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Some Aspects of Nonresponse Adjustments 

R. PLATEK and G.B. GRAY· 

ABSTRACT 
Unit and item nonresponse almost always occur in surveys and censuses. The larger its size the larger 
its potential effect will be on survey estimates. It is, therefore, important to cope with it at every stage 
where 1hey can be affected. At varying degrees the size of nonresponse can be coped with at design, 
field and processing stages. The nonresponse problems have an impact on estimation formulas for various 
statistks as a result of imputations and weight adjustments along with survey weights in the estimates 
of means, totals, or other statistics. The formulas may be decomposed into components that include 
response errors, the effect of weight adjustment for unit nonresponse, and the effect of substitution 
for nonresponse. The impacts of the design, field, and processing stages on the components of the 
estimates are examined. 

KEY WORDS: Nonresponse; Imputation; Estimation. 

1. INTRODUCTION 

As survey data are gathered from sampled unit, unit and item nonresponse will occur for 
at least some units despite all efforts to avoid it. The problem of dealing with nonresponse 
and the resultant missing data is two-fold. First, the effort through callbacks, repeated mail­
ings et,~ must be determined to the extent that it is cost-effective in reducing the mean square 
error of survey data and second, for the remaining nonresponse, the adjustments for the missing 
data must be obtained in order to reduce the nonresponse bias. 

The field or survey centre effort to reduce or minimize unit nonresponse often means repeated 
attempts to contact selected units until a responsible person is available to reply to the survey 
questionnaire. The attempts pertain either to personal or telephone interview. In the case of 
mail surveys, repeated attempts mean successive mailings of a survey questionnaire to nonrespon­
ding units. In some cases, the repeated attempts may result in telephone or personal follow­
ups. Some nonresponse is inevitable although every reasonable attempt should be made to 
minimize its levels. Thus, there will always remain some nonrespondents for whom all the ef­
forts to convert them seem insufficient or inappropriate. The result is some imputation pro­
cedure to account for the missing data. This paper addresses the problems of controlling 
nonresponse at the design and field stage, followed by an examination of nonresponse ad­
justments at the processing stage. The examination will consider the feasibility and the prac­
tical as well as the methodological issues pertaining to the nonresponse adjustments. 

Item nonresponse is often a more complex problem to deal with than unit nonresponse which 
is the type mostly referred to above. The most important factors which may reduce item 
nonresponse are good questionnaire design and a high quality of interviewers through proper 
hiring and training. A poorly designed questionnaire may also result in problems of following 
or completing the proper sequence of questions, whether by an interviewer or in a self-interview 
situation. Consequently, item nonresponse may occur in a questionnaire without the interviewer 
or respondent being aware of it. In addition, respondents may be willing to answer some but 
not all questions in a survey. Whatever the reason for missing items, the problems of substituting 
for them remains. Usually, a survey organization is unwilling to throw out whatever information 

1 R. Platek and G.B. Gray, Census and Household Survey Methods Division, Statistics Canada, 4th Floor, Jean 
Thlon Building, Thnney's Pasture. Ottawa, Ontario KIA OT6. 



2 Platek and Gray: Nonresponse Adjustments 

has been obtained unless of course the responses to major items appear very faulty or illogical. 
Thus, other means of imputing for missing items while maintaining the partial information 
on the records are usually undertaken. 

Various statistics are required from a surveyor census to explain social phenomena, deter­
mine socio-economic policies, etc. These include means, totals, ratios, distributions, percen­
tiles and graphs. The statistics are assumed to be based on a universe of N units that belong 
to the target population; where N mayor may not be known. 

It may be demonstrated that all of the statistics mentioned above may be expressed in 
terms of totals or counts. Consequently, the remainder of the article will deal with missing 
data as they affect estimates of totals and counts in surveys. Some references to censuses 
will also be made. 

2. ESTIMATION FORMULA 

In the presence of unit and item nonresponse, the estimate of the total of characteristic 
Y may be given by the general expression as in (2.1) below. 

tl = I or 0 according as unit i is selected or not, 
"I probability that unit i is selected. 
0, = I or 0 according as unit i responds or not, 
oly = I or 0 according as responding unit i responds to item or 

characteristic Y or not, 
YI observed response for characteristic Y when olY = 01 = I; 

YI mayor may not = Y" the true value, 
Zly = imputed value for item nonresponse, when 0,= I, 0" = O. 
Z, = imputed value for unit nonresponse when 0,= O. 

(2.1) 

The above estimate may pertain to a class a of units, when one inserts the indicators variable 
{j,. equal to I or 0 after ,,;' to indicate whether or not unit i belongs to class a (e.g., age-sex 
class a). 

In the case of item nonresponse, z" is nearly always an explicit imputed value for the 
missing information. The imputed value may be obtained by (i) a hot deck procedure i.e., 
substitution of an available response of characteristic Y from the survey questionnaire of 
another unit that responded with respect to the characteristic and that is as similar as possi­
ble to unit i according to a decision table, (ii) substitution from other sources of data from 
the same unit such as an earlier survey, census, or administratrive data if such data are 
available, (iii) by regression methods or (iv) by logical deduction and the list is by no means 
exhaustive. In some cases, systematic errors may occur from, for example, faulty coders or 
keypunchers. In such cases one attempts to change the codes to logical values relative to 
other information on the questionnaire in place of imputation. In any case, one hopes to 
achieve an imputed value or altered code as close to the true value Y, as possible. In the 
case of continuous surveys, with characteristics that are stable over a long period of time 
(such as employment in some industries and occupations), the response or earlier survey data 
may be considered almost as good as that of current survey data for the same unit. This 
would be especially when the reference periods of the current and earlier survey data are 
not too far apart in time. This may be also true in the case of survey data one year apart 
in the case of seasonal characteristics such as, for example, those related to the fishing 
industry. Sometimes the imputation of earlier survey data may be used also for unit 
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nonfC!Spondents that were respondents previously and with stable characteristics. 
Usually, in the case of unit nonresponse, the imputation is undertaken by weight adjust­

ment by the inverse response rate in a cell or area. The estimate of total is then given by: 

(2.2) 

where (wa), = weight adjustment for unit i to compensate for the deficient sample due to 
unit nonresponse. In the above expression, it is assumed that all item nonresponse has already 
been imputed for by z'Y in the case of responding unit i when ~'Y = O. 

Th.e estimates of the cumulative distribution function from the sample in the context of 
potential missing data may be obtained by replacing the observed value y, by the indicator 
variable c(y" y) = I or 0 according as y, :$ or > Y and similarly for Z'y and z, . The 
estimated c.d.f.'s corresponding to (2.1) and (2.2) are respectively given by (2.3) and (2.4) 
below. 

(2.3) 

when: N = E;:I t,'Ir,l denotes the estimated or the true count of units in the universe. 
Thus, depending upon the frame, sample design, and listings of units, N mayor may not = N. 

- I N -I [ 1 F(Y) = ~ E t,'Ir, (wa),<I, ~.,c(y" y) + (1 - ~')c(Z'Y' y) 
NI=I 

(2.4) 

While Y, as defined in (2.1) and (2.2), is identical according as to whether imputation 
for unit nonresponse is regarded as a substitution of mean values of respondents or as a 
weight adjustment, the c.d.f. estimates, AY) as defined in (2.3) and (2.4), are not identical. 
When the mean of respondents, either overall or in adjustment cells defined for compensa­
tion of nonresponse, is substituted for each missing value as in (2.1) or (2.3), there results 
a spiking of such mean values in the estimated c.d.f., not reflecting the real shape of the 
c.d.f. in the population. The use of the weight adjustment (wa), , to inflate the sample 
weight 'Ir,.1 in (2.4) avoids this spiking effect, yielding a different but more realistic estimate 
of th€: c.d.f. 

Under full unit and item response, the estimates (2.1) and (2.2) simplify to the Horvitz­
Thompson (1952) estimate of the total, which is unbiased apart from response errors. In 
the presence of missing data and imputation for them, the estimates (2.1) and (2.2) however 
are likely to be biased for reasons other than response errors unless z,;s and zis tend to 
equal y,'s when imputation for either item or unit nonresponse is required. 

In the next section, the estimates (2.1) and (2.2) are decomposed into various components 
due to response error, imputation error due to item nonresponse, imputation error due to 
unit nonresponse and the effect of weight adjustments exceeding one. 

3. Components of the Estimate 

The estimate Y given by (2.1) or (2.2) may be split up into 5 components, beginning with 
the Horvitz-Thompson estimate using the true values of the characteristic as in Table I. The 
estimated c.d.f. AY) as in (2.4) may be similarly split up but will be omitted in this paper. 

When the weight adjustment (wa), = I, the last line cancels out and the first 4 lines (3.1) 
to (3.4) total the estimate as given by (2.1). When the unit nonresponse is compensated for 
by a weight adjustment (wa), > I, there is no direct substitution z, for the missing value 
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Table 1: 
Components of the Estimate Y 

unbiased estimate based 
on full response, with 
true values 

effect of response 
error 

effect of item 
nonresponse 

effect of unit 
nonresponse 

effect of weight 
adjustment for unit 
nonresponse 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

and z, is taken to be 0 in (3.4). In that case, the 5 lines total the estimate as given by (2.2) 
and the negative effect of unit nonresponse in (3.4) is compensated for by the positive effect 
of weight adjustment in (3.5). 

(a) Response error 

The sum of the 1st and 2nd lines of the estimate Y (See 3.1 and 3.2) equal the desired 
Horvitz-Thompson estimate of total under full response. The observed response y, for unit 
j may not equal the true value Y, so that a response error at unit j level may result. The 
response error, which is not the real subject of this paper, can only be reduced, though not 
likely eliminated, by proper interviewer training, good questionnaire design with unambiguous 
definitions of characteristics and questions and without cluster that would confuse the inter­
viewer and/or respondent. 

When the sampled weighted response errors of (3.2) do not cancel out, the estimate of 
the total 'funder full response, contains response error and upon taking expected value over 
all possible samples and response E, and E, (See Platek and Gray 1983), it may be found 
to be subject to response bias B, and response variance in addition to sampling variance 
(SV). The response variance may be decomposed into simple (SRV) and correlated response 
variance (CRV) components. 

The response bias, and all of the variance components (SV), (SRV) and (CRV) for the 
above estimate are derived in Platek and Gray (1983), subsection 2.2, pp. 257-8. 

Response errors are usually studied by means of a reconciled reinterview program, whereby 
a subsample of responding units are reinterviewed and any observed differences between the 
original and reinterview data pertaining to the sample reference period are reconciled to deter­
mine which of the original or reinterview is the correct response. Reconciled reinterview surveys 
are undertaken in both the Canadian Labour Force Survey and the U.S. Current Population 
Surveys (CPS), two similar monthly surveys to measure unemployment,employment. etc. 
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For example, Poterba and Summers (1984), present in Table 2 some CPS results for a 
reconciled Reinterview Survey of May, 1976, based on a subsample of 3,329 men and 3,750 
women. By means of reconciliation of a reinterviewed subsample, the true status of an in­
dividual is obtained so that it can be determined whether or not that individual responded 
correctly or not in the original survey, which in this case is CPS. Thus,the number of in­
dividuals with the true characteristics Employed in the reconciled interview sample who were 
actuaUy reported as Employed, Unemployed, or Not in the LF in the original survey may 
be determined. From the three numbers, the proportion (or the probability) of correct and 
incorrect responses by true LF status may be estimated as in the table below. 

Thus, for aU of the men who were actually unemployed, 0.8720 is the estimated propor­
tion of such men according to the reconciled reinterview study, who were accurately reported 
as unemployed while (0.0474 + 0.0806) or 0.1280 of the unemployed men were incorrectly 
reported as either Employed or not in the Labour Force. Thus, if y denotes characteristic 
unemployed i.e. Y, = I when individual no. i is actually unemployed and a male then 
y, = I correctly with probability 0.8720 while Yi = 0, incorrectly with probability 0.1280. 

In the Canadian Labour Force Survey, the reconciled reinterview study sample during 
Jan. -Nov., 1984 covered 7,148 individuals and the corresponding probabilities of reporting 
labour force status as employed, unemployed or NILF in the regular LFS by true status as 
determined by the reinterview during 1984 are given in Table 3 below. 

Thus the probability of correctly labelling an individual as unemployed, given tbat be/she 
actually unemployed is estimated to be .8691 in LFS compared witb .8602 in CPS, almost 

Table 2 
Probabilities of Reporting Labour Force Status as Employed, 
Unemployed, or NILF in the Regular CPS, by True Status as 

Determined by the Reinterview Survey, May 1976. 

Status as Reported in the Regular CPS 

True Status Employed Unemployed NILF 

Total' 
Employed 0.9905 0.0016 0.0079 
Unemployed 0.0356 0.8602 0.1041 
NILF 0.0053 0.0025 0.9923 

Men2 

Employed 0.9922 0.0013 0.0065 
Unemployed 0.0474 0.8720 0.0806 
NILF 0.0062 0.0048 0.9890 

Women3 

Employed 0.9892 0.0019 0.0089 
Unemployed 0.0194 0.8442 0.1363 
NILF 0.0049 0.0015 0.9936 

I Sampling size = 7,079 
2 Sampling size = 3,329 
3 Sampling size = 3,750 
Source: Tables were computed from • 'General Labour Force Status in the CPS Reinter· 

view by Labour Force Status in the Original interview. 
Both Sexes. Total. After Reconciliation. 
May 1976, Bureau of the Census (unpublished) 
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Table 3 

Number of Individual and Probabilities of Reporting LF Status 
(in brackets) by True Characteristic. Jan.-Nov. 1984 

True LF Regular LFS 
Characteristic 
(Reconciled Employed Unemployed NILF 
reinterview) 

Employed 4,082 19 51 
(0.9831) (0.0046) (0.0123) 

Unemployed 8 571 78 
(0.0122) (0.8691) (0.1187) 

NILF 28 30 2,281 
(0.0120) (0.0128) (0.9752) 

Total 4,118 620 2,410 

Total 

4,152 

657 

2,339 

7,148 

the same. The corresponding probabilities for Employed and Not in the Labour Force in 
LFS are estimated during 1984 to be .9831 and .9752 compared with .9905 and .9923 for 
CPS, both somewhat lower in LFS. The reason for the difference cannot be determined at 
this stage. In any case, the response errors are likely more serious at national than at small 
area levels. For example, at national levels the response biases may be larger in magnitude 
relative to their sampling errors while a small area level estimate may be subject to response 
biases of about the same percent as at national level, but which may be much smaller than 
the sampling errors. 

(b) Item Nonresponse and Imputation Error 

The third line (3.3) of the estimate Yin Table I showed the deviation from the desired estimate 
Yas a result of imputation for item nonresponse when the imputed value Z'Y '" y, and when 
the sampled weighted differences (z,y - y,) over the sampled units with imputations for item 
nonresponse do not cancel out. Item nonresponse results from a respondent refusing to answer 
certain questions on the questionnaire may have been inadvertently left incompleted by either 
the respondent (in the case of self-enumeration) or by the interviewer. The second of the 
two causes of item nonresponse may result from similar causes as for response errors; i.e. 
complex questions with ambiguous definitions and/or an involved or cluttered questionnaire 
with a tendency for potential errors in following the proper path, depending upon replies 
to filter questions. 

When item nonresponse does occur, an imputation strategy as described earlier may be 
undertaken, which almost always results in an explicit substitution. Crucial to data analysis 
at micro-levels is the need to obtain a value Z,y as close to the true value Y, or at least as 
close to what would be the observed y, , if the unit had responded to the question(s) that 
determine(s) characteristic y. There is unfortunately no way of knowing how close Z,y agrees 
with y, except through re-enumeration of the unit, or a review and study of external sources 
or earlier survey data (which may not be available). The further danger of item nonresponse 
and the imputation for it may be the false sense of security to the data user who may not 
be aware or who may not be informed of the substituted value Z,y in place of a bonafide 
response at the micro-data level. The imputed value Z,y will tend to deviate in either direc­
tion from the true value Y, to a greater extent than the potential response error y, if that 
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unit responds to the characteristic. This may not always be the case. Unfortunately, it usual­
ly cannot be determined at the micro-level whether or not z(y is less accurate than y, would 
be. Even if the imputation error may sometimes be lower than the potential response error, 
it may further deteriorate the quality of the published statistics because of the presence of 
additional variance components. 

Item nonresponse and response errors are often detected in the LFS by a monthly project 
Field Edit Module which analyzes questionnaires that failed edit for one or more questions. 
The distinction between response errors and item nonresponse however is often quite blur­
red in the analysis without probing into the individual questionnaires in detail. The common 
type of discrepancy is a miscoding of a question rather than item nonresponse per se. Many 
questions are split up into 5 or 6 different sub-categories and a miscoding may be interpreted 
as an item nonresponse for one sub-category and a response error for another sub-category 
pertaining to the same question. The analysis of the Field Edit Module deals with items (ques­
tions) but not sub-categories of the questions. The item discrepancy rate is thus difficult to 
defin'~ unambiguously. It pertains to a subset of questionnaires for which a specific ques· 
tion, say, No. q is relevant according to filter questions and decision tables. Let us suppose 
that out of a responding sample size of m questionnaires, question No. q is relevant for 
m. s m questionnaires. Then the discrepancy rate is the proportion of m. questionnaires 
that failed edit, whether by item nonresponse or faulty coding. The ambiguity in the defini­
tion lies in whether the subset m. should include those questionnaires with the question 
completed in error, those with the question left blank in error or merely those questionnaires 
with the question coded correctly or incorrectly. Notwithstanding the possible ambiguity in 
the ddinition, the item discrepancy rates for about 50 items as analysed for calendar year 
1984 should indicate an upper bound to the fractional error in the estimates of statistics bas­
ed on the items. A sample of item (defined in Table 4a) discrepancy rates for 1984 is given 
in Table 4 below. 

Thus, for a straightforward item like (10) "Did the respondent do any work last week? 
Yes or No," the discrepancy rate is only 0.2.,., much lower than even the national standard 
error. For more complex items likes Nos. 12,36,41,54 and 77 the discrepancy rate averages 
more than 10.,. with ranges 2 to 6.,. in either direction from the mean over the year. The 
discrepancies are corrected for, by hot deck procedures, use of last survey's responses (if 
available) or by logical deduction from other questionnaire data. Thus, in many instances 
an item discrepancy may be altered to a response subject to response rather than imputation 
error so that the discrepancy rates should be construed as an upper bound to the overall 
imputation error rates for the items. 

(c) Unit Nonresponse and Weight Adjustment 

In the case of unit nonresponse the two components of Y given by (3.4) and (3.5) must 
be studied together since unit nooresponse is generally compensated for by a weight adjust· 
ment (wa), rather than direct substitution z, for a missing unit value. Weight adjustments 
are usually calculated by inverse rates in adjustment cells of which there are two basic types, 
balanc:ing areas and weighting classes. Balancing areas are frequently design-dependent 
geographic areas such as a stratum, primary sampling unit, cluster, or a groups of strata 
or even the entire sample. Weighting classes are defined by post-strata (strata defined after 
sampling) formed on the basis of information available to both respondents and 
noorespondents in the sample. The noorespondent's information may be obtained from partial 
nonrespondents with some known characteristics even though the particular characteristic 
being ,~stimated is not known for the partial nonrespondents. Alternatively, the information 
may be derived from external sources pertaining to the nonrespondents. Inverse response 
rates may be calculated for either balancing areas or weighting classes and used as weight 
adjustments to compensate for missing data in the cells. 
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Table 4 
Average Discrepancy Rate by Item (defined in Table 4a) 

Average 
Range of Rates in 1984 Item Discrepancy 

Rate (Min. to Max.) 

10 0.2'10 0.2'1. Every month 
12 12.3'1. 10.4'10 to 14.3"70 
14 6.7'10 5.7'10 to 8.4% 
16 0.4'1. 0.3'10 to 0.5% 
17 6.6% 2.0% to 9.9% 
30 0.4% 0.3% to 0.5'10 
32 7.0% 3.0% to 11.6'1. 
33 4.3% 1.8% to 6.0'1. 
36 10.6% 8.1% to 12.7% 
40 4.1% 1.5% to 6.8% 
41 12.1% 6.2% to 19.7% 
54 10.1% 7.9% to 12.1% 
76 <0.1% 0.0% to 0.1% 
77 15.0% 11.8% to 17.3% 

Source: Internal report by Karen Switzer to P.D. Ghangurde March 4, 1985 "Some Findings on the 
Field Edit Module (FEM) Reports from 1984". 

Table 4a 
Definition of Items 

(10) Last week did (respondent) do any work at a job or business? Yes or No. 

(12) If yes to 11, "Did ... have more than one job last week, was this a result of changing 
employers?" Yes or No. 

(14) What is the reason ... usually works less than 30 hours per week, if actual response to (13) 
no. of hrs. worked 30. 

(16) Last week, how many hours was ... away from work for any reason whatsoever (holidays, 
vacations, illness. labour dispute, etc.) "00" should be filled in 

(17) What was the main reason for being away from work? (10 possible codes) 

(30) Last week did ... have a job or business at which he/she did not work? Yes or No. 

(32) Counting from the end of last week, in how many weeks will ... start to work at his/her 
new job? (Reply to Yes in (31), "Last week did ... have a job to start at a definite date 
in the future?") 

(33) Why was ... absent from work last week? (8 possible codes) 

(36) Identical to (14) but pertaining to Unemployed instead of Employed individuals. 

(40) Inthe past 4 weeks has ... looked for another job? Yes or No. 

(41) What has ... done in the past 4 weeks to find another job? (8 possible codes, I to 3 different 
codes in 1, 2, or 3 spaces). 

(54) What was the main reason why ... left that job? (9 possible codes) in response to yes to 
(50) has ... ever worked at a job or business (pert. to individuals permanently unable to 
work) and questions (51) to (53) dealing with date of last job and part/full time status. (54) 
is slipped if date of last job not too recent according to a pre-printed date in (52). 

(76/77) Class of worker and whether or not same as previous month, with respect to main job (76) 
and other job (77) 
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There are several types of weight adjustments available for inflation of the sample to com­
pensate for unit nonresponse, the most common being the inverse response rate defined by 
the ratio of the sample size to the responding sample size in an adjustment cell. Thus, if 
the cell contains Nb units in its population and is represented by nb selected units, where: 

nb = 1:. b I, the sample size in cell b which mayor may not be a constant; 
" depending on the definition of the cell, 

1:. ",I" an estimate of the size of cell b in the population, usually Nb 
"b 

would not be known except in a census. 

mb = 1: I,b 1,0, = no. of responding units in cell b, i.e., the responding sam­
ple size, 

then, (wa), = nb/ mb when i lies in adjustment cell b. (3.6) 

Before defining other possible weight adjustments, we will concentrate on the frequently 
applied inverse unweighted response rate in a cell as in (3.6). The estimate of the total defin­
ed by (2.2) with (wa), = nb/mb may be rewritten asa special case of (2.1), with Z, given 
by: 

(3.7) 

where tb = 1:
'
,b "I·' 1,<>I[O,yy, + (I - ol,)ZI,j, sample weighted total of responding units in 

cell b. In the case of equal sample weights in a cell, the imputed value Z, simplifies to the 
mean value of mb respondents in the cell. By substituting Z, given by (3.7), into (2.1), it 
may be shown that the estimate is identical to (2.2) with (wa), = (nb/ mb)' Thus, one may 
regard imputation for unit nonresponse as a substitution of Z, = Tb/(",-'mb) in (2.1) or as 
a weight adjustment to the sample weights by (wa), = nb/ mb in (2.2). In the case of the 
weight adjustment, one would set Z, = 0 in (3.4) in Yas split up into 5 components. Alter­
natively, one may employ the imputed value Z, as defined in (2.1) and in that case, one 
would set (wa), = I in (3.5) resulting in that component of Y = O. Thus in order to con­
sider the effect of weight adjustment (wa), > 1, both the negative component (3.4) and 
positive component (3.5) must be studied together; but to consider the effect of the implicit 
imputed value Z, , given by (3.7), one needs only to consider (3.4). 

The weight adjustment (nb / mb ) is used in LFS, where the adjustment cells are design­
dependent psu's in non-self representing areas (NSR) and strata (subunits) of contiguous 
city blocks in self-representing areas (SR). In Table 5, the number of cells, the unweighted 
average of the weight adjustments and the frequency distribution of the weight adjustment 
in intervals 1-1.01, 1.01-1.02 .... ,1.10 and over are given by region/type of area for the survey, 
Jan. 1983. 

The average weight adjustment of 1.0348 at Canada level is less than what one would 
expect with a nonresponse rate of about 5%. The reason for the apparent low average weight 
adjustment is that, for purposes of calculations of the inverse response rate, soine unit 
nonrespondents with available responding data of the previous month for imputation pur­
poses 'Lre treated like respondents. This applies to about 20 to 300/0 of the nonrespondents 
every month. 
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Table 5 
Number of Adjustment Cells, Average and Frequency Distribution of the 

Weight Adjustments by Region/Type of Area. January, 1983 

No. of cells in intervals of (wa)j 

Region No. Aver. 1- 1.01· 1.02- 1.03- 1.04- 1.05- 1.06- 1.07- 1.08- 1.09-
Type of Area Cells (wo); 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.10+ 

All. NSR 254 1.0250 143 6 22 21 13 13 9 7 8 2 10 

All. SR 123 1.0246 58 5 II 15 14 4 3 6 4 2 

Que. NSR 126 1.0550 72 2 8 10 10 6 8 6 0 3 

Que. SR 185 1.0265 106 0 7 8 23 II 4 5 7 3 II 

Ont. NSR 120 1.0333 58 10 II II 8 4 2 2 2 II 

Ont. SR 252 1.0416 116 13 24 21 16 9 9 8 10 25 

Pro NSR 328 1.0348 167 5 17 22 23 24 15 12 10 8 25 

Pro SR 149 1.0306 40 23 23 20 13 8 7 3 5 4 3 

BC NSR 85 1.0468 38 3 7 8 8 2 5 I I II 

BC. SR 119 1.0412 46 4 7 15 10 7 7 7 3 3 10 

Can. NSR 913 1.0358 478 17 64 72 65 53 41 28 21 14 60 

Can. SR 828 1.0337 366 33 61 82 81 46 30 30 27 21 51 

Canada 1,741 1.0348 844 50 125 154 146 99 71 58 48 35 III 

Without a knowledge of the nonrespondents' characteristics, it cannot be determined 
precisely the threshold Ifvel beyond which the weight adjustment would become critical to 
result in an unacceptable bias along with an increase in the variance due to a smaller effec­
tive sample size. If the threshold is arbitrarily set for LFS at 1.05 (a level sometimes assumed 
by survey practitioners) then about 114 of the balancing units (441 out of 1,741) across Canada 
had critical weight adjustments of 1.05 or more in Jan. 1983. In many other surveys such 
as those dealing with income and expenditure, the nonresponse rate is higher overall and 
would likely be critical in nearly all cells if the same threshold of 1.05 is assumed. 

There are other types of weight adjustments in cells. For example, one could exclude from 
cell b as defined above, those units that contain item nonresponse for at least one question. 
Let us suppose there are mbQ units in cell b free of item nonresponse for the whole set of 
questions On the questionnaire. For (mb - m'Q) responding units in the cell with some item 
nonresponse the weight (wa); = I, and for the remaining mbQ responding units, free of item 
nonresponse, the weight adjustment is given by: 

(wa); = [nb - (mb - mbQ )] /m'Q' which exceeds n,/m,. (3.7a) 

The following is the justification for applying no weight adjustment Le., (wa); = I, for 
those units in the cell with some item nonresponse but a larger weight adjustment (3.7a) than 
(nb / mb), for those units free of item nonresponse Records with item nonresponse likely con­
tain response and imputation errors while records free of item nonresponse contain only 
response errors and with the large weight applied to records free of item nonresponse, it 
may be possible to obtain estimates with lower mean square error than by using the same 
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weight. adjustment for all m, responding units in the cell. To our knowledge, weight ad­
justm,mts such as described above have not been applied but they may be worthy of study 
if the decrease in the bias offsets the increase in the variance that would occur with the dif­
ferent weights. 

In the case of units with unequal probability sampling, there exists a weight adjustment 
based on the weighted sample and responding units in a cell instead of the unweighted ones. 
In such as case, 

(3.8) 

where .M, = E iE' 7[,-l t,O, i. the sample weighted count of responding units in cell b. For the 
analogous case to the weight adjustment (wa), in (3.7a) applied only to responding units 
free of item nonresponse, 

(3.9) 

where .MbQ = E iE' 7[,-l t,O, n~= 1 0,., the weighted count of responding units in cell b, free of 
item nonresponse. 

0,. = I or 0 according as unit i responded or did not respond to question no. q of the 
survey questionnaire containing Q questions; thus, n~= 1 0,. = I only if responding unit i 
is free of item nonresponse. 

The justification for using (3.9) in lieu of (3.8) may be similar to that for using (3. 7a) 
instead of (3.6). The justification for using weighted in place of unweighted response rates 
needs "xplanation and is provided after Table (6). 

One could derive separate (wa), expressions as of (3.7a) or (3.9) for each question q or 
for each characteristic y, defined by a set of one or more questions. Unfortunately, one would 
be faced with different weight adjustments in an adjustment cell for different questions or 
characteristics resulting in inconsistencies among different characteristics in published tables. 
In order to ensure uniform survey weights and weight adjustments, (wa), should depend 
only on the unit and not on the question or characteristic though one may permit imputa­
tions for some items while excluding them for other items such as major ones in the weight 
adjustments (3.7a) or (3.9) as long as the inclusions and exclusions are consistent in the ad­
justment cell. For example, one may consider an imputation for missing item by logical deduc­
tion rather than by hot decking as pertaining to a record free of item nonresponse for weight 
adjustment purposes. 

For .:ach of the above weight adjustments as in (3.6) to (3.9), it can be shown that (2.2) 
is a particular case of (2.1) with z, given by a weighted or unweighted mean of respondents. 
Thus, the implicit imputed value z, for nonresponding unit i for each of the four cases of 
weight adjustments cited above is given by the expressions in Table (6). Additional notation 
is required for the expressions as given below: 

= sample weighted total of unit respondents 
including imputations for item nonresponse 
but excluding weight adjustments by inverse 
unit response rate. 

(3.10) 
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sample weighted total of unit and item respondents 
with respect to characteristic y, 

sample weighted total of unit and item respondents 
with respect to characteristic y, but excluding those 
records in the cell with imputation for any item 
nonresponse 

(3.11 ) 

(3.12) 

The weight adjustment (n. - m. + m.Q)/m.Q = 1 + (n. - m.Q)/m.Q of (c) ~ the 
weight adjustment of (n. 1m.) of (a) since m.Q ::s m.(see Table 6). Hence, for a given 
response rate m.ln. in a cell, one may anticipate a larger variance of an estimate using (c) 
than one using (a). The larger variance mayor may not counteract a potentially smaller im­
putation bias in the overall mean square error. The same holds true in the case of applying 
weighted response rates (IV. - M. + MbQ)IM.Q in (d) as opposed to N.IM. in (b) since 
Moo ::s M •. When pps sampling is applied, the use of weighted vs. unweighted response 
rates leads to another interesting result. It is shown in Platek and Gray (1983), p. 264-265 
that, when the response and selection probabilities, i.e., IX; and "" are positvely correlated, 
the weight adjustments with weighted response rates will tend to be higher than those with 
unweighted rates. Thus under the condition of positive correlation between IX; and "" 
E(N.IM.) > E(n. 1m.) and similarly, E[(N. - M. + MbQ)IMbQ] > E[(n. - m. + m.Q) 
Im.Q], where E = E, E" the expected value overall possible samples of units and sub­
samples of responding units as described by Platek and Gray (1983), p. 251. 

(a) 

(b) 

(e) 

(d) 

Table 6 
Implicit Imputed Value for Unit Nonrespondent by 

Weight Adjustment (Cell Level) 

Weight Reference Implicit Imputed 
Description 

Adjustment in text value when i = 0 

nb1mb (3.6) f./(1<,·' m.) Unweighted unit respon-
se rate 

iV.llil. (3.8) t.IM. Weighted unit response 
rates 

nb - mb + mbQ (3.7a) fbOY l1rj-1 mbQ Unweighted unit respon-

m.Q se rates among units free 
of item nonresponse 

iV. - M. + M.Q (3.9) t.QyIM.Q Weighted unit response 

M.Q 
rates among units free of 
items nonresponse 

Note: In the case of self-weighting sample (srswor as a particular case), the implicit imputed value 
Zj becomes the simple mean of respondents for both cases (a) and (b), and the simple mean 
of respondents (excluding those with some item nonresponse) in the cases of (c) and (d), 

'" See appendix 1 for derivation. 
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Whatever the weight adjustment used to compensate for unit nonresponse, it is doubtful 
that the individual values z, implicit imputed would be close to the individual true values 
Y, or even to the potential observed responses y,. The best that can be achieved with the 
weight adjustment is to hope that adjustment cells formed to compensate for missing data 
due to unit nooresponse will ensure minimum differences between the characteristics of 
respondents and noorespondents in the cells. Thus, the formation and delineation of adjust­
ment cell is most crucial for compensation regardless of the type of weight adjustment that 
is applied. 

7. FINAL REMARKS 

As seen in the sections above, there is no ready-made solution to the missing data, whatever 
the types that occur. The initial strategy is to minimize the occurance of missing data to the 
extent possible, without incurring great cost or sacrificing the timeliness of the survey data. 
Every attempt should be made at the onset to prepare for some nonresponse and set up im­
putation strategies. If missing data occur in about the manner anticipated, then the survey 
data processing ought to proceed on schedule, with the appropriate substitutions or weight 
adjustments. Clearly, the scheduling of survey data collection, publishing, etc. can proceed 
in a more orderly fashion in continuous or repeated surveys than in ad hoc one-time surveys 
for which the survey designer may not realize, until after the fact, all the things that can 
go wrong such as unexpected refusals or lack of interest on the part of both interviewers 
and «,.pondents. 

In order to deal with the nonresponse problems it is essential to maintain a continuous 
study of nooresponse rates by the survey characteristic (in the case of item nonresponse), 
reason for nonresponse, and if possible, to extend the study to an analysis of item and unit 
response probabilities so that imputation biases may be estimated from the survey itself. Alter­
natively, model-based estimates may continue to be explored to examine the imputation bias 
and, furthermore, to strengthen the estimates by employing additional information. 

APPENDIX 

Derivation of Implicit Value z, for Unit Nonresponse imputation 

In the case of (c) and (d) of Table 6, the estimate of cell b level is given by: 

(A. I) 

tb + [(wall - IJtb{ry 

In case (c), (wa), - I 

(A.2) 



14 Platek and Gray: Nonresponse Adjustments 

or by equating (A.2) to (A.I), noting the definitions of tb in (3.10) and Yin (2.1), one may 
see that the imputed value. z, is given by. tbQJ' / ","mbQ as stated in (c) of Table (6). 

Similarly, when weighted response rates are employed, the implicit imputed value z, may 
be found to be tbQJ' / MbQ as in (d) of Table (6). The results for (a) and (b) of Table (6) 
follow by setting mbQ = mb and MbQ = M b. 

REFERENCES 

HORVITZ, D.G. and THOMPSON, D.J. (1952). A generalization of sampling without replacement 
from a finite universe. Journal of the American Statistical Association, 47, 663-685. 

LESSLER, J.T. (1979). An expanded survey error model. In Incomplete Data in Sample Surveys, Volume 
3· Proceedings of the Symposium (eds. W.G. Madow, I. OIkin, and B.D. Rubin), San Diego: 
Academic Press, 259-270. 

PLATEK, R. (1977). Some factors affecting nonresponse. Survey Methodology, 3, 191-214. 

PLATEK, R. (1980). Causes of incomplete data, adjustments and effects. Survey Methodology, 6, 
93-132. 

PLATEK, R., and GRAY, G. B. (1978). Nonresponse and imputation. Survey Methodology, 4, 144-177. 

PLATEK, R., and GRAY, G.B. (1979). Methodology and application of adjustments for nonresponse. 
Presented at the 42nd Session of International Statistical Institute. Manila, Philippines. 

PLATEK R., and GRAY, G.B. (1983). Part V· Imputation Methodology: Total Survey Error. In 
Incomplete Data in Sample Surveys, Volume 2· Theory and Bibliographies (eds. W.G. Madow, 
I. Olkin, and D.B. Rubin), San Diego: Ac~demic Press, 249-333. 

POTERBA, J.M., and SUMMERS, L.H. (1984). Response variation in the CPS: Caveats for the 
unemployment analyst. Monthly Labour Review, March 1984. Research Summaries, 37-43. 



Survey Methodology. June 1985 
Vol. 11. No.1. pp. 15-31 
Statistics Canada 

Conditional Inference in Survey Sampling 

J.N.K. RAOI 

ABSTRACT 

15 

Conventional methods of inference in survey sampling are critically examined. The need for condi· 
tioning the inference on recognizable subsets of the population is emphasized. A number of real ex­
amples involving random sample sizes are presented to illustrate inferences conditional on the realized 
sample configuration and associated difficulties. The examples include the following: estimation of 
(a) population mean under simple random sampling; (b) population mean in the presence of outliers; 
(c) domain total and domain mean; (d) population mean with two-way stratification; (e) population 
mean in the presence of non-responses; (f) population mean under general designs. The conditional 
bias and the conditional variance of estimators of a population mean (or a domain mean or total), 
and the:: associated confidence intervals, are examined. 

KEY WORDS: Conditional inference; Conditional bias; Conditional variance; Population mean; 
Random sample sizes 

1. INTRODUCTION 

In the conventional set-up for inference in survey sampling the sample design defines the 
sample space S (set of possible samples s) and the associated probabilities of selection, p(s). 
The choice of an estimator is based on the criterion of consistency or unbiasedness and on 
the comparison of mean square errors (MSE), under repeated sampling with probabilities 
p(s), using the sample space S as the reference seL Thus, an estimator '1 of a population 
mean :i'is unbiased if EeY> = E "s p(s) '1, = Y, where '1, is the value of '1 for the sample 
s. The MSE of the estimator '1is given by MSE(y) = E"sp(s)('1, - y)', and '1is consis­
tent if its MSE approaches zero as the sample size increases. A consistent or unbiased estimator 

6 6. • • 6 6. • 

of MSE(y), denoted as mse(y), provIdes a measure of uncertamty In Y. If Y IS unbIased 
or consistent, then the observed values '1, and mse('1,) provide a large sample, (1 - a)-level, 
confid,mce interval given by 

I, = '1, ± z." ../msecY,), (I) 

where z." is the upper a/2-point of a N(O, I) variable. The interpretation of (I) is that in 
repeated sampling with S as the reference set, approximately 100 (I - 01)"10 of the intervals, 
I" will contain the true value Y. 

The comparison of unconditional mean square errors, MSE( n, is appropriate at the design 
stage, but the sample space S may not be the relevant reference set for inference after the 
sample s has been drawn, if the sample contains "recognizable subsets". The concept of 
recognizable subsets will be illustrated in subsequent sections through examples involving 
random sample sizes. The choice of relevant reference set, however, is not unique. In fact, 
the surveyed sample s can be viewed as unique in a real sense, but then no inference under 
a repeated sampling set-up can be made since the relevant reference set would contain a 
singleton (Holt and Smith 1979). 

I J .N.K. Rao, Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada KIS SB6. 
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Conditional inference has attracted considerable attention and controversy in classical 
statistics since Fisher (1925). For instance, in testing for independence in a 2 x 2 table of 
counts, Fisher argued that the inference should be conditional on the observed row and col­
umn marginal totals even if the margins are not fixed by the design. Yates (1984) revived 
this problem. The choice of relevant reference set is not always clear-cut, but the following 
guidelines look reasonable: (I) A conditional procedure should be chosen before observing 
the data, especially in the public domain. (2) A conditioning partition of S should be chosen 
in such a way that the partition contains no (or little) information on the parameters of in­
terest, i.e. the statistic indexing the partition should be an ancillary statistic (Cox and Hinkley 
1974, p. 38). (3) If the sample sizes are random (e.g., domain sample sizes) and their popula­
tion distribution is completely known (or at least partially known), then the inferences should 
be conditional on the observed sample sizes. In this context, Durbin (1969, p. 643) says "If 
the sample size is determined by a random mechanism and one happens to get a large sample 
one knows perfectly well that the quantities of interest are measured more accurately than 
they would have been if the sample size had happened to be small. It seems self-evident that 
one should use the information available on sample size in the interpretation of the result. 
To average over variations in sample size which might have occurred but did not occur, when 
in fact the sample size is exactly known, seems quite wrong from the standpoint of the analysis 
of the data actually observed". 

The discussion throughout the paper will be confined to conditional inference in the 
presence of random sample sizes, as in guideline (3) above. Even with this restriction, it will 
be shown that conditional inferences are not always easy to implement in practice. We begin 
our discussion with simple examples and then extend it to more complex problems. In the 
context of sample surveys, Holt and Smith (1979) provide the most compelling arguments 
in favour of conditional inference, although their discussion was restricted to poststratifica­
tion of a simple random sample (SRS); see Section 3.1. 

Lahiri (1969) pointed out the "difficulties of conveying convincingly the real import of 
the sample survey estimates to intelligent but lay users of statistical data"; in particular, "the 
fallacy in implicitly using the (sampling) standard error as a measure of precision of the observed 
(sample) estimate, illustrating this point with a number of examples drawn from the current 
theory". 

2. SIMPLE RANDOM SAMPLING WITH REPLACEMENT 

Simple random sampling (SRS) with replacement is seldom used in practice, but it pro­
vides a simple introduction to conditional inference. 

Suppose a simple random sample, s, of size n is selected fom a population of size N with 
replacement so that S contains N' samples s. Let v denote the number of distinct units in 
s. Then p is a random variable with possible values I, ... , n. Let t; denote the number of 
times the ;-th population unit is included in s. Then two well-known estimators of the popula­
tion mean Y are given by 

I J, ~ - 1: 1;)1;, 
n iEs 

the sample mean based on all the n draws, and 

I Jp=-LY;, 
JI iEs 

(2.1) 

(2.2) 
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, 
the mean based on the distinct units in s. Both Y. and y, are unconditionally unbiased under 
the reference set S, and the unconditional variance of y, is always smaller than that of Y •. 
Hence, from efficiency considerations y, should be preferred over Y •. The Horvitz­
Thompson estimator 

_ 1 " v. v_ 
YHT = - "","-' = --y, 

N ,,, '" E(v) 
(2.3) 

is also unconditionally unbiased, where '" is the probability that unit i is included at least 
once in the sample: 

The comparison of variances of y, and YHT shows that y, is not always better than YHT' 
Following Durbin's (1969) argument, it is clear that for the purpose of inference one should 

condition on the observed value of v, i.e., the relevant reference set is the set S, of (~ 
samples of effective size v, and not S. Fortunately, it is easy to implement conditional in­
ference: in this case since p(s,1 v) = (~-I, i.e. conditionally, the observed sample, s" of 
distinct units is a simple random sample of size v drawn without replacement. It follows 
that y, is conditionally unbiased, i.e. E,(y,) = Y where E, denotes conditional expectation, 
whereas E'(YHT) = [vi E(v)] Y * Y so that YHT is conditionally biased. Hence, y, should be 
preferred over YHT' despite the inconclusive comparison of unconditional variances. Note 
that YHT would be a serious underestimate if the observed v is much smaller that E(v). 

A relevant measure of uncertainty is the conditional variance, V,(y,), which is estimated 
unbiasedly by 

v"') = (1. _ 1..)s' 
V'P v N PY' 

(2.4) 

where (v - ll.r.y = L,,(v, - y,)' and V, denotes the conditional variance. The appropriate 
confidence interval for Y is given by 

I, = y, ± zo/' .Jv(y,). (2.5) 

Conditionally, the confidence level of I, is 1 - a approximately if v is not small. Another 
variance estimator 

v*(y,) (2.6) 

is conditionally biased, although unbiased when averaged over the whole sample space, S. 
It follows from (2.4) and (2.6) that v(y,) < v*(y,) if I/v < E(I/v) and vice versa if l/v > 
E(1/v). Thus, the confidence interval based on (2.6) would be too narrow if E(I/v) < I/v 
and hence yield a confidence level less than 1 - a, and too wide if E(I/ v) > 1/ v leading 
to a confidence level greater than I - a. It may be noted that confidence intervals that are 
conditionally correct are automatically correct in the unconditional framework. 
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3. SIMPLE RANDOM SAMPLING WITHOUT REPLACEMENT 

Suppose a simple random sample of fixed size n is drawn without replacement. In the 
absence of recognizable subsets, the relevant reference set is the set S of (~ samples s, each 
of size n, and the sample mean y. is unbiased and its variance is estimated unbiasedly by 

(3.1) 

where (n - I)S;y = L" (y .. - Y.)'. The resulting confidence interval is given by I,: 
y, ± z." ..Jv(y,) with confidence level I - a approximately if n is not small. 

Suppose now that recognizable subsets exist in the sense that we observe the sample con­
figuration [I = (n" ... , n.) belonging to k post-strata with known weights W; = N,IN. 
Ideally, stratified sampling should have been used but the strata frames were not available. 
The relevant reference set now is the set S, of II (;:'f) samples having the realized configuration 
[I since the distribution of [I is completely known. 

3.1 All n, 2: 1 

If all the observed n, 2: I, then the customary post-stratified estimator 

(3.2) 

is conditionally unbiased given [I since p(sl[l) = IIG:':)-', i.e., conditionally the observed 
sample s is a stratified random sample (s" ... , s,) with strata sample sizes n,. Here y, 
denotes the sample mean in the i-th stratum. A relevant measure of uncertainty is the condi­
tional variance, V,(Yps,), which is estimated unbiasedly by 

(3.3) 

provided all n, 2: 2, where (n, - l)s~ = ~j", (yij - y,)' (Holt and Smith 1979). The 
resulting confidence interval, Ips,: Y .. , ± z."..tvrY;;J, is conditionally correct. Another vari­
ance estimator 

v*(y .. ,) ~ WT[e(~) - ~,l~y 

'" (~- ~)~ w,~ 

(3.4) 

is conditionally biased, although unbiased when averaged over the whole sample space, S 
(assuming that p(n, :S I) is negligible). The conditional performance of confidence inter­
val based on (3.4) evidently depends on the extent of divergence of the observed values lin, 
from their expectataions E(lIn,). It may be noted that the interval I .. , is also correct in the 
unconditional framework, provided p(n, :S I) is negligible for all i. 

If n, = I for some i, no conditionally unbiased variance estimator can be obtained, but 
it might be satisfactory to use a collapsed strata method or use the model-based solution 
of Hartley et al. (1969) originally proposed for variance estimation in stratified random sampl­
ing with one unit per stratum. Empirical studies might throw some light on the applicability 
of the latter methods. 
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The customary justification for preferring Y"t over Y is that the unconditional variance 
of YP<I is approximately equal to the variance under proportional allocation and hence 
smaller than the unconditional variance of y. We are also reminded that gains in efficiency 
under proportional allocation are likely to be modest. It is more important, however, to note 
that the sample mean Y is conditionally biased: 

(3.5) 

and hence the resulting inferences could be conditionally incorrect. 

Example 1. Suppose k = 2 (say, male, female strata with known projected census weights 
W, and W, = I - W" or small and big hospitals (Royall 1970». Royall used a super­
population model 

Em(yi) = (3x" i = I, ... , N, (3 > 0, Xi > 0 (3.6) 

to demonstrate that Y is model-biased conditionally, where Em denotes the model expecta­
tion, i.e., 

(3.7) 

unless the sample mean x coincides with the population mean X. In his example, 
X, = number of beds in the i-th hospital, Yt = number of occupied beds in the i-th hospital, 
and x,, ... , XN are known. Royall argues that Y leads to serious underestimation if the 
observed sample contains all (or mostly) small hospitals since Bm(ji) = Em(ji) - Em(Y) = 
(3(x -- Xl and x « X. This point can also be illustrated in our conditional framework 

without assuming a model. The ratio of the conditional bias of Y to the population of large 
hospitals, Y" may be expressed as 

B,sP) = (W, - w,),; = (w, - W,)';, 
Y, 

(3.8) 

where B,(ji) = E,(ji) - Y denotes the conditional bias of y, ,; = (Y, - Y,)IY, and 
o < ,; < I since the population mean, Y" of small hospitals is smaller than Y,. If w, = I 
(Le., all small hospitals observed in the sample), then E,(ji) = Y, « Y and hence y is a 
serious underestimate. Similarly, if w, » W, (Le., mostly small hospitals observed), then 
it follows from (3.8) that y would lead to serious underestimation. 

In this example, one should use the post-stratified estimator Y"t = W,)1, + W,J, which 
is conditionally unbiased unless n, = 0 or n, = O. It might be preferable, in fact, to use 
a post-stratified ratio estimator 

- Y"t -
Ypst,r = -_-X, 

X"t 

(3.9) 

where xp<l = W,X, + W,x, and X, is the sample mean of X in the i-th stratum. The estimator 
(3.9) is approximately unbiased conditionally and more efficient than YP't if n is large. 

Remark 1. In Royall's example, one should, in fact, use a more efficient design than simple 
random sampling since all the population x-values are known, e.g., stratified random sampling 
under x-stratification and, perhaps, optimal allocation based on the x-values. 
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Remark 2. Royall justifies the use of the customary ratio estimator y, = {ylx)X under his 
model (3.6), but it cannot be justified in the conditional (repeated sampling) framework since 
y, is conditionally biased: 

} 
Y 

R R = 
X 

(3.10) 

*0 

unless y,!x, = y,lx, = R. In the extreme case of w, = 1, B,(ji,) = X(R, - R) where 
R, = Y,I X,. Hence, B,(ji,) ~ 0 according as R, ~ R. 

Remark 3. If the weight W, is unknown but X is known, we cannot implement either yp>' 
or yps,.,. Royall suggests the use of y, with inference conditional on the observed mean x. 
However, the choice x is somewhat arbitrary, and the conditional bias of y, could be quite 
large unless the model (3.6) is true, at least approximately. 

If good prior information on W, is available, say JIll' ,,; W, ,,; JIIl'* where JIll' and JIIl'* 
are known, then one could use the following "pseudo" post-stratified estimator of Y: 

(3.11) 

where W, = w, if JIll' ,,; w, ,,; JIIl'*, = JIll' if w, < W,', = JIIl'* if W, > JIIl'* and 
W, = I - W,. The estimator y!, and its ratio analogue should perform better conditionally 
given (n

" 
n,) than y and y" although biased. Unconditionally, the MSE of .P!, should be 

smaller than the MSE of .p, provided JIll' ,,; W, ,,; JIIl'*. One could also utilize a formal 
Bayesian approach to estimate W, by specifying a prior distribution on W,. 

Example 2 (outliers). The problem of estimating a population mean Y in the presence of 
outliers is similar to the hospital example above. Suppose the population is known to con­
tain a small fraction, W,' of outliers (large observations) but W, is unknown, i.e. 
W, » W, and Y, » Y,. Then, if the observed sample contains no outliers (i.e., w, = 0), 
we would say that.p is "far from the true value Y" (Chinnappa 1976) and yet.p is (un­
conditionally) unbiased. The meaning of this statement follows from the fact that 
E,(ji) = Y, « Y, where E, is the conditional expectation as before. 

On the other hand, we would say that .p is a serious overestimate if the sample contains 
outliers. This follows from (3.8) noting that w, » W, (since W, is very small). For in­
stance, if N, = I then w, = lin » W, = II N. In this situation, we are told to modify 
the estimate .p by reducing the weight attached to outliers in the sample. One suggestion is 
to modify'p by reducing the weight attached to outliers from lin to liN and adjusting the 
weights for non-outliers such that the n weights sum to 1: 

(3.12) 

The conditional relative bias of yo is given by 

B,(!*) = (w !!. _ 
Y, 'N 

(3.13) 
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_ - n 
whereas B,0')IY, = (w, - W,)O. If w, - - W, < 0, then 

N r' ~ -w,l = w, - w, ~ < w, - W, if 2 W, < w, (I + ~). 

21 

The inequality 2 W, < w,(l + nl N) should be satisfied since w, » W,. If w,nl N - W, > 0, 
then 

~, ~ - w,l = w, ~ - W, < w, - W,. 

Hence, the estimator yo should have a smaller absolute value of conditional bias than J. 
The estimator yo is essentially obtained from the post-stratified estimator J ps' by preten­

ding that N, = n,. A more satisfactory solution can be obtained by gathering good prior 
information on W,( = I - W,), say from census data, and then using the estimator J;', or 
the estimator based on a Bayes estimator of W,. 

Hidiroglou and Srinath (1981) derived the conditional bias and conditional and uncondi­
tional MSE of J,YO and some other modifications of J, but they did not compare the condi­
tional biases of J and yo as above. 

3.2 n, = 0 for Some i 

If the total sample size, n, is small or if too many post-strata chosen, then n, could be 
zero for some i. The post-stratified estimator (3.2) in this case reduces to 

(3.14) 

where E' denotes summation over strata with nonzero n,. The estimator (3.14) is condi­
tionally biased: 

E, 0'",,) = E' W;Y, * E W,Y,. (3.15) 

It remains conditionally biased even under the strong assumption Y, = Y for all i, which 
incidentally shows that J"" could lead to serious underestimation. It is also unconditionally 
biased. One commonly used method to overcome these difficulties is to collapse similar strata 
to ensure that n, > 0 for all i in the reduced set of strata. Fuller (1966) proposed a more 
efficient solution for the special case of k = 2 post-strata, but his framework is uncondi­
tional in the sense that the probability, p,., of ·n, = 0 given that either n, = 0 or n, = 0, 
is brought into the picture. His estimator is given by 

- W, - 'f 0 YF = -YI 1 nz = P,' 

W, - "f = -Yz l nl p. , = 0, 

(3.16) 

where Pt = 1 - pr. The estimator JF is conditionally unbiased given that either n, = 0 
or n, = 0, but is conditionally biased given (n" n,), even in the case Y, = Y, = Y. 

An unconditionally unbiased estimator is given by 

Y-D =" a, W,y­
L. E(a,) ." 

(3.17) 
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(Doss el al., 1979), where a, = I if at least one unit from stratum i in the sample, = 0 
otherwise, and Y, is defined as Y, if n; = 0 (note that a,y, = 0 if n, = 0 even though Y; is 
unknown). The estimator YD' however, is conditionally biased since 

wy --
E'(YD) = E' -'-' #< E W;Y, = Y. 

E(a,) 

It remains conditionally biased even if Y, = Y for all i. 
Doss el al. criticized YD on the grounds that it is not translation-invariant (i.e., YD does 

not change to YD + c when each y, is changed to y, .+ c, where c is an arbitrary constant), 
and hence that the variance of YD, when y, is changed to y, + c, can be made arbitrarily 
large by increasing c sufficiently. On the other hand, the ratio estimator 

(3.18) 

proposed by Doss el al., is translation-invariant. It is conditionally biased, but the condi­
tional bias is approximately zero if Y, = Y for all i, unlike the conditional bias of YD. 
Another ratio estimator which is similar to Y,D conditionally is given by 

. E'W,y; 
Y$I) = E' W, ' (3.19) 

but it is inconsistent unconditionally, unlike Y,D • Hence, Y,D may be preferred to Yrlp>/) or YD • 
If concomitant information on all strata is available, then one could fit a model to the 

observed strata means y, and predict the population means of strata with n, = O. For ex­
ample, if the population means X, of a concomitant variable are linearly related to the cor­
responding Y;, then the predicted value of a Y; is given by & + SX, = N (say), where & 
and S are the least squares estimators obtained by. minimising E' (y, - ot - fjX,)'. The 
resulting estimator of Y is given by 

(3.20) 

where En denotes summation over strata with n, = O. This estimator should have good 
conditional properties if the fitted model is adequate. It should be clear from this discussion 
that there is no simple solution if n, = 0 for some of the strata. 

4. TWO-WAY STRATIFICATION 

Ingenious designs to improve the efficiency of estimators have been proposed in the 
literature. Bryant el al. (1960) proposed a design involving two-way stratification in which 
the sample sizes nij are zero for some strata (cells). Their method is supposed to permit 
estimation of the population mean even when the total sample size n is less than the total 
number of strata. Using proportional allocation for the marginal sample sizes (nu n), they 
obtained a random allocation nu such that E(n,j) = (n,n)ln = nW;. U'j' where W;. and WJ 
are the row and column marginal totals of cell weights Wij. 

Bryant el al. proposed the estimator 

(4.1) 
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where Gij = n2 W/(n,.n) and Yij may be taken as Yij if nij = O. The estimator Yu is uncon­
ditionally unbiased. However, the distribution of nij is completely known (since all Wij are 
known) and hence the relevant reference set is the set of samples having the observed con­
figuration {nu}, i.e., one should treat the design as stratified simple random sampling for 
infenmce purposes. The estimator Yu is conditionally biased: 

noting that E2cYij) = Yij if nij > O. It also has the defects of YD in the previous section which 
can be circumvented by using the ratio estimator 

(4.2) 

where au = E E nuG/n. y, is also conditionally biased, but the conditional bias is approx­
imately zero if Yu = Y for all (i, J). The latter condition, however, may be unrealistic in 
the present context since the strata are different by design. 

As in Section 3.1, it seems necessary to use a model connecting the sampled and non­
sampled strata. A reasonable model, in the absence of concomitant information, is to assume 
that 

(4.3) 

where Yij< is the k-th observation in the (i, J)-th cell, {jj and T, are fixed effects and tij< are 
indeJl(mdent errors with zero mean and common variance ,r. Unfortunately, the linear com­
bination II + {jj + T, for nonsampled strata is not estimable from sample data and hence 
the corresponding Yij cannot be predicted. This difficulty can be avoided by assuming that 
(jj and T, are random variables and then obtaining a predictor it + ~j + f" but the random 
effects model may be less realistic than (4.3) in the present context. 

Motivated by the above-mentioned difficulty, Bankier (1985) discussed a raking procedure 
in the context of independent stratified samples according to two different criteria of stratifica­
tion. His estimator is approximately model-unbiased under the fixed effects model (4.3), while 
the usual Horvitz-Thompson estimator and its ratio extension are model-biased. 

Bankier's method can be adapted to the two-way stratification problem. The raking ratio 
estimator of Y is given by 

yep) 
Gw) = EE_u_ Yij (4.4) 

n 

where Yij is the sample total in the (i, J)-th cell (yij = 0 of nij = 0) and Gl.p) are the values 
obtained in the p-th iteration of the raking procedure such that 

(4.5) 
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and 

r. Gv{P) n '" 
f n II 

Wj = r. Wv' , 

The Gv{P) are obtained as follows: Let G,iO) = Gv > 0 '1(i, J), and 

Gv{P) = Gij(p - I) _."....,-"W"'i.--,-_ if p is odd 
" G'j(P - I) 
i.J nij 
j n 

= G.ep - I) Wi if P is even. 
Gv{p - I) r. n nij 

I 

Under the fixed effects model (4.3), we have 

(4.6) 

i.e. yep) is approximately model-unbiased. Since E(Gij{O)n/n) = Wv for the choice 
Gij{O) = Gv' these starting values should be good. However, we may encounter convergence 
problems with the raking process because of the many empty cells (nv = 0) resulting from 
the Bryant el al. design. We hope to investigate these convergence problems as well as the 
conditional properties of the raking ratio estimator (4.4) in a separate paper. 

If the population means Xv of a concomitant variable x are known for all strata, then 
one could fit a model to the observed strata means Yij , as in Section 3.1. For example, the 
model Yv = f3xij + bj + Ii + tv with random effects bj and Ii might be reasonable, where 
£;j is the sample mean of errors 'vk in the (i, J)-th cell. A predictor SXv + bj + r, of Yv for 
nonsampled strata may be used in conjunction with the observed means Yij to arrive at an 
estimator of Y. This approach is similar to modelling for small area estimates, except that 
the parameter of interest here is the overall mean Y rather than the individual cell means 
Yij. We hope to investigate the conditional properties of alternative estimators of Y in a 
separate paper. 

5. NONRESPONSE 

5.1 A Simple Model 

Suppose m responses are obtained in a simple random sample of size n. Let WI denote 
the proportion in the response stratum and Y = WI YI + W,Y, the population mean, where 
YI and Y, are the means of response and nonresponse strata respectively, and 
W, = 1 - WI . In this situation, conditioning on the observed value of m can be question­
ed since the distribution of m depends on the unknown WI which is involved in the 
parameter of interest. Also, the sample mean Ym of respondents is unconditionally biased 
because E(jim) = Y, * Y. Hence, it is necessary to assume a model for response mechanism 
even in the unconditional framework, unless a subsample of nonrespondents is also sampled. 
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A simple model assumes that the probability of response if contacted is the same for all units, 
say p', i.e., data are missing at random. Under this model, the distribution of m depends 
only on p', and hence we should condition on m if p' is assumed known (or at least partially 
known or unrelated to i'), Oh and Scheuren (1983) have shown that conditionally given m 
the sample sm of respondents is like a simple random sample of size m from the whole 
population. Hence, Ym is conditionally unbiased, and its conditional variance is unbiasedly 
estimated by 

(5.1) 

where (m - I).s;.y = E"'m(v' - Ym)'· The resulting confidence interval Ym ± za12 .Jv,<Ym) is 
conditionally correct, at least approximately, if m is not small. 

On the other hand, the Horvitz-Thompson estimator (P' known): 

(5.2) 

is conditionally biased, as in Section 2, although unbiased when averaged over the distribu­
tion of m. For general designs, the ratio estimator. 

E~ 
• ,,,p' y _ m I 

HT,r - 1 

E "p* 
'm ' 

(5.3) 

is often used on grounds of efficiency, where ", is the probability of inclusion and p,' is the 
probability of response if contacted (assumed known) for the i-th unit. In the simple case 
of p,'= p' and simple random sampling, it is interesting to note that Y HT., reduces to Ym' 
Hence, the ratio estimator might perform well in a conditional framework, for general 
designs. 

5.2 A More Realistic Model 

A more realistic model assumes that data are missing at random within post-strata with 
known weights WI' Let n, and m, respectively denote the sample size and the respondent 
sample size in the i-th post-stratum. Then the joint distribution of (n" m,) depends only on 
the Iv, and the response probabilities within post-strata. Hence, we should condition on the 
observed value of (n" m,) provided the post-stratum response probabilities are either known 
or unrelated to the parameters of interest, viz., the post-strata means. Conditionally, the 
observed sample is like a stratified simple random sample with fixed strata sizes m, (Oh and 
Scheuren 1983). Hence, the estimator 

(5.4) 

is conditionally unbiased, and its conditional variance is unbiasedly estimated by 

(5.5) 
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where Ym' and ~" are the mean and variance of sample respondents in the i-th post-stratum, 
respectively. 

If the IV, are unknown, it is a common practice to replace IV, in (5.4) by its estimate 
w, = nln. In this case, conditional inference can be questioned since the distribution of (n" 
m,) depends on the unknown weights W, and since W, are involved in the parameter 
Y = E W,¥;. If partial information on w.., in the form of bounds on W" is available, we 
can proceed with conditional inference as in Example I, Remark 3, although the resulting 
estimator is still conditionally biased (but likely to be better than (5.4) with W, replaced by 
w,). 

6. DOMAIN ESTIMATION (SRS) 

6.1 Domain mean 

Under simple random sampling (SRS), the usual estimator of a subpopulation (domain) 
mean, Y" is given by the sample mean 

Yj 
E -,;:, n, > 0 

JESj , 

(6.1) 

where s, is the sample falling in the domain and n, is the corresponding size. 
If the domain size, N" is known, then one should condition on the observed value, n,. 

The estimator y, is conditionally unbiased if n, > 0 since conditionally s, is a SRS sample 
of fixed size n, from the domain. An unbiased estimate of the conditional variance is 

(6.2) 

and the resulting confidence interval y, ± Zal2 "v(Ji,) is conditionally correct. 
The estimator y" however, is unstable for small domains (small areas) with small n,. Also 

y, is not defined if n, = o. One solution to the latter problem, suggested in the literature, 
is to use a modified estimator. 

a· 
Y-.'= -'- ". n· > 0 , E(aj} Ju 1-

(6.3) 

where a, = 1 if n, ., 1; = 0 if n, = 0 and y, is taken as Y, if n, = O. The estimator yf, 
however, is conditionally biased: 

Qj -
E,(Ji') = - y .. 

, E(a,) , 

It is an underestimate if n, = 0, and an overestimate if n, 2: 0, although unconditionally 
unbiased. The extent of overestimation depends on the magnitude of E(a,) = P(n, 2: I). 
If, for example, p(n, 2: 1) = 0.75, then E,(Ji/) = (~)¥; if n, 2: 1. 

Sarndal (1984) proposed the following estimator in the context of small area estimation: 

(6.4) 
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where Y = 1: w}lj is the overall sample mean and Wi = n/n. The estimator is approximately 
uncon.ditionally unbiased, but conditionally biased unless Wi = 11',: 

Bi.])iS) = 
W· 

(---'- -
Wi 

I)(Y, - Y'), (6.5) 

where Y' = 1: WiYi. If ni = 0, the estimator YiS reduces to the "synthetic" estimator y. The 
extent of under- (or over-) estimation of YiS depends on both w/Wi -1 and Y, - Y' and 
hence more complex to analyse than the bias of YI' However, YiS would have a larger ab­
solute conditional bias' than Y if Wi > 2 II', (and hence a larger conditional MSE). Also, 
the conditionally unbiased estimator Y, has a smaller conditional variance than Y,S if Wi > 
II', (neglecting the variance of Y relative to that of Yi) and hence smaller conditional MSE. 

Hidiroglou and Sarndal (1985) proposed a modification of YiS: 

JYlifWi~w, 

1 y1s = Y + fwY (ji - y) if Wi < Wi' 
(6.6) 

The estimator Yi~' is conditionally unbiased if Wi ~ Wi' while its conditional absolute bias 
is smaller than that of Y if Wi < 11',. A motivation for y1s' is that the conditional variance 
of y1s (or YiS) is larger than that of Yi (neglecting the variance of Y relative to that of y,) if 
Wi > Wi' while the conditional variance of y1s is smaller than that of Y,S if Wi < 11',. 
However, the absolute conditional bias of y1s is larger than that of YiS if Wi < 11',. Hence, 
the choice between y1s and YiS in the case Wi < II', is not clear-cut and no simple recipe seems 
to exist. 

Drew et 01. (1982) proposed another sample size dependent estimator which depends on 
a parameter Ko. In the SRS case and the choice Ko = I, their estimator reduces to 

{ 

Y, if Wi ~ II', 

YID = 
:PiS if Wi < Wi' 

(6.7) 

As noted above, the choice between YiS and yl$ in the case W, < II', is not clear-cut. Con­
sequently, the choice between YiD and yl$' is also not clear-cut. 

If N, is unknown, the conditional argument may still be relevant provided Ni is unrelated 
to the parameter of interest Y,. It is also relevant when partial information on N, is 
available, such as bounds on N,. 

If a concomitant variable x with known domain mean Xi is available, the ratio estimator 

Yi -
Yir = -:- Xj 

Xi 
(6.8) 

·SarndaJ's estimator, however, should perform better in the case of a one-way model. The estimator is obtained 
by poolirr8 estimators of the form (6.4) over two or more groups. 
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and a regression-type estimator (Battese and Fuller 1981) 

(6.9) 

are both conditionally unbiased (approximately), but yt is likely to be more efficient if a 
regression model (through the origin) with a common slope holds true, at least approximate­
ly, for the small areas. If the slopes are varying, then an empirical Bayes estimator, which 
is more complex, might be mOre relevant (Dempster et al. 1981). 

6.2 Domain Total 

If N, is known, then an estimate of domain total Yi = NiYi is simply obtained by 
multiplying a chosen estimator of Yi by N,. On the other hand, the usual unbiased estimator 

-IT - _ N 
Ii = N; Yi = - E Yj , n,. ~ 1 

n JESj 
(6.9) 

is used if Ni is unknown, where Ni = NWi is the unbiased estimator of Ni and p(ni = 0) 
is assumed to be negligible. 

Suppose now that we have prior information, say N,' s Ni S N,'~ Then the conditional 
argument may be relevant. The conditional bias of Yi is 

B,(Y, ) = (N, - N, )Yi• (6.10) 

It follows from (6.10) (assuming Yi > 0) that B,(Y,) > 0, i.e., overestimation, if Ni > N, 
and that B,( Y, ) increases as the domain sample size n, increases. Similarly, B,( Y, ) < 0, 
i.e., underestimation, if N, < N, and IB,(Yi)1 increases as n, decreases; the conditional bias 
is zero if N, = N,. 

Utilizing the prior information, we can modify Y, as 

! 
Ni"Y, if N, < N," 

f i"'= !ViYi if Nt s Ni S N;"'''' 

Nt"'>,; if N; > Nr'* . 

(6.11) 

. The absolute conditional bias of YI' is smaller than that of Y, if either Ni < Nt or 
Ni > Nt·, while YI' = Y, in the interval Nt S N, sNt·. Hence, Y,' is conditionally bet­
ter than the unbiased estimator Y,. Also the unconditional MSE of Yl'is smaller than that 
of Y" although YI' is unconditionally biased. Unfortunately, there is no simple way to im­
prove upon YI' in the range Nt S N, s Nt'. In any case, YI' should be preferred over Y,. 
Good supplementary information on the domain size is necessary in estimating a domain 
total efficiently. 

7. GENERAL DESIGNS 

Post-stratification adjustment is commonly employed in complex large-scale surveys, mainly 
to increase the efficiency of estimators, e.g., the age-sex adjustment in the Canadian Labour 
Force Survey (LFS). A general theory of unconditional inference is also available. 
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The estimator of total Y is given by 

Ypst = (7.1) 

where 1', and M, are the usual unbiased domain estimators of the i-th post-stratum total 
Y, and size M, respectively. In the LFS, projected census counts are used for the M,. 
The estimator 1'"" reduces to 1: N,y, in the SRS case (see (3.2» and we have already seen 
that :SN,y, is conditionally unbiased in the SRS case (assuming all n, 2: 1). However, 
for complex designs it seems difficult to investigate the conditional properties of (7.1); 
even the choice of reference set is not so clear-cut. To illustrate this difficulty. consider 
stratified SRS with L = 2 strata and k = 2 post-strata. If we condition on the observed 
post-strata sample sizes (n. l , n.2> in each stratum h. the theory is straightforward provid­
ed the post-strata sizes N" in each stratum are known. However, in practice we will run 
into problems with zero sample sizes n" and also the sizes N" in each stratum may not 
be available or the projections inaccurate, although N., = 1:. N" = M, are available. 
Hence. we may prefer to condition on the observed total sample sizes (n.l' n.,). where 
n.i = L h nhi• 

Th" estimator Y "" in this special case of stratified SRS (L = 2. k = 2) reduces to 

(7.2) 

where N.. = N' l + N" and n •. = n' l + n" are the strata population and sample sizes 
respectively, and y" are the sample totals in the (h. /)-th cell. The conditional expectation 
of (7.2) given (n. l • n,;J is not tractable since one has to evaluate the sum 

E,(1'",,) = 1: p(s,ln. lo n")1',,,,(t) (7.3) , 

where s, is a possible sample such that the observed sample sizes fl" satisfy flli + flu = 
n., (i = 1.2). and 1'p,,(t) is the value of (7.2) for the sample s" and p(s,ln. l • n,,) is the con­
ditional probability of observing s, given (n. l • n.,): 

(7.4) 

It is clear from (7.3) and (7.4). however. that E,(1'",,) #< Y since Y"" does not depend 
on the cell totals N" unlike p(s,ln. l • n.,). 

Turning to variance estimation, the usual formula for general designs is given by 

v*(1'",,) = v(zn (7.5) 
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where v(y,) = v(l') is the usual variance estimator of the estimated total l', and v(z,*) is 
obtained from v(l') by replacing y, by 

Z,·= Y, - (7.6) 

where o,(l) = 1 if the t-th element belongs to the i-th post-stratum and 0,(1) = 0 otherwise 
(Williams 1962). In the SRS case, (7.5) reduces to 

v"(l'",,) '" N'(~ -~) Enpfy (7.7) 

(assuming (n, - I)/(n-I) '" n;ln) which is not equal to (3.3) when multiplied by N'. 
Hence, (7.5) does not behave well in the conditional framework, even in the SRS case. On 
the other hand, a new variance estimator 

v(l'",,) = v(z,), (7.8) 

where 

(7.9) 

and y,(I) = y, if the t-th element belongs to the i-th post-stratum and y,(,) = 0 otherwise, 
might be preferable over v*(l'",,) since in the SRS case it reduces to (3.3) when multiplied 
by tv' and the finite population correction is ignored: 

.,. _ Nf, 
V(I",,) - E -s'r 

i nj 
(7.10) 

Some theory for ratio estimators under models also suggests that v(l'",,) might perform bet­
ter conditionally than v*(l'p<')' In any case, there is no harm in switching to (7.8) since it 
is asymptotically equivalent to the customary variance estimator (7.5), unconditionally. 

8. DISCUSSION 

Our study clearly shows that conditional inference for complex designs involves formidable 
difficulties. Nevertheless, we should not use conventional procedures blindly. In those cases 
where conditional inference is feasible, as in the SRS case, we should certainly employ con­
ditionally relevant methods as elaborated in Sections 2 - 6, while in the more complex cases 
we should at least make simple modifications to conventional methods, as in (7.8), so that 
they agree with known, conditionally correct results in special cases. Clearly, we need more 
research in this area. 

ACKNOWLEDGEMENTS 

This paper is based on my lectures given at a workshop on conditional inference in sam­
ple surveys. I am thankful to Mrs. Nanjamma Chinnappa for organizing the workshop at 
Statistics Canada. Constructive comments from colleagues at Statistics Canada and Professor 
D. Holt were helpful in preparing this paper. 



Survey Methodology, June 1 985 31 

REFERENCES 

BANKIER, M. (1985). Conditionally unbiased estimators based on any number of independent stratified 
samples. Memorandum. Business Survey Methods Division, Statistics Canada. 

BATIESE, G.E., and FULLER, W.A. (1981). Prediction of county crop areas using survey and satellite 
data. Proceedings of the Section on Survey Research Methods, American Statistical Association, 
5()()'·505. 

BRYANT, E.C., HARTLEY, H.O., and JESSEN, R.J. (1960). Design and estimation in two·way 
stratification. Journal oj the American Statistical Association, 55, 105-124. 

CHINNAPPA, B.N. (1976). A preliminary note on methods of dealing with unusually large units in 
sampling from skew populations. Unpublished Technical Report, Institution and Agriculture Survey 
Methods Division, Statistics Canada. 

COX, D.R., and HINKLEY, D.V. (1974). Theoretical Statistics. London: Chapman and Hall. 

DEMPSTER, A.P., RUBIN, D.B., and TSUTAKAWA, R.K. (1981). Estimation in covariance com­
ponent models. Journal oj the American Statistical Association, 76, 341-353. 

DOSS, D.C., HARTLEY, H.O., and SOMAYAJULU, G.R. (1979). An exact small sample theory 
for post-stratification. Journal oj Statistical Planning and Injerence, 3, 235-248. 

DREW, J.H .. SINGH, M.P .. and CHOUDHRY, H. (1982). Evaluation of small area estimation techni­
ques for the Canadian Labour Force Survey. Survey Methodology, 8, 17-47. 

DURBIN, J. (1969). Inferential aspects of the randomness of sample size in survey sampling. In New 
Developments in Survey Sampling (Eds. N.L. Johnson and H. Smith), New York: Wiley -
Interscience. 

FISHER, R.A. (1925). Statistical Methods jor Research Workers. Edinburgh: Oliver and Boyd (5th 
Ed., 1934). 

FULLER, W.A. (1966). Estimation employing post strata. Journal ojthe American Statistical Associa­
tion, 61, 1172-1183. 

HARTLEY, H.O., RAO, J.N.K., and KIEFER, G. (1969). Variance estimation with one unit per 
stratum. Journal oj the American Statistical Association, 64, 841-851. 

HIDIROGLOU, M.H., and SARNDAL, C.E. (1985). An empirical study of some regression estimators 
for small domains. Survey Methodology, 11, 65-77. 

HIDIROGLOU, M.H., and SRINATH, K.P. (1981). Some estimators of the population total from 
simple random samples containing large units. Journal o/the American Statistical Association. 76, 
690-695. 

HOLT, D., and SMITH, T.M.F. (1979). Post-stratification. Journal oj the Royal Statistical Society, 
Ser. A, 142, 33-46. 

LAHIRI, D.B. (1969). On the unique sample, the surveyed one. Unpublished Technical Report, In­
dian Statistical Institute. 

OH, H.L., and SCHEUREN, F.J. (1983). Weighting adjustment for unit nonresponse. In Incomplete 
Data in Sample Surveys, Vol. 2, Academic Press, 142-184. 

ROYALL, R.M. (1970). On finite population sampling theory under certain linear regression models. 
Biometrika, 57, 377-387. 

SARNDAL, C.E. (1984). Design-consistent versus model-dependent estimators for small domains. Jour­
nal of the American Statistical Association, 79, 624-631. 

WILLIAMS, W.H. (1962). The variance of an estimator with post-stratified weighting. Journal oj 
the American Statistical Association, 57, 622-627. 

YATES, F. (1984). Tests of significance for 2 x 2 contingency tables. Journal oj the Royal Statistical 
Society, Ser. A, 147,426-463. 





Survey Methodology, June 1985 
Vol. 11, No.1, pp. 33-50 
Statistic:s Canada 

Cost-Variance Optimization for the Canadian 
Labour Force Survey 

G.H. CHOUDHRY, H. LEE, and J.D. DREWl 

ABSTRACT 

33 

The cost~variance optimization of the design of the Canadian Labour Force Survey was carried out 
in two steps. First, the sample designs were optimized for each of the two major area types, the Self­
Representing (SR) and the Non·Self·Representing (NSR) areas. Cost models were developed and 
parameters estimated from a detailed field study and by simulation, while variances were estimated us­
ing dati from the Census of Population. The scope of the optintization included the allocation of sam­
ple to the two stages in the SR design, and the consideration of two alternatives to the old design in 
NSR areas. The second stage of optintization was the allocation of sample to SR and NSR areas. 

KEY WORDS: Multi-stage designs; Sample allocation; Linear cost function; Components of variance. 

1. INTRODUCTION 

The Canadian Labour Force Survey (LFS) is a monthly household survey conducted by 
Statistics Canada to produce estimates for various labour force characteristics, It follows a 
stratified multi-stage rotating sample design with six rotation groups. Since its inception in 
1945, the survey has undergone a sample redesign following each decennial census of popula­
tion. These redesigns serve to update the sample to reflect population changes. They also 
provid" the opportunity to introduce improved sampling and estimation methodologies, and 
to respond to shifts in information needs to be satisfied by the survey. 

The 1981 post censal redesign effort included a research phase as outlined in an earlier 
paper (Singh and Drew 1981) in which all aspects of the survey design were examined in an 
effort to improve the cost efficiency of the survey vehicle, Highlights of the research program 
were presented by Singh, Drew, and Choudhry (1984). This report deals with the research aimed 
at cost-variance optimization of the sample design, 

The two important factors in the choice of a sample design are the total cost and the reliabili. 
ty of the resulting estimates. The optimum solution can be obtained by minimizing either 
total cost or total variance when the other is fIXed, Equivalently, the approach we have followed 
is one of minimizing the product of variance and cost for fixed sample size. 

The cost·variance optimization was carried out in two steps. We first consider the optimiza­
tion of the sample designs followed in each of the two major area types identified in the LFS 
design; i.e" the SR Areas or major cities, and NSR Areas which are the smaller urban and 
rural areas, The scope of the optimization includes the allocation of sample to the two stages 
of the SR design (Section 2), and the consideration of alternatives to the old design in NSR 
areas (Section 3). For NSR areas the old design is first evaluated empirically via a components 
of variance approach, and one stage of sampling in rural areas is identified for elimination, 
Subsequently the modified old design is compared to an alternative design featuring explicit 
rural/urban stratification from an overall cost·variance perspective. For both types of areas 
variance:s are obtained empirically using data from the 1971 and 1976 Censuses, while cost 
models are developed using data from a time and cost study, and by means of a simulation 
study, 

I G.H. Choudhry, H. Lee, and J.D. Drew. Census and Household Survey Methods Division, Statistics Canada, 
4th Floc1f, Jean ThIon Building, Thnney's Pasture. Ottawa, OntariO KIA OT6. 
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In Section 4, we consider the second stage of optimization, the allocation of sample to 
NSR and SR areas, taking into account the design improvements identified for each type 
of area. Finally, Section S summarizes the improvements identified, and their implications 
on the redesigned sample. 

2. SR DESIGN 

The old SR design is a stratified two-stage design (Platek and Singh 1976). Each Self­
Representing Unit (SRU) is stratified into a number of contiguous strata called subunits and 
each subunit is subdivided into clusters which are the primary sampling units (PSU's). The 
PSU's are selected using the random group method due to Rao, Hartley, and Cochran (1962) 
and at the second stage of sampling, a systematic sample of dwellings is taken in such a man­
ner that the design becomes self-weighting. Let l/Wbe the sampling rate in the stratum and 
n be the number of PSU's to be selected from the stratum. The N PSU's in the stratum are 
randomly partitioned into n groups so that the i-th random group contains M PSU's and 
E 7., M = N. Let Xj and M;, j = I, 2, ... , N, respectively be the size measure and dwell­
ing count for the j-th PSU in the stratum. 

Define 

and 

X; 
>.; = -N--

E X, 
t=1 

0. = I if j-th PSU is in i-th group 
= 0 otherwise. 

Then "If, = Ei=. o'J>'; is the relative size of the i-th group. Now define Wijs as 

Wij = 0. [w;,] or 0. [wi + I] (2.1) 

such that E1 •• WU = W for i = I, 2, ... , n, where [aJ is the greatest integer less than or 
equal to a. Now select one PSU from each of the n random groups independently with pro­
bability proportional to Wijs and sub-sample the selected PSU j from the i-th group at the 
rate 11 W •. Then the overall sampling rate within each of the random groups is 11 W so that 
the design becomes self-weighting with a design weight equal to W. The average sample size 
for the stratum is given by 

(2.2) 

= M,JW 

where Mo is the total number of dwellings in the stratum. Let M. be the number of dwell­
ings in the selected PSU j in the i-th group, then m, = M,j W. dwellings will be selected from 
the i-th group. The average number of dwellings selected from the i-th group for a given ran­
dom grouping is IIW EJ 0;; ~ and the average over all possible random groupings is m 
MIN since the expected value of 0. is MIN. If N/N = lin, i.e., the number of psu's in each 
of the random groups is the same, then the average sample per selected PSU is min = d(say), 
where d will be called the average density for the stratum. Since m is fixed, the sample of 
m dwellings can be elected by varying n and d such that the product (nd) remains equal to 
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m, the total sample size for the stratum. Our objective here is to obtain d which for a fixed 
sample size minimizes the product of variance and cost. For the optimization we obtain the 
total variance via the components of variance approach and consider a linear cost function 
as described in the following section. 

2.1 Variance Function 

Su.ppose that we are interested in the total of a characteristic y for the subunit. Let Yj' 
be the y-value for the h-th household in PSU j where h = I, 2, ... , N, then the total 
Y = E f'. I E:"1 I Y}' is estimated by 

n 
:f = WE y, (2.3) 

j-I 

wher,: y, is the sum of the y-values for the m, selected households from the PSU selected 
from the i-th group, i = I, 2, " . , n. Ignoring the effect due to rounding involved iii defin­
ing WU' the variance of :f is given by (Rao et aI. 1962) 

[
NY' 

Var(l') = A E...J.­
j=1 Aj 

SJ = _..:.1- t (Yj. _ -Yj)', 
M j - I.-I M; 

n 

ENi-N 
A = ...'c

l -=:---::-
N(N - I) 

If N, = Nln, i.e., all random groups have equal number of PSU's, then 

A = ...;N"'----'-'n_ 
n(N - I) 

Relative variance of :f defined by Var(l')IY' will be 

ReI. Var(l') = A [1, f YJ - I] + ...!.. f MjSJ[W-
Y j_1 Aj y> j= I 

= (W - I)IL, + A(ILI + IL, - IL,) 

where 

(2.4) 

(2.5) 
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I S' 
fI, = -, E M j "'!' . 

Y j Aj 

fll' fI2, and fI' are the population prameters and are fixed for a particular characteristic. Since 
m = nd and if we assume that N, = N / n then we can write A as 

and 

where 

I d A = --(N- - I) 
N- I m 

ReI. Var(f) = (W - I) fI2 + (N d _ I) <f'1 + fI2 - fI,) 
m (N - I) 

'" = (W _ I) _ <f'1 + fI' - fI,) 
o fI' (N _ I) 

= N <f'1 + fI2 - fI,) 
"'I m (N - I) 

(2.6) 

From (2.6), we observe that from reliability point of view, the value d = I (Le., one dwell­
ing per PSU) is optimum. But this will have impact on the cost as discussed in the next sec­
tion. The values of "'0 and "'I for unemployed for Halifax SRU were obtained from 1981 
census data and these are 

"'0 = 0.019005, "'I = 0.0007972. 

Since "'I is very small as compared to "'0, the increase in the variance with the correspon­
ding increase in d will be very small. Next we examine the effect on the cost due to varying 
the value of the average density d. 

2.2 Cost Model 

A simple cost model has been considered to investigate the impact on the cost as the den­
sity is varied. Due to telephone interviewing in the SR areas, personal visits are only required 
to a PSU during the rotation month and in cases where some households were without a 
telephone or did not agree to telephone interviewing. 

A breakdown of the interviewing cost by telephone and personal visit is available for in­
dividual interviewers from field operations, but further breakdown of the personal visit com­
ponent ofthe cost was required to construct the cost model. For this purpose a special time 
and cost study was carried out in the field for a period of six months (February-July 1982) 
on a random sample of interviewers. The results from the analysis of time and cost data 
are documented in a report by Lemaitre (1983). For the purpose of our cost model, we define 
the following set of parameters 

Co = Fixed costs 
CI = Average cost of dwelling-to-dwelling travel within the same PSU 
c, = Average cost of PSU-to-PSU travel 
y = Number of PSU-to-PSU moves per selectd PSU. 
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Th" fixed cost Co includes the time spent actually conducting interviews whether by 
telephone or in person and the travel cost from home to area and back, The fixed cost Co 
depends only on the total sample size m and not on n. the number of selected PSU·s. Sup­
pose that there are g, dwelling-to-dwelling moves and g, PSU-to-PSU moves made. then the 
total cost for m dwellings will be 

T = Co + g,c, + g,c,. (2.7) 

If n is increased then g, will also increase and g, will decrease and vice-versa but (g, + g,) 
should remain constant because the number of moves depends on the sample size m and 
the proportion of households interviewed by personal visit. Then we may write 

g, + g, = Om. 

From (2.8) we substitute g, in equation (2.7) and obtain 

T = Co + Omc, + g,(c, - c,) 
= Co + Omc, + ny(c, - c,). 

Now replacing n by mid we have 

my 
T = Co + Omc, + d (c, - c,) 

and cost per dwelling C as a function of average ensity d is given by 

Co Y 
C = m + Oc, + d (c, - c,). 

(2.8) 

(2.9) 

From Time and Cost Study the parameters c, and c, for Halifax were 0.78 and 2.51 
respectively. These parameters were observed with average density equal to 5 but c, increases 
with d and c, decreases with d. Assuming that the average distance between the units is in­
versely proportional to the square root of the number of units in an area. we can replace 
c, by c,(5Idj'" and c, by c,(dI5)'" in our model so that the modified model becomes 

(2.10) 

colm is fixed per dwelling cost and does not depend on density and its value was 3.28 from 
Time and Cost Study. The parameter 8 does not depend on the density either and was equal 
to 0.356 from Time and Cost Study. The parameter 'Y increases with density because the average 
number of visits to a PSU will increase due to higher density. We have approximated y by 

I 5 - + - (I - P') 
6 6 

where p is the probability of telephone interview for a household in a non rotate-in PSU 
and the value of p was 0.85 as obtained from interviewers' data. From the cost model (2.10). 
the values of per dwelling cost for d = 2. 3 •...• 10 are given in Table I along with the 
relative variances and the products of these two which are the values of the objective func­
tion to be minimized. 
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Density 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Table 1 
Value of Relative Variance, Cost per Dwellings and 

Objective Function for Various Densities (Unemployed) 

Relative Cost per 
Variance Dwelling 

0.0206 3.79 

0.0214 3.79 

0.0222 3.79 

0.0230 3.78 

0.0238 3.77 

0.0246 3.76 

0.0254 3.75 

0.0262 3.74 

0.0270 3.73 

Objective 
Function 

0.078 

0.081 

0.084 

0.087 

0.090 

0.092 

0.095 

0.098 

0.101 

As expected, we observe that under the model considered here, the cost per dwelling 
decreases very slowly as the density increases since the fixed per dwelling cost (col m) 
dominates in (2.10) due to telephone intervewing. From the previous section we had found 
that the increase in the relative variance is very small as the density increases. As a result 
Our objective function is monotonically increasing but the loss in the cost-variance efficien­
cy with increase in d is small. However it was decided to retain the old density of 5 for the 
redesigned sample on the grounds that lower density would have resulted in more selected 
PSU's with higher implementation and maintenance costs. 

3. NSR DESIGN 

3.1 NSR Design Alternatives 

Design Alternative D.: Old NSR Design (see Figure 1) 

Key features of the old NSR design (Platek and Singh 1976) were: 

i) Stratification: Economic Regions (ER's) whose numbers varied from 1-10 per province 
served as major strata. Within ER's, from 1-5 geographicaly contiguous strata were 
formed, using industry data from the 1971 Census. 

ii) Primary Sampling Units (PSU's): These were delineated within strata, to be 
geographically compact areas similar to the stratum with respect to stratification 
variables, and with respect to the ratio of rural to urban population. PSU populations 
ranged from 3,000 to 5,000. In the first stage PSU's were selected following the ran­
domized probability proportional to size systematic (RPPSS) method of Hartley and 
Rao (1962). Within PSU's urban and rural parts were sampled separately. 

iii) Within PSU Sampling: Urbans All urban centers assigned in whole or in part to selected 
PSU's were included in the sample. The second stage of sampling was a sample of blocks, 
following the RPPSS method. The third and final stage of sampling was a systematic 
sample of dwellings. 
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Do: Old NSR Design D 1: Elimination of 
Cluster Stage 

D2: Explicit 
Rural/Urban 

in Rurals Stratification 

ER ER ER 

I I ~ STRATA STRATA 

urban rural 
strata strata , 

PSU'S PSU'S 

~ ~ 
urban rural urban rural PSU'S 

I I 
urban EA's urban EA's ur an EA's 
centers centers centers 

dusters clusters clusters clusters 

dwellings dwellings dwellings dwellings dwellings dwellings 

Figure 1. Representation of NSR Design Alternatives. (-- stratification, ----- stage of 
sampling) 

iv) Within PSU Sampling: Rurals The second stage of sampling was a RPPSS sample 
of EA's. EA's were then field counted for the purposes of delineating clusters having 
from 3·20 dwellings. The third and fourth stages of sampling corresponded to an RPPSS 
sample of clusters and a systematic sample of dwellings. 

Design Alternative D,: Elimination of Cluster Stage of Sampling in Rurals 

i) It would permit shortening of the lead time to select independent samples from the LFS 
frame to 7 months from 13 months, by eliminating the need for counting of EA's. 

ii) Elimination of the clustering step would reduce sample maintenance costs. 

iii) A priori, the reduction in the stages of sampling from 4 to 3 stages would translate 
into a reduced variance. it was expected that costs, on the other hand, would not be 
very much affected, particularly with the shift to telephone interviewing. 

iv) At an early juncture in the redesign research program a field study was carried out on 
the operational implications of eliminating the cluster stage. Verification of EA listings 
a year later revealed no problems with the quality of listings, and analysis revealed no 
discemable impact on data collection costs. 
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Design Alternative D,: Explicit Urban/Rural Stratification 

The old design with its separate sampling of urban and rural portions of PSU's featured 
an implicit urban/rural stratification. A drawback of the approach however was that 
maintenance of the stratum urban to rural population ratio at the PSU level required fre­
quent discontiguity between rural and urban portions of PSU's, leading in turn to increased 
travelling costs. 

In view of this problem with the old design, design alternative D, was formulated as 
follows: 

i) Stratification: Rural and urban portions ofER's would constitute primary strata, which 
would be optimally sub-stratified to the point of having strata yields of 100-150 dwell­
ings (Le., 2-3 PSU's each corresponding to an interviewer's assignment). ER's not able 
to support at least one such urban and one such rural stratum (roughly V3 of ER's) 
were considered ineligible for D,. 

Secondary rural strata would be contiguous, while secondary urban strata would be 
formed without geographic constraints. 

ii) Sampling Within Rural Strata: PSU's similar to the stratum with respect to stratifica­
tion variables would be formed by grouping geographically contiguous EA's and will 
be selected by the RPPSS method. Second and third stages of sampling would be an 
RPPSS sample of EA's and systematic sample of dwellings. 

iii) Sampling Within Urban Strata: Sampling would proceed in three stages as follows: 
RPPSS sample of PSU's (individual or combined urban centers), RPPSS sample of 
clusters, and systematic sample of dwellings. 

3.2 Variance Components Model 

Design alternative Do, D, and D, were simulated using census data. Expressions for the 
variance components are given below: 

Stage of Sampling 

1st 

2nd 

3rd 

4th 
(where applicable) 

Variance Expression 

V(,) = vr-,~pss 

V(l) = 

N ~PPSS 

WE ....ill!.... 
(=I wj 

if last stage, 

~PPSS 

wEE ...miL otherwise 
j j Wij 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

The variance formula and its computation method for the RPPSS sampling are described 
in Appendix A. 
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3.3 Cost Model 

Whereas the cost model for the SR areas dealt with allocation of samples to 2 stages of 
sampling, here a cost model is needed to compare alternative NSR designs. 

The cost model for design Dl under personal interviewing was formulated as 

where Fo = fixed fee for interviewing, 
F, = fee for home to area, between PSU. and between secondary travel, 
F, fee for within secondary (dwelling to dwelling) travel, 
E, = expenses associated with home to area, between PSU, and between secon· 

dary travel, 
E, = expenses associated with dwelling to dwelling travel. 

Fees are compensation for the time spent and expenses for the distance covered. All 
Parameters are expressed in terms of per dwelling costs. 

Under telephone interviewing. this was modified to 

where ex is the factor by which time and mileage wOilld be decreased under telephoning. 

Now, under the assumption that D, would affect F, and E" say by a factor r, but would 
not affect other components we have, 

Parameters of CJ" and CJ" were estimated as follows: 

Fo, Fl , F" E" E,: These were estimated under Do from a special Time and Cost study 
(Lemaitre 1983), carried out as part of the redesign research program. 
Since the field test of D, revealed no discernable differences in data col· 
lection costs between Do and D" these parameters were assumed un· 
changed under D,. 

ex: Field testing of telephone interviewing carried out as part of the redesign 
research program did not have as an objective the estimation of cost sav· 
ings. An estimated 10% reduction in total data collection costs was made 
by Regional Operations staff, which permitted calculation of ex. 

r: This parameter could not be estimated based on available data, rather 
a Monte Carlo simulation study was needed, which is described in Ap· 
pendix B. 

3.4 Results of Cost·Variance Analyses 

Variante Analysis: Dl vs. Do 

Components of variance for 6 labour force characteristics were obtained for designs Do 
and D, using 1971 Census data for 5 ER's across Canada. Table 2 gives the '70 contribu· 
tion from each stage of sampling to the total variance under Do. It can be observed that 
30·40'7. of the total variance under Do was due to the rural cluster (3rd) stage of sampling, 
and that under design D, 20·30'70 variance reductions could be obtained. 
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Table 2 

Percent Contributions to the Total Variance from Stages of Sampling 
for the Current Design and Percent Reduction in the Total Variance Due to 

V 
Eliminating Cluster Stage of Sampling in Rural Areas; 100 (1 - ~ ) 

VDo 

Percent Contribution to Total 
Variance from Percent Variance Reduction; 

Characteristic Urban Rural V 
100 (1 - ~) 

1st 2nd 3rd 2nd 3rd 4th VDo 

stage stage stage stage stage stage 

LF Population 14.5 12.9 10.8 5.8 40.5 15.5 30.5 

Employed 21.2 11.2 10.4 6.3 35.0 15.8 27.1 

Unemployed 12.6 15.8 16.6 4.8 33.0 17.2 24.8 

Not in LF 24.7 11.9 10.7 4.8 32.9 15.1 22.9 

Employed Agr. 42.4 1.0 0.8 12.3 30.8 12.6 20.4 

Employed Non-Agr. 23.3 12.7 11.9 5.6 31.7 14.8 21.8 

The gains might be less since for the study, the variables being estimated and the size 
measures referred to the same point in time whereas this would not be true in practice. No 
attempt was made to discount the gains, however, since the choice between D, and Do was 
clear both in terms of variances, and on operational grounds (as discussed in Subsection 3.1). 
Further efforts were devoted hence to the choice between D, and D,. 

Variance Analysis: D, vs. D, 

In this study the number ofER's was expanded to 11, and study variables (employed and 
unemployed) were based on the 1976 Census, whereas size measures were based on the 1971 
Census. Also variances were computed with ratio estimation based on total population. 

The average variance efficiency of D, with respect to D, was 1.16 for employed and 0.97 
for unemployed (Table 4). 

Cost Analysis: D, vs. D, 

Values of all the parameters in the cost model are presented in Table 3 along with C~, 
and C~, and their ratio. 

As expected the between PSU and between secondary component of interviewer fees and 
expenses are higher under D, due to the frequent lack of contiguity between rural and ur­
ban portions of PSU's. The average reduction factor r in these components under D, was 
estimated as in Table 3 leading to an overall cost effiCiency for D, vs. D, of 1.08 (Table 4). 

Combined Cost Variance Analysis: D, vs. D, 

Table 4 gives the relative cost-variance efficiencies of D, vs. D, under telephone inter­
viewing. In terms of overall efficiency, D, is 25OJo and 5OJo more efficient than D, for 
employed and unemployed respectively. 

Based on these findings it was decided to adopt D, in the 2/3 of ER's capable of sup­
porting both urban and rural strata, and design D, was adopted in the remaining cases. 
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Table 3 

Values of Parameters in the NSR Cost Model and Relative Cost 
Efficiencies of DI vs. Dz with Telephone Interviewing 

ER Fo F, F, E, E, " r Chi cT 
0, c:;/cJ" 

22 2.05 0.74 1.31 0.95 0.92 0.85 0.93 5.38 5.28 1.02 

32 2.13 0.86 1.11 0.90 0.97 0.84 0.88 5.35 5.17 1.03 

41 2.04 0.94 0.94 0.% 0.69 0.84 0.42 5.01 4.08 1.23 

44 2.04 0.94 0.94 0.96 0.69 0.84 0.50 5.01 4.21 1.19 

51 1.94 0.80 1.07 0.81 0.75 0.84 0.89 4.82 4.67 1.03 

56 1.94 0.80 1.07 0.81 0.75 0.84 0.68 4.82 4.39 1.10 

63 2.07 1.03 1.03 1.19 0.97 0.75 0.87 5.66 5.41 1.05 

72 1.92 0.% 1.13 1.05 1.09 0.85 0.82 5.52 5.21 1.06 

82 1.88 1.12 1.01 1.20 0.94 0.86 0.57 5.55 4.69 1.18 

86 1.88 1.12 1.01 1.20 0.94 0.86 0.90 5.55 5.35 1.04 

96 2.03 0.81 1.22 0.75 0.85 0.84 0.75 5.07 4.74 1.07 

Table 4 

Relative Cost-Variance Efficiencies of Dl VS. D2 

Variance Efficiency 
Relative Cost-Variance 

Cost Efficiency VD/Do, Efficiency VD,C:;/Vo,CJ" 
C:;/CJ" 

ER Employed Unemployed Employed Unemployed 

22 1.09 0.93 1.02 1.11 0.95 

32 0.91 0.72 1.03 0.94 0.74 

41 1.14 0.86 1.23 1.40 1.06 

44 1.39 1.14 1.19 1.65 1.37 

51 0.96 1.01 1.03 0.99 1.04 

56 1.12 1.51 1.10 1.23 1.66 

63 1.35 1.06 1.05 1.41 1.11 

72 1.00 0.91 1.06 1.06 0.96 

82 1.09 1.01 1.18 1.27 1.19 

86 1.20 1.05 1.04 1.25 1.09 

96 1.38 1.05 1.07 1.48 1.12 

All· 1.16 0.97 1.08 1.25 1.05 

• Weighted average by population size. 
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3.S Special 2·Stage Design for Prince Edward Island 

For Canada's smallest province, Prince Edward Island, where sampling rates of 4% are 
required in order to produce reliable provincial data, design alternative D" a stratified sam· 
pIe of EA's and dwellings, was considered as an alternative to D,. 

D, did not feature any clustering of the sample into geographically contiguous primaries 
designed to correspond to interviewers assignments, as it was hypothesized that given the 
high sampling rates, the increase in data collection costs might be more than offset by variance 
reductions due to elimination of a stage of sampling, and due to stratification gains resulting 
from having more strata (Le., up to 4 times as many as under D,). 

Cost-variance study results showed the variance efficiency of D, vs. D, to be 2.39 for 
employed and 1.20 for unemployed, while costs under D, were only 8"7. greater. Hence, bas· 
ed on overall cost-variance efficiencies of 2.21 for employed and 1.11 for unemployed, D, 
was opted for. 

3.6 Number of PSU's Selected Per Stratum 

Under both designs D, and D" the sample yield per PSU was fixed at 55-60 dwellings 
to correspond to an interviewer's assignment. In about half of the ER's, there was only enough 
sample for 2 or 3 PSU's to be selected. Further stratification in these cases was ruled out 
on the grounds that there should be at least 2 PSU's per stratum to permit unbiased estima­
tion of variance. 

For the remaining ER's, some consideration was given to having 4-5 PSU's per stratum, 
as this would permit greater flexibility to reduce the size of the area sample, for example, 
if a portion of the area sample at some time in the future were to be converted to a telephone 
sample under a dual frame set-up. However, stratification to the point of 2.3 PSU's per 
stratum was adopted, based on variance reductions of 14.8% for employed and 5.4% for 
unemployed for these ER's. A detailed description of the stratification procedures followed 
can be found in Drew, Belanger, and Foy (1985). 

4. COST-VARIANCE OPTIMIZATION BETWEEN SR and NSR AREAS 

The next step in the cost-variance optimization of the LFS design was the optimization 
of the allocation of sample between SR and NSR areas. We used the simple cost and variance 
models considered by Fellegi, Gray, and Platek, (1967), Le., 

, p. 
C; ECj~' 

j; I j 
cost: 

variance: 

where j ; area type (; 1 for SR; ; 2 for NSR), . 
Cj ; unit (Le., per person) cost, 
Pj ; population, 

1/ Wi ; sampling rate, 
ClJ = unit variance. 

(4.1) 

(4.2) 

Fellegi et al. showed that if C is minimized with V fixed the ratio of the sampling rates is 

W, ; <1, (C,)", 
W, <1, C, 

(4.3) 
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The other optimization criteria described in Section I also give the same ratio as above. 

Parameters were estimated as follows: 

(i) Unit costs: Historical per dwelling costs by type of area were available. These were decreas­
ed by IO"lQ for NSR areas, to take account of the estimated effect of a shift to telephone 
interviewing of all rotation groups except the rotate-in group for the redesigned sample. 

(ii) Unit variances: Optimization was carried out with respect to the characteristic unemployed, 
for which variances were given by: 

(4.4) 

where {3j = design effect for unemployed, and uj = unemployed. 

Historical design effects by type of area were available, and were reduced to take into 
account of structural improvements in the respective NSR and SR designs as described in 
Sections 2 and 3. Unemployment levels were based on 1980-82 average LFS data, which seemed 
appropriate in light of medium term forecasts which were not calling for a return to pre-1982 
rece.'sion levels of unemployment, and population counts were based on the 1981 Census. 

Table 5 presents the percent of sample in SR areas under the following allocations: (i) 
old de'sign, (ii) proportional allocation, (iii) optimum allocation under the assumed cost and 
variance model, and (iv) the allocation adopted for the redesigned sample. The optimum 
allocation could not be adopted because of subprovincial data reliability constraints. In most 
cases, the differences between the optimum allocation and the one adopted are small. The 
optimal allocation turned out to be quite close to proportional, and quite different from 
the allocation under the old design. 

Table 5 
Percent of Sample in SR Areas within Provinces for (I) Old Sample, 

(2) Proportional Allocation, (3) Optimum Allocation, 
and (4) Redesigned Sample 

Province 
Old Proportional Optimum Redesigned 

Sample Allocation Allocation Sample 

Newfoundland 41.8 51.3 42.6 44.6 

Prince Edward Island 26.6 32.8 32.8 28.9 

Nova Scotia 37.3 57.4 58.8 51.9 

New Brunswick 49.5 52.5 47.4 53.6 

Quebec 56.8 74.8 71.6 68.9 

.ontario 62.5 79.1 78.8 75.0 

Manitoba 54.1 71.0 76.4 56.4 

Saskatchewan 44.7 51.8 62.1 56.8 

Alberta 60.0 68.6 72.6 62.3 

British Columbia 58.0 78.0 74.6 69.7 

Canada 53.2 67.1 67.4 62.3 
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Table 6 

Relative Efficiency of the Redesigned Sample Allocation 
with Respect to the Old by Province (Unemployed) 

Cost Ratio Variance Ratio 
Province (= C(O) ) (= VlO» 

ON) VlN) 

Newfoundland 1.00 1.00 

Prince Edward Island 1.01 1.02 

Nova Scotia 1.04 1.14 

New Brunswick 1.01 0.98 

Quebec 1.03 1.06 

Ontario 1.04 1.08 

Manitoba 1.01 1.03 

Saskatchewan 1.05 1.06 

Alberta 1.01 1.01 

British Columbia 1.02 1.09 

Canada 1.03 1.07 

ReI. Efr. 
(= OOW(O) 

ON)V(N) 

1.00 

1.03 

1.18 

0.99 

1.09 

1.12 

1.04 

1.12 

1.02 

1.11 

1.10 

The projected gains resulting solely from the re-allocation process under the assumption 
of fixed (old) provincial sample sizes and uniform sampling rates within the two area types 
are presented in Table 6. For this table, the unit costs and variances described above were 
used in determining the total costs and variances, C(O), C(N), 0°), 0N), under the old and 
new allocations respectively. The new allocation would have resulted in a 3% decrease in 
total cost and a 7% decrease in total variance of unemployed and for a combined relative 
efficiency (as defined in Table 6) of 1.10. Had it not been for the subprovincial data re­
quirements, an efficiency gain of 1.12 could have been achieved under the optimal allocation. 

The actual efficiency gains for the redesigned sample vs. the old sample are considered 
in the following section. 

5. CONCLUSIONS 

The changes in the LFS design taken as a result of the cost-variance studies are the follow­
ing: elimination of a stage of sampling in NSR rural areas, adoption of a design featuring 
rural/urban stratification, adoption of a 2-stage NSR design in Prince Edward Island, in­
crease in the number of NSR strata to the extent that only 2 or 3 PSU's per stratum will 
be selected, and re-optimization of the allocation of sample between NSR and SR areas. The 
near optimality of other design parameters established earlier by Fellegi, Gray and Platek 
(1967) was found to have remained unchanged, for example the number of dwellings to select 
per PSU in SR Areas. 

The efficiency gains resulting from the changes permitted a 7"10 reduction in the overall 
LFS sample size and achieved the required reliability of subprovincial data (Singh et al. 1984) 
without impacting on the reliability of provincial and national estimates. The only excep­
tions were the provinces of Quebec and Manitoba, where greater subprovincial data demands 
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Province 

Newfoundland 

Prince Edward Island 

Nova Scotia 

New Brunswick 

Quebec 

Ontario 

Manitoba 

Saskatchewan 

Alberta·· 

British Columbia 

Canada 

Table 7 
Relative Efficiency of the Redesigned 
vs. the Old Sample for Unemployed 

Cost Ratio· Variance Ratio 
(= DO) ) 

DN) 
(= 1'(0) 

I'(N) 

1.19 1.00 

1.10 1.13 

1.22 1.04 

1.17 0.99 

1.15 0.95 

1.13 1.03 

1.17 0.96 

1.23 1.02 

1.15 1.00 

1.15 1.01 

1.17 0.99 

ReI. Eff. 
(= DO) V(O) ) 

DN)V(N) 

1.19 

1.24 

1.27 

1.16 

1.09 

1.16 

1.12 

1.25 

1.15 

1.16 

1.16 

• Based on the redesigned sample with telephone interviewing and the old sample with 
personal visit interviewing in NSR areas . 

•• Supplementary sample not included. 
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necessitated a slight loss in provincial data reliability. Table 7 gives the cost, variance and com­
bined cost-variance ratios for the old sample (old design with 55,500 hhlds/month and no 
telephone interviewing in NSR's) vs. the redesigned sample (new design with 51,600 hh1ds/month 
and telephone interviewing). The significant cost reductions are due to the shift to telephone 
interviewing in months 2-6 in NSR areas, and the sample size reduction. The overall cost­
variance efficiency of the redesigned sample relative to the old sample was 1.16 (Table 7). 

APPENDIX A 

Varlamlce Formula and Computation Method for RPPSS Sampling 

Suppose that a sample of size n is selected by the randomized PPS systematic sampling 
from N units. Let p, be the normalized size measure of the ;-th unit such that Ef-I p,. I. 
The Horvitz-Thomson estimator of the total Y for a characteristics y is given by (Horvitz 
and Thomson 1952): 

Where S = the selected sample of size n 

y, = y-values of ;-th unit 

71', = np" the probability that the ;-th unit is in S. 
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and its variance is 

= ~ ~ ("i "j - "ij) -'- -...!.. , N (Y y), 
;= 1 i<j 1rj 7rj 

where "ij is the joint probability that both the i-th andj-th units are in S. Hartley and Rao 
(1962) gave an asymptotic formula for .. ;s. 

An exact formula by Connor (1966) is also available but quite involved. Recently Hidiroglou 
and Gray (1980) developed a computer algorithm using a modification of Connor's formula 
due to Gray (1971), which was used in our study and compared with the Hartley-Rao ap­
proximation. It was found that the Hartley-Rao approximations are very close to the exact 
values for N;" 16. We decided to use the Hidiroglou-Gray algorithm for N < 16 and the 
Hartley-Rao approximation for N ~ 16 considering exponential increase in computation with 
the algorithm as N increases. 

APPENDIX B 

Cost Simulation of D, vs. D, 

In order to estimate r, the ratio of fees and expenses for travel from home to area, bet­
ween PSU's, and between secondaries under NSR design alternatives D, and D" a Monte 
Carlo study was carried out. The sample frames under D, and D, were simulated to the level 
of secondaries using Census data for each of the 11 study ER's. Fifty samples were drawn 
following each design, and the selected secondaries for each sample were grouped into 
geographically optimal assignments. If M'l and M'l are the average measures of within 
assignment geographic dispersion under designs D, and D" then r was estimated by 

The M-measure for a given sample was defined in the following manner. Suppose that 
k interviewers cover an ER and 0i = {Uij; j = 1,2, ... , nil is the i-th interviewer's assign­
ment, with ni second stage sampling units. Let (xij' Yij) be the population centroid of Uij 
defined in Euclidean coordinates. The M-measure for the ER is defined as 

k 

M = ~ M i , 
;=1 

"i 
Mi = ~ {(Xij - Xi)' + (yij - Pi)'}'" , 

j=i 

The determination of optimum interviewer assignments, that is the minimization of the 
M-measure, reduces to a classification or clustering problem. The following clustering 
algorithms were investigated: 

i) Friedman-Rubin (1967) Transfer Algorithm 

This non-hierarchical algorithm which was adopted for stratification of the LFS sample 
(Drew et al. 1985), starts with a random partitioning of units and proceeds towards a 
local optimum by moving one unit at a time from one cluster to another if the move 
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reduces M. It also checks that size constraints are not violated before moving a unit. An 
approximation to the global optimum is achieved by taking several initial random starts. 
A disadvantage of the Friedman-Rubin algorithm in this case was that the strict size con­
straints required in order to have approximately equi-sized assignments, restricted the move­
ment of units between clusters. 

ii) Dahmstriim-Hagnell (1975) Exchange Algorithm 

This algorithm is similar to the Friedman-Rubin algorithm, except that it is based on ex­
changing pairs of units between clusters as opposed to transfering individual units. Hence 
it works better under strict size constraints. 

iii) Combined Algorithms 

Define a cycle of a combined algorithm as application of the exchange algorithm, follow­
ed by the transfer algorithm. Then we considered both single and two cycle combined 
algorithms. 

Th" combined two cycle algorithm worked best, requiring the smallest number of ran­
dom starts and the least computing cost to achieve the same level of optimality as the 
other algorithms. Performance of the I and 2 cycle combined algorithms based on 21 
replicates is summarized below. 

One Cycle Two Cycle 

No. of Random Starts No. of Ramdon Starts 

2 4 10 2 4 

M-measure· 336.18 329.19 325.65 325.51 327.55 325.69 325.51 

Standard Deviation 15.84 15.45 15.67 15.69 16.10 15.67 15.69 

Computing Cost ($) 5.94 11.24 21.67 53.90 8.17 15.12 29.38 

• Average over 21 replicates. 
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ABSTRACT 

51 

This study is mainly concerned with an evaluation of the forecasting performance of a set of the most 
often applied ARIMA models. These models were fitted to a sample of two hundred seasonal time 
series chosen from eleven sectors of the Canadian economy. The performance of the models was judg­
ed according to eight variable criteria, namely: average forecast error for the last three years, the chi­
squarl~ statistic for the randomness of the residuals, the presence of small parameters, overdifferenc­
ing, underdifferencing, correlation between the parameters, stationarity and invertibility. Overall and 
conditional rankings of the models are obtained and graphs are presented. 

KEY WORDS: XIl-ARIMA; Ranking; Priority; Criteria 

I. INTRODUCTION 

Our socio-economic environment is unstable and uncertain; inflation, recessions, and in­
creasing pollution are among the factors contributing to increasing instability, We try to resolve 
the problem by using a method of forecasting that permits us to evaluate the impact of the 
frequent changes. ARIMA models (Box - Jenkins, 1970) are flexible enough to deal with 
such frequent changes in time series. 

The purpose of this paper is to study a set of eight criteria which when applied to the 
Box-Jenkins method permit an evaluation of the fitting and forecasting performance of a 
set of the most often applied ARIMA models to Canadian economic time series. The ques­
tion of which models perform well is important for programs like the X-II-ARIMA (Dagum 
1980) which automatically fits a fIXed small set of models (three models in the case of the 
X-ll-ARIMA) to the series. 

Section 2 introduces eight criteria: the average forecast error for the last three years, the 
chi-square statistic for the randomness of the residuals, the presence of small parameters, 
overdifferencing, underdifferencing, correlation between the parameters, stationarity and 
invertibility. Section 3 discusses the criteria and summarizes the results. Section 4 ranks the 
modo:ls conditionally and unconditionally. Section S compares within-sample and out-of­
sample extrapolated values for the last three years. 

2. THE CRITERIA 

In this section we give a brief discussion of the eight criteria used in ranking the models. 

1 Presented at (1) Business and Economic Forecasting Session of the Canadian Operational Research Symposium, 
Ottawa, May 1984 and (2) Business and Economic Statistics Section of the American Statistical Association Meetings. 
Philadelphia, August 1984. 

2 K. Chiu, 1. Higginson. and G. Huot, Time Series Research and Analysis Division, Statistics Canada, Tunney's 
Pasture, Ottawa, Ontario, Canada KIA OT6. 
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Stability 

The stability condition of a process Z, is either "stationary" or "non-stationary". It in­
dicates how well the system remembers the shocks a'_j' j = 1, 2, ... , and how fast or slow­
ly the response of the system to any particular shock decays. For a process 

= ",(B)a" 

where a, - NID(O, 0;), the filter is said to be stable if the sequence {"',} is convergent. For 
a general ARIMA model (p, d, q), 

4>(B) (1 - B)dZ, = 8(B)a" 

the stability condition is that all the Ai of the characteristic equation 

<I>(B) = I - 4>,B - <I>,E' - .,. - <I>.B" = (1 - A,B) (1 - A,B) ... (1 - A"B) = 0 

for the process are strictly inside the unit circle, i.e. IA)I < I. 

Invertibility 

The process Z, may be expressed as: 

The system is said to be invertible if the sequence {"i} is convergent. The criterion is con­
sidered to be of primary importance because if the invertibility condition fails, the generating 
function .. (B) of the .. 's increases without bound. This means the current event of the system 
depends more on events in the distant past than in the recent past, and the process is physically 
meaningless. 

The invertibility condition for a general ARIMA model (p, d, q), is that the Vi of the 
characteristic equation 

8(B) = I - 8,B - 8,E' - ... - 8"B" = (1 - v,B) (1 - v,B) ... (1 - v,jJ) = 0 

for the process are strictly within the unit circle, i.e. I vii < 1. 

Underdifferencing 

In the AR(P) model, when one or more of the Ai' say Ak approaches 1; then from 

4>(B) = 1 - <I>,B - <1>,8' - ... - 4>"BP 

= (1 - A,B) ... (1 - Ak_,B) (1 - A"B) ... (1 - A"B) 

= (1 - AlB) ... (1 - Ak_IB) (1 - Ak+IB) ... (1 - A"B) (1 - A"B), 

we have <I>(B) approaching 
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Therefore, a differencing operator may be needed for this system, and the AR(p) model 
becomes an ARl(P - I, I) model. Furthermore, when At approaches I, we may have 
non-stationarity. 

Overdifferencing 

Consider the general ARIMA model (p, d, q) (P, D, Q)" 

q,(B)~(B) (I - B)'(1 - B')DZ, = O(B)8(B)o,. 

If any "i of the characteristic equation O(B) = 0 approach I, i.e. if any (1 - ",B) approach 
(1 - B), we can eliminate (I - B) from both sides. 

Test of randomness for the a,'s 

Correlation in the residuals is not desirable since we want an unbiased estimate of the 
parameters for the process. 

The statistic 

m 
Q = n(n + 2) 1: (n - k)-Iei 

k=1 

as modified by Prothero and Wallis (1976) and Ljung and Box (1978) from the Chi-square 
test of Box and Pierce is used. 

Here n is the sample size, k = 1, 2, ... ,m are the various lags, and l2k are the autocor­
relations. Q is used for the testing of the randomness of the residuals. 

Small Parameters 

Generally speaking, when the number of parameters of a given model is increased, the 
mean sum of squares"; is reduced. However, only large parameters, or those parameters 
significantly different from 0 can contribute to a significant reduction of .,;. To check for 
a small parameter, we may need an F-test (Pandit and Wu 1983): 

A, - Ao Ao 
F = ... -- -F(s, N - r) 

s N - r 

where r is the number of parameters of the model and s is the number of parameters which 
are restricted to zero. N is the number of observations, Ao is the smaller sum of squares 
of the restricted model, and A, is the larger sum of squares of the restricted model. 

But in our study here, we choose two constants, 0.05 and 0.10, as our indicator of the 
presence of a small parameter. 

Correlation of the Parameters 

High positive or negative correlation between parameters reflects ambiguity in the estimated 
values since a range of parameter values results in models with equally good fit. Therefore, 
if some of the elements in the correlation matrix of estimated parameters are large in ab­
solute value, say greater than or equal to 0.9, the model may be reduced by deleting some 
of the smaller parameters. 
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Forecasting Error 

No matter how we define a good model or bad model, we still have a primary interest 
in the forecasting error of the model. In this paper we use the mean absolute percentage 
forecasting error of one-year-ahead forecast 

1 N Z,., - t,(i) 
MAPE = - E x 100"7. 

N lei Zt+t 

where e is 12 or 4, and t,(i) is the forecast with lead time e. 

3. EVALUATION OF THE ARIMA MODELS 

The eight criteria have been put into two groups. The first group considers good fitting 
of parsimonious models while the second considers the quality of the forecasts. This distinc­
tion between fitting and forecasting is important; good fitting and good forecasting are not 
equivalent. 

These criteria have been used to evaluate and rank seven of the most often applied ARlMA 
models, namely: 

1. (0, 1, 1) (0, 1, 1), 5. (I, 1,0) (0, I, I), 
2. (0, 1, 2) (0, I, I), 6. (2, 1,0) (0, I, I), 
3. (0, 2, 2) (0, I, I), 7. (2, 1,0) (0, I, 2), 
4. (2, 1,2) (0, I, I), 

where "s" is 12 if the series is monthly and 4 if it is quarterly. 
These models were fitted to a sample of 167 monthly seasonal time series chosen random­

ly from eleven sectors of the Canadian economy: national accounts; labour; prices; manufac­
turing; fuel, power and mining; construction; food and agriculture; domestic trade; external 
trade; transportation; and finance. About 40 quarterly time series from national accounts 
and finance were also tested. 

The series are mostly multiplicative, according to the Bell Canada model test (Higginson 
1976). That is, the different components (trend-cycle, seasonal, and irregular) are multiplied 
together to produce the raw series. Therefore, the amplitudes of the seasonal component 
frequently increase with increasing levels of the trend. The multiplicative series received a 
logarithmic transformation before the first three and last three models were fitted. The fourth 
model was fitted to the untransformed series in all cases. 

Looking at the non-seasonal part of an ARlMA model which is associated with the trend­
cycle and extremes, we see that the models can be grouped into three classes. Class I is models 
I, 2 and 3 whose ordinary part includes only one Or two first differences and one or two 
moving average parameters. Class III includes models 5, 6 and 7 whose ordinary part in­
cludes ouly one first difference and some autoregressive parameters. Model 4 (Class II) forms 
a class by itself; its non-seasonal part is mixed. We see that the seasonal part of all models 
is the same except for model 7. 

Although the eight criteria are analysed separately in this section, several of them are depen­
dent. For example, we shall see that the excess of parameters in model 4 generates problems 
of nonstationarity, noninvertibility, under- and overdifferencing, and correlation. 
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In Sections 3 and 4, we test within-sample extrapolated values for the seven ARIMA models. 
That is, the models are fitted to the whole series thus providing the parameters to be used 
for calculating the forecasts for the last three years. This is the way ARIMA forecasts are 
evaluated in the X-ll-ARIMA program. 

3.1 Criteria for Fitting Parsimonious ARIMA Models 

The stationarity condition requires that all the roots of the autoregressive characteristic 
equation be inside the unit circle. We see in Table I that non-stationarity occurs only for 
model 4, in three cases. These appear to be due to overparametrization of the model. 

In order for the model to be invertible, it is necessary that the roots of the moving average 
characteristic equation be inside the unit circle. Only model 4 has many cases of noninver­
tibility, 20%, as we see in Table 2. Two explanations are possible. There is first of all the 
case of straightforward noninvertibility. In some other cases noninvertibility was accompanied 
by nonstationarity. The fact that the autoregressive part may have roots near unity might 
have caused autocorrelation in the residuals. The moving average parameters would then 
take higher values to compensate. 

An important criterion in judging the appropriateness of the ARIMA models for the series 
is the chi-square test of Box and Pierce (1970) (modified by Prothero and Wallis in 1976, 
and by Ljung and Box in 1978), applied to the autocorrelation of the residuals. Table 3 shows 
for each of the seven models the number and the percentage of series that fail the chi-square 
test at. different levels. We see from this table first, that within a given class of models the 
simpler models have higher failure rates and second, that the failure rate depends to a large 
degree on the class of the model. The first point is illustrated by models 2 and 6 which having 
one more parameter than models 1 and 5, have a higher number of series passing this test. 
The evidence for the second point is that moving average models appear to satisfy the 

CRrrlCAL 
VALUE 

CRITICAL 
VALUE 

CLASS I 

Table 1 

Failure i~ Stationarity 

CLASS 11 CLASS 111 

Model I Model 2 Model 3 Model 4 ModelS Model 6 Model 7 
AI.I)~I.Q ~1.~AI.ij ~~~~l.Q ~I,~~I.I) P,I.~~I,I) ~J.m~I,I) ~I.~~I.~ 

'''' 

Table 2 

Failure in [nvertibility 

CLASS I CLASS 11 CLASS 111 

Model I Model 2 Model 3 Model 4 ModelS Model 6 Model 7 
(0,1, I) (0, I, I) (0,1,2)(0,1, I) (0, 2. 2) (0. I, I) (2,1,2) (0, I, I) (I, I, 0) (0, 1, I) (2,1,0)(0, I, I) (2, I, 0) (0, I, 2) 

, .. ,% , .. " """ 
, '''' ,% ,% 
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Table 3 

Failure in Chi-Square 

CLASS I CLASS II CLASS III 

CRITICAL Model I Model 2 Model 3 Model 4 ModelS Model 6 Model 7 
VALUE (0,1, I) (0, 1, I) (0, I, 2) (0, I, I) (0,2,2) (0,1, I) (2,1,2)(0,1, I) (I, I, 0) (0, 1, I) (2,1,0)(0,1, I) (2, I, 0) (0, I, 2) 

1'" 'I I.'" I' 11" 29 17 .. 26 16 .. 62 " .. 21 I'" 20 12 .. , .. 43 27'" 36 " .. 46 "'10 41 "'10 82 .. '" 49 " .. 42 " .. 
10 .. 61 ,,% .. 29% " "'10 " " .. 89 ,,% '" ,,% " 34111. 

1'" 12 43010 " ,,% .. 41% 66 40'" 101 "'% 11 ,,% .. ,,% 

20 .. 83 500ft 62 ,,% •• .... " 46'" 106 .. % 80 .. % " "'" 
3.% 100 600. " 46% 94 "'" 88 ,,% 11. 11% " ,,% 89 " .. 
40% 111 66010 97 ,,% 101 .. % 99 59010 121 7611ft 104 62% 100 "' .. , ... 121 ,,% 106 " .. 11' 11% 11' .. % 133 81OT, 111 70010 116 .. % 

"'''' 1'1 ,,% 121 " .. 128 ,,% 129 " .. 141 84117, 121 " .. 121 " .. 

chi-square test better than autoregressive models. This may be due to the presence of ex­
tremes in the series. At the 5'7. level for example, model I fails for 27% of the series com­
pared with 49% for its autoregressive counterpart model 5. As well as all models of class 
III, the mixed model, class II, is inferior to the second model of class I. 

Underdifferencing occurs when a root of the characteristic equation of the autoregres­
sion polynomial is close to unity, say a distance ( from unity. Here ~ is set equal to 0.1. 
We see in Table 4 that only model 4 is underdifferenced. This may be attributed to over­
parametrization. Model 4 has two autoregressive parameters and two moving average 
parameters in its non-seasonal part. Just through the estimation, there is a moderate chance 
that at least one of the autoregressive parameters will be greater than or equal to 0.9. 

In this discussion the critical levels chosen for overdifferencing are 0.90 and 0.95. Table 
5 shows that models 3 and 4 are most often overdifferenced. Model 3 has two first differences 
and two non-seasonal moving average parameters. If the second first difference is not 
necessary, autocorrelation is created in the series that has been differenced once already. 
The moving average polynomial will model this introduced autocorrelation by having one 
of its roots close to unity. We can therefore simplify the model by eliminating one moving 
average parameter and one difference. As to model 4, this may be due to overparametrization. 

CRITICAL 
VALUE 

.90 

Table 4 

Failure in Underdifferencing 

CLASS I CLASS II CLASS III 

Model I Model 2 Model 3 Model 4 ModelS Model 6 Model 7 
~~ij~l.1) ~1,~~1.1) ~~~~~ij ~1.~~1,1) (I,I,O)AI,I) ~l.O)AI.I) ~1.0)~1.~ 

14 .% 
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In ARIMA modelling of a stochastic process, it is enough to consider the first two moments, 
that is, the mean and autocovariance. The test on the size of the parameters serves only to 
eliminate those that contribute very little or nothing to the explanation of the autocovariance. 

Table 6 illustrates two things. First, the simplest models pass this test better than more 
complicated models. After a logarithmic transformation, most of the mUltiplicative series 
in thf: sample will follow a straight line fairly closely (except for seasonal variation), so a 
"first difference" model will fit them using few parameters. Adding an extra unnecessary 
parameter to the model will often result in its receiving a small estimate from the estimation. 
Second, the estimated values of the moving average parameters are small (less than .05 or 
.10) more often than the estimated values of the autoregressive parameters. For example 
at the level of 0.05, the second autoregressive parameter in model 6 is judged unnecessary 
13"7. of the time compared with 29"7. of the time for the second moving average parameter 
in model 2. Similarly, the addition of a second seasonal moving average parameter increased 
the failure rate from 13"7. in model 6 to 43"7. in model 7. 

CRITICAL 
VALUE 

.90 

. 9l 

CRITICAL 
VALUE 

.0' 

.10 

CRITICAL 
VALUE 

Model I 
(0, I, 1) (0, 1, I) 

'''' 
'''' 

Modell 
(0.1. 1) (0,1, l) 

IS '''' 
" I." 

Modell 

Table 5 

Failure in Overdifferencing 

CLASS I CLASS II 

Model 2 Model 3 Model 4 
(0, I, 2) (0, I, I) (0,2,2) (0, I, I) (2, I, 2) (0. I. I) 

II '''' 43 26'10 so 30"'. 

• 4% 19 11% J7 ,,'" 

Table 6 

Failure in Small Parameter 

CLASS [ 

Model 2 
(0, I, 2) (0, I, I) 

49 ,,% 
" ,,% 

CLASS I 

CLASS II 

Model 3 Model 4 
(0, 2, 2) (0, I, I) (2,1,2) (0, I, I) 

21 "'" 42 " .. 
43 " .. 73 44% 

Table 7 

Failure in Correlation 

CLASS II 

Model 5 
(I, I, 0) (0, I, I) 

,% 

,% 

ModelS 
(1,1,0)(0,1,1) 

12 ,% 

31 1911}'0 

Model 2 Model 3 Model 4 ModelS 

'''' 124 14% 

CLASS III 

Model 6 Model 7 
(2, I, 0) (o, I, I) (2, I, 0) (0,1,2) 

, '''' 14 ,% 

,., • ,% 

CLASS III 

Model 6 Model 7 
(2,1, O) (0,1,1) (2,1,0) (0,1, 2) 

22 13% 72 43117, 

4S ,,% II' .,% 

CLASS III 

Model 6 Model 7 
(2, I, 0) (0, I, I) (2, I, 0) (0, I, 2) 
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High positive or negative correlations between parameter estimates are undesirable and 
reflect ambiguity in the estimation situation since a range of parameter combinations result 
in models with equally good fits. Table 7 shows that only models 2, 3 and 4 fail the correla­
tion test, i.e. the absolute value of at least one of the correlations is 2: 0.90. The problem 
is minimal for model 2, and serious for models 3 and 4 where 51 % and 74"70 of the fits had 
highly correlated parameters. This may be due to overdifferencing in model 3 and the presence 
of too many parameters in model 4. 

3.2 Criterion for Extrapolation of ARIMA Models 

This criterion attempts to ensure the quality of the forecasts of the ARIMA models. We 
require that the average percentage forecast error of the fitted error be below a certain level. 

Table 8 shows that six of the seven models are equivalent from the point of view of 
forecasts, i.e. the number of autoregressive and moving average parameters does not affect 
the forecast error of the model averaged over all the series. Of course, some models perform 
better for certain series. 

Table 9 shows the average forecast error and standard deviation of the error under two 
possible outcomes: passing and failing the forecast error criterion. Not only is the failure 
rate of model 3 higher than that of the other models, but the table shows that when it fails, 

Table 8 

Failure in Forecast Error 

CLASS I CLASS II CLASS III 

CRITICAL Model I Model 2 Model 3 Model 4 Model S Model 6 Model 7 
VALUE (O, t, I) (0. I, 1) (0,1,2) (0, I, 1) (0, 2, 2) (0, I, I) (2, I, 2) (0,1, I) (I. I, 0) (0, I, 1) (2, I, 0) «I. I, I) (2. I, 0) (0, I, 2) 

% .. % .. % % % % 

10 •• " 84 so 101 60 80 48 84 " " 51 " 51 

" " 34 " lS 69 " " " " " 56 " " 33 

20 " 2l 40 24 51 II 40 24 40 24 40 24 40 24 

" " I' 33 20 " " " I. " 22 I. 20 ,. 20 

lO 24 14 " 16 " 21 24 I' 27 I. 27 I' 27 I. 

Table 9 

Conditional Mean (M) and Standard Deviation (SO) 
of the Average Forecast Error 

CLASS I CLASS II CLASS III 

Critical Out· Model I Model 2 Model 3 Model 4 ModelS Model 6 Model 7 
Value rom, (0,1, I) (0, I, 1) to, I, 2) (0. I, I) (0,2, 2) (0, I, 1) (2, I, 2) (0, I, 1) (I, 1,0) (0, I, I) (2,1,0) (0,1, I) (2. I, 0) (0. I. 2) 

M SO M So M SO M SO M SO M SO M SD 

IS"" PM, ,% 4.0 .% l.' ,% 4.1 ,% l.' ,% l.' , .. 4.0 ,% l.' 
.oil ,,% 22.3 360;, 22.' ,,% 26.4 ,,% 21.4 ,.% 24.' ,,% 2l.4 37GJ, 23.0 
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its ave:rage forecast error is bigger, The forecast errors of model 3 are increased by its over­
differencing. However, when the forecast errors of model 3 pass the criterion, their average 
is as small as that of the other models. 

4, RANKING OF THE MODELS 

To rank the models, the eight criteria are used at different acceptance levels. Tables 10 
and 11 present the overall and conditional rankings of the models. Table 10 gives the total 

Table 10 

Overall Ranking of the Models 

2 criteria 8 criteria· 8 criteria· 8 criteria-
FE :s 15'10 FE :s 15'1'. FE :s 15'10 FE :s 15% 
X' ?; 5% X' ?; 5% X' ?; 5% X' ?; 5% 

SP :s .10 SP :s .05 SP :s .05 
OD?; .90 OD?; .90 OD?; .95 

% of series 0/0 of series OJo of series OJo of series 
Models that passed Models that passed Models that passed Models that passed 

4 52% I 34% 6 38% 6 39% 
7 51% 6 31% 37% I 38% 
6 49% 5 23% 2 29'10 2 29% 
2 48% 2 20% 5 26'10 5 28% 
I 44% 3 13% 7 25'10 7 27% 
3 41% 7 11% 3 17'10 3 19% 
5 32"1. 4 2% 4 4'10 4 5% 

·As well as the four criteria listed, the fOUT other criteria mentioned in the text were imposed. 

Table 11 

Conditional Ranking of the Models 

2 criteria 8 criteria· 8 criteria- 8 criteria-
FE :s 15% FE:s 15% FE :s 15% FE:s 15% 
l?; 5% X' ?; 5% X' ?; 5% X' ?; 5% 

SP :s .10 SP :s .05 SP :s .05 
OD?; .90 OD?; .90 OD?; .95 

0/0 of series 0/0 of series 070 of series 0/0 of series 
Models that passed Models that passed Models that passed Models that passed 

~ 52'10 I 34% 6 38% 6 39% 
7 9% 3 6% 3 9% 3 9% 
2 1% 6 4% 7 4% 4% 
3 1% 5 2% 2 3% 4 2% 

• As well as the four criteria listed, the four other criteria mentioned in the text were imposed. 
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success rate of the models. Table II gives first the total success rate of the best model; the 
following models are chosen according to their success with series with which all higher models 
have failed. 

Table 10 shows that: 
o when only the chi-square statistic (x') and average forecast error (FE) are used as criteria, 
models 4 and 7, which have the most parameters, rank at the top. 
o on the other hand, the use of all criteria favour the simplest models (models I and 6), at 
all levels of small parameter (SP) and overdifferencing (00) criteria. 
o models I and 6 usually rank close together, although model I has one less parameter than 
model6. 
o when model 6 is not first it is a close second. 

o the more the criteria are relaxed, the higher the pass ratio is, although the ranking of the 
models remains about the same. 

In table 11 we see that: 
o when all criteria are used, models I and 6 which ranked first and second in table 10 now 
rank only first and third. 
o second place belongs to model 3. This model, which in table 10 ranked third, fifth and 
sixth with total success rates of 41"1.,13"1.,17"1., and 19"1., here ranks fourth once and se­
cond three times. This is because model 3 fits well an important family of series (series with 
a steep trend) that all other models fit poorly. 
o moving average and autoregressive models are not mutually exclusive. These two families 
of models are complementary and necessary in fitting and forecasting series. 
o when we require only that the average forecast error be less than 15"1. and the chi-square 
statistic be greater than 5"1. and nothing else, the combined success rate of models 4, 7, 2 
and 3 together is 63"1 •. 
o when all the criteria are used, the models chosen are simple and their combined success 
rate varies between 46"1. and 54"1. using the levels of 15"1. and 5"1. described just above. 
The success rate depends on the levels of small parameter and overdifferencing used. 

Even though model I does not appear in the third column of table II, it would appear 
there if the level of forecast error permitted were raised to 20"1 •. 

The criteria and levels used in selecting models in figures I and 2 are the same as are used 
in the second column of tables 10 and II, except that in figure 1 the average forecast error 
permitted varies between 10"1. and 99"1. while in figure 2 the chi-square criteria varies bet­
ween 10"1. and 60"1 •. 

Figure I shows that: 
o models I, 3 and 6 perform the best. 
o the ranking of the models tends to remain the same. 
o the performance of the first model increases more rapidly than that of the others, going 
from 23"1. to 59"1. compared with an increase from 13010 to 17"1. for model 3. This point 
needs clarification. Modell is chosen according to its unconditional performance, while the 
other models are chosen according to their conditional ranking. 
o the increase in performance of the models according to unconditional ranking is greater 
than the increase when using conditional ranking. 

We see in figure 2 that 
o models I, 3 and 6 are generally the best models for any level of chi-square. 
o models I and 6 trade places but are not mutually exclusive. 
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Table 12 

Conditional ranking of the ARIMA models for the sectors of the 
Canadian economy 

Models ranking and." of series that passed 

Sectors first 'I, second ." third ." fourth ." 
model model model model 

Labour ..................... I 79 3 14 0 0 
Prices ...................... 5 50 7 17 2 8 0 
Manufacturing ............... 3 19 6 14 I 5 2 5 
Fuel, Power and Mining ...... 46 6 4 0 0 
Domestic Trade .............. I 53 6 7 7 7 0 
External Trade .............. 6 21 0 0 0 
Transportation .............. 54 5 8 0 0 
Finance ..................... 32 3 II 0 0 

Table 12 presents the conditional ranking of the ARIMA models for those sectors of the 
Canadian economy for which we fitted twelve or more series. The criteria and levels used 
in ranking the models are the same as those used in the second column of tables 10 and 11. 
We see that 
o models 1 and 6 are generally the best performers. 
o the combined success rate of the models varies considerably from one sector to another, 
from 93"10 in the labour sector to only 21 % in external trade. 
o this success rate is at least 50% for five sectors. The rate depends on the structure of the 
series. changes in the structure, and the amount of irregular in the series. The rate is good 
considering that for two of the last three years Canada suffered a severe recession which 
strongly affected the structure of the series. The success rate for external trade is always low 
because those series are very irregular. 

5. WITHIN-SAMPLE AND OUT-OF-SAMPLE FORECASTS 

The within-sample forecasts are obtained by fitting the models to the entire series in order 
to estimate the parameters and calculate the forecasts for the last three years. The out-of­
sample forecasts do not use information from after the forecast time origin. For each forecast 
origin, the parameters are re-estimated. 

Table 13 

Failure Rate in Forecast Error for 
Within-Sample and Out-of-Sample Forecasts 

Model I Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
(0, I, I) to, I, I) (0, I, 2) (0. I, I) (O, 2, 2) (0, I, I) (2, I, 2) (0, I, I) (I. I, 0) (0, I, 1) (2, I. 0) (0. I, \) (2, I, 0) (0. 1, 2) 

.. .. .. .. .. .. .. 
Within·sample 34 " 41 32 l4 '4 J3 

Out.of.sample 31 32 42 3l 31 32 31 
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Table 14 

Conditional and Unconditional Ranking of the Models 

Unconditional ranking Conditional Ranking 

Models 

I 
6 
5 
2 
3 
7 
4 

070 of series 
that passed 

40'1. 
28'1. 
27'1. 
20'1. 
14'1. 
10'1. 
2'1. 

Models OJo of series 
that passed 

I 40'1. 
2 5'1. 
7 4'1. 
3 3'1. 
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Table 13 shows the rate of failure in forecast error at the l50J. level for within-sample 
and out-of-sample forecasts. The difference between the two is small and is well within one 
standard deviation for each model. The X-ll-ARIMA seasonal adjustment program uses 
within-sample forecasts because they cost less. 

Table 14 has been prepared using the same criteria and levels as were used in the second 
columns of tables 10 and II. The unconditional ranking is exactly the same as that in the 
second column of table 10. Only the success rates of the first three models differ, and in 
table 14, model 1 is clearly superior to the other models. However, the conditional ranking 
is different from that appearing in the second column of table II. 

Th" conditional rankings in tables II and 14 differ for two reasons. First, of course, table 
14 uses out-of-sample forecasts. Another important reason is that the calculation of the seven 
other criteria was based on one year less data, and the missing year contained a severe reces­
sion. Thus the structure of the series and the choice of models is markedly different. 

It appears therefore that the conditional ranking of the models for both within-sample 
and out-of-sample forecasts depends on the phase of the business or economic cycle in which 
the series ends. 

6. CONCLUSION 

Ou:r objective was to rank a set of seven ARIMA models according to their fitting and 
forecasting of a large sample of time series. 
• when only the chi-square statistic and the average forecast error are used as criteria, models 
4 and 7 rank at the top. 
• The use of all eight criteria favours the simplest models (I and 6) and model 3. 
• Models I (moving average model) and 6 (autoregressive model) rank close together in un­
conditional ranking, although model I has one less parameter than model 6. 
• In conditional ranking, these two both rank highly but are not mutually exclusive. That 
is, moving average and autoregressive models are complementary and both are necessary 
in fitting and forecasting series. 
• Although Model 3 ranks near the bottom, it fits well an important family of series (series 
with a steep trend) that all other models fit poorly. 
• The nonparsimonious models (numbers 4 and 7) have a combined success rate of 61 % com­
pared to a success rate that varies between 44OJ. and 52% for parsimonious models I, 6 and 3. 
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• The combined success rate of the models varies considerably from one economic sector 
to another, from 93 OJo in the labour sector to only 21 % in external trade. This rate depends 
on the structure of the series, changes in the structure, and the amount of irregular in the series . 
• It appears that the conditional ranking of the models for both within-sample and out-of­
sample forecasts depends on the phase of the business or economic cycle in which the series 
ends. 

ACKNOWLEDGEMENT 

We acknowledge helpful discussions with Mr. Normand Laniel and we are very grateful 
to Ms Helen Lim and Mr. Alfred Papineau for their valuable computational assistance, and 
to Ms B. Cohen for her typing assistance. 

REFERENCES 

BOX, G.E.P., and JENKINS, G.M. (1970). Times Series Analysis Forecasting and Control. Holden 
Day: San Francisco. 

BOX, G.E.P., and PIERCE, D.A. (1970). Distribution of residual autocorrelations in autoregressive 
integrated moving average time series models. Journal Of the American Statistical Association, 65, 
1509-1526. 

DAGUM, E.B. (1980). The X-II-ARIMA Seasonal Adjustment Method. Catalogue No. 12-564E, 
Statistics Canada, Ottawa. 

DRAPER, N.R., and SMITH, H. (1981). Applied Regression Analysis. John Wiley & Sons, Inc. 

HIGGINSON, J. (1976). A test for the presence of seasonality and a model test. Research Paper, Time 
Series Research and Analysis Division. Statistics Canada, Ottawa. 

LJUNG, G.M., and BOX, G.E.P. (1978). On a measure of lack of fit in time series models. Biometrika, 
65, 297-307. 

PANDIT, S.M., and WU, S.M. (1983). Time Series and System Analysis with Applications. John Wiley 
& Sons, Inc. 

PLOSSER, c.I., and SCHWERT, G.W. (1977). Estimation of a non-invertible moving average pro­
cess. Journal oj Econometrics, 6, 199-224. 

PROTHERO, D.L., and WALLIS, K.F. (1976). Modelling macroeconomic time series (with discus­
sion). Journal oj the Royal Statistical Society, AL39, 468-500. 



Survey Methodology, June 1985 
Vol. 11, No.1, pp. 65-77 
Statistics Canada 

An Empirical Study of Some Regression 
Estimators for Small Domains 
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ABSTRACT 

65 

The synthetic estimator (SYN) has been traditionally used to estimate characteristics of small domains. 
Although it has the advantage of a small variance, it can be seriously biased in some small domains 
which depart in structure from the overall domains. Sarndal (1981) introduced the regression estimator 
(REG) .in the context of domain estimation. This estimator is nearly unbiased, however, it has two 
drawba.:ks; (i) its variance can be considerable in some small domains and (it) it can take on negative 
values in situations that do not allow such values. 

In this paper, we report on a compromise estimator which strikes a balance between the two estimators 
SYN and REG. This estimator, called the modified regression estimator (MRE), has the advantage of 
a considerably reduced variance compared to the REG estimator and has a smaller Mean Squared Er­
ror than the SYN estimator in domains where the latter is badly biased. The MRE estimator eliminates 
the drawback with negative values mentioned above. These results are supported by a Monte Carlo study 
involving 500 samples. 

KEY WORDS: Small domains; regression estimation; modified regression estimator; bias; mean squared 
error. 

1. INTRODUCTION 

The synthetic estimator (SYN) has the advantage of a small variance, but the following 
disadvantages: (a) it can be badly biased in some domains, and ordinarily we do not know 
which ones; (b) consequently, a calculated coefficient of variation (cv), or a calculated con­
fidence interval, is meaningless for such domains. 

For the same model that underlies the SYN estimator one can create a nearly unbiased 
analogue, the generalized regression estimator (REG), which has the additional advantage 
that a standard design based confidence interval is easily computed for each domain estimate. 
A disadvantage with REG is that the estimated variance (and hence the cv and the width 
of the confidence interval) can be unacceptably large in very small domains. (This is, of course, 
a direct consequence of the shortage of observations in such domains,) Also, the REG can 
(although with small probability) take negative values in situations where such values are 
unacceptable. 

It is therefore desirable to strike a balance between SYN and REG. Here, we report on 
an empirical study with one such compromise estimator, the modified regression estimator 
(MRE). It has a small (but noticeable) bias in those domains where the synthetic estimator 
is greatly biased; in other domains, the MRE is nearly unbiased. The MRE has the advantage 
of a considerably reduced variance compared to the REG estimator. In addition, the MRE 
has a smaller Mean Squared Error than the SYN estimator in domains where the latter is 
badly bi.ased. Meaningful confidence intervals can also be easily constructed for the new MRE 
estimator. 

I M.A. Hidiroglou, Business Survey Methods Division. Statistics Canada, 5-C8, Jean Thlon Building, 'funney's 
Pasture, Ottawa. Ontario. Canada KIA OT6 and C.E. Sarndal, Department of Mathematics and Statistics, 
University of Montreat. Montreal. Quebec, Canada H3C 317. 
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The paper is structured as follows. In Section 2. some of the commonly used estimators for 
small areas such as the direct, post-stratified and synthetic estimators are reviewed as well as some 
of the regression estimators given by Siimdal (1981. 1984). In Section 3. the proposed modified 
regression estimators are introduced and discussed. In Section 4. the properties of the modified 
regression estimators as well as some of the other estimators are studied through a Monte Carlo 
simulation using business tax data. Finally. Section 5 provides some general conclusions. 

2. ESTIMATORS 

Let the population U = {I •...• k • ...• N} be divided into D non-overlapping domains 
U ... ...• Ud .• •••• UD., Let N d. be the size of Ud., (In our empirical study. the domains are 
defined by a cross-classification of 4 industrial groupings with the 18 census divisions in the 
province of Nova Scotia. There were D = 70 non-empty domains. as described in Hidirog!ou. 
Morry. Dagum. Rao and Siirndal (1984).) 

The population is further divided along a second dimension. into 0 non-overlapping 
groups, U. 11 ••• , CJ.gt ... , U,G' 

The size of lI., is denoted !V.,. (In our study. the groups are based on Gross Business In­
come classes.) The cross-classification of domains and groups gives rise to DO population 
cells Ud,; d = 1 •...• D; g = I •...• O. Let Nd, be the size of Ud,. 

Then the population size N can be expressed as 

D G D G 
N= 1: Nd. = 1: N,= 1: 1: N d, (2.1) 

d=1 g~l d=1 g=l 

Let s denote a sample of size n drawn from U by simple random sampling (srs). Denote 
by Sd .• s., and Sd, the parts of S that happen to fall. respectively. in Ud .• U., and Ud,. 

The corresponding sizes. which are random variables. are denoted by nd .• n., and n",. 
Note that (2.1) holds for lower case n's as well. The variable of interest. y (= Wages and 
Salaries) takes the value of y, for the k:th unit (= unincorporated business tax filer). The 
auxiliary variable x (= Gross Business Income) takes the value x, for the k:th unit. and x, 
is known for all k = I •...• N. 

The following estimators of the domain total td = 1: Ud. y, are compared. where 1: Ud. 

denotes the summation over the units in Ud., 

The straight expansion estimator (EXP): 

Tbe poststratified estimator (POS): 

where 

N 
fdEXP = - 1: y, 

n Sd. 
(2.2) 

(2.3) 

is the mean of the nd. Y - values from tbe d:th domain. If nd. = 0 we define the POS 
estimator to be zero (somewhat arbitrarily. since strictly speaking the estimator is then undefin­
ed). Neither the EXP nor the POS estimator are particularly advantageous. They serve main­
Iyas benchmarks against which the behaviour of the following more efficient estimators will 
be compared. 
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Two versions of the SYN and REG have been investigated, the "Count" version and the 
"Ratio" version. The SYN estimator is based on the assumption that a given model holds 
for each group g. For the "Count" version a given model would lead to the assumption 
that the mean of each group is the same across all domains d. For the "Ratio" version, the 
impli.:d model would be that the ratios of a given variable of interest over an auxiliary variable 
would be constant within a given group across all domains. If the assumption of homogeneity 
of domain characteristics does not hold within each group, the SYN estimators can be very 
biased. The REG estimation method as given by Siirndal (1984) is motivated by the follow­
ing requirements: (a) to obtain approximately design-unbiased estimates with simple variance 
estimates and easily calculable (and meaningful) confidence intervals; (b) to strengthen the 
estimates by involving sample data from all domains. 

The formulas for the "Count" versions are: 

Syntbetic-Count estimator (SYN/C): 

when' JI,., is the mean of y in s.,. 

Regression-Count estimator (REG/C): 

(2.4) 

{dREO/C = E {Nd,JI,., + NdlJl'd' - JI,.,>} (2.5) 
g=1 

when, JI'd is the mean of yin Sd" and Nd, = Nnd/n. Here, E~=I Nd,(JI'd - JI,.,> is a bias 
correl:tio~ term that ordinarily carries a considerable variance contributron. 

The "Ratio" versions of the SYN and REG estimators are: 

Syntbetic-Ratio estimator (SYN/R): 

(2.6) 

with X", = E u" Xk and 

Regression - Ratio estimator (REG/R): 

{dREO/R = E {X.,R, + Nd,(JI'd, - R,x'd)} ,-I (2.7) 

3. MODIFIED REGRESSION ESTIMATORS 

Regression estimators introduced by Siirndal (1984) were constructed by fitting a regres­
sion model to some auxiliary variables and using the resulting fitted model to create predicted 
values for the units in the population domain. Assuming that the sampling design, p, is an 
arbitrary one (not necessarily srs) with inclusion probabilities '/(k (first order) and 1rk1 (second 
order), let the regression model be given by 

when: the Yk are independent random variables. An estimator of f! is 
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where it is assumed that the ", are known to multiplicative constant(s) that cancel when ~ 
~~~. -

Following Sarndal (1984). a nearly unbiased estimator of the unknown d-th domain total 
is given by 

(3.1) 

where p. = :5k~ is the k-th predicted value and e, = y, - y, denotes the k-th residual. 
We shall refer to E Vd. Y' as the synthetic term of the estimator (dREG and the second term. 

E'd. e,hr .. will be called the correction term. 
If Sd. is non-empty. an approximately unbiased alternative to the REG estimator (3.1) is 

given by 

(3.2) 

where 

is the estimated domain size. 
The correction term now appears in the form of a ratio estimator. 

---. 

multiplied by the known domain size N d. (obviously. N d. is known since the cell counts N d, 
are known). 

The size nd. being random. the ratio form will serve to reduce the variance of the cor­
rection term. The effect will be particularly noticeable in domains where the average of the 
residuals is clearly away from zero (that is. in domains where the model does· not fit well). 

If the expected sample take in the domain. Ed = Eind) = E Vd ",. were substantial (say. 
Ed 2: 50). then it is practically certain that the realized sample take. nd.. will not be 
exceedingly small. For example. under srs. values nd. S 30 will hardly ever occur. In such 
situations. the nearly unbiased estimator (3.2) can be recommended as is. It should realize 
important efficiency gains over (3.1). notably in domains where the model does not fit as 
well. But in practice one often encounters domains that are so small that the expected sam­
ple take Ed does not exceed 5. This is true for a number of domains in our study. In such 
cases. realized sample takes nd. between zero and five are very likely. Our empirical work 
has confirmed the intuitively obvious fact that the residual correction will. in these small 
domains. contribute greatly to the variance. whether the correction appears in its straight 
form. Ld ekl"k' as in (3.1). or in its ratio form. Nd.(E'd. e,h,)/(E'd.1/",). as in (3.2). 

To counteract this inflated variance contribution. we modify the correction term of (3.2) 
in a way implying that we settle for a small bias (in domains where the model fits less well) 
in exchange for a reduced variance contribution when the realized sample take nd. is lower 
than expected (and it is assumed that the expected sample take is already low in itself). 
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Th(: form of the new correction term will be determined by the relation between realized 
sampl,~ take nd., and expected sample take Ed' The correction term I;'d e,l1r, will be 
mUltiplied by (N/ N d) when nd. < Ed and by (Ndl Nd) otherwise. The resulting correction 
term using this adaptive "dampening factor" will have the effect of not "over-correcting" 
the synthetic term when some of the residuals e, behave as outliers for small nd.'s. The 
"over-correcting" may have the effect of greatly underestimating a domain d, yielding negative 
values when only positive values are acceptable, or conversely greatly overestimating the 
domain. 

The: resulting estimator, the modified regression estimator (MRE), incorporating these 
two types of realizations of nd.' is 

fdMRE = (3.3) 

where 

It can be shown that (3.3) is nearly unbiased conditionally on nd., as long as nd. 2: Ed' 
For nd. < Ed' the MRE has some conditional bias, which tends to increase the more nd. falls 
short of its expected value. At the same time, the MRE estimator is being pushed towards 
its synthetic term, thus benefitting from the stability (low variance) of the synthetic term. 
Unconditionally, the MRE estimator given by (3.3) will have a certain small bias, but a much 
reduced variance compared with the REG estimator. 

We note a final point in favour of MRE estimator. As a result of its considerable variance 
in very small domains, the REG estimator will, with a small but positive probability, take 
values extremely removed from the true value (d .• The value of the REG may even be 
negative, which is, of course, unacceptable for a variable (such as Wages and Salaries) which 
is by definition non-negative. Negative values of the REG estimate can occur when there 
exists large negative residuals ek in the correction term of (3.1), and are especially likely 
when "d. < Ed' The new MRE estimator virtually eliminates this occurence of negative 
estimates. In practice, if by a remote possibility the MRE takes a negative value, we recom­
mend to redefine the MRE estimator as being equal to the always positive SYN estimator. 

A natural formula for estimating the variance of (3.2) is 

(3.4) 

where 

and 
- .. , iff = k 

if e * k. 
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We propose that the same formula may serve well to estimate the variance of the MRE 
estimator (3.3). It is true that (3.3) differs from (3.2) when the realized sample take falls 
short of the expected sample take; however, it is not foreseen that the difference will be great 
enough to cause serious distortion in the validity of a confidence interval for td centred on 
idMRE using (3.4) as the estimated variance. 

In the case of simple random sampling, and assuming for g = I, ... , G, 

we find 

• E'.,Yk 
(3g = -- ;: Ys

g
, n . 

• g 

leading to the "Count estimator" whose modified version (MRE/C) is 

where Ed in the formula for Fd is now given by 

with 

and 

nNd 
Ed = E",(nd) = -­. N 

for ndg "' I 

otherwise. 

(3.5) 

(3.6) 

The MRE/C estimator will have some bias, which is, however, ordinarily much less than 
that of the SYN/C estimator. 

The underlying model assumptions which lead to the "ratio estimator", whose modified 
version is denoted as MRE/R, are for g = I, ... , G, 

The MRE/R estimator is then, in the case of simple random sampling, 

(3.7) 
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when: 

and 

o _ 

E Nd'y'dg 
Ii = d·1 

g ""'0::--_--
E Ndg1l'dg 

d=l 
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Drew, Singh and Choudhry (1982) provided small domain estimators which, although not 
derived by a regression approach, have some similarity to the ones given in this paper. Their 
"count" version is 

tdKNO/C = E Ndg {W';,Y'd + (I - W';g)J, } 
g g ·8 

(3.8) 

while their "ratio" version is 

- { , J'dg , J,.g} 
tdKNO/R = E X dg Wdg X + (I - Wdg¥ 

Sg Sdg S,g 
(3.9) 

when: 

1 
ndg ·f E 
- I ndg:::;; dg 

Wei, = Edg 

I otherwise 

with Edg = n(Nd/N). In the present context, if Wdg in (3.8) is replaced by 

Wd; = 

we obtain (dMRE/C' 

4. RESULTS FROM THE EMPIRICAL STUDY 

In order to study the properties of the estimators discussed in the preceding sections, a 
simulation was undertaken. The province of Nova Scotia was chosen as Our population with 
N = 1678 sampling units (unincorporated tax filers). The variable of interest, y, is Wages 
and Salaries. We use a single auxiliary variable, x, namely, Gross Business Income. It is assum­
ed that XI' ••.• XN are known. 

Domains of the population were formed by a cross-classification of four industrial groups 
with eighteen regions. The industrial groups were Retail (SIS units), Construction (496 units), 
Accommodation (114 units) and Others (553 units). The overall correlation coefficients bet­
ween Wages and Salaries and Gross Business Income were 0.42 for Retail, 0.64 for Con­
struction, 0.78 for Accommodation and 0.61 for Others. The regions were the 18 Census 
Divisions of the province. This produced 70 non-empty domains (out of the four times 18 
domains, two combinations had no units). Thus, 70 domain totals td are to be estimated 
every time a sample is drawn. 
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For the Monte Carlo simulation, 500 simple random samples, s, each of size n = 419, 
were selected from the population of N = 1678 units. The selected sample units were classified 
into type of industry and Census Division. The population could have been divided along 
a second dimension, say income groups. But for the purposes of this study, all the tax filers 
were considered as belonging to one income group (0 = 1). 

The results are summarized for each small area within the industrial groups RETAIL and 
ACCOMMODATION using tables and graphs. For the tables (1-4), summary statistics are 
the relative conditional bias and mean squared error. The eight graphs, one for each of the 
eight estimators, are given in figure 1. In each graph, there are eighteen vertical 'distribution 
bands', one for each of the eighteen Census Divisions for the industrial group RETAIL. 
The upper and lower points of each distribution band correspond, respectively, to the 9O:th 
and !O:th percentile of the distribution of the 500 values of «(d. - IdVld .. Consequently, a 
distribution band placed roughly symmetrically about the zero line indicates that the cor­
responding estimator is approximately unbiased for the domain of interest; otherwise, the 
estimator is biased for the domain. The shorter the band, the smaller the variance of the 
estimator in the domain. The abscissa measures the mean sample take for the domain. 

From the tables and graphs, the following conclusions emerge: (where conclusion C states 
the main new results, whereas A and B resume what is known from earlier work Siirndal 
and RAbiick (1983); Hidiroglou et al. (1984». 

A. The SYN/C and SYN/R estimators are badly biased in some domains, namely, in 
those domains where the underlying model fits poorly. However, they consistently 
have an attractively low variance, compared to the other alternatives. The Mean 
Squared Error of the two SYN estimators will consequently be very large in do­
mains with large bias (poor model fit); by contrast, the Mean Squared Error is 
small in domains with little bias (good model fit). 

B. The REG/C and REG/R estimators are essentially unbiased. Their variance, 
although usually much lower than that of the EXP and POS estimators, is con­
sistently much higher than that of the SYN/C and SYN/R estimators. In the 
smallest domains, none of the unbiased estimators (EXP, POS, REG/C, REG/R) 
is attractive from the variance point of view; this is especially true for the REG 
estimators. This problem is remedied by the two MRE modifications of the REG 
estimators. 

C. The two MRE estimators, MRE/C and MRE/R, are negligibly biased when the 
SYN estimators happen to be nearly unbiased (e.g., RETAIL, area 17); otherwise 
the MRE estimators have a certain bias, which, however, is ordinarily much less 
pronounced than that of the SYN estimators (e.g., RETAIL, area 2). The MRE 
estimators have considerably smaller variance and Mean Squared Error, in all 
domains, than the REG estimators. This tendency is particularly pronounced in 
the smaller domains. In comparison with the SYN estimators, we find that the 
MRE estimators (as expected) still have a larger variance in virtually all domains. 
However, the Mean Squared Error of the MRE estimators is smaller than that 
of the SYN estimators in domains where the latter are badly biased. In Table 6 
we see, for example, that the MRE/R estimator has a smaller Mean Squared Error 
than that of the SYN/R in 9 out of 16 small areas. The obvious explanation is 
that in domains where the SYN estimator is greatly biased, the (bias)' constitutes 
an extremely large contribution to the Mean Squared Error of the SYN, whereas 
for the MRE estimators, the (bias)' is not very important. Since we do not know 
which domains create the large biases, the goal of producing reliable estimates 
in all domains is on the whole better served by the MRE method of estimation. 
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Table 1 

Mean Sample Take and Relative Bias of Each of Eight Estimators over 
500 Repeated Simple Random Samples from the Entire Population 

Industrial Group: RETAIL; 18 Census Divisions in Nova Scotia. 

Mean Estimator 
Area Sample EXP POS SYN/C MRE/C REG/C SYN/R MRE/R REG/R 

Take 

I 1.76 -O.oz -0.13 0.12 O.oz -0.03 0.30 0.09 -0.02 
2 5.45 0.00 -0.04 -0.36 -0.10 -0,02 -0.27 -0.08 -0,02 
3 3.90 -0.02 0.01 -0.08 -0.02 0.00 -0.01 -0.01 0.00 
4 3.02 0.01 -0.05 0.15 0.05 0.01 0.13 0.04 0.04 
5 5.93 0.00 0.01 0.21 0.05 0.00 0.13 0.03 0.00 
6 7.63 -0.02 -0.01 0.28 0,07 0,0[ 0.10 0,02 0.00 
7 8.61 0.02 0.01 -0.16 -0.03 0,0[ -0.18 -0.03 0.01 
8 5.64 -0.02 -0.01 0.34 0.10 0.03 0.24 0.06 0.01 
9 24.64 0.00 0.00 -0.02 0.00 0.00 -0.01 0.00 0.01 

10 8.92 -0.02 -0.02 0.15 0.02 -0.01 0.09 0.00 -0.01 
11 8.35 -0.03 -0,02 0.08 0.01 0.00 0.10 0,02 0.00 
12 10.58 0.01 0.00 -0.27 -0.05 0.00 -0.18 -0.03 0.00 
13 0.48 -0.04 -0.58 0.61 0.36 0.04 1.00 0.58 0.04 
14 2.80 0.03 -0.03 0.33 0.11 0.00 0.24 0.10 0.02 
15 4.21 0.06 -0.01 0.28 0.06 0.00 0.30 0,07 -0.01 
16 2.24 0.03 -0.05 0.74 0.26 0.03 0.94 0.32 0.02 
17 23.95 -0.01 -0.01 -0.02 0.00 0.00 -0.05 -0.01 0.00 
18 0.54 0.07 -0.54 0.63 0.34 -0.06 0.67 0.35 -0.06 

Table 2 

Mean Squared Error of Each of Eight Estimators over 500 Repeated Simple 
Random Samples from the Entire Population 

Industrial Group: RETAIL; 18 Census Divisions in Nova Scotia. 

Estimator 
Area EXP POS SYN/C MRE/C REG/C SYN/R MRE/R REG/R 

1 3,209 2,206 96 697 1,397 462 769 1,484 
2 42,598 24,623 21,782 12,725 17,358 13,110 10,256 14,380 
3 10,469 6,853 357 2,592 4,212 146 2,333 3,782 
4 5,626 3,657 324 746 1,186 257 1,206 1,853 
5 14,554 9,681 2,999 5,090 7,360 1,294 3,993 5,974 
6 12,308 5,686 6,713 3,423 4,289 1,255 1,747 2,515 
7 34,865 17,988 6,912 9,387 13 ,451 8,161 12,019 17,239 
8 12,066 8,630 5,772 3,694 5,045 2,981 3,528 4,986 
9 72,974 40,440 5,776 24,025 29,250 5,068 21,292 25,832 

10 22,091 9,433 4,559 5,832 7,927 2,009 5,365 7,272 
11 23,519 12,505 1,778 6,738 9,578 2,348 7,890 11 ,063 
12 46,588 21,874 35,310 13,558 17,084 17,454 12,222 16,514 
13 635 244 161 95 228 422 287 783 
14 3,871 2,849 692 1,254 2,141 378 1,373 2,346 
15 8,088 3,511 2,249 1,892 2,806 2,651 1,985 2,937 
16 3,245 2,127 3,316 1,563 2,516 5,333 1,741 2,654 
17 81,211 47,753 5,503 28,957 35,232 7,681 27,457 33,136 
18 1,003 306 169 187 654 186 184 637 
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Table 3 

Mean Sample Take and Relative Bias of Each of Eight Estimators over 
500 Repeated Samples from the Entire Population 

Industrial group: ACCOMMODATION; Areas: 16 Census Divisions in Nova Scotia. 

Mean Estimator 
Area Sample EXP POS SYN/C MRE/C REG/C SYN/R MRE/R REG/R 

Take 

1 0.25 0.01 -0.75 -0.08 -0.06 -0.01 0.36 0.28 0.01 
2 1.37 -0.06 -0.21 0.25 0.\0 0.Q2 0.25 0.11 0.02 
3 1.02 0.06 -0.26 0.19 0.09 0.04 0.12 0.06 0.03 
4 0.23 -0.10 -0.77 -0.33 -0.26 -0.07 -0.15 -0.13 -0.05 
5 2.04 0.03 -0.13 0.21 0.08 0.03 0.18 0.06 0.01 
6 1.49 0.04 -0.13 0.17 0.\0 0.03 0.03 0.02 0.01 
7 1.53 0.01 -0.18 -0.29 -0.11 -0.01 -0.30 -0.12 -0.02 
8 1.54 0.03 -0.19 -0.42 -0.17 -0.01 -0.26 -0.11 -0.02 
9 6.83 0.01 -0.02 0.13 0.02 0.00 0.12 0.02 0.00 

10 1.26 -0.01 -0.26 0.40 0.17 0.03 0.30 0.13 0.02 
11 3.06 0.04 -0.02 0.51 0.21 0.08 0.40 0.16 0.06 
12 1.80 0.02 -0.16 -0.08 -0.05 -0.03 -0.23 -0.10 -0.03 
14 1.04 0.02 -0.33 -0.52 -0.23 -0.07 -0.32 -0.15 -0.06 
15 1.54 -0.03 -0.23 -0.21 -0.13 -0.08 -0.15 -0.11 -0.08 
17 3.08 -0.07 -0.05 -0.03 -0.01 0.00 -0.14 -0.07 -0.03 
18 0.52 0.04 -0.54 3.26 3.20 0.60 2.97 2.92 0.50 

Table 4 

Mean Squared Error of Each of Eight Estimators over 500 Repeated Simple 
Random Samples from the Entire Population 

Industrial Group: ACCOMMODATION; Areas: 16 Census Divisions in Nova Scotia. 

Estimator 
Area EXP POS SYN/C MRE/C REG/C SYN/R MRE/R REG/R 

1,142 283 9 7 25 58 44 164 
2 7,467 5,082 877 631 1,077 747 455 726 
3 878 442 48 163 242 24 116 163 
4 155 43 7 6 17 3 3 6 
5 15,200 8,392 2,091 2,270 3,230 1,271 1,208 1,785 
6 5,239 3,906 253 1,038 2,193 54 396 792 
7 21,197 8,781 3,569 1,831 3,016 3,709 1,812 2,948 
8 14,071 6,738 3,608 2,122 4,018 1,492 947 1,766 
9 50,606 27,867 9,980 11,413 14,344 6,575 7,779 9,991 

10 2,219 993 590 362 665 317 151 280 
11 10,535 5,774 6,366 5,126 7,154 3,867 2,752 3,673 
12 16,787 10,485 543 1,148 1,944 1,245 1,130 1,836 
14 51,471 25,644 9,669 8,221 14,155 3,972 3,189 5,077 
15 59,207 41,381 4,861 10,548 18,119 2,759 4,262 6,636 
17 29,632 25,211 1,501 3,023 4,754 1,765 2,123 3,214 
18 286 99 2,062 2,112 5,623 1,607 1,646 4,561 
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Figure 1: Distribution band of relative error for selected estimators - abscissa represents mean sample 
take. Illdustrial Group: RETAIL. Areas: 18 Census Divisions in Nova Scotia. 
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Figure I (continued) 
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5. CONCLUSIONS 

In summary we find that the overall performance of the MRE estimators is such that we 
suggest them as promising alternatives for future applications of small area estimation. The 
recommended confidence interval procedure based on the MRE estimators is given in sec­
tion 3. 

We think that the MRE method presented here involves a simple mechanism for steering 
the estimates slightly in the direction of the stable SYN estimators, when the sample take 
is less than expected. This goal is also manifested (but attained by different means) in such 
other attempts as the empirical Bayes (Fay and Herriot, 1979) and sample-dependent (Drew, 
Singh, and Chaudhry 1982) methods of estimation. 
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ABSTRACT 

79 

This paper presents an overview of the methodology used in the processing of the 1981 Census of 
Agriculture data. The edit and imputation techniques are stressed, with emphasis on the multivariate 
search algorithm, A brief evaluation of the system's performance is given. 
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1. INTRODUCTION 

This paper presents an overview of the methodology used in the processing of the 1981 
Census of Agriculture data. There are 3 separate phases to the processing of the data: Data 
Entry, Edit, and Imputation, each of which performs a different function. First, in Data 
Entry, data on the questionnaires are keyed onto a computer data file. Then, in the Edit phase, 
computer edits are applied to the keyed data records in order to detect any inconsistent, miss­
ing, or suspicious entries. In the final phase, Imputation, actions are taken to adjust the data 
records so that they conform to the rules defined by the computer edits applied during Edit. 
The methodology involved in each of the three phases of processing is described in subsequent 
sections of this paper. A flow chart of the 1981 Census of Agriculture processing is given in 
Figure 1. 

Key Entry (Data Input) 

Figure 1. Overall Process Flow 

1 D.K. Hollins, Census and Household Survey Methods Division, Statistics Canada, Tunney's Pasture, Ottawa, 
Ontario, Canada KIA OT6. 
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The 1981 Census of Agriculture required that the same questionnaire be completed by each 
farm operator in Canada. The questionnaire is 8 pages long and consists of 134 questions. 
Questions are asked on all aspects of farm operation, including items such as types of crops 
grown, livestock raised, equipment maintained, and types of land use. Operators are required 
to answer only those sections of the questionnaire which apply to their holding. 

As this paper is an overview, it is not possible to delve into the technical computer aspects 
of the Census of Agriculture processing. These details may be found in Shields and Yiptong 
(1981), on which this paper is based. 

2. DATA ENTRY 

In the Data Entry phase the Census of Agriculture data are transferred from the original 
questionnaires to a data file in computer memory. Data entry is comprised of two stages: a 
clerical pre-grooming process (Pre-Scan), and Key Entry. 

After the questionnaires arrive at head office for processing, a clerical pre-grooming process 
known as Pre-Scan is performed. In this process, a clerk scans each questionnaire for response 
irregularities such as unreadable entries, ditto marks, and responses in incorrect locations. If 
valid responses can be discerned, they are recorded in the appropriate locations, if not, the 
questionnaire is left unchanged. 

Next, in Key Entry, the data on each questionnaire are keyed into the computer. Identifying 
information from the front page of the questionnaire is entered in a standard fIXed format. 
However, since farm operators are required to answer only the sections of the questionnaire 
that apply to their holding, a large portion of the questionnaire remains blank. To reduce key­
ing time, a method known as "string-keying" is used to enter the remaining data. This means 
that the field name is keyed, immediately followed by the data value for that field Only fields 
with existing data values are keyed; unanswered portions of the questionnaire are not. Because 
of the sparseness of the data, this method results in significant savings in keying time required. 

The Key Entry process creates one Edit and Imputation Master File (EIMF) record for each 
of a total of approximately 320,000 questionnaires. There are 244 fields on an EIMF record, 
each identified by a name, generally 6 characters in length. The Key Entry operator is instructed 
to key "#" for any unreadable entries. If possible, a clerical correction will be performed on 
records containing this symbol during Edit, otherwise, the records will be corrected during 
imputation. 

3. EDIT 

The Edit phase serves two purposes. The first is to use computer edits to detect any incon­
sistent, missing, or suspicious entries in the data. The second is to perform a clerical correction 
on the defective records, or if that is not possible, then to pass the defective records' on to be 
fixed during Imputation. A flow chart of the Edit process is given in Figure 2. 

There are 3 components to the edit system: two computer edit cycles called Correction Cycles 
#1 and #2, and a cycle for correcting edit failures, called Correction of Rejects. Correction Cy­
cle #1 (CC #1) consists of those edits that detect conditions that prevent the "de-stringing" (the 
conversion from string format to fIXed format) of the keyed record (decode edits), and those 
edits that detect errors in the geographic and identifying information from the front page of 
the questionnaire (ID edits). Correction Cycle #2 (CC #2) consists of those edits that identify 
inconsistencies in the main body of the data (data edits). Correction of Rejects is a clerical 
process during which both CC #1 and CC #2 edit failures are corrected manually. Edit failures 
that cannot be corrected by Correction of Rejects are passed on to Imputation. 

Each of the EIMF records is processed through the edit system individually. 
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3.1 Correction Cycle #1 (Decode and ID Edits) 

Correction Cycle #1 consists of the application and resolution of two sets of edits: the decode 
edits and the ID edits. 

The decode edits are applied first and if conditions exist that prevent the "de-stringing" of 
the data record, then decode edit failures will result. For example, as no two fields should have 
the same identifying characters, "de-stringing" will be prevented if two field names are keyed 
identkally. 

Any failed decode edits are resolved manually by the Correction of Rejects staff. This in­
volves returning to the Questionnaire to determine the cause of the edit failure, then the rekey­
ing of the relevant data. After an attempt is made to resolve a decode edit failure, the EIMF 
record is re-edited by passing it through the decode edits again, forming a continuous cycle 
betwecm the decode edits and the Correction of Rejects staff. This cycle is repeated until there 
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are no decode edit failures remaining on the EIMF record. If a decode edit cannot be resolv­
ed directly, the most appropriate valid interpretation of the available data is employed as 
a final override. 

After all decode edit failures have been resolved, the ID edits are applied. If any of the 
identifying information on the EIMF record is inconsistent or missing, then one or more 
ID edits will fail. These ID edit failures are resolved in an identical manner to the decode edits. 

Once all of the CC #1 (decode and ID) edit failures have been resolved by the Correction 
of Rejects staff, the EIMF record is passed through the CC #2 edit program. 

3.2 Correction Cycle #2 (Data Edits) 

The data edits (CC #2) are used to detect errors in the main body of the questionnaire, 
as opposed to errors in coding, or in identifying information. There are two types of data 
edits: non-mandatory edits (75), and mandatory edits (24). 

Non-mandatory edits are written to detect suspicious entries on the EIMF data records. 
Generally, non-mandatory edits, detecting variable values falling outside prescribed limits, 
are performed by comparing different fields or groups of fields on the questionnaire to deter­
mine if some data values are abnormally high or low in comparison with others. For exam­
ple, a record with total farm area equalling 10 acres and containing 10,000 cattle would be 
flagged by a non-mandatory limit edit. 

Mandatory edits are written to detect logical impossibilities on the data record, e.g., if 
the total number of cattle reported is not equal to the sum of the reported values for each 
of the different cattle types, then a mandatory edit would fail. The most complex mandatory 
edits are those written for the crop section of the questionnaire. 

To resolve a non-mandatory edit failure, the record is sent to a Correction of Rejects clerk. 
The Correction of Rejects clerk first notes whether or not the edit failure is due to a keying 
error. If it is, the relevant data is rekeyed. If it is not, the clerk scans the questionnaire to 
see if the respondent has written any comments on the questionnaire that may explain the 
reason for the edit failure. For example, if the respondent is instructed to answer a question 
in tons, and tons has been crossed out and pounds written in, the response will probably 
fail a non-mandatory limit edit. In this case, the Correction of Rejects clerk will convert 
the response from pounds into tons. If the Correction of Rejects clerk can find no explana­
tion for the edit failure, the respondent's answers are left intact on the EIMF record and 
are indicated acceptable. Although no changes are made to the data on the EIMF record, 
this is known as "force-fitting" the data. 

Mandatory edit failures are handled somewhat differently to non-mandatory edit failures. 
To resolve a mandatory edit failure. the failed record is sent to a Correction of Rejects clerk 
who proceeds at first in an identical manner to that used in the resolution of non-mandatory 
edit failures. However, if no explanation for the edit failure can be found. instead of "force­
fitting" the edit failure. the record is flagged for computer imputation. 

As in CC #1, there is a continuous cycle between the Correction of Rejects staff and the 
CC #2 edit program. After each attempt is made to resolve a CC #2 edit failure the EIMF 
record is re-run through the CC #2 edit program. Unlike CC #1. however. the Correction 
of Rejects clerk has only 3 attempts to resolve the CC #2 edit failures on a given EIMF record. 
After the third attempt, the CC #2 edit program is run once again. Any remaining non­
mandatory edit failures are marked "force fit" and any remaining mandatory edit failures 
are marked' 'impute". The mandatory edit failures are simply flagged at this stage. The par­
ticular fields requiring imputation are identified at the imputation stage. 
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The purpose of the 1981 Census of Agriculture imputation system (see Figure 3) is to resolve 
edit failures on the EIMF data records. As all non-mandatory edit failures are "force-fit" 
as described in the previous section, only the mandatory edit failures remain to be resolved 
by the imputation system. In order to make the EIMF data records conform to the man­
datory edits, specified "imputation actions" are performed. These imputation actions (lA's), 
of which there are over 100, are designed so that as few fields as possible are changed on 
the EIMF record, e.g. totals are always adjusted to equal the sum of the parts, rather than 
the parts being adjusted to total the sum. Each IA has associated with it the appropriate 
imputation processing control information and is selected based on the field or fields requir­
ing imputation. There are two different types of lA's performed: internal lA's, or deter­
ministic corrections, and donor lA's. 
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4.1 Internal Imputation Actions 

Internal IXs are performed in cases where sufficient data exists on the failed record to enable 
the imputation system to provide a deterministic correction for the inconsistent field(s). These 
internal IXs are performed in cases where the inconsistent field(s) is (are) deterministically depen­
dent on other fields not requiring imputation. For example, an internal IA would be performed 
if a respondent reports quantities for the various types of cattle but neglects to report the total 
number of cattle. In this case, total cattle would be calculated using the sum of the quantities 
reported for the various types of cattle. Another situation in which an internal IA would be 
performed is where a respondent reports a certain quantity of a particular type of fruit tree 
but neglects to give the corresponding acreage. In this case, the acreage would be computed 
using a predetermined average density for that type of fruit tree. Internal lA's are performed 
in accordance with constraints to ensure that the imputed values are within reasonable bounds. 

The implementation of internal lA's is more straightforward than that of donor lA's. As 
the internal IA is performed using data from the same record, there is no need to specify an 
algorithm for donor selection. The only requirement is to perform the deterministic correction 
specified by the appropriate internal IA. All internal lA's are performed before proceeding to 
donor imputation. 

4.2 Donor Imputation Actions 

When the inconsistent field or fields are not deterministically dependent on other consistent 
fields, internal INs cannot be applied. The lack of sufficient information on the failed record 
to provide a deterministic correction to the inconsistent field(s) necessitates an imputation method 
using data contained on another record. This method, known as donor imputation, involves 
the transfer of data from a "clean" donor record (one which has passed all mandatory edits) 
to the failed record. The transferred data will restore consistency to the inconsistent field(s) 
on the failed record. For example, a donor IA will be performed in order to estimate the distribu­
tion for types of cattle when only the total number of cattle is reported. In this case, the distribu­
tion of cattle types present on the donor record is transferred to the failed (recipient) record. 

As donor imputation requires an algorithm for locating a donor record, it is more complex 
to implement than internal imputation. In order to perform donor imputation, sevetal search 
"parameters" must be specified. 

To ensure that a "clean" donor record is geographically close to the "bad" recipient record, 
the country is divided into distinct geographical regions called imputation regions. The delinea­
tion of these imputation regions is based on the existing "crop district" boundaries which are 
defined according to characteristics such as soil type and climate. There are 59 crop districts, 
and thus 59 imputation regions, in Canada with an average of 5,500 farms per region. In order 
to be an eligible donor, a record must be in the same imputation region as the recipient record. 

In order to avoid searching records that cannot donate suitable data, each donor IA also 
specifies the subpopulation on which the donor search is to take place. For example, if the 
distribution for types of cattle is being imputed, then the only records searched in order to 
find a donor would be members of the subpopulation where cattle have been reported. A given 
record may be a member of several of the 30 different subpopulations. In some cases, all clean 
records within the imputation region are deemed suitable donors in which case the general 
population in the imputation region is defined as the appropriate subpopulation. 

The final constraint on the fIle of eligible donors is the fact that records requiring any donor 
imputation themselves cannot be used as donors. However, records requiring only internal im­
putation may be used as donors. 

In summary, the fIle of eligible donors consists of all records not requiring donor imputa­
tion that are members of the subpopulation specified by the imputation action to be perform­
ed and that are also located in the same imputation region as the bad record. 
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As some records require more than one IA to be performed, there is need for a hierarchical 
system of imputation action aecution. 10 specify the order in which the lA's are to be per­
formed, every lA, both internal and donor, has one of three "orders" associated with it. lA's 
of order I are performed first, followed by lA's of orders 2 and 3 respectively. 

To aid in the selection of a suitable donor record, one or more variables not requiring 
imputation are selected to be used as matching variables for each donor IA. These matching 
variables, selected by subject matter aperts, are considered to be highly correlated with the 
fie1d(s) requiring imputation. Both the recipient and the selected donor record should have similar 
matching variable values. As the use of continuous matching variables does not permit aact 
matches, a distance function based on the selected matching variable(s) is used to identify the 
closest eligible donor to the bad record. 

Each donor IA has one of three possible search types associated with it. Partition searches 
(type I) are performed when only I discrete matching variable is specified for the IA. Binary 
searches (type 2) are performed when only I continuous matching variable is specified for the 
IA. Multivariable searches (type 3) are performed when 2 or more continuous matching variables 
are specified for the IA. Each of these three search types is described individually in the following 
sections. Other combinations of matching variable types are not employed. 

Fin;illy, after a suitable donor has been selected and if specified in the IA control informa­
tion, the donated data from the donor record are prorated before transferring them to the reci­
pient record. For example, if the variable "number of trucks" is used as a matching variable 
for imputing ''value of trucks", then the value of "value of trucks" assigned to the recipient 
record is equal to ''value of trucks" of the donor, multiplied by the ratio "number of trucks" 
of the recipient divided by "number of trucks" of the donor. 

As previously described, each donor imputation action has one of three search types associated 
with it. 1\vo of these search types, binary and partition searches, are used to perform imputa­
tion actions for which only I matching variable is specified. The other search type, the multi­
variable search, is performed when 2 or more continuous matching variables are to be used. 

4.2.1 1Ype 1 - Partition Searches 

Partition Searches are performed when only I discrete matching variable with a small number 
of possible values is specified for the imputation action, e.g., as in the case where a respondent 
reports the total number of tractors, but neglects to give the corresponding total dollar value. 
Since a farmer is unlikely to have more than 3 tractors the donor population is divided into 
3 partitions: I, 2, or 3 + tractors. A donor is chosen at random from the partition to which 
the recipient record belongs. If there are no donor records within the partition to which the 
recipient record belongs, but there are donors in any of the subsequent (higher numbered) par­
titions, then all of the subsequent partitions are collapsed into one and a donor record is selected 
at random from this collapsed partition. If there are no donor records in the partition to which 
the recipient record belongs or in any subsequent partition, then a donor record is selected 
at random from the closest preceding Oower numbered) partition that contains any donor records. 
As these collapsing procedures are not frequently applied, no serious introduction of bias is 
encountered. If the donor population is empty, then the field to be imputed is assigned the 
maximum value allowable by the edits and the record flagged to indicate that imputation was 
unsuccessful. These flagged records are then reviewed by subject matter personnel who manually 
assign an appropriate value to the field requiring imputation. 

4.2.2 11)pe 2 - Binary Searches 

Binary searches are performed when only I continuous matching variable is specified for 
the imputation action, e.g., as in the case where a respondent reports the total value of his/her 
tractors, but does not give the corresponding number of machines. The entire file of eligible 
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donor records is searched and the record that minimizes the difference between the matching 
variable values is selected as the donor. If two or more potential donor records are equally 
close, then the one that is geographically closer to the recipient (as judged from the geographic 
JD) is automatically selected as the donor. If the donor population is empty, then the recipient 
record is flagged to indicate that imputation was unsuccessful. 

4.2.3 lYpe 3 - Multhllrillble Searches 

Multivariable searches are performed when more than one continuous matching variable 
are specified for the imputation action. These are the most compleK of the three search types per­
formed by the 1981 Census of Agriculture. The method used to perform multivariable 
searches was adapted for use at Statistics Canada by G. Sande. 

When the missing data are related to more than one continuous matching variable, it is 
desirable to use as a donor a record that is closest to the recipient record on all these matching 
variables simultaneously. This requires a multivariable search on a large donor file and has 
been made practical by grouping the donor population in such a way that it is not necessary 
to search every donor to determine the closest. This specialized grouping of records is called 
the K-D (Key Discriminator) tree. The same K-D tree may be used for all records requiring 
a certain donor IA within a particular imputation region as the file of eligible donors will 
remain the same in each case. However, if a different donor IA is to be performed using a 
different donor population, or even the same donor IA on a different imputation region, a 
new K-D tree must be built as the file of eligible donors will not contain the same records. 

a) Building the K-D Thee 

The first step in the building of the K-D tree is to perform a transformation on all of the 
matching variables by subtracting the mean and dividing by the standard deviation of the donor 
population. This allows matching variables of different scales to be specified for the same search. 

After the variable transformation, the following algorithm is then used to actually build 
the K-D tree. It is first applied to the entire file of eligible donors, and then to all subfIles subse­
quently created by the algorithm. 

Firstly, the range (largest value minus smallest value) is calculated for each of the matching 
variables specified. The median value of the variable with the largest range (or the variable 
with the smallest JD if there are 2 or more with the maximum range) is then calculated. The 
variable for which the median is calculated is called the discriminator variable. This median 
value is used to split the file into 2 new subfIles, the left subfile containing records with values 
less than or equal to the median value of the discriminator variable, and the right subfIle con­
taining records with values greater than the median value of the discriminator variable. The 
algorithm is then progressively re-applied to the resulting subfIles using all specified matching 
variables until all fIles become TERMINAL, at which point the building of the K-D tree is 
complete. A subfIle becomes TERMINAL when either the range equals zero for all matching 
variables, i.e., all records in the sub fIle are identical, or if there are 16 or less records in the subfIle. 

The above algorithm will yield a K-D tree of the form illustrated in Figure 4. 
Every record contained in the original fIle will be present in one and only one of the subfiles 

corresponding to the terminal nodes. 

b) Searching the K-D Tree 

In order to locate the best possible donor, it is necessary to decide which of the terminal 
nodes "corresponds" to the recipient record. This is done by traversing the K-D tree, using the 
transformed matching variable values of the recipient record, starting with the root node and 
proceeding until one of the terminal nodes is reached. At each node of the tree it is determin­
ed, using the discriminator variable for that node, which of the two lower nodes the recipient 
record corresponds to. The K-D tree is traversed in this manner until a terminal node is reached. 
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Figure 4. General Form of K·D Tree 

In order to determine which donor in the chosen terminal node is closest to the recipient 
record, a distance function is required. Because of its ease of implementation, the distance 
defined by the maximum of the absolute differences between matching variables was used. 
The selected donor record is the one that minimizes this "distance". 

Although the selected donor record is the closest to the recipient record contained in the 
chosen terminal node, it is possible that there are doser donor records residing in other 
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terminal nodes. This may occur only if a nodal boundary exists that is closer to the recipient 
record than the currently selected donor record. This case is shown in Figure 5 for a donor 
IA involving two matching variables; X and Y. Each quadrant represents a terminal node. 

It is evident that the possible donor P is closer to the recipient R than the selected donor 
S. This is possible because R is closer to the position of the nodal boundary Y = y than to 
S, and only donor records lying in the same terminal node as the recipient record may be selected. 

A procedure, based on the variable values used to define the nodal boundaries and known 
as the bounds-overlap-ball (B.O.B.) test, is used to determine which of the other terminal nodes, 
if any, may contain donors closer to the recipient record than the selected donor record. Only 
terminal nodes that have the potential to provide closer donors are tested, and if a closer donor 
is found, then it replaces the previously selected donor. The B.O.B. test is applied until all nodes 
that may contain closer donors have been tested. 

Finally, for all three search types, after the eventual donor record has been selected, the 
donated data values are prorated as previously described, if specified in the IA control 
information. 

It will always be possible to select a donor unless the donor population is empty. If this 
occurs then the imputation region is collapsed with another and imputation is redone. It was 
never necessary to perform this operation in 1981. 

S. CONCWDING NOTE 

A detailed evaluation, Grenier (1983), indicated that a major portion of the edit system was 
of little data quality benefit. This was because the Correction of Rejects procedures were unable 
to correct a sufficient proportion of the edit failures. For example, Correction of Rejects was 
unable to correct the failures resulting from a subset of 77 of the 97 edits more than 5"7. of 
the time. Also, many of the edits affected less than .1"7. of the popUlation. Additionally, the 
Correction of Rejects procedures were highly labour intensive and created a heavy paper burden. 
Th eliminate these inefficiencies a new computer edit system will be designed for 1986. 

Statistics from the 1981 Census of Agricnlture, Grenier (1983), indicated that 43"7. of the 
farms in Canada had at least one field imputed. Of this 43"7.: 

18"7. required internal imputation only, 
17% required donor imputation only, and 
8"7. required both internal and donor imputation. 

An analysis of the data distributions before and after imputation indicated that the imputa­
tion system did not have a serious impact at the Canada level although many of the 137,390 
records imputed underwent a significant change. The system successfully handled all necessary 
imputations with only 58 records requiring manual imputation. The system was found to be 
very efficient, a processing cost of only $15,000 being incurred. Diagnostic data indicated that 
minor modifications to the system must be made for greenhouses, mushroom houses, com­
munity pastures, and institutions, if they are to remain in the census. Due to its successful fulfill­
ment of the requirements, it is planned to reuse the present imputation system in 1986. 
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