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PREFACE 

This issue is devoted to presenting papers given at a symposium entitled 

Analysis of Survey Data - Issues and Methods, held at Statistics Canada on 

Thursday May 3, 1984. 

The symposium was jointly sponsored by Methodology Research Committee at 

Statistics Canada and the Laboratory for Research in Probability and 

Statistics at Carleton and Ottawa Universities. The aim of this symposium was 

to demonstrate how recent developments in the area of analysis of data from 

complex surveys could be applied to analytic studies in Statistics Canada. 

The symposium opened with remarks from the Chief Statistician, 

Martin B. Wilk, who emphasized the importance that Statistics Canada places in 

enhancing its research and development capacity and in the joint endeavours ,by 

the practitioners and academics on such issues. The symposium consisted of 

two sessions: - A morning session, chaired by Leslie Kish of the Institute for 

Social Research at the University of Michigan, which included contributions 

from Statistics Canada presented by D. Binder, P. Cholette, L. Heslop and 

S. Kumar, in addition to the presentation of an overview of the analysis 

issues by the Chairman. 

The afternoon session chaired by the Deputy Chief Statistician, 

Ivan P. Fellegi started with brief remarks from the chair and included papers 

from R. Fay, U.S. Bureau of the Census and W. Fuller, Iowa State University. 

The session concluded with general discussion of the developments on the data 

analysis issues led by J.N.K. Rao, Carleton University. Well over 200 parti­

cipants from various Universities and Federal and Provincial Government 

Departments attended the symposium. 

A selected bibliography on the topic compiled by the Project Team on the 

Analysis of Data from Complex Surveys is also given at the end. 
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ON ANALYTICAL STATISTICS FROM COMPLEX SAMPLES^ 

Leslie Kish 

I want to plead the case that an important and urgent task facing mathema­

tical statistics consists of providing useful expressions for analytical sta­

tistics for complex sample designs. I should like to describe these problems 

to mathematical statisticians who should find them interesting because they 

meet the criteria of all good problems: they are important, unsolved and 

solvable. 

The most important and difficult problems of survey sampling still await 

adeguate mathematical treatment: the textbooks are aimed almost entirely at 

producing good estimates of aggregates, means and ratio means. One may also 

deal with the differences ôf two of these, but there is only fleeting and 

occasional reference to this problem. However, with that we come to the end 

of the statistical tools available for complex- samples. . . . 

As sampling theory developed, probability sampling has been capturing the 

field of respectable sampling practice with sample designs, which are often 

simultaneously economical and complex. One result has been -an increasing 

volume of sample survey data which is of- high guality and' which researchers 

wish to put to more involved analytical use. But the mathematical statistics 

for doing this validly are lacking. The available analytical statistics as­

sume independence among the selected elements: but this independence is lack­

ing in complex sample designs. Thus the-researcher may be forced to forego 

the analysis which he considers desirable and valuable. But if he is too 

impatient or too ignorant for that act of self-denial, he may go ahead and usie 

the srs formulas he finds in books on statistics, which often result in very 

serious errors. 

I hope that mathematical statisticians wi.il be impressed with the impor­

tance of the unsolved problems of analytical statistics for data arising from 

complex sample designs. The lack of these is a more freguent source of gross 

mistakes than any other kind of departure from the usual assumptions. 

^ Overview talk for the symposium. 
^ Leslie Kish, Institute for Social Research. The Univeristy of Michigan. 
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These problems are important, unsolved and interesting. You may ask: are 

they solvable now? Supporting my affirmative answer are three sources of 

justification. First, we observe the great recent advances in statistical 

theory. Secondly, the rapid increases in the guantity and guality of elec­

tronic computing machines make the time ripe for the solution of some of these 

problems. There is new interest in a general method which holds promise of 

rapid advance toward useful approximations. At the Survey Research Center we 

are now introducing this method for computing estimates of variances for 

regression coefficients and other statistics for which formulas are not now 

available. 

It seems to me that this procedure resembles that of Alexander when he 

"solved" the Gordian knot. From a theoretical viewpoint I don't know whether 

it constitutes a solution of the problem or its avoidance. But insofar as it 

promises to give good approximations for much needed variances the practicing 

statistician will welcome its development with enthusiasm and interest. In 

this way one may obtain estimates of the confidence intervals of some analyti­

cal statistics for which specific formulas are not now available. 

All of the above is verbatim from my talk to a joint session of the 

American Statistical Association and the Institute of Mathematical Statistics 

in 1957. Since then our situation has changed but little. Our 1957 hopes for 

that cut of the Gordian knot is now much used as BRR or Balanced Repeated 

Replications (Kish and Frankel 1970, 1974). But my moving plea for distribu­

tion theory for doubly complex analytical statistics did not move the mathema­

tical statisticians. I know now why not, .since I am sadder and wiser now. 

First, statisticians like other scientists work not on what solutions are 

needed but on those that seem feasible at the time. (Like nuclear bombs, for 

example.) Second, distribution theory for complicated statistics for complex 

samples seems too difficult to solve. Third, the solutions would have too 

many parameters to be useful. Thus my views in (Kish 1978) and today are more 

sober: "New computational methods can give us approximate variances that 

appear satisfactory for practical purposes. However, it would be more satis­

fying to have mathematical distribution theory for analytical statistics 

(e.g. regression coefficients) without the assumptions of independence, but 

with complex correlations between sample observations. We may hope for some 

progress, but not for generally useful results, because of mathematical 
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complexities, and even more because the numbers of needed parameters will 

prove too great for practical utility." 

Here follow seven impoirtant points about complex samples put boldly. They 

are not all widely known or believed, but I ask you to know, believe, use and 

teach them, as I do. 

1. The effects of complex designs must be considered separately for point 

estimates and for probability statements, like confidence intervals or tests 

of hypotheses. For point estimates we have for all sample designs consistent 

approaches to parameters from similar probability-weighted (H-T) estimators. 

But the probability statements like confidence intervals are highly subject to 

design effects, especially in cluster sampling. • 

a) "Statistics (means, regression coefficient, etc.) approach their 

population values as the sample size increases. 

b) The approach is generally slowed by design effects. 

c) The design effects differ for different statistics, for different 

variables and different sample designs." (Kish and Frankel, 1974). 

That paper also presents the most convincing evidence for these points: and 

evidence is widespread; e.g. (Verma et al 1980). Nevertheless two famous 

statisticians completely misstated our position in discussions of our paper: 

"Here the authors make the important observation that the confidence interval 

statements for the unknown parameter are numerically not much affected by the 

lack of independence of observations introduced by complex survey technigues 

such as stratified cluster sampling." Alas, that mistake gets guoted by other 

theoreticians who fail to read our answer of survey samplers: "They 

misunderstand completely our principal and repeated message: that confidence 

interval statements are numerically greatly affected by the lack of 

independence of observations introduced by complex survey technigues such as 

stratified cluster sampling." (Kish and Frankel, 1974). 

This misunderstanding shared by naive non-statisticians with sampling 

theorists causes troubles for us survey samplers: hence we are working on a 

clearer statement. 

2. Do we need sampling errors for analytical statistics for data from 

complex surveys? Or have a few of us been devoted to a negligible even 

trivial problem? I feel like a St. Sebastian, the target practice for the 
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slings and arrows of diverse outraaeous heathen. (Mixed metaphors are better 

than fixed or random.) First come the market researchers and pollsters who 

ignore us, though some have learned to put a /" between a 2 and (pg/n). 

Second, some demographers write that with their large samples and larger mea­

surement errors they have no time for sampling errors. Third come the mathe­

matical psychologists, econometricians and biometricians who take their linear 

models straight from mathematical statistics, and that hurts. Fourth, even 

more hurtful are the mathematical statisticians themselves, who either forget 

that their n's do not justify their means, or they invoke IID, or they use 

some Bayesian exorcism against the spirits of the sample design. Fifth and 

worst are sampling theorists who display theorems to prove that, with com­

pletely specified models of arbitrary superpopulations, we need not worry 

about whence or how our elements were selected, nor weight them for unegual 

selection probabilities. They even convince a few survey samplers that they 

can dwell on some Olympus with their models and not come down to earth where 

the population lives. 

From these necessarily brief remarks you notice that I am an extremist for 

several reasons: a) Design effects for analytical statistics provide common 

evidence for imperfectly specified models for the best stratified samples: b) 

We freguently find the effects of selection weights on samples; c) Relations 

between predictor and predictand variables exist in actual individuals, and 

they in real populations, and these interact with sample designs. (I am 

developing these points in a book on Statistical Design for Social Research 

for Wiley, 1985.), 

My philosophy is consistent, but in practice I am less dogmatic. I recog­

nize that in practice: a) it is never possible to cover completely our target 

populations, hence we must always resort to models for inference; b) proba­

bility sampling is too costly and not feasible for most experiments; c) 

despite lack of randomization either in selection or in treatments, we often 

blunder our way to reliable results with care, replication, design, additivity 

and a little bit of luck. 

3. Analytical statistics begin with subclasses and with their compari­

sons. In the last three decades much useful material has been published about 

variances and design effects for subclasses. There are masses of empirical 

results and several useful auiding rules based on them (Kish 1980, Kish et 
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al. 1976, Verma et al. 1980), also some recent theory (Rust 1984, Chapter 6). 

a) Distinguish between proper domains and the more common crossclasses, on 

which we focus here. 

b) Selection probabilities are preserved for crossclasses but sample sizes 

become highly variable. 

c) Estimates of totals and means from complex samples are retained in 

ratio and conditional forms. 

d) Design effects for crossclasses tend to approach to almost 1 

proportionately as the subclass sizes per primary cluster approach 1. This 

approximate model needs care and gualification but it is preferable to all 

venerable alternatives about design effects: that it is simply 1, or some 

other constant, or the same as for the entire sample. The pooled model may be 

often better than separate and highly variable computations. 

4. Comparisons of paired means tend to have design effects greater than 1 

but considerably less than the sum of the two variances. These reductions due 

to positive covariances (hence to a kind of additivity) have been found widely 

and regularly for comparisons both of crossclasses and of periodic surveys 

(Kish 1965, 14.1, also the above). 

5. For complex analytical statistics several methods exploit the 

potentialities of electronic computing: Taylor linearized (delta) methods, 

including machine differentiation. Balanced Repeated Replications and 

Jackknife Repeated Replications, all have been shown to yield useful estimates 

of variance and design effects for complex samples (Kish and Frankel 1970 and 

1974; Woodruff and Causey 1978), Bootstrapping may also be added in the future 

(Rao 1984). 

Analytical statistics consistently show design effects oreater than 1 , 

significantly greater in every sense, but also lower than design effects for 

means. The relations of design effects between diverse coefficients and 

comparisons with those for means show some regularities. 

For useful guidance we need not only more empirical work but also more 

results from sampling theory and model building. I am disappointed frankly 

that since our early work we have not seeh more publications in theory and 

models that would be directly useful for guiding inference for actual data. 

The empirical bases of design effects are necessary, but to satisfy our 

intellectual needs for understanding we need more theory and better models. 
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Furthermore, even our practical needs remain unsatisfied with merely empirical 

design effects, because they are functions jointly of the variables, of the 

type of estimates, of the sample design used and of the population basis for 

the data. That four-dimensional source of variation is too complex and we 

need theory to construct models for greater simplicity. 

6. Categorical data analysis is an important area, rapidly developing, and 

several contributions have been made to apply these methods to complex survey 

data (Fay 1982; Landis et al. 1982; Koch et al. 1975). These also have 

implications for analysis of variance where some of the earliest models were 

started, but not followed (Kempthorne and Wilk, 1955; Tukey and Cornfield). 

7. As for the future I am hopeful about contributions from theory to 

applications but for two exceptions. First, mathematical statistics has not 

and will not give us complete distribution theories that will be useful 

directly, because there are too many parameters in the double complexity of 

analytical statistics from complex surveys. Second, model builders cannot 

make those complexities vanish. They will however guide us toward better and 

more comprehensive inference. Also toward better utilization and presentation 

of analytical statistics from complex surveys. 
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AN INTRODUCTION TO LINEAR MODELS AND GENERALIZED LINEAR MODELS: 

CONCEPTS AND METHODS 

David A. Binder^ 

Univariate statistical models, linear regression models and 
generalized linear models are briefly reviewed. Examples of a 
two-way analysis of variance, a three-way analysis of variance and 
logistic regression for a three way layout are given. 

1. INTRODUCTION 

The purpose of this presentation is to give a bird's-eye view of some of 

the concepts used in statistical applications for modelling data 

The use of data sampled from a population to estimate means and proportions 

is now a common practice. In Section 2 we briefly review this concept and 

describe the interval estimates obtained from constructing confidence 

intervals. 

Linear regression and analysis of variance models are often used to reduce 

multi-dimensional data to a model consisting of a few parameters. This tool 

is a valuable device for the analyst lookino for a deeper understandino of a 

complex data set. These methods are reviewed in Section 3. 

The concepts of linear regression methods can be extended to a much wider 

class of models through the generalized linear models described by Nelder and 

Wedderburn (1972). This is particularly useful when the dependent variable is 

categorical as opposed to continuous. In Section 4 we review the structure of 

these models. 

Brief mention of appropriate diaanostics to guard against model failure and 

to detect multicollinearities is given in Section 5. 

^ David A. Binder, Institutional and Agriculture Survey Methods Division, 

Statistics Canada. 
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2. UNIVARIATE MODELS 

2.1 Binomial Models 

Suppose we have a large population from which we will select a sample and 

we take an observation from each selected unit. If the sample size is.n, we 

denote the observations by Yi, Y2 Y^. The purpose of collecting this 

data is that we would like to make some inferences about the population based 

on this sample. For example, our population could be residents of Canada and 

our data are defined as 

Y _ r 1 if the person was born in Canada 
j ~ ^ 0 if the pers person was born outside of Canada, 

for the j-th individual selected. Based on this sample we would like to make 

some inferences on the proportion of people in the population who were born in 

Canada. 

If a simple random sample of n = 5000 residents is selected and the actual 

proportion of persons born in Canada is p = 0.85, then the number of persons 

in our sample who are born in Canada will be a random variable with a binomial 

distribution given by 

f(y) = (^°^°)(.85)>'(.15)" - y; y = 0, 1, ..., 5000. 

In this case, since we know p = .85, we can completely describe the proper­

ties of Y = E Y., the total in our sample who are born in Canada. For most 

statistical applications, though, we do not know all the characteristics of 

the population and we use our sample to make inferences about this popula­

tion. For example, suppose we do not know the value of p in the previous 

example. Then we can say that the number of persons in our sample who were 

born in Canada will be a binomial random variable having a distribution given 

by 

f(y) = (̂ 7)p>'(i -p)50on-y; y.o, 1. ..., 5000. 
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Now, the usual estimator for p, based on this data is p = Y = T. Y ̂ /5000. 

We let s(p) = {p(1-p)/(5000)}'. This is our estimate of the standard error of 

p. Now, it turns out that p ±1.96 s(p) is a random interval which has a 95?*; 

chance of including the true unknown value of p. This interval is called a 

95?o confidence interval. By changing the value of 1.96 we would either 

shorten or lengthen the confidence interval, thus changing the coefficient 

from 95?o to some other value. These coefficients can be obtained from 

probabilities associated with the standard normal distribution. 

We have described the binomial model via a simple random sample from a 

large population. Thus, all our inferences pertain to that population. How­

ever, in many contexts we would like our inferences to relate to other popula­

tions which we believe have been generated under similar conditions. For 

example, the number of deaths in Canada from a particular age-sex group in a 

given year may be thought of as a single realization from a binomial model, 

where each individual has the same probability of dying and the individual 

deaths are essentially independent. If this probability of dying is constant 

over a number of years then the number of deaths in one year can be used to 

make inferences for other years, even though the populations are different. 

(Life insurance companies and their actuaries rely on these types of assump­

tions in their calculations.) Providing that individual deaths are indepen­

dent, assumptions about constancy of the probability of death are testable 

using these binomial models. 

It should be pointed out that by using some generalized linear models to be 

described in Section 4, it may be possible to improve on the assumption of 

constant probabilities for all individuals, by allowing the probabilities to 

depend on other factors such as age, sex, health status, smoking habits, 

weight, etc. 

2.2 Normal Models 

An important distribution used in modeling data is the normal distribution 

given by 

f(y) = (2Tra^)"' exp {- _ L (y - u) ^}; - " < V < "• 

20^ 
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The population mean is u and is usually the parameter of interest. The 

population variance is a . 

If we observe data Yj, Y2, ..., ^ from this population, our usual estima-
'̂  — n ^ 

tor for u i s u = Y = EY./n. Our estimator for the standard error of u is 
1 J 

given by siu) = s/n , where 

s^ = E (Y. - u)V(n - 1). 

As in the case of the binomial model, for large samples the 95?n confidence 

interval is given by p ± 1.96s(y). This is a random interval which has a 95?n 

chance of including the true value of p. For small samples (e.g. n < 60), the 

value 1.96 may be replaced by the appropriate value from the t distribution 

for more accurate intervals. Other confidence coefficients may also be 

obtained by changino the value 1.96 to the appropriate percentile from the 

standard normal or t distribution. 

In some applications, the assumption of constant variance is unrealistic, 

particularly in the linear models to be discussed in Section 3. A simple 
2 

extension of this model is to assume that the variance of X. is given by a. 

where a. = a /w.. Here we assume that w^, W2, ..., w are known weights. 
JL A J. M ^ 

In this case y = E w.Y./E w ., a weighted average of the data. Also s(p) = 
i J .1 .1 

s/(E w.) , where 
vJ 

s^ = E w.(Y. - u)V(n - 1). 

• Confidence intervals for v are obtained analogously. It should be pointed 

out here that the weights, wi, ..., w,-, are based on the normal model specifi­

cation and are usually unrelated to sampling weights which are derived from 

complex survey designs from finite populations. When fitting models to finite 

populations based on data from a complex survey design, the analyst may wish 

to incorporate both the model weights as well as the sampling weights in the 

estimation. 
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2 .3 Exponential Family Models 

The b inomia l and normal models j u s t descr ibed can be viewed as s p e c i a l 

cases o f a much wider c lass of models known as the exponen t ia l f a m i l y . The 

genera l form which we w i l l use fo r t h i s model i s g iven by : 

f ( y ) = e x p [ K . { y . e - b ( 9 ) } -i- c(y ., K ) ] , 

where y- takes values which do not depend on 9. 

We assume K. = KW. where wi, ..., w_ are known. In many cases K will also 

be known. 

Example 1 (Binomial Proportion) 

We let y. = y./n. be the sample proportion from a binomial model based on 
Ĵ \l .1 

n. observations. Therefore we have: 

n n y n (1 - vJ _ ^ 7 
f(y.) = ( J ) p -̂  '1(1 - p) -' ^ : y, = 0, J-, 1-, ..., 1, 

.IJ J J 

E(y ) = p, Var(y ) = p(1 - p)/n , 
».' vJ vJ 

e = log[p/(1 - p)]. 

^j = "j-

b(e) = logd -I- e^). 

Example 2 (Normal) 
2 

Suppose y. is normally distributed with mean y and variance o.. We have; 

f(y.) = (2Tfa, )~2 exp{-_ (-J ) }; - »< y < « 
.1 J ^ î 

E(y.) = w, Var(y.) = â . 
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9 = y, 

<. = 1/aJ, 

b(9) = yV2. 

Example 3 (Poisson Mean) 

Suppose y. is Poisson with mean n .X. Letting y. = y./n., we have; 

f(y.) = e -i (n.X) >i ̂ (n.y.)!; y. = 0, L, 1., ..., 
J J J J J n. n. .1 .1 

E(y.) = X, Var(y ) = X/n , 

9 = log X, 

^j = " j ' 

b(9) = e®, 

2 
Example 4 (x ) 

2 2 Suppose y. has a a x̂ ./'̂ - distribution. This is common for analysis of 

variance and variance components models, where y. is the mean-sauare. Then, 

we have: 

(v. - 2)/2 V. V./2 
f(y.) = y. '1 (-i_) -l exp{- y. v /(20^) }/r( v /2); y 1 0, 

J J 7o '̂ ' 

.2 E(y^) = 0% Var(y.) = 2a /v.. 

9 = - 1/a^, 

<. = V./2, 
J J 

b(9) = - log(- 9). 

As we can see from these examples, the exponential family includes a wide 

variety of common distributions. In general, we have 
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E(y.) = b'(9) = y, Var(y.) = b"(9)/< = V. 
vJ %J yJ %J 

where b'(») and b"( •) denote the first and second derivatives of b(»). 

If yi» •••» Vp, are indef 

is given by the solution to 

If Yl, ..., y are independent, then the maximum likelihood estimate of 9 

y = E K.y ./E K. = E w .y ./E w. 

where y = b'(9). This implies that there is a large family of models where a 

weighted sample mean provides an efficient estimator of the population mean. 

The estimated variance of y is given by 

V(y) = (E <̂ V )/(E K )2 

= b"(9)/(E Kj). 

For large samples, the 95?o confidence interval for y is given by y ± 1.96 x 

lV(y)|^, providing the model is true. 

In cases where K. = KW . is known only up to the constant of proportionality 

K, (e.g. normal model), it will be necessary to estimate the value of <. The 

maximum likelihood estimate is given by the solution to; 

9c(y., <.) 
E w.[y.9 - b(9) -I- ^ 1_ ] = 0. 

J J 8K. 

.1 

Alternatively, an unbiased estimator for V(y) which is less model-dependent 

is given by 

. . E w.(y. - y)^ 

Vi(y) = ̂  J -I 
(n - 1)(E w.) 

This may be used instead to create the confidence intervals for y. The 
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main assumption reguired for the validity of this approach is that 

Var(y .) « 1/w .. 
'j J 

3. LINEAR MODELS 

3.1 One Hay Analysis of Variance 

A simple extension of the univariate normal models, described in Section 

2.2, is the one-way analysis of variance (ANOVA) model. Here, in addition to 

observing one characteristic from each individual sampled, we also have a 

sub-population identifier. Some such identifiers could be age-sex groups, 

industry/occupation groups, etc. Here the model could be written as 

'.. = y. + e..; i = 1, ..., I; j = 1, ..., n., 
ij 1 ij ' ' ^ ' ' i' 

where the y's are population means, which differ among subpopulations and the 

e's are assumed to be independent normal with variances a.. = a /w. . , where 

the w..'s are known weights. In most applications the weights are constant. 

The usual estimator for y• in this model is 

y . = E w. .y . ./E w. .. 
1 j i>l^J j Ĵ 

Under the model assumptions, the estimated means are independent normal 

with E(y.) = y. and Var(y.) = o/E w... From this, confidence intervals for 
1 1 1 i •'•J 

the individual means may be derived. 

An alternative but eguivalent description of this model is 

y.. = y + a. -¥ e... 

where EE w. .a . = 0. Here we have 

y = EE w.jy ./EE w.^ 

a. = y. - y. 
1 1 
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An extension of this representation is particularly useful for two-way 

and higher order analysis of variance models, to be discussed in Sections 

3.2 and 3.3. One of the main guestions of interest for these models is 

whether all the means are egual. This is eguivalent to yi = y2 = ... = y-r or 

ai = 02 = ... = a = 0. Standard ANOVA statistical packages (e.g. SAS, SPSS, 

etc.) are available to test these hypotheses. A related problem is: Which 

subpopulation means are egual, given that we have concluded already that not 

all means are egual? When we have no further structure (such as in a two-way 

ANOVA), this is known as the multiple comparison problems. Special treatments 

for this problem are available in many statistical packages. 

3.2 Two-Way Analysis of Variance 

The data of Table 1 has been taken from the 1975 Sri Lanka Fertility Survey 

(see Little, 1982). The cell means describe the averaoe number of children 

ever born cross-classified by Marital Duration and Level of Education. 

The row and column means seem to indicate that the average number of 

children increases with longer marriage durations and decreases with more 

schooling. Now, the two-way analysis of variance model may be written as 

y. ., = y -t- a. -(- g. -I- Y- • •̂- £• -1 = y. . -t- £. ., 
'ijk 1 J ij ijk ij i.lk 

where the e's are assumed to be independent normal with variances 
2 2 

a. .. = 0 /w. ... The w's are known weights. In most applications the weights 

are constant. In order to estimate the parameters of this model, it is 

necessary to impose constraints on these parameters, otherwise they are not 

unigue. The usual side conditions are: 

E E E w. ., a. = 0, 
i j k iJ'< 1 

E E E w , j , 3 . = 0 , 

E E Y = 0, 
i k Wijk ij 

E E ,, Y = 0. 
j k '̂ ijk ij 
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The estimators are defined by the eguations; 

E E E w. ., ( y . ., - y . .) 
i i k i J k ^ i j k IJ 

9y. 
1.1 

' \ 

0 

where 9^, 02, ... correspondent to the parameter estimates y, â^ , etc. The 

a's are 3's are referred to as main effects and the y's are the two-way inter­

actions. This results in the following estimators; 

y = y > 
... 

a. = y. - y - E E w. ., &./T. E w. ., , 
1 'i.. ... j k 1J'< .1 j k iJ'< 

3. = y . - y - E E w. ., cx./E E w. ., , 
J -J. ... i k !>!'< 1 i k iJ'< 

Y..=y.. - y - a . - 0 . , 
'ij ^ij. ^.. 1 j' 

where y.. , y. , etc. are the appropriate weighted averages. 
1J. 1.. 

Now, the additive model specifies that y. . = y -K a^ -i- 3. . We have plotted 

the cell means from Table 1 in Figure 1. The additive model would specify 

that all the lines are parallel. If the data of Table 1 are fitted to the 

additive model, we obtain the adjusted mean values in Table 2. These are 

plotted in Figure 2. As we can see, the effect of the level of education has 

been dramatically reduced after fitting this model. This is because the more 

educated women were not married for as long, so that the years since first 

marriage proves to be the important factor. However, as the analysis of 

variance in Table 3 shows, all the main effects and the interactions are 

significant. Hence the additive model is rejected. However, only 0.4?n of the 

total variation is explained by the Education-Marital Durations interactions, 

whereas 49.7?o of the variation is explained by the additive model. We may 

surmise from this that the additive model has led to a better understandino 

of the data and that the Education effect is not as dramatic as it first 
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seemed. 

3.3 Regression Formulation 

The above analysis of variance models can be considered as special cases of 

the multiple linear regression model, given by 

y = 3oXoj + 3iXij -1- ... + 3̂ X̂ j -HE., 

where Xgi, Xn, ..., X . are known constants and 3o> 3i, ..., 3 are unknown 

coefficients. We assume that the e's are independent normal with variances 
2 2 
0. = a /w., where the w.'s are known weiahts. For example, in the one way 
analysis of variance, we could let 

Xoi = 1 for all j 

X.. = 1 if the j-th individual is in the i-th sub-population 

= - a./a. if the j-th individual is in the I-th sub-population 

= 0 otherwise, 

for i = 1, ..., 1 - 1 , where a. is the sum of the weights for individuals in 

the i-th sub-population. In this case we have 

ŷ  = 3o + 3ĵ  for i = 1, ..., I - 1, 

yj = 3o - (ai3i -I- ... -I- ^i_^\_'\)^^i' 

Therefore y = 3o and a. = 3. for i = 1 , ..., 1 - 1 . 

A similar regression formulation is possible for two-way and higher order 

layouts as well. 

Now, for the general regression model, the estimator for 3o> ...» 3 is 

given by 3o, ..., 3 , the solution to 

E w.(y. - y. )X. ., i = 0, 1, ..., r 
J J J ij 
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where y. = 3oXoj + 3iX^. + ... + ^j.^j.y 

In order to test hypotheses, perform model-building and develop confidence 

intervals for the 3's, we need the covariance matrix of the 3's. This is 

given by 

Var(3) = a^A-^ 

2 
where A is the matrix with (k,X,)-th entry being E w.X. .X. . . To estimate a , 

-2 " 2 j '̂ '' J 
we use a = E w .(y . - y .) /(n - r - 1). 

j J J J 
Many statistical packages routinely perform various hypothesis tests on 3 

^ 0 1 

using the estimated covariance matrix o A~ and the critical values from the 

appropriate F-distribution (e.g. PROC REG, PROC ANOVA and PROC GLM in SAS). 

For example, Koch, Gillings and Stokes (1980) give the data in Table 4 for 

the number of physician visits per person per year in 1973 in the U.S. cross-

classified by size of city (SMSA = Standard Metropolitan Statistical Area vs. 

Non-SMSA), Income (3 groups) and Education (3 groups). This data is based on 

the 1973 Health Interview Survey, a survey using a complex probability 

sample. The data are illustrated in Figure 3. 

By using a regression model and performino a number of statistical tests, 

the following reduced model was obtained: 

E(Yj) = 3o + 3iXij -f 32X2J, 

where Xi-j = 1 if the j-th person is in an SMSA 

= 0 otherwise, 

X2i = 1 if the j-th person has less than !t;5000 family income or more 

than 12 years education for the family head 

= 0 otherwise. 

The estimated parameters were 3o = 4.18 (standard error of 0.11), 3i = 0.65 

(standard error of 0.11) and 32 = 1.12 (standard error of 0.09). The standard 

errors derived here were not those described above since the authors used the 

18x18 estimated covariance matrix from the survey to obtain the standard 

errors. This approach removes the assumption of independent error terms in 
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the model-fitting and is a common approach for analysing data from complex 

surveys. 

In Table 5 we summarize the results. These are illustrated in Figure 4. 

We see that the model fit is guite good. We have reduced the data from 18 

values to 3 summary statistics and also have smaller standard errors (hence 

higher precision) of the estimated values. 

4. GENERALIZED LINEAR MODELS 

4.1 Regression with a Dichotomous Dependent Variable 

One.of the difficulties often encountered with the linear models discussed 

in Section 3 is that the error terms were assumed to be normally distributed. 

It is true that analyses similar to those in Section 3 may be performed with 

non-normal errors, providing the variances of the errors still satisfy 

a. = a /vi. and the errors are uncorrelated. In this case the estimators we 

have described yield the minimum variance linear unbiased estimates of the 

model parameters., however better estimators (i.e. non-linear estimators) may 

be available. These considerations have led to generalized linear models (see 

Nelder . and Wedderburn, 1972) and robust estimators (see Huber, 1973). We 

concentrate here on the generalized linear models. 

For example, suppose the dependent variable, y., can take on only two va­

lues, 0 or 1. We now want to model p. = Pr(Y. = 1) as a function of the 

linear expression Xo.3o + Xi.3i -i- ... -i- Xj,.3jp. There are three popular 

approaches for this problem. One is to let 3o> ...» 3 be the usual estimate 

from a stardard regression model. This is analogous to discriminant analysis 

where the variables XQ-, ..., X . are not considered fixed known constants, 

but are themselves random variables (multivariate normal with constant covari­

ance matrix) whose mean depends on the value of Y.. The problem with this 

approach is that Y. = Xo.j3o + ... -̂  X .3 cannot be used directly to predict 

the value of p.. Also, in many applications the X..'s are categorical, (e.g. 

province, occupation, etc.), thus violatino the assumption of multivariate 

normality. 

Two other popular approaches are known as probit analysis and logistic 
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regression. In probit analysis it is assumed that p. = $(E X..3-), where $ is 

the cumulative distribution function of a standard normal random variable. In 

logistic reoression, it is assumed that 

9 = log[p./(1 - p.)] = E X..3.. 
J J J 1 •'•J ^ 

Both these approaches are valuable analytic tools, and are available in 

many statistical packages (e.g. SAS, BMDP). The two approaches may be viewed 

together by letting 

n. = g(p.) = E X 3.. 
J J 1 -"-J ••• 

For probit analysis we have n. = $~'^(p.), whereas for logistic regression 

we have n• = log [p-/(1 - p-)]. The maximum likelihood estimate for 3o, ...» 

3 is the solution to r 

(y. - p.)X. . 
_ J J i:] = 0, for i = 0, ..., r. 

J Pj(1 - Pj)g'(p.) 

where g(p.) = E X..3.. These eguations often must be solved iteratively. For 

the probit analysis we have 

1 
q'(p.) 

^ ^[^-^(p^)] 

where <{>(•) is the standard normal density function. For the logistic 

regression, 

g'(p.) = [p.{^ - p.)] _1 

so that the parameter estimate is given by the solution to 
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E (y - p )X = 0 , for i = 0, ..., r, 
1 -•- J -'•J 

1 
The covariance matrix of 3o, ..., 3 is A" where A is a matrix with 

(k, £)-th entry given by 

k£ 
j pj("l - Pj){g'(p.)}2 

This can^be used to construct confidence intervals and perform hypothesis 

tests and model-building. 

For logistic regression, the covariance simplifies to 

'kJl r Pjd - Pj)x,.Xy. 

As an example of the utility of these models, we consider an unpublished 

analysis performed by Dolson and Morin on the Canadian Health and Disability 

Survey. The dependent variable was whether or not a person would be screened 

in as potentially disabled using the Screening Test 2 of the January 1983 

Labour Force Supplement on Disability. For details, see Dolson and Morin 

(1983). Analysis was restricted to males aged 15-64. Of the 13,897 respon­

dents, 14.4?n (unweighted) were screened in. The screened-in rates are cross-

classified by age-groupings, labour force participation and a proxy/non-proxy 

variable (with 3 levels; non-proxy, proxy by male or proxy by female) in 

Table 6. (The fitted values from the model to be discussed below are also 

shown.) The data are illustrated in Figure 5. 

The fitted model reduced the number of parameters from 30 to 11. The final 

model was given by 

log[p. .^/(1 - p.j^)] = y .. «. + 3^ -H Y^ + 6. ̂ , 

where E a = E 3. = E y,, = 0, E 6 = 0, E 6. . = 0, for the i-th age group, 
-̂  J "̂  J J i -̂  

j-th labour force status and k-th proxy status (2 levels; non-proxy vs. 

proxy). The following were the estimated pairameters..,-^\ 
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Parameter Subscript Estimate 

y -1.43 

a Aae 15-24 -1.12 
Age 25-34 -0.571 
Age 35-44 0.ni43 
Age 45-54 0.629 
Aae 55-64 1.05 

3 In Labour Force -0.576 
Not in Labour Force 0.576 

Y Non-proxy 0.0859 
Proxy -0.0859 

6 Age 15-24, in L.F. 0.3P5 
Age 25-34, in L.F. 0.0938 
Age 35-44, in L.F. ' -0.175 
Age 45-54, in L.F. -0.243 
Age 55-64, in L.F. -0.0612 
Age 15-24, not in L.F. -0.385 
Age 25-34, not in L.F. • , -0.0938 
Age 35-44, not in L.F. 0.175 . 
Age 45-54, not in L.F. 0.243 
Age 55-64, not in L.F. 0.0612 

The fitted values are illustrated in Figure 6. 

We see that even after adjusting for age and labour force status, there is 

a proxy effect on the screening rates. This proxy effect does not seem to 

depend on the sex of the proxy respondent. Also", there is no interaction 

between the proxy and the age/labour force status variables. This model does 

not necessarily imply a proxy bias, but it indicates that a proxy bias may 

potentially be present. Without a special study such as a re-interview pro­

gram for the proxy respondent, it is impossible to definitively conclude the 

existence of a proxy bias. 

4.2 Generalized Linear Models 

In the previous section we discussed a large class of linear models related 

to the binomial model, of which probit analysis and logistic reoression were 

special cases. We now extend these to the exponential family as proposed by 

Nelder and Wedderburn (1972). 

As in Section 2.3, we assume y. has probability function given by 
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f(y ) = exp[K {y 9 - b( 9 ) } -, c(y., K . ) ] , 

J • vJ vJ J J J J 

where y. = E[Y.] = b'(9 ) and V. = Var[Y.] = b"(9.)/K.. 
'̂ J J J J vl J 

We let n. = g(y.) = E X..3. be the linear component of the model, where 
J J 1 -'•J 1 

g(*) is a known function. 

Now the maximum likelihood estimates of £ are given by the solution to 

(y - y ) X 
E -J J tl = 0. 
^ V [g'(y )] 

Nelder and Wedderburn (1972) have shown that a reasonable method for 

estimating 3, is given by performing a number of weighted least-sguares 

regressions, updating the weights and the dependent variables on successive 

iterations. This is called iteratively re-weighted least sguares. In 

particular, the weights for the t-th iteration are given by 

and the dependent variables on the t-th iteration are given by 

The (t -̂  1)-th iteration of 3 is then the solution to 

j J J £ Ĵ ^ kj 

The estimated covariance. matrix of £ is given by A~^ where the (k, Jl)-th 

entry for A is 
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This implies that many standard weighted least-sguares packages could be 

invoked to perform analysis of these Generalized linear models. 

For example, a common analysis of contingency tables, called log-linear 

models assumes a basic Poisson model with loo y. = E X..3.. Here we have 
J i iJ 1 

g(y.) = log y., 

so that the iteratively reweighted solution is given by assigning 

'(t) "(t) 
w . = y . , 
J J 

^(t) 
*(t) "(t) ^i " ^i l\^' = log \i.' -(- -A !̂ 
J ^ J ^(t) 

^ i - . . 

Hence, models similar to those described in Section 3 can be analyzed 

analogously using the generalized linear model formulation. 

5. DIAGNOSTICS 

Linear reoression methods have been known now' for over a century; see 

Hocking (1983) for a review of developments over the last 25"years. In more 

recent years attention has been focused on difficulties encountered when there 

is multicollinearity in the variables (leading to large variances of the para­

meter estimates) and when the models may fail. Some of these diagnostics are 

now available in SAS and SPSS-X. 

The methods discussed in this paper extend linear regression to a much 

wider class of problems. Newer diagnostic technigues for models of this sort 
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are discussed in Landwehr, Pregibon and Shoemaker (1984). 

In many statistical applications, the proposed model is only used as an 

approximation to reality. Therefore, the user of these models should employ 

these diagnostic tools in the course of the analysis. 
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Table 1: Mean Number of Children Ever Born, by Marital Duration 

and Education Level. Sri Lanka 1975 (from Little, 1982) 

Years since 
First Marriage 

0 - 4 

5 - 9 

10 - 14 

15 - 19 

20 - 24 

25-H 

Column 

Mean 
Count 

Mean 
Count 

Mean 
Count 

Mean 
Count 

Mean 
Count 

Mean 
Count 

Mean 
Count 

No 
School 

0.96 
112 

2.54 
172 

3.87 
197 

5.13 
239 

6.22 
292 

6.92 
501 

5.17 
1513 

Level 

1 - 5 
Years 

0.88 
376 

2.46 
442 

3.91 
482 

4.97 
461 

5.87 
377 

6.55 
548 

4.24 
2686 

of Education 

6 - 9 
Years 

0.95 
442 

2.39 
362 

3.73 
293 

4.61 
262 

5.22 
184 

6.23 
161 

3.26 
1704 

10-1-
Years 

0.92 
351 

2.39 
255 

3.14 
145 

4.13 
95 

4.47 
40 

5.97 
22 

2.30 
908 

Row 

0.92 
1281 

2.44 
1231 

3.76 
1117 

4.84 
1057 

5.79 
893 

6.65 
1232 

3.94 
6811 
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Table 2: Interactions for Mean Number of Children from Table 1 

Years 
Since 
First 
Marriage 

0 - 4 

5 - 9 

10 - 14 

15 - 19 

20 - 24 

25-t-

Column 

Raw Mean 
Adjusted Mean 
Interaction 

Raw Mean 
Adjusted Mean 
Interaction 

Raw Mean 
Adjusted Mean 
Interaction 

Raw Mean 
Adjusted Mean 
Interaction 

Raw Mean 
Adjusted Mean 
Interaction 

Raw Mean 
Adjusted Mean 
Interaction 

No 
School 

0.96 
1.31 

-0.35 

2.54 
2.78 
-0.24 

3.87 
4.06 
-0.19 

5.13 
5.11 
0.02 

6.22 
6.01 
0.21 

6.92 
6.82 
0.10 

5.17 
4.23 

Level 

1 - 5 
Years 

0.88 
1.07 
-0.19 

2.46 
2.54 
-0.08 

3.91 
3.82 
0.09 

4.97 
4.87 
0.10 

5.87 
5.77 
0.10 

6.55 
6-58 
-0.03 

4.24 
3.99 

of Education 

6 - 9 
Years 

0.95 
0.86 
0.09 

2.39 
2.33 
0.06 

3.73 
3.61 
0.12 

4.61 
4.66 
-0.05 

5.22 
5.56 
-0.34 

6.23 
6.37 
-0.14 

3.26 
3.78 

10-̂  
Years 

0.92 
0.71 
0.21 

2.39 
2.18 
0.21 

3.14 
3.46 
-0.32 

4.13 
4.51 
-0.38 

4.47 
5.41 
-0.94 

5.97 
6.22 
-0.25 

2.30 
3.63 

Row 

0.92 
1.02 

2.44 
2.49 

3.76 
3.77 

4.84 
4.82 

5.79 
5.72 

6.65 
6.53 

3.94 
3.94 
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Table 3; Analysis of Variance of Data from Table 1 

Source 

Main Effects 

Marital Duration 
Education/Duration 

Interactions 

DurationxEducation 
Residual 

Total 

Sum of 
Sguares 

27402.684 
225.535 

206.965 
27729.848 

55565.031 

Proportion 
of Total SS 

0.493 
0.004 

0.004 
0.499 

DF 

5 
3 

15 
6787 

6810 

Mean 
Sguare 

5480.537 
75.178 

13.798 
4.986 

F 

1340.990 
18.395 

3.376 

Signif. 
of F 

.000 

.000 

.000 

Table A'̂  Physician Visits per Person per Year by Residence Size, 

Family Income and Education of Family Head, U.S. 1973 

Education 
in 

Years 0 - 4999 

Family Income 

5000 - 14999 15000 or more 

SMSA 

Less than 12 

12 

More than 12 

Less than 12 

12 

More than 12 

6.15 
(0.18) 

6.17 
(0-41) 

6.31 
(0.49) 

5.08 
(0.26) 

5.36 
(0.44) 

4.58 
(0.58) 

4.73 
(0.13) 

4.98 
(0.17) 

6.08 
(0.19) 

Non-SMSA 

4.14 
(0.15) 

4.32 
(0.19) 

5.06 
(0.29) 

4.82 
(0.25) 

4.70 
(0.18) 

5.66 
(0.16) 

4.42 
(0.37) 

4.49 
(0.33) 

4.48 
(0.31) 

Note: Bracketed figures indicate standard errors of estimate. 



- 30 -

Table 5* Estimated Physician Visits from Table 4, 

Original and Fitted Values 

Education 
(in Years) 

Less than 12 

12 

More than 12 

Family Income 

Less than 12 

12 

More than 12 

Original 
Fitted 

Difference 

Original 
Fitted 

Difference 

Original 
Fitted 

Difference 

Original 
Fitted 

Difference 

Original 
Fitted 

Difference 

Original 
Fitted 

Difference 

0 - 4999 5000 - 14999 

SMA 

6.15 (0.18) 
3.95 (0.07) 
0.20 

6.17 (0.41) 
5.95 (0.07) 
0.22 

6.31 (0.49) 
5.95 (0.07) 
0.36 

4.73 (0.13) 
4.83 (0.07) 
-0-10 

4.98 (0.17) 
4.83 (0.07) 
0.15 

6.08 (0.19) 
5.95 (0.07) 
0.13 

Non-SMSA 

5.08 (0.26) 
5.30 (0.11) 
-0.22 

5.36 (0.44) 
5.30 (0.11) 
0.06 

4.58 (0.58) 
5 30 (0.11) 
-0.72 

4.14 (0.15) 
4.18 (0.11) 
-0.04 

4.32 (0.19) 
4.18 (0.11) 
0.14 

5.06 (0.29) 
5.30 (0.11) 
-0.24 

15000 or more 

4.82 (0.25) 
4.83 (0.07) 
-0.01 

4.70 (018) 
4.83 (0.07) 
-0.13 

5.66 (0.16) 
5.95 (0.07) 
-0.29 

4.42 (0.37) 
4.18 (0.11) 
0.24 

4.49 (0.33) 
4-18 (0.11) 
0.31 

4.48 (0.31) 
5 30 (0.11) 
-0.82 
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Table 6- Unadjusted and Fitted Screened-in Rates from Test 2, 
Canadian Health and Disability Survey, Males Aqed 15-64, 
by Labour Force Participation and Proxy Status, Canada 

January 1983 (Unweighted) 

Age 

15 

25 

35 

45 

55 

15 

25 

35 

45 

55 

- 24 

- 34 

- 44 

- 54 

- 64 

- 24 

- 34 

- 44 

- 54 

- 64 

Unadjusted 
Fitted 

Difference 

Unadjusted 
Fitted 

Difference 

Unadjusted 
Fitted 

Difference 

Unadjusted 
Fitted 

Difference 

Unadjusted 
Fitted 

Difference 

Unadjusted 
Fitted 

Difference 

Unadjusted 
Fitted 

Difference 

Unadjusted 
Fitted 

Difference 

Unadjusted 
Fitted 

Difference 

Unadjusted 
Fitted 

Difference 

Non-Proxy 

In Labour 

.065(.0067) 

.065(.0051) 

.000 

.085(.0058) 

.085(.0048) 

.000 

.113(.0079) 

.111(.0064) 

.002 

.180(.0109) 

.177(.0088) 

.003 

.284(.0150) 

.283(.0124) 

.001 

Not in Labour 

.104(.0127) 

.104(.0078) 

.000 

.146(.0239) 

.192(.0213) 
-.046 

.348(.0372) 

.359(.0309) 
-.011 

.534(.0361) 

.525(.0293) 

.009 

.571(.0220) 

.585(.0194) 
-.014 

Male Proxy 

"orce 

.055(.0143) 

.056(.0044) 
-.001 

.058(.0252) 

.071(.0046) 
-.013 

.029(.0290) 

.093(.0059) 
-.064 

.082(.0351) 

.153(.0083) 
-.071 

-207(.0752) 
.249(.0124) 

-.042 

• Force 

.071(.0190) 

.079(.0065) 
-.008 

.367(.1450) 

.167(.0194) 

.200 

.455(.1501) 

.320(.0299) 

.135 

.625(.1712) 

.483(.0301) 

.142 

.563(.1240) 

.543(.0217) 

.020 

Female Proxy 

.056(.0069) 

.056(.0044) 

.000 

.069(.0069) 

.071(.0046) 
-.002 

.094(.0086) 

.093(.0059) 

.001 

.154(.0120) 

.153(.0083) 

.001 

.250(.0183) 

.249(.0124) 

.001 

.074(.0084) 

.079(.0065) 
-.005 

.227(.0365) 

.167(.0194) 

.060 

.324(.0544) 

.320(.0299) 

.004 

.454(.O505) 

.483(.0301) 
-.029 

.591(.0420) 

.543(.0217) 

.048 

NOTE: Bracketed figures are Standard Errors 
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Figure ^' Observed Means from Sri Lanka Fertility Survey. 1975. 

Data source? Little (1982). 
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Figure 2: Adjusted Means from Sri Lanka Fertility Survey, 1975. 

Data source: Little (1982) 
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ADJUSTING SUB-ANNUAL SERIES TO YEARLY BENCHMARKS 

Pierre A. Cholette^ 

This paper proposes a modification to the method of Denton (1971) 
for adjusting sub-annual series to yearly totals. These totals 
originate from more reliable sources and constitute annual 
benchmarks. The benchmarked series derived according to the 
modified method is more parallel to the unbenchmarked series than 
this is the case with the original method. An additive and a 
proportional variant of the method are presented. These can easily 
be adapted for flow, stock and index series. Also presented are a 
few recom.Tiendations about the preliminary benchmarking of current 
data and the management of "historical" estimates of the series. 

1. INTRODUCTION 

In many cases, the statistician obtains sub-annual data of a series from 

one source of data (such as a sample survey); and, the corresponding annual 

benchmark values from another more reliable source of data (such as a 

census). The annual sums of the observed sub-annual values are generally not 

egual to the annual benchmark values. Such sub-annual series reguire adjust­

ment to annual benchmarks, that is benchmarking. 

The solution proposed by Denton (1971) (and generalized by Fernandez in 

1981) consists of finding a sub-annual series which would display the movement 

of the available sub-annual series as much as possible and whose annual sums 

(or averages) would match the more reliable annual benchmarks. The level of 

the resulting series would then be given by the annual benchmarks, whereas its 

movement would be dictated by the original sub-annual series. In other words, 

the adjusted or benchmarked series should run as parallel as possible to the 

original, while still satisfying the annual benchmarks. This paper suggests a 

modification to Denton's specification which makes the original and the ad­

justed series even more parallel. 

We follow the model of Ehrenberg (1982) for the presentation of scientific 

Pierre A. Cholette, Time Series Research and Analysis, .Statistics Canada. 
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papers. The reader will be exposed to the illustrations and results first; 

and the methodological details, afterwards. 

2. ILLUSTRATION OF THE RESULTS 

Figure 1 shows the corrections (x. - z, ) made to the original series z. 

according to the additive solution (with first differences) of Denton and 

according to the corresponding solution proposed in this paper. Since the 

corrections are to be added to the original sub-annual series z. , the adjusted 

series x. will be completely parallel to the original series, if and only if 

the corrections are constant. In the figure, this happens only for the cor­

rections derived under the method proposed in this paper. 

Figure 1 presented a trivial and ideal case which allowed the solution of 

constant corrections; All the average annual discrepancies, the differences 

between the annual benchmarks and the annual totals of the original series 

(divided by the number of months per year), were constant. Figure 2 displays 

a more realistic case, where the five average annual discrepancies vary about 

200. As in the first example, the corrections derived by the herein proposed 

method are much more constant, especially in the first year. 

As explained below, Denton's method does not only minimizes the change in 

the corrections (to make them as constant as possible) but also the size of 

the first correction. This can be seen both in Fiaures 1 and 2, where the 

first corrections are close to zero. The alternative solution, on the other 

hand, only minimizes the change in the corrections. Graphically this consists 

of fitting a curve through the average annual discrepancies, which is as flat 

as possible and which spans the same annual surfaces as the average annual 

discrepancies. 

3. KEEPING THE ORIGINAL AND THE BENCHMARKED SERIES PARALLEL 

Resuming the additive first difference formulation of Denton as well as his 

notation, the desired series x. minimizes the following objective function 

p(x) = E^ (Ax. - Az.)^ = S^ (A(x. - z.))^, xo = ZQ, (1) 
t=1 "- ^ t=1 ^ ^ 
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where z. stands for the original sub-annual series at time t. This function 

is minimized subject to the eguality constraints between the annual sums of 

the values obtained and the available benchmarks y.; 

ik 

t=(i-1)k+1 ^ ••• 

where k is the number of "months" per year. 

Denton justifies hypothesis XQ = ZQ claiming that it is legitimate to 

assume the eguality of the last fitted and observed values prior to the 

estimation interval. Objective function (1) would then mean that the adjusted 

series x. should have the same slope as the original series z,; and therefore, 

that the slope of the differences between the two series should be minimized 

(subject to the constraints). However, after substituting XQ = ZQ, objective 

function (1) can be rewritten as: 

p(x) = (xi - zi)^ -f S^ (A(x. - z.))2. (3) 
t=2 "- '-

This transformation emphasizes that the assumption XQ = ZQ implies minimizing 

the size of the first correction. As illustrated in Figures 1 and 2, minimiz­

ing the first correction pulls the correction curve towards zero at the start 

of the series. This produces a wave in the first year which is transmitted to 

the other years. This wave in the corrections prevents, by definition, the 

maximum parallelism between the observed and adjusted series. 

The specification proposed here simply refrains from postulating XQ = ZQ 

and yields the following objective function 

p(x) = E (A(x. - z.))^ (4) 
t=2 •- *-

subject to the same constraints of eguation (2). 

In linear algebra, the constrained objective function is written 

u(x, g) = (x - z)'A (x - z) - 2 g'(y - B'x), (5) 
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where the vectors and matrices involved are; 

X 
nxl 

xi 
X2 

z 

nxl 

Z2 

mxl 

Vl 
y2 ĝ  

mxl 

9i 
92 

(6) 

^ = D-D, I! 
nxn (n-l)xn 

•1 1 
0 -1 

0 
1 

(7) 

B 

nxm 

j 
U 

« 

0 
J. 

• 

• • • 
• • • 

j 
k x l 

, (n = km). (8) 

Vector g_ contains the Lagrangian multipliers. Variables n (= mk), m and k 

respectively stand for the number of observations and of years in the series 

and the number of months per year. 

The normal eguations associated with objective function (5) are 

diu/dx̂  = (_A -I- _A') (2i - £) + 2 !B £ = ^ 

du/dg = 2(B'x - y) = 0 
(9) 

and yield solution 

A B 

B' 0 

_1 A 0 

0 I 

z 

y 

w 
(n+m) x(n-)-m) 

(10) 

Substituting identity y = B'z -f r, where r contains the m annual discrepan­

cies, gives 
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X 

= 
A 8 

B' 0 

_1 A 0 

B' I 

z 

r 

= nxn 

U 

mxn 

_x 
nxm 

1-^ 
mxm 

z 

r 
•> X z -I- "X r. (11) 

This reformulation of the solution reduces computing time in the applica­

tion of the calculated weights compared to formulation (10). Also note that 

once the weights W are obtained, they can be used for any number of series 

having the same number of observations. Furthermore, we recommend (Cholette, 

1978, section 6; 1979, 4.3) to compute W for a 5-year interval and to use it 

in a moving average manner (moving one year at the time) for series of 5 years 

and more. Apart from saving on calculations, this procedure generates only 

two revisions in the estimates (ceteris paribus) when new years of observa­

tions are added to the series. 

Denton solves the inversion in eguation (10) by parts. This is impossible 

here since matrix A is singular. The overall matrix however is not singular 

and can be inverted. 

In fact, the method developped herein uses the solution proposed by Boot, 

Feibes and Lisman (1967) to interpolate between annual data in the absence of 

sub-annual information. Solution (11) exactly consists in interpolating 

between the annual discrepancies with the method of these authors and in 

adding the resulting estimates (the corrections) to the original sub-annual 

series. 

4. PROPORTIONAL VARIANT 

The proportional method now presented in this section is also a variant of 

Denton's proportional method, from which XQ = ZQ was removed. As in Section 

2, the objective function still minimizes the sum of the sguared differences 

between the slopes of the original and desired sub-annual series (z. and x.). 

Each term in the sum is weighted however by the value of the corresponding 

sub-annual observation; 

p(x) = E (A(x^ - Zj.)/z^)^ = E (A(x^/z^)) (12) 
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This variant is suitable for series with strong seasonality, when it is 

thought that seasonal trough months cannot account for the annual discrepancy 

as much as seasonal peak months: The size of the corrections are proportional 

to the level of each observation, as illustrated in Figure 3. The low obser­

vations get smaller corrections than the seasonally higher observations, 

although the minimized proportional corrections x./z. are as flat as permitted 

by the annual discrepancies. Note that with the proportional variant all 

observations must be positive and that all the adjusted values will also be 

positive. 

It can also be shown (Cholette, 1978, Section 3; 1979, 3) that the pro­

portional variant is a linear approximation of the strongly non-linear growth 

rate preservation method (Smith, 1977: Helfand et al., 1978), which would have 

the following objective function; 

p(x) = E 
t=2 

(̂ t/̂ t-1 - ^/^t-l) (13) 

The approximation is exact in situations of constant annual proportional 

discrepancies on the estimation interval. 

In linear algebra, the constrained objective function associated to the 

proportional method is 

7-1 -1/ u(x, g) = (x - z)' Z-'A Z-^x - z) - 2 g'(y - B'x), (14) 

,1 . where Z" is a diagonal matrix with elements 1/zi, 1/z2, 

the sami 

writes; 

The solution has 

the same structure as the additive variant (Z~ A Z~ replacino A in (11)) and 

Z-^A Z-^ B _1 Z-^A Z-^ 0 z 

r 0 Wi 

z 

r 
(15) 

Unlike the weights in the additive variant however, weights W of the pro­

portional solution must be computed for each series and even for each 
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application interval of a given series. 

5. STOCK AND INDEX SERIES 

The additive and proportional variants of the method presented above are 

designed for flow series, whose annual values correspond to the sum of the 

sub-annual values. The solutions can very easily be adapted for stock series, 

whose annual values are associated to only one sub-annual value (usually that 

of the last month); and for index series, whose annual values correspond to 

the average of the sub-annual values. For a guarterly stock series, for 

instance, one merely has to redefine the component vector _j of matrix B_ as 

1' = [0 0 0 1]; 
1x4 

and, for monthly index series as 

i' = [1/12 1/12 1/12]. 
1x12 

6. DISCUSSION 

6.1 Historical Data 

There is a lot of confusion regarding the interpretation, of assumption XQ = 

ZQ of Denton. In that respect, the author writes; "It is assumed that no 

adjustments are to be made to the original series for years outside the range 

from year 1 to m, inclusive." (p. 100, above eguation (3.2)). 

If these years are left untouched because they never had any benchmarks, 

the solution proposed by Denton is defendable: No corrections result for 

years -1 and 0; and small and gradually introduced corrections, at the start 

of year 1. (Remember that XQ = ZQ implies minimizing the first correction.) 

The resulting adjusted series is then continuous as illustrated in Figure 4 by 

curve ADEB. 

However, if the first years are left untouched because they were already 
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benchmarked and are now considered "historical", we do not agree with assump­

tion XQ = ZQ. Indeed, this assumption will generally produce a discontinuity 

between years 0 and 1, as shown in Figure 4 by curve A'CDEB. Years -1 and 0 

have already received corrections of magnitude around CD, whereas the start of 

year 1 receives corrections which are as small as possible. 

In order to "freeze" the historical data after a certain number of years, 

two solutions are possible. First, one can explicitely specify the freezing 

constraint in the objective function which becomes 

p(x) = ((xi - zi) - (XQ - ZQ))^ -H E (A (X^ - z^))2, (16) ((Xi - Zi) - (XQ - Z Q ) ) + E (A (X - Z ))^, 
t=2 *- '-

where (XQ - ZQ) is known and egual to the last correction used for historical 

year 0. This correction is generally not egual to zero (Cholette, 1979b, 

1983). This specification amounts to determining the starting point of the 

correction curve. 

Second, a less specific but egually effective solution consists of applying 

the methodology already proposed in this paper (additive or proportional 

versions) as a moving average, which moves one year at the time. With a 

5-year estimation interval, for instance, the estimates automatically become 

final after two years of revision; and, after one year, in the case of a 

3-year interval (Cholette, 1978, section 6 a; 1979, 4.3). The resulting 

benchmarked series is continuous, as illustrated in Figure 4 by curve A'CB. 

6.2 Implementation 

The practioners of benchmarking have a tendency to feed to the benchmarking 

programme the already benchmarked years of data followed by one year of 

unbenchmarked data (all accompanied by their benchmarks). For methodologists, 

it is obvious that one must always submit the unbenchmarked data (with the 

yearly benchmarks). Feeding benchmarked data will generally induce an 

artificial seasonal movement in the resulting benchmarked series (Cholette, 

1978, Section 6b). 
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6.3 Preliminary Benchmarking of Current [)ata 

A final comment is in order. During a current (uncompleted) year, one 

cannot calculate growth rates, for instance, between the benchmarked segment 

of the series (AB) and the unbenchmarked segment (CD). Doing so usually 

produces a discontinuity BC between the two segments AR and CD as illustrated 

in Figure 5 by curve ABCD. 

Two solutions are then possible. One, the inter-temporal comparisons are 

based only on the unbenchmarked data. Two, the current data are preliminarily 

benchmarked by repeating the last available correction BC for the current 

year. (Note that including the incomplete current year in the objective func­

tion (4) (or 12) would yield identical preliminarily benchmarked values.) One 

can then compare the benchmarked segment AB with the preliminarily benchmarked 

segment BE as illustrated in Figure 5 by curve ABE. We favour this second 

alternative. 

6.4 Relation with Other Methods 

The Denton (1971) benchmarking method, the modified Denton method (presen­

ted in this paper), the methods of Glejser (1966), of Boot, Feibes and Lisman 

(1967), of Lisman and Sandee (1964), and of Bassie (1939) could be reffered to 

as univariate methods. No series other than that considered and its annual 

benchmarks enter the benchmarking process. On the contrary, the methods by 

Friedman (1962), by Chow and Lin (1971), by Somermeyer, Jansen and Louter 

(1976) and by Wilcox (1983) are multivariate. Auxiliary series are used in 

the computation of the desired series. 

For instance. Chow and Lin (1971) proposed a method to obtain the desired 

sub-annual series from yearly totals and from related series. The movement of 

the resulting series is as much as possible similar to the movements of the 

related series (and the series obtained satisfies the annual constraints). 

Fernandez (1981) observes that the Chow and Lin method can produce movement 

discontinuities between the years. He then proposes a synthesis of the Chow-

Lin and of the Denton methods. The combined method climates the inter-annual 

discontinuities, but still relies on the hypothesis XQ = ZQ. As illustrated 

above, this hypothesis often introduces spurious fluctuations in the calcul­

ated series. We would think that it should be possible to refrain from the 

hypothesis in the case of Fernandez as in the case of Denton. 
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7. SUMMARY AND CONCLUSIONS 

Denton (1971) intended to keep the original and benchmarked series as 

parallel as made possible by the annual discrepancies. This paper suggested a 

modification to the benchmarking method which makes the original and bench-

marked series more parallel than is the case with the original method. This 

improvement holds both for the additive and the proportional variants of the 

method. We suspect that the generalized multivariate method by Fernandez 

could be improved in the same direction. 

The method proposed can very easily be adapted for flow, stock as well as 

index series. 

Before making intertemporal comparisons between the benchmarked and current 

data, it is essential to preliminarily benchmark the current data (in the 

manner proposed). 

The suggested 5-year moving average implementation of the method will 

automatically "freeze" the past estimates after two years of revision. 
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Figure 1: Corrections (x. - z. ) made to the unbenchmarked series according to 

Denton's method (dashed line) and according to the method proposed in this 

paper (solid) in an ideal situation of constant annual discrepancies. 

(XT-2T) 

Figure 2: Corrections (x. - z. ) made to the unbenchmarked series according to 

Denton's method (dashed line) and according to the benchmarking method 

proposed in this paper (solid) in a situation of variable average annual 

discrepancies (dotted). 
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Figure 3: Original series (solid curve) and benchmarked series (dashed) 

according to the proportional variant of the benchmarking method proposed in 

this paper (in a situation of constant annual proportional discrepancies). 

z.x 
250 -

' .1 ' . 0 

Figure 4r Benchmarked series according to Denton's method, when there are no 

benchmarks for year -1 and 0 (curve ADEB) and when there are benchmarks and 

year -1 and 0 were already benchmarked (A'CDEB): and according to the method 

proposed in this paper, applied in a moving average manner, when there are 

benchmarks for years -1 and 0 (A'8). 
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Figure 5: Continuity between the benchmarked series (dashed curve) and the 

preliminarily benchmarked series (dotted) and discontinuity BC between the 

benchmarked (dashed) and the unbenchmarked (solid) series. 
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EXAMINING EXPENDITURES ON ENERGY 

Louise A. Heslop 

Using data from the Family Expenditures Surveys over time, consumer 
expenditures on in-home and transportation energy from 1969 to 1982 
are being studied. This article briefly summarizes some of the pro­
cedures being used to explore the data, summarize it and develop in­
sights into shifts in consumption for policy implications purposes. 
With such a complex data set and such a complex, multi-faceted sub­
ject for analysis some effort must be made to reduce information 
flows and at the same time increase the information content of each 
factor of both input and output in the analyses. 

1. THE ENERGY ISSUE 

To some, energy conservation may be a dead issue. There is no shortage of 

energy (maybe never was): prices for energy have stabilized. 

Energy matters dominated the 1970's having major impacts on the world eco­

nomic order and creating international strife. Domestically they impacted 

drastically on federal - provincial relations and business - government rela­

tions and on family budgets; caused the restructuring of the manufacturing 

base, the auto industry, etc. Despite its reported demise as an important 

issue, energy consumption and prices remain as high priority concerns of 

consumers, businesses and governments. Energy conservation has lost its 

sparkle but not its real value. 

The research I will be reporting on briefly has been developed in consulta­

tion with policy makers in Consumer and Corporate Affairs Canada and Energy, 

Mines and Resources Canada which continue to run active research programmes on 

consumer energy use and conservation. The project structure has taken their 

interests, orientations and limitations into consideration. 

Also, within the last five years an international group of social scien­

tists has begun a series of research and information exchanges on consumer 

behaviour and energy use. As a member of that group I have been keenly aware 

^ Louise A. Heslop, Research and Analysis Division, Statistics Canada, 
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of the problems and prospects and the current state of knowledge and research 

technigues of that group. 

2. PROBLEMS IN ENERGY RESEARCH 

Perhaps the major problem in studies of consumer energy use has been to 

obtain reasonably reliable measures of use from sufficiently large and repre­

sentative samples. Getting such data over a period of time, especially a time 

period spanning the infamous 1973 oil embargo period, would send a researcher 

into Nirvana. The Family Expenditure data collected by the Consumer Income 

and Expenditure Division of Statistics Canada come close enough to these 

reguirements to at least set one's heart fluttering. It is a series of retro­

spective recall studies conducted for the years 1969, 1972, 1974, 1976, 1978 

and 1982. So it covers the time period of interest for a large sample and the 

sampling technigue used ensures that the design is representative of Canada 

for those areas studied, usually urban centres. Additionally it contains a 

great many other variables of interest in any study of energy use, e.g., home 

ownership, some house characteristics, vehicle and appliance ownership, family 

characteristics and expenditures on other categories of consumer goods and 

services, etc. 

Most studies which attempt a measure of consumer expenditures rely on 

recall or file checking by respondents. There are obvious problems with the 

accuracy of such data on an individual basis. The problems are less restric­

tive with very large samples. For most independent studies, the costs of such 

large samples are prohibitive. However, FAMEX sample sizes are very large. 

Only one major study in Canada has used independent record checking, ob­

taining records from suppliers by household with the permission of -the house­

holder, but through this technigue was able to obtain electricity use records 

on less than half of its sample. Natural gas and oil records were obtained on 

only about one-third of the sample. This procedure of record checking is 

highly accurate, removes the problems associated with recall, especially over 

long periods of time, and of reporting bias of respondents. However, practi­

cally it is impossible to use for large samples across the country. 

Although the FAMEX Study uses recall procedures, the information on energy 
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expenditures are not likely to be as biased as in a study specifically 

designed to record energy behaviours since respondents are not sensitized to 

the subject of the study. Also the data from pre-energy crisis periods was 

collected in the same way as that since the crisis, again reducing the 

likelihood of response bias. So the FAMEX data set offers a unigue 

opportunity to examine a very large set of samples during a very important 

period of time. 

The data set is not without its problems, some because of the sampling 

procedure and some because of the inherent complexity of any study of energy 

use. Changes in expenditure categories and their contents, especially those 

other than energy, have reguired that we manipulate the data considerably to 

create consistency across years. It is not possible to track in-home energy 

expenditures for those families who do not pay for energy directly, i.e., 

apartment dwellers with central metering and roomers. Some researchers have 

imputed values to these households based on their rents but we chose not to, 

and instead have chosen to restrict our study to those households who have the 

ability to monitor and affect their own energy use. These households are the 

consumer groups who will be the focus of any government programmes to alter 

consumer comsumption. 

There are several factors which make the study and the altering of energy 

consumption of households difficult: 

- Capital commitments restrict the ability of the household to respond in 

the short-term and increase the cost of response - e.g., house size, 

number and type of appliances, size and number of vehicles. Some studies 

have noted that home characteristics alone may account for 24?o of in-home 

energy consumption. Family size may be considered as a capital 

commitment as well. 

- Flow feasibilities - There are restrictions in the ability to change the 

amount and types of fuels used depending on the technology and fuels 

available under different circumstances and for varying amounts of money, 

e.g., natural gas heating is not available to rural residents: 

instantaneous changes can not be made in the type of home heating fuel 

used. 

- Exogenous factors affect the amount of energy needed for similar 
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performance in different situations, e.g., weather, distances between 

points in cities, etc. 

3. SUMMARIZING INFORMATION INPUTS AND MAXIMIZING INFORMATION OUTPUTS 

With such a complex data set and such a complex, multi-faceted subject for 

analysis some effort must be taken to reduce information flows and at the same 

time increase the information content of each factor of both input and out­

put. There are several ways of doing this, some of which we will be using, 

they include: 

a) Constructing Complex Input Variables - to reduce the number of factors 

being studied to the most salient ones. 

i) Discontinuous complex input variables were created by combining in-home 

and transportation energy consumption but not as continuous variables. Rather 

groupings were created to develop a set of typologies whose characteristics 

can then be examined for differences. In this case the groupings were devel­

oped by creating expenditure guartiles for each energy category, collapsing 

the two middle categories, and then combining the two resulting three cells 

into a nine cell matrix of interrelated categories (see Table 1, source: 

McDougall, Ritchie and Claxton). In particular, the corner cells are of 

interest in contrast to each other and to the middle cell. This typology was 

developed in an earlier study for Consumer and Corporate Affairs Canada. So 

comparing the output from the FAMEX data to the data set used in the CCA study 

will be of particular interest. Comparing the characteristics of these groups 

over time will also be of interest. For example, do the Churchmice continue 

to be impoverished Canadians (involuntary simplicity) or is there any indica­

tion that there is some voluntary embracing of low energy, lifestyles? In 

Table 2 the characteristics of three cells of the typology from two different 

years are compared - the Churchmice, the Roadrunners and the Hippos. Looking 

first at the Churchmice, information on a selection of possible analysis vari­

ables is shown across two different years, 1974 and 1978. To simplify for 

this presentation only the rankings of the cell within the typology set of 

cells is given. Characteristically those consuming the least amount of energy 
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have had the least resources in general, i.e., the lowest incomes, the lowest 

levels of education, the oldest. These characteristics are evident for the 

Churchmice in 1974, they also have the lowest levels of consumption for all 

the expenditure categories shown. Although they are the oldest group they do 

not have the lowest number of very young children. Probably this group con­

sists of a mix of senior citizens and single parent households (probably 

headed by women) with young children. Note that this group also has the 

lowest number of full-time earners (F-T earners). In 1978 the general picture 

is still the same except that this group is no longer the oldest. In fact the 

oldest group is in the adjacent cell to the right in the typology (not shown 

here). It would seem that in 1978 the very old are consuming a relatively 

larger amount of in-home energy. Perhaps this group is financially better off 

in 1978 than in 1974 or perhaps they have been unable to hold the line on 

energy expenditures as prices have risen. 

In 1974 the Hippos also fit expectations. They seem to be middle-aged with 

large numbers of children 5-16 years of age. The "full nest" family, they 

spend the largest amount on most expenditure categories. They are also the 

most highly educated. In 1978 this is no longer true as the education ranking 

of this cell has dropped. Also this group no longer has the highest shelter 

expenditure. Some suggestions for these observations may be that those with 

the largest homes and the highest education have begun to modify their homes 

to reduce energy expenditures. 

The Roadrunners have changed also. In 1974 they were the youngest group 

with very small families. In 1978 they appear to be characterized as young 

families with young children. One of the most dramatic changes for this group 

has been that their alcoholic beverages and tobacco expenditures have dropped 

dramatically. 

The significance of these changes can be determined with appropriate sta­

tistical tests. The purpose of this discussion was to introduce the idea of 

searching for meaningful typologies within the data. Pictures of the life­

styles of the groups emerge which can be very useful in furthering conserva­

tion programmes directed at each group. 

Further analysis may look not at level of expenditures but at percent of 

expenditures. Such an analysis will reveal the characteristics of those who 

are most heavily burdened with energy bills. 
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ii) Continuous complex input variables can be constructed to eliminate the 

effects of variables known to have very large effects, but ones which are 

difficult or impossible for consumers to manaoe. 

In-home energy expenditures can be examined for factors related to them, 

but since one of the main determinants of in-home energy expenditures is house 

size, this size factor can be absorbed into the input variable to allow for 

examination of other more relevant (from a policy perspective) factors. So 

instead of in-home energy expenditures, in-home expenditures/room are exam­

ined. Takino this one step further, climate and weather variances from year 

to year may be controlled for by looking at expenditures/room/degree day. 

This last factor is added to the data set by city by year. Degree day data 

for each year for each city were obtained from Environment Canada. Table 3 

indicates how the figures change as the factor studied becomes more complex 

again across two of the years of data. A comparison of the two years and 

differences in the measures of change between years suggests the importance of 

refining the measure to improve understanding of the process. 

b) Constructing summary output variables to examine the structure of the 

data - Example of regression coefficients. 

In Tables 4-6 some regression outputs are presented. Three models' are 

examined. In each succeeding model the dependent variable becomes more com­

plex. In so doing the factors known to impact significantly on energy con­

sumption can be controlled for and the effects of the remainina variables 

examined more constructively for any significant explanatory power. 

In these analyses no attempt has been made to deal with the problem of the 

complex sampling design. A future analysis will do so using the Taylor lin­

earization procedure and results will be compared. • However, the results from 

both a weighted and an unweighted sample are shown for 1974. As can be seen 

the values of the coefficients change very little and their significance or ' 

lack thereof does not change. Because of the restrictions indicated and also 

the fact that the very large sample sizes are used here produce significant 

results under conditions of very slight differences, it is advised that great 

care be taken in viewing these preliminary results for purposes, of this dis­

cussion. I will only note the variables significant at the .01 level and 

beyond and then only their sign. 



56 -

In the independent variable list dummy variables are used in the first and 

second models for city and in all three models for type of dwelling type. The 

unspecified condition is Ottawa for city and single detached house for 

dwelling type. 

In 1974 house size, some city variables, total expenditures, aoe of head 

and family size and some house types are significant. Large families with 

high total expenditures living in single detached homes in St. John's consume 

the most. Western cities consume less than the east, and all other housing 

types consume less than detached houses, although duplexes not significantly 

so when number of rooms is controlled for. The unweighted results are similar 

to the weighted. 

When the dependent variable is changed to li/room and number of rooms is 

removed from the list of independent variables the general pattern remains. 

However, family size is no longer significant (probably closely tied to dwell­

ing size only), and education of family head becomes significant with a nega­

tive sign. Those with less education consumed more, all other things being 

egual. Finally duplexes become significant with a positive sign, so when 

number of rooms is controlled for, duplexes use more energy than detached 

houses. 

In model 3 climatic conditions are taken into account by controlling on 

degree days in the dependent variable and the list of cities is dropped from 

the independent variable set. 

It should be noted that the value of the coefficients drops so dramatically 

because there are between 4000 and 7000 degree days in these cities. So the 

small value of the coefficients does not mean they are unimportant. Total 

expenditures remains significant as does education of the family head and the 

rowhouse effect. An important thing to note is the drop in the value of the 

adjusted R-sguared. In fact the independent variables remaining in the egua­

tion do not do very much to help in explaining variance in the dependent vari­

able. Other more useful variables should be sought. 

When we compare just the unweighted 1974 and 1978 results, in model 1 some 

change in the Vancouver parameter can be noted and in the importance of semi­

detached and duplex housing over detached houses. 

In model 2 again the major change is in dwelling type effects. Finally in 

model 3 only the rowhouse variable shows any difference from the detached; 
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education of the head is again important, but in 1978 age of head is signifi­

cant with a positive coefficient. Some improvement is seen in the R-sguared 

for 1978, but it is still very low. 

This cross-year comparison from a policy perspective suggests perhaps that 

improvements have been made in the guality of the detached housing stock in 

Canada. From a methodological perspective it indicates the importance of 

choosing the dependent variable with care. 

As was earlier noted, much additional analysis and re-analysis will be done 

using the regression procedures available to refine these results and take the 

sampling design into account. 

As I noted earlier the FAMEX data sets have their limitations but they also 

contain a wealth of important information which should be fruitfully explored. 
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Table 1: Energy Consumption Taxonomy - Labels 

Level o f 
Automobile 

Gasoline 
Consump-
. t i o n 

Low 
1136 
l i t r e 

Medium 
1136-4545 

l i t r e 

High 
4546 
l i t r e 

To ta l 

Level of In-Home Energy Consumption 

Low 
127 M i l . kJ 

CHURCH MOUSE 

4.5?n of sample 

14.5?o of sample 

ROADRUNNER 

4.0?o of sample 

23.0 

Medium 
127-222 M i l . kJ 

9.8?o of sample 

BEAVER . 

33.7?o of sample 

12.6?n of sample 

56.1 

High 
222 M i l . kJ 

BEAR 

2.5?o of sample 

12.3?o of sample 

HIPPO 

6.1?o of sample 

20.9 

To ta l 

16.8 

60.5 

22.7 

100.0 

Source: See reference list. 
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Table 2: Rank among Typology Cells 

Education of Head (low-hi) 

Age (old - yng) 

F-T Earners (low-hi) 

Family Size (low-hi) 

Child Less than 5 (low-hi) 

Child 5-15 (low-hi) 

Food at Stores (low-hi) 

Food at Eating Places (low-hi) 

Shelter (low-hi) 

Clothing (low-hi) 

Personal Care (low-hi) 

Medical (low-hi) 

Tobacco & Alcohol (low-hi) 

Reading, Recreation, 
Education (low-hi) 

Churchmice 

1974 1978 

1 1 

1 2 

1 2.5 

Hippos 

1974 1978 

9 7 

6 6 

8.5 9 

9 9 

4 2 

7 6.5 

9 9 

9 9 

9 7 

9 9 

9 9 

8 8 

9 9 

9 8 

Roadrunners 

1974 

7 

9 

7 

4 

1.5 

5 

4 

6 

4 

6 

5 

4 

7 

8 

1978 

8 

9 

6.5 

4 

7 

2.5 

4 

6 

3 

5 

4 

4 

4 

9 

Table 3: Average In-Home Energy Expenditures, 1974-78 

Average % in-home energy expenditure 

Average $/room in-home energy expenditure 

Average $/room/dd in-home energy expenditure 

1974 

451 

73 

.019 

1978 

764 

121 

.029 

% Change 

-H69 

-1-66 

-1-53 
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Table 4: Regression Analysis Results - Model 1 - $In-Home Energy 

Intercept 

No. of Rooms 

City - St. John's 

Halifax 

Montreal 

Toronto 

Winnipeg 

Edmonton 

Vancouver 

Total Expenditures 

Age of Head 

Family Size 

Education of Head 

House Type - Semi Det. 

Rowhouse 

Duplex 

Adjusted R̂  

F value (prob.) 

1974 
Unweighted 

197.3 A 

13.9 A 

193.9 A 

75.5 A 

12.2 

-10.2 

-127.1 A 

-244.9 A 

-22.9 

.006 A 

1.2 A 

13.2 A 

0.7 

-50.9 B 

-81.2 A 

-12.3 

0.43 

118.5(.0001) 

1974 
Weighted 

225.4 A 

12.0 A 

204.9 A 

73.9 p 

22.7 

-3.0 

-125.4 A 

-243.2 A 

-17.5 

.006 A 

0.8 B 

12.1 

0.6 

-49.0 A 

-88.9 A 

-13.7 

0.34 

79.7(.0001) 

1978 
Unweighted 

298.0 A 

4.2 C 

341.1 A 

162.0 A 

-16.6 

50.5 

-72.2 C 

-195.8 A 

-71.9 C 

.01 A 

3.6 A 

21.6 B 

-3.6 

-23.8 

-119.7 B 

-84.6 C 

0.38 

74.6(.0001) 

Note; A = prob. less than .0001, B 

than .01 

prob. less than .001, C = prob. less 
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Table 5: Regression Analysis Results - Model 2 - VRoom 

Intercept 

City - St. John's 

Halifax 

Montreal 

Toronto 

Winnipeg 

Edmonton 

Vancouver 

Total Expenditures 

Age of Head 

Family Size 

Education of Head 

House Type - Semi Det. 

Rowhouse 

Duplex 

Adjusted R̂  

F value (Prob.) 

1974 
Unweighted 

76.2 A 

30.4 A 

16.8 A 

4.5 

-3.5 

-17.6 A 

-37.9 A 

0.3 

2.2x10-"* 

0.015 

0.6 

-1.9 A 

-6.5 C 

-11.5 A 

6.1 C 

.31 

B 

73.85(.0001) 

1974 
Weighted 

77.3 A 

32.0 A 

16.3 B 

6.7 

-1.7 

-16.3 A 

-36.8 A 

0.8 

2.5x10-'* B 

-0.03 

0.04 

-1.4 B 

-7.1 B 

-11.8 A 

6.6 C 

.19 

38.9(.0001) 

1978 
Unweighted 

99.8 A 

74.8 A 

31.6 A 

6.5 

10.1 

-0.9 

. -26.4 A 

-6.7 

6.9x10-"* A 

0.33 B 

-0.63 

-4.0 A 

. 3.1 

-11.0 

3.2A 

.24 

41.4(.0001) 

Note: A = prob. less than .0001, B 

than .01 . 

prob. less than .001, C = prob. less 
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Table 6: Regression Analysis Results - Model 3 - VRoom/DD 

Intercept 

Total Expenditures 

Age of Head 

Family Size 

Education of Head 

House Type - Semi Det. 

Rowhouse 

Duplex 

Adjusted R^ 

F value (Prob.) 

1974 
Unweighted 

.017 A 

8.01x10-® B 

1.8x10-^ 

-1.4x10-^ 

-5.3x10-** A 

3.4x10-"* 

-23x10-"* C 

16.9x10-"* 

.01 

5.6(.0001) 

1974 
Weighted 

.019 A 

9.4x10-® 

-7.0x10-^ 

-18.4x10-^ 

-4.7x10-"* 

-7.5x10-"* 

-35.9x10-"* 

6.3x10-"* 

.02 

A 

A 

A 

6.6(.00O1) 

1978 
Unweighted 

.02 A 

1.4x10-'̂  A 

9.9x10-^ A 

27.0x10-^ 

-7.8x10-"* B 

24.8x10"'* 

-38.8x10""* B 

11.6x10""* 

.03 

9.5(.0001) 

Note; A = prob. less than .0001, B 

than .01 

prob. less than .001, C = prob. less 
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LOGISTIC REGRESSION ANALYSIS OF LABOUR FORCE SURVEY DATA 

S. Kumar and J.N.K. Rao 

Standard chisquared (X ) or likelihood ratio (G ) tests for logistic 
regression analysis, involving a binary response variable, are adjust­
ed to take account of the survey design. The adjustments are based on 
certain generalized design effects. The adjusted statistics are uti­
lized to analyse some data from the October 1980 Canadian Labour Force 
Survey (LFS). The Wald statistic , which also takes the survey design 
into account, is also examined for goodness-of-fit of the model and 
for testing hypotheses on the parameters of the assumed model. Logis­
tic regression diagnostics to detect any outlying cell proportions in 
the table and influential points in the factor space are applied to 
the LFS data, after making necessary adjustments to account for the 
survey design. 

1. INTRODUCTION 

Logistic regression models have been extensively used by researchers in 

social, behavioural and health sciences to analyse the variation in binomial 

proportions (see, for example, the books by Cox (1970) and McCullagh and 

Nelder (1983)). Due to clustering and stratification used in the survey 

design the statistical methods for binomial proportions, however, are often 

inappropriate for analysing sample survey data. For instance, the standard 

chisguared (X ) or the likelihood ratio (G ) tests greatly inflate the type I 

error rate (significance level). Hence, some adjustments to the classical 

methods that take account of the survey design are necessary in order to make 

valid inferences from survey data. In this article, we have utilized two 

2 2 

simple adjustments to X or G , based on certain generalized design effects 

(deffs) to analyse some data from the October 1980 Canadian Labour Force 

Survey (LFS) (Section 3). The Wald statistic, which also takes the survey 

design into account, is also examined. 

S. Kumar, Census and Household Survey Methods Division, Statistics Canada, 
and J.N.K. Rao, Department of Mathematics and Statistics, Carleton 
University. 
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In addition to formal statistical tests, it is essential to develop 

diagnostic procedures to detect any outlying cell proportions and influential 

points in the factor space. Regression diagnostics for the standard linear 

model have been extensively investigated in the literature (see the recent 

book by Cook and Weisberg (1982)). Pregibon (1981) recently developed similar 

methods for the logistic regression with binomial proportions. In Section 4 

some of these methods have been applied to the October 1980 LFS data, after 

making necessary adjustments to account for the survey design. 

2. THEORETICAL RESULTS 

Suppose that the population of interest is partitioned into I cells (do­

mains) according to the levels of one or more factors, and N. denotes the sur­

vey estimate of the i-th domain size, N. (i = 1, 2, ..., I; E N. = N). The 

corresponding estimate of the i-th domain total, N.,., of a binary (0, 1) re­

sponse variable is denoted by N.... The ratio estimate, p. = N../N., is used 

to estimate the population proportion ir. = N..j/N.. 

A logit model on the proportions ir. is given by TT. = fĵ (3̂ ), where 

ln{f./(1 - f^)} = logit f. = x!3 , i = 1, ..., I. (1) 
1 1 1 <-JL~' 

In (1), x̂ . is an s-vector of known constants derived from the factor levels 

and 3 is the s-vector of unknown parameters. Under independent binomial 

sampling in each domain, the maximum likelihood estimates (m.l.e.) are 

obtained from the following likelihood eguations; 

X'D(,n/n)^ = X'D(n/n)g^ (2) 

where X' = (x,, ..., x,), D(n/n) = diag(nyn, ..., n,/n), f = f(3) = (f.,, ..., 

f,)', and g is the vector of sample proportion g. = n.Vn., where n. is the 

sample size from i-th domain (E n. = n). For oeneral sample designs, we do 

not have m.l.e. due to difficulties in obtaining appropriate likelihood func­

tions. Hence, it is a common practice to use a "pseudo m.l.e." of 3 or f 
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obtained from (2) by replacing n./n by the estimated domain relative size, 
A A >v - L A 

w. = N./N, and g. by the survey estimate p.: 

X'D(w)f = X'D(w)p. (3) 

The resulting estimates, 3 and f = f(3), are asymptotically (i.e., in large 

samples) consistent. The eguations (3) may also be written as 

X'Ni(m) = X'Ni, (4) 

where N. is the vector of estimated counts N.,, and N.(m) is the vector of 
~1 -V . ^ i1' ~1 ^ 

pseudo m.l.e., N..(m) = N.f., of the totals N... The estimates 3, and hence f 
1 1 1 1 n '̂  ~ 

and^.(m), are obtained from (3) or (4) by iterative calculations. 

2.1 Estimated Variances and Covariances 

Let V denote the estimated covariance matrix of p, then the estimated cova-

riance matrix of 3 is given by 

D(3) = (X'AX)-^(X'D(w)VD(w)X)(X'AX)-^ (5) 
t^^ f^ 

in large samples, where A = diag(wifi(1 - fi), ..., w,f,(1 - f,)). The diago­

nal elements of (5) provide the estimated variances of the estimates 3.. Sim­

ilarly, the estimated covariance matrix of the residual vector r = la - f is 
'̂  ~ '̂  

given by 

D(£) = AVA', (6) 

where 

A = I - D(f)D(1 - f)X(X'AX)-^X'D(w). (7) 
The diagonal elements V..(r) of (6) lead to standardized residuals r./s.e.(r.) 

which are useful in detecting outlying cell proportions. 



- 65 -

2.2 Goodnesa-of-Fit Tests 

The standard chi-sguared tes t of goodness-of-fit of the model (1) is given 

by 

I (p. - f . ) ^ w. I 
X̂  = n E \-- .^ ^ = E X2. (8) 

'-' f .(1 - f . ) '--' ' 
1 1 

The likelihood ratio test statistic is aiven by 

I ^ Pi -̂  (1 - Pi) I 
G^ = 2n E w. f p.ln -f- (1 - p.) In _ _ } = E G? 

^-' f. (1 - f.) •̂ -' 

(9) 

2 ^ 
Note that G- is also defined at p- = 0 and 1 as given by -2nw.ln(1 - f•) 

A J. -L A. A. 

and -2nw.ln f. respectively. Under independent binomial sampling, it is well 

2 2 2 
known that both X and G are asymptotically distributed as a x variable with 
I - s degrees of freedom, but for general designs this result is no longer 

9 9 

valid. In fact. X (or G ) is asymptotically distributed as a weiohted sum 
2 

E 6.Z-, of independent x variables, Z., each with 1 d.f. where the weights 

6. (i = 1 I - s) are the eigenvalues of a "generalized design effects" 

matrix given by E" E(j, - where 

^ = G 'D(f ; ) -b( i - i:)"^vD(n-^D(i - O - ^ G , d o 

Eo = 1 G'A-^G (11) 

and G is any Ix(l - s) matrix of rank I - s such that G'X = 0. i.e., G is 

orthogonal to X. Under binomial samplino, E-^ E,], reduces to I. the identity 

matrix 
,2 / „ p2 A simple adjustment to X (or G ) is obtained (Roberts. 1984) by treating 

= xV s . or G^ = G V 6 . as x^ with I - ; 

hypothesis that the model is true, where 

X = X /6. or G = G /6. as x with I - s degrees of freedom (d.f.) under the 
c c 
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(I - s)6. = n E V..(r)w./[f.(1 - f.)]. (12) 
i=1 n 1 1 1 ' 

The adjusted statistic X (or G ) should be satisfactory excepting in those 

cases with a large coefficient of variation (C.V.) of the 6. 's. A better ad-
9 9 9 

justment, based on the Satterthwaite approximation, treats X^ = X /(I -i- a ) or 

Ĝ  = Ĝ /(1 + a^) as x^ with (I - s)/(1 + a^) d.f., where 

a ̂ = E (6. - 6 )V[(I - s)62] (13) 
1 

is the (C.V.)^ of the 6.'s and 

E 62 = E z Vf.(r)(nw.)(nw.) / [f. M ^ - M^'' - ^ ) " ' ' C"̂ ) 
-"• 1=1 j=1 iJ i J i J 1 •' 

where V..(r) is the (i, j)-th element of D(r). The statistics X_ and G_ take 

account of the variation in 6.'s. 

A Wald statistic for goodness-of fit of the model (1) is given by 

Xw = v'GE^^G'v, (15) 

where v is the vector of logits v. = logit p.. The statistic X.f, is distribut-
~ 1 "̂ 1 W 
2 2 

ed as x with I - s d.f., in large samples. The statistic X̂^ is not defined 
if p. = 0 or 1 for some i. Moreover, it becomes unstable when anv p. is close 

1 A 1 

to 1 (see Section 3), or when the degrees of freedom for V is not large com­

pared to I - s (Fay, 1983). 

2.3 Nested Hypothesis 

Suppose the matrix X is partitioned as (Xi, X2) where Xi is Ixr and X2 is 

Ixu (r + u = s), then the model (1) may be written as 

V = X3,= Xi3,i -H X2£2, (16) 
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where £i is rxl and ^ is uxl. We are often interested in testing the null 

hypothesis H; ̂  = 0 given the model (16). The "pseudo m.l.e." under H can be 

obtained from the eguations 

XiD(w)X = XiD(w)p (17) 

again by iterative calculations, where £ = f(^). The standard chisguared and 

likelihood ratio tests of H; 32 = H are given by 

X^(2ll) = n E 
' i=1 

I w.(f. - f.)' 
1 1 1 

f.(1 - f.) 

(18) 

and 

G^(2 1) = 2n E w. ̂  f.ln _ -n (1 - f.)ln — { (19) 
I i_i 1 ) 1 5 1 a ^ 

f. (1 - f^) 

respectively. Under binomial sampling, both x2(2|l) and G2(2|1) are asympto-
2 

tically distributed as X with u d.f. when H is true, but for general designs 
9 I 9 I 

this result is no longer valid. In fact X (2 1) or G (2 1) Is asymptotically 

distributed as a weighted sum, E6 (H)Z., of independent x, variables Z., where 

the weights 6.(H) (i =1, ..., u) are the eigenvalues of the design effects 

matrix. 

(X''AY2)"^('X'D(W)VD(W)X'2), (20) 

where 

X'2 = [I - Xi(X'jAXi)-^X'^A]X2, (21) 

(Roberts, 1984). In the binomial case, the design effects matrix (20) reduces 

to I, as in the previous case of goodness-of-fit. 

A simple adjustment to X^^{2^^) or G2(2II) is obtained by treating X^ (2|l) 

= x2(2|l)/6.(H) or G2(2|1)/6.(H) as x^ with u d.f. under H, where 
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T X" A 

u 6 (H) = n E v. .(r)w./f.(1 ^ f.) (22) 
iri 11 1 1 1 

and V'..(r) is the i-th diagonal element of the covariance matrix of residuals, 
11 ^ 

A A 

r.(H) = f. - f.. given by 
1 1 1 ^ 

V(r) = D(f)D(l - f)X2AX^D(f)D(l^ - f) (23) 

where 

A = (X';A'X2)-^['X;D(W)VD(W)X'2]('X',AX2)-^ (24) 

The standardized residuals (f. - f.)/[V..(r)]" can also be computed. As m 

the case of goodness-of-fit. improved approximation, based on Satterthwaite's 

method, can also be obtained. 

A Wald statistic of H ^ =-0 is given by 

X2(2|1) = 3'[D(£2)]"^6,2. (25) 

where D(^2) is the principal submatrix in (5) corresponding to £2- Under H. 

X2(2|1) is asymptotically distributed as x^ with u d.f. In particular if 32 

is a scalar, we can treat 32/s-e.(32) as N(0.1)-variate under the hypothesis 

H: 32 = 0 or 32/var(32) as x^ with 1 d.f-

2-4 Diagnostics 

It is desirable to make a critical assessment of the logit fit by identify­

ing any outlying cell proportions and influential points in the factor space. 

For this purpose- the vector of residuals and a projection matrix in the 

factor space provide useful tools. However, unlike in the case of the stan­

dard linear model, the residuals can be defined on different scales The 

natural choice that takes account of the survey desion is the vector of stan-
i 

dardized residuals e. = r./[V..(r)]" given in section 2.1. Since the e^'s are 
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approximately N(0, 1) under the model (1), the expected numbers of residuals 

ê ^ exceeding 1.96, 2.33 and 2.58 in magnitude are 0.051, 0.021 and 0.011 res­

pectively, where I is the number of residuals (cells). These expected numbers 

provide a rough guide to identify any outlying cells. Ignoring the design and 

hence using standardized residuals under binomial sampling could lead to mis­

leading conclusions. 

The standardized residuals e., however, become unreliable for those cells 

with p. = 1 or close to 1. Following Pregibon (1981), we suggest the use of 
1 1 

components of X^ or G^, viz., x" = X /6^ or 'G. = G./6^, i = 1, ..., I, for re-

sidual analysis in order to circumvent this difficulty. In either case, large 

individual components should roughly indicate cells poorly accounted for by 

the model. Index plots (i.e., plots of x'. vs i and G'. VS i) are useful for 

displaying these components. Normal probabilities plot of x'. or Ĝ. (i.e., the 

ordered values plotted against standard normal guantiles) is also useful to 

detect deviations from the model (i.e., deviations from a straight-line 

configuration). 

Pregibon (1981) sugoested the use of diagonal elements, m.. , of the pro­

jection matrix 

M = I - vJx(X'V,^X)-^X'V^ 

= I - H (say) (26) 

to detect influential points, where V. is the estimated covariance matrix un-
^ ^ ^ A A 

der binomial sampling, viz., diag[pi(1 - Pi)/(nwi), ..., pj(1 - Pj)/(nWj)] in 

the context of survey data. The matrix M arises naturally in solving likeli­

hood eguations (4) by iteratively reweighted least sguares, and small values 

of m^^ call attention to extreme points in the factor space. Again, an index 

plot {m^^ vs i) would provide a useful display. It may be noted that the de­

sign effect does not come into picture with m.. since we are using "pseudo 

m.l.e." based on binomial sampling. Another useful plot which effectively 

summarizes the information in the index plots X*. vs i and m.. vs i is given by 

the scatter plot of ^ / X ^ = X^/X^ vs ĥ ^̂ ,̂ where h^^ is the i-th diagonal ele­

ment of H given by (26) (see Pregibon, 1981). 
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The diagnostic measures e., Y. or "G. and m^^ are useful for detecting 

extreme points, but not for assessing their impact on various aspects of the 

fit including parameter estimates, £, fitted values, £, and goodness-of-fit 

measures X^/S^ or G V S . or others. Following Pregibon (1981) we suggest three 

measures which guantify the effect of extreme cells (points) on the fit. 

(1) Coefficient sensitivity: Let S>.{-IL) denote the pseudo m.l.e. of 3. ob­

tained after deleting the il-th cell data. Then the guantity A.(£) = 
A A A *J 

[g. _ 3.(-£)]/s.e.( 3.) provides a measure of the j-th coefficient sensitivity 

to £-th point. The index plots A. (X) vs Z for each j provide useful displays 

but the task of looking at the index plots could become unmanageable if the 

number of coefficients in the model is large. 

(2) Sensitivity of fitted values: Significant changes in coefficient es­

timates when Jl-th point (cell) deleted does not necessarily imply that the 

fitted values f also vary significantly from X(-il), the vector of fitted va-
A A 

lues obtained after deleting the £-th cell, i.e., IIX-£(-^)" could be small. 

We therefore use [G^ - '^^{-1)1/8 . or [X^ - X^(-£)]/6^ to assess the impact of 

the £-th point on the fitted values, where G^{-i) and X^(-A) are given by (9) 

and (8) respectively when f. = ^-(^) is replaced by f^(-£) = f^(3(-.^)). 

(3) Goodness-of-fit; A measure of goodness-of-fit sensitivity is given by 

[G^ - G2(-JI)]/6, or [X^ - x2(-£)]6., where G^{-Z) and X^{-li) are the likeli­

hood ratio and chisquared statistics obtained after deleting the £-th cell. 

(Note that r/{-l) * G^i-Z)). 

3. APPLICATION TO LFS 

We have applied the previous methods to some data from the October 1980 

Canadian Labour Force Survey (LFS). The sample consisted of males aged 15-64 

who were in the labour force and not full-time students. We have chosen two 

factors, age and education, to explain the variation in unemployment rates via 

logit models. Age-group levels were formed by dividing the interval [15, 64] 

into ten groups with the j-th age group being the interval [10 -(- 5j, 14 -i- 5j], 

j = 1, 2 10, and then using the mid-point of each interval, A. , as the 

value of the age for all persons in that age group. Similarly, the levels of 
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education. E, . were formed by assigning to each oerson a value based on the 

median years of schooling resulting in the following six levels = 7 , 10. 12. 

13 14 and 16. Thus the age by education cross-classification provided a 

two-way table of I = 60 cell proportions, IT., -

The LFS design employed stratified multi-stage cluster sampling with two 

stages in the self-representing (SR) urban areas and three or four staoes in 

non-self-representing (NSR) areas in each province The survey estimates. 

p.. , were adjusted for post-stratification, using the projected census age-
jk 

sex distribution at the provincial level. The estimated covariance matrix 

V of the estimates p., is based on more than 450 first-stage units (psu's) so 

that the degrees of freedom for V are large compared to I = 60. 

3.1 Formal Tests of Hypotheses. 

Scatter plot of the logits v., vs age levels A. at each education level E, 
A .ik ^ .1 k 

indicated that v. for given k generally increases with age to a maximum and 

then decreases (i.e., the graph is convex and upward to a maximum). Hence, 

the following model might be suitable to explain the variation in TT.. 's* 

jk 

j = 1 10: k = 1 6. (27) 

Some previous work in sociological literature also supports such a model 

(Bloch and Smith, 1977). Applying the results of Section 2 we obtained the 

following values for goodness-of-fit statistics 

X^ = 98.9 G^ = 101,2 

,2 X V 6 . = 52.5 G V 6 . = 53.7. 6. = 1,88. 

9 9 9 9 

Since X or G is larger than Xn n^^^^) = 73.3, the upper 5% point of x 

with I - s = 55 d.f.- we would reject the model if the survey design is 
9 9 

ignored. On the other hand, the value of X /6 or G /6 indicate that the mo­

del is adeguate. the significance level (or P-value) being approximately egual 



- 72 -

2 2 

to 0.52. The value of Xc when adjusted to refer to Xn (-15(55) is egual to 47.7 

which is also not significant. Moreover, in the present context with s(= 5) 

relatively small compared to I(= 60), the simple correction d, the average 

cell deff, (see Fellegi, 1980), is very close to 6: d = 1.905 compared to 

6 = 1.88: see Rao and Scott (1984) for a theoretical explanation. 
2 

The Wald statistic X,, is not defined here since two of the cells have 
W 

p., = 1 , but we made minor perturbations to the estimated counts to ensure 
"̂  2 2 
that P -I, < 1 for all cells and then computed X^. The resulting values of Xr. 

2 2 
are all large compared to X /6. (at least 30 times larger than X /6.) and vary 
considerably (1715 to 3061). Hence, the Wald statistic is very unstable for 
goodness-of-fit test in the present context. If the two cells having p ., = 1 

2 2 

are deleted, then X,̂  = 68.4 < Xn nc(53) = 71.0, indicating that the model (27) 

is adeguate. However, it is not a good practice to delete cells just to 

accomodate a chosen test statistic. The other problem with X.̂ , noted by Fay 

(1983), does not arise here since d.f. for V is large compared to the number 

of cells in the table-

The pseudo m.l.e., their s.e. and the corresponding s.e. under binomial 

sampling, all obtained under the model (27), are given in Table 1 along with 

Wald statistic x2(2|l) and G^ statistic 0^(2/1)/6.(H) for the hypotheses 

H. : 3- = 0, i=1, 2, 3, 4 given the model (27). As expected, the true s.e.'s 

are larger than the corresponding binomial s.e.'s. The hypothesis H^: 3it = 0 

(i.e., coefficient of E. is zero) is not rejected at the 5% level either by 
2 

the Wald statistic or G statistic. On the other hand, the coefficient, 
2 

32. of A. is highly significant. In testing the significance of individual 

coefficients we compare the values of X^(2|l) or 0^(2j1)/6.(H) to X^Q 05(1) = 

3.84, the upper 5% point of x - variate with 1 d.f. 

We have also tested the following nested hypotheses given model (27): Hs^ • 

33 = 3it = 0 (i.e., no education effect); H21+: 32 = 3it = 0 (i.e., no guadratic 

effects). Both H^i^ and H2it are highly significant: 

G2(2|1)/6_(H3I») = 282.2/1.64 = 172.1, x2(2|l) = 165.6 for H34: 

G2(2|1)/6. (H2it) = 242.2/2.28 = 106.3, x2(2|l) = 162.1 for H21+ compared to 

xS.05(2) = 5.99. 



- 73 -

Table 1: Pseudo m.l.e. 3^, s.e. (B^), xj(2|l) = B?/var (B.) and G^(2|l)/6.(H.) 

Values for the LFS Data under Model (27). 

0 

1 

2 

3 

4 

^̂i 

-2.76 

0.209 

-0.00217 

0.0913 

0.00276 

s.e.(3.) 

True Binomial 

0.557 

0.0132 0.012 

0.000173 0.000136 

0.0891 0.068 

0.00411 0.0030 

X2(2|1) 

24.6 

250.6 

157.3 

1.04 

0.45 

G2(2|1)/6.(H^) 

168.4 

102.1 

1.01 

0.46 

Unlike in the case of goodness-of-fit, the Wald statistics is stable for 

testing nested hypotheses and leads to values close to the corresponding 

G^(2|1)/6.(H) values. 

By the above test of goodness-of-fit and tests of nested hypotheses we have 

arrived at the following simple model involving only four parameters: 

V = In -J*̂  = 3o + 3iA -H 32A? + 33E. , (28) 
J'^ 1 - IT., .1 .1 •< 

Jk 

with 3o = -3.10, 3i = 0.211, 32 = -0.00218 and 33 = 0.1509 and corresponding 

standard errors are 0.247, 0.0130, 0.000172, and 0.0115. We .wi.ll use the 

model (28) in Section 3.2 to develop logistic regression diaanostics. 

3.2 Diagnostics 

We now illustrate the use of diagnostics developed in Section 2.4. 

(i) Residual Analysis 

The 60 cells in the two-way table were numbered .lexicographically, and the 

standardized residuals e. were computed under the model (28).arrived through 
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formal testing of hypotheses. Among the sixty e. , cells numbered 6 and 54 
A 1 

with p.. = 1 lead to very large e. values: 166.6 and 6.2 respectively. Among 
JK 1 

the remaining e. , the residuals numbers 7, 27 and 59 have values 3.84, 

2.73 and 2.52 respectively, whereas the expected number of je. j exceeding 2.33 

under model (28) is roughly 0.02 x 60 = 1.2. Hence, there is some indication 

that cells 7 and 27 could correspond to outlying cell proportions. 

The normal probability plot of G. is displayed in FIG. 1; the plot of x- is 

not given to save space since it is similar to the plot of G.. Figure 1 indi­

cates no strong deviations from a straight line configuration. The index plot 

of G. , Figure 2, is consistent with Figure 1. Hence, there is no evidence of 

outlying cell proportions when the components G. of G are used for residual 

analysis. 

(ii) Detection of Influential Cells. 

The index plot of m.. is displayed in Figure 3 which clearly points to 
r-^ / 2 2 / 2 

cells 1 and 6. Figure 4 displays the plot of X./X - X./X vs h.., where the 
9 9 

line with slope - 1 is given by X./X + ^ . . = 3ave(h''t. ). Here h-̂ . = h.. -i-
9 9 

X./X , and the values of h*. near unity corresponds to cells which are out­

lying or influential or both (Pregibon, 1981) and appear above the line in 

Figure 3. It is clear that cells 1 and 6, and to a lesser extent cells 7 and 

58, warrant further examination. 

(iii) Coefficient Sensitivity. 

The index plots for measuring coefficient sensitivity (A.(Ji) vs Z) are dis­

played in Figures 5, 6, 7, and 8 for 3o> 3i, 32 and 33 respectively. It is 

clear from the plots that cells 2 and 3 cause instability in 3o, 3i and 32> 

whereas 33 is affected by cell 7. 

(iv) Sensitivity of Fitted Values 

Figure 9 displays the plot of [G - G (-Jl)]/6, = c vs £ for assessing the 

impact of individual cells on fitted values. Significant peaks in this figure 

correspond to cells 2 and 3 and to a lesser extent to cell 7. Following Cook 

(1977) and Pregibon (1981), it may be noted that the comparison of c to the 

percentage point of x (s) (s = 4 in model (28)) gives a rough guide as to 

which contour of the confidence region the pseudo m.l.e. is displaced due to 

deletion of the £-th cell. The value c = 2.1 for cell 2 roughly corresponds 

to 78?o contour of the confidence region. 
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(v) Goodness-of-fit Sensitivity 

Figure 10 displays the plot of [G^ - G^(-£)]/6^ vs Z; the plot of 
9 9 

[X - X {-Z)]/6^ is similar and hence not displayed but the former plot is 

preferred (Pregibon, 1981). Significant peaks in this figure corresponds to 

cells 2, 3, 7, 27, 39 and 54 (values — 3), the most significant being cell 7 

with the value 5.4. By deleting cell 7 and recomputing the adjusted statistic 
2 2 

G (-£) = G (-Z)/S^{-Z) where S^{-Z) is the corresponding value of 6, , we get 

a value of 48.43 with 55 d.f. compared to G /6. = 55.3 with 56 d.f. 

Our investigation on the whole indicated that cells 7, 2 and 3 are possible 

candidates for deletion, but we feel that their impact is not significant 

enough to warrant their deletion - one would like to explain the variation 

among all cell proportions unless certain cells contribute heavily to the 

disagreement between the data and the fitted model. 
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APPLICATION OF LINEAR AND LOG-LINEAR MODELS 

TO DATA FROM COMPLEX SAMPLES 

Robert E. Fay^ 

Most sample surveys conducted by organizations such as Statistics 
Canada or the U.S. Bureau of the Census employ complex designs. The 
design-based approach to statistical inference, typically the insti­
tutional standard of inference for simple population statistics such 
as means and totals, may be extended to parameters of analytic mo­
dels as well. Most of this paper focuses on application of design-
based inferences to such models, but rationales are offered for use 
of model-based alternatives in some instances, by way of explanation 
for the author's observation that both modes of inference are used 
in practice at his own institution. 

Within the design-based approach to inference, the paper briefly 
describes experience with linear regression analysis. Recently, 
variance computations for a number of surveys of the Census Bureau 
have been implemented through "replicate weighting"; the principal 
application has been for variances of simple statistics, but this 
technigue also facilitates variance computation for virtually any 
complex analytic model. Finally, approaches and experience with 
log-linear models are reported. 

1. INTRODUCTION 

Statistics Canada has played a significant role in many of the methodo­

logical developments in the application of analytic methods to sample survey 

data. The intent of this paper is to review and to share some of the 

experience acguired by the U.S. Bureau of the Census with these same 

guestions. 

The "design-based" (also sometimes called "classical") mode of inference 

predominates in the analysis and presentation of data by most governmental 

statistical agencies, such as Statistics Canada and the U.S. Bureau of the 

Census, as well as by most large private survey organizations. The basis of 

Robert E. Fay, Statistical Methods Division, U.S. Bureau of the Census, 
Washington, D.C. 
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statistical inference with this .approach is the randomization employed to 

select the sample from the finite population. Construction of confidence 

intervals and tests of hypotheses are based on a large-sample theory tied to 

this randomization rather than to a specific model. Standard texts such as 

those by Cochran [4], Kish [17], and Hansen, Hurwitz, and Madow [14] present 

the elements of this theory. Hansen, Madow and Tepping [15] recently argued 

the advantages of this approach to the problem of inference from survey data 

over "model-based" methods; Sarndal [25] and Cassel, Sarndal, and Wretman [3], 

have discussed the choice between the model and design-based approaches from a 

somewhat different point of view. Most of the original development of the 

design-based theory of inference was specifically for population totals, pro­

portions, means, and ratios, and much of the corresponding literature for the 

model-based theory similarly concentrates on such basic statistics. 

Common analytic models, such as linear regression, log-linear models, and 

generalized linear models, on the other hand, were initially developed in the 

context of explicit stochastic models, for example, the normal or multinomial 

distributions. "Classical" inference here has generally come to refer to sta­

tistical inferences based upon such distributional assumptions (where "classi­

cal" may include "Bayesian" in this discussion). Developments in "robust" 

estimation avoid specific distributional reguirements, but often maintain 

assumptions not typically encountered in survey sampling, for example, that 

the error terms of the model are independent and selected from a symmetric 

population. 

Many researchers familiar with one or more of these analytic models have 

applied them directly to sample survey data without recognition of the possi­

ble conseguences of the sample design on the validity of inferences based on 

the usual distributional assumptions. The subject of this conference, of 

course, essentially concerns "design-based" alternatives that do reflect the 

effect of the design. Althouoh all other sections of this paper will address 

"design-based" methods, the next section considers some of the theoretical and 

practical issues in choosing between these two approaches, and how these con­

siderations appear manifested in practice at the Census Bureau. 

The third section briefly describes some of our experience at the Census 

Bureau with design-based methods for linear regression. The fourth section 

discusses an approach taken in the computer implementation of replication 
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methods, using "replicate weights". Although principally intended for the 

computation of variance for the usual survey characteristics, this technigue 

also facilitates computation of standard errors for complex models. This 

general approach may be particularly useful for less standard models, i.e., 

models other than the linear, log-linear, and other generalized linear 

models. Finally, some developments with respect to log-linear models are dis­

cussed, including specific computer software. 

2. CHOOSING BETWEEN DESIGN-BASED AND MODEL-BASED 
INFERENCE FOR ANALYTIC MODELS 

The choice between design-based and model-based inference may involve 

several factors, including effects of stratification, and existence or extent 

of dependence between sampled values ("clustering"). Many of the essential 

issues related to this general choice are enumerated by DuMouchel and Duncan 

[6] in their discussion of whether to incorporate survey weights in linear 

regression. 

If Ŷ  represents a column vector of observations Y. , and X, = (̂- •)» J = 1» 

..., p represents predictors for Ŷ  the model 

Y = X3 -(- e (2.1) 

with £ = {e. } composed of independent, identically distributed error terms 

.2 E.~N(0, a ), has as its maximum-likelihood estimate for 3 
1 ' ' ^N^ 

3 = (X^X)"^X^Y. (2.2) 

Typical survey estimation associates a weight W. with each survey case i, 

based on the inverse of the probability of selection, often adjusted by 

factors for nonresponse and ratio estimation. If jW represents a diagonal 

matrix of W., then 

3,,, = (X^WX) ^X^WY (7.3) 
^^ r\jj-s.j r\U 
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gives a design-consistent alternative incorporating the weights. Under the 

original stochastic model justifying the choice of (2.2), or, more generally, 

if the e.'s are uncorrelated with zero expectations and egual variances, (2.3) 

has a larger sampling variance than (2.2). On the other hand, if these 

specific assumptions fail (particularly concerning the expectations of the 

e.'s), (2.3) remains a design-consistent estimate of the census parameter, £*, 

defined as the application of (2.2) to the values in the complete finite popu­

lation, whereas computation of (2.2) for unweighted sample cases cannot 

guarantee consistent estimation of 3*. 

DuMouchel and Duncan further elaborate on the issue of choosing between the 

variance advantage of (2.2) under the simple model and the consistency of 

(2.3) under model failure. Their presentation includes a number of citations 

to earlier commentary by others on both sides of this controversy, and can be 

recommended for its balanced perspective. Additionally, they propose a test, 

which can be performed with typical computer packages for linear regression, 

of whether the weighted and unweighted regressions are sionificantly differ­

ent. If the test rejects the hypothesis that (2.2) and (2.3) are consistent 

estimates of the same set of coefficients, then the argument for consistency 

with the census value, ^*, favors (2.3). If the test does not reject, the 

authors prefer (2.2) with its (generally) lower variance. 

If a researcher rejects (2.2) on the basis of the test proposed by 

DuMouchel and Duncan, and computes (2.3) instead, the implications of this 

choice are relatively clear; that (2.3) is selected over (2.2) for its consis­

tency under failure of the model. If the test "accepts" the hypothesis, and 

(2.2) is used with its associated standard errors derived under the model, 

caution is nonetheless reguired in uncritically interpreting (2.2) and associ­

ated confidence intervals as statements about the census parameter 3*. In 

many applications, choice of (2.3) and its associated reliability could be 

defended as the only "safe" interpretation of the data as an estimate of 3* 

when model failure is suspected, in spite of possible acceptance by the test 

of a hypothesis of no significant difference between the weighted and un­

weighted analyses. 

The paper of DuMouchel and Duncan clearly illustrates the most essential 

consideration in choosing between model-based and design-based inference, 

namely, efficiency under a correctly specified model versus consistency under 
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failure of the assumptions of the model. Two footnotes may be added. Al­

though ignoring survey weights is inconsistent under any design-based approach 

and can only be justified under model-based approaches, not all model-based 

inference reguires ignoring the information represented in the weights. 

Rubin [24] gave a concise explanation of this last point in his discussion 

of the paper of Hansen, Madow, and Tepping [15]. Referring to the more exten­

sive work of Rosenbaum and Rubin [22], Rubin pointed out that a complete 

Bayesian interpretation of the observed data reflects not only consideration 

of the functional and distributional relationships in the total population 

(such as models like (2.1) for the complete population) but also the process 

by which the sample observations become observed. (In a randomized design, 

"propensity" to be included in the sample may be eguated to probability of 

selection and the "propensity score" in Rosenbaum and Rubin [22].) On the 

basis of this consideration, Rubin [23] presented an interesting justifica­

tion, from a Bayesian perspective, of the use of randomization in sample 

selection, a procedure that has been staunchly defended by proponents of 

design-based inference but treated with some disdain by many proponents of 

model-based inference. Conseguently, Rubin advocates model-based inference 

tempered by careful analysis of the effects of selection or propensity to be 

included in the sample; these principles in some circumstances could lead to 

either (2.2) or (2.3), or perhaps alternatives to both. 

As a second footnote, DuMouchel and Duncan explicitly restricted their 

attention to the issue of weighting for stratified simple random sampling. An 

egually important issue in many applications is the effect on inferences of 

clustering, that is, dependencies among sampled units due to their joint 

inclusion in the sample by design, such as persons in sampled households or 

persons in neighboring households jointly selected into sample. In self-

weighting samples (where all sample cases have egual weight), design-based and 

model-based analyses may often produce the same estimates of the parameters of 

an analytic model but substantially different assessments of their reliabi­

lity, unless the dependencies from clustering are explicitly incorporated into 

the model-based inference. Unlike the issue of the use of weights in strati­

fied simple random samples, where a model-based approach may be defended if 

the error terms conform to the original full specification of the model, a 

known dependence among the observations due to clustering (to any serious 
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degree) inherently conflicts with any assumption of independence of errors 

that might be reguired by an overly simplified model. Hence, models that do 

not reflect known effects of clustering automatically fail to model the data 

properly. 

Design-based inference is the institutional standard at the U.S. Bureau of 

the Census; yet, practice incorporates both modes of inference with respect to 

models. Researchers are most likely to adhere strictly to a design-based 

standard for inferences to national relationships based upon complex samples. 

When survey weights vary by only a modest degree or not at all, and the 

effects of clustering may be presumed small, model-based inferences for ana­

lytic models appear to enjoy acceptance. The attraction of model-based 

inference in these cases, no doubt, reflects less a philosophic choice than a 

practical one; model-based methods are more accessible and familiar than the 

design-based counterparts. (The author has encountered applications meeting 

such conditions on variation on the weights and effects of clustering where 

design-based methods simply duplicate model-based conclusions, thus justifying 

the substitution of model-based methods under similar favorable circum­

stances. When the weights do appreciably vary, or characteristics are subject 

to considerable clustering, however, examples are easily found where the two 

modes of inference substantially disagree, and where the model-based inference 

is highly guestionnable.) 

Specific areas of application at the Census Bureau appear almost exclu­

sively model-based. Methods for imputation of missing data, in particular, 

some of which derive from explicit parametric models, characteristically avoid 

any consideration of design-based weights. Another specific field of study, 

estimation for small areas or domains, often reflects a mixed strategy of 

design- and model-based inference. Thus, practice at the Census Bureau 

appears to parallel the choice outlined by DuMouchel and Duncan; efficiency 

(and simplicity) under the assumed model versus consistency under model 

failure. Strict inference to national relationships are most likely to elicit 

design-based methods, while less formal analyses or analyses in which the 

model is hoped correct (missing data) often favor a model-based approach. 



88 

3. DESIGN-BASED INFERENCE FOR LINEAR REGRESSION 
AT THE U.S. CENSUS BUREAU 

In general statistical practice, linear regression is probably the single 

most popular analytic technigue. Most data collected by the Census Bureau, 

particularly for the "demographic areas" involving characteristics of persons 

or housing, are categorical; linear regression, in any form, is used rela­

tively seldom at the Census Bureau by comparison. 

Fuller [13] developed basic results in design-based inference for linear 

regression, using methods based upon Taylor-series expansions (lineariza­

tion). These results are incorporated in the computer program SUPER CARP 

[16], whose development was partially supported by the U.S. Bureau of the 

Census. We can report successful use of the program ourselves, although it 

has been applied to only a few problems thus far. The report by Moore [26] is 

probably the most accessible illustration of the use of SUPER CARP at our 

institution. 

The next section discusses the implementation of replication methods 

through replicate weights, and we have aiven preliminary thought, but not yet 

attempted to implement, alternative computer software specifically designed 

for this approach. No substantial philosophic difference with SUPER CARP is 

implied by these considerations, although replication methods tend to give 

slightly larger and thus more conservative standard errors than lineariza­

tion. The intent in developing this software would be to take advantage of 

replication methods developed for some of our surveys, which can be made to 

reflect the effects of complex estimators more completely than programs imple­

menting linearization. 

4. COMPUTING DESIGN-BASED VARIANCES THROUGH REPLICATE WEIGHTS 

Replication methods, such as jackknife, half-sample, and bootstrap tech­

nigues, represent the principal general alternative to linearization for 

design-based variance estimation for nonlinear statistics. Kish and Frankel 

[18] presented an early discussion of the use of replication for such purposes 

and much research has been conducted since. 

The popularity of replication for variance estimation has gone through 
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cycles. Linearization is a powerful technigue, of course, and relationships 

presented by Binder [1] facilitate its implementation for a wide class of 

analytic models. Census Bureau surveys tend to employ guite complex estima­

tors, however, and fully representing the effect on the sampling variances of 

these estimators has freguently proven to consume large amounts of profes­

sional time, both by statisticians and, especially, experienced computer 

programmers. Recently, variance computations for a number of surveys have 

used replication methods achieved through a "replicate weighting" approach. 

The principal features of this method are to provide a unified approach to 

enable the computation of variances for a large number of survey characteris­

tics and to simplify the estimation of variance for complex analytic 

statistics. 

The replicate weighting approach is not a new discovery; some of its 

earlier history is reported in [5], which also describes experience acguired 

by the U.S. Bureau of Labor Statistics, Bureau of the Census, and Westat, 

Inc. The algorithm may be said to represent the variance from a (possibly 

complex) design and a (possibly complex) survey estimator in the form of data 

to be associated with the survey data file rather than as a set of (possibly 

complex) variance formulas reguiring computer programming. Familiar replica­

tion methods, such as balanced half-samples and the jackknife, may be repre­

sented through replicate weights, but the algorithm also facilitates the 

implementation of a much wider class of resampling plans, as in [7]. In [10], 

it is shown that there exists a resampling plan (actually an infinite number 

of resampling plans) corresponding to essentially any familiar variance esti­

mator for estimates of population totals, such as variance expressions for 

multi-stage designs, Yates-Grundy estimators, etc. By representing complex 

variance relationships as data, variance computation becomes accessible to a 

larger group of data users. 

Estimation in many surveys assigns weights W^g to each case i, so that for 

any characteristic X. , estimates of total are given by the weighted sum of the 

characteristic times the survey weight 

Xo = I WioXi. (4.1) 
i 
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The product of the replicate weighting approach is a set of additional 

weights W. , r = 1, ..., R, for each survey case i, from which alternative es­

timates of total 

X = I ¥. X. (4.2) 
r ^ ir 1 

1 

may be computed. The estimate of variance is given by 

^ ^ R /, ,s 

Var(Xo) = y d^(X^ - X Q ) ^ (4.3) 
r=1 ^ ^ 

for predetermined d independent of the choice of survey characteristic X. 

(As an example, a simplified balanced half-sample estimate of variance, 

ignoring the effect of any complex survey estimation reflected in the weights 

Wj[o> would be given by assigning weights W. egual either to 2Wio or to 0 ac­

cording to whether case i was included in half-sample r, and setting d = 1/R 

for each r.) More generally, for a smooth function S that are functions of 

weight! 

(4.1), 

weighted population estimates of total XQ , ..., XQ , each of the form 

V;r{s(X^O^^ .., xi'^h}-- I d'iSixi'^, .., X^')) - S { x i ' \ .., X^o^^}^ (4.4) 
r=1 ^ ^ ^ 

The estimator S in (4.4) may stand for the sometimes extremely complex estima­

tors often used in survey estimation, incorporating noninterview adjustments 

and ratio or iterative ratio estimation. Furthermore, these forms of complex 

survey estimation, if incorporated in the weights W., may be included in the 

derivation of W. as well. Thus, variance computation with this approach 

falls naturally into three distinct steps or phases: 

1. Generate replicate basic weights W. * for the simple unbiased (Horwitz-

Thompson) weighting of the data given by the basic weights Wj[o*' 

2. Compute replicate (final) weights, W. , by applying the same noninter-



- 91 -

view and ratio estimators to the replicate basic weights, W. *, as the 

original estimation procedures used to compute W-[o f"rom the Wĵ g*-

3. Apply (4.4) to the estimation of variance of simple or complex 

statistics. 

The modularity of the preceding three phases is a key feature of this tech­

nigue: general programs may be used to perform phases 1 and 2, or custom pro­

grams may be written to cover unusual circumstances as reguired. For a single 

survey, phases 1 and 2 need be performed only once. Programs for phase 3 need 

take no specific note of the design or estimator and can be run as needed 

by any user with access to the replicate weights W. produced in the second 

phase. 

Although most applications of this method at the Census Bureau have been to 

estimate variances for basic survey characteristics such as means, totals, or 

proportions, (4.4) lends itself well to analytic purposes as well. This 

approach fully represents the effects of complex designs and estimators, 

whereas in practice implementation of linearization often is restricted to the 

more common and simple situations. Furthermore, although specific computer 

software may be developed to implement linearization for common analytic 

methods, such as linear regression, log-linear models, generalized linear 

models, etc., formula (4.4) enables researchers to compute variances for more 

specialized analytic models for which no linearization methods have been pro­

grammed, since (4.4) only reguires that the researcher apply complete data 

algorithms to the alternative estimates produced by the replicate weights. 

5. DESIGN-BASED INFERENCE FOR LOG-LINEAR MODELS 

Log-linear models, which express the logarithm of the expected freguencies 

for categorical responses as a linear function of unknown parameters, encom­

pass both factorial models for cross-classified categorical data, and logistic 

models for one or more dependent categorical variables as a function of any 

combination of categorical and continuous predictors. Bishop, Fienberg, and 

Holland [2] provided one of the earliest books in this rapidly expanding 

field. 
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Many log-linear models, particularly those for fully cross-classified 

categorical data, involve a large number of parameters. The three most 

typical problems of inference are? 

1. To compute standard errors and confidence intervals for the individual 

estimated parameters, 

2. To test the significance of the contribution of specific sets of para­

meters to the fit of a model, 

3. To test the overall goodness-of-fit of the model. 

In the context of simple random samples, standard results in maximum like­

lihood theory provides an answer to these guestions, although the Pearson 

chi-sguare test rightfully enjoys greater popularity than the likelihood-ratio 

chi-sguare test as a solution to the third problem. 

Koch, Freeman, and Freeman [19] extended the Weighted Least Sguares (WLS) 

method to complex samples, thereby providing solutions to each of the three 

principal inferential problems. While this method has proven of substantial 

general use, it is limited in some applications by the necessity to produce 

highly precise estimates of the design-based covariance of the sample esti­

mates before the asymptotic theory approximates the actual performance of the 

WLS procedures. (Further comments on the limitations of WLS are given in [8] 

and [11].) 

Fellegi [12] made an early contribution to the development of alternative 

tests to WLS for specific situations. More recently, Rao and Scott [20], [21] 

have formulated and extended a set of related methods to cover the problem of 

testing for a general class of models including log-linear models. Develop­

ment of these, methods has been closely associated with Statistics Canada. 

A less well-known "jackknife chi-sguare test" [11] gives an alternative 

approach to the general problem of design-based tests of hypotheses. This 

test is based upon replication, using (4.4) and a similar expression related 

to the approximation of the first-order bias (as in the usual jackknife) to 

draw approximate inferences about the null hypothesis distribution of the 

usual chi-sguare tests applied directly to the weighted survey estimates. The 

method shares much in common with those developed by Rao and Scott. Although 

a full comparison of the relative merits the jackknifed test and the tests 
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proposed by Rao and Scott has not been conducted, the preliminary suggestion 

is that both work well and neither entirely dominates the other. (Further 

comments are given in [11].) 

The jackknifed tests do appear somewhat easier to implement, however, 

especially to tables involving a large number of cells. A FORTRAN computer 

program, CPLX (described in [8] and documented by [9]), implementing the jack­

knifed tests for factorial log-linear models for cross-classified data is now 

in the public domain. The program also computes replication-based standard 

errors for parameters of log-linear models, thus also addressing the first of 

the three problems of inference listed earlier. Although CPLX fits well into 

an environment in which other survey variances are also estimated through 

replication approaches, such as the replication weighting technigues described 

in the previous section, these circumstances are by no means necessary to use 

the program, and a number of researchers within and outside the Census Bureau 

have applied the program in a variety of settings. 

In time, the author hopes to be able to incorporate the methodology of Rao 

and Scott into a prooram like CPLX in order to make both methods available. 

For the short term, however, the current version of CPLX should be of help to 

researchers seeking design-based inferences from survey data. 
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LEAST SQUARES AND RELATED ANALYSES FOR COMPLEX SURVEY DESIGNS 

Wayne A. Fuller 

1. INTRODUCTION AND MODEL 

Assume that a sample of clusters of elemental units is selected from a 

finite population divided into L strata. The total sample of n clusters 

(primary sampling units) is given by 

L 
I 

h=1 
n = ^E^ n^. (1) 

where n^ > 2 is the number of clusters selected in the h-th stratum. A column 

vector of characteristics 

~hij - ^^hijV ^hij2' '••' ^hijp^' ^^^ 

is observed for the j-th elemental unit in the i-th cluster of the h-th stra­

tum. The vector Ŷ. . . is guite general. For example, some elements of the 

vector can be the powers of products of other entries. Also, one element can 

be, and often will be, identically egual to one. The cluster totals for the 

vector are defined by 

m. . 
hi 

~hi. = jf-i ~hij- ^^) 

where "fiuĵis the number of elements in the hi-th cluster. 

We shall be interested in the behavior of locally continuous functions of a 

linear function of the vector of cluster means 

Wayne A. Fuller. Department of Statistics, Iowa State University. 
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e = E W. n. ^ zf̂  Y. . , ( 4 ) 
~ |-,_-| h h j^_i ~ h i . 

where W. are f i x e d we igh ts . Often the weights are h 

Ŵ  = N^N \ (5) 

where N. is the number of clusters in the h-th stratum and N is the total num-
h 

ber of clusters in the population. For the weights (5) the linear function in 

(4) is the usual unbiased estimator of the finite population mean per clus­

ter. Another set of weights that often is of interest is the set of unit 

weights 

Wu = n~^n^. (6) 
h h 

Our model permits us to consider functions of the mean per element. The 

usual estimator of the mean per element for a particular Y-variable is the 

ratio of the mean per cluster for the Y-variable to the mean per cluster of 

the number of elements. The mean number of elements per cluster is the clus­

ter mean of a Y-variable that is identically one. 

Our discussion can be easily expanded to include various forms of subsam-

pling within clusters. Because such expansions add little to the generality 

of the discussion and add considerable notational complexity, we restrict our 

attention to single stage sampling within strata. 

Our discussion rests heavily on the following central limit theorem for 

samples from a finite population. 

Theorem 1. Let {K ' r = 1, 2, •..} be a seguence of stratified finite popu­

lations. Let the population in the h-th stratum of the r-th population be a 

random sample of size N . > N ^ . selected from a p dimensional infinite 
^ rh - r-1,h 

population with absolute 2 -•- 6, where 6 > 0, moments bounded by Mr < ". Let 

the covariance matrix for the rh-th infinite population be ^_u- Let L > Lj,_.̂  

be the number of strata in the finite population and let a simple random 
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sample of n . (n . > 2 and n . > n . . ) u n i t s be se l ec ted in the h-th s t r a -

tum. Let f , = N . n . b e a t r i a n g u l a r array such t h a t 

" ^ '^rh^ '^fu^ 1' 

where M__ is a fixed number. Let Y . . be the total for the i-th cluster se-
fu "rhi 

lected in the h-th stratum for the r-th population and let 

e 
L n . 
r _, rh 
^ W . n̂ ji Z Y^. . , 

f^--] rh rh -[.-i ~rhi.' 
Lr , ^l^ 

9 ^ = E' W . N~^ E Y . . , ~rf |-,_i rh rh ĵ.-i ~rhi.' 

e = E"̂  W^. li . , 
~r f̂_-| rh~.h.. 

where 9 _ is the finite population parameter and p , is the mean of the in-
1.' ''*'• n • • 

finite population used to generate the h-th stratum of the finite population. 

Assume 

0 < M3L < n E^ W^. n"̂ ^ E . r |-|_i rn rn ~rn 
< M < 00 

su 

where the M's are fixed numbers and assume tha t 

L 
n = E n , 

r h=1 rh 

r i.i2 _ - l i - l ,.,2 _ - 2 sup [ E' W;. n ^ ' ] ' y^Lnu -> 0 , 

as r -»• «>, where W , is a triangular array of weights. Then 
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[V[L - 9 p}] ̂ 9 - 9 _) *-> N(0, I), 

[V{9 - 9 }]"^(9 - 9 ) L» N(0, I), 

where 

V I L - 9 p} = ^ W\(1 - f . )n".̂  E . , ~'~r ~rf^ h_-| rh rh rh ~rh' 

Vfi, - 9 } = Ê  Ŵ . n } E . , 

"̂  h 
^ u = (n u - 1)~^ ^ (Y u- - Y . )(Y . . - Y . )', ~rh rh -[-.i ~rhi. ~rh.. ~rhi. ~rh.. 

_, rh 
Y , . - n I E Y , . . ~rhi. rh ĵ-i ~rhi. 

The proof of this theorem follows from Theorems 1 and 2 of Fuller (1975) 

and can be extended to multistage samples. Also see Krewski and Rao (1981) 

and Isaki and Fuller (1982). 

Most of our applications are to continuous functions of ̂ . 

Corollary 1. Let the assumptions of Theorem 1 hold. Let g(9) be a vector 

valued function of ^, where g( 9) is continuous with continuous first deriva-

tives for £ in the sphere |£ - 9 j < 6 for all r, where 6 > 0 is fixed. Let 

G(^ be the nonsingular matrix of first derivatives of g(^), where the ij-th 

element of G(9) is 

9qi(£) 

89"r' 
J 

g.(9) is the i-th element of g(9) and 9. is the i-th element of 9. Then 
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[G(i )V{9„ - 9 p}G'(9 )]~^[g(9 ) - g(9 _)] L> N(0, I), 

[G(l )V{L - 9 }G'(9 )]"^[g(9 ) - g(9 )] L> N(0, I). 

Corollary 1 is stated for the Taylor estimator of the variance of the approxi­

mate distribution of g(9 ) - g(5 ), Suitably defined replication estimators 

of the variance can also be used. Replication methods include balanced repli­

cation methods (see McCarthy (1969)), jackknife methods (See Miller (1974)) 

and bootstrap methods (see Efron (1979, 1981)). While these methods can be 

adapted to the sampling situation, the adaptation is not always immediate (see 

Rao and Wu (1983)). 

One class of continuous functions of ̂  that deserves special attention is 

that obtained by using ^ as the dependent variable in a generalized least 

sguares fit. 

Corollary 2. Let the assumptions of Theorem 1 hold. Let £ satisfy 

9 = h(a). 

where a i s a k-d imensional vec tor (k < p ) , h(a) i s a cont inuous f u n c t i o n o f a, 

w i th cont inuous f i r s t and second d e r i v a t i v e s fo r a l l ot i n an open sphere 

con ta i n i ng the t r ue a for a l l r . Let the parameter space fo r ot be an open 

bounded subset o f k-d imensional Eucl idean space. Let a be the vector tha t 

min imizes 

[ 9 - h ( a ) ] ' V " ^ | 9 - 9 } [ 9 - h (a ) ] 

Then 

where 

[Vk , } ] " ' ( a , - a ) —L> N(0, I ) , 

Vf i } = [H(iL)V"^[L - 9 }H'(a ) ] " ^ 
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and H(a ) is the matrix of first derivatives of h(a) with respect to a evalu-

ated at a. 

2. MEANS, RATIOS AND REGRESSIONS 

An elementary application of Theorem 1 is the estimation of the mean per 

cluster and the setting of approximate confidence limits for the mean per 

cluster. Often the parameter of interest for the mean estimator is the finite 

population mean per cluster, in which case the finite population correction 

(1 - f. ) would be included in the variance estimator. 

A slightly more complex application is the estimation of the difference 

between the means per cluster for two domains. If we let 

Y..... = observation on characteristic of interest if element hij is in 

domain 1 

= 0 otherwise, 

Y, . .„ = observation on characteristic of interest if element hij is in 
hi J 2 

domain 2 

= 0 otherwise, 

Y. . ... = 1 if element hij is in domain 1 
hi J 3 

= 0 otherwise, 

Y, . ., = 1 if element hii is in domain 2 
hij4, 

= 0 otherwise. 

the estimated difference between the mean per element in the two domains is 

g(9) = g(Y ) = Y"^ Y - Y-1 Y . (7) 

Two methods of computing the Taylor estimator of variance are often used. The 

first method computes the estimator of Corollary 1 directly from the matrices 

£(9 ) and V̂ {0 - 9 } or V̂ {9 - 9 }. An algebraically identical computational 

procedure is to define the observations 
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Z(Y. . , i) = Z. . = G(9)(Y, . - Y. ) (8) 
~~hi.' ~^ ~hi ~ ~̂  ~hi. ~h.. 

and to compute the ordinary stratified estimator of the variance of the mean 

per cluster for Z^.. , 

v{z } = v{g(Y )} 

where 

E Wj(1 - fh)n:^(n, - 1)"^ E^(Z. . - Z. )(Z. •- Z, )', (9) 
h-1 h h h h j_i ~hi ~h. ~hi ~h. 

h=1 h~h-

1, = n~^ ir Z, ., 
•^h. h j-i ~hi 

For example, the computational form (9) is used in Super Carp. See Hidiroglou 

et al. (1980, p. 32). 

The analyst may be interested in inferences for the particular finite popu­

lation sampled or for the superpopulation when working with guantities such as 

differences of means. 

One of the more freguent analytic uses of survey data is the computation of 

regression eguations. In fact, the difference between domain means can be 

expressed as a regression coefficient. Although the vector of regression 

coefficients is of the form g(9̂ ) described in the previous section, it may be 

advantageous to partition the ^-vector of Section 1 into several parts and to 

give the regression coefficients explicit expressions. The regression egua­

tion can be written as 

Y. .. = X'. .3 + e. .., (10) 
hij ~hij~ hij 

where Y. .. is the dependent variable, the vector X, . . is a k-dimensional 
hij ~hij 
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vector of explanatory variables. The weighted least sguares estimator of 3 is 

L n, m, . L n, m, . 
h hi _i h hi 

3u, = [ J: S J: X. . .W. . .X'. .] ^ E E E X, . .W, . .Y, . .. (11) 
~W h=1 i=1 j = 1 ~hiJ hij~hij-' h=1 i=1 j=1 ~hij hij hij 

The weights W, . . are permitted to be a function of hij, but we will assume 

that the weights are fixed in the sense that they depend only on the elemental 

identification. This precludes from consideration (except as an approxima­

tion) the use of weights that are a function of other elements entering the 

sample. 

Under mild assumptions on the moments of the superpopulation generating the 

finite population. Theorem 1 is applicable to the estimator defined in (11). 

If the selection probabilities are denoted by TT. . ., then the estimator 3,, is a 
^ ^ hij ~W 

consistent estimator of the finite population vector 

L N, m, . L N. m, . 
h hi , h hi 

B_ = [ E E E X. . .W. . .IT. . .X'. .] ^ E E E X, . .W, . .TT. . .Y. . .. (12) 
~<^ h=1 i=1 j = 1 '̂ i.l hij hij~hi.r h=1 i=1 j=1 ~hij hi.i hij hi.i 

It follows from (12) that the estimator (11) is a consistent estimator of the 

finite population regression coefficient when W, . . is proportional to the in­

verse of the selection probabilities. The error in ^ as an estimator of ^_ 

is 

L ''h ""hi , •- "h ""hi 
a. - Bf = [ E E E X, . .W. . .X;.. .] ^ E E E X. . .W. . .v, . ., (13) 
^ ~'̂  h=1 i=1 j=1 '̂ 1.1 hij~hij ' h=1 i=1 j=1 ~hiJ hij hi,i' 

where 

V, . . = Y. . . - X'. .B^. 
hij hi J ~hij~f 

By Theorem 1 and Corollary 1 a consistent estimator of the variance of the ap­

proximate distribution of 3,, - 3 is 
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^ •- "h \ i 
A = E E E X . . .W. . . X ' . . , 
~ h=1 i=1 j=1 ~^^J h i j ~h i , ] 

_ L n. ^ ^ 
G = (n - 1 ) (n - k) ^ E n. (n, - 1 ) " ^ E " d. . d ' . , 
~ h=1 n I" i=1 ~ h i . ~ h i . 

h i '• 
d. . = E d. . . , ~ h i . ^_i 'M-ii.i ' 

d. . . = W, . .X. . .V. . . , h i j h i j ~ h i j h i j 

n = E E m . . 
h=1 i=1 ^^ • * 

V. . . = Y. . . - X'. .3,.,, hij hij ~hij~W 

and £ is the superpopulation analog of B . This particular form of the esti­

mator of variance was suggested by Fuller (1975) and is used in Super Carp. 

One of the freguently asked guestions faced by survey statisticians is: "In 

computing the regression eguation, should I use the sampling weights?" As 

with most such guestions, the answer is "It depends." The fact that the 

guestion is asked generally means that the ouestionner has in mind inference 

for a population beyond the finite population sampled. This does not mean 

that the particular superpopulation is completely defined or definable. It 

does suogest that the guestionner is postulating that the finite population is 

generated by a superpopulation in which some type of linear model holds. One 

guantification of the hypothesis that weiahts are not reguired is the 

superpopulation hypothesis 

0 ~ir ~(1) 

where the ^'s are superpopulation analogs of (12), 

N, m, . L N. m, . 
h h i , , _ ĵ  h , h i 

~Tr 
[ E E Ec J: [X. . .If. • - X : - • } ] " E E E r { E X. • • ir. •-Y. • • } , 
••h^i i--\ K j = i ' - h i j h i j ~ h i j J - ' h=1 i=1 5 j = 1 ' ^ i . l h iJ hi. l 
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\ %i , _ L N^ m^ 
9,,. = [ E E Ef{ E X...X'..}]"^ E E E - { E X...Y,..}, (16) 
~(1) h=1 i=1 5 j=1 ~hiJ~hijJ h=1 i=1 5 j=1 ~hij hij^' 

and Er denotes expectation with respect to the superpopulation. This is a 

testable hypothesis. It seems that, at a minimum, a test of this hypothesis 

should be constructed if one performs an unweighted analysis of a sample with 

unegual selection probabilities. 

If the null hypothesis also includes the hypothesis that the estimator with 

unit weights is the minimum variance estimator, then the test of the hypothe­

sis is given by the statistic 

^n-L-2k = ̂ "' 12^22^- ^''^ 

where 

-^ ^ •- % \ i , "- "h ""hi 
(6- 61) ' = [ E E E Z , . . Z ' . . ] " ^ E E E Z . . . Y . . . . 

1 2 h=1 i=1 j=1 ~ h i j ~ h i j h=1 i r i j =1 ~ h i j h i j 

Z' . = ( X ' . . , X ' . .W. . . ) , ~ h i j ~ h i j ' ~ h i j h i j 

and 

(18) 

is defined by (14) with L . . replacing^.... As the notation suggests, the 

statistic is approximately distributed as Snedecor's F with k and n - L - 2k 

degrees of freedom. 

Example 1. Table 1 contains observations on 37 area segments collected by the 

Statistical Reporting Service, U.S. Department of Agriculture in northcentral 

Iowa in 1978. Two determinations on the hectares of soybeans are reported. 

The first is obtained by personal interview in the June Enumerative Survey. 

The second is obtained from a classification of Landsat data based upon a 

classifier developed by the Statistical Reportina Service. The original ob­

jective of the study was to use the Landsat data to construct a regression 
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estimator of the total acres. We use the data to illustrate the computation 

of regression statistics from survey data. The sample most nearly approxi­

mates a stratified sample with strata identified in the column headed 

"county". The inverse of the sampling rates is given in the weight column. 

The estimated regression eguation for the regression of interview hectares on 

satellite hectares defined by estimator (11) is 

Y = -11.845 + 1.1602X, 
(8.332) (0.0922) 

where the numbers in parentheses are the standard errors obtained from the 

estimated covariance matrix calculated by eguation (14). 

Calculations were performed using Super Carp. If the eguation and standard 

errors are calculated using unit weights in eguations (11) and (14), respec­

tively, we have 

Y = -3.927 -H 1.0850X. 

(9.282) (0.0963) 

If we calculate the F-test suggested in eguation (17), we obtain 

23 ~ 2.81. 

At first glance, this test is large enough to cause to suspicion about the 

eguality of the two coefficients. Because this sample is very small and 

because of the structure of the weights, the test is nearly a test between two 

lines, the line for county one, and the average line for the remaining 

counties. In this small sample the deviations from the line in county one are 

small. Hence, the estimated standard errors of the coefficients for the two 

added variables are small. This phenomenon is discussed further in Section 

3. If one uses the ordinary regression F-test that assumes homogeneous error 

variances and ignores the stratification, one obtains 

33 ~ * 
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While this statistic is not distributed as Snedecor's F, it does make one 

feel more comfortable with the assumption that the two weighting procedures 

are estimating the same eguation. 

Table 2 contains the standard errors of regression coefficients estimated 

under alternative assumptions. The estimated standard errors- for the inter­

cept behave much as one might anticipate. The stratified weighted sample pro­

cedure has the smallest estimated standard error followed by the stratified 

unit weight procedure,and the ordinary least sguares procedure. Do not forget 

these are estimated standard errors. The two stratified procedures are con­

sistent under the stratified model. The weighted estimator has smaller 

variance because the observations for stratum 1, the stratum with the largest 

weight, lie closer to the estimated line than do the points in other strata. 

The ordinary least sguares estimated standard error is not consistent under 

the stratified model. If the sample is treated as a cluster sample of coun­

ties, the estimated standard errors for the intercept are about 30 to 40 

percent larger than the corresponding values for the stratified sample. 

The estimated standard errors for the slope display a different behavior. 

The smallest estimated standard error is associated with the unit weight clus­

ter estimation, and the largest estimated standard error is associated with 

ordinary least sguares. Roughly speaking, the variation of slopes among clus­

ters is small relative to the within cluster variation. Because the weights 

are inversely correlated with the observed variability, the weighted estima­

tors have smaller estimated variances. This is a small sample, but it is 

sufficient to demonstrate that unit weights do not always produce smaller 

variances than sample weights and that stratification and clustering can have 

rather complex effects on the estimated variances of the regression 

coefficients. 

3. WHAT IS A LARGE SAMPLE? 

Our discussion has rested on the large sample properties of estimators and 

of estimators of variance. If the limiting normal distribution is being used 

to establish confidence intervals, the size of the sample reguired for a good 

approximation depends upon the nature of the original population. For 
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example, if the characteristic is a rare zero-one item (probability less than 

0.05, say), a very large sample (more than 1,400 for a simple random sample 

(Cochran, 1977, p. 58)) will be reguired for the normal approximation. The 

binomial with small p is only one example of the very skewed populations often 

encountered in sampling practice. Measures of size such as gross sales of 

firms, number of employees of firms, number of animals per farm, and family 

income are examples of skewed populations for which large samples are reguired 

before the distribution of the mean approaches normality. On the other hand, 

the distribution of the mean for items such as family size may approximate the 

normal distribution for small (less than 100) sample sizes. 

The use of the Taylor expansion is semi-nonparametric in that the approxi­

mation holds, in large samples, under very mild assumptions on the popula­

tion. The large sample reguirements are met if we have no isolated points in 

our sample space. The method may perform poorly in situations where the gene­

rating distribution and sample size are such that an observation or observa­

tions are isolated from the remaining cluster of points. We consider the 

problem of estimating the variance of the vector of regression coefficients 

used to test the effect of weighting on the coefficients in the soybean 

example. The original vector is 

(1, X, XW, W), 

and the hypothesis to be tested is the hypothesis that the coefficients for XW 

and W are zero. To illustrate the problems associated with variance estima­

tion for the vector of coefficients for the soybean data set, we create a vec­

tor that is orthogonal in the unit weight metric. The matrix of observations 

on the transformed independent variables is composed of the residuals obtained 

in the regression of each variable, except the first, on the elements preceed-

ing it in the original vector. Table 3 contains the transformed regression 

variables (X - X, RWX, RW). Only a few digits have been retained to make it 

easier to read the table. 

When we regress Y on (1, X - X, RWX, RW) we obtain 

Y = 95.34 + 1.085(X - X) -t- 0.093 x 10"^RWX - 0.015RW, 

(2.24) (0.093) (0.044) (0.023) 
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where the estimated standard errors were computed for a stratified sample with 

unit weights using expression (14). If the regression and standard errors are 

computed by ordinary least sguares, we obtain 

Y = 95.34 + 1.085(X - 5?) + 0.093 x lO'^RWX - 0.015RW. 

(3.37) (0.113) (0.086) (0.034) 

The estimated standard error for the coefficient of RWX obtained by Taylor 

methods is about one half of that obtained by ordinary least sguares methods. 

This can be explained by the data configuration. 

The first observation on RWX is much larger in absolute value than any other 

observation. Of the total sum of sguares for RWX, 67 percent is due to this 

observation. The Taylor approximation to the variance uses the sample vari­

ance of deviates called d. . . in (14) to estimate the variance of the statis-
~hij 

tic. The deviations from regression, denoted by v, are given in the last 

column of Table 3. The v value for observation one is among the smaller 

values. The mean sguare for the residuals is 421. The product (RWX)(v) for 

the first observation is -1113. This product is of the same order of 

magnitude as the product for observations 3, 33 and 36. Therefore, while the 

first observation is responsible for about 67 percent of the sum of sguares of 

RWX, it is responsible for only about 15 percent of the sum of sguares of 

(RWX)(v). This is because v for the first observation is less than one tenth 

of the average of the sguares of the other observations. Furthermore, the 

sguared deviation for the first observation is biased downward because the 

method of least sguares will cause the estimated plane to pass close to an 

observation that is separated from the other observations. Thus, if all of 

the observations have the same error variance, the Taylor method will produce 

an estimate of the variance of the coefficient for RWX that is biased 

downward. 

Did the procedure underestimate the variance for this sample? We do not 

know. If we use the parametric procedure of ordinary least sguares, we assign 

the pooled estimate of error variance to the separated observation. It is not 

possible to determine if this procedure is correct because our estimate of 

variance for the separated observation is a one degree of freedom estimator. 



- Ill -

In this situation most people will feel more comfortable assumino that the 

variance for the separated point is the same as the variance of the other 

points rather than taking the small observed variance of the single point. 

In the nonparametric world a single observation contains little information 

about the variability of the population that generated the observation. 

Furthermore, an observation separated from other observations is essentially a 

single observation. In the full parametric world the separated observation is 

in the fold because the separated observation is specified to have been 

created by the same generating mechanism that created the other observations. 

For data of the type displayed in Table 3, the answer obtained by parametric 

methods rests very heavily on assumptions about the error variance. 

In the estimation of variances, one measure of the numerical size of the 

sample is the number of cluster degrees of freedom. Thus, for example, the 

estimated covariance matrix for a k-dimensional vector random variable is 

singular unless 

L 
E (n. - 1) > k. 

h=1 h 

In setting approximate confidence intervals it seems reasonable to use Stu­

dent's t distribution with degrees of freedom no greater than E (n, - 1). Be­

cause the variance of an estimated variance is a function of the fourth mo­

ments of the population, estimated variances are notoriously unreliable. The 
1 

coefficient of variation for the sguares is 2' for the normal and considerably 

larger for many other common distributions. 

If the error variances in the strata are unegual or if unegual weights are 

applied to the estimates of different strata, the variance of the variance 

estimator can be considerably different from that suggested by a simple calcu­

lation of error degrees of freedom. Table 4 has been constructed using the 

data configurations of Table 1 to illustrate these effects on the estimated 

variance. In the first column we assume that stratification is ineffective in 

that we agsume each stratum variance is egual to the variance of the popula­

tion. We assume the parent population to be normal so that we can give an 

explicit expression for the variance of the variance. In this situation stra­

tification produces an estimated error variance for a mean with a variance 
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>-l that is proportional to (26.6)~ while a simple random sample produces .a 

variance of the estimated variance that is proportional to 36 . The effeg-

tive degrees of freedom for the stratified sample is slightly less than 27 

because of the unegual sample sizes within strata. If we use the sample 

weights of Table 1 and the usual stratified variance estimator, the variance 

of the estimated variance is proportional to (4.6) . This large reduction is 

due to the large weight for the first stratum. If the variance in the first 

stratum is one half of the variance in other strata, then the effective de­

grees of freedom for the variance estimator is 12.4. In the last column we 

give the effective degrees of freedom for the simple random sample if the 

variance of the simple random sample is twice that of the stratified sample. 

This illustrates the fact that stratification can reduce both the variance of 

the estimated mean and the variance of the estimated variance of the mean. 

While we are unable to specify the number of error degrees of freedom 

reguired for our approximations, it is clear that we shall be uncomfortable 

with a small number of degrees of freedom, particularly with unegual weights. 

The theory of Corollary 1 uses a linear approximation to the nonlinear 

function of the sample means to approximate the behavior of the nonlinear 

function. If this approximation is to perform well, the curvature of the 

function must be small relative to the standard error of the sample means. 

For example, if the function is guadratic 

g(Y) = aiY + azY^, 

the linear approximation is 

g(Y) = aip -(- a2y^ -̂  ( ai -f- 2a2P)(Y - p). 

The expected value of g(Y) is 

E{g(Y)} = aiM -H OLZIU^ -f V{Y}] . 

For the l inear approximation to perform well we must have small V{Y} and/or 
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small 02. 

In summary, to be comfortable with the use of large sample theory we 

reguire; 

1. A reasonable number of observations in the sense that no observations 

are widely separated from the main clusters of observations. This is 

another way of saying that the Taylor deviates are such that the mean 

of the deviates is nearly normally distributed. 

2. A reasonable number of effective error degrees of freedom for the 

estimator of variance. 

3. The curvature of the nonlinear function of sample means to be small 

relative to the standard error of the sample means. 

ACKNOWLEDGEMENTS 

This research was partly supported by Research Agreement 58-319T-1-0054X 

with the Statistical Reporting Service of the U.S. Department of Agriculture. 

I thank Nancy Hasabelnaby for computations and Carol Francisco for comments. 

REFERENCES 

[1] Cochran, W.G. (1977). Sampling Technigues 3rd Ed. Wiley, New York. 

[2] Efron, B. (1979). Bootstrap method; Another look at the jackknife. 

Ann. Statist. 7, pp. 1-26. 

[3] Efron, B. (1981). Nonparametric estimates of standard error; The jack-

knife, the bootstrap and other methods. Biometrika 68, pp. 589-599. 

[4] Fuller, W.A. (1975). Regression analysis for sample survey. Sankhya 

Series C 37, pp. 117-132. 

[5] Fuller, W.A. and Hidiroglou, M.A. (1978). Regression estimation after 

correcting for attenuation. J. Amer. Statist. Assoc. 73, pp. 99-104. 



- 114 -

[6] Hidiroglou, M.A., Fuller, W.A., and Hickman, R.D. (1980). Super Carp, 

Department of Statistics, Iowa State University, Ames, Iowa. 

[7] Isaki, C and Fuller, W.A. (1982). Survey design under the regression 

superpopulation model. J. Amer. Statist. Assoc. 77, pp. 89-96. 

[8] Kish, L. and Frankel, M.R. (1974). Inference from complex samples. J. 

Roy. Statist. Soc. B 36, pp. 1-22. 

[9] Krewski, D. and Rao, J.N.K. (1981). Inference from stratified samples: 

properties of the linearization, jackknife and balanced repeated 

replication methods. Ann. Statist. 9, pp. 1010-1019. 

[10] McCarthy, P.J. (1965). Stratified sampling and distribution-free 

confidence intervals for the median. J. Amer. Statist. Assoc. 60, pp. 

772-783. 

[11] McCarthy, P.J. (1969). Pseudo-replication: Half-samples. Rev. Int. 

Statist. Inst. 37, pp. 239-264. 

[12] Miller, R.G., Jr. (1974). The jackknife - a review. Biometrika 61, pp. 

1-15. 

[13] Rao, J.N.K. and Wu, C.F.J. (1984). Bootstrap with stratified samples. 

Technical Report No. 19 of the Laboratory for Research in Statistics and 

Probability. Carleton University, Ottawa, Canada. 



115 -

Table 1: Soybean Area Determined by Two Methods 

Soybean Hectares 

County Segment Weight Interview (Y) 

8.09 
106.03 
103.60 

6.47 
63.82 

43.50 
71.43 
42.49 

105.26 
76.49 
174.34 

95.67 
76.57 
93.48 

37.84 
131.12 
124.44 

144.15 
103.60 
88.59 
115.58 

99.15 
124.56 
110.88 
109.14 
143.66 

91.05 
132.33 
143.14 
104.13 
118.57 

102.59 
29.46 
69.28 
99.15 
143.66 
94.49 

Satellite (X) 

24.75 
98.10 
112.50 

43.20 
80.10 

61.65 
92.70 
74.25 

98.10 
99.45 
152.10 

57.60 
66.15 
91.80 

34.65 
97.65 
116.10 

136.35 
99.45 
99.90 
123.30 

85.50 
121.50 
77.40 
102.60 
133.65 

75.15 
85.95 
112.05 
81.90 
80.55 

117.90 
39.15 
72.00 
99.45 
155.25 
85.50 

1 
1 
1 

2 
2 

3 
3 
3 

4 
4 
4 

5 
5 
5 

6 
6 
6 

7 
7 
7 
7 

8 
8 
8 
8 
8 

9 
9 
9 
9 
9 

10 
10 
10 
10 
10 
10 

1 
2 
3 

1 
2 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 
3 
4 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 
6 

502 

212 

188 

190 

134 

189 

172 

114 

193 

93 
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Table 2: Estimated Standard Errors of Regression Coefficients 

Calculated by Alternative Procedures 

Estimated standard Error 

Procedure 
3o 

Ordinary least sguares 

Stratified; sample weights 

Cluster; sample weights 

Stratified; unit weights 

Cluster; unit weights 

10.747 

8.332 

11.121 

9.282 

13.256 

0.1116 

0.0922 

0.0823 

0.0963 

0.1071 
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Table 3: Data for Transformed Regression Problem 

Stratum Cluster Weight lO'^RWX RW 

1 
1 
1 

2 
2 

3 
3 
3 

4 
4 
4 

5 
5 
5 

6 
6 
6 

7 
7 
7 
7 

8 
8 
8 
8 
8 

9 
9 
9 
9 
9 

10 
10 
10 
10 
10 
10 

502 
502 
502 

212 
212 

188 
188 
188 

190 
190 
190 

134 
134 
134 

189 
189 
189 

172 
172 
172 
172 

114 
114 
114 
114 
114 

193 
193 
193 
193 
193 

114 
114 
114 
114 
114 
114 

-67 
7 
21 

-48 
-11 

-30 
1 

-17 

7 
8 
61 

-34 
-25 
0 

-57 
6 
25 

45 
8 
8 
32 

-6 
30 
-14 
11 
42 

-16 
-6 
21 
-10 
-11 

26 
-52 
-19 
8 
64 
-6 

-195 
25 
68 

1 
4 

10 
5 
8 

4 
4 
-3 

28 
23 
5 

13 
4 
2 

-9 
3 
2 
-5 

10 
-22 
18 
-5 
-32 

7 
6 
3 
6 
6 

-24 
63 
26 
-4 
65 
12 

167 
336 
369 

1 
24 

-7 
7 
-1 

12 
13 
38 

-53 
-51 
-47 

-20 
11 
20 

8 
-6 
-6 
3 

-67 
-66 
-68 
-67 
-65 

4 
9 
22 
7 
6 

-90 
-84 
-P7 
-89 
-93 
-88 

6 
6 

-15 

-37 
-19 

-20 
-26 
-35 

3 
-28 
14 

34 
6 
-3 

3 
29 
3 

1 
-1 
-16 
-14 

8 
-2 
28 
1 
5 

13 
43 
26 
1^ 
35 

-21 
-16 
-9 
-6 
-16 
3 
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Table 4: Efficiency of Estimated Variance inder Alternative Assumptions 

Eguivalent degrees of freedom 

Procedure V^DC = V , V^nc = 2V„, 

SRS st SRS st 

Simple random samplinq 36 9 

Strat. Sa., unit weights, egual var. 26.6 26.6 

Strat. Sa., unegual weights, 

egual var. 4.8 4.8 
St ra t . Sa., unegual weights, 

al = 0.5a^ 13.9 13.9 
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