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INTERNATIONAL SYMPOSIUM ON SMALL AREA STATISTICS

OTTAWA, CANADA MAY, 22-24, 1985

In recent years the demand for reliable information on small areas
has greatly increased in many countries. Some important work, both
theoretical and practical has been carried out by researchers at
Universities and National Statistical Bureaus. The International
Symposium will provide a forum where views, ideas and results of such
work could be discussed and exchanged.

The symposium is- jointly sponsored by Statistics Canada and the
Laboratory for Research in Statistics and Probability of Carleton
University and the Department of Mathematics and Statistics of the
University of Montreal. The Symposium is expected to attract over 200
participants from different countries and different organizations
{(Universities, government and business). There will be 20 invited
speakers who will present papers on the following topics:

Synthetic Estimation

Other modeling approaches to estimation
Demographic Methods

Application in Social and Economic Areas
Policy Aspects

Organizational Experiences

In addition, contributed sessions are also planned. Those who intend
to present contributed papers should forward the abstracts by January 3lst
1985. It is intended to publish the proceedings soon after the Symposium,
therefore full paper will be needed by April 30, 1985. The organizing
committee consists of:

R. Platek - Statistics Canada

J.N.K. Rao - Carleton University

C.E. Sarndal - University of Montreal
M.P. Singh - Statistics Canada.

Please forward abstracts to, R. Platek, Statistics Canada, 4-C7,
Jean Talon Bldg., Tunney's Pasture, Ottawa, Ontario KlA 0T6 (Canada).
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surveys, such as, design problems in the context of practical constraints.
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PREFACE

This issue is devoted to presenting papers given at a symposium entitled
Analysis of Survey Data - Issues and Methods, held at Statistics Canada on
Thursday May 3, 1984.

The symposium was jointly sponsored by Methodology Research Committee at
Statistics Canada and the Laboratory for Research in Probability and
Statistics at Carleton and Ottawa Universities. The aim of this symposium was
to demonstrate how recent developments in the area of analysis of data from
complex surveys could be applied to analytic studies in Statistics Canada.

The symposium opened with remarks from the Chief Statistician,
Martin B. Wilk, who emphasized the importance that Statistics Canada places in
enhancing its research and development capacity and in the joint endeavours by
the practitioners and academics on such issues. The symposium consisted of
two sessions: - A morning session, chaired by Leslie Kish of the Institute for
Social Research at the University of Michigan, which included contributions
from Statistics Canada presented by D, Binder, P. Cholette, L. Heslop and
S. Kumar, in addition to the presentation of an overview of the analysis
issues by the Chairman.

The afternoon session chaired by the Deputy Chief Statistician,
Ivan P. Fellegi started with brief remarks from the chair and included papers
from R. Fay, U.S. Bureau of the Census and W. Fuller, Iowa State University.
The session concluded with general discussion of the developments on the data
analysis issues led by J].N.K. Rao, Carleton University. Well over 200 parti-
cipants from various [niversities and Federal and Provincial Fhovernment
Departments attended the symposium.

A selected biblioqraphy on the topic compiled by the Project Team on the

Analysis of Data from Complex Surveys is also given at the end.
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ON ANALYTICAL STATISTICS FROM COMPLEX SAMPLES!

Leslie Kish?

I want to plead the case that an important and urgent task facina mathema-
tical statistics consists of providing useful expressions for analytical sta-
tistics for complex sample designs. I should like to describe these problems
to mathematical statisticians who should find them interestina because they
meet the criteria of all qgood problems: they are important, unsolved and
solvable. '

The most important and difficult problems of survey sampling still await
adequate mathematical treatment: the textbooks are aimed almost entirely at
producing good estimates of aggregates, means and ratio means. 0One may also
deal with the differences of two of these, but there is only" fleeting and
occasional reference to this problem; However, with that we come to the end
of the statistical tools available for complex samples.’ '

As sampling theory developed, probability sampling has been capturing the
field of respectable sampling practice with sample desians, whic¢h “are often
simultaneously economical and complex. ~ One result has been ‘an increasing
volume of sample survey data which is of-high quality -and" which researchers
wish to put to more involved analytical use. But the mathematical statistics
for doing this validly are lacking. The available analytical statistics as-
sume independence among the selected elements: but this independeénce is lack-
ing in complex sample desians. Thus the-researcher may be forced 'to foreqo
the analysis which he considers désirable and valuable.. But if he is too
impatient or too ignorant for that act of self-denial, he may go ahead and use
the srs formulas he finds in books on statistics, which often result in very
serious errors. ’ ‘

I hope that mathematical statisticians will ‘be impressed with the impor-
tance of the unsolved problems of analytical statistics for data arising from
complex sample designs. The lack of these is a more freguent source of aross

mistakes than any other kind of departure from the -usual assumptions.

! Qverview talk for the symposium.

Leslie Kish, Institute for Social Research, The Univeristy of Michican.
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These problems are important, unsolved and interesting. You may ask: are
they solvable now?  Supporting my affirmative answer are three sources of
justification. First, we observe the great recent advances in statistical
theory. Secondly, the rapid'increases in the quantity and quality of elec-
tronic computing machines make the time ripe for the solution of some of these
problems. There is new interest in a general method which holds promise of
rapid advance toward useful approximations. At the Survey Research Center we
are now ihtroducinq this. method for computing estimates of variances for
reqression coefficients and other statistics for which formulas are not now
available,

It seems to me that this procedure resembles that of Alexander when he
"solved" the Gordian knot. From a theoretical viewpoint I don't know whether
it constitutes a solution of the problem or its avoidance. But insofar as it
promises to give good approximations for much needed variances the practicing
statistician will welcome its development with enthusiasm and interest. In
this way one may obtain estimates of the confidence intervals of some analyti-
cal statistics for which specific formulas are not now available.

All of the above is verbatim from my talk to a joint session of the
American Statistical Association and the Institute of Mathematical Statistiecs
in 1957. Since then our situation has changed but little, QJur 1957 hopes for
that cut of the Gordian knot is now much used as BRR or Balanced Repeated
Replications (Kish and Frankel 1970, 1974). But my moving plea for distribu-
tion theory for doubly complex analytical statistics did not move the mathema-
tical statisticians. I know now why not, _since I am sadder and wiser now.
First, statisticians like other scientists work not on what solutions are
needed but on those that seem feasible at the time. (Like nuclear bombs, for
example.} Second, distribution theory for complicated statistics for complex
samples seems too difficult to solve. Third, the solutions would have too
many parameters to be useful. Thus my views in (Kish 1978) and today are more
sober: "New computational methods can give us approximate variances that
appear satisfactory for practical purposes. However, it would be more satis-
fying to have mathematical distribution theory for analytical statistics
(e.q. regression coefficients) without the assumptions of independence, but
with complex correlations between sample observations. We may hope for some

progress, but not for generally useful results, because of mathematical
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complexities, and even more because the numhers of needed parameters will
prove too great for practical utility.”

Here follow seven important points about complex samples put boldly. They
are not all widely known or believed, but I ask you to know, believe, use and
teach them, as I do.

1. The effects of complex designs must be considered separately for point
estimates and for probability statements, like confidence intervals or tests
of hypotheses. For point estimates we have for all sample designs consistent
approaches to parameters from similar probability-weighted (H-T) .estimators.
But the probability statements like confidence intervals are highly subject to
design effects, especially in cluster sampling. !

a) "Statistics (means, regression coefficient, etc.) approach their
population values as the sample size increases.

b) The approach is generally slowed by desian effects.

c) The desiagn effects differ for different statisties, for different
variables and different sample desians." (Kish and Frankel, 1974).

That paper also presents the most convincing evidence for these points: and
evidence is widespread; e.q. {(Verma et al 198N). Nevertheless two famous
statisticians completely misstated our position in discussions of our paper:
"Here the authors make the important observation that the confidence interval
statements for the unknown parameter are numerically not much affected by the

lack of independence of observations introduced by complex survey techniaues

such as stratified cluster sampling." Alas, that mistake gets quoted by other
theoreticians who fail to read our answer of survey samplers: "They
misunderstand completely our principal and repeated message: that confidence
interval statements are numerically aqreatly affected by the lack of
independence of observations introduced by complex survey techniques such as
stratified cluster sampling.”" (Kish and Frankel, 1974).

This misunderstanding shared by naive non-statisticians with sampling
theorists causes troubles for us survey samplers: hence we are working on a
clearer statement.

2. Do we need sampling errors for analytical statistics for data from
complex surveys? Or have a few of us heen devoted to a neqgliqgible even

trivial problem? I feel like a 5t. Sebastian, the tarqet practice for the
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slings and arrows of diverse outraqgeous heathen. {(Mixed metaphors are better
than fixed or random.) First come the market researchers and pollsters who
ignore us, though some have learned to put a v between a 2 and (pa/n).
Second, some demographers write that with their large samples and larger mea-
surement errors they have no time for sampling errors. Third come the mathe-
matical psychologists, econometricians and biometricians who take their linear
models straight from mathematical statistics, and that hurts. Fourth, even
more hurtful are the mathematical statistiecians themselves, who either forget
that their n's do not justify their means, or they invoke IID, or they use
some Bayesian exorcism against the spirits of the sample design. Fifth and
worgt are sampling theorists who display theorems to prove that, with com- .
pletely specified models of arbitrary superpopulations, we need not worry
about whence or haow our elements were selected, nor weight them for unequal
selection probabilities. They even convince a few survey samplers that they
can dwell on some (lympus with their models and not come down to earth where
the population lives.

From these necessarily brief remarks you notice that I am an extremist for
several reasons: a) Desian effects Ffor analytical statistics provide common
evidence for imperfectly specified models for the best stratified samples: b)

‘We frequently find the effects of selection weights on samples: c) Relations
between predictor and predictand variables exist in actual individuals, and
they in real populations, and these interact with sample designs. (I am
developing these points in a book on Statistical Design for Social Research
for Wiley, 1985.).

My philosophy is consistent, but in practice I am less dogmatic. I recog-

nize that in practice: a) it is never possible to cover completely our target
populations, hence we must always resort to models for inference; b) praba-
bility sampling is too costly and not feasible for most experiments; c)
despite lack of randomization either in selection or in treatments, we often
blunder our way to reliable results with care, replication, design, additivity
and a little bit of luck.

3. Analytical statistics begin with subclasses and with their compari-
sons. In the last three decades much useful material has been published about
variances and design effects for subclasses., There are masses of empirical

results and several useful auiding rules based on them (Kish 1980, Kish et
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al. 1976, Verma et al. 1980), also some recent theory (Rust 1984, Chapter 6).

a) Distinquish between proper domains and the more common crossclasses, on
which we focus here.

b} Selection probabilities are preserved for crossclasses hut sample sizes
become highly variable.

c) Estimates of totals and means from complex samples are retained in
ratio and conditional forms.

d) Design effects for crossclasses tend to approach to almost 1
proportionately as the subclass sizes per primary cluster approach 1. This
approximate model needs care and qualification but it is preferable to all
venerable alternatives about design effects: that it is simply 1, or some
other constant, or the same as for the entire sample. The pooled model may be
often better than separate and highly variable computations.

4. Comparisons of paired means tend to have design effects greater than 1
but considerably less than the sum of the two variances. These reductions due
to positive covariances (hence to a kind of additivity) have been found widely
and regularly for comparisons both of crossclasses and of periodic surveys
(Kish 1965, 14.1, also the above).

5. For complex analytical statistics several methods exploit the
potentialities of electronic computing: Taylor linearized (delta) methods,
including machine differentiation, Balanced Repeated Replications and
Jackknife Repeated Replications, all have been shown to yield useful estimates
of variance and design effects for complex samples {Kish and Frankel 1970 and
1974; Woodruff and Causey 1978), BRootstrapping may also be added in the future
(Rao 1984).

Analytical statistics consistently show design effects areater than 1,
significantly greater in every sense, but also lower than design effects for
means. The relations of design effects between diverse coefficients and
comparisons with those for means show some reqularities.,

For useful guidance we need not only more empirical work but also more
results from sampling theory and model building. I am disappointed frankly
that since our early work we have not seen more publications in theory and
models that would be directly useful for quiding inference for actual data.
The empirical bases of design effects are necessary, but to satisfy our

intellectual needs for understanding we need more theory and better models.
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'Furthermore, even our practical needs remain unsatisfied with merely empirical
design effects, because they are functions jointly of the variables, of the
type of estimates, of the sample desian used and of the populafiﬁh hasis for
the data. That four-dimensional source of variation is too complex and we
need theory to construct models for agreater simplicity.

6. Categorical data analysis is an important area, rapidly developinn, and
several contributions have been made to apply these methods to complex survey
data (Fay 1982; Landis et al. 1982: Koch et al, 1975). These also have
implications for analysis of variance where some of the earliest models were
started, but not followed (Kempthorne aﬁd Wilk, 1955: Tukey and Cornfield).

7. As for the future I am hopeful about contributions from theory to
applications but for two exceptions., First, mathematical statisties has not
and will not give us complete distribution theories that will be useful
directly, because there are too many parameters in the double complexity of
analytical statistics from complex surveys., Second, model builders cannot
make those complexities vanish. They will however guide us toward better and
more comprehensive inference. Also toward better utilization and presentation

of analytical statistics from complex surveys.
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AN INTRODUCTION T0 LINEAR MODELS AND GENERALIZED LINEAR MODELS:
' CONCEPTS AND METHODS

PDavid A. Binder1

Univariate statistical models, linear reqression models and
generalized linear models are briefly reviewed. Examples of a
two-way analysis of variance, a three-way analysis of variance and
logistic regression for a three way layout are given.

1. INTRODUCTION

The purpose of this presentation is to give a bird's-eye view of some of
the concepts used in statistical applications for modelling data.

The use of data sampled from a population to estimate means and proportions
is now a common practice. In Section 2 we briefly review this concept and
descrihe the interval estimates obtained from constructing confidence
intervals.

Linear regression and analysis of variance models are often used to reduce
multi-dimensional data to a model consisting of a few parameters. This tool
is a valﬁable device for the analyst lookina for a deeper understandina of a
complex data set. These methods are reviewed in Section 3.

The concepts of linear regression methods can be extended to a much wider
class of models through the generalized linear models described by Nelder and
Wedderburn (1972). This is particularly useful when the dependent variable is
categorical as opposed to continuous. In Section 4 we review the structure of
these models.

Brief mention of appropriate diaanostics to guard against model failure and

to detect multicollinearities is given in Section 5,

L' Dpavid A. Binder, Institutional and Agriculture Survey Methods Division,

Statistiecs Canada.
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2. UNIVARIATE MODELS

2.1 Binomial Models

Suppose we have a large population from which we will select a sample and
we take an observation from each selected unit. If the sample size is . n, we
denote the observations by Y, Y, ..., Yn' The purpose of collecting this
data is that we would like to make some inferences about the population based
on this sample. For example, our population could be residents of Canada and

our data are defined as

v o= { 1 if the person was born in Canada
j = ' 0 if the person was born outside of Canada,

for the j-th individual selected. Based on this sample we would like to make
some inferences on the proportion of people in the population who were born in
Canada,

If a simple random sample of n = 5000 residents is selected and the actual
proportion of pérsons born in Canada is p = '0.85, then the number of persons
in our sample who are born in—ﬁanada will be a random variable with a binomial

distribution given by
fly) = (5030)(.85)y(.15)” " Yy y=0,1, ..., 5000.

In this case, since we know p = .B5, we can completely describe the proper-
ties of ¥ = L Yj, the total in our sample who are born in Canada. For‘most
statistical applications, though, we do not know all the characteristics of
the population and we use our sample to make inferences about this popula-
tion. For example,'suppose we do not know the value of p in the previous
example. Then we can say that the number of persons in our sample. who were
born in Canada will be a binomial random variable having a distribution given
by

fly) = (5”3°)py<1 2000 -y s, 1, ..., SnOD.
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Now, the usual estimator for p, bhased on this data is E =Y = L Y i/5000.
A ~ ~ l
We let s(p) = {p(1-p)/(5000)}".

p. Now, it turns out that 5 t 1.96 3(5) is a random interval which has a 95%

This is our estimate of the standard e}ror of

chance of including the true unknown value of p. This interval is called a
95% confidence interval. By changing the value of 1.96 we would either
shorten or lengthen the confidence interval, thus changing the coefficient
from 95% to some other value. These coefficients can be obtained from
probabilities associated with the standard normal distribution.

We have described the binomial model via a simple random sample - from a
large population. Thus, all our inferences pertain to that population. How-
ever, in many contexts we would like our inferences to relate to other popula-
tions which we believe have been generated under similar conditions. For
example, the number of deaths in Canada from a particular age-sex qgroup in a
given year may he thought of as a sinale realization from a binomial model,
where each individual has the same probability of dyinag and the individual
deaths are essentially independent. If this probability of dying is constant
over a number of years then the number of deaths in one year can be used to
make inferences for other years, even though the populations are different,
(Life insurance companies and their actuaries rely on these types of assump-
tions in their calculations.) Providing that individual deaths are indepen-
dent, assumptions about constancy of the probability of death are testable
using these binomial models.

It should be pointed out that by using some generalized linear meodels to be
described in Section 4, it may bhe possible to improve on the assumption of
constant probabilities for all individuals, by allowing the probabilities to ~
depend on other factors such as age, sex, health status, smoking habits,

weight, etce.

2.2 Normal Models

An important distribution used in modeling data is the normal distribution
given by '

Fiy) = (2nc)™ exp - —15 (y - w2 mw <y <
2q
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The bopulation mean is p and is wusually the parameter of interest. The
population variance is a2,
If we observe data Y;, Y5, ..., ﬂj from this population, our usual estima-

tor for w is u = ; = I Yj/n. Dur estimator for the standard error of ﬁ is

given by s(;) = s/n%, where
8 = 1 (v, - we/n - 1),

As in the case of the binomial model, for large samples the 95% confidence
interval is qgiven by a t 1.963(L). This is a random interval which has a 95%
chance of including the true value of u. For small samples (e.g. n < 6N), the
value 1.96 may be replaced by the appropriate value from the t distribution
for more accurate intervals. Other confidence coefficients may also be
obtained by chanaing the wvalue 1.96 to the appropriate percentile from the
standard normal or t distribution.

In some applicationg, the assumption of constant variance is unrealistic,

particularly in the linear models to be discussed in Section 3. A simple

extension of this model is to assume that the variance of Xi is aiven hy oi
where of = az/w.. Here we assume that wi, wa, ..., W, are known weights.

In this case u = ini/Z wi, a weighted average of the data. Alse s(u) =
s/(L wj)%, where C

2 _ _ "y 2 _
¢ = ij(YJ. w/(n - 1),

Confidence intervals for p are obtained analooously. It should be pointed
out here that the weights, w;, ..., w, are based on the normal model specifi-
cation and are usually unrelated to sampling weights which are derived from
complex suyrvey designs from finite populations. When fitting models to finite
populations based on data from a complex survey desiqgn, the analyst may wish
to incorporate both the model weights as well as the sampling weights in the

estimation.
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2.3 Exponential Family Models

The binomial and normal models just described can be viewed as special
cases of a much wider class of models known as the exponential family. The

qeneral form which we will use for this model is aiven by:

F(yj) = exp[Kj{yJB - b(8)} + c(yj, Kj)],

where Y takes values which do not depend on 8.
We assume Kj = ij where wi, «.., w. are known. In many cases k will also

be known.

Fxample 1 (Binomial Proportion)

We let §j = yi/ni be the sample proportion from a binomial model based on

ni observations. Therefore we bave:

X

_ n n.y. n.(1 -y, _
FG =y p oy ) Fog.=0, 1,2, .0,
J n.y. J ny N,
J°]
E(?i) = p, Var(§j) = p(1 - p)/nj,

8 = lnq[p/(,‘l - D)]-

K'j = nj.

b(8) = log(1 + e°).

Example 2 (Normal)

Suppose Y5 is normally distributed with mean v and variance o?. We have:

F(yi)

L ,
(2-"0-1_2)_2' exp{—% () }: - »< y]_ < o

E(yj) =

]
=
-

Var(yi) = 05,
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9:].!,
Kj = 1/03,
b(8) = /2.

Example 3 (Poisson Mean)

Suppose Y; is Poisson with mean nik. Letting ?i yi/ni, we have:

T oy 12
fly.) = . LA) e vl v. =N, _, 2, ...
(}’J) e (nJ ) /(n.]y‘]) YJ ’ I"I.’ n.! ’
R J
E(ﬁj) = A, Var(?j) = A/nj,
8 = log A,
KJ = nj,
h{(8) = ee.

Example 4 (xz)
Suppose Y; has a ozxi_/ui distribution. This is common for analysis of

variance and variance components models, where yi is the mean-sauare. Then,

we have!
fly;) = ygvj "B LE%E)?i/Z exp [~ y;v,/(20%)}/1(v,/2); yj,i'h,
EUJ)=02, Vm%xﬂ :2&/%,
6= - 1/d%,
<= vy
b(8) = - log(- 6).

As we can see from these examples, the exponential family includes a wide

variety of common distributicns. In general, we bhave
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E(Yj) =b'(9) = u, Var(yj) = b"(B)/Kj - Vj

where b'(*) and b"{+) denote the first and second derivatives of b{*).
If Y14 veus Y, are independent, then the maximum likelihood estimate of @

is given by the solution to:

| = E .y ./ L , = L v ./L .
s </ K5 WY 5/ W

where u = b'(8), This implies that there is a large family of models where a
weighted sample mean provides an efficient estimator of the population mean.

The estimated variance of u is given by

e

24 2
(£ KJ.VJ)/(Z .cj)

b"(8)/(Z Kj)-

For large samples, the 95% confidence interval for u is given by u * 1,96 x
{Q(;)}%, providing the model is true.

In cases WhEIE'Kj = ij is known only up to the constant of proportionality
k, (e.g. normal model), it will be necessary to estimate the value of k. The

maximum likelihood estimate is given by the solution to:

aC(Yja Kj)

I wj[yje - b(8) + 1 =n,

K,

Alternatively, an unbiased estimator for Q(u) which is less model-dependent

is given by

~

- oA z wj(yi -
v = :
N O DT W)

)2

This may be used instead to create the confidence intervals for u. The
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main assumption required for the validity of this approach is that
Var(y.) = 1/w..
(yJ) / 3

3. LINEAR MODELS

3.1 One Way Analysis of Variance

A simple extension of the univariate normal models, described in Section
2.2, is the one-way analysis of variance (ANOVA} model. Here, in addition to
observing one characteristic from each individual sampled, we also have a
sub-population identifier. Some such identifiers could be age-sex qgroups,
industry/occupation groups, etc. Here the model could be written as

I: J - 1’ se sy ni,

where the u's are population means, which differ among subpopulations and the
¢'s are assumed to be independent normal with variances Uij = oz/w&i , where
the wij's are known weights., In most applications the weights are constant.

The usual estimator for By in this model is

Under the model aasumptions, the estimated means are independent normal
with E(u ) i and Var(u 02/2 Wy From this, confidence intervals for
the 1nd1v1dual means may be derlved.

An alternative but equivalent description of this model is

Yij = M+ o5+ eij’

where II wij“i = 0, Here we have
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An extension of this representation is particularly useful for two-way
and higher order analysis of variance models, to be discussed in Sections
3.2 and 3.3. One of the main aquestions "of interest for these models is

whether all the means are equal. This is equivalent to u; = py = ... = uy or

L 0. Standard ANNVA statistical packages (e.q. SAS, SPSS,

etc.) are available to test these hypotheses. A related problem is: Which

subpopulation means are equal, qgiven that we have conclurded already that not
all means are equal? When we have no further structure (such as in a two-way
ANOVA), this is known as the multiple comparison problems. Special treatments

for this problem are available in many statistical packages.

3.2 Two-Way Analysis of Variance

The data of Table 1 has been taken from the 1975 Sri Lanka Fertility Survey
(see Little, 1982). The cell means describe the averaae number of children
ever born cross-classified by Marital Duration and Level of Education.

The row and column means seem to indicate that the averanoe number of
children increases with longer marriage durations and decreases with more
schooling. Now, the two-way analysis of variance model may be written as

y = B+ a + sj + Yi. + €.., = U.. + E..,

ijk i J ijk 1] iik

where the ¢€'s are assumed to be independent normal with wvariances

2 2
ik T I Migke
are constant. In order to estimate the parameters of this model, it is

The w's are known weights. In most applications the weights

necessary to impose constraints on these parameters, otherwise they are not

unique. The usual side conditions are:

I ? w50 =0,
ZIZZLw,. n
FEEvigt =D
z -0
ik Wijk'ii~

.t
ko
=
[P
[
~
[
Car
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The estimators are defined by the equations:

) 3:‘11
PRI wincrige by = =0
391

A~ -~

where 8, 92, ... correspondent to the parameter estimates u, % etc. The
a's are B's are referred to as main effects and the y's are the two-way inter-

actions. This results in the following estimators:

=y ’
% T Y., oYL T § E lekﬁj/§ z Yijlk?
o= gt T FE ] E e
Y.:. = Yi: =¥ - a - B,

ij ij. . i J

where yij , ;i , etc. are the appropriate weighted averaages.
Now, the additive model specifies that Mjj = m+ 0oy o+ Bi' We have plotted

the cell means from Table 1 in Fiagure 1. The additivekmndel would specify
that all the lines are parallel. If the data of Table 1 are fitted to the
additive model, we obtain the adjusted mean values in Table 2. These are
plotted in Figure 2. As we can see, the effect of the level of education has
been dramatically reduced after fitting this model. This is because the more
educated women were not married for as long, so that the years since first
marriage proves to be the important factor. However, as the analysis of
variance in Table 3 shows, all the main effects and the interactions are
significant. Hence the additive model is rejected. However, only 0.4% of the
total variation is explained by the Education-Marital Durations interactions,
whereas 49.7% of the variation is explained by the additive model. We may
surmise from this that the additive model has led to a better understandina

of the data and that the Education effect is not as dramatic as it first
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seemed.,

3.3 Regression Formulation

The above analysis of variance models can be considered as special cases of

the multiple linear regression model, given by

yj = BoXoj + lelj + cee + Brer + Ej’

where Xoj, le, ceay xri are known constants and Bp, B1, ..., Br are unknown

coefficients. We assume that the e's are independent normal with variances

c? = cz/w., where the wi's are known weights. For example, in the one way

analysis of variance, we could let

X0 1 for all j

>
i

ij 1 if the j-th individual is in the i-th sub-population

Y

- ai/aI if the j-th individual is in the I-th sub-population

0 otherwise,

for i =1, ...y, I -« 1, where 3, is the sum of the weights for individuals in

the i-th sub-population. In this case we have

=
n

Bo+Bi fOI‘i:1, 000,1-1,

Ky = Bo - (a1B] + «us + aI_1BI_1)/aI.

Therefore u = Bg and @, = Bi for i=1, ..., I -1.
A similar reqgression formulation is possible for two-way and higher order
layouts as well.

Mow, for the qeneral reqression model, the estimator for Bp, ..., B r is

given by Bg, ..., Brs the solution to

~

S ow.(y. - y.)X..
wJ(yJ Y.}

X0 i=0,1 .., T
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where yj = BQXOJ + BIX i + oaee + Brer

In order to test hypotheses, perform model-huil&inq and develop confidence
intervals for the B's, we need the covariance matrix of the B's. This is
given by

Var(g) = o2A-!

where Ahis the matrix Tith (k,2)-th entry being Z w] k])&] To estimate 02,
we use o° = LW, (y )2/(n -r-1).

Many statlstlcal packaqes routinely perform various. hypothesis tests on B
using the estimated covariance matrix ozA- and the critical values from the
appropriate F-distribution (e.q. PROC REG, PROC ANDVA and PROC GLM in SAS).

For example, Koch, Gillings and Stokes (1980) give the data in Table 4 for
the number of physician visits per person per year in 1973 in the U.5. cross-
classified by size of city (SMSA = Standard Metropolitan Statistical Area vs.
Non-SMSA), Income (3 groups) and Education (3 groups). This data is based on
the 1973 Health Interview Survey, a survey using a complex probability
sample. The data are illustrated in Figure 3.

By using a regression model and performino a number of statistical tests,

the following reduced model was obtained:

E(Yj) = Bg + B1X1j + B2X2j,
where X1j = 1 if the j-th person is in an SM5A
= 0 otherwise,
ij = 1 if the j-th person has less than $5000 family income or more

than 12 years education for the family head

0 otherwise.

The estimated parameters were éu = 4.18 (standard error of 0.11}, él = 0.65
(standard error of 0.11) and %2 = 1.12 (standard ertor of 0.09). The standard
errors derived here were not those described above since the authors used the
18%18 estimated covariance matrix from the survey to obtain the standard

errors. This approach removes the assumption of independent error terms in
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the model-fitting and is a common approach for analysina data from complex
surveys.

ih Table 5 we summarize the results. These are illustrated in Fiqure 4.
We see that the model fit is quite good. We have reduced the data from 18
values to 3 summary statistics and also have smaller standard errors (hence

higher precision) of the estimated values.

4. GENERALIZED LINEAR MODELS

4,1 Regression with a Dichotomous Dependent Variable

One of the difficulties often encountered with the linear models discussed
in Section 3 is that the error terms were assumed to be normally distributed.
It is true that analyses similar to those in Section 3 may be performed with
non-noemal errors, providino the variances of the errors still satisfy
oﬁ = 02/wi and the errors are uncorrelated. In this case the estimators we
have - described vield the minimum wvariance linear unbiased estimates of the
model - parameters, however better estimators (i.e. non-linear estimators) may
be available. These considerations have led to generalized linear models (see
Nelder . and Wedderburn, 1972) and robust estimators (see Huber, 1973). We
concentrate here on the generalized linear models,

For example, suppose the dependent variable, Xi’ can take on only two va-
lues, N or 1. We now want to model pj = Pr(Yj = 1) as a function of the
B+ ... + X LB There are three popular

J rir’
approaches for this problem. One is to let Bp, ..., Br he the usual estimate

linear expression XOjBO + X1

~

from a stardard regression model. This is analogous to discriminant analysis

where the variables X”i’ ceny are not considered fixed known constants,

X_.
but aré themselves random variaEies (multivariate normal with constant covari-
ance matrix) whos? mean d?pends on the Yalue of Yi. The problem with this
apProach is that.Yj - ngﬁo + een f erﬂr cannot be used directly to predict
the va%ug pF pj. Also? in many applications the Xij's are categorical, (e.q.
province, occupation, etc.), thus violating the assumption of multivariate
nBrmafity. o . - ‘ .

Two other popul ar approéches are known as probit analysis and logistic
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reqgression. In probit analysis it is assumed that pJ = @(E deﬂl), where & is
the cumulative distribution function of a standard normal fandom variable. In

logistic reoression, it is assumed that

8. lnq[p /(1 - P; )] = f 1331‘

Both these approaches are valuable analytic tools, and are available in
many statistical packages (e.g. SAS, BMDP)., The two approaches may be viewed
together by letting

fFor probit analysis we have n] = ¢"1(D }, whereas for logistic rearession

J
Br is the solution to

we have n, = log [pj/(1 - pj)] The max1mum likelihood estimate for Bg, ...,

~

{y. - p.)X,.
r 3 __J 1 -, for i =0, ..., T,
Jp.(1 -p.a(p,
pJ( pJ)q (p‘])
where q(;.) = 1JB1 These equations often must be solved iteratively. For
i .

the probit analysis we have

1
a'(py) = ———
Voelemlp)]

where ¢(+} is the standard normal density function. For the logistic

regression,

q(p) [p(1-p )]1-1

so that the parameter estimate is given by the solution to
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(y.-p.)x.-:n, fOI‘i:U, "oy r.

)
jooio T

A~

The covariance matrix of Bg, ..., B, 1is A-! where A is a matrix with

(ky, 2)-th entry given by

X .X,.
A = I ki~ 2]

ke = = , 3
jpy(1 - Pj){q (Pj)}

This can be used to construct confidence intervals and perform hypothesis
tests and model-building.

For logistic regression, the covariance simplifies to

As an example of the utility of these models, we consider an unpublished
analysis performed by Dolson and Morin on the Canadian Health and Nisahility
Survey. The dependent variahle was whether or not a person would be screened
in as potentially disabled usind the Screening Test 2 of the January 19R3
Labour Force Supplement on Disability. For details, see Dolson and Morin
(1983). Analysis waé restricted to males aged 15-64., Of the 13,897 respon-
dents, 14.4% (unweiqhtéd) were screened in. The screened-in rates are cross-
classified by age-groupings, labour force participation and a proxy/non-proxy
variable (with 3 levels: non-proxy, proxy by male or proxy by female) in
Table 6. (The fitted values from the model to he discussed below are also
shown.) The data are illustrated in Figure 5.

The fitted model reduced the number of parameters from 3N to 11. The final

model was qgiven by

IUQ[pijk/(1 - pijk)] =W+ oo+ Bj + Y, o+ Bij’

where £ ® = I %i = I Y = n, I Gij = 0, E Gij = N, for the i-th age qroup,

j-th labour force status and k-th proxy status (2 levels: non-proxy vs.

proxy). The following were the estimated'parameters.,/\\
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Parameter Subscript ‘ Fstimate
u -1.43
a Ace 15-24 ~1.12
Age 25-34 , -n.,5N
Age 35-44 : n,n143
Age- 45-54 o 0.629
Age 55-64 1.N5
g In Labour Force -N,576
' Not in Labour Force 0.576
Y Non-proxy © 0.0859
Proxy -0,.0859
§ Age 15-24, in L.F. n, 385
Age 35-4&, in L.F, -0.175
Age 45-54, in L.F. : . -0,243
Age 55-64, in L.F. -0.0612
Age 15-24, not in L.F. -0.385
Age 25-34, not in L.F. . Zn.nN93s
Age 35-44, not in L.F. n.175
Age 45-54, not in L.F. 0.243
Age S55-64, not in L.F. 0.0612

The fitted values are illustrated in Fiqure 4.

We see that even after adjusting for age and labour force status, there is
a proxy effect on the screening rates. This proxy effect does not seem to
depend on the sex of the proxy réspondent, -Also, there is no interaction
between the proxy and the age/labour force status variahles. This model does
not necessarily imply a proxy bias, bhut it indicates that a proxy bias may
potentially be present. Without a special sthdy such as a re-interview pro-
gram for the proxy respondent, it is impossible to definitively conclude the

existence of a proxy bias.

4.2 Generalized Linear Models

In the previous section we discussed a large class of linear models related
to the binomial model, of which probit analysis and looistic rearession were
special cases. We now extend these to the exponential family as proposed by
Nelder and Wedderburn (1972). S

As in Section 2.3, we assume yj has probability function given by
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F(yj)‘= exp[xj{yjej - b(?j)} + c(yj, ‘j)]’

where uj = E[Yj] = b'(B.) and Vj = Var[Yj] = b"(ej)/rj.

We let nJ = q(u ) o= Z X Bi be the linear component of the model, where
g{+) is a known fUnctlon.

Now the maximum likelihood estimates of B are qgiven by the solution to

Vi m G
q

<Lj)]

Z -
J v

Nelder and Wedderburn (1972) have shown that a reasonable method for
estimating B is given by performing a number of weighted least-squares
regressions, ypdatinq the weights and the dependent variables on successive
iterations. \This is called iteratively re-weighted least squares. In
particular, the weights for the t-th iteration are given hy

W8 1
R € P €3 N
o Yy leGyT)

and the .dependent variables on the t-th iteration are given by

“(t)
j -

“(t) (t))(y (8

S q(u )+ g (u - My

The (t + 1)-th iteration of B is then the solution to

“(t)r7(t) (t+1)
zwitrzit) Cosx X, = 0.
Fuglzy - 2382 1 %

The estimated covariance matrix of B is given hy A-! where the (k, 2)-th

entry for A is
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This implies that many standard weighted least-sguares packages could be
invoked to perform analysis of these ceneralized linear models.
For example, a common analysis of contingency tables, called log-linear

models assumes a basic Poisson model with log My = bX xiiBi' Here we have
i .

N

q(uj) = lag Wy

so that the iteratively reweighted solution is qiven by assigninag

~(t) _ o(t)
AR T T
~(t)
- - Y. = W,
Z(t) = log u(t) s 3
J J ;(t)

i

Hence, models similar to those described in Section 3 can be analyzed

analogously using the ageneralized linear model formulation.

5. DIAGNOSTICS - Lo T

Linear rearession methods have been known now For over’ a century, sel
Hocking (1983) for a review of developments over the last 25 years.' In more
recent years attention has been focused on difficulties encountered when there
is multicollinearity in the variables (leading to large Qarianceé of thelpara; '
meter estimates) and when the models may fail. Some of these diagnostics are
now available in SAS and SPSS-X.

The methods discussed in this paper extend linear rearession to a much

wider class of problems. Newer diagnostic techniques for models of this sort
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are discussed in Landwehr, Preagibon and Shoemaker (1984),

In many statistical applications, the proposed model is only used as an

approximation to reality. Therefore, the user of these models should employ

these diagnostic tools in the course of the analysis.

[1]
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Table 1: Mean Number of Children Ever Born, by Marital Duration
and Education level. Sri Lanka 1975 {(from Little, 1982)

Level of Education
Years since

First Marriage No 1 -5 6 -9 10+
School Years Years Years Row
n-4 Mean 0.96 0.88 0.95 0.92 n.92
Count 112 376 442 351 1281
5-~-9 Mean 2.54 2.46 2.39 z2.39 2.44
Count 172 442 362 255 1231
m - 14 Mean 3.87 3.9 3.73 3.14 3.76
Count 197 482 293 145 117
15 - 19 Mean 5.13 4,97 4.61 4.13 4,84
Count 239 461 262 95 1057
20 - 24 Mean 6.22 5.87 5.22 4,47 5.79
Count 292 377 184 an 893
25+ Mean 6.92 6.55 6.723 5.97 6.65
Count 501 548 161 22 1232
Column Mean 5.17 4,24 3.26 2.30 3.94
Count 1513 2686 1704 908 6811
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Table ?2: Interactions for Mean Number of Children from Table 1
Years
Since Level of Education
First
Marriage "‘No 1 -5 6 -9 10+
Schoonl Years Years Years Row
N -a Raw Mean 0.96 0.88 0.95 0.92 0.92
Adjusted Mean 1.31 1.07 0.8B6 0.71 1.02
Interaction -0.35 -N.19 0.09 0.21
5 -9 Raw Mean 2.54 2.46 2.39 2.39 2.44
Adjusted Mean 2.78 2.54 2.33 Z2.18 2.49
Interaction -N.24 -n.n8 0.06 n.z21
10 - 14 Raw Mean 3.87 3.91 3.73 3.14 3.76
Adjusted Mean 4.06 3.82 3.61 3.46 3.77
Interaction ~-0.19 n.ng 0.12 -n.32
15 - 19 Raw Mean 5.13 4.97 4,61 4.13 4,84
Adjusted Mean 5.1 4.87 4.66 4.51 4,82
Interaction 0.02 0.10 -N.05 -N.38
20 - 24 Raw Mean 6.22 5.87 5.22 4.47 5,79
Adjusted Mean 6.01 5.77 5.56 5.41 5.72
Interaction 0.21 0.10 -0, 34 -0.94
25+ Raw Mean 6.92 6.55 6.23 5.97 6.65
Adjusted Mean 6.82 6.58 6.3 6.22 6.53
Interaction 0.10 ~N1.03 -0.14 -N,25
Column 5.17 4,24 3.26 2.30 3.94
4,23 3,99 3.78 3.63 3.94
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Table 3: Analysis of Variance of Data from Table 1
T Sum of |Proportion Mean Sianif.
Source Squares |of Total SS| OF Square F of F

Main Effects T

Marital Duration |27402.684 0.493 5} 5480.537 | 1340.990 | .00

Education/Duration| 225.535 ¢.004 3 75.178 18.395 | .NOO
Interactions

DurationxEducation| 206.965 0.004 15 13.798 3.376 | .non

Residual 27729.848 N.499 6787 4,986

Total 55565.031-J 6810

Table 4-

Physician Visits per Person per Year by Residence Size,

Family Income and Education of Family Head. U.S. 1973

Education B Family Income
in -
Years 0 - 4999 5000 - 14999 15000 or more
- SMSA
Less than 12 6.15 4.73 4.82
(D.18) (0.13) (0.25)
12 6.17 4. 98 4.70
{(0.41) (0.17) (0.18)
More than 12 6.31 6.08 5.66
(n.49) (n.19) (D.16)
B o Non-SMSA

Less than 12 5.08 4.14 4.42
(0.26) (0.15) (0.37)
12 5.36 4.32 4.49
(D.44) (0.19) (0.33)
More than 12 4.58 5.06 4.48
(0.58) (0.29) (0.31)

Note:

Bracketed figures indicate standard errors of estimate.
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Table 5- Estimated Physician Visits from Table 4,
Original and Fitted Values
- B Family Income
Education |
(in Years) 0 - 4999 SN00 -~ 14999 15000 or morﬁ—
- SMA a

Less than 12 Original 6.15 (0.18) 4.73 (0.13) 4.82 (0.25)
Fitted 5.95 (0.07) 4.83 (0.07) 4,83 (0.07)

Difference 0.20 =0.10 -n.M
12 Original 6.17 (0.41) 4.98 (0.17) 4.70 {0.18)
Fitted 5.95 (0.07) 4,83 (0.07) 4,83 (0.07)

Difference 0.22 0.15 -0.13
More than 12 Qiriginal 6.31 (N.49) 6.08 (0.19) 5.66 (0.16)
__Fitted 5.95 (0.07) 5.95 (0.07) 5.95 (0.07)

Difference 0.36 0.13 -0.29

Non-SMSA

Less than 12 | DOrigimal 5.08 (N.26) 4.14 (0,15) 4.42 (0.37)
: Fitted 5.30 {0.11) 4.18 (0.11) 4.18 (0.11)

Difference -N,22 -0.04 0.2a4
12 Original 5.36 (0.44) 4.32 (0.19) 4,49 (0.33)
Fitted 5.30 (0.11) 4.18 (0.11) 4.18 (0.11)

Difference 0.06 0.14 n.31
More than 12 | Original 4,58 (N.58) 5.06 (0,29) 4,48 (0.31)
Fitted 530 (0.11) 5.30 (0.11) 530 (0.11)

Nifference -0.72 ~0.24 -0.R2
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Unadjusted and Fitted Screened-in Rates from Test 2.

Canadian Health and Disability Survey, Males Aged 15-64,
by Labour Force Participation and Proxy Status, Canada

January 1983 (Unweighted)

Age Non-Proxy M;I; Proxy Female Proxy
o In Labour Force

15 - 24 Unad justed LN65(.0067) .055(.0143) .056(.0069)
_ Fitted 065(.0051) .056(.0044) L056(.0N&4)

Difference .000 - 001 .noo
25 ~ 34 Unadjusted .085(.0058) .N58(.0252) LN69{(.N069)
Fitted .085(.0048) :071(.0046) .071(.0046)

Difference .0on -.N3 -.0n02
35 - 44 (lnad justed LJ13(.0079) .0292(.N290) LN94( . 0NRG)
_ Fitted 111(.0064) .093(.0059) .09}(.0059)

Difference N02 -.064 .nn1
45 - 54 Unadjusted .180(.mM09) .0R2{.0351) .154(.0120)
Fitted .177(.0088) .153(.0NA3) .153{.NNR3)

Difference .n03 -.071 .M
55 -~ 64 Unad justed L284(.0150) .207(.N752) .250(.ma3)
Fitted .283(.0124) +249(.0124) -249(.0124)

Difference .N01 -.042 .01

B o Not Eﬁ Labour Force

15 - 24 Unad justed .104(.0127) .071(.0190) .N74(.0N084)
Fitted .104(.0078) .079(.0065) .079(.0065)

Difference .00n -.008 -. 005
25 - 34 Unad justed .146(.0239) 367(.1450) .227(.0365)
Fitted .192(.0213) L.167(.0194) .167(.0194)

Difference -.046 .200 .060
35 - 44 Unad justed .348(.01372) L455(.,1501) .324(.0544)
Fitted .359(.0309) .320(.0299) .320(.0299)

Difference -.011 .135 .04
45 - 54 Unad justed .534(.0361) .625(.1712) .454(.N505)
Fitted .525(.0293) L483(.0301) JAR3(.030)

DiffFerence . 009 142 =-.M129
55 - &4 Unad justed .571(.0220) .563(.1240) .591(.0420)
Fitted .585(.0194) L543(.0217) .543(.n217)

Difference -.0M4 20 .048

NOTE: Bracketed fiqures are Standard Errors
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YEARS SINCE
- FIRST MARRIAGE
“‘-————._________

- — . __'_'-—-—.__
6_ ________ —— 25+ YRS
5- T —— T

T T~ 20-24 YRS

o T 15-19 YRS
5 TTTt 10-14 YRS

------------------------------------------------------------------------- S— 9 YRS
2_

- 0— 4 YRS
O_r T T A T ' '
NONE 1-5 6-9 10+

YEARS OF SCHOOLING
Figure 1: O0Observed Means from Sri Lanka Fertility Survey. 1975.
Data scurce: Little (1982).
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—_—
T — 25+ YRS
61 0 Tmee—e—
e 20-24 YRS
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“““““““““ 10—14 YRS
3_ ikl T,
o 5— 9 YRS
—_—
1_..
0— 4 YRS
0—.
1 I T 1 T
NONE 15 6-9 10+

YEARS OF SCHOOLING

Figure 2: Adjusted Means from Sri Lanka Fertility Survey. 1975.

Data source: Little (19R82)



- 33 .
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Observed Mean Number of Physician Visits per Person

per Year. U.S.A.. 1973.
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Figure 4: Model Predicted Mean Number of Physician Visits per
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ADJUSTING SUB-ANNUAL SERIES TO YEARLY BENCHMARKS

Pierre A. Cholette!

This paper proposes a modification to the method of Denton (1971)
for adjusting sub-annual series to yearly totals, These totals
originate from more reliable sources and constitute annual
benchmarks. The benchmarked series derived according to the
modified method is more parallel to the unbenchmarked series than
this is the case with the original method. An additive and a
proportional variant of the method are presented. These can easily
he adapted for flow, stock and index series. Also presented are a
few recommendations about the preliminary benchmarking of current
data and the management of "historical” estimates of the series.

1. INTRODUCTION

In many cases, the statistician obtains sub-annual data of a series from
one source of data (such as a sample survey); and, the corresponding annual
benchmark values from another more reliable source of data (such as a
census}). The annual sums of the observed sub-annual values are generally not
equal to the annual benchmark values. Such sub-annual series require adjust-
ment to annual benchmarks, that is henchmarking.

The solution propased by Denton (1971) (and generalized by Fernandez in
1981) consists of finding a sub-annual series which would display the movement
of the available sub-annual series as much as possible and whose annual sums
(or averages) would match the more reliable annual benchmarks. The level of
the resulting series would then be given by the annual henchmarks, whereas its
movement would be dictated by the ariginal sub-annual series. In other words,
the adjusted or benchmarked series shbuld run as parallel as possible to the
original, while still satisfying the annual benchmarks. This paper suggests a
modification to Denton's specification which makes the original! and the ad-
justed series even more parallel.

We follow the model of Ehrenbera (1982) for the presentation of scientific

1 Ppierre A. Cholette, Time Series Research and Analysis, Statistics Canada.
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papers. The reader will be exposed to the illustrations and results first;

and the methodological details, afterwards.

2. TLLUSTRATION OF THE RESULTS

Figure 1 shows the corrections (xt - zt) made to the original series 2y
according to the additive solution {with first differences) of Denton and
according to the corresponding solution proposed in this paper., Since the

corrections are to be added to the original sub-annual series z the adjusted

’
series Xy will be completely parallel to the original series,tif and only if
the corrections are constant. In the figure, this happens only for the cor-
rections derived under the method proposed in this paper.

Fiqure 1 presented a trivial and ideal case which allowed the solution of
constant corrections: All the average annual discrepancies, the differences
between the annual benchmarks and the annual totals of the oriqinal series
(divided by the number of months per year), were constant. Fiqure 2 displays
a more realistic case, where the five average annual discrepancies vary about
200. As in the first example, the corrections derived by the herein proposed
method are much more constant, especially in the first year. _

As explained below, Denton's method does not only minimizes the chanage in
the corrections (to make them as constant as possible) but also the size of
the first correction. This can be sgseen both in Fioures 1 and 2, where the
first corrections are close to zero. The alternative solution, on the other
hand, only minimizes the'chanqe in the corrections. Graphically this consists
of fitting a curve through the average annual discrepancies, which is as flat
as possible and which spans the same annual surfaces as the average annual

discrepancies.

3. KEEPING THE ORIGINAL AND THE BENCHMARKED SERIES PARALLEL

Resuming the additive first difference formulation of Denton as well as his

notation, the desired series Xy minimizes the following objective function

n
p(x) = %

LIy (B - 2% = Tk, - 2% x0 = 2o, (1)

1
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where z, stands for the original sub-annual series at time t. This function
is minimized subject to the equality constraints between the annual sums of

the values obtained and the available benchmarks yii

t:(i-%:k+1 Xg =Y d=1, 2,00, m (2)
where k is the number of "months" per vyear.

Denton justifies hypothesis xp = 2zg claiming that it is legitimate to
assume the equality of the last fitted and obsgrved values prior to the
estimation interval. Objective function (1) would fhen mean that the adjusted
series Xy should have the same slope as the original series Zyi and therefore,
that the slope of the differences between the two series should be minimized
(subject to the constraints). However, after substituting xg = zp, objective

function (1) can be rewritten as:

PO = (1 = 2%+ T (alx, - 2% (3)

This transformation emphasizes that the assumption xp = 2zg implies minimizing
the size of the first correction. As illustrated in Figures 1 and 2, minimiz-
ing the first correction pulls the correction curve towards zero at the start
of the series. This produces a wave in the first year which is transmitted to
the other years. This wave in the corrections prévents, by definition, the
maximum parallelism between the observed and adjusted series,

The specification proposed here simply refrains from postulating xy = zg

and yields the following objective function
T (a )2 | (4)
p(x) = tEZ Axy -z N5,

subject to the same constraints of equation (2).

In linear algebra, the constrained objective function is written

u(x, @ = (x - 2)'A (x -2) -29'(y - B'x), (5)
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where the vectors and matrices involved are:

X1 Z) Y1 a3
X Zz
x _ |*? z _ |*2 y _ |72 a _ |92 (6)
- - hd 1 _— = . ’ -— - . ’ - - - b
nx1 . nx1] . mx1 . mx1 .
xn Zn ym l:Il'n

-1 1 0 D
n -1 1 0
_ D, D_ = . . . N (7
nxn  —— (n-1)xn e ...
J 0 .. 1
0 j .. ; 1 ‘
_ =1, . & =}, = km}. A
nxm . T kx] ) » (0 ™ (_)

Vector g contains the Lagrangian multipliers. Variables n (= mk), m and k
respectively stand for the number of observations and of years in the series
and the number of months per year.

The normal equations associated with objective function (5) are

dufdx = (A+A')(x.-2z) +2Ba=10

du/dg

20'x - y) =0

and yield solution

x A B! W z

= = - . (10)
q B' O 0 {n+m) x(n+m)

| =
o
N

|+
|~
|-

Subhstituting identity v = B'z + r, where r contains the m annual discrepan-
cies, fives
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1 I W
L L e L O e I 1
B} = |[nxn  nxm T x=2z+ Ei.f' (11)
Q R' 0 B' I r E El r
- - = - = 1= mxn mxm -

This reformulation of the solution reduces computing time in the applica-
tion of the calculated weiahts compared to formulation (10). Also note that
once the weights Wx are obtained, they can be used for any number of series
having the same number of observations. Furthermore, we recommend (Cholette,
1978, section &; 1979, 4.3) to compute Wx for a 5-year interval and to use it
in a moving average manner (moving one year at the time) for series of 5 years
and more. Apart from saving on calculations, this procedure nenerates only
two revisions in the estimates {ceteris paribus) when new vyears of observa-
tions are added to the series.

Denton solves the inversion in equation (10) by parts. This is impossible
here since matrix A is singular. The overall matrix however is not singular
and can be inverted.

In Fact, the method developped herein uses the solution proposed by Root,
Feibes and Lisman (1967) to interpolate between annual data in the ahsence of
sub-annual information. Solution (11) exactly <consists in interpolating
between the annual discrepancies with the method of these authors and in
adding the resulting estimates (the corrections) to the original sub-annual

series.

4. PROPORTIONAL VARIANT

The proportional method now presented in this section is also a variant of
Denton's proportional method, from which xg = zo was removed. As in Section
2, the objective function still minimizes the sum.oF the squared differences
between the slopes of the oriqinal and desired sub-annual series (zt and xt).
Each term in the sum is weighted however by the value of the corresponding

sub-annual observation:

p{x) = tgz (alxy - z,)/z )" = t§2 (alx /2 N7 (12)
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This variant is suitable for series with strong seasonality, when it is
thought that seasonal trough months cannot account for the annual discrepancy
as much as seasonal peak months: The size of the correctidns are proportional
to the level of each observation, as illustrated in Figure 3. The low obser-

vations get smaller corrections than the seasonally higher observations,

although the minimized proportional corrections xtht are as flat as permitted
by the annual discrepancies. Note that with the proportional variant all
observations must be positive and that all the adjusted values will also be
positive.

It can also be shown (Cholette, 1978, Section 3; 1979, 3) that the pro-
portional variant is a linear approximation of the strongly non-linear qrowth
rate preservation method (Smith, 1977: Helfand et al., 1978), which would have

the following objective function:

p(x) = tgz (xp/xq_q - 24/2, )% (13)

The approximation is exact in situations of constant annual proportional
discrepancies on the estimation interval.
In linear algebra, the constrained objective function associated to the

proportional method is

w6 @ = k-2 AN -2 - 20y - B0, (14)

where 7-! is a diagonal matrix with elements 1/z;, 1/z3, ... The solution bas

the same structure as the additive variant (Z‘IA Z-1 replacing A in (1)) and

writes:
xp|ztaztel-t At o) 2] L X |z
- - o ) (15)
a | & 0 B I} |rc o wlic

Unlike the weiahts in the additive variamt however, weights Wx of the pro-~

portional solution must be computed for each series and even for each
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application interval of a aiven series.

5. STOCK AND INDEX SERIES

The additive and proportional variants of the method presented above are
designed for flow series, whose annual values correspond to the sum of the

sub-annual values. The solutions can very easily be adapted for stock series,

whose annual values are associated to only one sub-annual value (usually that

of the last month): and for index series, whose annual values correspond to

the average of the sub-annual values. For a quarterly stock series, for

instance, one merely has to redefine the component vector jj of matrix B as

jl
= = [0 o0 1];
1x4

and, for monthly index series as

A" iz o112 .o 17121,
%12

6. DISCUSSION

6.1 Historical Data

There is a lot of confusion regarding the interpretation of assumption xg =
zg of Denton. 1In that respect, the author writes: "It is assumed that no
adjustments are to be made to the original series for years outside the range
from year 1 to m, inclusive." (p. 100, above equation (3.2)).

If these years are left untouched because they never had any benchmarks,
the solution proposed by Denton is defendable: No corrections result for
years -1 and D; and small and aradually introduced corrections, at the start
of year 1. (Remember that xg = 2o implies minimizina the first correction.)
The resulting adjusted series is then continuous as illustrated in Figure 4 by
curve ADER.

However, if the first years are left untouched because they were already
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benchmarked and are now considered "historical", we do not agree with assump-
tion x¢ = zg. Indeed, this assumption will generally produce a discontinuity
between years 0 and 1, as shown in Figure 4 by curve A'CDEB. Years -1 and N
have already received corrections of magnitude around CD, whereas the start of
year 1 receives corrections which are as small as possible.

In order to "freeze" the historical data after a certain number of vyears,
two solutions are possible, First, one can explicitely specify the freezing
constraint in the objective function which becomes

p(x) = ((x1 = 21) = (xg = 2002+ T (8 (x, = 2,0, (16)

where (xp - zg) is known and equal to the last correction used for historical
year 0. This correction is generally not equal to zero (Cholette, 1979b,
1983). This specification amounts to determining the starting point of the
correction curve,

Second, a less specific but equally effective solution consists of applyinn
the methodology already proposed in this paper (additive or proportional
versions) as a moving average, which moves one year at the time. With a
S5-year estimation interval, for instance, the estimates automatically become
final after two years of revision; and, after one year, in the case of a
3-year interval (Cholette, 1978, section 6 a; 1979, 4.3). The resulting

benchmarked series is continuous, as illustrated in Fiqure 4 by curve A'CB,

6.2 Implementation

The practioners of benchﬁarkinq have a tendency to feed to the benchmarking
programme the already benchmarked years of data followed by one year of
unbenchmarked data (all accompanied by their benchmarks). For methodologists,
it is obvious that one must always submit the unbenchmarked data (with the
yearly benchmarks}). Feedina benchmarked data will generally induce an
artificial seasonal movement in the resulting benchmarked series (Cholette,
1978, Section 6b).



- 43 -

6.3 Preliminary Benchmarking of Current Data

A final comment is in order. During a current (uncompleted) year, one
cannot calculate growth rates, for instance, between the benchmarked segment
of the series (AB) and the unbenchmarked seament (CD). Doing so usually
produces a discontinuity BC between the two seaments AR and CD as illustrated
in Figure 5 by curve ABCD,

Two solutions are then possible. One, the inter-temporal comparisons are
based only on the unbenchmarked data. Two, the current data are preliminarily
benchmarked by repeating the last available correction BC for the current
year. (Note that including the incomplete current year in the objective func-
tion (4) (or 12) would yield identical preliminarily benchmarked values.) One
can then compare the benchmarked seament AB with the preliminarily benchmarked
seagment BE as illustrated in Figure 5 by curve ABE. We favour this second
alternative.

6.4 Relation with Other Methods

The Denton (1971) benchmarking method, the modified Denton method (presen-
ted in this paper), the methods of Glejser (1966), of Boot, Feibes and Lisman
(1967), of Lisman and Sandee (1964), and of Bassie (1939) could be reffered to
as univariate methods. No series other than that considered and its annual
benchmarks enter the benchmarking process. On the contrary, the methods by
Friedman (1962), by Chow and Lin (1971), by Somermeyer, Jansen and Louter
(1976) and by Wilcox (1983) are multivariate. Auxiliary series are used in
the computation of the desired series.

For instance, Chow and Lin (1971) proposed a method to obtain the desired
sub-annual series from yearly totals and from related series. The movement of
the resulting series is as much as possible similar to the movements of the
related series (and the series obtained satisfies the annual constraints).
Fernandez (1981) observes that the Chow and Lin method can produce movement
discontinuities between the years. He then proposes a synthesis of the Chow-
Lin and of the Denton methods. The combined method elimates the inter-annual
discontinuities, but still relies on the hypothesis xp = z3. As illustrated
above, this hypothesis often introduces spurious fluctuations in the calcul-
ated series. We would think that it should be possible to refrain from the
hypothesis in the case of Fernandez as in the case of Denton.
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7. SUMMARY AND CONCLUSIONS

Denton (1971) intended to keep the original and benchmarked series as
parallel as made possible by the annual discrepancies. This paper suggested a
modification to the henchmarking method which makes the original and bench-
marked series more parallel than is the case with the original method. This
improvement holds both for the additive and the proportional variants of the
method. We suspect that the generalized multivariate method by Fernandez
could be improved in the same direction.

The method proposed can very easily be adapted for flow, stock as well as
index series.

Befaore making intertemporal comparisons between the benchmarked and current
data, it is essential to preliminarily benchmark the current data (in the
manner proposed).

The suggested S5-year moving average implementation of the method will

automatically "freeze" the past estimates after two vears of revision.
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Figure 1: Corrections (xt - zt) made to the unbenchmarked series according to
Denton's method (dashed line) and according to the method proposed in this

paper (solid) in an ideal situation of constant annual discrepancies.
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Figure 2: Corrections (xt - zt) made to the unbenchmarked series accordinao to
Denton's method (dashed line} and according to the benchmarking method
proposed in this paper (solid) in a situation of variable average annual

discrepancies (dotted).
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Figure 3: Original series (solid curve) and benchmarked series {(dashed)

accarding to the proportional variant of the benchmarking method proposed in

this paper (in a situation of constant annual proportional discrepancies).
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Figure 4: Benchmarked series according to Denton's method, when there are no
benchmarks for year -1 and 0 (curve ADEB) and when there are benchmarks and
year -1 and 0 were already benchmarked (A'CDER): and according to the method

propaosed in this paper, applied in a movina average manner, when there sare

benchmarks for years -1 and 0 (A'8).
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Figure 5: Continuity between the benchmarked series (dashed curve) and the
preliminarily benchmarked series (dotted) and discontinuity BC between the
benchmarked (dashed) and the unbenchmarked (solid) series.
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EXAMINING EXPENDITURES ON ENERGY

Louise A. Heslopl

Using data from the Family Expenditures Surveys over time, consumer
expenditures on in-home and transportation emergy from 1969 to 1982
are being studied. This article briefly summarizes some of the pro-
cedures being used to explore the data, summarize it and develop in-
sights into shifts in consumption for policy implications purposes.
With such a complex data set and such a complex, multi-faceted sub-
ject for analysis some effort must be made to reduce information
flows and at the same time increase the information content of each
factor of both input and output in the analyses.

1. THE ENERGY ISSUE

To some, enerqgy conservation may be a dead issue. There is no shortaqe of
energy (maybe never was): prices for energy have stabilized.

Eneragy matters dominated the 1970's having major impacts on the world eco-
nomic order and creating international strife. Domestically they impacted
drastically on federal - provincial relations and husiness - government rela-
tions and on family budgets: caused the restructuring of the manufacturing
base, the auto industry, etc. Despite its reported demise as an important
issue, energy consumption and prices remain as high priority concerns of
consumers, businesses and governments. Energy conservation has lost its
sparkle but not its real value.

The research I will be reporting on briefly has been developed in consulta-
tion with poliéy makers in Consumer and Corporate Affairs Canada and Energy,
Mines and Resources Canada which continue to run active research programmes on
consumer energy use and conservation. The project structure has taken their
interests, orientations and limitations into consideration.

Also, within the last five years an international group of social scien-
tists has bequn a series of research and information exchanges on consumer

behaviour and energy use. As a member of that group I have been keenly aware

1 Jouise A. Heslop, Research and Analysis Division, Statistics Canada.
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of the problems and prospects and the current state of knowledge and research

techniques of that group.

2. PROBLEMS IN ENERGY RESEARCH

Perhaps the major problem in studies of consumer enerqy use has been to
obtain reasonably reliable measures of use from sufficiently large and repre-
sentative samples. Getting such data over a period of time, especially a time
period spanning the infamous 1973 o0il embargo period, would send a researcher
into Nirvana. The Family Expenditure data collected by the Consumer Income
and Expenditure Division of Statistics Canada come close enough to these
requirements to at least set one's heart fluttering. It is a series of retro-
spective recall studies conducted for the years 1969, 1972, 1974, 1976, 1978
and 1982. So it covers the time period of interest for a large sample and the
sampling technique used ensures that the design is representative of Canada
for those areas studied, usually urban centres. Additionally it contains a
great many other variables of interest in any study of energy use, e.qg., home
ownership, some house characteristics, vehicle and appliance ownership, family
characteristics and expenditures on other categories of consumer goods and
services, etc.

Most studies which attempt a measure of consumer expenditures rely on
recall or file checking by respondents. There are obvious problems with the
accuracy of such data on an individual basis. The problems are less restric-
tive with very large samples. For most independent studies, the costs of such
large samples are prohibitive. However, FAMEX sample sizes are very large.

Only one major study in Canada has used independent record checking, ob-
taining records from suppliers by household with the permission of *the house-
holder, but through this technique was ahle to obtain electricity use records
on less than half of its sample. Natural gas and o0il records were obtained on
.only about one-third of the sample. This procedure of record checking is
highly accurate, removes the problems associated with recall, especially over
long periods of time, and of reporting bias of respondents. However, practi-
cally it is impossible to use for large samples acrass the country.

Although the FAMEX Study uses recall procedures, the information on enerqy



- 52 -

expenditures are not likely to be as biased as in a study specifically
designed to record energy behaviours since respondents are not sensitized to
the subject of the study. Also the data from pre-eneray crisis periods was
collected in the same way as that since the crisis, again reducing the
likelihood of response bias. So the FAMEX data set offers a wunique
opportunity to examine a very large set of samples during a very important
period of time.

The data set is not without - its problems, some because of the sampling
procedure and some because of the inherent complexity of any study of eneraqy
use. Changes in expenditure cateqories and their contents,'especially those
other than enerqgy, have required that we manipulate the data considerably to
create consistency across years. It is not possible to track in-home energy
expenditures for those families who do not pay for enerqgy directly, i.e.,
apartment dwellers with central meterinhg and roomers. Some researchers have
imputed values to these households based on their rents but we chose not to,
and instead have chosen to restrict our study to those households who have the °
ability to monitor and affect their own energy use. These households are the
consumer groups who will be the focus of any qovernment programmes to alter
consumer comsumption.

There are several factors which make the study and the altering of energy

consumption of households difficult:

- Capital commitments restrict the ability of the household to respond in
the short-term and increase the cost of response - e.q., house size,
number and type of appliances, size and number of vehicles. Some studies
have noted that home characteristics alone may account for 24% of in-home
energy consumption. Family size may be considered as a capital
commitment as well.

- Flow feasibilities - There are restrictions in the ability to chanae the
amount and types of fuels used depending on the technology and fuels
available under different circumstances and for varying amounts of money,
e.g., natural gas heating is not available to rural residents:
instantaneous changes can not be made in the type of home heatina fuel
used.

- Exogenous factors affect the amount of enerqy needed for gimilar

/
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per formance in different situations, e.q., weather, distances between

points in cities, etc.

3. SUMMARIZING INFORMATION INPUTS AND MAXIMIZING INFORMATION OUTPUTS

With such a complex data set and such a complex, multi-faceted suhject for
analysis some effort must be taken to reduce information flows and at the same
time increase the information content of each factor of both input and out-
put. There are several ways of doing this, some of which we will be using,

they include:

a) Constructing Complex Input Variables - to reduce the number of Ffactors
being studied to the most salient ones.

i} Discontinuous complex input variables were created by combining in-home
and transportation energy consumption but not as continuous variables. Rather
groupings were created to develop a set of typologies whose characteristics
can then be examined for differences. In this case the groupinas were devel-
oped by creating expenditure quartiles for each energy categary, collapsing
the two middle categories, and then combining the two resulting threé cells
into a nine cell matrix of interrelated categories (see Tahle 1, source:
McDougall, Ritchie and Claxton). In particular, the corner cells are of
interest in contrast to each other and to the middle cell. This typology was
developed in an earlier study for Consumer and Corporate Affairs Canada. So
comparing the output from the FAMFX data to the data set used in the LCA study
will be of particular interest. Comparing the characteristics of these groups
over time will also be of interest. For example, do the Churchmice continue
to be impoverished Canadians (inveluntary simplicity) or is there any indica-
tion that there is some voluntary embracina of low energy, lifestyles? 1In
Table 2 the characteristics of three cells of the typology from two different
years are compared - the Churchmice, the Roadrunners and the Hippos. Looking
first at the Churchmice, information on a selection of possible analysis vari-
gbles is shown across two different years, 1974 and 197R. To simplify for
this presentation only the rankings of the cell within the typology set of

cells is given. Characteristically those consuming the least amount of eneray
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have had the least resources in general, i.e., the lowest incomes, the lowest
levels of education, the oldest. These characteristics are evident for the
Churchmice in 1974, they also have the lowest levels of consumption for all
the expenditure categories shown. Although they are the oldest group they do
not have the lowest number of very young children. Probably this group con-
sists of a mix of senior citizens and single parent households (probably
headed by women) with young children. Note that this group also has the
lowest number of full-time earners {F-T earners). In 1978 the general picture
is still the same except that this qroup is no longer the oldest. In fact the
oldest group is in the adjacent cell to the right in the typology (not shown
here). It would seem that in 1978 the very old are consuming a relatively
larger amount of in-home eneray. Perhaps this group is financially better off
in 1978 than in 1974 or perhaps they have been unable to hold the line on
energy expenditures as prices have risen.

In 1974 the Hippos also fit expectations. They seem to be middle-aned with
large numbers of children 5-16 years of age. The "full nest" family, they
spend the largest amount on most expenditure categories. They are also the
most highly educated. In 1978 this is no longer true as the education ranking
of this cell has dropped. Also this group no longer has the highest shelter
expenditure. Some-sUdgestions for these aobservations may be that those with
the largest homes and the highest education have begun to modify their homes
to reduce energy expenditures.

The Roadrunners have changed also. In 1974 they were the youngest group
with very small famiiies. In 1978 they appear to be characterized as young
families with young children. 0One of the most dramatic changes for this group
has been that their alcoholic beverages and tobacco expenditures have dropped
dramatically.

The significance of these changes can be determined with appropriate sta-
tistical tests. The purpose of this discussion was to introduce the idea of
searching for meaningful typologies within the data. Pictures of the life-
styles of the qroupé eherqe which can be very useful in furthering conserva-
tion programmes directed at each group.

Further analysis may look not at level of expenditures but at percent of
expenditures. Such an analysis will reveal the characteristics of those who

are most heavily burdened with energy bills.
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ii) Continuous complex input variables can be constructed to eliminate the
effects of variables known to have very large effects, but ones which are
difficult or impossible for consumers to manaae.

In-home enerqy expenditures can be examined for factors related to them,
but since one of the main determinants of in-home energy expenditures is house
size, this size factor can be absorbed into the input variable to allow for
examination of other more relevant (from a policy perspective) factors. So
instead of in-home energy expenditures, in-home expenditures/room are exam-
ined. Takina this one step further, climate and weather variances from year
to year may be controlled for by looking at expenditures/room/degree day.
This last factor is added to the data set by city by year. Degree day data
for each year for each city were obtained from Environment Canada. Table 3
indicates how the figures change as the factor studied becomes more complex
again across two of the years of data. A comparison of the two years and
differences in the measures of change between years suggests the importance of

refining the measure to improve understanding of the process.

b) Constructing summary output variables to examine the structure of the
data - Example of reqression coefficients.

In Tables 4-6 some regression outputs are presented. Three models are
examined. In each succeeding model the dependent variable becomes more com-
plex. In so doing the factors known to impact significantly on energy con-
sumption can be controlled for and the effects of the remainino variables
examined more constructively for any significant explanatory power.

In these analyses no attempt has been made to deal with the problem of the
complex sampling design. A future ‘analysis will do.so using the Taylor lin-
earization procedure and results will be compared.  However, the results from
both a weighted and an unweighted sample are shown for 1974. As can be seen
the values of the coefficients change very little and their significance or '
lack thereof does not change. B8ecause of the restrictions indicated and also-
the fact that the very large sample sizes are used here produce significant
results under conditions of very slight differences, it is advised that great
care be taken in viewina these preliminary results for purposes. of this dis-
cussion. I will only note the variables significant at the .01 level and
beyond and then only their sign.
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In the independent variable list dummy variables are used in the first and
second models for city and in all three models for type of dwelling type. The
unspecified condition is Ottawa far city and single detached house for
dwelling type.

In 1974 house size, some city variables, total expenditures, ame of head
and family size and some house types are significant. Large families with
high total expenditures living in single detached homes in St. John's consume
the most. Western cities consume less than the east, and all other housing
types consume less than detached houses, although duplexes not significantly
so when number of rooms is controlled for. The unweighted results are similar
to the weighted,

When the dependent variable is changed to $/room and number of rooms is
removed from the list of independent variables the general pattern remains.
However, family size is no longer significant (probably closely tied to dwell-
ing size only), and education of family head becomes significant with a nega-
tive sign. Those with less education consumed more, all other things being
equal. Finally duplexes become significant with a positive sian, so when
number of rooms is controlled for, duplexes use more energy than detached
houses.

In model 3 climatic conditions are taken into account by controlling on
deqree days in the dependent variable and the list of cities is dropped from
the independent varisble set.

1t should be noted that the value of the coefficients drops so dramatically
because there are between 4000 and 7000 degree days in these cities. So the
small value of the coefficients does not mean they are unimportant. Total
expenditures remains significant as does educafion of the family head and the
rowhouse effect. An important thing to note is the drop in the value of the
adjusted R-squared. In fact the independent variables remaining in the equa-
tion do not do very much to help in explaining variance in the dependent vari-
able. 0Other more useful variables should be sought.

When we compare just the unweiohted 1974 and 1978 results, in model 1 some
change in the Vancouver parameter can be noted and in the importance of semi-
detached and duplex housing over detached houses.

In model 2 again the major change is in dwelling type effects. Finally in

model 3 only the rowhouse variable shows any difference from the detached:
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education of the head is again important, but in 1978 age of head is signifi-
cant with a positive coefficient. Some improvement is seen in the R-squared
for 1978, but it is still very low.

This cross-year comparison from a policy perspective suqgests perhaps that
improvements have been made in the aquality of the detached housing stock in
Canada. From a methodological perspective it indicates the importance of
choosing the dependent variable with care.

As was earlier noted, much additional analysis and re-analysis will be done
using the regression procedures available to refine these results and take the
sampling design into account.

As I noted earlier the FAMEX data sets have their limitations but they also
cantain a wealth of important information which should be fruitfully explored.
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Table 1: Enerqy Consumption Taxonomy - Labels

Level of In-Home Energy Consumption

Low Medium Hiagh
127 Mil. kJ 127-222 Mil. kJ 222 Mil. kJ Total

Low CHURCH MOUSE BEAR
1136
litre 4.5% of sample| 9.R% of sample 2.5% of sample| 16.8

Level of | Medium BEAVER
Automabile |1136-4545
Gasoline litre |[14.5% of sample| 33.7% of sample |12.3% of sample| 60.5
Consump- ,
tien High ROADRUNNER HIPPO
4544
litre 4.0% of sample| 12.6% of sample | 6.1% of sample| 22.7

Total 23.0 56.1 20.9 100.N

Source: See reference list.
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Table 2: Rank among Typology Cells
Churchmice Hippos Roadrunners
1974 1978 1974 1978 1974 1978
Education of Head (low-hi) 1 1 9 7 7 3
Age {old - yna) 1 2 6 6 9 9
F-T Earners (low-hi) 1 1 B.5 9 7 6.5
Family Size (low-hi) 1 1 9 9 4 4
Child Less than 5 (low-hi) 3 1 4 2 1.5 7
Child 5-15 (low-hi} 1 2.5 7 6.5 5 2.5
Food at Stores (low-hi) 1 1 9 g 4 4
Food at Eating Places {low-hi) 1 1 9 9 6 6
Shelter (low-hi) 1 1 9 7 4 3
Clothing {low-bi) 1 1 9 9 6 5
Personal Care (low-hi) 1 1 9 9 5 4
Medical (leow-hi) 1 1 8 R 4 4
Tobacco & Alcohol {(low-hi) 1 1 9 9 7 4
Readinq,‘Recreétion,
Education (low~hi) 1 1 9 B8 R 9
Table 3: Average In—Humé Enerqy Expenditures, i97&—78
1974 1978 % Change
Average $ in-home eneraqy expenditure 451 764 +69
Average $/room in-home energy expenditure 73 121 +66
Average $/room/dd in-home energy expenditure N9 .N29 +53
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Table 4: Reqression Analysis Results - Model 1 - $In-Home Energy

1974 1974 1978
Unweighted Weighted Unweighted
Intercept 197.3 A 225.4 A 298.0 A
No. of Rooms 12.9 A 12.0 A 4,2 C
City - St. John's 193.9 A 204.9 A 341.1 A
Halifax 75.5 A 73.9 R 162.0 A
Montreal 12,2 22.7 -16.6
Toronto -10,2 3.0 50.5
Winnipeg ~127.1 A -125.4 A -72.2 C
Edmonton -244.9 A -243.2 A -195.8 A
Vancouver -22.9 -17.5 -711.9 C
Total Expenditures 006 A .0n6 A M A
Age of Head 1.2 A n.a B 3.6 A
Family Size 13.2 A 12.1 21.6 B
Education of Head 0.7 n.6 -3.6
House Type - Semi Det. -50.9 B -49.0 A -23.8
Rowhouse -B1.2 A -B88.9 A -119.7 B
Duplex -12.3 -13.7 -84,6 C
Adjusted RZ 0.43 0.34 n.38
F value (prob.) 118.5(.0001) 79.7(.0001) 74.6(.0001)

Note: A = prob. less than .00M, B = prob. less than .0M, C = prob. less

than .M
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Regression Analysis Results - Model 2 - $/Raom

1974 1974 1978
Unweiqhted. Weighted Unweighted
Intercept 76.2 A 77.3 A g99.8 A
City - St. John's 3n.a A 32.0 A 74.8 A
Halifax 16.8 A 16.3 B 3.6 A
Montreal 4.5 6.7 6.5
Toronto -3.5 -1.7 10.1
Winnipeqg -17.6 A -16.3 A -N.9
Edmonton -37.9 A -36.8 A . =26.4 A
Vancouver 0.3 n.s -6.7
Total Expenditures 2.2x10~"* B 2.5x10~" 8 6.9%x10- A
Age of Head 0.015 -N.03 0.33 B
Family Size N.6 0.04 -0.63
Fducation of Head -1.9 A -1.4 B -4.0 A
House Type - Semi Det. -6.5 C -7.1 B .31
Rowhouse -11.5 A -11.8 A -11.0
Duplex 6.1 C 6.6 C 3.24
Adjusted R2 .31 .19 .24
F value (Prob.) 73.85(.0001) 38.9(.nnn1) 41,4(.00M)

Note: A = prob. less than .0001, B = prob. less than ,001, C = prob. less
than .01,
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Table 6: Reqression Analysis Results — Model 3 - $/Room/DD

1974 1974 1978
Unweighted Weighted Unweighted
Intercept 017 A 019 A N2 A
Total Expenditures 8.01x10-% 8 9.4x10~8 A 1.4x10=7 A
Age of Head 1.8x10-° -7.0x10-° 9.9x10-> A
Family Size ~1.4x10-> -18.4x10~° 27.0x10~>
Education of Head -5.3x10-" A -4.7x10-" A -7.8x10-* B
House Type - Semi Det. 3.4x10-" -7.5x10-" 24,8x107"
Rowhouse -23x10-* C -35.9x10-" A -38.8x107* R
Duplex 16.9x10-" 6.3x10-" 11.6x107*
Adjusted R? .01 .02 .03
F value (Prob.) 5.6(.0001) 6.6(.00M1) 9.5(.0001)

Note: A = prob. less than .0001, B = prob., less than .01, C = prob. less
than .01
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LOGISTIC REGRESSION ANALYSIS (F LARDUR FARCE SURVEY DATA

S. Kumar and J.N.K. Rao!

Standard chisquared (Xz) or likelihood ratio (G?) tests for logistic
reqression analysis, involving a binary response variable, are adjust-
ed to take account of the survey design. The adjustments are based on
certain generalized design effects. The adjusted statistics are uti-
lized to analyse some data from the October 1980 Canadian Labour Force
Survey (LFS). The Wald statistic , which also takes the survey design
into account, is also examined for goodness-of-fit of the model and
for testing hypotheses on the parameters of the assumed model. Logis-
tic regression diagnostics to detect any outlying cell proportions in
the table and influential points in the factor space are applied to
the LFS data, after making necessary adjustments to account for the
survey design.

1. INTRODUCTION

Logistic regression models have been extensively used by researchers in
social, behavioural and health sciences to analyse the variation in binomial
proportions (see, for example, the books by Cox (1970) and McCullagh and
Nelder (1983)). Due to clustering and stratification used in the survey
design the statistical methods for binomial proportions, however, are often
inappropriate for analysing sample survey data. For instance, the standard
chisquared (X2) or the likelihood ratio (62) tests areatly inflate the type I
error rate (significance level). Hence, some adjustments to the classical
methods that take account of the survey design are necessary in order to make
valid inferences from survey data. In this article, we have utilized two

2, hased on certain qeneralizéd design effects

simple adjustments to X% or G
(deffs) to analyse some data from the fctober 1980 Canadian Labour Force
Survey (LFS) (Section 3). The Wald statistic, which also takes the survey

design into account, is also examined.

1 s, Kumar, Census and Household Survey Methods Division, Statistics Canada,

and J.N.K. Rao, Department of Mathematics and Statisties, Carleton
University.
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In addition to formal statistical tests, it 1is essential to develop

diagnostic procedures to detect 'any outlying cell proportions and influential

points in the factor space. Regression diagnostics for the standard linear

model have been extensively investigated in the literature (see the recent
Pregibon (1981) recently developed similar

book by Cook and Weisberg (1982)).
In Section 4

methods for the logistic regression with binomial proportions.
some of these methods have been applied to the October 1980 LF5 data, after

making necessary adjustments to account for the survey design.

2. THEORETICAL RESULTS

Suppose that the population of interest is partitioned into I cells (do-
mains) according to the levels of one or more factors, and Ni denotes the sur-

vey estimate of the i-th domain size, Ni (i =1, 2, vsuy I3 L Ni = N). The
corresponding estimate of the }—th domain total, Ni1’ oFAa biqaryA(ﬂ, 1) re-
sponse variable is denoted by Ni1' The ratio estimate, p; = Ni1/Ni’ is used
to estimate the population propertion m,= Ni1/Ni‘
A logit model on the proportions m, is given by w, = Fi(E)’ where’
(1)

In{f /(1 - £} = logit £ = 1B, i=1, ., L

In (1), X5 is an s-vector of known constants derived from the factor levels

and B8 is the s-vector of unknown parameters. Under independent binomial

sampling in each domain, the maximum likelihood estimates (m.l.,e.) are

obtained from the following likelihood equations:

X'D(n/n)f = X'D(n/n)q, (2)

R nI/n)!,‘E:ﬁt(E) = (F1, "oy

where X' = (54, ey 54), D(n/m) = diaq(n1/n,
fI)', and q is the vector of sample proportion q; = ni1/ni, where n is the

sample size from i-th domain (Z n;, = n. For oeneral sample designs, we do

not have m.l.e. due to difficulties in obtainina appropriate likelihood func-

tions. Hence, it is a common practice to use a "pseudo m.l.e." of B or f
~ i~
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obtalned from (2) by replacing ny /n by the estimated domain relative size,

Wy = N /N, and a, by the survey estlmate p

X'D(g):f: = X'D(g){é. (3)

The resulting estimates,‘é andli :'ﬂ(iﬁ, are asymptotically (i.e., in large

samples) consistent. The equations (3) may also be written as

X'Np(m) = X'Nj, (4)

-~ ~

where ‘ﬁ1 is the vector of estimated counts N, i1’ and N (m) is the vector oF

pseudo m.l.e., Ni1(m) = Nifi, of the totals Ni1

and'u1(m), are obtained from (3) or (4) by iterative calculations.

The estlmates B, and hence F

2.1 Estimated Variances and Covariances

Let V denote the estimated covariance matrix of p, then the estimated cova-

riance matrix of B is given by

A A

D(8) = (X' 80~ (X"DID(WX) (X' 80~ | (5)

in large samples, where A = diag(wifi(1 - f1), ..., wIFI(1 - FI)). The diago-
nal elements of (5) provide the estimated variances of the estimates Bi. Sim-

ilarly, the estimated covariance matrix of the residual vector r = P - f is

~4

given by
D(x) = AVA', (6)

where

A=1- D(bo(l -i)x(x'lx)-lx'o(g). (7)

The diagonal elements Gii(r) of (6) lead to standardized residuals ri/s.e.(ri)

which are useful in detecting outlying cell proportions.
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2.2 Goodness-of-Fit Tests

The standard chi-squared test of aoodness-of-fit of the model (1) is given
by

I (p, - F)%w, 1 .
X=n 3 Lot = oz oxd (8)
i=1 £.(1 - Fi) i=1

I
} = ¢ 62 (9)

Note that Gi is also defined at p; = M and 1 as given by -2nwiln(1 - Fi)

and -2nwiln Fi respectively. Under independent binomial sampling. it is well

2 variable with

known that both X2 and G% are asymptotically distributed as a x
I - s degrees of freedom, but for general desians this result is no longer
valid. In fact. X? (or G?) is asymptotically distributed as a weiahted sum
I 6iZi. of independent xz variables, Zi, each with 1 d.f. where the weights
Gi (i =1. .... I -~ 8) are the eigenvalues of a '"generalized desian effects"
matrix aiven by 261 Iy - where

Zp = G'D(E)-10(1 - H-T0(fH)-'o(1 - £-16, (10)
EU :lG'A‘IG (11)
n

and G is any Ix(I - s) matrix of rank I - s such that G'X = N. i.e.. G is
orthagonal to X. Under binomial samplina, E‘é Iy reduces to I. the identity
matrix

A simple adjustment to xZ (or G%) is obtained (Roberts. 1984) by treating
Xg - X2/6. or Gz = G%/5. as xz with I - s dearees of freedom (d.f.) under the

hypothesis that the model is true. where
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I - . . )
(I -s8)8. =n iET Vii(r)wi/[Fi(1 - fi)]- (12)

The adjusted statistic Xé (or Gg) should be satisfactory excepting in those
cases with a large coefficient of variation {C.V.) of the Gi's. A better ad-
justment, based on the Satterthwaite approximation, treats Xg = Xg/(1 + az) ar
Gé = Gé/(1 -+ az) as x2 with (I - s)}/(1 + az) d.f., vwhere

a? = 1 (5 - 6)%/1(1 - )82 a3

is the (C.V.)2 of the §,'s and

| MR - -
T 62 - 2 ) . CF. (1 - f. - f.
: i§1 j§1 VlJ(r)(nwl)(an) / [Flfd(1 fi3(1 fﬁ)] ; (14)

where Vij(r) is the (i, j)}-th element of D(r). The statistics Xg and G% take
account of the variation in Gi's.

A Wald statistic for goodness-of fit of the model (1) is given by

X2 = werzie'y, (15)

2
W

where i‘is the vector of loqits Gi = logit Bi’ The statistic Xﬁ is distribut-
ed as x2 with I - s d.f., in large samples. The statistic Xa is nPt defined
if p; = N or 1 for some i. Moreover, it becomes unstableﬁwhen any p; is close
to 1 (see Section 3), or when the deqrees of freedom for V is not larce com-

pared to I - s (Fay, 1983).

2.3 Nested Hypothesis

Suppose the matrix X is partitioned as (X3, X2) where X; is Ixr and X2 is

Ixu (r + u = s), then the model (1) may be written as

Y = XB = X181 + X282, (16)
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where B; is rx? and By is ux1. We are often interested in testing the null
hypothesis H: B2 = 0 given the model {(16). The "pseudo m.l.e." under H can he

obtained from the equations

x;D(w)? = Xlﬂ(wlé (17)

~

again by iterative calculations, where f = f(B8). The standard chisquared and

likelihood ratio tests of H: B2 = 0 are given by

I w (?. - F_)Z
X(2|1) =n z 22 o (18)
i=1 ; (1 ; |
it T
and
, I . F ) (1 - Fi)
G (2|1) = 2n 151 Wi d Fidn —+ (1 - f)ln —_— (19)

- »

respectively. lInder binomial sampling, hoth X2(2|1) and G2(2,1) are asympto-
tically distributed as x2 with u d.f. when H is true, but for general desians
this result is no longer valid. In fact X2(2|1) or G2(2'1) is asymptotically
distributed as a weighted sum, I8,(H)Z., of independent xf variables Z,, where
the weights Gi(H) (i =1, ..., u) are the eigenvalues of the desion effects

matrix.

(X2 8%2)= L X3D () VD () X5), (20)
where

X2 = [1 - xp(x{axp)='x1alxy, (21)

(Roberts, 1984). In the binomial case, the desian effects matrix (20) reduces
te I, as in the previous case of qoodness-of-fit.

A simple adjustment to X?(2[1) or 6%(2[1) is obtained by treating xg (2|1
= X2(2|1)/6,(H) or 62(2[1)/6.(H) as x* with u d.f. under H, where
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us (M) =n I V. (w/F(1-F) (22)

[
[T o L
RN

and V&i(r) is the i-th diagonal element of the covariance matrix of residuals,

ri(H) = fi - Fi, given by

Vir) = DO, - DX AP, - £) (23)
where

= (X %)~ XD () VD ()X 1Ry )~ (24)

. . p 2 ~ L _

The standardized residuals (Fi - Fi)/[Vii(r)] can also be computed. As in

the case of qoodness-of-fit. improved approximation. based on Satterthwaite's
method, can also be cbtained.

A Wald statistic of H- Bp =.0 is given by

x2(2|1) = 8;[D(B2) 1" 1Bs. (25)

~

where b(éz) is the principal submatrix in (5) correspondinq to By. Under H.
X2(2,1) is asymptotically distributed as x with u d.f. In particular if B3

is a scalar. we can treat Bz/s e. (82) as N(DN.1)-variate under the hypothesis
H: B = 0 or Bz/var(Bz} as x% with 1 d.f.

2.4 Diaanostics

It is desirable to make a critical assessment of the logit fit by identify-
ing any outlying cell proportions and influential points in the factor space.
For this purpose. the vector of residuals and a projection matrix in the
factor space provide useful tools. However. unlike in the case of the stan-
dard linear model. the residuals can be defined on different scales = The
natural choice that takes account of the survey desiun ig the vector of stan-

- 1
dardized residuals e, = ri/[Vii(r)]“ aiven in section 2.1. Since the ei‘s are
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approximately N(0, 1) under the model (1), the expected numbers of residuals
e exceeding 1.96, 2.33 and 2.58 in magnitude are 0.05I, 0.021 and 0.011 res-
pectively, where I is the number of residuals (cells). These expected numbers
provide a rough guide to identify any outlying cells. Ignoring the design and
hence using standardized residuals under binomial sampling could lead to mis-
leading conclusinns,

Th? standardized residuals e, however, become unreliable Ffor those cells
with p; = 1 or close to 1. Following fregibon (1981), we suggest the use of
components of Xg or Gg, viz., ?} = Xi/6f ar E& = Gi/ﬁf, i=1 ..., I, for re-
sidual analysis in order to circumvent this difficulty. In either case, large
individual components should roughly indicate cells poorly accounted for by
the model. Index plots (i.e., plots of R} vs i and E} vs i) are useful for
displayina these components. Normal probabilities plot of ?} or E} {(i.e., the
ordered values plotted against standard normal quantiles) is also useful to

detect deviations from the model (i.e., deviations from a straight-line

confiquration}.
Pregiban (1981) sugaested the use of diagonal elements, msio of the pro-
Jection matrix
M= T - VExoey Xty
- b b b
= I - H (say) (26)

to detect influential points, wher? Ob ngthe estimated Envariaqce matrix un-
der hinomial samplina, viz., diag[p,{1 - p)/(nwy), ..., pI(1 - pI)/(an)] in
the context of survey data. The matrix M arises naturally in solving likeli-
hood equations (4) by iteratively reweighted least squares, and small values
of L call attention to extreme points in the factor space. Aqain, an index
plot (rnii vs i) would provide a useful display. It may be noted that the de-
sign effect does not come into picture with m..

ii
m.l.e." based on binomial sampling. Another useful plot which effectively

since we are wusing "pseudo

- . £l o~ - x . -
summarizes the information in the index plots Xi vs 1 and m;; v8 1 1s aiven by

the scatter plot of ??/Xé = Xiz/X2 Vs hii’ where hii is the i-th diaqonal ele-
ment of H given by (26) (see Pregibon, 1981).



_ 70 -

The diagnostic measures e, Y or E. and m. s are useful for detectina
extreme points, but not for asse331nq their impact on various aspects of the
fit including parameter estimates, B, fitted values,‘t, and gqoodness-of-fit
measures X /6_ or 82/6. or others., Following Pregibon (1981} we suggest three

measures which quantify the effect of extreme cells (points) on the fit.

(1) Coefficient sensitivity: Let 8. ( 2) denote the pseudo m.l.e. of B]
talned after deletlnq the gf-th eell data. Then the quantity A (2) =
[B - B (-2)1/s.e. (B ) provides a measure of the j-th coefficient sen81t1v1fy
to L- th point. The 1ndex plots A {2) vs £ for each j provide useful displays
but the task of looking at the 1ndex plots could become unmanageable if the
number of coefficients in the model is large.

(2) Sensitivity of fitted values: Significant chanaes in coefficient es-

timates when £—th point (cell) deleted does not necessarily imply that the
fitted values f also vary significantly from f( £), the vector of fitted va-
lues obtained after deleting the 2&-th cell, i.e., HF - F( 2)1 could be small.
We therefore use [GZ - §%(-2)1/8 or [x? - ?2( £)1/8, to assess the impact of
the %-th point on the fitted values. where G 2(-2) and ¥2(-%) are given by (9)
and (8) respectively when }i = F (B) is replaced hy F (-2) = i(B(—E)).

(3) Goodness-of-fit: A measure of aqoodress-of-fit sensitivity is given by
(62 - 62(-2)1/6, or [X? - X*(-2)]5,, where G2(-2) and XZ(-2) are the likeli-
hood ratio and chisquared statistics obtained after deleting the 2-th cell.
(Note that G2(-2) #* T2(-1)).

3. APPLICATION TD LFS

We have applied the previous methods to some data from the October 1980
Canadian Labour Force Survey (LFS). The sample consisted of males aged 15-64
who were in the labour Fforce and not full-time students. We have chasen two
factors, age and education, to explain the variation in unemployment rates via
logit models. Age-group levels were formed by dividina the interval [15, 641
into ten qroups with the j-th aqe qroup being the interval [10 + 5j, 14 + 5il,
jg=1.2. .... 10, and then wvsing the mid-point of each interval, A1 , as the

value of the age for all persoms in that age aroup. Similarly, thé levels aof
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education. Ek. were formed by assigning to each person a value based on the
median years of schoolino resulting in the following six levels = 7, 1. 12.
13. 14 and 14. Thus the age by education cross-classification provided a
two-way table of I = 60 cell proportions. ﬂjk.

The LFS design employed stratified multi-stage cluster sampling with two

stages in the self-representing (S5R) wurban areas and three or four staaes in

non-self-representing (NSR) areas in each province The survey estimates.
jk' were adjusted for post-stratification. using the projected census age-
sex distribution at the provincial level. The estimated caovariance matrix

V of the estimates p ik is based on more than 450 first-stage units {psu's) so

that the degrees of freedom for V are large compared to I = &0.

3.1 Formal Tests of Hypotheses.

Scatter plut of the logits U]k vs age levels A at each education level E

k
indicated that ka for given k generally 1ncreases with age to a maximum and
then decreases (i.e., the qraph is convex and upward to a maximum). Hence.

the following model might be suitable to explain the variation in "jk's'

=1l . = BO + B]_A] + BzA? + BgE + BqEﬁ

k

—
n
-
.

10: k = 1. .... 6. (27)

Some previous work in sociological literature also supports such a model
{Bloch and Smith, 1977). Applying the results of Section 2 we obtained .the
following values for goodness-of-fit statistics
x2 = 98.9 62 = 101.2
X2/ = 52.5 G2/6 = 53.7. & = 1.88.

Since X2 or G2 is laraer than xé 05(55) = 73.3, the upper 5% point of xz
with I - s = 55 d.f.. we would reject the model if the survey design is
ignored. 0On the other hand. the value of x2/8 or G%/6 indicate that the mo-

del is adequate. the significance level (or P-value) being approximately eaqual
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to 0.52. The value of Xg when adjusted to refer to XS.DS(SS) is equal to 47.7
which is also not significant. Moreover. in the present context with s(= 5)
relatively small compared to I(= 60), the simple correction ﬁ. the average
cell deff, (see Fellegi, 1980), is very close ta §:d = 1.905 compared to
§ = 1.B8: see Rao and Scott (1984) for a theoretical explanation. |

The Wald statistic X2 is not defined here since two of the cells have

- W
pjk = 1, but we made minor perturbations to the estimated counts to ensure

~

t:hatp‘jk < 1 for all cells and then computed X;. The resulting values of Xﬁ
are all large compared to X2/6. {at least 30 times larager than XZ/G.) and vary
considerably (1715 to 3061). Hence, the Wald statistic is very unstable far
goodnesé-of—Fit test in the present context. If the two cells having 5ik =1
are deleted, then Xﬁ = 68.4 < Xg.05(53) = 71.0, indicating that the modei (27)
is adequate. However, it is not a good practice to delete cells just to
accomodate a chosen test statistic. The otTer problem with Xﬁ. noted by Fay
(1983), does not arise here since d.f. for V is large compared to the number
of cells in the table.

The pseudo m.l.,e., their s.e. and the corresponding s.e. under binomial
sampling, all obtained under the model (27), are qiven in Table 1 along with
Wald statistic X£(2|1) and G2 statistic 62(2/1)/6.(H) for the hypotheses
H;: 8, = 0, i=1, 2., 3, 4 given the model (27}. As expected, the true s.e.'s
are larger than the corresponding binomial s.e.'s. The hypothesis Hy: B4 = 0
(i.e., coefficient of Ei is zero} is not rejected at the 5% level either by
the Wald statistic or G° statistic. On the other hand, the coefficient,
B2, of Af is highly significant. In testing the significance of individual
coefficients we compare the values of X§(2|1) or 82(2|1)/6_(H) to X?O.US(1) =
3.84, the upper 5% point of x2 - variate with 1 d.f.

We have also tested the following nested hypotheses given model (27): Hjzy-*
By = By = N (i.e., no education effect); Hay: By = By = N (i.e., no quadratic
effects). Both H3, and Hpy are highly significant:

165.6 for Ha:

G2(2[1)/6,(Has) = 282.2/1.66 = 172.1, X2(2|1)

G2(2|1)/6_(H2u)
X(Z].Os(Z) = 5-99.

242.2/2.2R

2
106.3, X3(2|1)

162.1 for H,, compared to
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) P Py 20001y . a2 p n2 ‘
Table 1: Pseudo m.l.e. B,, s.e. (Bi)? X"(2|1) = Bi/var (Bi) and G (2'1)/6_(Hi)
Values for the LFS Data under Model (27).

s.e.(Bi) ) 5
é Xw(2|1) G (2[1)/6_(Hi)
i True Binomial
0 -2.76 0.557 24,6
1 0.209 n.0132 t.012 250.6 168.4
2 -0.00217 n.00n0173 n.000136 157.3 102.1
3 0.0913 0.0891 N.068 1.04 1.01
4 N.00276 0.00411 0.0n30 n. 45 0,46

Unlike in the case of goodness-of-fit, the Wald statistics is stable for
testing nested hypotheses and leads to values close to the corresponding
G2(2|1)/6_(H) values. ‘

By the above test of goodness-of-fit and tests of nested hypotheses we have

arrived at the following simple model involving only four parameters:

- - 2
Ujk = 1n ?_:_;3; = By + BlAj + BzAj + B3E (28)

k!

with Bg = -3.10, B; = 0.211, 82 = -0.0N0218 and B3 = N.1509 and corresponding
standard errors are 0.247, 0.0130, 0.000172, and 0.0115. We will use the
model (28) in Section 3.2 to develop logistic rearession diaanostics.

3.2 DMagnostics
We now illustrate the use of diagnostics developed in Section 2.4,

(i) Residual Analysis

The 60 cells in the two-way table were numbered .lexicogqraphically, and the

standardized residuals e, were computed under the model (28). arrived through
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forma% testing of hypotheses. Amonag the sixty B, cells numbered 6 and 54
with pjk = 1 lead to very large e values: 166.6 and 4.2 respectively.. Amonqg
the remaining B » the residuals numbers 7, 27 and 59 have values 3,84,
2.73 and 2,52 respectively, whereas the expected number of lei‘ exceeding 2,33
under model (28) is roughly 0.02 x 60 = 1.2. Hence, there is some indication
that cells 7 and 27 could correspond to outlying cell proportions.

The normal probability plot of E} is displayed in FIG. 1:; the plot of Yi is
not given to save space since it is similar to the plot of E&. Figure 1 indi-
cates no strong deviations from a straight line configuration. The index plot
of E;, Figure 2, is consistent with Figure 1. Hence, there is no evidence of
outlying cell proportions when the components E} of Gg are used for residual
analysis.

(ii) Detection of Influential Cells.

The index plot of s is displayed -in Figure 3 which clearly points to
cells 1 and 6. Figure 4 displays the plot of ??/Xé = Xf/x2 vs hii’ where the
line with slope - 1 is given by Xiz/x2 + i’ii = 3ave(h§i). Here hﬁi = 'ﬁi
Xf/Xz, and the values of hii near unity corresponds to cells which are out-

+

lying or influential or both (Pregibon, 1981) and appear above the line in
Figure 3., It is clear that cells 1 and 6, and to a lesser extent cells 7 and
58, warrant further examination.

(iii) Coefficient Sensitivity.

The index plots for measuring coefficient sensitivity (AT(E) vs L) are dis-
played in Figures 5, 6, 7, and 8 for Bg, B1, B2 and B3 respectively. It is
clear from the plots that cells 2 and 3 cause instability in ég, él and éz,
whereas ég is affected by cell 7.

(iv) Sensitivity of Fitted Values

Figure 9 displays the plot of 62 - ﬁQ(-z)]/G‘ = ¢ vs % for assessing the

impact of individual cells on fitted values. Significant peaks in this figure.
correspond to cells 2 and 3 and to a lesser extent to cell 7. Following Cook
(1977) and Preqibon (1981}, it may be noted that the comparison of ¢ to the
percentage point of ¥2(s) (s = 4 in model (28)) gives a rouah gquide as to
which contour of the confidence region the pseudo m.l.e. is displaced due to
deletion of the f~th cell., The value ¢ = 2.1 for cell 2 roughly corresponds

to 78% contour of the confidence region.
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(v) Goodness-of-fit Sensitivity

Figure 10 displays the plot of [G2 - Gz(-z)]/ﬁ. vs L3
[x2 - Xz(-l)]/ﬁ_ is similar and hence not displayed but the Fformer plot is
Significant peaks in this figure corresponds to

the plot of

preferred (Pregibon, 1981).
cells 2, 3, 7, 27, 39 and 54 (values Z 3), the most siqnificant being cell 7

with the value 5.4. By deleting cell 7 and recomputing the adjusted statistic
G§(-£) = Gz(-z)/a_(-z) where 6§ (-2) is the corresponding value of &, , we qet
a value of 4B.43 with 55 d.f. compared to G2/8, = 55.3 with 56 d.f.

Our investigation on the whole indicated that cells 7, 2 and 3 are possible
but we feel that their impact is not significant

candidates for deletion,
one would like to explain the variation

enough to warrant their deletion -
among all cell proportions unless certain cells contribute heavily to the

disagreement between the data and the fitted model.
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APPLICATION OF LINEAR AND LOG-LINEAR MODELS
TO DATA FROM COMPLEX SAMPLES

Robert E. Fay1

Most sample surveys conducted by organizations such as Statistics
Canada or the U.S. Bureau of the Census employ complex designs. The
design-based approach to statistical inference, typically the insti-
tutional standard of inference for simple population statistics such
as means and totals, may be extended to parameters of analytic mo-
dels as well. Most of this paper focuses on application of desian-
based inferences to such models, but rationales are offered for use
of model-based alternatives in some instances, by way of explanation
for the author's aobservation that both modes of inference are used
in practice at his own institution.

Within the design-bhased approach to inference, the paper briefly
describes experience with linear regqression analysis. Recently,
variance computations for a number of surveys of the Census Bureau
have been implemented through "replicate weighting"; the principal
application has been for wvariances of simple statistics, but this
technique also facilitates variance computation for virtually any
complex analytic model. Finally, approaches and experience with
log-linear models are reported.

1. INTRODUCTIGN

Statisties Canada has played a significant role in many of the methodo-
logical developments in the application of analytic methods to sample survey
data. The intent of this paper is to review and to share some of the
experience acquired by the 1.5, Bureauw of the Census with these same
questions.

The "desion-based" (also sometimes called "classical”) mode of inference
predominates in the analysis and presentation of data by most governmental
statistical agencies, such as Statistics Canada and the IJ.S. Bureau of the

Census, as well as by most larae private survey organizations. The basis of

1 Robert E. Fay, 5tatistical Methods Division, U.S5., Bureauy of the Census,
Washington, D.C.
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statistical inference with this approach is the randomization employed to
select the sample from the finite population. Construction of confidence
intervals and tests of hypotheses are based on a large-sample theory tied to
this randomization rather than to a specific model. Standard texts such as
those by Cochran [4], Kish [17], and Hansen, Hurwitz, and Madow [14] present
the elements of this theory. Hansen, Madow and Tepping [15] recently arqued
the advantages of this approach to the problem of inference from survey data
over "model-based" methods; Sérndal [25] and Cassel, Sidrndal, and Wretman [3],
have discussed the choice between the model and design-based approaches from a
somewhat different point of view. Most of the original development of the
design-based theory of inference was specifically for population totals, pro-
portions, means, and ratios, and much of the corresponding literature for the
model-based theory similarly concentrates on such basic statistics.

Common amalytic models, such as linear reqression, log-linear models, and
generalized linear models, on the other hand, were initially developed in the
context of explicit stochastic models, for example, the normal or multinomial
distributions. "Classical" inference here has generally come to refer to sta-
tistical inferences based upon such distributional assumptions (where "classi-
cal" may include "Bayesian" in this discussion). Developmeﬁts in "robust"
estimation avoid specific distributional requirements, but often maintain
assumptions not typically encountered in survey sampling, for example, that
the error terms of the model are independent and selected from a symmetric
population.

Many researchers familiar with one or more of these analytic models have
applied them directly to sample survey data without recoanition of the possi-
ble consequences of the sample design on the validity of inferences based on
the wusual distributional assumptions.- The subject of this conference, nof
course, essentially concerns "design-based" alternatives that do reflect the
effect of the design. Althouah all other sections of this paper will address
"design-based" methods, the next section considers some of the theaoretical and
practical issues in choosing between these two approaches, and how these con-
siderations appear manifested in practice at the Census Bureau.

The third section briefly describes some of our experience at the Census
Bureau with design-based methods for linear regression. The fourth section

discusses an approach taken in the computer implementation of replication
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methods, using "replicate weights". Although principally intended for the
computation of variance for the usual survey characteristics, this technique
also facilitates computation of standard errors for complex models, This
general approach may be particularly useful for less standard models, i.e.,
models other than the linear, log-linear, and other oeneralized linear
models. Finally, some developments with respect to log-linear models are dis-

cussed, including specific computer software.

2. CHOOSING BETWEEN DESIGN-BASED AND MODEL-BASED
INFERENCE FOR ANALYTIC MODELS

The choice between design-based and model-hased inference may involve
several factors, including effects of stratification, and existence or extent
of dependence between sampled values ("clustering"). Many of the essential
issues related to this general choice are enumerated by DuMouchel and Duncan
[6] in their discussion of whether to incorporate survey weights in linear
regression.

If ¥ represents a column vector of observations Yi’ and X = {Xij},- j =1,

..., D represents predictors for Y, the model

Y=X8+E (2.1)
with g = {ei} composed of independent, identically distributed error terms

eiaaN(U, 02), has as its maximum-likelihood estimate for 8

T v=1,T

Y. (2.2)

=

~

Typical survey estimation associates a weight wi with each survey case i,
hased on the inverse of the probability of selection, often adjusted by
factors for nonresponse and ratio estimation. If W represents a diagonal

matrix of Wi, then

By = X0 % wy (7.3)
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gives a desiagn-consistent alternative incorporating the weights. Under the
original stochastic model justifying the choice of (2.2), or, more generally,
if the si's are uncorrelated with zero expectations and equal variances, (2.3)
has a larger samplina variance than (2.2). On the other hand, if these
specifiﬁ assumptions fail (particularly concerning the expectations of the
ei‘s),_(2.3) remains a desian-consistent estimate of the census parameter, B*,
defined as the application of (2.2) to the values in the complete finite popu-
lation, whereas computation of (2.2) for unweighted sample cases cannot
guarantee consistent estimation of g*.

DuMouchel and Duncan further elaborate on the issue of choosing hetween the
variance advantage of (2.2) under the simple model and the consistency of
(2.3) under model failure. Their presentation includes a number of citations
to earlier commentary by others on both sides of this controversy, and can be
recommended for its balanced perspective. Additionally, they propose a test,
which can be performed with typical computer packages for linear reagression,
of whether the weighted and unweighted reqressions are siaonificantly differ-
ent. If the test rejects the hypothesis that (2.2) and (2.3) are consistent
estimates of the same set of coefficients, then the argument for consistency
with the census value, B*, favors (2.3). If the test does not reject, the
authors prefer (2.2) with its (generally) lower variance.

If a researcher rejects (2.2) on the basis of the test proposed by
DuMouchel and Duncan, and computes (2.3) instead, the implications of this
choice are relatively clear: that (2.3) is selected over (2.2) for its consis-
tency under failure of the model. If the test "accepts" the hypothesis, and
(2.2) is used with its associated standard errors derived under the model,
caution is nonetheless required in uncritically interpreting (2.2) and associ-
ated confidence intervals as statements about the census parameter B*. In
many applications, choice of (2.3) and its associated reliability could be
defended as the only "safe" interpretation of the data as an estimate of g*
when model failure is suspected, in spite of possible acéeptance by the test
of a hypothesis of no significant difference between the weighted and un-
weighted analyses.

The paper of DuMouchel and Duncan clearly illustrates the most essential
consideration in choosing between model-based and design-based inference,

namely, efficiency under a correctly specified model versus consistency under
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failure of the assumptions of the model. Two footnotes may be added. Al-
though ignoring survey weights is inconsistent under any design-based approach
and can only be justified under model-based approaches, not all model-based
inference requires ignoring the information represented in the weights.

Rubin [24) gave a concise explanation of this last point in his discussion
of the paper of Hansen, Madow, and Tepping [15]. Referring to the more exten-
sive work of Rosenbaum and Rubin [22], Rubin pointed out that a complete
Bayesian interpretation of the observed data reflects not only consideration
of the functional and distributional relationships in the total population
{such as models like (2.1) for the complete population) but also the process
by which the sample ohservations become observed. (In a randomized desian,
"propensity" to be included in the sample may be equated to probability of
selection and the "propensity score" in Rosenbaum and Rubin [22]1.) On the
basis of this consideration, Rubin [23] presented an interesting justifica-
tion, from a Bayesian perspective, of the use of randomization in sample
selection, a procedure that has been staunchly defended by proponents of
desiqgn-based inference but treated with some disdain by many proponents of
model-based inference. Consequently, Rubin advocates model-based inference
tempered by careful analysis of the effects of selection or propensity to be
included in the sample; these principles in some circumstances could lead to
either (2.2) or (2.3), or perhaps alternatives to both,

As a second footnote, DuMouchel and - Duncan explicitly restricted their
attention to the issue of weighting for stratified simple random sampling. An
equally important issue in many applications is the effect on inferences of
clustering, that is, dependencies among sampled units due to their joint
inclusion in the sample by desiagn, such as persons in sampled households or
persons in neighboring households jointly selected into sample. In self-
weighting samples (where all sample cases have equal weight), design-based and
model-based analyses may often produce the same estimates of the parameters of
an analytic model but substantially different assessments of their reliabi-
lity, unless the dependencies from clustering are explicitly incorporated into
the model-based inference. Unlike the issue of the use of weights in strati-
fied simple random samples, where a model-based approach may be defended if
the error terms conform to the original full specification of the model, a

known dependence among the observations due to clustering (to any serious
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inherently conflicts with any assumption of independence of errors

deqree)
Hence, models that do

that might be required by an overly simplified model.
not reflect known effects of clustering automatically fail to model the data

properly.
Design-based inference is the institutionmal standard at the 1.S. Bureau of

the Census; yet, practice incorporates both modes of inference with respect to
models. Researchers are mast likely to adhere strictly to a design-based

standard for inferences to national relationships based upon complex samples.

When survey weights vary by only a modest deqree or not at all, and the

model-baserd inferences for ana-

effects of clustering may be presumed small,
The attraction of model-based

lytic models appear to enjoy acceptance.
inference in these cases, no doubt, reflects less a philosophic choice than a

model-based methods are more accessible and familiar than the

practical one:
(The author has encountered applications meeting

design-based counterparts.
such conditions on variation on the weights and effects of clustering where

design-based methods simply duplicate model-based conclusions, thus justifyina

the substitution of model-based methods under similar favorable circum-

stances. When the weights do appreciably vary, or characteristics are subject

to considerable clustering, however, examples are easily found where the two
modes of inference substantially disagree, and where the model-based inference

is highly questionnable.)
Specific areas of application at the Census Bureau appear almost exclu-

sively model-based. Methods for imputation of missing data, in particular,

some of which derive from explicit parametric models, characteristically avoid

any consideration of desian-based weights. Another specific field of study,

estimation for small areas or domains, often reflects a mixed strategy of
practice at the Census Bureau

design- and model-based inference. Thus,
efficiency

appears to parallel the choice outlined by DuMouchel and Duncan:

(and simplicity) under the assumed model versus consistency under madel

Strict inference to national relationships are most likely teo elicit

failure.
while less formal analyses or analyses in which the

design-based methods,
model is hoped correct (missing data) often favor a model-based approach.
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3. DESIGN-BASED INFERENCE FOR LINEAR REGRESSION
AT THE U.S. CENSUS BUREAU

In general statistical practice, linear regression is probably the single
most popular analytic technique. Most data collected by the Census Rureau,
particularly for the "demographic areas" invalving characteristics of persons
or housing, are categorical: linear regression, in any form, is wused rela-
tively seldom at the Census Bureau by comparison.

Fuller [13]) developed basic results in design-based inference for linear
reqression, using methods based upon Taylor-series expansions (lineariza-
tion). These results are incorporated in the computer program SUPER CARP
[16], whose development was partially supported by the U.S. Bureau of the
Census. We can report successful use of the program ourselves, although it
has been applied to only a few problems thus far. The report by Moore [26] is
probably the most accessible illustration of the use of SUPER CARP at our
ingtitution.

The next section discusses the implementation of replication methods
through replicate weights, and we have given preliminary thought, but not yet
attempted to implement, alternative computer software specifically designed
for this approach. No substantial philosophic difference with SUPER CARP is
implied by these rconsiderations, although replication methods tend to qgive
slightly larger and thus more conservative standard errors than lineariza-
tion. The intent in developing this software would be to take advantage of
replication methods developed for some of our surveys, which can be made to
reflect the effects of complex estimators more completely than programs imple-

menting linearization.

4, COMPUTING DESIGN-BASED VARIANCES THROUGH REPLICATE WEIGHTS

Replication methods, such as jackknife, half-sample, and bootstrap tech-
niques, represent the principal general alternative to linearization for
design-based variance estimation for nonlinear statisties. Kish and Frankel
[18] presented an early discussion of the use of replication for such purposes
and much research has been conducted since.

The popularity of replication for variance estimation has qone throuch
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cycles. Linearization is a powerful technique, of course, and relationships
presented by Binder [1] facilitate its implementation for a wide class of
analytic models. Census Bureau surveys tend to employ quite complex estima-
tors, however, and fully representing the effect on the sampling variances of
these estimators has frequently proven to consume large amounts of profes-
sional time, both by statisticians and, especially, experienced computer
programmers. Recently, variance computations for a number of surveys have
used replication methods achieved through a "replicate weighting" approach.
The principal features of this method are to provide a unified approach to
enable the computation of variances for a large number of survey characteris-
tics and to simplify the estimation of variance for complex analytic
statistics.

The replicate weightina approach is not a new discaovery: some of its
earlier history is reported in [5], which also describes experience acquired
by the U.S. Bureau of Labor Statistiecs, Bureau of the Census, and Westat,
Inc. The algorithm may be said to represent the variance from a (possibly
complex) desian and a (possibly complex) survey estimator in the farm of data
to be associated with the survey data file rather than as a set of (possibly
complex) variance formulas requiring computer programming. Familiar replica-
tion methods, such as balanced half-samples and the jackknife, may be repre-
sented through replicate weights, but the algorithm also facilitates the
implementation of a much wider class of resampling plans, as in [7]. 1In [10],
it is shown that there exists a resampling plan (actually an infinite number
of resampling plans) corresponding to essentially any familiar variance esti-
mator for estimates of population totals, such as variance expressions for
multi-stage designs, Yates-Grundy estimators, etc. By representing complex
variance relationships as data, variance computation becomes accessible to a
larger group of data users.

Estimation in many surveys assigns weiaghts Wjg to each case i, so that for
any characteristic Xi’ estimates of total are given by the weighted sum of the

characteristic times the survey weiqht

Xo = Z WioXi- (4.1)
1
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The product of the replicate weighting approach is a set of additional
weights wir, r=1 ..., R, for each survey case i, from which alternative es-

timates of total
X =} W, X, (4.2)
i

may be computed. The estimate of variance is given by

A ~

. R
_ 2
Var(Xg) = rz1 d. (X, - Xg) (4.3)

for predetermined dr independent of the choice of survey characteristic X.
(As an example, a simplified balanced half-sample estimate of variance.
ignoring the effect of any complex survey estimation reflected in the weights
Wijo, would be given by assigning weights wir equal either to 2W;p or to 0 ac-
cording to whether case i was included in half-sample r, and setting dr = 1/R

for each r.) More generally, for a smooth function S that are functions of

(1) v (k)

weighted populatlon estlmates of total XO oy Xp , each of the form
(4.1},

Y R N 0 °(1) “(k), 12
var {50GY, ., xo™ht= 1 od oY, L, xS st L o) e

T

The estimator S in (4. a)xﬁay stand For the sometimes extremely complex estima-
tors oFten used in survey estlmatlon, incofporating noninterview adjustments
and ratio or iterative ratio estimation. furthermore, these forms of complex
SUTVey gstimation, if incorporated in the weights Wi, may be included in the
derivation of wir as well, Thus, variance computation with this approach

falls naturally into three distinect steps or phases:

1. Generate replicate basic weights wir* for the simple unbiased (Horwitz-
Thompson) weighting of the data given by the basic weights Wjip*.

2. Compute replicate (final) weights, W by applying the same noninter-

ir?
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view and ratio estimators to the replicate basic weights, wir*, as the
original estimation procedures used to compute Wjo from the Wjo*.
3. Apply (4.4) to the estimation of variance of simple or complex

statistics.

The modularity of the preceding three phases is a key feature of this tech-
nique: general proqgrams may be used to perform phases 1 and 2, or custom pro-

grams may be written to cover unusual circumstances as required. For a single

survey, phases 1 and 2 need be performed only once. Programs for phase 3 need

take no specific note of the design or estimator and can be run as needed

by any user with access to the replicate weights wir produced in the second

phase.

Although most applications of this method at the Census Bureau have been to
estimate variances for basic survey characteristics such as means, totals, or
proportions, (4.4) lends itself well to analytic purposes as well. This
approach fully represents the effects of complex designs and estimators,
whereas in practice implementation of linearization often is restricted to the

more common and simple situations. Furthermore, although specific computer

software may be developed to implement linearization for common analytic

methods, such as linear regression, log-linear models, qgeneralized linear

models, etc., formula (4.4) enables researchers to compute variances for more
specialized analytic models for which no linearization methods have been pro-
grammed, since (4.4) only requires that the researcher apply complete data

algorithms to the alternative estimates produced by the replicate weights.

5. DESIGN-BASED INFERENCE FOR LOG-LINEAR MODELS

Log-linear madels, which express the logarithm of the expected frequencies
for cateqorical responses as a linear function of unknown parameters, encom-
pass both factorial models for cross-classified cateqorical data, and logistic
models for one or more dependent categorical variables as a function of any
combination of cateaorical and continuous predictors. Bishop, Fienberg, and

Holland [2) provided one of the earliest books in this rapidly expanding
field.
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Many log-linear models, particularly those for fully cross-classified
categorical data, involve a large number of parameters. The three most

typical problems of inference are:

1. To compute standard errors and confidence intervals for the individual
estimated parameters,

2. To test the significance of the contribution of specific sets of para-
meters to the fit of a model,

3. To test the overall aoodness-of-fit of the model.

- In the context of simple random samples, standard results in maximum like-
lihood theory provides an answer to these guestions, although the Pearson
chi-square test rightfully enjoys greater popularity than the likelihood-ratio
chi-square test as s solution to the third problem.

Koch, Freeman, and Freeman [19] extended the Weighted Least Sguares (WLS)
method to complex samples, thereby providing solutions to each of the three
principal inferential problems. While this method has proven of substantial
general use, it is limited in some applications by the necessity to produce
highly precise estimates of the design-based covariance of the sample esti-
mates before the asymptotic theory approximates the actual performance of the
WLS procedures. (Further comments on the limitations of WLS are aiven in [8]
and [11].)

Felleqi [12) made an early contribution to the development of alternative
tests to WLS for specific situations. More recently, Rac and Scott [20], [21]
have formulated and extended a set of related methods to cover the problem of
testing for a general class of models including log-linear models. Develop-
ment of these. methods has been closely associated with Statistics Canada.

A less well-known "jackknife chi-square test" [11] gives an alternative
approach to the general problem of design-based tests of hypotheses. This
test is based upon replication, using (4.4) and a similar expression related
to the approximation of the first-order bias (as in the usual jackknife) to
draw approximate inferences about the null hypothesis distribution of the
usual chi-square tests applied directly to the weighted survey estimates. The
method shares much in common with those developed by Rao and Scott. Although

a full comparison of the relative merits the jackknifed test and the tests
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proposed by Rao and Scott bhas not been conducted, the preliminary suagestion
is that both work well and neither entirely dominates the other. (Further
comments are given in [11].)

The jackknifed tests do appear somewhat easier to implement, however,
especially to tables involving a large number of cells. A FORTRAN computer
program, CPLX (described in [B] and documented by [9]), implementing the jack-
knifed tests for factorial log-linear models for cross-classified data is now
in the public domain. The program also computes replication-based standard
errors for parameters of log-linear models, thus also addressing the first of
the three problems of inference listed earlier. Although CPLX fits well into
‘an environment in which other survey variances are also estimated through
replication approaches, such as the replication weighting techniques described
in the previous section, these circumstances are by no means necessary to use
the program, and a number of researchers within and outside the Census Bureau
have applied the program in a variety of settings.

In time, the author hopes to he able to incorporate the methodology of Rao
and Scotf into a proaram like CPLX in order to make both methods availahle,
For the short term, however, the current version of CPLX should be of help to

researchers seeking design-based inferences from survey data.
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LEAST SQUARES AND RELATED ANALYSES FOR COMPLEX SURVEY DESIGNS

Wayne A. Fuller!

1. INTRODUCTION AND MODEL

Assume that a sample of clusters of elemental units is selected from a
finite population divided into L strata. The total sample of n clusters

(primary sampling units) is given by
L
n = 51 nh. (1)

where ny, 2 2 is the number of clusters selected in the h-th stratum. A column

vector of characteristics

Y

Ynig = Y

hij1? Thij2’ *** Yhijp (2)

is observed for the j-th elemental unit in the i-th cluster of the h~th stra-

tum. The vector is quite general. Ffor example, some elements of the

Y, ..
~hi j
vector can be the powers of products of other entries. Also, one element can
be, and often will be, identically equal to one. The cluster totals for the

vector are defined by

i
j=1 ~hij’

i,

(3)
where mhiis the number of elements in the hi-th cluster.

We shall be interested in the behavior of locally continuous functions of a

linear function of the vector of cluster means

1 Wayne A. Fuller. Department of Statistics, lowa State University.



- 98 -

ni. (4)

where W_ are fixed weights. Often the weights are

-1
N7 (5)

where Nh is the number of clusteré in the h-th stratum and N is the total num-
ber of clusters in the population. For the weights (5) the linear function in
‘(&) is the usual unbiased estimator of the finite population mean per clus-
ter. Another set of weights that often is of interest is the set of unit

weights
W = nﬁlr‘l . (6)

Our model permits us to consider functions of the mean per element. The
usual estimator of the mean per element for a particular Y-variable is the
ratio of the mean per cluster for the Y-variable to the mean per cluster of
the number of elements. The mean number of elements per cluster is the clus-
ter mean of a Y-variahle that is identically one.

OQur discussion can be easily expanded to include various forms of subsam-
pling within clusters. Because such expansions add little to fhe generality
of the discussion and add considerable notational complexity, we restrict our
attention to single stage sampling within strata.

Our discussion rests heavily on the following central limit theorem for

samples from a finite population.

Theorem 1. Let {Er: r=1 2, ...} be a sequence of stratified finite popu-
lations. Let the population in the h-th stratum of the r-th population be a
random sample of size th > Nr-1,h selected from a p dimensional infinite
population with absolute 2 + §, where § >[I, maments bounded by M; < =. Let
the covariance matrix for the rh-th infinite population be Erh' Let Lr > L

r-1
be the number of strata in the finite population and let a simple random
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sample of Nh (n, 2 2 and N 2 nr-1,h) units be selected in the h-th stra-

rh =

tum. Let frh = th n be a triangular array such that

03 Frp € Mgy < 10

where MFU is a fixed number. Let iThi.be the total for the i-th cluster se-

lected in the h-th stratum for the r-th population and let

L L

r
_ -1
N RN

@
!

L N

T N-1 rh y
~rf hfi W N 151 ~rhi,’

D
t

L
r
~T = h§1 wrh}i.h..'

=]
1

where QTF is the finite population parameter and R is the mean of the in-
finite population used to generate the h-th stratum of the finite population.

Assume

Lr 2 =1
0 < Mg < e I WonOeh Zen| < Moy < =

where the M's are fixed numbers and assume that

n, = ;r n, — 5
r  h=1 rh '

L
r 2 -14-1.,2 -2
sup [LE Wipnped © Wopnpy —> 0

as r + «, where th is a triangular array of weights. Then



[}L{@T - er}]_%(.é.r - 8¢ _L, N, D,
[l’,{ﬁr -2 }]_%(E{r - 8) LIV RSN

where

L - &1
-grh
Xehi.

~

L
2 -1
f: Wen(1 = Fopdnpn Zope

L N
2 -1
hE: Weheh Zeh
Neh
-1 - - '
= D I Qrn, = Xon, ) g, = Xnl )
Orh

-1
Orh iE'] f‘Y-I‘hi.'

The proof of this theorem follows from Theorems 1 and 2 of Fuller (1975)

and can be extended to multistage samples.

Also see Krewski and Rao (1981)

and Isaki and Fuller (1982).

Most of our applications are to continuous functions of 8.

Corollary 1.

Let the assumptions of Theorem 1 hold.

Let q(g) be a vector

valued function of 8, where g(98) is continuous with continuous first deriva-

tives for 8 in the sphere |2,- j%' < 6 for all r, where 6 > N is fixed. Let

G(8) be the monsingular matrix of first derivatives of q(8), where the ij-th

element of G(9) is

3q,(9)

a0,
J

qi(E) is the i-th element of q(9) and Qj is the j-th element of §.

Then
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(6B, - )5 B aGhy - at8,0) —S Mp, D,

[6(8)V {8 - 8 )6 (8 )17 a(8) - g8 )] s N(D, D).

Corollary 1 is stated for the Taylor estimator of the variance of the approxi-
mate distribution of Eﬂér) - Eﬁﬁ%)~ Suitably defined replication estimators
of the variance can also be used. Replication methods include balanced repli-
cation methods (see McCarthy (1969)), jackknife methods (See Miller (1974))
and bootstrap methods {(see Efron (1979, 1981)). While these methods can be
adapted to the sampling situation, the adaptation is not always immediate (see
Rao and Wu (1983)).

One class of continuous functions of i that deserves special attention is
that obtaimed by using é, as the dependent variable in a qeneralized least

squares fit.

Corollary 2. Let the assumptions of Theorem 1 hold. Let 8 satisfy

8= he-

where @ is a k-dimensional vector (k ¢ p), h(a) is a continuous function of g,
with continuous first and second derivatives for all g in an open sphere
containing the true 2, Fﬁr all r. Let the parameterﬁspace for @& be an open
bounded subset of k-dimensional Euclidean space. let 2 be the vector that

minimizes

Then

where
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and H(g ) is the matrix of first derivatives of h(g¢) with respect to a evalu-
ated at a.

2. MEANS, RATIOS AND REGRESSIONS

An elementary application of Theorem 1 is the estimation of the mean per
cluster 'and the setting of approximate confidence limits for the mean per
cluster. 0Often the parameter of interest for the mean estimator is the finite
population mean per cluster, in which case the finite population correction
(1 - fh) would be included in the variance estimator.

A slightly more complex application is the estimation of the difference

between the means per cluster for two domains. If we let

Yhij1 = observation on characteristic of interest if element hij is in
domain 1
= 0 otherwise,
Yhij2 = ohservation on characteristic of interest if element hij is in
domain 2

= 0 otherwise,

Y ..o =1 if element hij is in domain 1
hij3 &
= 0 otherwise,
Y .., =1 1if element hij is in domain 2
hij4
= 0 otherwise.

the estimated difference between the mean per element in the two domains is

a(8) = a(y ) = V1Y

~ . N I

v—1
T VA T 7

Two methods of computing the Taylor estimator of variance are often used. The
first method computes the estimator of Corollary 1 directly from the matrices
G(8) and‘!{ﬁr - Qr} or xjgr - Erf}' An algebraically identical computational

procedure is to define the observations
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A A

Zhi o D =0y =8O, -4, ) (8)

and to compute the ordinary stratified estimator of the variance of the mean

per cluster for éhi'

viz }=xlgx )
- E W21 - fnsln - 7Y T - 7 V(- B ) (9)
= L5 R h (N iE1Zhs = Zn ) i En)T ‘

where

- L -

'Z-'.. = hf‘[ wf‘rz‘h.’

a N, «

- - -1 h

R LAY N

For example, the computational form (9) is used in Super Carp. See Hidiroglou
et al. (1980, p. 32). | )

The analyst may be interested in inferences for the particulép finite popu-
lation sampled or for the superpopulation when working with quantities such as
differences of means.

One of the more frequent analytic uses of survey data is the computation of
regression equations. In fact, the difference betweeﬁ domain means can be
expressed as a regression coefficient. Although the vector of reqression
coefficients is of the form E(ﬁ) described in the previous section. it may be
advantageous to partition the Y-vector of Section 1 into several parts and to
qive the regression coefficients explicit expressions. Thé.reqréssion equa-
tion can be written as

Y =X'..B+ e (10)

hij = ~hij& ™ hij?

where Yhii is the dependent variable, the vector'ﬁhii "is .a k-dimensional
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vector of explanatory variables. The weighted least squares estimator of E‘is

L n, m_. L n mhi

] 1

"~

(11)

= W Y
L [h1 i=1 j= 1~h1J hl1~hl.] h= 1 1-1 j= 1 »&hu hij bij*

The weights whij are permitted to be a function of hij, but we will assume
that the weights are fixed in the sense that they depend only on the elemental
identification. This precludes from consideration (except as an approxima-
tion) the use of weights that are a function of other elements entering the
sample.

Under mild assumptions on the moments of the superpopulation generating the

finite population, Theorem 1 is applicable to the estimator defimed in (11).

If the selection probabilities are denoted by "hij‘ then the estimator Ew is a
consistent estimator of the finite population vector
LN, mhl - L Nh mhl
=l W Xt .1 (12)

z X ..W ..®m .Y ...
Re h=1 i=1 j= 2 Znij"hi 3 hi i h=1 i=1 j:‘l ~hij hij hij hij

It follows from (12) that the estimator {11) is a consistent estimator of the
finite population regression coefficient when whij is proportional to the in-
verse of the selection probabilities. The error in Ew as an estimator of‘gf

is

- [ ; nh mhi y ) L nh mhi

BB = Lh L ik Beaasdea kB o8 Zeigthagvei O
where

- -
Yhij = Thij T ZhijBe

By Theorem 1 and Coreollary 1 a consistent estimator of the variance of the ap-

proximate distribution of éw - B is

Vig, - 8} = ATIGAL (14)
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where
A ; ;h mgi X . WX
~ 7 h=1 izl j=1 ~hijThijhiy”
a -1 L -1 nh o -
- _ _ - 1
G=(-Dh-K T - DT T, d
. Mhi «
Shi. * Ly iy
Ihij = "hiiBhiivhige
L n
n= L Zh m_.
h=1 iz1 hi’
LY - _ ' -
Yhij * Thij T Znijfee
and B is the superpopulation analog of B_. This particular form of the esti-

~f‘
mator of variance was suggested by Fuller (1975) and is used in Super Carp.

One of the frequently asked auestions faced by survey statisticians is: "In
computing the rearession equation, should I use the sampling weights?" As
with most such questions, the answer is "It depends." The fact that the
question is asked generally means that the cuestionner has in mind inference
for a population beyond the finite population sampled. This does not mean
that the particular superpopulation is completely defined or definable. It
does suagest that the questionner is postulating that the finite population is
generated by a superpopulation in which some type of linear model holds. (ne
quantification of the hypothesis that weiohts are not required is the

superpopulation hypothesis

= 8,,.- 15
) (15)

where the 8's are superpopulation analogs of (12),

L Nh ™3 L Nh M

1 -1
g = L z b T D AL E E z S AN R I
o [h:1_i=1 i j=1 {EhlJ“hlthlJ}] h=1 i=1 EE{j=1 ZnijThij hish
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L Nh M L N m

h
1

6, = > X .Y ., 1

2y = LE EE{J 1'~hlr~hll}] het is1 Eg{j=1'5h1JthJ}’ (16)

and E5 denotes expectation with respect to the superpopulation. This is a
testable hypothesis. It seems tbhat, at a minimum, a test of this hypothesis
should be constructed if one performs an unweighted analysis of a sample with
unequal selection probabilities.

If the null hypothesis also includes the hypothesis that the estimator with
unit weights is the minimum variance estimator, then the test of the hypothe-

sis is given by the statistic

k P AIA 1s
Faclozk = % 8p0p0d (17)
where
(6, 613 = [ ; ;h mgi 7.7, .11 ; ;h mgi 7.
20T Thar i=p jo1 ShEIhLT hzpoi=1 j=q ~higohige
Znig ® Zhig Xhi¥hig)
and
- Y1 Vi2
=91 . (18)
Va1 Va2 f

is defined by (14) with ZhlJ

statistic is approximately distributed as Snedecor's F with k and n - L - 2k

replacinq'ﬁhij. As the notation suggests, the
degrees of freedom.

Example 1. Table 1 contains observations on 37 area segments collected by the
Statistical Reporting Service, I.S. Department of Agriculture in northcentral
Iowa in 1978. Two determinations on the hectares of soybeans are reported.
The first is obtained by persanal interview in the June Enumerative Survey.
The second is obtained from a classification of Landsat data based upon a
classifier developed by the Statistical Reportina Service. The original ob-

jective of the study was to use the Landsat data to construct a regression
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estimator of the total acres. We use the data to illustrate the computation
of regression statistics from survey data. The sample most nearly approxi-
mates a stratified sample with strata identified in the column headed
"county". The inverse of the sampling rates is given in the weight column.
The estimated reqression equation for the regresgion of interview hectares on

satellite hectares defined by estimator (11) is

Y = ~11.R45 + 1.1602X,
(8.332) (n.0922)

where the numbers in parentheses are the standard errors obtained from the
estimated covariance matrix calculated by equation (14).

Calculations were performed using Super Carp. If the equation and standard
errors are calculated using unit weights in equations (11) and (14), respec-

tively, we have

Y = -3.927 + 1.0850X.
(9.282) (0.0963)

If we calculate the F-test suggqested in equation (17), we obtain
2
F23 = 2.81.

At first glance, this test is large enough to cause to suspicion about the
equality of the two coefficients. Because this sample is very small and
because of the structure of the weights, the test is nearly a test between two
lines, the line for county one, and the average line for the remaining
counties. In this small sample the deviations from the line in county one are
small. Hence, the estimated standard errors of the coefficients for the two
added variables are small. This phenomenon is discussed further in Section
3. 1If one uses the ordinary regression F-test that assumes homogeneous error

variances and ignores the stratification, one obtains

2
F33 H 0.68-
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While this statistic is not distributed as Snedecor's F, it does make one
feel more comfortable with the assumption that the two weighting procedures
are estimating the same equation.

Table ? contains the standard errors of regression coefficients estimated
under alternative assumptions. The estimated standard errors- for the inter-
cept behave much as one might anticipate. The stratified weighted sample pro-
cedure has the smallest estimated standard error followed by the stratified
unit weight procedure and the ordinary least squares procedure. Do not forget
these are estimated standard errors. The two stratified procedures are con-
sistent’ under the stratified model. The weighted estimator has smaller
variance because the observations for stratum 1, the stratum with the largest
weight, lie closer to the estimated line than do the points in other strata.
The ordinary least squares estimated standard error is not consistent under
the stratified model. If the sample is treated as a cluster sample of coun-
ties, the estimated standard errors for the intercept are about 30 to 40
percent larger than the corresponding values for the stratified sample.

The estimated standard errors for the slope display a different behavior.
The smallest estimated standard error is asscciated with the unit weight clus-
ter estimation, and the largest estimated standard error is associated with
ordinary least squares. Roughly speaking, the variation of slopes among clus-
ters is small relative to the within cluster variation. Because the weights
are inversely correlated with the observed variability, the weighted estima-
tors have smaller estimated variances. This is a small sample, but it is
sufficient to demonstrate that unit weights do not always produce smaller
variances than sample weights and that stratification and clustering can have
rather complex effects on the estimated variances of the regression

coefficients.

3. WHAT IS A LARGE SAMPLE?

Our discussion has rested on the large sample properties of estimators and
of estimators of variance. If the limiting normal distribution is being used
to establish confidence intervals, the size of the sample required for a qood

approximation depends upon the nature of the original population. For
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example, if the characteristic is a rare zero-one item (probability less than
0.05, say), a very large sample (more than 1,400 for a simple random sample
(Cochran, 1977, p. 58)}) will be required for the normal approximation. The
binomial with small p is only one example of the very skewed populations often
encountered in sampling practice. Measures of size such as qross sales of
firms, number of employees of firms, number of animals per farm, and family
income are examples of skewed populations for which large samples are required
before the distribution of the mean approaches normality. O0On the other hand,
the distribution of the mean for items such as family size may approximate the
normal distribution for small (less than 100) sample sizes.

The use of the Taylor expansion is semi-nonparametric in that the approxi-
mation holds, in large samples, under very mild assumptions on the popula-
tion. The large sample requirements are met if we have no isolated points in
our sample space. The method may perform poorly in situations where the gene-
rating distribution and sample size are such that an observation or ohserva-
tions are isolated from the remaining cluster of points. We consider the
problem of estimating the variance of the vector of reqression coefficients
used to test the effect of weighting on the coefficients in the soybean

example. The original vector is
(1, X, XW, W),

and the hypothesis to be tested is the hypothesis that the coefficients for XW
and W are zero. To illustrate the problems associated with variance estima-
tion for the vector of coefficients for the soybean data set, we create a vec-
tor that is orthogonal in the unit weight metric. The matrix of observations
on the transformed independent variables is composed of the residuals obtained
in the regression of each variable, except the first, on the elements preceed-
ing it in the original vector. Table 3 contains the transformed reqression
variables (X - i, RWX, RW). Only a few digits have been retained to make it
eagsier to read the table.
When we regress Y on (1, X - i, RWX, RW) we ohtain

Y = 95.34 + 1.085(X - X) + 0.093 x 10"2RWX - 0.015RW,
(2.28) (0.093) (0.044) (0.023)
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where the estimated standard errors were computed for a stratified sample with
unit weights using expression (14). If the reqression and standard errors are

computed by ordinary least squares, we obtain

Y = 95.3% + 1.085(X - %) + 0.093 x 10"2RWX - N.015RW.
(3.37) (0.113) (0.086) (0.034)

The estimated standard error for the coefficient of RWX obtained by Taylor
methods is about one half of that obtained by ordinary least squares methods.
This can be explained by the data configuration.

The First observation on RWX is much larger in absolute value than any other
observation. 0Of the total sum of squares for RWX, A7 percent is due to this
observation. The Taylor approximation to the variance uses the sample vari-
ance of deviates'called,éhij in (14) to estimate‘the variance of the statis-
tic. The deviations from reqression, denated by v, are qiven in the last
column of Table 3. The ; value for observation one is among the smaller
values. The mean square for the residuals is 421. The product (RWX)(G) for
the first observation is -1113. This product is of the same order of
magnitude as the product for observations 3, 33 and 36. Therefore, while the
first observation is responsible for about &7 percent of the sum of squares of
RWX, it is responsible for only about 15 percent of the sum of sauares of
(RWX)(;). This is because v2 for the first ohservation is less than one tenth
of the average of the sauares of the other observations. furthermore, the
squared deviation for the first observation is biased downward because the
method of least squares will cause the estimated plane to pass close to an
ohservation that is separated from the other observations. Thus, if all of
the observations have the same error variance, the Taylor method will produce
an estimate of the variance of the coefficient for RWX that is biased
downward.

Did the procedure underestimate the variance for this sample? We do not
know. If we use the parametric procedure of ordinary least squares, we assign
the pooled estimate of error variance to the separated observation. Tt is not
possible to determine if this procedure is correct because our estimate of

variance for the separated observation is a one degree of freedom estimator.
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In this situation most people will feel more comfortable assumina that the
variance for the separated point is the same as the variance of the other
points rather than taking the small observed variance of the sinqle point.

In the nonmparametric world a single observation contains little information
about the variability of the population that aenerated the observation.
Furthermore, an ohservation separated from other observations is essentially a
single observation. In the full parametric world the separated ohssrvation is
in the fold because the separated observation is specified to have been
created by the same qgenerating mechanism that created the other observations.
For data of the type displayed in Table 3, the answer obtained by parametric
methods rests very heavily on assumptions about the error variance.

In the estimation of variances, one measure of the numerical size of the
sample is the number of cluster degrees of freedom. Thus, for example, the
estimated covariance matrix for a k-dimensional vector random variable is

sinqular unless

L
hE1 (nh - 1) > k.

In setting approximate confidence intervals it seems reasonable to use Stu-
dent's t distribution with degrees of freedom no greater than I (nh - 1). Be-
cause the variance of an estimated variance is a function of the fourth mo-
ments of the population, estimated variances are notoriously unreliable. The
coefficient of variation for the squares is 2% for the normal and considerably
larger for many other common distributions.

If the error variances in the strata are unequal or if unequal weights are
applied to the estimates of different strata, the variance of the variance
estimator can be considerably different from that suqgested by a simple calcu-
lation of error deqrees of freedom. Table 4 has been constructed using the
data configurations of Table 1 to illustrate these effects on the estimated
variance, In the first column we assume that stratification is ineffective in
that we assume each stratum variance is equal to the variance of the popula-
tion. We assume the parent population to be normal so that we can give an
explicit expression for the variance of the variance. In this situation stra-

tification produces an estimated error variance for a mean with a variance
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that is proportional to (26.6)"1 while a simple random sample produces .a
variance of the estimated variance that is proportional to 3671, The eFFeé—
tive degrees of freedom for the stratified sample is slightly less than 27
because of the unequél sample sizes within strata. If we use the sample
weights of Table 1 and the usual stratified variance estimator, the variance
of the eséimated variance is proportional to (4.6)"%. This larae reduction is
due to the lafqe weight for the first stratum. If the variance in the first
stratum is one half of the variance in other strata, then the effective de-
grees of freedom for the variance estimator is 12.4. In the last column we
give the effective degrees of freedom for the simple random sample if the
variance of the simple random sample is twice that of the stratified sample.
This illustrates the fact that stratification can reduce both the variance of
the estimated mean and the variance of the estimated variance of the mean.
While we are unable to specify the number of error deqgrees of freedom
required for our approximations, it is clear that we shall be uncomfortable
with a small number of deqrees of freedom, particularly with unequal weights.
The theory of Corollary 1 uses a linear approximation to the nonlinear
function of the sample means to approximate the behavior of the nonlinear
function. If this approximation is to perform well, the curvature of the
function must be small relative to the standard error of the sample means.

For example, if the function is quadratic

q(;) = 0',1."-( + szz,

the linear approximation is
q(Y) = oy + a2u2 + (o + 2au)(Y = u).
The expected value of g(?) is

Elgt]} = aw + aplu? + vV},

-

=t

For the linear approximation to perform well we must have small V{Y} and/or
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small az.

In summary, to be comfortable with the use of large sample theory we

require:

1. A reasonahle number of observations in the sense that no observations
are widely separated from the main clusters of observations. This is
another way of saying that the Taylor deviates are such that the mean
of the deviates is nearly normally distributed.

2, A reasonable number of effective error deqrees of freedom for the
estimator of variance.

3. The curvature of the nonlinear function of sample means to be small

relative to the standard error of the sample means.
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Table 1: Soybean Area Determined by Two Methods

Soybean Hectares

County Seqment Weight Interview (Y) Satellite (X)
1 1 502 8.09 24,75
1 2 106.03 98.10
1 3 103 .60 112.50

‘2 1 212 6,47 43,20
2 2 63.82 AN.1N
3 1 188 43.50 61.65
3 2 71.43 92.70
3 3 42.49 74,25
4 1 190 1N5,26 98,10
4 2 76.49 99,45
4 3 174.34 152.1N0
5 1 134 95.67 57.60
5 2 76.57 66.15
5 3 93,48 91.80
6 1 189 37.84 34.65
6 2 131.12 97.65
6 3 124.44 116.10
7 1 172 144,15 136.35
7 2 113,60 99.45
7 3 88.59 99.90
7 4 115.58 123.30
8 1 114 99,15 85.50
8 2 124.56 121.50
8 3 110.88 77.40
8 4 1092.14 102,60
B 5 143,66 133.65
9 1 193 91.05 75.15
9 2 132.33 85.95
9 3 143,14 112.05
9 4 104.13 81.90
9 5 118,57 80.55
10 1 93 102.59 117.90
10 2 29.46 39.15
10 3 69.28 72.00
10 4 99,15 99.45
10 5 143,66 155.25
10 6 94,49 85.50
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Table 2: Estimated Standard Errors of Regression Coefficients

Calculated by Alternative Procedures

Procedure

Estimated standard Error

~

-~

B¢ B
Ordinary least squares 10,747 N.1116
Stratified; sample weights 8,332 n.ns22
Cluster; sample weights M.121 0.0823
Stratified: unit weights 9,282 0.N963
Cluster; unit weights 13.256 0.1071
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for Transformed Reqression Problem

Stratum Cluster Weight X - X 107 2RWX RW v
1 502 -67 -195 167 6
1 502 7 25 336 3
1 502 21 68 369 -15
2 212 -48 1 1 ~37
2 212 -11 4 24 -19
3 188 ~30 10 -7 -20
3 188 1 5 7 -26
3 188 -17 8 -1 -35
4 190 7 4 12 3
4 190 8 4 13 -28
4 190 61 -3 33 14
5 134 -34 28 -53 34
5 134 -25 23 ~51 6
5 134 0 5 ~47 -3
6 189 -57 13 ~20 3
6 189 6 4 1 29
6 189 25 vi 20 3
7 172 45 -9 8 1
7 172 8 3 -6 -1
7 172 8 2 -6 -16
7 172 32 -5 3 -14
8 114 -6 10 67 8
8 114 30 -22 66 -2
8 114 -14 18 68 28
8 114 11 -5 -67 1
8 114 42 =32 -65 5
9 193 ~16 7 4 13
9 193 -6 6 9 43
9 193 21 3 22 26
9 193 -10 6 7 19
9 193 -11 6 6 35

10 114 26 -24 -90 -21
10 114 -52 63 -B4 -16
10 114 -19 26 _n7 -9
10 114 8 -4 _R9 -6
10 114 64 65 -93 -16
10 114 -6 12 -88 3
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Table 4: Ffficiency of Estimated Variance under Alternative Assumptions

Equivalent deqrees of freedom

Procedure VSRS =V VSRS = szt
Simple random sampling 36 9
Strat. Sa., unit weights, equal var. 26.6 26.6
Strat. Sa., unequal weights,
equal var. 4.8 4.8
Strat. Sa., unequal weights,
o® = 0.50° 13.9 13.9

1
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