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Stability 

The stability condition of a process Z, is either "stationary" or "non-stationary". It in­
dicates how well the system remembers the shocks a'_j' j = 1, 2, ... , and how fast or slow­
ly the response of the system to any particular shock decays. For a process 

= ",(B)a" 

where a, - NID(O, 0;), the filter is said to be stable if the sequence {"',} is convergent. For 
a general ARIMA model (p, d, q), 

4>(B) (1 - B)dZ, = 8(B)a" 

the stability condition is that all the Ai of the characteristic equation 

<I>(B) = I - 4>,B - <I>,E' - .,. - <I>.B" = (1 - A,B) (1 - A,B) ... (1 - A"B) = 0 

for the process are strictly inside the unit circle, i.e. IA)I < I. 

Invertibility 

The process Z, may be expressed as: 

The system is said to be invertible if the sequence {"i} is convergent. The criterion is con­
sidered to be of primary importance because if the invertibility condition fails, the generating 
function .. (B) of the .. 's increases without bound. This means the current event of the system 
depends more on events in the distant past than in the recent past, and the process is physically 
meaningless. 

The invertibility condition for a general ARIMA model (p, d, q), is that the Vi of the 
characteristic equation 

8(B) = I - 8,B - 8,E' - ... - 8"B" = (1 - v,B) (1 - v,B) ... (1 - v,jJ) = 0 

for the process are strictly within the unit circle, i.e. I vii < 1. 

Underdifferencing 

In the AR(P) model, when one or more of the Ai' say Ak approaches 1; then from 

4>(B) = 1 - <I>,B - <1>,8' - ... - 4>"BP 

= (1 - A,B) ... (1 - Ak_,B) (1 - A"B) ... (1 - A"B) 

= (1 - AlB) ... (1 - Ak_IB) (1 - Ak+IB) ... (1 - A"B) (1 - A"B), 

we have <I>(B) approaching 
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Therefore, a differencing operator may be needed for this system, and the AR(p) model 
becomes an ARl(P - I, I) model. Furthermore, when At approaches I, we may have 
non-stationarity. 

Overdifferencing 

Consider the general ARIMA model (p, d, q) (P, D, Q)" 

q,(B)~(B) (I - B)'(1 - B')DZ, = O(B)8(B)o,. 

If any "i of the characteristic equation O(B) = 0 approach I, i.e. if any (1 - ",B) approach 
(1 - B), we can eliminate (I - B) from both sides. 

Test of randomness for the a,'s 

Correlation in the residuals is not desirable since we want an unbiased estimate of the 
parameters for the process. 

The statistic 

m 
Q = n(n + 2) 1: (n - k)-Iei 

k=1 

as modified by Prothero and Wallis (1976) and Ljung and Box (1978) from the Chi-square 
test of Box and Pierce is used. 

Here n is the sample size, k = 1, 2, ... ,m are the various lags, and l2k are the autocor­
relations. Q is used for the testing of the randomness of the residuals. 

Small Parameters 

Generally speaking, when the number of parameters of a given model is increased, the 
mean sum of squares"; is reduced. However, only large parameters, or those parameters 
significantly different from 0 can contribute to a significant reduction of .,;. To check for 
a small parameter, we may need an F-test (Pandit and Wu 1983): 

A, - Ao Ao 
F = ... -- -F(s, N - r) 

s N - r 

where r is the number of parameters of the model and s is the number of parameters which 
are restricted to zero. N is the number of observations, Ao is the smaller sum of squares 
of the restricted model, and A, is the larger sum of squares of the restricted model. 

But in our study here, we choose two constants, 0.05 and 0.10, as our indicator of the 
presence of a small parameter. 

Correlation of the Parameters 

High positive or negative correlation between parameters reflects ambiguity in the estimated 
values since a range of parameter values results in models with equally good fit. Therefore, 
if some of the elements in the correlation matrix of estimated parameters are large in ab­
solute value, say greater than or equal to 0.9, the model may be reduced by deleting some 
of the smaller parameters. 
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Forecasting Error 

No matter how we define a good model or bad model, we still have a primary interest 
in the forecasting error of the model. In this paper we use the mean absolute percentage 
forecasting error of one-year-ahead forecast 

1 N Z,., - t,(i) 
MAPE = - E x 100"7. 

N lei Zt+t 

where e is 12 or 4, and t,(i) is the forecast with lead time e. 

3. EVALUATION OF THE ARIMA MODELS 

The eight criteria have been put into two groups. The first group considers good fitting 
of parsimonious models while the second considers the quality of the forecasts. This distinc­
tion between fitting and forecasting is important; good fitting and good forecasting are not 
equivalent. 

These criteria have been used to evaluate and rank seven of the most often applied ARlMA 
models, namely: 

1. (0, 1, 1) (0, 1, 1), 5. (I, 1,0) (0, I, I), 
2. (0, 1, 2) (0, I, I), 6. (2, 1,0) (0, I, I), 
3. (0, 2, 2) (0, I, I), 7. (2, 1,0) (0, I, 2), 
4. (2, 1,2) (0, I, I), 

where "s" is 12 if the series is monthly and 4 if it is quarterly. 
These models were fitted to a sample of 167 monthly seasonal time series chosen random­

ly from eleven sectors of the Canadian economy: national accounts; labour; prices; manufac­
turing; fuel, power and mining; construction; food and agriculture; domestic trade; external 
trade; transportation; and finance. About 40 quarterly time series from national accounts 
and finance were also tested. 

The series are mostly multiplicative, according to the Bell Canada model test (Higginson 
1976). That is, the different components (trend-cycle, seasonal, and irregular) are multiplied 
together to produce the raw series. Therefore, the amplitudes of the seasonal component 
frequently increase with increasing levels of the trend. The multiplicative series received a 
logarithmic transformation before the first three and last three models were fitted. The fourth 
model was fitted to the untransformed series in all cases. 

Looking at the non-seasonal part of an ARlMA model which is associated with the trend­
cycle and extremes, we see that the models can be grouped into three classes. Class I is models 
I, 2 and 3 whose ordinary part includes only one Or two first differences and one or two 
moving average parameters. Class III includes models 5, 6 and 7 whose ordinary part in­
cludes ouly one first difference and some autoregressive parameters. Model 4 (Class II) forms 
a class by itself; its non-seasonal part is mixed. We see that the seasonal part of all models 
is the same except for model 7. 

Although the eight criteria are analysed separately in this section, several of them are depen­
dent. For example, we shall see that the excess of parameters in model 4 generates problems 
of nonstationarity, noninvertibility, under- and overdifferencing, and correlation. 
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In Sections 3 and 4, we test within-sample extrapolated values for the seven ARIMA models. 
That is, the models are fitted to the whole series thus providing the parameters to be used 
for calculating the forecasts for the last three years. This is the way ARIMA forecasts are 
evaluated in the X-ll-ARIMA program. 

3.1 Criteria for Fitting Parsimonious ARIMA Models 

The stationarity condition requires that all the roots of the autoregressive characteristic 
equation be inside the unit circle. We see in Table I that non-stationarity occurs only for 
model 4, in three cases. These appear to be due to overparametrization of the model. 

In order for the model to be invertible, it is necessary that the roots of the moving average 
characteristic equation be inside the unit circle. Only model 4 has many cases of noninver­
tibility, 20%, as we see in Table 2. Two explanations are possible. There is first of all the 
case of straightforward noninvertibility. In some other cases noninvertibility was accompanied 
by nonstationarity. The fact that the autoregressive part may have roots near unity might 
have caused autocorrelation in the residuals. The moving average parameters would then 
take higher values to compensate. 

An important criterion in judging the appropriateness of the ARIMA models for the series 
is the chi-square test of Box and Pierce (1970) (modified by Prothero and Wallis in 1976, 
and by Ljung and Box in 1978), applied to the autocorrelation of the residuals. Table 3 shows 
for each of the seven models the number and the percentage of series that fail the chi-square 
test at. different levels. We see from this table first, that within a given class of models the 
simpler models have higher failure rates and second, that the failure rate depends to a large 
degree on the class of the model. The first point is illustrated by models 2 and 6 which having 
one more parameter than models 1 and 5, have a higher number of series passing this test. 
The evidence for the second point is that moving average models appear to satisfy the 

CRrrlCAL 
VALUE 

CRITICAL 
VALUE 

CLASS I 

Table 1 

Failure i~ Stationarity 

CLASS 11 CLASS 111 

Model I Model 2 Model 3 Model 4 ModelS Model 6 Model 7 
AI.I)~I.Q ~1.~AI.ij ~~~~l.Q ~I,~~I.I) P,I.~~I,I) ~J.m~I,I) ~I.~~I.~ 

'''' 

Table 2 

Failure in [nvertibility 

CLASS I CLASS 11 CLASS 111 

Model I Model 2 Model 3 Model 4 ModelS Model 6 Model 7 
(0,1, I) (0, I, I) (0,1,2)(0,1, I) (0, 2. 2) (0. I, I) (2,1,2) (0, I, I) (I, I, 0) (0, 1, I) (2,1,0)(0, I, I) (2, I, 0) (0, I, 2) 

, .. ,% , .. " """ 
, '''' ,% ,% 



56 Chiu, Higginson and Huot: ARIMA Models 

Table 3 

Failure in Chi-Square 

CLASS I CLASS II CLASS III 

CRITICAL Model I Model 2 Model 3 Model 4 ModelS Model 6 Model 7 
VALUE (0,1, I) (0, 1, I) (0, I, 2) (0, I, I) (0,2,2) (0,1, I) (2,1,2)(0,1, I) (I, I, 0) (0, 1, I) (2,1,0)(0,1, I) (2, I, 0) (0, I, 2) 

1'" 'I I.'" I' 11" 29 17 .. 26 16 .. 62 " .. 21 I'" 20 12 .. , .. 43 27'" 36 " .. 46 "'10 41 "'10 82 .. '" 49 " .. 42 " .. 
10 .. 61 ,,% .. 29% " "'10 " " .. 89 ,,% '" ,,% " 34111. 

1'" 12 43010 " ,,% .. 41% 66 40'" 101 "'% 11 ,,% .. ,,% 

20 .. 83 500ft 62 ,,% •• .... " 46'" 106 .. % 80 .. % " "'" 
3.% 100 600. " 46% 94 "'" 88 ,,% 11. 11% " ,,% 89 " .. 
40% 111 66010 97 ,,% 101 .. % 99 59010 121 7611ft 104 62% 100 "' .. , ... 121 ,,% 106 " .. 11' 11% 11' .. % 133 81OT, 111 70010 116 .. % 

"'''' 1'1 ,,% 121 " .. 128 ,,% 129 " .. 141 84117, 121 " .. 121 " .. 

chi-square test better than autoregressive models. This may be due to the presence of ex­
tremes in the series. At the 5'7. level for example, model I fails for 27% of the series com­
pared with 49% for its autoregressive counterpart model 5. As well as all models of class 
III, the mixed model, class II, is inferior to the second model of class I. 

Underdifferencing occurs when a root of the characteristic equation of the autoregres­
sion polynomial is close to unity, say a distance ( from unity. Here ~ is set equal to 0.1. 
We see in Table 4 that only model 4 is underdifferenced. This may be attributed to over­
parametrization. Model 4 has two autoregressive parameters and two moving average 
parameters in its non-seasonal part. Just through the estimation, there is a moderate chance 
that at least one of the autoregressive parameters will be greater than or equal to 0.9. 

In this discussion the critical levels chosen for overdifferencing are 0.90 and 0.95. Table 
5 shows that models 3 and 4 are most often overdifferenced. Model 3 has two first differences 
and two non-seasonal moving average parameters. If the second first difference is not 
necessary, autocorrelation is created in the series that has been differenced once already. 
The moving average polynomial will model this introduced autocorrelation by having one 
of its roots close to unity. We can therefore simplify the model by eliminating one moving 
average parameter and one difference. As to model 4, this may be due to overparametrization. 

CRITICAL 
VALUE 

.90 

Table 4 

Failure in Underdifferencing 

CLASS I CLASS II CLASS III 

Model I Model 2 Model 3 Model 4 ModelS Model 6 Model 7 
~~ij~l.1) ~1,~~1.1) ~~~~~ij ~1.~~1,1) (I,I,O)AI,I) ~l.O)AI.I) ~1.0)~1.~ 

14 .% 
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In ARIMA modelling of a stochastic process, it is enough to consider the first two moments, 
that is, the mean and autocovariance. The test on the size of the parameters serves only to 
eliminate those that contribute very little or nothing to the explanation of the autocovariance. 

Table 6 illustrates two things. First, the simplest models pass this test better than more 
complicated models. After a logarithmic transformation, most of the mUltiplicative series 
in thf: sample will follow a straight line fairly closely (except for seasonal variation), so a 
"first difference" model will fit them using few parameters. Adding an extra unnecessary 
parameter to the model will often result in its receiving a small estimate from the estimation. 
Second, the estimated values of the moving average parameters are small (less than .05 or 
.10) more often than the estimated values of the autoregressive parameters. For example 
at the level of 0.05, the second autoregressive parameter in model 6 is judged unnecessary 
13"7. of the time compared with 29"7. of the time for the second moving average parameter 
in model 2. Similarly, the addition of a second seasonal moving average parameter increased 
the failure rate from 13"7. in model 6 to 43"7. in model 7. 

CRITICAL 
VALUE 

.90 

. 9l 

CRITICAL 
VALUE 

.0' 

.10 

CRITICAL 
VALUE 

Model I 
(0, I, 1) (0, 1, I) 

'''' 
'''' 

Modell 
(0.1. 1) (0,1, l) 

IS '''' 
" I." 

Modell 

Table 5 

Failure in Overdifferencing 

CLASS I CLASS II 

Model 2 Model 3 Model 4 
(0, I, 2) (0, I, I) (0,2,2) (0, I, I) (2, I, 2) (0. I. I) 

II '''' 43 26'10 so 30"'. 

• 4% 19 11% J7 ,,'" 

Table 6 

Failure in Small Parameter 

CLASS [ 

Model 2 
(0, I, 2) (0, I, I) 

49 ,,% 
" ,,% 

CLASS I 

CLASS II 

Model 3 Model 4 
(0, 2, 2) (0, I, I) (2,1,2) (0, I, I) 

21 "'" 42 " .. 
43 " .. 73 44% 

Table 7 

Failure in Correlation 

CLASS II 

Model 5 
(I, I, 0) (0, I, I) 

,% 

,% 

ModelS 
(1,1,0)(0,1,1) 

12 ,% 

31 1911}'0 

Model 2 Model 3 Model 4 ModelS 

'''' 124 14% 

CLASS III 

Model 6 Model 7 
(2, I, 0) (o, I, I) (2, I, 0) (0,1,2) 

, '''' 14 ,% 

,., • ,% 

CLASS III 

Model 6 Model 7 
(2,1, O) (0,1,1) (2,1,0) (0,1, 2) 

22 13% 72 43117, 

4S ,,% II' .,% 

CLASS III 

Model 6 Model 7 
(2, I, 0) (0, I, I) (2, I, 0) (0, I, 2) 
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High positive or negative correlations between parameter estimates are undesirable and 
reflect ambiguity in the estimation situation since a range of parameter combinations result 
in models with equally good fits. Table 7 shows that only models 2, 3 and 4 fail the correla­
tion test, i.e. the absolute value of at least one of the correlations is 2: 0.90. The problem 
is minimal for model 2, and serious for models 3 and 4 where 51 % and 74"70 of the fits had 
highly correlated parameters. This may be due to overdifferencing in model 3 and the presence 
of too many parameters in model 4. 

3.2 Criterion for Extrapolation of ARIMA Models 

This criterion attempts to ensure the quality of the forecasts of the ARIMA models. We 
require that the average percentage forecast error of the fitted error be below a certain level. 

Table 8 shows that six of the seven models are equivalent from the point of view of 
forecasts, i.e. the number of autoregressive and moving average parameters does not affect 
the forecast error of the model averaged over all the series. Of course, some models perform 
better for certain series. 

Table 9 shows the average forecast error and standard deviation of the error under two 
possible outcomes: passing and failing the forecast error criterion. Not only is the failure 
rate of model 3 higher than that of the other models, but the table shows that when it fails, 

Table 8 

Failure in Forecast Error 

CLASS I CLASS II CLASS III 

CRITICAL Model I Model 2 Model 3 Model 4 Model S Model 6 Model 7 
VALUE (O, t, I) (0. I, 1) (0,1,2) (0, I, 1) (0, 2, 2) (0, I, I) (2, I, 2) (0,1, I) (I. I, 0) (0, I, 1) (2, I, 0) «I. I, I) (2. I, 0) (0, I, 2) 

% .. % .. % % % % 

10 •• " 84 so 101 60 80 48 84 " " 51 " 51 

" " 34 " lS 69 " " " " " 56 " " 33 

20 " 2l 40 24 51 II 40 24 40 24 40 24 40 24 

" " I' 33 20 " " " I. " 22 I. 20 ,. 20 

lO 24 14 " 16 " 21 24 I' 27 I. 27 I' 27 I. 

Table 9 

Conditional Mean (M) and Standard Deviation (SO) 
of the Average Forecast Error 

CLASS I CLASS II CLASS III 

Critical Out· Model I Model 2 Model 3 Model 4 ModelS Model 6 Model 7 
Value rom, (0,1, I) (0, I, 1) to, I, 2) (0. I, I) (0,2, 2) (0, I, 1) (2, I, 2) (0, I, 1) (I, 1,0) (0, I, I) (2,1,0) (0,1, I) (2. I, 0) (0. I. 2) 

M SO M So M SO M SO M SO M SO M SD 

IS"" PM, ,% 4.0 .% l.' ,% 4.1 ,% l.' ,% l.' , .. 4.0 ,% l.' 
.oil ,,% 22.3 360;, 22.' ,,% 26.4 ,,% 21.4 ,.% 24.' ,,% 2l.4 37GJ, 23.0 
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its ave:rage forecast error is bigger, The forecast errors of model 3 are increased by its over­
differencing. However, when the forecast errors of model 3 pass the criterion, their average 
is as small as that of the other models. 

4, RANKING OF THE MODELS 

To rank the models, the eight criteria are used at different acceptance levels. Tables 10 
and 11 present the overall and conditional rankings of the models. Table 10 gives the total 

Table 10 

Overall Ranking of the Models 

2 criteria 8 criteria· 8 criteria· 8 criteria-
FE :s 15'10 FE :s 15'1'. FE :s 15'10 FE :s 15% 
X' ?; 5% X' ?; 5% X' ?; 5% X' ?; 5% 

SP :s .10 SP :s .05 SP :s .05 
OD?; .90 OD?; .90 OD?; .95 

% of series 0/0 of series OJo of series OJo of series 
Models that passed Models that passed Models that passed Models that passed 

4 52% I 34% 6 38% 6 39% 
7 51% 6 31% 37% I 38% 
6 49% 5 23% 2 29'10 2 29% 
2 48% 2 20% 5 26'10 5 28% 
I 44% 3 13% 7 25'10 7 27% 
3 41% 7 11% 3 17'10 3 19% 
5 32"1. 4 2% 4 4'10 4 5% 

·As well as the four criteria listed, the fOUT other criteria mentioned in the text were imposed. 

Table 11 

Conditional Ranking of the Models 

2 criteria 8 criteria· 8 criteria- 8 criteria-
FE :s 15% FE:s 15% FE :s 15% FE:s 15% 
l?; 5% X' ?; 5% X' ?; 5% X' ?; 5% 

SP :s .10 SP :s .05 SP :s .05 
OD?; .90 OD?; .90 OD?; .95 

0/0 of series 0/0 of series 070 of series 0/0 of series 
Models that passed Models that passed Models that passed Models that passed 

~ 52'10 I 34% 6 38% 6 39% 
7 9% 3 6% 3 9% 3 9% 
2 1% 6 4% 7 4% 4% 
3 1% 5 2% 2 3% 4 2% 

• As well as the four criteria listed, the four other criteria mentioned in the text were imposed. 
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success rate of the models. Table II gives first the total success rate of the best model; the 
following models are chosen according to their success with series with which all higher models 
have failed. 

Table 10 shows that: 
o when only the chi-square statistic (x') and average forecast error (FE) are used as criteria, 
models 4 and 7, which have the most parameters, rank at the top. 
o on the other hand, the use of all criteria favour the simplest models (models I and 6), at 
all levels of small parameter (SP) and overdifferencing (00) criteria. 
o models I and 6 usually rank close together, although model I has one less parameter than 
model6. 
o when model 6 is not first it is a close second. 

o the more the criteria are relaxed, the higher the pass ratio is, although the ranking of the 
models remains about the same. 

In table 11 we see that: 
o when all criteria are used, models I and 6 which ranked first and second in table 10 now 
rank only first and third. 
o second place belongs to model 3. This model, which in table 10 ranked third, fifth and 
sixth with total success rates of 41"1.,13"1.,17"1., and 19"1., here ranks fourth once and se­
cond three times. This is because model 3 fits well an important family of series (series with 
a steep trend) that all other models fit poorly. 
o moving average and autoregressive models are not mutually exclusive. These two families 
of models are complementary and necessary in fitting and forecasting series. 
o when we require only that the average forecast error be less than 15"1. and the chi-square 
statistic be greater than 5"1. and nothing else, the combined success rate of models 4, 7, 2 
and 3 together is 63"1 •. 
o when all the criteria are used, the models chosen are simple and their combined success 
rate varies between 46"1. and 54"1. using the levels of 15"1. and 5"1. described just above. 
The success rate depends on the levels of small parameter and overdifferencing used. 

Even though model I does not appear in the third column of table II, it would appear 
there if the level of forecast error permitted were raised to 20"1 •. 

The criteria and levels used in selecting models in figures I and 2 are the same as are used 
in the second column of tables 10 and II, except that in figure 1 the average forecast error 
permitted varies between 10"1. and 99"1. while in figure 2 the chi-square criteria varies bet­
ween 10"1. and 60"1 •. 

Figure I shows that: 
o models I, 3 and 6 perform the best. 
o the ranking of the models tends to remain the same. 
o the performance of the first model increases more rapidly than that of the others, going 
from 23"1. to 59"1. compared with an increase from 13010 to 17"1. for model 3. This point 
needs clarification. Modell is chosen according to its unconditional performance, while the 
other models are chosen according to their conditional ranking. 
o the increase in performance of the models according to unconditional ranking is greater 
than the increase when using conditional ranking. 

We see in figure 2 that 
o models I, 3 and 6 are generally the best models for any level of chi-square. 
o models I and 6 trade places but are not mutually exclusive. 
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Table 12 

Conditional ranking of the ARIMA models for the sectors of the 
Canadian economy 

Models ranking and." of series that passed 

Sectors first 'I, second ." third ." fourth ." 
model model model model 

Labour ..................... I 79 3 14 0 0 
Prices ...................... 5 50 7 17 2 8 0 
Manufacturing ............... 3 19 6 14 I 5 2 5 
Fuel, Power and Mining ...... 46 6 4 0 0 
Domestic Trade .............. I 53 6 7 7 7 0 
External Trade .............. 6 21 0 0 0 
Transportation .............. 54 5 8 0 0 
Finance ..................... 32 3 II 0 0 

Table 12 presents the conditional ranking of the ARIMA models for those sectors of the 
Canadian economy for which we fitted twelve or more series. The criteria and levels used 
in ranking the models are the same as those used in the second column of tables 10 and 11. 
We see that 
o models 1 and 6 are generally the best performers. 
o the combined success rate of the models varies considerably from one sector to another, 
from 93"10 in the labour sector to only 21 % in external trade. 
o this success rate is at least 50% for five sectors. The rate depends on the structure of the 
series. changes in the structure, and the amount of irregular in the series. The rate is good 
considering that for two of the last three years Canada suffered a severe recession which 
strongly affected the structure of the series. The success rate for external trade is always low 
because those series are very irregular. 

5. WITHIN-SAMPLE AND OUT-OF-SAMPLE FORECASTS 

The within-sample forecasts are obtained by fitting the models to the entire series in order 
to estimate the parameters and calculate the forecasts for the last three years. The out-of­
sample forecasts do not use information from after the forecast time origin. For each forecast 
origin, the parameters are re-estimated. 

Table 13 

Failure Rate in Forecast Error for 
Within-Sample and Out-of-Sample Forecasts 

Model I Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 
(0, I, I) to, I, I) (0, I, 2) (0. I, I) (O, 2, 2) (0, I, I) (2, I, 2) (0, I, I) (I. I, 0) (0, I, 1) (2, I. 0) (0. I, \) (2, I, 0) (0. 1, 2) 

.. .. .. .. .. .. .. 
Within·sample 34 " 41 32 l4 '4 J3 

Out.of.sample 31 32 42 3l 31 32 31 
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Table 14 

Conditional and Unconditional Ranking of the Models 

Unconditional ranking Conditional Ranking 

Models 

I 
6 
5 
2 
3 
7 
4 

070 of series 
that passed 

40'1. 
28'1. 
27'1. 
20'1. 
14'1. 
10'1. 
2'1. 

Models OJo of series 
that passed 

I 40'1. 
2 5'1. 
7 4'1. 
3 3'1. 

63 

Table 13 shows the rate of failure in forecast error at the l50J. level for within-sample 
and out-of-sample forecasts. The difference between the two is small and is well within one 
standard deviation for each model. The X-ll-ARIMA seasonal adjustment program uses 
within-sample forecasts because they cost less. 

Table 14 has been prepared using the same criteria and levels as were used in the second 
columns of tables 10 and II. The unconditional ranking is exactly the same as that in the 
second column of table 10. Only the success rates of the first three models differ, and in 
table 14, model 1 is clearly superior to the other models. However, the conditional ranking 
is different from that appearing in the second column of table II. 

Th" conditional rankings in tables II and 14 differ for two reasons. First, of course, table 
14 uses out-of-sample forecasts. Another important reason is that the calculation of the seven 
other criteria was based on one year less data, and the missing year contained a severe reces­
sion. Thus the structure of the series and the choice of models is markedly different. 

It appears therefore that the conditional ranking of the models for both within-sample 
and out-of-sample forecasts depends on the phase of the business or economic cycle in which 
the series ends. 

6. CONCLUSION 

Ou:r objective was to rank a set of seven ARIMA models according to their fitting and 
forecasting of a large sample of time series. 
• when only the chi-square statistic and the average forecast error are used as criteria, models 
4 and 7 rank at the top. 
• The use of all eight criteria favours the simplest models (I and 6) and model 3. 
• Models I (moving average model) and 6 (autoregressive model) rank close together in un­
conditional ranking, although model I has one less parameter than model 6. 
• In conditional ranking, these two both rank highly but are not mutually exclusive. That 
is, moving average and autoregressive models are complementary and both are necessary 
in fitting and forecasting series. 
• Although Model 3 ranks near the bottom, it fits well an important family of series (series 
with a steep trend) that all other models fit poorly. 
• The nonparsimonious models (numbers 4 and 7) have a combined success rate of 61 % com­
pared to a success rate that varies between 44OJ. and 52% for parsimonious models I, 6 and 3. 
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• The combined success rate of the models varies considerably from one economic sector 
to another, from 93 OJo in the labour sector to only 21 % in external trade. This rate depends 
on the structure of the series, changes in the structure, and the amount of irregular in the series . 
• It appears that the conditional ranking of the models for both within-sample and out-of­
sample forecasts depends on the phase of the business or economic cycle in which the series 
ends. 
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The synthetic estimator (SYN) has been traditionally used to estimate characteristics of small domains. 
Although it has the advantage of a small variance, it can be seriously biased in some small domains 
which depart in structure from the overall domains. Sarndal (1981) introduced the regression estimator 
(REG) .in the context of domain estimation. This estimator is nearly unbiased, however, it has two 
drawba.:ks; (i) its variance can be considerable in some small domains and (it) it can take on negative 
values in situations that do not allow such values. 

In this paper, we report on a compromise estimator which strikes a balance between the two estimators 
SYN and REG. This estimator, called the modified regression estimator (MRE), has the advantage of 
a considerably reduced variance compared to the REG estimator and has a smaller Mean Squared Er­
ror than the SYN estimator in domains where the latter is badly biased. The MRE estimator eliminates 
the drawback with negative values mentioned above. These results are supported by a Monte Carlo study 
involving 500 samples. 

KEY WORDS: Small domains; regression estimation; modified regression estimator; bias; mean squared 
error. 

1. INTRODUCTION 

The synthetic estimator (SYN) has the advantage of a small variance, but the following 
disadvantages: (a) it can be badly biased in some domains, and ordinarily we do not know 
which ones; (b) consequently, a calculated coefficient of variation (cv), or a calculated con­
fidence interval, is meaningless for such domains. 

For the same model that underlies the SYN estimator one can create a nearly unbiased 
analogue, the generalized regression estimator (REG), which has the additional advantage 
that a standard design based confidence interval is easily computed for each domain estimate. 
A disadvantage with REG is that the estimated variance (and hence the cv and the width 
of the confidence interval) can be unacceptably large in very small domains. (This is, of course, 
a direct consequence of the shortage of observations in such domains,) Also, the REG can 
(although with small probability) take negative values in situations where such values are 
unacceptable. 

It is therefore desirable to strike a balance between SYN and REG. Here, we report on 
an empirical study with one such compromise estimator, the modified regression estimator 
(MRE). It has a small (but noticeable) bias in those domains where the synthetic estimator 
is greatly biased; in other domains, the MRE is nearly unbiased. The MRE has the advantage 
of a considerably reduced variance compared to the REG estimator. In addition, the MRE 
has a smaller Mean Squared Error than the SYN estimator in domains where the latter is 
badly bi.ased. Meaningful confidence intervals can also be easily constructed for the new MRE 
estimator. 

I M.A. Hidiroglou, Business Survey Methods Division. Statistics Canada, 5-C8, Jean Thlon Building, 'funney's 
Pasture, Ottawa. Ontario. Canada KIA OT6 and C.E. Sarndal, Department of Mathematics and Statistics, 
University of Montreat. Montreal. Quebec, Canada H3C 317. 
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The paper is structured as follows. In Section 2. some of the commonly used estimators for 
small areas such as the direct, post-stratified and synthetic estimators are reviewed as well as some 
of the regression estimators given by Siimdal (1981. 1984). In Section 3. the proposed modified 
regression estimators are introduced and discussed. In Section 4. the properties of the modified 
regression estimators as well as some of the other estimators are studied through a Monte Carlo 
simulation using business tax data. Finally. Section 5 provides some general conclusions. 

2. ESTIMATORS 

Let the population U = {I •...• k • ...• N} be divided into D non-overlapping domains 
U ... ...• Ud .• •••• UD., Let N d. be the size of Ud., (In our empirical study. the domains are 
defined by a cross-classification of 4 industrial groupings with the 18 census divisions in the 
province of Nova Scotia. There were D = 70 non-empty domains. as described in Hidirog!ou. 
Morry. Dagum. Rao and Siirndal (1984).) 

The population is further divided along a second dimension. into 0 non-overlapping 
groups, U. 11 ••• , CJ.gt ... , U,G' 

The size of lI., is denoted !V.,. (In our study. the groups are based on Gross Business In­
come classes.) The cross-classification of domains and groups gives rise to DO population 
cells Ud,; d = 1 •...• D; g = I •...• O. Let Nd, be the size of Ud,. 

Then the population size N can be expressed as 

D G D G 
N= 1: Nd. = 1: N,= 1: 1: N d, (2.1) 

d=1 g~l d=1 g=l 

Let s denote a sample of size n drawn from U by simple random sampling (srs). Denote 
by Sd .• s., and Sd, the parts of S that happen to fall. respectively. in Ud .• U., and Ud,. 

The corresponding sizes. which are random variables. are denoted by nd .• n., and n",. 
Note that (2.1) holds for lower case n's as well. The variable of interest. y (= Wages and 
Salaries) takes the value of y, for the k:th unit (= unincorporated business tax filer). The 
auxiliary variable x (= Gross Business Income) takes the value x, for the k:th unit. and x, 
is known for all k = I •...• N. 

The following estimators of the domain total td = 1: Ud. y, are compared. where 1: Ud. 

denotes the summation over the units in Ud., 

The straight expansion estimator (EXP): 

Tbe poststratified estimator (POS): 

where 

N 
fdEXP = - 1: y, 

n Sd. 
(2.2) 

(2.3) 

is the mean of the nd. Y - values from tbe d:th domain. If nd. = 0 we define the POS 
estimator to be zero (somewhat arbitrarily. since strictly speaking the estimator is then undefin­
ed). Neither the EXP nor the POS estimator are particularly advantageous. They serve main­
Iyas benchmarks against which the behaviour of the following more efficient estimators will 
be compared. 
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Two versions of the SYN and REG have been investigated, the "Count" version and the 
"Ratio" version. The SYN estimator is based on the assumption that a given model holds 
for each group g. For the "Count" version a given model would lead to the assumption 
that the mean of each group is the same across all domains d. For the "Ratio" version, the 
impli.:d model would be that the ratios of a given variable of interest over an auxiliary variable 
would be constant within a given group across all domains. If the assumption of homogeneity 
of domain characteristics does not hold within each group, the SYN estimators can be very 
biased. The REG estimation method as given by Siirndal (1984) is motivated by the follow­
ing requirements: (a) to obtain approximately design-unbiased estimates with simple variance 
estimates and easily calculable (and meaningful) confidence intervals; (b) to strengthen the 
estimates by involving sample data from all domains. 

The formulas for the "Count" versions are: 

Syntbetic-Count estimator (SYN/C): 

when' JI,., is the mean of y in s.,. 

Regression-Count estimator (REG/C): 

(2.4) 

{dREO/C = E {Nd,JI,., + NdlJl'd' - JI,.,>} (2.5) 
g=1 

when, JI'd is the mean of yin Sd" and Nd, = Nnd/n. Here, E~=I Nd,(JI'd - JI,.,> is a bias 
correl:tio~ term that ordinarily carries a considerable variance contributron. 

The "Ratio" versions of the SYN and REG estimators are: 

Syntbetic-Ratio estimator (SYN/R): 

(2.6) 

with X", = E u" Xk and 

Regression - Ratio estimator (REG/R): 

{dREO/R = E {X.,R, + Nd,(JI'd, - R,x'd)} ,-I (2.7) 

3. MODIFIED REGRESSION ESTIMATORS 

Regression estimators introduced by Siirndal (1984) were constructed by fitting a regres­
sion model to some auxiliary variables and using the resulting fitted model to create predicted 
values for the units in the population domain. Assuming that the sampling design, p, is an 
arbitrary one (not necessarily srs) with inclusion probabilities '/(k (first order) and 1rk1 (second 
order), let the regression model be given by 

when: the Yk are independent random variables. An estimator of f! is 
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where it is assumed that the ", are known to multiplicative constant(s) that cancel when ~ 
~~~. -

Following Sarndal (1984). a nearly unbiased estimator of the unknown d-th domain total 
is given by 

(3.1) 

where p. = :5k~ is the k-th predicted value and e, = y, - y, denotes the k-th residual. 
We shall refer to E Vd. Y' as the synthetic term of the estimator (dREG and the second term. 

E'd. e,hr .. will be called the correction term. 
If Sd. is non-empty. an approximately unbiased alternative to the REG estimator (3.1) is 

given by 

(3.2) 

where 

is the estimated domain size. 
The correction term now appears in the form of a ratio estimator. 

---. 

multiplied by the known domain size N d. (obviously. N d. is known since the cell counts N d, 
are known). 

The size nd. being random. the ratio form will serve to reduce the variance of the cor­
rection term. The effect will be particularly noticeable in domains where the average of the 
residuals is clearly away from zero (that is. in domains where the model does· not fit well). 

If the expected sample take in the domain. Ed = Eind) = E Vd ",. were substantial (say. 
Ed 2: 50). then it is practically certain that the realized sample take. nd.. will not be 
exceedingly small. For example. under srs. values nd. S 30 will hardly ever occur. In such 
situations. the nearly unbiased estimator (3.2) can be recommended as is. It should realize 
important efficiency gains over (3.1). notably in domains where the model does not fit as 
well. But in practice one often encounters domains that are so small that the expected sam­
ple take Ed does not exceed 5. This is true for a number of domains in our study. In such 
cases. realized sample takes nd. between zero and five are very likely. Our empirical work 
has confirmed the intuitively obvious fact that the residual correction will. in these small 
domains. contribute greatly to the variance. whether the correction appears in its straight 
form. Ld ekl"k' as in (3.1). or in its ratio form. Nd.(E'd. e,h,)/(E'd.1/",). as in (3.2). 

To counteract this inflated variance contribution. we modify the correction term of (3.2) 
in a way implying that we settle for a small bias (in domains where the model fits less well) 
in exchange for a reduced variance contribution when the realized sample take nd. is lower 
than expected (and it is assumed that the expected sample take is already low in itself). 



Survey Methodology, June 1985 69 

Th(: form of the new correction term will be determined by the relation between realized 
sampl,~ take nd., and expected sample take Ed' The correction term I;'d e,l1r, will be 
mUltiplied by (N/ N d) when nd. < Ed and by (Ndl Nd) otherwise. The resulting correction 
term using this adaptive "dampening factor" will have the effect of not "over-correcting" 
the synthetic term when some of the residuals e, behave as outliers for small nd.'s. The 
"over-correcting" may have the effect of greatly underestimating a domain d, yielding negative 
values when only positive values are acceptable, or conversely greatly overestimating the 
domain. 

The: resulting estimator, the modified regression estimator (MRE), incorporating these 
two types of realizations of nd.' is 

fdMRE = (3.3) 

where 

It can be shown that (3.3) is nearly unbiased conditionally on nd., as long as nd. 2: Ed' 
For nd. < Ed' the MRE has some conditional bias, which tends to increase the more nd. falls 
short of its expected value. At the same time, the MRE estimator is being pushed towards 
its synthetic term, thus benefitting from the stability (low variance) of the synthetic term. 
Unconditionally, the MRE estimator given by (3.3) will have a certain small bias, but a much 
reduced variance compared with the REG estimator. 

We note a final point in favour of MRE estimator. As a result of its considerable variance 
in very small domains, the REG estimator will, with a small but positive probability, take 
values extremely removed from the true value (d .• The value of the REG may even be 
negative, which is, of course, unacceptable for a variable (such as Wages and Salaries) which 
is by definition non-negative. Negative values of the REG estimate can occur when there 
exists large negative residuals ek in the correction term of (3.1), and are especially likely 
when "d. < Ed' The new MRE estimator virtually eliminates this occurence of negative 
estimates. In practice, if by a remote possibility the MRE takes a negative value, we recom­
mend to redefine the MRE estimator as being equal to the always positive SYN estimator. 

A natural formula for estimating the variance of (3.2) is 

(3.4) 

where 

and 
- .. , iff = k 

if e * k. 
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We propose that the same formula may serve well to estimate the variance of the MRE 
estimator (3.3). It is true that (3.3) differs from (3.2) when the realized sample take falls 
short of the expected sample take; however, it is not foreseen that the difference will be great 
enough to cause serious distortion in the validity of a confidence interval for td centred on 
idMRE using (3.4) as the estimated variance. 

In the case of simple random sampling, and assuming for g = I, ... , G, 

we find 

• E'.,Yk 
(3g = -- ;: Ys

g
, n . 

• g 

leading to the "Count estimator" whose modified version (MRE/C) is 

where Ed in the formula for Fd is now given by 

with 

and 

nNd 
Ed = E",(nd) = -­. N 

for ndg "' I 

otherwise. 

(3.5) 

(3.6) 

The MRE/C estimator will have some bias, which is, however, ordinarily much less than 
that of the SYN/C estimator. 

The underlying model assumptions which lead to the "ratio estimator", whose modified 
version is denoted as MRE/R, are for g = I, ... , G, 

The MRE/R estimator is then, in the case of simple random sampling, 

(3.7) 
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when: 

and 

o _ 

E Nd'y'dg 
Ii = d·1 

g ""'0::--_--
E Ndg1l'dg 

d=l 
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Drew, Singh and Choudhry (1982) provided small domain estimators which, although not 
derived by a regression approach, have some similarity to the ones given in this paper. Their 
"count" version is 

tdKNO/C = E Ndg {W';,Y'd + (I - W';g)J, } 
g g ·8 

(3.8) 

while their "ratio" version is 

- { , J'dg , J,.g} 
tdKNO/R = E X dg Wdg X + (I - Wdg¥ 

Sg Sdg S,g 
(3.9) 

when: 

1 
ndg ·f E 
- I ndg:::;; dg 

Wei, = Edg 

I otherwise 

with Edg = n(Nd/N). In the present context, if Wdg in (3.8) is replaced by 

Wd; = 

we obtain (dMRE/C' 

4. RESULTS FROM THE EMPIRICAL STUDY 

In order to study the properties of the estimators discussed in the preceding sections, a 
simulation was undertaken. The province of Nova Scotia was chosen as Our population with 
N = 1678 sampling units (unincorporated tax filers). The variable of interest, y, is Wages 
and Salaries. We use a single auxiliary variable, x, namely, Gross Business Income. It is assum­
ed that XI' ••.• XN are known. 

Domains of the population were formed by a cross-classification of four industrial groups 
with eighteen regions. The industrial groups were Retail (SIS units), Construction (496 units), 
Accommodation (114 units) and Others (553 units). The overall correlation coefficients bet­
ween Wages and Salaries and Gross Business Income were 0.42 for Retail, 0.64 for Con­
struction, 0.78 for Accommodation and 0.61 for Others. The regions were the 18 Census 
Divisions of the province. This produced 70 non-empty domains (out of the four times 18 
domains, two combinations had no units). Thus, 70 domain totals td are to be estimated 
every time a sample is drawn. 
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For the Monte Carlo simulation, 500 simple random samples, s, each of size n = 419, 
were selected from the population of N = 1678 units. The selected sample units were classified 
into type of industry and Census Division. The population could have been divided along 
a second dimension, say income groups. But for the purposes of this study, all the tax filers 
were considered as belonging to one income group (0 = 1). 

The results are summarized for each small area within the industrial groups RETAIL and 
ACCOMMODATION using tables and graphs. For the tables (1-4), summary statistics are 
the relative conditional bias and mean squared error. The eight graphs, one for each of the 
eight estimators, are given in figure 1. In each graph, there are eighteen vertical 'distribution 
bands', one for each of the eighteen Census Divisions for the industrial group RETAIL. 
The upper and lower points of each distribution band correspond, respectively, to the 9O:th 
and !O:th percentile of the distribution of the 500 values of «(d. - IdVld .. Consequently, a 
distribution band placed roughly symmetrically about the zero line indicates that the cor­
responding estimator is approximately unbiased for the domain of interest; otherwise, the 
estimator is biased for the domain. The shorter the band, the smaller the variance of the 
estimator in the domain. The abscissa measures the mean sample take for the domain. 

From the tables and graphs, the following conclusions emerge: (where conclusion C states 
the main new results, whereas A and B resume what is known from earlier work Siirndal 
and RAbiick (1983); Hidiroglou et al. (1984». 

A. The SYN/C and SYN/R estimators are badly biased in some domains, namely, in 
those domains where the underlying model fits poorly. However, they consistently 
have an attractively low variance, compared to the other alternatives. The Mean 
Squared Error of the two SYN estimators will consequently be very large in do­
mains with large bias (poor model fit); by contrast, the Mean Squared Error is 
small in domains with little bias (good model fit). 

B. The REG/C and REG/R estimators are essentially unbiased. Their variance, 
although usually much lower than that of the EXP and POS estimators, is con­
sistently much higher than that of the SYN/C and SYN/R estimators. In the 
smallest domains, none of the unbiased estimators (EXP, POS, REG/C, REG/R) 
is attractive from the variance point of view; this is especially true for the REG 
estimators. This problem is remedied by the two MRE modifications of the REG 
estimators. 

C. The two MRE estimators, MRE/C and MRE/R, are negligibly biased when the 
SYN estimators happen to be nearly unbiased (e.g., RETAIL, area 17); otherwise 
the MRE estimators have a certain bias, which, however, is ordinarily much less 
pronounced than that of the SYN estimators (e.g., RETAIL, area 2). The MRE 
estimators have considerably smaller variance and Mean Squared Error, in all 
domains, than the REG estimators. This tendency is particularly pronounced in 
the smaller domains. In comparison with the SYN estimators, we find that the 
MRE estimators (as expected) still have a larger variance in virtually all domains. 
However, the Mean Squared Error of the MRE estimators is smaller than that 
of the SYN estimators in domains where the latter are badly biased. In Table 6 
we see, for example, that the MRE/R estimator has a smaller Mean Squared Error 
than that of the SYN/R in 9 out of 16 small areas. The obvious explanation is 
that in domains where the SYN estimator is greatly biased, the (bias)' constitutes 
an extremely large contribution to the Mean Squared Error of the SYN, whereas 
for the MRE estimators, the (bias)' is not very important. Since we do not know 
which domains create the large biases, the goal of producing reliable estimates 
in all domains is on the whole better served by the MRE method of estimation. 
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Table 1 

Mean Sample Take and Relative Bias of Each of Eight Estimators over 
500 Repeated Simple Random Samples from the Entire Population 

Industrial Group: RETAIL; 18 Census Divisions in Nova Scotia. 

Mean Estimator 
Area Sample EXP POS SYN/C MRE/C REG/C SYN/R MRE/R REG/R 

Take 

I 1.76 -O.oz -0.13 0.12 O.oz -0.03 0.30 0.09 -0.02 
2 5.45 0.00 -0.04 -0.36 -0.10 -0,02 -0.27 -0.08 -0,02 
3 3.90 -0.02 0.01 -0.08 -0.02 0.00 -0.01 -0.01 0.00 
4 3.02 0.01 -0.05 0.15 0.05 0.01 0.13 0.04 0.04 
5 5.93 0.00 0.01 0.21 0.05 0.00 0.13 0.03 0.00 
6 7.63 -0.02 -0.01 0.28 0,07 0,0[ 0.10 0,02 0.00 
7 8.61 0.02 0.01 -0.16 -0.03 0,0[ -0.18 -0.03 0.01 
8 5.64 -0.02 -0.01 0.34 0.10 0.03 0.24 0.06 0.01 
9 24.64 0.00 0.00 -0.02 0.00 0.00 -0.01 0.00 0.01 

10 8.92 -0.02 -0.02 0.15 0.02 -0.01 0.09 0.00 -0.01 
11 8.35 -0.03 -0,02 0.08 0.01 0.00 0.10 0,02 0.00 
12 10.58 0.01 0.00 -0.27 -0.05 0.00 -0.18 -0.03 0.00 
13 0.48 -0.04 -0.58 0.61 0.36 0.04 1.00 0.58 0.04 
14 2.80 0.03 -0.03 0.33 0.11 0.00 0.24 0.10 0.02 
15 4.21 0.06 -0.01 0.28 0.06 0.00 0.30 0,07 -0.01 
16 2.24 0.03 -0.05 0.74 0.26 0.03 0.94 0.32 0.02 
17 23.95 -0.01 -0.01 -0.02 0.00 0.00 -0.05 -0.01 0.00 
18 0.54 0.07 -0.54 0.63 0.34 -0.06 0.67 0.35 -0.06 

Table 2 

Mean Squared Error of Each of Eight Estimators over 500 Repeated Simple 
Random Samples from the Entire Population 

Industrial Group: RETAIL; 18 Census Divisions in Nova Scotia. 

Estimator 
Area EXP POS SYN/C MRE/C REG/C SYN/R MRE/R REG/R 

1 3,209 2,206 96 697 1,397 462 769 1,484 
2 42,598 24,623 21,782 12,725 17,358 13,110 10,256 14,380 
3 10,469 6,853 357 2,592 4,212 146 2,333 3,782 
4 5,626 3,657 324 746 1,186 257 1,206 1,853 
5 14,554 9,681 2,999 5,090 7,360 1,294 3,993 5,974 
6 12,308 5,686 6,713 3,423 4,289 1,255 1,747 2,515 
7 34,865 17,988 6,912 9,387 13 ,451 8,161 12,019 17,239 
8 12,066 8,630 5,772 3,694 5,045 2,981 3,528 4,986 
9 72,974 40,440 5,776 24,025 29,250 5,068 21,292 25,832 

10 22,091 9,433 4,559 5,832 7,927 2,009 5,365 7,272 
11 23,519 12,505 1,778 6,738 9,578 2,348 7,890 11 ,063 
12 46,588 21,874 35,310 13,558 17,084 17,454 12,222 16,514 
13 635 244 161 95 228 422 287 783 
14 3,871 2,849 692 1,254 2,141 378 1,373 2,346 
15 8,088 3,511 2,249 1,892 2,806 2,651 1,985 2,937 
16 3,245 2,127 3,316 1,563 2,516 5,333 1,741 2,654 
17 81,211 47,753 5,503 28,957 35,232 7,681 27,457 33,136 
18 1,003 306 169 187 654 186 184 637 
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Table 3 

Mean Sample Take and Relative Bias of Each of Eight Estimators over 
500 Repeated Samples from the Entire Population 

Industrial group: ACCOMMODATION; Areas: 16 Census Divisions in Nova Scotia. 

Mean Estimator 
Area Sample EXP POS SYN/C MRE/C REG/C SYN/R MRE/R REG/R 

Take 

1 0.25 0.01 -0.75 -0.08 -0.06 -0.01 0.36 0.28 0.01 
2 1.37 -0.06 -0.21 0.25 0.\0 0.Q2 0.25 0.11 0.02 
3 1.02 0.06 -0.26 0.19 0.09 0.04 0.12 0.06 0.03 
4 0.23 -0.10 -0.77 -0.33 -0.26 -0.07 -0.15 -0.13 -0.05 
5 2.04 0.03 -0.13 0.21 0.08 0.03 0.18 0.06 0.01 
6 1.49 0.04 -0.13 0.17 0.\0 0.03 0.03 0.02 0.01 
7 1.53 0.01 -0.18 -0.29 -0.11 -0.01 -0.30 -0.12 -0.02 
8 1.54 0.03 -0.19 -0.42 -0.17 -0.01 -0.26 -0.11 -0.02 
9 6.83 0.01 -0.02 0.13 0.02 0.00 0.12 0.02 0.00 

10 1.26 -0.01 -0.26 0.40 0.17 0.03 0.30 0.13 0.02 
11 3.06 0.04 -0.02 0.51 0.21 0.08 0.40 0.16 0.06 
12 1.80 0.02 -0.16 -0.08 -0.05 -0.03 -0.23 -0.10 -0.03 
14 1.04 0.02 -0.33 -0.52 -0.23 -0.07 -0.32 -0.15 -0.06 
15 1.54 -0.03 -0.23 -0.21 -0.13 -0.08 -0.15 -0.11 -0.08 
17 3.08 -0.07 -0.05 -0.03 -0.01 0.00 -0.14 -0.07 -0.03 
18 0.52 0.04 -0.54 3.26 3.20 0.60 2.97 2.92 0.50 

Table 4 

Mean Squared Error of Each of Eight Estimators over 500 Repeated Simple 
Random Samples from the Entire Population 

Industrial Group: ACCOMMODATION; Areas: 16 Census Divisions in Nova Scotia. 

Estimator 
Area EXP POS SYN/C MRE/C REG/C SYN/R MRE/R REG/R 

1,142 283 9 7 25 58 44 164 
2 7,467 5,082 877 631 1,077 747 455 726 
3 878 442 48 163 242 24 116 163 
4 155 43 7 6 17 3 3 6 
5 15,200 8,392 2,091 2,270 3,230 1,271 1,208 1,785 
6 5,239 3,906 253 1,038 2,193 54 396 792 
7 21,197 8,781 3,569 1,831 3,016 3,709 1,812 2,948 
8 14,071 6,738 3,608 2,122 4,018 1,492 947 1,766 
9 50,606 27,867 9,980 11,413 14,344 6,575 7,779 9,991 

10 2,219 993 590 362 665 317 151 280 
11 10,535 5,774 6,366 5,126 7,154 3,867 2,752 3,673 
12 16,787 10,485 543 1,148 1,944 1,245 1,130 1,836 
14 51,471 25,644 9,669 8,221 14,155 3,972 3,189 5,077 
15 59,207 41,381 4,861 10,548 18,119 2,759 4,262 6,636 
17 29,632 25,211 1,501 3,023 4,754 1,765 2,123 3,214 
18 286 99 2,062 2,112 5,623 1,607 1,646 4,561 
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Figure 1: Distribution band of relative error for selected estimators - abscissa represents mean sample 
take. Illdustrial Group: RETAIL. Areas: 18 Census Divisions in Nova Scotia. 
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Figure I (continued) 
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5. CONCLUSIONS 

In summary we find that the overall performance of the MRE estimators is such that we 
suggest them as promising alternatives for future applications of small area estimation. The 
recommended confidence interval procedure based on the MRE estimators is given in sec­
tion 3. 

We think that the MRE method presented here involves a simple mechanism for steering 
the estimates slightly in the direction of the stable SYN estimators, when the sample take 
is less than expected. This goal is also manifested (but attained by different means) in such 
other attempts as the empirical Bayes (Fay and Herriot, 1979) and sample-dependent (Drew, 
Singh, and Chaudhry 1982) methods of estimation. 
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This paper presents an overview of the methodology used in the processing of the 1981 Census of 
Agriculture data. The edit and imputation techniques are stressed, with emphasis on the multivariate 
search algorithm, A brief evaluation of the system's performance is given. 
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1. INTRODUCTION 

This paper presents an overview of the methodology used in the processing of the 1981 
Census of Agriculture data. There are 3 separate phases to the processing of the data: Data 
Entry, Edit, and Imputation, each of which performs a different function. First, in Data 
Entry, data on the questionnaires are keyed onto a computer data file. Then, in the Edit phase, 
computer edits are applied to the keyed data records in order to detect any inconsistent, miss­
ing, or suspicious entries. In the final phase, Imputation, actions are taken to adjust the data 
records so that they conform to the rules defined by the computer edits applied during Edit. 
The methodology involved in each of the three phases of processing is described in subsequent 
sections of this paper. A flow chart of the 1981 Census of Agriculture processing is given in 
Figure 1. 

Key Entry (Data Input) 

Figure 1. Overall Process Flow 

1 D.K. Hollins, Census and Household Survey Methods Division, Statistics Canada, Tunney's Pasture, Ottawa, 
Ontario, Canada KIA OT6. 
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The 1981 Census of Agriculture required that the same questionnaire be completed by each 
farm operator in Canada. The questionnaire is 8 pages long and consists of 134 questions. 
Questions are asked on all aspects of farm operation, including items such as types of crops 
grown, livestock raised, equipment maintained, and types of land use. Operators are required 
to answer only those sections of the questionnaire which apply to their holding. 

As this paper is an overview, it is not possible to delve into the technical computer aspects 
of the Census of Agriculture processing. These details may be found in Shields and Yiptong 
(1981), on which this paper is based. 

2. DATA ENTRY 

In the Data Entry phase the Census of Agriculture data are transferred from the original 
questionnaires to a data file in computer memory. Data entry is comprised of two stages: a 
clerical pre-grooming process (Pre-Scan), and Key Entry. 

After the questionnaires arrive at head office for processing, a clerical pre-grooming process 
known as Pre-Scan is performed. In this process, a clerk scans each questionnaire for response 
irregularities such as unreadable entries, ditto marks, and responses in incorrect locations. If 
valid responses can be discerned, they are recorded in the appropriate locations, if not, the 
questionnaire is left unchanged. 

Next, in Key Entry, the data on each questionnaire are keyed into the computer. Identifying 
information from the front page of the questionnaire is entered in a standard fIXed format. 
However, since farm operators are required to answer only the sections of the questionnaire 
that apply to their holding, a large portion of the questionnaire remains blank. To reduce key­
ing time, a method known as "string-keying" is used to enter the remaining data. This means 
that the field name is keyed, immediately followed by the data value for that field Only fields 
with existing data values are keyed; unanswered portions of the questionnaire are not. Because 
of the sparseness of the data, this method results in significant savings in keying time required. 

The Key Entry process creates one Edit and Imputation Master File (EIMF) record for each 
of a total of approximately 320,000 questionnaires. There are 244 fields on an EIMF record, 
each identified by a name, generally 6 characters in length. The Key Entry operator is instructed 
to key "#" for any unreadable entries. If possible, a clerical correction will be performed on 
records containing this symbol during Edit, otherwise, the records will be corrected during 
imputation. 

3. EDIT 

The Edit phase serves two purposes. The first is to use computer edits to detect any incon­
sistent, missing, or suspicious entries in the data. The second is to perform a clerical correction 
on the defective records, or if that is not possible, then to pass the defective records' on to be 
fixed during Imputation. A flow chart of the Edit process is given in Figure 2. 

There are 3 components to the edit system: two computer edit cycles called Correction Cycles 
#1 and #2, and a cycle for correcting edit failures, called Correction of Rejects. Correction Cy­
cle #1 (CC #1) consists of those edits that detect conditions that prevent the "de-stringing" (the 
conversion from string format to fIXed format) of the keyed record (decode edits), and those 
edits that detect errors in the geographic and identifying information from the front page of 
the questionnaire (ID edits). Correction Cycle #2 (CC #2) consists of those edits that identify 
inconsistencies in the main body of the data (data edits). Correction of Rejects is a clerical 
process during which both CC #1 and CC #2 edit failures are corrected manually. Edit failures 
that cannot be corrected by Correction of Rejects are passed on to Imputation. 

Each of the EIMF records is processed through the edit system individually. 
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3.1 Correction Cycle #1 (Decode and ID Edits) 

Correction Cycle #1 consists of the application and resolution of two sets of edits: the decode 
edits and the ID edits. 

The decode edits are applied first and if conditions exist that prevent the "de-stringing" of 
the data record, then decode edit failures will result. For example, as no two fields should have 
the same identifying characters, "de-stringing" will be prevented if two field names are keyed 
identkally. 

Any failed decode edits are resolved manually by the Correction of Rejects staff. This in­
volves returning to the Questionnaire to determine the cause of the edit failure, then the rekey­
ing of the relevant data. After an attempt is made to resolve a decode edit failure, the EIMF 
record is re-edited by passing it through the decode edits again, forming a continuous cycle 
betwecm the decode edits and the Correction of Rejects staff. This cycle is repeated until there 
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are no decode edit failures remaining on the EIMF record. If a decode edit cannot be resolv­
ed directly, the most appropriate valid interpretation of the available data is employed as 
a final override. 

After all decode edit failures have been resolved, the ID edits are applied. If any of the 
identifying information on the EIMF record is inconsistent or missing, then one or more 
ID edits will fail. These ID edit failures are resolved in an identical manner to the decode edits. 

Once all of the CC #1 (decode and ID) edit failures have been resolved by the Correction 
of Rejects staff, the EIMF record is passed through the CC #2 edit program. 

3.2 Correction Cycle #2 (Data Edits) 

The data edits (CC #2) are used to detect errors in the main body of the questionnaire, 
as opposed to errors in coding, or in identifying information. There are two types of data 
edits: non-mandatory edits (75), and mandatory edits (24). 

Non-mandatory edits are written to detect suspicious entries on the EIMF data records. 
Generally, non-mandatory edits, detecting variable values falling outside prescribed limits, 
are performed by comparing different fields or groups of fields on the questionnaire to deter­
mine if some data values are abnormally high or low in comparison with others. For exam­
ple, a record with total farm area equalling 10 acres and containing 10,000 cattle would be 
flagged by a non-mandatory limit edit. 

Mandatory edits are written to detect logical impossibilities on the data record, e.g., if 
the total number of cattle reported is not equal to the sum of the reported values for each 
of the different cattle types, then a mandatory edit would fail. The most complex mandatory 
edits are those written for the crop section of the questionnaire. 

To resolve a non-mandatory edit failure, the record is sent to a Correction of Rejects clerk. 
The Correction of Rejects clerk first notes whether or not the edit failure is due to a keying 
error. If it is, the relevant data is rekeyed. If it is not, the clerk scans the questionnaire to 
see if the respondent has written any comments on the questionnaire that may explain the 
reason for the edit failure. For example, if the respondent is instructed to answer a question 
in tons, and tons has been crossed out and pounds written in, the response will probably 
fail a non-mandatory limit edit. In this case, the Correction of Rejects clerk will convert 
the response from pounds into tons. If the Correction of Rejects clerk can find no explana­
tion for the edit failure, the respondent's answers are left intact on the EIMF record and 
are indicated acceptable. Although no changes are made to the data on the EIMF record, 
this is known as "force-fitting" the data. 

Mandatory edit failures are handled somewhat differently to non-mandatory edit failures. 
To resolve a mandatory edit failure. the failed record is sent to a Correction of Rejects clerk 
who proceeds at first in an identical manner to that used in the resolution of non-mandatory 
edit failures. However, if no explanation for the edit failure can be found. instead of "force­
fitting" the edit failure. the record is flagged for computer imputation. 

As in CC #1, there is a continuous cycle between the Correction of Rejects staff and the 
CC #2 edit program. After each attempt is made to resolve a CC #2 edit failure the EIMF 
record is re-run through the CC #2 edit program. Unlike CC #1. however. the Correction 
of Rejects clerk has only 3 attempts to resolve the CC #2 edit failures on a given EIMF record. 
After the third attempt, the CC #2 edit program is run once again. Any remaining non­
mandatory edit failures are marked "force fit" and any remaining mandatory edit failures 
are marked' 'impute". The mandatory edit failures are simply flagged at this stage. The par­
ticular fields requiring imputation are identified at the imputation stage. 
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The purpose of the 1981 Census of Agriculture imputation system (see Figure 3) is to resolve 
edit failures on the EIMF data records. As all non-mandatory edit failures are "force-fit" 
as described in the previous section, only the mandatory edit failures remain to be resolved 
by the imputation system. In order to make the EIMF data records conform to the man­
datory edits, specified "imputation actions" are performed. These imputation actions (lA's), 
of which there are over 100, are designed so that as few fields as possible are changed on 
the EIMF record, e.g. totals are always adjusted to equal the sum of the parts, rather than 
the parts being adjusted to total the sum. Each IA has associated with it the appropriate 
imputation processing control information and is selected based on the field or fields requir­
ing imputation. There are two different types of lA's performed: internal lA's, or deter­
ministic corrections, and donor lA's. 
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4.1 Internal Imputation Actions 

Internal IXs are performed in cases where sufficient data exists on the failed record to enable 
the imputation system to provide a deterministic correction for the inconsistent field(s). These 
internal IXs are performed in cases where the inconsistent field(s) is (are) deterministically depen­
dent on other fields not requiring imputation. For example, an internal IA would be performed 
if a respondent reports quantities for the various types of cattle but neglects to report the total 
number of cattle. In this case, total cattle would be calculated using the sum of the quantities 
reported for the various types of cattle. Another situation in which an internal IA would be 
performed is where a respondent reports a certain quantity of a particular type of fruit tree 
but neglects to give the corresponding acreage. In this case, the acreage would be computed 
using a predetermined average density for that type of fruit tree. Internal lA's are performed 
in accordance with constraints to ensure that the imputed values are within reasonable bounds. 

The implementation of internal lA's is more straightforward than that of donor lA's. As 
the internal IA is performed using data from the same record, there is no need to specify an 
algorithm for donor selection. The only requirement is to perform the deterministic correction 
specified by the appropriate internal IA. All internal lA's are performed before proceeding to 
donor imputation. 

4.2 Donor Imputation Actions 

When the inconsistent field or fields are not deterministically dependent on other consistent 
fields, internal INs cannot be applied. The lack of sufficient information on the failed record 
to provide a deterministic correction to the inconsistent field(s) necessitates an imputation method 
using data contained on another record. This method, known as donor imputation, involves 
the transfer of data from a "clean" donor record (one which has passed all mandatory edits) 
to the failed record. The transferred data will restore consistency to the inconsistent field(s) 
on the failed record. For example, a donor IA will be performed in order to estimate the distribu­
tion for types of cattle when only the total number of cattle is reported. In this case, the distribu­
tion of cattle types present on the donor record is transferred to the failed (recipient) record. 

As donor imputation requires an algorithm for locating a donor record, it is more complex 
to implement than internal imputation. In order to perform donor imputation, sevetal search 
"parameters" must be specified. 

To ensure that a "clean" donor record is geographically close to the "bad" recipient record, 
the country is divided into distinct geographical regions called imputation regions. The delinea­
tion of these imputation regions is based on the existing "crop district" boundaries which are 
defined according to characteristics such as soil type and climate. There are 59 crop districts, 
and thus 59 imputation regions, in Canada with an average of 5,500 farms per region. In order 
to be an eligible donor, a record must be in the same imputation region as the recipient record. 

In order to avoid searching records that cannot donate suitable data, each donor IA also 
specifies the subpopulation on which the donor search is to take place. For example, if the 
distribution for types of cattle is being imputed, then the only records searched in order to 
find a donor would be members of the subpopulation where cattle have been reported. A given 
record may be a member of several of the 30 different subpopulations. In some cases, all clean 
records within the imputation region are deemed suitable donors in which case the general 
population in the imputation region is defined as the appropriate subpopulation. 

The final constraint on the fIle of eligible donors is the fact that records requiring any donor 
imputation themselves cannot be used as donors. However, records requiring only internal im­
putation may be used as donors. 

In summary, the fIle of eligible donors consists of all records not requiring donor imputa­
tion that are members of the subpopulation specified by the imputation action to be perform­
ed and that are also located in the same imputation region as the bad record. 
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As some records require more than one IA to be performed, there is need for a hierarchical 
system of imputation action aecution. 10 specify the order in which the lA's are to be per­
formed, every lA, both internal and donor, has one of three "orders" associated with it. lA's 
of order I are performed first, followed by lA's of orders 2 and 3 respectively. 

To aid in the selection of a suitable donor record, one or more variables not requiring 
imputation are selected to be used as matching variables for each donor IA. These matching 
variables, selected by subject matter aperts, are considered to be highly correlated with the 
fie1d(s) requiring imputation. Both the recipient and the selected donor record should have similar 
matching variable values. As the use of continuous matching variables does not permit aact 
matches, a distance function based on the selected matching variable(s) is used to identify the 
closest eligible donor to the bad record. 

Each donor IA has one of three possible search types associated with it. Partition searches 
(type I) are performed when only I discrete matching variable is specified for the IA. Binary 
searches (type 2) are performed when only I continuous matching variable is specified for the 
IA. Multivariable searches (type 3) are performed when 2 or more continuous matching variables 
are specified for the IA. Each of these three search types is described individually in the following 
sections. Other combinations of matching variable types are not employed. 

Fin;illy, after a suitable donor has been selected and if specified in the IA control informa­
tion, the donated data from the donor record are prorated before transferring them to the reci­
pient record. For example, if the variable "number of trucks" is used as a matching variable 
for imputing ''value of trucks", then the value of "value of trucks" assigned to the recipient 
record is equal to ''value of trucks" of the donor, multiplied by the ratio "number of trucks" 
of the recipient divided by "number of trucks" of the donor. 

As previously described, each donor imputation action has one of three search types associated 
with it. 1\vo of these search types, binary and partition searches, are used to perform imputa­
tion actions for which only I matching variable is specified. The other search type, the multi­
variable search, is performed when 2 or more continuous matching variables are to be used. 

4.2.1 1Ype 1 - Partition Searches 

Partition Searches are performed when only I discrete matching variable with a small number 
of possible values is specified for the imputation action, e.g., as in the case where a respondent 
reports the total number of tractors, but neglects to give the corresponding total dollar value. 
Since a farmer is unlikely to have more than 3 tractors the donor population is divided into 
3 partitions: I, 2, or 3 + tractors. A donor is chosen at random from the partition to which 
the recipient record belongs. If there are no donor records within the partition to which the 
recipient record belongs, but there are donors in any of the subsequent (higher numbered) par­
titions, then all of the subsequent partitions are collapsed into one and a donor record is selected 
at random from this collapsed partition. If there are no donor records in the partition to which 
the recipient record belongs or in any subsequent partition, then a donor record is selected 
at random from the closest preceding Oower numbered) partition that contains any donor records. 
As these collapsing procedures are not frequently applied, no serious introduction of bias is 
encountered. If the donor population is empty, then the field to be imputed is assigned the 
maximum value allowable by the edits and the record flagged to indicate that imputation was 
unsuccessful. These flagged records are then reviewed by subject matter personnel who manually 
assign an appropriate value to the field requiring imputation. 

4.2.2 11)pe 2 - Binary Searches 

Binary searches are performed when only I continuous matching variable is specified for 
the imputation action, e.g., as in the case where a respondent reports the total value of his/her 
tractors, but does not give the corresponding number of machines. The entire file of eligible 
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donor records is searched and the record that minimizes the difference between the matching 
variable values is selected as the donor. If two or more potential donor records are equally 
close, then the one that is geographically closer to the recipient (as judged from the geographic 
JD) is automatically selected as the donor. If the donor population is empty, then the recipient 
record is flagged to indicate that imputation was unsuccessful. 

4.2.3 lYpe 3 - Multhllrillble Searches 

Multivariable searches are performed when more than one continuous matching variable 
are specified for the imputation action. These are the most compleK of the three search types per­
formed by the 1981 Census of Agriculture. The method used to perform multivariable 
searches was adapted for use at Statistics Canada by G. Sande. 

When the missing data are related to more than one continuous matching variable, it is 
desirable to use as a donor a record that is closest to the recipient record on all these matching 
variables simultaneously. This requires a multivariable search on a large donor file and has 
been made practical by grouping the donor population in such a way that it is not necessary 
to search every donor to determine the closest. This specialized grouping of records is called 
the K-D (Key Discriminator) tree. The same K-D tree may be used for all records requiring 
a certain donor IA within a particular imputation region as the file of eligible donors will 
remain the same in each case. However, if a different donor IA is to be performed using a 
different donor population, or even the same donor IA on a different imputation region, a 
new K-D tree must be built as the file of eligible donors will not contain the same records. 

a) Building the K-D Thee 

The first step in the building of the K-D tree is to perform a transformation on all of the 
matching variables by subtracting the mean and dividing by the standard deviation of the donor 
population. This allows matching variables of different scales to be specified for the same search. 

After the variable transformation, the following algorithm is then used to actually build 
the K-D tree. It is first applied to the entire file of eligible donors, and then to all subfIles subse­
quently created by the algorithm. 

Firstly, the range (largest value minus smallest value) is calculated for each of the matching 
variables specified. The median value of the variable with the largest range (or the variable 
with the smallest JD if there are 2 or more with the maximum range) is then calculated. The 
variable for which the median is calculated is called the discriminator variable. This median 
value is used to split the file into 2 new subfIles, the left subfile containing records with values 
less than or equal to the median value of the discriminator variable, and the right subfIle con­
taining records with values greater than the median value of the discriminator variable. The 
algorithm is then progressively re-applied to the resulting subfIles using all specified matching 
variables until all fIles become TERMINAL, at which point the building of the K-D tree is 
complete. A subfIle becomes TERMINAL when either the range equals zero for all matching 
variables, i.e., all records in the sub fIle are identical, or if there are 16 or less records in the subfIle. 

The above algorithm will yield a K-D tree of the form illustrated in Figure 4. 
Every record contained in the original fIle will be present in one and only one of the subfiles 

corresponding to the terminal nodes. 

b) Searching the K-D Tree 

In order to locate the best possible donor, it is necessary to decide which of the terminal 
nodes "corresponds" to the recipient record. This is done by traversing the K-D tree, using the 
transformed matching variable values of the recipient record, starting with the root node and 
proceeding until one of the terminal nodes is reached. At each node of the tree it is determin­
ed, using the discriminator variable for that node, which of the two lower nodes the recipient 
record corresponds to. The K-D tree is traversed in this manner until a terminal node is reached. 
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Non-Terminal Node 

Terminal Node 

Figure 4. General Form of K·D Tree 

In order to determine which donor in the chosen terminal node is closest to the recipient 
record, a distance function is required. Because of its ease of implementation, the distance 
defined by the maximum of the absolute differences between matching variables was used. 
The selected donor record is the one that minimizes this "distance". 

Although the selected donor record is the closest to the recipient record contained in the 
chosen terminal node, it is possible that there are doser donor records residing in other 
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terminal nodes. This may occur only if a nodal boundary exists that is closer to the recipient 
record than the currently selected donor record. This case is shown in Figure 5 for a donor 
IA involving two matching variables; X and Y. Each quadrant represents a terminal node. 

It is evident that the possible donor P is closer to the recipient R than the selected donor 
S. This is possible because R is closer to the position of the nodal boundary Y = y than to 
S, and only donor records lying in the same terminal node as the recipient record may be selected. 

A procedure, based on the variable values used to define the nodal boundaries and known 
as the bounds-overlap-ball (B.O.B.) test, is used to determine which of the other terminal nodes, 
if any, may contain donors closer to the recipient record than the selected donor record. Only 
terminal nodes that have the potential to provide closer donors are tested, and if a closer donor 
is found, then it replaces the previously selected donor. The B.O.B. test is applied until all nodes 
that may contain closer donors have been tested. 

Finally, for all three search types, after the eventual donor record has been selected, the 
donated data values are prorated as previously described, if specified in the IA control 
information. 

It will always be possible to select a donor unless the donor population is empty. If this 
occurs then the imputation region is collapsed with another and imputation is redone. It was 
never necessary to perform this operation in 1981. 

S. CONCWDING NOTE 

A detailed evaluation, Grenier (1983), indicated that a major portion of the edit system was 
of little data quality benefit. This was because the Correction of Rejects procedures were unable 
to correct a sufficient proportion of the edit failures. For example, Correction of Rejects was 
unable to correct the failures resulting from a subset of 77 of the 97 edits more than 5"7. of 
the time. Also, many of the edits affected less than .1"7. of the popUlation. Additionally, the 
Correction of Rejects procedures were highly labour intensive and created a heavy paper burden. 
Th eliminate these inefficiencies a new computer edit system will be designed for 1986. 

Statistics from the 1981 Census of Agricnlture, Grenier (1983), indicated that 43"7. of the 
farms in Canada had at least one field imputed. Of this 43"7.: 

18"7. required internal imputation only, 
17% required donor imputation only, and 
8"7. required both internal and donor imputation. 

An analysis of the data distributions before and after imputation indicated that the imputa­
tion system did not have a serious impact at the Canada level although many of the 137,390 
records imputed underwent a significant change. The system successfully handled all necessary 
imputations with only 58 records requiring manual imputation. The system was found to be 
very efficient, a processing cost of only $15,000 being incurred. Diagnostic data indicated that 
minor modifications to the system must be made for greenhouses, mushroom houses, com­
munity pastures, and institutions, if they are to remain in the census. Due to its successful fulfill­
ment of the requirements, it is planned to reuse the present imputation system in 1986. 
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