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A generalized Fellegi-Holt paradigm for automatic 
error localization 

Sander Scholtus1 

Abstract 

The aim of automatic editing is to use a computer to detect and amend erroneous values in a data set, without 
human intervention. Most automatic editing methods that are currently used in official statistics are based on the 
seminal work of Fellegi and Holt (1976). Applications of this methodology in practice have shown systematic 
differences between data that are edited manually and automatically, because human editors may perform 
complex edit operations. In this paper, a generalization of the Fellegi-Holt paradigm is proposed that can 
incorporate a large class of edit operations in a natural way. In addition, an algorithm is outlined that solves the 
resulting generalized error localization problem. It is hoped that this generalization may be used to increase the 
suitability of automatic editing in practice, and hence to improve the efficiency of data editing processes. Some 
first results on synthetic data are promising in this respect. 

 
Key Words: Automatic editing; Edit operations; Maximum likelihood; Numerical data; Linear edits. 

 
 

1  Introduction 
 

Data that have been collected for the production of statistics inevitably contain errors. A data editing 
process is needed to detect and amend these errors, at least in so far as they have an appreciable impact on 
the quality of statistical output (Granquist and Kovar 1997). Traditionally, data editing has been a manual 
task, ideally performed by professional editors with extensive subject-matter knowledge. To improve the 
efficiency, timeliness, and reproducibility of editing, many statistical institutes have attempted to automate 
parts of this process (Pannekoek, Scholtus and van der Loo 2013). This has resulted in deductive correction 
methods for systematic errors and error localization algorithms for random errors (de Waal, Pannekoek and 
Scholtus 2011, Chapter 1). In this article, I will focus on automatic editing for random errors. 

Methods for this task usually proceed by minimally adjusting each record of data, according to some 
optimization criterion, so that it becomes consistent with a given set of constraints known as edit rules, or 
edits for short. Depending on the effectiveness of the optimization criterion and the strength of the edit rules, 
automatic editing may be used as a partial alternative to traditional manual editing. In practice, automatic 
editing is applied nearly always in combination with some form of selective editing, which means that the 
most influential errors are treated manually (Hidiroglou and Berthelot 1986; Granquist 1995, 1997; 
Granquist and Kovar 1997; Lawrence and McKenzie 2000; Hedlin 2003; de Waal et al. 2011). 

Most automatic editing methods that are currently used in official statistics are based on the paradigm of 
Fellegi and Holt (1976): for each record, the smallest subset of variables is identified as erroneous that can 
be imputed so that the record becomes consistent with the edits. A slight generalization is obtained by 
assigning so-called confidence weights to the variables and minimizing the total weight of the imputed 
variables. Once this error localization problem is solved, suitable new values have to be found in a separate 
step for the variables that were identified as erroneous. This is the so-called consistent imputation problem; 
see de Waal et al. (2011) and their references. In this article, I will focus on the error localization problem. 
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At Statistics Netherlands, error localization based on the Fellegi-Holt paradigm has been a part of the 
data editing process for Structural Business Statistics (SBS) for over a decade now. In evaluation studies, 
where the same SBS data were edited both automatically and manually, a number of systematic differences 
were found between the two editing efforts. Many of these differences could be explained by the fact that 
human editors performed certain types of adjustments that were suboptimal under the Fellegi-Holt 
paradigm. For instance, editors sometimes interchanged the values of associated costs and revenues items, 
or transferred parts of reported amounts between variables. 

In practice, the outcome of manual editing is usually taken as the “gold standard” for assessing the quality 
of automatic editing. A critical evaluation of this assumption is beyond the scope of the present paper; 
however, see EDIMBUS (2007, pages 34-35). Here I simply note that, by improving the ability of automatic 
editing methods to mimic the results of manual editing, their usefulness in practice may be increased. In 
turn, this means that the share of automatic editing may be increased to improve the efficiency of the data 
editing process (Pannekoek et al. 2013). 

To some extent, systematic differences between automatic and manual editing could be prevented by a 
clever choice of confidence weights. In general, however, the effects of a modification of the confidence 
weights on the results of automatic editing are difficult to predict. Moreover, if the editors apply a number 
of different complex adjustments, it might be impossible to model all of them under the Fellegi-Holt 
paradigm using a single set of confidence weights. Another option is to try to catch errors for which the 
Fellegi-Holt paradigm is known to provide an unsatisfactory solution at an earlier stage in the data editing 
process, i.e., during deductive correction of systematic errors through automatic correction rules (de Waal 
et al. 2011; Scholtus 2011). This approach has practical limitations, however, because it may require a large 
collection of if-then rules, which would be difficult to design and maintain over time (Chen, Thibaudeau 
and Winkler 2003). Moreover, it is not self-evident that appropriate correction rules can be found for all 
errors that do not fit within the Fellegi-Holt paradigm. 

In this article, a different approach is suggested. A new definition of the error localization problem is 
proposed that allows for the possibility that errors affect more than one variable at a time. It is shown that 
this problem contains error localization under the original Fellegi-Holt paradigm as a special case. 
Throughout this article, I restrict attention to numerical data and linear edits; a possible extension to 
categorical and mixed data will be discussed briefly in Section 8. 

The remainder of this article is organized as follows. Section 2 briefly reviews relevant previous work 
done in this area. In Section 3, the concept of an edit operation is introduced and illustrated. The new error 
localization problem is formulated in terms of these edit operations in Section 4. Section 5 generalizes an 
existing method for identifying solutions to the Fellegi-Holt-based error localization problem, and this result 
is used in Section 6 to outline a possible algorithm for solving the new problem. A small simulation study 
is discussed in Section 7. Finally, some conclusions and questions for further research follow in Section 8. 

 
2  Background and related work 
 

Let  1 , , p
px x  x   be a record of p  numerical variables. Suppose that this record has to satisfy 

k  edit rules, in the form of the following system of linear (in)equalities: 

 ,Ax b 0  (2.1) 
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where  rjaA  is a k p matrix of coefficients and  1 , , kb b  b  is a vector of constants. Here and 
elsewhere, 0  represents a vector of zeros of appropriate length; similarly,   represents a symbolic vector 
of operators from the set  , , .    

For a given record x  that does not satisfy all edits in (2.1), the Fellegi-Holt-based error localization 
problem amounts to finding the minimum of 

 
1

,
p

j j
j

w 

  (2.2) 

with 0jw   the confidence weight of variable jx  and  0,1 ,j   under the condition that the original 
record can be made consistent with the edits by imputing only those jx  with 1j   (de Waal et al. 2011, 
page 66). 

Fellegi and Holt (1976) also proposed a method for solving the above error localization problem, based 
on the generation of a sufficient set of so-called implied edits (see below). Unfortunately, the number of 
implied edits needed by this method is often extremely large in practice. Over the past decades, various 
dedicated algorithms for the error localization problem have been developed by, among others, Schaffer 
(1987), Garfinkel, Kunnathur and Liepins (1988), Kovar and Whitridge (1990), Ragsdale and McKeown 
(1996), de Waal (2003), de Waal and Quere (2003), Riera-Ledesma and Salazar-González (2003, 2007), 
Bruni (2004), and de Jonge and van der Loo (2014). Early algorithms mostly focused on strengthening the 
original method of Fellegi and Holt (1976) by reducing the number of required implied edits. More recent 
algorithms rely on the fact that the error localization problem can be written as a mixed-integer programming 
problem, which makes it possible to apply standard optimization techniques. See also de Waal and Coutinho 
(2005) or de Waal et al. (2011) for an overview and comparison of various error localization algorithms. 

Implied edits are constraints that follow logically from the original edits (2.1). In the present context 
(numerical data, linear edits), all relevant implied edits may be generated by a technique called Fourier-
Motzkin elimination (FM elimination; cf. Williams 1986). FM elimination transforms a system of linear 
constraints having p  variables into a system of implied linear constraints having at most 1p   variables; 
thus, at least one of the original variables is eliminated. For mathematical details, see the appendix. 

FM elimination has the following fundamental property: the system of implied constraints is satisfied by 
the values of the non-eliminated variables if, and only if, there exists a value for the eliminated variable that, 
together with the other values, satisfies the original system of constraints. In error localization under the 
Fellegi-Holt paradigm, by repeatedly applying this fundamental property, one may verify whether any 
particular combination of variables can be imputed to obtain a consistent record, given the original values 
of the other variables. A clear illustration of this use of FM elimination is provided by the error localization 
algorithm of de Waal and Quere (2003). 

To conclude this section, it is interesting to look briefly at the statistical interpretation of the error 
localization problem. In fact, in motivating their paradigm for automatic error localization, Fellegi and Holt 
(1976) did not provide any formal statistical argument. Their reasoning was more intuitive: 
 

“The data in each record should be made to satisfy all edits by changing the fewest possible 
items of data (fields). This we believe to be in agreement with the idea of keeping the maximum 
amount of original data unchanged, subject to the constraints of the edits, and so 
manufacturing as little data as possible. At the same time, if errors are comparatively rare, it 
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seems more likely that we will identify the truly erroneous fields.” (Fellegi and Holt 1976, 
page 18). 

 

A statistical argument for minimizing the weighted number of imputed variables was provided by 
Liepins (1980) and Liepins, Garfinkel and Kunnathur (1982), elaborating on earlier results of Naus, Johnson 
and Montalvo (1972). Suppose that errors occur according to a stochastic process, with each variable jx  
being observed in error with a probability jp  that does not depend on its true value and with errors being 
independent across variables. Suppose furthermore that the confidence weights are defined as follows: 

 log .
1

j
j

j

p
w

p


    

 (2.3) 

Then it can be shown that minimizing expression (2.2) is approximately equivalent to maximizing the 
likelihood of the unobserved error-free record. Note that these authors tacitly assume that an error always 
affects one variable at a time. 

Alternative error localization procedures that are based more directly on statistical models have been 
proposed by, e.g., Little and Smith (1987) and Ghosh-Dastidar and Schafer (2006). These procedures use 
outlier detection techniques and require an explicit model for the true data. Unfortunately, they cannot 
handle edit rules such as (2.1) in a straightforward manner. 

 
3  Edit operations 
 

Continuing with the notation from Section 2, I define an edit operation g  to be an affine function of the 
general form 

   ,g   x Tx Sα c  (3.1) 

where T  and S  are known coefficient matrices of dimensions p p  and ,p m  respectively, 

 1 , , m   α  is a vector of free parameters that may occur in ,g  and c  is a p  vector of known 
constants. In the special case that g  does not involve any free parameters  0 ,m   the second term in (3.1) 
vanishes. Sometimes, it may be useful to impose one or several linear constraints on the free parameters 
in :g  

 ,Rα d 0  (3.2) 

with R  a known matrix, and d  a known vector of constants. (Note: Matrix-vector notation will be used 
throughout this article because it leads to a concise description of results; however, using matrices to 
represent edits and edit operations is probably not the most efficient way to implement these results on a 
computer.) 

As a first example, consider the operation that replaces one of the original values in x  by an arbitrary 
new value (imputation). I will call this an FH operation, in view of its central role in automatic editing based 
on the Fellegi-Holt paradigm. Let I  denote the p p  identity matrix and ie  the thi  standard basis vector 
in .p  The FH operation that imputes the variable jx  is given by (3.1) with ,j

 T I e e j  ,jS e  and 
.c 0  This yields:      1 1 1, , , , , , ,  j j j j pg x x x x x        x x e  with    a free parameter that 
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represents the imputed value. It should be noted that for a record of p  variables, p  distinct FH operations 
can be defined. 

To further illustrate the concept of an edit operation, some other examples will now be given. For 
notational convenience, I restrict attention to the case 3.p   
 

 An edit operation that changes the sign of one of the variables: 

 

1 1 1

2 2 2

3 3 3

1 0 0 0

0 1 0 0 .

0 0 1 0

x x x

g x x x

x x x

         
        

          
                 

        

  

 An edit operation that interchanges the values of two adjacent items: 

 

1 1 2

2 2 1

3 3 3

0 1 0 0

1 0 0 0 .

0 0 1 0

x x x

g x x x

x x x

        
        

          
                 

        

  

 An edit operation that transfers an amount between two items, where the amount 
transferred may equal at most K  units in either direction: 

 

1 1 1

2 2 2

3 3 3

1 0 0 1 0

0 1 0 0 0 .

0 0 1 1 0

x x x

g x x x

x x x







          
          

             
                                

  

 with the constraint that .K K    

 An edit operation that imputes two variables simultaneously using a fixed ratio: 

 

1 1 1

1

2 2 2

2

3 3 3

0 0 0 1 0 0

0 0 0 0 1 0 .

0 0 1 0 0 0

x x

g x x

x x x







          
          

                                    
          

  

 with the constraint that  1 2,   α  satisfies 1 210 0.    

 

Intuitively, an edit operation is supposed to “reverse the effects” of a particular type of error that may 
have occurred in the observed data. That is to say, if the error associated with edit operation g  actually 
occurred in the observed record ,x  then  g x  is the record that would have been observed if that error had 
not occurred. Somewhat more formally, it is assumed here that errors occurring in the data can be modeled 
by a stochastic “error generating process” ,  and that each edit operation acts as a “corrector” for one 
particular error that can occur under   (see Remark 4 in the next section). 

If the edit operation g  contains free parameters, the record  g x  might not be determined uniquely 
even when the restrictions (2.1) and (3.2) are taken into account. In that case, one has to “impute” values 
for the free parameters that occur in an edit operation, which in turn means that some of the variables in x  
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are imputed via the affine transformation given by (3.1). As in traditional Fellegi-Holt-based editing, finding 
appropriate “imputations” for the free parameters will not be considered part of the error localization 
problem here. On the other hand, if g  does not contain any free parameters, the imputed values in  g x  
follow directly from the edit operation itself and the distinction between error localization and imputation 
is blurred. 

In any particular application, only a small subset of potential edit operations of the form (3.1) would 
have a substantively meaningful interpretation, in the sense that the associated types of errors are known to 
occur. In what follows, I assume that a finite set of specific edit operations of the form (3.1) has been 
identified as relevant for a particular application. This will be called the set of allowed edit operations for 
that application. Some suggestions on how to construct this set will be given in Section 8. 

 
4  A generalized error localization problem 
 

Let   be a finite set of allowed edit operations for a given application of automatic editing. Informally, 
I propose to generalize the error localization problem of Fellegi and Holt (1976) by replacing “the smallest 
subset of variables that can be imputed to make the record consistent” with “the shortest sequence of allowed 
edit operations that can be applied to make the record consistent”. To give a formal definition of this 
generalized error localization problem, some new notation and concepts need to be introduced. 

Consider a sequence of points 0 1, , , t  x x x x y  in .p  A path from x  to y  is defined as a sequence 
of distinct edit operations 1 , , tg g   such that  1n n ng x x  for all  1, , .n t   (Note: In the case 
that ng  contains free parameters, one should interpret this equality as “there exist feasible parameter values 
such that ng  maps 1nx  to ”.nx  A path is denoted by  1 , , .tP g g   The set of all possible paths from 
x  to y  is denoted by  , .x y  This set may be empty. Later, I will use  ;Gx  to denote, for a given 
subset ,G    the set of all paths starting in x  that consist of the edit operations in G  in some order 
(without specifying the free parameters); if G  contains t  elements,  ;Gx  contains !t  paths. 

To each edit operation ,g   one can associate a weight 0gw   that expresses the costs of applying 
edit operation .g  In particular, the weight of an FH operation is to be chosen equal to the confidence weight 
of the variable that it imputes. Now the length of a path  1 , , tP g g   can be defined as the sum of the 
weights of its constituent edit operations:  

1
,

n

t

gn
P w


   where, by convention, the empty path has 

length zero. The distance from x  to y  is defined as the length of the shortest path that connects x  to :y  

  
      min | , if , ,

,
otherwise.

P P
d

   


x y x y
x y

  
  

In general,  ,d x y  satisfies the standard axioms of a metric except that it need not be symmetric in x  and 
;y  it is a so-called quasimetric (Scholtus 2014). Accordingly,  ,d x y  represents “the distance from x  to 
”y  rather than “the distance between x  and ”.y  

The distance from x  to any closed, non-empty subset pD    is defined as the distance to the nearest 
:Dy      min , | .d D d D x, x y y  For the purpose of error localization, the closed, non-empty subset 

of p  that is of particular interest is the set 0D  of all points that satisfy (2.1). 

I can now formulate the generalized error localization problem. 
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Problem. Consider a given set of consistent records 0 ,D  a given set of allowed edit operations ,  and a 
given record .x  If  0, ,d D  x  then the error localization problem for x  is infeasible. Otherwise, any 
shortest path leading to a record 0Dy  such that  ,d  x y  is called a feasible solution to the error 
localization problem for .x  A feasible solution is called optimal if it leads to a record *

0Dx  such that 

    *
0, , .d d Dx x x  (4.1) 

Formally, then, the generalized error localization problem consists of finding an optimal path of edit 
operations. 
 

Remark 1. In general, there may be infinitely many records *x  in 0D  that satisfy (4.1) and can be reached 
by the same path of edit operations. To solve the error localization problem, it is sufficient to find an optimal 
path. Constructing an associated record *

0Dx  may then be regarded as a generalization of the consistent 
imputation problem; cf. the discussion on imputation at the end of Section 3. 
 

Remark 2. The above error localization problem is infeasible for records that cannot be mapped onto 0D  
by any combination of distinct edit operations in .  To avoid this situation,   should be chosen sufficiently 
large so that  0,d D  x  for all .px   In what follows, I tacitly assume that   has this property. An 
easy way – not necessarily the only way – to achieve this is by letting   contain at least all FH operations. 
That this is sufficient follows from the fact that any two points in p  are connected by a path that 
concatenates the FH operations associated with the coordinates on which they differ. 
 

Remark 3. It is not difficult to see that the above error localization problem reduces to the original problem 
of Fellegi and Holt (1976) in the special case that   contains only the FH operations. 
 

Remark 4. As with the original Fellegi-Holt-based error localization problem, it can be shown that, under 
certain assumptions, minimizing  ,d x y  over all 0Dy  for a given observed record x  is approximately 
equivalent to maximizing the likelihood of the associated unobserved error-free record. The argument 
closely follows that of Kruskal (1983, pages 38-39) for the so-called Levenshtein distance in the context of 
approximate string matching. This requires first of all that the edits (2.1) be hard edits, i.e., failed only by 
erroneous values. In addition, it must be assumed that the stochastic “error generating process”   introduced 
in Section 3 has the following properties: 
 

 There exists a one-to-one correspondence between the set of errors that can occur under   and 
the set of allowed edit operations   that correct them. 

 The errors in   occur independently of each other. 
 The error corresponding to operation g  occurs with known probability .gp  

 

Finally, analogous to (2.3), the weights gw  should be chosen according to 

 log .
1

g
g

g

p
w

p


    

 (4.2) 

Under these assumptions, Scholtus (2014) adapted the argument of Kruskal (1983) to show that the optimal 
solution to error localization problem (4.1) can be justified as an approximate maximum likelihood 



8 Scholtus: A generalized Fellegi-Holt paradigm for automatic error localization 
 

 
Statistics Canada, Catalogue No. 12-001-X 

estimator. [Note: The derivation in Scholtus (2014) assumed in addition that all 1,gp   in which case 
log .g gw p   This assumption is unnecessary; cf. Liepins (1980).] 

 
5  Implied edits for general edit operations 
 

In this section, a result will be derived that establishes whether a given path of edit operations of the 
form (3.1) can be used to make a given record consistent with a given system of edit rules (i.e., is a feasible 
solution to the error localization problem). This result uses the FM elimination technique discussed in 
Section 2. 

Let x  be a given record and let ty  be any record that can be obtained by applying, in sequence, the edit 
operations 1 , , tg g  to :x  

  1 1 .t t tg g gy x   (5.1) 

Write   ,n n n n ng   x T x S α c  for  1, , .n t   From (5.1) it follows by induction that 

 
 

1 1 1 1 1

2 2 1 2 2 2 2 1 1 1

,

,

  

    

y T x S α c

y T T x S α c T S α c
  

and, in general, 

  1 1 1 1
2

,
t

t t t t t t n n n n
n

  


    y T T x S α c T T S α c   (5.2) 

where the sum over n  is defined to be zero when 1.t   Moreover, all terms involving n nS α  vanish in these 
expressions when ng  does not contain any free parameters. 

The path of edit operations  1 , , tP g g   can be applied to x  to obtain a record that is consistent with 
the edits (2.1) if, and only if, there exists a ty  of the form (5.2) that satisfies t Ay b 0  and all relevant 
additional restrictions of the form (3.2) on 1 , , .tα α  Using (5.2), t Ay b 0  can be written as: 

      1 1 1
2

,
t

t t t t n n n t
n

 


  AT T x AS α AT T S α b 0    (5.3) 

with 12

t

t t t n nn 
  b b Ac AT T c  a vector of constants. 

Interestingly, (5.3) and the possible additional restrictions of the form (3.2) constitute a linear system of 
the form (2.1) on the extended record  1, , , t

  x α α  Therefore, FM elimination may be used to remove 
all free parameters from this system. This yields a system of implied restrictions for .x  Moreover, a repeated 
application of the fundamental property of FM elimination establishes that x  satisfies this system of implied 
edits if, and only if, there exist parameter values for 1 , , tα α  that, together with ,x  satisfy (5.3) and (3.2). 
Hence, it follows that the path of edit operations  1 , , tP g g   can lead to a consistent record for x  if, 
and only if, x  satisfies the system of implied edits obtained by eliminating 1, , tα α  from (5.3) and (if 
relevant) additional restrictions of the form (3.2). 
 

Example. Consider the following edits in 1x  and 2 :x  
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 1 0,x   (5.4) 

 2 0,x   (5.5) 

 1 2 5.x x   (5.6) 

Let g  be the edit operation that transfers an amount of at most four units between 1x  and 2 ,x  in either 
direction:     1 2 1 2, ,g x x x x       with 4 4.    For this single edit operation, the system of 
transformed edits (5.3) is: 

 1 0,x    (5.7) 

 2 0,x    (5.8) 

 1 2 5.x x   (5.9) 

I also add the following restrictions of the form (3.2) on :  

 4,    (5.10) 

 4.   (5.11) 

This yields five linear constraints (5.7)-(5.11) on 1 ,x  2 ,x  and ,  from which   may be removed by FM 
elimination to obtain: 

 1 4,x    (5.12) 

 2 4,x    (5.13) 

 1 2 0,x x   (5.14) 

 1 2 5.x x   (5.15) 

According to the theory, any record  1 2,x x   that satisfies (5.12)-(5.15) can be made consistent with the 
original edits (5.4)-(5.6) by transferring a certain amount 4 4    between 1x  and 2 .x  The example 
record    1 2, 2,3x x      is inconsistent with the original edit rules (5.4)-(5.6) but satisfies (5.12)-(5.15). 
This implies that the record can be made consistent with the original edits by applying .g  It is easy to see 
that this is true; any choice 2 3   will do. 

It is interesting to note that, for the special case that P  consists of the single FH operation that imputes 
,jx  the transformed system of edits (5.3) is obtained by replacing every occurrence of jx  in the original 

edits by an unrestricted parameter .  Eliminating   from (5.3) is equivalent in this case to eliminating jx  
directly from the original edits. In this sense, the above result generalizes the fundamental property of FM 
elimination for FH operations to all edit operations of the form (3.1). 

In general, the set of records defined by expression (5.2) depends on the way the edit operations are 
ordered. Thus, two paths consisting of the same set of edit operations in a different order need not yield the 
same solution to the error localization problem. In this respect, general edit operations differ from FH 
operations (Scholtus 2014). 
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6  An error localization algorithm 
 

In this section, I propose a relatively simple algorithm to solve the error localization problem of 
Section 4, using the theoretical result from the previous section. 

 

Step 0. Let x  be a given record and   a given set of allowed edit operations. Initialize: : ;   

 0 ;:   : ;W    and : 1.t   

Step 1. Determine all subsets G    of cardinality t  that satisfy these conditions: 

1. Every subset of 1t   elements in G  is part of 1.t  

2. It holds that .gg G
w W


  

Step 2. For each G  found in step 1, construct  ;Gx  and, for each path  ; ,P G x  evaluate 

whether it can lead to a consistent record. If so, then: 
 

 if   ,P W  define  : P  and  : ;W P   

 if   ,P W  define  : .P    
 

If none of the paths  ;P G x  lead to a consistent record, add G  to .t  

Step 3. If t R  and ,t    define : 1t t   and return to step 1. 

Figure 6.1  An algorithm that finds all optimal paths of edit operations for problem (4.1). 

 
In practical applications of error localization in official statistics, it is not unusual to have records of over 

100 variables. To obtain a problem that is computationally feasible, existing applications of automatic 
editing based on the Fellegi-Holt paradigm usually specify an upper bound M  on the number of variables 
that may be imputed in a single record (e.g., 12M   or 15 .M   de Waal and Coutinho (2005) argued 
that the introduction of such an upper bound is reasonable because a record that requires more than, say, 
fifteen imputations should be considered unfit for automatic editing anyway. Following this tradition, one 
can also introduce an upper bound R  on the number of distinct edit operations that may be applied to a 
single record. Even with this additional restriction, the search space of potential solutions to (4.1) will 
usually be too large in practice to find the optimal solution by an exhaustive search.  

Figure 6.1 summarizes the proposed error localization algorithm. Its basic set-up was inspired by the 
apriori algorithm of Agrawal and Srikant (1994) for data mining. Upon completion, the algorithm returns 
a set   containing all paths of allowed edit operations that correspond to an optimal solution to (4.1), as 
well as the optimal path length .W  [Note: An error localization problem may have multiple optimal 
solutions, and it may be beneficial to find all of them (Giles 1988; de Waal et al. 2011, pages 66-67).] 

After initialization in step 0, the algorithm cycles through steps 1, 2, and 3 at most R  times. In step 1 of 
the algorithm, the search space is limited by using the following fact: if G  has a proper subset H G  for 
which  ; Hx  contains a path that leads to a consistent record, then  ;Gx  can contain only suboptimal 
solutions. Thus, any set G  that has such a subset may be ignored by the algorithm. Similarly, G  may also 
be ignored whenever the total weight of the edit operations in G  exceeds the path length of the best feasible 
solution found so far. 

During the tht  iteration, the number of subsets G  encountered in step 1 of the algorithm equals   .N
t  

For each of these subsets, the conditions in step 1 have to be checked. If a subset G  passes these checks, in 
step 2 all !t  paths in  ;Gx  are evaluated using the theory of Section 5. The idea behind the apriori 



Survey Methodology, June 2016 11 
 

 
Statistics Canada, Catalogue No. 12-001-X 

algorithm is that, as t  becomes larger, the majority of subsets will not pass the checks in the first step, so 
that the total amount of computational work remains limited. In the context of data mining, this desirable 
behavior has indeed been observed in practice. Whether it also occurs in the context of error localization 
remains to be seen. 

One possible improvement to the algorithm can be made by observing that the order in which edit 
operations are applied does not matter in all cases. Sometimes two paths in  ;Gx  are equivalent in the 
sense that any record that can be reached from x  by the first path can also be reached by the second path, 
and vice versa. This property defines an equivalence relation on  ; .Gx  Let  ;Gx  be a set that contains 
one representative from each equivalence class of  ;Gx  under this relation. Clearly, the algorithm in 
Figure 6.1 remains correct if in step 2 the search is limited to  ;Gx  instead of  ; .Gx  Scholtus (2014) 
provides a simple method for constructing  ;Gx  from  ; .Gx  

A detailed example illustrating the above algorithm can be found in Scholtus (2014). 

 
7  Simulation study 
 

To test the potential usefulness of the new error localization approach, I conducted a small simulation 
study, using the R environment for statistical computing (R Development Core Team 2015). A prototype 
implementation was created in R of the algorithm in Figure 6.1. This prototype made liberal use of the 
existing functionality for Fellegi-Holt-based automatic editing available in the editrules package 
(van der Loo and de Jonge 2012; de Jonge and van der Loo 2014). The program was not optimized for 
computational efficiency, but it turned out to work sufficiently fast for the relatively small error localization 
problems encountered in this simulation study. (Note: The R code used in this study is available from the 
author upon request.) 

The simulation study involved records of five numerical variables that should satisfy the following nine 
linear edit rules: 

 
 

1 2 3

3 4 5

1 2

5 3

5 3

,

,

0, 1, 2,3, 4 ,

,

0.1 ,

0.5 .

j

x x x

x x x

x j

x x

x x

x x

 



 



 

 

  

Edits of this form might typically be encountered for SBS, as part of a much larger set of edit rules (Scholtus 
2014). 

I created a random error-free data set of 2,000 records by drawing from a multivariate normal distribution 
(using the mvtnorm package) with the following parameters: 

 

500 10,000 -1,250 8,750 7,500 1,250

250 -1,250 5,000 3,750 4,000 -250

     and     .750 8,750 3,750 12,500 11,500 1,000

600 7,500 4,000 11,500 11,750 -250

150 1,250 -250 1,000 -250 1,250

  
  
  
   
  
  
  

  

μ Σ   
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Only records that satisfied all of the above edits were added to the data set. Note that Σ  is a singular 
covariance matrix that incorporates the two equality edits. Technically, the resulting data follow a so-called 
truncated multivariate singular normal distribution; see de Waal et al. (2011, pages 318ff) or Tempelman 
(2007). 

Table 7.1 lists the nine allowed edit operations that were considered in this study. Note that the first five 
lines contain the FH operations for this data set. As indicated in the table, each edit operation has an 
associated type of error. A synthetic data set to be edited was created by randomly adding errors of these 
types to the above-mentioned error-free data set. The probability of each type of error is listed in the fourth 
column of Table 7.1. The associated “ideal” weight according to (4.2) is shown in the last column. 

To limit the amount of computational work, I only considered records that required three edit operations 
or less. Records without errors were also removed. This left 1,025 records to be edited, each containing one, 
two, or three of the errors listed in Table 7.1. 

 

Table 7.1 
Allowed edit operations for the simulation study 
 

name operation associated type of error  gp   gw  

FH1 impute 1x  erroneous value of 1x  0.10 2.20 

FH2 impute 2x  erroneous value of 2x  0.08 2.44 

FH3 impute 3x  erroneous value of 3x  0.06 2.75 

FH4 impute 4x  erroneous value of 4x  0.04 3.18 

FH5 impute 5x  erroneous value of 5x  0.02 3.89 

IC34 interchange 3x  and 4x  true values of 3x  and 4x  interchanged 0.07 2.59 

TF21 transfer an amount from 2x  to 1x  part of the true value of 1x  reported as part of 2x  0.09 2.31 

CS4 change the sign of 4x  sign error in 4x  0.11 2.09 

CS5 change the sign of 5x  sign error in 5x  0.13 1.90 

 

Several error localization approaches were applied to this data set. First of all, I tested error localization 
according to the Fellegi-Holt paradigm (i.e., using only the edit operations FH1–FH5) and according to the 
new paradigm (i.e., using all edit operations in Table 7.1). Both approaches were tested once using the 
“ideal” weights listed in Table 7.1 and once with all weights equal to 1 (“no weights”). The latter case 
simulates a situation where the relevant edit operations would be known, but not their respective frequencies. 
Finally, to test the robustness of the new error localization approach to a lack of information about relevant 
edit operations, I also applied this approach with one of the non-FH operations in Table 7.1 missing from 
the set of allowed edit operations. 

The quality of error localization was evaluated in two ways. Firstly, I evaluated how well the optimal 
paths of edit operations found by the algorithm matched the true distribution of errors, using the following 
contingency table for all 1,025 9 9,225   combinations of records and edit operations: 

 

Table 7.2 
Contingency table of errors and edit operations suggested by the algorithm 
 

 edit operation was suggested edit operation was not suggested 

associated error occurred TP FN  
associated error did not occur FP TN  

 



Survey Methodology, June 2016 13 
 

 
Statistics Canada, Catalogue No. 12-001-X 

From this table, I computed indicators that measure the proportion of false negatives, false positives, and 
overall wrong decisions, respectively: 

 ;     ;     .
FN FP FN FP

TP FN FP TN TP FN FP TN
  


  

    
  

Similar indicators are discussed by de Waal et al. (2011, pages 410-411). I also computed 1 ,    with 
  the fraction of records in the data set for which the error localization algorithm found exactly the right 
solution. A good error localization algorithm should have low scores on all four indicators. 

It should be noted that the above quality indicators put the original Fellegi-Holt approach at a 
disadvantage, as this approach does not use all the edit operations listed in Table 7.1. Therefore, I also 
calculated a second set of quality indicators , , ,    and   that look at erroneous values rather than edit 
operations. In this case,   measures the proportion of values in the data set that were affected by errors but 
left unchanged by the optimal solution of the error localization problem, and similarly for the other 
measures. 

Table 7.3 displays the results of the simulation study for both sets of quality indicators. In both cases, a 
considerable improvement in the quality of the error localization results is seen for the approach that used 
all edit operations, compared to the approach that used only FH operations. In addition, leaving one relevant 
edit operation out of the set of allowed edit operations had a negative effect on the quality of error 
localization. In some cases this effect was quite large – particularly in terms of edit operations used –, but 
the results of the new error localization approach still remained substantially better than those of the Fellegi-
Holt approach. Contrary to expectation, not using different confidence weights actually improved the quality 
of the error localization results somewhat for this data set under the Fellegi-Holt approach (both sets of 
indicators) and to some extent also under the new approach (only the second set of indicators). Finally, it is 
seen that using all edit operations led to an increase in computing time compared to using only FH 
operations, but this increase was not dramatic. 

 
Table 7.3 
Quality of error localization in terms of edit operations used and identified erroneous values; computing time 
required 
 

 quality indicators 
(edit operations) 

 quality indicators 
(erroneous values) 

  

approach                   time* 

Fellegi-Holt (weights) 74% 12% 23% 80%  19% 10% 13% 32%  46 
Fellegi-Holt (no weights) 70% 12% 21% 74%  13% 8% 9% 24%  33 
all operations (weights) 
 except IC34 
 except TF21 
 except CS4 
 except CS5 

14% 
29% 
34% 
28% 
35% 

3% 
5% 
5% 
6% 
7% 

5% 
9% 
10% 
9% 
10% 

24% 
35% 
37% 
39% 
47% 

 10% 
15% 
10% 
10% 
11% 

5% 
9% 
5% 
5% 
6% 

7% 
11% 
7% 
7% 
7% 

17% 
29% 
18% 
17% 
18% 

 98 
113 
80 
80 
82 

all operations (no weights) 27% 5% 8% 36%  6% 4% 5% 13%  99 
* Total computing time (in seconds) on a laptop PC with a 2.5 GHz CPU under Windows 7. 
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8  Conclusion 
 

In this article, a new formulation was proposed of the error localization problem in automatic editing. It 

was suggested to find the (weighted) minimal number of edit operations needed to make an observed record 

consistent with the edits. The new error localization problem can be seen as a generalization of the problem 

proposed in a seminal paper by Fellegi and Holt (1976), because the operation that imputes a new value for 

one variable at a time is an important special case of an edit operation. 

The main focus here has been on developing the mathematical theory behind the new error localization 

problem. It turns out that FM elimination, a technique that has been used in the past to solve the Fellegi-

Holt-based error localization problem, can be applied also in the context of the new problem (Section 5). 

Nevertheless, the task of solving the new error localization problem is challenging from a computational 

point of view, at least for the numbers of variables, edits, and edit operations that would be encountered in 

practical applications at statistical institutes. A possible error localization algorithm was outlined in 

Section 6. More efficient algorithms probably could and should be developed. Similarly to FM elimination, 

it may be possible to adapt other ideas that have been used to solve the Fellegi-Holt-based problem to the 

generalized problem considered here. 

The discussion in this article was restricted to numerical data and linear edits. The original Fellegi-Holt 

paradigm has been applied also to categorical and mixed data. Several authors, including Bruni (2004) and 

de Jonge and van der Loo (2014), have shown that a large class of edits for mixed data can be re-formulated 

in terms of numerical data and linear edits, with the additional restriction that some of the variables have to 

be integer-valued. In principle, this means that the results in this article could be applied also to mixed data. 

To accommodate the fact that some variables are integer-valued, Pugh’s (1992) extension of FM elimination 

to integers could be used; see also de Waal et al. (2011) for a discussion of this extended elimination 

technique in the context of Fellegi-Holt-based error localization. It remains to be seen whether this approach 

is computationally feasible. 

Remark 4 in Section 4 hinted at an analogy between error localization in statistical microdata and the 

field of approximate string matching. In approximate string matching, text strings are compared under the 

assumption that they may have been partially corrupted (Navarro 2001). Various distance functions have 

been proposed for this task. The Hamming distance, which counts the number of positions on which two 

strings differ, may be seen as an analogue of the Fellegi-Holt-based target function (2.2). The generalized 

error localization problem defined in this paper has its counterpart in the use of the Levenshtein distance or 

“edit distance” for approximate string matching. It may be interesting to explore this analogy further. In 

particular, efficient algorithms have been developed for computing edit distances between strings; it might 

be possible to apply some of the underlying ideas also to the generalized error localization problem. 

The new error localization algorithm was applied successfully to a small synthetic data set (Section 7). 

Overall, the results of this simulation study suggest that the new error localization approach has the potential 

to achieve a substantial improvement of the quality of automatic editing compared to the approach that is 

currently used in practice. However, this does require that sufficient information be available to identify all 

– or at least most – of the relevant edit operations in a particular application. Possible gains in the quality of 

error localization also have to be weighed in practice against the higher computational demands of the 

generalized error localization problem. 
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An obvious candidate for applying the new methodology in practice would be the SBS. However, more 
research is needed before this method could be applied during regular production. To apply the method in a 
particular context, it is necessary first to specify the relevant edit operations. Ideally, each edit operation 
should correspond to a combination of amendments to the data that human editors consider to be a correction 
for one particular error. In addition, a suitable set of weights gw  has to be determined for these edit 
operations. This would require information about the relative frequencies of the most common types of 
amendments made during manual editing. Both aspects could be investigated based on historical data before 
and after manual editing, editing instructions and other documentation used by the editors, and interviews 
with editors and/or supervisors of editing. 

On a more fundamental level, a question of demarcation arises between deductive correction methods 
and automatic editing under the new error localization problem. In principle, many known types of error 
could be resolved either by automatic correction rules or by error localization using edit operations. Each 
approach has its own advantages and disadvantages (Scholtus 2014). It is likely that some compromise will 
produce the best results, with some errors handled deductively and others by edit operations. However, it is 
not obvious how best to make this division in practice. 

Ultimately, the aim of the new methodology proposed in this article is to improve the usefulness of 
automatic editing in practice. So far, the results are promising. 
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Appendix 
 

Fourier-Motzkin elimination 
 

Consider a system of linear constraints (2.1) and let fx  be the variable to be eliminated. First, suppose 
that fx  is involved only in inequalities. For ease of exposition, suppose that the edits are normalized so that 
all inequalities use the   operator. The FM elimination method considers all pairs  ,r s  of inequalities in 
which the coefficients of fx  have opposite signs; that is, 0.rf sfa a   Suppose without loss of generality that 

0rfa   and 0.sfa   From the original pair of edits, the following implied constraint is derived: 

 * *

1

0,
p

j j
j

a x b


   (A.1) 

with *
j sf rj rf sja a aa a   and * .sf r rf sb a b a b   Note that * 0,fa   so fx  is not involved in (A.1). An 

inequality of the form (A.1) is derived from each of the above-mentioned pairs  , .r s  The full implied 
system of constraints obtained by FM elimination now consists of these derived constraints, together with 
all original constraints that do not involve .fx  

If there are linear equalities that involve ,fx  the above technique could be applied after replacing each 
linear equality with two equivalent linear inequalities. de Waal and Quere (2003) suggested a more efficient 
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alternative for this case. Suppose that the thr  constraint in (2.1) is an equality that involves .fx  This 
constraint can be rewritten as 

  1
.f r rj jj f

rf

x b a x
a 


   (A.2) 

By substituting the expression on the right-hand-side of (A.2) for fx  in all other constraints, one again 
obtains an implied system of constraints that does not involve fx  and that can be rewritten in the form (2.1). 

For a proof that FM elimination has the fundamental property mentioned in Section 2, see, e.g., de Waal 
et al. (2011, pages 69-70). 

 
References 

 

Agrawal, R., and Srikant, R. (1994). Fast Algorithms for Mining Association Rules. Technical report, IBM 
Almaden Research Center, San Jose, California. 

 
Bruni, R. (2004). Discrete models for data imputation. Discrete Applied Mathematics, 144, 59-69. 
 
Chen, B., Thibaudeau, Y. and Winkler, W.E. (2003). A Comparison Study of ACS If-Then-Else, NIM, 

DISCRETE Edit and Imputation Systems Using ACS Data. Working Paper No. 7, UN/ECE Work Session 
on Statistical Data Editing, Madrid. 

 
de Jonge, E., and van der Loo, M. (2014). Error Localization as a Mixed Integer Problem with the Editrules 

Package. Discussion Paper 2014-07, Statistics Netherlands, The Hague. Available at: http://www.cbs.nl. 
 
de Waal, T. (2003). Solving the error localization problem by means of vertex generation. Survey 

Methodology, 29, 1, 71-79. 
 
de Waal, T., and Coutinho, W. (2005). Automatic editing for business surveys: An assessment for selected 

algorithms. International Statistical Review, 73, 73-102. 
 
de Waal, T., and Quere, R. (2003). A fast and simple algorithm for automatic editing of mixed data. Journal 

of Official Statistics, 19, 383-402. 
 
de Waal, T., Pannekoek, J. and Scholtus, S. (2011). Handbook of Statistical Data Editing and Imputation. 

Hoboken, New Jersey: John Wiley & Sons, Inc. 
 
EDIMBUS (2007). Recommended Practices for Editing and Imputation in Cross-Sectional Business 

Surveys. Eurostat manual prepared by ISTAT, Statistics Netherlands, and SFSO. 
 
Fellegi, I.P., and Holt, D. (1976). A systematic approach to automatic edit and imputation. Journal of the 

American Statistical Association, 71, 17-35. 
 
Garfinkel, R.S., Kunnathur, A.S. and Liepins, G.E. (1988). Error localization for erroneous data: Continuous 

data, linear constraints. SIAM Journal on Scientific and Statistical Computing, 9, 922-931. 
 
Ghosh-Dastidar, B., and Schafer, J.L. (2006). Outlier detection and editing procedures for continuous 

multivariate data. Journal of Official Statistics, 22, 487-506. 
 



Survey Methodology, June 2016 17 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Giles, P. (1988). A model for generalized edit and imputation of survey data. The Canadian Journal of 
Statistics, 16, 57-73. 

 
Granquist, L. (1995). Improving the traditional editing process. In Business Survey Methods, (Eds., 

B.G. Cox, D.A. Binder, B.N. Chinnappa, A. Christianson, M.J. Colledge and P.S. Kott), John Wiley & 
Sons, Inc., 385-401. 

 
Granquist, L. (1997). The new view on editing. International Statistical Review, 65, 381-387. 
 
Granquist, L., and Kovar, J. (1997). Editing of survey data: How much is enough? In Survey Measurement 

and Process Quality, (Eds., L.E. Lyberg, P. Biemer, M. Collins, E.D. de Leeuw, C. Dippo, N. Schwartz 
and D. Trewin), John Wiley & Sons, Inc., 415-435. 

 
Hedlin, D. (2003). Score functions to reduce business survey editing at the U.K. Office for National 

Statistics. Journal of Official Statistics, 19, 177-199. 
 
Hidiroglou, M.A., and Berthelot, J.-M. (1986). Statistical editing and imputation for periodic business 

surveys. Survey Methodology, 12, 1, 73-83. 
 
Kovar, J., and Whitridge, P. (1990). Generalized edit and imputation system; Overview and applications. 

Revista Brasileira de Estadistica, 51, 85-100. 
 
Kruskal, J.B. (1983). An overview of sequence comparison. In Time Warps, String Edits, and 

Macromolecules: The Theory and Practice of Sequence Comparison, (Eds., D. Sankoff and 
J.B. Kruskal), Addison-Wesley, 1-44. 

 
Lawrence, D., and McKenzie, R. (2000). The general application of significance editing. Journal of Official 

Statistics, 16, 243-253. 
 
Liepins, G.E. (1980). A Rigorous, Systematic Approach to Automatic Data Editing and its Statistical Basis. 

Report ORNL/TM-7126, Oak Ridge National Laboratory. 
 
Liepins, G.E., Garfinkel, R.S. and Kunnathur, A.S. (1982). Error localization for erroneous data: A survey. 

TIMS/Studies in the Management Sciences, 19, 205-219. 
 
Little, R.J.A., and Smith, P.J. (1987). Editing and imputation of quantitative survey data. Journal of the 

American Statistical Association, 82, 58-68. 
 
Naus, J.I., Johnson, T.G. and Montalvo, R. (1972). A probabilistic model for identifying errors in data 

editing. Journal of the American Statistical Association, 67, 943-950. 
 
Navarro, G. (2001). A guided tour to approximate string matching. ACM Computing Surveys, 33, 31-88. 
 
Pannekoek, J., Scholtus, S. and van der Loo, M. (2013). Automated and manual data editing: A view on 

process design and methodology. Journal of Official Statistics, 29, 511-537. 
 
Pugh, W. (1992). The omega test: A fast and practical integer programming algorithm for data dependence 

analysis. Communications of the ACM, 35, 102-114. 
 
R Development Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna, 

Austria: R Foundation for Statistical Computing. URL: http://www.R-project.org/. 
 
Ragsdale, C.T., and McKeown, P.G. (1996). On solving the continuous data editing problem. Computers & 

Operations Research, 23, 263-273. 
 



18 Scholtus: A generalized Fellegi-Holt paradigm for automatic error localization 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Riera-Ledesma, J., and Salazar-González, J.J. (2003). New Algorithms for the Editing and Imputation 
Problem. Working Paper No. 5, UN/ECE Work Session on Statistical Data Editing, Madrid. 

 
Riera-Ledesma, J., and Salazar-González, J.J. (2007). A branch-and-cut algorithm for the continuous error 

localization problem in data cleaning. Computers & Operations Research, 34, 2790-2804. 
 
Schaffer, J. (1987). Procedure for solving the data-editing problem with both continuous and discrete data 

types. Naval Research Logistics, 34, 879-890. 
 
Scholtus, S. (2011). Algorithms for correcting sign errors and rounding errors in business survey data. 

Journal of Official Statistics, 27, 467-490. 
 
Scholtus, S. (2014). Error Localisation using General Edit Operations. Discussion Paper 2014-14, Statistics 

Netherlands, The Hague. Available at: http://www.cbs.nl. 
 
Tempelman, D.C.G. (2007). Imputation of Restricted Data. Ph. D. Thesis, University of Groningen. 

Available at: http://www.cbs.nl. 
 
van der Loo, M., and de Jonge, E. (2012). Automatic Data Editing with Open Source R. Working Paper No. 

33, UN/ECE Work Session on Statistical Data Editing, Oslo. 
 
Williams, H.P. (1986). Fourier’s method of linear programming and its dual. The American Mathematical 

Monthly, 93, 681-695. 



Survey Methodology, June 2016 19 
Vol. 42, No. 1, pp. 19-40 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Jae Kwang Kim, Department of Statistics, Iowa State University, Ames, IA 50011, U.S.A. E-mail: jkim@iastate.edu; Emily Berg, Department 

of Statistics, Iowa State University, Ames, Iowa, U.S.A. E-mail: emilyb@iastate.edu; Taesung Park, Department of Statistics, Seoul National 
University, Seoul, Korea. E-mail: taesungp@gmail.com. 

 

Statistical matching using fractional imputation 

Jae Kwang Kim, Emily Berg and Taesung Park1 

Abstract 

Statistical matching is a technique for integrating two or more data sets when information available for matching 
records for individual participants across data sets is incomplete. Statistical matching can be viewed as a missing 
data problem where a researcher wants to perform a joint analysis of variables that are never jointly observed. A 
conditional independence assumption is often used to create imputed data for statistical matching. We consider 
a general approach to statistical matching using parametric fractional imputation of Kim (2011) to create imputed 
data under the assumption that the specified model is fully identified. The proposed method does not have a 
convergent expectation-maximisation (EM) sequence if the model is not identified. We also present variance 
estimators appropriate for the imputation procedure. We explain how the method applies directly to the analysis 
of data from split questionnaire designs and measurement error models. 

 
Key Words: Data combination; Data fusion; Hot deck imputation; Split questionnaire design; Measurement error model. 

 
 

1  Introduction 
 

Survey sampling is a scientific tool for making inference about the target population. However, we often 

do not collect all the necessary information in a single survey, due to time and cost constraints. In this case, 

we wish to exploit, as much as possible, information already available from different data sources from the 

same target population. Statistical matching, sometimes called data fusion (Baker, Harris and O’Brien 1989) 

or data combination (Ridder and Moffit 2007), aims to integrate two or more data sets when information 

available for matching records for individual participants across data sets is incomplete. D’Orazio, Zio and 

Scanu (2006) and Leulescu and Agafitei (2013) provide comprehensive overviews of the statistical 

matching techniques in survey sampling. 

Statistical matching can be viewed as a missing data problem where a researcher wants to perform a joint 

analysis of variables that are never jointly observed. Moriarity and Scheuren (2001) provide a theoretical 

framework for statistical matching under a multivariate normality assumption. Rässler (2002) develops 

multiple imputation techniques for statistical matching with pre-specified parameter values for non-

identifiable parameters. Lahiri and Larsen (2005) address regression analysis with linked data. Ridder and 

Moffit (2007) provide a rigorous treatment of the assumptions and approaches for statistical matching in the 

context of econometrics. 

Statistical matching aims to construct fully augmented data files to perform statistically valid joint 

analyses. To simplify the setup, suppose that two surveys, Survey A and Survey B, contain partial 

information about the population. Suppose that we observe x  and 1y  from the Survey A sample and observe 

x  and 2y  from the Survey B sample. Table 1.1 illustrates a simple data structure for matching. If the Survey 

B sample (Sample B) is a subset of the Survey A sample (Sample A), then we can apply record linkage 

techniques (Herzog, Scheuren and Winkler 2007) to obtain values of 1y  for the survey B sample. However, 

in many cases, such perfect matching is not possible (for instance, because the samples may contain 
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non-overlapping subsets), and we may rely on a probabilistic way of identifying the “statistical twins” from 

the other sample. That is, we want to create 1y  for each element in sample B by finding the nearest neighbor 

from Sample A. Nearest neighbor imputation has been discussed by many authors, including Chen and Shao 

(2001) and Beaumont and Bocci (2009), in the context of missing survey items. 

 
Table 1.1 
A simple data structure for matching 
 

 X  1Y  2Y  

Sample A o o   
Sample B o   o 

 
Finding the nearest neighbor is often based on “how close” they are in terms of ’sx  only. Thus, in many 

cases, statistical matching is based on the assumption that 1y  and 2y  are independent, conditional on .x  

That is,  

 1 2 .y y x  (1.1) 

Assumption (1.1) is often referred to as the conditional independence (CI) assumption and is heavily used 

in practice. 

In this paper, we consider an alternative approach that does not rely on the CI assumption. After we 

discuss the assumptions in Section 2, we present the proposed methods in Section 3. Furthermore, we 

consider two extensions, one to split questionnaire designs (in Section 4) and the other to measurement error 

models (in Section 5). Results from two simulation studies are presented in Section 6. Section 7 concludes 

the paper. 

 
2  Basic setup 
 

For simplicity of the presentation, we consider the setup of two independent surveys from the same target 

population consisting of N  elements. As discussed in Section 1, suppose that Sample A collects information 

only on x  and 1y  and Sample B collects information only on x  and 2 .y  

To illustrate the idea, suppose for now that  1 2, ,x y y  are generated from a normal distribution such that  

 
1 2

1 1 11 12

2 2 22

, .
x xx x xx

y N

y

   
  
 

     
     
     

           

   

Clearly, under the data structure in Table 1.1, the parameter 12  is not estimable from the samples. The 

conditional independence assumption in (1.1) implies that 12 1 2= x x xx     and 12 1 2= .x x    That is, 

12  is completely determined from other parameters, rather than estimated directly from the realized 

samples. 
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Synthetic data imputation under the conditional independence assumption in this case can be 
implemented in two steps: 
 

[Step 1] Estimate  1f y x  from Sample A, and denote the estimate by  1
ˆ .af y x  

[Step 2] For each element i  in Sample B, use the ix  value to generate imputed value(s) of 1y  from 

 1
ˆ .a if y x  

 

Since 1y  values are never observed in Sample B, synthetic values of 1y  are created for all elements in 

Sample B, leading to synthetic imputation. Haziza (2009) provides a nice review of literature on imputation 

methodology. Kim and Rao (2012) present a model-assisted approach to synthetic imputation when only x  

is available in Sample B. Such synthetic imputation completely ignores the observed information in 2y  

from Sample B. 

Statistical matching based on conditional independence assumes that  1 2Cov , = 0.y y x  Thus, the 

regression of 2y  on x  and 1y  using the imputed data from the above synthetic imputation will estimate a 

zero regression coefficient for 1.y  That is, the estimate 2̂  for  

 2 0 1 2 1
ˆ ˆ ˆˆ = ,y x y      

will estimate zero. Such analyses can be misleading if CI does not hold. To explain why, we consider an 
omitted variable regression problem:  

 
     

     

1 1 1
1 0 1 2 1

2 2 2
2 0 1 2 2

=

=

y x z e

y x z e

  
  

  

  
  

where 1 2, ,z e e  are independent and are not observed. Unless    1 2
2 2= = 0,   the latent variable z  is an 

unobservable confounding factor that explains why  1 2Cov , 0.y y x   Thus, the coefficient on 1y  in the 

population regression of 2y  on x  and 1y  is not zero. 

Note that the CI assumption is an assumption for model identification. Another identifying assumption 

is the instrumental variable (IV) assumption, as described in the following remark. 
 

Remark 2.1 We present a formal description of the IV assumption. First, assume that we can decompose 

x  as  1 2= ,x x x  such that 
 

(i)    2 1 2 1 2 1 1, , = ,f y x x y f y x y  

(ii)    1 2 1 1 2 1, = ,f y x x a f y x x b   
 

for some .a b  Thus, 1x  is conditionally independent of 2y  given 2x  and 1y  but 1x  is correlated with 1y  

given 2 .x  Note that 2x  may be null or have a degenerate distribution, such as an intercept. The variable 

1x  satisfying the above two conditions is often called an instrumental variable (IV) for 1.y  The directed 

acyclic graph in Figure 2.1 illustrates the dependence structure of a model with an instrumental variable. 

Ridder and Moffit (2007) used “exclusion restrictions” to describe the instrumental variable assumption. 

One example where the instrumental variable assumption is reasonable is repeated surveys. In the repeated 

survey, suppose that ty  is the study variable at year t  and satisfies Markov property  
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    1 1 1, , = ,t t t tP y y y P y y    

where  tP y  denotes a cumulative distribution function. In this case, 1ty   is an instrumental variable for 

.ty  In fact, any last observation of  sy s t  is the instrumental variable for .ty  

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Graphical illustration of the dependence structure for a model in which 1x  is an instrumental 

variable for 1y  and 2x  is an additional covariate in the models for 2y  and 1 .y  

 
Under the instrumental variable assumption, one can use two-step regression to estimate the regression 

parameters of a linear model. The following example presents the basic ideas. 
 

Example 2.1 Consider the two sample data structure in Table 1.1. We assume the following linear 
regression model:  

 2 0 1 1 2 2= ,i i i iy y x e      (2.1) 

where  20,i ee   and ie  is independent of  1 2 1, ,j j jx x y  for all , .i j  In this case, a consistent estimator 

of  0 1 2= , ,      can be obtained by the two-stage least squares (2SLS) method as follows: 
 

1. From Sample ,A  fit the following “working model” for 1y   

  2
1 0 1 1 2 2= , 0,i i i i i uy x x u u        (2.2) 

to obtain a consistent estimator of  0 1 2= , ,      defined by  

     1

0 1 2 1ˆ ˆ ˆ ˆ= , , = X X X Y        

where  0 1 2= , ,X X X X  is a matrix whose thi  row is  1 21, ,i ix x  and 1Y  is a vector with 1iy  

being the thi  component.  

2. A consistent estimator of  0 1 2= , ,      is obtained by the least squares method for the 

regression of 2iy  on  1 2ˆ1, ,i iy x  where 1 0 1 1 2 2ˆ ˆ ˆˆ = .i i iy x x     
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Asymptotic unbiasedness of the 2SLS estimator under the instrumental variable assumption is discussed 

in Appendix A. The 2SLS method is not directly applicable if the regression model (2.1) is nonlinear. Also, 

while the 2SLS method gives estimates of the regression parameters, 2SLS does not provide consistent 

estimators for more general parameters such as  2 1= Pr < 1 < 3 .y y  Stochastic imputation can provide 

a solution for estimating a more general class of parameters. We explain how to modify parametric fractional 

imputation of Kim (2011) to address general purpose estimation in statistical matching problems. 

 
3  Fractional imputation 
 

We now describe the fractional imputation methods for statistical matching without using the CI 

assumption. The use of fractional imputation for statistical matching was originally presented in Chapter 9 

of Kim and Shao (2013) under the IV assumption. In this paper, we present the methodology without 

requiring the IV assumption. We only assume that the specified model is fully identified. The identifiability 

of the specified model can be easily checked in the computation of the proposed procedure. 

To explain the idea, note that 1y  is missing in Sample B and our goal is to generate 1y  from the 

conditional distribution of 1y  given the observations. That is, we wish to generate 1y  from  

      1 2 2 1 1, , .f y x y f y x y f y x  (3.1) 

 
To generate 1y  from (3.1), we can consider the following two-step imputation: 

 
1. Generate *

1y  from  1
ˆ .af y x  

2. Accept *
1y  if  *

2 1,f y x y  is sufficiently large.  
 
Note that the first step is the usual method under the CI assumption. The second step incorporates the 

information in 2 .y  The determination of whether  *
2 1,f y x y  is sufficiently large required for Step 2 is 

often made by applying a Markov Chain Monte Carlo (MCMC) method such as the Metropolis-Hastings 

algorithm (Chib and Greenberg 1995). That is, let  1
1

ty   be the current value of 1y  in the Markov Chain. 

Then, we accept *
1y  with probability  

     
  

*
2 11*

1 1 1
2 1

,
, = min 1, .

,
t

t

f y x y
R y y

f y x y




  
 
  

  

Such algorithms can be computationally cumbersome because of slow convergence of the MCMC 

algorithm. 

Parametric fractional imputation of Kim (2011) enables generating imputed values in (3.1) without 

requiring MCMC. The following EM algorithm by fractional imputation can be used: 

1. For each ,i B  generate m  imputed values of 1 ,iy  denoted by    * 1 *
1 1, , ,m
i iy y  from  1

ˆ ,a if y x  

where  1âf y x  denotes the estimated density for the conditional distribution of 1y  given x  

obtained from Sample A.  
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2. Let t̂  be the current parameter value of   in  2 1, .f y x y  For the thj  imputed value  *
1 ,j
iy  

assign the fractional weight  

  
  **

2 1
ˆ, ;j

i i i tij tw f y x y    

such that *

=1
= 1.

m

ijj
w  

3. Solve the fractionally imputed score equation for   

  
  **

1 2
=1

; , , = 0
m

j
ib i i iij t

i B j

w w S x y y

   (3.2) 

to obtain 1
ˆ ,t   where    1 2 2 1; , , = log , ; ,S x y y f y x y     and ibw  is the sampling weight 

of unit i  in Sample B.  

4. Go to Step 2 and continue until convergence.  
 

When the model is identified, the EM sequence obtained from the above PFI method will converge. If 

the specified model is not identifiable then there is no unique solution to maximizing the observed likelihood 

and the above EM sequence does not converge. In (3.2), note that, for sufficiently large ,m  

 
 

  
      

    

  

*
1 2 2 1 1 1**

1 2 *
=1 2 1 1 1

1 2 2

ˆ ˆ; , , , ;
; , ,

ˆ ˆ, ;

ˆ= ; , , , ; .

jm
i i i i i t a ij

i i iij t j
j i i i t a i

i i i i t

S x y y f y x y f y x dy
w S x y y

f y x y f y x dy

E S x Y y x y

 




 

 
   

If 1iy  is categorical, then the fractional weight can be constructed by the conditional probability 

corresponding to the realized imputed value (Ibrahim 1990). Step 2 is used to incorporate observed 

information of 2iy  in Sample B. Note that Step 1 is not repeated for each iteration. Only Step 2 and Step 3 

are iterated until convergence. Because Step 1 is not iterated, convergence is guaranteed and the observed 

likelihood increases, as long as the model is identifiable. See Theorem 2 of Kim (2011). 
 
Remark 3.1 In Section 2, we introduce IV only because this is what it is typically done in the literature to 
ensure identifiability. The proposed method itself does not rely on this assumption. To illustrate a situation 
where we can identify the model without introducing the IV assumption, suppose that the model is  

 2 0 1 2 1 2

1 0 1 1

=

=

y x y e

y x e

  
 

  

 
  

with  2 2
1 10,e N x   and  2

2 1 20, .e e N   Then  

      2 2 1 1 1= ,f y x f y x y f y x dy   

is also a normal distribution with mean    0 2 0 1 2 1 x         and variance 2 2 2 2
2 2 1 .x    Under 

the data structure in Table 1.1, such a model is identified without assuming the IV assumption. The 
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assumption of no interaction between 1y  and x  in the model for 2y  is key to ensuring the model is 

identifiable.  
 

Instead of generating  *
1

j
iy  from  1

ˆ ,a if y x  we can consider a hot-deck fractional imputation (HDFI) 

method, where all the observed values of 1iy  in Sample A are used as imputed values. In this case, the 

fractional weights in Step 2 are given by  

     ** *
0 2 1

ˆ ˆ, ; ,j
ij t ij i i i tw w f y x y    

where  

 
 

 
1*

0

1

ˆ
= .

ˆ
a j i

ij

ka a j k
k A

f y x
w

w f y x



 (3.3) 

The initial fractional weight *
0ijw  in (3.3) is computed by applying importance weighting with  

        1 1 1
ˆ ˆ ˆ ˆ=a j a j a ia a j i

i A

f y f y x f x dx w f y x


    

as the proposal density for 1 .jy  The M-step is the same as for parametric fractional imputation. See Kim 

and Yang (2014) for more details on HDFI. In practice, we may use a single imputed value for each unit. In 

this case, the fractional weights can be used as the selection probability in Probability-Proportional-to-Size 

(PPS) sampling of size = 1.m  

For variance estimation, we can either use a linearization method or a resampling method. We first 

consider variance estimation for the maximum likelihood estimator (MLE) of .  If we use a parametric 

model    1 1 1= ;f y x f y x   and  2 1 2, ; ,f y x y   the MLE of  1 2= ,    is obtained by solving  

       1 1 2 1 2, , = 0,0 ,S S    (3.4) 

where    1 1 1 1= ,ia ii A
S w S 

     1 1 1 1 1= log ;i i iS f y x     is the score function of 1 ,   

     2 1 2 2 2 2 1 2, = , ; , ,S E S X Y       

   2 2 2 2= ,ib ii B
S w S 

  and    2 2 2 1 2 2= log , ;i i i iS f y x y     is the score function of 2 .  Note 

that we can write     2 1 2 2 2 2, = , ; .ib i i ii B
S w E S x y   

  Thus,  

 

 
     

   

    

     

2 2 1 1 2 1 2 1

2
1 1 1 1 2 1 2 1

2 2 1 1 2

2 2 2 1 1 2

; , ;
=

; , ;

= , ;

, ; , ;

i i i i

ib
i B i i i

ib i i i i
i B

ib i i i i i i
i B

S f y x f y x y dy
S w

f y x f y x y dy

w E S S x y

w E S x y E S x y

  


   

  

   







  
 

     



 








  

and  
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 
     

   

 

    

     

2 2 1 1 2 1 2 1

2
2 2 1 1 2 1 2 1

2 2 2
2

2 2 2 2 2

2 2 2 2 2 2

; , ;
=

; , ;

= , ;

, ;

, ; , ; .

i i i i

ib
i B i i i

ib i i i
i B

ib i i i i
i B

ib i i i i i i
i B

S f y x f y x y dy
S w

f y x f y x y dy

w E S x y

w E S S x y

w E S x y E S x y

  


   

 

  

   









  
 

     
 

  
 

 










  

Now,  2 1S      can be consistently estimated by  

       * * * *
21 2 2 1 1 1 1

=1

ˆ ˆ ˆˆ = ,
m

ib ij ij ij i
i B j

B w w S S S  



   (3.5) 

where     **
1 1 1 1 1

ˆ ˆ= ; , ,j
ij i iS S x y       **

2 2 2 2 1 2
ˆ ˆ= ; , , ,j

ij i i iS S x y y   and     ** *
1 1 1 1 1=1

ˆ ˆ= ; , .
m j

i ij i ij
S w S x y   

Also,  2 2S      can be consistently estimated by  

  * *
22 2 2 22

=1

ˆˆ ˆ=
m

ib ij ij
i B j

I w w S B


     (3.6) 

where  

       * * * *
22 2 2 2 2 2 2

=1

ˆ ˆ ˆˆ = ,
m

ib ij ij ij i
i B j

B w w S S S  



    

    **
2 2 2 2 1 2 2= ; , ,j

ij i i iS S x y y      and    * * *
2 2 2 2=1

= .
m

i ij ijj
S w S   

Using a Taylor expansion with respect to 1 ,  

 
         

   

1

2 1 2 2 1 2 2 1 1 1 1
1 1

2 1 1

ˆ , ,

= ,

S S E S E S S

S KS

      
 

 

                 


  

and we can write  

       
1 1

2 2 2 1 1 2
2 2

ˆ .V E S V S KS E S  
 

                     
   

Writing  

    2 2= ,ib i
i B

S w s 

   
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with     2 2 2 2= , ; ,i i i is E S x y    a consistent estimator of   2V S   can be obtained by applying a 

design-consistent variance estimator to 2ˆib ii B
w s

  with  * *
2 2 2=1

ˆˆ = .
m

i ij ijj
s w S   Under simple random 

sampling for Sample B, we have  

    2
2 2 2

ˆ ˆ ˆ= .B i i
i B

V S n s s 



   

Also,   1 1V KS   is consistently estimated by  

  2 1
ˆ ˆ ˆ ˆ= ,V KV S K    

where 1
21 11

ˆ ˆ ˆ= ,K B I   21B̂  is defined in (3.5), and  11 1 1 1
ˆ =I S      evaluated at 1 1̂= .   Since the two 

terms  2S   and  1 1S   are independent, the variance can be estimated by  

     1 1
22 2 2 22

ˆˆ ˆ ˆ ˆ ˆ ,V I V S V I        

where 22Î  is defined in (3.6). 

More generally, one may consider estimation of a parameter   defined as a root of the census estimating 

equation  1 2=1
; , , = 0.

N

i i ii
U x y y  Variance estimation of the FI estimator of   computed from 

  **
1 2=1

; , , = 0
m j

ib ij i i ii B j
w w U x y y

   is discussed in Appendix B. 

 
4  Split questionnaire survey design 
 

In Section 3, we consider the situation where Sample A and Sample B are two independent samples from 

the same target population. We now consider another situation of a split questionnaire design where the 

original sample S  is selected from a target population and then Sample A and Sample B are randomly 

chosen such that =A B S  and = .A B   We observe  1,x y  from Sample A and observe  2,x y  from 

Sample B. We are interested in creating fully augmented data with observation  1 2, ,x y y  in .S  

Such split questionnaire survey designs are gaining popularity because they reduce response burden 

(Raghunathan and Grizzle 1995; Chipperfield and Steel 2009). Split questionnaire designs have been 

investigated, for example, for the Consumer Expenditure survey (Gonzalez and Eltinge 2008) and the 

National Assessment of Educational Progress (NAEP) survey in the US. In applications of split-

questionnaire designs, analysts may be interested in multiple parameters such as the mean of 1y  and the 

mean of 2 ,y  in addition to the coefficient in the regression of 2y  on 1.y  

We consider a design where the original Sample S  is partitioned into two subsamples: A  and .B  We 

assume that ix  is observed for ,i S  1iy  is collected for i A  and 2 iy  is collected for .i B  The 

probability of selection into A  or B  may depend on ix  but does not depend on 1iy  or 2 .iy  As a 

consequence, the design used to select subsample A  or B  is non-informative for the specified model (Fuller 

2009, Chapter 6). We let iw  denote the sampling weight associated with the full sample .S  We assume a 

procedure is available for estimating the variance of an estimator of the form ˆ = ,i ii S
Y w y

  and we denote 

the variance estimator by  ˆ .s i ii S
V w y

  
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A procedure for obtaining a fully imputed data set is as follows. First, use the procedure of Section 3 to 

obtain imputed values   *
1 : , = 1, ,j
iy i B j m   and an estimate, ˆ,  of the parameter in the distribution 

 2 1 , ; .f y y x   The estimate ̂  is obtained by solving  

   **
2 1 2

=1

; , , = 0,
m

j
i ij i i i

i B j

w w S x y y

   (4.1) 

where    2 1 2 2 1; , , = log , ; .S x y y f y y x     Given ˆ,  generate imputed values 
   *

2 2 1
ˆ, ; ,j

i i iy f y y x   for i A  and = 1, , .j m  

Under the assumption that the model is identified, the parameter estimator ̂  generated by solving (4.1) 

is fully efficient in the sense that the imputed value of 2 iy  for Sample A leads to no efficiency gain. To see 

this, note that the score equation using the imputed value of 2iy  is computed by  

      * *1 *
2 1 2 2 1 2

=1 =1

; , , ; , , = 0.
m m

j j
i i i i i ij i i i

i A j i B j

w m S x y y w w S x y y 

 

     (4.2) 

Because    * 1 *
2 2, , m

i iy y  are generated from  2 1
ˆ, ; ,i if y y x   

      *1
2 1 2 2 1 2 1

=1

ˆ; , , = ; , , , ; .lim
m

j
i i i i i i i i i

m i A j i A

p w m S x y y w E S x y Y y x  

  
     

Thus, by the property of score function, the first term of (4.2) evaluated at ˆ=   is close to zero and the 

solution to (4.2) is essentially the same as the solution to (4.1). That is, there is no efficiency gain in using 

the imputed value of 2 iy  in computing the MLE for   in  2 1 , ; .f y y x   

However, the imputed values of 2 iy  can improve the efficiency of inferences for parameters in the joint 

distribution of  1 2, .i iy y  As a simple example, consider estimation of 2 ,  the marginal mean of 2 .iy  Under 

simple random sampling, the imputed estimator of  2= E Y  is 

  *1
, 2 2

=1

1
ˆ = ,

m
j

I m i i
i A j i B

m y y
n

 

 

  
 

  
    (4.3) 

where    * 1 *
2 2, , m

i iy y  are generated from  2 1
ˆ, ; .i if y y x   For sufficiently large ,m  we can write  

 

 

, 2 2

2 1 2

1
ˆ ˆ=

1 ˆ= , ; .

I i i
i A i B

i i i
i A i B

y y
n

E y y x y
n






 

 

  
 

  
 

 

 
  

Under the setup of Example 2.1, we can express 2 0 1 1 2 2
ˆ ˆ ˆˆ =i i iy y x     where  0 1 2

ˆ ˆ ˆ, ,    satisfies  

  2 0 1 1 2 2
ˆ ˆ ˆˆ = 0i i i i

i B

y y x  


     
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and 1 0 1 1 2 2ˆ ˆ ˆˆ =i i iy x x     with  0 1 2ˆ ˆ ˆ, ,    satisfying  1 0 1 1 2 2ˆ ˆ ˆ = 0.i i ii A
y x x  


    Thus, 

ignoring the smaller order terms, we have  

      , 2 2 2

1 1 1
ˆ ˆ=I

b

V V y V y y
n n n

 


  
 

  

which is smaller than the variance of the direct estimator 1
2ˆ = .b b ii B

n y 
  

 
5  Measurement error models 
 

We now consider an application of statistical matching to the problem of measurement error models. 

Suppose that we are interested in the parameter   in the conditional distribution  2 1; .f y y   In the 

original sample, instead of observing  1 2, ,i iy y  we observe  2, ,i ix y  where ix  is a contaminated version 

of 1 .iy  Because inference for   based on  2,i ix y  may be biased, additional information is needed. One 

common way to obtain additional information is to collect  1,i ix y  in an external calibration study. In this 

case, we observe  1,i ix y  in Sample A and  2,i ix y  in Sample B, where Sample A is the calibration sample, 

and Sample B is the main sample. Guo and Little (2011) discuss an application of external calibration. 

The external calibration framework can be expressed as a statistical matching problem. Table 5.1 makes 

the connection between statistical matching and external calibration explicit. An instrumental variable 

assumption permits inference for   based on data with the structure of Table 1.1. In the notation of the 

measurement error model, the instrumental variable assumption is  

        2 1 2 1 1 1, = and = = ,i i i i i i i i if y y x f y y f y x a f y x b  (5.1) 

for some .a b  The instrumental variable assumption may be judged reasonable in applications related to 

error in covariates because the subject-matter model of interest is  2 1 ,i if y y  and ix  is a contaminated 

version of 1iy  that contains no additional information about 2iy  given 1 .iy  

 
Table 5.1 
Data structure for measurement error model 
 

  
ix  1iy  2 iy  

Survey A (calibration study)  o o  
Survey B (main study)  o  o 

 
For fully parametric  2 1i if y y  and  1 ,i if y x  one can use parametric fractional imputation to execute 

the EM algorithm. This method requires evaluating the conditional expectation of the complete-data score 

function given the observed values. To evaluate the conditional expectation using fractional imputation, we 

first express the conditional distribution of 1y  given  2,x y  as,  

      1 2 1 2 1, .f y x y f y x f y y  (5.2) 
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We let an estimator  1â i if y x  of  1i if y x  be available from the calibration sample (Sample A). 
Implementation of the EM algorithm via fractional imputation involves the following steps: 
 

1. For each ,i B  generate  *
1

j
iy  from  1

ˆ ,a if y x  for = 1, , .j m  

2. Compute the fractional weights  

  
  **

2 1
ˆ;j

i i tij tw f y y    

with  
*

=1
= 1.

m

ij tj
w  

3. Update   by solving  

  
  **

1 2
=1

; , = 0,
m

j
ib i iij t

i B j

w w S y y

    

where    1 2 2 1; , = log ; .S y y f y y     

4. Go to Step 2 until convergence.  
 

The method above requires generating data from  1 .f y x  For some nonlinear models or models with 

non-constant variances, simulating from the conditional distribution of 1y  given x  may require Monte 

Carlo methods such as accept-reject or Metropolis Hastings. The simulation of Section 6.2 exemplifies a 

simulation in which the conditional distribution of 1y x  has no closed form expression. In this case, we 

may consider an alternative approach, which may be computationally simpler. To describe this approach, 

let  1h y x  be the “working” conditional distribution, such as the normal distribution, from which samples 

are easily generated. We assume that estimates  1âf y x  and  1
ˆ

ah y x  of  1f y x  and  1 ,h y x  

respectively, are available from Sample A. Implementation of the EM algorithm via fractional imputation 

then involves the following steps: 
 

1. For each ,i B  generate  * j
ix  from  1

ˆ ,a ih y x  for = 1, , .j m  

2. Compute the fractional weights  

  
        * * **

2 1 1 1
ˆ ˆ ˆ;j j j

i i t a i i a i iij tw f y y f y x h y x  (5.3) 

with  
*

=1
= 1.

m

ij tj
w  

3. Update   by solving  

  
  **

1 2
=1

; , = 0.
m

j
ib i iij t

i B j

w w S y y

    

4. Go to Step 2 until convergence.  
 

Variance estimation is a straightforward application of the linearization method in Section 3. The hot-
deck fractional imputation method described in Section 3 with fractional weights defined in (3.3) also 
extends readily to the measurement error setting. 
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6  Simulation study 
 

To test our theory, we present two limited simulation studies. The first simulation study considers the 
setup of combining two independent surveys of partial observation to obtain joint analysis. The second 
simulation study considers the setup of measurement error models with external calibration. 

 
6.1  Simulation one 
 

To compare the proposed methods with the existing methods, we generate 5,000 Monte Carlo samples 
of  1 2, ,i i ix y y  with size = 400,n  where  

 1 2 1 0.7
, ,

3 0.7 1
i

i

y
N

x

     
     

     
   

 2 0 1 1= ,i i iy y e    (6.1) 

 20, ,ie N   and    2
0 1= , , = 1,1,1 .       Note that, in this setup, we have  2 1, =f y x y  

 2 1f y y  and so the variable x  plays the role of the instrumental variable for 1.y  

Instead of observing  1 2, ,i i ix y y  jointly, we assume that only  1 ,y x  are observed in Sample A and 

only  2 ,y x  are observed in Sample B, where Sample A is obtained by taking the first = 400an  elements 

and Sample B is obtained by taking the remaining = 400bn  elements from the original sample. We are 

interested in estimating four parameters: three regression parameters 2
0 1, ,    and =  

 1 2< 2, < 3 ,P y y  the proportion of 1 < 2y  and 2 < 3.y  Four methods are considered in estimating the 

parameters: 
 

1. Full sample estimation (Full): Uses the complete observation of  1 2,i iy y  in Sample B.  

2. Stochastic regression imputation (SRI): Use the regression of 1y  on x  from Sample A to obtain 

 2
0 1 1ˆ ˆ ˆ, , ,    where the regression model is 1 0 1 1=y x e    with  2

1 10, .e   For each 

,i B  = 10m  imputed values are generated by    * *
1 0 1ˆ ˆ=j j

i i iy x e    where 
   * 2

1ˆ0, .j
ie N   

3. Parametric fractional imputation (PFI) with = 10m  using the instrumental variable assumption.  

4. Hot-deck fractional imputation (HDFI) with = 10m  using the instrumental variable assumption.  

 
Table 6.1 presents Monte Carlo means and Monte Carlo variances of the point estimators of the four 

parameters of interest. SRI shows large biases for all parameters considered because it is based on the 

conditional independence assumption. Both PFI and HDFI provide nearly unbiased estimators for all 

parameters. Estimators from HDFI are slightly more efficient than those from PFI because the two-step 

procedure in HDFI uses the full set of respondents in the first step. The theoretical asymptotic variance of 

1̂  computed from PFI is  

  
   

 
2

2
1 2 2

1 1 0.7 1 1ˆ 2 1 1 0.7 0.0103
400 2 4000.7 0.7

V 


  
 

    
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which is consistent with the simulation result in Table 6.1. In addition to point estimation, we also compute 

variance estimators for PFI and HDFI methods. Variance estimators show small relative biases (less than 

5% in absolute values) for all parameters. Variance estimation results are not presented here for brevity. 

 
Table 6.1 
Monte Carlo means and variances of point estimators from Simulation One. (SRI, stochastic regression 
imputation; PFI, parametric fractional imputation; HDFI; hot-deck fractional imputation) 
 

Parameter   Method   Mean   Variance  

0   Full   1.00   0.0123  
   SRI   1.90   0.0869 
  PFI   1.00   0.0472  
  HDFI   1.00   0.0465  

1   Full   1.00   0.00249  
   SRI   0.54   0.01648  
  PFI   1.00   0.01031  
  HDFI   1.00   0.01026  
2   Full   1.00   0.00482  
   SRI   1.73   0.01657  
  PFI   0.99   0.02411  
  HDFI   0.99   0.02270  

   Full   0.374   0.00058  
   SRI   0.305   0.00255  
  PFI   0.375   0.00059  
  HDFI   0.375  0.00057  

 
The proposed method is based on the instrumental variable assumption. To study the sensitivity of the 

proposed fractional imputation method to violations of the instrumental variable assumption, we performed 

an additional simulation study. Now, instead of generating 2 iy  from (6.1), we use  

  2 1= 0.5 3 ,i i i iy y x e     (6.2) 

where  0,1ie N  and   can take non-zero values. We use three values of ,   0,0.1,0.2 ,   in the 

sensitivity analysis and apply the same PFI and HDFI procedure that is based on the assumption that x  is 

an instrumental variable for 1.y  Such assumption is satisfied for = 0,  but it is weakly violated for = 0.1  

or = 0.2.  Using the fractionally imputed data in sample B, we estimated three parameters,  1 1= ,E Y  

2  is the slope for the simple regression of 2y  on 1 ,y  and  3 1 2= < 2, < 3 ,P y y  the proportion of 1 < 2y  

and 2 < 3.y  Table 6.2 presents Monte Carlo means and variances of the point estimators for three 

parameters under three different models. In Table 6.2, the absolute values of the difference between the 

fractionally imputed estimator and the full sample estimator increase as the value of   increases, which is 

expected as the instrumental variable assumption is more severely violated for larger values of ,  but the 

differences are relatively small for all cases. In particular, the estimator of 1  is not affected by the departure 

from the instrumental variable assumption. This is because the imputation estimator under the incorrect 

imputation model still provides an unbiased estimator for the population mean as long as the regression 

imputation model contains an intercept term (Kim and Rao 2012). Thus, this limited sensitivity analysis 
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suggests that the proposed method seems to provide comparable estimates when the instrumental variable 

assumption is weakly violated. 

 
Table 6.2 
Monte Carlo means and Monte Carlo variances of the two point estimators for sensitivity analysis in Simulation 
One (Full, full sample estimator; PFI, parametric fractional imputation; HDFI; hot-deck fractional imputation) 
 

Model   Parameter   Method   Mean   Variance  
= 0  1    Full   2.00   0.00235  
     PFI   2.00   0.00352  
    HDFI   2.00   0.00249  

 2    Full   1.00   0.00249 
      PFI   1.00   0.01031  
    HDFI   1.00   0.01026  

  3   Full   0.43   0.00061  
    PFI   0.43   0.00059 
    HDFI   0.43   0.00057  

= 0.1   1   Full   2.00   0.00235  
    PFI   2.00   0.00353  
    HDFI   2.00   0.00250  

  2   Full   1.07   0.00248  
      PFI   1.14   0.01091  
    HDFI   1.14   0.01081 

  3   Full   0.44   0.00061  
    PFI   0.45   0.00062  
    HDFI   0.45   0.00059  

= 0.2   1   Full   2.00   0.00235  
     PFI   2.00   0.00353  
    HDFI   2.00   0.00250  

  2   Full   1.14   0.00250  
     PFI   1.28   0.01115  
    HDFI   1.28   0.01102  

  3   Full   0.44   0.00061  
    PFI   0.46   0.00066  
    HDFI   0.46   0.00062  

 
6.2  Simulation two 
 

In the second simulation study, we consider a binary response variable 2 ,iy  where  

  2 Bernoulli ,i iy p  (6.3) 

   0 1 1logit = ,i ip y    

and  2
1 1 1, .iy N    In the main sample, denoted by ,B  instead of observing  1 2, ,i iy y  we observe 

 2, ,i ix y  where  

 0 1 1= ,i i ix y u    (6.4) 
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and  22
10, .i iu N y   We observe  1, ,i ix y  = 1, , Ai n  in a calibration sample, denoted by A. For 

the simulation, = = 800,A Bn n  0 = 1,  1 = 1,  0 = 0,  1 = 1,  2 = 0.25,  = 0.4,  1 = 0,  and 2
1 = 1.  

Primary interest is in estimation of 1  and testing the null hypothesis that 1 = 1.  The Monte Carlo (MC) 

sample size is 1,000. 

We compare the PFI estimators of 1  to three other estimators. Because the conditional distribution of 

1iy  given ix  is non-standard, we use the weights of (5.3) to implement PFI, where the proposal distribution 

 1
ˆ

a i ih y x  is an estimate of the marginal distribution of 1iy  based on the data from Sample A. We consider 

the following four estimators: 
 

1. PFI: For PFI, the proposal distribution for generating  *
1

j
iy  is a normal distribution with mean 1̂  

and variance 2
1ˆ ,  where 1̂  and 2

1̂  are the maximum likelihood estimates of 1  and 2
1 ,  

respectively, based on Sample A. The fractional weights defined in (5.3) has the form  

                      1 ** 22
1

ˆˆ ˆ1 ,
yy jii

ij ij ij a i iw p p f y x


   (6.5) 

where     1*
0 1 1ˆ ˆˆ = 1 exp j

ij ip y  
    and  1â i if y x  is the estimate of  1i if y x  based on 

maximum likelihood estimation with the Sample A data. The imputation size = 800.m  

2. Naive: A naive estimator is the estimator of the slope in the logistic regression of 2 iy  on ix  for 

.i B  

3. Bayes: We use the approach of Guo and Little (2011) to define a Bayes estimator. The model for 

this simulation differs from the model of Guo and Little (2011) in that the response of interest is 

binary. We implement GIBBS sampling with JAGS (Plummer 2003), specifying diffuse proper 

prior distributions for the parameters of the model. Letting  

                      2 2
1 1 1 0 1 0 1= log , log , , , , , ,          

we assume a priori that  6
1 70,10 ,N I   where 7I  is a 7 7  identity matrix, and the notation 

 0,N V  denotes a normal distribution with mean 0 and covariance matrix .V  The prior 

distribution for the power   is uniform on the interval  5,5 .  

To evaluate convergence, we examine trace plots and potential scale reduction factors defined 

in Gelman, Carlin, Stern and Rubin (2003) for 10 preliminary simulated data sets. We initiate 

three MCMC chains, each of length 1,500 from random starting values and discard the first 500 

iterations as burn-in. The potential scale reduction factors across the 10 simulated data sets range 

from 1.0 to 1.1, and the trace plots indicate that the chains mix well. To reduce computing time, 

we use 1,000 iterations of a single chain for the main simulation, after discarding the first 500 for 

burn-in. 

4. A Weighted Regression Calibration (WRC) estimator. The WRC estimator is a modification of 
the weighted regression calibration estimator defined in Guo and Little (2011) for a binary 
response variable. The computation for the weighted regression calibration estimator involves 
the following steps: 

 

(i) Using ordinary least squares (OLS), regress 1iy  on ix  for the calibration sample.  
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(ii) Regress the logarithm of the squared residuals from step (i) on the logarithm of 2
ix  for the 

calibration sample. Let ̂  denote the estimated slope from the regression.  

(iii) Using weighted least squares (WLS) with weight 
ˆ2 ,ix   regress 1iy  on ix  for the 

calibration sample. Let 0̂  and 1̂  be the estimated intercept and slope, respectively, from 

the WLS regression.  

(iv) For each unit i  in the main sample, let 1 0 1ˆ ˆˆ = .i iy x   

(v) The estimate of  0 1,   is obtained from the logistic regression of 2iy  on 1ˆ iy  in the main 

sample.  

 
Table 6.3 contains the MC bias, variance, and MSE of the four estimators of 1.  The naive estimator has 

a negative bias because ix  is a contaminated version of 1 .iy  The PFI estimator is superior to the Bayes and 

WRC estimators. 

We compute an estimate of the variance of the PFI estimators of 1  using the variance expression based 

on the linear approximation. We define the MC relative bias as the ratio of the difference between the MC 

mean of the variance estimator and the MC variance of the estimator to the MC variance of the estimator. 

The MC relative bias of the variance estimators for PFI is negligible (less than 2% in absolute values). 

 
Table 6.3 
Monte Carlo (MC) means, variances, and mean squared errors (MSE) of point estimators of 1  from 
Simulation Two. (PFI, parametric fractional imputation; WRC, weighted regression calibration; MC, Monte 
Carlo; MSE, mean squared error) 
 

Method   MC Bias   MC Variance   MC MSE  
PFI   0.0239   0.0386   0.0392  

Naive   -0.2241   0.0239   0.0742  
Bayes   0.0406   0.0415   0.0432  
WRC   0.112   0.0499   0.0625  

 
7  Concluding remarks 
 

We approach statistical matching as a missing data problem and propose the PFI method to obtain 

consistent estimators and corresponding variance estimators. Under the assumption that the specified model 

is fully identified, the proposed method provides the pseudo maximum likelihood estimators of the 

parameters in the model. 

A sufficient condition for model identifiability is the existence of an instrumental variable in the model. 

The measurement error framework of Section 5 and Section 6.2, where external calibration provides an 

independent measurement of the true covariate of interest, is a situation in which the study design may be 

judged to support the instrumental variable assumption. The proposed methodology is applicable without 

the instrumental variable assumption, as long as the model is identified. If the model is not identifiable, then 

the EM algorithm for the proposed PFI method does not necessarily converge. In practice, one can treat the 

specified model as identified if the EM sequence converges. That is, as long as the EM sequence converges, 
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the resulting analysis is consistent under the specified model. This is one of the main advantages of using 

the frequentist approach over Bayesian. In the Bayesian approach, it is possible to obtain the posterior values 

even under non-identified models and the resulting analysis can be misleading. 

Testing whether the IV assumption holds in the data at hand is much more difficult, perhaps impossible, 

under the data structure in Table 1.1. Instead, given the specified model, we can only check whether the 

model parameters are fully estimable. On the other hand, whether the specified model is a good model for 

the data at hand is a different story. Model diagnostics and model selection among different identifiable 

models are certainly important future research topics. 

Statistical matching can also be used to evaluate effects of multiple treatments in observational studies. 

By properly applying statistical matching techniques, we can create an augmented data file of potential 

outcomes so that causal inference can be investigated with the augmented data file (Morgan and Winship 

2007). Such extensions will be presented elsewhere. 
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Appendix 
 
A. Asymptotic unbiasedness of 2SLS estimator 
 

Assume that we observe  1 ,y x  in Sample A and observe  2 ,y x  in Sample B. To be more rigorous, 

we can write  1 ,a ay x  to denote the observation  1 ,y x  in Sample A. Also, we can write  2 ,b by x  to denote 

the observations in Sample B. In this case, the model can be written as  

 1 0 1 1 2 2 1

2 0 1 1 2 2 2

= 1

= 1
a a a a a

b b b b b

y x x e

y y x e

  
  

  

  
  

with  1 = 0a aE e x  and  2 1, = 0.b b bE e x y  Note that 1by  is not observed from the sample. Instead, we 

use 1ˆ by  using the OLS estimate obtained from Sample A. 

Writing  = 1 ,a a aX x  and  = 1 , ,b b bX x  we have   1

1 1
ˆˆ = = .b b a a a a b ay X X X X y X    The 2SLS 

estimator of  0 1 2= , ,      is then  
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   1

2SLS 2
ˆ = b b b bZ Z Z y     

where  1 2ˆ= 1 , , .b b b bZ y x  Thus, we have  

 
   

    

1

2SLS 2

1

1 1 1 2

ˆ =

ˆ= .

b b b b b

b b b b b b

Z Z Z y Z

Z Z Z y y e

  







  

   
 (A.1) 

We may write  
 1 0 1 1 1= 1 =b b b b b by x e X e       

where  1 = 0.b bE e x  Since  

 

 
   

 

1

1 1

1

1

1

1

ˆ =

=

= ,

b b a a a a

b a a a a a

b b a a a a

y X X X X y

X X X X X e

X X X X X e











 

  

 

  

we have  

   1

1 1 1 1ˆ =b b b b a a a ay y e X X X X e
     

and (A.1) becomes  

     1 1

2SLS 1 1 1 1 2
ˆ = .b b b b b a a a a bZ Z Z e X X X X e e           (A.2) 

Assume that the two samples are independent. Thus,  1 1, , = 0.b a b aE e x x y  Also, 

  1

2 1 1, , , = 0.b b b b a b a bE Z Z Z e x x y y
   Thus,  

       1 1

2SLS 1 1 1 1
ˆ , , = , ,a b a b b b b a a a a a b aE x x y E Z Z Z X X X X e x x y           

and 

 
          

   

1 1 1 1

1 1

1

=

ˆ= .

b b b b a a a a b b b b a a a a a

b b b b a

Z Z Z X X X X e Z Z Z X X X X y X

Z Z Z X



 

   



        

  
  

This term has zero expectation asymptotically because 1
b b bn Z Z   and 1

b b bn Z X   are bounded in probability 

and  â   converges to zero. 
 

B. Variance estimation  
 

Let the parameter of interest be defined by the solution to    1 2=1
= ; , = 0.

N

N i ii
U U y y   We assume 

that   = 0.NU     Thus, parameter   is priori independent of   which is the parameter in the data-

generating distribution of  1 2, , .x y y  

Under the setup of Section 3, let  1 2
ˆ ˆ ˆ= ,    be the MLE of  1 2= ,    obtained by solving (3.4). Also, 

let ̂  be the solution to  ˆ = 0U    where  

     **
1 2

=1

= ; , ,
m

j
ib ij i i

i B j

U w w U y y  

   
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and  

         * * **
1 1 2 1 2 1

ˆ ˆ; ;j j j
ij i i i i i iw f y x f y y h y x    

with *

=1
= 1.

m

ijj
w  Here,  1h y x  is the proposal distribution of generating imputed values of 1y  in the 

parametric fractional imputation. By introducing the proposal distribution ,h  we can safely ignore the 

dependence of imputed values  *
1

j
iy  on the estimated parameter value 1̂.  

By Taylor linearization,  

            1 1 1 2 2 2
ˆ ˆ ˆU U U U                     

Note that  

     1
1 1 1 1 1 1
ˆ I S       

where    1 1 1 1 1= .I S      Also,  

    
1

2 2 2 2
2

ˆ S S   


     
  

where  

       **
2 2 2 1 2

=1

= ; , .
m

j
i ij i i

i B j

S w w S y y  

   

Thus, we can establish  

        1 1 1 2 2
ˆ ,U U K S K S          

where 1
1 21 11=K D I   and 1

2 22 22=K D I   with  11 1 1= ,I E S       22 2 2= ,I E S      

    
21 1 1=D E U S    and     

22 2 2= ,D E U S    we have  

     1 1
1 2

ˆ =V U V V        

where   = ,E U       

  * *
1 2 2= ,i i i

i B

V V w u K S


  
 
   

 *
1 2 2

ˆˆ= ; , ; ,i i i iu E U y y y     and  2 1 1= .i ii A
V V K w S

  A consistent estimator of each component can 

be developed similarly to Section 3. 

 
References 

 

Baker, K.H., Harris, P. and O’Brien, J. (1989). Data fusion: An appraisal and experimental evaluation. 
Journal of the Market Research Society, 31, 152-212. 

 



Survey Methodology, June 2016 39 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Beaumont, J.-F., and Bocci, C. (2009). Variance estimation when donor imputation is used to fill in missing 
values. The Canadian Journal of Statistics/La Revue Canadienne de Statistique, 37, 3, 400-416. 

 

Chen, J., and Shao, J. (2001). Jackknife variance estimation for nearest neighbor imputation. Journal of the 
American Statistical Association, 96, 453, 260-269. 

 

Chib, S., and Greenberg, E. (1995). Jackknife variance estimation for nearest neighbor imputation. The 
American Statistician, 46, 327-333. 

 

Chipperfield, J.O., and Steel, D.G. (2009). Design and estimation for split questionnaire surveys. Journal 
of Official Statistics, 25, 2, 227-244. 

 

D’Orazio, M., Zio, M.D. and Scanu, M. (2006). Statistical Matching: Theory and Practice. Chichester, UK: 
Wiley. 

 

Fuller, W.A. (2009). Sampling Statistics, Hoboken, NJ: John Wiley & Sons, Inc. 
 

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2003). Bayesian Data Analysis, Chapman and Hall 
Texts in Statistical Science. Chapman and Hall/CRC, second edition. 

 

Gonzalez, J., and Eltinge, J. (2008). Adaptive matrix sampling for the consumer expenditure quarterly 
interview survey. In Proceedings of the Survey Research Methods Section, American Statistical 
Association, 2081-2088. 

 

Guo, Y., and Little, R.J. (2011). Regression analysis with covariates that have heteroskedastic measurement 
error. Statistics Medicine, 30, 18, 2278-2294. 

 

Haziza, D. (2009). Imputation and inference in the presence of missing data. In Handbook of Statistics, 
Volume 29, Sample Surveys: Theory Methods and Inference, (Eds., C.R. Rao and D. Pfeffermann), 215-
246. 

 

Herzog, T.N., Scheuren, F.J. and Winkler, W.E. (2007). Data Quality and Record Linkage Techniques. New 
York: Springer. 

 

Ibrahim, J.G. (1990). Incomplete data in generalized linear models. Journal of the American Statistical 
Association, 85, 765-769. 

 

Kim, J.K. (2011). Parametric fractional imputation for missing data analysis. Biometrika, 98, 119-132. 
 

Kim, J.K., and Rao, J.N.K. (2012). Combining data from two independent surveys: A model-assisted 
approach. Biometrika, 99, 85-100. 

 

Kim, J.K., and Shao, J. (2013). Statistical Methods in Handling Incomplete Data, Chapman and Hall/CRC. 
 

Kim, J.K., and Yang, S. (2014). Fractional hot deck imputation for robust inference under item nonresponse 
in survey sampling. Survey Methodology, 40, 2, 211-230. 

 

Lahiri, P., and Larsen, M.D. (2005). Regression analysis with linked data. Journal of the American 
Statistical Association, 100, 1265-1275. 

 

Leulescu, A., and Agafitei, M. (2013). Statistical matching: A model based approach for data integration. 
Eurostat Methodologies and Working Papers. 

 

Morgan, S.L., and Winship, C. (2007). Counterfactuals and Causal Inference: Methods and Principles for 
Social Research. New York, USA: Cambridge University Press. 

 

Moriarity, C., and Scheuren, F. (2001). Statistical matching: A paradigm for assessing the uncertainty in the 
procedure. Journal of Official Statistics, 17, 407-422. 

 



40 Kim, Berg and Park: Statistical matching using fractional imputation 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. 
In Proceedings of the 3rd International Workshop on Distributed Statistical Computing. 

 

Raghunathan, T.E., and Grizzle, J.E. (1995). A split questionnaire design. Journal of the American 
Statistical Association, 90, 54-63. 

 

Rässler, S. (2002). Statistical Matching: A Frequentist Theory, Practical Applications, and Alternative 
Bayesian Approaches. New York: Springer-Verlag. 

 

Ridder, S., and Moffit, R. (2007). The econometrics of data combination. Handbook of Econometrics, 5470-
5544. 



Survey Methodology, June 2016 41 
Vol. 42, No. 1, pp. 41-61 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Michael A. Hidiroglou, Business Survey Methods Division, Statistics Canada, Ottawa, K1A 0T6, Canada. E-mail: hidirog@yahoo.ca; Yong 

You, International Cooperation and Corporate Statistical Methods Division, Statistics Canada, Ottawa, K1A 0T6, Canada. E-mail: 
yong.you@canada.ca. 

 

Comparison of unit level and area level small area estimators 

Michael A. Hidiroglou and Yong You1 

Abstract 

In this paper, we compare the EBLUP and pseudo-EBLUP estimators for small area estimation under the nested 
error regression model and three area level model-based estimators using the Fay-Herriot model. We conduct a 
design-based simulation study to compare the model-based estimators for unit level and area level models under 
informative and non-informative sampling. In particular, we are interested in the confidence interval coverage 
rate of the unit level and area level estimators. We also compare the estimators if the model has been misspecified. 
Our simulation results show that estimators based on the unit level model perform better than those based on the 
area level. The pseudo-EBLUP estimator is the best among unit level and area level estimators. 

 
Key Words: Confidence interval; Design consistency; Fay-Herriot model; Informative sampling; Model misspecification; 

Nested error regression model; Relative root mean squared error (RRMSE); Survey weight. 

 
 

1  Introduction 
 

Model-based small area estimators have been widely used in practice to provide reliable indirect 

estimates for small areas in recent years. The model-based estimators are based on explicit models that 

provide a link to related small areas through supplementary data such as census and administrative records. 

Small area models can be classified into two broad types: (i) Unit level models that relate the unit values of 

the study variable to unit-specific auxiliary variables and (ii) Area level models that relate direct estimators 

of the study variable of the small area to the corresponding area-specific auxiliary variables. In general, area 

level models are used to improve the direct estimators if unit level data are not available. The sampling set-

up is as in Rao (2003). That is, a universe U  of size N  is split into m  non-overlapping small areas iU  of 

size ,iN  where 1, , .i m   Sampling is carried out in each small area using a probabilistic mechanism, 

resulting in samples is  of size .in  The selection probabilities associated with each element 1, , ij n   

selected in sample is  is denoted as .ijp  The resulting design weights are given by 1 1.ij i ijw n p   In practice, 

these weights can be adjusted to account for non-response and/or auxiliary information. The resulting 

weights are known as the survey weights. In this paper, we assume full response to the survey, and no 

adjustment to the auxiliary data. Direct area level estimates are obtained for each area using the survey 

weights and unit observations from the area. The survey design can be incorporated into small area models 

in different ways. In the area level case, direct design-based estimators are modeled directly and the survey 

variance of the associated direct estimator is introduced into the model via the design-based errors. In the 

case of the unit level, the observations can be weighted using the survey weight. A number of factors affect 

the success of using these estimators. Two important factors are whether the assumed model is correct and 

whether the variable of interest is correlated with the selection probabilities associated with the sampling 

process, that is, informativeness of the sampling process. In this paper, we compare, via a simulation study, 

the impact of model misspecification and the informativeness of the sampling design for two basic small 

area procedures based on unit and area levels in terms of bias, estimated mean squared error and confidence 
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interval coverage rates. A sampling design is informative if the selection probabilities ijp  are related to the 

variable of interest ijy  even after conditioning on the covariates .ijx  In such cases, we have informative 

sampling in the sense that the population model no longer holds for the sample. Pfeffermann and Sverchkov 

(2007) accounted for this possibility by adjusting the small area procedures. Verret, Rao and Hidiroglou 

(2015) simplified the procedure. In this paper, we do not adjust the small area procedures for 

informativeness, but study their impact. 

The paper is structured as follows. The point estimators and associated mean squared error estimators 

for the unit level and area models are described in Section 2 and in Section 3 respectively. The description 

of the simulation and results are given in Section 4. This simulation computes the point and associated mean 

squared errors for a PPSWR (probability proportional to size with replacement) sampling scheme by varying 

the following two factors: (a) the assumed model is correct or incorrect; and (b) design informativeness 

varies from being non-significant to being very significant. In Section 5, we give an example using data 

from Battese, Harter and Fuller (1988) that compares the unit level and area level estimates. Finally, 

conclusions resulting from this work are presented in Section 6. 

 
2  Unit level model 
 

A basic unit level model for small area estimation is the nested error regression model (Battese et al. 

1988) given by ,    1, , , 1, , ,ij ij i ij iy v e j N i m    x    where ijy  is the variable of interest for the 
thj  population unit in the thi  small area,  1 , ,ij ij ijpx x x   is a 1p   vector of auxiliary variables, with 

1 1,ijx    0 1, , p   β   is a 1p   vector of regression parameters, and iN  is the number of population 

units in the thi  small area. The random effects iv  are assumed to be independent and identically distributed 

 . . .i i d   20, vN   and independent of the unit errors ,ije  which are assumed to be . . .i i d   20, .eN   

Assuming that iN  is large, the parameter of interest is the mean for the thi  area, 1

1
,iN

i i ijj
Y N y


   which 

may be approximated by  

 ,i i iv  X β  (2.1) 

where 
1

iN

i ij ij
N


 X x  is the vector of known population means of the ijx  for the thi  area. We assume 

that samples are drawn independently within each small area according to a specified sampling design. 

Under non-informative sampling, the sample data  ,ij ijy x  are assumed to obey the population model, i.e.,  

 , 1, , , 1, , ,ij ij i ij iy v e j n i m    x β    (2.2) 

where ijw  is the basic design weight associated with unit  , ,i j  and in  is the sample size in the thi  small 

area. 
 

2.1  EBLUP estimation 
 

The best linear unbiased prediction (BLUP) estimator of small area mean, ,i i iv  X β  based on the 

nested error regression model (2.2) is given by  
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   ,i i i i i ir y r   X x β   (2.3) 

where 
1

,in

i ij ij
y y n


   

1
,in

i ij ij
n


 x x   2 2 2 ,i v v e ir n     and 

  
1

1 1 2 2

1 1

, ,
m m

i i i i i i e v
i i

y  


 

 

      
  
 β x V x x V β   (2.4) 

with  1 , , ,
ii i inx x x   2 2 ,

i i ii e n v n n   V I 1 1   1 , , ,
ii i iny y y   1, , .i m   Both i  and β  depend on 

the unknown variance parameters 2
e  and 2 .v  The method of fitting constant can be used to estimate 2

e  

and 2 ,v  and the resulting estimators are   12 2

1 1
ˆˆ 1 ,im n

e iji j
n m p 

 
       and  2 2ˆ max ,0 ,v v    

where  2 1 2 2
* 1 1

ˆˆ ,im n

v ij ei j
n u n p 

 
         1 2

* 1
tr ,

m

i i ii
n n n




     X X x x   1 , , ,mx x  X   

1
.

m

ii
n n


   

The residuals  ˆij  are obtained from the ordinary least squares (OLS) regression of ij iy y  on 

 1 1 , ,ij i ijp i p  x x x x  and  ˆiju  are the residuals from the OLS regression of ijy  on  1 , , .ij ijpx x  See 

Rao (2003), page 138 for more details.  

Replacing 2
e  and 2

v  by estimators 2ˆe  and 2ˆv  in equation (2.3), we obtain the EBLUP estimator of 

small area mean i  as  

  EBLUPˆ ˆˆ ,i i i i i ir y r   X x β  (2.5) 

where  2 2 2ˆ ˆ ˆî v v e ir n     and  2 2ˆ ˆ ˆ, .e v β β  The mean squared error (MSE) of the EBLUP estimator 
EBLUP
î  is given by 

        EBLUP 2 2 2 2 2 2
1 2 3

ˆMSE , , , ,i i e v i e v i e vg g g           

see Prasad and Rao (1990). The g  terms are 

                                      
   

       

2 2 2
1

1
2 2 1

2 1

, 1 ,

,

i e v i v

m

i e v i i i i i i i i ii

g r

g r r

  

 





 

   X x x V x X x
  

and 

                                           32 2 2 2 2 1 2 2
3 , , ,i e v i v e i e vg n n h          

where        2 2 4 2 2 2 2 2 4 2ˆ ˆ, 2 cov , .e v e v e v e v v eh V V              The variances and covariance of 2ˆe  and 
2
v  are given by  

                                      
   
       

12 4

12 2 4 2 2 4
* * **

ˆ 2 1

2 1 1 2 ,
e e

v e e v v

V n m p

V n n m p m n p n n

 
    





   

         
  

and  

                                           2 2 1 2
*ˆ ˆcov , 1 ,e v em n V       
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where  2

** tr ,n  Z MZ    ,n
   -1

M I X X X X   
1

diag , , .
mn nZ 1 1  

A second-order unbiased estimator of the MSE (Prasad and Rao 1990) is given by  

        EBLUP 2 2 2 2 2 2
1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆmse , , 2 , .i i e v i e v i e vg g g          (2.6) 

Note that the EBLUP estimator EBLUP
î  given by (2.5) depends on the unit level model (2.2). It is model-

unbiased, but it is not design consistent unless the sample design is simple random sampling. If model (2.2) 

does not hold for the sampled data, then the EBLUP estimator EBLUP
î  may be biased, that is, additional bias 

will be present in the EBLUP estimator due to model misspecification. 

 
2.2  Pseudo-EBLUP estimation 
 

You and Rao (2002) proposed a pseudo-EBLUP estimator of the small area mean i  by combining the 

survey weights and the unit level model (2.2) to achieve design consistency. Let ijw  be the weights 

associated with each unit  , .i j  A direct design-based estimator of the small area mean is given by  

 1

1
1

,

i
i

i

n
n

ij ijj
iw ij ijn

jijj

w y
y w y

w






 





  (2.7) 

where .1

in

ij ij ij ij ij
w w w w w


   and 

1
1.in

ijj
w


   The weighted estimator iwy  is also known as the 

weighted Hájek estimator. By combining the direct estimator (2.7) and the unit level model (2.2), we can 

obtain the following aggregated (survey-weighted) area level model 

 ,    1, , ,iw iw i iwy v e i m   x β   (2.8) 

where 
1

in

iw ij ijj
e w e


    with   0,iwE e     2 2 2

1
,in

iw e ij ij
V e w 


    and 

1
.in

iw ij ijj
w


 x x  Note that the 

regression parameter β  and the variance components 2
e  and 2

v  are unknown in model (2.8). Based on 

model (2.8), assuming that the parameters ,β  2
e  and 2

v  are known, the BLUP estimator of i  is 

    2 2, , ,iw iw iw i iw iw iw e vr y r      X x β β   (2.9) 

where  2 2 2 .iw v v ir      The BLUP estimator iw  depends on ,β  2
e  and 2 .v  To estimate the regression 

parameter, You and Rao (2002) proposed a weighted estimation equation approach, and obtained an 

estimator of β  as follows:  

      
1

2 2

1 1 1 1

, .
i im n m n

w ij ij ij iw iw ij ij iw iw ij w e v
i j i j

w r w r y  


   

         
   
 β x x x x x β    

 2 2,w w e v β β   depends on 2
e  and 2 .v  Replacing 2

e  and 2
v  in wβ  by the fitting of constant estimators 

2ˆe  and 2ˆ ,v   2 2ˆ ˆ ˆ,w w e v β β  is obtained; See Rao (2003, page 149). Replacing ,β  2
e  and 2

v  in (2.9) 

by ˆ ,wβ  2ˆe  and 2ˆ ,v  the pseudo-EBLUP estimator for the small area mean i  is given by 
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  EBLUPˆ ˆ ˆˆ ˆ .P
i iw iw iw i iw iw wr y r    X x β  (2.10) 

As the sample size in  becomes large, estimator EBLUPˆP
i
  becomes design-consistent. It also has a self-

benchmarking property when the weights ijw  are calibrated to agree with the known population total. That 

is, if 
1

,in

ij ij
w N


  EBLUP

1
ˆm P

i ii
N  

  is equal to the direct regression estimator of the overall total,  

  EBLUP

1
ˆ ˆˆ ˆ ,

m P
i i w w wi

N Y 


   X X β   

where 
1 1

ˆ ,im n

w ij iji j
Y w y

 
    and 

1 1
ˆ .im n

w ij iji j
w

 
  X x  For more details, see You and Rao (2002).  

The MSE of EBLUPˆP
i
  is given by  

        EBLUP 2 2 2 2 2 2
1 2 3

ˆMSE , , , ,P
i iw e v iw e v iw e vg g g            

where    2 2 2
1 , 1 ,iw e v iw vg r          2 2

2 , .iw e v i iw iw w i iw iwg X r x X r x       The term w  is  

 

1 1

2

1 1 1 1 1 1

1 1

2

1 1 1 1 1 1 1

 ,

i i i

i i i i

m n m n m n

w ij ij ij ij ij ij e
i j i j i j

m n m n n m n

ij ij ij ij ij ij v
i j i j j i j

z

x





 

     

 

      

             
      

                            

  

    

x z z x z

x z z z z

  

where   ,ij ij ij iw iww r z x x       22 2 4 2 2 2
3 , 1 , .iw e v iw iw e v e vg r r h          2 2,e vh    is the same 

function as in the MSE for the EBLUP estimator given in Section 2.1. A nearly second-order unbiased 

estimator of the MSE can be obtained as  

        EBLUP 2 2 2 2 2 2
1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆmse , , 2 , .P
i iw e v iw e v iw e vg g g           (2.11) 

(See Rao 2003, page 150 and You and Rao 2002, page 435). Note that the MSE estimator (2.11) ignores the 

cross-product terms. Torabi and Rao (2010) obtained the second-order correct MSE estimator including the 

cross-product terms using linearization and bootstrap methods. There are two cross-product terms. The first 

one is simple and has a closed form. Although the linearization method performs well, the explicit form for 

the second cross-product term is very lengthy: furthermore, the formulas based on the linearization 

procedure are not provided in Torabi and Rao (2010). The bootstrap method always underestimates the true 

MSE. A double bootstrap method needs to be applied to get an unbiased estimator of the MSE and is 

computationally extensive. The MSE estimator (2.11) behaves like the linearization estimator of Torabi and 

Rao (2010) when the variation of the survey weights is small. In the case of self-weighting within areas, one 

of the cross-product term is zero and the other term is of order  1 .o m  Hence, the MSE estimator (2.11) is 

nearly unbiased; more discussion is provided in Torabi and Rao (2010). It is for these reasons that these 

cross-product terms were not included in the MSE estimator given by (2.11) in our study.  

Note that under model (2.2) the pseudo-EBLUP estimator EBLUPˆP
i
  is slightly less efficient than the 

EBLUP estimator EBLUPˆ .i  However, the pseudo-EBLUP estimator is design consistent and is therefore 
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more robust to model misspecification. We will compare the performance of the EBLUP and pseudo-

EBLUP estimators through a simulation study.  

 
3  Area level model 
 

The Fay-Herriot model (Fay and Herriot 1979) is a basic area level model widely used in small area 

estimation to improve the direct survey estimates. The Fay-Herriot model has two components, namely, a 

sampling model for the direct survey estimates and a linking model for the small area parameters of interest. 

The sampling model assumes that given the area-specific sample size 1,in   there exists a direct survey 

estimator DIRˆ .i  The direct survey estimator is design unbiased for the small area parameter .i  The 

sampling model is given by  

 DIRˆ ,  1, , ,i i ie i m      (3.1) 

where the ie  is the sampling error associated with the direct estimator DIR
î  and m  is the number of small 

areas. It is customary in practice to assume that the ’sie  are independently normal random variables with 

mean   0iE e   and sampling variance   2var .i ie   The linking model is obtained by assuming that the 

small area parameter of interest i  is related to area level auxiliary variables  1z , , zi i ip z   through the 

following linear regression model  

 ,  1, , ,i i iv i m   z β   (3.2) 

where  1 , , p  β   is a 1p   vector of regression coefficients, and the ’siv  are area-specific random 

effects assumed to be . . .i i d  with   0iE v   and   2var .i vv   The assumption of normality is generally 

also made, even though it is more difficult to justify the assumption. This assumption is needed to obtain 

the MSE estimation. The model variance 2
v  is unknown and needs to be estimated from the data. The area 

level random effect iv  capture the unstructured heterogeneity among areas that is not explained by the 

sampling variances. Combining models (3.1) and (3.2) leads to a linear mixed area level model given by  

 DIRˆ .i i i iv e   z β  (3.3) 

Model (3.3) involves both design-based random errors ie  and model-based random effects .iv  For the 

Fay-Herriot model, the sampling variance 2
i  is assumed to be known in model (3.3). This is a very strong 

assumption. Generally smoothed estimators of the sampling variances are used in the Fay-Herriot model 

and then 2 ’si  are treated as known. However, if direct estimators of sampling variances are used in the 

Fay-Herriot model, an extra term needs to be added to the MSE estimator to account for the extra variation 

(Wang and Fuller 2003).  

Assuming that the model variance 2
v  is known, the best linear unbiased predictor (BLUP) of the small 

area parameter i  can be obtained as 

  DIR
WLS

ˆ 1 ,i i i i i       z β   (3.4) 

where  2 2 2 ,i v v i      and WLSβ  is the weighted least squared (WLS) estimator of β  given by  
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   
1 1

1 12 2 2 2
WLS

1 1 1 1

.
m m m m

i v i i i v i i i i i i i i
i i i i

y y     
 

 

   

                  
       
   β z z z z z z  

There are several methods available to estimate the unknown model variance 2 ;v  You (2010) provides 
a review of these methods. We chose the restricted maximum likelihood (REML) obtained by Cressie (1992) 
to estimate the model variance under the Fay-Herriot model. Using the scoring algorithm, the REML 
estimator 2ˆv  is obtained as  

          12 1 2 2 2 ,   for  1, 2, ,k k k k
v v R v R vI S k            

where    2 1 2 tr ,R vI   PP  and    2 1 2 1 2 tr ,R vS   y PPy P  and   11 1 1 1.
     P V V Z Z V Z Z V  

Using a guessing value for  2 1
v  as the starting value, the algorithm converges very fast. 

Replacing 2
v  in equation (3.4) by the REML estimator 2ˆ ,v  we obtain the EBLUP of the small area 

parameter i  based on the Fay-Herriot model as  

  FH DIR
WLS

ˆ ˆ ˆˆ ˆ1 ,i i i i i       z β  (3.5) 

where  2 2 2ˆ ˆ ˆ .i v v i      The MSE estimator of FH
î  is given by (see Rao 2003) 

  FH
1 2 3

ˆmse 2 ,i i i ig g g     (3.6) 

where 1ig  is the leading term, 2ig  accounts for the variability due to estimation of the regression parameter 

,  and 3ig  is due to the estimation of the model variance. These g  terms are defined as follow: 

      
1

2 22 2
1 2 WLS

1

ˆˆ ˆ ˆ ˆˆ, 1 var 1
m

i i i i i i i v i i i i i i
i

g g     




       
 
z β z z z z z   

and      2 32 2 2 2
3 ˆ ˆvar .i i v i vg    
   

The estimated variance of 2ˆv  is given by      122 2 2

1
ˆ ˆvar 2 ;

m

v v ii
  




   see Datta and Lahiri 

(2000).  

Up to now we have assumed that the sampling variance 2
i  is assumed known in the Fay-Herriot model 

(3.3). This is a very strong assumption. Usually a direct survey estimator, say 2 ,is  of the sampling variance 
2
i  is available. As these estimated variances can be quite variable, they are smoothed using external models 

and generalized variance functions: these smoothed variances are denoted as 2 .is  The smoothed sampling 

variance estimates 2
is  are used in the Fay-Herriot model and treated as known. The associated  FHˆmse i  

is obtained by replacing 2
i  by 2

is  in equation (3.6). Rivest and Vandal (2003) and Wang and Fuller (2003) 

considered the small area estimation using the Fay-Herriot model with the direct sampling variance 

estimates 2
is  under the assumption that the estimators 2

is  are independent of the direct survey estimators iy  

and 2 2 2 ,
ii i i dd s    where 1i id n   and in  is the sample size for the thi  area. When the direct sampling 

variance estimate 2
is  is used in the place of the true sampling variance 2 ,i  an extra term accounts for the 

uncertainty of using 2
is  is needed in the MSE estimator (3.6), and this term, denoted as 4 ,ig  is given by 
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 

4 4

4 32 2

ˆ4
;

1 ˆ

v i
i

i v i

s
g

n s






 
  

see Rivest and Vandal (2003) and Wang and Fuller (2003) for details.  

To apply the Fay-Herriot model, we need to obtain area level direct estimates and the corresponding 

sampling variance estimates as input values for the Fay-Herriot model. We consider three area level direct 

estimators; namely, the direct sample mean estimator assuming simple random sampling (SRS), the Horvitz-

Thompson estimator (HT), and the weighted Hájek estimator (HA). The weighted Hájek estimator is also 

used in the pseudo-EBLUP estimator for the unit level model denoted as iwy  in equation (2.7). Table 3.1 

presents these three area level direct estimators and the corresponding sampling variance estimators.  
 

Table 3.1 
Area level direct estimators and sampling variances 
 

 Point estimator Sampling variance estimator 

Direct mean (SRS) 
SRS

1

1ˆ
in

i ij
ji

y
n




        2SRS SRS

1

1ˆ ˆvar
1

in

i ij i
ji i

y
n n

 


 
   

Horvitz-Thompson (HT) estimator 
HT

1 1

1 1ˆ
i in n

ij
i ij ij

j ji i i ij

y
w y

N N n p


 

       

2

HT HT
2

1

1ˆ ˆvar
1

in
ij

i i i
ji i i ij

y
N

N n n p
 




  

  
  

Weighted Hájek (HA) estimator 
1HA

1
1

1ˆ
ˆ

i
i

i

n
n

ij ijj ij
i n

j i ijiijj

w y y

n pNw
 




 





 

 
 

2HA
HA

2
1

ˆ1ˆvar
ˆ 1

in
ij i

i
j iji i i

y

pN n n






 
    

  

 

These area level estimators are used as input values into the Fay-Herriot model. Correspondingly, the 

three area level model-based estimators are denoted as: FH-SRS, FH-HT, and FH-HA. That is, we replace 
DIR

î  by SRSˆ ,i  HT
î  or HA

î  in (3.5) and obtain the corresponding model-based estimator FH-SRSˆ ,i  FH-HT
î  

and FH-HAˆ .i  The SRS direct estimator SRS
î  ignores the sample design and is not design consistent, unless 

the sample design is based on simple random sampling. Note that HT
î  and HA

î  are design consistent 

estimators. It follows that the corresponding model-based estimators FH-HT
î  and FH-HA

î  are design 

consistent as the sample size increases. Furthermore, this means that these estimators are robust to model 

misspecification.  

In the next section, we compare the unit level model with the Fay-Herriot model through a simulation 
study. The statistics used for these comparisons are bias, relative root MSE and confidence intervals of the 
model-based estimators.  

 
4  Simulation study 
 

4.1  Data generation 
 

To compare the unit level and area level small area estimators, we conducted a design-based simulation 

study. Following the simulation setup of You, Rao and Kovacevic (2003), we created two finite populations. 

Each finite population had 30m   areas, and each area consisted of 200iN   population units. Each finite 
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population was generated using the unit level model 0 1 1 .ij ij i ijy x v e      The auxiliary variable 1ijx  

was generated from an exponential distribution with mean 4 and variance 8, and the random components 

were generated from the normal distribution with  2~ 0, ,i vv N    2~ 0, ,ij ee N   where 2 100v   and 
2 225.e   For the first population, the regression fixed effects were set as 0 50,   1 10   for all 30 

areas. For the second population, different fixed effects values were used: 0 50,   1 10   for areas 

1, ,10;m    0 75,   1 15   for areas 11, , 20;m    0 100,   1 20   for areas 21, ,30.m    We 

had three different means for the fixed effects 0 1 1ijx   in the second population, whereas we only had 

one in the first population. PPSWR samples within each area were drawn independently from each 

constructed population. PPSWR sampling was implemented as follows: We first defined a size measure ijz  

for a given unit  , .i j  Using these ijz  values, we computed selection probabilities ij ij ijj
p z z   for 

each unit  ,i j  and used them to select PPSWR samples of equal size .in n  Within each generated 

population, we selected samples of size 10n   and 30.  The basic design weight is given by 1 1 ,ij i ijw n p   

so that the standardized weight is 1 1 .ij ij ijj
w p p    We chose the size measure ijz  as a linear combination 

of the auxiliary variable 1ijx  and data generated from an exponential distribution with mean 4 and variance 

16. The correlation coefficient   between ijy  and the selection probability ijp  within each area varied 

between 0.02 and 0.95. The range of the ’sijp  corresponds to non-informative selection  0.02   to 

strongly informative selection  0.95   of the PPSWR samples. The sampling is non-informative when 

the correlation coefficient between ijy  and the selection probability ijp  is very weak, implying that the 

sample and the population model coincide. If the selection probability ijp  is strongly correlated with the 

observation ,ijy  we have informative sampling, and the population model may no longer holds for the 

sample. For each population, the PPSWR sampling process was repeated 3,000R   times. As in Prasad 

and Rao (1990), the simulation study is design-based as both the populations were generated only once, and 

repeated samples were generated from the same population. 

For unit level modeling, we fitted the nested error regression model to the PPSWR sampling data 

generated from each population. We obtained the corresponding EBLUP and pseudo-EBLUP estimates and 

related MSE estimates using the formulas given in Section 2. We then constructed the confidence interval 

estimates using the squared root of the MSE estimates; details are given in Section 4.2.3. For area level 

modeling, we first obtained the direct area level estimates SRSˆ ,i  HT
î  and HA

î  as well as the corresponding 

sampling variances. We applied the Fay-Herriot model and obtained the model-based estimators FH-SRSˆ ,i  
FH-HT
î  and FH-HAˆ .i  The population mean of the auxiliary variable 1ijx  within each area was used in the Fay-

Herriot model as the auxiliary variable. The 4 ig  was added to the MSE estimator to account for the use of 

unsmoothed sampling variances in the Fay-Herriot model. The corresponding confidence intervals were 

obtained similarly for the unit level EBLUP and pseudo-EBLUP estimators.  

For both unit level and area level model fitting, we used the following two scenarios: Scenario I: correct 

modeling, where the data were generated from the first population and the fitting models were unit level 

model (2.2) and area level model (3.3) with common  0 1, .  β  Scenario II: incorrect modeling, where 

the data were generated from the second population with different means for the fixed effects, and the fitting 

models were the same as in Scenario (I) with common  0 1, .  β  Note that under scenario I the 
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sampling is noninformative when the correct unit level (2.2) is fitted to the sample data to obtain the EBLUP 

estimator: this is true for any correlation coefficient   between ijy  and .ijp  

 

4.2  Results 
 

In this section, we compare a number of statistics for the unit level and area level estimates under both 
scenario I (correct modeling) and scenario II (incorrect modeling).  
 

4.2.1  Comparison within each small area 
 

Figure 4.1 compares the population means with the unit level and area level estimates when 10n   for 

scenario I. The results are based on a strongly informative sampling design where the correlation coefficient 

between ijy  and the selection probability ijp  is 0.88.   The model-based estimates are based on the 

average of 3,000R   simulation runs. It is clear from Figure 4.1 that the unit level estimators EBLUP 

(equation 2.5) and pseudo-EBLUP (equation 2.10) are almost unbiased. The results show that under correct 

modeling, the sampling is noninformative with respect to unit level model (2.2), and the EBLUP is unbiased. 

The area level estimator FH-SRS consistently overestimates the population mean, leading to a large bias. 

The area level estimator FH-HT generally underestimates the population mean and has slightly larger bias 

than the FH-HA estimator. For 30,n   we obtained similar results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1  Comparison of means under scenario I: 10.n   

 

                                Population means and unit level estimates 
                                                 POP-Mean               EBLUP            Pseudo-EBLUP 

                                Population means and area level estimates 
                                        POP-mean         FH-HT         FH-HA          FH-SRS
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Figure 4.2 compares the average root mse  for both unit level and area level estimators for scenario I 

when 10n   and 30.n   The root mse’s  are the squared root of the estimated MSE’s given in Sections 2 

and 3 for the unit level and area level estimators. It is clear that EBLUP and pseudo-EBLUP have much 

smaller root mse’s  than the FH area level estimators for both 10n   and 30.n   As expected (You and 

Rao 2002), EBLUP has the smallest root mse  and pseudo-EBLUP has slightly larger root mse.  For area 

level estimators, FH-SRS has large root mse  and large variations. FH-HT and FH-HA have on average 

about the same root mse,  but FH-HT is more variable than FH-HA as shown in both figures, particularly 

when sample size 10.n   When the sample size 30,n   the variability of the root mse’s  for FH-HT and 

FH-HA are substantially reduced, but it is clear that FH-HA is more stable than FH-HT.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2  Comparison of root mse  under scenario I: 10n   and 30.n   

 
Figure 4.3 compares the unit level and area level estimates with the population means when 10n   

under scenario II. For unit level models, it is clear that EBLUP both underestimates and overestimates the 

population mean when the model is misspecified, whereas pseudo-EBLUP is unbiased (the pseudo-EBLUP 

                                                          Root mse, n = 10  
                             EBLUP              Pseudo-EBLUP                FH-HT              FH-HA               FH-SRS 

                                                          Root mse, n = 30  
                           EBLUP             Pseudo-EBLUP              FH-HT             FH-HA             FH-SRS 
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estimates and population means overlap in Figure 4.3). For area level estimators, FH-SRS consistently 

overestimates the true means, while FH-HT has more underestimation than FH-HA as shown when the 

model is misspecified.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3  Comparison of means under scenario II: incorrect modeling, 10.n   

 
Figure 4.4 compares the root mse’s  of the unit level and area level estimators for both sample size 

10n   and 30n   under incorrect modeling. From Figure 4.4, it can be seen that the pseudo-EBLUP 

estimator has the smallest root mse  under incorrect modeling. EBLUP has very large root mse  when the 

model is misspecified: that is, for areas 1 to 10 and areas 21 to 30, the average root mse  is 10.01, whereas 

for pseudo-EBLUP, the corresponding root mse  is 7.38 when the sample size 10.n   When the sample 

size 30,n   the average root mse  is 8.85 for EBLUP, and only 4.38 for pseudo-EBLUP when the model 

is misspecified. In summary, the results show that the EBLUP estimator leads to biased estimates with large 

root mse  under incorrect modeling.  

                                       Population means and unit level estimates  
                                                  POP-Mean                EBLUP              Pseudo-EBLUP 

                                      Population means and area level estimates  
                                          POP-Mean               FH-HT              FH-HA             FH-SRS 
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Figure 4.4  Comparison of root mse  under scenario II: 10n   and 30.n   

 

4.2.2  Comparison across small areas 
 

To compare the estimators across areas, we considered the average absolute relative bias  ARB  for a 

specified estimator î  of the simulated population mean iY  as  1
ARB ARB ,

m

ii
m


   where  

  
1

ˆ1
ARB ,

rR
i i

i
r i

Y

R Y






   

and  ˆ r
i  is the estimate based on the thr  simulated sample, 3,000, 30.R m   Table 4.1 displays the 

percentage of the average absolute relative bias ARB  of unit level and area level estimators over the 30 

area for scenario I. The results are based on samples selected with sample sizes equal to 10 and 30 

respectively within each area.  

                                                             Root mse, n = 10  
                             EBLUP             Pseudo-EBLUP                FH-HT             FH-HA              FH-SRS 

                                                             Root mse, n = 30  
                            EBLUP              Pseudo-EBLUP                FH-HT              FH-HA              FH-SRS 
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Table 4.1 
Average absolute relative bias ARB%  for scenario I 
 

Type Estimator 10n   30n   
Unit level EBLUP 

Pseudo-EBLUP 
1.71 
2.14 

0.75 
0.86 

Area level FH-SRS 
FH-HT 
FH-HA 

17.51 
6.02 
4.33 

18.64 
3.12 
2.59 

 

For unit level models, it is clear that if we use the correct model, the sample becomes noninformative 
with respect to unit level model (2.2), and both EBLUP and pseudo-EBLUP estimators are unbiased. The 
average absolute relative bias ARB  for EBLUP is 1.71% when the sample size 10n   and 0.75% when 
the sample size 30.n   For pseudo-EBLUP, the ARB  is 2.14% when 10n   and 0.86% when 30,n   
respectively. Pseudo-EBLUP has slightly larger bias than EBLUP. For area level models, FH-SRS severely 
overestimates the means with the average ARB  as large as 17.51% when 10n   and 18.6% when 30.n   
Both area level estimators FH-HT and FH-HA lead to reasonable estimates: (i) The ARB  for FH-HT is 
6.02% when 10n   and 3.12% when 30;n   (ii) The ARB  for FH-HA is 4.33% when 10n   and 2.59% 
when 30.n   The FH-HA estimator performs better than the FH-HT estimator. The absolute relative bias 
for the area level estimators is larger than the one associated with the unit level estimators.  

Table 4.2 displays the ARB  of the various estimators under scenario II. It is clear that pseudo-EBLUP 
has a much smaller ARB  than EBLUP under incorrect modeling. The ARB’s  for EBLUP under incorrect 
modeling are 4.31%  10n   and 4.52%  30n   respectively. For pseudo-EBLUP, the average ARB  is 
only 0.25%  10n   and 0.12%  30 .n   Both FH-HT and FH-HA perform very well. Their average 
ARB’s  are 3.91% and 3.48% respectively when 10.n   These ARB’s  decrease to 1.51% and 1.47% when 

30.n   FH-SRS performs poorly. Both area level estimators FH-HT and FH-HA perform well and these 
estimators are also design consistent. Again, FH-HA is slightly better than FH-HT in terms of ARB.  The 
results show that the use of survey weights in the unit level modeling is very important when the unit level 
model is incorrectly specified. The pseudo-EBLUP estimator leads to unbiased estimator even when the 
model is incorrectly specified. It is the best estimator when the model is incorrect. 

 
Table 4.2 
Average absolute relative bias ARB%  for scenario II 
 

Type Estimator 10n   30n   

Unit level EBLUP 
Pseudo-EBLUP 

4.31 
0.25 

4.52 
0.12 

Area level FH-SRS 
FH-HT 
FH-HA 

17.11 
3.91 
3.48 

17.87 
1.51 
1.47 

 
We now compare the relative root MSE for all the estimators. In particular, we computed both the true 

simulation relative root MSE (RRMSE) and the estimated relative root MSE based on the MSE estimators. 

The average true simulation relative root MSE is computed as  1
RRMSE RRMSE ,

m

ii
m


   where 
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The average estimated relative root MSE is computed as  1
RRmse RRmse ,

m

ii
m


   where 

    

1 1
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The  mse r
i  is the estimated MSE of  r

i


 for the thi  area. They are computed using the formulas given in 

Sections 2 and 3.  

Table 4.3 reports the average RRMSE  and RRmse  over the 30 small areas. When the sample size 

10,n   RRMSE  is 4.98% for EBLUP and 5.49% for the pseudo-EBLUP respectively. As expected (You 

and Rao 2002), the pseudo-EBLUP has a slightly larger RRMSE than the one associated with EBLUP. Both 

the unit level EBLUP and pseudo-EBLUP estimators have much smaller RRMSE’s than the area level 

estimators. For area level models, FH-HT and FH-HA perform similarly, with corresponding average true 

RRMSE equal to 9.72% and 9.68% respectively, when 10.n   The FH-SRS performs poorly under 

informative sampling with the average true RRMSE equal to 18.89% when 10.n   Even when 30,n   the 

average RRMSE for FH-SRS is as large as 18.62%. Note that RRmse  is very close to its true value.  

In summary, the results in Table 4.3 show that the unit level estimators EBLUP and pseudo-EBLUP 

perform better than the area level estimators FH-HT and FH-HA under correct modeling. Both the area level 

estimators FH-HT and FH-HA perform reasonably well under informative sampling. As expected, FH-SRS 

performs poorly.  

 
Table 4.3 
Average RRMSE% for scenario I 
 

  10n   30n   

Type Estimator RRMSE  RRmse  RRMSE  RRmse  

Unit level EBLUP 
Pseudo-EBLUP 

4.98 
5.49 

5.09 
5.66 

3.01 
3.58 

3.13 
3.67 

Area level FH-SRS 
FH-HT 
FH-HA 

18.89 
9.72 
9.68 

17.53 
10.25 
9.71 

18.62 
6.67 
6.51 

16.34 
6.69 
6.63 

 
Table 4.4 displays the results of the average RRMSE under scenario II. The pseudo-EBLUP is the most 

robust estimator and has the smallest RRMSE :  the RRMSE’s  are 5.42% and 3.21% for 10n   and 

30n   respectively. For the area level estimators, FH-HT and FH-HA perform similarly, whereas FH-SRS 

performs poorly. When 10,n   RRMSE  for FH-HT is 11.68% and 11.21% for FH-HA. When 30,n   

RRMSE  is 7.24% for FH-HT and 6.79% for FH-HA. As expected, FH-SRS has large RRMSE  under 

informative sampling. The pseudo-EBLUP performs the best in terms of bias, standard errors and RRMSE 

under model misspecification. FH-HA is slightly better than FH-HT. The estimated RRmse  is very close 

to the true RRMSE  for all estimators.  
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Table 4.4 
Average RRMSE% for scenario II 
 

  10n   30n   

Type Estimator RRMSE  RRmse  RRMSE  RRmse  

Unit level EBLUP 
Pseudo-EBLUP 

6.78 
5.42 

6.94 
5.45 

5.62 
3.21 

5.81 
3.26 

Area level FH-SRS 
FH-HT 
FH-HA 

19.76 
11.68 
11.21 

17.43 
11.78 
11.27 

19.06 
7.24 
6.79 

16.24 
7.26 
6.91 

 
4.2.3  Comparison of confidence intervals 
 

We now compare the confidence intervals associated with the unit level and area level estimators. The 

confidence interval is in the form 2estimator mse,z  with 2z  denoting the  100 1 2 %  

percentile of the standard normal distribution. For example, the 95% confidence interval of the EBLUP 

estimator EBLUP
î  is obtained as  EBLUP EBLUPˆ ˆ1.96 mse ,i i   where  EBLUPˆmse i  is given by (2.6). The 

confidence intervals are computed as follows. For a given estimator  ˆ ,r
i  1, , ,r R   1, , ,i m   define 

the indicator variable  r
iI  as: 

 
          ˆ ˆ ˆ ˆ1  if  1.96 mse , 1.96 mse  

.
0  otherwise

r r r r
i i i i ir

iI
        


 

The confidence interval coverage rate is obtained as the average of  r
iI  over the 3,000R   simulations. 

Tables 4.5 and 4.6 present the 95% confidence interval coverage rates for the unit level and area level 

estimators under scenario I. The correlation coefficient   between the selection probabilities ijp  and ijy  

is presented in the first column to reflect the strength of informativeness of the PPS sampling.  

 
Table 4.5 
Confidence interval coverage rates under scenario I: 10n   
 

Correlation coefficient    EBLUP Pseudo-EBLUP FH-SRS FH-HT FH-HA 

0.95 0.932 0.946 0.618 0.898 0.911 
0.88 0.945 0.948 0.649 0.882 0.908 
0.75 0.948 0.948 0.705 0.863 0.911 
0.51 0.944 0.949 0.825 0.845 0.916 
0.28 0.947 0.951 0.901 0.822 0.917 
0.12 0.948 0.949 0.924 0.778 0.893 
0.02 0.948 0.951 0.925 0.595 0.886 

Average rate 0.945 0.949 0.792 0.812 0.906 

 
We first discuss the coverage properties associated with the unit level estimators EBLUP and pseudo-

EBLUP. These tables show that, when the model is correct, the coverage rates for EBLUP and pseudo-

EBLUP are quite stable: the pseudo-EBLUP has slightly better coverage rate than EBLUP. When the sample 
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size 10,n   the average coverage rate for EBLUP is 94.5%, and 94.9% for pseudo-EBLUP. When the 

sample size 30,n   it is 93.4% for EBLUP and 94.8% for pseudo-EBLUP. As the sample size increases 

from 10n   to 30, the coverage rates for EBLUP deteriorate slightly more than those associated with the 

pseudo-EBLUP. The pseudo-EBLUP estimator is not as much affected by the degree of informativeness 

caused by the PPS sampling. The relatively stable coverage rates for EBLUP show that the sample is 

noninformative with respect to the correct unit level model. However, when 30,n   EBLUP has slightly 

lower coverage rate. 

 
Table 4.6 
Confidence interval coverage rates under scenario I: 30n   
 

Correlation coefficient    EBLUP Pseudo-EBLUP FH-SRS FH-HT FH-HA 

0.95 0.905 0.946 0.265 0.932 0.926 
0.88 0.938 0.948 0.286 0.915 0.921 
0.75 0.941 0.949 0.377 0.911 0.924 
0.51 0.940 0.951 0.625 0.895 0.931 
0.28 0.941 0.950 0.806 0.874 0.929 
0.12 0.939 0.945 0.923 0.866 0.922 
0.02 0.937 0.948 0.937 0.772 0.917 

Average rate 0.934 0.948 0.603 0.881 0.924 

 
We now turn to the coverage rates associated with the area level estimators. As expected, FH-SRS has 

low coverage rates when the sampling is informative, and the coverage rate increases as the sampling design 

becomes non-informative. FH-HA has better coverage rate than FH-HT. The coverage rate for FH-HT 

decreases as the sampling design becomes non-informative. For example, when sample size 10,n   the 

coverage rate for FH-HT is only 59.5% when the sampling is non-informative, compared to 88.6% of the 

coverage rate for FH-HA. As the sample size increases, the coverage rate for FH-HT and FH-HA improves. 

The average coverage rate for FH-HA is 90.6% when 10n   and 92.4% when 30.n   FH-HT has a lower 

coverage rate than the one associated with FH-HA. The average coverage rate is only 81.2% for FH-HT 

when 10.n   The coverage rate for FH-SRS is very poor, 61.8%, under informative sampling when 10n   

and 26.5% when 30.n   As the sample size increases, the coverage rate decreases for FH-SRS under 

informative sampling. As expected, the coverage rate gradually increases for FH-SRS as the sampling 

becomes non-informative. Among all the estimators, for both sample size 10n   and 30,n   the pseudo-

EBLUP has the best coverage rate: FH-HA has the second best coverage rate.  

Tables 4.7 and 4.8 present the coverage rates under scenario II. The results show that the EBLUP has 

low coverage rate under informative sampling, whereas the pseudo-EBLUP has very stable and high 

coverage rates (all around and over 95%) under both the informative and non-informative sampling. For 

example, when 10,n   EBLUP has 84.6% coverage rate under informative sampling (correlation 

coefficient is 0.95), and when sample size increases to 30,n   EBLUP has an even lower coverage rate of 

62.9%. The average coverage rate is 90.4% for 10n   and 79.6% for 30n   for EBLUP under incorrect 

modeling. The results show that EBLUP is sensitive to the modeling when the sampling is informative. This 

is because EBLUP is completely model-based and ignores the sample design.  
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Table 4.7 
Confidence interval coverage rates under scenario II: 10n   
 

Correlation coefficient    EBLUP Pseudo-EBLUP FH-SRS FH-HT FH-HA 

0.95 0.846 0.965 0.701 0.865 0.896 

0.88 0.855 0.964 0.729 0.887 0.893 

0.75 0.881 0.962 0.787 0.873 0.898 

0.51 0.921 0.961 0.872 0.848 0.898 

0.28 0.936 0.961 0.912 0.843 0.887 

0.12 0.945 0.955 0.917 0.765 0.867 

0.02 0.943 0.951 0.913 0.592 0.838 

Average rate 0.904 0.959 0.833 0.811 0.883 

 
Table 4.8 
Confidence interval coverage rates under scenario II: 30n   
 

Correlation coefficient    EBLUP Pseudo-EBLUP FH-SRS FH-HT FH-HA 

0.95 0.629 0.969 0.239 0.913 0.923 

0.88 0.638 0.965 0.275 0.895 0.919 

0.75 0.708 0.964 0.406 0.908 0.923 

0.51 0.829 0.963 0.701 0.923 0.926 

0.28 0.902 0.964 0.854 0.911 0.921 

0.12 0.931 0.958 0.921 0.884 0.912 

0.02 0.937 0.953 0.918 0.778 0.894 

Average rate 0.796 0.962 0.616 0.887 0.918 

 
Among the three area level estimators, FH-HA performs the best. The coverage rate for FH-HA is very 

stable, and the average coverage rate for FH-HA is 88.3% when 10n   and 91.8% when 30.n   FH-HT 

has lower coverage rate when the sampling is very non-informative, particularly when sample size 10.n   

The average coverage rate for FH-HT is only 81.1% when 10n   and 88.7% when 30.n   The results 

show that FH-HA is superior to FH-HT. FH-SRS performs poorly when the sampling is informative, 

particularly when the sample size 30.n   However, FH-SRS performs relatively well when the sampling 

becomes non-informative. The average coverage rate for FH-SRS is 83.3% when 10,n   but only 61.6% 

when the sample size 30.n   

It is clear that pseudo-EBLUP has very high and stable coverage rate under incorrect modeling. FH-HA 
also has very stable but slightly lower coverage rate. Both EBLUP and FH-SRS have lower coverage rate 
as the sample size increases, especially when the sampling is informative.  

 
5  Application to real data 
 

In this section, we compare the unit level and area level estimates through a real data analysis. The data 

set we studied is the corn and soybean data provided by Battese et al. (1988). They considered the estimation 

of mean hectares of corn and soybeans per segment for twelve counties in north-central Iowa. Among the 
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twelve counties, there were three counties with a single sample segment. We combined these three counties 

into a single one, resulting in 10 counties in our data set with sample size in  ranging from 2 to 5 in each 

county. The total number of segments iN  (population size) within each county ranged from 402 to 1,505. 

Following You and Rao (2002), we assumed simple random sampling within each county, and the basic 

survey weight was computed as .ij i iw N n  For unit level modeling, ijy  is the number of hectares of corn 

(or soybean) in the thj  segment of the thi  county, the auxiliary variables are the number of pixels classified 

as corn and soybeans as in Battese et al. (1988). We applied the unit level model to the modified data set 

and obtained the EBLUP and pseudo-EBLUP estimates. For area level modeling, we first obtained the area 

level direct sample estimates SRS
î  based on the SRS sampling. Next, we applied the Fay-Herriot model to 

the area level direct estimates and obtained the FH-SRS area level estimates. Figure 5.1 compares the area 

level direct estimates with the model-based unit level and area level estimates. In terms of point estimation, 

the EBLUP and pseudo-EBLUP estimates are almost identical as in You and Rao (2002). This is because 

the unit level model is a correct model for these data (Battese et al. 1988). The model-based area level 

estimates FH-SRS and the area level direct estimates are quite similar in this example.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1  Comparison of direct and model-based estimates. 

 
 

Figure 5.2 compares the standard errors of the direct and model-based estimators. The standard errors of 

the model-based estimators are the squared root of the estimated MSE. Both the unit level estimators EBLUP 

and pseudo-EBLUP have small and stable standard errors. As expected, pseudo-EBLUP has slightly larger 

standard errors than EBLUP. It is clear that the direct and FH-SRS standard errors are very variable and are 

very unstable. This example shows the effectiveness of the unit level EBLUP and pseudo-EBLUP 

estimators.  

                                             Direct and model-based estimates  
                                      Direct                   EBLUP                 Pseudo-EBLUP                 FH-SRS 
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Figure 5.2  Comparison of direct and model-based standard errors. 

 
6  Conclusions  
 

In this paper, we compared performance of the estimators based on the unit level nested error regression 

model and the area level Fay-Herriot model through a design-based simulation study. We compared the 

point estimates and coverage rate of confidence intervals of unit level and area level estimators. Overall, the 

unit level pseudo-EBLUP estimator performs the best in terms of bias and coverage rate under both 

informative and non-informative sampling. The EBLUP estimator performs well under correct modeling 

since the sampling is noninformative under correct unit level model (2.2). The pseudo-EBLUP estimator is 

also quite robust to the model misspecification as well. In practice, we suggest to construct the pseudo-

EBLUP estimators using the survey weights and the unit level observations as discussed in Section 2.2. For 

area level models, FH-HA performs better than FH-HT, and FH-SRS performs poorly. We therefore 

recommend to construct the weighted HA estimators and then apply the Fay-Herriot model to obtain the 

corresponding model-based estimators if area level small area estimators are used.  
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Comparison of some positive variance estimators for the 
Fay-Herriot small area model 

Susana Rubin-Bleuer and Yong You1 

Abstract 

The restricted maximum likelihood (REML) method is generally used to estimate the variance of the random 
area effect under the Fay-Herriot model (Fay and Herriot 1979) to obtain the empirical best linear unbiased 
(EBLUP) estimator of a small area mean. When the REML estimate is zero, the weight of the direct sample 
estimator is zero and the EBLUP becomes a synthetic estimator. This is not often desirable. As a solution to this 
problem, Li and Lahiri (2011) and Yoshimori and Lahiri (2014) developed adjusted maximum likelihood (ADM) 
consistent variance estimators which always yield positive variance estimates. Some of the ADM estimators 
always yield positive estimates but they have a large bias and this affects the estimation of the mean squared 
error (MSE) of the EBLUP. We propose to use a MIX variance estimator, defined as a combination of the REML 
and ADM methods. We show that it is unbiased up to the second order and it always yields a positive variance 
estimate. Furthermore, we propose an MSE estimator under the MIX method and show via a model-based 
simulation that in many situations, it performs better than other ‘Taylor linearization’ MSE estimators proposed 
recently. 
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1  Introduction 
 

The Fay-Herriot model (Fay and Herriot 1979) is a basic area level model used to estimate small area 

means, when available direct survey estimates are imprecise due to small sample sizes. In this model, the 

small area mean is represented by a non-random linear term in the covariates, plus a random area effect. 

The best linear unbiased prediction (BLUP) estimator of a small area mean, under the Fay-Herriot model, 

can be obtained by minimizing the mean squared error (MSE) among the class of linear unbiased estimators. 

The BLUP is a weighted average of the direct survey estimator and the regression-synthetic estimator, with 

weights depending on the variance of the random area effects, 2 .v  Usually, this variance has to be estimated 

from the data under the Fay-Herriot model. The empirical best linear unbiased (EBLUP) estimator of the 

small area mean is obtained by replacing the variance in the formula of the BLUP with an estimate. There 

are many well-known methods of variance estimation used in this context but the variance estimator used 

most often is the restricted maximum likelihood (REML) estimator because it accounts for the loss of 

degrees of freedom due to estimating the regression coefficient. Furthermore, it is unbiased up to the second 

order, and it also converges faster in terms of the number of iterations. Despite these important 

characteristics, occasionally, and particularly when the number of areas, ,m  is small or moderate, the REML 

method yields a zero variance estimate. This implies zero weight to the direct survey estimator in the EBLUP 

formula and hence the EBLUP estimator becomes a regression-synthetic estimator. However, most 

practitioners are reluctant to use synthetic estimators for small area means, since these ignore the survey 

based information and are often quite biased. When dealing with real data sets, for which models are never 



64 Rubin-Bleuer and You: Comparison of some positive variance estimators for the Fay-Herriot small area model 
 

 
Statistics Canada, Catalogue No. 12-001-X 

perfect, a positive estimate for 2
v  reduces the bias of the EBLUP over the synthetic model. Certainly, a 

positive random effects variance estimate, results in a ‘conservative’ EBLUP estimator in the sense that it 

gives a positive weight to the direct survey estimator. Furthermore, it can be viewed as the sum of the 

regression estimator plus a non-zero term that accounts for part of the ‘model bias’. This feature gives rise 

to a series of variance estimation methods that yield positive estimates.  

In this article, we focus on the adjusted likelihood variance estimators developed by Lahiri and Li (2009) 

and we propose a MIX variance estimator. Our MIX variance estimator is the combination of a REML 

estimator and any of the adjusted likelihood methods. We also put forward an estimator of the MSE of the 

EBLUP under the MIX and investigate the theoretical and finite sample properties of both the MIX variance 

estimator and MSE estimator. 

Morris (2006) and Lahiri and Li (2009) proposed adjusted likelihood variance estimators resulting from 

optimizing the profile and residual likelihood adjusted with a factor  2 2 . , 0v vh    Li and Lahiri (2011) 

proposed two methods of variance estimation (the AM.LL and AR.LL methods, associated with the profile 

and residual likelihoods respectively) that ensure positive estimates with adjustment factor  2 2
LL .v vh     

Yoshimori and Lahiri (2014) proposed two other variance estimators (the AM.YL and AR.YL methods) 

derived from adjusting the the profile and residual likelihoods with factor 

    
1

2 2 2
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1

arc tan
mm
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i
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

  
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  
   

where i  is the sampling variance for the thi  area. It is well known that the LL estimators are biased, 

especially for small or moderate number of areas (see Lahiri and Pramanik 2011). The YL method that 

adjusts the profile likelihood also leads to a biased estimator of 2 .v  However the bias of the variance 

estimator does not affect the MSE of the EBLUP: the second order asymptotic approximation to the MSE 

shows that the MSE depends on the asymptotic variance and not on the bias of the variance estimator. 

However, the bias of the variance estimators affects, the Taylor linearization MSE estimators and it can lead 

to negatively biased MSE estimators. It is desirable then to investigate alternative positive variance 

estimators.  

The method of combining the AM.LL and the REML variance estimators was first mentioned by Yuan 

(2009) for the Fay-Herriot model. However, Yuan (2009) did not study its properties, empirically or 

otherwise. Rubin-Bleuer, Yung and Landry (2010, 2011 and 2012) carried out empirical comparisons of a 

MIX variance estimator under a time series and cross-sectional area level model and Rubin-Bleuer and You 

(2012) studied the asymptotic and finite sample properties of the MIX variance estimator for the Fay-Herriot 

model.  

Here we formalize the MIX method for the Fay-Herriot model and prove that the MIX variance estimator 

is unbiased up to the second order. Furthermore, we propose an MSE estimator of the Taylor linearization 

type. We also examine the empirical performance of the MIX for a small and moderate number of areas. 

With respect to MSE estimation, Rubin-Bleuer and You (2012) and Molina, Rao and Datta (2015) each 

proposed a different ‘split’ MSE estimator under MIX variance estimation. We show that both the Rubin-

Bleuer and You (2012) and the Molina et al. (2015) MSE estimators are unbiased up to the second order. 
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These ‘split’ MSE estimators were assigned a rule for populations that yielded zero estimates under REML 

variance estimation, and another rule for populations that yielded positive estimates under REML variance 

estimation. Both papers mentioned above showed that for a small number of areas, these ‘split’ estimators 

behaved well empirically in terms of average relative bias. However this outcome could be misleading, 

since the MSE estimators are usually negatively biased for populations where the REML variance estimate 

is zero, and they are positively biased for populations with positive REML estimates: the bias cancels out 

on average. In view of this issue we propose another MSE estimator, and we compare it to other MSE 

estimators when conditioned to populations where the REML estimate is zero.  

In Section 2, we introduce the Fay-Herriot model, the EBLUP estimator of the small area mean and a 

second order approximation of the MSE of the EBLUP under the model. In Section 3, we describe the 

REML estimator and the *.LL and *.YL variance estimators. In Section 4, we present a general MIX 

variance estimator and we prove that its bias is of the same order as the bias of the REML estimator. We 

propose an unbiased (up to the second order) estimator of the MSE under the MIX method. In Section 5, 

we conduct an empirical study to compare the different variance estimators. Note that we defined the MIX 

variance estimator as a combination between the REML and any of the adjusted likelihood variance 

estimators, but the MIX variance estimator we chose for this study is the combination of the REML 

estimator and the AM.LL variance estimator. We selected this combination because Li and Lahiri (2011) 

reported that the adjusted profile likelihood performed better than adjusted residual likelihood (AR.LL) and 

because the adjustment factor in the Yoshimori and Lahiri (2014) variance estimators is too close to zero 

(in log terms), to improve significantly on the REML method. Finally in Section 6, we present the simulation 

results, analysis and conclusion. 

 
2  EBLUP and MSE of the EBLUP under the Fay-Herriot model 
 

Let , 1, , ,iy i m   be the direct survey estimators of the small area means , 1, , .i i m    The Fay-

Herriot model consists of the following sampling and linking models:  

 Sampling model:  
i.d.

, 0, , 1, , ,i i i i i iy e e i m        (2.1) 

 Linking model:  
i.i.d.

2 2, 0, , 1, , , 0,z βi i i i v vv v i m         (2.2) 

where ie  are the sampling errors, independently distributed with mean zero and “known” sampling 

variances ,i   1i p z  are known vectors of covariate values; β  is a 1p   vector of unknown fixed 

regression coefficients; and iv  are independent and identically distributed random effects with mean zero 

and model variance 2 .v  Combining (2.1) and (2.2) we obtain: 

 , 1, , ,z βi i i iy v e i m      (2.3) 

with both model and sampling errors. The , 1, , ,iy i m   can be viewed as outcomes in the combined 

design-model space (see Rubin-Bleuer and Schiopu-Kratina 2005).  
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Under model (2.3), the EBLUP of the small area mean i  is given by:  

          2 2 2 2ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ1 , 1, , ,z β z β z βi v i v i i i v i i i i vy y i m                     (2.4) 

where 2ˆ v  is a consistent estimator of 2 ,v  

        
1

2 2 2 2 2

1 1

ˆˆ ˆ ˆ ˆ ˆ ˆ,   and  .β z z z
m m

i v v i v i i v i i i v i
i i

y


 

                   
   
   (2.5) 

To calculate the Mean Squared Error (MSE) of the EBLUP, we set the following regularity conditions:  
 

1) The iψ  are bounded from above and away from zero, 

2) The ,1i i m z  are bounded, and 

3)  minlim inf 1 0i ii
m  λ z z  where  min A λ minimum eigenvalue of matrix .A  

 

Under normality of the sampling errors ie  associated with model (2.3) and the above regularity 

conditions, a second order approximation to the MSE is given by:  

         2 2 2 2
1 2 3

1ˆ ˆMSE ,i v i v i v i vg g g o
m
          

 
 (2.6) 

with  2
1 ,i v i ig           

122 2
2 1

1
m

i v i i i i v i ii
g




         z z z z  and 

        322 2 2
3 ˆ ,i v i v v ig V        (2.7) 

where  2ˆ vV   is the asymptotic variance of 2ˆ v  (Das, Jiang and Rao 2004). 

 
3  Review of REML and adjusted maximum likelihood methods 
 
3.1  REML method  
 

We consider the combined Fay-Herriot model (2.3) with 2 0.v   The REML variance estimator of 2
v  

is obtained by maximizing the residual likelihood function with respect to 2 :v  

      
1 2

1 2
2 2 2

REML 1
1

1
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v i i v i v ii
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




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                 
 z z y Py   

where     11 1 1 1
1 , , ,  ,my y

       y P V V Z Z V Z Z V   Var ,V y  and  1 , , .m Z z z  

(Cressie 1992, Datta and Lahiri 2000 and Rao 2003, chapter 6). The REML variance estimator is given by:  

  2 2
REML REMLˆ max , 0 ,v v    (3.1) 
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where 2
REMLv  is the converging value of the REML algorithm. The asymptotic bias and variance of the 

REML estimator, up to the second order, are respectively given by:  

      
2 2
REML REML 2

1 2 1
ˆ ˆBias  and .

tr Vv vo V o
m m

         
  

 (3.2) 

A second order unbiased estimator of the MSE of the EBLUP under REML variance estimation is given 

by (Datta and Lahiri 2000 and Chen and Lahiri 2008, 2011): 

   
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i v i v i v v

i v

i v

g g g

g
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 (3.3) 

 

Remark 3.1. When 2ˆ 0,v   the EBLUP reduces to the synthetic estimator. However, note that when 
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and    2 2
3 ˆ ˆ 0 ,i v v ig V      i.e.,   2ˆ ˆmse i v   is not a continuous function of 2ˆ .v  We will see in the 

empirical study that when conditioning on  2ˆ 0 ,v   the MSE estimator in (3.3) has significant negative 

bias, unless the underlying signal to noise ratio 2
v i   is negligible. 

 

3.2  Adjusted maximum likelihood methods 
 

The adjusted maximum likelihood variance estimators are derived from optimizing either the profile 

(AM) or the residual (AR) likelihood adjusted with the factor  2 .vh   As noted in the introduction, the 

AM.LL and AR.LL estimators use the adjustment factor  2 2
LL ,v vh     and the AM.YL and AR.YL 

estimators use the adjustment factor  
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We denote by 2
AM.LLˆ v  and 2

AM.YLˆ v  the variance estimators obtained by maximizing the adjusted profile 

likelihood functions, with respect to 2 :v  

      
1 2

2 2 2
AM.* 1

1
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2
y Py

m

v v v ii
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 

  (3.4) 

where    2 2
LLv vh h    and    2 2

YLv vh h    for AM.LL and AM.YL respectively. The matrix P  is as 

in (3.1). The bias of the AM estimators up to the second order (denoted by   is: 

    
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1 2 1

2 2
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 
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 (3.5) 



68 Rubin-Bleuer and You: Comparison of some positive variance estimators for the Fay-Herriot small area model 
 

 
Statistics Canada, Catalogue No. 12-001-X 

(Li and Lahiri 2011 and Yoshimori and Lahiri 2014). The AR.LL and AR.YL variance estimators, denoted 

by 2
AR.LLˆ v  and 2

AR.YLˆ ,v  are obtained by maximizing the adjusted residual (AR) likelihood functions with 

respect to 2 :v  

        
1 2

1 2
2 2 2 2
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 

   (3.6) 

where    2 2
LLv vh h    and    2 2

YLv vh h    for AR.LL and AR.YL respectively and P  is as in (3.1), 

The asymptotic bias of the AR estimators are given, respectively by: 

      
2

2 2
AR.LL AR.YL2

2 1 1
ˆ ˆ and  .

tr V
v

v vB O B o
m m

          
  

 (3.7) 

Under the regularity conditions given in Section 2 and 2 > 0,v  the two LL and the two YL variance 

estimators exist and are m  consistent (Li and Lahiri 2011 and Yoshimori and Lahiri 2014). Lahiri and 

co-authors proposed the following MSE estimators:  

             22
1 2 3

ˆmse 2i i i i i ig g g B                (3.8) 

where the argument in    above is either 2
AM.LLˆ ,v

2
AR.LLˆ v  or 2

AM.YLˆ v  under AM.LL, AR.LL and AM.YL 

variance estimation respectively, and under 2
AR.YLˆ :v  

         2 2 2 2
AR.YL 1 AR.YL 2 AR.YL 3 AR.YL

ˆ ˆ ˆ ˆ ˆmse 2 .i v i v i v i vg g g         (3.9) 

Estimators (3.8) and (3.9) are unbiased up to the second order. 
 

Remark 3.2. The sampling errors do not need to be normally distributed for the consistency and asymptotic 

normality of the LL and YL estimators (see, for example, Rubin-Bleuer et al. 2011). 

 
3.3  Optimization algorithms 
 

Given the data, the REML likelihood function may attain its maximum value at 2 0,v   even when the 

true underlying value of 2
vσ  is positive. On the other hand, the LL and YL likelihoods always attain their 

maximum value at 2 > 0.v  Yet, the YL residual likelihood is very close to the REML likelihood. Empirical 

studies show that the scoring algorithm under AR.YL yields 2
AR.YLˆ v  in almost as large a percentage as under 

REML for data sets following a Fay-Herriot model with a small but non-zero true underlying variance. This 

happens when the scoring algorithm misses the positive maximum value of the AR.YL likelihood and 

outputs a zero value (see Appendix B for details). To avoid this problem, we use a grid method for 

optimization (Estevao 2014). In our study, we set the upper boundary of the search interval as 21,000 ,v   

since we know 2
v  a priori. For applications with real data we suggest to obtain an initial estimate 2

AM.LLˆ v
by the method of scoring and set 2

AM.LLˆ1,000 v   as the upper boundary. Then keep increasing the boundary 

until the variance estimate lies within the search interval. 
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4  The MIX variance estimator 
 
4.1  Variance estimation  
 

The MIX variance estimator is a procedure that first calculates the REML variance estimate and only 

substitutes it by an adjusted likelihood variance estimate if the REML estimate is negative. The MIX 

variance estimator is always positive and it is unbiased up to a term of order  1 .o m  The MIX variance 

estimator of 2
v  is defined by: 

 

2 2
REML REML2

MIX 2 2
adj REML

ˆ ˆif  0
ˆ

ˆ ˆif  = 0,

v v

v

v v

    
 

 (4.1) 

where 2
adj ˆ v  is one of the adjusted likelihood estimators defined in Section 3.  

 

Remark 4.1. The MIX variance estimator automatically carries some of the common properties shared by 

the REML and the adjusted likelihood variance estimator. For example, it is even and translation invariant. 

Thus, under normality of the sampling errors, the second order approximation (2.6) of the MSE of the 

EBLUP is also valid: Theorem 4.1 below shows that the MSE of the EBLUP under the MIX variance 

estimator inherits the same asymptotic properties as the MSE under the REML variance estimator.  
 

Theorem 4.1. Under regularity conditions 1 through 3 given in Section 2, and the assumption that 2 > 0,v  

the MSE of the EBLUP under the MIX variance estimator is equal to the MSE under the REML variance 

estimator up to the second order. The theorem follows from the fact that the asymptotic variance of 2
MIXˆ v

coincides with the asymptotic variance of 2
vREML̂  (see Appendix A for details). 

 

Theorem 4.2. Under the conditions of Theorem 4.1,    2
MIXˆBias 1 .v o m   The proof is given in 

Appendix A. 

 

4.2  MSE estimation 
 

The fact that the MIX estimator, 2
MIXˆ ,v  is unbiased to the second order, is crucial to show that our 

proposed MSE estimator is also unbiased up to the second order. 
 

Corollary 4.2. The MSE estimator of the EBLUP under 2
MIXˆ v  given by: 

        2 2 2 2
MIX 1 MIX 2 MIX 3 MIX

ˆ ˆ ˆ ˆ ˆmse 2i v i v i v i vg g g           (4.2) 

is second order unbiased. Once given that 2
MIXˆ v  is second order unbiased, the result follows along the lines 

of Datta and Lahiri (2000). 

 

4.3  Alternative MSE estimators 
 

In the following the MIX variance estimator is the combination of REML and AM.LL.  
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Rubin-Bleuer and You (2012) had suggested another MSE estimator, also unbiased up to the second 
order: a ‘split’ MSE estimator of the form: 

  
     
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3 MIX MIX MIX MIX AM.LL

ˆ ˆ ˆ2 ˆ ˆif  ,

ˆ ˆmse * ˆ ˆ

ˆˆ ˆ2 1 Bias ˆ ˆif  .

i v i v i v v v

i v i v i v

i v i v v v

g g g

g g

g

       
        


         

 (4.3) 

Estimator mse*  has a lower average relative bias (ARB) than the MSE estimator given in (4.2). The 

lower ARB occurs because the MSE estimates overestimate when REML is positive and underestimate 

when REML is zero. The mse*  estimator is good on average, but for a particular data set the mse*  

estimator might take on negative values.  

Molina et al. (2015) proposed two different MSE estimators for the EBLUP under the MIX: with PT 

standing for their proposed preliminary test of hypothesis for zero variance these estimators are: 

      
 

2 2
REML REML2

0 MIX
2

2 REML

ˆ ˆ ˆmse if 0
ˆ ˆmse

ˆ0 if = 0

i v v

i v

i vg

       


 (4.4) 

and 

      
 

2 2
REML REML2

PT MIX
2

2 REML

ˆ ˆ ˆmse if 0 and PT rejected
ˆ ˆmse

ˆ0 if = 0 or PT not rejected.

i v v

i v

i vg

       


 (4.5) 

The rationale for 0mse  and PTmse  is based on the MSE of the BLUP with 2 = 0.v  Molina et al. (2015) 

showed in an empirical study that their proposed MSE estimators performed well on average when both 2
v  

and the number of areas m  were small.  
 

Remark 4.2. 0mse  and PTmse  are also unbiased up to the second order (see Appendix for a brief proof of 

this property). Our argument against   2ˆ ˆmse i v   (in 3.3) is also valid against 0mse  and PTmse :  for a 

moderate number of areas, the % of populations with 2
REMLˆ 0v   may be significant even if 2

v i   is not 

negligible. In this case, the MSE of the EBLUP should account also for the variation due to variance 

estimation or risk underestimation.  

 
5  Simulation set up and performance measures 
 

5.1  Simulation set-up 
 

We conducted a model-based Monte Carlo simulation, following Rubin-Bleuer and You (2012), to 

examine the finite sample performance of the various methods. ‘Direct’ estimates  1 , , my y  with 

15, 45m m   and 100,m   are generated from the Fay-Herriot model in (2.3) with  5, 4, 3, 2,1 β

and covariates  21, , , ,i i ipz z z   generated once from normal distributions  1,1 ,ikz k N  

2, , 5,k    1, , ,i m   and held fixed over the repeated populations. The independent normal random 
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area effects iv  are generated with variance 2 1.v   Independent sampling errors ,ie  are generated with 

sampling variances 50 ,i in   where in  is the sample size for area , 1, , .i i m   There are five 

sampling variance groups determined by = 3, 5, 7, 10 or 15,in  with signal to noise ratios 2 0.06,v i    

0.1,  0.14,  0.2 and 0.3,  respectively. Thus when 100m   there are 20 areas per signal to noise ratio. We 

first generated 50,000 sets of direct estimators for each case and computed the EBLUP and the true Monte 

Carlo MSE of the EBLUP using the REML, AM.LL, MIX, AM.YL and AR.YL variance estimators. We 

did not study AR.LL due to its poor performance reported by Li and Lahiri (2011). Next we generated 

10,000 sets of direct estimators independently of the first 50,000. For each generated set, we computed the 

five variance estimators. For the MIX variance estimator we looked at three of the four linearization type 

MSE estimators discussed in Section 4. Since the linearization MSE estimators often do not estimate bias 

accurately, we also considered the parametric bootstrap MSE (PB MSE) estimator adjusted for bias using 

Pfeffermann and Glickman’s (2004) method and the naïve PB MSE estimator with 500 repetitions each (see 

Appendix B for the construction of the bootstrap). The Monte Carlo performance measures are defined 

below.  
 

1. The MSE of the EBLUP,  ˆMSE ,i  per sampling variance group: 

          
 

50,000
2

1 : 50

1 5ˆ ˆ ˆ ˆMSE ,  MSE MSE , 1, ..., 5.
50,000

j

r r
i i i i

r i j nm   

         


    

2.           210,000 10,0002 22 2 2

1 1
ˆ ˆ ˆ ˆ ˆ10,000 ,  10,000 ,r r

v v v v vr r
E V E

 
          where  2ˆ r

v  is 

the value of 2ˆ v  for the thr  simulation run  1, ,10,000 .r    

3. The Average Relative Bias (ARB) of the MSE per sampling variance group: 

     
 : 50

5 ˆARB mse RB mse , 1, 5,
j

i
i j nm   

  


     

where          10,000

1
ˆ ˆ ˆ ˆRB mse mse 10,000 MSE MSE .r

i i i ir
         

4. The Root Relative MSE of MSE estimators per sampling variance group: 

  

     
  

1 210,000
2

1

: 50

ˆ ˆmse MSE 10,000
5

RRMSE mse .
ˆMSE

j

r
i i

r

i j n i
m



  


   


 

 
 






   

We also examine the bias of the conditional MSE estimators given that  2
REMLˆ 0v   because 

these are the populations for which the positive estimators were developed. 

5. The Average Relative Bias of Conditional MSE estimators: 

    22 2
REML REML

5 ˆ ˆˆ ˆARB E mse 0 E 0 1.i v i i v
im 

              

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6  Simulation results and analysis 
 
6.1  Monte Carlo Distribution of the variance estimators 
 

Table 6.1 shows that the REML variance estimator has the lowest bias  2 1v   and the highest 

variance. The lower efficiency of REML may be due to it not being a smooth function of the data caused 

by its split definition (3.1). The MIX estimator inherits some of this low efficiency. The other variance 

estimators have lower variability, higher positive bias but the conditional expectation of AM.YL and AR.YL 

given 2
vREMLˆ 0   is close to zero. The unconditional bias of AM.LL is higher than the unconditional bias 

of the MIX. By definition of the MIX estimator, the conditional bias of the MIX and AM.LL estimators 

coincide. The MIX estimator also converges faster than the other estimators. For example, given the 

probability distribution over the 10,000 variance estimates with 45,m   we calculated the probability of 

estimates lying within an interval containing 2 1.v   The probability that the MIX estimates lie between 

0.6 and 1.4 is 0.47 whereas the probability that AM.YL estimates lie between 0.6 and 1.4 is 0.16. 

Furthermore, the probability that MIX estimates are smaller than 0.2 is 0.05 whereas the probability that 

AM.YL estimates are smaller than 0.2 is 0.53.  

 

Table 6.1 
Expectation, variance and conditional expectation and variance of 2ˆ v  
 

Method m  2ˆ
vE    2ˆ

vV   %REML 0   2ˆ REML 0vE     2ˆ REML 0vV    

REML 15 1.48 3.38 43% N/A N/A  
 45 1.21 1.67 29% N/A  N/A  
 100 1.07 0.81 16% N/A  N/A 

AM.LL 15 2.80 1.37 43% 1.80 0.11 
 45 1.88 1.01 29% 0.94 0.03 
 100 1.49 0.51 16% 0.63 0.01 

MIX 15 2.28 1.87 43% 1.80 0.11 
 45 1.48 1.31 29% 0.94 0.03 
 100 1.17 0.66 16% 0.63 0.01 

AR.YL 15 1.66 2.99 43% 0.27 0.01 
 45 1.24 1.72 29% 0.06 0.00 
 100 1.08 0.80 16% 0.02 0.00 

AM.YL 15 0.52 0.84 43% 0.10 0.00 
 45 0.65 0.85 29% 0.03 0.00 
 100 0.76 0.59 16% 0.01 0.00 

 
6.2  True MSE of the EBLUP, average relative bias and average root relative 

MSE of the MSE estimators 
 

All variance estimators are consistent and asymptotically normal with variance converging at the same 

rate. They differ in their bias: REML, AR.YL and MIX have bias of the order of  1o m  whereas AM.LL 

and AM.YL have bias of the order  1 .O m  The bias inherent in the last three methods impacts the 

estimation of the MSE of the EBLUP even for a moderate number of areas.  

For 100,m   Tables 6.2a and 6.2b show that as 2
v i   increases, the MSE of the EBLUP decreases 

and this relationship holds irrespective of the number of areas. We observe that the MSE of ˆ
i  under the 
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REML and the MIX variance estimators are slightly higher than the rest of the MSEs, due to the higher 

variability inherent in these variance estimators. Table 6.2a presents results for the Taylor linearization MSE 

estimator and the two parametric MSE estimators under REML, AM.LL, AR.YL and AM.YL variance 

estimation. Table 6.2b presents results for the following MSE estimators under the MIX variance estimation: 

RB_Y1 defined in (4.3), RB_Y2 defined in (4.2), M_et_al, defined in (4.5), PB MSE and naïve PB MSE 

estimators. Among the Taylor MSE estimators, RB_Y1 and M_et_al under MIX exhibit the lowest bias. 

Among the bootstrap MSE estimators PB under MIX and Naive PB under AR.YL exhibit the lowest bias. 

Turning to the RRMSE of the MSE estimators, it decreases as 2
v i   increases. Differences between the 

RB_Y2 MSE estimator under the MIX and the Taylor MSE estimator under the AM.YL seem small but 

consistent. While ARB is lower for the RB_Y1, the M_et_al and the Naive MSE estimators under the MIX 

method than for the RB_Y2 under the MIX, and also lower for the Taylor and the Naive PB under the 

AR.YL method than for the RB_Y2 under the MIX, the opposite happens in terms of RRMSE. This can be 

explained in part due to the extreme negative conditional bias exhibited by these MSE estimators (i.e., the 

RB_Y1 and the M_et_al under the MIX and the Taylor and the Naive PB under the AR.YL method) as 

shown in Table 6.3. Even for 100m   there is a relatively high proportion (16%) of populations that yield 
2
REMLˆ 0v   and in these populations, estimates from most variance methods and most MSE estimators are 

farthest below the true value. That is, for these MSE estimators, the conditional MSE estimators do not fare 

well. The PB MSE estimator seems to adjust well for bias, but it is more variable than the Naive PB MSE. 

When we also include the ARB, the RRMSE and the ARB  in the evaluation, the RB_Y2 under the MIX 

method, followed closely by Naïve PB under the MIX seems to perform the best. This may suggest the 

superiority of RB_Y2 and Naive under MIX for 100,m   which is a moderate number of areas for this 

data. 
 

Table 6.2a 
MSE, ARB & RRMSE (percentage) of MSE Estimators, = 100m  
 

   Taylor MSE estimator  PB estimator Naïve PB estimator 

Method 2
v i   MSE  ARB RRMSE ARB RRMSE ARB RRMSE 

REML 0.06 135.4 5.1 71.1 -4.4 80.7 1.6 69.9 
 0.1 132.1 5.3 64.7 -4.7 74.0 -0.2 63.0 
 0.14 119.5 6.0 61.9 -5.5 71.3 -1.8 59.9 
 0.2 119.2 6.5 53.6 -5.8 62.4 -3.4 51.7 
 0.3 106.6 8.2 46.7 -6.8 55.0 -5.6 44.8 

AM.LL 0.06 134.9 6.1 75.4 8.2 66.9 31.3 63.8 
 0.1 131.2 6.8 68.1 7.8 59.5 27.5 55.7 
 0.14 118.3 8.1 64.6 7.8 55.6 26.5 51.2 
 0.2 117.6 8.4 55.4 6.5 46.7 21.6 42.1 
 0.3 104.5 10.2 46.7 5.5 38.8 18.2 34.0 

AR.YL 0.06 135.4 6.6 69.3 -4.3 80.2 2.1 69.4 
 0.1 132.0 7.4 61.9 -4.5 73.4 0.3 62.5 
 0.14 119.4 9.0 58.0 -5.3 70.6 -1.2 59.3 
 0.2 119.0 10.6 48.2 -5.6 61.8 -2.9 51.1 
 0.3 106.4 14.7 38.5 -6.6 54.3 -5.1 44.1 

AM.YL 0.06 134.7 10.0 63.2 -12.3 81.0 -19.6 65.9 
 0.1 131.3 12.0 56.6 -12.5 75.2 -19.7 61.2 
 0.14 118.8 15.0 53.1 -13.7 73.3 -21.4 59.8 
 0.2 118.6 18.1 44.8 -13.4 65.2 -20.7 53.5 
 0.3 106.4 25.2 38.4 -14.4 58.8 -21.7 48.6 
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Table 6.2b 
MSE, ARB & RRMSE (percentage) of MSE Estimators = 100m   
 

   RB_Y1  RB_Y2  M_et_al  PB estimator Naïve PB estimator 

 2
v i   MSE  ARB RRMSE ARB RRMSE ARB RRMSE ARB RRMSE ARB RRMSE 

MIX 0.06 135.4 2.7 75.7 13.6 63.0 5.2 71.1 -3.0 75.3 8.8 62.4 
 0.1 132.1 3.6 68.3 14.9 56.1 5.3 64.7 -3.2 68.3 6.6 55.4 
 0.14 119.5 4.9 64.7 16.0 52.4 6.0 61.9 -3.9 65.1 5.3 51.8 
 0.2 119.1 6.3 55.2 16.7 43.8 6.5 53.6 -4.4 56.3 2.9 43.7 
 0.3 106.5 9.4 46.2 19.9 36.0 8.3 46.7 -5.4 48.6 0.6 36.7 

 
Table 6.3 

  2 2
REML

ˆ ˆMSE  E 0i i v       and ARB  (percentage), = 100m  
 

Method 2
v i   MSE   Taylor MSE estimator  PB estimator Naïve PB estimator 

REML 0.06 135.6  -76.5  -98.6 -74.8 
 0.1 133.0  -74.5  -94.4 -71.8 
 0.14 121.5  -78.6  -98.0 -74.9 
 0.2 120.4  -73.1  -89.8 -68.6 
 0.3 108.0  -73.6  -88.2 -67.3 

AM.LL 0.06 135.0  -92.0  -67.6 -26.1 
 0.1 132.2  -85.2  -62.0 -24.6 
 0.14 120.2  -85.4  -62.3 -25.4 
 0.2 118.8  -74.4  -54.1 -22.1 
 0.3 105.9  -65.9  -49.7 -20.6 

AR.YL 0.06 135.5  -68.6  -96.9 -73.0 
 0.1 132.9  -62.4  -92.6 -70.0 
 0.14 121.4  -61.1  -96.1 -73.0 
 0.2 120.2  -48.9  -87.9 -66.7 
 0.3 107.8  -34.5  -86.1 -65.4 

AM.YL 0.06 134.9  -45.9  -88.6 -74.7 
 0.1 132.1  -39.4  -85.4 -72.2 
 0.14 120.4  -36.0  -89.3 -75.7 
 0.2 119.6  -23.6  -82.3 -69.7 
 0.3 107.6  -6.5  -81.7 -69.3 

 RB_Y1 RB_Y2 M_et_al PB estimator Naïve PB estimator 

MIX 0.06 135.0 -92.0 -22.0 -76.4 -46.0 -27.0 
 0.1 132.2 -85.2 -17.7 -74.3 -42.7 -25.9 
 0.14 120.2 -85.4 -15.0 -78.3 -43.3 -27.0 
 0.2 118.8 -74.4 -7.6 -72.8 -37.6 -23.9 
 0.3 105.9 -65.9 1.5 -73.1 -34.6 -22.6 

 
Tables 6.4a and b below display results for 45m   with 9 areas per 2 .v i   The AM.YL yields MSEs 

smaller than the MIX, with differences in MSEs of at most 2%. As the number of areas decreases, the bias 

of the variance estimators increase and the MSE estimators are affected by this. Indeed, the ARB of all MSE 

estimators have increased. In particular, the ARB of the Taylor MSE estimators under YL and LL variance 

estimation and the ARB of RB_Y2, have increased by 100% over the ARB with 100 areas. In terms of 

RRMSE, the Taylor MSE under the AM.YL has slightly lower RRMSE than the RB_Y2 under the MIX 

method for very small 2 .v i   In general, the variability (in RRMSE) of the RB_Y2 is lower than that of 

the Taylor under LL and YL estimation and than that of the RB_Y1 and the M_et_al. This may be due in 

part to the underestimation of the MSEs for the populations with zero REML estimates, which, for 45,m   
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range around 30% of all populations. Table 6.5 illustrates this better: given 2
EMLˆ 0,vR   there is serious 

underestimation in RB_Y1 and M_et_al.  

 
Table 6.4a 
MSE, ARB & RRMSE (percentage) of MSE Estimators, = 45m  areas 
 

   Taylor MSE estimator PB estimator Naïve PB estimator

Method 2
v i   MSE  ARB RRMSE ARB RRMSE ARB RRMSE 

REML 0.06 171.4 11.8 94.7 -4.7 107.0 6.2 89.2 

 0.1 174.1 11.9 83.9 -5.3 93.8 3.0 76.2 

 0.14 171.3 12.6 74.5 -5.4 81.9 1.1 65.3 

 0.2 166.6 13.9 63.4 -5.8 66.7 -1.2 52.0 

 0.3 128.9 20.1 63.0 -7.0 61.4 -3.1 46.7 

AM.LL 0.06 171.1 15.5 100.0 16.0 84.9 43.5 83.3 

 0.1 173.4 16.8 87.0 14.4 71.1 36.7 68.5 

 0.14 170.4 17.7 75.7 12.6 59.7 30.7 56.7 

 0.2 165.3 18.2 61.7 9.9 46.2 23.5 43.2 

 0.3 127.5 25.6 55.0 10.0 39.7 22.6 36.6 

AR.YL 0.06 171.1 17.2 89.9 -3.7 105.0 8.0 87.6 

 0.1 173.6 19.6 76.9 -4.3 91.8 4.8 74.6 

 0.14 170.8 22.6 65.8 -4.4 79.9 2.7 63.7 

 0.2 166.0 27.3 53.7 -4.8 64.8 0.3 50.5 

 0.3 128.3 43.8 54.8 -5.7 59.3 -1.3 45.0 

AM.YL 0.06 167.5 30.2 78.4 -18.0 97.3 -23.8 73.3 

 0.1 169.6 36.5 72.2 -18.0 87.7 -23.6 66.7 

 0.14 167.0 42.7 69.3 -17.2 78.0 -22.3 59.7 

 0.2 162.8 52.1 70.8 -15.8 65.4 -20.3 50.6 

 0.3 126.0 81.3 91.1 -18.0 62.3 -22.9 48.4 

 
Table 6.4b 
MSE, ARB & RRMSE (percentage) of MSE Estimators, = 45m  areas 
 

   RB_Y1 RB_Y2 M_et_al PB estimator Naïve PB estimator 

 2
v i   MSE  ARB RRMSE ARB RRMSE ARB RRMSE ARB RRMSE ARB RRMSE 

MIX 0.06 171.4 9.8 99.4 31.9 84.0 11.8 94.7 3.5 93.8 21.9 78.5 

 0.1 174.0 12.1 86.2 33.2 73.1 11.9 83.9 2.6 80.4 17.5 65.1 

 0.14 171.2 14.5 74.9 34.4 64.6 12.6 74.5 2.0 68.7 14.0 54.4 

 0.2 166.5 17.7 61.7 36.0 55.8 13.9 63.4 0.7 54.5 9.8 41.8 

 0.3 128.9 28.8 57.6 48.8 58.2 20.2 63.1 0.3 48.6 8.7 35.9 

 
Taking into account the ARB, the RRMSE and the ARB  of the MSE estimators, the Naive PB MSE 

estimator under the MIX performs the best for larger 2 .v i   Table 6.6 displays performance measures, 

averaged over the five sampling variance groups, for the three Taylor MSE estimators under the MIX with 
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data from the same model described in 5.1 but with three different values of 2 .v  The RB_Y2 performs 

better when 2 1,v   but as 2
v  becomes smaller, the M_et_al MSE estimator has an advantage, precisely 

because it was constructed under the premise that 2
v  is approximately zero.  

 
Table 6.5 
MSE  and ARB  (percentage). = 45m  areas 

 

Method 2
v i   MSE   Taylor MSE estimator  PB estimator Naïve PB estimator 

REML 0.06 170.2  -64.3  -89.7 -60.7 
 0.1 173.0  -62.4  -83.7 -57.1 
 0.14 170.2  -58.1  -75.5 -51.8 
 0.2 165.8  -51.9  -65.1 -44.8 
 0.3 131.1  -59.0  -70.5 -49.2 

AM.LL 0.06 170.0  -71.5  -49.0 -3.1 
 0.1 172.3  -61.5  -42.1 -2.3 
 0.14 169.1  -51.1  -35.7 -2.1 
 0.2 164.7  -38.3  -28.3 -1.6 
 0.3 129.9  -28.8  -29.1 -3.7 

AR.YL 0.06 169.9  -48.3  -86.2 -56.7 
 0.1 172.6  -38.0  -80.2 -53.2 
 0.14 169.7  -25.9  -72.2 -48.2 
 0.2 165.3  -7.4  -61.9 -41.5 
 0.3 130.5  19.3  -66.8 -45.5 

AM.YL 0.06 166.6  -8.2  -73.5 -60.7 
 0.1 168.8  3.8  -70.1 -58.1 
 0.14 166.1  16.1  -64.1 -53.3 
 0.2 162.2  35.9  -56.1 -46.8 
 0.3 128.1  72.8  -62.5 -52.5 

 RB_Y1 RB_Y2 M_et_al   

MIX 0.06 170.0 -71.5 6.2 -64.3 -28.1 -4.0 
 0.1 172.3 -61.5 13.2 -62.3 -23.8 -3.5 
 0.14 169.1 -51.1 18.9 -57.8 -20.0 -3.3 
 0.2 164.7 -38.3 26.8 -51.6 -15.7 -2.9 
 0.3 129.9 -28.8 40.4 -58.7 -16.7 -5.1 

 
Table 6.6 
MSE, ARB, ARB  and RRMSE (percentage), 45 areas 
 

   RB_Y1 RB_Y2 M_et_al 

%REML 0  2
v  MSE  ARB ARB  RRMSE ARB ARB  RRMSE ARB ARB  RRMSE 

29 1 108 16 -50 75 36 21 66 14 -59 75 
48 0.2 99 48 -36 101 113 88 114 47 -38 94 
51 0.1 91 58 -33 108 137 107 127 58 -32 100 

 
Tables 6.7a and 6.7b below show the outcomes for 15m   areas with 3 areas per 2 .v i   Differences 

in MSEs per variance estimation method are at most 5%. 

There is no monotone relationship between ARB or RRMSE and 2 ,v i   which could be an indication 

that the second order approximation to estimating the MSE is poor under every method of variance 

estimation. The ARB of all Taylor MSE estimators under the LL and the YL methods of variance estimation 
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are unacceptably high and the same is true for the RRMSE. The RB_Y2 under the MIX does not fare well 

either. The reason for this last outcome is clear: the high % of zero REML estimates (43%) implies the MIX 

coincides with AM.LL for the zero REML populations. Thus, the MIX has a positive bias for 15,m   and 

the RB_Y2 does not account for this bias. The RB_Y1 accounts for the bias in the MIX, but the bias 

estimator is not very precise for 15.m   The M_et_al MSE estimator almost coincides with the ARB and 

RRMSE of the Taylor MSE estimator under the REML variance estimation, because by definition they are 

equal when 2
REMLˆ 0.v   The ARB  of the three Taylor MSE estimators under the MIX is poor. Taking 

into account all performance measures, the bootstrap MSE estimators perform better than the Taylor MSE 

estimators. For 15m   areas with 3 areas per 2 ,v i   PB under MIX performs the best, followed by the 

Naive under AR.YL and AM.YL. 

 
Table 6.7a 
MSE, ARB & RRMSE (percentage) of MSE estimators, = 15m  areas 
 

   Taylor MSE estimator PB estimator Naïve PB estimator 

Method 2
v i   MSE  ARB RRMSE ARB RRMSE ARB RRMSE 

REML 0.06 584.8 12.6 87.9 1.2 85.9 6.9 64.5 
 0.1 376.7 26.5 106.3 2.3 85.6 9.6 62.8 
 0.14 352.5 25.2 90.1 0.7 54.1 4.3 39.3 
 0.2 209.4 43.0 123.0 0.4 74.0 6.3 51.1 
 0.3 198.7 50.6 124.7 -1.0 46.3 2.6 31.5 

AM.LL 0.06 589.3 24.1 89.3 13.7 61.2 24.1 65.8 
 0.1 380.7 48.3 107.1 19.4 58.6 32.5 62.9 
 0.14 355.7 40.2 88.6 10.0 36.2 16.8 38.1 
 0.2 212.5 76.3 117.9 17.8 45.1 28.7 47.3 
 0.3 200.7 76.5 105.1 10.7 26.9 17.2 27.6 

AR.YL 0.06 583.3 23.8 83.3 3.2 79.5 3.2 61.6 
 0.1 375.1 53.3 106.7 5.4 78.6 5.4 59.7 
 0.14 351.3 53.3 102.7 2.4 49.4 2.4 37.1 
 0.2 207.7 107.3 153.1 4.1 66.2 4.1 47.2 
 0.3 197.5 142.0 199.4 1.9 41.1 1.9 28.9 

AM.YL 0.06 571.4 41.6 103.5 -8.0 61.2 -9.2 43.3 
 0.1 363.3 95.0 161.4 -11.3 62.9 -13.2 44.1 
 0.14 342.0 97.2 179.7 -6.7 40.4 -7.8 29.3 
 0.2 197.0 198.4 274.6 -14.5 58.2 -16.7 41.7 
 0.3 191.4 270.2 362.4 -11.5 38.4 -13.1 28.7 

 
Table 6.7b 
MSE, ARB & RRMSE (percentage) of MSE estimators, = 15m  areas 
 

   RB_Y1 RB_Y2 M_et_al PB estimator Naïve PB estimator 

 2
v i   MSE  ARB RRMSE ARB RRMSE ARB RRMSE %ARB %RRMSE %ARB %RRMSE

MIX 0.06 584.9 21.0 84.7 35.4 93.7 12.6 87.9 10.0 53.8 19.3 62.1
 0.1 377.1 46.0 103.9 68.4 122.6 26.4 106.1 14.8 52.7 26.6 59.9
 0.14 353.0 41.9 91.5 59.4 112.7 25.0 89.9 7.6 33.2 13.7 36.7
 0.2 209.7 83.2 127.8 108.9 155.8 42.8 122.8 14.0 42.5 23.7 46.0
 0.3 198.9 94.8 136.7 117.1 162.2 50.4 124.6 8.7 26.6 14.5 27.7
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Summarizing, under the Fay-Herriot model with positive 2 ,v  and among the positive variance 

estimators under study, the MIX and the AR.YL variance estimators are the only ones with negligible 

asymptotic bias. The AM.YL and the LL variance estimators have a larger asymptotic bias. On the other 

hand, our simulation showed that for a moderate number of areas and for populations that yield zero REML 

estimates, both YL variance estimators were negatively biased, and produced EBLUPs that were close to 

the synthetic estimator of the mean. In contrast, the MIX, built as the combination of the AM.LL and the 

REML, was only mildly negatively biased in these populations. Moreover, the unconditional distribution of 

the MIX approached normality much faster than those of the other variance estimators.  

 
Table 6.8 
MSE  and ARB  = 15m  areas 

 

Method 2
v i   MSE   Taylor MSE estimator  PB estimator Naïve PB estimator 

REML 0.06 594.2  -22.6  -31.7 -16.5 
 0.1 381.2  -32.9  -43.2 -22.5 
 0.14 345.1  -17.7  -22.7 -10.7 
 0.2 212.7  -41.1  -47.3 -25.5 
 0.3 197.9  -30.4  -32.7 -17.6 

AM.LL 0.06 595.6  -4.1  -5.7 12.1 
 0.1 385.7  8.6  -7.0 15.6 
 0.14 351.2  18.9  -2.0 10.4 
 0.2 216.0  46.4  -5.8 14.4 
 0.3 199.5  67.0  -2.9 9.8 

AR.YL 0.06 592.2  -0.8  -27.1 -11.0 
 0.1 379.7  21.0  -36.5 -14.8 
 0.14 344.5  44.0  -18.6 -6.3 
 0.2 210.9  98.2  -38.6 -16.4 
 0.3 196.6  177.3  -26.1 -11.0 

AM.YL 0.06 581.7  30.7  -21.9 -18.0 
 0.1 368.6  79.8  -31.5 -25.8 
 0.14 333.9  98.3  -15.2 -11.9 
 0.2 198.9  198.0  -36.4 -30.0 
 0.3 190.0  296.3  -26.2 -21.5 
   RB_Y1 RB_Y2 M_et_al PB estimator Naive PB estimator 

MIX 0.06 595.6 -4.1 27.9 -22.9 3.4 17.8 
 0.1 385.7 8.6 57.1 -33.7 5.1 22.8 
 0.14 351.2 18.9 58.5 -19.1 4.9 14.3 
 0.2 216.0 46.4 102.4 -42.0 5.9 20.4 
 0.3 199.5 67.0 116.3 -30.9 4.8 13.4 

 
In terms of MSE of the EBLUP, there were considerable gains in precision over the direct estimator, 

under all methods of variance estimation considered here, even for a small number of areas. The AM.LL 

and both the AM.YL and the AR.YL variance estimators carried lower variability than the REML and the 

MIX. It impacted only minimally the MSE of the EBLUP: differences among MSEs for the same signal to 

noise ratio were small. These differences widened as either the number of areas or the signal to noise ratio 

decreased. Thus, it may possible that for an extremely low signal to noise ratio, the MSE under MIX would 

be somewhat larger than under the AM.YL variance estimator. 

Under the MIX method of variance estimation, we compared three different Taylor-type MSE estimators 

and two bootstrap MSE estimators. All three Taylor estimators of the MSE under MIX (RB_Y1, RB_Y2 
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and M_et_al) are unbiased up to the second order. Also the Taylor-type estimators of the MSE under the 

LL and the YL are unbiased up to the second order. RB_Y1, AM.LL and AM.YL may yield negative MSE 

estimates. 

The Taylor MSE under the REML method of variance estimation and the M_et_al under the MIX 

coincide by definition, hence their performance measures have negligible differences (their true MSEs are 

different, however in our study, for 100,m   the MIX coincided with the REML 84% of the time). For a 

moderate number of areas, which for this data could be 45 or 100,m   and for populations that yield zero 

REML estimates, both the Taylor MSE estimators under the REML and the M_et_al MSE estimators do 

not account for the variation due to the estimation of 2
v  and this is reflected in their very negative ARB ,  

which is below -60% for the smaller signal to noise ratios. On the other hand, the RB_Y1 does account for 

the variation due to the estimation of 2 ,v  but its ARB  is also very negative: the RB_Y1 is a split MSE 

estimator that for populations with 2
REMLˆ 0,v   it subtracts a factor of the unconditional bias of the AM.LL, 

which is always positive, whereas a better formula for a split MSE estimator would be to use an estimator 

of the conditional bias  2 2
REMLˆ ˆ 0 .v vE     Indeed, even for a moderate number of areas  100 ,m   

Table 6.1 shows that the unconditional bias of the MIX is 49% whereas the conditional bias of the MIX 

is -37%. 

The PB MSE estimator under the AR.YL and the MIX methods adjusted well for the bias but paid in 

terms of variance. Among all the MSE estimators it appears that the Naive Bootstrap MSE estimator 

performed best, and even better under the MIX variance estimation, when taking into account the three 

measures ARB, ARB  and RRMSE together. We found that for a moderate number of areas, the RB_Y2 

had the lowest RRMSE among the Taylor estimators under the MIX method. On the other hand, M_et_al is 

most reliable when the true underlying variance 2
v  is very small: in this case M_et_al is effectively the 

MSE estimator of the synthetic estimator of the small area mean. We do not recommend relying on the 

second order approximation to the MSE when m  is small: the approximation (2.6) to the MSE does not 

necessarily hold, the performance measures obtained from our study are very unstable and they may vary 

from data set to data set.  

In conclusion, under the hypothesis of 2 0,v   the relative performances of competing positive variance 

estimators depend on the size of 2 ,v  the signal to noise ratio, the number of areas and the objective function. 

For a moderate number of areas, the MIX variance estimator appeared to perform better than the LL and the 

YL estimators in this study; under the MIX method, the Naive PB MSE estimator had the lowest ARB  

and RRMSE combined; the M_et_al MSE estimator under the MIX variance estimator performed 

marginally better than the RB_Y1 when the underlying 2
v  was very small. However, the percentage of 

REML zeros yielded under the simulation model shows that an outcome of 2
REMLˆ 0v   and/or negative 

tests of hypothesis do not necessarily mean that 2
v  is sufficiently small to rely on M_et_al. In the absence 

of other information, the Naive PB estimator under the MIX appears to perform better. 

 
Acknowledgements 
 

The authors would like to thank Professor J.N.K. Rao from Carleton University for his useful comments 

and to Victor Estevao from Statistics Canada for developing the grid maximization especially for this 



80 Rubin-Bleuer and You: Comparison of some positive variance estimators for the Fay-Herriot small area model 
 

 
Statistics Canada, Catalogue No. 12-001-X 

project. We also would like to thank the reviewers for their careful appraisal of our paper and for their 

suggestions to improve this paper. 

 
Appendix A 
 

Proof of Theorem 4.1 
 

The asymptotic variance of 2
MIXˆ v  is given by:    22 2 2

MIX MIXˆ ˆlimv v v
m

V E


      
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   (A.1) 

Indeed, by the Holder and Minkowski inequalities, with any 1 ,1 1 1,p p q      and setting 

   22 2
AM.LLˆ O 1v v pX m      and the indicator  2

vREMLˆ 0I    of populations with 2
REMLˆ 0,v   we 

have:
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 (A.2)

 

since  22 2
AM.LLˆ v v    is uniformly bounded and 2 2

REMLˆ 0.
P

v v    Note that the AM.LL and REML 

estimators of 2
v  are uniformly bounded as a consequence of their almost sure convergence to 2

v  (see, for 

example, Yuan and Jennrich 1998). 

 

Proof of Theorem 4.2 
 

We denote by 2
MLˆ vσ  the maximum likelihood variance estimator. 

We show first that  2 2
REML MLˆ ˆ 1 .v v pO m σ σ  Let    2 2

* *log 0v vG L   σ σ  be the estimating 

equation that yields the variance estimator *. Equation (3.4) implies:  

    2 2 2 2
AM.LL ML 2

1 1
log .σ σ σ σ

σv v v v
v

G G O
m m

       
 

 (A.3) 

With      2
ML ML vG G    σ  and      2

ML ML ,vG G    σ  equation (A.3) implies: 
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    2 2
ML AM.LL

1
.σ σv vG G O

m
    

 
 (A.4) 

Now, using equation (A.4), the m  consistency of the ML and AM.LL estimators of 2 ,vσ  the two-

term Taylor expansion of    ML AM.LL and G G   at 2
vσ  and    2

ML 1vG O σ  as ,m    the left- hand 

side in (A.3) is equal to: 
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The last equality above implies  
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Similarly, we establish a relationship between  2
REML vG σ  and  2

ML :vG σ  given that 

    11 1 1tr 1O
    V Z Z V Z Z V  follows from conditions 1 through 3 in Section 3 and equation (3.1), 

we have: 
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 (A.6) 

Equation (A.6) and the same argument as with the AM.LL estimator, imply: 

 2 2
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1
ˆ ˆ  as  .σ σv v pO m

m
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Equations (A.5) and (A.7) combined, yield: 
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Now we express the bias of the MIX estimator by: 
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Now, since 2 2
AM.LL REMLˆ ˆv v    is uniformly bounded, we apply the Holder and Minkowski inequality with 

2p q   and equation (A.8) to the last term in (A.9) to obtain: 
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Proof of Remark 4.2: 0mse  is unbiased up to the second order 
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since    2
1 REML 1ˆ 0 0i v ig g σ  in  2

REMLˆ 0v σ  and  2
2 REMLˆi vg σ  cancels out in (A.11). But 
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and is uniformly bounded under the regularity conditions given in Section 2, hence the last term in (A.11) 

is also an  o 1 ,m  which renders 0mse  unbiased up to the second order. 

 
Appendix B 
 
B.1 Comparison between REML and AR.YL using the scoring algorithm 
 

The scoring algorithm could sometimes yield zero estimates for the likelihood of the AR.YL. Indeed, 

for data sets simulated under the model given in Section 5, with 45m   and 2 1,v   the REML and 

AR.YL scoring algorithms yielded 28% and 26% zeros respectively. Figures B.1 to B.3 illustrate the why: 

the likelihoods correspond to a single population generated under the model with 2 1v σ  for which 
2
REMLˆ 0.v σ  
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                Figure B.1   2
REML 1 45, , .vL L y y                           Figure B.2   2

AR.YL 1 45, , .vL L y y    

 
 

 

 

 

 

 

 

 

 

 

 

Figure B.3   2
AM.LL 1 45, , .vL L y y    

 
Figure B.2 shows that the maximum value of the AR.YL likelihood is very near the border. The scoring 

algorithm may often miss the maximum and yield a zero value. Figure B.3 shows that the AM.LL likelihood 

has a maximum value that differentiates better from the border.  

 
B.2 Treatment of zeros in the parametric bootstrap 
 

For each estimate   2 2ˆ ˆ , 1, 10 ,r
v v r K   y   and each method of variance estimation: 

 

i. Generate a large number B of random area effects    
i.i.d.

2ˆ0, , 1, , ,b
i vv N b B    and generate, 

independently of   ,b
iv  sampling errors    

i.i.d.

0, ,b
i ie N   1, , , 1, , .i m b B    Generate 

 
                   REML Likelihood                                                                      AR.YL Likelihood 

0            1           2            3           4           5           6                  0            1            2             3            4             5            6
                                        2

v                                                                                                  2
v      

0                                                                                                  0 

0            1             2            3             4            5            6 
                                         2

v  

0 

 
AM.LL Likelihood 
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bootstrap data          ˆ, , 1, , .b b b b b
i i i i i iy e v i m       x   If   2

REMLˆ 0,r
v y   then 

generate     , ,b b
i iy   1, , ,b B   from the synthetic model (see also Rao and Molina 2015). 

ii. Fit the model to the bootstrap data and obtain  2ˆ ;b
v  for the MIX estimator calculate 

     2 2 2
MIX REMLˆ ˆ ˆ if  b b b

v v v     is positive and    2 2
vMIX AMˆ ˆb b

v    otherwise. 

iii. Now obtain  ˆ ,b  the corresponding EBLUP  ˆ ,b
i  the bootstrap components 

           2 2
1 1 2 2ˆ ˆ,  b b b b
i i v i i vg g y g g y     and  PB 1 , 1, 2.b

ji jib
g B g j   

iv. The Naive MSE bootstrap estimator is     21
naive 1

ˆmse .
B b b

i ib
B


     

v. The PB MSE estimator (which is adjusted for bias (Pfeffermann and Glickman 2004) is:
 

     2 2 PB PB
PB 1 2 1 2 naive

ˆ ˆ ˆmse mse .i i v i v i ig g g g       
 

vi. To calculate ARB ,  average         PB
ˆ ˆ ˆmse MSE MSEr

i i i     over the populations with 

    2
REMLˆ 0r

vr  y  and do similarly with ARB  of naivemse .  
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A comparison between nonparametric estimators for finite 
population distribution functions 

Leo Pasquazzi and Lucio de Capitani1 

Abstract 

In this work we compare nonparametric estimators for finite population distribution functions based on two types 
of fitted values: the fitted values from the well-known Kuo estimator and a modified version of them, which 
incorporates a nonparametric estimate for the mean regression function. For each type of fitted values we consider 
the corresponding model-based estimator and, after incorporating design weights, the corresponding generalized 
difference estimator. We show under fairly general conditions that the leading term in the model mean square 
error is not affected by the modification of the fitted values, even though it slows down the convergence rate for 
the model bias. Second order terms of the model mean square errors are difficult to obtain and will not be derived 
in the present paper. It remains thus an open question whether the modified fitted values bring about some benefit 
from the model-based perspective. We discuss also design-based properties of the estimators and propose a 
variance estimator for the generalized difference estimator based on the modified fitted values. Finally, we 
perform a simulation study. The simulation results suggest that the modified fitted values lead to a considerable 
reduction of the design mean square error if the sample size is small. 

 
Key Words: Finite population sampling; Distribution function estimator; Fitted values; Kuo estimator. 

 
 

1  Introduction 
 

Since Chambers and Dunstan’s seminal paper Chambers and Dunstan (1986), several estimators for 
finite population distribution functions have been proposed. Most of them are based either on different types 
of fitted values or on different ways to combine them into an estimator. The estimator proposed by Chambers 
and Dunstan (1986), for example, is based on fitted values derived from a superpopulation model where the 
study variable and an auxiliary variable are linked by a linear regression model with independent error 
components whose variances are assumed to be known. Substituting the fitted values to the unobserved 
indicator functions in the definition of the population distribution function of the study variable yields the 
Chambers and Dunstan estimator. Rao, Kovar and Mantel (1990) incorporate design weights into the fitted 
values of Chambers and Dunstan and use them in a generalized difference estimator. Kuo (1988) uses 
nonparametric regression to estimate directly the regression relationship between the indicator functions 
and the auxiliary variable and obtains fitted values that accommodate virtually any superpopolation model. 
Like Chambers and Dunstan, she substitutes the unobserved indicator functions with their corresponding 
fitted values and obtains a model-based estimator. Chambers, Dorfman and Wehrly (1993) combine the 
fitted values of Chambers and Dunstan (1986) and of Kuo (1988) and propose still another model-based 
estimator that aims to be more efficient than the Kuo estimator if the linear superpopulation model assumed 
by Chambers and Dunstan is true, and that does not suffer from model misspecification bias otherwise. 
Following these early works there has been quite a large number of subsequent proposals with the aim to 
achieve some gain in efficiency with respect to the Horvitz-Thompson estimator, while preserving 
robustness and sometimes also one or both of the following desirable properties shared by the Horvitz-
Thompson estimator: (i) the fact that it is a linear combination of the sample indicator functions with 
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coefficients that do not depend on the study variable and (ii) the fact that it gives always rise to 
nondecreasing estimates for the distribution function. 

The present work originates from the idea to improve upon the fitted values proposed by Kuo (1988) 
through incorporation of an estimate for the mean regression function (see Section 2). This idea has been 
put forward in a recent textbook of Chambers and Clark (2012) and it is based on the assumption of an 
underlying superpopulation model with smooth regression relationship between the study variable and an 
auxiliary variable and with smoothly varying error component distributions. According to this idea, the 
fitted values are the outcome of a two-step procedure: at the first step the mean regression function is 
estimated through either parametric or nonparametric regression, and at the second step, using the regression 
residuals from the first step, the distribution functions of the error components are estimated using 
nonparametric regression in order to accommodate the possibility of smoothly varying error component 
distributions. Combining both estimates one may compute fitted values for the indicator functions in the 
definition of the finite population distribution function of the study variable. Chambers and Clark (2012) 
analyze the model-based estimator that is obtained by substituting the unobserved indicator functions by 
their corresponding fitted values and they sketch a proof that leads to an expression for the model variance 
of the resulting estimator. In that proof they assume that the mean regression function is estimated by a 
consistent estimator and that the contribution from its estimation error to the model variance of the final 
distribution function estimator can be neglected. In the present work we consider local linear regression for 
estimating both the model mean regression function and the error component distributions. We provide 
asymptotic expansions for the model bias and the model variance of the resulting estimator and compare 
them with those corresponding to the Kuo estimator based on local linear regression. It turns out that the 
leading terms in the model variances are the same and that, for appropriately chosen bandwidth sequences, 
the squared model bias of both estimators goes to zero faster than the model variance. To establish which 
estimator is asymptotically more efficient from the model-based perspective thus requires knowledge of the 
second order terms of the model variances. The latter however depend on more specific assumptions than 
those considered in the present work and, at least for the estimator based on the modified fitted values, it 
seems no easy task to determine the second order terms of the model variances. Which estimator is more 
efficient from the model-based perspective remains thus an open question. 

In addition to the above model-based estimators, we analyze also the generalized difference estimators 
based on both types of fitted values in their design weighted versions. The results in Section 3 show that the 
convergence rates of their model biases and their model variances are the same as those of their model-
based counterparts. As for design-based properties, they are discussed to some extent in Section 4 along 
with the issue of variance estimation. It would of course be of interest to derive and compare asymptotic 
expansions for the design biases and the design variances. Breidt and Opsomer (2000) derive under mild 
conditions a general expression for the first order term in the design mean square error of local polynomial 
regression estimators, of which the generalized difference estimator based on the fitted values of Kuo is a 
special case. The generalized difference estimator based on the modified fitted values does however not fall 
into this class. In line with Särndal, Swensson and Wretman (1992), we conjecture that under broad 
conditions the first order term of its design mean square error is the same as the one of the generalized 
difference estimator based on the fitted values of Kuo. Formal proofs could perhaps be obtained by adapting 
and extending some of the results in Wang and Opsomer (2011). To test this conjecture and to compare the 
performance of the generalized difference and the model-based estimators in various settings, we performed 
a simulation study whose results are presented in Section 5. 
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2  Definition of the estimators 
 

Let  ,i iy x  denote the values taken on by a study variable Y  and an auxiliary variable X  on unit i  of 
a finite population  := 1,2, , .U N  Suppose that  

  = , ,i i iy m x i U   (2.1) 

where  m x  is a smooth function and where the ’si  are independent zero mean random variables whose 
distribution functions    =i iP G x    depend smoothly on .ix  Let s U  be a sample chosen from 
the population U  according to some sample design. As usual in the context of complete auxiliary 
information we assume that the ix  values are known for all population units, while the iy  values are 
observed only for the population units which belong to the sample .s  

To estimate the unknown population distribution function  

    
1

:= ,N i
i U

F t I y t
N 

   

Kuo (1988) proposes the estimator given by  

      ,

1ˆ := ,j i j j
j s i s j s

F t I y t w I y t
N   


   

 
   (2.2) 

where in place of ,i jw  she suggests to use either the local constant regression weights  

 , :=

i j

i j
i k

k s

x x
K

w
x x

K





 
 
 

 
 
 


  

with some (integrable) kernel function in place of  K u  and > 0,  or the nearest k  neighbor weights  

 ,

1 , if   is one of the  nearest neighbors to 
:=

0, otherwise.

j i

i j

k x k x
w





  

Note that in the definition  ˆ ,F t  

    ,
ˆ :=i i j j

j s

G t w I y t


  (2.3) 

is used as the fitted value in place of the unobserved indicator function  iI y t  for .i s  

Following an idea put forward in the textbook of Chambers and Clark (2012), we shall analyze an 
estimator for  NF t  based on alternative fitted values which incorporate a nonparametric estimate for the 
mean regression function  .m x  The fitted values in question are given by  

    *
,

ˆ := ˆ ˆi i j j j i
j s

G t w I y m t m


    (2.4) 

where  
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 ,:=ˆ i i j j
k s

m w y

   

is a nonparametric estimator for  m x  at = ,ix x  and the resulting estimator for  NF t  is given by  

      *
,

1ˆ := .ˆ ˆj i j j j i
j s i s j s

F t I y t w I y m t m
N   


     

 
   (2.5) 

The fitted values in (2.3) and (2.4), or appropriately modified versions of them which include sample 
inclusion probabilities in the regression weights , ,i jw  can obviously be computed also for ,i s  and they 
can be employed for example in generalized difference estimators (Särndal et al. 1992, page 221) or in 
model calibrated estimators (see for example Wu and Sitter 2001; Chen and Wu 2002; Wu 2003; Montanari 
and Ranalli 2005; Rueda, Martínez, Martínez and Arcos 2007; Rueda, Sànchez-Borrego, Arcos and 
Martínez 2010). In addition to the model-based estimators in (2.2) and (2.5), we shall thus consider also the 
generalized difference estimators given by  

        1
, ,

1
:= i j j i i i j j

i U j s i s j s

F t w I y t I y t w I y t
N

 

   

  
      

  
       

and by  

        * 1
, ,

1
:= i j j j i i i i j j j i

i U j s i s j s

F t w I y m t m I y t w I y m t m
N

 

   

  
          

  
           

where i  denotes the first order sample inclusion probabilities, ,i jw  denotes design weighted regression 

weights whose definition is given below, and ,:= .i i k kk s
m w y

   Note that  F t  and  *F t  are based on 

design weighted counterparts of the fitted values  ˆ
iG t  and  *ˆ

iG t  which are given by  

    ,:=i i j j
j s

G t w I y t


    

and  

    *
,:= ,i i j j j i

j s

G t w I y m t m


        

respectively. 

As for the regression weights ,i jw  and , ,i jw  in the present work we consider local linear regression 
weights in their place. In what follows ,i jw  and ,i jw  are thus defined by  

 
   

     

2, 1,

, 2
2, 0, 1,

1
:=

i j
s i s i

i j
i j

s i s i s i

x x
M x M x

x x
w K

n M x M x M x


 

      
   

  

and  

 
   

     

2, 1,

, 2
2, 0, 1,

1
:= ,

i j
s i s i

i j
i j

j s i s i s i

x x
M x M x

x x
w K

n M x M x M x


  

      
   

 
      

where n  is the number of units in the sample ,s  
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  ,

1
:= , = 0,1,2,

r
k k

r s
k s

x x x x
M x K r

n  

   
  
  

   

and  

  ,

1
:= , = 0,1,2.

r
k k

r s
k s k

x x x x
M x K r

n   

   
  
  

   

It is worth noting that the nonparametric estimators of this section are not well-defined if the regression 
weights ,i jw  and ,i jw  included in their definitions are not well-defined. This problem occurs for example 
when the support of the kernel function  K u  is given by the interval  1,1  (e.g., uniform kernel, 
Epanechnikov kernel), and when there are not at least two j s  such that < .i jx x   To overcome this 
problem one can use a kernel function whose support is given by the whole real line (e.g., Gaussian kernel) 
or choose the bandwidth adaptively. The latter solution may also lead to more efficient estimators (see e.g., 
Fan and Gijbels 1992). With reference to the estimators  *F̂ t  and  *F t  based on the modified fitted 
values, it is moreover worth noting that one could in principle apply different bandwidths and/or regression 
weights to the iy  values and to the indicator functions. For the sake of simplicity, in the present work we 
shall consider neither adaptive bandwidth selection nor the possibility of different regression weights to 
estimate the mean regression function and the distributions of the error components. 

Comparing the definitions of the estimators based on the two types of fitted values, it becomes 
immediately obvious that  F̂ t  and  F t  are easier to compute since they are linear combinations of the 
observed indicator functions  .jI y t  The coefficients of these linear combinations do not depend on the 
study variable Y  and they can therefore be used to estimate averages of other functions than indicator 
functions, or of functions of several study variables, in particular when there are reasons to believe that the 
latter are related to the auxiliary variable .X  This fact is of particular value to practitioners who want 
estimates related to several study variables to be consistent with one another. However, there is a strong 
argument in favor of the estimators  *F̂ t  and  *F t  based on the modified fitted values too: if =i iy a bx  
for all ,i U  then it follows that      * *ˆ = = NF t F t F t  for every sample s  such that the estimators are 
well-defined. One would therefore expect that  *F̂ t  and  *F t  be more efficient than  F̂ t  and  F t  when 
there is a strong regression relationship between Y  and .X  

 
3  Model-based properties 
 

In this section we provide asymptotic expansions for the model bias and the model variance of the 
estimators introduced in the previous section. The expansions are based on the following assumptions: 

 
(C1) N   and the sequence of population ix  values and of sample designs are such that  

                          ,

1
:=N s i

i s

H x I x x
n 

   

and  

                          ,

1
:=N s i

i s

H x I x x
N n 


    
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converge to absolutely continuous distribution functions    :=
x

s sa
H x h z dz  and 

   := ,
x

s sa
H x h z dz  respectively. The support of  sH x  and  sH x  is given by a bounded 

interval  ,a b  and the density functions  sh x  and  sh x  have bounded first derivatives for 

 , .x a b   sh x  is bounded away from zero. 
 

(C2) The kernel function  K u  is symmetric, has support on  1,1  and has bounded derivative 
for  1,1 .u   The bandwidth sequence   goes to zero slow enough to make sure that  

                       
 

   
 

   , ,
, ,

:= max ,sup supN s s N s s
x a b x a b

H x H x H x H x
 

   
 

  

is of order  .o   
 

(C3) The population iy  values are generated from model (2.1). The function  m x  is such that  

                                 2 2
0 0 0 0 0 0

1

2
m x m x m x x x m x x x C x x           

for some > 0,  and the family of error component distribution functions  G x  is such that  

                       

               

                   
 

1,0 0,1
0 0 0 0 0 0 0 0

2 22,0 1,1 0,2
0 0 0 0 0 0 0 0 0 0

2 2
0 0

1
2

2

G x G x G x G x x x

G x G x x x G x x x

C x x 

     

      

   

    

      

   

  

for some > 0C  and some > 0,  where  

                              , := for , = 0,1,2.r s r s r sG x G x x r s       

 

Assumption (C1) poses a restriction on how the sample and nonsample ix  values are generated. 
Together with assumption (C2) it makes sure that the estimation errors of the kernel density estimators for 

 sh x  and  sh x  go to zero uniformly for  ,x a b     and that they are uniformly bounded for 

 , .x a b  Replacing (C1) by more specific assumptions may allow for relaxing (C2) and for improving the 
uniform convergence rate for the estimation error of the kernel density estimators (see for example the 
results in Hansen 2008). Assumption (C3) is finally needed to make sure that the model mean square errors 
of the two estimators converge to zero. It can be relaxed at the cost of slowing down the convergence rates. 
In addition to assumptions (C1) to (C3) we shall also need the following assumption (C4) to make sure that 
the model mean square errors of the generalized difference estimators go to zero: 
 

(C4) The first order sample inclusion probabilities are given by  

                       
 
 

*:= , ,i
i

j
j U

x
n i U

x









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where *n  is the expected sample size and  x  is a function which is bounded away from 
zero and has bounded first derivative for  , .x a b  

 

Proposition 1. Under assumptions (C1) to (C3) it follows that:  

 
                   

               

22 2,0 1,02

0

1,1 0,2 2

ˆ =
2

2

b

N a

s

N n
E F t F t G t m x x m x G t m x x m x

N

G t m x x m x G t m x x h x dx o








     

    


  

and  

 

                

         

2
2

2
2 1

1ˆvar =

1
,

b

N s s sa

b

sa

N n
F t F t G t m x x G t m x x h x h x h x dx

n N

N n
G t m x x G t m x x h x dx o n

N n N


             

           




  

where  
1

1
:= r

r K u u du


  for = 0,1,2.r  

Adding assumption (C4) it can be shown that  

 
                   

               

22 2,0 1,02

0

1,1 0,2 2

=
2

2 ,

b

N a

N n
E F t F t G t m x x m x G t m x x m x

N

G t m x x m x G t m x x h x dx o








     

    


  

where  

         1:= 1 ,s sh x h x x h x     

and it can be shown that  

            1ˆvar = var .N NF t F t F t F t o n     

 

Proposition 2. Under assumptions (C1) to (C3) and assuming that 
 

i) the function  

                        2 2:=x dG x  


   

has bounded first derivative for  ,x a b  

ii)  

                     
 

 4

,

< ,sup
x a b

dG x 



   

it can be shown that  
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           

             

             

2 0,2* 2

0

1,0 1

0

12,0 2 1 2
2
0

ˆ =

1 0

,

b

N sa

b

s sa

b

s sa

N n
E F t F t G t m x x h x dx

N

N n K
G t m x x t m x h x h x dx

n N

G t m x x x h x h x dx o n







 

 
  








 

   

    







  

where  
1 2

1
:= K u du

  and    
1 1

1 1
:= ( ) ,K v K u v K u dudv

 
   and it can be shown that  

            * 1 5ˆ ˆvar = var .N NF t F t F t F t o n       

Adding assumption (C4) it can also be shown that  

 

           

             

          

  

2 0,2* 2

0

1,0 1

0

2,0 2 1
2
0

12

=

1 0

b

N a

b

sa

b

sa

N n
E F t F t G t m x x h x dx

N

N n K
G t m x x t m x h x h x dx

n N

G t m x x x h x h x dx

o n







 

 




 








 

   

   

 









  

and that 

            * 1 5ˆvar = var .N NF t F t F t F t o n       

 
The proofs of the Propositions are given in the Appendix. Dorfman and Hall (1993) derived similar 

expansions for the Kuo estimator with local constant regression weights instead of local linear ones. 

Note that in view of the asymptotic expansions it is possible to choose bandwidth sequences   in such 
a way as to make sure that the squares of the model biases are of smaller order of magnitude than the 
corresponding model variances. For the estimators based on the fitted values of Kuo this is achieved 
whenever  1 4= ,o n   while for the estimators with the modified fitted values this requires that   goes 
to zero faster than  1 4O n  and slower than  1 2 .O n  The convergence rates for the model biases of the 
latter estimators are optimized when  1 3= O n   and in this case the resulting model biases are both of 
order  2 3 .O n  The model biases for the estimators based on the fitted values of Kuo can be made to 
converge much faster, depending on the sequences  ,N sH x  and  ,N sH x  and on the bandwidth 
sequence .  

Given the above considerations concerning the model biases and given the fact that the leading terms in 
the model variances are the same for both types of fitted values, it would be of interest to know the second 
order terms in the model variances in order to establish which estimator is more efficient from the 
model-based perspective. The proofs in the Appendix suggest however that the second order terms depend 
on more specific assumptions than (C1) to (C3) and that, in particular for the estimators based on the 
modified fitted values, they are difficult to determine. 
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4  Design-based properties 
 

In the previous section we have shown that the model-based estimators  F̂ t  and  *F̂ t  are 
asymptotically model-unbiased and model mean square error consistent. However, they are not design-
unbiased in general and therefore they should not be used when the sample inclusion probabilities are not 
constant. In these cases the generalized difference estimators  F t  and  *F t  should be used. In fact, it 
follows from the results in Breidt and Opsomer (2000) that under fairly general conditions  F t  is 
asymptotically design-unbiased and that its design mean square error is given by  

                2 , 1
2

,

1
= ,i j i j

d N i i j j
i j U i j

E F t F t I y t G t I y t G t o n
N

  
 






          

where  dE   denotes expectation with respect to the sample design, ,i j  denotes the joint sample inclusion 
probability for units i  and j  (it is understood that , = ,i i i   and where  

    ,:= .i i j j
j U

G t w I y t


   

The regression weights ,i jw  in the definition of  iG t  refer to the whole finite population U  and are given 
by  

 
   

     

2, 1,

, 2
2, 0, 1,

1
:= ,

i j
s i s i

i j
i j

s i s i s i

x x
M x M x

x x
w K

N M x M x M x


 

      
   

  

where 

  ,

1
:= , = 0,1,2.

r
k k

r s
k U

x x x x
M x K r

N  

   
  
  

   

Moreover, according to Breidt and Opsomer (2000),  

            ,

2
, ,

1
:= i j i j

i i j j
i j s i j i j

V F t I y t G t I y t G t
N

  
  


           

is a consistent estimator for the design mean square error of  .F t  

Unfortunately the results in Breidt and Opsomer (2000) cannot be applied to the generalized difference 
estimator  *F t  as well, since the latter estimator does not fall into the class of local polynomial regression 
estimators due to the presence of the regression function estimators im  and jm  inside the indicator functions 
in the fitted values  * .iG t  However, the results for  F t  suggest that in large samples  *

iG t  and  

    *
,:= ,i i j j j i

j U

G t w I y m t m


     



96 Pasquazzi and de Capitani: A comparison between nonparametric estimators for finite population distribution functions 
 

 
Statistics Canada, Catalogue No. 12-001-X 

where ,:= ,i i j jj U
m w y

  are approximately the same, and that  

               2 ,* * * 1
2

,

1
= i j i j

d N i i j j
i j U i j

E F t F t I y t G t I y t G t o n
N

  
 






              

Based on this conjecture, we tested  

           ,* * *
2

, ,

1
:= .i j i j

i i j j
i j s i j i j

V F t I y t G t I y t G t
N

  
  


               

as estimator for the design mean square error of the generalized difference estimator  *F t  in the simulation 
study of the following section. 

 
5  Simulation study 
 

In this section we analyze some simulation results. Our goal is to compare efficiency with respect to the 
sample design of the distribution function estimators introduced in Section 2 and of the variance estimators 
of Section 4. The simulation results refer to simple random without replacement sampling and to Poisson 
sampling with unequal inclusion probabilities. As a benchmark, we included also the Horvitz-Thompson 
distribution function estimator  

    11ˆ := j j
j s

F t I y t
N  



   

and the corresponding variance estimator  

       ,

2
, ,

1ˆ := i j i j
i j

i j s i j i j

V F t I y t I y t
N

  
  


    

in the simulation study. 

We considered both artificial and real populations. The former were obtained by generating = 1,000N  
values ix  from i.i.d. uniform random variables with support on the interval  0,1  and by combining them 
with three types of regression function  m x  and two types of error components .i  The regression 
functions are (i)   = 0m x  (flat), (ii)   = 10m x x  (linear) and (iii)   1 4= 10m x x  (concave), while the error 
components i  are either independent realizations from a unique Student t  distribution with = 5  d.o.f., 
or independent realizations from N  different shifted noncentral Student t  distributions with = 5  d.o.f. 
and with noncentrality parameters given by = 15 .ix  The shifts applied to the error components in the 
latter case make sure that the means of the noncentral Student t  distributions from which they were 
generated are zero. The artificial populations are shown in Figure 5.1 to 5.3. As for the real populations, we 
took the MU 284  Population of Sweden Municipalities of Särndal et al. (1992) (population size = 284N  
and considered the natural logarithm of RMT 85   Revenues from the 1985 municipal taxation (in millions 
of kronor) as study variable ,Y  and the natural logarithm of either P85 1985  population (in thousands) 
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or REV 84   Real estate values according to 1984 assessment (in millions of kronor) as auxiliary variable 
.X  The real populations are shown in Figure 5.4. 

 

 

 

 

 

 

 

 

 

Figure 5.1 Populations generated from = ,i iy   where ~i i.i.d. Student t  with = 5  (left panel) and ~i
indep. noncentral Student t  with = 5  and = 15 ix  (right panel). 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Populations generated from = 10 ,i i iy x   where ~i i.i.d. Student t  with = 5  (left panel) and 

~i indep. noncentral Student t  with = 5  and = 15 ix  (right panel). 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Populations generated from 1 4= 10 ,i i iy x   where ~i i.i.d. Student t  with = 5  (left panel) and 

~i indep. noncentral Student t  with = 5  and 15 ix   (right panel). 
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Figure 5.4 MU284 Population of Sweden Municipalities of Särndal et al (1992). = ln 85i iy RMT  for the thi  

municipality, and = ln 85i ix P  (left panel) or = ln 84i ix REV  (right panel). 

 
From each population we selected independently = 1,000B  samples. When sampling from the artificial 

populations we set the sample size equal to = 100n  in case of simple random without replacement sampling 
and, in case of Poisson sampling, we set the expected sample size equal to * = 100n  and made the sample 
inclusion probabilities proportional to the standard deviations of the shifted noncentral Student t  
distributions of above. When sampling from the real populations, we set the sample size equal to = 30n  in 
case of simple random without replacement sampling. In case of Poisson sampling, we set the expected 
sample size equal to * = 30n  and made the sample inclusion probabilities proportional to the absolute values 
of the residuals from the linear least squares regressions of the population iy  values on the population ix  
values. 

As for the definition of the nonparametric estimators, we used the Epanechnikov kernel function 

   2:= 0.75 1K u u  with = 0.15  or = 0.3  for the samples taken from the artificial populations, and 
the Gaussian kernel function     21 2:= 1 2 uK u e   with = 1  or = 2  for the samples taken from the 
real populations. In the tables with the simulation results the nonparametric estimators corresponding to the 
small and large bandwidth values are identified with an s  (small) or an l  (large) in the subscript. We 
resorted to the Gaussian kernel function for the samples taken from the real populations to avoid singularity 
problems that occur in case of holes in the sampled set of ix  values. Such holes are much more likely to 
occur with the real populations than with the artificial ones, because the distributions of the auxiliary 
variables are asymmetric in the former. In fact, in the artificial populations the nonparametric estimators 
were well-defined for all the = 1,000B  samples selected according to the simple random without 
replacement sampling design. For the Poisson sampling design, on the other hand, 47 among the = 1,000B  
simulated samples were such that the nonparametric estimators with the small bandwidth value could not 
be computed and just one of these samples was such that the nonparametric estimators with the large 
bandwidth value were undefined. The simulation results referring to the nonparametric estimators in 
Tables 5.2 and 5.5 account only for the samples where they were well-defined and thus they are based on a 
little less than = 1,000B  realizations. 

Tables 5.1 to 5.4 report the simulated bias (BIAS) and the simulated root mean square error (RMSE) for 
each distribution function estimator at different levels of t  at which  NF t  has been estimated: based, for 
example, on the values   ,bF t  = 1,2, , ,b B  taken on by the estimator   ,F t  
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The RMSE’s show that the estimators based on the modified fitted values are usually more efficient. In 
sampling from the real populations the gain in RMSE is sometimes quite large. As expected, the model-
based estimators tend to be more efficient than the generalized difference estimators in case of simple 
random without replacement sampling when both types of estimator are approximately unbiased. Under the 
Poisson sampling scheme the BIAS of the model-based estimators increases, but nonetheless they remain 
competitive. More variability in the sample inclusion probabilities would certainly change this outcome, 
because it would increase the BIAS of the model-based estimators. The simulation results should therefore 
not be seen to be in contrast with Johnson, Breidt and Opsomer (2008) who argue in favor of generalized 
difference estimators (called model-assisted estimators in their paper) as “a good overall choice for 
distribution function estimators”. 

 
Table 5.1 
Artificial populations (population size = 1,000 .N  BIAS and RMSE of distribution function estimators under 
simple random without replacement sampling. Sample size = 100n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 BIAS   RMSE  BIAS   RMSE BIAS   RMSE BIAS   RMSE BIAS   RMSE 

= ,i iy   with i   i.i.d. central Student t  with = 5  

 ˆ
sF t   6  216  -3  433  31  512  23  434  12  207 

 l̂F t   15  219  10  430  0  502  -10  429  3  213 

 *ˆ
sF t   6  209  -30  411  22  484  22  414  3  200 

 *
l̂F t   15  214  -9  409  10  477  1  407  -10  207 

 sF t   6  213  8  425  24  504  -4  430  8  207 

 lF t   6  210  10  417  22  494  -8  422  6  206 

 *
sF t   8  213  9  426  25  503  -5  432  5  206 

 *
lF t   7  210  10  417  23  494  -6  424  4  206 

 F t
   7  208  11  411  19  489  -5  417  6  200 

= ,i iy   with i   indep. noncentral Student t  with = 5  and = 15 ix  

 ˆ
sF t  26  225 33  376  8  477 26  419  33  209 

 l̂F t  52  236  23  374  -5  475  38  421  29  213 

 *ˆ
sF t  20  195  -29  351  -89  471  11  407  30  202 

 *
l̂F t  36  201  -11  357  -94  473  28  410  21  204 

 sF t  8  211  11  370  -7  473  4  415  16  211 

 lF t  5  208  8  367  -5  468  5  411  16  212 

 *
sF t  11  210  11  372  -11  475  4  416  15  210 

 *
lF t  7  208  11  368  -7  468  8  412  15  211 

 F t
  1  211  1  391  -6  477  8  399  18  210 
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Table 5.1 (continued) 
Artificial populations (population size = 1,000 .N  BIAS and RMSE of distribution function estimators under 
simple random without replacement sampling. Sample size = 100n  
 

   1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 BIAS   RMSE  BIAS   RMSE BIAS   RMSE BIAS   RMSE BIAS   RMSE 

= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

 ˆ
sF t  32  201  25  275  13  250  -14  264  -36  217 

 l̂F t  114  250  152  304  12  236  -180  312  -86  242 

 *ˆ
sF t  -50  165  12  226  51  216  26  230  13  172 

 *
l̂F t  -46  155  -14  199  69  195  23  211  17  156 

 sF t  -5  186  4  275  15  248  11  269  -2  201 

 lF t  -5  184  7  274  17  250  5  269  -2  196 

 *
sF t  -10  180  5  275  16  245  14  266  -1  200 

 *
lF t  -9  176  3  272  15  242  13  262  -1  194 

 F t
  -7  203  14  413  37  472  17  405  1  206 

= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

 ˆ
sF t  24  204  23  351  27  403  26  382  29  208 

 l̂F t  94  242  135  372  51  392  13  380  15  212 

 *ˆ
sF t  55  182  -9  301  -18  368  -23  359  37  202 

 *
l̂F t  124  210  -31  278  -63  363  -8  356  48  200 

 sF t  -2  194  -4  349  11  401  18  377  13  208 

 lF t  -2  190  -5  345  12  398  17  374  11  209 

 *
sF t  0  191  -5  352  14  401  20  376  13  207 

 *
lF t  -1  189  -6  344  13  397  18  375  12  209 

 F t
  -4  205  -5  401  21  470  24  401  14  207 

1 4= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

 ˆ
sF t  81  207  44  316  17  384  -2  376  23  203 

 l̂F t  138  258  183  356  35  367  -50  374  8  208 

 *ˆ
sF t  7  146  -14  274  16  352  -8  358  15  197 

 *
l̂F t  9  144  10  246  -2  323  -18  339  24  186 

 sF t  3  175  3  319  10  383  17  374  10  203 

 lF t  0  178  5  316  11  380  17  370  8  202 

 *
sF t  1  167  5  320  12  383  17  374  9  203 

 *
lF t  -1  164  6  316  13  379  20  368  8  201 

 F t
  4  209  11  412  25  477  27  422  10  200 

1 4= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

 ˆ
sF t  59  234  95  402  66  455  51  395  26  208 

 l̂F t  94  259  190  441  147  467  98  400  16  212 

 *ˆ
sF t  30  184  33  343  -123  435  -34  385  40  203 

 *
l̂F t  57  201  58  331  -148  437  2  382  34  203 

 sF t  1  205  7  386  12  449  17  392  13  208 

 lF t  -1  204  0  385  9  445  20  389  11  209 

 *
sF t  3  201  8  389  7  449  13  392  14  207 

 *
lF t  0  198  6  383  9  446  19  390  13  208 

 F t
  0  205  -2  399  9  463  25  398  14  208 
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Table 5.2 
Artificial populations (population size = 1,000 .N  BIAS and RMSE of distribution function estimators under 
Poisson sampling with sample inclusion probabilities i  proportional to the standard deviations of the 
noncentral Student t  distributions with = 5  d.o.f. and with noncentrality parameters = 15 .ix  Expected 
sample size * = 100n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 BIAS   RMSE  BIAS   RMSE BIAS   RMSE BIAS   RMSE BIAS   RMSE 

= ,i iy   with i   i.i.d. central Student t  with = 5  

 ˆ
sF t  -10  252  -11  593  -22  738  -20  743  6  357 

 l̂F t  -1  237  9  543  -15  621  -5  590  11  302 

 *ˆ
sF t  22  244  -29  485  -3  555  9  515  -17  297 

 *
l̂F t  14  238  -10  492  -5  564  14  524  -1  283 

 sF t  -6  247  0  579  -27  724  -40  736  3  349 

 lF t  -2  231  11  526  -1  598  -10  566  7  285 

 *
sF t  23  248  23  505  -4  562  -27  531  -20  304 

 *
lF t  12  240  20  504  1  573  -13  538  -6  287 

 F t
  -6  220  -7  543  -37  741  -44  929  -48  1,058 

= ,i iy   with i   indep. noncentral Student t  with = 5  and = 15 ix  

 ˆ
sF t  17  164  30  411  4  749  14  590  15  190 

 l̂F t  47  173  19  383  -1  602  57  498  15  187 

 *ˆ
sF t  21  175  -7  378  -89  554  -11  473  3  192 

 *
l̂F t  29  152  -3  367  -99  555  27  481  3  184 

 sF t  1  159  10  406  -11  737  -5  579  -2  194 

 lF t  1  158  9  388  -5  586  14  482  -1  192 

 *
sF t  14  186  27  409  -3  562  -17  487  -10  200 

 *
lF t  3  160  22  399  -11  566  -5  482  -2  193 

 F t
  -3  162  -7  451  -31  738  -29  980  -55  1,067 

= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

 ˆ
sF t  8  461  21  561  -12  259  -18  218  -30  164 

 l̂F t  78  429  183  451  2  248  -161  261  -79  189 

 *ˆ
sF t  -69  306  12  340  10  267  15  199  6  143 

 *
l̂F t  -59  294  4  302  56  205  15  172  17  124 

 sF t  -25  441  4  560  -10  257  9  219  5  153 

 lF t  -14  372  35  410  -10  262  4  219  5  151 

 *
sF t  -31  333  -2  386  -29  294  4  227  -1  161 

 *
lF t  -20  339  15  372  -10  259  11  215  4  151 

 F t
  -15  385  3  746  -37  917  -35  1,004  -48  1,070 

= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

 ˆ
sF t  -4  516  30  671  7  453  11  344  6  182 

 l̂F t  63  409  129  539  61  421  9  341  1  180 

 *ˆ
sF t  44  300  -29  433  -45  422  -47  345  12  180 

 *
l̂F t  107  314  -41  420  -60  397  -22  323  31  171 

 sF t  -27  502  8  667  -8  450  0  344  -8  185 

 lF t  -10  364  16  510  11  425  -2  345  -7  182 

 *
sF t  -6  325  -9  479  -25  447  -14  356  -10  187 

 *
lF t  -7  332  -9  489  -5  426  -3  344  -6  182 

 F t
  -16  349  -2  705  -21  886  -42  1,013  -61  1,069 
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Table 5.2 (continued) 
Artificial populations (population size = 1,000 .N  BIAS and RMSE of distribution function estimators under 
Poisson sampling with sample inclusion probabilities i  proportional to the standard deviations of the 
noncentral Student t  distributions with = 5  d.o.f. and with noncentrality parameters = 15 .ix  Expected 
sample size * = 100n  
 

   1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   
 BIAS   RMSE  BIAS   RMSE BIAS   RMSE BIAS   RMSE BIAS   RMSE 

1 4= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

 ˆ
sF t  36  497  47  629  9  418  -11  320  15  191 

 l̂F t  56  393  186  490  43  383  -48  308  13  184 

 *ˆ
sF t  -29  276  -19  383  -18  380  -43  335  -1  204 

 *
l̂F t  -29  274  10  355  7  336  -29  290  23  179 

 sF t  -30  475  12  630  4  421  7  317  6  191 

 lF t  -42  336  31  452  11  390  8  312  8  186 

 *
sF t  -31  306  5  429  -18  406  -14  344  -8  210 

 *
lF t  -28  308  14  424  7  387  5  315  7  191 

 F t
  -15  380  10  739  -23  891  -37  993  -47  1,064 

1 4= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

 ˆ
sF t  24  308  69  687  53  690  38  406  2  188 

 l̂F t  47  301  131  553  139  561  91  393  -2  186 

 *ˆ
sF t  15  237  2  435  -135  513  -59  411  12  186 

 *
l̂F t  27  235  18  435  -149  506  -5  374  13  179 

 sF t  -28  274  -8  673  4  688  3  403  -10  191 

 lF t  -29  251  -12  512  17  541  7  395  -9  188 

 *
sF t  -3  255  -12  481  -7  536  -20  422  -12  196 

 *
lF t  -12  251  -16  489  2  538  -4  399  -9  189 

 F t
  -10  267  -8  608  -4  860  -38  1,009  -63  1,066 

 

Table 5.3 
Real populations (population size = 284 .N  BIAS and RMSE of distribution function estimators under simple 
random without replacement sampling. Sample size = 30n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F    1= 0.95Nt F   
 BIAS   RMSE  BIAS   RMSE RBIAS   RMSE BIAS   RMSE BIAS   RMSE 

MU284 population with = ln 85Y RMT  and = ln 85X P  

 ˆ
sF t  133  421   339  625  180  529  -265  490  -187  439 

 l̂F t   52  380   67  588   45  555   -63  469   -87  370 

 *ˆ
sF t   8   81  -154  203   90  130   62  123   6   54 

 *
l̂F t   28   66  -170  212   69  112   57  109   2   50 

 sF t  -28  300   -24  497   8  483   -48  421   -38  319 

 lF t  -28  326   -96  569  -52  544   3  466   1  319 

 *
sF t   26  177   -11  302   0  244   1  308   -18  102 

 *
lF t   29  179   -10  302   -2  243   -1  308   -21  104 

 F t
   22  388   -10  771   9  864   5  731   -43  394 

MU284 population with = ln 85Y RMT  and = ln 84X REV  

 ˆ
sF t   143  449  303  643   138  554  -217  543  -166  446 

 l̂F t   62  395   62  611   36  582   -49  519   -71  376 

 *ˆ
sF t   -11  204  -32  300  -101  328   42  285   31  155 

 *
l̂F t   36  183  -40  288  -149  345   6  261   34  122 

 sF t   5  340  -22  548   4  557   -30  498   -23  332 

 lF t   -2  349  -78  599   -36  588   10  522   8  331 

 *
sF t   24  303   7  446   -6  494   2  439   -13  209 

 *
lF t   29  304   4  443   -6  495   -1  432   -18  192 

 F t
   34  395   1  766   16  880   9  744   -37  398 
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Table 5.4 
Real populations (population size = 284 .N  BIAS and RMSE of distribution function estimators under Poisson 
sampling with inclusion probabilities proportional to the absolute value of the residuals of the linear regression 
of the population iy  values on the population ix  values. Expected size * = 30n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   
 BIAS   RMSE  BIAS   RMSE RBIAS   RMSE BIAS   RMSE BIAS   RMSE 

MU284 population with = ln 85Y RMT  and = ln 85X P  

 ˆ
sF t   204  420   485   668  239   519  -412   626   -90   317 

 l̂F t   180  424   417   684  319   614  -239   548  -148   348 

 *ˆ
sF t   -41   97  -118   199  132   178   40   140   -71   104 

 *
l̂F t   11   70  -147   211   63   128   -25   122   -85   106 

 sF t   24  360   30   649   0   675   -68   614   58   368 

 lF t   9  390   -63   737  -64   774   -7   682   75   414 

 *
sF t   16  184   -14   307   36   283   16   323   -11   103 

 *
lF t   25  187   -15   312   30   286   14   328   -11   112 

 F t
   40  445   73  1,983   12  2,498   -43  3,094   -49  3,341 

MU284 population with = ln 85Y RMT  and = ln 84X REV  

 ˆ
sF t  349  660  1,185  1,373   890  1,059   458   654   -32   270 

 l̂F t  287  601  1,003  1,236   771   989   484   695   42   263 

 *ˆ
sF t  317  453   739   866   761   879   624   701   159   207 

 *
l̂F t  364  471   720   842   718   824   572   647   96   158 

 sF t   35  488   82   818   -31   772   7   634   -8   326 

 lF t   22  500   3   878   -98   852   40   704   27   354 

 *
sF t   37  317   32   498   -13   513   32   412   7   157 

 *
lF t   51  313   30   498   -30   518   12   411   -10   149 

 F t
   32  671   19  1,658  -172  2,354  -173  2,787  -191  2,935 

 
 

Consider finally the simulation results referring to the variance estimators of Section 4. Tables 5.5 to 5.8 
report the relative bias (RBIAS) and the relative root mean square error (RRMSE) for each of them. For 
example, based on the variance estimates    ,bV F t   = 1,2, , ,b B  obtained from the estimator    ,V F t   
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where  

        2

=1

1
:= .

B

B b N
b

V F t F t F t
B
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As a benchmark, we report also the RBIAS and RRMSE of the estimator  
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       ,

2
, ,

1
:= .i j i j

i j
i j s i j i j

V F t I y t I y t
N

  
  


     

for the variance of the Horvitz-Thompson estimator. 

 
Table 5.5 
Artificial populations (population size = 1,000 .N  RBIAS and RRMSE of variance estimators under simple 
random without replacement sampling. Sample size = 100n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 RBIAS   RRMSE  RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE 

= ,i iy   with i   i.i.d. central Student t  with = 5  

  sV F t   -1,092 32,442 -1,249 3,895 -1,714 3,077 -1,536 3,828 -824 34,601 

  lV F t   -576 31,726 -603 3,838 -1,122 3,374 -951 3,758 -441 33,055 

  *
sV F t   -1,091 32,579 -1,292 3,914 -1,708 3,085 -1,640 3,828 -802 34,809 

  *
lV F t   -556 31,881 -622 3,857 -1,148 3,361 -1,025 3,749 -425 33,184 

  V F t
   42 30,952 57 3,928 -592 3,776 -287 3,825 551 33,462 

= ,i iy   with i   indep. noncentral Student t  with = 5  and = 15 ix  

  sV F t   -1,900 29,622 50 4,707 -917 3,557 -998 3,695 -1,480 29,417 

  lV F t   -1,359 29,623 535 4,572 -395 3,881 -527 3,736 -1,277 28,267 

  *
sV F t   -1,832 30,119 -101 4,710 -991 3,530 -1,077 3,704 -1,398 29,927 

  *
lV F t   -1,362 29,713 465 4,559 -420 3,865 -591 3,718 -1,236 28,489 

  V F t
   -351 29,132 1,096 4,215 -78 4,074 574 4,067 -638 29,507 

= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

  sV F t   -2,170 11,624 -1,027 2,480 -816 3,274 -1,424 2,583 -1,946 8,681 

  lV F t   -1,534 11,605 -529 2,632 -148 2,975 -859 2,590 -1,151 9,015 

  *
sV F t   -1,765 12,107 -1,108 2,529 -714 3,366 -1,318 2,660 -1,905 8,658 

  *
lV F t   -1,062 11,948 -671 2,735 -212 3,291 -762 2,785 -1,048 8,590 

  V F t
   254 31,545 -52 3,726 136 4,152 267 3,992 35 30,264 

= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

  sV F t   -1,642 25,809 -855 3,541 -1,076 3,038 -1,081 3,030 -1,361 21,157 

  lV F t   -950 25,692 -323 3,509 -597 3,312 -617 3,164 -1,124 20,231 

  *
sV F t   -1,385 26,406 -997 3,505 -1,089 3,045 -1,096 3,033 -1,310 21,393 

  *
lV F t   -832 26,212 -292 3,556 -614 3,317 -716 3,154 -1,135 20,286 

  V F t
   105 29,621 507 3,857 209 4,244 425 3,910 -337 29,082 

1 4= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

  sV F t   -2,465 30,612 -1,121 4,594 -1,512 3,183 -1,958 3,076 -863 19,720 

  lV F t   -1,780 28,103 -663 4,420 -1,092 3,319 -1,491 3,140 -439 18,985 

  *
sV F t   -2,052 33,980 -1,150 4,619 -1,537 3,217 -1,948 3,127 -954 19,637 

  *
lV F t   -1,194 33,573 -691 4,472 -1,124 3,368 -1,438 3,228 -357 19,245 

  V F t
   -81 30,001 9 3,756 -110 3,996 -598 3,661 440 32,455 

1 4= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

  sV F t   -1,873 29,437 -758 3,759 -621 3,476 -709 3,599 -1,298 27,679 

  lV F t   -1,267 28,511 -284 3,661 -131 3,758 -321 3,552 -1,075 26,790 

  *
sV F t   -1,710 30,670 -928 3,741 -628 3,510 -777 3,603 -1,245 27,972 

  *
lV F t   -939 30,486 -270 3,764 -171 3,803 -375 3,581 -1,014 26,926 

  V F t
   178 29,640 599 3,816 533 4,324 590 3,874 -404 28,917 
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Table 5.6 
Artificial populations (population size = 1,000 .N  RBIAS and RRMSE of variance estimators under Poisson 
sampling with sample inclusion probabilities i  proportional to standard deviation of noncentral Student t  
distribution with = 5  d.f. and with noncentrality parameter = 15 .ix  Expected sample size * = 100n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 RBIAS   RRMSE  RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE 

= ,i iy   with i   i.i.d. central Student t  with = 5  

  sV F t   -3,306 65,777 -4,248 8,032 -5,093 4,242 -6,258 4,844 -5,652 32,037 

  lV F t   -2,048 47,035 -2,656 4,705 -2,434 3,116 -3,310 3,939 -3,092 29,380 

  *
sV F t   -3,362 36,855 -2,488 4,409 -1,910 3,147 -2,869 3,910 -4,329 23,247 

  *
lV F t   -2,696 39,509 -2,076 4,450 -1,768 3,163 -2,648 3,811 -3,244 26,343 

  V F t
   113 129,637 259 15,120 618 6,327 193 5,429 273 6,097 

= ,i iy   with i   indep. noncentral Student t  with = 5  and = 15 ix  

  sV F t   -740 125,975 -2,522 14,864 -5,466 3,658 -4,896 6,691 -1,551 83,262 

  lV F t   -391 83,047 -1,503 8,946 -2,428 4,099 -2,228 5,526 -1,154 54,680 

  *
sV F t   -3,260 58,072 -2,649 7,661 -2,260 3,936 -2,795 5,011 -2,116 48,739 

  *
lV F t   -716 77,935 -2,000 7,979 -1,934 4,235 -2,279 5,243 -1,243 52,531 

  V F t
   666 251,134 -564 26,553 -87 7,344 -2 6,029 407 6,610 

= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

  sV F t   -6,801 7,898 -6,470 4,281 -1,059 22,596 -398 32,401 -1,650 72,632 

  lV F t   -4,978 5,826 -2,898 4,473 -603 9,530 206 15,226 -1,157 40,466 

  *
sV F t   -4,520 6,691 -2,710 4,213 -3,245 6,723 -1,156 12,681 -2,458 32,907 

  *
lV F t   -4,226 6,206 -1,674 5,062 -978 7,874 55 12,781 -1,283 33,737 

  V F t
   -707 47,550 118 7,214 609 4,409 743 4,628 435 4,800 

= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

  sV F t   -7,398 8,847 -6,235 3,667 -2,493 8,171 -1,051 16,299 -1,440 71,943 

  lV F t   -4,548 9,463 -3,136 3,282 -1,187 4,246 -832 7,638 -982 45,182 

  *
sV F t   -3,902 11,727 -2,808 3,409 -2,411 3,501 -1,721 6,737 -1,671 41,389 

  *
lV F t   -3,598 10,771 -2,610 3,462 -1,284 3,988 -852 7,008 -972 43,017 

  V F t
   146 57,044 -42 8,708 520 4,784 214 4,686 390 5,085 

1 4= 10 ,i i iy x   with i   i.i.d. Student t  with = 5  

  sV F t   -7,731 8,568 -6,597 3,484 -2,442 7,775 -903 16,067 -1,967 56,480 

  lV F t   -4,611 9,378 -2,990 3,252 -874 4,119 -347 7,420 -1,310 35,051 

  *
sV F t   -4,747 11,909 -2,679 3,298 -1,896 3,272 -2,248 5,747 -3,382 27,222 

  *
lV F t   -4,223 10,380 -2,100 3,494 -788 3,731 -550 5,975 -1,795 29,856 

  V F t
   -428 47,038 -206 7,350 641 4,504 738 4,708 487 4,943 

1 4= 10 ,i i iy x   with i   indep. noncentral Student t  with = 5  and = 15 ix  

  sV F t   -4,936 40,696 -6,111 4,579 -5,549 4,035 -1,864 14,381 -1,509 84,892 

  lV F t   -3,004 29,404 -2,764 3,962 -2,436 3,606 -1,234 7,357 -1,103 53,875 

  *
sV F t   -4,328 27,704 -2,516 4,235 -2,671 3,332 -2,586 5,955 -1,939 47,601 

  *
lV F t   -3,454 28,267 -2,263 4,160 -2,329 3,574 -1,433 6,682 -1,171 50,985 

  V F t
   152 98,607 663 12,879 15 5,376 20 5,080 429 5,619 
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Table 5.7 
Real populations (population size = 284 .N  RBIAS and RRMSE of variance estimators under simple random 
without replacement sampling. Sample size = 30n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 RBIAS   RRMSE  RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE 

MU284 population with = ln 85Y RMT  and = ln 85X P  

  sV F t   -2,853  16,809  -1,700  3,037  -1,554  2,984  -1,100  4,633  -5,503  16,257 

  lV F t   -1,110  16,374  -1,827  2,760  -1,683  2,847   -927  4,387  -3,016  18,685 

  *
sV F t   -1,043  19,081   -91  7,728   -448  9,120   -484  7,715  -1,877  65,298 

  *
lV F t    -424  18,971   104  7,819   -382  9,110   -301  7,799  -1,058  62,968 

  V F t
    -186  29,720   -603  3,901   31  3,971   500  4,383   -74  28,418 

MU284 population with = ln 85Y RMT  and = ln 84X REV  

  sV F t   -2,283  16,303  -1,450  3,538  -945  3,526  -1,071  4,300  -4,832  19,401 

  lV F t   -1,095  16,755  -1,427  3,181  -938  3,390   -780  4,051  -2,753  20,551 

  *
sV F t   -1,737  14,642   -298  5,648  -546  5,282   -736  5,679  -3,564  38,344 

  *
lV F t   -1,174  14,111   -27  5,856  -422  5,452   -228  5,974  -1,433  43,923 

  V F t
    -307  28,421   -460  3,963  -344  3,850   112  4,235   -401  27,987 

 
Table 5.8 
Real populations (population size = 284 .N  RBIAS and RRMSE of variance estimators under Poisson 
sampling with inclusion probabilities proportional to the absolute value of the residuals of the linear regression 
of the population iy  values on the population ix  values. Expected size * = 30n  
 

    1= 0.05Nt F     1= 0.25Nt F     1= 0.50Nt F     1= 0.75Nt F     1= 0.95Nt F   

 RBIAS   RRMSE  RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE RBIAS   RRMSE 

MU284 population with = ln 85Y RMT  and = ln 85X P  

  sV F t   -3,502   26,342  -1,841  14,037  -2,691  12,087  -3,415   9,674  -5,932  26,823 

  lV F t   -2,159   27,610  -1,782  14,010  -2,840  12,002  -3,186  10,177  -4,455  26,802 

  *
sV F t    -434   22,455   515  15,503   -506  31,296  -1,460  23,496  -2,649  78,527 

  *
lV F t    -80   22,921   677  15,575   -280  33,294  -1,283  26,612  -1,597  72,166 

  V F t
    -294  361,991   522  75,891   43  48,764   -241  36,354   90  32,354 

MU284 population with = ln 85Y RMT  and = ln 84X REV  

  sV F t   -5,220   18,699  -3,667   8,749  -3,222   7,537  -3,018   9,279  -4,955  44,597 

  lV F t   -4,254   20,765  -3,100   9,180  -3,435   7,231  -3,196   8,540  -3,461  43,206 

  *
sV F t   -2,938   18,922  -1,110  11,828  -1,265   8,726  -1,040  10,963  -3,682  89,262 

  *
lV F t   -1,938   19,997   -699  12,641  -1,003   9,305   -599  11,545  -1,558  98,798 

  V F t
    -143  128,401   493  33,934   -255  18,473   -91  17,904   327  16,463 

 
As can be seen from the simulation results, the variance estimators suffer from large variability. This 

problem is shared by the variance estimator for the Horvitz-Thompson estimator, which occasionally 
exhibits extremely large RRMSE’s. It is further interesting to note that while the RBIAS of the variance 
estimators for the generalized difference estimators is almost always negative and at times rather large in 
absolute value, the RBIAS of the variance estimator for the Horvitz-Thompson estimator is in most of the 
considered cases positive. 
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Appendix 
 

Let   denote a sequence of real numbers. Throughout this appendix we shall indicate by  
1 2, , , ki i iO   

rest terms that may depend on 
1 2
, , ,

ki i ix x x  and that are of the same order as the sequence   uniformly 
for 1 2, , , .ki i i U  Formally,    

1 2 1 2, , ,, , , =
k ki i i i i iR x x x O   if  

    
1 2

1 2, , ,

, , , = .sup
k

k

i i i
i i i U

R x x x O 


   

Moreover, to simplify the notation, we shall write im  in place of  im x  and 2
i  in place of  2 .ix  

 

Bias of the model-based Kuo estimator 
 

 

        

   

         

           

       

,

,

22,0 1,0

21,1 0,2 2
,

22 2,02

0

1ˆ =

1
=

1
=

2

2

=
2

N i j j j i i
i s j s

i j j j i i
i s j s

i i i i i i
i s

i i i i i i j j i
j s

b

a

E F t F t E w I t m I t m
N

w G t m x G t m x
N

G t m x m G t m x m
N

G t m x m G t m x w x x o

N n
G t m x x m x G

N

 








 

 






        

 

    

    

     

  









       

               

1,0

1,1 0,2 22 .s

t m x x m x

G t m x x m x G t m x x h x dx o 

 

    

  

 

Bias of the generalized difference Kuo estimator 
 

Write  

 

       

   

,

,

1
=

1
1 .

N i j j j i i
i s j s

i j j j i i
i s j si

F t F t w I t m I t m
N

w I t m I t m

 

 


 

 


        



         
  



 

 



  

Similar steps as those seen for  F̂ t  show that  
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                   

               

22 2,0 1,02

0

1,1 0,2 2

=
2

2 ,

b

N a

N n
E F t F t G t m x x m x G t m x x m x

N

G t m x x m x G t m x x h x dx o








     

    


  

where  

         1:= 1 .s sh x h x x h x     

 
Variance of the model-based Kuo estimator 
 

 

        

   

   

1 2

1 2

,

2
, ,2

2
2

1 2

1 1ˆvar = var

1
=

1

= ,

N i j j j i
i s j s i s

i j i j j j j j
i s i s j s

i i i i
i s

F t F t w I t m I y t
N N

w w G t m x G t m x
N

G t m x G t m x
N

A A


  

  




     

 

    

     



 





  

where  

 

   

   

           

  

1 2

1 2

2
1 , ,2

2

2
,2

2
2

1

1
:=

1
=

1
=

i j i j j j j j
i s i s j s

j j j j i j
j s i s

b

s s sa

A w w G t m x G t m x
N

G t m x G t m x w
N

N n
G t m x x G t m x x h x h x h x dx

n N

O n 

  

 



    

        

             





 



  

and 

 

   

         

2
2 2

2
2 1

1
:=

1
= .

i i i i
i s

b

sa

A G t m x G t m x
N

N n
G t m x x G t m x x h x dx O n

N n N






    

           





  

Thus, 
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                

          

2
2

2
12

1ˆvar

1
.

b

N s s sa

b

sa

N n
F t F t G t m x x G t m x x h x h x h x dx

n N

N n
G t m x x G t m x x h x dx O n

N n N
 

              

           




  

 

Variance of the generalized difference Kuo estimator 
 

Note that  

            1 1
, ,

1
= 1 1N j i j i j i j i

j s i s i s i s

F t F t I y t w w I y t
N

  

   

             
        

so that  

 

          

 

1 1
, ,

1 2

1
var = var 1 1

1
var

= ,

N j i j j i j i
j s i s i s

i
i s

F t F t I y t w w
N

I y t
N

B A

  

  



            

  
 



  



  

  

where 2A  is the same as in the variance of  ˆ ,F t  and where  

 

     

       

     

1 1
1 , ,

2

2 1 1
, ,2

2

2 1
, ,2

1
:= var 1 1

1
= 1 1

1
= 1 1

j i j j i j i
j s i s i s

j j j j i j j i j i
j s i s i s

j j j j i j j i j
j s i s i s

B I y t w w
N

G t m x G t m x w w
N

G t m x G t m x w w O
N

 

 

 

 

  

 

  



  

           

            

               

  

  

  

 

 

   

           

  
  

1

2
2

1 1

1 1
1

1
=

= .

b

s s sa

n

N n
G t m x x G t m x x h x h x h x dx

n N

O n n

A O n n

  

  



 

 

             

 

 



  

Thus,  

             1 1ˆvar = var .N NF t F t F t F t O n n         

 

Bias of the model-based estimator with modified fitted values 
 

Let ,
ˆ := ,ˆ i i k kk s
m w m

  , , ,:= 1i j j j i jc w w   and  
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         , , , ,
,,

1 ˆ ˆ:= 1 .ˆ ˆi j i j i j j i i j k i k k
k s k ji j

d c t m m m m m w w
c


 

 
        

 
   

Observe that   1
, ,=i j i jw O n   so that  

 ˆ ˆj j iy m t m     

is (asymptotically, as soon as , > 0i jc  equivalent to  

 , .j i i jt m d      

Since ,i jd  does not depend on ,j  it follows that  

 

     
   

  

,

,

,

=ˆ ˆ

= ,

= .

j j i j i i j

j i i j k

i i j j

E I y m t m E I t m d

E E I t m d k j

E G t m d x



 

     

   

 

 (A.1) 

Now, using the fact that  

           , , , , ,
,

ˆ ˆ= 1 ,ˆ ˆi j i j i j j i i j k i k k i j
k s k j

d c t m m m m m w w R d
 

          (A.2) 

where 

      4 3 21 4 1
, ,= ,i j i jE R d O n n     (A.3) 

it is seen from (A.1) that  

 

     
       

        

,

1,0
,

12,0 2 4
, ,

=ˆ ˆ

=

1
.

2

j j i i i j j

i j i j i j

i j i j i j

E I y m t m E G t m d x

G t m x G t m x E d

G t m x E d o n  

    

  

   

 (A.4) 

Thus,  

 

         

   

     

        

  

*
,

,

1,0
, ,

12,0 2 4
, ,

14
1 2 3

1ˆ = ˆ ˆ

1
=

1

1

2

:= .

N i j j j i i
i s j s

i j i j i i
i s j s

i j i j i j
i s j s

i j i j i j
i s j s

E F t F t E w I y m t m I y t
N

w G t m x G t m x
N

w G t m x E d
N

w G t m x E d o n
N

C C C o n

 

 

 

 

 



 




      

 

    

 

   

   









 (A.5) 
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Consider first 1C  and note that  

 

   

       

        

1 ,

20,2 2
,

2 0,22 2

0

1
:=

1
=

2

= .

i j i j i i
i s j s

i i i j j i
i s j s

b

sa

C w G t m x G t m x
N

G t m x w x x o
N

N n
G t m x x h x dx o

N




 



 

 

    

  


 



 



  

Consider next 2 .C  (A.2) and (A.3) imply that  

 

           
      

    
      

   

3 21
, , ,

2 2
, , , ,

3 22 1
, ,

2

, , ,

2 2
, ,

ˆ ˆ= 1 ˆ ˆ

=

=

i j i j i j j i i i j

j j i j i j j k k j i i k k i
k s k s

i j i j

j j i j i j i j k k j
k s

i j k k j i k k i
k s k s

E d c t m m m m m O n n

w w t m m w x x m w x x

o O n n

w w t m m m w x x

m w x x w x x

 

  



 





 

       

      

  

     

    
 



 



 

    3 22 1
, ,i j i jo O n n    

  

so that  

     3 22 1
2 2, 2, 2,= ,a b cC C C C o O n n          

where  

 

      

         

             

  

1,0
2, , , ,

1,0 1
, , ,

1,0

0

1 1 1

1
:=

1
=

1 0
=

a i j i j j j i j i
i s j s

i i i i j j j i j
i s j s

b

s sa

C w G t m x w w t m
N

G t m x t m w w w O n
N

N n K
G t m x x t m x h x h x dx

n N

O n n


 

  

 



 

  

  

   

 
    

 



 



  

with  
1 2

1
:= ,K u du

  

 

       

 

21,0
2, , ,

2

1
:=

=

b i j i j j i j k k j
i s j s k s

C w G t m x m m w x x
N

o 

  

    
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and 

 

       

         

 

2 21,0
2, , , ,

2 21,0 2
, , ,

2

1
:=

1
=

= .

c i j i j i j k k j i k k i
i s j s k s k s

i i i i j j k k j i k k i
i s j s k s k s

C w G t m x m w x x w x x
N

G t m x m w w x x w x x o
N

o





   

   

    
 

    
 

  

      

Consider finally 3 .C  Note that from (A.2) and (A.3)  

       2 22 2 4
, , , ,=i j j k i k k i j

k s

E d w w O n   



    (A.6) 

so that  

 

        

          

               

2 22,0 2 4
3 , , ,

2 12,0 2 4
, , ,

12,0 2 4
2
0

1
=

2

1
=

2

1
=

i j i j j k i k k
i s j s k s

i i i i j j k i k
i s j s k s

b

s sa

C w G t m x w w O n
N

G t m x w w w o n O
N

N n
G t m x x x h x h x dx o n O

n N

  

  

 
  

 



  



  



   

   

 
    

 

  



  

with      
1 1

1 1
:= .K v K u v K u dudv

 
   

Substituting the above expansions for 1 2,C C  and 3C  into (A.5) yields finally  

 

           

             

          

  

2 0,2* 2

0

1,0 1

0

2,0 2 1
2
0

12

ˆ =

1 0

.

b

N sa

b

s sa

b

s sa

N n
E F t F t G t m x x h x dx

N

N n K
G t m x x t m x h x h x dx

n N

G t m x x x h x h x dx

o n







 

 




 








 

   

   

 







  

 

Bias of the generalized difference estimator with modified fitted values 
 

Let ,i jd  be the design-weighted counterpart of ,i jd  and observe that  

 

        

      

*
, ,

1
, ,

1
=

1 .

N i j j i i j i
i s j s

i i j j i i j i
i s j s

F t F t w I t m d I y t
N

w I t m d I y t



 

 



 


     




       





 

 



 (A.7) 
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Adapting the proof that leads to (A.4), it is seen that the asymptotic expansion in (A.4) holds also with ,i jd  
in place of , .i jd  Adapting the remaining part of the proof finally leads to  

 

           

             

          

  

2 0,2* 2

0

1,0 1

0

2,0 2 1
2
0

12

=

1 0

,

b

N a

b

sa

b

sa

N n
E F t F t G t m x x h x dx

N

N n K
G t m x x t m x h x h x dx

n N

G t m x x x h x h x dx

o n







 

 




 








 

   

   

 









  

where  

         1:= 1 .s sh x h x x h x     

 
Variance of the model-based estimator with modified fitted values 
 

Write  

        *
, ,

1ˆ =N i j j i i j i i
i s j s i s

F t F t w I t m d I t m
N

 
  


       

 
    

and observe that  

     *
1 2 3

ˆvar = ,NF t F t D D D     

where  

     
1 2 1 1 2 2

1 2

1 , , , ,2

1
:= cov , ,i j i j j i i j j i i j

i s i s j s

D w w I t m d I t m d
N

 
  

        

     
1 1 2 2 1 1 1 1 2 2 2 2

1 2 1 2 2 1

2 , , , ,2
,

1
:= cov ,i j i j j i i j j i i j

i s i s j s j s j j

D w w I t m d I t m d
N

 
    

          

and where 3 2:=D A  from the variance of the model-based Kuo estimator. 

Consider 1.D  Observe that  

 
       

     
1 1 2 2 1 1 2 2

1 1 2 2

, , , ,

, ,

cov , =

.

j i i j j i i j i i j i i j j

i i j j i i j j

I t m d I t m d E G t m d t m d x

E G t m d x E G t m d x

           

    
 (A.8) 

Since  

    
1 1 2 2 1 2 1 2, , , , ,i i j i i j i i i j i jt m d t m d t m t m d d             
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it follows from (A.6) that  

        
1 1 2 2 1 2 1 2

1 22
, , , ,= .i i j i i j j i i j i i jE G t m d t m d x G t m t m x O n             (A.9) 

Moreover, from (A.1), (A.4) and (A.6) it follows that  

        1 22
, ,= .i i j j i j i jE G t m d x G t m x O n        (A.10) 

Using (A.9) and (A.10) to get an asymptotic expansion for the covariance in (A.8), and substituting the 
outcome into the definition of 1D  yields  

 

    

  

     

 

1 2 1 1 2 2

1 2

1 2 1 1 2 2

1 2

1 1 2 2

1 2 1 2

1 2

1 , , , ,2

, , , ,2

, ,

, ,2

1
:= cov ,

1
=

1
=

i j i j j i i j j i i j
i s i s j s

i j i j i i j i i j j
i s i s j s

i i j j i i j j

i j i j i i j
i s i s j s

D w w I t m d I t m d
N

w w E G t m d t m d x
N

E G t m d x E G t m d x

w w G t m t m x G t
N

 
  

  

  

     

    

     

   





    

  

      

           

    

1 2

1 22 1 1

2
1 22 1 1

,2

2
2

1 1 21 1

1
=

1
=

.

i j i j

j j j j i j
j s i s

b

s s sa

m x G t m x

O n n n

G t m x G t m x w O n n n
N

N n
G t m x x G t m x x h x h x h x dx

n N

O n n n n

 

 

   

 

 

 

  

   

 

        
 

             

  

 



 (A.11) 

Consider next  

     
1 1 2 2 1 1 1 1 2 2 2 2

1 2 1 2 2 1

2 , , , ,2
,

1
:= cov , .i j i j j i i j j i i j

i s i s j s j s j j

D w w I t m d I t m d
N

 
    

          

Since  

     
1 1 1 1 2 2 2 2, ,cov , = 0j i i j j i i jI t m d I t m d         

if 
1 2

> 2 ,i ix x   it follows that rest terms 
1 1 2 2, , , ,i j i jR  whose contribution to the above covariance is of order 

 
1 1 2 2, , ,i j i jO   for some sequence   that goes to zero, contribute to 2D  a term of order  .O   Now, let  

  
1 2 1 1 2 2

1
, , , , ,:= ,i j j i j j j i jb c w w    

 
1 2 1 1 2 2, , , , ,:=i j j i i j i j j ja t m d b      
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and note that  

 
1 1 2 1 2 2, , , , ,= .i i j i j j i j j jt m d a b      

Since 
1 2, ,i j ja  does not depend on 

1j
  and 

2
,j  it follows that  

 

    
     

   

 

1 1 1 1 2 2 2 2

1 1 1 2 1 1 2 2 2 2 2 1 2 2 1 1

1 2 1 2

2 2 1 2 2 1 2 1

2 1 2 1

1 1 2 1 1 2 1

, ,

, , , , , , , , 1 2

*
, , ,

, , , ,

*
, , ,

, , , ,

= , ,

=

j i i j j i i j

j i j j i j j j j i j j i j j j k

i i j j
i j j i j j j j

i i j j
i j j i j j j

E I t m d I t m d

E E I a b I a b k j j

E G a b x dG x

E G a b x dG





 

    

 







     

    

  
 

 



  

    

2

1 2 1 2 1 2 1 2 1 2

* *
, , , , , , ,

j

i i j j j i i j j j

x

E G x G x



 


 
 



 (A.12) 

where  

 1, 1 2 2 2 1 1 1 2

1 2 1 2

1 1 2 2 2 1

, , , , ,*
, , ,

, , , ,

:= .
1

i j j i j j i j j

i i j j
i j j i j j

a a b

b b





  

Note that the two expectations in the third and fourth lines in (A.12) are the same if 1i  and 1j  are 
interchanged with 2i  and 2 ,j  respectively. Thus it suffices to analyze the first expectation. Using the fact 
that  

    
1 2 1 2 1 1 1 1 1 2 2 2 1 2 1 2

* *
, , , , , , , , ,= ,i i j j i i j i j j i j i i j jt m d b t m R          

where  

      
1 2 1 2 1 2 1 2

4 3 21 4 * 1
, , , , , ,= ,i i j j i i j jE R O n n       

it is seen that  

 

   

   
         
             

 

1 2 1 2

2 2 1 2 2 1 2 1

1 1 2 2

1 1 2 2 1 1 1 1 2 2

1

2 2 1 1 2 2 2 2 2 2 1 1

1

*
, , ,

, , , ,

1,0
, , ,

1,0 1,0
, , ,

2,0

=

1

2

i

i i j j
i j j i j j j j

i j i j

i j i j i j i j j i

t m

i j i j i j i j i j j j

i j

E G a b x dG x

G t m x G t m x

G t m x G t m x E d b t m

G t m x G t m x E d G t m x b dG x

G t m x


 

 







  
 

 

      

    

 





             
         

  

1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2

2,02 2
, ,

1,0 1,0
, ,

14
, , ,

1

2

,

i j i j i j i j i j

i j i j i j i j

i i j j

G t m x E d G t m x G t m x E d

G t m x G t m x E d d

o n  

   

  

 

(A.13) 

and that  
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    

   
         
         

       

   

1 2 1 2 1 2 1 2 1 2

1 1 2 2

1 1 2 2 1 1 1 1 2 2

2 2 1 1 2 2 2 2 1 1

1 1 2 2 1 1

2 2

* *
, , , , , ,

1,0
, , ,

1,0
, , ,

2,0 2
,

2,0

=

1

2

1

2

i i j j j i i j j j

i j i j

i j i j i j i j j i

i j i j i j i j j i

i j i j i j

i j

E G x G x

G t m x G t m x

G t m x G t m x E d b t m

G t m x G t m x E d b t m

G t m x G t m x E d

G t m x G t

 

 

      

      

  

     
         

  

1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2

2
,

1,0 1,0
, ,

14
, , , .

i j i j

i j i j i j i j

i i j j

m x E d

G t m x G t m x E d d

o n  

  

 

 (A.14) 

Using the asymptotic expansions in (A.4), (A.13) and (A.14) yields  

 

    
       
         

  

1 1 1 1 2 2 2 2

2 2 2 2 1 1 1 1 1 1 1 2 2 2

1 1 2 2 1 1 2 2

1 2 1 2

, ,

1,0 1,0
, , , , , ,

1,0 1,0
, ,

14
, , ,

cov ,

=

cov ,

,

j i i j j i i j

i j i j j i j i j i j j i j

i j i j i j i j

i i j j

I t m d I t m d

G t m x b G t m x b

G t m x G t m x d d

o n

 

 

  

     

  

  

 

 (A.15) 

where  

  , := .
it m

i j jdG x  


   

Now observe that  

   
1 2 1 2 2 1 2

2
, , , , , ,=i j j j j i j i j jb w w O n     

and that  

 

    

     

1 1 2 2 1 1 2 2

1 21 1 2 2

1 1 2 2 1 2 1 2

2
, , , , , ,

; ,, ,

22
, , , , , , ,

1
cov , =

=

i j i j j k i k j k i k k
k s k j ji j i j

j k i k j k i k k i i j j
k s

d d w w w w
c c

w w w w O n



 

 





 

  




  

so that  

  5 1
2 2 2= 2 ,a bD D D o n     (A.16) 

where  



Survey Methodology, June 2016 117 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

     

        

   
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=
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=
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i j i j i j j j i j i j
i s i s j s j s

j j j j j j i j
j s j s i

D w w G t m x w w
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G t m x w w
N



 


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  

 

  



 
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 
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2

2
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 

 

  

   
  

 

 

  
 (A.17) 

and 
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1
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
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    



   





 

  

 

   
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   
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 
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 



 

   

 (A.18) 

Putting everything together finally yields  

 

                

         

2
* 2

2
2 5 1

1ˆvar =

1
.

b

N s s sa

b

sa

N n
F t F t G t m x x G t m x x h x h x h x dx

n N

N n
G t m x x G t m x x h x dx o n

N n N
 

             

            




  

 
Variance of the generalized difference estimator with modified fitted values 
 

In view of (A.7), we shall show that  

            * * 1ˆvar = varN NF t F t F t F t o n    (A.19) 

by showing that  
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         1 1
, ,

1
var 1 = .i i j j i i j i

i s j s

w I t m d I y t o n
N

  

 


      

 
    (A.20) 

To prove (A.20) observe that the variance on the left hand side may be written as  

 1 2 3 4 52 2 ,E E E E E      

where  

        
1 2 1 2 1 2 2

1 2

1 1
1 , , , ,2 1

1
:= 1 1 cov , ,i j i j i i j i i j j i i j

i s i s j s

E w w I t m d I t m d
N

    

  

              

 

       
1 2 2 1 2 1 1 1 1 2 2 2 2

1 2 1 2 2 1

1 1
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1
:= 1 1 cov , ,i j i j i i j i i j j i i j

i s i s j s j s j j

E w w I t m d I t m d
N

    

    

            

  

     21
3 2

1
:= 1 var ,i i i

i s

E I t m
N

 



     

        
1

1 1
4 , ,2

1
:= 1 1 cov , ,i j i j j i i j j j

i s j s

E w I t m d I t m
N

    

 

          

and finally  

        
1 1 2 1 1 2 2

1 2 2

1 1
5 , ,2

,

1
:= 1 1 cov , .i j i i j i i j i i

i s i s j s j i

E w I t m d I t m
N

    

   

            

To begin with, consider 1E  and 2 .E  Observe that except for (i) the fact that the summation indexes 1i  
and 2i  range over s  instead of the complement of s  in ,U  (ii) the presence of the factors  11 i

  and (iii) 
the fact that the , ’si jw  and the , ’si jd  are substituted by their design-weighted counterparts ,i jw  and , ,i jd  

1E  and 2E  are the same as 1D  and 2D  from     *ˆvar ,NF t F t  respectively. Adapting the proofs that 
lead to the asymptotic expansions for 1D  and 2D  shows thus that  

            
2

22 1 1
1

1
= 1

b

sa

N n
E G t m x x G t m x x x h x dx o n

n N
                     

and that  

  5 1
2 = .E o n    

As for 3E  it is immediately seen that  

  1
3 1= ,E E o n   
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while in order to deal with 4E  and 5E  we shall need asymptotic expansions for  

     
1 1 2 2,cov ,j i i j i iI t m d I t m       (A.21) 

for the case when 2=j i  and the case when 2 .j i  In the former case we may employ arguments similar to 
those for proving (A.9) and (A.10), which lead to  
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
  

When 2 ,j i  on the other hand, the covariance in (A.21) is different from zero only if 
2j ix x    or 

1 2
,i ix x    and adapting (A.12) it can be shown that  
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where , ,i j ka  and , ,i j kb  are the design-weighted counterparts of , ,i j ka  and , , ,i j kb  respectively. Adapting also 
(A.4) to account for the design-weights, it is seen that  
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  





       

   



 
  

so that (cfr. the steps that lead to the asymptotic expansions of the terms 1D  and 2D  in the variance of the 
model-based two-step estimator)  

  1
4 1=E E o n   

and  

  5 1
5 = .E o n    

This completes the proof of (A.20) and thus (A.19) follows. 
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A note on regression estimation with unknown  
population size 

Michael A. Hidiroglou, Jae Kwang Kim and Christian Olivier Nambeu1 

Abstract 

The regression estimator is extensively used in practice because it can improve the reliability of the estimated 
parameters of interest such as means or totals. It uses control totals of variables known at the population level 
that are included in the regression set up. In this paper, we investigate the properties of the regression estimator 
that uses control totals estimated from the sample, as well as those known at the population level. This estimator 
is compared to the regression estimators that strictly use the known totals both theoretically and via a simulation 
study. 

 
Key Words: Optimal estimator; Survey sampling; Weighting. 

 
 

1  Introduction 
 

Regression estimation has been increasingly used in large survey organizations as a means to improve 

the reliability of the estimators of parameters of interest (such as totals or means) when auxiliary variables 

are available in the population. A comprehensive overview of the regression estimator in survey sampling 

can be found in Cassel, Särndal and Wretman (1976) and Fuller (2009) among others. We next illustrate 

how the regression estimator can be used to estimate the total, = ii U
Y y

  where  = 1, ,U N  denotes 

the target population. A sample s  of expected size n  is selected according to a sampling plan  p s  from 

,U  where i  is the resulting probability of inclusion of the first order. In the absence of auxiliary variables, 

we use the Horvitz-Thompson estimator given by ˆ = i ii s
Y d y   (Horvitz and Thompson 1952) where 

= 1i id   is referred to as the weight survey associated with unit .i  The regression estimator is given by  

  REG
ˆ ˆ ˆ ˆ= ,X X BY Y



    (1.1) 

where = ,ii UX x  ˆ = ,i ii s
d X x   2= 1, , , ,i i pix x


x   and B̂  is a p  dimensional vector of 

estimated regression coefficients, which is computed as a function of the observed variables  ,i iy
x  in 

the sample .s  

Note that the components of the vector of population total X  are known for each of the corresponding 

components variables in the vector  2= 1, , ,i i pix x


x   used to compute ˆ .B  However, there are instances 

when we have more observed auxiliary variables in the sample than in the population. Assume that the 

sample has q  observed variables  > ,q p  and that the p  variables in the population are a subset of the 

q  variables observed in the sample. Furthermore, suppose that some of the extra q p  variables in the 

sample are well correlated with the variable of interest .y  Can these extra variables be incorporated in the 



122 Hidiroglou, Kim and Nambeu: A note on regression estimation with unknown population size 
 

 
Statistics Canada, Catalogue No. 12-001-X 

regression estimator so as to make it more efficient? Singh and Raghunath (2011) attempted to respond to 

that question for the case where = 1.q p   Their extra variable in the sample was the intercept. They used 

it to estimate the unknown population size N  by ˆ = .ii s
N d

  

In this article, we compare the estimator proposed by Singh and Raghunath (2011) to other regression 

estimators when N  is known or unknown. In Section 2, we describe standard regression estimators for 

estimating totals when N  is known as well as the regression proposed by Singh and Raghunath (2011) 

when N  is unknown. In Section 3, an alternative estimator is proposed for the case where N  is unknown. 

A simulation study is carried out in Section 4, to illustrate the performance of the various estimators studied 

in terms of bias and mean square error. Overall conclusions and recommendations are given in Section 5. 

 
2  Regression estimators 
 

Under general regularity conditions (Isaki and Fuller 1982; Montanari 1987), an approximation to the 
regression estimator (1.1) is  

  REG
ˆ ˆ= ,X X BY Y



    (2.1) 

where B  is the limit in probability of B̂  when both the sample and the population sizes tend to infinity. For 

large samples, the variance of regression estimator (1.1) can be studied via (2.1). Note that REGY  is unbiased 

under the sampling plan  p s  and can be re-expressed as:  

 REG = ,X B i i
i s

Y d E



   (2.2) 

where = .i i iE y  x B  

The design variance for REGŶ  can be approximated by  

  REG
ˆAV = ,ji

p ij
i U j U i j

EE
Y

 


   (2.3) 

where =ij ij i j      and ij  is the second order inclusion probability for units i  and .j  Both the model-

assisted (Särndal, Swensson and Wretman 1992) and the optimal-variance (Montanari 1987) approaches 

can be used to estimate .B  They both yield approximately unbiased estimators. In the case of the model-

assisted approach, the basic properties (bias and variance terms) are valid even when the model is not 

correctly specified. Under the optimal-variance approach no assumption is made on the variable of interest.  

The model-assisted estimator of Särndal et al. (1992) assumes a working model between the variable of 

interest  y  and the auxiliary variables   .x  The working model is denoted by : =i i im y   x β  where 

β  is a vector of p  unknown parameters,   = 0,m i iE  x    2= ,m i i iV  x  and  Cov , , =x xm i j i j   

0, .i j  Under this approach, B  in equation (2.1) is the ordinary least squares estimator of β  in the 

population and it is given by  

 
1

GREG = ,B x x xi i i i i i
i U i U

c c y




 

  
   
  
   (2.4) 
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where 2= .i ic   This yields the following estimator for the total Y  

  GREG GREG
ˆ ˆ ˆ ˆ= ,X X BY Y



    (2.5) 

where 

 
1

GREG
ˆ = .B x x xi i i i i i i i

i s i s

c d c d y




 

  
   
  
   (2.6) 

The optimal estimator of Montanari (1987), obtained by minimizing the design variance of  

  REG
ˆ ˆ= ,Y Y



  X X B   

is 

  OPT OPT
ˆ ˆ= ,X X BY Y



    (2.7) 

where 

 

    1

OPT

1

ˆ ˆ ˆ= Cov ,

= .

B X X

xx xj ji i
ij ij

i U j U i U j Ui j i j

V Y

y



  



   

  
        

 
 (2.8) 

The optimal estimator for the total Y  is estimated by  

  OPT OPT
ˆ ˆ ˆ ˆ= ,X X BY Y



    (2.9) 

where 

 

1

OPT
ˆ = .

xx x
B ij j ij ji i

i s j s i s j sij i j ij i j

y


   

   
         

   (2.10) 

Note that the computation of the regression vectors requires that the first component that defines them 

is invertible. We can ensure this by reducing the number of auxiliary variables that are input into the 

regression if not much loss in efficiency of the resulting regression estimator is incurred. If, on the other 

hand, there is a significant loss in efficiency, then we can invert these singular matrices using generalised 

inverses. 

As mentioned in the introduction, not all population totals may be known for each component of the 

auxiliary vector .x  The regression normally uses the auxiliary variables for which a corresponding 

population total is known. Decomposing ix  as  *1, i

x  where  *
2= , , ,i i pix x


x   Singh and Raghunath 

(2011) proposed a GREG-like estimator that assumes that the regression is based on an intercept and the 

variable * ,x  even though only the population total of the *x  is known.  

For the case that N  is not known and that the population total of *x  is known, their estimator is  
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  * *
SREG 2,GREG
ˆ ˆ ˆ ˆ= ,X X BY Y



    (2.11) 

where * *= ii UX x  and * *ˆ = .i ii s
d X x  The regression vector of estimated coefficients 2,GREGB̂  is 

obtained from  GREG 1,GREG 2,GREG
ˆ ˆ ˆ= ,B

B B  given by (2.6). The approximate design variance for SREGŶ  takes 

the same form as equation (2.3), with *
2,GREG= ,i i iE y  x B  where  

      
1

* * * * * *
2,GREG = i i N i N i i N i

i U i U

c c y




 

    
 
 B x X x X x X   

and * *= .N ii U
N

X x  

The properties of (2.11) can be obtained by noting that  

 
 
     

* *
SREG 2,GREG

* * * *
2,GREG 2,GREG 2,GREG

ˆ ˆ ˆ ˆ=

ˆ ˆ ˆ ˆ= .

Y Y Y Y

Y Y



 

 

  

   

     

X X B

X X B X X B B
  

Since  1 2
2,GREG 2,GREG

ˆ = pO nB B  under some regularity conditions discussed in Fuller (2009, 

Chapter 2), the last term is of smaller order. Thus, ignoring the smaller order terms, we get the following 

approximation  

 SREG
ˆ ,i i i

i s i U

Y Y d E E
 

     (2.12) 

where *
2,GREG= .i i iE y  x B  Thus, SREGŶ  is approximately design-unbiased. The asymptotic variance can 

be computed using  

 
2

= .i i i i i i
i s i U i s i U

V d E E E d E E
   

        
    
      

As we can see, the asymptotic variance can be quite large unless = 0.ii U
E

  
 

Remark 2.1 If = ,i iy a bx  we have  SREG
ˆ ˆ=Y Y N N a   and this implies that  SREG

ˆ =V Y  

 2 ˆ .a V N   This means that if  ˆ > 0,V N   we can artificially increases  2 ˆ ,a V N   the variance of SREG
ˆ ,Y  

by choosing large values of .a  
 

Note that the optimal regression estimator using  *
2= , , px x


x   is also approximately design 

unbiased because  

 
 
     

* * * *
OPT OPT

* * * * * * *
OPT OPT OPT

ˆ ˆ ˆ ˆ=

ˆ ˆ ˆ ˆ= ,

Y Y Y Y

Y Y



 

 

  

   

     

X X B

X X B X X B B
  

where *
OPTB  is obtained by replacing ix  by *

ix  in equation (2.8). Since  * * 1 2
OPT OPT

ˆ = pO nB B  under 

some regularity conditions discussed in Fuller (2009, Chapter 2), ignoring the smaller order terms we get  
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  * * * *
OPT OPT

ˆ ˆ ˆ .Y Y Y Y


     X X B   

The asymptotic variance of *
OPTŶ  is smaller than the one associated with SREG

ˆ .Y  The reason for this is 

that the optimal estimator minimizes the asymptotic variance among the class of estimators of the form  

  * *ˆ ˆ ˆ ˆ= X X BBY Y


    (2.13) 

indexed by ˆ .B  

 
3  Alternative regression estimator 
 

We now consider an alternative estimator that does not use the population size  N  information. Rather, 

it uses the known inclusion probabilities i  provided that they are known for each unit in the population. 

Given that = ,ii U
n


  we can use  *= ,i i i

z x  as auxiliary data in the model  

 = ,i i iy e z   

where  
ind

20, .i ie    This means that the incorporation of the variance structure ic  of the error in the 

regression vector is given by 2= .i ic d   The resulting estimator is given by  

  KREG KREG
ˆ ˆ ˆ ˆ= ,Z Z BY Y



    (3.1) 

with = ,ii UZ z  ˆ = i ii s
d

Z z  and  

 
1

KREG
ˆ = .B z z zi i i i i i i i

i s i s

c d c d y




 


 
 
   (3.2) 

This estimator corresponds exactly to the one given by Isaki and Fuller (1982). 
 

Remark 3.1 By construction,  

  2
KREG

ˆ = .i i i i
i s

d y 



 z B z 0   

Since i  is a component of ,iz  we have  KREG
ˆ = 0,i i ii s

d y 


 z B  this leads to  

 KREG KREG
ˆ ˆ= .Y Z B   

Thus, KREGŶ  is the best linear unbiased predictor of 
=1

=
N

ii
Y y  under the model  

 *
1 2= ,i i i iy e   x β   

where  20, .i ie    
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Note that KREGB̂  can be expressed as GREGB̂  by setting 2=i ic d   and = .i ix z  Thus, the proposed 

regression estimator can be viewed as a special case of GREG estimator. Using the argument similar to 

(2.12), we obtain  

 * *
KREG

ˆ ,i i i
i s i U

Y Y d E E
 

     (3.3) 

where *
KREG=i i iE y  z B  and 

 
1

KREG = .i i i i i i
i U i U

c c y




 


 
 
 B z z z   

The proposed estimator is approximately unbiased and its asymptotic variance  

  
**

KREG = ji
i i i ij

i s i U j U i j

EE
V d y 

  

      
 z B   

is often smaller than the asymptotic variance of Singh and Raghunath (2011)’s estimator. 

The optimal version of KREGŶ  uses  *= ,i i i

z x  as auxiliary data. It is given by  

  KOPT KOPT
ˆ ˆ ˆ ˆ= ,Z Z BY Y



    (3.4) 

where KOPTB̂  is obtained by substituting ix  by iz  in equation (2.10). 
 

Remark 3.2 For fixed-size sampling designs, we have   = 0.p i ii s
V d


  In this case, the optimal 

regression coefficient vector    1

KOPT
ˆ ˆ ˆ= Cov ,p pV Y



  B Z Z  cannot be computed because the variance-

covariance matrix  ˆ
pV Z  is not invertible. Thus, the optimal estimator with  *= ,i i i

z x  reduces to 

the optimal estimator (2.9) only using * .ix  
 

Remark 3.3 For random-size sampling designs,   0.p i ii s
V d


   In this case, all of the components of 

 *= ,i i i

z x  can be used in the design-optimal regression estimator (2.9). 
 

A difficulty with using the optimal estimator KOPTŶ  is that it requires the computation of the joint 

inclusion probabilities :ij  these may be difficult to compute for certain sampling designs. An estimator 

that does not require the computation of the joint inclusion probabilities is obtained by assuming that 

= .ij i j    We refer to this estimator as the pseudo-optimal estimator, POPT
ˆ .Y  It is given by  

  POPT POPT
ˆ ˆ ˆ ˆ= ,Z Z BY Y



    (3.5) 

where 

 
1

POPT
ˆ = i i i i i i i i

i s i s

c d c d y




 


 
 
 B z z z   
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and 

 = 1.i ic d    

In general, the pseudo-optimal estimator POPTŶ  should yield estimates that are quite close to those 

produced by KREGŶ  when the sampling fraction is small. Note that POPTŶ  is exactly equal to the optimal 

estimator KOPTŶ  in the case of Poisson sampling. In this sampling design the inclusion probabilities of units 

in the sample are independent. The approximate design variance for KREG
ˆ ,Y  KOPTŶ  and POPTŶ  have the same 

form as the one given in equation (2.3) with the ’siE  respectively given by KREG
ˆ ,i iy  z B  KOPT

ˆ
i iy  z B  

and POPT
ˆ .i iy  z B  

 
4  Simulations 
 

We carried out two simulation studies. The first one used a dataset provided in the textbook of Rosner 

(2006) and the second one was based on an artificial population created according to a simple linear 

regression model. The first simulation assessed the performance of all of the estimators with respect to 

different sample schemes while the second simulation study focused on the impact of changing the intercept 

value in the model. 

The parameter of interest for these two simulations is the total of the variable of interest :y  

= .ii U
Y y

  All estimators were used  GREG OPT POPT SREG KREG
ˆ ˆ ˆ ˆ ˆ, , , ,Y Y Y Y Y  and KOPTŶ  with the available 

auxiliary data. Table 4.1 summarizes the auxiliary data and the variance structure of the errors (when 

applicable) associated with the estimators used in the two studies. 

 
Table 4.1 
Estimators used in simulation 
 

N  known  N  unknown  

GREG2Ŷ  as defined by (2.5) with  2= 1,i ix x  and =ic c  SREG1Ŷ  as defined as special case of (2.11) with  *
2=i ixx   

OPT2Ŷ  as defined by (2.9) with  2= 1,i ix x  OPT1Ŷ  as defined by (2.9) with  2=i ixx   

OPT3Ŷ  as defined by (2.9) with  2= 1, ,i i ix x  KREG2Ŷ  as defined by (3.1) with  2= ,i i ix z  and 2=i ic d   

POPT3Ŷ  as defined by (3.5) with  2= 1, ,i i ix z  and = 1i ic d   KOPT2Ŷ  as defined as (3.4) with  2= ,i i ix z   

 POPT2Ŷ  as defined as (3.5) with  2= ,i i ix z  and = 1i ic d    

 
The performance of all estimators was evaluated based on the relative bias, the Monte Carlo relative 

efficiency and the approximate relative efficiency. Expressions of these quantities as shown below. 
 

1. Relative bias: 
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                     EST
EST

=1

ˆ100ˆRB = ,
R

r

i

Y Y
Y

R Y


  (4.1) 

where  EST
ˆ

rY  represents one of the estimators presented in Table 4.1 as computed in the thr  

Monte Carlo sample. 

2. Monte Carlo Relative efficiency 

                    
 

MC EST
EST

MC GREG2

ˆMSE
ˆRE = ,

ˆMSE

Y
Y

Y
 (4.2) 

where 

                     2

MC EST EST
=1

1ˆ ˆMSE = .
R

r
r

Y Y Y
R

   

The RE  measures the relative efficiency of the estimator ESTŶ  with respect to GREG2
ˆ .Y  

3. Approximate Relative efficiency  

                    
 

EST
EST

GREG2

ˆAV
ˆAR = ,

ˆAV
p

p

Y
Y

Y
 (4.3) 

where 

                  EST
ˆAV = ,ji

p ij
i U j U i i

EE
Y

 


    

is the approximate variance of ESTŶ  with EST= .x Bi i iE y   The approximate relative efficiency 

 AR  measures the relative gain in efficiency of ESTŶ  with respect to GREG2Ŷ  using the population 

residual obtained by Taylor linearisation. It is expected that RE  and AR  give comparable 
results. However, as we will see, this may not be the case.  

 

4.1  Simulation 1 
 

The population was the dataset (FEV.DAT) available on the CD that accompanies the textbook by 

Rosner (2006). The data file contains 654 records from a study on Childhood Respiratory Disease carried 

out in Boston. The variables in the file were: age, height, sex (male female), smoking (indicates whether the 

individual smokes or not) and Forced expiratory volume (FEV). Singh and Raghunath (2011) used the same 

data set. The parameter of interest is the total height  y  of the population. The variable age  1x  was used 

as auxiliary variable in the regression. The variable FEV  2x  was chosen as the size variable to compute 

probabilities of selection for the sampling schemes that are considered in this simulation. The two variables 

sex and smoking were discarded from the simulation. Table 4.2 summarizes the central tendency measures 

of the three variables in the population. For each variable, the mean and median were similar. This indicates 

that the three variables have a symmetrical distribution. 
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Table 4.2 
Descriptive statistics of 1,y x  and 2x  
 

 Min Q1 Median Mean Q3 Max 

y  46 57 61.5 61.14 65.5 74 

1x  3 8 10 9.931 12 19 

2x  0.79 1.98 2.55 2.64 3.12 5.79 

 
Figure 4.1 displays the relationship between the variable of interest y  and the auxiliary variable 1.x  The 

relationship between Height  y  and the age  1x  appears to be linear but does not go through the origin. 

The Pearson correlation coefficient between y  and 1x  was 0.79. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1 Relationship between the variable of interest Height  and the auxiliary variable .Age  

 
The objective of this simulation study was to evaluate the performance of the estimators presented in 

Table 4.1 using different sampling designs. We considered the Midzuno, the Sampford and the Poisson 

sampling designs. The variable 2x  were used as a size measure for the three sampling schemes to compute 

the inclusion probabilities. These sampling designs are as follows: 

1. Midzuno sampling (see Midzuno 1952): The first unit is sampled with probability ip  and the 

remaining 1n   units are selected as a simple random sampling without replacement from the 

remaining 1N   remaining units in the population. The probabilities of selection ip  for unit i  
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is given by 2 2= .i i ii U
p x x

  The first order inclusion probability for unit i  is given by 

      1= 1 1 .i iN N n p n      

2. Sampford sampling (see Sampford 1967): The algorithm for selecting the sample is carried out 

as follows. The first unit is selected with probability 2 2=i i ii U
p x x

  and the remaining 

1n   units are selected with replacement with probability   1= 1 .i i inp p   If any of the 

units are selected more than once, the procedure is repeated until all elements of the sample are 

different. The probability of inclusion of the first order is given by = .i inp  

3. Poisson sampling: Each unit is selected independently, resulting in a random sample size. The 

probability of selecting unit i  is 2 2= .i i ii U
p x x

  The inclusion probability associated with 

unit i  is = .i inp  A good description of this procedure can be found in Särndal et al. (1992).  

 

The total of = ii U
Y y

  was the parameter of interest. Based on each of these sampling schemes, we 

selected = 2,000R  Monte Carlo samples of size = 50.n  Estimators in Table 4.1 were then computed for 

each sample. The performance of the estimators was then assessed using the Relative Bias, the Monte Carlo 

Relative Efficiency and the Approximate Relative Efficiency as described by the equations (4.1), (4.2) and 

(4.3) respectively. 

 
4.2  Simulation 1 results 
 

Simulation results are presented in Table 4.3. All estimators studied are approximately unbiased, and 

their relative bias is smaller than 1%. We discuss separately the approximate relative efficiency (AR) and 

the relative efficiency (RE) of the estimators when the population size N  is known and unknown. 
 

Case 1: Population size N  is known  

We compare the AR  and the RE  for the following estimators in Table 4.3: GREG2
ˆ ,Y OPT2

ˆ ,Y OPT3Ŷ  and POPT3Ŷ  

for each of the three sampling designs. We can do so for almost all these estimators except for OPT3Ŷ  for the 

Midzuno and the Sampford sampling schemes. In this case, we cannot compute OPT3B  for a similar reason 

as the one described in Remark 3.2. 

On the basis of both AR  and RE,  the pseudo-optimal estimator OPT3Ŷ  is the most reliable estimator 

regardless of the sampling scheme. It is close to the optimal estimator OPT2Ŷ  only in terms of AR.  Both the 

RE  and the AR  of the optimal estimator OPT2Ŷ  were not as close as expected under the Midzuno sampling 

design. The poor behaviour of the RE  of the optimal estimator OPT2Ŷ  has also been observed by Montanari 

(1998). Figure 4.2 explains what is happening. We observe that most estimates obtained for the optimal 

estimator OPT2Ŷ  for the 2,000 Monte Carlo samples are close to the mean. However, in some samples, the 

estimates are quite far from it. This is in contrast to POPT3Ŷ  where the values are tightly centered around the 

mean: note that the associated RE  and AR  are quite close to one another. 
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Figure 4.2 Scatter plots of Monte Carlo estimators under the Midzuno Sampling Design. 

 
The optimal estimator OPT3Ŷ  is equivalent to the pseudo-optimal estimator POPT3Ŷ  in the case of Poisson 

sampling scheme. Recall that the optimal estimator OPT2Ŷ  used  2= 1,i ix x  as auxiliary data. The optimal 

estimator OPT3Ŷ  used  2= 1, ,i i ix x  as auxiliary data. The addition of the i  has significantly improved 

the efficiency of the optimal estimator for the Poisson sampling scheme.  

Singh and Raghunath (2011) used SREG1Ŷ  when N  was known, but did not include it as a control count. 

Nonetheless, they observed that SREG1Ŷ  was quite comparable to GREG2Ŷ  in terms of AR  and RB  for the 

Midzuno sampling design. The reason for this is that this sampling scheme is quite close to simple random 

sampling without replacement. However, using these two measures, SREG1Ŷ  is by far the worst estimator for 

the other two sampling schemes.  
 

Case 2: Population size N  is unknown 

Five estimators are reported in Table 4.3 for this case. However, as KREG2Ŷ  is quite close to KOPT2Ŷ  and 

POPT2
ˆ ,Y  we comment on the results obtained for SREG1

ˆ ,Y  OPT1Ŷ  and KREG2
ˆ .Y  Estimators SREG1

ˆ ,Y  OPT1Ŷ  and 

KREG2Ŷ  were very similar in terms of relative efficiency and approximate relative efficiency for the Midzuno 

sampling design. For the Sampford sampling scheme, OPT1
ˆ ,Y  KREG2Ŷ  and POPT2Ŷ  were comparable and 

slightly better than SREG1
ˆ .Y  Under the Poisson sampling scheme, OPT1Ŷ  and KREG2Ŷ  outperformed SREG1

ˆ .Y  

We can also see that SREG1Ŷ  was very inefficient with an RE  at least 10 times larger than those associated 

with KREG2Ŷ  or POPT2
ˆ .Y  Note that KREG2Ŷ  was better than OPT1

ˆ :Y  this is reasonable as KREG2Ŷ  uses two 

auxiliary variables whereas OPT1Ŷ  uses the single auxiliary variable 2 .ix  
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Table 4.3 
Comparison of estimators in terms of relative bias and relative efficiencies 
 

  Population size known Population size unknown 
  

GREG2Ŷ  OPT2Ŷ  OPT3Ŷ  POPT3Ŷ  SREG1Ŷ  OPT1Ŷ  KREG2Ŷ  KOPT2Ŷ  POPT2Ŷ  

Midzuno  RB (in %)  0.08 0.04  0.07 0.07 0.07 0.07  0.07 
 RE  1.00 5.84  0.54 0.94 0.93 0.93  0.93 
 AR  1.00 0.55  0.55 0.94 0.93 0.93  0.93 

Sampford  RB (in %)  0.11 0.11  0.07 -0.01 0.07 0.02  0.02 
 RE  1.00 0.59  0.58 14.72 13.69 13.55  13.56 
 AR  1.00 0.55  0.56 15.77 14.39 14.39  14.40 

Poisson  RB (in %)  0.11 0.11 0.08 0.08 0.09 0.14 0.16 0.16 0.16 
 RE  1.00 0.96 0.57 0.57 160.47 15.49 13.85 13.85 13.85 
 AR  1.00 0.96 0.55 0.56 180.36 16.73 14.40 14.39 15.73 
 

Note: We do not provide results for OPT3Ŷ  and KOPT2Ŷ  for the Midzuno and Sampford designs because the variance-covariance 
matrix is not invertible. 

 
4.3  Simulation 2 
 

The performance of the estimators was assessed for different values of the intercept in the model. We 

restricted ourselves to the Poisson sampling design to illustrate Remark 2.1 in Section 2: that is the efficiency 

of SREGŶ  deteriorates as the intercept gets bigger. The population was generated according to the following 

model  

 = .i i iy a x e   (4.4) 

The ie  values were generated from a normal distribution with mean 0 and variance 2 = 1.i  The x  

values were generated according to a chi-square distribution with one degree of freedom. Three populations 

of size 5,000N   were generated using (4.4) with different values of the intercept .a  Note that x  values 

were re-generated for each population. The three populations were labelled as A, B and C depending on the 

intercept used. The intercept values were set to 3, 5 and 10 respectively for populations A, B and C. From 

each of these populations we drew = 2,000R  Monte Carlo samples with expected sample size = 50n  

using the Poisson sampling design. The first inclusion probability was set equal to =i i ii U
nz z


   for 

each unit .i  The z  values were generated according to the following model  

 = 0.5 ,i i iz y u   

where iu  was a random error generated according to an exponential distribution with mean k  equals to 0.5 

or 1. 

 
4.4  Simulation 2 results 
 

Numerical results are given in Table 4.4 for = 1k  and Table 4.5 for = 0.5.k  All estimators are 

approximately unbiased with relative biases smaller than 1%.  
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Case 1: Population size N  is known  

As expected, both optimal estimators OPT2Ŷ  and OPT3Ŷ  are more efficient than GREG2
ˆ .Y  The optimal estimator 

OPT2Ŷ  based on  21, ix   is slightly better than GREG2
ˆ .Y  The inclusion of the additional variable i  resulting 

in OPT3Ŷ  yields significant gains in terms of RE  and AR :  these gains decrease as the intercept gets larger. 

Once more, SREG1Ŷ  is quite inefficient, and as noted in Remark 2.1, this inefficiency increases as the intercept 

gets larger. The previous observations are valid regardless of .k  The efficiency of both optimal estimators 

OPT2Ŷ  and OPT3Ŷ  decreases as k  gets smaller. 
 

Case 2: Population size N  unknown 

The most efficient estimator is KREG2
ˆ .Y  It outperforms OPT1Ŷ  as it uses more auxiliary variables. Estimator 

SREG1Ŷ  is by far the most inefficient one. As the intercept in the population model increases, the relative 

efficiency (both in terms of RE  and AR  is fairly stable for KREG2
ˆ .Y  On the other hand, the relative 

efficiencies associated with SREG1Ŷ  and OPT1Ŷ  deteriorate rapidly, as the intercept in the population model 

increases. The effect of k  on the efficiencies of the estimators is as described when the population size is 

known. 

 
Table 4.4 
Relative bias and relative efficiencies of the estimators for = 1k  under Poisson sampling design 
 

Intercept  Population size known Population size unknown 
  

GREG2Ŷ  OPT2Ŷ  OPT3Ŷ  POPT3Ŷ  SREG1Ŷ  OPT1Ŷ  KREG2Ŷ  KOPT2Ŷ  POPT2Ŷ  

3 RB (in %)  0.23 0.38 0.56 0.56 0.18 0.77 0.22 0.22 0.22 
 RE  1.00 0.95 0.67 0.67 7.72 5.42 0.94 0.94 0.94 
 AR  1.00 0.94 0.60 0.98 7.08 5.01 0.85 0.85 0.91 

5 RB (in %)  0.04 0.07 0.18 0.18 -0.01 0.67 -0.07 -0.07 -0.07 
 RE  1.00 0.99 0.76 0.76 23.91 16.63 1.50 1.50 1.50 
 AR  1.00 0.98 0.70 0.73 23.48 16.20 1.45 1.45 1.52 

10 RB (in %)  -0.01 -0.02 0.06 0.06 -0.57 0.79 -0.02 -0.02 -0.02 
 RE  1.00 1.00 0.80 0.80 88.30 67.47 2.20 2.20 2.20 
 AR  1.00 0.99 0.73 0.74 97.92 66.13 2.15 2.15 2.20 

 
Table 4.5 
Relative bias and relative efficiencies of the estimators for = 0.5k  under Poisson sampling design 
 

Intercept  Population size known Population size unknown 
  

GREG2Ŷ  OPT2Ŷ  OPT3Ŷ  POPT3Ŷ  SREG1Ŷ  OPT1Ŷ  KREG2Ŷ  KOPT2Ŷ  POPT2Ŷ  

3 RB (in %)  0.13 0.25 0.42 0.42 -0.18 0.54 -0.02 -0.02 -0.02 
 RE  1.00 0.99 0.89 0.89 8.42 5.93 1.78 1.78 1.78 
 AR  1.00 0.96 0.83 0.95 8.30 5.83 1.79 1.79 2.10 

5 RB (in %)  0.03 0.09 0.22 0.22 0.72 1.49 0.18 0.18 0.18 
 RE  1.00 1.00 0.91 0.91 24.35 17.39 3.26 3.26 3.26 
 AR  1.00 0.98 0.88 0.94 23.83 16.41 3.15 3.15 3.54 

10 RB (in %)  0.06 0.07 0.12 0.12 0.33 1.42 0.13 0.13 0.13 
 RE  1.00 1.00 0.96 0.96 98.69 73.93 6.26 6.26 6.26 
 AR  1.00 0.99 0.91 0.92 98.65 66.20 5.89 5.89 6.24 
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5  Conclusions 
 

The regression estimator can be quite efficient if the auxiliary data that it uses are well correlated with 

the variable of interest. Furthermore, it requires that population totals corresponding to the auxiliary 

variables are available. In this article, we investigated the behavior of the regression estimator  SREGŶ  

proposed by Singh and Raghunath (2011). This estimator uses estimated population count as a control total 

and the known population totals for the auxiliary variables. We compared it to the Generalized Regression 

estimator  GREG
ˆ ,Y  its optimal analogue  OPT

ˆ ,Y  and to an alternative estimator  KREGŶ  that uses the first-

order inclusion probabilities and auxiliary data for which the population totals are known. As the optimal 

regression estimator requires the computation of second-order inclusion probabilities, we also included a 

pseudo-optimal estimator  POPTŶ  that does not require them. We investigated the properties of these 

estimators in terms of bias and efficiency via a simulation that included various sampling designs, and 

different values of the intercept in the model for a generated artificial population. We compared the results 

when the population size was known and unknown.  

When the population size is known, the most efficient estimator is the optimal estimator OPTŶ . However, 

since this estimator can be unstable, the pseudo-optimal estimator POPTŶ  is a good alternative to it. This is 

in line with Rao (1994) who favoured the optimal estimator POPTŶ  over the Generalized Regression 

estimator GREG
ˆ .Y  The Singh and Raghunath (2011) proposition to use SREGŶ  is not viable, as it can be quite 

inefficient. When the population size is not known, the alternative regression estimator KREGŶ  is the best 

one to use. 
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Register-based sampling for household panels 

Jan A. van den Brakel1 

Abstract 

In the Netherlands, statistical information about income and wealth is based on two large scale household panels 
that are completely derived from administrative data. A problem with using households as sampling units in the 
sample design of panels is the instability of these units over time. Changes in the household composition affect 
the inclusion probabilities required for design-based and model-assisted inference procedures. Such problems are 
circumvented in the two aforementioned household panels by sampling persons, who are followed over time. At 
each period the household members of these sampled persons are included in the sample. This is equivalent to 
sampling with probabilities proportional to household size where households can be selected more than once but 
with a maximum equal to the number of household members. In this paper properties of this sample design are 
described and contrasted with the Generalized Weight Share method for indirect sampling (Lavallée 1995, 2007). 
Methods are illustrated with an application to the Dutch Regional Income Survey. 

 
Key Words: Probabilities proportional to size; Indirect sampling; Consistent weighting of persons and households; 

Regional Income Survey; Generalized Weight Share method. 

 
 

1  Introduction 
 

Statistics Netherlands conducts two important sample surveys to describe the income and wealth 
situation of the Dutch population. First, the Dutch Regional Income Survey (RIS) provides a description of 
the income and wealth situation, being accurate at a very detailed regional level. This is accomplished by 
publishing accurate income distributions for persons and households at a level of neighbourhoods on a 
yearly basis, using a large sample based on a small set of the main income components derived in a relatively 
straightforward manner from tax administration. Second, the Income Panel Survey (IPS) publishes yearly 
income and wealth characteristics of the Dutch population at a more aggregated regional level. This survey 
is based on a large set of variables using all possible income components of households that can be derived 
from the available administrative data in the Netherlands. The derivation of the variables for this survey is 
more time consuming. Therefore the sample size of this survey is considerably smaller than the RIS. Both 
surveys are designed as a household panel where both person and household based variables about income 
and wealth are observed. 

Households are often considered as the sampling units in panels conducted to collect information at the 
level of households and persons (Lynn 2009; Smith, Lynn and Elliot 2009). Such panels are used for 
longitudinal analysis as well as the production of cross-sectional estimates. Using households as the 
sampling units in a panel design has, however, some major disadvantages due to their instability over time. 
As time proceeds, households might disintegrate, join or split, new members might enter the households 
and other members might leave the households for different reasons. Kalton and Brick (1995) explain that 
these changes can affect the selection probabilities of the households in the sample. Reconstruction of the 
correct inclusion probabilities of the sampling units is essential to derive correct weights for analysis 
purposes, in particular if the panel is used for producing cross-sectional estimates. 
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Consider a panel where households are selected by means of simple random sampling, say at time 0.t   
In many panels, people that enter a sampled household at a later stage are also included in the panel. These 
individuals are called cohabitants by Lavallée (1995). As time proceeds, more and more cohabitants are 
included in the sample and disturb the equal probability design that is used to select the initial sample 
(Kalton and Brick 1995). Consider for example household A, which is selected in the sample when the panel 
started at 0.t   If after some period of time this household merges with another household B, which was 
initially not selected for the panel at time 0,t   then the selection probability of this new household is the 
sum of the selection probabilities of households A and B at time 0.t   Not correcting for differences in 
selection probabilities due to the gradual increasing share of cohabitants in the sample leads to biased 
inference. Ernst (1989) proposes the Weight Share method to overcome these problems. Lavallée (1995) 
extends this method to the Generalized Weight Share method as a solution for drawing inference about 
target populations that are sampled through the use of a frame that refers to a different population.  

The RIS and the IPS are both based on a panel and are conducted to collect information about households 
and persons. To avoid the problems with panels using households as sampling units, an alternative design 
is applied. Instead of households, so-called core persons are drawn with an equal probability design, who 
are followed over time. All household members belonging to the household of a core person at each 
particular period are included in the sample. This results in a sample design where households are drawn 
proportionally to the household size and households can be selected more than once, but with a maximum 
that is equal to the household size. This design is an application of indirect sampling (Lavallée 1995, 2007; 
Deville and Lavallée 2006). 

The purpose of this paper is to describe a sample design with an estimation technique that is useful for 
panels that collect information at person and household level. The methodology employed in this paper is 
particularly useful for register based sampling, since the core persons are included in the sample indefinitely. 
The sample design is also useful for Web panels, but might require some form of rotating design to avoid 
problems with panel attrition. This means that sampling units enter the panel, are observed multiple times 
and leave the panel according to a pre-specified pattern (Smith et al. 2009). The main contribution of this 
paper to the existing literature is that explicit expressions for the variance of the target parameters are derived 
using inclusion expectations instead of inclusion probabilities under the aforementioned sample design. A 
measure of the minimum accuracy for an estimated income distribution is proposed and explicit expressions 
for the minimum sample size are derived. The RIS is used throughout the paper to illustrate the described 
sampling techniques. 

The paper is organized as follows. A description of the sample design of the RIS is given in Section 2. 
In Section 3 the concept of inclusion expectations is introduced as a convenient practical alternative for 
inclusion probabilities. Subsequently, first and second order inclusion expectations are derived for the 
proposed sampling design. These inclusion expectations are required to construct the   estimator or 
Horvitz-Thompson (HT) estimator (Narain 1951; Horvitz and Thompson 1952). It is also shown that the 
same weights can be derived as a special case of the Generalized Weight Share method for indirect sampling 
(Lavallée 1995, 2007). The key target variables for the RIS are estimated income distributions. In Section 4 
formulas for the minimum required sample size are derived based on a precision measure for estimated 
income distributions. Since households can be selected more than once, an expression for the expected 
number of unique households is derived in Section 4. The estimation procedure of the RIS is based on linear 
weighting using the general regression (GREG) estimator (Särndal, Swensson and Wretman 1992) and is 
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described in Section 5. The integrated weighting method of Lemaître and Dufour (1987), Nieuwenbroek 
(1993) and Steel and Clark (2007) is applied to obtain equal weights for persons belonging to the same 
household. In Section 6 variance approximations for the GREG estimator under the proposed sample design 
are derived. An application to the RIS is provided in Section 7. The paper concludes with a discussion in 
Section 8. 

 
2  Sampling design  
 

The target population of the RIS is all natural persons residing in the Netherlands. The sample frame is 
a register containing all natural persons aged 15 years and over residing in the Netherlands as far as they are 
known to the Tax Office. From this register a stratified simple random sample of so-called core persons is 
drawn with a sample fraction of 0.16. Neighbourhoods are used as the stratification variable. Although an 
equal probability design is used, stratified sampling is useful to eliminate the variation between strata and 
to meet minimum precision requirements for the individual strata. The Netherlands is divided in about 2,830 
neighbourhoods with an average size of 5,000 persons aged 15 years and over.  

The RIS has been conducted as a panel since 1994. A first requirement for correct cross-sectional 
inference with this panel is to have correct first and second order inclusion expectations for the sampling 
units, which are derived in Section 3. A second requirement for correct cross-sectional inference is to keep 
the panel representative of the target population. To this end, it is determined on a yearly basis which part 
of the population has entered the target population of the RIS through birth and immigration. From this 
subpopulation, a stratified simple random sample of core persons with a sample fraction of 0.16 is selected. 
These core persons are added to the panel of the RIS, with the purpose to maintain a representative sample. 

Neighbourhoods are the most detailed level of publication for the RIS and are therefore used as strata. 
In Section 4 expressions for minimum sample sizes based on precision requirements are derived. Core 
persons remain in the panel indefinitely. On each survey occasion, all members of the core person’s 
household are also included in the sample. Persons that leave the household of a core person also leave the 
panel. New persons entering the household of the core person are followed in the panel as long as this person 
stays in the household of a core person. Information about the household composition of the core persons 
are obtained from the Municipal Basis Administration (MBA), which is the Dutch government’s registry of 
all residents in the country. Dutch citizens are required by law to report changes in their demographics to 
their municipalities. The MBA is used in combination with the information from tax administrations to 
identify household members of the core persons in the sample. 

The sample design results in a sample of households where the households are selected with probabilities 
proportional to the number of persons aged 15 years or older belonging to a household at the current period. 
Households can be selected more than once, but with a maximum that equals the number of household 
members aged 15 year or older. In this paper the term core persons is used to refer to the persons that are 
initially included in the sample and are followed over time in the panel. The term persons is used to refer to 
the sample obtained if all the household members at a particular period are included in the sample. 

The IPS applies a similar sample design with a substantially smaller sampling fraction. The RIS, like the 
IPS, are register based samples which implies that for each person that is included in the sample, the 
necessary information for the RIS variables is obtained from the registers of the Tax Office. Core persons 



140 van den Brakel: Register-based sampling for household panels 
 

 
Statistics Canada, Catalogue No. 12-001-X 

and their household members are therefore not aware that they are included in these samples. This has the 
advantage that there are no problems with selective non-response and panel attrition. This also makes it 
possible to include the core persons indefinitely. In the case of a panel where sampling units must complete 
a questionnaire, some kind of rotating design would be required in order to avoid selectivity bias due to 
panel attrition. Also, problems with measurement bias associated with data collection where sampling units 
are asked to complete a questionnaire do not occur. Of course other types of measurement errors are 
encountered with a survey that is based on registrations (Wallgren and Wallgren 2007). It is assumed that 
all the required information about income to estimate the target parameters of the RIS and the IPS are 
available in these registers. Since all the required information is available in a register, a complete 
enumeration of the population is possible. In the past, however, the IT infrastructure was insufficient to 
produce timely regional income statistics based on a complete enumeration of the Dutch population. 
Therefore the RIS was traditionally based on a large sample with a fraction of 0.16 core persons. For the 
same reason the IPS is traditionally based on a sample of about 80,000 core persons. With the current 
computational capacity a complete enumeration would still be very demanding but not impossible. The main 
rationale for conducting this survey as a sample is to maintain the panel for longitudinal analysis that cover 
time periods from the past where a census was impossible. 

 
3  Inclusion weights 
 
3.1  Weighting with inclusion expectations 
 

For design-based inference, first and second order inclusion probabilities for households and persons are 

required. Let M  denote the number of households in the population, N  the number of persons in the 

population aged 15 years or over and kg  the number of persons aged 15 years or over that belong to the thk  

household. With the sample design described in Section 2, households k  can be included more than once 

but a maximum of kg  times. This complicates the derivation of inclusion probabilities since the probability 

of selecting household k  is equal to the selection probability of the union of its household members  ,k j  

aged 15 years and over. This probability is defined as: 
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This kind of computation can be avoided by using the concept of inclusion expectations instead of inclusion 

probabilities. Bethlehem (2009), Chapter 2, generalizes the HT estimator to the concept of inclusion 

expectation for sampling with replacement. Let ka  denote the number of times that household k  is selected 

in the sample. In the proposed sample design  0,1, , .k ka g   Let  E .  denote the expectation with 
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respect to the sample design. Now  Ek ka   denotes the inclusion expectation of sampling unit .k  Since 

ka  can be larger than one, k  can also take values larger than one and can therefore no longer be interpreted 

as an inclusion probability. It can, however, be interpreted as an expectation.  

The parameter of interest is the population total, which is defined as 

 
1 1 1
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y kj k
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The HT estimator for the population total in (3.1) can be defined as  
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Since  E ,k ka    it follows that this HT estimator is design unbiased. Let kk   denote the inclusion 

expectation of units k  and ,k   i.e.,  E .kk' k ka a    The variance of the HT estimator is by definition 

equal to 
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Note that in the case of sampling without replacement ka  is a dummy taking values zero or one indicating 

whether unit k  is selected in the sample. In this case k  and kk   are the usual first and second order 

inclusion probabilities. This illustrates that the standard HT estimator, based on inclusion probabilities, can 

be extended easily to inclusion expectations. In the case of sample designs where units can be selected more 

than once, it is more convenient to work with inclusion expectations, since they are derived relatively easily. 

In the remainder of this subsection, first and second order inclusion expectations for the sample design 

described in Section 2 are derived. 

Core persons are drawn by means of stratified simple random sampling. Since stratification is based on 

geographical regions, all members of a household k  belong to the same stratum h  at the moment of drawing 

core persons. Let hN  denote the number of persons in the population of stratum h  aged 15 years or over, 

hn  the number of core persons selected in the sample from stratum h  and kg  the number of persons aged 

15 years or over, belonging to household .k  Finally, jka  denotes an indicator that is equal to one if person 

j  from household k  is selected in the sample and zero otherwise. The first order inclusion expectation of 

the thk  household equals 
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Second order inclusion expectations for households k  and k   for k k   belonging to the same stratum 

,h  equal 
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The second order inclusion expectation for household k k   from the same stratum ,h  is given by 

 

 

     
 
 

1 1 1 1 1

1 1 1

E

1
1 .

1

k k k k k

k k k

g g g g g

kk k k jk jk jkj k j k
j j j j j j

g g g
h h h

jk jk k k kj k
j j j j h h h

a a E a a E a a a

n n n
E a E a a g g g

N N N

 
      


   

  
      

  


    



    

  
 (3.5) 

Second order inclusion expectations for households k  and k   for k k   belonging to two different 
strata h  and h  equal 

    
1 1 1 1

E E .
k kk kg g g g

h h
k jk jk khkk k j k j k k h

j j j j h h

n n
a a a a E a a g g

N N

 


       
     


    

 
    (3.6) 

An alternative proof based on the definition of an expected value, which does not use the rule that the 

expected value of a sum of mutual dependent variables is equal to the sum over the expected values of these 

variables is given by van den Brakel (2013).  

As time proceeds the household composition of the core persons changes, which affects the inclusion 

expectations of the households in the sample. If sampling fractions differ between strata, the inclusion 

expectations (3.3) through (3.6) become more complicated and require information of stratum membership 

for all persons belonging to the household of the core persons. This complication is avoided by choosing a 

self-weighted sampling design. In this case each household member of a core persons has the same inclusion 

probability and the only household specific information required to derive household inclusion expectations 

is the number of persons aged 15 years and over in the household of the core person.  

Since all members of a selected household are included in the sample, it follows that the first order 

inclusion expectations for persons belonging to household k  are equal to the first order inclusion 

expectation of household k  defined in (3.3). The second order inclusion expectations for persons from two 

different households k  and ,k   are equal to (3.4) for two households from the same stratum or (3.6) for two 

households from two different strata. The second order inclusion expectations for persons from the same 

household are defined by (3.5). 

During the review the question was raised whether the inclusion expectations themselves have a variance 

that should be taken into account in the variance of HT or GREG estimators when they are based on 

inclusion expectations instead inclusion probabilities. In the finite population each person and each 

household has a pre-specified inclusion expectation. For the households observed in the sample these 

expectations can be calculated exactly without uncertainty since all information required to evaluate the true 

value of these expectations is available. Substituting inclusion probabilities for expectations, therefore does 

not result in an additional variance component. 
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3.2  Generalized Weight Share method 
 

The sample design described in Section 2 can be considered as a special case of indirect sampling 

(Lavallée 2007). Indirect sampling refers to the situation where the population of interest is sampled through 

the use of a frame that refers to a different population. Lavallée (1995) develops the Generalized Weight 

Share method to construct weights for these situations and can be used to derive design weights for 

households and persons in the sample design described in Section 2.  

Following the notation of Lavallée (1995) for the case of indirect sampling, there is a population AU  of 

size AN  from which a sample As  of size n  is drawn with selection probabilities .A
i  In addition, there is 

the target population BU  of size .BN  This population can be divided in BM  clusters. Each cluster k  

contains B
kN  units, such that 

1
.

BMB B
kk

N N


   The situation for the sample design described in Section 2 

is depicted in Figure 3.1. The clusters are households, AU  is the population of persons aged 15 years and 

over, and BU  is the population of all persons residing in the Netherlands. Persons in AU  and BU  are 

depicted as circles, households in BU  are depicted as shaded squares, and the circles within a shaded square 

visualise persons belonging to the same household. Figure 3.1 shows respectively, a single person 

household, a two person household containing for example a divorced parent with a child younger than 15, 

a two person household containing two adults without children, and a four person household containing two 

parents with two children and one of the children is younger than 15 while the other is 15 years or older. 

The arrows depict the links between the units of AU  and .BU  In the sample design considered in Section 2, 

each unit in AU  has exactly one unique link with a unit in .BU  Clusters in BU  have at least one link with 

units in .AU  Links are identified with an indicator variable 

 
1 if there is a link between  and 

0 if there is no link between  and .

A B

ij
A B

i U j U
l

i U j U

  
 

  

If a unit i  in AU  is selected in the sample, the entire cluster k  to which this unit belongs, is included in 

the sample. The parameter of interest is the population total in BU  and is similar to (3.1) defined as 

1 1
.

B B
kM N

y kjk j
t y

 
    An estimator for yt  is defined as 

 
1 1

ˆ ,
B
km N

y kj kjk j
t w y

 
    (3.7) 

with m  the number of unique clusters (households) included in the sample and kjw  the weight attached to 

each unit j  of cluster .k  Generally the inverse of the selection probabilities of units  ,k j  observed in the 

sample are used as weights in the HT estimator. In this situation not all units in the sample have a known 

inclusion probability. Firstly not all units in BU  have a link to .AU  Secondly, as time proceeds household 

compositions change due to marriages, divorces, departures of children and cohabitation. As a result, as 

time proceeds, units with a link to AU  enter the clusters in the sample although they are not initially included 

in the sample drawn from .AU  For these units inclusion probabilities are not necessarily known. They 

affect, however, the inclusion expectations of the clusters included in the sample. Reconstruction of the 

inclusion probabilities requires information of selection probabilities of all units in the population at the 

moment that the sample is drawn. In many practical situations this information is not available. 
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Figure 3.1 Links between units from the sample frame and units from the target population. 

 
The Generalized Weight Share method can be used to derive non-zero weights for all units in the sample. 

This method starts by deriving initial weights, which are defined as  

 
 

*
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,

0 otherwise

A
i A
A
ikj

k j i U
w


 




  

with A
i  an indicator variable that is equal to one if i  is included in the sample As  and zero otherwise. This 

expression follows directly from Lavallée (1995), equation (2) in combination with the fact that in this 

application each unit in AU  has exactly one unique link with a unit in ,BU  see Figure 3.1. In a second step 

a so-called basic weight for each cluster k  is derived as the mean of all initial weights within each cluster 
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1
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w
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which follows from Lavallée (1995), equation (7). Finally all persons j  that belong to the same household 

k  receive the same weight assigned to their household, i.e., kj kw w  for all .j k  A proof that the use 

of the basic weights in (3.7) is an unbiased estimator for the population total is also given by Lavallée 

(1995). 
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Let 
1

B
kN

kj kj
l g


  denote the number of persons in household k  aged 15 years and older and ka  the 

number of core persons in household ,k  i.e., the number of persons in household k  that are included in 

sample .As  Since As  is drawn by means of stratified simple random sampling, it follows that A A A
i h hn N   

with A
hN  the number of persons aged 15 years and older in the population of stratum ,h  and A

hn  the number 

of core persons selected in the sample from stratum .h  Then it follows that 

 .
A

k h
k A

k h

a N
w

g n
  (3.8) 

Inserting the first order inclusion expectation (3.3) into (3.2) gives the same HT estimator as derived with 

the Generalized Weight Share method, i.e., inserting (3.8) into (3.7). 

The derivation of the inclusion expectations in Subsection 3.1 applies to stratified sampling of 

households with inclusion expectations proportional to household size and is a special case of the 

Generalized Weight Share method. An argument to apply a design as outlined in Section 2 is that sampling 

households proportional to household size is efficient for target variables that are positively correlated with 

household size. 

Lavallée (1995) also provides variance expressions for (3.7) based on the Generalized Weight Share 

method. This expression is based on the first and second order inclusion probabilities of the sample units 

drawn from AU  and a transformation of the target variable. As a result the property that clusters are drawn 

proportional to their size is not made explicit, nor that the fact they are drawn partially with replacement. In 

Section 6 it is pointed out that the variance expressions in Lavallée (1995) for this application are equal to 

the variance expressions based on the inclusion expectations derived in (3.3) through (3.6). 

 
4  Sample size determination 
 

The purpose of the RIS is to publish income distributions for households and persons at different 

geographical levels. Income distributions for households for region or area r  are defined as 

 , 1, , ,lr
lr

r

M
P l L

M 

    (4.1) 

where lrM  denotes the number of households from region ,r  belonging to the thl  income category, and 

,r lrl
M M    the total number of households in area .r  This income distribution is estimated as 

 
ˆ

ˆ , 1, , ,lr
lr

r

M
P l L

M 

    (4.2) 

where ˆ
lrM  denotes an appropriate direct estimator for the total number of households from area ,r  classified 

to the thl  income category. For the moment the HT estimator is assumed as an appropriate estimator for 

,lrM  i.e., 
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ˆ ,
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khl
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y
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   
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where 1khly   if household k  from stratum h  is classified to the thl  income class and 0khly   otherwise 

and hm  the total number of households selected in stratum .h  In the RIS 10.L   Income distributions for 

persons are defined and estimated similarly to (4.1), (4.2), with lrM  the number of persons from area ,r  

belonging to the thl  income category. The HT estimator for lrM  is now defined as 

 
1 1

1ˆ ,
h km N

lr kjhl
h r k jk

M y
  


    

where 1kjhly   if person j  from household k  and stratum h  is classified to the thl  income class and 

0kjhly   otherwise. 

For sample size determination, precision specifications for the estimated income distributions are 

required. For stratified sampling designs, Neyman allocations are often considered to determine minimum 

sample sizes and optimal allocations to meet precision requirements at aggregated levels (Cochran 1977). 

Power allocations are useful to find the right balance between precision requirements for aggregates and 

strata (Bankier 1988). In this application the minimum sample size is based on precision requirements for 

the individual strata, i.e., neighbourhoods, which is the most detailed publication level.  

If precision requirements are specified for the separate classes of the income distributions, then the 

income class with the largest population variance determines the minimum required sample size, resulting 

in unnecessarily large sample sizes. As an alternative the square root of the mean over the variances of the 

estimated income classes of an income distribution is proposed as a precision measure for the estimated 

income distributions. With this measure the influence of the most imprecise income class on the minimum 

sample size will be reduced. The square root of the mean over the variances of the estimated income classes 

of an income distribution is called the average standard error measure and is defined as 

  
1

1 ˆ .
L

lr
l

s V P
L 

   (4.3) 

In this section an exact expression for s  will be derived as well as an approximation that can be used to 

estimate the minimum required sample size which does not require information about income distributions 

or variances.  

Since neighbourhoods are the most detailed areas for which income distributions are published, precision 

requirements for sample size determination are specified at this level. Since neighbourhoods are used as the 

stratification variable in the sample design, expressions for s  can be derived under simple random sampling 

without replacement of core persons within each neighbourhood. It is proved in the appendix that an 

expression for the average standard error measure hs  in (4.3) for an income distribution is given by 
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 
       

   (4.4) 

with hM  the number of households in stratum h  and lhM  the number of households in stratum h  belonging 

to the thl  income class. Note that if 1khg   for all households in the population of stratum ,h  then it 

follows that h hM N  and that formula (4.1) simplifies to 
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 
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which can be recognized as the variance of an estimated fraction under simple random sampling without 

replacement (Cochran 1977, Chapter 3).  

Minimum sample size requirements based on (4.4) require information about the income distribution 

and its variance from preceding periods. Since this information is generally not available at the design phase 

of a panel, it is useful to have an upper bound for the average standard error measure for the income 

distribution in (4.4). This is comparable to taking the variance for a parameter defined as a proportion, which 

reaches a maximum when the proportion is 0.5 for calculating the minimum sample size for a survey. It is 

shown in the appendix that an upper bound for the average standard error measure hs  for an income 

distribution, specified in (4.4) is given by 

 2
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1 1 1
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with thM  the number of households of size t  in stratum .h  

If 1khg   for all households in the population of stratum h  and the number of classes of the income 

distribution 2,L   then it follows that the approximation for the average standard error measure hs  in (4.5) 

can be simplified to 
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which equals the square root of the maximum variance of an estimated fraction at ˆ 0.5P   under simple 

random sampling. This illustrates that the approximation for the average standard error measure in (4.5) can 

be interpreted as a generalization of the approximation of the maximum variance of an estimated fraction at 
ˆ 0.5,P   often used in sample size determination. The average standard error measure has its maximum 

value in the case of an equal distribution of the households over the income categories, i.e., ˆ 1lhP L  for 

1, , .l L   In this situation the approximation for hs  is exact, which follows directly from equation (4.3). 

Equating the expression for hs  in (4.5) to a pre-specified maximum value, say ,h  results in the 

following expression for the minimum sample size of core persons 
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 (4.6) 

The information required to estimate the minimum sample size is the total number of persons and the total 

number of equally sized households for neighbourhoods. No information about the expected income 

distribution or its variance is required. More precise estimates for the minimum sample size can be obtained 

with the expression in (4.4), but require sample information from, for example, previous periods about the 

income distributions. 
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Expression (4.6) gives the minimum sample size for core persons. Subsequently all household members 

of each core person are included in the sample. As a result, households can be included in the sample more 

than once and the sample size in terms of unique households and unique persons is random. To plan a survey 

and control survey costs, it is necessary to know the expected number of unique households and unique 

persons if a sample of core persons of size hn  is drawn. In the appendix it is proved that the expected number 

of unique households in a sample of hn  core persons, drawn by means of simple random sampling without 

replacement from a finite population of size hN  is given by 
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 (4.7) 

The expected number of unique persons in a sample of hn  core persons, drawn by means of simple 

random sampling without replacement from a finite population of size hN  follows directly from (4.7) and 

is given by 
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 (4.8) 

Since the expected numbers of unique households and persons are random variables, it would be useful 

to have an uncertainty measure for these expected values. Variance expressions for (4.7) and (4.8) are 

however not straightforward and therefore left for further research. 

Sample size calculations are conducted at the level of neighbourhoods. It was finally decided to select 

core persons with a sampling fraction of 0.16. With this sample size, the maximum value for the average 

standard error measure hs  at the level of neighbourhoods amounts to about 0.01 for the estimated household 

income distributions. With a total population of about 12 million persons, this resulted in a sample size of 

about 2.1 million core persons and an expected sample size of about 4.6 million unique persons. This sample 

was drawn in 1994, which was the start of the panel for the Dutch RIS. 

 
5  Linear weighting 
 

For household surveys like the RIS, estimates are required for person characteristics as well as household 

characteristics. Let yt  denote the total of a target variable .y  With linear weighting, an estimator for a 

person based target variable is defined as 

 
1 1

ˆ ,
hH m

y kj kjh
h k j k

t w y
  

   (5.1) 

with kjhy  the value of the target variable for person  , ,k j h  and kjw  a weight for person j  belonging to 

household .k  An estimator for a household based target variable is given by 
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with khy  the value of the target variable for household k  from stratum h  and kw  a weight for the 

corresponding household.  

Weights are obtained by means of the GREG estimator to use auxiliary variables which are observed in 

the sample and for which the population totals are known from other sources (Särndal et al. 1992). 

Consequently, the weights reflect the (unequal) inclusion expectations of the sampling units and an 

adjustment such that for auxiliary variables the weighted observations sum to the known population totals. 

Often categorical variables like gender, age, marital status or region are used as auxiliary variables. Due to 

the fact that the values of auxiliary variables differ from person to person within the same household, 

different weights can be derived for people from the same household. To ensure that relationships between 

household variables and person variables are reflected in estimated totals, it is relevant to apply a weighting 

method which yields one unique household weight for all its household members. If the weights for persons 

within a household are the same, then household and person based estimates of the same target variables 

are consistent with each other (for example the total income estimated from households and that from 

persons). This can be achieved with so-called integrated weighting methods. 

Lemaître and Dufour (1987) apply an integrated weighting method at the persons level and replace the 

original auxiliary variables defined at the person level by the corresponding household mean. In this way, 

members of the same household have the same inclusion expectation and share the same auxiliary 

information, and therefore the resulting regression weights are forced to be the same. Nieuwenbroek (1993) 

proposes a slightly more general approach by applying the linear weighting method at the household level, 

where the auxiliary information of person based characteristics is aggregated at the household level. 

Nieuwenbroek (1993) mentions that the linear weighting method at the household level is equal to the linear 

weighting method of Lemaître and Dufour (1987) at the person level, if the residual variance of the 

regression model at the household level is chosen proportional to the number of persons within the 

household. Steel and Clark (2007) and Estevao and Särndal (2006) further generalize the integrated 

weighting of person and household surveys. Steel and Clark (2007) address the issue of whether the cosmetic 

benefits of integrated weighting result in an increased design variance of the GREG estimates. They show 

that large-sample design variances obtained by linear weighting at the household level is less than or equal 

to the design variance obtained with linear weighting at the person level. For small samples there can be a 

small increase in the design variance due to integrated weighting. As a result there is little or no loss in 

efficiency by applying an integrated weighting method. 

In this paper the integrated weighting approach at the household level is applied. Let khx  denote a -q  

vector containing q  auxiliary variables for household k  from stratum .h  Person based characteristics are 

aggregated to household totals. The GREG estimator is derived from a linear regression model that specifies 

the relation between the target variable and the available auxiliary variables for which population totals are 

known, and is defined as: 

     2, with E 0, V .x βt
kh kh kh m kh m kh khy e e e      (5.3) 
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In (5.3) β  denotes a vector containing the q  regression coefficients of the regression of khy  on khx  and 

khe  the residuals and Em  and Vm  denote the expectation and variance with respect to the regression model. 

In this application, the variance structure is taken proportional to the household size, i.e., 2 2 .hk kg    

Nieuwenbroek (1993) shows that in this case the weighting applied at the household level is equal to the 

method of Lemaître and Dufour (1987). 

Regression weights for the households are finally obtained by 

  
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with xt  a q  vector containing the known population totals of the auxiliary variables ,x  ˆxπt  the HT estimator 

for .xt  The weights calculated at the household level can be used for weighting person based characteristics 

of the corresponding household members, using formula (5.1) since kj kw w  for all persons belonging to 

the same household .k  

 
6  Variance estimation 
 

Parameters of the RIS are estimated as the ratio of two population totals 
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  (6.1) 

where ˆ
yt  and ẑt  are GREG estimators defined by (5.1) or (5.2) in the case of person-based or household-

based target variables, respectively. The variance of (6.1) under a sample design where core persons are 

drawn by means of stratified simple random sampling, and all household members of these core persons are 

included in the sample can be approximated by 
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where ,h h hf n N      ,t t
kh kh kh y kh kh ze y R z   x b x b  and yb  and zb  are the finite population 

regression coefficients of the regression of khy  and khz  respectively on .khx  An estimator for the variance 

specified in (6.2) is given by 
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where    ˆ ˆ ˆˆ t t
kh kh kh y kh kh ze y R z   x b x b  and ˆ

yb  and ˆ
zb  are the HT type estimators for yb  and .zb  

These results follow directly from inserting first and second order inclusion expectations specified in (3.3) 

through (3.6) in the general approximation for the variance of the ratio of two GREG estimators and its 

estimator (Särndal et al. 1992, Section 7.13). 
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The same expressions for the variance can be derived from the variance expressions proposed for the 

Generalized Weight Share method in the case of indirect sampling. In Lavallée (1995), variance expressions 

for the HT estimator are based on the sampling design used to select the sample As  of n  units from 

population AU  with transformed target variables, say .iz  In this application each unit in AU  has exactly 

one link with a unit in .BU  As a result iz  in Lavallée (1995) is in this case defined as the sum over the 

target variables of all elements in cluster ,k  divided by the number of units in cluster k  with a link to 

population ,AU  i.e., i k kz y g  for all Ai U  that have a link with cluster .Bk U  Inserting the first 

and second order inclusion probabilities for stratified simple random sampling without replacement and the 

transformed variables iz  (where the target variable ky  is preplaced by the residual of the regression on the 

cluster totals ke  in the variance formula for a ratio gives (6.2). Result (6.3) follows in a similar way.  

 
7  Application 
 

In the RIS, core persons are selected from the population aged 15 years and older through stratified 
simple random sampling without replacement with a sample fraction of 0.16. In this application results are 
presented for a large municipality (Rotterdam), a municipality of intermediate size (Enschede) and a small 
municipality (Sevenum) for three consecutive years 2006, 2007 and 2008. Population and sample sizes for 
these three municipalities are summarized in Table 7.1.  

 
Table 7.1 
Population and sample size RIS for three Dutch municipalities 
 

Municipality Population Sample 

 Households Persons 15 and older Core persons Unique households Unique persons 

Rotterdam 293,400 484,000 73,000 67,600 171,400 
Enschede 74,200 128,000 19,300 17,600 46,300 
Sevenum 2,950 6,100 870 750 2,500 

 
Target variables of interest for the RIS are: 

 Income distribution of households in ten classes where the categories are based on ten percentage 
point quantiles (deciles) of the national distribution using standardized household income 
(abbreviated as IncDistHh); 

 Mean standardized household income (abbreviated as HHinc); 

 Mean disposable income of persons that receive income during the 52 weeks of the year 
(abbreviated as Pinc). 

 

Disposable income of a person is total income of a person minus his or her current taxes. Total income 
contains earnings, profit, income from capital and savings, and social or other benefits. Standardized 
household income is defined as the total disposable income of a household corrected for differences in 
household size and composition. In the literature, this is also known as the equivalised spendable income 
(OECD 2013).  
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Estimates for official publications of the RIS are obtained with the GREG estimator using the method of 
Lemaître and Dufour (1987). Since this survey does not suffer from nonresponse, auxiliary information is 
used in the estimation for variance reduction and consistency between the marginals of different publication 
tables. Inclusion expectations are based on the formulas derived in Subsection 3.1. For each municipality 
the following weighting scheme is applied in the GREG estimator:  

          Age 7 Gender Age 4 Gender MaritalStatus 2 Address 2 HHsize 5 .        

All auxiliary variables are categorical. The numbers between brackets denote the number of categories. 
MaritalStatus distinguishes between people who are married and other forms of marital status. Address 
distinguishes between addresses where one family is residing and other types of addresses. HHsize stands 
for household size and distinguishes between households with one, two, three, four, and five or more 
persons. Estimates for HHinc and Pinc with their standard errors based on the HT estimator, the GREG 
estimator and the GREG estimator with the method of Lemaître and Dufour (1987) are given in Table 7.2. 
In Figure 7.1 the income distributions IncDistHh estimated with the HT estimator, GREG estimator and the 
GREG estimator with the method of Lemaître and Dufour (1987) are plotted with a 95% confidence interval 
for Rotterdam and Sevenum in 2008. The standard errors for these estimates are compared in a separate 
histogram. In Figure 7.2 the IncDistHh for Rotterdam and Sevenum estimated with the method of Lemaître 
and Dufour (1987) are given for 2006, 2007 and 2008. See van den Brakel (2013) for more detailed output 
of the income distributions. 

 
Table 7.2 
Estimation results RIS for Rotterdam (large city), Enschede (intermediate city), and Sevenum (small village), 
standard errors in brackets 
 

 Variable Year HT GREG GREG consistent (L&D) 

Rotterdam HHinc 2006 19,790 (83) 20,134 (80) 20,161 (76) 
  2007 22,306 (73) 22,950 (64) 22,866 (64) 
  2008 23,750 (78) 24,511 (69) 24,410 (68) 

 Pinc 2006 22,074 (94) 22,219 (84) 22,233 (93) 
  2007 24,094 (82) 24,362 (75) 24,432 (78) 
  2008 25,325 (84) 25,625 (75) 25,705 (78) 

Enschede HHinc 2006 19,810 (128) 20,353 (111) 20,300 (107) 
  2007 20,878 (128) 21,716 (107) 21,753 (105) 
  2008 22,254 (148) 23,235 (125) 23,237 (123) 

 Pinc 2006 20,402 (102) 20,608 (92) 20,590 (92) 
  2007 21,387 (115) 21,751 (103) 21,852 (106) 
  2008 22,235 (123) 22,659 (110) 22,724 (114) 

Sevenum HHinc 2006 25,696 (799) 25,698 (734) 25,968 (711) 
  2007 28,207 (618) 28,901 (520) 29,026 (490) 
  2008 31,466 (795) 32,372 (715) 32,536 (694) 

 Pinc 2006 21,328 (466) 21,680 (428) 21,712 (428) 
  2007 24,056 (456) 24,219 (396) 24,459 (393) 
  2008 24,980 (468) 25,482 (426) 25,644 (455) 
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Figure 7.1 IncDistHh in percentages for Rotterdam and Sevenum (left panels) with Horvitz-Thompson 

estimator, GREG estimator and integrated GREG estimator (GREGcon), with 95% confidence 
intervals. Standard errors of the corresponding estimators are plotted in the right panels. 
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Figure 7.2 IncDistHh in percentages for Rotterdam (upper panel) and Sevenum (lower panel) estimated with 

integrated weighting for 2006, 2007 and 2008 with 95% confidence intervals. Grey line refers to the 
national income distribution. 

 
The observed income distributions in Figures 7.1 and 7.2 are a result of the demographic compositions 

in both municipalities. Rotterdam is a city where the fraction of households in low income categories are 
above the national average, since the fractions in the first three categories are above 10%. The fraction of 
households in higher income categories, on the other hand, are below the national average, since these 
fractions are below 10%. This is a typical distribution for a large university city with a high fraction of 
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non-western immigrants. Sevenum on the other hand is a small village close to a large industrial city. Such 
villages typically have small fractions of immigrants, no students and large fractions of households with one 
or two people that receive income during 52 weeks of the year. This explains why the fraction of households 
in the lowest income category is below the national average and the fraction of households in the higher 
income categories (6, 7 and 8) is above the national average. Sevenum is a village that does not attract 
extreme rich households.  

Since HHinc and Pinc are based on different income definitions and since Pinc is the average over the 
domains of people that receive income during 52 weeks of the year, the differences between the two means 
vary between municipalities. For a large university city like Rotterdam, the mean standardized household 
income is typically smaller compared to the mean of disposable personal income averaged over people that 
receive income during 52 weeks of the year. Other cities with large universities show a similar picture. In a 
small but rich village like Sevenum, the situation is the other way around. 

Another remarkable result is that in Rotterdam and Enschede the difference between the HT estimator 
and the GREG estimator is relatively large compared to the standard errors. Given the large sample size and 
the fact that there is no nonresponse, these differences are expected to be smaller. A possible explanation is 
that Rotterdam and Enschede are large university cities. Students are often identified in the tax register (used 
as the sample frame) in a different way than they appear in the population register (used to derive population 
distributions of the auxiliary variables), in particular with respect to their household situation. 

For each municipality there is a steady increase over time in the mean of the income for households and 
persons. Also the income distributions for each municipality show a stable pattern over the years. This can 
be expected if a panel is applied in combination with large sample sizes to estimate phenomena that are not 
very volatile in time.  

Comparing GREG estimates with and without using the method of Lemaître and Dufour (1987) shows 
that standard errors of estimated household parameters are smaller if the method of Lemaître and Dufour 
(1987) is applied. This is particularly visible for the mean household income in the small sample of 
Sevenum. For estimated person based parameters, on the other hand, the method of Lemaître and Dufour 
(1987) slightly increases the standard error compared to the regular GREG estimator. This suggests that the 
assumed variance structure for the residuals in the underlying regression model in the case of integrated 
weighting better fits the household-based variables than the person-based variables. 

 
8  Discussion 
 

Households, due to their instability over time, are inappropriate as sampling units in panels conducted 
to collect information at the level of households or persons. In this paper, a sample design is proposed where 
persons are drawn through a self-weighted sample design. At each point in time, the household members of 
these so-called core persons are included in the sample. This results in a sample where households can be 
drawn more than once but with a maximum that is equal to the household size. Households are included 
with expectations proportional to the household size. First and second order inclusion expectations for 
households are derived under an equal probability sample design for selecting core persons. These inclusion 
expectations can be used in a similar way to the more common inclusion probabilities in design-based and 
model-assisted inference.  
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The sample design in this paper is a special case of indirect sampling (Lavallée 1995, 2007). In the case 

of a self-weighted sample design it is shown that first and second order inclusion expectations for this sample 

design can be derived in a relatively straightforward manner from the household composition of the core 

persons at each point in time. In the case of more complex sample designs, the Generalized Weight Share 

method (Lavallée 1995, 2007), is required to construct inclusion weights at each point in time. 

The advantage of the proposed sample design is that the estimation procedure is simpler than the 

Generalized Weight Share method. The design is particularly useful if core persons are selected with a self-

weighted sampling design. If, due to, e.g., minimum precision and maximum cost requirements, an unequal 

probability design for the selection of core persons is required, then the Generalized Weight Share method 

is required. Since core persons remain in the panel indefinitely, this sample design is particularly appropriate 

for register-based household panels where all the required information is derived from administrative data. 

For interview-based household panels some kind of rotating design is required to cope with problems like 

panel attrition.  

In the paper the so called average standard error measure, defined as the square root of the mean over 

the variances of the estimated income classes of an income distribution, is proposed as a precision measure 

for minimum sample size determination. It is shown that the maximum value of this precision measure 

corresponds with a distribution where the proportions in the categories are equal. It is also shown that this 

result can be seen as generalization of the variance of a fraction taking its maximum value at 0.5. An 

expression for the minimum required sample size to meet a pre-specified precision for estimated 

distributions is derived. Since households can be included more than once in the sample, an expression for 

the expected number of unique households in a sample is also derived.  

A topic for further research is to combine this mean standard error measure with a Neyman allocation or 

power allocations to have expressions for the minimum sample size based on precision requirements for 

estimated distributions at aggregates of strata. This results in an unequal inclusion probability design for the 

core persons and requires the Generalized Weight Share method for deriving appropriate weights. 

In the context of household surveys and panels, weighting procedures that enforce equal regression 

weights for persons within the same household are relevant in order to enforce consistency between person 

based and household based estimates. In this paper an integrated weighting approach based on Lemaître and 

Dufour (1987) is applied to the RIS. In this application standard errors obtained with Lemaître and Dufour 

(1987) are smaller than a non-integrated weighting procedure for household based estimates. For person 

based estimates, standard errors can be slightly larger. These results are in line with Steel and Clark (2007), 

who show that the large-sample design variance of integrated weighting at the household level is smaller 

than or equal to the design variance obtained with non-integrated weighting at the person level. In their 

simulation they also report small increases of the design-variances due to integrated weighting in the case 

of small sample sizes.  

Integrated weighting of Lemaître and Dufour (1987) at the household level is obtained by assuming a 

variance structure for the residuals that is proportional to the household size (Nieuwenbroek 1993). If 

household characteristics are proportional to household size, then it can be anticipated that such a variance 

structure better explains the variation of the household variables in the population compared to a variance 

structure that assumes equal residual variance for the households. For person based variables such a variance 
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structure might be less efficient but the additional advantage of integrated weighting is that totals for 

household and person based income, which can be derived directly from their means, are consistent.  
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Proof of equation (4.4) 
 

An expression for the variance of the estimated fraction of households in income class l  can be derived 

from the general expression for the variance of the HT estimator (Särndal et al. 1992, Section 2.8): 
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Inserting first and second order inclusion expectations specified in (3.3) through (3.6), and taking 

advantage of the property that 2
khl khly y  since the values of the target variable are restricted to zero or 

one, it follows after some algebra that (A.1) can be simplified to 
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Result (4.4) is obtained by inserting (A.2) into (4.3). 

The population of households in stratum h  can be divided into T  subpopulations of equally sized 

households. Let thM  denote the number of households of size t  in stratum .h  Now it follows for the double 

summation between brackets for the expression of s  in (4.4) that 
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According to the Cauchy-Schwartz inequality (Cochran 1977, Section 5.5) it follows for the single 
summation between brackets for the expression of hs  in (4.4) that 
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Result (4.5) is obtained by inserting (A.3) and (A.4) in the expression for s  in (4.4). 

Let tkh  denote the inclusion probability for household k  from stratum h  of size .t  Since equally sized 

households share the same first order probabilities, it follows that .tkh thtk h        Let tkhI  denote an 
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indicator variable, taking value 1 if household k  from stratum h  of size t  is included in the sample and 

zero otherwise. The expected number of unique households can be derived as 
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Nonresponse adjustments with misspecified models in 
stratified designs 

Ismael Flores Cervantes and J. Michael Brick1 

Abstract 

Adjusting the base weights using weighting classes is a standard approach for dealing with unit nonresponse. A 
common approach is to create nonresponse adjustments that are weighted by the inverse of the assumed response 
propensity of respondents within weighting classes under a quasi-randomization approach. Little and Vartivarian 
(2003) questioned the value of weighting the adjustment factor. In practice the models assumed are misspecified, 
so it is critical to understand the impact of weighting might have in this case. This paper describes the effects on 
nonresponse adjusted estimates of means and totals for population and domains computed using the weighted 
and unweighted inverse of the response propensities in stratified simple random sample designs. The performance 
of these estimators under different conditions such as different sample allocation, response mechanism, and 
population structure is evaluated. The findings show that for the scenarios considered the weighted adjustment 
has substantial advantages for estimating totals and using an unweighted adjustment may lead to serious biases 
except in very limited cases. Furthermore, unlike the unweighted estimates, the weighted estimates are not 
sensitive to how the sample is allocated. 

 
Key Words: Nonresponse; Stratification; Sampling weights; Weighting classes reweighting. 

 
 

1  Introduction 
 

Adjusting the base weights for unit nonresponse using weighting classes is a standard approach to survey 

weighting, but the adjustments are not done in the same way by all researchers or survey organizations. 

Little and Vartivarian (2003), hereafter referred to as L&V, observed that using a nonresponse adjustment 

factor that is weighted by the inverse of the probability of selection appears to be the most common 

approach. They also pointed out that using design weights to compute a weighted nonresponse adjustment 

does not eliminate nonresponse bias in estimates of the mean of the population when the response 

mechanism is not specified correctly by the weighting adjustment model. L&V then conducted a simulation 

study using a simple stratified sample design to examine the effect of weighting the nonresponse adjustment 

factors. They concluded that weighting the nonresponse adjustment has little or no value. 

Theoretical justifications for nonresponse adjustment require that either the response mechanism or the 

target variable must be modeled correctly to eliminate nonresponse bias; we are not aware of any theory 

that suggests that weighting by the inverse of the probability of selection completely eliminates bias when 

the model is misspecified (e.g., Kalton 1983; Little 1986; Little and Rubin 2002; Särndal and Lundström 

2005). In this regard, the importance of modeling for nonresponse adjustment urged by L&V is essential for 

good statistical practice. However, correctly specifying a highly predictive model is an ideal that cannot be 

achieved in most surveys because of the complexity of the phenomenon and because powerful auxiliary 

variables rarely exist. The search for better auxiliary data for this modeling has fueled research into paradata, 

but the models using these data still have relatively poor correlations with response propensities (Kreuter, 
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Olson, Wagner, Yan, Ezzati-Rice, Casas-Cordero, Lemay, Peytchev, Groves and Raghunathan 2010). In 

practice, imperfect models are used and nonresponse bias is never completely eliminated. 

Consequently, understanding the effects of nonresponse adjustment methods and whether there is any 

value to weighting the nonresponse adjustment with an incorrectly specified response model is important. 

Even though a message of L&V was the need to include design variables in the nonresponse modeling, 

some researchers appear to have concluded that weighting the adjustment has no role (e.g., Chadborn, 

Baster, Delpech, Sabin, Sinka, Rice and Evans 2005; Haukoos and Newgard 2007). However, L&V’s 

conclusion that weighting the nonresponse adjustment factor is either incorrect or inefficient was based on 

comparisons to correctly specified models that always produce unbiased estimates. Their suggestion to 

condition on the design variables (in their setting the design variable was the stratum) resulted in identical 

weighted and unweighted estimators. Their simulations are also centered on a specific stratified sample 

design and they only consider estimating means. As discussed below, these are substantial limitations and 

the conclusions that some have drawn that weighting the adjustment is inappropriate need to be 

reconsidered.  

Following L&V, researchers have examined the effects of weighting in other cases. Sukasih, Jang, 

Vartivarian, Cohen and Zhang (2009) compared nonresponse adjustments with and without weights by 

simulation within the context of a specific survey. West (2009) used simulation to study estimates of 

population means under more complex sample designs that featured clustering and differential sampling 

rates. Both of these studies concluded that weighting the nonresponse adjustments by the design weights 

was beneficial compared to using an unweighted approach, even though the differences due to weighting 

were not large. Kott (2012) assessed the robustness of the adjustments theoretically and described the 

conditions under which the various estimators for population means had greater protection against 

nonresponse bias; he recommended a weighted approach. Related research has been conducted on the need 

for weighting for estimating response propensity model coefficients (Wun, Ezzati-Rice, Diaz-Tena and 

Greenblatt 2007; Grau, Potter, Williams and Diaz-Tena 2006), but this line of research is sufficiently 

different that we do not discuss it here. 

In this article, we explore the effect of weighting nonresponse adjustments when the nonresponse model 

is imperfect. In Section 2, we expand on the L&V results by looking at estimators for totals and domain 

means and totals; L&V only considered overall means. Using the same population and basic simulation 

setting of L&V, we also explore the effect of different sample allocation to the strata while L&V used one 

sample allocation. The results of the simulations presented in Section 3 show that there are important 

differences in the properties of the weighted and unweighted estimators and these vary by how the sample 

is allocated. We explain the behaviors of the estimators using simple approximations to show why they 

differ. Although weighting the adjustment factor does not always give estimates with lower bias and root 

mean square error when compared to estimates from the unweighted alternative, it has substantial benefits 

for estimates of totals and provides protection against large errors that may arise with an unweighted 

approach. As a result, we recommend a weighted approach when the true response mechanism is not fully 

known. Conclusions are presented in Section 4. 
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2  Setting 
 

Survey weights compensate for different types of missing data – sampling or base weights adjust for 

those that are not sampled, noncoverage adjustment weights account for those that are not in the sampling 

frame, and nonresponse adjustment weights compensate for those that are sampled but do not respond. We 

focus on nonresponse adjustment weights and the effect of using the base weights in creating the 

nonresponse adjustments.  

We begin with the unadjusted Horvitz-Thompson estimator of the total 

 ,ˆun i i is
y R d y   (2.1) 

where id  is the inverse of the probability of selection of unit , 1ii R   if unit i  responds and 0  otherwise, 

and the sum is over the units in sample .s  The ratio mean is ˆ .ˆun un i is
y y R d   If all the sample data are 

observed and the frame is complete, then ( ) ,ˆunE y Y  and the ratio mean is consistent for .Y  

When there is unit nonresponse, we assume that response is a random variable and the probability or 

propensity of response   Pr 1i iR    is like the probability from an additional phase of sampling 

(Särndal, Swensson and Wretman 1992). If we assume 0i   for all ,i  then the nonresponse bias of an 

estimated ratio mean under the stochastic model is 

   1
,

ˆbias ,un y yy 
       (2.2) 

where   is the population mean of the response propensities,   is the standard deviation of ,  y  is the 

standard deviation of ,y  , y  is the correlation between   and y  (Bethlehem 1988). The estimated 

respondent mean is unbiased if   and y  are uncorrelated. Brick and Jones (2008) extend these results to 

other types of statistics and estimators. 

To reduce nonresponse bias, auxiliary variables associated with the sample can be used to support 

nonresponse adjustments to the base weights. The adjustments can be implemented by modeling either the 

distribution of   or ,y  or both using the auxiliaries. We are specifically interested in modeling the response 

mechanism. 

The estimated response propensities are applied as if they were the actual probabilities of responding. In 

other words, the nonresponse adjustment factor is the inverse of the estimated propensity of responding for 

sampled unit  ˆ .ii   The response propensity can be estimated by a variety of methods such as logistic 

regression, but most surveys form mutually exclusive groups called weighting classes or response 

homogeneity groups which contain units with similar estimated propensities and adjust the weights in each 

group or class by a common factor, say 1ˆ ˆ
c cf    for all i c  (Särndal et al. 1992, and Little 1986). When 

this approach is used, the adjusted estimator is called a weighting class estimator and is 

 ˆ ,ˆ
c

wc ci ci c cic i s
y R d f y


    (2.3) 

where 1, 2, ,c C   are the nonresponse adjustment classes and ci s  is a sampled unit in class .c  

The specific issue we address is the effect of weighting the adjustment factor. The unweighted factor is 
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 ˆ c

c

cii s cu
c

ci ci ci s

n
f

R r
 




 





  

where 1ci   if i c  and 0ci   if ,i c  and cn   and cr   are the number of sampled and responding 

units in class .c  The weighted adjustment factor is  

 
ˆ

ˆ ,
ˆ

c

c

cii s cw
c

ci ci ci s

d N
f

R d N




 





  

where ˆ
c

c cii s
N d


   and ˆ .

c
c ci cii s

N R d


    The factors correspond to the unweighted and weighted 

response rates, respectively. Substituting the factors into the estimator (2.3) yields two alternative estimators 

(2.4) and (2.5) of the total population. These are both weighting class estimators but we have changed 

notation to emphasize whether the weighted or unweighted response rate is used. 

 ˆ ,ˆ
c c

cu
urr c ci ci ci cic i r c i r

c

n
y f d y d y

r


 


      (2.4) 

 
ˆ

ˆ .ˆ
ˆc c

cw
wrr c ci ci ci cic i r c i r

c

N
y f d y d y

N 
 

     (2.5) 

These two estimators are the building blocks for all the types of statistics that we consider in the 

simulation study. For example, estimators of means, domain means, and ratios are simple functions of 

estimators (2.4) and (2.5). 

To be consistent with the structure, notation, and simulations in L&V, we restrict our study to the same 

population with a stratified simple random sample where two strata are defined by the binary design 

variable, ,Z  and two nonresponse adjustment classes are defined by a binary auxiliary variable, ,C  that 

cross the strata as shown in Table 2.1. We replaced the X  used in L&V with C  for weighting cell as 

introduced above to easily identify the nonresponse adjustment cell. Consistent with L&V, the population 

size is set at 10,000.N   

 
Table 2.1 
Population counts by strata Z and nonresponse adjustment cell C 
 

 Nonresponse adjustment cell 
Sampling strata C = 0 C = 1 

Z = 0 3,064 3,931 
Z = 1 2,079 926 

Source: Little and Vartivarian (2003) who used X instead of C. 

 
The variable of interest, ,Y  is a binary variable with the probability that 1Y   defined by a logistic 

model with          logit 1 , 0.5 .C Z CZY C Z C C Z Z C C Z Z             The response 

variable R  is also binary with the probability of 1R   generated from a logistic model with 

         logit , 0.5 .C Z CZR C Z C C Z Z C C Z Z            Different populations and 
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response propensities are generated depending on the values of , , , , C Z CZ C Z      and  CZ  as shown in 

Table 2.2. We have adopted the generalized linear model notation L&V used to make comparison to their 

work easier. The tabled values are the same populations and response variables that L&V generated by 

assigning values to  , , , , , .C Z CZ C Z CZ       In the notation  BA  in Table 2.2, the population  Y  or the 

response propensity  R  are indicated by the superscript B  while the parameters and interactions of the 

model for the distribution of the population or response are indicated by A  inside the brackets. For example, 

the additive logistic model that generates the distribution of Y  within the sampling stratum Z  and 

nonresponse cell C  is indicated by   .YC Z  Similarly, models where R  depends on C  only, Z  only or 

neither C  nor Z  are denoted by    , ,R RC Z  and  RC Z  respectively. L&V give more details on their 

rationale for choosing these populations and response models. 

 
Table 2.2 
Models for outcome variable, Y, and probability of response, R 
 

Model for Y 
(Variable of interest) 

Model for R 
(Response propensity) 

Parameters 

, C C   , Z Z   , CZ CZ   

 YCZ   RCZ  2 2 2 

 YC Z   RC Z  2 2 0 

 YC   RC  2 0 0 

 YZ   RZ  0 2 0 

 Y   R  0 0 0 
Source: Little and Vartivarian (2003). 

 
L&V computed estimates of means that are, in our notation, 

 
ˆ ˆ

ˆ ,
ˆ ˆ ˆ

c

urr urr
urr u u

c ci ci c cc i s c

y y
y

f R d f N


 
  

 (2.6) 

and 

 
ˆ ˆ

ˆ .
ˆ ˆ

c

wrr wrr
wrr w

cc ci ci cc i s

y y
y

Nf R d


 
 

 (2.7) 

The denominators of the means are estimates of the population size .N  In estimator (2.7), the 

denominator is a constant and equal ,N  but in estimator (2.6) the denominator is a random variable. In the 

simulation setting with the stratified simple random sample design described below, or in any design where 

ii s
d N


  for every ,s  the estimator (2.7) reduces to the linear estimator 1ˆ ;ˆwrr wrry N y  whereas (2.6) 

is a ratio estimator. This is an important point we return to later. 

Domain means may have properties that differ from overall means because the denominators of the 

weighted and unweighted domain means are both random variables. One exception is when the domains 

match the sampling strata and therefore both the domain sizes and stratum sizes are known. L&V did not 

discuss domains, so these estimates are not studied in their simulation. We create domains by randomly 
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generating a random variable i  from a uniform (0, 1) distribution, and defining the membership function 

  1a   if 0a   and   0a   if 0.a   Domain means of 50% were created by substituting *
cid   

 0.5i cid    into expressions (2.6) and (2.7) to produce the estimators ,0.5
ˆ

urry  and ,0.5
ˆ ,wrry  respectively. 

Weighted and unweighted estimators of domain totals ,0.5ˆurry  and ,0.5ˆwrry  were formed similarly. We used 

the same device to create 25 percent domain means and 25 percent domain totals. Since we are interested 

in the effect of the nonresponse adjustments in means computed as ratio estimators, other domains such as 

those defined close to 100 percent of the population were excluded from the analysis because the 

denominator of the domain means approaches the constant population total N  and the mean becomes a 

linear estimator. Domains closer to 0 percent were excluded because of small sample sizes. 

 
3  Findings 
 

The simulation was done in R (R Development Core Team 2011) with 10,000 draws (L&V used 1,000 

draws). We evaluated the estimators by computing the root mean squared error (rmse) and the bias of the 

estimates, where the bias and rmse are measured in deviations from the population quantities as done in 

L&V. We used the same total sample size of 312 that they used in their simulation, but with different sample 

allocation or relative sampling rates between strata. We replicated all 25 configurations in L&V and these 

results are found in Table S-1 in the supplemental materials. Table S-2 in supplemental materials also 

includes the 25 configurations but presents the relative bias of unweighted and weighted means and totals, 

as well as ratios of variances and rmse of unweighted to weighted estimates. The relative bias and ratios of 

variances and rmse facilitate the comparisons between the estimates. These materials include their estimated 

simulation errors, which are all relatively small. For those estimators and sampling rates given in L&V, our 

results are consistent with their published values within simulation error. We begin by examining the bias 

of the estimators. 

 
3.1  Bias 
 

There are two situations where theoretical results exist and are well-known (Little and Rubin 2002). One 

is when the propensity to respond is the same in all cells – missing completely at random (MCAR); MCAR 

corresponds to the model    0, 0, 0R
c z cz         in the last row in Table 2.2. With MCAR, the 

unweighted and weighted adjustment factors are equal in expectation, and both produce unbiased estimates. 

The simulation results in Table V of L&V paper (rows 5, 10, 15, 20, and 25) confirm this observation. The 

second situation is when the response propensity is independent of the strata, corresponding to missing at 

random (MAR) with the response model    2, 0, 0C
c z cz         in the third row of Table 2.2. 

We refer to these situations as MAR because the bias of the estimator does not depend on whether the 

information about Z is used in the model. Here again, the weighted and unweighted estimates are both 

unbiased and the adjustments are equal in expectation. The simulation results in Table V of L&V (rows 3, 

8, 13, 18, and 23) confirm this observation empirically. 



Survey Methodology, June 2016 167 
 

 
Statistics Canada, Catalogue No. 12-001-X 

To focus on the situation in which the model is incorrectly specified, we do not present the simulations 

results for the MCAR and MAR situations in this document, but these results can be found in the 

supplemental materials. An important point is that even though the weighted and unweighted adjustments 

for the MCAR and MAR models are equal in expectation, they are not identical. Sukasih et al. (2009) 

simulated the two approaches under MAR models and stated a preference for the weighted approach largely 

due to the lower variability in the estimates of total across simulations even though both were unbiased. 

As mentioned before, our simulations vary the sampling rates while keeping the overall sample size 

fixed at 312; L&V used a single sampling rate. When the sampling rates are the same across strata (i.e., the 

sample is proportionally allocated to the strata), then the sampling weights are the same for the two strata 

and consequently the weighted and unweighted estimators are identical. The proportional allocation 

sampling rate plays a visible role in our presentation because the two estimates must converge at this point. 

Figure 3.1 (left panel) is a graph of the simulation results for the bias of the weighted and unweighted 

estimator of the total for  YCZ  and   .RC Z  We chose this configuration (row 2 in L&V’s tables) 

because the simulations in L&V showed the unweighted mean had lower bias and rmse than the weighted 

mean for this case. The horizontal axis shows the relative sampling rate computed as the ratio of the 

sampling rate of 0Z   to 1Z   or  1 1
0 0 1 1 .N n N n   The relative sampling rate used by L&V was about 

2.25. It is immediately apparent that the bias of the weighted estimator is essentially constant across different 

sampling rates while the bias of the unweighted estimator varies substantially with the relative sampling 

rate. The bias of the unweighted estimators of the total can be more than two times the bias of the weighted 

estimator for some sampling rates. Both estimators are biased for almost all relative sampling rates, and the 

estimator that has the lower bias depends on this rate. When the relative sampling rates are equal 

(proportional allocation) the unweighted and weighted estimators have the same bias, as expected. However, 

in practice, it is not generally possible to recognize the effect the sampling rate has on the bias and choose 

in advance the adjustment method to reduce the bias for a specific sample. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Bias for weighted and unweighted estimator for the population model [CZ]Y and response 

propensity model [C+Z]R, where the left panel is for the total and right panel is for the mean. 
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To understand these findings, we applied some standard approximations that hold reasonably well in this 

situation (i.e.,    1 1 .E E     The approximate expected value for the weighted estimator is 

   ,ˆ c
wrr cz czz c

cz czz

N
Ey Y

N
 

  
 (3.1) 

where czY  is the population total in cell .cz  Similarly, the approximate expected value for the unweighted 

estimator is  

 
 

 
1

1
.ˆ

z z czz
urr cz czz c

cz z z czz

N n N
Ey Y

N n N



 


  
 (3.2) 

If cz  is a constant (MCAR) or cz  is constant within weighting cells (MAR), then both estimators are 

unbiased to this order of approximation and consistent with known theory. When the sampling rates are the 

same across strata, the two estimators have the same expected value (as noted above they are identical in 

this case). More importantly, these approximations show the expectation of the weighted estimator is not 

dependent on the sampling rate, but the expectation of the unweighted estimator is. This explains the patterns 

shown in the Figure 3.1. 

Some details of the simulation estimates for this configuration are shown in Table 3.1 for selected 

sampling rates. As noted above, the full simulation results for all configurations and sampling rates used to 

create the figures can be found in the supplemental materials. These materials include the relative biases, 

ratios of variances and ratios of rmse which are better indicators for assessing the impact of the adjustments 

on the estimates. We observed that all configurations with biased estimates of totals have biases that are 

lower for the weighted estimator on one side of the relative sampling rate of 1 and are higher on the other 

side. All configurations exhibit an approximately constant bias for the weighted estimator of the total across 

the relative sampling rates, but the bias of the unweighted estimator varies by relative sampling rate. 

Next, we turn to estimated means – the only estimators considered by L&V. The right panel of Figure 

3.1 shows the bias for the weighted estimator is again independent of the relative sampling rate while the 

bias of the unweighted estimator varies with the sampling rate. L&V used a sampling rate of 2.25 so this 

explains why they found the unweighted estimator had a lower bias for the mean in their simulation. Two 

points are worth noting. First, the biases for the means for both adjustment methods are all relatively small, 

especially when compared to the potential relative biases of the totals with the unweighted estimator in the 

panel on the left. Second, there is no way to identify if a particular estimate would fall on the left or right of 

the relative sampling rate of 1. Table 3.1 shows the estimated biases for this configuration. 

The graphs also show a relationship that is somewhat surprising; the relative sampling rates where the 

unweighted estimator of the total has a lower bias are those where the unweighted estimator of the mean 

has a higher bias. In other words, the means behave differently from the totals because the unweighted mean 

is a ratio while the weighted mean is not. As a result, the relative bias (rb = bias/estimate) of the unweighted 

estimator of the mean is not equal to the relative bias of the unweighted estimator of the total (the 

relationship holds for the weighted estimator). We approximate the relative bias by 

    
 

1 ˆ
ˆ ,

ˆ1
urr

urr
urr

rb y
rb y

rb N





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where ˆ
urrN  is the unweighted estimator of the total (where 1iy   for all  .i  This approximation holds 

well in this situation since    ˆ ˆˆcov , 0.urr urr urry N E N   Thus, the relative bias of the unweighted mean is 
reduced whenever the biases of the numerator and denominator are positively correlated. 

Now, consider domain estimates – estimators not studied in L&V. The biases for the weighted and 
unweighted domain total estimators and the relationships with the biases of the unweighted estimators 
varying by the relative sampling rate are the same as observed for the overall totals (see Table 3.1). This 
follows because domain totals are still totals and approximations (3.1) and (3.2) still apply. The domain 
means are also given in the table and they too exhibit the same pattern of biases as shown in Figure 3.1 for 
the full sample mean. It is worth noting that the relative biases for the mean estimates (overall and for the 
domains) do not vary much, with most relative biases in the range of 5 to 7 percent. 

 

Table 3.1 
Bias (times 10,000), root mean square error (times 10,000) and variance of weighted and unweighted estimators 
of means and total of the full sample and domains, configuration [CZ]Y, [C+Z]R with various sampling rates 
 

    Relative sampling rate 
 Characteristic Domain Adjustment 0.30 0.44 1.00 2.25 3.30 

Bias Mean Full urr 515 491 404 301 248 
  wrr 398 403 404 404 394 
 50% urr 513 501 411 307 257 
  wrr 397 414 410 410 401 
 25% urr 523 498 407 298 252 
  wrr 408 411 407 400 395 

 Total Full urr -419 -184 401 1,058 1,335 
  wrr 398 403 404 404 394 
 50% urr -214 -89 205 535 673 
  wrr 194 205 206 207 200 
 25% urr -107 -48 101 264 335 
  wrr 97 98 102 101 100 
Rmse Mean Full urr 643 614 546 536 566 
  wrr 553 547 545 587 616 
 50% urr 758 726 669 699 778 
  wrr 687 671 669 728 794 
 25% urr 949 898 863 952 1,062 
  wrr 895 859 863 955 1,041 

 Total Full urr 537 376 543 1,183 1,485 
  wrr 553 547 545 587 616 
 50% urr 371 311 393 714 888 
  wrr 399 392 394 449 494 
 25% urr 255 233 282 451 553 
  wrr 285 273 283 328 365 
Variance Mean Full urr 15 14 14 20 26 
  wrr 15 14 14 18 22 
 50% urr 32 28 28 40 54 
  wrr 32 28 28 37 47 
 25% urr 64 57 59 83 107 
  wrr 64 58 59 76 93 

 Total Full urr 11 11 14 28 43 
  wrr 15 14 14 18 22 
 50% urr 9 9 11 23 34 
  wrr 12 11 11 16 21 
 25% urr 5 5 7 14 20 
  wrr 7 7 7 10 12 

 
3.2  Root mean square error 
 

Despite the small sample size used in the simulations (312 before nonresponse) and the relatively modest 

relative bias of the estimates for means, the bias is still a large component of the rmse. For example, the bias 
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accounts for 56 (unweighted) to 69 (weighted) percent of the rmse for the estimate of the mean in the  YCZ  

and  RC Z  configuration using the L&V sampling rate. With larger sample sizes that are common in 

large sample surveys, the bias is often the dominant component of the rmse (Brick 2013). 

Figure 3.2 shows the rmse for the estimated total (left panel) and for the mean (right panel) using the 

same configuration used in the previous figure. The rmse for the total for the weighted estimator is 

approximately constant and smaller than the rmse for the unweighted estimator, except when the relative 

sampling rate is about 0.5 which corresponds to the region with very low bias for the unweighted estimator 

as shown in Figure 3.1. However, when the relative sampling rate is greater than one, the rmse of the 

unweighted estimator of the total is much larger than the rmse of the weighted estimator (it can be as much 

as twice the rmse of the weighted estimator for some sampling rates). In contrast, for the estimates of the 

mean shown in Figure 3.2 (right panel), the rmse of both the weighted and unweighted estimators are similar 

in magnitude, and the symmetry around the proportional allocation rate remains. Even though L&V point 

out the unweighted estimator has a lower rmse (at the relative sampling rate of 2.25), we view the rmse of 

both estimators to be approximately equal across the range of relative sampling rates.  

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2 Root mean square error for weighted and unweighted estimator when [CZ]Y and [C+Z]R, where the 

left panel is for the total (rmse is in millions) and the right panel is for the mean. 

 
Figure 3.3 shows the rmse for the estimated 50% domain mean (left panel) and for the 25% domain mean 

(right panel) again using  YCZ  and   .RC Z  Looking at the three graphs of the rmse of the means (for 

the overall mean, the 50% domain mean, and the 25% domain mean) reveals the effect of the ratio estimator. 

As the percentage in the domain decreases from 100% to 25%, the weighted estimator becomes more like 

an unconditional ratio estimator and the correlation between the numerator and denominator reduces the 

rmse of the estimate. As a result, the rmse of the weighted and unweighted estimators are very similar for 

the domain estimators. Even though the weighted estimator has a lower rmse at each of the relative sampling 

rates compared to the unweighted one for the 25% domain mean, the two estimators are essentially 

equivalent in terms of rmse. The slight advantage of the unweighted estimator pointed out by L&V for the 

full population mean for this configuration vanishes for domain means where the weighted estimator is also 

a ratio estimator. 
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Figure 3.3 Root mean square error for weighted and unweighted estimator when [CZ]Y and [C+Z]R, where the 

left panel is for the 50% domain mean and the right panel is for the 25% domain mean. 

 
3.3  Variance 
 

A general concern about nonresponse adjustment factors is that when the factors are based on a small 

number of respondents they may increase the variance of the estimates (Kalton 1983; Tremblay 1986). L&V 

suggest weighting the nonresponse adjustment factors may be responsible for greater variance inflation than 

using the unweighted factors. The figures above show that this did not occur in this simulation. Figure 3.4 

shows the ratio of the unweighted estimator’s variance to that of the weighted estimates for the full 

population mean and total and the 50% domain total for the  YCZ  and  RC Z  configuration. For the 

mean, the variance ratio is nearly equal to one over all the relative sampling rates showing no inflation of 

variance for the weighted estimator compared to the unweighted estimator. For totals, the ratio is less than 

unity for relative sampling rates less than 1 and greater than 1 for relative sampling rates greater than unity. 

The same relationship holds true for the 50% domain total. These results suggest that weighting the 

adjustment is not the source of large factors that can inflate the variance of the estimates. A prudent approach 

is to examine the size of nonresponse factors, irrespective of whether they are weighted or unweighted. 
 

 

 

 

 

 

 

 

 

 
Figure 3.4 Ratio of variance of unweighted to weighted estimates of the mean, total and 50% domain total for 

[CZ]Y and [C+Z]R. 
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Table 3.2 gives the simulation results for another configuration,  YCZ  and   ,RCZ  that was favorable 

to the unweighted adjustment in L&V (the first row in their tables). In contrast, Table 3.3 gives simulation 

results for  YC Z  and  RC Z  which is a configuration that was favorable to the weighted adjustment. 

The results for both of these configurations show the same general patterns as discussed above for  YCZ  

and   .RC Z  

 
Table 3.2 
Bias (times 10,000), root mean square error (times 10,000) and variance of weighted and unweighted estimators 
of means and total of the full sample and domains, configuration [CZ]Y, [CZ]R with various sampling rates 
 

    Relative sampling rate 

 Characteristic Domain Adjustment 0.30 0.44 1.00 2.25 3.30 

Bias Mean Full urr 329 329 289 255 237 
  wrr 294 299 289 298 298 
 50% urr 334 341 293 251 238 
  wrr 299 311 293 294 298 
 25% urr 336 344 306 257 247 
  wrr 302 314 306 299 307 

 Total Full urr -412 -187 287 732 901 
  wrr 294 299 289 298 298 
 50% urr -209 -91 145 367 455 
  wrr 143 152 146 149 154 
 25% urr -103 -46 72 184 230 
  wrr 74 76 73 75 79 

Rmse Mean Full urr 530 507 476 501 533 
  wrr 505 487 476 520 554 
 50% urr 684 653 616 664 732 
  wrr 666 638 616 674 740 
 25% urr 911 859 832 920 1,016 
  wrr 900 849 832 920 1,011 

 Total Full urr 550 395 474 886 1,078 
  wrr 505 487 476 520 554 
 50% urr 385 326 373 575 696 
  wrr 394 375 373 425 475 
 25% urr 263 244 278 390 464 
  wrr 285 274 278 321 361 

Variance Mean Full urr 17 15 14 19 23 
  wrr 17 15 14 18 22 
 50% urr 36 31 30 38 48 
  wrr 36 31 30 37 46 
 25% urr 73 63 61 79 98 
  wrr 73 63 61 76 94 

 Total Full urr 14 12 14 25 35 
  wrr 17 15 14 18 22 
 50% urr 11 10 12 20 28 
  wrr 14 12 12 16 20 
 25% urr 6 6 7 12 16 
  wrr 8 7 7 10 13 
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Table 3.3 
Bias (times 10,000), root mean square error (times 10,000) and variance of weighted and unweighted estimators 
of means and total of the full sample and domains, configuration [C+Z]Y, [C+Z]R with various sampling rates 
 

    Relative sampling rate 

 Characteristic Domain Adjustment 0.30 0.44 1.00 2.25 3.30 

Bias Mean Full urr 763 735 654 566 529 
  wrr 665 661 654 654 652 
 50% urr 773 737 653 564 532 
  wrr 677 664 653 651 656 
 25% urr 773 739 659 574 513 
  wrr 679 668 659 660 636 

 Total Full urr -272 -8 651 1,411 1,744 
  wrr 665 661 654 654 652 
 50% urr -133 -6 326 711 875 
  wrr 336 328 328 332 328 
 25% urr -69 -2 157 359 438 
  wrr 165 166 158 168 165 

Rmse Mean Full urr 854 818 745 699 711 
  wrr 767 753 745 764 790 
 50% urr 951 901 827 816 863 
  wrr 877 845 826 863 912 
 25% urr 1,101 1,046 981 1,023 1,098 
  wrr 1,044 1,004 981 1,045 1,107 

 Total Full urr 426 313 741 1,503 1,868 
  wrr 767 753 745 764 790 
 50% urr 334 300 475 867 1,071 
  wrr 489 470 476 529 575 
 25% urr 246 240 314 530 649 
  wrr 320 316 314 372 409 

Variance Mean Full urr 15 13 13 17 23 
  wrr 15 13 13 16 20 
 50% urr 31 27 26 35 46 
  wrr 31 28 26 32 40 
 25% urr 62 56 54 73 95 
  wrr 63 57 54 67 83 

 Total Full urr 11 10 13 27 45 
  wrr 15 13 13 16 20 
 50% urr 10 9 12 25 39 
  wrr 13 12 12 17 22 
 25% urr 6 6 7 15 23 
  wrr 8 7 8 11 14 

 

3.4  Estimating population size 
 

A particular type of estimate studied by Sukasih et al. (2009) is the estimate of the number of units in a 

population. We refer to this as an estimate of population size where the population size is just an estimate 

of a total where 1iy   for all .i  It can be estimated for a domain by assigning all units outside the domain 

0.iy   In the simple stratified sample design studied here, the weighted estimator always reproduces the 

overall total population size 10,000,N   but the unweighted estimator does not. Since this situation clearly 

favors the weighted estimator, we instead examine the domain population size estimates. 

Suppose we are estimating the number of units in a domain or subgroup that have a value below a 

percentile defined by a characteristic for the total population (e.g., national median income). This type of 



174 Flores Cervantes and Brick: Nonresponse adjustments with misspecified models in stratified designs 
 

 
Statistics Canada, Catalogue No. 12-001-X 

statistic is extremely important in surveys because estimates of the population size for domains are often 

key outcome statistics. For example, an estimate of this type is the total number of persons with an income 

below the poverty line or the low income line (Kovačević and Yung 1997). 

The L&V analysis did not consider estimates for domains sizes or means, so there is not an explicit 

variable that can be used to define a subpopulation. To avoid complicating this analysis, we illustrate the 

performance of the two estimators using an artificial domain created by randomly selecting half of the 

population (i.e., 50% domain). Similar to the analysis in previous sections we computed weighted and 

unweighted totals and means for the 50% domain. Even though we know the size for this domain beforehand 

for this example (i.e., 50 percent of the total population), the analysis is still valid. In practice, the domain 

size would not be known. 

When estimating a statistic such as the population size in a domain, both the weighted and unweighted 

estimators of domain population size are unbiased when the data are MCAR or MAR, as noted by Sukasih 

et al. (2009). Furthermore, the rmse errors of the weighted and unweighted estimators are approximately 

equal in this case as confirmed in the simulations. 

When the data are not MAR, the situation may be very different. The weighted estimator of a domain 

population size is approximately unbiased for all relative sampling rates and all configurations, but the 

unweighted estimator is always biased except when it is identical to the weighted estimator (at a relative 

sampling rate of 1). As a consequence the rmse of the unweighted estimator for the domain size is often 

considerably greater than that of the weighted estimator. Figure 3.5 shows that the rmse of the unweighted 

estimator of the 50% domain size for  YCZ  and  RC Z  is substantially greater than that of the weighted 

estimator for most relative sampling rates (as much as twice the rmse of the weighted estimator). The only 

exception is when the two estimators are approximately equal (near proportional allocation). 

The weighted estimator of domain sizes thus has a substantial advantage over the unweighted estimator 

for all of the missing data mechanisms in L&V that are not MCAR or MAR. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5 Root mean square error (rmse) for 50% domain size weighted and unweighted estimators when 

[CZ]Y and [C+Z]R. 
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4  Conclusions 
 

Nearly every survey suffers from nonresponse so the method for adjusting the base weights for unit 

nonresponse is an important topic. L&V appropriately noted that using design weights to compute a 

weighted nonresponse adjustment does not eliminate nonresponse bias when the response mechanism is not 

specified correctly in the weighting adjustment model. However, their simulation study suggested to at least 

some researchers that an unweighted adjustment might be more appropriate than a weighted adjustment 

more generally. The results from our evaluation, using the same setting as in L&V, contradict this 

perception. We explored the differences between the unweighted and weighted estimators when the 

adjustment model is misspecified in more detail using the L&V setting by including different sampling rates 

and estimates of totals and domains in addition to the means discussed in L&V. 

These expanded simulations show that the unweighted and weighted adjustments do have different 

properties. The bias of the weighted estimator of totals means in stratified simple random sample designs is 

approximately constant irrespective of the sampling rate but the bias of the unweighted estimator depends 

on the sampling rate. In contrast, the bias of the unweighted estimator of the total is substantially larger than 

that of the weighted estimator for some sampling rates. For means, the bias and the rmse of the two 

estimators are not very different including those configurations that L&V described as favoring the 

unweighted estimator. The same general conclusions hold for estimates of domain means and totals as the 

weighted mean becomes more of a ratio estimate for domains and this influences its behavior somewhat. 

We also looked at estimating domain sizes. With this type of statistic, the rmse of the weighted estimator 

is almost uniformly lower than the rmse of the unweighted estimator when the data are not MAR in the 

simulation settings. The differences are due to the bias in the unweighted estimator of the domain size, and 

this bias causes the unweighted estimator to have a substantially greater rmse compared to the weighted 

estimator for some sampling rates. 

Imperfect models are used in most surveys so the nonresponse adjustment method is important. The 

expanded simulation findings we present show the weighted adjustment has substantial advantages for some 

estimates and for some sampling rates when compared to the unweighted adjustment. In particular, any 

survey with this design that produces estimates of totals and statistics other than just means appears to 

benefit by weighting the adjustment. Of course, weighting the adjustment does not remove bias; weighting 

does diminish the magnitude of the bias in many situations and for many of the estimators we examined. 

The bias of the weighted estimator also is not sensitive to the relative sampling rate, but the bias of the 

unweighted estimator is sensitive. The potential disadvantage of an increase in the variance of the estimate 

using the weighted adjustment did not arise in these simulations, and can be avoided by inspecting the 

adjustment factors, as should also be done with an unweighted adjustment. Finally, the results of this study 

highlight the potential problem of generalizing from simulations. Although simulations are valuable to 

demonstrate a specific point, generalizing simulation findings more broadly can be misleading especially 

when the findings are highly dependent on the conditions of the model being simulated.  
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A short note on quantile and expectile estimation in unequal 
probability samples 

Linda Schulze Waltrup and Göran Kauermann1 

Abstract 

The estimation of quantiles is an important topic not only in the regression framework, but also in sampling 
theory. A natural alternative or addition to quantiles are expectiles. Expectiles as a generalization of the mean 
have become popular during the last years as they not only give a more detailed picture of the data than the 
ordinary mean, but also can serve as a basis to calculate quantiles by using their close relationship. We show, 
how to estimate expectiles under sampling with unequal probabilities and how expectiles can be used to estimate 
the distribution function. The resulting fitted distribution function estimator can be inverted leading to quantile 
estimates. We run a simulation study to investigate and compare the efficiency of the expectile based estimator. 

 
Key Words: Quantiles; Expectiles; Probability proportional to size; Design-based; Auxiliary variable; Distribution 

function. 

 
 

1  Introduction 
 

Quantile estimation and quantile regression have seen a number of new developments in recent years 

with Koenker (2005) as a central reference. The principle idea is thereby to estimate an inverted cumulative 

distribution function, generally called the quantile function      1= for 0,1 ,Q F      where the 

0.5 quantile  0.5 ,Q  the median, plays a central role. For survey data tracing from an unequal probability 

sample with known probabilities of inclusion Kuk (1988) shows how to estimate quantiles taking the 

inclusion probabilities into account. The central idea is to estimate a distribution function of the variable of 

interest and invert this in a second step to obtain the quantile function. Chambers and Dunstan (1986) 

propose a model-based estimator of the distribution function. Rao, Kovar and Mantel (1990) propose a 

design-based estimator of the cumulative distribution function using auxiliary information. Bayesian 

approaches in this direction have recently been proposed in Chen, Elliott, and Little (2010) and Chen, Elliott, 

and Little (2012). 

Quantile estimation results from minimizing an 1L  loss function as demonstrated in Koenker (2005). If 

the 1L  loss is replaced by the 2L  loss function one obtains so called expectiles as introduced in Aigner, 

Amemiya and Poirier (1976) or Newey and Powell (1987). For  0,1 ,   this leads to the expectile 

function  M   which, like the quantile function   ,Q   uniquely defines the cumulative distribution 

function ( )F y . Expectiles are relatively easy to estimate and they have recently gained some interest, see 

e.g., Schnabel and Eilers (2009), Pratesi, Ranalli, and Salvati (2009), Sobotka and Kneib (2012) and Guo 

and Härdle (2013). However since expectiles lack a simple interpretation their acceptance and usage in 

statistics is less developed than quantiles, see Kneib (2013). Quantiles and expectiles are connected in that 

a unique and invertible transformation function    : 0,1 0,1yh   exists so that     = ,M h Q   see 

Yao and Tong (1996) and De Rossi and Harvey (2009). This connection can be used to estimate quantiles 
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from a set of fitted expectiles. The idea has been used in Schulze Waltrup, Sobotka, Kneib and Kauermann 

(2014) and the authors show empirically that the resulting quantiles can be more efficient than empirical 

quantiles, even if a smoothing step is applied to the latter (see Jones 1992). An intuitive explanation for this 

is that expectiles account for all the data while quantiles based on the empirical distribution function only 

take the left (or the right) hand side of the data into account. That is, the median is defined by the 50% left 

(or 50% right) part of the data while the mean (as 50% expectile) is a function of all data points. In this note 

we extend these findings and demonstrate how expectiles can be estimated for unequal probability samples 

and how to obtain a fitted distribution function from fitted expectiles. 

The paper is organized as follows. In Section 2 we give the necessary notation and discuss quantile 

regression in unequal probability sampling. This is extended in Section 3 towards expectile estimation. 

Section 4 utilizes the connection between expectiles and quantiles and demonstrates how to derive quantiles 

from fitted expectiles. Section 5 demonstrates in simulations the efficiency gain in quantiles derived from 

expectiles and a discussion concludes the paper in Section 6. 

 
2  Quantile estimation 
 

We consider a finite population with N  elements and a continuous survey variable .Y  We are interested 

in quantiles of the cumulative distribution function    
=1

= 1
N

ii
F y Y y N  and define as  

    
=1

= inf arg min
N

i i
q

i

Q w Y q Y q

 
   

 
  (2.1) 

the Quantile function of Y  (see Koenker 2005), where  

  
for > 0

=
1 for 0.

w

  
   

  

The “inf” argument in (2.1) is required in finite populations since the “arg min” is not unique. We draw a 

sample from the population with known inclusion probabilities ,i  = 1, , .i N  Denoting by 1 , , ny y  

the resulting sample, we estimate the quantile function by replacing (2.1) through its weighted sample 

version  

   ,
=1

1ˆ = inf arg min
n

N j j
q

j j

Q w y q

 
  

 
  (2.2) 

with  , =j jw w y q    as defined above. It is easy to see that the sum in (2.2) is a design-unbiased 

estimate for the sum in  Q   given in (2.1). Nonetheless, because we take the “arg min” it follows that 

 ˆ
NQ   is not unbiased for   .Q   We therefore look at consistency statements for  ˆ

NQ   as follows. Let 

   =i i iR q w y q y q    and 

    
1

:= .N i
i

R q R q
N
   
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We draw a sample from   , = 1, ,iR q i N  and assume we apply a consistent sampling scheme in that  

    
=1

1 1
:=

n

n j
j j

r q r q
N    

is design-consistent for   ,NR q  where  jr q  denotes the sample of   .iR q  Note that  jr q  and hence 

  ,nr q   iR q  and  NR q  also depend on   which is suppressed in the notation for readability. Let 0q  be 

the minimum of  NR q  which is not necessarily unique due to the finite structure of the population. We 

can take the “inf” argument, i.e.,   0 = inf arg min ,Nq R q  but for simplicity we assume a 

superpopulation model (see Isaki and Fuller 1982) by considering the finite population to be a sample from 

an infinite superpopulation. In the latter we assume that survey variable Y  has a continuous cumulative 

distribution function so 0q  results in a unique   quantile. We get for > 0   

          0 0 0 0
=1

1 1
< < 0 .

n

n n j j
j j

P r q r q P r q r q
N


        

   

Note that the argument in the probability statement is a design-consistent estimate for  0NR q   

 0 ,NR q    which is less than zero since 0q  is the minimum of   .NR   Hence, the probability tends to 

one in the sense of design consistency defined in Isaki and Fuller (1982). The same holds of course for 

< 0.  With this statement we may conclude that the estimated minimum  0 =1
ˆ = arg min 1

n

j jj
q r q  

is a design-consistent estimate for 0q  so that  ˆ
NQ   in (2.2) is in turn design-consistent for   .NQ   It is 

easily shown that  ˆ
NQ   is the inverse of the normed weighted cumulative distribution function  

  
 

=1

=1

1
ˆ :=

1

n

j j
j

N n

j
j

y y

F y

 






  

using the same notation as in Kuk (1988). Note that  ˆ
NF y  is the Hajek (1971) estimate of the cumulative 

distribution function (see also Rao and Wu 2009) and as such not a Horvitz-Thompson estimate. As a 

consequence  ˆ
NQ   is not design-unbiased. Nonetheless,  ˆ

NF y  is a valid distribution function, and hence 

it can be considered as normalized version of the Lahiri or Horvitz-Thompson estimator of the distribution 

function (see Lahiri 1951) which is denoted by  

    
=1

1ˆ := 1 1 .
n

L j j
j

F y y y
N

    

Kuk (1988) proposes to replace  ˆ
LF   with alternative estimates of the distribution function: Instead of 

estimating the distribution function itself he suggests to estimate the complementary proportion  ˆ
RS y  

which then leads to the estimate  ˆ
RF y  defined through  

      
=1

1ˆˆ = 1 = 1 1 1 > .
n

R R j j
j

F y S y y y
N

     
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Resulting directly from these definitions we can express  ˆ
RF   in terms of  ˆ

NF   through  

 =1

=1

1
1ˆ ˆ ˆ ˆ= 1 1 and = .

n

jn
j

R j L L N
j

F F F F
N N


  


  (2.3) 

Kuk (1988) shows that, under sampling with unequal probabilities, estimation of the median derived from 
ˆ

RF  outperforms median estimates derived from ˆ
NF  and ˆ

LF  in terms of mean squared estimation error. Note 

that the estimators ˆ ,NF  ˆ
LF  and ˆ

RF  coincide in the case of simple random sampling without replacement 

where = = .j n N   

 
3  Expectile estimation 
 

An alternative to quantiles are expectiles. The expectile function  M   is thereby defined by replacing 

the 1L  loss in (2.1) by the 2L  loss leading to  

      2

=1

= arg min .
N

i i
m

i

M w Y m Y m

 
   

 
  (3.1) 

Note that  M   is continuous in   even for finite populations. Moreover  0.5M  equals the mean value 

=1
= .

N

ii
Y Y N  Using the sample 1 , , ny y  with inclusion probabilities 1 , , n   we can estimate 

 M   by replacing the sum in (2.2) by its sample version, i.e., 

    2

,
=1

1ˆ = arg min
n

j j
m

j j

M w y m

 
  

 
   

with , jw  as defined above. It is easy to see that the sum in  M̂   is a design-unbiased estimate for the 

sum in   .M   The estimate itself is however not design-unbiased like for the quantile function above. 

However the same arguments as for  NQ   in (2.2) may be used to establish design-consistency. 

 
4  From expectiles to the distribution function 
 

Both, the quantile function  Q   and the expectile function  M   uniquely define a distribution 

function  . .F  While  Q   is just the inversion of  .F  the relation between  M   and  .F  is more 

complicated. Following Schnabel and Eilers (2009) and Yao and Tong (1996), we have the relation  

  
          

        
1 0.5

= ,
1 1

G M M G M
M

F M F M

      


      
 (4.1) 

where  G m  is the moment function defined through    
=1

= 1 .
N

i ii
G m Y Y m N  Expression (4.1) 

gives the unique relation of function  M   to the distribution function  . .F  The idea is now to solve 

(4.1) for  . ,F  that is to express the distribution  .F  in terms of the expectile function  . .M  Apparently, 
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this is not possible in analytic form but it may be calculated numerically. To do so, we evaluate the fitted 

function  M̂   at a dense set of values 1 20 < < < < 1L    and denote the fitted values as 

 ˆˆ = .l lm M   We also define left and right bounds through 1 0ˆ ˆ=om m c  and 1 1ˆ ˆ= ,L L Lm m c   where 

0c  and Lc  are some constants to be defined by the user. For instance, one may set 0 2 1ˆ ˆ=c m m  and 

1 1ˆ ˆ= .L L Lc m m   By doing so we derive fitted values for the cumulative distribution function  .F  at ˆ lm  

which we write as  
=1

ˆˆ ˆ ˆ:= =
l

l l jj
F F m   for non-negative steps ˆ 0, = 1, ,j j L    with 

=1
ˆ 1.

L

jj
   

We define 1 =1
ˆ ˆ= 1

L

L ll    to make  ˆ .F  a distribution function. Assuming a uniform distribution 

between the dense supporting points ˆ lm  we may express the moment function  .G  by simple stepwise 

integration as  

    
=1

ˆ ˆˆ ˆ ˆˆ:= =  = ,
l

ml
l l j l

j

G G m x dF x d


   

where  1
ˆ ˆ ˆ= 2j j jd m m   with the constraint that  1

ˆ ˆ= 0.5LG M  and  ˆ 0.5 =M  

   
=1 =1

1 .
n n

j j jj j
y     With the steps ˆ , = 1, ,l l L   we can now re-express (4.1) as  

 

   

 

=1 =1

=1 =1

ˆ ˆ ˆ ˆˆ1 0.5

ˆ = ,    = 1, , ,
ˆ ˆ1 1

l l

j j j j
j j

l l l

j j
j j

d M d

m l L


       

 


       
 

 

 
   

which is then be solved for 1
ˆ ˆ, , .L   This is a numerical exercise which is conceptually relatively 

straightforward. Details can be found in Schulze Waltrup et al. (2014). Once we have calculated 1
ˆ ˆ, , L   

we have an estimate for the cumulative distribution function which is denoted as  
ˆ: <

ˆˆ = .M
N ll m yl

F y   We 

may also invert  ˆ .M
NF  which leads to a fitted quantile function which we denote with  ˆ .M

NQ   

As Kuk (1988) shows, both theoretically and empirically,  ˆ .RF  is more efficient than  ˆ . .NF  We make 

use of this relationship and apply it to  ˆ . ,M
NF  which yields the estimator  

 =1

=1

1
1ˆ ˆ:= 1 1 .

n

jn
jM M

R j N
j

F F
N N


  


   

In the next section we compare the quantiles calculated from the expectile based estimator ˆ M
RF  with 

quantiles calculated from ˆ .RF  Note that neither ˆ M
RF  nor ˆ

RF  are proper distribution functions since they are 

not normed to take values between 0 and 1. 

 
5  Simulations 
 

We run a small simulation study to show the performance of the expectile based estimates. In the 

following, we make use of the Mizuno sampling method (see Midzuno 1952) and define the inclusion 
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probabilities j  proportional to a measure of size ,x  see R package “sampling” by Tillé and Matei (2015). 

We examine two data sets also used in Kuk (1988). The first data set (Dwellings) contains two variables, 

the number of dwelling units   ,X  and the number of rented units   ,Y  which are highly correlated (with 

a correlation of 0.97); see also Kish (1965). The second data set (Villages) includes information on the 

population  X  and on the number of workers in household industry  Y  for 128 villages in India; see 

Murthy (1967). In the second data set the correlation between Y  and X  is 0.54. In order to compare our 

simulation results with the results of Kuk (1988) we choose the same sample size of = 30n  (from a total 

population of = 270N  for the Dwellings data and = 128N  for the Villages data). 

We compare quantiles defined by inversion of ˆ
RF  with quantiles defined by inversion of ˆ .M

RF  In 

Table 5.1 we give the root mean squared error (RMSE) and the relative efficiency for specified quantiles. 

We note that the median for the village data and for the Dwelling data also upper quantiles derived from 

expectiles yield increased efficiency. Also the efficiency gain does not hold uniformly as we observe a loss 

of efficiency for lower quantiles. 

 
Table 5.1 
Comparison of mean squared error on a basis of 500 replications 
 

 

    quantiles 

  ˆMSE RQ    

quantiles from 
expectiles  

  ˆMSE M
RQ    

relative efficiency 

  
  

ˆMSE

ˆMSE

M
R

R

Q

Q




  

Dwellings 0.1   2.57   2.76   1.07  
 0.25   1.77   1.97   1.11 
 0.5   2.45   2.35   0.96  
 0.75   3.15   2.91   0.92  
 0.9   4.20   3.43   0.82  

Villages 0.1   5.52   6.65   1.21  
 0.25   11.41   10.31   0.90 
 0.5   12.29   11.69   0.95 
 0.75   16.24   15.41   0.95 
 0.9   13.31   18.34   1.38  

 
To obtain more insight we run a simulation scenario which involves a larger sample size of = 100n  

selected from populations of sizes = 1,000N  and = 10,000.N  We draw Y  and X  from a bivariate log 

standard normal distribution with = 0  and = 1.  The variables Y  and X  are drawn such that the 

correlation between the variables is equal to 0.9. We again calculate the root mean squared error for a range 

of   values and show the relative efficiency of the expectile based approach in Figure 5.1. For better visual 

presentation we show a smoothed version of the relative efficiency. We notice a reduction in the root mean 

squared error for both cases = 1,000N  and = 10,000.N  We may conclude that the expectiles can easily 

be fitted in unequal probability sampling and the relation between expectiles and the distribution function 

can be used numerically to calculate quantiles with increased efficiency. This efficiency gain holds for upper 

quantiles only, that is for   bounded away from zero. Note however that the sampling scheme is such that 

large values of Y  are sampled with higher probability, reflecting that the sampling scheme aims to get more 

reliable estimates for the right hand side of the distribution function, i.e., for large quantiles. If we are 
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interested in small quantiles we should use a different samling scheme by giving individuals with small 

values of Y  an increased inclusion probability. In this case the behavior shown in Figure 5.1 would be 

mirrored with respect to .  

 

 

 

 

 

 

 

 

 

 

 

 

                
 
Figure 5.1 Relative Root Mean Squared Error (RMSE) of quantiles and quantiles from expectiles for the 

Probability Proportional to Size (PPS) design calculated from 500 repetitions (left: = 1,000,N  

right: = 10,000 .N  

 
6  Discussion 
 

In Section 4 we extended the toolbox of expectiles to the estimation of distribution functions in the 

framework of unequal probability sampling. We defined expectiles for unequal probability samples. When 

comparing quantiles based on ˆ
RF  with quantiles based on the expectile based estimator ˆ ,M

RF  we observed 

that the proposed estimator performs well in comparison to existing methods. The calculation of empirical 

expectiles is implemented in the open source software R (see R Core Team 2014) and can be found in the 

R-package expectreg by Sobotka, Schnabel, and Schulze Waltrup (2013). The calculation of the expectile 

based distribution function estimator ˆ M
NF  is also part of the R-package expectreg. The calculation of ˆ M

RF  

is, however, more demanding as the calculation of ˆ
RF  because it involves three steps: First, we calculate 

the weighted expectiles as described in Section 3; second, we estimate ˆ ,N
RF  and in a third step, we derive 

ˆ M
RF  from ˆ N

RF  (see Section 4). In the Log-Normal-Simulation it takes about 2-3 seconds for = 1,000N  to 

calculate ˆ M
RF  whereas the computational effort of ˆ

RF  is barely noticeable. 
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ADDENDUM 

 
Model-assisted optimal allocation for planned domains using  

composite estimation 

Wilford B. Molefe and Robert Graham Clark 
Volume 41, number 2, (December 2015), 377-387 

 
 
The second paragraph of page 378 of our paper reviews the 2012 paper of Choudhry, Rao and Hidiroglou. 
Our paragraph as worded implies a criticism of this paper which we did not intend, and we take this 
opportunity to correct and clarify our review. The CVs we referred to were in Table 5 of Choudhry et al. 
(2012), and the heading of this table clearly indicated that the CVs were of composite estimators, rather than 
being unspecified as we incorrectly stated. We also suggested that some CVs in this table were surprisingly 
high. This would be the case if the CVs (actually relative root mean squared errors, following a common 
convention) were calculated using the approximation of Longford (2006) or our closely related anticipated 
mean squared errors. However, Choudhry et al. (2012) used a different (and more standard) estimator of 
mean squared error, and the high values are not surprising in this light.  
 
We also stated that Choudhry et al. (2012) did not investigate whether other designs such as power allocation 
can give lower values of Longford’s criteria. This was correct, and motivated the research on this question 
in our paper. However we should have made clear that Choudhry et al. (2012) did consider square root 
allocation, a special case of power allocation, in terms of other criteria, such as setting small area CV 
tolerances. 
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