estimator, positive correlations are still evident signifying that 
the MR1 estimator is not immune from the drift problem. The positive correlations are not apparent for the 
HT and MRC  0.25   estimators, and hence these estimators are not prone to the “drift” problem. 
Furthermore, it is clear that the MR2, MRR and MR  0.75   estimators are much more variable than 
the HT, MR1 and MRC  0.25   estimators at start of the third year. 

 
Table 4.4 
Average absolute relative bias (%) and average relative efficiency (%) for population I 
 

 Point-in-Time Estimates Movement Estimates 

Year 1 Year 2 Year 3 Year 4 Year 5 Year 1 Year 2 Year 3 Year 4 Year 5

 Average Absolute Relative Bias (%)

HT  0.031 0.032 0.030 0.025 0.010 0.021 0.011 0.012 0.019 0.014

MR1  0.032 0.066 0.041 0.051 0.054 0.021 0.011 0.010 0.010 0.016

MR2  0.024 0.053 0.030 0.039 0.034 0.014 0.009 0.009 0.009 0.013
 MR 0.25   0.029 0.067 0.045 0.058 0.063 0.019 0.010 0.009 0.009 0.015
 MR 0.50   0.027 0.066 0.045 0.060 0.064 0.017 0.010 0.009 0.009 0.014
 MR 0.75   0.025 0.061 0.040 0.054 0.055 0.016 0.009 0.009 0.009 0.014

MRR  0.023 0.056 0.032 0.040 0.036 0.014 0.009 0.009 0.009 0.013
 MRC 0.25   0.027 0.041 0.025 0.018 0.011 0.016 0.009 0.010 0.009 0.014
 MRC 0.50   0.028 0.036 0.028 0.021 0.010 0.018 0.008 0.011 0.010 0.014
 MRC 0.75   0.029 0.033 0.029 0.024 0.010 0.019 0.008 0.011 0.014 0.014

 Average Relative Efficiency (%)

HT  100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

MR1  122.0 126.0 118.4 112.7 114.6 137.6 132.8 132.7 134.2 133.0

MR2  92.4 74.7 57.7 47.8 45.8 223.0 203.0 206.5 206.4 204.8
 MR 0.25   121.6 123.4 110.6 100.9 100.9 168.3 158.4 159.7 160.7 159.2
 MR 0.50   115.3 110.0 92.8 80.9 79.3 199.0 182.8 185.6 186.0 184.3
 MR 0.75   104.7 91.9 73.5 62.0 59.7 220.4 199.6 203.5 203.4 201.6

MRR  94.1 79.6 63.0 53.4 53.1 223.3 203.3 206.9 206.8 204.8
 MRC 0.25   110.8 113.7 113.1 113.7 113.1 198.5 182.7 186.5 187.1 184.4
 MRC 0.50   106.0 105.9 105.6 105.9 105.5 164.2 155.0 157.3 157.6 155.8
 MRC 0.75   102.7 102.4 102.3 102.4 102.3 130.9 127.4 128.3 128.4 127.6
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An appropriate choice of   for the MRC estimators will minimize the likelihood of the “drift” 
problem. Compared to the MRR estimator, this MRC  0.25   estimator will improve the efficiency of 

the point-in-time estimates, but reduce the efficiency of the movement estimates. For the movement 
estimates, the MR1 estimator performed slightly better than the HT estimator while the MR2 and MRR 
estimators performed considerably better than the HT estimator. Overall, the MRC estimator appears to 
perform slightly better than MR estimator. If the objective is to choose an estimator which is not too 
susceptible to the “drift” problem and which maximises the efficiency of the movement estimates without 
any loss in relative efficiency for the point-in-times estimates, then the “best” estimator for this particular 
population is the MRC estimator with 0.10.   This estimator is likely to have minimal drift and leads 

to moderate efficiency gains of 21.6 percent in the point-in-time estimates and significant efficiency gains 
of 104.2 percent in the movement estimates. 

The average absolute relative biases and average relative efficiencies of the estimators for Populations 
I to VII are shown in Table 4.5. Large increases in the seasonality (Population II) or irregularity 
(Population III) of the time series had almost no impact on the performance of the various estimators for 
the point-in-time estimates. While there were small reductions in the relative efficiency of the movement 
estimates for MR2 and MRR estimators, there was no impact for the MR1 estimator. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2 Plots of various estimators for population I 
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Table 4.5  
Average absolute relative bias (%) and average relative efficiency (%) 

 Point-in-Time Estimates Movement Estimates 

Pop  
I 

Pop  
II 

Pop  
III 

Pop 
IV 

Pop 
V 

Pop 
VI 

Pop
VII 

Pop 
I 

Pop 
II 

Pop 
III 

Pop  
IV 

Pop  
V 

Pop 
VI 

Pop
VII 

 Average Absolute Relative Bias (%)

HT  0.038 0.027 0.049 0.048 0.048 0.065 0.032 0.017 0.012 0.016 0.018 0.020 0.025 0.020

MR1  0.050 0.098 0.074 0.052 0.089 0.150 0.078 0.014 0.012 0.013 0.015 0.020 0.020 0.018

MR2  0.081 0.028 0.039 0.063 0.047 0.218 0.120 0.012 0.011 0.011 0.014 0.013 0.017 0.017
 MR 0.25   0.052 0.083 0.070 0.046 0.095 0.139 0.090 0.013 0.011 0.012 0.014 0.018 0.018 0.017
 MR 0.50   0.057 0.058 0.059 0.043 0.089 0.136 0.103 0.012 0.010 0.011 0.014 0.016 0.016 0.017
 MR 0.75   0.066 0.038 0.047 0.050 0.069 0.160 0.111 0.012 0.010 0.011 0.014 0.014 0.016 0.017

MRR  0.074 0.032 0.045 0.065 0.055 0.223 0.124 0.012 0.011 0.011 0.014 0.013 0.017 0.017
 MRC 0.25   0.034 0.023 0.046 0.049 0.049 0.059 0.034 0.012 0.010 0.012 0.015 0.015 0.018 0.017
 MRC 0.50   0.037 0.025 0.048 0.049 0.050 0.064 0.033 0.014 0.011 0.014 0.017 0.017 0.023 0.019
 MRC 0.75   0.038 0.026 0.048 0.048 0.049 0.065 0.032 0.015 0.012 0.015 0.018 0.019 0.025 0.019

 Average Relative Efficiency (%)

HT  100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

MR1  118.7 119.6 118.9 126.4 143.5 127.2 98.9 134.2 133.4 133.9 132.9 147.2 138.0 115.5

MR2  59.6 60.9 58.1 64.2 49.7 67.8 48.7 208.9 192.6 180.0 202.0 455.7 226.2 137.0
 MR 0.25   110.8 112.0 110.4 119.8 134.2 121.5 89.2 161.6 159.3 158.5 159.0 215.0 169.3 125.7
 MR 0.50   93.6 95.0 92.4 101.4 99.4 103.8 74.6 188.0 182.1 178.2 183.7 315.4 201.0 133.5
 MR 0.75   75.0 76.4 73.5 80.6 69.0 83.8 60.2 206.1 194.9 186.3 200.0 424.9 222.4 137.5

MRR  65.3 66.6 63.7 76.8 52.9 74.0 53.7 209.2 194.6 183.3 202.4 454.8 225.6 137.2
 MRC 0.25   112.9 111.9 112.2 114.5 151.9 112.7 107.5 188.2 183.7 181.4 184.8 347.1 193.7 134.9
 MRC 0.50   105.8 105.4 105.5 107.2 123.3 105.7 104.5 158.3 156.0 154.4 156.6 223.8 160.5 126.2
 MRC 0.75   102.4 102.3 102.3 103.0 109.1 102.4 102.1 128.6 127.9 127.2 128.1 149.7 129.5 114.6

 
Additional numbers of “births” and “deaths” in the population (Population IV) led to small gains in the 

relative efficiency of the point-in-time estimates for all of the modified regression estimators, due to 
reductions in the MSE for the modified regression estimators. While there were small losses in the relative 
efficiency of the movement estimates for MR2 and MRR estimators, there was no impact for the MR1 
estimator. A doubling of the amount of unplanned sample rotation (Population V) produced increases in 
the relative efficiency of the point-in-time estimates for the MR1 estimator, but decreases in relative 
efficiency for the MR2 and MRR estimators. There were substantial improvements in relative efficiency 
of the movement estimates for all of the modified regression estimators as a result of larger increases in 
the MSE for the HT estimator compared with the modified regression estimators. 

Higher unit variation in the reported values (Population VI) led to small gains in the relative efficiency 
of the point-in-time estimates for all of the modified regression estimators, primarily due to larger 
increases in the MSE for the HT estimator compared with the modified regression estimators. However, 
there was no impact in the relative efficiency of the movement estimates as the size of the increases in the 
MSE for the modified regression estimators were similar to the HT estimator. Low unit correlation in the 
reported values over time (Population VII) produced large reductions in the relative efficiency of the 
point-in-time and movement estimates.   

Across Populations I to VII, the MR1 estimator performed better than the MR2 and MRR estimators 
for the point-in-time estimates, while the MR2 and MRR estimators performed better than the MR1 
estimator for the movement estimates. The “best” estimator in terms of maximising the relative efficiency 
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of the movement estimates without any loss in relative efficiency for the point-in-times estimates is the 
MRC estimator, although the “best” value of   will differ across the different artificial populations. 

The average absolute relative biases and average relative efficiencies of the estimators for Populations 
VIII to X are shown in Table 4.6. With respect to the HT estimator the use of auxiliary variables in the 
estimators led to large gains in the relative efficiency of the point-in-time estimates and movement 
estimates for all of the modified regression estimators. The higher the correlation between the variable of 
interest and the auxiliary variable the greater the gain in relative efficiency of the point-in-time and 
movement estimates. However, with respect to the GR estimator, the use of auxiliary variables in the 
estimators led to very small gains in the relative efficiency of the point-in-time estimates, but modest gains 
in the relative efficiency of the movement estimates for most of the modified regression estimators. The 
higher the correlation between the variable of interest and the auxiliary variable the lower the gain in 
relative efficiency of the point-in-time and movement estimates. 
 
Table 4.6  
Average absolute relative bias (%) and average relative efficiency (%) 
 

 Point-in-Time Estimates Movement Estimates 

Pop VIII Pop IX Pop X Pop VIII Pop IX Pop X

 Average Absolute Relative Bias (%)

GR  0.021 0.014 0.020 0.010 0.008 0.011

MR1  0.042 0.041 0.044 0.016 0.015 0.016

MR2  0.032 0.026 0.031 0.014 0.013 0.014
 MR 0.25   0.043 0.037 0.044 0.015 0.014 0.015
 MR 0.50   0.041 0.034 0.040 0.015 0.014 0.015
 MR 0.75   0.035 0.029 0.034 0.015 0.013 0.014

MRR  0.036 0.028 0.034 0.014 0.013 0.014
 MRC 0.25   0.023 0.017 0.023 0.013 0.011 0.013
 MRC 0.50   0.022 0.016 0.022 0.012 0.010 0.013
 MRC 0.75   0.021 0.015 0.021 0.011 0.009 0.012

 Average Relative Efficiency (%) to HT Estimator

GR  256.4 428.9 183.3 169.7 215.3 140.2

MR1  258.9 421.5 191.1 166.8 198.0 150.5

MR2  265.8 436.0 194.4 218.7 247.5 202.2
 MR 0.25   263.8 428.3 194.9 184.4 213.7 168.7
 MR 0.50   267.6 434.7 197.4 202.5 230.5 186.9
 MR 0.75   268.6 438.1 197.3 215.9 244.0 199.8

MRR  266.5 437.5 194.6 216.3 245.8 199.2
 MRC 0.25   266.7 441.2 192.6 225.7 257.7 204.7
 MRC 0.50   265.3 442.0 190.3 217.3 254.4 191.6
 MRC 0.75   261.4 437.0 187.0 197.5 239.7 168.6

 Average Relative Efficiency (%) to GR Estimator

GR  100.0 100.0 100.0 100.0 100.0 100.0

MR1  101.0 98.3 104.2 98.3 92.0 107.4

MR2  103.7 101.6 106.1 128.9 115.0 144.3
 MR 0.25   102.9 99.9 106.3 108.7 99.3 120.3
 MR 0.50   104.4 101.3 107.7 119.3 107.1 133.3
 MR 0.75   104.8 102.1 107.7 127.2 113.3 142.5

MRR  103.9 102.0 106.1 127.4 114.2 142.1
 MRC 0.25   104.0 102.9 105.1 133.0 119.7 146.0
 MRC 0.50   103.5 103.1 103.8 128.0 118.2 136.7
 MRC 0.75   102.0 101.9 102.0 116.4 111.3 120.3
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5  Conclusion 
 

This paper extends a number of the modified regression estimators to business surveys with survey 
frames that change over time, due to the addition of “births” and the deletion of “deaths”. The results of 
the simulation study indicate that the magnitude of the bias of these various modified regression 
estimators is negligible. The “best” estimator was the compromise modified regression estimator which 
led to significant efficiency gains in both the point-in-time and movement estimates, with an appropriate 
choice of   eliminating the likelihood of the “drift” problem. 
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The expected values of the HT estimator for the “pseudo-composite auxiliary variables” 
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The expected values of the HT estimator for the “pseudo-composite auxiliary variables” 
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Exploring recursion for optimal estimators under cascade 
rotation 

Jan Kowalski and Jacek Wesołowski1 

Abstract 

We are concerned with optimal linear estimation of means on subsequent occasions under sample rotation 
where evolution of samples in time is designed through a cascade pattern. It has been known since the seminal 
paper of Patterson (1950) that when the units are not allowed to return to the sample after leaving it for certain 
period (there are no gaps in the rotation pattern), one step recursion for optimal estimator holds. However, in 
some important real surveys, e.g., Current Population Survey in the US or Labour Force Survey in many 
countries in Europe, units return to the sample after being absent in the sample for several occasions (there are 
gaps in rotation patterns). In such situations difficulty of the question of the form of the recurrence for optimal 
estimator increases drastically. This issue has not been resolved yet. Instead alternative sub-optimal approaches 
were developed, as K  composite estimation (see e.g., Hansen, Hurwitz, Nisselson and Steinberg (1955)), 
AK  composite estimation (see e.g., Gurney and Daly (1965)) or time series approach (see e.g., Binder and 

Hidiroglou (1988)). 
 
In the present paper we overcome this long-standing difficulty, that is, we present analytical recursion formulas 
for the optimal linear estimator of the mean for schemes with gaps in rotation patterns. It is achieved under 
some technical conditions: ASSUMPTION I and ASSUMPTION II (numerical experiments suggest that these 
assumptions might be universally satisfied). To attain the goal we develop an algebraic operator approach 
which allows to reduce the problem of recursion for the optimal linear estimator to two issues: (1) localization 
of roots (possibly complex) of a polynomial pQ  defined in terms of the rotation pattern ( pQ  happens to be 

conveniently expressed through Chebyshev polynomials of the first kind), (2) rank of a matrix S  defined in 
terms of the rotation pattern and the roots of the polynomial .pQ  In particular, it is shown that the order of the 

recursion is equal to one plus the size of the largest gap in the rotation pattern. Exact formulas for calculation of 
the recurrence coefficients are given - of course, to use them one has to check (in many cases, numerically) that 
ASSUMPTIONs I and II are satisfied. The solution is illustrated through several examples of rotation schemes 
arising in real surveys. 

 
Key Words: Repeated surveys; Rotation of sample; Recursive BLUE of the current mean; Chebyshev polynomials; 

Algebra of shift operators; Exponential correlations. 

 
 

1  Introduction 
 

Repeated surveys with rotation of elements in samples are commonly used by statistical offices and 
other institutions. Predesigned rotation of (groups of) elements in a form of cascade patterns, that is such 
schemes when, on each occasion the ‘oldest’ element (group of elements) leaves the sample and is 
replaced by a new one, is also very popular but information carried in the survey data is often not 
exploited in full. This in turn leads to constructing sub-optimal estimators with variance above the 
achievable minimum. To enhance the use of optimal estimators in rotation schemes, in the seminal paper 
Patterson (1950) introduced the idea of recurrence for best linear unbiased estimators (BLUEs) of the 
mean on each occasion. The main assumptions were that the unknown population means are deterministic 
and the responses are random variables whose variances and correlation structure are fully known. Under 
exponential correlation and assuming further that any element leaving the sample does not return to the 
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survey, Patterson proved that for any occasion t  the BLUE ˆ t  of the current mean t  at time t  (based on 

all past observations) can be computed from the following one-step recurrence: 

      0 1 11 1=ˆ ˆ T T
t tt ta t r t X r t X      (1.1) 

where iX  is the vector of observations at time = ,  1.i t t   The formulas for the recurrence coefficients, 

that is the numbers  1a t  and the vectors  0 1, ( ),r t r t  were given there as well. (Here and throughout the 

paper a vector, say ,r  is understood as a column, Tr  is its transpose. For two vectors  1= , , ,nr r r  

 1= , , n
nw w w    the expression 

1
=

nT
i ii

r w r w
  is just the scalar product of r  and .)w  

Patterson’s assumption that a unit leaving a sample never returns to the survey was a core of his 
approach. If this assumption is violated (that is, there are gaps in rotation patterns) it has been known for 
years that serious difficulties arise if one seeks an analogue of the recurrence (1.1). Being aware of this 
(see, e.g., Yansaneh and Fuller 1998) researchers rather tried alternative approaches: Classical K -
composite estimator was proposed in Hansen et al. (1955). Its optimality properties were developed in Rao 
and Graham (1964) and more recently in Ciepiela, Gniado, Wesołowski and Wojtyś (2012). The main 
difference is that instead of seeking the recurrence for BLUE, these authors restrict the optimality issue to 
linear unbiased estimators satisfying just the first order recurrence, that is the variance of the estimator 
based on the most recent estimator and observations from the last two occasions only is minimized. 
Adjustments, known as AK - composite estimator, introduced in Gurney and Daly (1965), have been 
developed, e.g., in Cantwell (1988, 1990) and Cantwell and Caldwell (1998) - actually in these papers the 
authors introduce the notion of balanced multi-level design, and one-level design corresponds to the 
cascade pattern we consider here. Another approach based on regression composite estimator has been 
considered in Bell (2001), Fuller and Rao (2001) and Singh, Kennedy and Wu (2001) (with implications 
for Canadian Labour Force Survey). 

The difficulty in recursive estimation in repeated surveys for patterns with gaps was raised in 
Yansaneh and Fuller (1998), who analyzed variances of composite estimators in several rotation schemes. 
For a relatively current description of the state of art in the area one can consult Steel and McLaren 
(2008), in particular Sec. IV on different rotation patterns and Sec. V on composite estimators. 
Comparisons of effectiveness under different cascade patterns can be found in McLaren and Steel (2000) 
and Steel and McLaren (2002). A very recent paper on optimal estimation under rotation is by Towhidi 
and Namazi-Rad (2010). Some of these references deal also with time series approach (which is not 
considered in this paper) in which the unknown means are treated as random quantities - an overview of 
such approach can be found in Binder and Hidiroglou (1988). For a more recent development of this 
setting see e.g., Lind (2005). 

As for the original approach of Patterson, the next result concerning the recursive form of the BLUE 
was presented in Kowalski (2009), where singleton gaps in the rotation pattern were allowed. As in 
Patterson (1950), this paper was devoted to the “classical” situation in which the coefficients in (1.2) 
below are allowed to depend on .t  Three conclusions from that work have an impact on this paper. 

Firstly, it was suggested that the formula (1.1) may be generalized to an arbitrary rotation scheme 
(including gaps in the pattern) by incorporating the optimal estimators and observations from a probably 
larger (but still as small as possible) number of past occasions and that the order of the recurrence should 
depend on the size of the largest gap. Secondly, it was observed there that the exponential correlation, as 
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assumed in Patterson (1950), is crucial for obtaining the recursive representation and that it is plausible to 
restrict oneself to the class of ‘cascade’ schemes. Both these assumptions are kept below. Finally, since 
according to numerical simulations the recurrence coefficients appear to be quickly convergent as 

,t    a suggestion was made to consider the ‘limiting’ case of the “classical” setting, in which the 

recurrence coefficients do not change in time. 

We want to stress that in the present paper any set of gaps in the cascade rotation pattern is allowed. 
The aim is to show that the recurrence 

 0 1 11 1=ˆ ˆ ˆ T T T
t t p t pt t p t pa a r X r X r X             (1.2) 

holds for any cascade rotation scheme and to find the order of recurrence ,p  the numerical coefficients 

1 , , pa a  and the vector coefficients 0 , , .pr r  Let us emphasize that the representation (1.2) is 

“stationary” in the sense that neither the order of the recurrence p  nor the recurrence coefficients  ia  

and  ir  depend on .t  

Our main result lies in reducing the recurrence problem to analysis of a certain polynomial pQ  (of 

degree ,p  where 1p   is the size of the largest gap in the rotation pattern) and to the question of unique 

solvability of a certain linear system of equations, which depends on roots of .pQ  Luckily the polynomial 

pQ  happens to be conveniently expressed through Chebyshev polynomials of the first kind. We provide a 

sufficient condition in terms of localization properties of roots of pQ  for existence of the recursive form 

of the BLUE of order ,p  as given in (1.2), and derive explicit formulas (exploiting roots of )pQ  for the 

recurrence coefficients  ia  and   .ir  The forms of the coefficients depend also on the unique solution of 

the linear system mentioned above. The result is illustrated by several examples related to the real life 
surveys. 

The convergence of recursion coefficients which we observed numerically in many “classical” 
schemes (that is, with coefficients in the analogue of (1.2) depending on )t  of different complexity 

indicates that solution to such “stationary” recurrence problem should exist universally (actually only in 
the Patterson case, = 1,p  such convergence is formally proved). If so it can be treated as an approximate 

solution for the “classical” scheme. As the reader will see, this intuition is largely confirmed in this paper. 
Our main result still is not universal even within models with exponential correlation. Our approach 
heavily relies on two assumptions (ASSUMPTION I and ASSUMPTION II below) which allow us to 
claim that the recurrence (1.2) holds true. Nevertheless, we performed many numerical experiments for 
different rotation patterns and different values of the correlation and they all suggest that both these 
assumptions may be universally satisfied. Unfortunately, at the present stage we are unable to confirm 
theoretically these observations. 

The plan of the paper is as follows. In Section 2 we introduce in mathematical terms the model we are 
working with. In Section 3 we introduce our two core assumptions and formulate the main result of the 
paper. Section 4 contains examples of applications of the main result in several popular rotation schemes. 
Section 5 presents a discussion. The main body of mathematics is deferred to Section 6. In its first part, 
6.1, algebraic properties of shift operators are considered. They are essential for the proof of the recursion 
formula which is given in the second part, 6.2, of Appendix. 
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2  Model 
 

Let  , ,i j i j
X

  be a doubly infinite matrix of random variables. Heuristically, ,i jX  represents the value 

of variable   measured for the unit (rotation group) i  on the occasion .j  We assume that the expectation 

of ,i jX  depends only on the occasion and not on the unit, that is  

 , = , , .i j jX i j      

Moreover, we assume exponential in time correlations between , ’si jX  for the same unit and no 

correlations between different units (following Patterson (1950) model), that is  

   | |
, , ,ov , = , , , ,j l

i j k l i kX X i j k l       

where  0,1   and , = 1i k  if = ,i k  otherwise , = 0.i k  (In practical situations often   is in 0,1 .  

In the case = 0  observations from the past cannot improve present linear estimator of the mean, 

therefore we do not consider such case below.) Consequently,  

 ,ar = 1, , .i jX i j     

For any j    we are interested in the BLUE of j  based on all available observations from 

occasions .i j  For a fixed positive integer N  denote by  

  , 1, 1,= , , ,
T

j j j j j j N jX X X X     

the maximal sample (of size )N  on the occasion .j   Then 

 = 1 , ,j jX j     

where  1 = 1,1, ,1 ,T N   and  

     ov , = = ov , , , 0,Tk
j j k j j kX X X X j k   C     

where C  is an N N  matrix of the form 

 

0 0

0
= .

0 0 0

 
 
 
 
 
 
  

C
 

 
  

Note that = 0nC  for any .n N  

The effective sample will be defined by a cascade pattern, which is a vector =  

   1 , , 0,1T N
N    with 1 = = 1.N   Let  
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=1

=   and  = .
N

j
j

n h N n    

Let H  be the set of zeros in the pattern ,  that is j H  iff = 0.j  Obviously, # = .H h  A gap of size 

m  is a maximal set of sequential m  zeros, that is a set satisfying 

  , 1, , 1   and  1, .j j j m H j j m H         

Consequently, H  is a union of, say, s  gaps of sizes , = 1, 2, , ,rm r s  and 
1

.
s

rr
m h


  

The coverage p  of the pattern (see Kowalski 2009 for equivalent definition) is the size of the largest 

gap increased by one: 

 
1

= 1 max .r
r s

p m
 

   

On each occasion j    we may not observe the maximal sample jX  but the effective sample of size 

n  defined by the cascade pattern ,  that is the vector  

   1,= , 1, , \ ,
T

j j k jY X k N H      

that is values of , ’si jX  represented by zeros (gaps) in the cascade pattern   are removed from the sample. 

We consider BLUE ˆ t  of the mean t  on the occasion t    which is based on observations 

, .jY j t  That is  

 
=0

=ˆ T
t it i

i

w Y


     

with , 0,n
iw i    which minimize ar ˆ t  under the unbiasedness constraints  

 0 1 = 1  and  1 = 0, 1.T T
iw w i     

It is both obvious and crucial for our approach that, equivalently, 

 
=0

=ˆ T
t iit

i

w X


   (2.1) 

with , 0,N
iw i   minimizing ar ˆ t  under unbiasedness constraints 

 0 1 = 1, 1 = 0, 1,T T
iw w i   (2.2) 

and cascade pattern constraints 

 = 0 0, ,T
i jw e i j H     (2.3) 

where  = 0, , 0,1, 0, , 0 T
je    (with 1 at thj  position) is thj  vector of the canonical basis in 

, .N j H  Note that the constraint (2.3) actually says that thj  entries  j H  of vectors , 0,iw i   

are all zeros.  
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3  Recurrence 
 

In order to formulate our main result which gives the exact recurrence for the BLUEs under any 
rotation pattern we need to introduce two objects: a polynomial pQ  and a matrix .S  They both look very 

technical and do not have immediate heuristic interpretations. Nevertheless they appear to be of essential 
importance for the final recurrence formula.  

 
3.1  Polynomial pQ  
 

Recall that ,kT  the thk  Chebyshev polynomial of the first kind, is defined by  

    = cos  arccos ,    = 0,1, .kT x k x k    

Define an m m  symmetric Toeplitz matrix polynomial function mT  by 

 

0 1 2 2 1

1 0 1 3 2

2 3 4 0 1

1 2 3 1 0

=T

m m

m m

m

m m m

m m m

T T T T T

T T T T T

T T T T T

T T T T T

 

 

  

  

 
 
 
 
 
 
 
 
  





     





 (3.1) 

and an m m  tridiagonal invertible matrix  

 

2

2

2

2

2

1 0 0 0

1 0 0

0 1 0 0
= .

0 0 0 1

0 0 0 1

R m

   
 
    
 
   
 
 
 
   
 
    







     





 (3.2) 

Note that mR  is non-singular. 

For a cascade pattern   with gaps sizes 1 , , sm m  and coverage p  define a polynomial pQ  by 

           22 2 2 1

=1

= 1 1 2 1 1 2 tr .T R
s

p m mj j
j

Q x N x x x                (3.3) 

Since   1tr m mx T R  is a polynomial of degree 1m   in ,x   

  
1

deg = 2 max 1 = .p j
j s

Q m p
 

    
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3.2  Matrix S  
 

Consider again a cascade pattern   with coverage p  and   1# = = .sH h m m   For complex 

numbers 1 , , pd d  define a    1 1ph h p h     matrix S  through its block structure  

  

        
 

 

 

1 2

1

1 2= , , = .

G G G

G 0 0

S S 0 G 0

0 0 G

p

p

p

d d d

d

d d d

d

 
 
 
 
 
 
 
 
 
 





 

   



 (3.4) 

The blocks   idG  are    1 1h h    matrices  

   
     

    1

2
 

2

 

1 1 1 1 11
=

1 1 1 diag , ,
G

H H s

T
h

m mh

N d d
d

d

        
 

     
 (3.5) 

with    =m m dH H  being an m m  upper bi-diagonal matrix 

   

1

= .

1

H m

d

d
d

  
 
 
 

  
 
  

 


 (3.6) 

The blocks  idG  are  1h h   matrices  

        
12

1= 1 1 ,  diag , , ,
1

G H H
sh m md d d d      

  (3.7) 

where  =m m dH H  is an m m  tri-diagonal matrix 

  

2

2

1

= .

1

H m

d

d
d

d

d

    
 
 
 
  
 
    

 

 
 (3.8) 

The numbers 1 , , pd d  considered above are related to (potentially complex) roots 1 , , px x  of the 

polynomial pQ  through the relation 2 = 1 ,i i ix d d  and < 1,id  = 1, , .i p  Some more details are 

given in the remark below. 
 

Remark 3.1 Let x    be such that either  0 or 1,1 .x x      
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Then the equation  

 
1 1

=
2

d x
d

  
 

  

in d  has exactly two roots, say,  d x  and  d x  such that 

    < 1    > 1.d x and d x    

If additionally = 0x  then  d x  and  d x  are real. 

By x   denote complex conjugate of x  with 0.x   Then  

          =     = .d x d x and d x d x
  

      

 
3.3  Main result 
 

Our main result gives the recursion of depth equal to the coverage p  of the cascade scheme together 

with analytic forms of the coefficients which are ready for numerical implementation. Actual examples of 
such implementations are presented in Section 4. The proof we offer (see Appendix) is based on two basic 
assumptions concerning the polynomial pQ  and the matrix .S  
 

ASSUMPTION I: The polynomial pQ  has distinct roots  1 , , 1,1 .px x    

ASSUMPTION II: The matrix  1= , , ,pd dS S   where  = , = 1, , ,i id d x i p   is of full rank. 

 

Theorem 3.1 If ASSUMPTIONs I and II are satisfied then for any t    the recursion 

 
=1 =0

=ˆ ˆ
p p

T
k t kt k t k

k k

a r X      (3.9) 

holds with  

  
1

1

1

1 < <

= 1 ,    = 1, , ,
k

k

k
k j j

j j p

a d d k p

 

 


   (3.10) 

and 

       1 ,
=1

= ,    = 0,1, , ,
p

T
i ji m i m m j m

m j H

r v d v d d c e i p


 
 

 
 I C ΔN    

where      0 0 1= 1, = 0 , = 1, = 0,e H H v d v d
   

  
=1

= ,    = 1, , ,
i

i i l
i l

l

v d d a d i p    (3.11) 

   1
= , =I CC N I CT d d


    and with 
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      ,1 ,2 ,= , , , , , ,
T

j j j pc c j H c j H c j H         

being the unique solution (it exists due to ASSUMPTION II) of the linear system 

   1= 1, 0, , 0 .T ph hc  S     

Moreover, 

   0,
=1

ar = .ˆ
p

t m
m

c   (3.12) 

In the next section we show how the above theoretical result can be applied in several basic schemes, 
in particular, in those which are used in real life surveys, while the proof of Theorem 3.1 is given in the 
second part, 6.2, of Appendix. It is based on a purely algebraic operator approach which is introduced 
earlier in the first part, 6.1, of Appendix. 

We would like to stress that intensive numerical experiments suggest that ASSUMPTIONS I and II 
may be universally satisfied, however at this moment we do not have mathematical proof of this fact 
(except the case = 1, 2p  and = 3p  for a special rotation pattern). Thus applications of the above 

recursion formula (for > 2)p  in surveys have to be preceded by a numerical check (which is rather 

straightforward) that ASSUMPTIONS I and II are satisfied. Examples are given in Section 4. 

 
4  Examples 
 

4.1  Patterson’s scheme, = 1p  
 

The cascade Patterson scheme is used e.g., for conducting the Labour Force Survey in Australia 
( = = 8,N n  see Australian Bureau of Statistics (2002)) and Canada ( = = 6,N n  see Singh, Drew, 

Gambino and Mayda (1990)). There are no zeros in the pattern, hence = 0h  and the polynomial 

1= ,pQ Q  see (3.3), does not contain the summand with the trace, that is  

      2 2
1 = 1 1 2 1 .Q x N x          

Its only root 
 

2 2

1

1 1
=

2 2 1
x

N

   
 

  
 is real and satisfies 

2

1

1
> > 1,

2
x

 


 that is ASSUMPTION I 

is satisfied. It yields also real  1 1=d d x  of the form  

 
     

 

2 22 2 2

1

2 2 4 1
= .

2 1

N N N N N
d

N

           
 

  

Moreover, S  as defined in (3.4) is a 1 1  matrix of the form   1
2

1
= 1 1 ,

1

d
N

       
S 0  that is 

ASSUMPTION II trivially holds. Thus from Theorem 3.1, for all t    we have  
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 0 1 11 1= ,ˆ ˆ T T
t tt ta r X r X       

where  

  

 

1 1

0 0,1 1

1 0,1 1

=

= 1 ,

= 1T

a d

r c d

r c d








N

C N

  

where  

 

 
0,1

1
2

1
= .

1
1 1

1

c
d

N
 

 
 

  

Taking for example = 6N  and = 0.9,  we obtain for all :t  

 11

0.1765 0.0000

0.1765 0.1588

0.1765 0.1588
= 0.7942 .ˆ ˆ

0.1765 0.1588

0.1765 0.1588

0.1176 0.1588

T T

t tt t X X 

   
   

   
   

   
      

   
   
   
   
      

  

 

Remark 4.1 Patterson (1950) considered the same scheme in the “classical” model. The recurrence 
coefficient  1a t  was formally proved to converge with t    and the limit was shown to be 1a  as 

given above. The vectors  0r t  and  1 ,r t  being continuous functions of  1 ,a t  converge to 0r  and 1 ,r  

respectively. That is, the “stationary” solution is indeed consistent with asymptotics of the “classical” 
one.  
 

4.2  Schemes with gaps of size 1, = 2p  
 

The polynomial 2= ,pQ Q  see (3.3), has the following form: 

        
2

2 2 2
2 2

4
= 2 2 1 1 1 1 .

1
h

Q x x N h x N h
            

 
  

As 21 > 0,   it is immediate that its discriminant 

        
2

2 22 2 2 2
2

4
= 4 2 1 4 1 1 1 > 4 1 > 0.

1

h
N h N h N


                

 (4.1) 

Thus 2Q  has two single real roots  
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    2
2

2 2 1
= 1 .

8

N h
x

h

     
 


  

Note that since the size of all gaps is one, then necessarily 1 1.N h h     Using this fact and 

inequality (4.1) we obtain therefore 

    
2

2 1 1
> 1 > 1,   since  0,1 .

22

N h
x

       


  

Thus the ASSUMPTION I of Theorem 3.1 is satisfied. 

By Remark 3.1 it follows that   2
1 = = 1 < 0d d x x x      and  2 = =d d x   

2 1 > 0x x    are real numbers. 

Since in this case =s h  and 1 = = = 1hm m  we have   1 = 1idH  and   2
1 = 1 , =H id i   

1, 2.  Therefore the equation =c eS  implies  

      2
0, ,1 1 = 0, = 1, , ,    = 1, 2.i i i k id d c c k h i          

Thus 1,1 2,1 ,1= = = hc c c  and 1,2 2,2 ,2= = = .hc c c  Consequently, the system =c eS  reduces to 

the system with four unknowns 0,1 1,1 0,2, ,c c c  and 1,2 :c  

     0,1 1,1 0,2 1,2, , , = 1, 0, 0, 0
T Tc c c cS   

with 

 

           

     
     

2 2
1 1 2 2

1 2

2 2
1 1 1

2
2 2 2

1 1 1 1 1 1 1 1

1 1 1 1
1= .

1 1 1 0 0

0 0 1 1

N d h d N d h d

d d

d d d

d d d

                
 
    
 

        
 
       

S   

To show that S  is non-singular we first show that  

  1 2 0. (4.2)d d    (4.2) 

To this end we first note that 

    2 2 1= 1 0.
2

N hx x
h 

        (4.3) 

Moreover,  

 

     

 

2 2
1 2 2 2

2 2

2 2

1 1 = 1
1 1

( )
1 1 .

1 1

x x
d d x x x x x x

x x

x x
x x x x

x x

 
     

 

 
   

 

 
           

   

 
     

  
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Due to (4.3) the last expression is non-negative since the second factor is strictly negative. Now we are 
ready to consider the determinant 

   

 
 2 1

1 242
det = , ,

1

d d
s d d

 

 
S   

where  

 
             

      

2 2 2
1 2 1 2 1 2

2 2
1 2 1 2 1 2

, 1 1 1 1 1 1

1 1 1 2 .

s d d N d d d d

h d d d d d d

              

            
  

We note that < 1, = 1, 2,id i  and thus 1 2 < 1.d d  Consequently, we have 

   2 2
1 2 1 21 > 1 1 > 0,1 > 0.d d d d         These inequalities together with (4.2) yield 

 

          
       
       

2 2 2
1 2 1 2 1 2

2 2
1 2

2
1 2

, > 1 1 1 1 1 2

> 1 1 1 1 2

> 1 1 2 1 1

0.

s d d d d N h d d

d d N h h

d d N h

             

           

       



  

Consequently, det 0.S  

Since   rank = rank 2 1h S S  we obtain  rank = 2 1h S  and thus the ASSUMPTION II of 

Theorem 3.1 is satisfied. Moreover, 
1

S  exists. Therefore  

      1

0,1 1,1 0,2 1,2, , , = 1, 0, 0, 0 .
T

c c c c


S   

Finally, we conclude that the recurrence has the following form:  

 0 1 1 2 21 1 2 2= ,ˆ ˆ ˆ T T T
t t tt t ta a r X r X r X           

where  

          
             

         

1 1 2

2 1 2

0 1 0,1 1,1 1,1 2 0,2 1,2 1,2

1 2 1 0,1 1,1 1,1 1 2 0,2 1,2 1,2

2 2 1 0,1 1,1 1,1 1 2 0,2 1,2 1,2

=

=

= 1 1 .

= 1 1

= 1 1

T T

T T

a d d

a d d

r d c c c d c c c

r d d c c c d d c c c

r d d c c c d d c c c





       


         


      

N N

I C N I C N

C N C N

  

For example, let  = 7, = 2, = 3, 6N h H  and let = 0.5.  Then 

   2
2 = 1.6 2 5.75Q x x x     

and 
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 

 

 

 

1

1 11 1

22 2

2 2

= 5.0439

= = 0.1983= 2.6211 = 0.2348
.

= 2.3091= 1.3711 = 0.0859

= = 0.4331

d x

d d xx a

d xx a

d d x












       
  




  

Finally, (3.9) assumes the form 

 11 2

0.2171 0.0093 0.0000

0.1904 0.1086 0.0047

0.0000 0.0000 0.0000

ˆ 0.2348 ˆ 0.0859 ˆ 0.2171 0.0093

0.1904 0.1086

0.0000 0.0000

0.1850 0.0010

T T

t tt t t X X  

   
   

   
   
   
   
          
   
   
   
   
   
      

2 .0.0476

0.0047

0.0000

0.0476

T

tX 

 
 
 
 
 
 
 
 
 
 
 
 
  

  

 
4.3  Szarkowski’s scheme, = 3p  
 

If there are 2h  gaps of size 2 and 1h  gaps of size 1 in the cascade pattern the polynomial 3= ,pQ Q  

see (3.3), assumes the form  

          2
22 2 2

3 2 12 4 2

2 2 1 1
= 1 1 2 1 1 2 .

1 1

x
Q x N x x h h

    
                    

  

The Szarkowski’s scheme is defined by the cascade pattern  = 1,1, 0, 0,1,1 T  (often denoted also as 
2 2 2),   used e.g., by the Central Statistical Office of Poland for conducting the Labour Force Survey 

(known under the label BAEL), see Szarkowski and Witkowski (1994) or Popiński (2006). Actually, such 
scheme is used also in LFS in other countries in Europe as well. Here = 6N  and  = 3, 4 .H  Thus 

2 1= 1, = 0,h h  and 

      
2

22 2 2
3 2 4

1
= 5 1 2 1 2 1 2 .

1

x
Q x x x

   
           

   
 (4.4) 

Wesołowski (2010) proved that in this case 3Q  is either strictly increasing or decreasing in the whole 

domain and has two complex conjugate roots 1 2, ,x x  and one real root  3 1,1 ,x    meaning that the 

ASSUMPTION I of Theorem 3.1 holds. It was also shown in that paper that the matrix ,S  in this case of 
dimensions 9 9,  is invertible (meaning that the ASSUMPTION II of Theorem 3.1 holds). Thus, just as 
for = 1, 2,p  the recurrence (3.9) for Szarkowski’s scheme always holds. 

In general, even in the case = 3,p  verification of ASSUMPTIONs I and II of Theorem 3.1 has to be 
done numerically, i.e., after assigning the value to the correlation coefficient .  However, it is worth 
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noting that all performed simulations confirm existence of the solution. Asymptotic approximation of the 
“classical” model parameters was also observed in numerical experiments we performed. 

The coefficients 1 2 3, ,a a a  depend on    1 1 2 2 1= , = =d d x d d x d 
   and  3 3=d d x  in the 

following way (see (3.10)):  

  

1 1 2 3

2 1 2 2 3 1 3

3 1 2 3

=

= .

=

a d d d

a d d d d d d

a d d d

 
   



  

For the Szarkowski scheme, taking for instance = 0.7  in (4.4), we obtain  

 

 

 

 

 

 

 

1

1 1

1 1

2

2 2

2 2

3 3

3

3 3

1.0368 3.1035

= 0.0968 0.2899
= 0.5668 1.4069 = 0.4060

1.0368 3.1035
= 0.5668 1.4069 = 0.0227

= 0.0968 0.2899
= 1.1336 = 0

1.6675

= 0.5997

d x i

d d x i
x i a

d x i
x i a

d d x i
x a

d x

d d x













  


  
  

       
   

 





.

.0560







  

Due to Theorem 3.1 we get the following form of (3.9): 

 

1 2 3

1

0.4060 0.0227 0.0560ˆ ˆ ˆ ˆ

0.2862 0.0036 0.0143

0.2217 0.2004 0.0026

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.2862 0.0036

0.2059 0.1984

t t t t

T T

t tX X

  



      

    
   

   
   
   

     
   
   
    
   
      

2 3

0.0000

0.0100

0.0000
.

0.0000

0.0143 0.0760

0.0033 0.0100

T T

t tX X 

   
   
   
   
   

   
   
   
   
   
      

  

 
4.4  CPS scheme, = 9p  
 

Let us consider the well-known and widely studied 4-8-4 scheme, that is the cascade pattern is  

  = 1,1,1,1, 0, 0, 0, 0, 0, 0, 0, 0,1,1,1,1 T   

which is used in the US in the Current Population Survey, see U.S. Bureau of Census (2002). In this case 
= 16, = 8,N h  and  = 5, ,12 .H   We do not have any analytical proof that ASSUMPTIONs I and II 

are satisfied in this scheme for any .  



Survey Methodology, June 2015 113 
 

 
Statistics Canada, Catalogue No. 12-001-X 

The polynomial 9= ,pQ Q  see (3.3), is of degree 9 and has the form 

         22 2 2 1
9 8 8= 15 1 2 1 1 2 tr .Q x x x x             T R   

Consequently, its analysis, as well as analysis of matrix S  (which is of dimension 81 81  in this 
scheme), can be done numerically, after assigning some value for .  To make use of the result of 

Theorem 3.1 we need to check numerically that ASSUMPTIONs I and II are satisfied for a given concrete 
value for .  We checked that they hold true for several values for   picked up at random from the 

interval  1,1 .  

Taking for instance = 0.9,  we obtain that 9Q  has eight complex roots and one real root of the form  

 

 

 

1 1 1

2 2 2

3

4

5

6

7

8

9

= 0.7667 0.0208 = 0.7419 0.6220

= 0.7667 0.0208 =

= 0.1746 0.0320

= 0.1746 0.0320

= 0.4989 0.0284

= 0.4989 0.0284

= 0.9391 0.0121

= 0.9391 0.0121

= 1.0006

x i d d x i

x i d d x

x i

x i

x i

x i

x i

x i

x





    


 


 

  
  







 

 

 

 

 

 

 

 

 

1

2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

= 0.7429

0.7419 0.6220 = 0.0

= 0.1689 0.9532

= 0.1689 0.9532

= 0.4825 0.8389

= 0.4825 0.8389

= 0.9064 0.3335

= 0.9064 0.3335

= 0.9682

a

i a

d d x i

d d x i

d d x i

d d x i

d d x i

d d x i

d d x


















  


  

   
   


 


 

  

  

3

4

5

6

7

8

9

019

= 0.0023

= 0.0029

= 0.0037 .

= 0.0049

= 0.0066

= 0.0088

= 0.0119

a

a

a

a

a

a

a



















  

The coefficient 1a  is dominant in terms of absolute value. The second largest, 9a  is smaller by one 
order of magnitude and the other coefficients by at least two. Results for other values of the parameter   

behave similarly. 

 
5  Discussion 
 

The main result of the paper is an explicit recurrence formula for the best linear unbiased estimator 
(BLUE) of the mean on any occasion in repeated surveys with any cascade rotation pattern. The principal 
novelty lies in allowing for gaps in the pattern. The results which have been known earlier either dealt 
with patterns with no gaps or with estimators which were not BLUEs. The approach, we developed, is 
heavily based on algebra of matrices and linear operators of infinite dimension as well as on properties of 
Chebyshev polynomials. Unfortunately, the explicit recursive formula we obtained in Theorem 3.1 needs 
two, seemingly technical, assumptions: ASSUMPTION I on localization of roots of a polynomial pQ  and 

ASSUMPTION II on rank of matrix .S  It is worth to emphasize that both these objects, pQ  and ,S  

depend ONLY on two parameters; the rotation pattern   and the correlation coefficient .  It is known 

that these two assumptions are satisfied if the coverage of the pattern = 1p  or = 2p  for any cascade 
scheme and = 3p  for 2-2-2 scheme. It is not known if they are satisfied in general. However numerical 
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experiments allow to formulate a conjecture that this is really the case. In these experiments we considered 
many different rotation patterns. For each such a pattern we considered several values for  1,1 .    

Having the rotation pattern   and the value of   chosen, we built respective polynomial pQ  and matrix 

.S  Numerically we looked for roots of .pQ  Often these roots were complex, but when they were real they 

were located outside of the interval  1,1  in all the experiments (that is, ASSUMPTION I was satisfied). 

Then we tried to solve numerically the equation   1= 1, 0, , 0 .ph hc  S    Again, in all the 

experiments we obtained the unique solution, meaning that S  was of full rank (that is, ASSUMPTION II 

was also satisfied). We do believe that both the assumptions are always satisfied but a mathematical proof 
of these facts is probably hard, though a paper with the proof that ASSUMPTION I is satisfied for any 
cascade pattern with a single gap of any size and any  1,1    is under preparation. 

There is other type of limitations of the method we propose - they are due to the model constraints. In 

particular, in the model the correlations are exponential (as in the original Patterson model). This property 
is very important for the argument we use, e.g., it makes the covariance matrix C  nilpotent of degree ,N  

that is N  is the smallest value of j  such that = 0.jC  Moreover, it has been observed (see Example 4.5 

in Kowalski 2009) that other covariance models may lead to major difficulties in analysis of the formula 

for the variance of the estimators. There is a possibility that some reasonable departures from the 
exponential correlation assumption, as e.g.,    , , ,ov , = 1 j l

i j k l i kX X        for a  0,1   (see 

Lent, Miller, Cantwell and Duff (1999), in particular their Table 1, its discussion as well as additional 

references) can lead to treatable formulas for the variance. Such a covariance model is probably the first 

one to look at in any future research aiming at extension of the model. 

In the model we also assumed that expectations on a given occasion are all the same and depend only 
on the occasion number: , = .i j jX   However other models may be of interest, e.g., , =i j j iX a   

(see Bailar 1975). Here the adjustments ia  can be understood as time-in-sample-bias caused by the 

number of occasions in which unit i  participated in the survey. Of course, if ia  is known, there is no 

problem: just adjust ,i jX  by subtracting ia  and use the approach we developed. If it is not known, the 

operational (but not mathematical) solution would be to adjust , ’si jX  with suitable estimators of ’sia  

(obtained outside the model we analyze). The exact mathematical solution is not known and is worth to 

pursue. 

Another aspect, which is of interest within the model considered in this paper, is the question of 
recurrence for the BLUE of a change of the mean 1.t t    We do believe that this question can be 

approached through the methods developed in this paper. Nevertheless, we expect it will need a lot of 

work in careful adaptations of the algebraic techniques used above. 

It is worth also to mention that the model considered in the paper has an infinite time horizon, why 

there is always finite number of occasions in real surveys. As already mentioned in Introduction, the 

results we obtained seem to be reasonable approximation of the finite horizon case, when coefficients of 

recursion (1.2) depend on .t  In particular, numerical experiments, performed for a wide range of 
 1,1    and several different cascade patterns ,  show that e.g., the value of the coefficients ( )t

ia  (for 

the finite horizon) was roughly the same as ia  (for the infinite horizon) already for 10.t   The same 

behavior was observed for the variances of the estimators. Nevertheless, the convergence has been 
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mathematically established only in the case = 1.p  Analytical bounds for the speed of convergence at 

present seem also to be out of reach. 

It is interesting to know how the estimators, obtained here, work in real surveys. Such question needs 
access to real data and gaining some interest of practitioners in the theoretical solutions we proposed. Very 
likely the exact formulas given in Theorem 3.1 may need some adjustments due to the discussed 
limitations of the model. 

 
6  Appendix 
 
6.1  Algebra of shift operators 
 

In the first part of Appendix we introduce and analyze an algebraic operator formalism which is crucial 
for the proof of our main result (given in Subsection 6.2). 

For a sequence of vectors  0 1 2= , , , , ,N
ix x x x x    define shifts to the left and to the right by  

 
   

   

1 2 3

0 1

, , , left shift,

0, , , right shift.

x x x x

x x x












  

Note that =   (identity), but  

    0 0= , 0, 0, = ,x x x e    (6.1) 

where  = 1, 0, 0, .e   

For any M N  matrix A  define  

  0 1 2= , , , .x x x xA A A A    

In particular, for a complex (real) number ,a  taking = aA I  we have  

  0 1 2= , , , .ax a x a x a x    

Moreover, by the above definitions, for any , 0i j    

 = .i j i jx xA A      

For a constant sequence of vectors  = , , ,x x x x   we have =x x  and thus for any , 0i j   

 
, for ,

=
, for < .

i j

j i

x i j
x

x i j








 (6.2) 

If = 1N  we write  0 1 2= = , , ,  ,iy y y y y y    and L := , R := .   Note that, for 

 
0

= n

n
y y


 we have 
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 L =j jy y y  (6.3) 

and thus  

 
, for ,

L R =
R , for < .

j i

j i

i j

y y j i
y

y j i









  

For any   0= n ny y   and any   0= n nx x   define   0= .nn nyx y x   Then for any complex (real) 

numbers , ,   any M N  matrices , ,A B  any , , , 0,i j k m   

          = R L L R .A B A Bi j m k i j i j m k m kyx y x y x              (6.4) 

Note also that if  = , ,x x x   is a constant sequence, then 

    = R L   and  = L R .i j i j j i j iyx y x yx y x     (6.5) 

 

Lemma 6.1 Let , = 1, , ,iv i p  be functions defined in (3.11), where 1 , , pa a  are arbitrary numbers. 

Let  = , ,x x x   and  
0

= .n

n
y y


 Then for any = 1, ,i p  

 
=1 =1

= ,
p p

i j p p j p i
j j

j j

a a     
    

   
        (6.6) 

      0
=1

= , 0, 0,
p

p p j p i
j i

j

a yx v y x  
  

 
       (6.7) 

and  

  
=1

= .
p

p p j
j p

j

a yx v y yx 
 

 
   (6.8) 

 

Proof. First, we prove (6.8). By (6.4) 

      
=1 =1

= L L .
p p

p p j p p p j p j
j j

j j

a yx y x a y x   
  

 
       

Note that L =k ky y y  and =k x x  for any = 0,1, .k   Therefore  

 
=1 =1

= .
p p

p p j p p m
j m

j m

a yx y a y y x     
     

    
     

Now (6.8) follows by the definition (3.11) for = .i p  

Again, from (6.2), (6.4) and (6.5) it follows that  

    
=1 =1

= I RL L L R .
p p

p p j p i p p j p i
j j

j j

a yx a y x        
       

     
        
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Since for any  0,1, ,k p    

  
=1 =1 = 1 = 1

L L R = R = R
p k p p

p p j p k k k j j k j k
j j j k j

j j j k j k

a y y y a y y a y v y y a y    

 

 
    

 
      

then  

    
=1

I RL L L R =
p

p p j p k
j k

j

a y v y e  
  

 
   

and thus (6.7) follows. 

The identity (6.6) follows by (6.2) since  

 
=1 =1 =1

= = .
p p p

i j i i j p p i p j p i
j j j

j j j

a a a   
   

 
             

 

Lemma 6.2 Let   be an operator on the space of sequences of vectors from N  defined by 

   
1

=1

= ,C C
N

kk k T k

k



      (6.9) 

where C  is the covariance matrix defined in Section 2. 

The operator   is invertible and 

    1 = .C Δ CT        (6.10) 

 

Proof. Note that  2 2= diag 1 , ,1 ,1 .T    I CC   Consequently,   1
=Δ I CCT 

  is well 

defined. Note also that 
1

=0

N k k

k

 C   is invertible and its inverse is . C � Similarly,  1

=0

kN T k

k

 C   

is invertible and its inverse is .T C � 
 

Therefore  

 

       

   

   

   

1 11 1

1 1

=0 =0

1 1

, =0 , =1

1
1 1

, =1

.

C Δ C C Δ C

C I CC C

C C C C

C C

T T

N N
jk k T T j

k j

N N
j jk T k j k T k j

k j k j

N
jk T k j

k j

  

 

 


 

      

   
    

   

 

  



 

 



       

 

   

    


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6.2  Proof of the recurrence 
 

Proof of Theorem 3.1. Note first that since 1 , , pd d  are either real or come in conjugate pairs (see 

Remark 3.1) it follows from (3.10) that 1 , , pa a  are real numbers. 

 

Recall that 0 = 1e  and denote    = , , , = 0 .j jje e e j H H   Recall that the N N  

diagonal matrix Δ  is defined as 

    1 2
2

1= = diag 1, ,1,1 .
1

Δ I CCT 
  

 
   

With 1 , , pd d  and c  as defined in Theorem 3.1 let (see (6.10)) 

   1
0 1 ,

=1

= , , = ,
p

mj m j
m j H

w w w c d e


    (6.11) 

where  2= 1, , , , = 1, , .m m md d d m p   Note that iw  (the length of the vector )iw  is of order 

 1max , = 0,1, .
i

m p md i    By Remark 3.1 and ASSUMPTION II we have  1max 0,1 .m p md    

Hence (2.1) is a correct definition of a random series (with bounded variance). 

Consequently, it suffices to show that:  
 

1.  The sequence w  defined in (6.11) is the sequence of optimal weights. To this end we note that 

the variance of any linear estimator 
0

, , = 0,1, ,T N
ii ii

u X u i



   has the form  

 
1

=0 =0 =0 =1

ar = 2 .C
N

T T T k
ii i i i i k

i i i k

u X u u u u
   

    (6.12) 

We need to show that   0= :=i iu u w  with w  as defined in (6.11) minimize this expression 

under the constraints (2.2) and (2.3). Since the above variance as a function of u  is convex 

then the problem has the unique solution. Using the standard Lagrange method, that is 
differentiating the Lagrange function (with multipliers , , 0( ) )j i j H i   

  
1

,
=0 =0 =1 =0

= 2 2 ,
N

T T tk
i i i i k i jj i

i i k i j H

V u u u u u u e
   




    C   

with respect to   0i iu   and comparing the derivatives to zero, equivalently, we need to show 

that there exist real numbers (Lagrange multipliers) , , , = 0,1, ,j l j H l    such that 

   
1

=1

= = ,C C
N

kk k T k

k

w w
 

   
 

�     (6.13) 

where w  is defined in (6.11) and  0 1= , ,     with 

 ,= , = 0,1,l jj l
j H

e l


     
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2.  The constraints (2.2) and (2.3) are satisfied for w  as defined in (6.11). 

3.  The basic recurrence (3.9) holds true with w  defined in (6.11), that is the sequence r  defined 

by 

 
=1

:=
p

m
m

m

r a w
 

 
 

   (6.14) 

has to satisfy 

 1 = 0p r  (6.15) 

and for any = 0,1, ,i p  

         1 ,
=1

= ,I C N
p

i T
ji m i m m j m

m j H

r v d v d d c e e


 
  

 
     (6.16) 

where    = .N Δ I Cd d  
 

Ad. 1. We will show that (6.13) holds with  

 , ,
=1

= , , = 0,1,
p

l
j l j m m

m

c d j H l    (6.17) 

By definition (6.11) of w  we have  

 , ,
=1 =1

= = , = 0,1, .
p p

l
jj m m j j m m

m j H j H m

w c d e c d e l
  

 
 
 

       

Therefore, by definition of , ’sj l  we obtain  

  0 1,= = , , = .jj l
j H

w e


 
    

 
    

To see that ,j l  as defined through (6.17) are real numbers take first conjugates of both sides of 

= .c eS  Note that  

    1 1= , , = , , .p pd d d d   S S S    

Since 1 , , pd d  are either real or come in conjugate pairs (see Rem. 3.1) the equation =c e S  implies 

that for any j H   and any = 1, ,m p  either = 0md  and then ,j mc  is real or 0md   and then 

there exists n m  (with = )n md d  such that , ,= .j n j mc c  Therefore the quantities ,
l

j m mc d  in (6.17) are 

either real or come in conjugate pairs. Consequently, by (6.17) it follows that ,j l  is real. 

Ad. 2. Note that applying (6.1) and (6.4) to (6.11) after an easy algebra we get  

 0 ,
=1

=
p

jj m m
m j H

w c d e


  N  
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and 

   1
,

=1

= , = 1, 2,
p

i T
i jj m m m m

m j H

w c d d d e i



  I C N  

Let us rewrite the constraints (2.2) and (2.3) using the above formulas for 0w  and , 1.iw i   The 
constraint (2.2) for = 0i  with 0w  as defined above takes on the form 

  ,
=1

1 = 1N
p

T
jj m m

m j H

c d e


   (6.18) 

and for 1i   

    1
,

=1

1 = 0.I C N
p

i T T
jj m m m m

m j H

c d d d e



   (6.19) 

The constraint (2.3) for = 0,i  that is for 0 ,w  has the form 

  ,
=1

= 0, .N
p

T
k jj m m

m j H

c e d e k H


   (6.20) 

For > 0i  it has the form 

    1
,

=1

= 0, .I C N
p

Ti T
k jj m m m m

m j H

c d e d d e k H



    (6.21) 

Note that N N  matrix  

   2

2

1 0 0

0 1 0

1=
1

0 1

0 0 0 1

N

d

d

d

 
 
 
 
 

   
 
 
   



 

    

 



  

and      2
=

1
T

N
dd d d
 

I C N H  - see (3.8). Thus, by elementary computations, we get 

  

    2

2

1 1 1 , = = 0,

1 , = 0,  or , = 0,1=
1 1, ,

, = 1, ,

0, otherwise,

NT
k j

N d k j

d k j H k H j
e d e

k j

d k j k j H

     


    
         

 (6.22) 

and 
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   

       
   

 

2

2 2

2

1 1 1 , = = 0,

1 , = 0,  or , = 0,

, = 1,1
1 1 , ,

, .
1,,

otherwise,0,

I C NT T
k je d d e

N d d d k j

d d k j H k H j

k j

d k j
k j H

k jd



       

      
              

 

 (6.23) 

Due to (6.22) and (6.23), the constraints (6.18), (6.19), (6.20) and (6.21) can be rewritten in a matrix 
form as 

 

        
     
     

     

1 2

1 2

1 1 2 2

1 1 2 2

= ,

G G G

G G G

G G G

G G G

p

p

p p

i i i
p p

d d d

d d d

d d d d d d
c e

d d d d d d

 
 
 
 
 
 
 
 
 
  







   



   

 (6.24) 

where   dG  is defined through (3.5) and (3.6),  

  
   

   

11 12

2

21 22

=
1

H H
G

H H

d d
dd

d d

 
 

   
 

  

with  

 

       

   

      

2
11

12 21

22 1

= 1 1 1 1 ,

= = 1 1 1 ,  

= diag , , ,

H

H H

H H H

T T
h

s

d N d d

d d

d d d

       

   



  

and matrices   , = 1, , ,i d i sH   are defined in (3.8). 

The infinite matrix at the left hand side of (6.24) can be written as  

 

        
 

 

 

1 2

1

1 2

2

1 2

,

I 0 0 0
G G G

0 I I I
G 0 0

0 I I I
0 G 0

0 I I I
0 0 G

p

p

i i i
p

p

d d d

d
d d d

d

d d d
d

 
  
  
  
  
  
  
  
  
  
   










    
   




    
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where 1= hI I  and 1= h0 0  are, respectively,    1 1h h    unit and zero matrices. Note that the 

first matrix in the product above is of full rank and can be written as  

 
1 2

1

1 2

1 0 0 0

0 1 1 1

0
.

0

p

h

i i i
p

d d d

d d d



 
 
 
 
  
 
 
 
 
  

I







    



    

  

Therefore (6.24) is equivalent to  

 

        
 

 

 

    

1 2

1

1 1
2 = 1, 0, ,0 .

G G G

G 0 0

0 G 0

0 0 G

p

T p h

p

d d d

d

cd

d

 

 
 
 
 
  
 
 
 
 
  







   



  (6.25) 

Assume that we prove that    1 1h h    matrices   , = 1, , ,G md m p  are singular. Note that 

      21 22, =d d d dH H G  due to (3.7). Therefore, the definition (3.4) of S  implies that (6.25) is 

equivalent to   1= 1, 0, , 0 .ph hc  S    It is obtained from (6.25) by deleting all rows determined 

through first rows of matrices   , = 1, , .md m pG   And the equation  = 1, 0, , 0cS   follows by 

ASSUMPTION II and the definition of .c  

Consequently, it suffices to show that  det = 0, = 1, , .md m pG   That is, we need to check that  

 
   

   

11 12

21 22

0 = det
H H

H H

m m

m m

d d

d d

 
 
  

  

for any = 1, , .m p  

Note that with = md d  the right hand side can be written as  

         1
22 11 12 22 21det detd d d d d  H H H H H  

and 

    22
=1

det = det .H H
s

mi
i

d d  (6.26) 

Since  m dH  can be decomposed as 

   1= ,H D R Dm m m md   (6.27) 
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where  2 1= diag 1, , , , m
m d d d D   and mR  is defined in (3.2) we see that  

  2 2det = 1 0.m
m d      H   

Now, from (6.26) it follows that 22det 0.H  

On the other hand 

              1 2 2 1
11 12 22 21

=1

det = 1 , 1 , 1 1 ,H H H H H
j

s
T

m
j

d d d d N d d               (6.28) 

where    2 1, = 1 .d d d         

The decomposition (6.27) of mH  gives  

    1 1 1 1 11 1 = tr 1 1 = tr 11 .TT T
m m m m m m m
    H D R D D D R   

Moreover, since    tr = tr TA A  

       1 1 1 1 1 1 11 1 = tr 11 = tr 11 = tr 11 .H D D R R D D D D R
TT T TT

m m m m m m m m m m
         

Combining the last two expressions for 11 1T
m
H  we get  

   1 1 1 11
21 1 = tr 11 11 .T TT

m m m m m m
   H D D D D R   

Note that  

  1 111 11 = ,T T i j i j
m m m m ij

d d    D D D D   

and that  

     11 1
2 2= , = 0,1, ,k k

kd d T d d k      

where  kT  is the thk  Chebyshev polynomials of the first type. 

Thus  

  1 11 1 = tr ,T
m m mx H T R   

where    11
2= =x x d d d   and the matrix mT  is defined in (3.1). Plugging this expression to (6.28) 

we find out that  

            1
11 12 22 21det = ,pd d d d Q x dH H H H   

where pQ  is the polynomial defined in (3.3). By ASSUMPTION I    = 0,p mQ x d  thus the above 

equality gives  det = 0, = 1, , .md m pG   Finally, we conclude that the constraints (2.2) and (2.3) are 

satisfied and thus the proof of point 2 is completed. 
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Ad. 3. First, we will show that for r  defined by (6.14) the identity (6.15) holds. To this end observe 
that by (6.6) for = ,i p  (6.10) and (6.13)  

 1 1 1

=1 =1 =1

= = .
p p p

p m p p m p p m
m m m

m m m

a w a a         
         

     
              

Note also that for any = 1, ,j p  by (6.8)  

  
=1

= .
p

p p m
m j p j j

m

a d v d d 
 

 
    

By the definition (3.10) of , = 1, ,ma m p  it follows that   = 0.p jv d  Due to the definition of   

through (6.17) we conclude that 1 = 0.p r  

In order to check (6.16) first we note that due to (6.10) it follows from (6.3) and (6.5) that for 

 
0

= n

n
y y


 and  = , ,x x x    

    1 = .Tyx y yx  C N     

Therefore for any 0i   any jd  and 
kje  by (6.6)  
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     
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 
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C N

      

  

  

Finally, we use (6.7) with  = , = N
kj j jy d x d e  to the first part and with = ,jy d  

   =
k

T
j jx d eC N  to the second part of the expression at the right hand side of the equation above 

arriving at  

           1
 1

1

= , 0, 0, .I C N
kk

p
i m T

jm j j i j i j j
m

a d e v d v d d e




 
   

 
         

Thus (6.16) holds true. 

Finally we will prove the formula (3.12) for the variance of the BLUE .ˆ t  To this end we observe first 

that  

  
 

 
1 1

=1 =1

ov , =ˆ
N i N

kk T
t i i i k i kt

k k

X w w w
  

     C C   

for any = 0,1, .i   On the other hand, due to (6.13), we see that the right hand side of the above equality 
is equal to .i  That is, for any = 0,1,i    

   ,ov , = .ˆ jt t i j i
j H

X e


    
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Now, we write  

   ,
=0 =0

ar = ov , = .ˆ ˆT T
jt i t t i j i i

i i j H

w X w e
 




       

Due to the constraints (2.2) and (2.3) it follows from the above formula that 0,0ar = .ˆ t   Thus, (3.12) 

follows from (6.17).  
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Optimal adjustments for inconsistency in imputed data 

Jeroen Pannekoek and Li-Chun Zhang1 

Abstract 

Imputed micro data often contain conflicting information. The situation may e.g., arise from partial imputation, 
where one part of the imputed record consists of the observed values of the original record and the other the 
imputed values. Edit-rules that involve variables from both parts of the record will often be violated. Or, 
inconsistency may be caused by adjustment for errors in the observed data, also referred to as imputation in 
Editing. Under the assumption that the remaining inconsistency is not due to systematic errors, we propose to 
make adjustments to the micro data such that all constraints are simultaneously satisfied and the adjustments 
are minimal according to a chosen distance metric. Different approaches to the distance metric are considered, 
as well as several extensions of the basic situation, including the treatment of categorical data, unit imputation 
and macro-level benchmarking. The properties and interpretations of the proposed methods are illustrated using 
business-economic data. 

 
Key Words: Edit-rules; Consistent micro-data; Optimization; Benchmarking. 

 
 

1  Introduction 
 

We are concerned with the task of reconciling conflicting information in imputed micro data. To 
illustrate, consider a small part of a record from a structural business survey given in Table 1.1. Two 
response patterns are postulated; one with only Turnover observed and one where also Employees and 
Wages are observed. There are many ways to impute the missing values in such a recipient record and the 
proposed adjustment methods apply irrespective of the imputation method used. The use of partial donor 
imputation is shown in Table 1.1, where the donor record is the ‘nearest neighbour’ from the same 
category of economic activity and closest to the recipient record with respect to Turnover for response 
pattern (I) and Employees, Turnover and Wages for response pattern (II). The imputation is said to be 
partial because a value of the donor is transferred to the receptor if and only if the corresponding one is 
missing in the recipient record. 

Business records generally have to adhere to a number of accounting and logical constraints. For 
checking of the validity of a record these are referred to as edit-rules. For the example record here, 
suppose the following three edit-rules are formulated: 

 

 

 

 

1 5 8

5 3 4

8 6 7

Profit  Turnover  Total Costs

Turnover  Turnover main  Turnove

l: x x x 0

2: x x x 0

3

r other

Total Costs  Wages  O: x x x 0 ther cos s .t

a

a

a

   

 

 



  

  

  

Partial donor imputation leads to violation of these edit-rules, which we refer to as the (micro-level) 
consistency problem: for response pattern (I), the first two edit-rules involving Turnover are violated; for 
response pattern (II), all three edit-rules are violated. To obtain a consistent record, some of the eight 
values (i.e., including both the observed and imputed ones) have to be changed. Now, in the two cases 
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here, it is possible to change only the imputed values to satisfy all the edit-rules, so let us consider 
adjustments of the imputed values for the moment. 

 
Table 1.1 
Data, missing data and donor values for variables in a business record. Employees (Number of employees); 
Turnover main (Turnover main activity); Turnover other (Turnover other activities); Turnover (Total 
turnover); Wages (Costs of wages and salaries) 
 

Variable Name  Response (I) Response (II) Donor Values 

1x   Profit   330 

2x  Employees  25 20 

3x  Turnover Main   1,000 

4x  Turnover Other   30 

5x  Turnover 950 950 1,030 

6x  Wages  550 500 

7x  Other Costs   200 

8x  Total Costs   700 

 
Traditional adjustment methods, such as the prorating method implemented in Banff (Banff Support 

Team 2008), are designed to handle one constraint at a time. In response pattern (I), the prorating method 
could proceed as follows: (1) adjust the imputed values for Total costs and Profit with a factor 950/1,030 
so that they add up to the observed Turnover, (2) adjust the imputed values for Turnover main and 
Turnover other with the same factor to satisfy the second edit, and (3) adjust the imputed values of Wages 
and Other costs, again with the same factor to make them add up to the previously adjusted value of Total 
costs. 

For response pattern (II): step (1) and (2) may be carried out as before, but step (3) needs to be 
modified unless the observed Wages is to be ‘over-written’. Notice that Total costs appears in two edit-
rules: 1a  and 3.a  When the imputed Total costs is only adjusted according to 1a  in step (1), the relevant 

information in the observed Wages is ignored. Indeed, depending on the values available it can even 
happen that Total costs is adjusted downwards in step (1) to the extend that there is no acceptable non-
negative solution left for Other costs at step (3). In general, adjusting a variable that appears in multiple 
edit-rules according to only one of them is not only suboptimal in theory, it also requires an arbitrary 
choice of the order in which the edit-rules are to be handled, and it may unnecessarily cause a break-down 
of the procedure. 

Under the assumption that the inconsistency is not due to systematic errors, we propose an 
optimization approach that treats all the constraints simultaneously. To this end it is convenient to express 
the edit restrictions in matrix notation, as ,Cx d  where C  is the constraint (or restriction) matrix, and 
d  a constant vector. For the restrictions 1 3,a a  we have  

 

1 0 0 0 1 0 0 1

= 0 0 1 1 1 0 0 0  and  = .

0 0 0 0 0 1 1 1

C d 0

 
      
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The non-zero elements in a row of the constraint matrix identify all the variables that are involved in the 
corresponding edit constraint, and the non-zero elements in a column of the constraint matrix identify all 
the edit constraints that involve the corresponding variable. 

In addition, there are often linear inequality constraints. The simplest case is the non-negativity of most 
economic variables. The constraints can then be formulated as eq eq=C x d  and ineq ineq< ,C x d  

corresponding to the equality and inequality constraints. For ease of exposition we shall, without noting 
otherwise, adopt the compact expression .Cx d  

As mentioned earlier, not all the values need or should be adjusted. We therefore make a general 
distinction between free (or adjustable) and fixed (not adjustable) variables. This includes as a special case 
the situation where all the data values are considered adjustable. We emphasize that the distinction is not 
necessarily that between the imputed and observed variables, and imputation may have been carried out 
for missing values as well as erroneous observed ones. For instance, some imputed values may be held 
fixed because they are derived by logical reasoning as in deductive imputation, or they may have been 
obtained from external sources that are considered more reliable. Whereas some observed values may be 
considered unreliable and are allowed to be changed. Given the absence of systematic errors, a general 
approach is to identify the adjustable variables by “error localization” (e.g., de Waal, Pannekoek and 
Scholtus 2011), treating the imputed and observed values as equally error-prone. Nevertheless, in much of 
the text below we shall treat the imputed values as adjustable and the observed ones as fixed for ease of 
elaboration. 

Given the free and fixed variables, the complete data record is accordingly partitioned into sub-vectors 

freex  and fixed ,x  and the constraints matrix into freeC  and fixed ,C  containing the columns of C  that 

correspond to freex  and fixed ,x  respectively. The constraints for the adjustable variables are then given by 

free free fixed fixed C x d C x  or, equivalently, 

 freeAx b  (1.1) 

where the matrix A  represents the constraints on the free variables and will be called the accounting 
matrix and b  the constant vector for these constraints. Notice that, while the constraint matrix C  is 

derived a priori from the edit-rules alone, without reference to the actual data, and is the same for all the 
records, the accounting matrix A  is generally different from one record to another, since the distinction 
between free and fixed variables varies across the units. 

Our strategy to remedy the micro inconsistency problem in imputed data is to make adjustments to the 
adjustable values that are minimal according to some chosen distance (or discrepancy) measure, such that 
the adjusted record satisfies all the edit-rules. All the constraints are simultaneously handled assuming the 
absence of systematic errors. 

The rest of the paper will contain the following. The optimization approach will be outlined in 
Section 2. We consider different distance (or discrepancy) measures, the adjustments they generate, and 
illustrate their properties and interpretations using the example record above. In Section 3 we discuss 
possible extensions of the basic approach to adjustments based on statistical assumptions in addition to 
logical constraints, treatment of categorical data, unit imputation with adjustments, and adjustments for 
macro-level benchmarking constraints in combination with micro-level consistency. In Section 4 we 
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examine the pasture area data from the Norwegian Agriculture Census 2010, including an approach to the 
assessment of uncertainty due to editing. A final short summary is provided in Section 5. 

 
2  The minimum adjustment approach 
 

2.1  The optimization problem 
 

We propose to resolve the consistency problem outlined above by adjusting the free variables 
simultaneously and as little as possible, such that all the edit-rules are satisfied. Let the adjustable part of 
the record before adjustment be denoted by a J - vector 0x  and by x  the corresponding J - vector after 

the adjustment. The optimization problem can be formulated as:  

 
 0arg min ,

s.t. ,
x

x x x

Ax b

D






 (2.1) 

where  0,D x x  is a function measuring the distance (or discrepancy) between x  and 0 ,x  and A  the 

K J  accounting matrix associated with the K  constraints on x  given in (1.1). We will consider 

different functions D  in Section 2.2. 

The conditions for a solution to the minimization problem (2.1) can be found by inspection of the 
Lagrangian for this problem, which can be written as  

      0, = ,x α x x α Ax bTL D    (2.2) 

where α  is a K - vector of Lagrange multipliers, or dual variables, with components ,k  one for each of 

the K  constraints, and ak  the thk  row (corresponding to constraint )k  of the accounting matrix .K JA  

Notice that an additional non-negativity restriction needs to be applied to each k  corresponding to an 

inequality constraint, but not the k  of an equality constraint. 

From optimization theory it is well known that for a convex function  0,D x x  and linear constraints, 

the solution to (2.1) is given by vectors ,x α  that satisfy the so-called Karush-Kuhn-Tucker (KKT) 

conditions (see, e.g., Luenberger 1984; Boyd and Vandenberghe 2004). One of them is that the gradient of 
the Lagrangian w.r.t. x  is zero when evaluated at , ,x α  i.e.,  

    0, = , = 0,x α x x
j jx x kj k

k

L D a       (2.3) 

where kja  is the  ,k j - element of ,A  and  ,
jxL x α  the gradient of L  w.r.t. jx  evaluated at x  and ,α  

and 
jxD  that of .D  From (2.3), we can see how different choices for D  lead to different solutions to the 

adjustment problem, which we will refer to as the adjustment models. 

 

2.2  Distance functions and adjustment models 
 

A widely used distance function in many areas of statistics is the weighted least squares (WLS) 

function given by      0 0 0, = 1 2 ,TD  x x x x W x x  where W  is a diagonal matrix with diagonal 

elements ,jw  for = 1, ..., .j J  We then obtain, from (2.3), the adjustment model  
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 0,

1
= .j j kj k

kj

x x a
w

    (2.4) 

The WLS-criterion thus results in additive adjustments: the total adjustment to the initial value 0, jx  is the 

weighted sum of the adjustments that correspond to each of the K  constraints. The adjustment due to the 
thk  constraint depends on the following: 

 

 The adjustment parameter (i.e., the dual variable) k  that describes the amount of adjustment. 

A smaller value for k  (in absolute sense if k  refers to an equality constraint) corresponds to a 

smaller adjustment; a zero value for k  means that no adjustment due to that constraint takes 

place. 

 The constant kja  (i.e., an element of the accounting matrix) describes the direction and size of 

the adjustment to variable .j  Often, kja  is 1, -1 or 0 and then describes whether 0, jx  is adjusted 

by ,k k     or not at all. 

 The weight :jw  variables with larger weights are adjusted less than those with smaller 

weights. The special case of 1jw   yields the ordinary least squares (LS) criterion, where the 

amount of adjustment due to each constraint is the same for all the relevant variables.  
 

A specific choice of the weights is 0,1 ,j jw x  for = 1, ..., ,j J  in which case the squared relative 

adjustments are minimized and a larger initial value (i.e., 0, )jx  is adjusted more than a smaller one in 

absolute sense. Dividing (2.4) by 0, jx  we obtain  

 
0,

= 1 ,j
kj k

kj

x
a

x
 


  (2.5) 

which is an additive adjustment model for the ratio between the adjusted and unadjusted values. It may be 
noticed that this is the first-order Taylor expansion (i.e., around 0 for all the ’s)k  to the multiplicative 

adjustment given by  

  
0,

= 1 .j
kj k

kj

x
a

x
 


  (2.6) 

From (2.5) we see that k  determines the relative change from the initial 0, jx  to the adjusted ,jx  which 

in absolute sense is usually much smaller than unity. For instance, = 0.2k   implies 20%  adjustment 

of 0, jx  if = 1,kja   which is large in practice. The products of the ’sk  are therefore often much smaller 

than the ’sk  themselves, in which case (2.5) becomes a good approximation to (2.6), and one may 

regard the WLS adjustment to be roughly given as the product of all the constraint-specific multiplicative 
adjustments. 

Multiplicative adjustment by (2.6) may change the sign of 0, jx  if > 1kj ka   for some .k  

Multiplicative adjustments that preserve the sign of the initial 0, jx  can be obtained using the 
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Kullback-Leibler (KL) divergence measure (not formally a distance function), given by =KLD  

 0,ln ln 1 .j j jj
x x x   We then have, from (2.3), the adjustment model 

  0,= exp .j j kj k
k

x x a    (2.7) 

The adjustment due to constraint k  is equal to 1 if kja  is 0  (i.e., no adjustment), it is  exp k  if kja  is 1 

and it is  1 exp k  if ika  is 1.  Since 1 kj ka   is the first-order approximation of  exp kj ka   

around = 0k  if 1,kja   the WLS and KL criteria can be expected to yield similar adjustments as long 

as these are small or moderate. 

 

2.3  Methods for solving the minimum adjustment problem 
 

The general convex optimization problem (2.1) can be solved explicitly if the objective function is the 
weighted least squares and there are only equality constraints. In this case, the Lagrangian is 

       0 0, = 1 2 ,T TL    x α x x W x x α Ax b  and the equations to be solved are  

    0, = =x x α W x x A α 0TL    (2.8) 

  , = = .α x α Ax b 0L   (2.9) 

Solving (2.8) for x  and substituting the result in (2.9) we obtain  

    11
0= T  α AW A Ax b   

and then, on back substitution in (2.8), we obtain explicitly  

    11 1
0 0= .x x W A AW A Ax bT T     (2.10) 

For other objective functions and with inequality constraints in general, there are no explicit solutions 
to (2.1). However, there are many free or commercial algorithms for the convex optimization problem. For 
the application in this paper we used the R programming language and applied the so-called row-action or 
Successive Projection Algorithms (SPA) - see e.g., Censor and Zenios (1997). The SPA is an iterative 
algorithm that uses the constraints (rows of the accounting matrix) one by one. In one iteration the x-
vector is sequentially adjusted to each of the constraints. The operation of adjusting to a single constraint 
requires only to update the elements of the x- vector that are involved in that constraint (corresponding to 
the non-zero elements of the currently processed row of the accounting matrix). After all constraints are 
visited one iteration is completed and the next one is started. For the WLS criterion, an R-package is 
available that implements the SPA and is especially designed for the adjustment problem (van der Loo 
2012). 

 

2.4  Example revisited 
 

Table 2.1 shows the minimum adjustments of the example record in Table 1.1, using the LS-, WLS- 
and KL-criterion, respectively. The observed values are treated as fixed and shown in bold, the imputed 
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values are adjustable. For the WLS method we use 0,1 ,j jw x  giving results that are equal to the KL-

criterion up to the first decimal. 

For both response patterns, the LS adjustment procedure leads to a negative value for Turnover other 
which is not acceptable (Table 2.1). When the LS-procedure is rerun with a non-negativity constraint for 
the variable Turnover other, the result is simply a zero for that variable and 950 for Turnover main due to 
constraint 2.a  Without the non-negativity constraint, the LS-adjustments are -40 for 3x  and 4 ,x  and -16 

for 6x  and 7 ,x  i.e., same adjustment for each pair of variables that appear in the same constraint. The 

variable Total costs  8x  is part of two constraints and the total adjustment to this variable consists of two 

additive components. One component is due to constraint 1,a  and the other due to 3.a  For response 

pattern (I), the first component is -48 and the second component is 16, and the two add up to -32 in 
Table 2.1. 
 

Table 2.1 
Imputation and adjustment of business record in Table 1.1. DI: Partial donor imputation without adjustment; 
LS: Least-squares distance; WLS: Weighted least-squares distance; KL: Kullback-Leibler divergence 
measure; GR: Generalized ratio adjustments 
 

 
Variable 

 
Name 

Response (I) Response (II) 
DI LS WLS/KL GR DI LS WLS/KL GR 

1x   Profit 330 282 291 304 330 260 249 239 

2x  Employees 20 20 20 18 25 25 25 25 

3x  Turnover Main 1,000 960 922 922 1,000 960 922 921 

4x  Turnover Other 30 -10 28 28 30 -10 28 29 

5x  Turnover 950 950 950 950 950 950 950 950 

6x  Wages 500 484 470 461 550 550 550 550 

7x  Other costs 200 184 188 184 200 140 151 161 

8x  Total costs 700 668 658 646 700 690 701 711 

 
The WLS/KL adjustments are larger, in absolute sense, for larger imputed values than for smaller ones. 

In particular, the adjustment to Turnover other is only -2.3, so that no negative adjusted value results in 
this case, whereas the adjustment to Turnover main is -77.7. The multiplicative nature of these 
adjustments can be observed as the adjustment factor for both these variables is 0.92 (for both response 
patterns). The adjustment factor for Wages and Other costs in response pattern (I) is equally 0.94 because 
these variables are in the same constraint 3,a  such that the ratio between their initial values is unaffected 

by this adjustment. However, the initial ratio of each of these variables to Total Costs is not preserved 
because Total Costs has a different sign in the constraint 3a  and, moreover, Total Costs is also part of 
constraint 1a  so that it is subjected to two adjustment factors. 

 
3  On possible extensions to related adjustment problems 
 

3.1  Generalized ratio adjustments 
 

The ratio model is routinely used for case weighting in business surveys under the assumption that the 
economic variables can all be related proportionally to a common measure-of-size of the business unit, see 
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e.g., Särndal, Swensson and Wretman (1992). Motivated by the ratio model one could multiply all the 
donor values by 950/1,030 to obtain the imputed values for the example record under response pattern (I), 
including the variable Employees  2x  for which the initial imputed value 20 does not formally violate 

any constraints. This shows that there may be situations where, in addition to the logical and accounting 
constraints, adjustments may be introduced based on statistical assumptions. 

For response pattern (II), the observed Employees  2 ,x  Turnover  5x  and Wages  6x  can all 

potentially be used as the measure-of-size variable in a ratio model, so that a single ratio adjustment does 
not present itself. However, we may postulate the existence of a common ratio between the recipient and 
donor records under the ratio model, and regard the observed ratios (i.e., 20/25 for Employees, 950/1,030 
for Turnover and 550/500 for Wages) as its random manifestations. Then, it seems that a plausible 
approach is to identify this common ratio as the value that minimizes the variance, or any other dispersion 
measure that is deemed suitable, of the three individual ratios. Finally, insofar as the common ratio 
pertains to the other variables, it becomes possible to adjust them using the following generalized ratio 
(GR) approach. 

Assume the multiplicative adjustment model 0,= ,j j jx x   where each j  is a random manifestation 

of a theoretical common ratio. Put the distance function  

    2
0, = 1 2x x δ δTD    (3.1) 

where δ  is the vector of ’sj  and   the mean of them. For all the variables subjected to the common 

ratio, including both free and fixed ones, we now carry out the adjustment in two steps. The first step is a 
conceptual one, where we imagine that an adjustment 0,j jx x  is made to the fixed variables: if =j jx x  

is observed and fixed, then 0,= ,j j jx x  whereas = 1j  if jx  is the imputed value 0, jx  but to be held 

fixed from ‘further’ adjustment. At the second step, adjustments are made to the initial values of the free 
variables by solving the optimization problem (2.1) with (3.1) as the distance function. This yields the GR 
adjustments of the free variables involved. 

An important condition of the GR approach is that at least one of the ’sj  must relate to a fixed 

variable. Otherwise, 0,j jx x  would be the trivial solution because this always yields = 0.D  Notice 

that we have suppressed the denotation J  in (3.1), and slightly abused the denotations 0x  and x  

introduced for (2.1). Take response pattern (I) in Table 1.1, the fixed value 5 = 950x  needs to be 

included in (3.1), yielding 5 5 0, 5 0, 950 1, 030 .j jx x x x     Solving (2.1) for all the other variables 

yields then 950 1, 030j   and = 0.D  Whereas, without including 5 ,  one would have merely 

obtained = 0D  at = 1j  and 0,=j jx x  for 5.j   

The GR adjustments for response pattern (II) are given in Table 2.1. All the three observed ’s,j  for 

= 2, 5j  and 6,  are included in (3.1) and held fixed for the optimization problem. The results are seen to 

be close to the WLS/KL adjustments. The empirical variance of the multiplicative factors is 0.0270 for the 
GR adjustments, 0.0276 for WLS/KL and 0.1434 for LS. The relative sum of squared changes, i.e., twice 
the WLS distance, is 50.6 for the WLS/KL adjustments, 51.6 for GR and 78.0 for LS. Finally, the 
unweighted sum of squared changes, i.e., twice the LS distance, is 20,925 for the LS adjustments, 23,976 
for WLS/KL and 25,090 for GR. Thus, in terms all the three distance functions, the GR adjustments are 
closer to WLS/KL than LS. 
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Now, the distance (or discrepancy) measures considered in Section 2.2 may be characterized as 
decomposable, since the overall distance between two vectors is given as a (weighted) sum of the 
‘distances’ between the corresponding components. A consequence is that a variable that does not stand in 
any constraints will retain the initial value under the minimum adjustment approach. In contrast, the 
distance (3.1) is non-decomposable, where each adjustment is dependent on the other adjustments. As a 
result even the values that are not explicitly involved in any constraints will be adjusted as long as they are 
included in the distance function, because of the changes made to the variables that are constraint-bound. 
The variable Employees provides an example in Table 2.1. The GR approach provides thus a possibility 
for adjustments based on statistical assumptions in addition to logical and accounting constraints. Indeed, 
with a single fixed variable included in (3.1), the GR adjustments are reduced to a common proportional 
adjustment, in accordance with the ratio-adjustment intuition in this case. With multiple fixed variables 
included, the GR approach aims at a kind of most-uniform adjustments as a generalization of the single-
ratio model. For response pattern (II) in Table 1.1, the approach at once takes into account all the three 
observed ratios. To achieve the same by formulating an explicit statistical model for exactly this response 
pattern is not as practical in a production setting. 

 
3.2  Adjustments involving categorical data 
 

A categorical variable carries different constraints from a continuous one. It is worth considering the 
extent to which categorical variables may be incorporated in the optimization approach. We shall 
distinguish three types of categorical data that are common in practice. 

Firstly, we call a categorical/discreet variable pseudo-continuous if in practice it can be dealt with as if 
it were a continuous variable. Typical examples of pseudo-continuous variables are age, number of 
employees, household size, etc. Pseudo-continuity can affect the choice of adjustment model and distance 
function. For instance, both additive and proportional adjustments may be acceptable for the number of 
employees, whereas a proportional adjustment of household size or age seems unnatural. Still, having 
chosen the adjustment model and distance function, one may handle a pseudo-continuous variable just like 
a real one. Rounding is necessary afterwards and its effect needs to be monitored. 

Secondly, what we call a nominal categorical variable indicates whether a unit falls into a particular 
category. A nominal variable with M  categories, labelled = 1, 2, ..., ,x M  carry with it the constraint  

  
=1

= 0.
M

m

x m   (3.2) 

However, the labels (e.g., 1 = tomatoes, 2 = beans, 3 = cucumbers) are not suitable for operations such as 
addition, multiplication or rounding. Neither is a nominal value 3 more distant to 1 than 2. Therefore, the 
constraint (3.2) can not be taken into account under the minimum adjustment approach which assumes 
interval scale measurements. The adjustment of an observed value that does not satisfy (3.2) must be 
handled by marking it as missing and, then, imputing some admissible as well as suitable value, i.e., just 
like in case the value is missing to start with. 

Thirdly, a variable may be defined to have value zero for the units that are not eligible. Depending on 
whether the measure is pseudo-continuous or nominal when the unit is eligible, we have a semi-
continuous/-nominal variable that has a non-zero probability of being zero. The difference to pseudo-
continuity above is that a semi-continuous variable may require an additional non-negativity constraint in 
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the accounting matrix. Consider then a semi-nominal variable. In practical questionnaire design, such a 
variable is often split in two, say, 1X  and 2 .X  Let 1 = 1X  if the unit is engaged in a certain activity, say, 

production of greenhouse vegetables, and let 1 = 0X  otherwise. Let 2X  be a nominal measure of activity 

when 1 = 1,X  and 2 = 0X  otherwise. Formally, the logical constraint can be given as  

    1 2 1 2
=1

1 = 0
M

m

x x x x m       (3.3) 

Consider all the possible data patterns, including when a value is missing (indicated by “ ”): 
 

    1 2 2, , :x x x   The value 1x  can be deduced provided admissible 2 ,x  i.e., 2x  is either 0 

or satisfies (3.2), otherwise the situation turns into case    1 2, ,x x     below. 

    1 2 1, , :x x x   If 1 = 0x  then 2 = 0;x  if 1 = 1x  then (3.3) reduces to (3.2) above. 

    1 2, , :x x     Both values need to be imputed by values that satisfy (3.3). 

  1 2, :x x  Violation of (3.3) is e.g., the case if    1 2, = 1, 0x x  or if 1 = 0x  and 2 > 0.x  We 

have case  2, x  above if 2x  is fixed,  1 ,x   if 1x  is fixed, or  ,   if neither is fixed.  
 

To summarize, the constraints (3.2) and (3.3) can not be handled by the minimum adjustment approach 
with linear constraints considered before. Instead, they need to taken care of by the imputation method. 
Often, donor-based imputation (e.g., Statistics Canada’s CANCEIS software that implements the Nearest 
Neighbour Imputation Methodology, NIM) can be designed to impute categorical data such that user 
specified constraints are satisfied, see e.g., Bankier, Lachance and Poirier (2000). 

 
3.3  Adjustment of donor-based unit imputation 
 

In donor-based unit imputation the whole record of values are taken from the chosen donor. This has 
advantages over joint modelling of all the target variables if there are many of them. Chen and Shao 
(2000) establish the consistency of survey estimator based on nearest neighbour imputation (NNI) under 
mild conditions. The key assumption is that the difference in the conditional expectations of any target 
variable between a donor and a receptor, given the variables on which the distance metric is calculated, is 
bounded by the ”distance” between them. That is, they have the same expectations for all the statistical 
variables if the “distance” between them is zero. 

There is thus a need for adjusting donor-based unit imputation when the “distance” between the 
receptor and the donor is not zero. To illustrate with the example record in Table 1.1, suppose Turnover 
 5x  is always known from the administrative source and is used for donor identification, so that partial 

imputation under response pattern (I) becomes unit imputation. Since Turnover of the receptor differs 
from that of the donor, the distance between them is not zero, and it seems natural that the donor values 
should be adjusted to take this difference into account. Indeed, now that there are constraints involving 
Turnover, adjustments are necessary in any case. 

Let x  contain the variables that may be missing. Let z  contain the known variables that are used for 

donor identification. Let  = ,
TT Tx x z  be the combined vector of variables. Unit imputation (giving 

0 )x  can be regarded as partial imputation of the missing sub-vector x  of .x  The need for adjustment of 
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unit imputation may arise if there are edit-rules that involve both values of x  and ,z  and/or if the z-
values do not match exactly between the donor and receptor. Indeed, unit imputation without adjustment 
may rather be considered exceptional in practice. 

 

3.4  Macro-level benchmarking in addition to micro-level constraints 
 

A business census requires imputation and editing in order to arrive at a complete dataset for statistical 
production. Or, a statistical register may be constructed based on a combination of administrative data and 
one or several sample surveys. Editing and imputation are again necessary. A common feature is that, 
unlike survey sampling, no case weighting is needed. 

When processing such data, macro-level benchmark constraints are frequently imposed due to 
concerns for statistical efficiency and/or macro-level consistency with external sources. A benchmark 
constraint is satisfied if the complete data add up to the given benchmark total, which may refer to 
different aggregation levels, i.e., containing both population and sub-population totals. For instance, 
certain key national totals may be estimated by some suitable method and imposed as benchmark 
constraints afterwards. Or, a set of domain-level benchmark constraints may be derived by some small 
area estimation technique. Also benchmark constraints from external sources are common in structural 
business statistics - an example from the Norwegian Agriculture Census 2010 will be described in 
Section 4. 

Methods for imputation under benchmark constraints have been studied by Beaumont (2005), 
Chambers and Ren (2004), Zhang (2009) and Pannekoek, Shlomo and de Waal (2013). The approach 
taken here is similar to the one taken in the first two papers. In both these papers a weighted least squares 
distance between initial imputed values (or outlying values in the case of Chambers and Ren 2004) and 
adjusted imputed values is minimized subject to the constraint that sample-weighted totals based on the 
adjusted data are equal to the benchmark totals. Here, we assume that some suitable imputation method 
has been applied to yield the initial complete population dataset, which may or may not be benchmarked. 
The inconsistency problem on the micro-level implies that adjustments of the initial complete data set will 
be necessary in general. 

Denote by X  the complete dataset of interest, where each row corresponds to a unit-level record as the 
one in Table 1.1, and each column corresponds to a particular variable. Let 0X  be the initial complete 

dataset after imputation and X  the adjusted dataset. Each benchmark constraint applies to a particular 
column vector of X  and over the units that fall under its domain. That is, it can be expressed generically 
as  col ,T tr X  where  col X  is the column vector of concern, and r  is the indicator vector for 

whether a unit belongs to the domain of concern, and t  the benchmark total. In this way all the 

benchmark constraints may be summarized as 

     colr X tT   (3.4) 

where each column of   col X  corresponds to a benchmark constraint, and each column of  r  the 

corresponding indicator vector, and t  the vector of all the benchmark totals. Notice the similarity between 

(3.4) and (1.1). A minimum adjustment approach follows on specifying the adjustable and fixed values 
and the distance (or discrepancy) function. 
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Both the benchmark constraints and the micro-level constraints can be seen as linear constraints on the 
very long vector containing all elements of  ,  vec ,X X  say. Conceptually, all constraints together can 

therefore be expressed in the form (1.1). The restriction matrix of this formulation is, however, huge and 
very sparse. The rows corresponding to the micro-level constraints contain possibly non-zero values 
corresponding to the values in the record they apply to and zeros for all other values of  vec X  and the 

rows corresponding to the benchmark constraints contain non-zero elements only corresponding to the 
values in  vec X  that contribute to that benchmark total. In practice, the optimization problem generated 

by (3.4) in addition to the micro-level constraints can be handled using the SPA, i.e., one constraint at a 
time and operating only on the elements of  vec X  corresponding to the non-zero elements in that 

constraint, without actually forming this huge and sparse constraint matrix. For the benchmark constraints 
we only need to process the columns of   col X  one by one and for the micro-level constraints we 

process each unit-level record one at a time. These iterative minimum adjustments along the columns and 
rows of X  resemble the iterative proportional fitting (or raking) algorithm for fitting log-linear models to 
contingency table data and for adjusting (contingency) tables to new margins, which is formally identical 
to a SPA with the KL-divergence and equality constraints only. 

 
4  Case study 
 
4.1  Imputation and adjustment of pasture data 
 

The population for the “main questionnaire” of the Norwegian Agriculture Census 2010 contains about 
45,000 units. Questions 22 - 24 deal with pasture area: 
 

 Question 22 inquires the units that possess productive pasture. 

 Question 23 inquires the total productive pasture area in 2010. 

 Question 24 inquires the composition of pasture area by the last time it was seeded: (1) 2006 - 
2010, (2) 2001 - 2005, and (3) 2000 or earlier.  

 

Denote by 0,1 0,2,x x  and 0,3x  the three reported categories of pasture area in Question 24. Let 
3

0 0,1
= jj

x x
  be the sum that is the subject of Question 23. Now, this total is available from the 

government agency that administers the relevant subsidy. In editing the reported 0x  is overwritten by the 

administrative figure, denoted by ,x  and held as fixed afterwards. Next, Question 22 can be inferred given 

x  and held as fixed afterwards, so that only Question 24 remains to be handled. 

Below we describe the treatment of the 34,480 units that have productive pasture area according to 
their respective observation patterns (Table 4.1, where the unit index i  of all the variables was omitted for 

ease of presentation). 
 

 10,378 units reported a total pasture area that is consistent with the administrative source: these 
are the potential donors; no adjustment is needed. 

 11,827 units have a reported total that is greater than the known value: these have a micro-level 
inconsistency problem. Of course, missing values can also be the case if < 3,jj

r  but the 
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chance is small, so we shall assume that there are no missing values among these units. All the 
observed values are adjustable, such that the accounting equation is given by  

 
; =1

= .
j

j
j r

x x     

The GR approach simply yields the proportional adjustment 0,; 1
.

j
jj r

x x
  The same 

adjustment is given by the WLS-approach with 0,1j jw x  if = 1,jr  as well as by the KL 

approach. We notice that there is no particular motivation for considering additive adjustments 
for these data. 

 3,876 units have no reported pasture area of any kind, despite they have productive pasture area 
according to the administrative source: these constitute unit-missing records. The nearest-
neighbour (NN) donor is found according to ,x  within each of the 12 “farming forms”, which is 

a classification known for the whole population. In the case of multiple NN donors, we choose 
the one with the shortest physical distance, which make the NN-imputation completely 
deterministic, given all the x- values. Finally, a proportional adjustment of the donor values is 

carried out in order to satisfy the accounting equation  

 
; =1

=
j

j
j r

x x

     

where jr  is the observation/reporting indicator associated with the donor. 

 3,019 units have reported pasture areas of all the three kinds, but their sum is less than the 
known total: these have a micro-level inconsistency problem. A proportional adjustment is 

applied to all the reported values w.r.t. the accounting equation 
3

1
= .jj

x x
    

 The last two groups are the 2,703 units with one kind of reported pasture area and the 2,677 
units with two kinds of reported pasture area. Obviously, that the reported total is less than the 
known value here may be caused by inconsistency and/or missing values. To avoid introducing 
systematic pattern through editing, we let the decision depend on the donor. Take a unit with 
only one reported pasture area. Firstly, the potential donors are limited to those from the same 
“farming form”, as well as having at least the same kind of pasture area. The NN donor is then 
selected among these to minimize  

  0, ; 1
max 1 ,

j
j j j r

x x x x x x  


       

where  1 2 3, ,x x x    and x   are the values of the potential donor. In other words, the NN donor 

is selected both w.r.t. the relative difference between the total pasture area as well as the 
proportion of the reported kind of pasture area to the corresponding total. Let the NN donor be 
associated with x  and .r  If > 1 = ,j jj j

r r   then we assume that there are missing 

values where = 1jr   but = 0;jr  whereas, if = ,j jj j
r r   then we assume that there is 

only an inconsistency problem. The remaining imputation and adjustment actions are 
straightforward. The same treatment is applied to the units with two reported pasture areas, with 
obvious modifications due to = 2.jj

r  
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Table 4.1 
Observation pattern among units with productive pasture area: = 1jr  if 0, jx  is reported, = 0jr  otherwise; 

= 1, 2, 3j  for three categories of pasture area 
 

     
0, <j jj

r x x   

Total  
0, =j jj

r x x   0, >j jj
r x x   = 0jj

r  = 1jj
r  = 2jj

r  = 3jj
r  

34,480 10,378 11,827 3,876 2,703 2,677 3,019 

 
The sub-population and population totals based on imputation with adjustments are given in Table 4.2, 

in comparison with raw data totals and the census file totals. We notice the following. (a) The census file 
had been edited in a ‘traditional’ way that involves much clerical work (about 1.5 man-year in total). In 
contrast, the editing procedures here are fully automated, and everything (i.e., exploratory analysis, 
decision of the treatments, programming and processing) was done in less than two days. Although the 
questions concerning pasture areas are only 3 out of a total of 36 questions of the “main questionnaire”, it 
is obvious that the potential saving in time could be enormous. (b) The differences between the imputed 
totals and the census totals are small for all sub-populations, compared to those between the raw data and 
the census totals. All the changes from the raw data are in the ‘right’ direction, judged by the census 
results. One may conclude that the automated editing procedures have achieved most of the census editing 
results. (c) It is possible to introduce benchmark constraints in addition. An an illustration, we used the 
census file sub-population totals for the 3,876 unit-missing records, in addition to the known pasture area 
total for each of them. Convergence was reached in 23 iterations with the WLS criterion. (d) For the 5,380 
units where partial missing may be the case, imputation of ‘missing’ values was carried for about 25% of 
them in the census processing, whereas it is about 75% by the editing procedure here. The number of 
cases for partial missing is probably under-estimated in the census file because it is based on selective 
manual checks. In any case, not withstanding the differences in the individual treatments, the edited totals 

are fairly close to each (Table 4.2, under 0 < < 3).jj
r  

 

Table 4.2 
Sub-population and population pasture area totals based on raw data, imputation with adjustments and 
census production data. (All figures ×105)  
   0, <j jj

r x x   

   0, >j jj
r x x     = 3jj

r    0 < < 3jj
r  

Raw   8.20   6.95   12.76 1.40 1.45 1.53 1.33   0.86  3.05
Impute & Adjust   5.24   4.34   8.71 1.72 1.81 1.88 2.01   1.87  3.51
Census   5.47   4.37   8.45 1.73 1.85 1.84 2.04   1.54  3.80
   = 0jj

r    > 0jj
r    Total 

Raw   -   -   - 14.0 12.4 21.9 -  -  -
Impute & Adjust   1.20   1.06   1.93 12.2 11.3 19.3 13.43   12.38  21.17
Census   1.31   1.23   1.66 12.6 11.0 19.1 13.95   12.25  20.79

 
4.2  Approximate mean squared error estimation 
 

As the measure of uncertainty for the pasture area data here, we use the mean squared error of 
prediction (MSEP) given by 

   2
MSEP ,j j j U UE X X  R X    
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where =j iji U
X x

  is the target population total and =j iji U
X x

   is the corresponding total based 

on imputation with adjustments, for = 1, 2, 3.j  Moreover,  =U i i Ux X   contains the known pasture 

area totals in the population, and UR  is the matrix of missing indicators whose thi  row is given by 

 1 2 3, , .i i ir r r  

Now, while it is customary that adjustments due to inconsistency in the micro data are referred to as 
imputation in statistical data editing, the eventual uncertainty associated with this is generally ‘ignored’ 
afterwards. This amounts to assume that =ij ijx x  if = 1.ijr  What remains to be accounted for is the 

uncertainty associated with the imputation of the missing values and the subsequent adjustment of the 
donor values, under the assumption that neither imputation nor adjustment introduces bias to the final 
value. This amounts to assume that   = 0ij ijE x x  if = 0.ijr  Under these two assumptions, we have 

 

   

   

2

; = , 1 ; =0

2

; = , 1 ; =0

MSEP 1 1

r 1

r 1

i ij ij

i ij ij

j ij ij ij ij
i U i U

ij ij ij ij
i U d i U r

ij ij ij ij
i U d i U r

E r x r x

V d x V x

d V x V x

 

  

  

       
  

   
     

   

  

 

 

 



  

where ijd  is the number of times ijx  is used as a donor value for imputation of missing data, and the 

decomposition of variance holds provided the distributions of the units are independent of each other. 
Moreover, provided 1,ijd   

  
;

=
kj ij

ij kj ij ij
k U x x

x d x
 

     

where =kj ijx x  means that ijx  is used as the donor value for ,kjx  and kjx  is the final value after 

adjustment. In other words, ij  is the combined adjustment made to ,ij ijd x  where ij ijd x  would have been 

the contribution of ijx  to jX  through imputation if it had been donor imputation without adjustment. 

Notice that ijd  can be treated as a constant in the last (approximate) equation as long as the donor 

identification depends only on UR  and .UX  This is true for the 3,876 unit-missing records, but not 

exactly for the 5,380 units that may have partial missing. As explained in Section 4.1, the NN-
identification in fact also depends on the observed ijx - values. For this reason, the last equation holds only 

approximately. 

A ratio model for the conditional variance of ijx  seems natural here, i.e.,  

     2=  where = 0 and = j

ij j i ij ij ij j ix x E V x         

where  2, ,j j j    may vary according to the composition of the pasture areas, denoted by 

       = 1,1,1 , 1,1, 0 , 1, 0,1  and 0,1,1 ,q  where = 1ijq  if unit i  has the thj  type pasture and 0  
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otherwise. Notice that, in the case of = 1,ijj
q  we have =ijx x  if = 1,ijq  so that the conditional 

variance is zero. The parameters of this ratio model can be estimated from the 10,378 potential donors 
satisfying 0, = .j jj

r x x   Exploratory data analysis shows that = 2j  is a reasonable choice in all the 

cases, so that in the calculations below only j  and 2
j  vary according to the observation pattern, denote 

by  2
; ;,j h j h   for = 1, ..., 4.h  Notice that, as a result of 2,j   the same 2

;ˆ j h  will be obtained 

regardless of j  whenever = 2.ijj
q  Take e.g.,  = 1,1, 0 ,Tq  we have 1 2

ˆ ˆ = 1,    such that the 

‘standardized’ fitted residuals are given by 1 1 1
ˆˆ =i i i ix x x     and 2 2 2

ˆˆ i i i ix x x       

   1 1 1
ˆ ˆ1 .i i i i ix x x x         In any case, we obtain   2 2

;
ˆ = ˆh ij j h iV x x   for unit i  with 

composition .h  

The adjustment factor ij  seems difficult to model in advance. But its mean and variance can be 

estimated empirically after imputation and adjustment have been carried out, denoted by  = ijE   

and  2 = ,ijV   respectively. Moreover, we assume ij  to be independent of ijx  conditional on .ix  

This seems a plausible assumption, since the former depends mostly on how x  is distributed in the 
‘neighbourhood’ of = ,x x  whereas the latter depends on the variation across j  given that the sum is 

equal to .x  For instance, asymptotically as the chance of finding a donor in any arbitrarily close 
neighbourhood tends to unity, the adjustment factor ij  tends to 1 in probability, irrespective of the values 

of .ijx  It now follows that, given composition ,h  an estimate of the corresponding  h ij ijV x  is given by  

    22 2 2 2 2 2 2
; ; ;

ˆˆ = .ˆ ˆ ˆ ˆ ˆh ij ij j h i j h i j h iV x x x x               

Finally, combining all the above, we obtain an approximate MSEP estimate as  

     2

; = ; =0

ˆ ˆMSEP .
h i h ij

ij h ij ij h ijj
h i U h i U r

d V x V x
 

     
r 1

  

The results of approximate variance estimation are given in Table 4.3. We know in advance that the 
regression coefficient of the ratio model must vary according to the composition of pasture area, but the 
estimates of 2

;j h  suggest that it has been sensible to allow the variance parameter to depend on .h  The 

estimated mean of ij  is close to unity for all the pasture area types, making no indications that the 

assumptions regarding the adjustment factors are unreasonable. The variance of ij  is clearly the largest 

for = 2,j  which is also reflected in the fact that the estimated MSEP here has the largest increase 

compared to NN-imputation without adjustment. The relative root MSEPs are too small to account for the 
actual differences between the census totals and the imputed totals (given in Table 4.2). This serves to 
illustrate the following general impression regarding the assessment of uncertainty due to editing. 
Systematic effects in terms of the first-order moments of the resulting statistics usually dominate the 
overall uncertainty due to editing. But they are also more difficult to quantify compared to the second-
order variance properties. In the case here, this concerns the two ‘first-order’ assumptions made in the 
beginning, i.e., =ij ijx x  if = 1ijr  and   = 0ij ijE x x  if = 0.ijr  More sophisticated assumptions 

about the error-mechanism of consistency adjustments in editing are needed in order to progress beyond 
such an ‘optimistic’ approach. 
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Table 4.3 
Approximate variance estimation for imputation with adjustment. RMSEP: Root MSEP. RMSEP by NN-
imputation without adjustment in parentheses 
 

   = 1j    = 2j    = 3j  

ˆ
j   = 1,1,1q    0.312   0.359   0.329 

 = 1,1, 0q    0.346   0.654   - 

 = 1, 0,1q    0.407   -   0.593 

 = 0,1,1q    -   0.567   0.433 
2ˆ j   = 1,1,1q    0.0248   0.0511   0.0364 

 = 1,1, 0q    0.0478   0.0478   -  

 = 1, 0,1q    0.0464   -   0.0464 

 = 0,1,1q    -   0.0798   0.0798 

  2,ˆ ˆ     (0.992, 0.0248)  (1.020, 0.0994)   (1.003, 0.0236) 

 RMSEP   3,267 
(3,134) 

 4,190 
(3,530) 

 3,111 
(2,925) 

 
; =0

RMSEP
ij

iji r
x     1.41%   1.79%   0.93% 

RMSEP jX    0.24%   0.34%  0.15% 

 

5  Summary 
 

In this paper we have formulated an optimization approach to the micro-level inconsistency problem 
that may be caused by measurement errors and/or imputation of missing values. This provides a general 
methodology that extends beyond the traditional single-constraint adjustment methods such as prorating. 
All constraints are handled simultaneously; if a variable appears in more than one constraint then it is 
adjusted according to all of them. Besides being optimal according to the chosen distance (or discrepancy) 
function, the approach also has the practical advantage that there is no need to specify the order in which 
the constraints are to be applied. 

Several distance (or discrepancy) functions are analysed. It is shown that minimizing the weighted 
least squares leads to additive adjustments and minimizing the Kullback-Leibler divergence measure leads 
to multiplicative adjustments. However, for a specific choice of weights the WLS solution of the 
optimization problem is an approximation to the KL solution. 

Adjustments based on statistical assumptions in addition to the logical constraints is introduced under 
the generalized ratio approach. The GR adjustments can be considered as a generalization of the single-
ratio adjustment under a ratio model. All the observed variable-specific ratios between the receptor and 
donor records are utilized; a variable that does not stand in any constraint can also be adjusted if it is 
included in the distance function. 

Also discussed are adjustments involving categorical data, unit-missing records and macro-level 
benchmark constraints in addition to the micro-level consistency constraints. Taken together, the proposed 
optimization approach is applicable to continuous data in a number of situations. 
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Dealing with non-ignorable nonresponse in survey sampling: 
A latent modeling approach 

Alina Matei and M. Giovanna Ranalli1 

Abstract 

Nonresponse is present in almost all surveys and can severely bias estimates. It is usually distinguished 
between unit and item nonresponse. By noting that for a particular survey variable, we just have observed and 
unobserved values, in this work we exploit the connection between unit and item nonresponse. In particular, we 
assume that the factors that drive unit response are the same as those that drive item response on selected 
variables of interest. Response probabilities are then estimated using a latent covariate that measures the will to 
respond to the survey and that can explain a part of the unknown behavior of a unit to participate in the survey. 
This latent covariate is estimated using latent trait models. This approach is particularly relevant for sensitive 
items and, therefore, can handle non-ignorable nonresponse. Auxiliary information known for both respondents 
and nonrespondents can be included either in the latent variable model or in the response probability estimation 
process. The approach can also be used when auxiliary information is not available, and we focus here on this 
case. We propose an estimator using a reweighting system based on the previous latent covariate when no other 
observed auxiliary information is available. Results on its performance are encouraging from simulation studies 
on both real and simulated data. 

 
Key Words: Unit nonresponse; Item nonresponse; Latent trait models; Response propensity; Rasch models. 

 
 

1  Introduction 
 

Nonresponse is an increasingly common problem in surveys. It is a problem because it causes missing 
data and, more importantly, because such gaps are a potential source of bias for survey estimates. In the 
presence of unit nonresponse, it is often assumed that each unit in the population has an associated 
probability to respond to the survey. Such a response probability is unknown and several methods are 
proposed to estimate it either explicitly, using response propensity modeling like logistic regression 
models (see e.g., Kim and Kim 2007), or implicitly, using response homogeneity groups or more generally 
calibration (see Särndal and Lundström 2005, for an overview). Once estimates are computed, a 
commonly used method to deal with unit nonresponse is reweighting: sampling weights of the respondents 
are adjusted by the inverse of the estimated response probability providing new weights. Estimation of 
response probabilities typically requires the availability of auxiliary information, either in the form of the 
value of some auxiliary variables for all units in the originally selected sample or of their population mean 
or total. 

In this paper, we are particularly interested in the case where the missing data mechanism is non-
ignorable, because nonresponse depends on characteristics of interest that are either observed only on the 
respondents or are completely unobserved, which leads to data that are Not Missing At Random (NMAR). 
This is typical of, but not limited to, surveys with sensitive questions (concerning drug abuse, sexual 
attitudes, politics, income, etc). Various approaches are proposed in the survey sampling literature to deal 
with non-ignorable nonresponse. These approaches can be roughly divided into likelihood based methods 
and reweighting methods. Note that all of these methods make use of observed auxiliary information. 
Survey problems with non-ignorable nonrespondents are discussed e.g., in Greenlees, Reece and 
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Zieschang (1982), Little and Rubin (1987), Beaumont (2000), Qin, Leung and Shao (2002), Zhang (2002). 
Copas and Farewell (1998) introduce into the British National Survey of Sexual Attitudes and Lifestyles a 
variable called ‘enthusiasm-to-respond’ to the survey, which is expected to be related to probabilities of 
unit and item response. A method is proposed that estimates these probabilities using this variable to 
achieve unbiased estimates of population parameters. An approach based on the use of latent variables for 
modeling nonignorable nonresponse is given in Biemer and Link (2007), extending the ideas in Drew and 
Fuller (1980) and using a discrete latent variable based on call history data available for all sample units. 
The latent variable is computed using some indicators of level of effort based on call attempts. 

We propose here a method of reweighting to reduce nonresponse bias in the case of non-ignorable 
nonresponse. The method does not require the availability of auxiliary information, on the sample or 
population level, but different assumptions are made. First, it is assumed that item nonresponse is present 
in the survey and that it affects m  variables of particular interest. Thus a response indicator can be defined 
for each variable ,  for = 1, , ,m   taking value 1 if item   is observed on unit k  and 0 otherwise. 

Next, the response indicators are assumed to be manifestations of an underlying continuous scale which 
determines a latent variable that is related to the response propensity of the units and to the variable of 
interest. It is possible to compute such a latent variable for all units in the sample, not only for the 
respondents, and thus to use it as an auxiliary variable in a response probability estimation procedure. The 
outcome of this estimation procedure can finally be used in a reweighting fashion. 

The use of continuous latent variables to model item nonresponse is considered in Moustaki and Knott 
(2000). In this paper, we take a different perspective and use latent variable models to address non-
ignorable unit nonresponse. We propose to use a latent variable called here ‘will to respond to the survey’, 
which is expected to be related to the probability of unit response, similar to the case of the ‘enthusiasm-
to-respond’ variable as defined by Copas and Farewell (1998). Following Moustaki and Knott (2000), 
‘weighting through latent variable modeling is expected to perform well under non-ignorable nonresponse 
where conditioning on observed covariates only is not enough.’ Moreover, in the absence of any 
covariate, we expect that an estimator based on the proposed weighting system using latent variables will 
perform better in terms of bias reduction than the naive estimator computed on the set of respondents. 
Moustaki and Knott (2000) propose a reweighting system for item non-response using covariates and one 
or more latent variables. Our major contribution over the existing literature is to construct a weighting 
system to deal with unit and item non-response based only on latent variables and that can also be used in 
the absence of any other covariate. On the other hand, our approach is different to that of Copas and 
Farewell (1998), because they survey their ‘enthusiasm-to-respond’ variable on the respondents to 
quantify the interest in answering the survey and a set of covariates, while we infer it from the data. 

The paper is organized as follows. Section 2 introduces the survey framework and notation. Section 3 
illustrates estimation of response probabilities. Section 4 describes the latent trait model used to this end. 
The proposed estimator and its variance estimation are shown in Section 5. In Section 6, the empirical 
properties of the proposed estimator are evaluated via simulation studies. In Section 7 we summarize our 
conclusions. 

 

2  Framework 
 

Let U  be a finite population of size ,N  indexed by k  from 1 to .N  Let s  denote the set of sample 

labels, so that ,s U  drawn from the population using a probabilistic sampling design   .p s  The 
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sample size is denoted by .n  Let  
;

=k s s k
p s


   be the probability of including unit k  in the sample. 

It is assumed that > 0, = 1, , .k k N   Not all units selected in s  respond to the survey. Denote by 

r s  the set of respondents, and by \r s r  the set of nonrespondents. The response mechanism is 

given by the distribution  q r s  such that for every fixed s  we have 

      0,  for all  and = 1,  where = .
s

s s
s

q r s r q r s r r s


  


    

Under unit nonresponse we define the response indicator = 1kR  if unit k r  and 0  if .k r  Thus 

 = = 1 .kr k s R  We assume that these random variables are independent of one another and of the 

sample selection mechanism (Oh and Scheuren 1983). Since only the units in r  are observed, a response 
model is used to estimate the probability of responding to the survey of a unit ,k U  

   = = = 1 ,k kp P k r k s P R k s    which is a function of the sample and must be positive. 

Suppose that in the survey there are m  variables of particular interest. Each respondent is exposed to 
these m  questionnaire variables, labelled = 1, , .m   Suppose that the goal is to estimate the population 

total of some variables of interest and, in particular, of the variable of interest ,jy  i.e., 
=1

= ,
N

j kjk
Y y  

with kjy  being the value taken by jy  on unit .k  In the ideal case, if the response distribution  q r s  is 

known, then the ’skp  would be known and available to estimate jY  using a reweigthing approach. 

Suppose also that item nonresponse is present for variable .jy  Let  =  answers j jr k y k r  be the set 

of respondents for variable .jy  As in the case of unit nonresponse we assume that the units in jr  respond 

independently of each other. Let  =  answers .kj jq P k y k r  The final set of weights to be used into 

a fully reweighting approach to handle unit and item nonresponse is given by  1 ,k k kjp q  for all 

,jk r  assuming > 0.kjq  These weights can be for example used in a three-phase fashion in the 

following Horvitz-Thompson (HT) estimator  

 , ,true
ˆ = ,

j

kj
j pq

k r k k kj

y
Y

p q   (2.1) 

(see Legg and Fuller 2009, for the properties of estimators under three-phase sampling). 

Usually, kp  and kjq  are unknown and should be estimated. A nonresponse adjusted estimator is then 

constructed by replacing kp  and kjq  with estimates ˆ kp  and ˆkjq  in (2.1). The following sections provide 

details with this regard. 

 

3  Estimating response probabilities 
 

3.1  Using logistic regression to estimate kp  
 

Different methods to estimate kp  are proposed in the literature. All of these methods are based on the 

use of auxiliary information known on the population or sample level. In the case of non-ignorable 
nonresponse, the variable of interest is itself the cause (or one of the causes) of the response behavior, and 
a covariance between the former and the response probability is produced through a direct causal relation 
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(see Groves 2006). In such a case, the response probability kp  could be modeled for k s  using logistic 

regression as follows  

     0 1

1
= = 1 = ,

1 expk k kj
kj

p P R y
a a y  

 (3.1) 

or as follows  

     0 1

1
= = 1 , = ,

1 exp
z

z αk k kj k
kj k

p P R y
a a y    

 (3.2) 

where  1= , ,k k ktz z z   is a vector with the values taken by 1t   covariates on unit ,k  and 0 1, ,a a  

and α  are parameters. 

Nonresponse bias in the unadjusted respondent total of the variable of interest jy  depends on the 

covariance between the values kjy  and kp  (see Bethlehem 1988). An example of a covariate that reduces 

the covariance between kjy  and kp  is the interest in the survey topic, such as knowledge, attitudes, and 

behaviors related to the survey topic (see Groves, Couper, Presser, Singer, Tourangeau, Acosta and 
Nelson 2006). The set of covariates kz  could be also related to the variable of interest jy  to reduce 

sampling variance (Little and Vartivarian 2005). 

Since kjy  is only observed on respondents, Models (3.1) and (3.2) cannot be estimated. Therefore, 

usually, the values of kz  that are known for both respondents and nonrespondents and are related to the 

s’kjy  by a ‘hopefully strong regression’ (Cassel, Särndal and Wretman 1983) are used in the following 

model  

  
  0

1
= = 1 = .

1 exp
z

z αk k k
k

p P R
a   

 (3.3) 

Then, maximum likelihood can be used to fit Model (3.3) using the data  ,k kR z  for .k s  This leads to 

estimate 0â  and α̂  and to the estimated response probabilities    0 ˆ= 1 1 expˆ ˆk kp a    z α  to be 

used in (2.1). This procedure provides some protection against nonresponse bias if kz  is a powerful 

predictor of the response probability and/or of the variable of interest (Kim and Kim 2007). 

In what follows, we propose a reweighting adjustment system based on an auxiliary variable that 
measures the propensity of each unit to participate to the survey. To this end, further assumptions on the 
response model are introduced in order to assume a dependence of the ’skp  on one latent auxiliary 

variable that is connected to the propensity scores of Rosenbaum and Rubin (1983). The proposed 
approach can be used when no other auxiliary information is available on .k s  

 

3.2  Latent variables as auxiliary information 
 

To obtain a measure of response propensities, we consider the case in which item nonresponse on the 
variables of interest is also present. Then, following Chambers and Skinner (2003, page 278) ‘from a 
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theoretical perspective the difference between unit and item nonresponse is unnecessary. Unit 
nonresponse is just an extreme form of item nonresponse’, we assume that item response on the variables 
of interest is driven on respondents by the same attitude and factors that drive unit response. Latent 
variable models can be used to estimate such factors that, therefore, can be used as covariates in a logistic 
response model. 

As we have already mentioned we assume that item nonresponse affects m  survey variables of 
particular interest. A second response indicator is introduced for each item .  For each item   and each 
unit ,k  a binary variable kx   is defined that takes value 1 if unit k  answers to item   and 0 otherwise. 

Let  1= , , , ,k k k kmx x x x    denote the vector of response indicators for unit k  to the m  items and 

let  1= , , , ,k k k kmy y y y    be the study variable vector for unit .k  Thus ky   is the response value of 

unit k  to item   and kx   is its response indicator. 

Suppose the ’skx   are related to an assumed underlying latent continuous scale; they are the indicators 

of a latent variable denoted by .k  De Menezes and Bartholomew (1996) call the variable k  the 

‘tendency to respond’ to the survey. We call it here the ‘will to respond to the survey’ of unit .k  A latent 
trait model with a single latent variable is used to compute k  for each k s  (we will see later how; see 

Section 4.4). Assume for the moment that k  is known on all sample units and, as with usual auxiliary 

information, can be used as a covariate. In the absence of other covariates, Model (3.3) is rewritten as  

  
  0 1

1
= = 1 = .

1 expk k k
k

p P R 
     

 (3.4) 

Covariate k  can be viewed as a variable explaining the behavior related to the survey topic, and thus 

having good properties to reduce the covariance between kjy  and kp  and, therefore, nonresponse bias. If 

other suitable auxiliary information is available, it can be inserted in the model as supplementary 
covariates. Now, to estimate the parameters of Model (3.4), the value of k  has to be available for all 

units in the sample. The following sections provide details on how to obtain estimated values of k  for 

both respondents and nonrespondents. 

 
4  Computing response propensities using latent trait models 
 

The variable k  can be computed using a latent trait model. In general, latent variable models are 

multivariate regression models that link continuous or categorical responses to unobserved covariates. A 
latent trait model is essentially a factor analysis model for binary data (see Bartholomew, Steele, Moustaki 
and Galbraith 2002; Skrondal and Rabe-Hesketh 2007). 

We start by creating the matrix with elements   ; =1, , .k k s mx     Figure 4.1 shows a schematic of the 

indicators kx   for respondents and nonrespondents. Then, we assume that the factors that drive unit 

response are the same as those that drive item response on selected variables of interest. In other words, 
item nonresponse is assumed nonignorable. 
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Figure 4.1 Schematic representing variables kx   for the sets r  and r  

 
Let kq   be the probability of response of unit k  for item ,  for all = 1, , m   and .k r  As in the 

case of unit nonresponse, kq   is modelled as a function of the variable of interest using logistic regression 

as follows  

  
  0 1 2

1
= = 1 , , = 1 = ,

1 expk k k k k
k k

q P x y R
y


         

   

 (4.1) 

for = 1, , ,m   and ,k r  where 0 1,      and 2   are parameters. Since ky   is known only for units 

with = 1,  ,kx k r  Model (4.1) cannot be estimated. As in the case of unit nonresponse, we propose to 

estimate kq   as a function of an auxiliary variable related to the variable of interest, that is .k  Model 

(4.1) is rewritten  

  
  0 1

1
= = 1 , = 1 = ,

1 expk k k k
k

q P x R
      

 

 (4.2) 

for = 1, , ,m   and .k r  Model (4.2) is not an ordinary logistic regression model, because the ’sk  

are unobservable values taken by a latent variable. Latent trait models can be used in this case to estimate 
,  k kq   and the model parameters. Note that in the area of educational testing and psychological 

measurement, latent trait modelling is termed Item Response Theory. 

The Rasch model (Rasch 1960) is a first simple latent trait model that is well known in the 
psychometrical literature and used to analyze data from assessments to measure variables such as abilities 
and attitudes. It takes the following form  

 
  0 1

1
= for = 1, ,  and .

1 expk
k

q m k r
     



   (4.3) 

The parameters 0   are estimated for each item   and reflect the extremeness (easiness) of item :  

larger values correspond to a larger probability of a positive response at all points in the latent space. The 

units

units

items
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parameter 1  is known as the ‘discrimination’ parameter and can be fixed to some arbitrary value without 

affecting the likelihood as long as the scale of the individuals’ propensities is allowed to be free. In many 
situations the assumption that item discriminations are constant across items is too restrictive. The two-
parameter logistic (2PL) model generalizes the Rasch model by allowing the slopes to vary. Specifically, 
the 2PL model assumes the form given in Equation (4.2). The parameters 1   are now estimated for each 

item   and provide a measure of how much information an item provides about the latent variable .k  To 

achieve identifiability of Model (4.2), we can fix the value of one or more parameters 0   and 1   in the 

estimation process. Moran (1986) showed that in the 2PL model, all the parameters are identifiable under 
wide conditions, provided the number of items exceeds two, and all the slopes are assumed to be strictly 
positive. A further generalization to Model (4.2) is considered in the literature - the 3PL model - that 
includes another parameter, the guessing parameter, to model the probability that a subject with a latent 
variable tending to   responds to an item. Such an extension does not seem necessary in the context at 
hand and will not be considered further. 
 

4.1  Assumptions in latent trait models 
 

Latent trait models typically rely on the following assumptions. The first one is the so-called 
conditional independence assumption, which postulates that item responses are independent given the 
latent variable (i.e., the latent variable accounts for all association among the observed variables ).kx   

Consequently, given ,k  the conditional probability of kx  is  

    
=1

= .
m

k k k kP P x x 


  

Following Bartholomew et al. (2002, page 181) ‘the assumption of conditional independence can only be 
tested indirectly by checking whether the model fits the data. A latent variable model is accepted as a good 
fit when the latent variables account for most of the association among the observed responses.’ 

A second assumption of Models (4.2) and (4.3) is that of monotonicity: as the latent variable k  

increases, the probability of response to an item increases or stays the same across intervals of .k  In 

other words, for two values of ,k  say a  and ,b  and arbitrarily assuming that < ,a b  monotonicity 

implies that    = 1 = < = 1 =k k k kP x a P x b    for = 1, , .m   Larger values of k  are 

associated with a greater chance of a response to each item. 

Finally, the third, and possibly strongest, assumption of Models (4.2) and (4.3) is that of 
unidimensionality, implying that a single latent variable fully explains the willingness of unit k  to answer 
the questionnaire. All these basic assumptions imply that the dependence between the items kx   may be 

explained by the latent variable k  which represents the units’ willingness and that the probability that a 

unit k  responds to a given variable increases with .k  

 

4.2  Estimation of the model 
 

In what follows we focus on the two-parameter logistic (2PL) model given in (4.2). Let 

 0 1= ,  β     and  = , = 1, , .mβ β     Model (4.2) can be fitted using maximum likelihood or 

bayesian methods. We focus here on the former. Under the maximum likelihood approach, three major 
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methods - joint, conditional and marginal maximum likelihood - are developed. Here, we will concentrate 
on marginal maximum likelihood that can be applied to fit the 2PL model. This method is also used in the 
simulation studies of Section 6. It consists of maximizing the likelihood of the model after the k  are 

integrated out on the basis of a common distribution assumed on these parameters. In particular, it is 
assumed that k  is a random variable following a distribution with the density function   ;h   typically 

 0,1 .k N   It is also assumed that the response vectors kx  are independent of one another and the 

conditional independence assumption holds. 

For a set of rn  respondents having the response vectors , = 1, , ,k rk nx   the marginal likelihood can 

be expressed as  

    1
=1

; , , = ,
r

r

n

n k
k

L fβ x x x β   

where      = , ,k k k k kf g h d



  x β x β  

    
  
 

1 0 1

=1 =1 0 1

exp
, = 1 = ,

1 exp
kk

m m
x k kx

k k k k
k

x
g q q     

 
     x β    

 
   

  

and h  now denotes the density of the  0,1N  distribution. The method consists in maximizing the 

corresponding log-likelihood, given by  

     1
=1

log ; , , = log ,
r

r

n

n k
k

L fβ x x x β   

with respect to β  using, for example, the EM algorithm. Estimates of 0   and 1 , = 1, , m     are thus 

provided. Afterwards, k  is estimated using the empirical Bayes method by maximizing the posterior 

density  

  
   

 
   

,
= , ,k k k

k k k k k
k

g h
h g h

g

 
   

x β
x x β

x
  

with respect to k  and keeping item parameters and observations fixed. Estimates of kq   are obtained 

using Expression (4.2), where 0 1,    and k  are replaced with their estimates. 

 
4.3  Goodness-of-fit measures of the model 
 

Different goodness-of-fit measures are proposed in the literature to test whether the model given in 
(4.2) adequately fits the data (see e.g., Bartholomew et al. 2002). One uses two-way and three-way 
margins of the response items. Discrepancies between the expected  E  and observed  O  counts in 

these tables are measured using the statistic   2= .R O E E  Large values of R  for the second-order 

or third-order margins will identify sets of items for which the model does not fit well. Note that the 

residuals  2O E E  are not independent and they cannot be summed to give an overall test statistics 
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distributed as a chi-squared (see Bartholomew et al. 2002, page 186). Item fit indexes (Bond and Fox 
2007) can be used to this end as well. On the basis of estimated latent variables and item parameters, the 
expected response of a unit to an item can be computed. The similarity between the observed and expected 
responses to any item can be assessed through two fit mean-square statistics: the outlier-sensitive fit 
statistic (item outfit) and the information-weighted fit statistic (item infit). The estimate produced by the 
item outfit is relatively more affected by unexpected responses different from a person’s measure, i.e., it is 
more sensitive to unexpected observations by units on items that are relatively very easy or very hard for 
them to answer. The item infit has each observation weighted by the information and, on the other side, is 
relatively more affected by unexpected responses closer to a person’s measure, i.e., it is more sensitive to 
unexpected patterns of observations by units on items that are roughly targeted on them according to their 
latent variable value. The expected value for both statistics is one. For infit and outfit values greater/less 
than one indicate more/less variation between the observed and the predicted response patterns, a range of 
0.5 to 1.5 is generally acceptable (Bond and Fox 2007). 

In addition, point-measure correlations (Olsson, Drasgow and Dorans 1982) can be used to estimate 
the correlation between the latent variable and the single item response. Items for which such measures 
take negative or zero values should be removed from the analysis or may be evidence that the latent 
construct is not unidimensional. Unidimensionality can be tested by running a Principal Components 
Analysis (PCA) of the standardized residuals for the items (Wright 1996). In this way the first component 
(dimension) has already been removed, and it is possible to look at secondary dimensions, components or 
contrasts. Unidimensionality is supported by observing that the eigenvalue of the first PCA component in 
the correlation matrix of the residuals is small (usually less than 2.0). If not, the loadings on the first 
contrast indicate that there are contrasting patterns in the residuals. 

Finally, when items are used to form a scale, they need to have internal consistency. Cronbach alpha 
can be used to test whether items have the reliability property, i.e., if they all measure the same thing, then 
they should be correlated with one another. 
 
4.4  Estimation of kp  
 

Two solutions are shown here to estimate kp  using information from the latent trait model. The first 

solution uses logistic regression to estimate kp  for all ,k s  and a two-stage approach. 

 
Stage 1: First, an estimate ˆ

k  of k  is provided. To compute a value ˆ
k  for ,k r  we assume again 

that unit nonresponse is just an extreme form of item nonresponse. Thus, a nonrespondent does not answer 

any item   and thus = 0,kx   for all = 1, , .m   The computation of ˆ
k  for k r  is handled as 

follows: we add to the set r  a phantom respondent unit k  having kx   equal to 0, for all = 1, , .m   We 

denote this new set by  = .r r k   We estimate the parameters of Model (4.2) using all units ,k r   

and compute the values ˆ , .k k r    Model (4.2) allows the computation of ˆ
k  for all .k r   Unit k  has 

an estimated value 
ˆ .

k
  We assign to all units k r  an estimate ˆ

k  equal to 
ˆ .

k
  Thus, the same value of 

ˆ
k  is provided for all .k r  Using this method, each unit k s  has associated an estimate ˆ .k  This is 

the key feature for the estimation of the response probabilities kp  provided in the next stage.  
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Stage 2: We use the estimate ˆ ,k  for ,k s  provided in the first stage as a covariate in Model (3.4) 

instead of the unknown value of ;k  in particular  

     0 1

1ˆ= = 1 = , for all .
ˆ1 exp

k k k

k

p P R k s 
     

 (4.4) 

Model (4.4) provides estimates ˆ kp  of ,kp  for all .k s   
 

One of the Referees suggested the following solution to estimate .kp  Let 
=1

=
m

k kS x 
 be the raw 

score for unit ,k  i.e., the number of items unit k  has responded to: if ,k r  then = 0;  if ,kS k r  

then > 0.kS  Then kp  can be estimated by modelling  > 0 .k kP S   By the conditional independence 

assumption we have  

 

      
  

=1

=1

> 0 = 1 = 0 = 1 = 0

1 1 = 1 .

m

k k k k k k k

m

k k

p P S P S P x

P x

     

   







  

We have         = 1 = = 1 = 1 , = 1 = 0 = 1 ,k k k k k k k k k k kP x P R P x R P R P x       

= 0 ,k k kR p q   because  = 1 , = 0 = 0.k k kP x R  As a result, we obtain  

  
=1

= 1 1 , .
m

k k kp p q k r   


  

The estimated response probability ,  ˆ kp k r  is obtained as a solution to the polynomial equation  

  
=1

= 1 1 .ˆ ˆ ˆ
m

k k kp p q  


  

This solution, although very elegant, has two drawbacks. If m  is large, the above polynomial equation is 
difficult or even impossible to solve. If it possible to solve the polynomial equation for moderate ,m  the 

real solutions are not necessarily in (0, 1). This solution has not been considered here further. 

 
5  The proposed estimator and its variance estimation 
 

Recall that we have a variable of particular interest jy  and that item nonresponse is present for it. If 

we wish to estimate the population total jY  of ,jy  then a naive estimator that does not correct neither for 

unit nor for item nonresponse is given by  

 ,naive

1ˆ = .
j j

kj
j

k r k rk k

y
Y N

     (5.1) 

Reweighting item responders is also an approach to handle item nonresponse. Moustaki and Knott 
(2000) propose to weight item responders by the inverse of the fitted probability of item response ,ˆ kq   
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assuming > 0.ˆ kq   Therefore, a possible adjustment weight for item and unit nonresponse associated 

with unit jk r  is given by  1 .ˆ ˆk kjp q  We propose using the three-phase estimator adjusted for item and 

unit nonresponse via reweighting given by  

 ,
ˆ = ,

ˆ ˆ
j

kj
j pq

k r k k kj

y
Y

p q   (5.2) 

where ˆ kp  is provided by Model (4.4), and ˆkjq  by Model (4.2). Proposals that use imputation of kjy  

values for \ jk r r  to deal with item nonresponse are also considered but not reported for reasons of 

space. They are available from the Authors upon request. 

The properties of the proposed estimator (5.2) depend on the assumptions made about the unit and the 
item nonresponse mechanisms. In particular, Estimator (5.2) assumes a second phase of sampling with 
unknown response probabilities. If we ignore estimation of k  in Model (4.4), the results in Kim and Kim 

(2007) on design consistency of the two-phase estimator that uses estimated response probabilities hold 
here as well when considering maximum likelihood estimates for the parameters 0  and 1.  Again, 

ignoring estimation of the latent variable k  and using marginal maximum likelihood estimates for the 

parameters 0   and 1   in Model (4.2), estimator ,
ˆ

j pqY  will be consistent if the models for unit and item 

nonresponse probabilities are correctly specified. 

We can consider replication methods for variance estimation of the proposed estimator and combine 
proposals for two-phase sampling (Kim, Navarro and Fuller 2006) and for generalized calibration in the 
presence of nonresponse (Kott 2006). In particular, the replicate variance estimator can be written as  

    2

, ,
=1

ˆ ˆ ˆ= ,
L

l
r l j pq j pq

l

V c Y Y   

where  
,

ˆ l
j pqY  is the thl  version of ,

ˆ
j pqY  based on the observations included in the thl  replicate, L  is the 

number of replications, lc  is a factor associated with replicate l  determined by the replication method. 

The thl  replicate of ,
ˆ

j pqY  can be written as    
, 3

ˆ = ,
j

l l
j pq k kjk r

Y w y
  where  

3
l
kw  denotes the replicate weight 

for the thk  unit in the thl  replication. These replicate weights are computed using a two-step procedure. 

First, note that, if we ignore for the moment the presence of item nonresponse, the two-phase estimator 

, 2
ˆ = ,j p k kjk r

Y w y
  has weights  

    2 1 0 1
ˆ= 1 = ; , ,k k k k kw p w F      

with,     1 0 1 0 1
ˆ ˆ= 1 , ; , = 1 expk k k kw F           (see Equation (4.4)). Let 1 =ẑ  

1 1zk kk s
w

  be the first phase estimate of the total of variable 1z  defined as  1
ˆ= 1, .k k k kp  z  Then, 

parameters 0  and 1  are such that  

  1 0 1 1 1
ˆ ; , = .ˆz zk k k

k r

w F


    (5.3) 



156 Matei and Ranalli: Dealing with non-ignorable nonresponse in survey sampling: A latent modeling approach 
 

 
Statistics Canada, Catalogue No. 12-001-X 

This procedure is equivalent to obtaining unweighted maximum likelihood estimates, but is convenient to 
set it as a non-linear generalized calibration problem. In this way, it is possible to use the approach in Kott 
(2006), combined with that in Kim et al. (2006), to obtain replicate weights using the following steps. 
 

Step 1: Compute the first phase estimate of the total of 1kz  with thl  observation deleted, i.e., 
   
1 1 1= ,ˆ l l

k kk s
w

z z  where  
1

l
kw  is the classical jackknife replication weight for unit k  in replication .l  

Compute the jackknife weights for the second phase sampling using  
1ˆ lz  as a benchmark. In particular, 

 
2
l
kw  are chosen to be      2 2 1 0 1 1

ˆ ; ,l l
k k k k kw w w F w     with 0  and 1  such that  

    
2 1 1= .ˆl l

k k
k r

w

 z z   

This procedure provides weights that are very similar to those considered in Kott (2006) and can be 
computed using existing software that handles generalized calibration. 

 

Item nonresponse is handled similarly by considering    3 2 0 1
ˆ= 1 = ; ,k k k kj k k j jw p q w F     

(compare Equation (4.3)). A major approximation here is to assume that, given ˆ ,k  parameters 0j  and 

1j  are estimated using a classical logistic model (instead of a 2PL model) and are such that  

  2 0 1 2 2
ˆ ; , = ,ˆ

j

k k j j k
k r

w F


   z z   

where 2 2 2=ˆ k kk r
w

z z  and  2
ˆ= 1, .

T

k k k kj kp q z  Another drawback is that auxiliary variables 2kz  

depend on j  and, therefore, different sets of weights have to be produced for the different variables of 

interest. 
 

Step 2: Third phase jackknife weights are obtained by first computing the second phase estimate of the 
total of 2kz  with unit l  removed by using weights coming from Step 1, i.e., 

   

2 2 2= .ˆ l l
k kk r

w
z z  Then, 

using  
2ˆ lz  as a benchmark,  

3
l
kw  are chosen to be      3 3 2 0 1 2

ˆ= ; ,l l
k k k k j j kw w w F w    with 0j  and 1j  

computed via  

    
3 2 2= .ˆ

j

l l
k k

k r

w

 z z   

 
6  Simulation studies 
 

We evaluate the performance of the estimator presented in Section 5 by means of a Monte Carlo 
simulation under two different settings. The first one uses a real data set as the population and considers 
variables of interest that are all binary, while the second one uses simulated population data with variables 
of interest that are continuous. Results from the first setting are presented in Section 6.1, while those from 
the second setting are presented in Section 6.2. 
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In both settings, simple random sampling without replacement is employed and the following 
estimators are considered: 
 

 HT = :kj kk s
y


  the Horvitz-Thompson estimator in the case of full response is computed 

as a benchmark in the absence of nonresponse.  

 ,naive
ˆ :jY  the naive estimator given in (5.1); no explicit action is taken to adjust for unit and item 

nonresponse. Note that for simple random sampling without replacement, it reduces to 

,naive
ˆ = ,

jj
j kj rk r

Y N y n
  where 

jrn  is the size of the set ,jr  and it is the same as the Horvitz-

Thompson estimator adjusted for unit nonresponse that assumes uniform response probabilities 
estimated by .

jrn n   

 ,
ˆ :j pqY  the three-phase estimator proposed in Section 5, Equation (5.2).  

 , , true
ˆ :j pqY  the three-phase estimator that uses the true values for the response probabilities kp  

and kjq  is also computed for comparison with ,
ˆ

j pqY  to understand the effect of estimating the 

response probabilities.  
 

The simulations are carried out in R version 2.15, using the R package ‘ltm’ (Rizopoulos 2006) to fit 
the latent trait models. The following performance measures are computed for each estimator, generically 
denoted below by Ŷ  where suffix j  is dropped for ease of notation (Y  denotes the population total): 
 

 the Monte Carlo Bias  

  sim
ˆB = ,E Y Y   

where  sim =1
ˆ ˆ ˆ= ,  

M

i ii
E Y Y M Y  is the value of the estimator Ŷ  at the thi  simulation run and M  is 

total number of simulation runs;  

 the Relative Bias  

 
B

RB = ;
Y

  

 the Monte Carlo Standard Deviation  

   2

sim
=1

1 ˆ ˆVAR = ;
1

M

i
i

Y E Y
M


    

 the Monte Carlo Mean Squared Error  

 2MSE = B VAR.   

 

6.1  Simulation setting 1 
 

We consider the Abortion data set formed by four binary variables extracted from the 1986 British 
Social Attitudes Survey and concerning the attitude towards abortion. The data is available in the R 
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package ‘ltm’ (Rizopoulos 2006). = 379N  individuals answered the following questions after being 

asked if the law should allow abortion under the circumstances presented under each item:  
 

1. The woman decides on her own that she does not wish to keep the baby.  

2. The couple agrees that they do not wish to have a child.  

3. The woman is not married and does not wish to marry the man.  

4. The couple cannot afford any more children.  
 

The variable of interest jy  is selected to be the second one  = 2j  with a total = 225jY  in the 

population. 

The data is analyzed by Bartholomew et al. (2002) as an example in which a latent variable can be 
found that measures the attitude towards abortion. At the population level, we compute the latent variable 
(denoted here by )a

k  using Model (4.2) on the   =1, , ; =1, ,4k k Ny      data. The correlation between the values 

ky   and a
k  is approximatively equal to 0.85, for = 1, , 4.   Afterwards, we have set ˆ= ,a

k k   for all 

= 1, , .k N  

At the population level, the unit response probabilities are generated using the following response 
model  

    2= 1 1 exp 0.7 0.2 ,k k k kp y        (6.1) 

with  0,1 ,k U   to simulate nonignorable nonresponse. The population mean of kp  is approximately 

0.74. 

To generate item response probabilities at the population level, the following model is used 

    = 1 1 exp ,   for = 1, , 4,k k kq b a y           (6.2) 

where = 3,b  for = 1, , 4,   while a   takes different values according to ;  in particular, 

1 2 31, = 0, = 0.5a a a   and 4 = 1.a  The nominal item nonresponse rate for the four items in the 

population is 35%, 42%, 47%, 31%, respectively. 

We draw = 10,000M  simple random samples without replacement from the population using two 
sample sizes: = 50n  and = 100.n  In each sample ,s  the units are classified as respondents according to 

Poisson sampling, using the probabilities kp  computed as in Equation (6.1) and resulting in the set .r  

Then, given ,r  the matrix   ; =1,...,4k k rx    is constructed where the values kx   are drawn using Poisson 

sampling with probabilities kq   defined in (6.2). In each simulation run, Model (4.2) and the respondents 

set r  are used to compute the variable ˆ
k  for all k s  as described in Section 4.4. Model (4.4) is fitted 

to obtain .ˆ kp  The average item nonresponse rate over simulations for the four items is found to be 26%, 

33%, 38% and 23%. The jackknife variance estimator was computed as described in Section 5 using the 
gencalib() function in R package ‘sampling’ (Tillé and Matei 2012) and the logistic distance (Deville, 
Särndal and Sautory 1993). 

Table 6.1 reports the results for = 50n  and = 100.n  As expected, HT  and , , true
ˆ

j pqY  have almost 

zero bias, with the second one showing a relatively larger MSE that is due uniquely to the smaller sample 
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size. The naive estimator shows a very large negative bias. This is due to the fact that units with a zero 
value of jy  are less likely to respond and the total is clearly underestimated. The estimator ,

ˆ
j pqY  shows a 

much smaller bias than the naive estimator. Note that the performance of the proposed estimator is mostly 
driven by absolute bias, so that the performance is not particularly different when increasing the sample 
size, apart from a decrease in variance. If we compare , , true

ˆ
j pqY  and ,

ˆ ,j pqY  we note that ,
ˆ

j pqY  still suffers 

from some bias that comes from response model misspecification (we are not accounting for the variables 
of interest values). 

For the proposed estimator, the jackknife variance estimator was also tested by looking at the empirical 

coverage of a 95% confidence interval computed for each replicate as ,
ˆ ˆ1.96 .j pq rY V  For = 50,n  the 

mean value of ˆ
rV  over simulations was 54.8, while for = 100,n  53.3, with a 95% coverage rate of 

94.6% and 96.3%, respectively. The replicate estimator overestimates the Monte Carlo standard deviation 
reported for ,

ˆ
j pqY  in Table 6.1 in both cases, but shows good coverage rates. 

 
Table 6.1 
Simulation results for setting 1 - Abortion data set 
 

Estimator   B  VAR   MSE  % RB 

= 50n      
HT    0.05  24.5  600.5  < 0.1  

,naive
ˆ

jY    -126.5  19.4  16,378.6  -56.2 

,
ˆ

j pqY    20.6  32.4  1,474.1  9.1 

, ,true
ˆ

j pqY    0.02  35.0  1,225.0  < 0.1  

= 100n      
HT    -0.06  16.0  255.5  < 0.1  

,naive
ˆ

jY    -126.9  13.5 16,284.1  -56.4 

,
ˆ

j pqY    17.9  21.9 802.2 8.0 

, ,true
ˆ

j pqY    -0.1  23.7  559.9 < 0.1  

 
To study the performance of the latent model on the population level and the correlation between the 

variable of interest and the estimated latent variable, we apply the procedure described earlier using kq   

defined in (6.2) to construct the matrix   =1, , ; =1,...,4k k Nx     for all population units. We fit Model (4.2) on 

the population level and compute the variable k  for all = 1, , .k N  The Cronbach’s alpha measure 

takes value 0.83 showing a good internal consistency of the items. The correlation coefficient between the 
variable of interest and the estimated latent variable takes value 0.76, indicating that the latent auxiliary 
information has a strong power of predicting 2 ,ky  as advocated in the model of Cassel et al. (1983). 

Inspection of the two-way margins for the matrix  kx   gives the residuals  2O E E  between 0.03 

and 0.23. Similarly, the three-way margins for the matrix  kx   give residuals between 0 and 1.19. This 

indicates that we have no reason to reject here the one-factor latent Model (4.2) (see Bartholomew et al. 
2002, page 186). 
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6.2  Simulation setting 2 
 

We generate  1 6, , ,k k ky y   for = 1, ,  = 2,000k N  using a multivariate normal distribution 

with mean 1. The degree of correlation between y   and y   is 0.8, with ,  = 1, , 6,  .       We set 

the variable of interest to be 6y  and consider different degrees of correlation between its values and those 

taken by ,k  namely 0.3, 0.5, 0.8. The values of k  are afterwards standardized to have mean 0 and 

variance 1. 

The response probabilities are obtained by first computing  

    1= 1 1 exp 0.5 ,   for = 1, , ,k k kp y k N       (6.3) 

and then rescaling them to take values between 0.1 and 0.9, with a population mean approximatively equal 
to 0.7. 

The item response probabilities are generated by first computing  

    = 1 1 exp ,   for = 1, ,  and = 1, , 6,k k kq b a y k N    
        (6.4) 

where    =1, ,6 = 1, 0, 0.5,1, 0, 0.5a      and    =1, ,6 = 1,1,1,1.5,1.5,1.5 ,b    and then rescaling the 

values to be between 0.1 and 0.95. 

We draw = 10,000M  samples by simple random sampling without replacement of size = 200.n  

For each sample ,s  a response set r  is created by carrying out Poisson sampling with parameter kp  

defined in (6.3). Each element of the matrix   , =1, ,6k k rx     is generated using Poisson sampling with 

parameter kq   defined in (6.4). Item nonresponse rates over simulations take approximately value 18%, 

28%, 35%, 19%, 29%, 34%, for = 1, , 6,   respectively. For each simulation run, Model (4.2) is used to 

compute the variable ˆ
k  for all .k s  Model (4.4) is then fitted to obtain .ˆ kp  

 

Table 6.2 
Simulation results for setting 2 - Simulated continuous data 
 

Estimator   B  VAR   MSE   RB% 
correlation coefficient 0.3     
HT    -0.7  131.6 17,331.2    -0.0 

,naive
ˆ

jY    825.6  177.1 713,039.3  41.0 

,
ˆ

j pqY    -227.4  188.0 87,033.0  -11.3 

, ,true
ˆ

j pqY    48.4  231.8 56,073.2 2.4 

correlation coefficient 0.5     
HT    0.1  135.0 18,220.5  0.0 

,naive
ˆ

jY    972.6  176.2 977,009.5 50.7 

,
ˆ

j pqY    -180.0  175.5 63,552.0 -9.4 

, ,true
ˆ

j pqY    74.8  212.7 50,844.0 3.9 

correlation coefficient 0.8     
HT   -0.1  134.1 17,992.0  -0.0 

,naive
ˆ

jY   1,154.6  168.1 1,361,388.1 57.7 

,
ˆ

j pqY   -184.8  164.4 61,173.0 -9.2 

, ,true
ˆ

j pqY   100.6  196.2 48,597.9  5.0 
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Table 6.2 reports on the performance of the estimators for the three values taken by the nominal 
correlation coefficient between 1ky  and : 0.3, 0.5k  and 0.8.  The proposed estimator is always able to 

reduce bias over the naive estimator, even when the correlation between the variable of interest and the 
latent variable gets smaller. The relative bias takes acceptable values in most cases. Bias deserves a closer 
look. The naive estimator in all cases largely overestimates the total. This is expected, because the values 

6, ,k k kp q   and 6ky  all go in the same direction. Therefore, in our respondents sample, we are more 

likely to find relative larger values for 6y  by this providing overestimation for the naive estimator. On the 

other hand, ,
ˆ

j pqY  underestimates the total because it is based only on the observed units of jr  that do have 

relatively large values for 6 ,y  but also relatively large values for kp  and 6kq  and, therefore, end up 

having a small weight. 

The matrix of population values   =1; ;2,000; =1, ,6k kx      is constructed in the same way as in Section 6.1 

to validate the assumptions behind the 2PL model. The Cronbach’s alpha takes approximately value 0.5 
for the correlation coefficient equal to 0.3, 0.6 for 0.5, and 0.7 for 0.8; the pairwise association between 
the six items reveals -p values smaller than 0.01. Inspection of the two-way and three-way margins of the 

matrix  kx   gives residuals  2O E E  that all take values smaller than 4. Therefore, the one factor 

latent model can be accepted and items all seem to be measuring the same latent trait. 

 
7  Discussion and conclusions 
 

We have proposed a reweighting system to compensate for non-ignorable nonresponse based on a 
latent auxiliary variable. This variable is computed for each unit in the sample using a latent model 
assuming the existence of item nonresponse and that the same latent structure is hidden behind item and 
unit nonresponse. Unit response probabilities are then estimated by a logistic model that uses as a 
covariate the latent trait extracted by the response patterns using a latent trait model. The proposed 
reweighting system is then used in a three-phase estimator to handle nonresponse, together with a 
replication method to estimate its uncertainty. The main goal is to reduce nonresponse bias in the 
estimation of the population total. The proposed estimator performs well in our simulation studies 
compared with the naive estimator, and the gain in efficiency is substantial in certain cases. Reductions in 
bias are also seen when the correlation between the latent trait and the variable of interest is modest. 

By design, the estimated latent variable ˆ
k  is related to the response indicators kjx  for the variable of 

interest ;jy  since nonresponse is assumed to be non-ignorable, kjy  and kjx  are related as well. If the 

following condition holds,  

 2 2
ˆ, ,

> 1,
j j j

y x x
     

where the correlation coefficients ˆ, ,
, > 0,

j j j
y x x

   then jy  and ̂  are positively correlated (see 

Langford, Schwertman and Owens 2001). Note that the minimum degree of correlation between the 
variable of interest and the latent variable capable of reducing the nonresponse bias was found to be 0.3 in 
simulation setting 2 (Section 6.2). Of course, bias reduction depends on model assumptions. If response 
indicators are not good predictors of unit response behavior, then model misspecification is present and, of 
course, reduction in bias may not be present and variance could be introduced in estimation. Nonetheless, 
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diagnostic tools from item response theory can be used to assess the goodness of fit of the latent trait 
model employed to estimate values for .k  

We have considered the case in which no auxiliary information is available at the sample or population 
level to reduce nonresponse bias. Observed covariates (if available) and the latent variable can be, 
however, used together in the estimation of response probabilities. Moreover, latent trait models can, 
themselves, be fitted with covariates. The introduction of covariates in these models should be carried out 
with increasing prudence on variance. 

The proposed estimator is a three-phase estimator using a reweighting system based on ˆ kp  and .ˆ kjq  It 

is known that small values of ˆ kp  and ˆkjq  may lead to unstable reweighted estimators because of large 

nonresponse weights. To overcome this problem, the propensity score method (e.g., Eltinge and Yansaneh 
1997) is often used in practice, providing a good solution against extreme weights adjustments. In order to 
apply this method in our framework, the respondents to jy  should be grouped in different classes given 

by the quantiles of  1 .ˆ ˆk kjp q  The final step is the calculation of a weight for each class. 

Final remarks concern the conditional independence assumption in latent trait models. In nonresponse 
literature, it is usual to use Poisson sampling to model unit response behavior by assuming that units in the 
set r  are selected with unknown response probabilities and that response is independent from unit to unit. 
The conditional independence assumption in the latent trait models is a similar condition applied to items. 
Both assumptions are strong, sometimes they are in doubt, yet they are necessary in the statistical 
inferential process. 

Different methods were developed in psychometric literature to relax the conditional independence 
assumption. We cite here the partial independence approach by Reardon and Raudenbush (2006), 
developed for the case where responses to earlier questions determine whether later questions are asked or 
not, and where the usual conditional independence assumption of standard models fails. This approach 
could be used in our framework for the case where kq   is defined as ( = 1 ,k kjP x x  for some 

 1, , , , )kj m j     instead of  = 1 ,  .k kP x k r   Another useful approach for cases where 

items are clustered is the latent trait hierarchical modeling. A random effect is introduced into a latent trait 
model to account for potential residual dependence due to the common sources of variation shared by 
clusters of items (see e.g., Scott and Ip 2002). Further research should be done to accommodate these 
approaches in the survey sampling framework. 
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One step or two? Calibration weighting from a complete list 
frame with nonresponse 

Phillip S. Kott and Dan Liao1 

Abstract 

When a random sample drawn from a complete list frame suffers from unit nonresponse, calibration weighting 
to population totals can be used to remove nonresponse bias under either an assumed response (selection) or an 
assumed prediction (outcome) model. Calibration weighting in this way can not only provide double protection 
against nonresponse bias, it can also decrease variance. By employing a simple trick one can estimate the 
variance under the assumed prediction model and the mean squared error under the combination of an assumed 
response model and the probability-sampling mechanism simultaneously. Unfortunately, there is a practical 
limitation on what response model can be assumed when design weights are calibrated to population totals in a 
single step. In particular, the choice for the response function cannot always be logistic. That limitation does 
not hinder calibration weighting when performed in two steps: from the respondent sample to the full sample to 
remove the response bias and then from the full sample to the population to decrease variance. There are 
potential efficiency advantages from using the two-step approach as well even when the calibration variables 
employed in each step is a subset of the calibration variables in the single step. Simultaneous mean-squared-
error estimation using linearization is possible, but more complicated than when calibrating in a single step. 

 
Key Words: Probability sampling; Response model; Prediction model; Double protection; Simultaneous variance 

estimation. 

 
 

1  Introduction 
 

Survey sampling is a tool used primarily for estimating the parameters of a finite population based on a 
randomly drawn sample of its members. Probability samples come with design (sampling) weights, which 
are often the inverses of the individual member selection probabilities. As long as each population element 
has a positive selection probability, it is a simple matter to produce an estimator for the population total of 
a survey variable that is unbiased with respect to the probability-sampling mechanism. The ratio of two 
unbiased estimators of totals or any other smooth function of estimated totals, while not necessarily 
unbiased, is asymptotically unbiased and often consistent since its relative variance, like its relative bias, 
tends to zero as the sample size grows arbitrarily large.  

Deville and Särndal (1992) introduced calibration weighting as a tool for adjusting design weights in 
such a way that the weighted sums of certain “calibration” variables equal their known (or better-
estimated) population totals. As a consequence of these calibration equations holding, the standard error 
of an estimated total for a variable without a known population total is often reduced while remaining 
nearly (i.e., asymptotically) unbiased under the probability sampling mechanism.  

Although originally developed to reduce standard errors, calibration weighting has also been used to 
remove selection biases resulting from unit nonresponse under certain assumptions (e.g., Folsom 1991; 
Fuller, Loughin and Baker 1994; Lundström and Särndal 1999; Folsom and Singh 2000). To this end, 
whether (or not) an element selected for the sample responds to a survey is treated as an additional phase 
of Poisson random sampling with unknown, but positive, selection probabilities. Calibration weighting 
estimates these Poisson selection probabilities implicitly and produces estimated totals that are nearly 
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unbiased under the combined sample- and response-selection mechanisms, which is often called the 
“quasi-sampling design”. See Oh and Scheuren (1983).  

An important caveat is that although the sample-selection mechanism is fully under the control of the 
statistician, the response-selection mechanism is unknown. The response mechanism is assumed to have a 
particular form, and the failure of this assumption can result in biased estimators. 

An alternative justification for calibration weighting involves a different type of modeling. It is easy to 
show that calibration weighting produces an estimator that is unbiased under a linear prediction (outcome) 
model if the expected value of the survey variable under the prediction model is a linear function of the 

calibration variables so long as the sampling and response mechanisms are ignorable, that is to say, the 
same prediction model applies whether or not the population element is sampled or whether it responds 
when sampled.  

Unlike the selection model governing the response mechanism, it is possible for the linear prediction 
model to hold for one survey variable and not another. That is why most survey samplers prefer to assume 
a selection model when adjusting for unit nonresponse. Nevertheless, it is reassuring to know that if either 

model is correct, then the estimated total is nearly unbiased (i.e., has a relative bias that vanishes 
asymptotically), a property Kim and Park (2006) called “double protection” against nonresponse bias.  

It is possible to simultaneously remove the selection bias and decrease standard error under the 

probability-sample mechanism in a single step by adjusting the design weights of unit respondents so that 
the estimated totals for a set of calibration variables equal their known population totals. Nevertheless, 
there are reasons for preferring the use of two calibration-weighting steps even when the sets of 

calibration variables used in both steps are the same or a subset of the calibration variables in a single step: 
the first step from the respondent sample to the original sample to remove selection bias and the second 
from the original sample to the population to decrease the variances of the resulting estimators.  

Although Folsom and Singh (2000) and others have pointed out that calibration weighting can also be 
used to remove the selection bias due to under- or over-coverage of the sampling frame, we will direct our 
attention here on a single-stage sample drawn from a complete list frame without duplication. That is to 

say, we will assume that the sampling frame is identical to the target population (i.e., each population unit 
is listed on the frame). 

The paper is structured as follows. Section 2 reviews some background theory on calibration 

weighting. Section 3 introduces a slightly new variance estimator that, like the variance estimator in Kott 
(2006), can be used to measure both the mean squared error of a calibration-weighted estimator under the 
quasi-sampling design and the variance under either the prediction model or the combination of the 

prediction model and original sampling mechanism, thus making the double protection against 
nonresponse bias arguably more useful for inference. The variance estimator in Kott applies only when 
calibrating to the population. Here we follow Folsom and Singh (2000) and allow the possibility that 

calibration is to the original sample. 

Section 4 discusses the limitations of calibrating weighting in a single step and develops some theory 
for a two-step approach. Although our main purpose here is to argue the benefits of using two steps even 

when similar sets of calibration variables are employed in both steps, the calibration estimator we treat in 
this section is broader. Section 5 describes the results of some simulation experiments, while Section 6 
offers a few concluding remarks.  
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2  One-step calibration weighting 
 
2.1  Calibration weighting and unit nonresponse 
 

In the absence of nonresponse (or frame errors), calibration weighting is a sampling-weight-adjustment 
method that creates a set of weights  ; ,kw k S  asymptotically close to the original design weights, 

1 ,k kd    that satisfy a set of calibration equations (one for each component of ) :kz  

 ,k k kS U
w  z z   

where S  denotes the sample, k  the sample-selection probability of unit ,k U  the population of size 

, kN z  a vector with P  components each having a known population total, and A  means .k A  

Kott (2009) describes a conservative set of mild conditions under which y S k kt w y   is a nearly 

unbiased estimator for the population total y U kT y   (i.e., the relative bias of yt  is asymptotically 

zero). Most importantly, each k N n  is assumed to be bounded from below by a positive value as N  

and the (expected) sample size, ,n  grow arbitrarily large (we add the parenthetical “expected” in case the 

sample size is random).  

In addition, the first four central population moments of each component of kz  is assumed to be 

bounded from above, while 1 T
U k kN   z z  converges to a positive definite matrix.  

Using calibration-weighting will tend to reduce mean squared error relative to the expansion estimator, 
,E

y S k kt d y   when ky  is correlated with some components of .kz  One should keep in mind, however, 

that most surveys have many ’s.ky  

A simple way to compute calibration weights is linearly with the following formula: 

 
    1

1

1 .

T T
k k j j j j j j kU S S

T
k k

w d d d

d

    
   

  z z z z z

g z
  

Fuller et al. (1994) and later Lundström and Särndal (1999) argued that this linear calibration can also be 
used to handle unit nonresponse. The sample S  is replaced by the respondent sample ,R  while  

         1
1 ,

T T T
j j j j j j j j j jU R S R R

d d d d
            g z z z z z z   

depending on whether the respondent sample is calibrated to the population  0   or calibrated to the 
original sample  1 .   Either way, the estimate is nearly unbiased under the quasi-sample-design that 

treats response as a second phase of random sampling so long as each unit’s probability of response has 
the form: 

  1 1 ,T
k kp   γ z  (2.1) 

and g  is a consistent estimator for the unknown parameter vector γ  in equation (2.1). 
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The problem with the response function in equation (2.1) is that the implicit estimator for 
 , 1 1ˆ T

k k kp p   g z  can be negative. A nonlinear form of calibration weighting avoiding this 

possibility was suggested by Kott and Liao (2012) based on the generalized exponential form of Folsom 
and Singh (2000). It uses Newton’s method (iterative Taylor-series approximations) to find a g  such that 

the calibration equation (from here on, we refer to the vector of component calibration equations as the 
calibration equation):  

    1T
k k k k k k k kR R U S

w d d         z g z z z z  (2.2) 

holds, where 0   or 1,  

    
 

exp
,

1 exp

T
kT

k T
k u


 


g z

g z
g z


 (2.3) 

,  the lower bound of   ,   is nonnegative (so that calibration weights are likewise nonnegative), and the 
upper bound of   , ,u     can be either finite or infinite.  

Although there are other reasonable forms the weight-adjustment function  T
k g z  can take, we will 

restrict our attention to functions in the form in equation (2.3). This is a generalization of both raking 
where 0, ,u    and the implicit estimation of a logistic response model, where 1, .u    In 

Deming and Stephan’s original (1940) iterative-proportional-fitting algorithm for raking, the components 
of kz  were restricted to indicator functions. We use “raking” more broadly here to mean calibration 

weighting with a weight-adjustment function of the form    exp .T T
k k g z g z  

When 1,  equation (2.3) becomes the generalized-raking adjustment introduced in Deville and 

Särndal (1992) and discussed further in Deville, Särndal and Sautory (1993). Generalized raking not only 
lets the components of kz  be continuous but also allows the range of the  T

k g z  to be constrained 

between a positive   and a (possibly) finite .u  

Deville and Särndal (1992) required    0 0 1.     Since the authors were not treating samples 
with nonresponse (or incorrect frames), T

kg z  needed to converge to 0 and  T
k g z  to 1 as the 

(expected) sample size grew arbitrarily large. When adjusting design weights for nonresponse, however, 
setting 1  is a more sensible strategy, so that the implicit estimated probability of response does not 
exceed 1.  

Although the original definition of calibration weighting in Deville and Särndal (1992) involved 
minimizing the differences between the kw  and kd  in R  as measured by some loss function, later 

formulations (e.g., Estevao and Särndal 2000) removed the loss function from the definition. Forcing kw  

and kd  to be close makes little sense when calibration weighting is used to adjust for unit nonresponse 

since if a sampled k  has a relatively small probability of response, then the difference between kw  and 

kd  should be relatively large.  

Rather than assuming a response model with a particular functional form, an alternative justification 
for using calibration weighting as a mean of removing unit-nonresponse bias assumes a prediction model 
in which the survey variable ky  is itself a random variable such that  E T

k k ky z z β  for some unknown 

β  whether or not k  is sampled or whether it responds when sampled. Kott (2006) and others have 
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observed the calibration-weighted estimator for y U kT y   will be nearly unbiased under the prediction 

model when calibration is done to the population (when 0   in equation (2.2)) and under the 

combination of the prediction model and the original sample-selection mechanism when calibration is 
done to the original sample (when 1).   

The property that a calibration-weighted estimator is nearly unbiased in some sense when either an 
assumed response model or an assumed prediction model holds has been called “double protection against 
nonresponse bias” by Kim and Park (2006). It is known as “double robustness” in the biostatics literature 
(Bang and Robins 2005) and attributed to Robins, Rotnitzky and Zhao (1994), which dealt with item 
rather than unit nonresponse.  

The distribution of k ky z  under the prediction model is often assumed to be the same for sampled and 

nonsampled population members. That is to say, the sampling mechanism is assumed to be ignorable. In 
addition, the distribution of k ky z  is often assumed to be the same whether or not a population member 

responds when sampled, that is, that the response mechanism is also assumed to be ignorable (Little and 
Rubin 2002). Here, we make weaker analogous assumptions under the prediction model, namely, that 
 E k ky z  does not depend on whether k  is sampled or when sampled responds. Let us say that the 

sampling and response mechanisms are assumed to be “first-moment ignorable”.  

 
2.2  Instrumental variables  
 

Deville (2000) observed that instrumental-variable calibration can be used to adjust for potential 
nonresponse bias by assuming a response model that depended on ,kx  

    
 

1 1 exp
,

exp

T
kT

k k T
k

u
p

 
     

γ x
γ x

γ x
 (2.4) 

but fitting calibration equations with :kz  

    1 ,T
k k k k k k k kR R U S

w d d         z g x z z z  (2.5) 

where the g  satisfying equation (2.5) with 0   or 1 a consistent estimator of unknown parameter 

vector γ  in equation (2.4). Some mild conditions are needed for this. Sufficient are the following: 

 1 T
R k k kN d   γ x z  is a consistent and bounded estimator for   1 1 ,U k S k kN d      z z  

    is everywhere twice differentiable, and  1 T
R k k kN d    z x  is always invertible and bounded as 

the sample grows arbitrarily large. 

Let 1kR   when , 0k R  otherwise. It is not hard to show that  

 

       

       

1

11 1 1

1

1

T T
k k k k k k k k k k k kS S U S

T T
k k k k k k k k k k k kS S U S

d R c d R d

N d R c N d R N d



  

           

         

   

   

g γ z x γ x z z z

z x γ x z z z

  

for some kc  between T
kg x  and ,T

kγ x  as Kott and Liao (2012) demonstrated when .k kx z  
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Deville also noted that it is possible for components of the kx  to be survey variables with values 

known only for respondents. Chang and Kott (2008) extended the notion of calibration weighting to allow 
the dimension of the kz - vector to be greater than that of the kx - vector. We will not treat either 

possibility in the following sections. 

Kim and Shao (2013) in treating nonignorable nonresponse call the components of kz  not wholly 

functions of the components of kx  “instrumental variables”. To limit future confusion, we will henceforth 

use to term “model variables” to refer to the components of .kx  

 
3  Variance estimation for the one-step calibration estimator 
 

In this section, we let 

  T
y k k k k kR R

t w y d y    g x   

be the calibration-weighted estimator for ,yT  where  T
k k kw d  g x  when k R  is the calibration 

weight, and kw  is conveniently defined to be 0 when .k R  The weight-adjustment function     is 

defined implicitly by equation (2.4), and g  is again chosen so that the calibration equation (2.5) holds for 

either 0   or 1.  

We propose the following estimator for the variance :yt  

        2 2

,

1 ,k j T T
y k k k k j j j j k k k k

k j S k Rkj

v t d e d e d e
 

                    
 z b z b  (3.1) 

where kj  is the joint selection probability of k  and j  under the original sampling design, 

 1 , T
kk k k k kd       g x  when k R  and 0 otherwise,  

    1
,T T T

k k k k k k k kR R
d d y

      b g x x z g x x  (3.2) 

and .T
k k ke y  z b  We will show that  yv t  in equation (3.1) can be nearly unbiased in some sense if 

either a response model (Section 3.1) or prediction model holds (Section 3.2).  

The variance estimator in equation (5.2) of Kott (2006) is identical to  yv t  in equation (3.1) when 

0.   The variance estimator in Kim and Haziza (2014) is also similar. Their prediction model is more 

general than the linear prediction model considered here. 

This variance estimator  yv t  presupposes that the original sampling design is such that each element 

can only be drawn once. In Section 3.1, we see that when the probabilities of response are independent 
(Poisson), then under mild assumptions,  yv t  is a nearly unbiased estimator of the mean squared error of 

yt  under the quasi-sampling design whether or not the prediction model,  E , ,T
k k k ky x z z β  holds. 
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In Section 3.2,  yv t  is shown to be a nearly unbiased estimator for the combined prediction-model 

and original-sampling-design variance of yt  as an estimator for yT  whether or not the response model in 

equation (2.4) holds. Thus,  yv t  can be called a “simultaneous variance estimator”.  

 
3.1  Variance estimation under the response model 
 

For ease of exposition we will assume that the response model in equation (2.4) with a finite u  holds. 
Sufficient conditions for  yv t  to be a nearly unbiased estimator for the mean squared error of yt  (by 

which the bias converges to 0 as the sample size grows arbitrary large) are  

 0 0kj B    (3.3) 

 1
1

1  for every ,
N

kj

j k j

B k



   

   (3.4) 

 1
2  where is  or any component of  or , while 1 or 2,

N r
jj

j j j jB y r
N



    


x z  (3.5) 

and  1 T T
R k k k kN d   g x z x  is of full rank and is bounded in probability as the sample size grows 

arbitrarily large. 

From these,           1 exp 1 expu u          being bounded when u  is finite, and the 

Cauchy-Schwarz inequality   2 2 2 ,k k k ka b a b     it is not hard to see not only that g  is a consistent 

estimator for ,γ  but also that b  in equation (3.2) (which can be rendered 

    11 1 )T T T
R k k k k R k k k kN d N d y

      b g x x z g x x  has a probability limit, call it * ,b  whether 

or not the prediction model holds. Moreover, both *b b  and g γ  are  1 .p nO  

Observe that  

 

   

   

 

* *

* *

* * ,

T T
y y k k kS U

T T
k k k k k kR R

T
k k k kR U

t T N d N

d e d e N

d e e N

   

     

    

 

 

 

z b z b

g x γ x

γ x

  

where * * .T
k k ke y  z b  The insertion of the     into the “regression coefficient” b  allows us to ignore 

the contribution to quasi-design mean squared error of the second term in this sum, 
     * .T T

R k k k kQ d e N    g x γ x  That is because   0T
R k k k kd e  γ x x  is true by 

definition, which implies   *T
R k k k kd e  γ x x  is  O 1p n  under our assumptions. Moreover, since 

       TT T
k k k kc     g x γ x g γ x  is also  O 1 ,p n      *T

R k k k kQ d c e   g γ x  is 

 O 1 ,p n  which is asymptotically ignorable relative to the two  O 1p n  components of 

  .y yt T N  
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With the contribution of Q  eliminated from consideration, an idealized, but not calculable, nearly 

unbiased estimator for the quasi-design mean squared error of yt  is 

        
2*

* * * *
1

,

1 1 ,k j k kT T
I y k k k j j j k

k j S k Rkj k

d e
v t d e d e p

p 

                     
 z b z b  (3.6) 

where the first term on the right estimates the mean squared error before nonresponse (if any) and the 
second the added variance due to nonresponse. 

An alternative nearly unbiased idealized mean squared error estimator, closer to being calculable, is  

    
2*

* * * *
2

,

1 1 ,k j jk kT T
I y k k k j j j k k

k j S k Rkj k j k

RR e
v t d e d e d p

p p p 

                                 
 z b z b  (3.7) 

where again 1kR   when , 0k R  otherwise. Since the   *
k k kR p e  are independent under the response 

model with mean *
ke  and variance        2* * * * *1 , Ek k k k k k k j j j k je p p p R p e R p e e e     when 

.k j  By contrast, the following holds when :k j  
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k k k
k k k k k k k k

k k

R d e
E d e d e p p

p p

d e e
d e p p d p p

p p

                
      

   
         

   

  

The first summation on the right-hand side of equation (3.7) has terms where k j  and terms where 
,k j  the latter of which causes the second summation in (3.7) to differ from the second summation on 

the right-hand side of equation (3.6). Note that the expectation under the response model of 

   2* 1R k k k kd e p p   in the second summation on the right-hand side of (3.7) is 

   2* 1 .S k k k k kd e p p p   

Finally,  2I yv t  can be replaced by the asymptotically identical, but computable,  yv t  in 

equation (3.1) since  1j S k j kj      is bounded for all k  under assumptions (3.3) and (3.4), 

allowing ke  and k  to be substituted for the unknown *
ke  and 1 ,kp  respectively (because *

k ke e  and 

1k kp   are  O 1p n  for all ).k  

 
3.2  Variance estimation under the prediction model 
 

Matters are a bit simpler when we assume a prediction model holds but not necessarily the response 
model in equation (2.4). Suppose  E , ,T

k k k ky x z z β  whether or not k  is sampled or responds when 

sampled, and the T
k k ky   z β  are uncorrelated random variables with variances equal to 2 ,T

k k  z η  
where η  need not be specified other than having finite components.  
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The mean squared error of yt  as an estimator for yT  under that prediction model is the sum of the 

prediction variance of yt  as an estimator for  2 2,y R k k kT w w    (see, for example, Kott 2009, page 69), 

and the squared bias,   2
,T T

S k U k  x β x β  the latter being zero when 0.   The combined variance of 

yt  as an estimator for yT  under the prediction model and original sample design is 

    2 2Var E ,T
C D k D k k kS S

V w w       x β   

where the subscript D  denotes that the operation (variance or expectation) is with respect to the original 
sampling design. Recall 0kw   for .k R  

To see that  yv t  in equation (3.1) provides a nearly unbiased estimator for ,CV  observe first that 

   11 1 .T T T T T
k k k k k j j j j j j j jR R

e y N d N d
            z b z g x x z g x x  

Let 1kj   when k j  and 0  otherwise. Because the k  are uncorrelated, and  2E ,T
k k k    z η  it is 

now not hard to show that    2E O 1k j kj ke e n     for almost every ,k j  pair under the prediction 

model when  1 T
R k

T
kk kN d   g z xx  converges to an invertible matrix, and assumptions (3.3), (3.4), 

and  

 1
2 here  is any component of   or  w  ,  and  = 1, 2,  3, , or 4j j

N
r
j

j
jB r

N



   


x z  (3.8) 

hold. Observe that the change from the assumptions in (3.5) to (3.8) makes the relative bias of  yv t  as an 

estimator for     2 2or  when 0 O 1C R k k kV w w n      rather than  O 1 .n  

 
4  Two-step calibration weighting 
 
4.1  Calibration weighting in two steps 
 

In practice, the components of kx  are often 0/1 group-membership identifiers, and the groups are 

mutually exclusive and exhaustive. In that situation, T
kg x  can only take on P  values. Almost any weight-

adjustment function,   ,T
k g x  will yield equivalent results. An example is the linear function, 

  1 ,T T
k k  g x g x  of Lundström and Särndal (1999).  

One popular weight-adjustment function that sometimes cannot be used (note the italicized “almost” in 
the previous paragraph) is    1 exp ,T T

k k  g x g x  which assumes response is a logistic function of 

.kx  The problem is that this weight-adjustment function cannot return values less than unity. We noted in 

the previous section, that sometimes one may need k  to be less than 1. A routine that tries to use 

   1 expT T
k k  g x g x  and fit the calibration equations will fail. 
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This can be a particular problem when assuming a logistic response model and trying to calibrate to the 
population in a single step. There may be a component of ,kz  say ,kaz  that is always nonnegative, but the 

original sample and response set are such that R k ka U kad z z    even though R k kad z  cannot exceed 

.S k kad z  Thus, calibrating to the population will always fail because no k  can be less than 1.  

Calibrating to the original sample, by contrast, need not fail, since .R k ka S k kad z d z    This suggest 

that one calibrates first to the original sample, which removes the response bias if the assumed response 
model holds, and then to the population, which removes the response bias if the prediction model holds. 
Estevao and Särndal (2002) discuss a variety of ways to calibrate in steps, but we focus on a single 
method here.  

A second advantage of calibration weighting in two steps can be realized even when the calibration 
variables used in both steps are the same or a subset of those used in the single step. This happens when 
the response model holds, and the linear prediction model is only roughly true. Some version or “optimal” 
estimation can then be used in the second calibration-weighting step to increase efficiency. Rao (1994) 
introduced the notion of the optimal regression estimator. It was put into calibration-weighting form and 
discussed further in Bankier (2002) and Kott (2009, Section 4.2). Detail and how this can be done are 
provided in Sections 4.2 and 5. 

 
4.2  Estimation and variance estimation when calibrating in two steps 
 

In this subsection, we start with a fairly general two-step calibration estimator for a total and then 
address estimating its variance. The first calibration-weighting step, which is to the original sample, 
employs 1kx  as the vector of response-model variables and 1kz  as the calibration vector. Each has 1P  

components. The weight-adjustment function has the form described in equation (2.4) with 1g  now 

replacing .g  The calibration equation is  1 1 1 1 .T
R k k k S k kd d   g x z z  

The second calibration-weighting step, which is to the population, employs 2kx  and 2 ,kz  each with 2P  

components. The nonresponse bias under the response model is removed in the first step. For the weight-
adjustment function for the second step, we propose using  

    2 2
2 2

2 2

exp
,

1 exp( )

T
k kT

k k T
k k

h
u





g x

g x
g x


 (4.1) 

where 0k ku    may be set almost at whim (but see below). The right-hand side of equation (4.1) can 

vary across the k  (and so can depend on kd  and ),k  yet    0 0 1,k kh h   making it asymptotically 

indistinguishable from the linear function: 2 21 .T
k g x  For simplicity, we will call  2 2

T
k kh g x  and 

 2 2 ,T
k k kh h g x  and kh  respectively. From a quasi-sampling-design viewpoint, both are asymptotically 

identical to unity. The second calibration equation is  2 2 2 2 .T
S k k k k U kd h  g x z z  Because this 

equation must hold, there are limits on the available choices for ku  and k  in equation (4.1).  

A good simultaneous variance estimator for    1 1 2 2
T T

y R k k R k k k k kt w y d h y     g x g x  is (as we 

shall see)  
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     

 

1 1 1 1 1 1
,

2 2 2
1

1

,

k j T T
y k k k k k j j j j j

k j S kj

k k k k k k
k R

v t d h e d h e

d h h e





  
              

   





z b z b
 (4.2) 

where 

   1

2 2 2 2 2 ,T T
k k k j j j j j j j j j jS S

e y d h d h y
     z x z x  (4.3) 

   1

1 1 1 1 2 ,T
f f f f f f f f fS S

d d h e
    b x z x  (4.4) 

and 

 1 2 1 1.T
k k ke e  x b  (4.5) 

Let kx  now be the vector composed of the non-duplicated components of 1kx  and 2kx  and define kz  

analogously. Sufficient conditions for (4.2) to be a simultaneous variance estimator include the 
corresponding components of equation (4.1) depending on whether either the response model in equation 
(2.4) holds with 1kx  replacing kx  or the prediction model is   2 2E , ,T

k k k ky x z z β  whether or not k  is 

sampled or responds if sampled, and the 2 2 2
T

k k ky   z β  are uncorrelated random variables with 

variances equal to 2
2 2 2 ,T

k k  z η  where 2η  need not be specified other than having finite components. 

Now, both  1
1

1 11
T

k
T

R k k kN d   z xg x  and  2 2
1

2 2
T T

k k k kkRN d h  x zg x  are assumed to be of full rank 

and bounded as the sample size grows arbitrarily large.  

The variance estimator in equation (4.2) is almost the same as the estimator in (3.1): kx  has been 

replaced with 1kx  and kz  with 1 ,kz  while 2k kh e  substitutes for ky  (we will get to a small difference 

shortly). Observe that 2ke  is effectively an expression of the “residual” from the second calibration-

weighting step. This residual is multiplied by the weight-adjustment factor ,kh  which is asymptotically 

unity from the quasi-sampling-design-based perspective and a constant from the prediction-model 
viewpoint. The product is then used to create the first-step “regression-coefficient” 1b  in equation (4.4) 

and its accompanying “residual” 1ke  in equation (4.5). We do the second step regression first because 

2 2 .y y R k k U k R k k U kt T w y y w e e          

It is for estimating the prediction model of yt  as an estimator of  2 2
2, ,y S k k kT w w    that the last 

appearance of kh  on the right-hand side of equation (4.2) is not squared, as it would be if 2k kh e  

substituted for ky  everywhere. From a quasi-design viewpoint, kh  is asymptotically identical to unity, so 

whether or not it is squared makes no asymptotic difference.  

Observe that the jh  have been inserted in equation (4.3) for the same reason as   was inserted into 

b  in equation (3.1). Since the jh  are asymptotically unity, however, they are not really needed (and serve 

no function whatever from a prediction-model viewpoint). A similar argument applies to the fh  in 

equation (4.4): they are asymptotically unity from the quasi-sampling-design viewpoint (and part of an 
estimate of 0 from a prediction-model viewpoint). 
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5  Some simulations 
 

Paralleling Kott and Liao (2012), we generated a synthetic population, ,U  of hospitals from the 2008 
DAWN public-use file. After creating ,U  we independently drew 3,600 stratified simple random samples 

of size 400 from U  using the strata definitions on the public-use file. These definitions incorporate 

information on location and hospital ownership (public or private) not directly provided on the file. 

We set the stratum sample sizes roughly proportional to a size measure ,kq  but never less than four. 

For kq  we used annual drug-related emergency-room visits, which was always positive. The DAWN 

actually has a size variable attached to every hospital in the frame: total emergency-room visits in a 
previous year according to the American Hospital Association. Unfortunately, it was not included on the 
public-use file. Design weights in our simulations varied between 4.375 and 48, which allowed us to treat 
the finite population correction factors as ignorable in variance estimation.  

As in our original paper, we generated a respondent sample R  for each simulated sample based on 
Bernoulli draw from the logistic function: 

     11 exp 3.735 0.4 log ,k kp q     (5.1) 

We also created alternative respondent samples using  

    11 21 exp 0.597 0.005 .k kp q


    (5.2) 

Both response models produce unweighted overall response rates of around 54%, which is similar to 
actual DAWN experience, where response is also a mildly increasing function of the size variable. Notice 
that 1k kp   is bounded even if neither probability can be expressed by equation (2.4) with a finite .u  

As in the previous study, we focused on estimating population totals for three survey variables. Annual 
drug-related emergency-room visits with adverse pharmaceutical reaction and those resulting in deaths 
came from the public-use file. Since both these variables were roughly linear in our size measure, the third 
“survey” variable was artificially constructed. It was the size measure (annual drug-related emergency-
room visits) raised to the 1.3 power.  

We investigated eight estimators and estimates of their variance. These are summarized in Table 5.1. 
The first two featured calibration to the original sample only (equation (2.5) with 1 ,   with response 

assumed to be logistic in the log of the size measure. That is to say, equation (2.3) was employed with 

  1 log .T
k kqx  The first estimator used   1 log T

k kqz  as the calibration vector while the 

second used  1 ,T
k kqz  which was more consistent with a reasonable prediction model, at least for 

adverse reactions and deaths.  

Our third and fourth estimator featured calibration to the sample and population in a single step 

(equation (2.5) with 1   and then 0)   using   1 log .x z T
k k k kq q   They were designed to 

be nearly unbiased if either the logistic response model in   1 log T
kq  or the linear prediction model in 

 1 T
kq  held.  
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Table 5.1 
Summary of simulation exercise (all results in percentages %) 
 

Estimator 1yt  2yt  3yt  4yt  5yt  6yt  7yt  8yt  

Calibration to Sample         

   response-model variables: 1kx    1 log T
kq

 
  1 log T

kq   1 log T
k kq q -   1 log T

kq
 

  1 log T
kq

 
  1 log T

kq
 

  1 log T
kq

 

   calibration variables: 1kz    1 log T
kq

 
 1 T

kq
 

  1 log T
k kq q -   1 log kq

  1 T
kq

 
  1 log T

kq
 

 1 T
kq

 
Calibration to Population         

   response-model variables: 2kx  - - -   1 log T
k kq q   1 log T

k kq q   1 log T
k kq q

 
  1 log T

k k kf q q
 

  1 log T
k k kf q q

   calibration variables: 2kz  - - -   1 log T
k kq q   1 log T

k kq q   1 log T
k kq q

 
  1 log T

k kq q
 

  1 log T
k kq q

 

True Response:    1 1 exp 3.735 0.4 logk kp q    

 Adverse Reactions 

   Relative Bias of yt  -0.07 0.06 -0.11 -0.13 -0.02 -0.07 0.10 0.09 

   Relative RMSE of yt  4.97 3.98 4.01 2.45 2.51 2.57 2.40 2.39 

   Relative Bias of  yv t  8.60 12.59 12.52 6.24 6.76 6.16 6.76 6.48 

 Deaths         

   Relative Bias of yt  -0.17 0.06 -0.20 -0.26 -0.20 -0.30 0.04 -0.07 

   Relative RMSE of yt  11.75 11.39 11.56 11.07 11.28 11.36 10.91 10.91 

   Relative Bias of  yv t  -1.34 -0.48 -0.90 -0.76 -1.00 -0.60 -0.12 -0.28 

 
 1.3Size  

        

   Relative Bias of yt  -0.16 -0.05 0.08 0.09 0.04 0.06 -0.02 0.01 

   Relative RMSE of yt  6.92 5.07 5.06 0.95 1.05 1.12 0.89 0.89 

   Relative Bias of  yv t  10.01 18.49 17.47 -2.26 -3.41 -3.32 0.51 -2.12 

True Response:   1 21 1 exp 0.597 0.005 k kp q    

 Adverse Reactions 

   Relative Bias of yt  2.87 -0.26 0.08 0.04 0.48 0.53 0.15 0.07 

   Relative RMSE of yt  5.90 3.97 4.00 2.35 2.43 2.45 2.33 2.35 

   Relative Bias of  yv t  -18.22 11.63 11.95 9.90 8.82 7.35 7.19 6.67 

 Deaths         

   Relative Bias of yt  1.24 -1.88 0.47 0.36 1.03 1.20 -0.58 -0.67 

   Relative RMSE of yt  11.42 11.01 11.41 10.95 11.18 11.26 10.69 10.72 

   Relative Bias of  yv t  5.30 3.00 6.27 6.24 5.65 5.06 6.21 5.90 

 
 1.3Size  

        

   Relative Bias of yt  5.17 1.05 -0.07 -0.05 -0.31 -0.36 0.01 0.08 

   Relative RMSE of yt  9.11 5.31 5.05 0.85 0.97 1.01 0.80 0.82 

   Relative Bias of  yv t  -26.83 11.70 17.09 8.23 0.29 -3.98 5.17 2.90 

 1 1ˆk k k k kf d d p               

 
 

Not surprisingly, the (empirical) relative mean squared error of the fourth estimator is always lower 
than the third. The reason is fairly obvious looking at equation (3.1) and considering the consequence of   

being 0 (calibration to the population) rather than 1 (calibration to the sample).  
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The fifth through eighth estimators were calibrated in two steps. The fifth and seventh estimators 
employed the calibration weighting from the first estimator in its first step, while the sixth and eighth 
employed the calibration weighting from the second estimator. The fifth and sixth used 

  2 2 1 log T
k k k kq q z x  in their second step, while the seventh and eighth were nearly pseudo-

optimal (Kott 2011) using   2 1 log T
k k kq qz  and  2 21k k k kd  x z  in their second step. All 

four employed the individual weight-adjustment functions:  

   2 2
2 2

1 1
1 exp .

1
1

T
kT

k k
k k k k

k k

h
d d

d

           
  

g x
g x   

As Kott (2011) showed these  2 2
T

k kh g x  are asymptotically identical to the weight-adjustment function, 

2 21 ,T
k g x  when  2 2 O 1T

k P ng x  but prevent any kw  from falling below unity. Each is a version of 

equation (4.1) with  1 , 1,k k kd c    and .u    

Because the nonresponse rate was so large, we did not encounter a problem computing the third and 
fourth estimator using any of the simulated respondent samples. The relative mean squared error of the 
fourth estimator was always slightly higher than that of the seventh and eighth estimators, which 
incorporated nearly pseudo-optimal calibration in their second step. Interestingly, this was not the case 
when comparing the fourth estimator to the fifth and sixth estimators which, although employing two 
steps, did not incorporate nearly pseudo-optimal calibration.  

Observe that although the second estimator always had a smaller relative mean squared error than the 
first, being more consistent with a reasonable prediction model (even for 1.3 ,kq  the survey variable 

appeared closer to being linear in kq  than in  log ,kq  the other analogous pairs (fifth vs sixth and 

seventh vs eighth) exhibited no clear pattern of superiority. This is because it is the second-step residuals 
that are effectively modeled in equation (4.4) not the y- values. 

Generating the nonresponse with equation (5.2) than (5.1) did not seem to have much of an impact on 
the results except for the relative biases of the first estimator. For both adverse reactions and  1.3size ,  the 

relative bias of this estimator is over 40% of the relative mean squared error. That is likely because both 
models that could be used to justify this estimator (response is logistic in the log of the size measure and 
the survey variable is linear in the log of the size measure) fail. Not surprisingly, since the relative bias is 
such a large part of the relative mean squared error in these two situations,  kv t  underestimates mean 

squared error badly. Nowhere else is the relative bias of  kv t  greater than 15%.  

It seems that even our artificial variable,  1.3size ,  was close enough to being linear in the size 

measure that bias was never an issue for any estimator other than the first. The first estimator itself had a 
negligible relative bias when response was a logistic model of the log of the size measure, as assumed.  

 
6  Concluding remarks 
 

In Section 4, we noted two reasons to prefer calibration weighting in two steps: to make implicitly 
fitting a logistic response model easier and to incorporate nearly quasi-optimal calibration. A side benefit 
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of two-step calibration is more efficient estimation of the response model in step one since there is no 
sampling error to confound the estimation. This is useful when one wants to analyze the causes of unit 
nonresponse for its own sake. 

We must concede, however, that the reduction in mean squared error using two steps was modest in 
our simulation experiments in Section 5. Moreover, the practical appeal of the simplicity of calibrating in 
a single step cannot be denied. 

When calibration-weighting is used to adjust for nonresponse that is not missing at random as 
described in Chang and Kott (2008) and Kott and Chang (2010), the efficiency gains from a second step 
involving only calibration variables and functions of calibration variables model variables is likely to be 
sizeable.  

When the finite population correction factors can be ignored, replication offers a much simpler 
approach to variance estimation than equation (3.7) even though the second summation on the right-hand 
side can be dropped in this situation. A different attractive alternative is the “collapsed” version of 
equation (4.2) that ignores the impact of the first calibration step:  

      2 2 2
2 2 2

,

1 .k j
y k k j j k k k k k k

k j S k Rkj

v t w e w e d h h e
 

  
          
    

This estimator clearly estimates the prediction-model variance if that model holds. A version of it  with 
the second summation removed  fared well in our simulation experiments (not shown). Some caution is 
needed before one draws too strong a conclusion from that result since the linear model was never too far 
from holding in our investigations.  

Finally, a number of assumptions were made to simplify the exposition. The interested reader can 
extend the results to unbounded ,kd  more general and not-necessarily-bounded weight-adjustment 

functions, or to allow the prediction-model errors to be correlated within primary sampling units. When 
N  grows faster than ,n  the assumption that 2 T

k k  z η  can sometimes be dropped. See, for example, 

Kott (2009, page 69). 
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Abstract 

The operationalization of the Population and Housing Census in Portugal is managed by a hierarchical structure 
in which Statistics Portugal is at the top and local government institutions at the bottom. When the Census 
takes place every ten years, local governments are asked to collaborate with Statistics Portugal in the execution 
and monitoring of the fieldwork operations at the local level. During the Pilot Test stage of the 2011 Census, 
local governments were asked for additional collaboration: to answer the Perception of Risk survey, whose aim 
was to gather information to design a quality assurance instrument that could be used to monitor the Census 
operations. The response rate of the survey was desired to be 100%, however, by the deadline of data collection 
nearly a quarter of local governments had not responded to the survey and thus a decision was made to make a 
follow up mailing. In this paper, we examine whether the same conclusions could have been reached from 
survey without follow ups as with them and evaluate the influence of follow ups on the conception of the 
quality assurance instrument. Comparison of responses on a set of perception variables revealed that local 
governments answering previous or after the follow up did not differ. However the configuration of the quality 
assurance instrument changed when including follow up responses. 

 
Key Words: Quality assurance; Local government surveys; Follow ups; Map of Alert. 

 
 

1  Introduction 
 

The latest Portuguese Population and Housing Census took place in March 2011. It was a large and 
expensive statistical operation involving in-person, door-to-door contacts for the distribution and 

collection of paper questionnaires across the entire country. The foremost task of any census operation is 
to do a headcount of every person and identify where they live, without omitting anyone (Waite 2007). 
However, the successful accomplishment of such task can be compromised by various factors, notably the 

performance of the human resources involved, the level of citizens’ cooperation and the specific 
characteristics of the regions and populations that are to be enumerated. Reliable data can only be obtained 
with sound and accurate processes, which is why the Census is assisted by a comprehensive Quality 

Assurance (QA) system that is designed and implemented throughout with the census operation itself 
(Wroth-Smith, Abbott, Compton and Benton 2011). 

Prior to 2011, the QA system of Census operations was designed with standardized nationwide 

procedures i.e., standards, indicators, processes, and sub-processes were defined at national level and this 
also meant that all regions used the same QA activities for monitoring purposes. Although Portugal is a 
small country, it is geographically and demographically very diverse with heavily urbanized as well as 

rural areas; very densely populated areas and also villages that are almost abandoned and deserted; regions 
with predominately old people and other much younger regions. This diversity is likely to affect the 
implementation of a census operation as the problems, difficulties and risk of failure are not uniform, but 
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vary according to the specificities of the population and the areas where the Census is being implemented. 
In light of this, a new perspective was introduced in the 2011 Census - the QA system was redesigned to 
tailor it to the local specificities of geographical areas and populations (Statistics Portugal 2007). This 

change required the Portuguese territory to be mapped in terms of risk of failure and the Map of Alert 
(Statistics Portugal 2010) was developed for this purpose.  

Portugal is organized administratively into 303 municipalities encompassing 4,260 freguesias (local 

government units) (freguesia is the smallest administrative/governmental area in Portugal. Each 

Municipality comprises a set of freguesias. Freguesia is the equivalent to civil parish). This organization 

serves as the base for implementing Census operations: the freguesia is the lowest level of the operation’s 

coordinating hierarchy; above it comes the municipal coordination, then the regional coordination and, 

finally, the national coordination is at the top. The Census Office of Statistics Portugal is in charge of the 

strategic and national coordination of the entire operation. Statistics Portugal appoints regional delegates 

for regional coordination; the presidents of municipalities are responsible for the municipal coordination, 

and finally the Presidents of Junta de freguesia (PJF) are in charge of the freguesia coordination. (Junta 

de freguesia is the governing body of each freguesia. The Junta de freguesia is administered by the 

President of Junta de freguesia). 

The Map of Alert is a detailed map of the Portuguese territory at the freguesia level, in which each 

freguesia is attributed a colour code to indicate the potential risk of failure in the Census operation: red 

(high risk), orange (medium risk) and green (low risk). By risk of failure we mean possible coverage 

problems, i.e., failing to enumerate some population units or duplicating the enumeration of others. 

Mapping all the 4,260 freguesias according to their risk of failure would enable municipal coordinators to 

know in advance which freguesias would require specific QA activities in order to effectively assist the 

fieldwork operations. This would allow resources to be targeted to freguesias with a known high risk of 

non-accomplishment. Green or orange freguesias might therefore be treated with the standard QA 

procedures but specific procedures would be designed and implemented in line with local specificities of 

red freguesias. These might include assigning more experienced enumerators to the most difficult areas, 

controlling enumerators’ work more regularly or checking more than the usual 5% of enumerators’ work.  

Information about characteristics of the populations, housing and areas that might cause coverage 

difficulties for the census (e.g., the existence of homeless people, of people belonging to minority groups 

or of areas with many vacant dwellings (Groves 1989, page 137, Groves and Couper 1998, page 176)) was 

necessary to build the Map of Alert. This kind of information could have been obtained from the 2001 

Census data but, as this was potentially outdated, it was decided to collect the necessary information by 

means of a mail survey targeting all PJFs. It was crucial to get the cooperation of all 4,260 PJFs to ensure 

that each freguesia was classified with a risk level in the Map of Alert. 

The questionnaire of the Perception of Risk survey was mailed at the beginning of October 2010. The 
deadline for data collection set internally by the research team was mid-December 2010 but, as 

respondents tend to postpone answering mail surveys, they were asked to send the completed 
questionnaires within one month. More than half of the freguesias (58%) returned the completed 
questionnaires within that time lag; after that period, responses continued to arrive but at a slower pace. 

By the deadline, 77% of the freguesias had returned the questionnaire but there was already a sharp 
decline in the number of questionnaires coming in at the end. Despite the good response rate (Dillman, 
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Smyth and Christian 2009), the goal of obtaining data from all the freguesias was far from reached. 
Ending the data collection in mid-December would have meant leaving nearly one fourth of the freguesias 
with no assigned risk level which would have drastically reduced the efficacy of the Map of Alert as an 

instrument of quality assurance. A follow up mailing to the non responding freguesias was therefore sent 
out on 16th December. Besides increasing sample size, it was expected that a qualitative gain would be 
obtained for the conception of the Map of Alert. In fact, there was some concern that non responders 

might be freguesias with problematic characteristics for the census, thus causing the true size of the red 
code to be underrepresented in the Map. The request for personal or sensitive information in 
questionnaires is known to increase the danger of nonresponse (e.g., Groves, Fowler Jr, Couper, 

Lepkowski, Singer and Tourangeau 2004, page 224) and although the information requested in the 
Perception of Risk survey was not personal (i.e., related to the PJF himself), it conveyed matters that the 
PJFs might be reluctant to share. Questions on the existence of homeless people, areas without public 

illumination, or roads without tarmac in the areas they govern might be considered overly sensitive thus 
leading to non participation in the survey. The follow up mailing also aimed to minimize the effect of non 
response on risk level classification of freguesias. 

The Map of Alert was used in the Portuguese Population and Housing Census for the first time in its 
2011 edition but Statistics Portugal intends to adopt it as a permanent QA instrument in future census 
operations. The study reported in this paper examines the impact of follow ups on the response rate and 

results of the Perception of Risk survey and evaluates to what extent the responses from follow ups 
changed the configuration of the Map of Alert, namely regarding the risk level classification.  

The method used is presented in Section 2. Results are given in Section 3. Finally, a discussion is 

offered in Section 4. 

 
2  Method 
 

The Perception of Risk survey took place during the Pilot Test stage of the 2011 Portuguese Population 
and Housing Census (the Pilot Test was the last preparatory stage of the Census 2011 and took almost all 
of 2010). The aim was to collect information about any specific characteristics of freguesias that might 
hinder the exhaustive and accurate count of individuals and dwellings. The target population was defined 
as the freguesias of Portugal (N = 4,260). The Presidents of Juntas de freguesia were chosen to be the 
respondents because they have close contact with the populations and a deep knowledge of the problems 
of the areas they govern.  

The questionnaire consisted of two blocks of questions (the questionnaire is presented in Figure A.1 of 
the Appendix). The first block included questions on the respondent’s age, education, time as President of 
Junta de freguesia, frequency of computer and internet use, and the identification of the freguesia and 
municipality. The second block included questions on freguesias features potentially affecting the 
implementation of the census. This block had four sections. The first section contained a set of six items 
asking about characteristics of the freguesia’s population. Respondents rated their answers on each of the 
items using a five-point scale ranging from “few” to “many”. The second section contained a set of six 
items asking respondents about characteristics of the buildings and areas of the freguesia. Again each of 
the items was to be answered using a five-point scale ranging from “few” to “many”. The next section 
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contained two items about enumerators’ recruitment that were to be answered using a five-point scale 
ranging from “hard” to “easy”. The questionnaire ends with one item on the overall perception about the 
implementation of the Census 2011 in the freguesia. 

Statistics Portugal has an updated list of postal addresses of all Juntas de freguesia which was used as 
the sampling frame. The initial mailing was sent to all 4,260 PJFs, therefore making the Perception of 
Risk survey more of a census than a survey. The mailing included a questionnaire, a postage-paid return 

envelope and a cover letter. The letter and questionnaire were printed on paper with the logos of Census 
2011 and Statistics Portugal responsible for implementing and coordinating the survey. Since responding 
to the survey was not compulsory, survey salience was emphasized in the invitation letter with the aim of 

improving the cooperation rate (e.g., Porter 2004, Dillman, et al. 2009): the letter explained that the survey 
concerned the Census 2011 operation and the PJFs’ answers would be indispensable to the quality of the 
operation at both the local and national levels. Moreover, the importance of the response was underlined 

by the fact that the request came from Statistics Portugal. 

All freguesias that had not returned the questionnaire by 15th December 2010 were sent the follow up 
mailing containing a second copy of the questionnaire, a cover letter insisting on response and a postage-

paid return envelope. Data collection came to an end in mid-February 2011. 

 
3  Results 
 

For the purpose of the analysis, we shall consider two “groups” of responses: the initial group and the 

final group. The initial group includes the freguesias that returned the questionnaires before the follow up 
date; the final group includes all the freguesias responding to the survey, i.e., the initial group plus the 
freguesias that returned the questionnaires after the follow up. The two groups are not mutually exclusive. 

The analysis starts with a description of the mailing outcomes. We examine response rates (overall and 
by region) and geographical distribution of the freguesias that could be assigned a risk level (both in the 
initial and the final versions of the Map of Alert). When making analyses by region, we use the NUTS II 

classification of the Portuguese territory; this entails six regions - North, Center, Lisbon, Alentejo, 
Algarve and Archipelagos of Madeira and Azores. In the second stage of the analysis, the responses of the 
PJFs are analysed by means of Principal Component Analysis with the purpose of reducing the 

dimensionality of the data and identify latent dimensions of risk. This analysis is performed in both groups 
of response. Finally an evaluation of the freguesias’ risk level classification is made in both the initial and 
final Map of Alert. Freguesias that did not respond at all to the Perception of Risk survey (referred as non 

responders) are described according to their geographical distribution. 

 
3.1  Analysis of response rates 
 

Figure 3.1 presents the distribution of the number of questionnaires received per day during the overall 
collection period (from 10th October 2010 when the first questionnaires were received until the final 

deadline on 16th February 2011). There are two peaks of response, the first approximately one month after 
the first mailing went out and the second some days after the follow up mailing. Almost no questionnaires 
were being received by the time the follow up mailing was sent out, which leads us to believe that no more 

would have been received without the second mailing.  
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Figure 3.1 Number of questionnaires received per day 

 
 

From a total of 4,260 questionnaires sent in the first mailing, 2,457 were answered within the 
suggested time of response (one month), 816 were answered after that period but before the follow up 
mailing and 609 were answered after the follow up date. Of the 4,260 freguesias, 378 did not respond. 

This absence of response was considered to be a refusal since it is unlikely these questionnaires were not 
delivered as an updated address list was used for mailing. The overall response rate of the survey, 
computed as the percentage of freguesias that answered the questionnaire out of the total number of 

freguesias in the population, was 91.1% (Table 3.1).  

 
Table 3.1 
Outcomes of the mailing of the questionnaires 
 

 N % 
Freguesias returning the questionnaire within one month 2,457 57.7 
Freguesias returning the questionnaire after one month and before the follow up mailing 816 19.2 
Freguesias returning the questionnaire after the follow up mailing 609 14.3 
Freguesias not returning the questionnaire 378 8.9 
Questionnaires sent 4,260 100.0 
Overall freguesias returning the questionnaire 3,882 91.1 

 
Table 3.2 presents the response rate per region in the initial and final group. The response rate of the 

initial mailing ranged from 71% in the North to 88.1% in the Algarve; the final response rate ranged from 

87.3% in the North to 96.4% in the Algarve. The follow up mailing allowed an increase both in the overall 
response rate and in the response rate of each region, but it was more efficient in the North than in other 
regions. The North had a 16.3% increase in survey participation, in contrast to an increase of 

approximately 6% in the region of the Archipelagos of Madeira and Azores. 
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Table 3.2 
Response rate per region by response group (%) 
 

Region Initial Final 
North 71.0 87.3 
Center 79.3 91.4 
Lisbon 84.3 95.3 
Alentejo 83.1 96.0 
Algarve 88.1 96.4 
Archipelagos of Madeira and Azores 86.7 93.3 

Overall 76.8 91.1 

 
Table 3.3 presents the geographical distribution of the freguesias with an assigned risk level in the 

initial and in the final Map of Alert. More than 40% of the freguesias are located in the North and 
approximately 26% are located in the Center. When comparing the final distribution with that of all the 

freguesias in the population, the biggest differences are found in the regions of Lisbon (13.1% vs. 7.0%, 
meaning that the region of Lisbon is overrepresented in the Map of Alert) and Center (26.1% vs. 30.6%, 
meaning that the region of Center is underrepresented in the Map of Alert). The geographical distribution 

of the freguesias with an assigned risk level in the final Map is very similar to that of the initial Map. 

As to the non responding freguesias, more than half are located in the North and approximately one 
fourth are located in the Centre. The other regions have less than 10% of the freguesias with no risk level 

assigned. This pattern is evident in both the initial and final group. 

 
Table 3.3 
Geographical distribution of freguesias with risk level assigned and non-responders in the Map of Alert by 
response group and freguesias in the population (%) 
 

Region 
Freguesias with risk level 

assigned  
Non responders  

Population 

Initial Final Initial Final 
North 44.0 46.1 59.5 63.2 46.6 
Center 26.7 26.1 23.1 23.8 30.6 
Lisbon 13.7 13.1 8.4 6.1 7.0 
Alentejo 7.7 7.5 5.2 2.6 8.9 
Algarve 2.3 2.1 1.0 0.9 2.0 
Archipelagos of Madeira and Azores 5.6 5.1 2.8 3.4 4.9 

N = 3,264 3,873 987 378 4,260 
  Nine freguesias of the initial group could not be assigned a risk level because the question on freguesia identification was not 

answered. 

 
3.2  Analysis of the PJF responses 
 

In order to simplify the structure of the survey data and identify the potential dimensions of risk 

affecting the Census operation, two Principal Component Analysis (PCA) were conducted. One of the 
PCA was made using the five questions about the characteristics of the PJF (age, educational level, time as 
president of Junta de freguesia, frequency of computer use and frequency of internet use); the other PCA 

was made using the Likert-type questions about freguesias’ characteristics and enumerators recruitment 
(Sections 1 to 3 of the questionnaire). The eigenvalue over one criterion was adopted to extract the 



Survey Methodology, June 2015 189 
 

 
Statistics Canada, Catalogue No. 12-001-X 

components. Table 3.4 presents the number of principal components (PC) and the percentage of total 
variance they explain, based on varimax rotation. Both PCAs were performed in the initial and final group 
of freguesias. 

The outcomes reveal that the responses obtained from initial freguesias have an identical structure in 
the latent dimensions of risk to the responses of the final group of freguesias. The sampling adequacy 
indicator for the PCA on PJF characteristics was reasonably good (KMO > 0.6) in both the initial and final 

freguesias data sets. In both data sets two principal components were extracted accounting for 
approximately 77% of the data variance. The PCs were named as: PCA – PJF’ skills and PCB – PJF’ 
experience.  

 
Table 3.4 
Characteristics of Principal Component Analyses by response group 
 

Analysis characteristic Initial Final 
PCA on PJF characteristics   

Kaiser-Meyer-Olkin measure of sample adequacy 0.687 0.685 
PCs extracted   2 2 
Variance explained 77.3% 77.2% 

PCA on freguesias’ characteristics   
Kaiser-Meyer-Olkin measure of sample adequacy 0.693 0.696 
PCs extracted   5 5 
Variance explained 61.4% 61.3% 

 
The sampling adequacy indicator for the PCA on Likert-type questions was also reasonably good 

(KMO > 0.6) in both data sets. Five PCs were extracted, both in the initial and final data sets, accounting 
for nearly 61% of the data variance, namely: PC1 – Hard to reach population, PC2 – Enumerators with 
suitable skills and available to work in the census, PC3 – Elderly population, PC4 – Deserted areas and PC5 

– Areas with high vacancy rates for habitable housing.  

Regarding the overall opinion about the degree of difficulty in implementing the Census 2011 
operation (question on Section 4 of the questionnaire), the response of nearly 2/3 of the respondents was 

above the middle point of the scale in both response groups. In the initial group, 67.8% of the respondents 
rated their answers as level “4” or “5” on the response scale compared with 67.5% in the final group 
(Table 3.5).  

 
Table 3.5 
Overall opinion about the Census by response group (%) 
 

 Initial Final 
1 – “hard” 1.7 1.7 
2 3.8 3.8 
3 26.7 27.0 
4 38.4 37.9 
5 – ”easy” 29.4 29.6 

 
3.3  Freguesias’ risk level classification 
 

The seven dimensions of risk found with both PCAs were then used as an input in Finite Mixture 

Modeling and Cluster Analysis to produce a segmentation of the freguesias (details and outputs of this 
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analysis are not presented but can be found on ISCTE-IUL (2011)). The segmentation is made for both the 
initial and final groups of freguesias. The outcome of the segmentation is presented in the Map of Alert in 
which the freguesias appear in red, orange or green (the final Map of Alert is presented in Figure A.2 of 

the Appendix. The dark spots represent the freguesias without an assigned risk level due to non response). 
Table 3.6 summarizes the freguesias’ risk level classification in the initial and final versions of the Map.  

 
Table 3.6 
Risk level classification in the Map of Alert by response group (%) 
 

Risk level 
Initial 

(n = 3,264) 
Final 

(n = 3,873) 
% 

High risk (red) 6.4 3.7 – 42.2 
Medium risk (orange) 53.3 33.9 – 36.4 
Low risk (green) 40.3 62.4 + 54.8 

 
The dominant colour in the initial Map of Alert is orange (53.3% of the freguesias are rated as medium 

risk). The share of high risk freguesias is only 6.4%. Green predominates in the final Map (62.4% of the 
freguesias are classified as low risk) and less than 4% of the freguesias are red. Adding the follow up 

responses to the initial responses resulted in a change in the configuration of the Map of Alert, most 
notably the increase in the percentage of freguesias rated as low risk (+ 54.8%). 

We then analysed how the follow up responses changed the risk level classification of the initial 

freguesias. The responses of the 3,264 initial freguesias allowed a colour code to be assigned to each 
freguesia and to draw the initial version of the Map of Alert. After incorporating the responses of the 
follow up freguesias the Map of Alert was redesigned – not only a higher number of freguesias could have 

a colour code assigned but also the colour initially attributed to the initial freguesias changed in some 
cases. Of the 3,264 initial freguesias approximately 50% got a different colour in the final Map of Alert. 
Figure 3.2 presents the overall changes in risk level classification of initial freguesias after integrating the 

responses of follow up freguesias. 
 

 

 

 

 
 

 
 
 

 

 
 
 
Figure 3.2  Risk level classification in the final Map of Alert by risk level classification in the initial Map of 

Alert 
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The freguesias that were rated green at the outset (green_initial) tend to stay green (green_final) after 
considering the follow up responses (65.5%). Only 32.9% of the initially green freguesias changed to 
orange alert (orange_final) and 1.5% changed to red alert (red_final). As to the freguesias that started out 

as orange (orange_initial), the follow up responses caused 60.8% to change to green (green_final); only 
37.1% remained orange (orange_final) and a minority of 2.2% changed to red (red_final). The biggest 
change caused by follow up responses is in the red group of freguesias: only 32.7% of the initially red 

freguesias (red_initial) remained high risk (red_final), and the majority changed either to orange (36.6%) 
or green (30.7%).  

Finally, we analysed risk level classification per region, and compared the initial and final Map 

(Table 3.7). 

 
Table 3.7 
Risk level classification per region by response group (%) 
 

Region Risk level Initial Final %
North High risk 4.2 0.8 –81.0
 Medium risk 52.7 46.1 –12.5
 Low risk 43.1 53.1 +23.2

Center High risk 3.7 0.3 –91.9
 Medium risk 54.8 18.6 –66.1
 Low risk 41.5 81.2 +95.7

Lisbon High risk 19.1 20.3 +6.3
 Medium risk 45.3 24.1 –46.8
 Low risk 35.6 55.6 +56.2

Alentejo High risk 4.0 1.0 –75.0
 Medium risk 65.9 5.0 –92.4
 Low risk 30.1 94.0 +212.3

Algarve High risk 17.0 29.8 +75.3
 Medium risk 43.4 38.1 –12.2
 Low risk 39.6 32.1 –18.9

A. Madeira and Azores High risk 5.2 1.5 –71.2
 Medium risk 56.0 60.9 +8.8
 Low risk 38.8 37.6 –3.1

 
Lisbon and Algarve are the regions with higher percentage of freguesias coded as red (19.1% and 

17.0%, respectively). This tendency holds both in the initial and final Map of Alert. The follow ups caused 

a reduction in the percentage of freguesias coded as red in all regions with the exception of Lisbon and 
Algarve for which the final Map of Alert presents higher percentages of red freguesias than the initial 
Map. Regarding the percentage of low risk freguesias, the follow ups caused and increased in all regions 

except Algarve and the Archipelagos of Madeira and Azores in which a decrease was noticed. 
Additionally, the percentage of orange freguesias decreased in all regions after adding the follow-up 
responses, except for the Archipelagos of Madeira and Azores. 

 
4  Discussion 
 

It is clear from the results shown above that the follow up mailing was valuable and had a positive 

impact on both the Perception of Risk survey response rate and the designing of the Map of Alert.  
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Although it was not possible to meet the 100% response rate target for the Perception of Risk survey, 
the high response rate – 91.1% - was only achieved thanks to the follow up mailing. The response rate 
differed across regions but the follow up allowed the response rate to go up in all the regions. North had 

the lowest response rate for both the initial group – 71% – and after the follow up – 87.3%. Several factors 
may have accounted for this result. Firstly, is the fact that the PJFs in the North remain in office longer 
than anywhere else in the country. The average time as PJF is 8.6 years in the North compared with a 

country average of 7.8 years. Moreover, whereas the 90th percentile of the “time as president” distribution 
is 20 years in the North, it does not exceed 17 years in the other regions. This means that the PJFs in the 
North have more governance experience and are probably able to make a better assessment of the impact 

of their freguesias’ specificities on the census. Perhaps, these PJFs felt their freguesias would not present 
problems for the Census, so did not bother to answer the questionnaire. Another fact that might have 
accounted for the lower response rate in the North is that the main opposition party got the most votes in 

the North in the last parliament election so that the PJFs’ lack of cooperation could have been a form of 
censure against the central government because they knew the survey had been requested by the country’s 
official bureau of statistics. Finally, the North is the region with the most freguesias – nearly 2,000 – 

which makes a 100% response rate more difficult to achieve than in smaller regions like the Algarve, 
which has less than 90 freguesias.  

Follow up responses led to changes in the risk level classification of the freguesias. Contrary to initial 

expectations, the scenario of color code in the final Map of Alert was not more problematic than the 
scenario in the initial Map. Not only was the percentage of red alert freguesias smaller in the final Map, 
but the percentage of green code freguesias also went up. Therefore, in addition to increasing the number 

of freguesias on the Map with an assigned risk level (from 3,264 freguesias to 3,873 freguesias) the 
follow up mailing also allowed the classification of some freguesias’ to be “corrected”, namely those 
initially classified as high risk, most of which were re-coded to orange or green after considering the data 

set from the follow ups. 

These outcomes underline the importance of local governments being more involved and participating 
actively in future editions of the survey. The contact strategy adopted for the Perception of Risk survey 

was to send and receive the questionnaire by mail, but different approaches may be considered in the 
future, namely to include other modes such as the internet. Additionally, contact strategies could be 
customized to regions specificities. As the North had the lowest response rate, a strategy that included 

more follow up contacts (using the mail, the telephone or the e-mail) could be adopted there, and a less 
aggressive contact and re-contact strategy used in other regions. Finally, it must be noted that the 
administrative map of Portugal was changed in 2013 and the total number of freguesias has now been 

reduced to approximately 3,000. This new format of organization will surely favor the next Perception of 
Risk survey since a smaller number of PJFs will simplify the implementation of a contact strategy and the 
exhaustive inquiry of the freguesias. 
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Appendix 
 

                                                                       
Perception of risk survey 

Questionnaire to Presidents of Juntas de freguesia as part of the Pilot Test of the 2011 Census 
 
IDENTIFICATION 
Freguesia: ___________________________________________________________________________________ 

Municipality:__________________________________________________________________________________ 

 
Name: ___________________________________________________________________ Age: __________ 

Educational level:  

Less than basic level                 Basic level (9 years compulsory)                 Secondary                    University 

For how long have you been president in this Junta de freguesia: __________ years 

Frequency of computer use: Rarely            Several times a day             Several times a week              Everyday 

Frequency of internet use: Rarely            Several times a day             Several times a week                  Everyday 

 
PERCEPTION ABOUT FREGUESIAS’S FEATURES 

Rate your responses using a 1 to 5 scale for the following items regarding the Freguesia. Mark the number corresponding to your 
choice with X. 

1 POPULATION  
1. Existence of elderly population (age ≥65 years) Few 1 2 3 4 5 Many 
2. Existence of illiterate population (cannot read or 

write) Few 1 2 3 4 5 Many 
3. Existence of population living in social housing 

neighbourhoods Few 1 2 3 4 5 Many 
4. Existence of emigrant population Few 1 2 3 4 5 Many 
5. Existence of immigrant population Few 1 2 3 4 5 Many 
6. Existence of homeless population Few 1 2 3 4 5 Many 
2 HOUSING AND AREAS 
1. Existence of areas with predominantly  closed 

condominiums Few 1 2 3 4 5 Many 
2. Existence of areas with predominantly  second or 

summer homes Few 1 2 3 4 5 Many 
3. Existence of areas with predominantly  recently built 

residential housing Few 1 2 3 4 5 Many 
4. Existence of areas with difficult access (e.g., no 

tarmac roads, no lighting, …) Few 1 2 3 4 5 Many 
5. Existence of areas with dispersed housing Few 1 2 3 4 5 Many 
6. Existence of predominantly dormitory areas Few 1 2 3 4 5 Many 
3 HUMAN RESOURCES 
1. How difficult will it be to recruit suitably skilled 

enumerators   Hard 1 2 3 4 5 Easy 
2. How difficult will it be to recruit enumerators with 

availability Hard 1 2 3 4 5 Easy 
4 OVERALL OPINION ABOUT THE CENSUS
How difficult will it be to implement the Census 2011 
operation in the freguesia Hard 1 2 3 4 5 Easy 

 
 

Figure A.1 Perception of risk questionnaire 
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Figure A.2 Final Map of Alert 
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Measuring temporary employment. Do survey or register 
data tell the truth? 

Dimitris Pavlopoulos and Jeroen K. Vermunt1 

Abstract 

One of the main variables in the Dutch Labour Force Survey is the variable measuring whether a respondent 
has a permanent or a temporary job. The aim of our study is to determine the measurement error in this variable 
by matching the information obtained by the longitudinal part of this survey with unique register data from the 
Dutch Institute for Employee Insurance. Contrary to previous approaches confronting such datasets, we take 
into account that also register data are not error-free and that measurement error in these data is likely to be 
correlated over time. More specifically, we propose the estimation of the measurement error in these two 
sources using an extended hidden Markov model with two observed indicators for the type of contract. Our 
results indicate that none of the two sources should be considered as error-free. For both indicators, we find that 
workers in temporary contracts are often misclassified as having a permanent contract. Particularly for the 
register data, we find that measurement errors are strongly autocorrelated, as, if made, they tend to repeat 
themselves. In contrast, when the register is correct, the probability of an error at the next time period is almost 
zero. Finally, we find that temporary contracts are more widespread than the Labour Force Survey suggests, 
while transition rates between temporary to permanent contracts are much less common than both datasets 
suggest. 

 
Key Words: Temporary contracts; Measurement error; Hidden Markov model; Register data. 

 
 
 

1  Introduction 
 

The issue of temporary employment is receiving increased attention in the economic and political 
debate. Temporary contracts allow employers to circumvent strict hiring and firing regulations (Bentolila 
and Bertola 1990; Booth 1997; Cahuc and Postel-Vinay 2002) and some times even regulations 
concerning wage rigidity (OEDC 2002). Especially during economic recessions, temporary contracts are 
used by employers to adjust their labour force for product demand fluctuations. 

The Netherlands has been a pioneer in flexible employment since the beginning of the 1990’s. 
Contractual flexibility is an important feature of the Dutch labour market. Temporary employment rose 
sharply from 5.9% in 1991 to 17.1% in 2010 (OECD 2012), while growth in temporary employment 
contributed 9.9 percentage points to the total employment growth from 1990 to 2000 (OECD 2002). 
Employers have typically a “minimum capacity” personnel strategy (Sels and Van Hootegem 2001), 
meaning that companies employ their “core” workers with permanent contracts and offer temporary 
contracts to the rest to be able to adjust in times of an economic slump. 

Whereas, in the Netherlands, statistics on temporary contracts were until recently based exclusively on 
data from household and labour force surveys, high-quality register data has become available that may be 
used in conjunction with – or even replace – the survey data. The first confrontation of the two data 
sources revealed some severely diverging figures in the size of temporary employment. In 2009, the share 
of all types of temporary contracts was 15.4% according to the Labour Force Survey (LFS), while 23.6% 
according to the “Polisadministratie” (PA) data, which are register data provided by the Institute for 
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Employee Insurance (UWV) (Hilbers, Houwing and Kösters 2011). As the size of temporary employment 
is very important for the design of labour market policies, Statistics Netherlands undertook the task of 
resolving the discrepancies between the two data sources. The results of the further investigation of the 
data were not very promising. Preliminary results indicate that 15.6% of those having a permanent 
contract according to the LFS appear to have a temporary contract according to the PA, while 18.3% of 
those having a temporary contract with duration shorter than one year according to the LFS appear to have 
a permanent contract according to the PA (Mars 2011). Although part of the inconsistencies can be 
explained by the somewhat different definitions of temporary employment in the two data sources, large 
discrepancies remain even when both using a matched sample and selecting the cases where no 
definitional differences exist.  

As previous research suggests, measurement error can account for the encountered inconsistencies 
between the survey and register data. As far as survey data are concerned, measurement error has been 
recognized as an important source of bias (Rodgers, Brown and Duncan 1993; Pischke 1995; Bollinger 
1996; Rendtel, Langeheine and Berntsen 1998; Bound, Brown and Mathiowetz 2001; Biemer 2011). 
Although no research exists on the error in the measurement of the contract type, research on other labour 
market characteristics, such as employment participation, wages, working hours, industry and occupation, 
indicates that survey data may contain large amounts of measurement error, which may severely bias the 
results of statistical analyses. For example, Biemer (2004) suggests that in the surveys of 1992-1994 of the 
Current Population Survey, 20.9% of the unemployed respondents were incorrectly classified to other 
states. Gottschalk (2005) indicates that two-thirds of the observed nominal-wage reductions without a job 
change were due to measurement error. Specifically, 17% of the workers report a nominal wage reduction 
from year to year while remaining with the same employer. However, when controlling for measurement 
error, yearly nominal wage reductions are faced by no more than 4-5% of the workers that remain with the 
same employer. Using the Panel Study of Income Dynamics (PSID) validation study, Mathiowetz (1992) 
suggests that company registers and survey responses in occupational classification agreed by 87.3%. 
Brown and Medoff (1996) find a 0.82 correlation of company registers and survey responses on the 
establishment size and a 0.86 on company size. 

Research on measurement error in register data is clearly scarcer than on survey data. Register data are 
typically treated as error free and are used as a “golden standard” when confronted with survey data. For 
example, most research using the PSID validation study relies on this assumption (Duncan and Hill 1985; 
Rodgers et al. 1993; Bound, Brown, Duncan and Rodgers 1994; Pischke 1995). However, there is also 
research showing that the “golden standard” assumption may not be always plausible. Kapteyn and Ypma 
(2007) study measurement error in earnings and, although they retain the assumption that register data are 
error-free, they allow for errors in the matching of survey with register data. Specifically, they assume that 
a record in the register is identical to a record in the survey with a certain probability. They conclude that 
introducing this extra source of error changes the pattern of the measurement error in the survey. Abowd 
and Stinson (2005) compare earnings’ reports from the Survey of Income and Program Participation 
(SIPP) and the Detailed Earnings Records (DER). Measurement error is found to be larger in the 
administrative DER data (20%-27%) than in the SIPP data (13%-15%). Comparing the same data sets, 
Gottschalk and Huynh (2010) suggest that measurement error can severely bias measures of income 
inequality. 

The aim of the current paper is to estimate the amount of error in the measurement of contract type in 
the Dutch LFS. For this purpose, the survey data are matched with register data from the PA. The register 
data are not treated as error-free, as we model simultaneously the measurement error in both sources. We 
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use an extended hidden Markov model with two indicators for the type of contract (temporary or 
permanent), each coming from one of our data sources. 

The rest of the paper is organized as follows: in Section 2, we elaborate further on the problem of the 
measurement of temporary employment in the Netherlands by presenting the relevant details on the two 
data sources and showing some descriptive statistics. In Section 3, we present the hidden Markov model 
that was used in this study. Section 4 discusses the results of our analysis. The conclusions of our study 
are presented in Section 5. 

 
2  Description of the two data sources  
 

The two data sources providing information on temporary contracts are the Labour Force Survey (in 
Dutch: Enquête Beroepsbevolking) administered by Statistics Netherlands (in Dutch: Centraal Bureau 
voor de Statistiek – CBS) and the “Polisadministratie”-dataset of the Institute for Employee Insurance 
(UWV). The LFS is a rotating trimonthly survey on individual labour-market characteristics that is 
representative for the Dutch population older than 15 years of age. The survey was launched in 1987, 
while its longitudinal component was introduced in 1999. Since 1999, respondents are interviewed at five 
consecutive panel waves, which makes it possible to study short-term individual developments in the 
labour market. The information that is collected refers to the moment of the interview. The interviews are 
spread rather evenly within the trimester. 

Errors in the measurement of the contract type in the LFS are, as is typical in surveys, the result of 
misreporting by respondents or mistakes in the recording of responses by interviewers. An additional error 
source is the use of proxy interviews. Typically, in the LFS, a single household member provides 
responses for all household members included in the sample, which increases the measurement error. In 
our LFS-sample, 40.1% of all observations refer to proxy interviews. A further possible cause of 
measurement error is that workers may confuse the legal employment contract with the implicit or 
psychological contract with their employer. Especially in younger cohorts where flexible contracts are 
widespread and in sectors with large job mobility and changing employment conditions, such as the health 
sector, workers may report that they have a permanent contract based on promises of the employer, while 
in reality they are employed on a temporary contract. 

The PA is a unique register dataset containing labour market and income information for all insured 
workers in the Netherlands. This dataset is constructed by collecting and matching information from 
various sources, such as the Tax Office (in Dutch: Belastingdienst) – including data from individual tax-
reporting statements (in Dutch: jaaropgave), declarations from temporary work agencies (in Dutch: 
weekaanleveringen) and the Population Register (in Dutch: Gemeentelijke BasisAdministratie 
persoonsgegevens – GBA). The PA is administered by the Dutch Institute for Employee Insurance 
(UWV). 

The UWV has a strong interest in maintaining the high quality and accuracy of the PA as this data 
source is used by several governmental institutions. For example, the social security contributions, the 
housing allowance (in Dutch: huurtoeslag), and the health care allowance (in Dutch: zorgtoeslag) are 
determined using information from this dataset. To improve the data quality, the PA has undergone 
several revisions since 2006. There is no missing data as the submission of tax-reporting statements is 
compulsory for employers. However, whereas the dataset contains monthly information, employers 
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typically submit the relevant information only once per year (the moment of submission is not possible to 
be retrieved). This may create possible mistakes for the period between two consecutive submissions, 
especially in the measurement of the type of contract, which is clearly not the most important variable for 
the users of the PA. Therefore, we may expect that if a mistake is made in the contract type, it persists till 
the moment that the employer submits the following report to the UWV. This means that the measurement 
error in the PA can be expected to be serially correlated.  

For our study, we select the LFS-respondents that were interviewed for the first time in the first 
trimester of 2007. Since we focus on employed individuals, we retained in the sample individuals aged 
from 25 to 55. After implementing the age restriction, we ended up with a sample size of 11,632 
individuals. For all these individuals, the information from the LFS was matched with the monthly 
information from the PA by Statistics Netherlands using the social security number of individuals. The 
achieved matching level was 98% and all relevant inconsistencies were resolved (the matching and the 
quality control was done by Statistics Netherlands). Our final dataset has the form of a person-month file 
for 11,632 individuals with 15 observations corresponding to the period January 2007 – March 2008 and 
containing full information from the PA and partially observed information (5 observations – one response 
per 3 months) from the LFS. The matched dataset is illustrated in Table 2.1. This panel dataset is 
unbalanced for the LFS as our survey data suffer from some attrition. More specifically, from the 11,632 
individuals that responded to the first interview, 9,970 were left in the LFS-sample in the second 
interview, 9,113 for the third, 8,953 for the fourth and 8,629 for the last interview. In the PA-data for this 
sample there is no attrition, so the sample is fully balanced. 

 
Table 2.1 
An illustration of our sample 
 

LFS             

Polisadministratie             

 Jan-07 Feb-07 Mar-07 Apr-07 May-07 Jun-07 Jul-07 Aug-07 Sep-07 Oct-07 Nov-07 Dec-07 

LFS             

Polisadministratie             

 Jan-08 Feb-08 Mar-08          
 

Note: This illustrates how the rotation panel of the LFS corresponds to monthly observations from the Polisadministratie. This 
table refers to individuals that were interviewed every first month of the trimester. A cell that is shaded gray indicates a 
valid observation. 

 

The variable of main interest for our study is the contract type, which takes on three possible values: 
permanent contract, temporary contract, and “other”. 

The contract type is derived from the main job, which means that information on other jobs that 
individuals may hold is ignored. Individuals who are not in paid employment are classified as belonging to 
the “other” state. It should be noted that the latter state is rather heterogeneous as it includes among others 
the categories self-employed, unemployed, and in full-time education. However, the inclusion of this state 
in our analysis is necessary as, in Markov models, latent states should be mutually exclusive and 
exhaustive. 

Table 2.2 presents the observed contract type distribution for the first month of the reference period 
according to the survey and the register data. The largest discrepancies occurs in the percentages of 
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individuals holding permanent and temporary contracts, and less in the “other” category. According to the 
survey data, in January 2007, 8% of the labour force was employed with a temporary contract, whereas in 
the register data this percentage is quite larger (12.3%). 

 
Table 2.2 
Distribution of contract types according to the survey and the register 
 

    Survey   Register  

Permanent    0.659    0.602  

Temporary    0.080    0.123  

Other    0.261    0.275  

Total    1.0    1.0  

Cases   3,887   11,632  
 

Note: These frequency distributions refer to the first month of the reference period, January 2007. The LFS-sample is smaller 
than the PA-sample as only 3,887 LFS-respondents were interviewed for the first time in January 2007. The remaining 
respondents were interviewed in February and March 2007. 

 
Table 2.3 cross-tabulates the contract type from the two sources for the pooled sample. This table 

confirms the large discrepancies between the two data sources reported by Statistics Netherlands. These 
discrepancies concern primarily individuals that are recorded as working on temporary contracts. More 
specifically, 50.2% of the individuals who are recorded as having a temporary contract in the register data 
appear to have a permanent contract in the survey. Smaller, but still existent, inconsistencies emerge for 
individuals that are recorded as having a permanent contract or as being in another state. 

The inconsistencies in the classification of individuals that were presented in Table 2.3 have severe 
implications on the transitions between the different states. Table 2.4 presents the three-month transition 
rates for the cases with a valid observation from the LFS. This table indicates that the register data contain 
more transitions than the survey data. Specifically, from individuals that have a temporary contract in 
month 3,t   5.7% have a permanent contract in month t  according to the survey data and 8.5% 

according to the register data. 

 
Table 2.3 
Cross-tabulation of contract type according to the survey and the register 
 

 Register data    Survey data  

  Permanent   Temporary   Other   Total  

Permanent    0.944    0.039    0.017    1.0  

Temporary    0.502    0.437    0.061    1.0  

Other    0.081    0.030    0.889    1.0  

Total    0.667    0.087    0.246    1.0  

Cases    32,225    4,216    11,856    48,297  
 

Note: The frequency distributions are calculated for the pooled sample. The grand total represents the number of LFS records 
included in our analysis in the pooled sample. 
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Table 2.4 
Observed 3-month transitions in LFS and PA 
 

Observed transitions from the survey data  
   Contract in t
    Permanent   Temporary   Other  

 Contract in t-3   Permanent   0.981 0.009 0.010  
  Temporary   0.057 0.889 0.054  
  Other   0.017 0.035 0.948  
  Total   0.674   0.089   0.237  

Observed transitions from the register data  
   Contract in t
    Permanent   Temporary   Other  

Contract in t-3   Permanent   0.967 0.018 0.015  
  Temporary   0.085 0.860 0.055  
  Other   0.018 0.036 0.946  
  Total   0.624 0.128 0.247  

 

Note: For both tables, these are the transition rates over a 3-month period and for 34,820 cases of our pooled sample. These 
cases come from LFS-respondents that appear at least twice in our sample. 

 
3  The hidden Markov model used to estimate the measurement error 

in the contract type  
 

The model we use to estimate the error in the measurement of the contract type is a hidden or latent 
Markov model. This model has been used for the estimation of measurement error in variables from 
employment surveys (see, among others, van der Pol and Langeheine 1990; Rendtel et al. 1998; Bassi, 
Hagenaars, Croon and Vermunt 2000; Biemer and Bushery 2000; Biemer 2011; Pavlopoulos, Muffels and 
Vermunt 2012). Our application differs somewhat from these applications in that we have two 
measurements instead of a single one for the outcome variable; that is, the contract type from the PA and 
from the LFS. Other examples of applications of latent Markov models using multiple response variables 
are Langeheine (1994), Paas, Vermunt and Bijmolt (2007), Bartolucci, Lupparelli and Montanari (2009) 
and Manzoni, Vermunt, Luijkx and Muffels (2010). 

Let itC  and itE  denote the observed state of person i  at time point t  according to the register and the 

survey, respectively, where 1, ,i N   and 0, , .t T   To deal with the fact that itE  is observed only 

every third month, we use the indicator variable it  which equals 1 if the survey information is available 

for the month concerned and 0 otherwise. In addition to the measurements from the register and survey, 
the hidden Markov model contains an unobserved variable representing an individuals’ true contract type 
at time point .t  We denote this latent state by .itX  Note that , ,it itC E  and itX  can take on three values 

representing the categories permanent, temporary, and other. We refer to a particular category of these 
variables by , ,t tc e  and ,tx  respectively. 

The path diagram for the hidden Markov model of interest is depicted in Figure 3.1. For simplicity 
reasons, this path diagram refers only to individuals that entered the LFS-sample in a specific month. For 
this reason, from the four observations that are illustrated in the diagram, only those in months 3t   and 
t  are non-missing for the LFS. As can be seen, the latent contract type itX  follows a first-order Markov 

process; that is, the true contract at time point , ,itt X  is independent of the contract at time point , ,itt X   

for < 1,t t   conditionally on the state at  11, .i tt X   Another assumption is that the observed states 
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are independent of one another within and between time points, which is referred to as the local 
independence assumption or the assumption of independent classification errors (ICE). It can also be seen 
that itE  is observed only each third time point. 
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Figure 3.1 Path diagram for the hidden Markov model with two (partially) observed indicators 

 
As indicated in the previous section, we use data for 15 months, which means that t  runs from 0 to 
= 14.T  The probability of following a certain observed path over the 1T   months period can be 

expressed as follows: 
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 (3.1) 

The relevant probabilities appearing in this equation are the initial state probabilities  0 0 ,iP X x  

the time-specific transition probabilities   1 1 ,it t i t tP X x X x    the measurement error probabilities 

for the register   ,it t it tP C c X x   and the measurement error probabilities for the survey 

  .it t it tP E e X x   

So far, we assumed that the measurement error is uncorrelated across time points – that the ICE 
assumption holds – which may be unrealistic in our application. First of all, as indicated in the previous 
section, the measurement error in the register data is likely to be serially correlated; that is, when there is a 
mismatch between itX  and ,itC  this increases the likelihood of having the same error at time point 1.t   

This is the result of the fact that employers make mistakes in their registers which are not adapted until a 
regular control takes place. In the survey data and especially since we have prospective and not 
retrospective data, we have no reason to justify a similar “direct” autocorrelated error structure. However, 
the errors in the survey data may be correlated over time as a result of the fact that the probability of 
making an error may differ across groups of individuals, which is sometimes referred to as differential 
measurement error. Specifically, measurement error in the survey data is likely to be higher in sectors 
where mobility is common and ambiguity exists regarding the agreements between employers and 
workers, such as the health sector. Moreover, errors may be larger for young workers that care less about 
long-term employer relationships and therefore may have a less clear view than older respondents with 
respect to the formal arrangements they have on their contract. Figure 3.2 depicts the path diagram of the 
model correcting for possible heterogeneity and autocorrelation in the measurement error, where V  

represents the observed variables that introduce across-time correlation in the measurement error in the 
survey data. 
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Figure 3.2 Path diagram for the hidden Markov model with two indicators and correlated errors 

 
Because it is also important to control for the heterogeneity in the structural part of a Markov model 

(Shorrocks 1976), the model is further expanded with – possibly time-varying – observed variables 
affecting the initial state and latent transition probabilities, following the approach of Vermunt, 
Langeheine and Böckenholt (1999). We denote these control variables by .itZ  However, these observed 

control variables cannot fully capture heterogeneity in the latent transition probabilities as these may be 
also affected by unobserved personal traits, such as motivation and ability. Following the most standard 
approach in the framework of hidden Markov models, we correct for unobserved heterogeneity by 
assuming that the population consists of a small number of latent classes with different initial state and 
transition probabilities (Poulsen 1990). In this way, we avoid the unattractive distributional assumptions 
on the latent variable that are adopted by continuous random-effects models (Heckman and Singer 1984; 
Vermunt 1997). The number of latent classes K  can be determined using model fit indices. 

In our mixed hidden Markov model, the joint probability of having a particular observed state path 
conditionally on predictor values can be expressed as: 
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 (3.2) 

equation 3.2 specifies a finite mixture model with K  latent classes to account for unobserved 
heterogeneity in the initial latent state and in the latent transition probabilities. k  is the probability of 

belonging to the latent class , itk V  is the vector of covariates affecting the measurement error in the 

survey data (age and proxy interview) and itZ  is the vector of the covariates affecting the latent transition 
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probabilities (gender, age, education and country of origin). 0iZ  is the vector of the values of these 

covariates in the initial time point. 

Compared to equation 3.1, in equation 3.2, the error probabilities in the survey data are allowed to 
depend on covariates   .itV  The covariate effects on these error probabilities are modelled using a logit 

model. Moreover, the error probabilities in the register data are allowed to depend on the lagged observed 
and lagged true contract type. Note that  1i tX   and  1i tC   can take on three values, which implies that 

there are nine (3 times 3) different sets of error probabilities in the register data, one for each possible 
combination of lagged observed and latent contract. Because it is not meaningful to estimate all these error 
probabilities freely, we used a more restricted model. More specifically, we define a logit model for 

    1 1 1 1, ,it t it t i t t i t tP C c X x X x C c        of the form 
1 1, , , , ,

t t t t t tc x c c x x 
    with 

1 1, , ,t t t tc c x x 
  

being a free parameter when 1 1t t t tc c x x     (when the same error is made between adjacent time 

points) and otherwise being equal to 0. This model, which contains six additional parameters compared to 
a model without lagged effects on the misclassification probabilities, expresses that the likelihood of 
making a specific error depends on whether the same error was made at the previous time point. Similar 
restricted correlated error structures were used by Manzoni et al. (2010) in a latent Markov model for 
retrospectively collected responses. 

The initial state and latent transition probabilities are also restricted using logit models, while for the 
latent transitions we use models with separate coefficients per origin state. The same set of covariates 
  and , respectivelyi0 itZ Z  are introduced in the models estimating the initial state and latent transition 

probabilities. Note that the mixed hidden Markov model described in equation 3.2 assumes a first-order 
Markov process for the true states conditionally on the individuals’ covariate values and time-constant 
unobserved effects, but this assumption does not need to hold after marginalizing over covariate values 
and latent classes. A simple first-order Markov model would be inappropriate for employment transitions 
especially at the month level. The reason is that there is duration dependence in unemployment. For 
example, it is unlikely to assume that an individual that was unemployed in months 3 to 9 has the same 
probability of being in a particular labour market state in month 10 as an individual that was unemployed 
only in month 9. However, in a hidden Markov model, the bias in the classification error due to the 
violation of the Markov assumption is minimal. Using simulations, Biemer and Bushery (2000) show that 
even in cases of a severe violation of the Markov assumption, in a hidden Markov model, the bias in the 
estimation of classification error in unemployment does not exceed 3%. 

Maximum likelihood estimates of the model parameters are obtained using a variant of the 
Expectation-Maximization (EM) algorithm (Dempster, Laird and Rubin 1977) referred to as the forward-
backward or Baum-Welch algorithm (Baum, Petrie, Soules and Weiss 1970). We use an extension of this 
algorithm for mixed latent Markov models with covariates as described – among others – in Vermunt, 
Tran and Magidson (2008) and Pavlopoulos et al. (2012). In the E-step, the expected complete data log-
likelihood is computed, which involves computing the relevant marginal posterior probabilities for the 
latent classes and latent states. In the M-step, the model parameters are updated using standard algorithms 
for logistic regression analysis, where the marginal posterior probabilities are used as weights. This 
algorithm is implemented in the program Latent GOLD (Vermunt and Magidson 2008), which also 
provides standard errors for the model parameters (other popular programs for estimating latent Markov 
models are MPLUS, LEM and PANMARK). 

Missing values due to the survey construction (as respondents are interviewed once per 3 months) are 
Missing Completely At Random (MCAR). Missing values due to attrition in the survey are treated as 
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Missing At Random (MAR). More specifically, following the standard manner within the ML estimation 
procedure, we maximize the log-likelihood for the incompletely observed data, which is obtained by 
integrating out the missing values. This procedure is valid under MAR. 

As the LFS has a complex sampling design, the model has used the sampling weights of the survey, 
namely a single weight per observation. These weights are used in a pseudo ML estimation procedure, 
where the standard errors are adjusted for the weighting using a linearization estimator (Skinner, Holt and 
Smith 1989). Since these are trimester weights, they are not suitable for estimating population totals at the 
monthly level. However, as we use information from the register for all the LFS respondents that entered 
the survey in a certain trimester, these weights are appropriate for the estimation of hidden Markov 
models. 

 
4  Results for the matched LFS and PA data 
 

In total, we estimate the nine models that are presented in Table 4.1. All these models are first order 
hidden Markov models with two indicators for the contract type as presented in the Section 3. The error 
probabilities are time homogeneous. The (latent) transition probabilities are assumed to be time 
heterogeneous; that is, the transition logits are allowed to depend on time and time squared. These models 
are also finite mixture model that include three latent classes to control for unobserved heterogeneity in 
the initial latent state and in the latent transition probabilities. This number of latent classes was selected 
by comparing variants of Models B” and C with different number of latent classes (the results of these 
tests are available on request). 

Models A’, A” and A specify independent classification errors (ICEs) for the survey, the register and 
both datasets, respectively. Model B’ specifies the error in the survey to depend on covariates itV  age and 

proxy interview, Model B” specifies serially correlated errors in the register, while Model B combines 
these two specifications. Models C’ and C” extend Model B” by introducing predictors itZ  (gender, age, 

education and country of origin) for the transitions and for both the initial state and the transitions, 
respectively. Model C extends Model B by introducing the same predictors. 

Table 4.1 presents the log-likelihood, the Bayesian Information Criterium (BIC), the Akaike 
Information Criterium (AIC) values and the number of parameters for nine of the models that were 
estimated with the matched LFS and PA data. In all models, the (latent) transition probabilities are 
assumed to be time heterogeneous; that is, the transition logits are allowed to depend on time and time 
squared. 

Model A specifies that both the survey and the register data contain (independent) classification errors. 
As this model fits better than the restricted Models A’ and A”, which assume that only the survey (Model 
A’) or only the register (Model A”) contains errors, we conclude that there is evidence that both sources 
contain classification errors. 

Models B’, B” and B relax the ICE assumption for the survey, the register, and both the survey and the 
register, respectively. More specifically, the measurement error in the survey data is allowed to depend on 
the respondent’s age and on whether the information was obtained using a proxy interview, and the 
measurement error in the register data is allowed to depend on the lagged latent and observed contract 
type. The latter is achieved by estimating a separate set of error probabilities for repeating the same error 
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across occasions. Restricted versions of Model B are estimated as well to examine whether the violation of 
the ICE assumption applies to the measurement error of only the survey data (Model B’) or only the 
register data (Model B”). The fact that Model B” fits better than Models A and B’ indicates that the ICE 
assumption should be relaxed for the indicator of the register data. Model B improves marginally the fit 
compared to Model B”, which indicates that the ICE assumption for the survey indicator has also to be 
relaxed in a model without predictors for the transitions and for the initial state.  
 
 
 
 

Table 4.1 
Fit measures for eight models estimated with the matched LFS and PA data 
 

Model Log-
likelihood

BIC
(LL) 

AIC
(LL) 

Parameters 2L  df P-value 

A’: ICE survey  -286,814 574,118 573,716 44 240,543.4 69,327 1.6e-18,454
A”: ICE register  -454,196 908,882 908,480 44 575,307.7 69,327 8.5e-78,021
A: ICE both  -284,413 569,384 568,926 50 235,742.1 69,321 4.8e-17,717
B’: A + non-ICE survey  -283,573 567,748 567,254 54 426,966.7 69,317 6.6e-50,302
B”: A + non-ICE register  -246,054 492,732 492,220 56 435,025.8 69,315 2.9e-51,771
B: A + non-ICE both  -246,000 492,669 492,120 60 477,741.8 69,311 7.6e-59,639
C’: B” + predictors transitions  -245,282 491,590 490,748 92 486,186.8 69,279 1.8e-61,222
C”: B” + predictors initial & transitions  -241,990 485,140 484,189 104 479,603.4 69,267 4.9e-60,003
C: B + predictors initial & transitions  -242,006 485,217 484,229 108 479,635.2 69,263 1.2e-60,010
 

Note: Models A’, A” and A specify independent classification errors (ICEs) for the survey, the register and both datasets, 
respectively. Model B’ specifies the error in the survey to depend on age and proxy interview, Model B” specifies serially 
correlated errors in the register, while Model B combines these two specifications. Models C’ and C” extend Model B” by 
introducing gender, age, education and country of origin as predictors for the transitions and for both the initial state and 
the transitions, respectively. Model C extends Model B by introducing the same predictors. All models are finite mixture 
models with 3 latent classes to correct for unobserved heterogeneity in the initial latent state and in the latent transition 
probabilities. Moreover, all models assume time heterogeneity for the latent transition probabilities. Specifically, we 
condition the latent transition probabilities on a linear trend for the month of the observation as well as on its square. 

 
 

Finally, we extended Models B” and B by including covariates (gender, age, education and country of 
origin) in the models for the latent transition and the initial latent state probabilities (Model C” and C, 
respectively). Model C’ is a restricted version of Model C” in which predictors are allowed to affect only 
the latent transition probabilities. The fact that Model C” fits better than Model B” and Model C’ indicates 
that covariates have a significant effect on both the transitions and the initial states. The fact that, 
according to two of the three measures, Model C fits worse than Model C” means that the ICE assumption 
in the survey data should be retained in the model including predictors for the transitions and for the initial 
state (as the results of Model C show, the size of the measurement error in the survey data changes only 
marginally with age and proxy interview. This is further evidence in favor of retaining the ICE assumption 
for the survey indicator. Actually, the estimates for the size of the measurement error in both the survey 
and the register data and for the latent transition probabilities are very similar between the models C, C’ 
and C”. This shows that the results of our model are robust to small model misspecifications). In what 
follows, we present estimates derived from Model C” (the estimates from Models C and C’ are available 
on request). 

We investigated various alternative non-ICE models. Specifically, we studied whether the 
measurement error in the survey data differs for sectors with large contract and employment mobility, 
such as the health sector, but this did not turn out to be the case. For the register data, we looked at 
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alternative restricted specifications for the correlated errors, but these turned out to be worse in terms of 
model fit than the models from Table 4.1. 

Now let us look at the amount of classification error in the two data sources. According to equation 
3.2, for the survey and register data, this is represented by the probabilities  it it it tP E e X x   and 

    1 1 1 1, , ,it it it t i t t i t tP C c X x X x C c        respectively. The estimates from Model C” are 

presented in Tables 4.2 and 4.3. Specifically, Table 4.2 shows that permanent contracts and the other state 
are measured very accurately in LFS as almost all individuals are correctly classified. This is indicated by 
the large probabilities in the main diagonal of the table. Some error is found for individuals that have in 
reality a temporary contract. 12.5% of these individuals report that they have a temporary contract, while 
another 4.2% report being in another state. 
 

 

Table 4.2 
The size of the measurement error in the survey data according to Model C” 
 

  Observed contract in t  

Latent contract in t  Permanent  Temporary  Other  

Permanent   0.998   0.001   0.002  

Temporary   0.125   0.832   0.042  

Other   0.004   0.005   0.991  
 

Note: Standard errors are always smaller than 0.0001. 

 
 

Table 4.3 reports the estimated measurement-error probabilities for the register data, which according 
to equation 3.2 depend on the lagged observed and latent state. Due to the restrictions imposed (see 
Section 3), separate error (logit) parameters were estimated for repeating the same error between months 

1t   and .t  These situations correspond to the shaded cells in Table 4.3. As can be seen, the 
measurement errors are strongly autocorrelated; that is, if an error was made in month 1t   and if it was 

possible to repeat the same error (if one remained in the same latent state), the error almost surely 
persisted in month .t  For instance, if an individual with a permanent contract in month 1t   was 
registered mistakenly as having a temporary contract and she had still a permanent contract in month ,t  

then she had a 0.968 probability of being wrongly registered again as having a temporary contract in .t  

For the other five possible errors, the probability of a persisting measurement error is somewhat lower, but 
it is never below 0.84. 

A different picture emerges when no error is made at time point 1t   or when an individual changes 
latent state between 1t   and t  and therefore no error repetition is possible. In these cases, register data 

is almost error-free. For instance, when an individual was correctly registered as having a permanent 
contract in month 1t   and has a temporary contract at ,t  the contract type is registered correctly as 

temporary at t  with a probability of 0.930. In practice, this means that the initial registration of the 

contract is crucial for the PA. If this registration is correct, then the registered contract type of the 
individual can be fully trusted until some true labour market change takes place. In contrast, if the contract 
type of the individual is initially registered wrongly, then this error will almost surely persist until the 
individual changes contract. 
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Table 4.3 
Conditional probabilities of measurement error in register data according to Model C” 
 

   Observed contract in t   
Observed contract  
in 1t   

Latent contract  
in t  

Latent contract 
in 1t  Permanent Temporary Other 

Permanent   Permanent  Permanent 0.986 0.009 0.004
Permanent   Permanent  Temporary 0.986 0.009 0.004
Permanent   Permanent  Other 0.986 0.009 0.004
Permanent   Temporary  Permanent 0.045 0.930 0.025
Permanent   Temporary  Temporary 0.968 0.032 0.001
Permanent   Temporary  Other 0.045 0.930 0.025
Permanent   Other  Permanent 0.005 0.005 0.990
Permanent   Other  Temporary 0.005 0.005 0.990
Permanent   Other  Other 0.913 0.000 0.087
Temporary   Permanent  Permanent 0.027 0.973 0.000
Temporary   Permanent  Temporary 0.986 0.009 0.004
Temporary   Permanent  Other 0.986 0.009 0.004
Temporary  Temporary  Permanent 0.045 0.930 0.025
Temporary   Temporary  Temporary 0.045 0.930 0.025
Temporary   Temporary  Other 0.045 0.930 0.025
Temporary   Other  Permanent 0.005 0.005 0.990
Temporary   Other  Temporary 0.005 0.005 0.990
Temporary   Other  Other 0.001 0.842 0.157
Other   Permanent  Permanent 0.039 0.000 0.961
Other   Permanent  Temporary 0.986 0.009 0.004
Other   Permanent  Other 0.986 0.009 0.004
Other   Temporary  Permanent 0.045 0.930 0.025
Other   Temporary  Temporary 0.005 0.099 0.896
Other   Temporary  Other 0.045 0.930 0.025
Other   Other  Permanent 0.005 0.005 0.990
Other   Other  Temporary 0.005 0.005 0.990
Other   Other  Other 0.005 0.005 0.990
 

Note: Standard errors are always smaller than 0.0001. 
 
 

To estimate the overall amount of error in the register data, we use the posterior probability of having a 
particular type of latent contract at each time point. This probability is estimated for all individuals in our 
sample by the hidden Markov model. These estimates are quite accurate as the classification error is only 
0.016. The averages of these probabilities over individuals and time points are presented in Table 4.4. By 
comparing the probabilities in the main diagonal of Tables 4.1 and 4.4, we see that the error is larger in the 
register indicator than in the survey indicator. Specifically, individuals that are truly working on a 
temporary contract have a 0.237 probability of being registered as having a permanent contract (0.125 in 
the survey data) and a 0.079 probability of being registered as being in the other state in the PA (0.042 in 
the survey data). There is also some classification error for individuals that are truly working on a 
permanent contract, as they have a 0.081 probability of being registered as temporary workers and a 0.031 
probability of being registered to another state. 
 
Table 4.4 
The size of the measurement error in the register data according to Model C” 
 

  Observed contract in t
Latent contract in t  Permanent Temporary Other
Permanent  0.888 0.081  0.031 
Temporary  0.237 0.684  0.079 
Other  0.032 0.017  0.951 
 

Note: These probabilities are the average posterior probabilities of having a particular type of latent contract as estimated by 
Model C” with classification error 0.016. 
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We are not only interested in the measurement error itself, but also in how much it affects the estimate 
of the size of temporary employment. Using again the average posterior probabilities of having a 
particular type of latent contract, we estimate the size of temporary employment in the Netherlands. In 
Table 4.5, we compare the size of temporary employment as estimated by the hidden Markov model with 
the observed distributions of the contract type from the LFS and the PA. The average posterior probability 
of being in a temporary contract is 10.9% and lies in between the values obtained from LFS and PA. 
 

 

Table 4.5 
The average size of temporary employment according to Model C” 
 

   Observed   Latent  

  Survey   Register     

Permanent   0.667   0.597   0.634  
Temporary   0.087   0.130   0.109  
Other   0.246   0.273   0.257  

Cases   48,297   174,480   174,480  
 

Note: The latent probabilities are the average posterior probabilities of having a particular type of latent contract as estimated by 
Model C” with classification error 0.016. 

 

 

Table 4.6 presents the evolution of the size of temporary employment according to the two data 
sources and according to the hidden Markov model. This table confirms the finding that the size of 
temporary employment according to our model is in between that of the register data and that of the 
survey data. It can also be seen that in the period of reference, the proportion of temporary employed 
increased. The small drop that is observed in the register data in January 2008 (month 13) compared to 
December 2007 (month 12) may be explained by the fact that many temporary contracts end on December 
31st, and that, moreover, some of these contracts are converted into permanent contracts. The somewhat 
larger fluctuation in the size of temporary employment according to the survey data is due to the fact that 
respondents of the LFS are interviewed once per three months and thus the various monthly estimates 
come partly from different survey respondents. 

Not only the aggregate change, but also the individual level change is important to be investigated; that 
is, the probability of making a transition from temporary to permanent employment and vice versa. These 
transition probabilities are presented in Table 4.7. More specifically, Table 4.7 presents the (average) 
latent transition probabilities obtained from Model C”. The transition probabilities refer to a period of 
three months and are averaged over the 12 three-month periods in our data. If we compare the findings of 
Table 4.7 with those of Table 2.4, we see that the latent transitions probabilities are much smaller than 
those of both the register and the survey data. According to the latent transition probabilities, 3.2% of the 
individuals with a temporary contract were working with a permanent contract three months later, but 
according to the survey and register data, these percentages are 5.7% and 8.5%, respectively. This shows 
that measurement error inflates upwards the size of transition probabilities. Such an inflation would be 
clearly expected when errors are independent over time (Hagenaars 1990, 1994). When errors are not 
independent over time, as in our case, the expectation is less clear as errors may either increase or reduce 
the transitions, depending on the nature and the size of the association. The same pattern of 
underestimation of stability can be observed for the permanent contract state: 98.1% and 96.7% stayed in 
this state according to the survey and the register data, respectively, while the true stability is 98.7%. 
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Table 4.6 
The evolution of the proportion of temporary employed for the period between January 2007 and March 2008 
 

Source 
Month   Survey Register  Latent 

1  0.080 0.123  0.102 
2  0.082 0.124  0.103 
3  0.085 0.123  0.102 
4  0.084 0.128  0.103 
5  0.084 0.129  0.103 
6  0.090 0.129  0.104 
7  0.089 0.130  0.105 
8  0.087 0.131  0.106 
9  0.091 0.135  0.110 

10  0.087 0.134  0.112 
11  0.088 0.135  0.114 
12  0.091 0.135  0.114 
13  0.090 0.131  0.116 
14  0.089 0.131  0.118 
15  0.096 0.132  0.121 

 

Note: Survey data include trimonthly observations per individual, while register data include monthly observations per 
individual. The latent probabilities are the average posterior probabilities of having a particular type of latent contract as 
estimated by Model C” with classification error 0.016. 

 

 

 

Table 4.7 
Observed 3-months transitions in LFS and PA and latent transitions according to Model C 
 

Latent transitions  
   Permanent Temporary  Other 
Contract in t-3  Permanent  0.987 0.006  0.007 
 Temporary  0.032 0.931  0.037 
 Other  0.009 0.030  0.961 
 Total  0.634 0.110  0.256 
 

Note: The latent probabilities are the average posterior probabilities of having a particular type of latent contract as estimated by 
Model C” with classification error 0.016. 

 
 

5  Conclusions  
 

In this paper, we investigated the measurement error in the type of the employment contract in the 
Dutch LFS by matching its longitudinal component from 2007 and early 2008 with a unique register 
dataset, the PA. We applied several hidden Markov models, in which the true contract type is treated as a 
latent state and in which the survey and register information serve as observed indicators of an 
individual’s true contract. We modeled the measurement error in the two data sources by taking into 
account that the error in the register is correlated across occasions. 

Our results show that the register data contain more error than the survey data, and therefore cannot be 
used as a golden standard. However, the improvement of the initial registration in the register data can 
significantly improve their quality as measurement error in the indicator of the contract type that comes 
from this dataset is serially correlated. 

The measurement error results into an underestimation of the percentage of individuals that are 
working on a temporary contract. In the LFS this percentage is 8.9%, whereas after correction for 
measurement error this percentage rises to 10.9%. Another effect of measurement error is that it yields 
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severely overestimated transition probabilities. According to the LFS and PA, the transition probability 
between temporary to permanent employment in a three-month period is 5.7% and 8.5%, respectively, 
whereas the corresponding latent transition probability is only 3.2%. This finding is particularly important 
for Dutch policy makers as it clearly indicates that there is much less mobility from temporary to 
permanent employment than originally thought.  

The results of this study remain fairly stable across the model specifications that we tested. This shows 
that the results are robust to small model misspecifications. However, results remain somehow dependant 
on model assumptions. Further sensitivity tests and applications can further verify the validity of our 
results. Future research may focus particularly on sensitivity tests with the use of Monte Carlo 
simulations. 
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Generalized framework for defining the optimal inclusion 
probabilities of one-stage sampling designs for multivariate 

and multi-domain surveys 

Piero Demetrio Falorsi and Paolo Righi1 

Abstract 

This paper introduces a general framework for deriving the optimal inclusion probabilities for a variety of 
survey contexts in which disseminating survey estimates of pre-established accuracy for a multiplicity of both 
variables and domains of interest is required. The framework can define either standard stratified or incomplete 
stratified sampling designs. The optimal inclusion probabilities are obtained by minimizing costs through an 
algorithm that guarantees the bounding of sampling errors at the domains level, assuming that the domain 
membership variables are available in the sampling frame. The target variables are unknown, but can be 
predicted with suitable super-population models. The algorithm takes properly into account this model 
uncertainty. Some experiments based on real data show the empirical properties of the algorithm. 

 
Key Words: Optimal Allocation; Multi-way stratification; Domain estimates; Balanced Sampling. 

 
 

1  Introduction 
 

Surveys conducted in the context official statistics commonly produce a large number of estimates 
relating to both different parameters of interest and highly detailed estimation domains. When the domain 
indicator variables are available for each sampling unit in the sampling frame, the survey sampling 
designer could attempt to select a sample in which the size for each domain is fixed. Thus, direct estimates 
can be obtained for each domain and sampling errors at the domain level would be controlled. We hereby 
present a unified and general framework for defining the optimal inclusion probabilities for uni-stage 
sampling designs when the domain membership variables are known at the design stage. This case may be 
the most recurrent scenario in establishment surveys and other survey contexts, such as agricultural 
surveys or social surveys if the domains are geographical (e.g., type of municipality, region, province, 
etc.). The growing development of data integration among administrative registers and survey frames may 
also increase the applicability of the approach presented herein in social surveys too. The proposal may be 
useful for planning an optimal second phase survey if, during the first phase, the domain membership 
variables have been collected.  

The problem of defining optimal sampling designs has been addressed in some recent papers. Gonzalez 
and Eltinge (2010) present an interesting overview of the approaches for defining optimal sampling 
strategies. The optimization problem is usually dealt with in stratified sampling designs with a fixed 
sample size in each stratum. The optimal allocation in stratified samplings for a univariate population is 
well-known in sampling literature (Cochran 1977). In multivariate cases, where more than one 
characteristic is to be measured on each sampled unit, the optimal allocation for individual characteristics 
is of little practical use unless the various characteristics under study are highly correlated. This is because 
an allocation which is optimal for one characteristic is generally far from being optimal for others. The 
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multidimensionality of the problem leads to definition of a compromise allocation method (Khan, Mati 
and Ahsan 2010) with a loss of precision compared to the individual optimal allocations. Several authors 
have discussed various criteria for obtaining a feasible compromise allocation - see e.g., Kokan and Khan 
(1967), Chromy (1987), Bethel (1989), Falorsi and Righi (2008), Falorsi, Orsini and Righi (2006) and 
Choudhry, Rao and Hidiroglou (2012). 

Recently, some papers have focused on finding optimal inclusion probabilities in balanced sampling 
(Tillé and Favre 2005; Chauvet, Bonnéry and Deville 2011), a general class of sampling designs that 
includes stratified sampling designs as special cases. In particular, Chauvet et al. (2011) propose the 
adoption of the fixed point algorithm for defining the optimal inclusion probabilities. Nevertheless, the 
above mentioned papers do not address the case in which the balancing variables depend on the inclusion 
probabilities and present only a partial solution to the problem related to the fact that the sampling 
variance is an implicit function of the inclusion probabilities. Choudhry et al. (2012) propose an optimal 
allocation algorithm for domain estimates in stratified sampling (if the estimation domains do not cut 
across the strata). Their algorithm represents a special case of the approach proposed herein. The 
methodological setting illustrated here is a substantial improvement with respect to the earlier version of 
the methodology described in Falorsi and Righi (2008) which only accounted for the case in which the 
values of the variables of interest were known and the measure of accuracy was expressed by the design 
variance; furthermore, the previous version did not consider the fact that the design variance, bounded in 
the optimization problem, is an implicit function of the inclusion probabilities. This paper studies the more 
realistic case in which the variables of interest are not known and must be estimated. Moreover, it 
explicitly deals with the problem that the anticipated variances are implicit functions of the inclusion 
probabilities. The new optimization algorithm can be easily performed because it is based on a general 
decomposition of the measure of accuracy. A general sampling design which includes most of the one-
stage sampling designs adopted in actual surveys is proposed, e.g., Simple Random Sampling Without 
Replacement (SRSWOR), Stratified SRSWOR, Stratified PPS, Designs with incomplete stratification, etc. 
The framework is based on a joint use of balanced sampling designs (Deville and Tillé 2004) which, 
depending upon the different definitions of the balancing equations, represents a wide-ranging sampling 
design and superpopulation models for predicting the unknown values of the variables of interest. The 
paper is structured as follows. Section 2 introduces definitions and notations. Section 3 and Section 4 
illustrate the sampling design and the Anticipated Variance. The algorithm for defining the optimal 
inclusion probabilities is described in Section 5. In Section 6, some experiments based on real business 
data show the empirical properties of the algorithm. The conclusions are given in Section 7.  

 
2  Definitions and notation 
 

In this section, we introduce the concepts of estimation domain and planned domain which play a key 
role in the framework presented herein.  

Let U  be the reference population of N  elements and let  1, ,dU d D   be an estimation 

domain, i.e., a generic sub-population of U  with dN  elements, for which separate estimates must be 

calculated. Let rky  denote the value of the thr   1, ,r R   variable of interest attached to the thk  

population unit and let dk  denote the domain membership indicator for unit k  defined as 
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1 if 

.
0 otherwise

d
dk

k U  


 (2.1) 

We assume that the dk  values are available in the sampling frame and more than one value dk  

 1, ,d D   can be 1 for each unit ;k  therefore, the estimation domains can overlap. 

The parameters of interest are the D R  domain totals 

    1, , ; 1, , .dr rk dkk U
t y r R d D


       (2.2) 

Let  p   be a single-stage without replacement sampling design and  1 , , , ,k N
   π    be the 

N-vector of inclusion probabilities. Let s  be the sample selected with probability   .p s  Denote by hU  

 1, ,h H   the subpopulation of size 
h

h hkk U
N


   where 1 if hk hk U    and 0hk 

otherwise. 

We focus on fixed size sampling designs which are those satisfying 

 ,kk s
 δ n  (2.3) 

where  1 , , , ,k k hk Hk
   δ    and  1 , , , ,h Hn n n n    is the vector of integer numbers 

defining the sample sizes fixed at the design stage. Since the sample size ,hn  corresponding to ,hU  does 

not vary among sample selections, the subpopulation hU  will be referred to as a planned domain in the 

sequel. A necessary but not sufficient condition for ensuring that (2.3) is satisfied is that the vector π  is 

such that 

 .k kk U
  δ n  (2.4) 

In our setting, the planned domains can overlap; therefore, the unit k  may have more than one value 
1hk   (for 1, , ).h H   Let us suppose that the hk  values are known, and available in the sampling 

frame, for all population units. We suppose furthermore that the N H  matrix  1 , , , ,k N
δ δ δ   is 

non-singular.  

The planned domains and their relationship with the estimation domains play a central role in our 
generalized framework. We assume that the estimation domains may be defined as an aggregation of 
complete planned domains, which ensure that the expected sample size in the thd  estimation domain ,dU  

say ,dn  can be obtained as a simple aggregation of the expected sample sizes of the planned domains that 

are included within it. Finally, let  ˆ
drt  be the Horvitz-Thompson (HT) estimator of  drt  with 

  

1
ˆ .dr rk dkk s

k

t y


 
  (2.5) 

An example from business surveys. Suppose that the survey estimates must be calculated separately 
considering three domain types: region (with 20 modalities), economic activity (2 modalities: goods and 
services) and enterprise size (3 modalities: small, medium and large enterprises). That is, there are 
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20 2 3 25D      possible overlapping estimation domains. The planned domains can be defined 

with different options. 
 

Option 1. The single planned domain hU  is identified by a specific intersection of the categories of the 

estimation domains. In this case 20 2 3 120H      planned domains are defined. They 

represent a specific partition of .U  The planned domains do not overlap and 1.hkh
δ   

Option 2. The planned domains hU  coincide with the estimation domains. Therefore, 25H D   and 

the k
δ  are defined as vectors with three 1’s, so that 3.hkh

δ   Recall that the planned 

domains overlap.  

Option 3. The planned domains hU  are defined as (i) region by economic activity and (ii) economic 

activity by enterprise size; then, (20 2) (2 3) 46H       with 2.hkh
δ   

 

Other intermediate relationships among estimation and planned domains are possible.  

It is emphasised that the planned domains represent the basis for defining broad classes of sampling 
designs. For instance, stratified sampling designs require that the planned domains do not overlap, 
as 1hkh

δ   and each hU  is referred to as a stratum. Therefore, Option 1 in the example above leads us 

to define a stratified sampling design. Furthermore, the strata defined as in Option 1 are the basis of the 
so-called “multi-way stratified sampling design” (Winkler 2001). 

If 1,hkh
   the sample sizes of the planned domains identified in Option 1 (strata) are not strictly 

controlled. Nevertheless, the sample sizes are still controlled at an aggregated level. In Option 2 of the 
example above, the sample sizes are controlled only for the estimation domains; while in Option 3, the 
sample sizes are controlled for the subsets of two different partitions, defined by (i) the region by 
economic activity and (ii) the economic activity by enterprise size. On the basis of the Winkler’s 
definition, we denote the designs using these types of planned domains as Incomplete multi-way 
Stratified Sampling (ISS) designs. 

 
3  Sampling 
 

Let kz  be a vector of auxiliary variables available for all .k U  A sampling design  p s  is said to 

be balanced on the auxiliary variables if and only if it satisfies the following balancing equations 

 k
kk s k U

k
 


 
z

z  (3.1) 

for each sample s  such that   0p s >  (Deville and Tillé 2004). Depending on the auxiliary variables and 

the inclusion probabilities, equation (3.1) can be exactly or approximately satisfied in each possible 
sample; therefore, a balanced sampling design does not always exist. By specifying 

 ,k k k z δ  (3.2) 

equations (3.1) become  
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 .k k kk s k U 
  δ δ  (3.3) 

In this case, the balancing equations state that the sample size achieved in each subpopulation hU  is 

equal to the expected size. In different contexts, Ernst (1989) and Deville and Tillé (2004; page 905 
Section 7.3), have proved that, (i) with the specification (3.2) and (ii) if the vector of the expected sample 
sizes, given by ,k kk U

 n δ  includes only integer numbers, then a balanced sampling design always 

exists. Specification (3.2) defines sampling designs that guarantee equation (2.4), upon which we wish to 
focus on. Deville and Tillé (2004, pages 895 and 905), Deville and Tillé (2005, page 577) and Tillé (2006, 
page 168) have shown that several customary sampling designs may be considered as special cases of 
balanced sampling, by properly defining the vectors π  and kδ  of equation (3.2). These issues are 

illustrated in Remark 4.2 and in Section 6. Balanced samples may be drawn by means of the Cube method 
(Deville and Tillé 2004). This strongly facilitates the sample selection of incomplete stratified sampling 
designs that overcome the computational drawbacks of methods based on linear programming algorithms 
(Lu and Sitter 2002). The Cube method satisfies (3.1) exactly when (3.2) holds and n  is a vector of 
integers. In the cases of SRSWOR and SSRSWOR, the standard sample selection methods can be used, as 
well as the Cube method. Deville and Tillé (2005) propose as approximation of the variance for the HT 
estimator, in the balanced sampling 

            
2 2ˆ 1 1p dr dr k dr kk U

E t t N N H


         (3.4) 

where pE  denotes the sampling expectation and  

  
    1 1 1dr k rk dk k k j j j rk dkj U

y y


        δ A π δ  (3.5) 

with 

    1 .j j j jj U
   A π δ δ  (3.6) 

Recently, the simulation results in Breidt and Chauvet (2011) confirm that equation (3.4) represents a 
good approximation of the sampling variance when the balanced equations are satisfied exactly. Variance 
estimation is studied in Deville and Tillé (2005). 

 
4  Anticipated variance 
 

Prior to sampling, the rky  values are not known and the variance expressed in formula (3.4) cannot be 

used for planning the sampling precision at the design phase. In practice, it is necessary to either obtain 
some proxy values or predict the rky  values based on superpopulation models that exploit auxiliary 

information. The increasing availability of auxiliary information (deriving by integration of administrative 
registers and survey frames) facilitates the use of predictions. Under a model-based inference, the rky  

values are assumed to be the realization of a superpopulation model .M  The model we study has the 

following form: 
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 

     2 2

;
  ,

0  ;  ;  , 0  
rk r k r rk

M rk M rk rk M rk rl

y f u

E u k E u E u u k l

 


      

x β
 (4.1) 

where kx  is a vector of predictors (available in the sampling frame), rβ  is a vector of regression 

coefficients and  ;r k rf x β  is a known function, rku  is the error term and  
ME   denotes the expectation 

under the model. The parameters rβ  and the variances 2
rk  are assumed to be known, although in practice 

they are usually estimated. The model (4.1) is variable-specific and different models for different variables 
may be used and this does not create additional difficulty. As a measure of uncertainty, we consider the 
Anticipated Variance (AV) (Isaki and Fuller 1982): 

        2ˆ ˆAV .dr M p dr drt E E t t   (4.2) 

A general expression for the AV  under linear models was derived by Nedyalkova and Tillé (2008). 
Their formulation is obtained by considering a linear function  

rf   and a unique set of auxiliary 

variables, ,kx  used for both the prediction of the y  values and for balancing the sample. In our context, 

we have introduced kx

 

and ,k k k z δ  highlighting that the auxiliary variables can be different for 

prediction and balancing. The variables kx  must be as predictive of rky  as possible, while the variables 

kz  play an instrumental role in controlling the sample sizes for sub-populations.  

In the context considered here, inserting the approximate variance (3.4) in the equation (4.2), we obtain 
the approximate expression of the AV :  

           2ˆAAV 1 1 ,dr k M dr kk U
t N N H E


      (4.3) 

where the terms  
2
dr k  in (3.4) are replaced by   2 .M dr kE   By defining 

  ; ,rk r k ry f x β  (4.4) 

the equation (4.3) may be reformulated as  

            
2 2 2 2

3

1
ˆAAV AAV ,dr rk rk dk rk rk dk drk U k U

k

t N N H y y
 

            
    (4.5) 

where the third variance component of   ˆAAV drt  is 

 
   

 
 

 
  

   
 

 
  

3AAV 1 2

1 2

dr k rk dk k dr kk U dr k

k dr k k dr kk U

a y a

b c





     

    





π π

π π


 (4.6) 

and  
  ,dr ka π  

 
dr kb π  and  

 
dr kc π  are real numbers defined respectively in equations (A1.4), (A1.7) 

and (A1.8) of Appendix A1. 
 

Remark 4.1. Expression (4.5) is a cumbersome formula but, for all practical purposes, calculations may 
be simplified by considering a slight upward approximation by setting  

 
 

  0dr k dr kb c π π  in (4.6). 

The proof is given in Appendix A3. An upward approximation is a safe choice in this setting, since it 
averts from the risk of defining an insufficient sample size for the expected accuracy. 
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Remark 4.2. The SSRSWOR design is obtained if the planned domains define a unique partition of 
population (Option 1 of the example in Section 2) and the model (4.1) is specified so that the predicted 
values are: rk rhy Y  with 2 2

rk rh    (for ).hk U  The AAV  becomes 

        2

1
ˆAAV 1 ,

d

D

dr rh h h hd h H
t N N H N N n

 
      (4.7) 

where dH  is the set of planned domains included in dU  (see Appendix A4). Note that the expression 

(4.7) agrees with the Result 2 of Nedyalkova and Tillé (2008), but for the term   .N N H  If 
      1 1 1h hN N H N N    the expression (4.7) would approximate the variance of the HT 

estimate in the SSRSWOR design. The above approximation is proved true when the number of domains 
H  remains small compared to the overall population size ,N  and when the domain sizes hN  are large.  

 
5  Determination of the optimal inclusion probabilities 
 

The vector of - values is determined by solving the following optimization problem: 

 

 

      

 

Min

ˆAAV 1, , ; 1, , ,

0 1 1, ,

k kk U

dr dr

k

c

t V d D r R

k N


 

   

    


 



 (5.1) 

where kc  is the cost for collecting information from unit k  and  drV  is a fixed variance threshold 

corresponding to  ˆ .drt  System (5.1) minimizes the expected cost ensuring that the anticipated variances 

are bounded and that the inclusion probabilities lie between 0 and 1. If all the kc  values are constants 

equal to 1, then the problem (5.1) minimizes the sample size. We note that in problem (5.1) the variances 
2
rk  in   ˆAAV drt  are treated as known; in practice they must be estimated. In Section 6, an empirical 

evaluation is conducted in order to study the sensitivity of the overall sample size with different estimated 
values of 2 .rk  

To solve (5.1), we rearrange the inequality constraints to obtain  

 
 

     

2 2
2 2

3AAV .rk rk dk
dr rk rk dk drk U k U

k

y N H
V y

N 

   
     

 


  (5.2) 

By fixing the values of  3AAV dr  appropriately, the optimization problem becomes a classical Linear 

Convex Separate Problem (LCSP; Boyd and Vanderberg 2004). Figure 5.1 depicts the flow chart of the 
algorithm (A prototype software implementing the algorithm is available at http://www.istat.it/it/ 
strumenti/metodi-e-software/software.), which is organized into two nested loops: the Outer Loop (OL) 
and the Inner Loop (IL). The two loops are updated according to a fixed point algorithm scheme. The 
convergence under some approximations is shown in Appendix A2.  
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Figure 5.1 Algorithm flowchart 

 
 
Initialization. At iteration 0   of the OL, set     0 0 ; 1, ,kπ k N    π   with 0 1.    A 

reasonable choice is 0.5.   At iteration 0   of the Inner Loop, set    0 . π π  Fix the N  
vector, ,ε  of small positive values. 

 

Outer loop 
 

 Fixing the values for the Inner Loop. In accordance with expressions (A1.4), (A1.7) and 
(A1.8) given in Appendix A1, the following real scalar values are computed 

  
         1

1 ,dr k k j rj dj jj U
a y π

  


  π δ A π δ   (5.3) 

  
         1 2 1 ,dr k k k rk dk kb

      π δ A π δ  (5.4) 

  
             21 12 2 1 .dr k k k j j rj dj j kj U

c
    


        π δ A π δ δ A π δ  (5.5) 

 Launch of the Inner Loop. The Inner Loop is executed until convergence. 

 Updating or exiting. If the vector  1 π  is such that    1 ,  π π ε  then the Outer Loop is 

iterated by updating the vector   π  with  1 . π  If    1 ,  π π ε  then the Outer Loop 

closes and   π  represents the optimal values solution to the problem of the system (5.1). 

Initialization: 
   0 00

k k
       

Close: 

Optimal 
 π π  

Exit IL: 
   1 π π

Outer loop: Fixed point 
 

 
  

 
  

 
  , ,dr dr dra b c   π π π π  

Inner Loop: Fixed point 
     

 3, AV dr
  π π  

LCSP 
Problem    15.7  π  

Exit OL: 
   1 π π  

YES 

NO 

NO 

  
 

       
   1  π π  

 
 
 

    
   1  π π       

 

       
   1 1  π π  

YES 
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Inner Loop 
 

 Fixing the values for the LCSP. The following values are computed: 

 

 
 

  
 

    
 

   
    

    
 

   
3AAV 1 2

1 2 .

dr k rk dk k dr kk U dr k

k dr k k dr kk U

a y a

b c

    


   


     

    



π π

π π


 (5.6) 

in accordance with expression (A1.7) in Appendix A1. 

 
 Solving the LCSP. Considering the 

 
 3AAVa
dr

  values as fixed, the  1 π  is obtained by 

solving, by a standard algorithm for a classical LCSP, the following optimization problem: 

 

  

 
       

 

   

1

2 2
2 2

31

1

Min

AAV .

0 1 1, ,

k kk U

rk rk dk
dr rk rk dk drk U k U

k

k

c

y N H
V y

N

k N





 









          

    



 






 (5.7) 

 Updating or exiting. If the vector  1 π  is such that    1 , π π ε>  then the Inner Loop 

is iterated by updating the vector   π  with  1 . π  If    1  π π ε  then the Inner Loop 

closes and the updated vector  1 π  for the Outer Loop is given by  1 . π  
 
Remark 5.1. The problem of the system (5.7) can be solved by the algorithm proposed in Falorsi and 
Righi (2008, Section 3.1) which represents a slight modification of Chromy’s algorithm (1987), originally 
developed for multivariate optimal allocation in SSRSWOR designs and implemented in standard 
software tools (see for example the Mauss-R software available at: http://www3.istat.it/strumenti/ 
metodi/software/campione/mauss_r/). Alternatively, the LCSP can be dealt with by the SAS procedure 
NLP as suggested by Choudhry et al. (2012). 
 

Remark 5.2. The algorithm distinguishes the  

k
   (updated in the Outer loop) from the  

k
   (updated 

in the Inner loop). The innovation of the proposed algorithm lies precisely in this peculiarity. If this 
distinction between the inclusion probabilities is not made, i.e., 

    , π π  we have observed in several 

experiments that the iterate solutions of the LCSP for each Outer Loop do not converge to a stationary 
point.  
 

Remark 5.3. After the optimization phase, in which the π  vector is defined as solution to problem of 

system (5.1), a calibration phase is performed (Falorsi and Righi 2008) to obtain calibrated inclusion 
probabilities, cal ,k  which modifies the optimal π  vector marginally in order to satisfy 

cal ,k kk U
  δ n  where n  is a vector of integer numbers. The use of the Generalized Iterative 

Proportional Fitting algorithm (Dykstra and Wollan 1987) ensures that all resulting calibrated inclusion 
probabilities are in the  0,1  interval. 



224 Falorsi and Righi: Generalized framework for defining the optimal inclusion probabilities 
 

 
Statistics Canada, Catalogue No. 12-001-X 

6  Empirical evaluations 
 

Several simulations were carried out on real and simulated data sets to investigate the empirical 
properties of the proposed sampling strategy. Here, we show the results obtained for a single real data 
exercise, referred to the 1999 population of enterprises having a number of employed persons between 1 
and 99, and belonging to Computer and related economic activities (2-digits of the Statistical 
classification of economic activities in the European Community rev.1, abbreviated as NACE). Three 
experiments were performed. Experiment (a) checked whether the allocation obtained by the proposed 
algorithm converged towards the solution of the standard Chromy’s algorithm for the SSRSWOR design. 
Experiment (b) compared the sample sizes of the standard SSRSWOR design with the Incomplete 
Stratified Sampling (ISS) design, in which the cross-classified strata were unplanned subpopulations; this 
experiment studied the risk of statistical burden due to repeated selection on different survey occasions. 
Finally, Experiment (c) measured the discrepancies between the expected Coefficients of Variation (CV) 
computed by the algorithm and the empirical CV obtained by a Monte Carlo simulation.  

The kc  values were, in all three experiments, uniformly set equal to 1. The Anticipated Variance 

according to the approximation proposed in Remark 4.1 was also calculated. 

The population chosen for the experiments had a size of 10,392N   enterprises. The domains of 

interest identify two partitions of the target population: the geographical region, with 20 marginal 
domains (DOM1), and the economic activity group (3-digits of the NACE with 6 different groups) by size 
class (defined in terms of number of employed persons: 1 1 4; 2 5 9; 3 10 19;       

4 20 99 ,   with 24 marginal domains (DOM2). The overall number of marginal domains was 44, 

while the number of cross-classified or multi-way strata with a not-zero population size was 360. The 
modal value of the population size distribution is 1, and 29.17% of the cross-classified strata have at most 
2 units. This type of strata represents a critical issue in the context of standard stratified approaches. 
Indeed, for calculating unbiased variance estimates, these strata must be take-all strata (so that they do not 
contribute to the variance of the estimates), although the allocation rule would require fewer units and, in 
general, a non-integer number of sample units. The variables of interest were the labour cost and the value 
added, which are available for each population unit from an administrative data source. Typically both 
variables have highly skewed distributions.  

The target estimates for all the empirical studies are the 88 totals at the domain level (2 variables by 44 
marginal domains). In each experiment, the inclusion probabilities were determined by fixing the 

    20.1dr drV t  in (5.1), which is equivalent to fixing the maximum accepted level of the percent CV of 

the domain level estimates at 10%.  
 

Empirical study (a). The first experiment took into account the partition DOM1. These domains 
represented both planned domains and estimation domains. Since the planned domains defined a partition 
of the population of interest, they could also be considered as strata in the standard sampling designs. The 
predictive working model was given by  

 

 

     2 2

 1, , 20

,

0,   ;   , 0  

rk d rk d

M rk M rk rd d M rk rl

y u k U d

E u E u k U E u u k l

     


        


 (6.1) 
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where d  is a fixed effect and the superpopulation variances 2
rd  were estimated by means of the residual 

variance of the predictive model in each region. The algorithm proposed in Section 5 was performed using 
three different initial values of the inclusion probabilities ,  equal to 0.01, 0.50 and 0.99 respectively. 

The initial inclusion probability values had no impact on the final solution, although it was achieved with 
a different number of iterations. We note that the overall number of inner loops was 17 for 0.01.   The 
convergence was achieved with 13 inner loops for 0.50;   14 inner loops were needed for 0.99.   

However, after the ninth iteration, the three sampling sizes were quite similar (Figure 6.1). In the 
experiment, the overall sample sizes were 3,105 for the benchmark Chromy allocation and 3,110 for the 
method proposed here. However, the differences between the two sampling sizes at the domain level were 
fractional numbers that were always lower than 1, and with the absolute largest relative difference lower 
than 0.3%. This highlights that the proposed algorithm actually defines the same domain sampling sizes of 
those calculated by the benchmark allocation. With regards to convergence, the initial inclusion 
probability values have no impact on the final solution, although this is achieved with a different number 
of iterations. 

 
 

 

 

 

 

 

 

 

 
 
Figure 6.1 Convergence of the algorithm with different initial inclusion probabilities in the empirical study (a) 

 
Similar results were obtained if the domains of interests were identified by the partition DOM2.  

 

Empirical study (b). Let 
1dU  be a specific region  1 1, , 20d    of DOM1, and let 

2dU  (with 

2 1, , 24d    be a specific economic activity group by the enterprise size class of the partition DOM2. 

Two prediction models, 1M  and 2 ,M  were used. Referring to the notation of the ANOVA models, 1M  is 

the saturated model given by  
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        
 (6.2) 

in which 
1d  and 

2d  are the main effects, related to the domains 
1dU  and 

2dU  respectively and with 

 
1 2d d  as the interaction effect. The model variances  1 2

2
r d d  were estimated by means of the ordinary 
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least square method, by computing the variances of the residual terms at the 
1 2d dU U  level. Model 2M  

is identical to model 1M  without the interaction factor. Table 6.1 shows the goodness of fit of the two 

models.  
 
Table 6.1 
Goodness of fit of the models used for the prediction 
 

Model Goodness of fit 2%R  
Labour cost Value added 

Model 1M  (Expression 6.2) 68.1 64.1 
Model 2M  (Expression 6.2 without interactions) 65.1 61.0 

 

Three different allocations were considered for the SSRSWOR in the case of model 1 :M  (i) no 

stratum sample size constraint is given; (ii) at least 1 sample unit per stratum is required (to obtain 
unbiased point estimates); (iii) at least 2 sample units per stratum are required (to achieve unbiased 
variance estimates) for all strata having a population size of 2 or more enterprises. The first two 
allocations were rather theoretical since in all the business surveys conducted by the Italian National 
Statistical Institute, the selection of at least two units per stratum is required. The results of the experiment 
are shown in Table 6.2 below. Only the results for the case in which the initial inclusion probabilities were 
equal to 0.50   are investigated herein; identical sample sizes were obtained with the other initial 

values of the inclusion probabilities, with a slightly slower convergence process. The three SSRSWOR 
designs have 716.6, 944 and 1,042 sample units respectively. The Incomplete stratified Sampling (ISS) 
design with model 1M  led to 936 units; while model 2M  led to 991 units. The better result obtained by 

model 1M  with respect to model 2M  was due to the fact that model 1M  had a better fit. Finally, the ISS 

designs helped tackling the statistical burden of respondent enterprises. Indeed, assuming that the 
inclusion probabilities remain fixed for the different survey occasions, their distributions may be used to 
assess the statistical burden in repeated surveys. Table 6.2 shows that the number of enterprises drawn 
with certainty in each survey occasion was 175 for the third SSRSWOR designs, while 30 and 40 
enterprises were selected with certainty in the first and second ISS designs, respectively. Analysing the 
sizes (in terms of employed persons) of the enterprises included in the sample with certainty, the third 
SSRSWOR design had an average size equal to 20.6. In some cases, enterprises with 2 employed persons 
were included in the sample with certainty. Conversely, we observe that in the first and second ISS 
designs, the enterprises with minimum size had 17 and 16 employed persons respectively, and an average 
size larger than 40 units. 
 
Table 6.2 
Sample sizes and distribution of the enterprises included in the sample with certainty, for different sampling 
designs 
 

Sampling design Sample size 

Enterprises selected with certainty 

Number 
Number of employed 

Average Minimum 

Standard Stratified with 1M  model No stratum sample size constraint 716.6 10 47.0 23.0 

At least 1 sample unit per stratum 944.0 119 24.0 2.0 

At least 2 sample units per stratum 1,042.0 175 20.6 2.0 

Incomplete Stratified Sampling with 1M  model 936.0 30 50.1 17.0 

Incomplete Stratified Sampling with 2M  model without interactions 991.0 40 42.9 16.0 
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Finally, to assess the solution’s sensitivity, the experiment was repeated artificially and the prediction 
values of rky  and 2

rk  in the optimization problem (5.1) were changed. In particular, we increased the 

prediction values of 2
rk  by 20% and 120% respectively, and decreased by 20% the rky  values predicted 

by model 1.M  As expected, the sample sizes increased, but the SSRSWOR design with at least 1 sample 

unit per stratum and the first ISS design roughly defined the same sample sizes (Table 6.3).  

 
Table 6.3 
Sample sizes with modified expected values of the predictions of model (4.1) 
 

Sampling design 
Sample size  

2
rk  increased by 20% 2

rk  increased by 120% rky  decreased by 20%

SSRSWOR with 1M  

model  

No stratum sample size constraint 821.0 1,269.0 993.8

At least 1 sample unit per stratum 1,035.0 1,472.0 1,206.0

At least 2 sample units per stratum 1,125.0 1,536.0 1,283.0

ISS design with 1M  model 1,039.7 1,460.9 1,207.5

 
Empirical study (c). The heteroschedastic linear prediction model 3M  was used:  

 
2 2 2

,
( ) 0 , ( ) ; ( , ) 0

rk r r k rk

M rk M rk rk r k M rk rl

y x u

E u E u x k U E k l

    


           
 (6.3) 

where kx  is the number of employed persons in the thk  enterprise, and r  and r  are the regression 

parameters. Note that the number of employed persons is available in the sampling frame in Italy. 

Two different model variance estimates were carried out:  

(a)    
 

22 1 A F  
k X xk

rk X x rk r r kk U
N y x


 

     and (b) 2 2 ,rk r kx     in which 2
r   

    21 2 A F  ,rk r r k kk U
N y x x


    where  X xU   is the population of enterprises, of size

  ,X xN   for which the variable X  assumes the value ;x  A r  and Fr  are the weighted least square 

estimates for the complete enumerated population of r  and r  respectively. The sum of the estimated 

model variances obtained with method (a) is smaller than that obtained with method (b). This was 
reflected in the computed sample sizes. The first allocation defined an overall sample size of 927 units, 
while the sample size of the second allocation was 951. Successively, 1,000 samples were drawn for both 
allocations and the ratios         ˆ ˆ ˆRCV ECV SCVdr dr drt t t  were calculated, with   ˆECV drt   

     ˆ ˆAAV 100dr drt t  as the expected CV (%) and 

              

2

1 1 1
ˆ ˆ ˆ ˆSCV 100 1 1 1

I I Ii i i
dr dr dr dri i i

t I t I t I t
  

       

as the simulated (or empirical) CV, obtained as a result of the simulation, having denoted with  ˆ i
drt  the HT 

estimate in the thi  iteration and 1,000.I   For the sake of brevity, only the the main results of allocation 

(b) are shown in Figure 6.2, for DOM1 and DOM2 respectively, and both variables of interest. Examining 
the figure on the left, we emphasize that the simulation generally produces a simulated CV that is smaller 
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than expected, with an RCV ratio larger than 1 for both variables. One exception occurs, for the value 
added in one domain of DOM1. 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 6.2 RCVs by population size for labour cost and value added 

 
RCV lower than 1 may be explained by the increase of the domain sample sizes, due to the calibration 

step. We note that in general, these discrepancies are observed in domains with a small population size; 
thus, the calibration step may have a non-negligible impact. The figure on the right shows more articulated 
and conflicting empirical evidence. First, we note that the RCV are often larger or very close to 1. 
Nevertheless, in three domains, the value added variable has simulated CV’s equal to 11.5%, 12.0% and 
12.3%. In these rare cases, and in some others (labour cost in two domains), the discrepancies are coherent 
with the findings of Deville and Tillé (2005) on the empirical properties of variance approximation for 
balanced sampling.  

 
7  Conclusions 
 

The paper proposes a new approach for defining the optimal inclusion probabilities in various survey 
contexts, which are characterized by the need to disseminate survey estimates of prefixed accuracy, for a 
multiplicity of both variables and domains of interest. 

This paper’s main contribution is the practical computation of these probabilities by means of a new 
algorithm, which is suitable for a general multi-way sampling design in which the standard stratified 
sampling represents a special case. The proposed approach, the algorithm and the final computation are 
domain- and variable-driven.  

In our framework, the domain membership indicator variables are assumed to be known, while the 
variables of interest are not known. The procedure is, then, applied on the predicted values of the 
characteristics of interest via a superpopulation model, and the algorithm enables taking into account 
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model uncertainty; this reflects the non-knowledge of the values of variables of interest. Using the 
Anticipated Variance as the measure of the estimators’ precision, this approach overcomes the limits of 
the standard algorithms for the sample allocation, in which the variables of interest driving the solution are 
assumed to be known.  

The proposed algorithm exploits standard procedure, but does present some computational innovations 
which may be useful for dealing with the complexity deriving from the fact that the Anticipated Variances 
are implicit functions of the inclusion probabilities. The algorithm was tested on simulated and real survey 
data, to evaluate its performance and properties. The results of a small set of experiments are presented 
here. They confirm an improvement, in terms of efficiency, of the sampling strategy. A natural 
generalization of the case examined here may be developed by considering, as known during the design 
planning stage, the indicators of the domains and other quantitative independent variables. We note that 
the Anticipated Variance considering only the domain indicators is larger than the Anticipated Variance of 
this more general case. Thus, our solution represents an upper (and somehow robust) boundary solution in 
the design phase. Furthermore, the algorithmic solution can be easily adapted to this more general 
situation.  
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Appendix A1 
 
AV of the HT estimator 
 

Let us consider the residual  dr k  as expressed by equation (3.5), and replace the term rky  with 

,rk rky u  thus obtaining  

           1 1 1 .dr k rk rk dk k k j j rj rj dj jj U
y u y u


          δ A π δ   (A1.1) 

The weighted least predictions of rk dky   and ,rk dku   with predictors k k δ  and weights 1 1,k   are 

    
ˆ

dr k k dr ky a   (A1.2) 

and 

  
    1 1 1 ,ˆ dr k k k j j rj dj jj U

u u


     δ A π δ  (A1.3) 

with 

  
      1 1 1 .dr k k j j rj dk jj U

a y


    π δ A π δ   (A1.4) 
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Using the formulae (A1.2) and (A1.3), the expression (A1.1) may be reformulated as 

        ˆ .ˆdr k rk rk dk dr k dr ky u y u        Therefore, the model expectation of  
2
dr k  is 

          2 22 ˆ Mean zero terms,ˆM dr k rk dk dr k M rk dk dr kE y y E u u          (A1.5) 

because   0.M rkE u   Furthermore, 

          2 22 2 , ,ˆ ˆ ˆM rk dk dr k rk dk M dr k M rk dk dr kE u u E u E u u         (A1.6) 

where     
 ˆM rk dk dr k k dr kE u u b   π  and     

 2 2 ,ˆM dr k k dr kE u c  π  with  

  
      1 2 1dr k k k rk dk kb     π δ A π δ  (A1.7) 

and 

  
         1 2 12 1 .dr k k j j rj dj j kj U

c  


       π δ A π δ δ A π δ  (A1.8) 

Expression (4.5) is easily derived by plugging expressions from (A1.2) to (A1.8) into equation (4.3).  

 
Appendix A2 
 
Convergence of the algorithm 
 

The optimization problem (5.1) is solved by two nested fixed point iterations. Given an unknown 
vector x  of dimension ,q  the fixed point iteration chooses an initial guess  0 .x  Then, it computes 

subsequent iterates by     1 , x g x  with 1, 2, ,    with  g  being a system of q  updating 

equations. The multivariate function g  has a fixed point in a domain qQ    if g  maps Q  in .Q  Let 
 J g x  be the Jacobian matrix of first partial derivate of g  evaluated at ,x  if there exists a constant 1 

such that, in some natural matrix norm,   , ,J Q  g x x  g  has a unique fixed point ,Q x  and the 

fixed point iteration is guaranteed to converge to x  for any initial guess chosen in .Q  As regards the 

proposed algorithm, the convergence of the IL and OL is obtained when the terms 
 

 3AAV dr
  converge 

to the fixed point. This means that the vectors   π  and   π  do not change in the OL and IL iterations. 

The demonstration below considers the method proposed by Chromy (1987) to solve the LCSP of system 
(5.7), and makes use of some reasonable assumptions: (1)   0;ˆ dr ku   (2)    1;N N H   

(3) ˆ ;rk rky y   (4)      

k k
       with 

 0 1;    (5) .kc c  Assumption (1) corresponds to 

the upward approximation of the Anticipated Variance, given in Remark 4.1, and implies that 

 
  

 
   0.dr k dr kb c  π π  Assumption (3) implies that  

    2 .dr k rk dk rk dk ka y y    π    

Assumption (4) states that the structure of the inclusion probabilities remains roughly constant in the 
different IL iterations. The assumption becomes reasonable considering that the updating equation A2.2 
below (of a given inclusion probability) is essentially determined by the variance threshold that requires 
the largest sample size. It is plausible to hypothesize that this threshold remains more or less the same in 
the subsequent IL iterations of a given OL. 
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Proof of convergence of the Inner Loop. By reformulating expression (4.6) in accordance with the 
assumptions from (1) to (4),  

 
 

       

2 2
1

3 1 1 1 2

1
AAV 1 2 .rk dk rk dk

dr k U
k

y y
  

              


 
 (A2.1) 

Considering in problem (5.7) that the 
 

 3AAVa
dr

  values are fixed, each value of the vector  1 π  is 

obtained as a solution of the LCSP with the Chromy algorithm. Denote with *v  the iteration of the 
Chromy algorithm into which it converges, where    * 1 * .v v  π π  Then, the IL updates the generic 

probability in accordance with the expression 

    
  

  1 22 2
1 * 1 ,rk rk dkv

k drdr

y

c
      

   
 



 (A2.2) 

where the right-hand term represents the updating formula of the Chromy algorithm, and  dr  stands 

for 11
,

D R
rd    and  

 
* 1v

dr
    is the generalized Lagrange multiplier, where  
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



 (A2.3) 

and 

     2 2 .dr dr rk rk dkk U
V V y


       

The Kuhn-Tucker theory states that 
 

 
 

   
 

   * *
3AV 0;v v

dr dr dr drV V       therefore, 
 

 
 

 
* 1 *v v

dr dr
      and 

 
 

* 1 0v
dr

     iff 
 

   
 

  *
3AV 1.v

dr dr drV V    Chromy asserts that 

few 
 

 
*v

dr
    for 1, , ; 1, ,r R d D    are larger than zero, and that in most cases, only one value 

is strictly positive. Denoting with 
   

 
 

 
 

  3 3 11 3 1 3AAV , , AAV , , AAV ,R DR
    AAV    we 

define     1
3 3

 AAV g AAV  as the system of D R  updating equations where the generic  dr  

equation of the system  
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





  
    

                





3AAV
 




 (A2.4) 
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is obtained by plugging expression (A2.2) into (A2.1). If the convergence is obtained, then in the last 
iteration, 

   1
3 3 . AAV AAV  The function of equation (A2.4) is continuous and differentiable. 

Moreover, it maps onto the interval of the possible values of  3AAV .dr  Then, the IL converges if the 

following condition is fulfilled:  

  3 1.J g AAV  (A2.5) 

The Jacobian matrix is positive semi-defined, and a well-known result states that 

   2trace trace .J J J g g g  By considering the Frobenius norm  trace ,
F

J J J g g g  it is 

 trace .
F

J Jg g  Thus we can take into account the trace of the Jacobian matrix to verify condition 

(A2.5). Let    
 

 
 

  1 1
3 3

AAVdrdr dr dr
g g     AAV  be the  dr  element of the diagonal of 

 3 .J g AAV  Using the Kuhn-Tucker condition 
 

   
 

  *
3AV 1,v

dr dr drV V    

     

 
 

 
 

 

   

 

 

3 22 2 2 2
*

1 1 2

2 2
*

*

2

1
.

rk rk rk rk dkvdk dk
drdr k U dr

rk rkv dk
vdr

dr

y y y
g

c

y

cV




 




                 

  
 

 
  


 

Since many  

 
* 0v

dr
    (Chromy 1987), the respective  dr

g   is null. When  

 
* 0,v

dr
  >  then 

 

     

 

 

   

   

 

 

   

 

 

   

 

   

3 22 2 2 2 2 2
* *

1 1 2 *

2 2

1 1 2 2 2
* *

1 1

1
2

1
2

1
2

rk rk rk rk rk rkv vdk dk dk dk
vdr dr drk U

dr

rk rkdk dk

k U
rk rkv vdk

dr dr

rk dk

y y y y
g

c cV

y y

y
V

c

y



 
  

 
 

 

                      

  
        

     





   

 




 

 
 

 
* *

1.
v vk U

dkdr dr
c V 


 



  

Therefore, the  trace J g  should be less than 1.  

 

Proof of convergence of the Outer Loop. Let 
 1 π  be the fixed point solution of the IL; then, the OL 

updates the vector 
  π  with 

   1 1 . π π  Under conditions (1), (2) and (3),  

  
   

1 2
3 1

1
AAV 1 .dr rk dkk U

k

y


     
   (A2.6) 
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Plugging expression (A2.2) into formula (A2.6) when the IL converges, the system of D R  updating 
equations of 

 1
3

 AAV  is given by 
    1

3 3 , AAV j AAV  where the generic equation of j  is 

 

 
   

  

 
  

 
 

 
 

 

 

1
3 3

1 22* 2 2
2 *

3

AAV

1 .
AAV

AAVdr dr

v
dr rk rk dkv

rk drdkk U dr
dr dr

j

V y
y

cV

 









                
 


 

 (A2.7) 

Denoting with 
   0

3 3 , AAV AAV  the system j may be expressed in a recursive form 

              1 1 0
3 3 3 3..... ,     AAV j g AAV j g g g AAV f AAV  

with       .....  f j g g g  as the system of D R  updating equations of 
 1

3 , AAV  with respect to 

the previous values of the OL, 
 

3 . AAV  To demonstrate the convergence of OL, it is necessary to 

demonstrate that the Jacobian norm  3J f AAV  is lower than 1. Using standard results of matrix algebra,  

          1 0
3 3 3 3 ,J J J J     f j g gAAV AAV AAV AAV  

in which the generic norm  J g  is lesser than 1 (see the IL proof of convergence). Let  dr
j  be the  dr  

element on the diagonal of 
  3 .J 

j AAV  It is 
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y

cV


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




       
 

  
 

 





 (A2.8) 

Therefore, we have 

 
 
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
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 
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The following inequality holds 

   

 
 

 
* *

1.rk dkk U
dr v v

dr dr

y
j

c V


 


  


 

 

Consequently, the norm 
  3 1,J  j AAV  and therefore the OL converges. 
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Appendix A3 
 
Proof that the approximation of Remark 4.1 is upward 
 

Since  ˆ dr ku  is the weighted least square prediction of ,rk dku   by using a different value of the   ,ˆ dr ku  

such as   0,ˆ dr ku   we obtain  

          2 21 1 1 1 0 ,ˆk M rk dk dr k k M rk dkk U k U
E u u E u

 
           

where   2 20 .M rk dk rk dkE u       Replacing the terms    2ˆM rk dk dr kE u u   with 2
rk dk   in 

expression (A1.5), the AAV (4.3) is inflated. The approximation   0ˆ dr ku   implies that 

 
 

 
  0.dr k dr kb c π π  Finally, we emphasize that in most cases, the upward is slight, since the  ˆ dr ku  

are obtained by the kz  variables that generally have a very low predictive power for the rk dku   values 

(see Section 4). In these situations    1 0.ˆ dr k rk dkk U
u N u


    So    0ˆM rk dk dr kE u u   and 

   2 0.ˆM dr kE u   

 
Appendix A4 
 
Proof of expression (4.7) 
 

In this case, each kδ  vector has 1H   zero elements and 1 element equal to 1 (corresponding to the 

planned population to which the unit k  belongs). Given the input values, the optimization procedure 

k h    for .hk U  Under the above assumption,    1A π  is a diagonal matrix with the thhh  element 

given by       11 2 1 1 .hh h h hN
    A π  Considering ,rk rhy Y  expressions (A1.2) and (A1.3) can 

be reformulated as, respectively,  

  
    1ˆ 1 1 .dr k h k h h h rh rhy N Y Y     δ A π  (A4.1) 

  
      1 11 1 ,ˆ

h
dr k h k h h rj h h rjj U j U

u u N u 

 
       δ A π  (A4.2) 

but 0
h

rjj U
u


  as the sum of the residual of a regression model. 

Using the formulae (A4.1) and (A4.2), expression (4.5) is given by 

       

    

2

2

1

1
ˆAAV 1

1 ,

h

d

dr M rk dkh k U
h

D

rh h h hd h H

t N N H E u

N N H N N n



 

      

   

 

 
 

since h h hn N   and expression (4.7) may be obtained.  
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An efficient estimation method for matrix survey sampling 
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Abstract 

Matrix sampling, often referred to as split-questionnaire, is a sampling design that involves dividing a 
questionnaire into subsets of questions, possibly overlapping, and then administering each subset to one or 
more different random subsamples of an initial sample. This increasingly appealing design addresses concerns 
related to data collection costs, respondent burden and data quality, but reduces the number of sample units that 
are asked each question. A broadened concept of matrix design includes the integration of samples from 
separate surveys for the benefit of streamlined survey operations and consistency of outputs. For matrix survey 
sampling with overlapping subsets of questions, we propose an efficient estimation method that exploits 
correlations among items surveyed in the various subsamples in order to improve the precision of the survey 
estimates. The proposed method, based on the principle of best linear unbiased estimation, generates composite 
optimal regression estimators of population totals using a suitable calibration scheme for the sampling weights 
of the full sample. A variant of this calibration scheme, of more general use, produces composite generalized 
regression estimators that are also computationally very efficient. 

 
Key Words: Best linear unbiased estimator; Calibration; Composite estimator; Generalized regression estimator; Non-

nested matrix sampling; Split-questionnaire. 

 
 

1  Introduction 
 

Matrix sampling is a sampling design in which a long questionnaire is divided into subsets of questions 
(items), possibly overlapping, and each subset is then administered to one or more distinct random 
subsamples of an initial sample. In its various forms this design may serve a variety of purposes, such as 
reducing the length and cost of the survey process and addressing concerns related to respondent burden 
and data quality associated with a long questionnaire. Matrix sampling has been applied or explored in 
various fields, primarily in educational assessment and public health studies. A review of previous 
research on matrix sampling, with discussion of the issues arising in its implementation in surveys, is 
given in Gonzalez and Eltinge (2007). For recent work on design and estimation for matrix survey 
sampling, motivated by the potential benefits of such sampling schemes in large scale surveys, see 
Raghunathan and Grizzle (1995), Thomas, Raghunathan, Schenker, Katzoff and Johnson (2006), 
Gonzalez and Eltinge (2008), Chipperfield and Steel (2009, 2011), and references therein. Among the 
many matrix sampling designs explored in the literature, we distinguish the following four principal 
designs varying in the number of subsamples and the number of sub-questionnaires (overlapping or not) 
administered to each subsample. 

 
(a) Different (non-overlapping) sets of questions are administered to different subsamples. 

(b) An additional core set of questions is administered to all subsamples in design (a). There are 
several reasons for including a core set of items in all subsamples: High precision may be required 
for some items of special interest; some other items (e.g., demographic characteristics) define 
subpopulations and may be used in cross-tabulations of survey results; the correlation of the core 
items with the rest of items may be used to enhance the precision of estimates for all items. 
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(c) A variant of design (a) involving an additional subsample that receives the full questionnaire. It 
may be viewed as a generalization of two-phase sampling design. The motivation for this design is 
to allow for analysis of interaction between sets of questions, by having responses to all questions 
from the units of the additional sample, and to enable more efficient estimation. 

(d) An extension of design (c), in which the core set of questions is administered to all subsamples. It 
embodies all features of the previous three designs.  

 
A current trend in survey planning relates to a variant of matrix sampling in which a number of distinct 

surveys with overlapping content are integrated for the benefit of streamlined survey operations, 
harmonized survey content and data consistency, as well as improved estimation. In this nonstandard 
matrix sampling framework, the distinct surveys may use subsamples of a large master sample or 
independent samples from the same population. Such sampling schemes are actively being researched or 
implemented in various statistical agencies; see, for example, the integration of household surveys in the 
British Office of National Statistics (Smith 2009) and in the Australian Bureau of Statistics (2011). 
Although such integration may be viewed as a reverse process to splitting a questionnaire, the structure of 
the design with respect to the collection of different subsets of data items from different samples is 
essentially the same as in the standard framework. In the particular case where the samples from 
constituent surveys are independent, possibly with different sampling designs, the designs (b), (c) and (d) 
could be characterized as non-nested matrix sampling designs. It is to be noted that the advantages of 
matrix sampling are not always contingent on using subsamples (necessarily dependent) of an initial 
sample. It may be more practical in certain situations to use independent samples, notwithstanding the 
possibility of a negligible sample overlap. 

In this paper we address the estimation problem in matrix sampling, namely the loss of precision of 
survey estimates due to not collecting all data items from all sample units. In the nonstandard matrix 
sampling of the preceding paragraph, the estimation problem is the improvement of the precision of 
estimates for each constituent survey. For matrix sampling designs (b), (c) and (d), involving overlapping 
subsets of questions, a dual estimation task is to combine data on common items from different 
subsamples for improved estimation, and to exploit correlations among items surveyed in different 
subsamples for more efficient estimation for all items. To this aim, estimation involving imputation of the 
missing values caused by the omitted items in each subquestionnaire has been explored in Raghunathan 
and Grizzle (1995) and Thomas et al. (2006). Estimation using a simple weighting adjustment that 
combines data on common items has been considered by Gonzalez and Eltinge (2008). In the particular 
case of non-nested design (b), the estimation problem of combining data from independent samples has 
also been dealt with in the literature; see, for example, Renssen and Nieuwenbroek (1997), Houbiers 
(2004), Merkouris (2004, 2010), Wu (2004) and Kim and Rao (2012). Non-nested design (d) has been 
considered in Renssen (1998). We propose an efficient estimation method, based on the principle of best 
linear unbiased estimation, which produces composite optimal regression estimators of totals by means of 
a suitable calibration procedure for the sampling weights of the combined sample, when the second-order 
sample inclusion probabilities are known. A variant of this calibration procedure of more general 
applicability produces composite generalized regression estimators, which for certain sampling settings 
are optimal regression estimators. The method exploits correlations of items across the subsamples to 
improve the efficiency of estimators even for items surveyed in all subsamples. It is also operationally 
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very convenient, producing estimates for all items at population or domain level by means of a simple 
adaptation of the standard calibration system commonly used in statistical agencies. Introducing here the 
method, we study in detail the principal designs (c) and (d). Adaptations to more general designs are fairly 
straightforward. 

In the following Section 2 and Section 3 we describe the proposed method for design (c). The 
application of the method to design (d) is described in Section 4. Domain estimation is dealt with in 
Section 5. A simulation study is presented in Section 6. We conclude with a discussion in Section 7. 

 
2  Composite optimal regression estimation for design (c) 
 

A general estimation method for matrix sampling is illustrated for design (c) through the simplest 
setting involving three samples 1 2,S S  and 3S  with arbitrary designs and sizes 1 2 3, , ,n n n  which may be 

subsamples of an initial sample of size 1 2 3=n n n n+ +  from a population labeled = 1, , , , ,U k N   or 

may be drawn independently from .U  A p − dimensional vector of variables x  and a q − dimensional 

vector of variables y  are surveyed in 1S  and 2 ,S  respectively, and both vectors are surveyed in 3 .S  

These two modes of matrix sampling, depicted in Figure 2.1, will henceforth be referred to as nested and 
non-nested matrix sampling, respectively, in analogy with the nested and non-nested two-phase sampling 
(Hidiroglou 2001). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 Nested and non-nested matrix sampling design (c) 

 
We denote by iw  the vector of design weights for sample , = 1,2,3,iS i  and by iX  and iY  the sample 

matrices of x  and ,y  the subscripts indicating the sample. We obtain simple Horvitz-Thompson (HT) 

estimators ( )1 1 1
ˆ = ′X X w  and 3X̂  of the population total xt  of ,x  using 1S  and 3 ,S  respectively, and HT 

estimators 2Ŷ  and 3Ŷ  of the total yt  of ,y  using 2S  and 3 .S  For more efficient estimation of the totals 

xt  and yt  we seek composite estimators that combine all the available information on x  and y  in the 

           Nested design                                              Non-nested design 
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three samples. Such composite estimators that are best linear unbiased estimators (BLUE), i.e., minimum-
variance linear unbiased combinations of the four estimators 1 2 3

ˆ ˆ ˆ, ,X Y X  and 3
ˆ ,Y  are denoted by ˆ BX  and 

ˆ BY  and given in matrix form by 

 

1

2

3

3

ˆ

ˆˆ
= ,

ˆˆ

ˆ

X

YX

XY

Y

B

B

 
        
 
 

P  (2.1) 

where ( ) 11 1= ,
−− −′ ′W V W W VP  the matrix W  satisfies ( ) ( )1 2 3 3

ˆ ˆ ˆ ˆ, , , = ,E  ′ ′′ ′ ′ ′ ′ ′  x yX Y X Y W t t  and has 

entries 1’s  and 0’s,  and V  is the variance-covariance matrix of ( )1 2 3 3
ˆ ˆ ˆ ˆ, , , .′′ ′ ′ ′X Y X Y  This estimation 

method was proposed by Chipperfield and Steel (2009), who provided analytical expressions of the BLUE 
for scalars x  and y  in non-nested matrix sampling, assuming simple random sampling and known .V  

Such an approach to composite estimation has been explored also in a different context of survey 
sampling; see Wolter (1979), Jones (1980) and Fuller (1990). In general, computation of the BLUE given 
by (2.1) is not at all practical, as the computation of an estimated matrix V  (and its inverse) in P  would 

be quite laborious, especially if the number of variables or the sizes of the samples were large; it would be 
prohibitive if estimates for subpopulations were also required. Of course, the problem would become more 
difficult with more samples involved. 

A more practical formulation of this estimation procedure is as follows. First, we express the 
composite estimators in (2.1) explicitly as linear combinations of the HT estimators 1 2 3

ˆ ˆ ˆ, ,X Y X  and 3
ˆ ,Y  

i.e.,  

 
1 1 2 2 3 3 4 3

1 1 2 2 3 3 4 3

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ .

x x x x

y y y y

X B X B Y B X B Y

Y B X B Y B X B Y

B

B

= + + +

= + + +
  

The condition of unbiasedness, ( )ˆ =BE xX t  and ( )ˆ = ,BE yY t  implies that 3 1= ,−x xB I B  

4 2= −x xB B  and 4 2= ,−y yB I B 3 1= .−y yB B  Thus, P  and W  can be expressed as  

 
1 2 1 2

1 2 1 2

= , = ,
x x x x

y y y y

B B I B B I 0 I 0
W

B B B I B 0 I 0 I

− −   
′     − −   

P   

respectively, and the two composite estimators have necessarily the regression form  

 
( ) ( )

( ) ( )
3 1 1 3 2 2 3

3 1 1 3 2 2 3

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ .

x x

y y

X X B X X B Y Y

Y Y B X X B Y Y

B

B

= + − + −

= + − + −
 (2.2) 

Then writing ( )= , ,−IP B B  in obvious notation for matrix ,B  we can express (2.1) as  

 ( ) 3 3 1 31

3 3 2 32

ˆ ˆ ˆ ˆˆˆ
= = ,

ˆ ˆ ˆ ˆˆˆ

X X X XXX
I

Y Y Y YYY

B

B

        −
        + − +

         −         
B B B  (2.3) 
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the right-hand side of (2.3) being the matrix form of (2.2). The problem of finding the optimal (variance-
minimizing) P  of the BLUE in (2.1) reduces then to that of finding the optimal matrix B  in (2.3). The 

estimated optimal ˆ oB  is given by  

 
1

3 1 3 1 3

3 2 3 2 3

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ= Cov , ,

ˆ ˆ ˆ ˆ ˆ
X X X X X

Y Y Y Y Y
o V

−
− −      

−       − −      
B  (2.4) 

and when the three samples are independent it reduces to  

 
1

3 31

3 32

ˆ ˆˆ
ˆ ˆ ˆ ˆ= .

ˆ ˆˆ
X XX

Y YY
o V V V

−
     

+     
     

B  (2.5) 

In view of (2.3), with such optimal ˆ oB  the estimated BLUE in (2.1) involving the estimated ˆ ,V  and with 

( )ˆ ˆ ˆ= , Io o−P B B  is a special type of optimal multivariate regression estimator. For the form of the 

ordinary (single-sample) optimal regression estimator and relevant discussion, see Montanari (1987) and 
Rao (1994). 

Expressing the estimated variance of the HT estimator of a total (see, for example, Särndal, Swensson 
and Wretman (1992), page 43) as a quadratic form with associated non-negative definite matrix 

( ){ }0 = ,kl k l k l klπ − π π π π πΛ  where ,k klπ π  are first-and-second order inclusion probabilities, it can be 

shown after some matrix algebra that  

 0 0 1
3

ˆ = ( ) ( ) ,Λ Λo −′ ′B X X X X  (2.6) 

where  

 
1

2

3 3

=

X 0

0 Y

X Y

− 
 −  
 

X  (2.7) 

is the ( )n p q× +  design matrix corresponding to the regression estimator (2.3), 3X  is the matrix X  

with the first two rows set equal to zero, and 0Λ  is associated with the combined sample 

1 2 3= ,S S S S∪ ∪  reducing in the non-nested sampling to the block-diagonal matrix { }0diag iΛ  with 0
iΛ  

associated with the sample .iS  For the nested design, the probabilities defining 0Λ  are products of the 

probabilities of inclusion in S  and the conditional (on S ) subsampling probabilities. With this estimated 
ˆ ,oB  the estimated BLUE in (2.3), called composite optimal regression estimator (COR) and denoted by 

CORˆ ,X  is written compactly as COR
3 3

ˆ ˆ ˆˆ ˆ= [= ( ) ],o o′ ′− − wX X B X X XB  where ( )1 2 3= , , ′′ ′ ′w w w w  is 

the vector of design weights of the combined sample .S  It transpires that the COR estimator is in fact the 

sum of weighted sample regression residuals, and ˆ oB  minimizes the quadratic form ( )3
ˆ o′ ′−X XB  

( )0
3

ˆ o′−Λ X XB  in these residuals, which is the estimated approximate (large-sample) variance of 
CORˆ .X  

Now, upon writing CORˆX  as ( ) ( )[ ]1COR 0 0
3

ˆ = ,
−′ ′ ′+ −w Λ Λ 0 wX X X X X X  it appears that the 

COR estimator has the form of a calibration estimator (with vector of calibration totals ( )= , ′′ ′0 0 0  of 
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dimension ( )) ,p q+  whose components satisfy the constraints COR COR
1 3

ˆ ˆ=X X  and COR COR
2 3

ˆ ˆ= ,Y Y  i.e., 

calibrated estimates of the same total from two different samples are equal. Indeed, the vector  

 ( ) ( )10 0= ,c w Λ Λ 0 w−′ ′+ −X X X X  (2.8) 

is the vector of calibrated weights that minimizes the generalized least-squares distance 

( ) ( ) ( )10 −′− −c w Λ c w  while satisfying the constraints 1 1 3 3=′ ′X c X c  and 2 2 3 3= ,′ ′Y c Y c  where the 

subcector ic  corresponds to sample .iS  This follows from a general result for the single-sample case, 

according to which calibration with the generalized least-squares distance measure may involve an 
arbitrary n n×  positive definite matrix R  instead of 0 ;Λ  see Andersson and Thorburn (2005). 

We may now write the COR estimator formally as a calibration estimator, COR
3

ˆ = ,′cX X  and using 

the subvector of calibrated weights 3 ,c  for sample 3S  only, we obtain the components of CORˆX  directly 

in the simple linear forms  

 COR COR
3 3 3 3

3 3

ˆ ˆ= = ; = = ,k k k kS S
c c′ ′∑ ∑X X c x Y Y c y   

as in common survey practice. Yet, a decomposition of the vector c  based on the following general 

lemma on calibration gives an analytic expression of CORX̂  and CORŶ  of the form (2.2), which provides 
insight into the structure and the efficiency of the COR estimator. The proof of the lemma is given in the 
Appendix.  
 

Lemma 1 Let X  be a design matrix of dimension ( )n p q× +  and of full rank and written in partition 

form ( ), ,ΨX  with corresponding vector of calibration totals ( )= , ,′′ ′Ψt t tX X  and let R  be any positive 

definite matrix of dimension .n n×  Then the vector of calibrated weights ( ) 1= −′+c w R RX X X  

( ) ,′−t wX X  obtained from the calibration procedure involving the distance measure ( ) 1−′−c w R  
( )−c w  and the constraint = ,′c t XX  can be decomposed as  

 ( ) [ ] ( ) [ ]1 1= ,Ψ Ψ Ψc w L L t w L Ψ Ψ L Ψ t Ψ w− −′ ′ ′ ′+ − + −X X XX X X X  (2.9) 

where ( )= −L R I PX X  with ( ) 1= ,−′ ′P R RX X X X X  and ( )= −Ψ ΨL R I P  with ( ) 1= .−′ ′ΨP Ψ Ψ RΨ Ψ R  
The vector c  can be written as  

 ( ) [ ]1= ,Ψ Ψ Ψ Ψc c L L t c−′ ′+ −XX X X X  (2.10) 

where the vector  

 ( ) [ ]1= −′ ′+ −Ψ Ψc w RΨ Ψ RΨ t Ψ w   

is generated by calibration of the design weights involving only Ψ  and .Ψt  By symmetry,  

 ( ) [ ]1= ,Ψc c L Ψ Ψ L Ψ t Ψ c−′ ′+ −X X X X  (2.11) 

where  
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 ( ) [ ]1= .−′ ′+ −c w R R t wX XX X X X   

 

Now, if X  is as in (2.7), with corresponding vector of calibration totals ( )= , ,′′ ′t 0 0X  and if 
0= ,R Λ  then it follows from (2.9) that (2.8) can be written in the form  

 ( ) [ ] ( ) [ ]1 1

1 3 2 3
ˆ ˆ ˆ ˆ= ,− −′ ′+ − + −Ψ Ψc w L L X X L Ψ Ψ L Ψ Y YX XX X X   

and thus  

 
( ) ( )

( ) ( )

COR
3 3 3 1 1 3 2 2 3

1 1 1 3 2 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ=

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

x x

x x x

X X c X B X X B Y Y

B X I B X B Y Y

o o

o o o

′= + − + −

= + − + −
 (2.12) 

in obvious notation for 1
ˆ o

xB  and 2
ˆ .o

xB  A similar expression is obtained for CORˆ .Y  It is seen from (2.12) 

that the COR estimator CORX̂  of xt  is approximately (for large samples) unbiased, and derives its 

efficiency from combining the two elementary estimators 1X̂  and 3X̂  (pooling information from samples 

1S  and )3S  and from borrowing strength from sample 2S  through the correlation between x  and .y  In 

view of (2.10), the estimator CORX̂  takes the alternative forms  

 

( ) [ ]

[ ]

( )

1COR
3 3 3 1 1 3 3

OR OR OR
3 1 1 3

OR OR
1 1 1 3

ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ,

Ψ Ψ Ψ Ψ Ψ

x

x x

X X c X L L X c X c

X B X X

B X I B X

o

o o

−′ ′ ′ ′ ′= + −

= + −

= + −

X X X

 (2.13) 

where ( ) ( )1OR 0 0
2 3

ˆ ˆ ˆ ˆ=i i i
−′ ′+ −X X X Λ Ψ Ψ Λ Ψ Y Y  are optimal regression (OR) estimators incorporating 

the regression effect of the last term in (2.12). 

In non-nested matrix sampling, { }0 0= diag ,iΛ Λ  OR
1 1

ˆ ˆ= ,X X  OR
3 3 3 3 2

ˆ ˆ ˆ ˆ ˆ ˆ= Cov( , )[ ( )V+ +X X X Y Y  
1

3 2 3
ˆ ˆ ˆ ˆ( )] [ ],V − −Y Y Y  having estimated approximate variance  ( ) ( )OR

3 3
ˆ ˆ ˆAV =X XV −  

 ( ) ( ) ( )[ ]  ( )1

3 3 2 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆCov , Cov , ,X Y Y Y X YV V

− ′+  and  ( ) ( )  ( )
1

OR OR
1 3 1 3

ˆ ˆ ˆ ˆ ˆ= AV AVo V
−

 + xB X X X  is the 

coefficient that minimizes the variance  ( )CORˆAV .X  From the explicit form 1
ˆ =xI B o−  

( ) ( ) ( )  ( ) ( ) ( )[ ]  ( )
1

1

1 1 3 3 3 2 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆCov , Cov , ,V V V V V

−
− ′+ − × + X X X X Y Y Y X Y  it is then clear that the 

stronger the correlation between x  and y  the larger the 1
ˆ o− xI B  and more weight is given to the less 

variable component OR
3

ˆ .X  In this connection, it can be easily shown that  ( )CORˆAV X  satisfies  

  ( ) ( )[ ]  ( )  ( )
11COR COR OR

1 1 3 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆAV = < , AV AV = < .o oV

−−   − x xX X B I X X I B I   

These inequalities hold also for any linear combination of the components of each of the estimators 
involved. The optimal composite regression estimator CORX̂  is more efficient than each of its two 
components 1X̂  and OR

3X̂  by the shown quantities, with the efficiency depending on the strength of the 

correlation between x  and .y  The estimator CORX̂  is also more efficient than the estimator 
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( )COR
1 1 1 3

ˆ ˆ= ,o o+ −x xX B X I B X    with ( ) ( ) ( )[ ] 1

1 3 1 3
ˆ ˆ ˆ ˆ ˆ ˆ= ,o V V V −

+xB X X X  which does not incorporate the 

information on y  (does not borrow strength from sample )2S  and has estimated variance 

 ( ) ( ) ( ) ( )[ ] ( )1COR
1 1 3 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆAV = .V V V V
−

+X X X X X  Indeed, writing the variance  ( ) ( )COR
1 1

ˆ ˆ ˆ ˆAV = oV xX X B  as 

 ( ) ( ) ( ) ( )[ ] ( )1COR
1 1 3 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆAV = ,V V V V
−

+X X X X X E  where 1 2=E E E  with 1
1 3

ˆ ˆ= [ ( ( ))V −−E I X

 1
3 3 2 3 3 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆCov( , )[ ( ) ( )] Cov ( , )]V V − ′+X Y Y Y X Y  and 1
2 1 3 3 3 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= [ [ ( ) ( )] Cov( , )[ ( )V V V−− + +E I X X X Y Y  

1 1
3 3 3

ˆ ˆ ˆ ˆ( )] Cov ( , )] ,V − −′Y X Y  and noticing that ,≤E I  it follows that  

  ( )  ( )[ ] 1
COR CORˆAV AV = ,

−
≤X X E I   

that is, borrowing strength from 2S  reduces the variance of the composite estimator of xt  by the factor 

,E  which depends on the strength of the correlation between x  and .y  It can be easily verified that for 
two scalar variables x  and y  and simple random sampling this result reduces to the analogous analytical 

result on the efficiency of BLUE given in Chipperfield and Steel (2009, page 231). In this simple case 
[ ] ( )[ ] ( ) ( )[ ]2 2

1 3 3 2 1 3 2 3 1 2= 1 ,E n n n n n n n n n n+ + − ρ + + − ρ  where ρ  is the correlation between x  and 
.y  As an illustration, assuming equal sample sizes and correlation = 0.7,ρ  the efficiency gain is 13.96%. 

In nested matrix sampling, the two estimators in (2.13) are  ( )OR ˆˆ ˆ ˆ= Cov ,i i i+X X X Ψ  

( )[ ] [ ]1

2 3
ˆˆ ˆ ˆ ,V

−
−Ψ Y Y  and     OR OR OR OR OR OR

1 3 1 3 1 3 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ= [AV( ) AC( , )][AV( ) AV( ) 2AC( ,o

x − + −B X X X X X X  
OR 1
3

ˆ )] ,−X  where AC denotes approximate covariance. In this case, in addition to the correlation 3, 3x yρ  

between 3X̂  and 3Ŷ  in sample 3 ,S  the efficiency of CORX̂  depends on the estimators’ correlations 

1, 3 2, 3 2, 3, ,x x y y y xρ ρ ρ  due to the dependence of the subsamples. For univariate x  and y  and with the 

simplifying assumption of identical designs for the three subsamples (as in equal splitting of the full 

sample), we obtain some insight through the simple expressions  ( )CORˆAV =X  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 22
3 1, 3 2, 3 3, 3 2, 3 1, 3 2, 3 3, 3 2, 3

ˆ 2 1 1 4 1 1 ,x x y y x y y x x x y y x y y xV X    − ρ − ρ − ρ − ρ − ρ − ρ − ρ − ρ     and 

 ( ) ( ) ( )COR
3 1, 3

ˆAV = 1 2.x xX V X + ρ  Clearly, the estimator COR ,X  which ignores information on ,y  is 

more efficient than the simple average of single-sample estimators of xt  only when there is negative 

correlation 1, 3 .x xρ  The efficiency of CORX̂  relative to CORX  

 
 ( )
 ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

22COR
1, 3 2, 3 3, 3 2, 3

22COR
1, 3 2, 3 1, 3 3, 3 2, 3

ˆ 4 1 1 2AV
=

4 1 1 1AV

x x y y x y y x

x x y y x x x y y x

X
X

− ρ − ρ − ρ − ρ

− ρ − ρ − + ρ ρ − ρ
  

depends on the sign and size of 1, 3x xρ  and the size of 3, 3 2, 3 .x y y xρ − ρ  

Although the calibration procedure, with vector of calibrated weights (2.8), substantially facilitates the 
computation of the composite optimal regression estimator for any total of interest, the matrix 0Λ  makes 
the calculations exceedingly demanding, particularly in nested sampling where the subsamples are 
dependent and thus 0Λ  is not diag{ }0 .iΛ  Besides, the probabilities klπ  are not known for most sampling 

designs. An alternative composite regression estimator that is computationally very efficient is developed 
in the next section. 
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3  Composite generalized regression estimation for design (c) 
 

A computationally very convenient, but generally suboptimal, variant of ˆ oB  in (2.6) is obtained by 
replacing the matrix 0Λ  with the diagonal “weighting matrix” Λ  having ik ikw q  as thik  diagonal entry, 

where { }ikw  are the design weights of iS  and { }ikq  are positive constants. This gives the multivariate 

composite generalized regression (CGR) estimator of ( ), ′′ ′
x yt t  

 
CGR

3 3 1 31
CGR

3 3 2 32

ˆ ˆ ˆ ˆˆˆ
ˆ ˆ ˆ= ( ) = ,

ˆ ˆ ˆ ˆˆˆ
X X X XXX

I
Y Y Y YYY

−       
+ − +        −         

B B B  (3.1) 

where 1
3

ˆ = ( ) ( ) −′ ′Λ ΛB X X X X  is the associated matrix regression coefficient. For an extensive 

discussion of the generalized regression estimator in a single sample, see Särndal et al. (1992, Chapter 6). 

The CGR estimator may be compactly written as ( )CGR
3 3

ˆ ˆ ˆˆ ˆ= = , ′′− − wX X BX X XB  i.e., as a sum 

of weighted sample regression residuals. The coefficient B̂  is optimal in the sense of generalized least 

squares, i.e., it minimizes the quadratic form ( ) ( )3 3
ˆ ˆ′′ ′− −ΛX XB X XB  in these residuals. Similarly to 

the COR estimator, the CGR estimator too can be obtained in calibration form as 3 ,′cX  where the vector 

( ) ( )1= −′ ′+ −c w Λ Λ 0 wX X X X  minimizes the generalized least-squares distance ( ) 1−′−c w Λ  
( )−c w  and satisfies the constraints CGR CGR

1 3
ˆ ˆ=X X  and CGR CGR

2 3
ˆ ˆ= .Y Y  This extends to the present 

context the well-known equivalence of generalized regression estimation and calibration estimation 
(Deville and Särndal 1992) for a single-sample setting. Now using the subvector of calibrated weights 3 ,c  

for sample 3S  only, we obtain the composite estimators in (3.1) in the simple linear forms CGR
3 3

ˆ = ′X X c  

and CGR
3 3

ˆ = .′Y Y c  Using Lemma 1 and the diagonal structure of ,Λ  it works out that CGRX̂  can be 

written as  

 ( )CGR GR
1 1 1 3

ˆ ˆ ˆ ˆ ˆ= ,x xX B X I B X+ −  (3.2) 

where ( ) ( )1GR
3 3 3 2 3

ˆ ˆ ˆ ˆ= −′ ′+ −X X X ΛΨ Ψ ΛΨ Y Y  is the generalized regression (GR) counterpart of OR
3

ˆ .X  

The matrix regression coefficient 1
ˆ

xB  is written explicitly as ( ) 1

1 3 1 1 1 3
ˆ = ,−′ ′ ′+x Ψ ΨB X L X Λ X X LX X  

where ( ) 1

3 3 3 3 3 3 3 2 2 2 3 3 3 3 3 3= .−′ ′ ′ ′ ′ ′− +ΨX L X Λ X X Λ Y Y Λ Y Y Λ Y Y Λ XX  If x  and y  were uncorrelated, or 

if information on y  was not used in the estimation of ,xt  then it would be GR
3 3

ˆ ˆ=X X  and 

( ) 1

1 3 3 3 1 1 1 3 3 3
ˆ = .−′ ′ ′+xB X Λ X X Λ X X Λ X  But the GR estimator GR

3X̂  is generally more efficient than the 

HT estimator 3
ˆ ,X  and since 1 1 1 3 1 1 1 3 3 3<′ ′ ′ ′+ +ΨX Λ X X L X Λ X X Λ XX  (in the partial ordering of non-

negative definite matrices), it is clear that more weight is given to GR
3X̂  in (3.2), through 

( ) 1

1 1 1 1 1 1 1 3
ˆ = ,−′ ′ ′− +x ΨI B X Λ X X Λ X X L X  than would have been given to the component estimator 3X̂  in 

the simple composite estimator involving only information on .x  This suggests that the CGR estimator in 
(3.2), incorporating information from sample 2 ,S  is a more efficient estimator. Suggestive of the 

efficiency of CGRX̂  is also its alternative expression, obtained using (2.11), CGR CGRˆ = +X X  

( ) [ ]1 GR
3 2 3

ˆ ˆ ,−′ ′ −X L Ψ Ψ L Ψ Y YX X  where ( ) ( ) ( )1CGR
3 3 1 3 1 1 1 3

ˆ ˆ ˆ ˆ ˆ= =−′ ′+ − + −x xX X X Λ Λ X X B X I B X  X X X  

is the composite regression estimator of xt  using information on x  from 1S  and 3 .S  
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In general, the computationally simpler CGR estimator ( )CGR CGRˆ ˆ, ,X Y  involving the coefficient ˆ,B  is 

less efficient than the optimal composite regression estimator ( )COR CORˆ ˆ,X Y  which involves the estimated 

optimal coefficient ˆ oB  and has the same asymptotic variance as the BLUE in (2.3); the efficiency loss 

may be larger in nested matrix sampling, for which the matrix 0Λ  is not block-diagonal. On the other 
hand, ( )COR CORˆ ˆ,X Y  may be unstable in small samples, when there is a small number of degrees of 

freedom available for the estimation of ˆ ,oB  which is particularly so in nested matrix sampling; for a 

discussion of the relative stability of the optimal versus the generalized regression estimator in the single-
sample case see Rao (1994) or Montanari (1998). For certain sampling strategies, described in the 

following theorem, ˆ ˆ= oB B  and the CGR estimator is the COR estimator, and asymptotically is BLUE; 

the proof is given in the Appendix.  

 
Theorem 1 Consider the following sampling strategies. 
 

Non-nested design 
( )a  For all three samples 1 2,S S  and 3S  assume stratified simple random sampling without 

replacement (STRSRS) with sampling fraction =ih ih ihf n N  in stratum h  of sample ,i  
= 1, , ih H  and ihN  denoting stratum size, and specify the constants ikq  in iΛ  as 

( ) ( )= 1 1ik ih ih ihq n N f− −  for all units of stratum .h  Furthermore, assume that within each 
sample the units are sorted by stratum, and consider the augmented design matrix ( )= ,DZ X  in 
(2.7), where D  is the block diagonal matrix { }1 2 3diag , ,D D D  and iD  is the diagonal matrix 

{ }1diag , , , , ,
ii ih iH1 1 1   with diagonal element ih1  being a vector of ones for all units of stratum 

h  in sample ,iS  and consider the corresponding augmented vector of calibration totals 

( )1 2 3= , , , , ,′′ ′ ′ ′ ′t 0 0 N N NZ  where iN  is the vector of strata sizes for sample .iS  
( )b  For all three samples 1 2,S S  and 3S  assume stratified Poisson sampling and specify the constants 

ikq  in the entries of iΛ  as ( )= 1ik ihk ihkq π − π  for the units of stratum ,h  where ihkπ  is the 
inclusion probability of unit k  in stratum h  of the thi  survey. 

 

Nested design 
( )’a  Assume that an initial stratified simple random sample S  is split by stratum into three simple 

random subsamples 1 2,S S  and 3 .S  Specify the sampling fractions ,ihf  the constants ikq  in ,iΛ  
the design matrix ( )= ,DZ X  and the vector of calibration totals t Z  as in part ( ) .a  

( )’b  Assume that an initial stratified Poisson sample S  is randomly split by stratum into three 
subsamples 1 2,S S  and 3 ,S  with unequal inclusion probabilities for the units of each subsample. 
Specify the constants ikq  in iΛ  as ( )= 1ik ihk ihkq π − π  for the units of stratum ,h  where ihkπ  is 
the marginal inclusion probability of unit k  in stratum h  of the thi  subsample.  

 

Under each of strategies ( )a  and ( ) ,b  the calibration procedure with matrix Λ  in the least-squares 
distance measure gives the CGR estimator in (3.1) with ˆ ˆ= ,oB B  implying that the CGR estimator is the 
COR estimator. For ( )’a  and ( )’ ,b  this holds approximately when the strata sampling fractions are 
approximately zero.  
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Corollary 1 The result of Theorem 1 holds also for the unstratified versions of all four designs. For 
simple random sampling without replacement (SRS), in particular, the matrix D  reduces to the diagonal 
matrix { }1 2 3diag , ,1 1 1  having as its thi  diagonal element the in - dimensional unit vector ,i1  and the 

vector of calibration totals is then ( )= , , , , .N N N ′′ ′t 0 0Z  
 

Corollary 2 In non-nested sampling, when the sampling design for each of the three samples is one of the 
designs in ( )a  and ( )b  or one of their unstratified versions, but not the same for all samples, the result of 
Theorem 1 holds provided that the matrix D  in Z  and the vector t Z  are reduced so as to correspond 
only to the samples for which SRS or STRSRS is used.  
 

The extended calibration scheme in Theorem ( )1 , ’a a  includes calibration to the stratum sizes (or to 

the population size in the SRS version), through the inclusion of an intercept for each stratum in the design 
matrix .X  No additional information is used beyond what is assumed in the sampling design in ( )a  and 
( )’ ,a  and the form of the resulting CGR estimator remains the same as in (3.1) because the HT estimates 

of the population and strata sizes are exact. The effect of this extended calibration (with the specified 

values of )ikq  is only to convert the CGR coefficient B̂  to the optimal coefficient ˆ oB  and, thus, the 

CGR estimator to the COR estimator. The practical significance of this conversion lies in carrying out 
optimal composite regression estimation through the much simpler calibration procedure of generalized 
regression estimation. 

Subsampling as in part ( )’ ,a  with a priori fixed sample sizes, is a natural procedure in matrix sampling 
involving splitting a questionnaire. In contrast, in the subsampling scheme of part ( )’b  in  is the expected 

sample size of ,iS  the actual size being random. Unequal subsampling probabilities may be determined 

adaptively for increased efficiency; see Gonzalez and Eltinge (2008). 

The results of Theorem 1 could extend to other sampling designs, e.g., stratified two-stage simple 
random sampling in non-nested matrix sampling. However, the required adjustments in the matrices iΛ  

would not be easier than using directly the matrices 0
iΛ  in the calibration to obtain the optimal composite 

regression estimator. 

For sampling designs other than those assumed in Theorem 1, the value of ikq  in the entries of iΛ  

should be set to ( )1 2 3= ,ik iq n n n n+ +     where = ,i i i in n d d  denoting design effect, to take into account 

the differential in effective sample sizes among the three samples. If the same design is used for all 
samples, then = .i in n  The justification for this adjustment is based on the argument given in Merkouris 

(2010) for a similar problem of composite regression estimation. 

 
4  Composite estimation for matrix sampling design (d) 
 

4.1  Core set of variables with known totals 
 

We discuss first a special case of the matrix sampling design (d) in which the variables that are 
common to the three samples have known totals. In this very realistic sampling setting, all samples collect 
also information on the same vector of auxiliary variables z  for which the vector of population totals zt  

is known. For illustration we consider again three samples, as in Figure 2.1 (but with z  added in all 
subsamples). Then, the CGR estimator CGRX̂  in (3.1) may be augmented with the ordinary regression 
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terms ( ) ( ) ( )3 1 4 2 5 3
ˆ ˆ ˆ ˆ ˆ ˆ ,− + − + −x z x z x zB t Z B t Z B t Z  where ˆ , = 1,2,3i iZ  is the HT estimator of zt  based 

on sample ;iS  similarly for CGRˆ .Y  This estimator has improved efficiency, as it incorporates additional 

information, and is generated by a calibration procedure that includes the additional three constraints 
CGRˆ = ,i zZ t  and has the design matrix X  in (2.7) augmented with the block-diagonal matrix 

{ }1 2 3= diag , , .Z Z Z Z  In the simplest case when the sample matrices iZ  reduce to the unit columns i1  

(with corresponding total the size of the population), the calibration scheme is the one specified in 
Corollary 1 above. As shown in the proof of the next theorem, an application of Lemma 1 to the present 
calibration procedure, with partitioned design matrix ( ), , =Z R ΛX  and calibration totals 

( ), , , , ,′′ ′ ′ ′ ′
z z z0 0 t t t  gives a modified CGR form of (3.1) with GR estimators incorporating information on 

z  in place of HT estimators. This is compactly written as GR GR
3

ˆ ˆˆ ,−X BX  where GR
3 3

ˆ ˆ= +X X  

( ) ( )1

3 ( )
ˆ ,−′ ′ −zΛZ Z ΛZ t ZX  with ( )( ) = , , ,′′ ′ ′

z z z zt t t t  and GRˆX  expressed similarly, and where 

( )[ ] ( )[ ] 1

3
ˆ = −′ ′− −Z ZΛ I P Λ I PB X X X X  with ( ) 1= .−′ ′

ZP Z Z ΛZ Z Λ  

Replacing Λ  by 0Λ  in the calibration procedure gives the optimal composite regression estimator, 

compactly written as OR OR
3

ˆ ˆˆ ,o−X B X  with optimal regression estimators incorporating information on 

z  in place of GR estimators, and with ( )[ ] ( )[ ] 10 0 0 0
3

ˆ =o −′ ′− −Z ZΛ I P Λ I PB X X X X  where 

( ) 10 0 0= .
−′ ′

ZP Z Z Λ Z Z Λ  Noticing that ( )0
3− ZI P X  is the matrix of residuals corresponding to OR

3
ˆX  and 

that ( ) ( ) ( )  ( )0 0 0 0 0 OR OR
3 3 3

ˆ ˆ= = AC , ,′′ ′− − −Z Z ZΛ I P I P Λ I PX X X X X X  and similarly for  ( )ORˆAV ,X  

it follows that  

  
1OR OR OR OR OR

3 1 3 1 3
OR OR OR OR OR
3 2 3 2 3

ˆ ˆ ˆ ˆ ˆ
ˆ = AC , AV ,

ˆ ˆ ˆ ˆ ˆ
X X X X X

Y Y Y Y Y
o

−
− −      

−         − −      
B  (4.1) 

in analogy with (2.4), or with (2.5) in non-nested sampling. Thus, ˆ oB  is optimal in the sense of 

minimizing the approximate variance of the estimator OR OR
3

ˆ ˆˆ ,o−X B X  which is then asymptotically 

BLUE. An alternative estimator, of weaker optimality, has the form GR GR
3

ˆ ˆˆ ,wo−X B X  where the 

coefficient ( ) ( ) ( ) ( )
1

0 0
3

ˆ =wo
−

   ′ ′′ ′− − − −  Z Z Z ZI P Λ I P I P Λ I PB X X X X  has the form (4.1) but 

with GR estimators in place of OR estimators. This estimator, differing from the CGR only in the 
regression coefficient, is optimal in the restricted sense of being the composite of GR estimators 
incorporating information on z  that has minimum approximate variance. In general, this later composite 
estimator cannot be obtained as a calibration estimator. The following theorem gives conditions under 
which the CGR estimator is optimal in one of the two senses in non-nested matrix sampling; the proof is 
given in the Appendix. The nested sampling version of the theorem, with subsampling schemes and proof 
as in Theorem 1, is omitted for brevity.  

 
Theorem 2 Consider the following sampling strategies. 
 

( )a  For all three samples 1 2,S S  and 3S  assume SRS with sampling fractions = ,i if n N  and specify 
all constants ikq  in iΛ  as ( ) ( )= 1 1 .ik i iq n N f− −  Consider the augmented design matrix 

( )= , ZZ X  in (2.7), where { }1 2 3= diag , , ,Z Z Z Z  and with the corresponding augmented vector 
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of calibration totals ( )= , , , , .′′ ′ ′ ′ ′
z z zt 0 0 t t tZ  Further, suppose that =i iZ h 1  for constant 

vectors .ih  

Then, the calibration procedure gives the CGR as GR GR GR GR
3 3

ˆ ˆ ˆ ˆˆ ˆ= ,wo− −X BX X B X  i.e., the 
CGR estimator is the optimal composite of GR estimators incorporating information on .z  

( )b  For all three samples 1 2,S S  and 3S  assume STRSRS with sampling fraction =ih ih ihf n N  in 
stratum h  of sample , = 1, , ii h H  and ihN  denoting stratum size, and specify the constants in 

iΛ  as ( ) ( )= 1 1ik ih h ihq n N f− −  for all units of stratum .h  Further, assume that within each 
sample the units are sorted by stratum, and consider the augmented design matrix ( )= , ,Z DZ X  
in (2.7), with corresponding augmented vector of calibration totals 1= ( , , , , , ,′ ′ ′ ′ ′ ′

z z zt 0 0 t t t NZ  

2 3, ) .′′ ′N N  The definition of D  and iN  is as before. 

Then, the calibration procedure gives the CGR as OR OR
3

ˆ ˆˆ ,o−X B X  i.e., the CGR estimator is the 
optimal composite of optimal regression estimators incorporating information on .z  

( )c  For all three samples 1 2,S S  and 3S  assume stratified Poisson sampling and specify the constants 

ikq  in the entries of iΛ  as ( )= 1ik ihk ihkq π − π  for the units of stratum .h  

Then, the calibration procedure, with Z  and t Z  as in ( ) ,a  gives the CGR as GR GR
3

ˆ ˆˆ =−X BX  
OR OR

3
ˆ ˆˆ ,o−X B X  i.e., GR and OR estimators are identical, and the CGR estimator is the optimal 

composite of optimal regression estimators incorporating information on .z  

 
The condition =i iZ h 1  in ( )a  of Theorem 2 is customarily satisfied when the vector z  contains 

categorical variables. Results analogous to Corollaries 1 and 2 of the previous section hold also for parts 
( )b  and ( )c  of Theorem 2. Here too, for sampling designs other than those assumed in Theorem 2, the 
value ( )1 2 3=ik iq n n n n+ +     in the entries of Λ  should be used. 

Finally, by analogy to (3.2), and with the appropriate decomposition of the vector of calibrated weights 
,c  the composite estimator CGRX̂  takes now the form  

 ( )CGR GR GR
1 1 1 3

ˆ ˆ ˆ ˆ ˆ= ,+ −x xX B X I B X   

where GR
1X̂  and GR

3X̂  are GR estimators using information on z  from 1 ,S  and on y  and z  from 2S  and 

3 ,S  respectively, and 1
ˆ

xB  is the corresponding matrix regression coefficient. Similar is the expression for 
CGRˆ .Y  Of course, CGRX̂  and CGRŶ  can be obtained directly through this modified c  in the simple linear 

forms CGR
3 3

ˆ = ′X X c  and CGR
3 3

ˆ = .′Y Y c  

 
4.2  Core set of variables with unknown totals 
 

We turn now to the case of matrix sampling design (d) in which the variables z  that are common to the 
three samples have unknown totals. Estimation in this setting includes the construction of a composite 
estimator of the vector of totals .zt  In line with the formulation of Section 2, composite estimators of 

,x yt t  and zt  that are best linear unbiased combinations of the HT estimators 1 1 2 2 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,X Z Y Z X Y Z  

are given by  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 3 3 2 3 2 1 3 4 2 3

3 2 3 3 1 1 3 2 1 3 4 2 3

2 1 4 2 2 4 3 1 1 3 3 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .

x x x x x

y y y y y

z z z z z z

X B X I B X B Y Y B Z Z B Z Z

Y B Y I B Y B X X B Z Z B Z Z

Z B Z B Z I B B Z B X X B Y Y

B

B

B

= + − + − + − + −

= + − + − + − + −

= + + − − + − + −

 (4.2) 

The estimators in (4.2) can be written in the matrix regression form  

 

1 3
3

1 3
3

2 3
3

2 3

ˆ ˆ
ˆ ˆ

ˆ ˆ
ˆ ˆ= ,

ˆ ˆ
ˆ ˆ

ˆ ˆ

X X
X X

Z Z
Y Y

Y Y
Z Z

Z Z

B

B

B

− 
     −     +     −         − 

B  (4.3) 

with the variance-minimizing matrix of coefficients given by ( ) ( )[ ] 1

3 12 3 12 3= Cov , ,V −
− − −u u u u uB    

where ( )3 3 3 3
ˆ ˆ ˆ= , , ,′′ ′ ′u X Y Z  3 3 3 3 3

ˆ ˆ ˆ ˆ= ( , , , ) ,′′ ′ ′ ′u X Z Y Z  ( )12 1 1 2 2
ˆ ˆ ˆ ˆ= , , , .′′ ′ ′ ′u X Z Y Z  With estimated covariance 

and variance matrices we obtain the estimated optimal matrix ˆ ,oB  and (4.3) becomes then an optimal 

multivariate regression estimator. Then, proceeding as in Section 2, it can be shown that  

 0 0 1
3

ˆ = ( ) ( ) ,o −
−
′ ′Λ ΛB X X X X   

where  

 
1 1

2 2

3 3 3 3

=

X Z 0 0

0 0 Y Z

X Z Y Z

− − 
 − −  
 

X  (4.4) 

is the design matrix corresponding to the regression estimator (4.3), 3−X  is the matrix X  with the 

second column eliminated and the first two rows set equal to zero, and 0Λ  is as in Section 2. 

Replacing the matrix 0Λ  with the weighting matrix ,Λ  gives the generalized regression coefficient 
1

3
ˆ = ( )( ) ,Λ Λ −

−
′ ′B X X X X  and (4.3) becomes the CGR estimator of ( ), , ′′ ′ ′

x y zt t t  

 

CGR 1 3
3

CGR 1 3
3

CGR 2 3
3

2 3

ˆ ˆ
ˆ ˆ

ˆ ˆ
ˆˆ ˆ= .

ˆ ˆ
ˆ ˆ

ˆ ˆ

X X
X X

Z Z
Y Y

Y Y
Z Z

Z Z

− 
     −     +     −         − 

B  (4.5) 

The estimator (4.5) can be conveniently obtained through a calibration procedure that gives a vector of 
calibrated weights for the combined sample S  having the form ( ) ( )1= ,−′ ′+ −c w Λ Λ 0 wX X X X  as 
before, but now satisfying the additional constraint CGR CGR CGR

1 2 3
ˆ ˆ ˆ= = .Z Z Z  Expression (4.5) is then 

obtained simply as 3 ,−
′ cX  based on sample 3 .S  

The explicit expression (4.2), different for the optimal regression and the generalized regression 
variants only in the form of the linear coefficients, shows that the composite estimators of xt  and yt  are 

more efficient than their counterparts in matrix sampling design (c), equation (2.2), because they 
incorporate information on the common variables ,z  assuming non-zero correlation with x  and .y  

Particularly remarkable is the expression for the composite estimator of :zt  it involves a linear 

combination of the three HT estimators of zt  derived from the three samples, plus the two regression 
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terms implying additional efficiency through the correlation of z  with x  and .y  One would expect the 

additional terms to be zero because an optimal combination of the three estimators should incorporate all 
information on z  available in the three samples. In general, however, the associated coefficients are not 
zero. In non-nested sampling, conditions under which these coefficients are zero are given by the 
following proposition, the proof of which is given in the Appendix. The result should also hold in nested 
sampling.  
 

Proposition 1 The coefficients 1zB  and 3zB  in the estimator ˆ BZ  in (4.2) are zero only if  

 
( )[ ] ( ) ( )[ ] ( )

( )[ ] ( ) ( )[ ] ( )

11

1 1 1 3 3 3

11

2 2 2 3 3 3

ˆ ˆ ˆ ˆ ˆ ˆCov , Cov ,

ˆ ˆ ˆ ˆ ˆ ˆCov , Cov , .

Z X Z Z X Z

Z Y Z Z Y Z

V V

V V

−−

−−

=

=
 (4.6) 

This can happen only if the sampling designs for the three samples are identical, including equal sample 
sizes, or only if the sampling design across samples is the same design with equal inclusion probability for 
all units, but not necessarily with the same sample size.  
 

Noticing that the quantities on each side of the equations (4.6) are regression coefficients, according to 
Proposition 1 the terms of the estimator ˆ BZ  incorporating the correlation of z  with x  and y  are zero 

only if the effect of the regression of x  and y  on z  is identical in samples 1S  and 3S  and in samples 2S  

and 3 ,S  respectively. The essence of this finding is that estimation of zt  using only information on z  
from the three samples, but ignoring information on x  and ,y  will be suboptimal when there is 

differential regression effect of x  and y  on z  in the various samples. The efficiency of ˆ BZ  relative to 

the composite estimator BZ  that uses only information on z  was possible to gauge in the simple setting 
involving scalar ,x y  and ,z  simple random sampling for 1S  and 3S  and Bernoulli sampling for 2 ,S  and 

equal sampling rates for all three samples. Then only the first equation of (4.6) holds. After much tedious 
algebra the efficiency of ˆ BZ  relative to BZ  was derived to be ( ) ( ) ( )[ ]ˆ = ,B B BV V V G H−Z Z Z   with  

 

( ) ( )
( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )

22

2 2 2 2 2 2

2 2 2 2 2 2

2

2 1

1 12 9 3 2 1 12 1

2 8 1 4

6 1 2

xz yz y z

z yz xz xy yz xz yz z y

xy yz y xz y yz xy xz y

xz z z yz y

G r r cv cv

H cv r r r r r r cv cv

r r cv r cv r r r cv

r cv cv r cv

= − −

= + − − − + −

+ + + − −

+ − −

  

where ,xy xzr r  and yzr  denote population correlation coefficients, and ,y zcv cv  denote coefficients of 

variation. Although in this setting the departure from the conditions of Proposition 1 is minimal, different 
configurations of admissible values for , , ,xy xz yz yr r r cv  and zcv  show that the efficiency gain may be 

substantial, making up for the inefficiency of the HT estimator of zt  based on the Bernoulli sample 2 .S  

For example, when = 0.3, = 0.3, = 0.3xy xz yzr r r  and = 0.1, = 0.6,y zcv cv  the efficiency gain is 23%. In 

the case of the composite optimal regression estimator CORˆ ,Z  with estimated coefficients 1
ˆ o

zB  and 3
ˆ ,o

zB  

the regression coefficients in (4.6) are estimated, and thus the equalities in (4.6) would never hold exactly 
because of the sample differences. Likewise in the case of the CGR estimator CGRˆ ,Z  for which equations 

formally identical to (4.6) are given in terms of sample generalized regression coefficients. 
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Regarding the efficiency of the CGR estimator (4.5), an exact analogue of Theorem 1 holds in the 
present setting, with the same sampling strategies for which the CGR estimator is optimal regression 
estimator and asymptotically BLUE. 

Composite estimation for a matrix sampling scheme involving a core set of variables with both known 
and unknown totals can be carried out using the obvious extended calibration scheme. 

 
5  Domain estimation 
 

Composite estimators for domains (subpopulations) of interest may be readily obtained using the 
calibrated weights derived in the previous sections, that is, by summing the weighted values of a variable 
over any domain .dU U⊂  For instance, letting idX  denote the matrix ,iX  for sample ,iS  with the 

entries of the thk  row set equal to 0 if ,dk U∉  the CGR estimator of the domain total dxt  based on the 

weights of 3S  calibrated with the scheme of design (c) (see Section 3) is given by  

 ( ) [ ]1CGR GR GR
3 3 3 3 3 1 3

ˆ ˆ ˆ ˆ= = ,d d d d
−′ ′ ′+ −Ψ ΨX X c X X L L X XX X X   

where ( ) ( )1GR
3 3 3 2 3

ˆ ˆ ˆ ˆ=d d d
−′ ′+ −X X X ΛΨ Ψ ΛΨ Y Y  and the subscript d  indicates domain. The CGR 

estimator CGR
1

ˆ
dX  based on sample 1S  is obtained in the same manner. However, unlike the population-

level estimator (3.2), resulting from calibration of two estimators to each other at population level, the 
estimators CGR

1
ˆ

dX  and CGR
3

ˆ
dX  are not constructed as composites of two domain estimators, based on 

samples 1S  and 3 ,S  and they are not identical. Moreover, although both CGR
1

ˆ
dX  and CGR

3
ˆ

dX  incorporate 

information on x  from samples 1S  and 3 ,S  their construction (non-customized at domain level) may 

entail some loss of efficiency. 

A simple modification of the calibration procedure that leads to efficient composite estimation for all 
totals of interest involves the augmentation of the design matrix with columns defined at each domain 
level for the relevant variables. Thus, for design (c) estimation of the domain total dxt  involves the 

augmentation of the design matrix X  in (2.7) with the column ( )1 3, , .d d
′′ ′ ′−X 0 X  The resulting estimator, 

CGR ,dX  may be written in the forms  

 
( ) ( ) ( )

( )

CGR
3 1 1 3 2 2 3 3 1 3

GR GR
1 1 1 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ,

x x x

x x

X X B X X B Y Y B X X

B X I B X

d d d d d d d

d d d d

= + − + − + −

= + −



 
 (5.1) 

where GR
1dX  and GR

3dX  are now the GR domain estimators incorporating the regression effect of the second 

and third terms of (5.1). Adding another term in (5.1) involving the difference 2 3
ˆ ˆ

d d−Y Y  may not 

improve appreciably the efficiency of CGR
dX  but will be necessary if estimation of the domain total dyt  is 

also required. In any particular situation, the augmentation of the design matrix X  involves only those 
components of x  or y  for which domain estimates are needed. A possible drawback of this procedure is 

the additional computational burden, which increases with the number of domains and the variables for 
which domain estimation is required. 
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An alternative approach that may be more appropriate when the domain estimates of interest are 
numerous, involves the separate production of the domain estimates by carrying out the composite 
calibration only at the domain level. For the domain total ,dxt  this would give the domain CGR estimator, 

in analogy with the population CGR estimator (3.2),  

 ( )CGR GR
1 1 1 3

ˆ= ,d d d d d+ −x xX B X I B X
   

  

where ( ) 1

1 3=
d dd d d d d

−′ ′
x Ψ ΨB X L L


X X X  and ( ) ( )1GR

3 3 3 2 3
ˆ ˆ ˆ= .d d d d d d d d

−′ ′+ −X X X ΛΨ Ψ ΛΨ Y Y


 The 

efficiency of the joint estimator ( )CGR CGR,d dX Y
 

 over the estimator ( )CGR CGRˆ ˆ,d dX Y  can be verified under the 

conditions of the following proposition (its proof in the Appendix).  
 

Proposition 2 Under the sampling schemes of Theorem 1,  

  
CGR CGR
3 3
GGR CGR
3 3

ˆ
AV < AV .

ˆ
d d

d d

  
  

   

X X

Y Y


   

Notably, the drawback of a separate production of the domain estimates, through composite calibration 
at the domain level, is the loss of consistency among estimates at population level and domain level. 

The above considerations extend to domain estimation for matrix sampling design (d). 

 
6  A simulation study 
 

We have conducted a simulation to study the relative performance of the various composite estimators 
for the nested version of the basic design (c). Values of correlated scalar variables x  and y  were 

generated from a bivariate log-normal distribution with mean and variance parameters ( ),x yµ µ  and 

( )2 2, .x yσ σ  With fixed = 3,xµ  = 5,yµ  four combinations of variances ( )2 2,x yσ σ  (5 and 10) and three 

values of the correlation ( ),x yρ  (0.5, 0.7, 0.9) were considered. Variances 2 = 5,xσ  2 = 10xσ  imply 

skewness 2.65 and 4.33, respectively, while variances 2 = 5,yσ  2 = 10yσ  imply skewness 1.43 and 2.15. 

For each of these twelve settings, a population of size = 1,000,000N  was created. From each of the 
twelve populations a simple random sample S  of size = 5,000n  was drawn without replacement, and 
split into three simple random subsamples ( )1 2 3, ,S S S  with two different allocations, namely, 

( )1 2 3= 2,000, = 2,000, = 1,000n n n  and ( )1 2 3= 1,500, = 1,500, = 2,000 ,n n n  the second allocation 

giving larger combined samples 1 3S S∪  and 2 3 .S S∪  Thus, a total of 24 simulation settings were 

created. For each such setting, we computed the HT estimators of the totals xt  and yt  using the full 

sample ,S  as well as the HT estimator of xt  using 1S  and 3S  and the HT estimator of yt  using 2S  and 

3 .S  For the HT estimators based on two subsamples, we employed the simple method for combining two 

subsamples (Gonzales and Eltinge 2008) by a weighting adjustment involving the probability of selection 
of a population unit in 1S  or in 3S  and in 2S  or in 3 .S  In addition, for both xt  and yt  we computed the 

CGR and COR estimators. Each simulation sampling setting was repeated 10,000 times. 
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The simulated bias (in percent) of all estimators was smaller than 0.05%, with the exception of two 
settings involving 2 = 10,xσ  with associated population skewness of 4.33, where the largest observed 

values 0.14% and 0.17% correspond to CGR and COR for ,xt  respectively, in the sample allocation 

(2,000, 2,000, 1,000), dropping to 0.10% and 0.13% in the more favorable allocation (1,500, 1,500, 
2,000). Thus the relative efficiencies of the estimators are evaluated using their simulated design 
variances. 

Table 6.1 shows the efficiency of the composite estimators CGR and COR relative to the HT 
estimators that use 1 3S S∪  and 2 3 .S S∪  The measure of this relative efficiency is the percent relative 

difference of variances [V(CGR)-V(HT)]/V(HT) and [V(COR)-V(HT)]/V(HT). A negative value of this 
measure indicates the efficiency gain achieved by the two composite estimators. Not shown in Table 6.1, 
the simulated loss of efficiency of the HT estimators of both xt  and yt  due to not using the full sample S  

is very close to the nominal loss for SRS, that is, 66.8% for the allocation (2,000, 2,000, 1,000), and 
43.1% for the allocation (1,500, 1,500, 2,000). 

 
Table 6.1  
Relative differences (in percent) of variances of CGR and COR to HT for x and y, based on 10,000 simulated 
samples with two different sample allocations. 
 

(n1, n2, n3) (2,000; 2,000; 1,000) (1,500; 1,500; 2,000) 

           x            y            x            y  

 CGR COR CGR COR CGR COR CGR COR 
2 25 5x yσ = σ =           

0.5ρ =   -2.24 -6.86 26.39 -6.23 -5.19 -6.29 12.59 -6.52 

0.7ρ =  -11.90 -14.75 10.21 -13.96 -12.78 -13.24 0.25 -13.13 

0.9ρ =  -24.89 -28.57 -12.49 -28.10 -21.55 -23.37 -14.55 -23.03 

2 25 10x yσ = σ =           

0.5ρ =   -0.27 -6.75 6.50 -6.26 -3.94 -6.60 0.50 -6.44 

0.7ρ =  -11.47 -14.56 -6.29 -14.04 -12.87 -13.51 -9.51 -13.10 

0.9ρ =  -28.14 -28.42 -25.74 -28.23 -23.70 -23.54 -22.07 -23.09 

2 210 5x yσ = σ =           

0.5ρ =   -4.57 -6.51 28.64 -6.17 -5.90 -5.98 17.57 -6.44 

0.7ρ =  -11.29 -14.37 16.08 -13.92 -11.66 -12.90 6.69 -13.00 

0.9ρ =  -20.32 -28.09 -2.46 -28.19 -18.46 -22.97 -6.97 -22.91 

2 210 10x yσ = σ =           

0.5ρ =   -4.79 -6.49 8.54 -6.13 -6.06 -6.22 3.41 -6.34 

0.7ρ =  -13.27 -14.28 -2.57 -13.95 -13.27 -13.15 -6.00 -12.93 

0.9ρ =  -26.01 -28.06 -20.37 -28.21 -22.18 -23.17 -18.48 -22.89 
 

 

For the variable ,x  using the CGR estimator at low correlation = 0.5ρ  and with allocation (2,000, 

2,000, 1,000) leads to an efficiency gain that ranges from 0.27% to 4.79% at the four different variance 



Survey Methodology, June 2015 255 
 

 
Statistics Canada, Catalogue No. 12-001-X 

settings; this gain reflects the amount of lost information recovered by the CGR estimator. Substantial 
gain is achieved at = 0.7,ρ  ranging from 11.29% to 13.27%, and more so at = 0.9,ρ  ranging from 

20.32% to 28.14%. With sample allocation (1,500, 1,500, 2,000) the CGR estimator performs better at 
= 0.5,ρ  and = 0.7,ρ  but not at = 0.9.ρ  Additional gain is achieved by the COR estimator, which is 

more efficient than the CGR estimator in all but two settings (where the estimators are equally efficient, 
see column 7). The efficiency of the COR estimator relative to HT estimator is close to the nominal for 
SRS efficiency, which is 6.25, 13.92 and 28.12 at = 0.5,ρ  = 0.7,ρ  = 0.9,ρ  respectively, for allocation 

(2,000, 2,000, 1,000), and 6.417, 13.186 and 23.30 for allocation (1,500, 1,500, 2,000); see quantity E in 
Section 2, third last paragraph. As expected, the CGR estimator competes better with the COR estimator 
with increasing correlation and sample size. 

For the variable ,y  the CGR estimator is inferior to the HT estimator at correlation level = 0.5ρ  and 

in half of the simulated settings at = 0.7;ρ  see positive values in columns 4 and 8. This inefficiency of 

the CGR estimator ranges from 6.50% (at )= 0.7ρ  to 28.64% (at )= 0.5ρ  in the sample allocation 

(2,000, 2,000, 1,000), and reduces to 0.25% (at )= 0.7ρ  to 17.57% (at )= 0.5ρ  in the sample allocation 

(1,500, 1,500, 2,000). This is explained by the larger skewness of x  (the x  variable being used a 
auxiliary to y  in the regression procedure); the lower levels of inefficiency are observed at 2 = 10,yσ  

when the differential in skewness between x  and y  is the smallest. On the other hand, at correlation 

= 0.9ρ  and with allocation (2,000, 2,000, 1,000), the efficiency gain of the CGR estimator relative to the 

HT estimator ranges from 2.46% (when the skewness differential is the largest) to 25.74% (when the 
skewness differential is the smallest), with similar efficiency levels displayed for allocation (1,500, 1,500, 
2,000). The COR estimator is more efficient than the CGR estimator in all settings, the relative efficiency 
being close to the nominal one for SRS (same efficiency as with ) .x  For y  too, the CGR estimator 

competes better with COR estimator with increasing correlation and sample size. 

This limited empirical study, which essentially simulates the SRS version of Theorem ( )1 ’ ,a  confirms 

the theory on the efficiency of the optimal estimator COR, even for modest sample size, and shows the 
usefulness of the two composite estimators CGR and COR in partially recovering the information loss due 
to splitting the full questionnaire. It also shows that the practical CGR estimator is not always a good 
substitute of the COR estimator for small samples and low correlation between x  and .y  

 
7  Discussion 
 

The proposed estimation method for matrix sampling involves a single-step calibration of the weights 
of the combined sample. Estimates of totals for all variables can be obtained by using only the units of 
sample 3S  and their calibrated weights which incorporate all the available information from all three 

samples. These weights could be used to calculate other weighted statistics, including means, ratios, 
quantiles and regression coefficients. When the second-order inclusion probabilities are known, including 
cross-sample inclusion probabilities in the nested case, the calibration procedure of Section 2 can produce 
composite optimal regression estimators and their variances, but with great computational difficulty. For 
general sampling settings, the much simpler calibration scheme of Section 3 generates readily composite 
generalized regression estimators, which for certain sampling strategies are optimal regression estimators. 

Estimation of the variance of a CGR estimator may, in principle, be based on the method of Taylor 
linearization of the generalized regression estimator (see, e.g., Särndal et al. 1992, pages 235, 237). This 
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approach requires calculations that may not be practical, or even feasible for complex sampling designs 
because the second-order inclusion probabilities are rarely known. Replication methods for variance 
estimation, such as the jackknife method or the bootstrap method (see, for example, Rust and Rao 1996), 
can be applied to the CGR estimators of the previous sections. For example, the jackknife method, 
customarily used in surveys with stratified multistage sampling design, could be used to replicate the 
calibration procedures that give rise to the CGR estimators. For the non-nested design, this requires 
applying the jackknife method to the combined sample, with the three independent samples treated as 
sample superstrata containing the sample strata. The replication procedure would involve then the 
combined sample sorted by sample and by strata within each sample, to produce replicates of the 
calibrated weights defined in the previous sections. The total number of strata used in the jackknife 
replication procedure is the total number of strata in the three samples, with each replicate involving all 
strata. Public-use microfiles may include the replicate calibrated weights for easy variance estimation by 
users. For this purpose too, replicate weights for 3S  only need to be included, bringing about substantial 

economy of data storage in such microfiles. The case of nested design is more complicated. Further 
investigation in this direction will be a topic of separate study. 

The described estimation method may be readily adapted to matrix sampling designs with more than 
two subquestionnaires or more than three subsamples, making more evident the operational power of the 
calibration procedure. In each case, the crucial step is to determine the design matrix .X  In such designs 

there may be more complex patterns with respect to the number of subquestionnaires administered to the 
various subsamples. All composite estimates can then be obtained using the weighted variable values only 
from the minimum number of subsamples that in combination contain all items. 
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Appendix 
 

Proof of Lemma 1 
 

For the partitioned matrix ( )= , ,ΨX X  the vector ( ) ( )1= −′ ′+ −c w R R t wXX X X X  takes the 

form  

 
( )

( ) ( ) ( ) ( )

1

11 21 12 22

,

,

− ′′ ′ −  
= +    ′′ ′ −   

′ ′= + + − + + −

X

Ψ

Ψ

t X wR RΨ
c w R RΨ

t Ψ wΨ R Ψ RΨ

w R A RΨA t w R A RΨA t Ψ wX

X X X
X

X

X X X

  

where, from algebra of partitioned matrices, ( )[ ] ( )[ ]
11 1

11 = =
−− −′ ′ ′ ′ ′− − ΨA R RΨ Ψ RΨ Ψ R R I PX X X X X X  

with ( ) 1= ,−′ ′ΨP Ψ Ψ RΨ Ψ R  ( )[ ] 1

22 = −′ ′−A Ψ R I P ΨX  with ( ) 1= ,−′ ′P R RX X X X X  ( ) 1

12 = −′−A RX X  
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( )
22

′RΨ AX  and ( ) ( )1

21 11= .−′ ′−A Ψ RΨ Ψ R AX  Then, equation (2.9) follows without difficulty. To prove 

equation (2.10), we set ( ) ( )1= ,−′ ′+ −Ψ Ψc w RΨ Ψ RΨ t Ψ w  so that 1( )( ) ( ) =−′ ′ ′−ΨRΨ Ψ RΨ t Ψ wX  

,′ ′−Ψc wX X  and use the alternative form ( ) ( ) ( ) ( ) ( )1 1 1

22 11= − − −′ ′ ′ ′ ′+A Ψ RΨ Ψ RΨ Ψ R A RΨ Ψ RΨX X  to 

write c  above without the second term as  

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )[ ]( )

( ) ( ) ( ) ( )[ ]( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )[ ]( )
( )

1

22 22

1 1 1

11

1 1 1

11

1

11

1 1

11

1

Ψ Ψ

Ψ

Ψ

Ψ Ψ

Ψ

Ψ

w RΨA t Ψ w R R RΨ A t Ψ w

w RΨ Ψ RΨ RΨ Ψ RΨ Ψ R A RΨ Ψ RΨ t Ψ w

R R I RΨ Ψ RΨ Ψ R A RΨ Ψ RΨ t Ψ w

c RΨ Ψ RΨ Ψ R A c w

R R I RΨ Ψ RΨ Ψ R A c w

c RΨ Ψ RΨ Ψ R

−

− − −

− − −

−

− −

−

′ ′ ′ ′+ − − −

′ ′ ′ ′ ′ ′= + + −

′ ′ ′ ′ ′ ′ ′− + −

′ ′ ′ ′= + −

′ ′ ′ ′ ′ ′− + −

′ ′= +

X X X X

X X

X X X X X X

X X X

X X X X X X X

( ) ( )
( ) ( )[ ]( )

( ) ( )[ ] ( )

( ) ( )[ ] ( )

11

1 1
11 11

1

11

1 .

Ψ

Ψ

Ψ Ψ

Ψ Ψ Ψ Ψ

A c w

R R I R A A c w

c RΨ Ψ RΨ Ψ R R A c w

c R I P R I P c w

− −

−

−

′ ′−

′ ′ ′ ′− + − −

′ ′ ′ ′= + − −

′ ′ ′= − − − −

X X X

X X X X X X X

X X X X

X X X X X

  

Adding to this the second term of c  from (2.9) gives (2.10), in the explicit form  

 ( ) ( )[ ] ( )1 .−′ ′+ − − −Ψ Ψ Ψ Ψc R I P R I P t cXX X X X   

 
Proof of Theorem 1 
 

( )a  Calibration with design matrix ( )= ,DZ X  and vector of totals ( )= , ,′′ ′t 0 NZ  with ( )= , ,′′ ′0 0 0  

( )1 2 3= , , ,′′ ′ ′N N N N  gives the vector of calibrated weights ( ) ( )1= ,−′ ′+ −c w Λ Λ t wZZ Z Z Z  

which by Lemma 1 is written as ( ) ( )1= ,−′ ′+ −D D D Dc c L L 0 cX X X X  where 

( ) ( )1= −′ ′+ −Dc w ΛD D ΛD N D w  and ( )= ,−D DL Λ I P  with ( ) 1= .−′ ′
DP D D ΛD D Λ  For 

STRSRS with = ,ih ih ihf n N  ˆ= = ,′D w N N  and thus ( ) ( )1= .−′ ′+ −D Dc w L L 0 wX X X X  

Then, in view of (2.8), in order to show that ˆ ˆ= oB B  it suffices to show that 0= .DL Λ  For 

STRSRS it is easy to show that ( ){ }0 = diag ,ih ihλ − 1Λ I P  where ( ) ( )[ ]2= 1 1ih ih ih ih ihN f n nλ − −  

and ( ) 1= .ih ih ih ih ih
−′ ′

1P 1 1 1 1  Next, observe that the matrix DP  is diagonal with thih  entry 

( ) 1 = ,ih ih ih ih ih ih ih
−′ ′

11 1 Λ 1 1 Λ P  because the elements of ihΛ  are constant. Since this constant 

element is ( ) ( ) ( )[ ]= 1 1 = ,ik ik ih ih ih ih ih ihw q N n N f n− − λ  we get ( ){ }= diag =ih ih−D 1L Λ I P  
0 ,Λ  o.e.d. 

( )b  For Poisson sampling, ( ){ }0 2= diag 1 , = 1, , .i ihk ihk ih H− π πΛ   The proof follows immediately 

upon observing that with the specified constants ikq  in the entries of iΛ  we have 0= .i iΛ Λ  

( )’a  For simplicity drop the stratum subscript. Simple random subsampling is done sequentially with 
fixed sizes 1 2,n n  and 3 .n  It can be shown that the first-and-second order marginal inclusion 
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probabilities for iS  are =ik in Nπ  and ( ) ( )[ ]= 1 1 ,ikl i in n N Nπ − −  as if iS  was drawn directly 

from .U  A combinatorial argument shows that the conditional (given )S  second-order inclusion 
probability for iS  and jS  is ( )[ ]

| = 1ikjl S i jn n n nπ −  and thus the marginal inclusion probability is 

( )[ ]= 1 .ikjl i jn n N Nπ −  For = , = 0.ikjkk l π  Then ( )[ ]2= = 1kl ikjl ik jl i jn n N N∆ π − π π −  and 
2= .kk i jn n N∆ −  Thus 0,kl∆ ≈  for ,k l U∈  when the sampling fractions are small, and then 

{ }0 0diag .i≈Λ Λ  Optimality of the CGR then follows from Theorem 1 (a). 

( )’b  Randomly assigning the units of S  to three subsamples, with fixed expected subsample size, 

implies that inclusion of the units is done independently within and between the subsamples. Since 
in Poisson sampling the units of U  are also included in S  independently, = = 0kl ikjl ik jl∆ π − π π  

and = .kk ik jl∆ −π π  kk∆  is approximately zero for small sampling fractions, and then 

{ }0 0diag .i≈Λ Λ  Optimality of the CGR follows then from Theorem ( )1 .b  

 
Proof of Theorem 2 
 

We start with the expression of the CGR estimator. By Lemma 1, with partitioned design matrix 
( ), ZX  and = ,R Λ  the calibrated weight vector c  can be written as = +Z Zc c L X  

( ) ( )1 ,−′ ′−Z ZL 0 cX X X  where ( ) ( )1

( )= −′ ′+ −Z zc w ΛZ Z ΛZ t Z w  and ( )= .−Z ZL Λ I P  Then 

( ) ( )1GR
3 3 3 3 ( )

ˆ ˆ ˆ= = −′ ′ ′+ −Z zc ΛZ Z ΛZ t ZX X X X  and ( ) ( )1GR
( )

ˆ ˆ ˆ= .−′ ′+ −zΛZ Z ΛZ t ZX X X  It 

follows that the CGR estimator is given by GR GR
3 3

ˆ ˆˆ= ,′ −cX X BX  where ( )[ ]3
ˆ = ′ − ZΛ I PB X X  

( )[ ] 1 .−′ − ZΛ I PX X  

 

(a) Since { }= diag
iZ ZP P  and, for SRS, ( ){ }0 = diag ,i iλ − 1Λ I P  where ( ) ( )[ ]2= 1 1i i i iN f n nλ − −  

and ( ) 1= ,i i i i i
−′ ′

1P 1 1 1 1  we have ( ) ( ) ( ){ }0 = diag .
ii i− λ − −Z 1 ZΛ I P I P I P  Now, by assumption 

= ,i i1 Z h  so that =
i

′ ′
Z1 P 1  and hence ( ) = .

ii −1 ZP I P 0  It follows that ( )0 =− ZΛ I P  

( ){ }diag
iiλ − ZI P  and, since the matrices 

i
− ZI P  are idempotent, ( ) ( )0 =′− −Z ZI P Λ I P  

( ){ }diag .
iiλ − ZI P  But = ,i ik ikw qλ  where =ik iw N n  and ikq  are the specified constants in the 

entries of .iΛ  It follows that ( ) ( ) ( ){ } ( )0 = diag =
ii

′− − − −Z Z Z ZI P Λ I P Λ I P Λ I P  and thus 

ˆ ˆ= ,woB B  so that GR GR GR GR
3 3

ˆ ˆ ˆ ˆˆ ˆ= .wo− −X BX X B X  

(b) By Lemma 1, with the partitioned design matrix ( )= , ,Z DZ X  and vector of totals 

( )( )= , , ,′′ ′ ′
zt 0 t NZ  the vector of calibrated weights ( ) ( )1= −′ ′+ −c w Λ Λ t wZZ Z Z Z  can be 

written as ( ) ( ) ( ) ( ) ( )
1

( )= , , , , , ,
−
 ′ ′ ′′ ′+ −   D D D z Dc c L Z Z L Z 0 t Z cX X X X  where = +Dc w  

( ) ( )1−′ ′−ΛD D ΛD N D w  and ( )= ,−D DL Λ I P  with ( ) 1= .−′ ′
DP D D ΛD D Λ  But, as shown in the 

proof of Theorem 1(a), =Dc w  and 0= .DL Λ  Thus, ( ) ( ) ( )
1

0 0= , , ,
−

 ′+  c w Λ Z Z Λ ZX X X  

( ) ( )( ), , . ′ ′′ ′ − z0 t Z wX  Next, by applying again Lemma 1, now with 0=R Λ  and design matrix 

( ), ,ZX  we get ( ) ( )10 0= ,
−′ ′+ −Z Z Z Zc c L L 0 cX X X X  where ( ) 10 0=

−′+Zc w Λ Z Z Λ Z  
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( )( )
′−zt Z w  and ( )0 0 0= .−Z ZL Λ I P  Then it follows that the CGR estimator is 

( ) 10 0 OR OR
3 3 3 3

ˆ ˆˆ= = ,o−′ ′ ′ ′ ′− −Z Z Z Zc c L L cX X X X X X X X B X  in obvious expressions for 
OR OR

3
ˆ ˆ,X X  and ˆ .oB  

(c) It was shown in the proof of Theorem 1 that 0= .Λ Λ  Clearly then it holds that GR OR
3 3

ˆ ˆ= ,X X  
GR ORˆ ˆ=X X  and ˆ ˆ= ,oB B  and thus GR GR OR OR

3 3
ˆ ˆ ˆ ˆˆ ˆ= .o− −X BX X B X  

 
Proof of Proposition 1 
 

All matrices appearing in this proof are defined at the population level. Partitioning the matrix X  in 
(4.4) as ( ), ,ΨZ  where Z  consists of the second and fourth columns, and Ψ  of the rest, and applying 
Lemma 1 with { }0= = ( ) ,kl k l k lπ − π π π πR Λ  we obtain the vector of calibrated weights decomposed as  

 ( ) [ ] ( ) [ ]1 10 0 0 0= ,
− −′ ′ ′ ′+ − + −Ψ Ψc w L L 0 w L Ψ Ψ L Ψ 0 Ψ wZ ZZ Z Z Z   

where ( )0 0 0= −L Λ I PZ Z  with ( ) 10 0 0= .
−′ ′P Λ ΛZ Z Z Z Z  The estimator ˆ BZ  in (4.2) is obtained as 3 ,−

′Z c  

where ( )3 3= , , .−
′′ ′ ′Z 0 0 Z  The last two terms of (4.2) are consolidated in the term 0

3−
′Z L ΨZ  

( ) [ ]10 .
−′ ′−Ψ L Ψ 0 Ψ wZ  These two terms vanish only if 0 0 0 0 1

3 3 3(= ( ) −− − −
′ ′ ′ ′−Z L Ψ Z Λ Ψ Z Λ ΛZ Z Z Z  

0 ) = .′Λ Ψ 0Z  First, we easily get ( )0 0 0
3 3 3 3 3 3 3= ,−
′ ′ ′Z Λ Ψ Z Λ X Z Λ Y  and ( )0 0

3 3 3 3= , ,−
′ ′Z Λ Z Λ Z I IZ  as well 

as  

 
0 0 0

0 1 1 1 3 3 3 3 3 3
0 0 0

3 3 3 2 2 2 3 3 3

= ,
′ ′ ′+ ′  ′ ′ ′+ 

Z Λ X Z Λ X Z Λ Y
Λ Ψ

Z Λ X Z Λ Y Z Λ Y
Z   

and  

 
0 0 0

0 1 1 1 3 3 3 3 3 3
0 0 0

3 3 3 2 2 2 3 3 3

= .
′ ′ ′+ ′  ′ ′ ′+ 

Z Λ Z Z Λ Z Z Λ Z
Λ

Z Λ Z Z Λ Z Z Λ Z
Z Z   

Next we write  

 ( )
1 1 1 1

10

1 1
= = ,

− − − −
−

− −

′+ −  ′    ′ ′−   

A B A FE F FE
Λ

B D E F E
Z Z   

where 1= −′−E D B A B  and 1= .−F A B  It follows then that 0 0 1 1 1
3 ( ) = (− − −
−
′ ′ ′+ −Z Λ Λ BA BFE FZ Z Z  

( )1 1 1 1, ) = (( ) , ( ) ).− − − −′ ′− − −BE F B I F E D B E F B I F E  Using the analytic expressions 0
3 3 3= ,′B Z Λ Z  

0 0
2 2 2 3 3 3= ,′ ′+D Z Λ Z Z Λ Z  ( ) 10 0 0

1 1 1 3 3 3 3 3 3=
−′ ′ ′+F Z Λ Z Z Λ Z Z Λ Z  and 0 0

2 2 2 1 1 1= ,′ ′+E Z Λ Z Z Λ Z F  we obtain 

after some algebra  

 ( ) ( ) ( )1 1 10 0 1 0 0
3 1 1 1 2 2 2= , ,

− − −−
−

 ′ ′ ′ ′ Z Λ Λ K Z Λ Z Z Λ ZZ Z Z   

where ( ) ( ) ( )1 1 10 0 0
1 1 1 2 2 2 3 3 3= .

− − −′ ′ ′+ +K Z Λ Z Z Λ Z Z Λ Z  We can now obtain without much difficulty  

 

( )

( ) ( )

( ) ( )

10 0 0 0 0
3 3 3

1 11 0 0 0 0
3 3 3 3 3 3 1 1 1 1 1 1

1 10 0 0 0
3 3 3 3 3 3 2 2 2 2 2 2

,

.

−

− − −

− −−

− −

′ ′ ′ ′ ′= −

 ′ ′ ′ ′= −

′ ′ ′ ′− 

Z L Ψ Z Λ Ψ Z Λ Λ Λ Ψ

K Z Λ Z Z Λ X Z Λ Z Z Λ X

Z Λ Z Z Λ Y Z Λ Z Z Λ Y

Z Z Z Z Z
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It follows that ( )0
3 = ,−
′Z L Ψ 0 0Z  only if ( ) ( )1 10 0 0 0

3 3 3 3 3 3 1 1 1 1 1 1=
− −′ ′ ′ ′Z Λ Z Z Λ X Z Λ Z Z Λ X  and ( ) 10

3 3 3

−′Z Λ Z  

( ) 10 0 0
3 3 3 2 2 2 2 2 2= .

−′ ′ ′Z Λ Y Z Λ Z Z Λ Y  But these two equations are identical to the equations in (4.6). Since all 

the matrices in ( ) 10 0
i i i i i i

−′ ′Z Λ Z Z Λ X  are defined at the population level, with the subscript = 1,3i  

indicating survey, this quantity is constant across surveys only if the design-specific matrix 0
iΛ  is 

constant, or if 0
iΛ  differs among surveys by a constant multiple (depending on the sample size). This 

holds true also for ( ) 10 0 ,i i i i i i
−′ ′Z Λ Z Z Λ Y  = 2,3.i  This completes the proof. 

 
Proof of Proposition 2 
 

Under the sampling scheme (a) of Theorem 1, composite calibration at population level with design 

matrix ( )= ,DZ X  and vector of totals ( )= , ′′ ′t 0 NZ  produces the joint CGR domain estimator of 

( ),d d
′′ ′

x yt t  based on the weights of 3S  and written in the form ( )CGR
3 3

ˆ ˆ ˆˆ= ,d d d+ −t ZX X B Z  where 

( ) 1

3
ˆ = .d d

−′ ′Λ ΛB X Z Z Z  The associated matrix of regression residuals is 3
ˆ ,d d′−X ZB  alternatively 

written as ( ) 3 ,d−I PZ X  with 1= ( ) .−′ ′P Λ ΛZ Z Z Z Z  Then  ( ) ( )CGR
3 3

ˆAV =d d
′′ −I PZX X  

( )0
3 .d−Λ I PZ X  Next recall from the proof of Theorem 1 that ( )0 = ,− DΛ Λ I P  with 

( ) 1= ,−′ ′
DP D D ΛD D Λ  and notice that =D HZ  for a suitable constant matrix .H  It is easy to verify that 

= .D DP P PZ  It follows then that ( ) ( )0 =− −Λ I P Λ I PZ Z  and ( ) ( ) ( )0 = .′− − −I P Λ I P Λ I PZ Z Z  Thus 

 ( ) ( )CGR
3 3 3

ˆAV = .d d d′ −Λ I PZX X X  Now, composite calibration at domain level involves the design 

matrix ( )= , ;d d DZ X  no need to restrict D  to the domain .dU  The resulting CGR estimator is 

( )CGR
3 3

ˆ ˆ=
dd d d d+ −t

 
ZX X B Z  where ( ) 1

3= .d d d d d
−′ ′Λ Λ


B X Z Z Z  As with CGR

3
ˆ

dX  above, it can be 

shown that  ( ) ( )CGR
3 3 3AV = ,

dd d d′ −Λ I P


ZX X X  where ( ) 1= .
d d d dd

−′ ′P Λ ΛZ Z Z Z Z  Then  ( )CGR
3

ˆAV d −X  

 ( ) ( )CGR
3 3 3AV = .

dd d d′ −Λ P P


Z ZX X X  Noticing that 3 3= ,d d d′ ′Λ ΛX Z X Z  we can write =PZ  

( ) 1 .d d
−′ ′Λ ΛZ Z Z Z  It is trivial then to show that ( ) ( ) 2= ,

d d
− −P P P PZ Z Z Z  and since the matrix Λ  is 

diagonal with positive entries, it follows that ( )3 3 >
dd d′ −Λ P P 0Z ZX X  and hence 

 ( )  ( )CGR CGR
3 3

ˆAV < AV .d d


X X  

Under the conditions of part ( ) ,b  0=Λ Λ  and the CGR domain estimator is identical to the COR 

domain estimator COR 0
3 3

ˆ ˆ ˆˆ= ,d d d−X X B X  where ( ) 10 0 0
3

ˆ = .d d
−′ ′Λ ΛB X X X X  The associated matrix 

of regression residuals is ( ) 3 ,d−I PX X  with ( ) 10 0= .
−′ ′P Λ ΛX X X X X  Then  ( )COR

3
ˆAV =dX  

( ) ( ) ( )0 0
3 3 3 3= .d d d d

′′ ′− − −I P Λ I P Λ I PX X XX X X X  On the other hand, for the estimator 
COR 0

3 3
ˆ= ,d d d−

  
X X B X  where ( ) 10 0 0

3
ˆ =d d d d d

−′ ′Λ ΛB X X X X  we have  ( )COR 0
3 3AV =d d′ Λ


X X  

( ) 3 ,
d d−I PX X  with ( ) 10 0= .

d d d d d
−′ ′P Λ ΛX X X X X  Then  COR COR 0

3 3 3
ˆAV( ) AV( ) = (

dd d d′− −Λ P


XX X X  

3) .dPX X  Notice that 0 0
3 3 3=d d d d′ ′Λ ΛX X X X  and since 0Λ  is diagonal 0 0

3 3 3= .d d d′ ′Λ ΛX X X X  It 

follows that ( ) ( )20 0
3 3 3 3=

d dd d d d′ ′− −Λ P P Λ P PX X X XX X X X  and hence  ( )  ( )COR COR
3 3

ˆAV < AV .d d


X X  

For parts ( )’a  and ( )’ ,b  the proof is the same as in ( )a  and ( ) ,b  in view of the proof of Theorem 1. 
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