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PREFACE 

This issue is devoted to papers presented at the Methodology Symposium on Missing Data 
in Surveys held at Statistics Canada in Ottawa, April 16-17, 1986. The symposium was joint-
ly sponsored by Statistics Canada's Methodology Research Committee and the Laboratory 
for Research in Statistics and Probability at Carleton University. Concern about missing data 
in surveys (due to non-response or unusable responses) has been increasing in recent years. 
The symposium provided a forum for more than 200 professionals from universities, govern-
ment organizations and the private sector in Canada and the United States to exchange in-
formation concerning recent theoretical and applied developments. 

The symposium was opened by the Chief Statistician of Canada, Dr. Ivan Fellegi. He 
spoke about the international community's concern about the growing gap between theoretical 
and applied statistics and commended the organizers for bringing together specialists from 
both fields. While stating that the primary purpose of the conference was to make headway 
in the chosen topic, Dr. Fellegi also noted that the underlying theme was the extent to which 
statistical agencies should be involved in model-building. 

The symposium included four sessions. The first session "General Issues and Organiza-
tional Experiences" was chaired by L. Kish of the University of Michigan and included presen-
tations by G. Kalton (University of Michigan), G.B. Gray (Statistics Canada), D.W. Chapman 
(U.S. Bureau of the Census) and L.R. Curtin (U.S. National Center for Health Statistics). 
The chairman of the afternoon session of April 16, "Design and Estimation" was M. Hansen 
of Westat Inc. Papers were presented by P.S.R.S. Rao (University of Rochester), S. Michaud 
(Statistics Canada), C.E. Sarndal (University of Montreal), G. Lazarus (Statistics Canada) 
and V.P. Godambe (University of Waterloo). 

The morning session of April 17, "Item Non-Response and Imputation" was chaired by 
M. Moore of the University of Montreal. This session included contributions by D. Rubin 
(Harvard University), P. Giles (Statistics Canada), M.S. Srivastava (University of Toronto) 
and M.A. Hidiroglou (Statistics Canada). The chairman of the fin al  session, "Case Studies", 
was J.N.K. Rao of Carleton University. Papers were presented by S. Hinkins (U.S. Internal 
Revenue Service), V. Tremblay (University of Montreal) and S. Cheung (Statistics Canada). 
The symposium was closed with a general discussion of developments concerning missing 
data in surveys led by J.N.K. Rao (chairman) and a panel including G. Kalton, L. Kish, 
D. Rubin, and I. Sande (Statistics Canada). 

Nine of the symposium papers are included in this issue of the Journal. Additional sym-
posium papers accepted for publication will appear in the next issue. 
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The Treatment of Missing Survey Data 
GRAHAM KALTON and DANIEL KASPRZYKI 

ABSTRACT 

Missing survey data occur because of total nonresponse and item nonresponse. The standard way to 
attempt to compensate for total nonresponse is by some form of weighting adjustment, whereas item 
nonresponses are handled by some form of imputation. This paper reviews methods of weighting ad-
justment and imputation and discusses their properties. 

KEY WORDS: Nonresponse; Item nonresponse; Weighting adjustments; Imputation. 

1. INTRODUCTION 

Surveys typically collect responses to a large number of items for each sampled element. 
The problem of missing data occurs when some or all of the responses are not collected for 
a sampled element or when some responses are deleted because they fail to satisfy edit con-
straints. It is common practice to distinguish between total (or unit) nonresponse, when none 
of the survey responses are available for a sampled element, and item nonresponse, when 
some but not all of the responses are available. Total nonresponse arises because of refusals, 
inability to participate, not-at-homes, and untraced elements. Item nonresponse arises because 
of item refusals, "don't knows", omissions and answers deleted in editing. 

This paper reviews the general-purpose methods available for handling missing survey data. 
The distinction between total and item nonresponse is useful here since different adjustment 
methods are used for these two cases. In general the only information available about total 
nonrespondents is that on the sampling frame from which the sample was selected (e.g., the 
strata and PSUs in which they are located). The important aspects of this information can 
usually be readily incorporated into weighting adjustments that attempt to compensate for 
the missing data. Hence as a rule weighting adjustments are used for total nonresponse. 
Methods for making weighting adjustments are reviewed in Section 2. 

In the case of item nonresponse, however, a great deal of additional information is available 
for the elements involved: not only the information from the sampling frame, but also their 
responses for other survey items. In order to retain all survey responses for elements with 
some item nonresponses, the usual adjustment procedure produces analysis records that in-
corporate the actual responses to items for which the answers were acceptable and imputed 
responses for other items. Imputation methods for assigning answers for missing responses 
are reviewed in Section 3. 

In general the choice between weighting adjustments and imputation for handling miss-
ing survey data is fairly clearcut; there are cases, however, when the choice is not so clear. 
These are cases of what may be termed partial nonresponse, when some data are collected 
for a sampled element but a substantial amount of data is missing. Partial nonresponse can 
arise, for instance, when a respondent terminates an interview prematurely, when data are 
not obtained for one or more members of an otherwise cooperating household (for household 
level analysis), or when a sampled individual provides data for some but not all waves of 
a panel survey. Discussions of the choice between weighting and imputation to compensate 
for wave nonresponse in a panel survey are given by Cox and Cohen (1985) and Kalton (1986). 

I  Graham Kalton, Survey Research Center, University of Michigan, Ann Arbor, Michigan, 48106-1248 and Daniel 
Kasprzyk, Population Division, U.S. Bureau of the Census, Washington, D.C., 20233. The authors would like 
to thank the referees for their helpful comments. 
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Although weighting adjustments and imputation are treated as separate approaches in 
the discussion below, they are in fact closely related. The relationship and differences bet-
ween the two approaches are briefly discussed in Section 4, which also mentions some alter-
native ways of handling missing survey data. 

2. WEIGHTING ADJUSTMENTS 

Weighting adjustments are primarily used to compensate for total nonresponse. The essence 
of all weighting adjustment procedures is to increase the weights of specified respondents 
so that they represent the nonrespondents. The procedures require auxiliary information on 
either the nonrespondents or the total population. The following four types of weighting 
adjustments are briefly reviewed below: population weighting adjustments, sample weighting 
adjustments, raking ratio adjustments, and weights based on response probabilities. More 
details are provided in Kalton (1983). 

2.1 Population Weighting Adjustments 

The auxiliary information used in making population weighting adjustments is the distribu-
tion of the population over one or more variables, such as the population distribution by 
age, sex and race available from standard population estimates. The sample of respondents 
is divided into a set of classes, termed here weighting classes, defined by the available aux-
iliary information (e.g., White males aged 15-24, non-White females aged 25-34, etc.). The 
weights of all respondents within a weighting class are then adjusted by the same multiplying 
factor, with different factors in different classes. The adjustment is carried out in such a 
way that the weighted respondent distribution across the weighting classes conforms to the 
population distribution. 

This type of adjustment is often termed poststratification. That term is avoided here, 
however, because although population weighting resembles poststratification, there is an im-
portant difference between the two. Like population weighting, poststratification weights 
the sample to make the sample distribution conform to the population distribution across 
a set of classes (or strata). However, the standard textbook theory of poststratification is 
concerned only with the sampling fluctuations that cause the sample distribution to deviate 
from the population distribution, not with the more major deviations that can arise from 
varying response rates across the classes. Poststratification adjustments are more like a fine 
tuning of the sample, resulting generally in only small variations in the weights across strata. 
In consequence, provided that the strata are not small, poststratification leads to lower stan-
dard errors for the survey estimates. In contrast, population weighting adjustments may in-
volve more major adjustments and result in higher standard errors. 

Population weighting adjustments attempt to reduce the bias created by nonresponse and 
coverage errors. Consider the estimation of a population mean Ÿ from a sample in which 
the elements are selected with equal probability. Suppose that the population is divided into 
a set of weighting classes, with a proportion Wh  of elements in class h. Assume that 
respondents always respond and that nonrespondents never do. Let Rh and Mh  be the pro-
portions of respondents and nonrespondents respectively in class h, and let R = E Wh Rh  be 
the overall response rate. Then, following Thomsen (1973), the bias of the unadjusted respon-
dent mean (9) can be expressed as 

B(y) = R -1  Wh( }'rh - Fr) (Rh — R) + 	WhMh(l'rh - Ymh) = A + B 	(1) 
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where Ÿrh and Ÿ,,,h are the means for respondents and nonrespondents in class h respective-
ly, and Ÿr  is the population mean for the respondents. The use of the population weighting 
adjustment leads to the weighted sample mean, yp = EWhyrh, where yrh  is the respondent 
sample mean in class h. The bias of yp  is simply the second term in B(y), that is, 
B(yp ) = B. 

If A and B are of the same sign, the population weighting adjustment reduces the ab-
solute bias in the estimate of Ÿ by I AI. If Ÿrh = Ÿmh, as occurs in expectation when the 
nonrespondents are missing at random within the weighting classes, then B = O. In this case, 
the population weighting adjustment eliminates the bias. The term A is a covariance-type 
term between the class response rates and the class respondent means. It is zero if either 
the response rates or the respondent means do not vary between classes. In either of these 
cases, the population weighting adjustment has no effect on the bias of the estimator. It 
may be noted that population weighting adjustments may increase the absolute bias of the 
estimate of Ÿ. This will occur when A and B are of opposite signs and 1/11 < 2 I B . 

Population weighting adjustments require external data on the population distributions 
for the variables to be used. Care is needed to ensure that the data on which the population 
distributions are based are exactly comparable with the survey data; otherwise, inappropriate 
weights will result. Since the procedure weights up to population distributions, it does more 
than just attempt to compensate for nonresponse. It also compensates for coverage errors 
and makes a poststratification adjustment. 

2.2 Sample Weighting Adjustments 

As with population weighting adjustments, with sample weighting adjustments the sam-
ple is divided into weighting classes; varying weights are then assigned to these classes in 
an attempt to reduce the nonresponse bias. The essential difference between the two pro-
cedures lies in the auxiliary information used. As described above, population weighting ad-
justments are based on externally obtained population distributions. No data are needed for 
the sample nonrespondents. In contrast, sample weighting adjustments employ only data 
internal to the sample and require information about the nonrespondents. 

With sample weighting adjustments, the nonresponse adjustment weights for the weighting 
classes are made proportional to the inverses of the response rates in the classes. In order 
to compute these response rates, the numbers of respondents and nonrespondents in the classes 
must be determined. It is therefore necessary to know to which class each respondent and 
nonrespondent belongs. Since typically very little information about the nonrespondents is 
available, the choice of weighting class is usually severely restricted. It is often limited to 
general sample design variables (e.g., PSUs and strata), characteristics of those variables 
(e.g., urban/rural, geographical region), and sometimes some additional variables available 
on the sampling frame. On occasion it may also be possible to collect information on one 
or two variables for the nonrespondents, for instance by interviewer observation. 

As population weighting adjustments resemble poststratification, so sample weighting ad-
justments resemble two-phase sampling. The first phase sample is the total sample of 
respondents and nonrespondents; the second phase sample is the subsample of respondents, 
selected with different sampling fractions (response rates) in different strata (weighting classes). 
The sample weighted mean can be represented by 9 = Ewhyrh , where wh  is the proportion 
of the total sample in weighting class h. Assuming no coverage errors, E(wh ) - Wh, the 
population proportion in class h, as used in the population weighted estimator 
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y~ = EWhyrh . The bias of ys  is the same as that of yp , namely B(9) = B as given in equa-
tion (1); hence the effect of the sample weighting adjustment on the bias of the survey estimate  
is the same as that of the population weighting adjustment. Since sample weighting ad-
justments use only data for the sample, they do not compensate for coverage errors (unlike  
population weighting adjustments).  

Population and sample weighting adjustments have different data requirements, and hence  
address different potential sources of bias. In practice the two forms of adjustment are used  

in combination. Generally sample weighting adjustments are applied first, and then popula-
tion weighting adjustments are applied afterwards. A common approach is initially to deter-
mine the sample weights needed to compensate for unequal selection probabilities, next to  
revise these weights to compensate for unequal response rates in different sample weighting  
classes (e.g., urban/rural classes within geographical regions), and finally to revise the weights  

again to make the weighted sample distribution for certain characteristics (e.g., age/sex) con-
form to the known population distribution for those characteristics. The use of this approach  

in the U.S. Current Population Survey is described by Bailar et al. (1978).  
As with population weighting adjustments, the aim of sample weighting adjustments is  

to reduce the bias that nonresponse may cause in survey estimates. An effect of sample  
weighting adjustments is, however, to increase the variances of the survey estimates. There  

is therefore a trade-off to be made between bias reduction and variance increase.  

An indication of the amount of increase in variance from weighting can be obtained by  

considering the situation where the element variances within the weighting classes are all the  
same and the variances between the class means are negligible compared to the within-class  
variances. In this situation, the loss of precision from weighting is approximately the same  

as that arising from the use of disproportionate stratified sampling when proportionate  
stratified sampling is optimum; Kish (1965, Section 11.7C; 1976) discusses this latter case.  

Under the above conditions, weighting increases the variance of a sample mean by ap-
proximately L = (E Whkh ) (E Wh  / kh ) , where Wh is the proportion of the population and  
kh  is the weight for class h. An alternative expression for L is (Enh ) (Enhkh) / (Enhkh) 2,  

where nh  is the sample size in class h. The factor L becomes large when the variance of the  
weights is large.  

A large variance in the weights can arise from segmenting the sample into many weighting  
classes with only a few sampled elements in each. When the weighting classes are small, their  
response rates are unstable, and this gives rise to a large variation in the weights. To avoid  
this effect, it is common practice to limit the extent to which the sample is segmented. Even  
so, there may still be some weighting classes that require large weights. Sometimes these  
weighting classes are handled by collapsing them with adjacent ones and sometimes their  
weights are cut back to some acceptable maximum value (see Bailar et al. 1978 and Chap-
man et al. 1986, for examples). These procedures avoid the increase in variance associated  

with the use of extreme weights, but they may lead to increased bias; their effect on the bias  
is, however, unknown.  

In some cases it seems desirable to use several auxiliary variables in forming the weighting  
classes for population or sample weighting adjustments. However, if the classes are formed  

by taking the full crossclassification of the variables, there will be a large number of weighting  
classes. Unless the sample is very large, the sample sizes in the resultant weighting classes  

will be small, and the instability in the response rates will lead to a large variance in the weights  

and loss of precision in the survey estimates. One way to deal with this problem is to cut  

down on the number of classes by collapsing cells, for instance by discarding some of the  

auxiliary variables or using coarser classifications. Another way is to base the weights on  
a model, as is done in raking ratio weighting discussed below.  
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2.3 Raking Ratio Adjustments  

When weighting classes are taken to be the cells in the crossclassification of the auxiliary  
variables, population weighting adjustments make the joint distribution of the auxiliary  
variables in the sample conform to that in the population. Similarly, sample weighting ad-
justments make the joint distribution of the auxiliary variables in the respondent sample con-
form to that in the total sample. As noted above, however, this crossclassification approach  

may have the undesirable effect of creating many small, and hence unstable, weighting classes.  

Also, it is not always possible to employ this approach with population weighting adjustments:  

in many cases the population marginal distributions, and perhaps some bivariate distribu-
tions, of the auxiliary variables are available, but the full joint distribution is unknown.  

An alternative approach is to develop weights that make the marginal distributions of  
the auxiliary variables in the sample conform to marginal population distributions (with  
population weighting) or marginal total sample distributions (with sample weighting), without  

ensuring that the full joint distribution conforms. The method of raking ratio estimation,  

or raking, may be used to obtain weights that satisfy these conditions. Raking corresponds  
to iterative proportional fitting in contingency table analysis (see, for instance, Bishop et  
al., 1975).  

Consider the use of raking in the simple case of two auxiliary variables. Let Whk be the  
proportion of the population in the (h, k)-th cell of the crossclassification, and let whk  be  
the proportion assigned to that cell by the raking algorithm. Conditional on the total and  

respondent sample sizes in the cells (and assuming all cells have at least one respondent),  
the bias of the raking ratio adjusted sample mean yq  =  

B  (Yg  ) = EE WhkMhk ( Yrhk - tmhk ) + ~ ~  ( Whk -  Whk) ( Frhk - Frh. - Fr.k + Fr)  

where Whk  = E( whk ) . The first term in this bias corresponds to the bias term B in equa-
tion (1) for the population and sample weighting adjustments. It is zero in expectation if  
the cell nonrespondents are random subsets of the cell populations. The second term is zero  
if either Whk = Whk or there is no interaction in the Frhk  for this classification.  

Underlying the raking ratio weighting procedure is a logit model for the cell response rates.  

With the model In [Rhk  / (1 — Rhk ) ] _ ah  + (3k  for the response rates in a two-way  
classification, Whk = Whk. Thus, under this model, the second term in B(yq ) is zero.  

Further discussion of raking ratio weighting is given by Oh and Scheuren (1978a,1978b,  
1983). Oh and Scheuren (1978a) also provide a bibliography on raking.  

2.4 Weighting with Response Probabilities  

Although a number of methods for weighting with response probabilities have been pro-
posed, this approach has not been widely adopted as an adjustment procedure. The basis  

of the approach is to assume that all population elements have probabilities (usually required  

to be non-zero) of responding to the survey. Some method is used to estimate the response  

probabilities for responding elements. These elements are then given nonresponse adjust-
ment weights that are in inverse proportion to their estimated response probabilities.  

An early application of this approach is the well-known procedure of Politz and Sim-
mons (1949, 1950). A single (evening) call is made to each selected household, and during  
the course of the interview respondents are asked on how many of the previous five evenings  

they were at home at about the same time. Their response probabilities are then taken to  
be the fraction of the six evenings (including the one of the interview) that they were at home,  

and the inverses of these probabilities are used in the analysis. Note that the procedure does  

not deal with those who were out on all six evenings and those who refused.  

EEK'hkyhk 15  
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Another approach for estimating response probabilities is to regress response status (1 
for respondents, 0 for nonrespondents) on a set of variables available for both respondents 
and nonrespondents, using a logistic or probit regression. The predicted values from the regres-
sion for the respondents are then taken to be their response probabilities, and weights in 
inverse proportion to these predicted values are used in the analysis. A special case is when 
the predictor variables are dummy variables that identify a set of classes. The predicted 
response probabilities are then the class response rates, and the method reduces to a sample 
weighting adjustment. The method is most appropriate for situations where a good deal of 
information is available for the nonrespondents, as for instance when the nonrespondents 
are losses after the first wave of a panel survey. Little and David (1983) discuss the applica-
tion of the method for panel nonresponse. It should be noted that if the regression is highly 
predictive of response status, the resultant weights will vary markedly, leading to a substan-
tial loss in the precision of the survey estimates. 

Drew and Fuller (1980, 1981) describe an approach for estimating response probabilities 
from the number of respondents secured at successive calls. In their model, the population 
is divided into classes. Within each class, every element is assumed to have the same response 
probability which remains the same at each call. The model also allows for a proportion 
of hard-core nonrespondents that is assumed constant across classes. Under these assump-
tions, the response probabilities for each class and the proportion of hard-core nonrespondents 
can be estimated, and hence weighting adjustments can be made. Thomsen and Siring (1983) 
adopt a similar approach using a more complex model. 

Finally, mention should be made of a related approach that compensates for nonresponse 
by weighting up difficult-to-interview respondents. Bartholomew (1961), for instance, pro-
posed making only two calls in a survey, and weighting up the respondents at the second 
call to represent the nonrespondents. The assumption behind this approach is that the 
nonrespondents are like the late respondents. This assumption seems questionable, however, 
and empirical evidence from an intensive follow-up study of nonrespondents in the U.S. Cur-
rent Population Survey does not support it (Palmer and Jones 1966; Palmer 1967). 

3. IMPUTATION 

A wide variety of imputation methods has been developed for assigning values for miss-
ing item responses. The aim here is to provide a brief overview of the methods, the basic 
differences between them, and some of the issues involved in imputation. A fuller treatment 
is provided by Kalton and Kasprzyk (1982). 

Imputation methods can range from simple ad hoc procedures used to ensure complete 
records in data entry to sophisticated hot-deck and regression techniques. The following are 
some common imputation procedures: 

(a) Deductive imputation. Sometimes the missing answer to an item can be deduced with 
certainty from the pattern of responses to other items. Edit checks should check for con-
sistency between responses to related items. When the edit checks constrain a missing 
response to only one possible value, deductive imputation can be employed. Deductive 
imputation is the ideal form of imputation. 

(b) Overall mean imputation. This method assigns the overall respondent mean to all miss-
ing responses. 

(c) Class mean imputation. The total sample is divided into classes according to values of 
the auxiliary variables being used for the imputation (comparable to weighting classes). 
Within each imputation class the respondent class mean is assigned to all missing responses. 
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(d) Random overall imputation. A respondent is chosen at random from the total respon-
dent sample, and the selected respondent's value is assigned to the nonrespondent. This 
method is the simplest form of hot-deck imputation, that is an imputation procedure 
in which the value assigned for a missing response is taken from a respondent to the cur-
rent survey. 

(e) Random imputation within classes. In this hot-deck method, a respondent is chosen at 
random within an imputation class, and the selected respondent's value is assigned to 
the nonrespondent. 

(f) Sequential hot-deck imputation. The term sequential hot-deck imputation is used here 
to describe the procedure used with the labor force items in the U.S. Current Population 
Survey (Brooks and Bailar 1978). The procedure starts with a set of imputation classes. 
A single value for the item subject to imputation is assigned for each class (perhaps taken 
from a previous survey). The records in the survey's data file are then considered in turn. 
If a record has a response for the item in question, its response replaces the value stored 
for the imputation class in which it falls. If the record has a missing response, it is assign-
ed the value stored for its imputation class. 

The hot-deck method is similar to random imputation within classes. If the order of 
the records in the data file were random, the two methods would be equivalent, apart 
from the start-up process. The non-random order of the list generally acts to the benefit 
of the hot-deck method since it gives a closer match of donors and recipients provided 
that the file order creates positive autocorrelation. The benefit is, however, unlikely to 
be substantial. 

The sequential hot-deck suffers the disadvantage that it may easily make multiple uses 
of donors, a feature that leads to a loss of precision in survey estimates. Multiple use 
of a donor occurs when, within an imputation class, a record with a missing response 
is followed by one or more other records with missing responses. The number of imputa-
tion classes that can be used with the method also has to be limited in order to ensure 
that donors are available within each class. 

Useful discussions of the sequential hot-deck method are provided by Bailar et al. 
(1978), Bailar and Bailar (1978, 1983), Ford (1983), Oh and Scheuren (1980), Oh et al. 
(1980), and Sande (1983). 

(g) Hierarchical hot-deck imputation. The above disadvantages of the sequential hot-deck 
are avoided in the hierarchical hot-deck method, a form of hot-deck imputation developed 
for the items in the March Income Supplement of the Current Population Survey. The 
procedure sorts respondents and nonrespondents into a large number of imputation classes 
from a detailed categorization of a sizeable set of auxiliary variables. Nonrespondents 
are then matched with respondents on a hierarchical basis, in the sense that if a match 
cannot be made in the initial imputation class, classes are collapsed and the match is made 
at a lower level of detail. Coder (1978) and Welniak and Coder (1980) provide further 
details on the hierarchical hot-deck procedure. 

(h) Regression imputation. This method uses respondent data to regress the variable for which 
imputations are required on a set of auxiliary variables. The regression equation is then 
used to predict the values for the missing responses. The imputed value may either be 
the predicted value, or the predicted value plus some residual. There are several ways 
in which the residual may be obtained, as discussed later. 

(i) Distance function matching. This hot-deck method assigns a nonrespondent the value 
of the "nearest" respondent, where "nearest" is defined in terms of a distance function 
for the auxiliary variables. Various forms of distance function have been proposed (e.g., 
Sande 1979; Vacek and Ashikago 1980), and the function can be constructed to reduce 
the multiple use of donors by incorporating a penalty for each use (Colledge et al. 1978). 
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Although at first sight these may appear a diverse set of procedures, they can nearly all 
be fitted within a single unifying framework. The methods can all be described, at least ap-
proximately, as special cases of the general regression model 

Ÿmi = bro  + E brjZmij  -{- emi (2) 

where ÿ,n, i  is the imputed value for the ith record with a missing y value, z mij are values reflec-
ting the auxiliary variables for that record, bro  and brj  are the regression coefficients for the 
regression of y on x for the respondents, and ê,,, i  is a residual chosen according to a specified 
scheme for the particular imputation method. 

Equation (2) represents the regression imputation method in an obvious way. If the ê,,, i 's 
are set at zero, then the imputed value is the predicted value from the regression; otherwise 
a residual of some form may be added. The equation also represents class mean imputation 
by defining the zj's to be dummy variables that represent the classes, and setting ê,,, i  = 0. 
The regression equation then reduces to ÿ,,, i  = Yrh, the class mean. Random imputation 
within classes is obtained by adding a residual to the class mean, where the residual is the 
deviation from the class mean for one of the respondents. Then ÿ,,, i  =  ÿrh + erhk, where 
erhk  is the deviation for respondent k in class h; this reduces to ÿ ,,, i  = yrhk, the value for that 
respondent. The sequential and hierarchical hot-deck methods resemble the random within 
class method. The overall mean and random overall imputation methods are degenerate cases 
of the class mean and random within class methods that use no auxiliary information. 

An important consideration in the choice of imputation method is the type of variable 
being imputed. All the above methods can be applied routinely with continuous variables, 
but some of them are not suitable for use with categorical or discrete variables (such as being 
a member of the labor force (1) or not (0), and the number of completed years of educa-
tion). Overall mean, class mean, and regression imputations impute values like 0.7 for being 
a member of the labor force (i.e., a 70% chance) and 10.7 for the number of completed 
years of education. These values are not feasible for individual respondents, and rounding 
them to whole numbers leads to bias. For this reason, these imputation methods do not work 
well for categorical and discrete variables. A notable advantage of all hot-deck methods is 
that they always give feasible values since the values are taken from respondents. 

There are two major distinguishing features of the above imputation methods that deserve 
elaboration: whether or not a residual is added and, if one is, the form of the residual; and 
whether the auxiliary information is used in dummy variable form to represent classes or 
whether it is used straightforwardly in the regression. These features are discussed in the 
next two subsections. Other issues arising with the use of imputation are then discussed in 
subsequent subsections. 

3.1 Choice of Residuals 

Imputation methods may be classified as deterministic or stochastic according to whether 
the êmi 's are set at zero or not. For each deterministic imputation method, there is a 
stochastic counterpart. Let ÿmid  be the value imputed by the deterministic method and 
finds  = 9mid + ê,,,i be that imputed by the corresponding stochastic method. Then 
E2 (.Ÿmis) = .mid' where E2 denotes expectation over the sampling of residuals given the in-
itial sample, provided that E2  (6„, i ) = 0 (as generally applies). 

The choice between a deterministic and the corresponding stochastic imputation method 
depends on the form of survey analysis to be conducted. Consider first the estimation of 
the population mean of the y-variable using the sample mean of the respondents' values and 
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the nonrespondents' imputed values. As Kalton and Kasprzyk (1982) show, given that 
E2(9mis) = Ymid' it follows that the expectation of the sample mean is the same whether the 
deterministic method or the corresponding stochastic method is used. Thus both methods 
have the same effect on the bias of the estimate. However, the addition of random residuals 
in the stochastic method causes a loss of precision in the sample mean. Although this loss 
can be controlled by the choice of a suitable method of sampling residuals (Kalton and Kish 
1984), nevertheless some loss in precision occurs. For this reason a deterministic scheme is 
preferable for the purpose of estimating the population mean. 

Consider now the estimation of the element standard deviation and distribution of the 
y-variable. Deterministic imputation methods fare badly for these purposes, since they cause 
an attenuation in the standard deviation and they distort the shape of the distribution. This 
may be simply illustrated in terms of the class mean imputation method. By assigning the 
class mean to all the missing values in a class, the shape of the distribution is clearly distorted 
with a series of spikes at the class means. The standard deviation of the distribution is at-
tenuated because the imputed values reflect only the between-class and not the within-class 
variance. The appeal of the stochastic imputation methods is that the residual term captures 
the within-class (or residual) variance, and hence avoids the attenuation of the element stan-
dard deviation and the distortion of the distribution. 

Since some survey analyses are likely to involve the distributions of the variables, stochastic 
imputation methods like the hot-deck methods are generally preferred. Once a decision is 
made to use a stochastic method, the question of how to choose the residuals arises. If the 
standard regression assumptions are accepted, the residuals could be chosen from a normal 
distribution with a mean of zero and a variance equal to the residual variance from the respon-
dent regression. However, this places complete reliance on the model. An alternative that 
avoids the normality assumption is to choose the residuals randomly from the empirical 
distribution of the respondents' residuals. Another alternative is to select a residual from 
a respondent who is a "close" match to the nonrespondent, measuring "close" in terms 
of similar values on the auxiliary variables. This attractive alternative avoids the assumption 
of homoscedasticity and guards against misspecification of the distribution of the residual 
term. In the limit, the closest respondent is one who has the same values of all the auxiliary 
variables as the nonrespondent. In this case, the nonrespondent is given one of the matched 
respondents' values. This case arises with hot-deck methods, where nonrespondents and 
respondents are matched in terms of the auxiliary variables, and nonrespondents are assign-
ed values from matched respondents. 

A further consideration in the choice of residuals is to make the imputed values feasible 
ones. As noted above, deterministic methods may impute values for categorical and discrete 
variables that are not feasible. Some stochastic methods solve this problem through the alloca-
tion of the residuals. In particular, the use of respondents' residuals with the random within 
class and the sequential and hierarchical hot-deck methods ensures that the imputed values 
are feasible ones. 

3.2 Imputation Class or Regression Imputation 

As noted earlier, both imputation class and regression imputation methods fall within the 
imputation model given by equation (2). The difference between them lies in the ways in 
which they employ the auxiliary variables. 

Imputation class methods divide the sample into a set of classes. For this purpose, con-
tinuous auxiliary variables have to be categorized. There is complete flexibility in the way 
the classes are formed, and the symmetrical use of the auxiliary variables in different parts 



10 	 Kalton and Kasprzyk: Treatment of Missing Survey Data 

of the sample is not required. Thus, for instance, in imputing for hourly rate of pay in a 
sample of employees, the sample might first be divided into two parts, union members and 
nonmembers; then the imputation classes for the members might be formed in terms of age 
and occupation whereas those for nonmembers might be formed in terms of sex and industry. 
As a rule, the aim is to construct classes of adequate size that explain as much of the variance 
in the variable to be imputed as possible. When the classes are formed by a complete 
crossclassification of the auxiliary variables, the underlying model contains all main effects 
and all interactions for the crossclassification. The limitation of imputation class methods 
is that the number of classes formed has to be constructed to ensure that there is some 
minimum number of respondents in each class. The hierarchical hot-deck method attempts 
to extend the amount of auxiliary data used, but even with this method matches of respondents 
and nonrespondents often cannot be made at the finer levels of detail. Coupled with the 
use of a random respondent residual within a class, imputation class methods have the valuable 
property that imputed values are feasible ones: that is, the imputed values are actual 
respondents' values. 

Regression imputation methods have an advantage over imputation class methods in the 
number and in the level of detail of the auxiliary variables they can employ. Age can, for 
instance, be taken as a continuous variable rather than being categorized into a few classes. 
The regression model allows more main effects to be included in the model, but at the price 
of fewer interactions. Regression models can, of course, include some interactions, but they 
need to be specified. The models can also include polynomial terms and employ transforma-
tions, but again they need to be specified. The regression model has the potential of pro-
viding better predictions for the imputed values, but to achieve this careful modelling is 
required. Careful imputation modelling is unrealistic for all the variables in a survey, but 
it may be feasible for one or two major ones (and especially so for continuous surveys). 
Without careful modelling, there is a serious risk of poor imputations, although as noted 
earlier, this risk can be reduced by the allocation of random residuals from "close" 
respondents. 

If a regression imputation assigns the residual from a respondent with exactly the same 
values of the auxiliary variables, the imputed value is necessarily a feasible one. If, however, 
there is even a small difference between the respondent's and nonrespondent's values on the 
auxiliary variables, the imputed value may not be feasible. A variant of regression imputa-
tion that avoids this problem, termed predictive mean matching, is described by Little (1986b) 
(Little attributes the method to Rubin). With predictive mean matching, the nonrespondent 
is matched to the respondent with the closest predicted value. Then, instead of adding the 
respondent's residual to the nonrespondent's predicted value, the nonrespondent is assigned 
the respondent's value. The method is thus a hot-deck method, and is similar to distance 
function matching. 

The choice between imputation class and regression imputation methods should in part 
depend on the efforts made to develop the regression model. Unless adequate resources are 
devoted to the development of a regression model, the imputation class methods may be 
safer. The choice should also in part depend on the sample size. With large samples, hot-
deck methods are likely to be able to use enough classes to take advantage of all the major 
predictor variables; however, with small samples this may not hold, and regression methods 
may have greater potential. David et al. (1986) describe an interesting study that compares 
regression models for imputing wages and salary in the U.S. Current Population Survey with 
hierarchical hot-deck imputations. Despite the extensive efforts made to develop the regres-
sion models, the hot-deck imputations were not found to be inferior in this large sample. 

3.3 Effect of Imputation on Relationships 

Although most of the literature on imputation deals with its effect on univariate statistics 
such as means and distributions, a large part of survey analysis is concerned with bivariate 
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and multivariate relationships. Here the analysis of relationships can be considered in broad 
terms to include crosstabulation, correlation or regression analysis, comparisons of subclass 
means or proportions, and any other analysis involving two or more variables. As will be 
illustrated below, imputation can have harmful effects on all analyses of relationships, often 
attenuating the associations between variables. Discussions of the effects of imputations on 
relationships are provided by Santos (1981), Kalton and Kaspryzk (1982) and Little (1986a). 

The general nature of the effect of imputation on relationships can be seen by considering 
its effect on the estimate of the sample covariance in the simple situation where the y-variable 
has missing responses that are missing at random over the population and the x-variable has 
no missing data. The sample covariance, sxy, is calculated in the standard way, based on 
the actual values for respondents and the imputed values for nonrespondents, as an estimate 
of the population covariance Sxy . Using the fact that E2(9. ,,,;s) = ÿ,,,;d as above, it can be 
readily shown that the expected value of sxy  under a deterministic imputation method is the 
same as that under the corresponding stochastic method. 

As Santos (1981) shows, the relative bias of sxy  when the mean overall or random overall 
imputation methods are used is approximately — M, where M is the nonresponse rate. This 
occurs because the imputed y-values are unrelated to their x-values, and hence the cases with 
imputed values attenuate the covariance towards zero. This attenuation is decreased in 
magnitude by imputation methods that use auxiliary variables. With class mean imputation 
or random imputation within classes, the relative bias is approximately —M(Sxv.z /Sxy ), 
where Sxy_z = WhSxvh is the average within-class covariance for classes formed by the aux-
iliary variables z, Sxvh is the covariance within class h, and Wh is the proportion of the 
population in class h. With predicted regression imputation or regression imputation with 
a random residual, both with a single auxiliary variable z, the relative bias is approximately 
—M[1 — (PxzPyz/Pxy) ] ► where Puy  is the correlation between u and v. 

The disturbing feature of these results is that, unless M is small, sxy  calculated with im-
puted values under any of these imputation methods may be subject to substantial bias even 
under the missing at random model. The estimates sxy  computed with imputed values ob-
tained under the imputation class and regression methods are unbiased only if the partial 
covariance Sx},_ z  is zero. In general, there is no reason to assume uncritically that Sxy.z  is zero. 
However, there is an important case when SXy.z  = O. This occurs when x = z, that is when 
x is used as an auxiliary variable in the imputation procedure. In this case, the sample 
covariance is unbiased under the missing at random model. This result suggests that if the 
relationship between x and y is to form an important part of the survey analysis, x should 
be used as an auxiliary variable in imputing for missing y-values. 

The above theory assumes that only the y-variable was subject to missing data. In prac-
tice the x-variable will often also be incomplete. If so, the sample covariance may be at-
tenuated because of the imputations for both variables. A special feature occurs when x and 
y are both missing for a record. If the two values are imputed separately, the covariance 
is attenuated, but if they are imputed jointly, using the same respondent as the donor of 
both values, the covariance structure is retained. This suggests that when a record has several 
missing related values, they should be taken from the same donor. Coder (1978) describes 
the use of joint imputation from the same donor in the March Income Supplement of the 
Current Population Survey. 

As an illustration of how the above arguments about the attenuation of covariances app-
ly to other forms of relationships, we will give a simple numerical example of the effect of 
imputation on the difference between two proportions. Let the variable of interest be whether 
an individual has a particular attribute or not, and suppose that one half of the respondents 
fail to answer this question. The missing responses are imputed by a random within class 
imputation method using two classes, A and B. The objective is now to compare the 
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Table 1 
Number of Respondents with the Attribute, and Number of 

Sampled Persons by Class, Sex and Response Status 

Class A 	 Class B 

M F Total M F Total 

Respondents with the attribute 80 40 120 60 20 80 
Total respondents 100 100 200 100 100 200 
Nonrespondents 100 100 200 100 100 200 
Total sample 200 200 400 200 200 400 

percentages of men and women with the attribute. The data are displayed in Table 1. Since 
60 010 of the total respondents in class A have the attribute, 60 of the 100 male and 60 of 
the 100 female nonrespondents in that class will be imputed to have the attribute. Similarly, 
in class B 40% of the total respondents have the attribute, and so 40 male and 40 female 
nonrespondents will be imputed to have the attribute. The proportion of actual and imputed 
males with the attribute is thus (80 + 60 + 60 + 40)/400 = 0.6 or 60%. For females the 
corresponding proportion is (40 + 60 + 20 + 40)/400 = 0.4, or 40%. The difference bet-
ween these two percentages is 20%. 

Had sex also been taken into account in forming the imputation classes, the percentages 
of males and females with the attribute would have been 70% and 30%, differing by 40%. 
The failure to include sex as an auxiliary variable in the imputation has thus caused a substan-
tial attenuation in the measurement of the relationship between sex and having the attribute. 

3.4 Multiple Imputations 

Ideally the analyst using a data set with imputed values should be able to obtain valid 
results for any analyses by applying standard techniques for complete data. However, as 
noted in the last section, imputation can distort measures of the relationships between 
variables. It also distorts standard error estimation. 

All imputation methods except deductive imputation fabricate data to some extent. The 
extent of fabrication depends on how well the imputation model predicts the missing values. 
If the imputation model explains only a small proportion of the variance in the variable among 
the respondents, the amount of fabrication in each imputed value is likely to be substantial. 
If the imputation model explains a high proportion of the respondent variance, the amount 
of fabrication is likely to be less serious. However, it needs to be recognized that the fit of 
the imputation model for the respondents is not necessarily a good measure of the fit for 
the nonrespondents. 

Standard errors computed in the standard way from a data set with imputed values will 
generally be underestimates because of the fabrication involved in the imputed values. Rubin 
(1978, 1979) has advocated the method of multiple imputations to provide valid inferences 
from data sets with imputed values (see also Herzog and Rubin 1983; Rubin and Schenker 
1986). When multiple imputations are used for the purpose of standard error estimation, 
the construction of the complete data set by imputing for the missing responses is carried 
out several (say m) times using the same imputation procedure. The sample estimates 
z; (i = 1, 2, ..., m) of the population parameter of interest Z are computed from each of 
the replicate data sets, and their average  Z is calculated. A variance estimator for Z is then 



Survey Methodology, June 1986 	 13 

given by V = W + [ (m + I) /m ]B, where W is the average of the within-replicate variance 
of z and B = E(z; — z) 2 / (m — 1) is the between-replicate variance. Even with the inclu-
sion of the between-replicate variance component, however, the coverages of confidence in-
tervals for Z based on V are still overstated, with the amount of overstatement increasing 
with the level of nonresponse. 

This overstatement of the confidence levels can be addressed by modifying the imputa-
tion procedure, as described by Rubin and Schenker (1986). Their treatment considers the 
random overall imputation method, and one of their modifications allows for uncertainty 
about the population mean and variance in the following way. With the standard random 
overall imputation method, the conditional expected mean and variance of the imputed values 
are the sample respondents' mean and variance. With the modification, the expected mean 
and variance of the imputed values for a replicate are drawn at random from appropriate 
distributions. The imputed values are then a random selection of respondents' values, modified 
for the randomly-chosen mean and variance. When estimating the population mean, the ef-
fect of the changing expected mean and variance between replicates is to increase the between-
replicate variance component in V. This increase gives improved coverage for the resultant 
confidence intervals. 

A major problem with the use of multiple imputations is the additional computer analysis 
needed, which increases as the number of replicates, m, increases. For this reason, a small 
value of  in, such as m = 2, may be preferred. A small value of m may, however, result in 
a low level of precision for the variance estimator. Even with small m, it is questionable 
whether the multiple imputation approach is feasible for routine analyses. It may be best 
reserved for special studies, such as that described by Herzog and Rubin (1983). 

In addition to providing appropriate standard errors, another advantage of multiple im-
putations from the same imputation procedure is that it reduces the loss of precision in survey 
estimates arising from the random selection of respondents to act as donors of imputed values 
(see Section 3.1). This loss is reduced with multiple imputations by averaging over the 
replicates. A small number of replicates serves well for this purpose. As noted earlier, Kalton 
and Kish (1984) describe alternative ways of selecting the sample of respondents to achieve 
this end. 

A second major potential application of multiple imputations is to generate the imputa-
tions for the several replicates by different imputation procedures, making different assump-
tions about the nonrespondents. Suppose, for instance, that hourly rates of pay are to be 
imputed for some earners in the sample. One procedure that might be used is the random 
within class imputation method, which is based on an assumption that nonrespondents are 
missing at random within the classes. If it is thought that the nonrespondents might in fact 
come more heavily from those with higher rates of pay in each class, a simple modification 
to the random within class method might be to impute values that are, say, 50 cents above 
the donors' values. Other imputation procedures - for instance, using different imputation 
classes - could also be tried. Comparison of the survey estimates obtained from the data 
sets in which the different imputation procedures are applied then provides a valuable in-
dication of the sensitivity of the estimates to the values imputed. If the estimates turn out 
to be very similar, they can be accepted with greater confidence; if they differ markedly, 
the estimates need to be treated with considerable caution. 

4. CONCLUDING REMARKS 

Weighting and imputation have been presented as two distinct methods for handling missing 
survey data, but in fact there is a close relationship between them. This may be illustrated 
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by considering any imputation method that assigns respondents' values to the nonrespondents. 
For univariate analyses, this process is equivalent to dropping the nonrespondents' records 
and adding the nonrespondents' weights to those of the donor respondents (Kalton 1986). 

The differences between weighting and imputation emerge when one considers the 
multivariate nature of survey data. It is possible to impute for the responses of a total 
nonrespondent by taking all the responses from a single donor; however, weighting is generally 
simpler in this case and it avoids the loss of precision arising from the sampling of respondents 
to serve as donors. It is not practicable to use weighting to handle item nonresponse since 
it would result in different sets of weights for each item; this would cause serious difficulties 
for crosstabulations and other analyses of the relationships between variables. 

Weighting is a single global adjustment that attempts to compensate for the missing 
responses to all the items simultaneously. Imputation, on the other hand, is item-specific. 
This difference has consequences for the way that the auxiliary data are used. In forming 
weighting classes, the focus is on determining classes that differ in their response rates. The 
choice of auxiliary variables to use in imputation, however, is primarily made in terms of 
their abilities to predict the missing responses. 

An assumption underlying all the procedures reviewed in this paper is that once the aux-
iliary variables have been taken into account the missing values are missing at random. Thus, 
for instance, the nonrespondents are assumed to be like the respondents within weighting 
and imputation classes. This assumption can be avoided by using stochastic censoring models, 
as has been done by Greenlees et al. (1982) in imputing wages and salaries in the Current 
Population Survey. However, as Little (1986b) observes, these models are highly sensitive 
to the distributional assumptions made. 

An alternative approach for handling missing survey data is to leave the values missing 
in the data set and let the analyst incorporate appropriate missing data models into the analysis 
(Little 1982). This approach has much to commend it, but the labor and computing time 
needed to implement it effectively preclude its use as a general purpose strategy. Rather, 
the approach seems best suited for a small range of special analyses. In order to permit the 
analyst to adopt this approach, it is essential that all imputed values be flagged to indicate 
they are not actual responses, so that they can then be dropped from the analysis. 

Finally, we should note that all methods of handling missing survey data must depend 
upon untestable assumptions. If the assumptions are seriously in error, the analyses may 
give misleading conclusions. The only secure safeguard against serious nonresponse bias in 
survey estimates is to keep the amount of missing data small. 
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On the Definitions of Response Rates 
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ABSTRACT 

In this paper, different types of response/nonresponse and associated measures such as rates are pro-
vided and discussed together with their implications on both estimation and administrative procedures. 
The missing data problems lead to inconsistent terminology related to nonresponse such as completion 
rates, eligibility rates, contact rates, and refusal rates, many of which can be defined in different ways. 
In addition, there are item nonresponse rates as well as characteristic response rates. Depending on the 
uses, the rates may be weighted or unweighted. 

KEY WORDS: Eligibility; Completion; Contact; Refusal; Response Rates. 

1. INTRODUCTION 

The census or sample survey data are gathered by any one of such procedures as personal 
interview, telephone, or mail. It sometimes happens that some units may not respond for such 
reasons as "not at home", "away on vacation", "units closed", "respondent refusal", "unit 
vacant" or "demolished", etc. Other units may respond only partially, e.g. some but not all 
persons within a dwelling may respond or the units may respond to some but not all ques-
tions. Furthermore, units may respond to questions but provide incorrect or inaccurate 
responses. 

Thus, any survey, whatever its type and method of data collection, will suffer from miss-
ing data due to nonresponse. Nonresponse has been generally recognized as an important 
measure of the quality of data since it affects the estimates by introducing a possible bias 
in the estimates and an increase in sampling variance because of the reduced sample. The 
relationship between sampling variance and the nonresponse rate is fairly straightforward. 
However, the relationship between the bias and the size of nonresponse while perhaps more 
important is less obvious since it depends on both the magnitude of nonresponse and the 
differences in the characteristics between respondents and nonrespondents. One can speculate 
that the nonresponse bias is proportional to the nonresponse rate. For a given response rate, 
the percentage bias would then be independent of sample size. However, the sampling variance 
is affected by the sample size and is inversely proportional to the responding sample size. 
Thus, the nonresponse bias may not be nearly so serious relative to the sampling errors for 
small samples as it is for large samples. The apparent confidence interval may cover the true 
value in the case of small samples but may not in the case of large samples in the presence 
of nonresponse bias. If we measure the "seriousness" of the nonresponse bias by the ratio 
of the nonresponse bias to the coefficient of sampling variation, then the "seriousness" of 
the nonresponse bias is proportional to the square root of the responding sample size times 
the nonresponse rate. 

In a more practical way, the size of response/nonresponse may indicate the operational 
problems and provide an insight into the reliability of survey data. However, different types 
of response/nonresponse rates are used for these two purposes, depending upon whether or 

1  R. Platek, formerly, Director, Census and Households Survey Methods Division, Statistics Canada, G.B. Gray, 
Social Survey Methods Division, Statistics Canada, Ottawa, Ontario KIA OT6. 
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or not a contact has been made with a designated unit. One can therefore distinguish bet-
ween "contact" and "no contact" of types. One type such as "no one at home" or "tem-
porarily absent" is in fact a "no contact" problem and is primarily operationally oriented. 
The other type is the true nonresponse problem, where contact has been made with the selected 
unit but no response or acceptable response is obtained. 

In an interview process itself an interviewer may find units in the sample that should not 
be there (ineligible for the sample). Also, there will be units with questionnaires only or par-
tially completed as well as units with all questionnaires completed. Each of these events may 
be defined as a rate, i.e. eligibility rate, item response rate, completion rate, etc. The distinc-
tion between the "true" nonresponse and other causes affecting the total size of nonresponse 
rate may give rise to different interpretations. 

The interpretation of response/nonresponse rates is particularly difficult when one deals 
with complex survey designs since the concentration of nonresponse may be higher in one 
area or class than in another. Still, response rates have been used as proxies for data quality 
by almost all survey statisticians. That is why the interest in collecting data on nonresponse 
and the evaluation of it has usually been part of survey taking. However, only the measures 
of bias, variance, and the resultant mean square error from all sources of sampling and non-
sampling errors can provide an informed basis for evaluating survey results. 

Recently, nonresponse has been increasing in many surveys in Canada and elsewhere. Con-
sequently, there is a greater need than ever before to monitor nonresponse rates, to make 
comparisons between surveys, countries, survey organizations, and to ensure some degree 
of comparability. There have been attempts to standardize the definition of response rate 
and its complement, the nonresponse rate; see for example, Kviz (1977), Cannell (1978). Pro-
blems of inconsistent definitions of response rates related to telephone surveys are described 
by Wiseman and McDonald (1980). 

There are also problems of inconsistent terminology with regard to response/nonresponse 
in surveys. Terms such as completion rate, contact rate, and under -coverage rate have been 
used in different contexts in reports and articles dealing with data collection. While these 
terms may be readily distinguished in an individual report, they may be confusing and sub-
ject to conflicting interpretations, when studying different reports. 

To consider response/nonresponse problems, a distinction must be made between unit 
and item nonresponse rates. Unit nonresponse rates generally pertain to the level at which 
survey data are gathered during the first contact. Examples of the level could be a dwelling, 
individual, store or establishment. However, in the case of multi-stage sampling, there may 
be nonresponse of all units within clusters or even primary sampling units (psu) so that unit 
nonresponse could apply to a selected cluster or psu as well as a dwelling or individual. 

Item nonresponse usually pertains to the questionnaires, where information has been pro-
vided for some questions but not to all that should have been provided. However, if a unit 
fails to respond, it automatically fails to respond to any item. Hence, unit nonresponse and 
item nonresponse are distinct events that should be dealt with separately. 

The response rates may pertain to the whole sample and part of a sample such as design -

dependent areas or they may apply to administrative areas such as an interviewer assign-
ment, or a group of assignments overseen by a supervisor or field office. 

2. RESPONSE/NONRESPONSE COMPONENTS 

In order to define various response rates and discuss their uses and applications, it is necessary 
to split up the target population for the sample or census into the various components, by 
type of response/nonresponse. Table 1 accomplishes this very purpose, indicating most of the 
important components of the whole survey that will be used in the rates. Once a target popula-
tion (Box 1) is defined for a survey, a survey frame of N units (Box 2) is then determined. 



Lt,e,i),( I — tin„) 

Unit respondents 
(some item nonresponse) 

(13) 

Et,e,S,( I — b,,.) 
item y 

nonrespondents 

Er,e,b 115„ 
Unit respondents 

(full item response) 

(12) 

item y 
respondents 
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Table 1 
Response/Nonresponse Components 

(I) 

TARGET 
POPULATION 

>_ N Units 

(2) 

Sample/Census 
Frame 

N Units 

Survey Data Gathering Procedure 
personal, telephone, mail, or combination 

(4) 

Sample Selection or Census 
n < N Units ; n = Et, 

(5) (8) 

 

''t, (1 — t•, ) 

Ineligible Unies 

 

Eligible Units 

(6) 

Et,(1 — e,)( I — 
Correctly 

Not Enumerated 

Lt,( I -- e,)b, 
Enumerated, but 

should not hase been 

(9) (10) 

— a,) 
Unit nonrespondents 

111 

E1,e,é,(I — (5„.M 
refusals for 

item v 

(I5) 	 (16A) 	 (16B) 

(17) 

Et,e,S,(I — E,) ( I — r,) 
other than refusals 

item y  

(18) 
	

(19) 

Et, e, ( l — fi, ) r, 

l!nit Nonrespome 
(Refusal) 

Ei,e,(I — S,)(1 — r,) 

Unit Nonresponse 
(other than refusal) 

Without 	 Detected 	 Undetected 
Response 	 Response 	 Response 
Error 	 Error 	 Error 

For Item y 	 For Item y 	 For Item y 

e, = 1,0 (unit eligible/ineligible) 

= 1,0 (selected/not selected) 

5, = 1,0 (unit response/nonresponse) 

b„ - 1.0 (item y response/nonresponse) 

r, = 1,0 according as unit refused or not 

For r, = 0, mainly "Not at Home”  
or "Temporarily Absent" 
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It should be mentioned that as a result of possible under- and over-coverage of units the 
frame may not correspond exactly to the target population. Since under- coverage is usually 
more prevalent than over-coverage in practice, the actual target population usually contains 
more than N units. 

For the survey to be taken, a data gathering procedure (Box 3) and an appropriate design 
are decided upon, by or census n = E t;  units are selected, where: 

t ;  = 1 or 0 according as unit i is selected or not, 

E = summation over all N units in the survey frame. 

Often, in a sample frame, N may not be precisely known but rather can only be estimated 
from the sample. This is often the case in multi-stage probability samples with area sampling 
at earlier stages of selection. 

Out of the sample of n units, E ti e, are eligible (Box 8) and E t ; (1—e; ) are ineligible (Box 
5) for the survey, where 

e;  = 1 or 0 according as unit i is eligible or not. 

Sometimes the eligibility criterion may not be determined if the unit cannot be contacted 
while at other times the eligibility criterion is obvious from the physical appearance, such 
as vacant/non-vacant dwellings in a household survey. 

The E t;  (1 — e; ) ineligible units of (Box 5) may be split up between E t,(1 — e; ) (1 —
S ; ) units not interviewed just as they should not have been (Box 6) and E t; ( 1 — e; ) Si  units 

incorrectly interviewed (Box 7). One hopes that the number of such units in Box 7 is non-
existent or at least very small. However, if such units are discovered, they should be deleted 
from the sample. In the above and in the breakdowns that follow, S i  = 1 or 0 according 
as unit i responded or did not respond. 

The E t i e;  eligible units (Box 8) may be split up between E t ;e;  S ;  unit respondents (Box 
9 + Box 10) and E t ;e; (1 — Si ) unit nonrespondents (Box 11), i.e. they provided no usable 
survey data and little, if anything, is known about the units, except perhaps their geographic 
location. 

The E t ; e; S ;  units respondents may be split up first between E t ; e;  S;  n(5 ; ,.) units, free 
of item nonresponse, but with possible response errors (Box 9) and E t;e;  S;  E l — II( so] units 

1 ' 

with item nonresponse in at least one characteristic but not in all characteristics (Box 10). 
Here 5; , , = 1 or 0 according as responding unit i responds or does not respond to item or 
characteristic y. In (Box 9), 5,,, = 1 for unit i and all items while in (Box 10), S,,, = 0 for 
one or more items but not for all of them. For a particular item y, some of the E tie;  S ;  S;y 

item y respondents (Box 12) come from those unit respondents, free of item nonresponse 
in (Box 9) while the remainder come from those unit respondents with some item nonresponse 
among one or more items other than item y. The t ;e;  S ;  (1 — S;y) item y nonrespondents 
of (Box 13) come from those unit respondents with some item nonresponse of (Box 10) that 
include item y. 

The item y respondents of (Box 12) may be decomposed into three components, (i) those 
units with item y free of response error, (ii) those with a detected response error for item 
y, and (iii) those with an undetected response error for item y, in Boxes 15, 16A, and 16B 
respectively. 
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The E t; e;  S;  (1 — SO item y nonrespondents (Box 13) all come from the unit respondents, 
i.e. S ;  = 1, S;y  = O. These item nonrespondents may be decomposed into 2 components, 
viz., (i) those who refused to reply to question y or those who terminated the interview prior 
to item y (Box 14) and (ii) those who failed to reply to supply data for item y because of 
misunderstanding by either the respondent or interviewer or because of other reasons such 
as failure to follow the proper path in the questionnaire. 

Finally, the unit nonrespondent (Box 11) may be split up among refusals (Box 18) and 
other than refusals (Box 19) mainly non-contacts with reasons such as not at home or tem-
porarily absent. Here, r, = 1 for refusal and r;  = 0 for cases of "other than refusal". The 
cases of "other than refusals" pertain mainly to "not at Home" or "Temporarily absent." 

In order to count the respondents and nonrespondents according to type and reason, careful 
records must be kept of every sampled unit. This is essential if a probability sample is not 
to deteriorate into a quota sample, for example, because of ad hoc treatment of nonresponse, 
such as arbitrary substitution of other units for the nonrespondents. In the case of quota 
samples, it is sometimes difficult or impossible to distinguish substituted units from originally 
selected units when survey takers try to reach the quota with easy-to-obtain survey data from 
co-operative respondents rather than attempt call-backs of nonrespondents. 

Even in probability samples with units carefully labelled and monitored according to plan, 
it is sometimes difficult to determine precisely the reason for nonresponse among the units 
that failed to be contacted. The problem is usually most straightforward in the case of per-
sonal interviews. However, even in that case, it may be difficult to distinguish "no one at 
home" from "temporarily absent" or "refusals" from "non-contacts" when persons are 
obviously at home but refuse to answer the door. In the case of telephone interviews, "no 
answer" or "busy signal" reveals nothing about the lack of contact of the selected unit 
although "refusals" of contacted units by telephone may be evident. In the case of mail 
surveys, when the mail is not returned, the reason could be "refusal" just as easily as "tem-
porarily absent". The "not at home (unit)" in the usual context of nonresponse studies as 
distinguished from "away from home (unit)" does not apply to mail surveys. In mail surveys, 
the reason for nonresponse usually must be determined by personal or telephone follow-up 
of the unit, often by sub-sampling nonrespondents, some of which may become respondents 
while others may remain nonrespondents for reasons that may be determined. 

The eligibility of selected units is usually evident in the case of personal interviews although 
failure to contact the units may result in an interviewer's inability to screen out undesirable 
types of units for a particular survey. No phone answers or busy signals may result in a com-
plete failure to determine either the eligibility or type of nonresponse of the unit. Discon-
nected telephone numbers or ineligible telephone respondents in a screening survey will provide 
some measures of ineligibility in a telephone survey. In the case of mail surveys, some returned 
mail or addresses non- existent among selected units may yield clues about some types of 
ineligibility while other types may be discernable only by means of personal or telephone 
follow-up. 

3. DEFINITIONS OF VARIOUS RATES 

The sample of n = E t 1  units decomposed in Table 1 in section (2) into eligibible units, unit 
respondents/nonrespondents, refusals, item respondents/non-respondents, etc. leads to many 
different types of rates which are defined below. For each rate, the numerator is a particular 
subset of the denominator. Wherever possible, the rate is defined in terms of the counts of 
units as broken down in Table 1. 
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(a) Eligibility Rate 
The eligibility rate is given by: 

é = E ti e,/  E t; , = (Box 8)/(Box 4) . 	 (3.1) 

Wiseman and McDonald (1980) used the term "incidence rate" but applied the term only 
to selected persons of telephone samples that actually answered (responded) at the screening 
phase to determine their eligibility for the survey. 

The eligibility rate, as in (3.1), demonstrates the quality of the survey design in selecting 
eligible units from a frame, where the eligibility may not be readily determinable without 
some cursory contact or observation. The rate provides, at the screening stage, information 
to determine how many eligible units will result at the survey data gathering stage. Thus, 
the rate may be employed at the design stage if data on eligibility are available from earlier 
studies. Depending upon the nature and procedure of the survey, the eligibility of units may 
not be determinable among non-contact or even refusable units. There are two alternatives 
to the definition of eligibility rate and response rates (which will be defined later) pertaining 
to eligible units. One can assume, for conservative estimates of data quality and the quality 
of the procedure for gathering survey data that all non-contacts and refusals would be eligi-
ble even though realistically the proportion of eligible units among such nonrespondents is 
often lower than among respondents and non-respondents for which the eligibility criteria 
are known. Under the above assumption a lower bound for the response rate and an upper 
bound for eligibility rate would be obtained. Alternatively, one can assume the same pro-
portion of eligible units among units whose eligibility cannot be determined as among those 
whose eligibility are known. Under that assumption we would likely have a slight over-estimate 
of eligibility rate and some of the other rates. 

(b) Response and Completion Rates 
(i) According to one of two alternative definitions provided by the U.S. Federal Commit-

tee on Statistical Methodology (1978), the response rate is the percentage of the eligible 
sample for which information (survey data) is obtained. Thus the response rate is defin-
ed as: 

Rc>>= E t ; e; S ; / L; t i e;  (3.2) 

_ [(Box 9) + (Box 10)]/(Box 8). 

The above is the most commonly employed response rate in practice as it yields the per-
cent of the sample for which some useful survey data are obtained once the ineligible units 
are deleted. All types of non- respondents of eligible units are included in the denominator. 

The inverse of the above rate at an adjustment cell is frequently used as a weight adjust-
ment to compensate for missing data of nonresponding units, for example, such rates are 
frequently use in the Canadian LFS for weight adjustments (see Platek and Gray 1985). 

The above rate or its complement, the nonresponse rate, is frequently used for ad-
ministrative and operational assessments of survey organizations. The rates are also used 
to assess interviewer's ability to contact respondents and to elect this co-operation to pro-
vide usable survey data, e.g., response/nonresponse rates by interview assignment. The non-
response rate includes both refusals, which may be controlled by good public relations and 
diplomacy, and non-contacts, which may be beyond the control of the interviewer. Hence, 
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whereever possible, the nonresponse rates are frequently split up by reasons. The overall 
response rate in LFS is abour 95% in most months. Out of the 5% nonresponse about 1% 
are refusals. 

A similar rate to the above was defined as a completion rate by Kviz (1977), who included 
the whole sample in the denominator. Such a rate may provide a more conservative estimate 
of quality that (3.2) in that ineligible units such as vacants are included in the denominator. 
For example, in the LFS, the completion rate by Kviz's definition would drop from 95% 
according to 3.2 to about 85%. 

(ii) Another definition by the above-mentioned committee is the percentage of times an in-
terviewer obtains interviews at sample addresses, where contacts are made given by: 

R(2) = E ti  S i  / E ti  [S i  + (1 — b i  )ri ], 	 (3.3) 

where unit i refused or did not refuse according as ri  = 1 or 0 respectively. The above was 
defined as a completion rate by O'Neill Groves, and Cannell (1979). If as in (3.3) the eligibility 
of all units that are contacted can be determined, then another and perhaps superior (known 
or estimated) definition of the above rate pertaining to eligible units can be given by 

R(3) = E tiaiei/ E tiei[Si + (1 — si)ri] 	 (3.4) 

= [ (Box 9) + (Box 10)] / [ (Box 9) + (Box 10) + Box 18) ] 

where ei , the eligibility criterion is defined after Table 1. 
The above rates (3.3) and (3.4) may be useful in personal and telephone surveys where 

nonrespondents may include non-contacts and refusals. The rates are not practival in mail 
surveys unless there is a telephone or peronal follow-up of nonrespondents since in most 
pune mail surveys, the survey organization is forced with either response or nonresponse 
with unknown reasons. Where the above rates may be useful, however, they measure the 
ability of a data collection method to elect co-operation of responsible respondents at selected 
units, given that they are contacted. The non-contacts, that may be beyond the control of 
interviewers in some survey procedures are removed from the rates entirely. 

The response rate in (3.4) was also defined as completion rates by Klecka and Tuchfarber 
(1979), who assumed, perhaps unrealistically, that all refusals were eligible for the survey. 
The completion rate would then have ben a conservative estimate for the measure of perfor-
mance of the data collection method in eliciting the co-operation of eligible units. Alternatively, 
one may assume the eligibility among refusals to be the same proportion among refusals 
as among completed and other limits whose eligibility criteria is known. 

(c) Contact Rates 

A "contact rate", defined by Hauck (1974) is the percentage of sample units that are con-
tacted as: 

R(4) =
Completed interviews + Refusals (contacted + Noncontacts) 

where the "Noncontacts" were assumed to be eligible for a conservative estimate of the suc-
cess in contacting sampled units. The "Refusals" may include "Terminations" or "Incomplete 
Interviews" that are essentially "Refusals" for some items as in (Box 10) of Table 1. 

Completed interviews + Refusals (contacted) 
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The algebraic expression for the contact rate is given by: 

 

Et ; S,e;  + Et; (1 — S; )ri ei  

 

(3.5) R(4) - 
E1 ; S;e;  + Et; (I — S;)r; ê;  + Et; (1 — S ; )(1 — ri re ;  

 

(Box 9) + (Box 10) + (Box 18) 
	 , where 
(Box 9) + (Box 10) + (Box 18) + (Box 19) 

ê;  = e;  = 1 or 0 if eligibility criterion is known, 

and, for non -contacts, 

ê;  = I according to Hauck definition, 

or 	ê; = e, the average eligibility rate among those units whose eligibility 
criteria are known. 

The contact rate measures the ability of the survey organization or interviewers to contact 
respondents whether or not they succeeded in eliciting their co-operation. In the LFS, the 
contact rate among non-vacant dwellings is around 96% each month. 

(d) Refusal Rate (Non-refusal Rate) 

Two definitions of refusal rates are given by Hauck (1974) and Wiseman and McDonald 
(1980) respectively as: 

number of refusals 
number of completed interviews and refusals 

_ 	 t i e;( 1 — 	 Et ; ê; (1 — S ; )r; ] 	(3.6) 

= (Box 18)/ [(Box 9) + (Box 10) + (Box 18) ] = 1 — R(3). 

F2 = 
number of all selected units 

= 	ti( 1 — bi)ri/Eti 

= (Box 18)/(Box 4). 

With the eligibility criteria taken into account, the refusal rate in (3.7) may be given by: 

F3 = E t;  ê; ( 1 — (5 ; ) r;  / E t, e, 	 (3.8) 

= (Box 18)/(Box 8), where ê;  is defined after (3.5). 

Fi  = 

and 
number of refusals 

(3.7) 
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The refusal rate measures the extent of the inability of the survey organization or the in-
terviewer to elicit the co-operation of units to provide usable survey data, relative to all con-
tacted units (3.6), relative to the whole sample (3.7) or relative to the eligible sample (3.8). 
In (3.6), one may wish to determine a "pure" refusal rate without non-contacts that are 
often beyond the interviewers' control in order to study the efficiency of a questionnaire 
or effect of the survey topic on the co-operation of contacted units. Alternatively, in (3.7) 
amd (3.8), one may prefer to examine the refusals rate as one, of several components of 
overall nonresponse. 

(e) Item Response/Nonresponse Rates 

Complex questionnaire design may result in item nonresponse of specific questions for reasons 
other than refusals, as noted in Box 17. A controversial or personal question or termination 
of the interview may result in a refusal to provide data for a specific item as in (Box 14). 

Thus, one may measure the overall item nonresponse rate for item y, relative to all respon-
ding units, given by: 

R _ 
	(Box 13) 

Y 	(Box 9) + (Box 10) 

or if item y is relevant only for some units (questionnaires) but not for all of them, one 
may measure the item nonresponse relative to only those responding units for which item 
y is relevant (eligible). Consequently, one may define a whole set of item 
response/nonresponse/eligibility rates, analogous to the unit rates replacing in the rates the 
number of units (eligible/ineligible)/(responding/refusing, etc.) with the number of respon-
ding units (eligible or relevant for item y, irrelevant, responding for item y/refusing for item 
y etc.) respectively. Most of the rates pertaining to units other than contact rates should have 
their item y counterparts readily defined by making the proper substitutions in the expres-
sions. However, it may be more difficult to record the reasons for item nonresponse, com-
pared with unit nonresponse, as frequently the item nonresponse is detected only through 
an edit and imputation routine. 

(f) Weighted Rates and Characteristic Rates 

In the case of sample with different sample weights II;- 1 's for the units as in probability pro-
portional to size (pps) sampling, all of the above rates may be defined as weighted rates by 
applying the sample weight 11 ;-1  with the sample selection indicator variable t;  in all the ex-
pressions. In the case of self-weighting samples in an area or class for which the rates are 
calculated the sample weights are redundant. In pps sampling at the final stage, however, 
the usual tendency is for large units to respond more readily than small ones so that weighted 
response rates, with smaller sample weights applied to the large units than for small units, 
tend to be smaller than unweighted rates based on the counts of units as in Table 1. 

The weighted response rates estimate the proportion of the population that would have 
responded to the survey under similar survey conditions while the unweighted response rates 
provide a measure of data collection performance only for the sample or sub-sample per-
taining to a specified area or class. 

By estimating the nonresponse rate for the entire population rather than for the sample 
as the unweighted rates do, the weighted rate may provide misleading information on the 
quality of the data since it may distort the distribution of characteristics in the sample. The 
advantage of the weighted rates, however, is that the units are added to population levels 
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rather than sample levels so that one obtains an estimate of the rate that would prevail at 
census levels under similar conditions of gathering survey data. The weighted response rates 
may under some circumstances be used as weight adjustment factors to inflate the respondents 
to the full sample in adjustment cells. 

When defining characteristic response rates factors include the observed response y, 
among item respondents, the imputed value z y  for item nonresponse and the imputed value 
for z;  for unit nonresponse, which is usually the mean of the respondents in an adjustment 
cell. If some auxiliary value X, is known for all units, whether or not they respond, then 
a characteristic x response rate may be readily calculated and used as a weight adjustment 
when x is highly correlated with y. The characteristic y response rate, weighted by II; I  or 
unweighted, may be useful in studying the potential nonresponse bias by comparing the charc-
teristic y response rates with the weighted or unweighted response rates based on counts of 
units. 

4. FINAL REMARKS 

Standardization of the definitions of the rates appears to be difficult, owing to the variety 
of uses and studies of nonresponse and owing to the careful record keeping demanded of 
survey takers. As long as the rates are unambiguously defined and appropriately applied 
in their analysis standard definitions for all types of surveys and survey data gathering pro-
cedures, may not be all that important. However, in each particular case, the rate should 
be carefully defined with clear demonstration of the purpose for which it is intended and 
the reason why it is adopted. 

Another issue of standardization dealing with the topic of response/non- response rates 
is the standard of what is expected from past experience for given surveys, type of survey, 
subject matter and interview procedure. For example, the response rate, according to 3.2, 
in the LFS, is expected to be in the 93 to 95% range, with slightly lower rates in the summer 
months. Out of the 5 to 7% nonresponse, 1% or so may be expected to be refusals. The 
overall rates have been remarkably consistent for the history of the survey. 

It has been observed (see Platek 1977) that finance-oriented surveys tend to have lower 
response (higher nonresponse) rates than surveys dealing with other topics. The finance surveys 
appear to be around 25% nonresponse while most of the others centre around 10 to 15%. 
Also, telephone surveys appear to have a slightly higher nonresponse rate (by about 2 to 
3 07o) than personal surveys for similar subject matter. Thus, from experience, one can deter-
mine a standard objective for surveys of a given subject and interview procedure. 

It has been observed in publications such as Wiseman and McDonald (1980) that there 
are many opinions of the way nonresponse should be defined and measured. Thus, it ap-
pears that one must grapple with the alternative definitions and terms and obtain relation-
ships between them under various survey conditions. We have attempted to focus on the 
problems of the various definitions, terms and standards of response rates but have not solved 
the problems. A proper study can really be undertaken only with a thorough evaluation of 
survey records, which is possible only when good records are kept. Often, particularly in 
the case of quota samples, in telephone and mail surveys, nonrespondents are set aside and 
other units are substituted for them and treated like the originally selected units. The result 
is a higher observed quality of survey than is the case in reality because of the hidden 
nonresponse bias. Consequently, the way of treating nonrespondents and the evaluation of 
nonresponse, completion, etc. must be planned in advance of the survey data gathering in 
order to deal with it properly rather than during or after the survey. 
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ABSTRACT 

Using the optimal estimating functions for survey sampling estimation (Godambe and Thompson 1986), 
we obtain some optimality results for nonresponse situations in survey sampling. 

KEYWORDS: Optimum estimating function; Nonresponse. 

I. INTRODUCTION AND BACKGROUND 

A typical survey sampling set-up consists of a survey population P of N labelled individuals 
i; P = (i: i = 1, ..., N) . With each individual i is associated a real value y ;. The vector 
Y = (Y,, ..., y,, •.., yN ) is called the population vector. Any subset s of P is called a sam-
ple. Let S = is).  Any probability distribution p on S is called a sampling design. A sample 
s is drawn using a sampling design p, and the values y,: i es are ascertained through a survey. 

Thus the data here are XS  where 

Xs = {s, (i,y,):i E s). 	 (1.1) 

On the basis of the data xs  one tries to estimate a survey population parameter °N, that 
is a specified real function of the population vector y; ON = ON (y). 

In relation to the above estimation problem we assume a superpopulation model under 
which y,, ..., yN  are independent and for certain known covariate values x,, i = 1, ..., N, 

E(y,-9x,) = 0, i =  1 ,..., N, 	 (1.2) 

E being the expectation with respect to the model. In the model (1.2), 9 is the usual unknown 
regression parameter, the expectation being taken holding x, fixed. The usual intercept term 
of the regression model is not mentioned in (1.2), for this term can often be eliminated by 
an appropriate stratification (Godambe 1982). Note the model (1.2) does not specify the 
variance function. 

Following Godambe and Thompson (1986), for some specified numbers a,, i = 1, ..., 
N, we define the survey population parameter ON as the solution of the equation 

g = E (y, —ex,)a, =o. 
; =i 

(1.3) 

I V.P. Godambe and M.E. Thompson, Department of Statistics and Actuarial Science, University of Waterloo, 
Ontario, Canada, N2L 3G1. 
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That is, 

N 	N 

eN = L.I  yi  ai  l E 
 

i = 1  

The parameter ON is related to the model (1.2) through the equation 

Eg = 0. 	 (1.5)  

Any real function h of the data xs  in (1.1) and the parameter 0 is called an unbiased 
estimating function for both the parameters ON and 0 if 

E(h — g) = 0 for all y and 0 	 (1.6) 

`E' being the expectation under the sampling design p employed to draw the sample s. Because 
of (1.5) and (1.6) we say the solution of the equation 

h(XS,O) = 0,  

for the given data x,s, estimates both the parameters and 0 and ON, given by (1.2) and (1.4) 
respectively. For the function g in (1.4), under the sampling design p, let H(p)  be the class 
of all unbiased estimating functions h. That is 

H(p) = (h: E(h — g) = 0 for all y and 01. 	 (1.7) 

Now we say an estimating function h* E H(p) is optimum if 

EE(h*) 2  s EE(h ) 2 , for all h E H(p) 	 (1.8) 

(Godambe and Thompson 1986). Further, when the inequality (1.8) is satisfied, 

h* = 0 	 (1.9)  

is said to be the optimum estimating equation for estimating the parameter ON given by (1.3) 
and (1.4). 

For the sampling design p, used to draw a sample s, let Tri , i = 1, ..., N be the inclusion 
probabilities. That is 

~i = E p(S),i = 1 ,..., N,  
s3i 

(1.10)  

where s 3 i indicates all samples s which include the individual i. We assume 

xiai.  (1.4)  

~ i > 0, i = 1, . . . , N. 	 (1.11)  
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Theorem 1.1. (Godambe and Thompson 1986). For any sampling design p satisfying (1.11),  
under the model (1.2), in the class of all unbiased estimating functions H(p) in (1.7), the  
optimum h*, that is h* satisfying (1.8), is given by  

h *  = E (yi — Ox; ) ai / ~;, 

i E s  

ii-  being the inclusion probability given by (1.10). Thus the optimum estimating equation  
here is  

E (.Yi — Ox;) «; /7r;  = 0.  
i Es  

The estimate 6, of the survey population parameter ON  in (1.4) and the superpopulation  
parameter 0 in (1.2) is given by  

E  

â 
— iEs 

s —  
E xi«i/Tri  
iEs  

This estimate was previously put forward by Brewer (1963) and Hâjek (1971) on some  

"plausibility" considerations.  
To explain the relationships of Theorem 1.1 above with earlier optimality results (e.g.  

Godambe 1982) we put a i  = 1 in (1.3) and therefore in (1.2). Further, we consider a super-
population model obtained from (1.2) by letting 0 = 00, a specified value. Now for any 
sampling design with inclusion probabilities r;  satisfying (1.11), in the class of all design un-
biased estimates of ON  (in (1.4) with a ;  = 1, i = 1, ..., N), the superpopulation expecta-
tion of the design variance is minimized for the estimate 

N  

	

e=  1 	
Yi  	x  ~ 	 ~~ ~ i  

	

X 	,r;  i E s 	 i =1  

(1.15)  

where X = E, x;. This "optimality" of the estimate e at 0 = 00  carries over to all values  
of 0 if the sampling design is such that  

(1.12)  

(1.13)  

(1.14)  

~ X; Probability 	s: 	— 
iE s 
 ; ~r  

!../ X;  

i=1  0} 

1. 	 (1.16)  

Now when the sampling design satisfies condition (1.16), then 8 S  in (1.14) is equal to e in 
(1.15). Thus all the earlier optimality results are covered by Theorem 1.1, and it does a great 
deal more: in many situations, such as for designs with 7r ;  « xi, the condition (1.16) implies  
a fixed sample size design. In contrast the "optimality" in Theorem 1.1 holds regardless  
of the fixed sample size design condition. That is, the "optimality" is available for random 
sample size designs, which are common in the nonresponse situations discussed subsequently.  
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2. NONRESPONSE ANI) OPTIMALITY 

Suppose a sample s is drawn from the survey population P, using a sampling design p. 
Suppose because of nonresponse the variate values y, are available only for the subset s' Cs; 
s — s' are the non-respondents. Thus now the data instead of XS  in (1.1) are 

Xs.s• = (s, s ' , ( (i,y; ): i E s' ) ). 	 (2.1) 

We may now consider two problems of estimation: 

(I) If there were no nonresponse, that is if all the data XS  in (1.1) where available, we 
would have estimated the survey population parameter ON in (1.4) by solving the op-
timum estimating equation given by (1.12), namely h* = O. When the hypothetical 
data XS  are replaced by Xs.s,  in (2.1), one may try to estimate h* with some function 
h' (Xs,s')• This is in line with a suggestion of Rubin (1976). Following (1.7) we define 
the class of unbiased estimating functions h' (for h*, given the sample s) as 

H' (p,.,$) = (h': E(h' — h*Is) = 0, for all y & 0); 	 (2.2) 

the `.' in H' indicates that the class H' would be specified only after the response mechanism 
is specified. Again we define h'* as the optimum estimating function in H' in (2.2), if 
h' * E H' and if under the model (1.2), EE(h' *) 2  < EE(h' *) 2  for all h' E H' . 

(II) Alternatively we could try to estimate the survey population parameter ON directly, 
that is without estimating h* as in (I) above, from the data Xs,s' . In line with (1.7) 
we define the class of unbiased estimating functions h" (XS.S' ): 

H"(p,.) = (h": E(h" — g) = 0, for all y & 0 ); 	 (2.3) 

as before the `.' in H" indicates that the class H", for its specification, requires the specifica-
tion of the response mechanism. Again h"* is called the optimum estimating function in H" if 
h"* E H" and if under (1.2), EE(h " * ) 2  s EE(h") 22  for all estimating functions h" E H". 

In H' (p,.,$) and H" (p,.) of (2.2) and (2.3) we have left the response mechanism `.' 
unspecified. Now we specify it. 

RESPONSE MECHANISM: If the individual `i' of the survey population P were includ-
ed in the sample s drawn, 

`i' would respond with known probability q, 
and would fail to respond with probability 1 —q;, 	 (2.4) 

i = 1, ..., N; weassume q;  > 0, i = 1, ..., N. 
The response mechanism q = (q 1  , ..., qN ) in (2.4) completely characterizes the class 

H' (p,.,$) in (2,2) as H' (p, q, s) and H"(p,.) in (2.3) as H" (p, q). 
The case (I) above is implemented by the following Theorem 2.1 and the remaining 

Theorems 2.2, 2.3 and 2.4 implement the case (II). 
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Theorem 2.1. For any sampling design p satisfying (1.11), and for any sample s, in the 
class of estimating functions H' (p, q, s) in (2.2) under the superpopulation model (1.2) 
EE{ h') 2 1s )  is minimized for h' = h'* where 

h'*  = 
L.I (yi — BXi)ai/ 7rigi; 

iE s' 

(2.5) 

that is h' * is the optimum estimating function in H' (p, q, s). 	❑  

Proof. As was emphasized in Section 1, the optimality of h* in (1.12) obtains even for 
random sample size designs and for any values of a, i = 1, ..., N in (1.3). Thus the proof 
of Theorem 2.1 is accomplished by replacing, in Theorem 1.1, the population `P' by `s' and 
a i  by a i /7ri, i E s and noting that now the inclusion probabilities are  q, i E s. ❑  

Theorem 2.2. Let Ti" be the subclass of H" in (2.3) such that any estimating function 
h" (XS,S-) in H" depends on (s,s') only through s' . Then for any sampling design p satisfy-
ing (1.11), in the class H" (p, q), under the superpopulation model (1.2), €E1 (h") 2 ) is 
minimized for h" = h"* where 

h "*  =  E (yi — exi)ai/ 7ri; 	 (2.6) 
!ES 

that is h"* is the optimum estimating function in H"(p, q). ❑  

Proof. This follows directly from Theorem 1.1, by replacing in it s by s' and the inclusion 
probabilities by 7ri  by ir i gi , i = 1, ..., N. 

Theorem 2.3. The estimating function h"* in (2.6) is the optimum estimating function 
in the entire class H" (p, q) given by (2.3). That is the result of the Theorem 2.2 is valid 
without the restriction to the subclass H" of H" . ❑  

Proof. For any given response probabilities q in (2.4) and the sampling design p, the statistic 
([ i, yi ) : i E s') is sufficient for the population vector y. More specifically, referring to (1.1) 
and (2.1), we have the conditional probability Prob(XS,S' I Xs' ,y) independent of y. Hence 
for any estimating function h" E H" (p, q) in (2.3) we have the estimating function E(h" 

I Xs' ) = h" E H" and EE (h" ) 2  s EE( h" ) 2 . This proves Theorem 2.3. 
When s = s', that is when there are no nonrespondents, do we still estimate h* by 

h'* = h"*? The obvious negative answer to this question is obtained, as shown by Godambe 
(1986), by an appropriate conditioning. The same reservation tends to be felt for cases where 
there are only a few nonrespondents, and again appropriate conditioning holds some pro-
mise of a resolution. In summary the formal optimality of  h'* = h" suggests that it is useful, 
and is likely to give good estimation when nonresponse is considerable and the relative values 
of the qi  are known. However, it can clearly be improved upon in situations when 
nonresponse is rare; improved versions will have natural conditional interpretations. Ap-
propriate conditioning becomes even more important in the case of unknown response pro-
babilities, as will be seen next. 

Now we assume that the survey population P is divided into k strata Pi, of sizes 
j = 1,..., k. Further suppose that the response probabilities are constant within each stratum. 
That is 

qi = q(J) for all i E Pi ; j = 1, ..., k. 	 (2.7) 
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Unlike in (2.4), where the response probalities were assumed to be known, now we assume 
that in (2.7), the response probabilities qU), j = 1, ..., k are unknown. Let po  denote the 
stratified sampling design, consisting of drawing from the stratum P i, a simple random sam-
ple (without replacement) of size n, j = 1, ..., k. Now as in (2.3) we define the class of 
unbiased estimating functions h1(Xs,s ) 

1-1; (p0 ) _ ( h ;: E(h 1  — g) = 0 for all y, B and qU ), j = 1, ..., k), 	(2.8) 

where qU )  are as in (2.7). Let sj = s' n P;  and I sJ I = nj, that is the size of the sample of 
respondents from the stratum Pi, j = 1, ..., k. 

Theorem 2.4. For the sampling design p o, in the class of estimating functions Hi (p0 ) 
in (2.8), under the superpopulation model (1.2), EE(hj) is minimized for h 1  = hi where 

hi = E E (yr — ( N ); k 

j=1 rEs)  

(2.9) 

that is h* is the optimum estimating function in H; (po ). 
Proof. The sampling distribution of the data Xs.s-  in (2.1) depends, in addition to the 

unknown population vector y, on the unknown (parameter) qU ), j = 1, ..., k. Now for 
every fixed y, the statistic nj, j  =  1, ..., k is completely sufficient for the parameter qU ) , 
j = 1, ..., k. Hence for a fixed y and 9, in (2.8), 

[E(h 1  - g) = 0, for all q(), j = 1,...,k] 

E[ (h i  — 	j = 1, ..., k) = 0, 	(2.10) 

ignoring sets of `0' measure. Further, conditional on the number of respondents nj from 
the stratum Pi, the probability of i E sl is (ni/Ni ) (npni ) = (nj /NJ ) . Hence for any 
estimating function h 1  E H 1  in (2.8) we have from Theorem 2.3. 

EE((hi) 2 I nj, j =1, ..., k) 	EE[ (h0 2 I nj, j = 1, ..., k), 	 (2.11) 

h; being given by (2.9). Theorem 2.4 is proved by taking the expectations of both sides of 
(2.11) for the variations of nj , j = 1, ..., k. 

The optimum estimating function hr in (2.9) has the following intuitive interpretation. 
If in (2.7), the response probabilities qU ) , j = 1, ..., k were known, by Theorem 2.3, the 
optimum estimating function, for the sampling design p0, would be given by 

k 

h" _ E E (yt= 9x;)a;/( N q v '). j =1  
Now when q U)  are unknown (which is the case in Theorem 2.4), we estimate them by 
(ni' /ni ), j = 1, ..., k. Substituting these estimates for q (J )  in h" yields the estimating func-
tion h; of (2.9). 

These estimates obtained by solving the equations h' * = 0, h"* = 0 and h; = 0 in (2.5), 
(2.6) and (2.9) respectively have previously been proposed, on plausibility considerations, 
by several authors. A good reference in this connection in Cassel et al. (1983). The assump-
tion (2.4) of "response probabilities" seems to have evolved gradually in the literature. An 
interesting early reference in this connection is Hartley (1946). 
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3. OPTIMAL INCLUSION PROBABILITIES 

It should be emphasized here that the "optimality" of the estimating function h"* in (2.6) 
was established under the superpopulation model (1.2), which does not specify the variance 
function. However the specification of the variance function in the model (1.2) would be 
required to obtain the "optimal" inclusion probabilities. We assume 

E (Yi — Ox; )  2  = a 2f(xi ), j = 1, ... ,  N, 	 (3.1)  

where f is a known function of x, and a 2  can be unknown. Now for the estimating function 
h"* in (2.6), (3.1), we have 

EE (h" *) 2  =  ~- 	
a 

i E(Ÿi — ex;) 2 a~ 	2 E f(xi) «2  
L  ~ 1=1 	igi 	 ~igi 1=1 

(3.2)  

In (3.2), the response probabilities q;  as said in (2.4) are given (fixed) numbers. However, 
(a sampling design with) the optimal inclusion probabilities can be obtained by minimizing 
EE(h"* )  2  in (3.2) under a restriction, either (A) or (B). 

(A): E 	= constant, 
i=1 

(B): E 	= constant  
i =1  

(3.3)  

In (A) we hold the average size of the sample s fixed, for El s I = E^'ir ; . In (B) we hold  
fixed the average size of the effective sample s' , for El si = q ; . Now since the qi  are 
fixed numbers we have for minimizing EE(h"*) 2  in (3.2), respectively, 

(A):  7r1 a  f(xi)   1/2 a;,  
qi  

~./ (xi)) 1/2 

(B)~ ~i a 	ai.  
qi  

Denoting by n' the size of the effective sample s', that is s'i = n', we have from (B) in (3.4),  

(f(xi))1/2a1 
	E (n' ) 

71' = 	 \ 	 , i = 1 , ..., N. 
Eli'  (f(x1)) 1/2 ai) 	gi  

Further for a fixed sample size design such that 

Probability ts: Is'  # n) = 0,  

we have from (3.5). 

(3.4)  

(3.5)  

,1 

i =1  

= n =  (f(  `- 	xi ))  Ni 	'i_ a; 	1  E 	E(n '  ). 
i-1 (E~ (J(xi)) '/ ai) 	qi  

(3.6)  



E 
E(n') 	i E 

PJ (./ (xr) )  1/2Q,i 

n•= 	
W

,j = 1,..., k. 
q 	

i E P U(xi)) t/2«i~ 
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As a special case, when all the response probabilities qi, i = 1, ..., N are equal, qi  = q say, 
i = 1, ..., N, in (3.6),  

n = E(n 1 )/q; 	 (3.7)  

for instance if q = 1/2, the sample size of the (initial) samples should be double the expec-
tation of the effective sample (s') size! 

Now we assume the survey population P to be divided into strata Pi, = 1, ..., k so that 
the response probabilities in each stratum are constant, that is they satisfy (2.7). For a stratified 
sampling design consisting of drawing a sample of size ni  from the stratum Pi, j = 1, ... k 
we have from (3.5). 

If (f(xi ) ) 1/2 « i  are constant for i = 1, ..., N, it is clear from (3.8) that optimal allocation 
implies drawing a relatively larger sample from the stratum with smaller response probabili-
ty. Actually in this situation 

E(ni ) = E(n') /k 

where n i' is the size of the effective sample si from the stratum Pi, j = 1, . . . , k.  
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Basic Ideas of Multiple Imputation for Nonresponse 
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ABSTRACT 

Multiple imputation is a technique for handling survey nonresponse that replaces each missing value 
created by nonresponse by a vector of possible values that reflect uncertainty about which values to 
impute. A simple example and brief overview of the underlying theory are used to introduce the general 
procedure. 

KEY WORDS: Survey nonresponse; Proper imputation methods; Multiple imputation. 

1. INTRODUCTION 

Any statistician with experience in the field of surveys knows that essentially every survey 
suffers from some nonresponse. That is, in practical surveys, some items in the survey in-
strument are not answered by all units included in the survey. Commonly, the items likely 
to be unanswered are the more sensitive ones, such as those concerning personal income. 
Because nonresponse creates missing values, the complete-data statistics that would have been 
used in the absence of nonresponse can no longer be calculated. An obvious desire of both 
the data collector and the data analyst is to get rid of the missing values and thereby restore 
the ability to use standard complete-data methods to draw inferences. 

1.1 Imputation 

It is not surprising, therefore, that a very common method of handling the missing values 
created by nonresponse is to fill them in, or impute them. That is, when using imputation 
to handle nonresponse each missing value is replaced with a real value. Many different pro-
cedures have been proposed for imputation, for instance, filling in the respondents' mean 
for that variable or a value predicted from the modelling of the missing variable given observed 
variables using respondent data; as a specific example, when the missing value is personal 
income, a linear regression model predicting log(income) from demographic characteristics 
such as age, sex, education and occupation might be regarded as reasonable. 

1.2 Advantages and Disadvantages of Single Imputation 

In addition to the obvious advantage of allowing complete-data methods of analysis, im-
putation by the data collector (e.g. the Census Bureau) also has the important advantage 
of being able to utilize information available to the data collector but not available to an 
external data analyst such as a university social scientist analyzing a public-use file. This in-
formation may involve detailed knowledge of interviewing procedures and reasons for 
nonresponse that are too cumbersome to place in public-use files, or may be facts, such as 
street addresses of dwelling units, that cannot be placed on public-use files because of con-
fidentiality constraints. This kind of information, even though inaccessible to the user of 
a public-use file, can often narrow the possible range of imputed values. 
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Massachusetts, 02138, U.S.A. 
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Just as there are obvious advantages to imputing one value for each missing value, there 
are obvious disadvantages of this procedure arising from the fact that the one imputed value 
cannot itself represent any uncertainty about which value to impute: If one value were really 
adequate, then that value was never missing. Hence, analyses that treat imputed values just 
like observed values generally systematically underestimate uncertainty, even assuming the 
precise reasons for nonresponse are known. Equally serious, single imputation cannot repre-
sent any additional uncertainty that arises when the reasons for nonresponse are not known. 

1.3 Multiple Imputation to the Rescue 

Multiple imputation, first proposed in Rubin (1977, 1978), retains the two major advan-
tages of single imputation and rectifies its major disadvantages. As its name suggests, multi-
ple imputation replaces each missing value by a vector composed of M ? 2 possible values. 
The M values are ordered in the sense that the first components of the vectors for the miss-
ing values are used to create one completed data set, the second components of the vectors 
are used to create the second completed data set and so on. The first major advantage of 
single imputation is retained with multiple imputation, since standard complete-data methods 
are used to analyze each completed data set. The second major advantage of imputation, 
that is, the ability to utilize data collectors' knowledge in handling the missing values, is not 
only retained but actually enhanced. In addition to allowing data collectors to use their 
knowledge to make point estimates for imputed values, multiple imputations allow data col-
lectors to reflect their uncertainty as to which values to impute. This uncertainty is of two 
types: sampling variability assuming the reasons for nonresponse are known, and variability 
due to uncertainty about the reasons for nonresponse. Under each posited model for 
nonresponse, two or more imputations are created to reflect sampling variability under that 
model; imputations under more than one model for nonresponse reflect uncertainty about 
the reasons for nonresponse. The multiple imputations within one model are called repeti-
tions and can be combined to form a valid inference under that model; the inferences under 
different models can be contrasted to reveal sensitivity of answers to posited reasons for 
nonresponse. 

Before reviewing some more general results in Section 3, Section 2 illustrates essential ideas 
in a highly artificial example used in Rubin (1986a), which is a comprehensive treatment of 
multiple imputation. Other references on multiple imputation include Rubin (1979, 1980, 
1986b), Herzog and Rubin (1983), Li (1985), Schenker (1985), Rubin and Schenker (1986), 
and Heitjan and Rubin (1986). 

2. AN ARTIFICIAL EXAMPLE ILLUSTRATING MULTIPLE IMPUTATION 

Suppose we have taken a simple random sample of n = 10 units from a large population. 
The objective of the survey is to estimate Y the  mean of Y in the population. We know the 
mean value of a covariate X in the population, and the survey attempts to record both X 
and Y for each of the n units included in the sample. 

Table 1 presents the observed values of (Y, X) for the ten units in the sample where the 
question marks indicate missing Y data due to nonresponse. 

2.1 Multiply Imputing for the Missing Values 

Suppose the missing values in Table 1 are to be multiply imputed using two values drawn 
under each of two models (i.e. two repetitions per model). In general, any number of models 
can be used with any number of repetitions within each model. Model 1 is an "ignorable" 
model for nonresponse; ignorable is defined precisely in Rubin (1976), but essentially it means 
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that a nonrespondent is only randomly different from a respondent with the same value of 
X. Model 2 is a nonignorable model and posits a systematic difference between respondents 
and nonrespondents with the same value of X. The repeated imputations under each model 
are based on a simple procedure closely related to the hot-deck, which can be improved upon 
but is useful to illustrate ideas. 

For each nonrespondent, the two closest matches among the respondents are found, where 
the distance for matching is defined by the values of X. For the first nonrespondent, unit 
2, the two closest matches are units 1 and 3, and for the second nonrespondent, unit 4, the 
closest matches are 3 and 5. The repeated imputations are created by drawing at random 
from the two closest matches. For the ignorable model, we simply impute the value Y pro-
vided by the matching respondent: the first two columns of Table 2 give the result. For the 
nonignorable model, we suppose that the nonresponse bias is such that a nonrespondent will 
tend to have a value of Y 20% higher than the matching respondent's value of Y: the last 
two columns of Table 2 give the result where the Y values have been rounded to the nearest 
integer. The repeated imputations within each model allow the user to draw a valid inference 
under that model. The use of two models, an ignorable one and a nonignorable one, allows 
the display of sensitivity of inference to assumptions about nonresponse. Generally such 
assumptions are untestable using the data at hand. 

Table 1 
Observed Data 

Unit Y X 

1 10 8 

2 ? 9 

3 14 11 

4 ? 13 

5 16 16 

6 15 18 

7 20 6 
8 4 4 

9 18 20 

10 22 25 

Table 2 
Multiple Imputations for Data of Table 1 

Model 1 	 Model 2 
Repetition 	 Repetition 

1 2 1 2 

Unit 2 10 14 12 17 

Unit 4 16 14 19 17 



40 	 Rubin: Multiple Imputation 

2.2 Analyzing the Resultant Multiply-Imputed Data Set 

Each set of imputations, that is each column of Table 2, can be used with the incomplete 
data in Table 1 to create a completed data set. Since there are four sets of imputations, four 
completed data sets can be created; these are displayed in Tables 3 to 6. Each completed 
data set is analyzed just as if there had been no nonresponse. 

Assume that with complete data, the ratio estimator "Oa would be used with associated 
variance SE2 , where Xis the known mean of X in the population, say 12, y  and z are the 
means of Y and X in the random sample of n units, and 

SE2 	 — X,y/x) 2 /[n(n — I) ] 

Table 3 
Complete Data Set 1 (Model 1, Rep. 1) 

For Multiply Imputed Data Set of Tables 1 and 2 

Unit Y X 

1 10 8 
2 10 9 
3 14 11 
4 16 13 
5 16 16 
6 15 18 
7 20 6 
8 4 4 
9 18 20 

10 22 25 

means 14.5 13 

Table 4 
Complete Data Set 2 (Model 1, Rep. 2) 

For Multiply Imputed Data Set of Tables 1 and 2 

Unit Y X 

1 10 8 
2 14 9 
3 14 11 
4 14 13 
5 16 16 
6 15 18 
7 20 6 
8 4 4 
9 18 20 

10 22 25 

means 14.7 13 
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Table 5 

Complete Data Set 3 (Model 2, Rep. 1) 
For Multiply Imputed Data Set of Tables 1 and 2 

Unit Y X 

1 10 8 
2 12 9 
3 14 11 
4 19 13 
5 16 16 
6 15 18 
7 20 6 
8 4 4 
9 18 20 

10 22 25 

means 15 13 

Table 6 

Complete Data Set 4 (Model 2, Rep. 2) 
For Multiply Imputed Data Set of Tables 1 and 2 

Unit Y X 

1 10 8 
2 17 9 
3 14 11 
4 17 13 
5 16 16 
6 15 18 
7 20 6 
8 4 4 
9 18 20 

10 22 25 

means 15.3 13 

Table 7 
Ratio Estimates and Associated Variances of Estimates 

for the Complete Data Sets of Tables 3-6 

Model 1 	 Model 2 
Repetition 	 Repetition 

1 2 1 2 

Estimate 
Variance 

13.38 
2.96 

13.57 
3.19 

13.85 
3.38 

14.12 
3.84 
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Table 8 
Combined Estimates and Variances for the Multiply 

Imputed Data Sets of Tables I and 2 

 

Model 1 Model 2 

13.98 
3.66 

Estimate 
Variance 

13.48 
3.10 

where the sum is over the units in the sample. Table 7 presents the estimates and variances 
associated with each of the four completed data sets given in Tables 3-6. 

The two answers obtained under the same model can be combined to obtain one inference 
for Y under each model. The results are displayed in Table 8: the estimate is the average 
of the estimates and the variance associated with this estimate has two components: (i) the 
average within-imputation variance associated with the estimate and (ii) the between-
imputation variance of the estimate. Thus, under Model 1, the estimate is 
(13.38 + 13.57)/2 = 13.48; the associated estimated average within variance is (2.96 + 
3.19)/2, and the associated estimated between variance is [ (13.38 - 13.48) 2  + (13.57 - 
13.48) 2 )]. The estimated variances are combined as: (estimated total variance) = (estimated 
average within variance) + (1 + M -1   ) x (estimated between variance), where the factor 
(1 + M - ') multiplying the usual unbiased estimate of between variance is an adjustment 
for using a finite number of imputations. The associated 95% interval estimate for Yis (10.0, 
16.9) under Model 1 and (10.2, 17.7) under Model 2. In practice, better intervals can be formed 
by calculating degrees of freedom as a simple function of the variance components and us-
ing the 95% points appropriate to the corresponding t-distribution; when either M is large 
or the between variance component is small relative to the total variance (as in this artificial 
example), the degrees of freedom will be large and thus the normal 95% points will be used. 
Details are given in Section 3. 

The essential feature to notice in this illustrative example is that only complete-data methods 
of analysis are needed. We merely have to perform the complete-data analysis that would 
have been used in the absence of nonresponse on each of the completed data sets created 
by the multiple imputations. The resultant answers under each model are then easily com-
bined to give one inference under each model. Although not illustrated here, diagnostic 
analyses using complete-data techniques can be applied to each completed data set; Heitjan 
and Rubin (1986) provides several examples. 

3. GENERAL PROCEDURES 

The example in Section 2 illustrated methods for creating multiple imputations and analyz-
ing the resultant multiply-imputed data set in a special case. We now outline the methods 
needed for general practice. 

3.1 Proper Imputation Methods 

Multiple imputations ideally should be drawn according to the following general scheme. 
For each model being considered, the M imputations of the missing values, Y,,, ;S , are M 
repetitions from the posterior predictive distribution of Y„,,,, each repetition being an 
independent drawing of the parameters and missing values under an appropriate Bayesian 
model for the posited response mechanism. In practice, implicit models such as illustrated 
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in Section 2 can often be used in place of explicit models. Both types of models are illustrated 
in Herzog and Rubin (1983), where repeated imputations are created using an explicit regres-
sion model and an implicit matching model, which is a modification of the Census Bureau's 
hot-deck. 

Procedures that incorporate appropriate variability among the repetitions within a model 
are called proper, which is defined precisely in Rubin (1986a). The essential idea of proper 
imputation methods is to properly reflect sampling variability when creating repeated im-
putations under a model. For example, assume ignorable nonresponse so that respondents 
and nonrespondents with a common value of X have Y values only randomly different from 
each other. Even then, simply randomly drawing imputations for nonrespondents' from mat-
ching respondents' Y values ignores some sampling variability. This variability arises from 
the fact that the sampled respondents' Y values at X randomly differ from the population 
of Y values at X. Properly reflecting this variability leads to repeated imputation inferences 
that are valid under the posited response mechanism. 

In the context of simple random samples and ignorable nonresponse, Rubin and Schenker 
(1986) study hot-deck imputation (i.e. simply randomly drawing imputed values from 
respondents), which is not proper, and a variety of proper imputation methods based on 
both explicit and implicit models, including a fully normal model, the Bayesian Bootstrap 
(Rubin, 1981), and an approximate Bayesian Bootstrap. The Approximate Bayesian Bootstrap 
(ABB) can be used to illustrate how an intuitive imputation method, such as the simple ran-
dom hot-deck, can be modified to be proper. 

3.2 Example of a Proper Imputation Method with Ignorable Nonresponse - The ABB 

Consider a simple random sample of size n with nR  respondents and nNR  = n — nR  
nonrespondents. The ABB creates M ignorable repeated imputations as follows. For 
f = 1, ..., M, create n possible values of Y by first drawing n values at random with replace-
ment from the nR  observed values of Y, and second drawing the nNR  missing values of Y 
at random with replacement from those n values. The drawing of the nNR  missing values 
from a possible sample of n values rather than the observed sample of nR  values generates 
appropriate between imputation variability, at least in large samples, as shown by Rubin 
and Schenker (1986). The ABB approximates the Bayesian Bootstrap by using a scaled 
multinomial distribution to approximate a Dirichlet distribution. 

3.3 Analysis - The Repeated Imputation Inference 

The general methods for analyzing a multiply imputed data set implicitly assume proper 
imputation methods have been used to create the multiple imputations. As illustrated in Sec-
tion 2, the repeated imputations within each model are analyzed as a collection to create 
one repeated-imputation inference as follows. Each data set completed by imputation is analyz-
ed using the same complete-data method that would be used in the absence of nonresponse. 
More precisely, let 6f, U,•,? = 1, ..., M be M complete-data estimates and their associated 
variances for a parameter 6 , calculated from the M data sets completed by repeated imputa-
tions under one model for nonresponse. The final estimate of 6 is 

6, = E 6f/ M. 
f=1 

The variability associated with this estimate has two components: the average within-
imputation variance, 

U y = E UP/ M, 
f=1 
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and the between-imputation component, 

B,, = EA — OM ) 2 /(M - 1) 

where with vector 8, (•) 2  is replaced by (•) T(•). The total variability associated with O M  is 
then 

TM  = UM  + (1 + M -' ) BM . 

With scalar O, the reference distribution for interval estimates and significance tests is a 
t-distribution. 

(0 —  OM ) T,ÿ "2 _, t v , 

where the degrees of freedom, 

u = (M — 1) ( 1 + [(1 +M -1 )BM/UM]-1 )2 

is based on a Satterthwaite approximation (Rubin and Schenker 1986 and Rubin 1986a). 
The within to between ratio  Um / BM  estimates the population quantity ( 1 — y) /7 , where 
y is the fraction of information about 0 missing due to nonresponse. In the case of ignorable 
nonresponse with no covariates, y equals the fraction of data values that are missing. 

3.4 Significance Levels for Multicomponent O 

For O with k components, significance levels for null values of O can be obtained from 
M repeated complete-data estimates, 6 e , and variance-covariance matrices, U e , using 
multivariate analogues of the previous expressions. 

A simple procedure described in Li (1985) and Rubin (1986a) that works well for M large 
relative to k is to let the p-value for the null value  00  of O be Prob ( Fk u > DM  } where 
Fk ,,, is an F random variable and DM  = (00  — OM ) Tit-I I   (00  — OM  )T with u defined by 
generalizing BM/UM to be the average diagonal element of BMUm-  I  , trace (BM  UM' ) /k. 
Better procedures are described in Rubin (1986a). Less precise p-values can be obtained directly 
from M repeated complete-data significance levels; also see Rubin (1986a). 

4. DISCUSSION 

4.1 Frequency Evaluations 

Although repeated imputation inferences are most directly motivated from the Bayesian 
perspective, they can be shown to possess good frequency properties. In fact, the definition 
of proper imputation methods means that in large samples infinite-M repeated imputation 
inferences will be valid. Since the finite-M adjustments are derived using approximations 
to Bayesian posterior distributions, however, deficiencies can arise with finite M. For exam-
ple, the large sample relative efficiency of O M  to O a, that is, the efficiency of the finite-M 
repeated imputation estimator using proper imputation methods relative to the infinite-M 
estimator in units of standard errors is (1 + y/M) - ''2 . Even for relatively large y, modest 
values of M result in estimates OM  that are nearly fully efficient. 
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4. 2 Confidence Coverage 

In large samples the confidence coverage of proper imputation methods using the t-reference 
distribution can be tabulated as a function of M, -y and the nominal level, 1 — a. Table 
9 is from Rubin (1986a) and is also partially reported in Rubin and Schenker (1986) and 
Schenker (1985). Also included are results for single imputation, where the between compo-
nent of variance is set to zero, since it cannot be estimated, and the reference distribution 
is the normal, since v cannot be estimated without BM . Even in extreme cases, two or three 
repeated imputations yield nearly valid confidence coverages; this is in striking contrast to 
using only one imputation. Even worse coverages for single imputation would have been 
obtained using best prediction methods, such as "fill in the mean". 

Table 9 

Coverage probabilities in % of interval estimates based on the t-reference distribution as a function 
of the number of proper repeated imputations, M >_ 2, the fraction of missing information, ry, and 
the nominal level, 1 — a. Also included for contrast are results based on single imputation M = 1, 
using the normal reference distribution with the between component of variability set to zero. 

ry 

1—a M .1 .2 .3 .4 .5 .6 .7 .8 .9 

1 46 42 38 34 30 26 22 18 12 
2 50 50 51 51 50 50 50 50 50 

50% 3 50 50 50 50 50 50 50 50 50 
5 50 50 50 50 50 50 50 50 50 
00 50 50 50 50 50 50 50 50 50 

1 75 70 65 60 54 48 41 33 23 
2 80 80 80 79 78 77 76 76 76 

80% 3 80 80 80 80 79 79 79 79 79 
5 80 80 80 80 80 80 80 80 80 
Oo 80 80 80 80 80 80 80 80 80 

1 86 82 77 72 66 59 51 42 29 
2 90 90 89 88 87 86 85 84 83 

90% 3 90 90 90 89 89 88 88 88 88 
5 90 90 90 90 90 90 89 89 89 
00 90 90 90 90 90 90 90 90 90 

1 92 89 85 80 74 67 59 49 35 
2 95 95 94 93 92 91 89 88 87 

95% 3 95 95 95 94 94 93 93 92 92 
5 95 95 95 95 95 94 94 94 94 
00 95 95 95 95 95 95 95 95 95 

1 98 96 94 91 86 80 72 61 45 
2 99 99 98 98 97 96 95 93 92 

99% 3 99 99 99 98 98 98 97 97 96 
5 99 99 99 99 99 99 98 98 98 
00 99 99 99 99 99 99 99 99 99 
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4.3 Significance Levels 

Work on accurately obtaining significance levels is at an early stage of development. Table 
10 is from Rubin (1986a) and is also partially reported in Li (1985). It indicates that if M > k 
and -y is modest, accurate tests can be obtained using DM . Better procedures are considered 
by Li (1985), Rubin (1986a) and in current thesis work by T.E. Raghunathan. 

Table 10 

Level in % of DM  with Fk, „ reference distribution as a function of: nominal level, a; number of com-
ponents being tested, k; number of repeated proper imputations, M; and fraction of missing informa-
tion, y . 

a = 1% a = 5% a= 10°Io 

k M y = .1 .2 .3 .5 .1 .2 .3 .5 .1 .2 .3 .5 

2 1.0 1.2 1.6 2.5 4.9 5.3 5.9 7.5 9.9 10.3 11.0 12.9 
3 1.0 1.0 1.0 1.3 4.9 4.9 5.0 5.5 9.9 9.8 10.0 10.9 

2 5 1.0 1.0 1.1 1.2 5.0 5.0 5.1 5.6 10.0 10.0 10.2 10.9 
10 1.0 1.0 1.1 1.2 5.0 5.1 5.3 5.7 10.1 10.2 10.4 11.0 
25 1.0 1.0 1.0 1.0 5.0 5.0 5.0 5.0 10.0 9.9 9.9 10.0 
50 1.0 1.0 1.0 1.0 5.0 5.0 5.0 5.0 10.0 9.9 9.9 10.0 

100 1.0 1.0 1.0 1.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.1 

2 1.0 1.1 1 .3 1.7 5.1 5.3 5.6 6.3 10.3 10.6 11.1 12.0 
3 1.0 1.0 1.0 1.0 5.1 5.2 5.3 5.7 10.2 10.5 10.9 12.3 

3 5 1.0 1.0 1. I 1.3 5.0 5.2 5.4 6.2 10.1 10.3 10.8 12.2 
10 1.0 1.0 1.1 1.2 5.0 5.2 5.3 5.9 10.1 10.3 10.6 11.6 
25 1.0 1 .0 1.1 1.2 5.0 5.1 5.2 5.6 10.1 10.2 10.4 10.9 
50 1.0 1.0 I .0 1.0 5.0 5.0 5.0 5.1 10.0 10.0 10.0 10.2 

100 1.0 1.0 1 . 0 1.0 5.0 5.0 5.1 5.1 10.0 10.0 10.1 10.2 

2 0.9 0.8 0.8 0.9 5.1 4.8 4.5 4.0 10.5 10.4 10.1 9.2 
3 1.0 1.0 1.0 0.9 5.2 5.5 5.7 6.1 10.5 11.3 12.1 14.4 

5 5 1.1 1.1 1.2 1.4 5.2 5.6 6.1 7.7 10.4 11.1 12.2 15.4 
10 1.0 1.1 1.2 1.5 5.1 5.3 5.6 6.9 10.1 10.4 11.1 13.1 
25 1.0 1.0 1 	. 	1 1.3 5.0 5.2 5.3 6.0 10.1 10.3 10.6 11.5 
50 1.0 1.0 1.0 1.1 5.0 5.1 5.1 5.4 10.0 10.1 10.2 10.7 

100 1.0 1.0 1.0 1.1 5.0 5.0 5.1 5.2 10.0 10.1 10.1 10.4 

2 0.8 0.5 0.3 0.1 5.1 4.0 2.9 1.5 10.8 10.1 8.5 5.4 
3 1.1 0.9 0.6 0.3 5.6 5.9 5.7 4.9 11.3 12.7 13.8 16.2 

10 5 1.1 1.2 1.3 1.4 5.4 6.3 7.4 11.0 10.7 12.4 14.8 22.7 
10 1.1 1.2 1.4 2.2 5.2 5.8 6.8 10.3 10.4 11.4 13.1 19.0 
25 1.0 1.1 1.2 1.6 5.0 5.2 5.6 7.1 10.0 10.4 11.0 13.4 
50 1.0 1.0 1.1 1.3 5.0 5.1 5.4 6.1 10.0 10.2 10.6 11.8 

100 1.0 1.0 1.1 1.2 5.0 5.2 5.3 5.8 10.1 10.2 10.5 11.3 
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5. CONCLUSION 

In conclusion, multiple imputation is a very promising new tool for helping to handle 
nonresponse in surveys. Although much work remains to be done before it will become a 
commonplace method, many interesting theoretical and practical results suggest effort ex-
pended in its development will be well rewarded by important contributions to applied work. 
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ABSTRACT 

Statistics Canada has undertaken a project to develop a generalized edit and imputation system, the 
intent of which is to meet the processing requirements of most of its surveys. The various approaches 
to imputation for item non-response, which have been proposed, will be discussed. Important issues 
related to the implementation of these proposals into a generalized setting will also be addressed. 

KEY WORDS: Modularity; Prototyping; Donor imputation; Regression models. 

1. GENERALIZED SYSTEMS 

Due to resource constraints imposed on surveys in recent years, especially in the area of 
development, the idea of generalized software has received considerable support. By generalized 
software, it is meant a set of computer programs, tied together into one system, which allows 
the user to select a suitable approach to the problem, from among several alternatives. For 
example, a user has a data file from which a sample of records is to be selected. A generalized 
sample selection system would offer the user the choice of various sampling schemes such 
as simple random or unequal probability sampling (with or without replacement), systematic, 
stratified, or cluster sampling. 

A genuinely generalized system is, almost by definition, a complex object. The concept 
of modularity is an important device for the reduction of complexity, by allowing the overall 
task to be split into a number of simpler sub -tasks. Each of the sub -tasks, or functions, is 
performed sequentially. The user is offered several alternatives for each sub-task. Therefore, 
not only is the overall task able to be split into smaller, more manageable components, but 
also each sub-task can be performed in more than one way. 

Figure 1 demonstrates how the edit and imputation task can be split into three sub -tasks. 
These three sub-tasks are editing, identification of fields to impute, and imputation. Each 
of the boxes, or modules, in a row employ different approaches to that particular sub-task. 
For example, Cl could employ some type of donor imputation, C2 could employ the imputa-
tion of a mean value, and so on. The user would select one of the modules from each of 
rows A, B, and C. 

It should be noted that this representation of a generalized system for edit and imputation 
is not the only possibility. In fact, the actual proposal for a developmental project actually 
contains five sub-tasks, as opposed to the three exemplified here. This representation is given 
only for simplicity. 

Each sub-task, or row in the example, would be a clearly defined function. The input files 
required, and the output files created, must have prespecified formats. This allows the user 
to concentrate on the choice of modules in each row, knowing that the system can handle 
the "housekeeping". (This refers to file handling and other mundane details about which the 
user would prefer not to worry.) Even though the system may accept all possible combina-
tions of choices of modules, some combinations may not be desirable or even logically valid. 
It is usually the responsibility of the user to ensure that the pieces  fit  together. 

Philip Giles and Charles Patrick, Business Survey Methods Division, Statistics Canada, Tunney's Pasture, Ottawa, 
Ontario, Canada, K1A OT6. 
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Figure 1. Generalized System Example - Edit and Imputation 

A modular approach to the development of a processing system has an important conse-
quence. From a certain point of view, the system is always "under development", since ad-
ditional modules embodying new approaches and enhancements to "old" modules, can 
always, and in principle should, be added. This open-endedness also means that the very 
important concept of prototyping can be easily accommodated. Prototyping is an approach 
wherein a subset of modules are developed initially. The system would then be available to 
some of the users. Subsequently, additional modules are developed to meet the requirements 
of additional users. Thus, the key advantage of prototyping and modularity is that piecemeal 
improvements to the system are deliberately anticipated and more easily accomplished. A 
minimal, but imperative, requirement of such an approach is that a framework (as shown 
in Figure 1) and a host environment (format of data files and programming language) must 
be carefully defined and specified very early in the overall developmental process. 

In addition to the foregoing developmental advantages, others may be gained after the 
system is in place. The user has considerable flexibility in choosing the path to proceed. If 
several alternatives seem equally viable, one can use historical data to choose among them, 
by testing the various alternatives prior to data collection. This can be accomplished without 
an undue expenditure of effort. Once the generalized system is developed there is a reduc-
tion in resource requirements for each of its users, with a corresponding reduction in elapsed 
time to implementation. 

There are some disadvantages to following a generalized route. The utilization of generaliz-
ed software in a production environment may be less efficient than the corresponding custom -

designed system. The initial resource requirement will be higher for a generalized system as 
compared to a customized system. However, this higher cost must be assessed against the 



Survey Methodology, June 1986 	 51 

substantially higher costs of repeated custom-designed implementations. Nor is it reasonable 
to expect a generalized system to satisfy every specific requirement. In this situation, the 
user has two options. The first option is to develop a user-written module. This would not 
require the same degree of effort as a complete customization. However, if this occurs fre-
quently, the purpose of the generalized system is defeated. The second option is for the user 
to modify the specifications in order to fit the generalized system mold. If the system has 
been well-designed, any required compromise should not result in a serious deterioration 
of data quality. It should also be recognized that compromises to the original specifications 
are usually and frequently required during the development of a customized system. 

2. BACKGROUND TO IMPUTATION 

The term "imputation", in this document, refers to a certain class of procedures for 
handling non-response. The input is a data captured file. The imputation procedure creates 
a file with individually "clean" records; a "clean" record being one which has no missing 
values and which satisfies all the specified edits. In order to create a clean record, a value 
must be estimated for each missing value. 

The edits, specified by the user, are logical constraints on the values that each variable 
can assume. The set of edits, as a whole, define the acceptance region for the data. For 
categorical data, an edit is specified as a set of combinations of acceptable data values. The 
acceptance region can be represented as a set of lattice points in N-space. For numerical data, 
an edit is a linear equality or inequality. The requirement of linearity is not unduly restric-
tive, since a non-linear edit can be made linear by either algebraic manipulation or by adding 
supplementary variables, which are suitably defined non-linear functions of survey variables. 
The acceptance region for numerical data is a set of convex regions in N-space. The reason 
that there may be more than one convex region is that conditional edits are possible. Condi-
tional edits are edits which pertain to only a subset of records. For example, the edits which 
are relevant to a particular record may be very different, depending on whether the variable 
Sex is recorded as Male or Female. 

If one or more edits fail for a particular record, it may not be obvious which variable(s) 
is/are in error, and, by implication, to be imputed. For example, a failed edit is A + B <_ C. 
The data record under consideration has data values A = 10, B = 5, C = 12. There are 
seven combinations of variables to change which would result in a clean record. These are 
A, B, C, A & B, A & C, B & C, and, A & B & C. Without any other information or deci-
sion rule, each of these choices is equally valid. The problem of how to decide which variable(s) 
to impute will not be discussed in this document. It will be assumed that, for each record, 
the variable(s) to impute have been identified. No distinction is made between variables to 
impute due to missing values and variables to impute due to edit failures. 

3. PROPOSED IMPUTATION TECHNIQUES 

This section is comprised of four sub-sections, which define all the proposed imputation techni-
ques. These are Deterministic Imputation, Donor Imputation, Regression Models, and Other 
Imputation Estimators. The use of regression models and the section on other estimators 
is restricted to numerical data. The other two sub-sections apply both to numerical and 
categorical data. 

Almost all imputation techniques can be formulated in a prediction framework, describ-
ed by Rubin (1976), as follows. A joint distribution, f(X i , ..., XN), summarizing the 
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statistical behavior of the population of complete records is specified. This can be done whether 
the individual variables are quantitative or qualitative. Without loss of generality, for a record 
i which requires imputation, the N variables can be partitioned into X 1 , ..., X,,, 1 , which re-
quire imputation, and X,,,1+  1 , ..., XN, which do not require imputation. A conditional 
distribution f (X 1 , ..., X,,, 1  x,,, r+ i , ..., xN ) can be derived. Imputed values, y,, ..., y, n . , are 
chosen for X 1 , ..., X,,, i  from the set. 

i yl, ..., ymi  f(yl, ..., ym i  I  x„„+1 , ..., xN) > 0 1 

Various selection mechanisms can be employed. However, as stated above, some of these 
are relevant only to certain types of data variables. 

It should be noted that there is nothing new or radically different in these proposals. They 
are based on work done previously, both in Statistics Canada and outside. The discussion 
on donor imputation is based on Fellegi and Holt (1976). The model-based approach to deter-
mining a value to impute is discussed by Little (1982). Other related papers of interest are 
Sande (1976), Kalton and Kasprzyk (1982), and Kalton and Kish (1981). 

3.1 Deterministic Imputation 

The first type of imputation is called deterministic imputation. This occurs when only 
one value can satisfy the edits. If more than one variable is to be imputed for a particular 
record, a deterministic solution may be possible for some, or all, variables. The check for 
determinacy should be done before proceeding to other imputation procedures. 

Deterministic imputation may arise in very simple, and easily detectable situations. For 
example, suppose that there is an edit A + B = 10. The record under consideration requires 
A to be imputed and B has value 6. Obviously, A = 4 is the only value which will satisfy 
the edit. Another example demonstrates this for categorical variables. Suppose an edit is 
stated as "If the relationship to the household reference person is wife, then sex must be 
female." If the reference record has "wife" as the value of "relationship to the household 
reference person", and the variable "Sex" requires imputation, then the only valid imputed 
value is Sex = Female. 

However, a typical survey situation will have several edits, rather than just one. This may 
mean that an existing deterministic solution may not be apparent. The procedure for check-
ing for deterministic imputation is to find the reduced acceptance region defined by the ac-
tive edits and the "good" data values. The active edits are defined as the subset of edits 
in which the variable(s) to be imputed are participant. This can also be expressed in the nota-
tion of the prediction framework given at the beginning of Section 3. The conditional distribu-
tion f (X1 , ..., X,,, I x,,, ► +  ., ... , xN ) will specify a unique value for some or all of the 
variables X I , ..., 

An example serves to illustrate the procedure for identifying deterministic imputation. 
Note that while the example is written with numerical variables, an analogous situation ex-
ists for categorical variables. 

There are three edits: 

X + Y  <_ 16, 

Y+ Z <_ 4, 

X -3Z< 8. 
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The reference record has values 

X = 11 and Y = 3. 

The variable Z is to be imputed. 

It is not apparent whether or not a determinancy exists. This first step is to consider all 
active edits. In the example, there are two edits which contain the variable Z. 

Y+ Z <— 4, 

X- 3Z<_8. 

Next, the known values of X and Y are inserted into these edits, and the reduced accep-
tance region is determined. 

3+ Z <-4, 

11 —3Zs8. 

Solving these inequalities gives the following solution. 

Z s 1, 

Z >_ 1. 

It is now obvious that Z = 1 is the only possible valid imputed value. 
In most "real-life" situations, the incidence of deterministic imputation should be low. 

The contrary would indicate that the edits are more restrictive than necessary or desirable, 
and should lead to a re-examination of the edit specifications. However, in the sense that 
it reduces the imputation problem, deterministic imputation is a useful first step. 

3.2 Donor Imputation 

Donor imputation is a method which pairs each record requiring imputation, the can-
didate record, with one record from a defined donor population. In order to determine the 
value to impute, one approach is to directly copy the value from the donor record onto the 
candidate record. For numerical variables, if suitable auxiliary information is available, more 
complex methods may be used to determine the value to be imputed. Further discussion on 
imputation estimators for donor imputation is given in Section 3.3. 

Usually, the donor population is defined as all records in the current survey which have 
no variables to be imputed. Referring to the prediction framework described at the beginn-
ing of Section 3, then this situation implies that f (X 1 , ..., X,,.) is the empirical probability 
function. However, other approaches to defining the donor population are possible. For the 
remainder of the discussion on donor imputation, it will simply be assumed that a donor 
population has been defined. 

Donor-candidate pairs are formed using matching variables. Matching variables are defined 
as variables which do not require imputation on the candidate record and are "highly cor-
related" with the variable(s) requiring imputation. Preferably, the matching variables should 
also have "low correlation" with each other. Two matching variables with "high correla-
tion" would have the same discriminatory power as one alone, but would have the effect 
of doubling the weight given to one alone. 
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For categorical variables, a donor record is chosen, using some random process, from 
amongst potential donor records having the same values for the matching variables to those 
for the candidate record. Since numerical variables can assume many more values than 
categorical variables, it is very unlikely that an exact match on matching variables would 
be possible. Therefore, for numerical data, a distance function is used to define similarity. 
This distance function is a function of the matching variables on the candidate and potential 
donor records. The chosen donor is the record with minimum distance from the candidate 
record. Usually, the matching variables are transformed for the purpose of distance calcula-
tions in order to remove the effect of scale in which the variable is recorded. For example, 
it would be quite worrisome to the user if the formation of the donor-candidate pairs was 
dependent on whether a length variable was recorded in metres or feet. The proposed transfor-
mations and distance functions are discussed below. 

The matching variables to be used can be a user input, or determined by an automated 
procedure. Usually, due to time considerations, all decisions must be made prior to data 
collection. Therefore, if the determination of matching variables is a user input, the user 
must specify the matching variables for each pattern of variables to be imputed. If there 
are N variables on the file, the user must make (2**N) — 2 input specifications. Obviously, 
the value of N does not have to be very large in order for this approach to become un-
manageable. In order to reduce this number, the matching variables may be specified by 
stratum. All candidate records in a particular stratum would use the same matching variables. 
In this situation, it is possible (depending on how careful the user is in specifying the mat-
ching variables) that a particular candidate record may have a matching variable which re-
quires imputation. All in all, the user who inputs the matching variable specifications, is 
warned that this decision may result in a large increase in the work required. 

One possible approach for automatically determining the matching variables is proposed. 
This procedure can be used, analogously, for both categorical and numerical data. Basical-
ly, the procedure is as follows. At a minimum, the set of matching variables must contain 
the variables sharing in the edit rules with the variables to be imputed. As defined earlier, 
these are the active edits. This approach seems intuitively reasonable, since it is desirable 
that the matching variables be correlated with the variable(s) to be imputed. The variables 
in the active edits constrain the range of possible values to be imputed. This implies a type 
of dependence, or correlation structure. 

The use of this matching procedure, together with direct transcription, has one important 
consequence for categorical variables. All imputed values are guaranteed to pass the edits. 
This is very important as it is required in order to create a clean record. Without this guarantee, 
the user must re-edit the records, and possibly adopt a secondary imputation procedure. For 
numerical data, similarity as defined by a distance function does not guarantee this outcome. 
However, the closer the distance between the donor and candidate record is to zero, the greater 
the probability that the imputed values will satisfy the edits. 

The determination of matching variables using this automated procedure can be illustrated 
by an example. 

There are five edits: 

I. A +B< a i , 

II. B — E <— aZ  

III. C + 2D+3E < a3 , 

IV. A+C+D <a4, 

V. A — 2B + C s as. 
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There are five survey variables A, B, C, D, E and a l , a2, a 3, a4, a5  are known scalars. 
The candidate record under consideration has variable B only to be imputed. 
The first step is to identify the active edits. In this example, there are three active edits. 

These are edits I, II, and V. 
The second step is to determine the active variables. The active variables are defined as 

all variables which are contained in at least one of the active edits. In the example, there 
are four active variables: A, B, C, E. Note that, by definition, the active variables contain 
all variables to be imputed. 

The third step is to determine the matching variables, as those active variables which do 
not require imputation. For this example, the matching variable are A, C, E. 

In addition to the determination of matching variables, donor imputation for numerical 
data requires the choice of a data transformation and the choice of a distance function. 

Two types of data transforms are proposed. For both of these, each variable is to be 
transformed independently. The two proposed transformations are a rank value transform 
and a location-scale transform. 

For the rank value transform, the values for each variable are sorted. Then, the rank values 
are divided by a suitable constant such that all values are in the range from zero to one. 
The transformed values are distributed uniformly in that range. 

The location-scale transform is of the form, 

Y T 	(y - a), 

	

where y 	is the transformed value, 

	

y 	is the original data value, 

a, b are user-specified parameters. 

Two popular choices for these constants are, one, that a be the sample mean and b be 
the sample standard deviation, and, two, that a be the sample minimum and b be the range 
of values in the sample. Other options may be possible. 

In choosing a data transform, there are robustness and outlier considerations. The rank 
value transform is very robust against changes in data values, and pulls outliers closer to 
the other data values. This may or may not be desirable. There are no bounds on the 
transformed values, using the location-scale transform with the mean and standard devia-
tion. These parameters are also sensitive to outliers. The choice of the minimum value and 
range would restrict the transformed values between zero and one. However, these are very 
sensitive to extreme values. One very large value could cause all of the transformed values, 
except one, to be virtually zero. 

In considering the choice of distance function, a family of distance functions are propos-
ed. These are the weighted VP norms, where p is a user-specified constant. The general form 
of these functions is 

r 

D( X, Y) = 	E wk l xk - ykI p 1/P 
, 

k=1 

where xk, yk  are the r matching variables on the two records, 

wk  are user-specified weights, 

p is a user-specified constant. 

1 
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The weights are used if one wishes some of the matching variables to contribute more 
to the distance calculation than others. The default values are for all weights to be set to one. 

Three particular choices of a value for p are of special interest, p = 1, p = 2, and p = co. 
For p = 1, this function calculates the city block distance. For p = 2, the Euclidean distance 
is calculated. The limiting case of this function, when p = co, yields the minimax distance. 
For this choice of p, the function is written as 

D(X, Y) = Max [wklxk — YkI]• 
Isk<_r 

One final point to be discussed about donor imputation is the concept of a "penalty" 
for donor usage. This penalty would reduce the number of times that a particular donor 
record is used. For donor imputation of categorical data, a donor record is selected from 
the donor population without replacement. This strategy has to be modified slightly if the 
size of the candidate population is greater than the size of the donor population. 

For numerical data, the distance function is modified by increasing the distance calcula-
tion according to the number of times a particular donor is used. One possible approach 
is to use D' (X, Y) to calculate distances, where 

D' (X, Y) = D(X, Y) x (1 + ud), 

where u is the "penalty" imposed by the user, 
d is the number of times that donor record has been chosen. 

An implication of the imposition of a penalty on the distance function, is that the choice 
of a donor record for each candidate record is now dependent on the order of the candidate 
records. 

3.3 Regression Models 

This section discusses imputation estimators which result from the use of regression models. 
For this discussion, only two models are used. These are: 

MODEL I : y;  = a + E;, 	Var(E ; ) = v 2 , 

MODEL II: y;  = (3x;  + e„ 	Var(E; ) = 

Note that these models are special cases of the more general formulation of regression 
models, which has the form 

y= + 

 E(E) = 0, V(E) = V 

Model II is used when auxiliary data is available. Otherwise Model I is used. Both models 
have one parameter to be estimated. Using least-squares, the parameter estimates are: 
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Before stating the various proposed estimators, some notation will be introduced. 

Let t 	be the subscript for time t, the present survey, 

yi, 	be the variable under study for unit i and time t; this is the value to be imputed 
for candidate records, 

xi, 	be the auxiliary variable (correlated with Y) for unit i and time 1, 

R 	be the subscript for all non-respondents at time t (i.e., yi, is known), 

NR be the subscript for all non-respondents at time t (i.e., yi, is to be imputed), 

C, D be superscripts which denote either a candidate or donor record, whenever the 
distinction is required. 

Several explanatory notes are required along with the notation. First, R and NR are as 
defined in the current survey, regardless of the reporting history of each record. Second, 
the values for the variables y;( ,_ I) , x;,, ..v, (1 _ 1)    may themselves have been imputed. The only 
restriction is that they are not missing. Third, the notation does not include the concept of 
imputation classes. Imputation classes are essentially post-strata, in that they define sets of 
records which are judged homogeneous within, and heterogeneous between groups. However, 
both the notation and the imputation estimators are readily extendible to include imputation 
classes. 

Thus, estimators can be classified according to: 
(i) the choice of model, I or II, 
(ii) the imputation group, and, 
(iii) the variables in the regression used to estimate the parameter. 
The data on the records in the specified imputation group are precisely the data used to 

estimate the parameter(s) in the model. This concept allows considerable flexibility. For ex-
ample, it could allow the preclusion of outliers from the calculation of the parameter estimate. 
After the parameter is estimated, it is used for prediction purposes to determine the imputed 
value. According to the notation, Y, is always the variable predicted. 

Based on the two models, eight imputation estimators are proposed. Even though there 
are eight proposed estimators, this list can be augmented in the future. These additional 
estimators could be derived, for example, by choosing other models, possibly incorporating 
more variables. 

Scanning the list of eight, one can see that these are the familiar imputation estimators 
that have been used traditionally. 

Estimator 1: The value from the previous survey for the same unit is imputed. y, ( ,- 1)  

Estimator 2: The mean value from the previous survey is imputed. ÿ ( ,_ i  ) 
Estimator 3: The mean value of all respondents to the current survey is imputed. YIR 

Estimator 4: The value is copied directly from the donor record to the candidate 
record, y° 

Estimator 5: A ratio estimate, using values from the current survey is imputed. 
.YIR 
_- Xit 
XtR 

Estimator 6: A ratio estimate, based on values on the donor and candidate records is 
imputed. 

D 
yit 
D Xit 
X it 
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Estimator 7: The value from the previous survey for the same unit, with a trend adjustment 
calculated from an auxiliary variable, is imputed. 
Yi((-I)  

X i(I - I ) 

Estimator 8: The value from the previous survey for the same unit, with a trend adjustment 
calculated from the change in reported values to variable Y, is imputed. 

Ÿ1R  

Y(r- 
I)RYi(,-I) 

It is interesting to contrast the difference in estimators when one fixes all classification 
items but one. For example, the difference between estimators one and two is due only to 
the difference in choice of imputation group, as is also the case for estimators three and 
four, and, estimators five and six. The difference between estimators one and seven is due 
only to the choice of model. The same is true for estimators three and five, and, estimators 
four and six. It should also be noted that estimators four and six are those used in donor 
imputation, which were discussed in Section 3.2. 

3.4 Other Imputation Estimators 

The choice of imputation techniques is dependent upon the assumptions made by the user 
about the non-responding population. When using donor imputation, one assumes that there 
are some respondents which are similar to each non- respondent. If one imputes the mean 
from the current survey, the assumption is that the mean value of the respondents is the 
same as the mean value of the non- respondents. Similarly, one can go through all the 
estimators and list the implied assumptions. The first estimator proposed in this section tries 
to ease the somewhat restrictive (and usually untrue) assumptions required in the previous 
section. It pays for this by being more complex. It is called the chain-link estimator, given 
by Madow and Madow (1978). 

The derivation of this estimator is described. First, by assuming that the rate of change 
(trend) of the non-responding and responding populations are the same as observed in the 
previous survey, the population mean of the variable Y for the non-responding population 
in the current survey is estimated. 

YNRI = yNR(1-1) ŸR1• 
ŸR(1-I) 

One then determines the imputed value according to the auxiliary variable. 

ŸNRI 

	

yi1 - 	 Xil 
XNRI 

	

YNR (1 - I ) 	YRT  

	

- 	 Xil 

	

XNRI 	yR(I- I ) 

Note that this amounts to a more complex application of the Regression Model approach 
discussed in Section 3.3. First, temporarily impute yi, = YNRI, as given above. Then, use 
Model II, and define the imputation group as being all non- responding records to the pre-
sent survey for variable Y. The response variable is Y,. The regressor variable is X,. The 
resulting estimator is as given above. 

Xi! 
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The second estimator proposed in this section can be used when one has data on variable 
Y for several previous surveys. It does not use auxiliary variables, or data from other records. 
The behavior of each non-respondent is considered independently of others. This method 
is called exponential smoothing. It is a standard econometric forecasting technique. There 
is one user-specified parameter. It allows the flexibility of changing the relative contribution 
of the various data values. Algebraically, the estimator is given by 

1—A 
Yit = 1—A i  

r-1 

E A' .Yi(1-r -1), 

r=0 

where 0 < A < 1, is prespecified. 

The closer A is to zero, the more weight is given to recent data. If t = 1, this reduces 
to imputing the value for the previous survey. 

4. PAST WORK IN STATISTICS CANADA 

Statistics Canada has made efforts in the past to develop a generalized edit and imputa-
tion system. Two of these will be highlighted, as they form the basis for the current pro-
posal. These are the CAN-EDIT system and the Numerical Edit and Imputation System 
(NEIS). 

4.1 CAN-EDIT 

CAN-EDIT is itself, not a completely generalized system. However, the methodology that 
it employed is. The system is based on the work by Fellegi and Holt (1976) on imputation 
for categorical data. It was developed for processing the 1976 and 1981 Canadian Censuses 
of Population and Housing. 

CAN-EDIT adopted a donor imputation approach. The matching variables were deter-
mined automatically, using the procedure described in Section 3.2. The CAN-EDIT system 
employed what it called primary and secondary imputation. If a candidate record could not 
be imputed in primary imputation, it was sent to secondary imputation. 

In primary imputation, all imputed values are taken from the same donor. The matching 
variables were determined based on all variables to be imputed. A record would fail primary 
imputation if no donor record had identical values on the matching variables. 

In secondary imputation, each of the variables to be imputed are treated independently 
and sequentially. The procedure for determining the matching variables is the same. However, 
by considering only one variable at a time, the number of matching variables will, in general, 
be less than under primary imputation. (There cannot be more, but the number may be the 
same). This implies that the potential donor population is larger. There are a few disadvan-
tages to secondary imputation, as compared to primary imputation. First, it is possible to 
choose, as a matching variable, a variable which is to be imputed. There is no value to match 
on. Second, this approach does not make use of the joint distributions of the variables. The 
imputed values for two variables may satisfy the edits, each may be a very valid value, but 
which may occur in the population in combination only rarely. 

4.2 Numerical Edit and Imputation System (NEIS) 

The NEIS is a first prototype of a generalized E&I system for numerical data. It was writ-
ten as a set of modules in the PSTAT statistical package. Subsequent prototypes have never 
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been developed. This system was developed by Gordon Sande (1979). It is felt that the 
methodology is very sound, and should be incorporated in a new system. However, PSTAT 
may no longer be a suitable software environment. The NEIS was used, in a production en-
vironment, by the 1981 Farm Energy Use Survey. The methodology was employed in the 
development of the 1981 Census of Agriculture processing system. 

The NEIS, similar to CAN-EDIT, used a donor imputation approach with matching 
variables determined automatically using the procedure described in Section 3.2. However, 
as explained in that section, the determination of matching variables in this fashion for 
numerical data will not always result in the imputation procedure producing a clean record. 
The strategy adopted to reduce this problem is to select the closest r donors. If the closest 
donor does not impute values which satisfy the edits, then the next closest donor is con-
sidered, and so on. 

The NEIS gave the user no choice of transformation or distance function. It used the 
rank value transformation and the weighted V° norm for distance calculations. 

5. CONCLUSION 

The proposals presented would allow considerable choice to a user of a generalized edit 
and imputation system. As mentioned, it does not close the door on additional approaches. 
However, it is felt that a system which is developed with these components would be suitable 
for a large number of users. It has been the experience of the authours that the ultimate 
power and usefulness of such a system is not apparent until one starts to use it. As testing 
proceeds, it becomes clear that there are more capabilities and extensions than first appear. 
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Non-Response in Sample Surveys 

M.S. SRIVASTAVA and E.M. CARTER' 

ABSTRACT 

The analysis of survey data becomes difficult in the presence of incomplete responses. By the use of 
the maximum likelihood method, estimators for the parameters of interest and test statistics can be 
generated. In this paper the maximum likelihood estimators are given for the case where the data is 
considered missing at random. A method for imputing the missing values is considered along with the 
problem of estimating the change points in the mean. Possible extensions of the results to structured 
covariances and to non-randomly incomplete data are also proposed. 

KEY WORDS: Incomplete response; Missing at random; Maximum likelihood method; Imputation. 

1. INTRODUCTION 

Examples of non-response in sample surveys are in abundance. Various attempts with vary-
ing degrees of success have been made in the literature to solve this problem. The success 
of a particular procedure is dependent on the complexity of the problem. For example, when 
the data is not missing at random, the problem is far from being solved. The recent attempts 
by Heckman (1976) and Greenlees et al. (1982) among others, are highly sensitive to model 
misspecification. Similarly the hot-deck method has been severely criticized in the literature. 
However, when the sample size is large, the hot-deck method and a carefully designed regres-
sion method yield similar results in imputing the non-response income in Current Popula-
tion Survey (CPS). See David, Little, Samuhel and Triest (1986). 

The regression method is based on the assumption that the non-response is random, but 
unlike the hot-deck method does not require complete information from a previous census, 
which in a majority of cases is non-existent. Thus it appears that a carefully designed regres-
sion method may be of great help. 

In this paper, the situation when the non-response is random is considered. Random non-
response arises naturally in many situations. For example, in successive sampling, the sampling 
starts with a certain number of people from whom certain observations are obtained for a 
period of time. At the end of this period, some people are dropped from the survey and 
new people are added. The survey continues in this manner until completion. Examples of 
this nature are considered by Woolson, Leeper and Clarke (1978) and Woolson and Leeper 
(1980). 

Even when the non-response in not random, the non-random nature of the incomplete 
data may be accounted for, by using a sufficient number of explanatory variables in the regres-
sion model and employing some of the techniques used in the hot-deck method as was done 
in David et al. (1986) for a univariate model. For example, in Section 2.5 a method for im-
puting the missing values is given. 

I M.S. Srivastava, Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 1A1, and E.M. 
Carter, Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada N1G 2W1. 
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In the course of developing these results, a method will be derived for checking if there 
have been any changes over time in the response patterns. The models used can also be 
modified to include error variance-covariance matrices that are structured by the imposition 
of a time series to the reponse variables. In this paper it is assumed that the data are normal-
ly distributed from a simple random sampling scheme and that the data are missing at ran-
dom. If the normality assumptions is dropped then the estimators can no longer be considered 
maximum likelihood estimators but may still be considered as good heuristic estimators. 

In the next section, the form of the model will be described for the one sample problem. 

2. THE ONE SAMPLE PROBLEM 

2.1 The Model 

The bivariate incomplete data problem is considered first to introduce the general pro-
cedure that follows. Let y = (y 1 , y2 )' be a bivariate random vector with mean vector and 
covariance matrix E. Without loss of generality, the missing data in the bivariate situation 
can be described as follows: 

Y11 ,  •••, Yln1 ,  Y1,n1+1 ,  •••, Y1,n1 +n2, 

Y21 , 	, Y2n1 , 	 Y2,n1 +n2+1 ,  •••, Y2,n1 +n2+n3 

That is, there are n 1  pairs of observations, n 2  observations on Y1  with the corresponding 
observation on y2  missing, and n 3  observations on y2  with the corresponding observation 
on Y1  missing. Thus N = n 1  + n2  + n 3  observations are grouped into three subsets. If the 
complete data set were to be represented as y 1 , ..., yN , then the actual observed responses 
can be defined as 

z 1j  = B 1yj  = yj  , for j = 1, ..., n1, 

z21 = B2yj = y1 j , for j = n 1  + 1,  •••, n 1  + n2 , 
and 

Z31= B3yj = y2j , for j =n l  + n2  + 1,..., n 1  + n2  + n 3 ,  

where B 1  = 12, the identity matrix, B2 = (1 0) and B3 = (0 1). 
For the general multivariate one sample problem, there will be K subsets of the data contain-

ing n 1 , ..., nK  observations. Note that the maximum number of groups is 2" — 1. Also the 
total sample size is N = n 1  + ... + nK . If the k-th subset contains pk  characteristics 

ipk , then the matrix Bk would be a pk  x p matrix with a one in the (s, is ) position 
for s = 1, ..., pk  and zero elsewhere. With this notation the observed vectors of responses 
can be written as: 

Hence, 

and 

zkj = Bkykj, j = 1, . . . , n k, k = 1, . . . , K. 

E(zkj ) = Bk µ, 

cov(zkj) = BkEBk , j = 1, •.., nk  and k = 1, ..., K. 

(1) 
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Example 1: (Data)  

Wei and Lachin (1984) give the cholesterol levels for a treatment group studied at times  

0, 6, 12, 20 and 24 months. For reasons not pertaining to the response variable, certain obser-
vations were incomplete. The data can be grouped into K = 8 subsets. For the first group  
of complete data the sample mean and covariance matrix, based on 36 observations, were:  

r  226.6  r  1964 1301 1151 960 1008  

249.6 1301 1715 1109 1023 1199  

z, =  252.6 , 	S, = 1151 1109 1554 697 1266  

253.1 960 1023 697 1148 667  

256.7 _,  1008 1199 1266 667 2546 
 

The data for each of the other subsets is given in Table 1 with the imputed values in paren-
thesis.  

The matrices that define the model for the observed values are:  

r 1 	0 0 0 0 ,  r 1 	0 0 0  0~ 
0 	1 	0 0 0  0 	1 	0 0 0  

B i  = 1s, 	B2=  B3 =  
0 0 1 0 0  0 0 0 1 0  

` 0001O J  0 0 0 0 1 _, 
~ 1 0000"  r 1 	0 0 0 0 ~ 

1 0 0 0 0  
B4 = 0 	1 0 0 0  , 	B5 =  0 	1 	0 0 0  , 	B6 =  

` 0 1 0 0  0_, 
00100 _,  0 0 0 0 1  

B7 = (1 0 0 0 0), 	 B8 = (0 1 0 0 0).  

Now that the model is defined, estimation of the parameters and the imputation of the  
missing data can be performed.  

2.2 Estimation of the Population Mean Vector and Covariance Matrix.  

For each of the K subsets define the sample mean as  

't k  

Zk = (ilk  ) -  I  E  Zkj.  
J = I  
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Table 1 
Observed Cholesterol Levels and Imputed Values 

Variable 	1 	2 	3 	4 	5 

Subset 2: 	n2  = 7 	 224 	273 	242 	274 	(231) 

	

231 	252 	267 	299 	(233) 

	

268 	296 	314 	330 	(303) 

	

284 	288 	268 	261 	(300) 

	

217 	231 	276 	257 	(238) 

	

209 	200 	269 	233 	(323) 

	

200 	261 	264 	300 	(279) 

Subset 3: 	n3  = 1 	 193 	189 	(257) 	232 	211 

Subset 4: 	n4  = 12 	 201 	219 	220 	(231) 	(172) 

	

202 	186 	253 	(245) 	(328) 

	

209 	207 	167 	(208) 	(194) 

	

212 	253 	225 	(157) 	(194) 

	

276 	326 	304 	(300) 	(376) 

	

163 	179 	199 	(211) 	(224) 

	

239 	243 	265 	(238) 	(246) 

	

204 	203 	198 	(234) 	(171) 

	

247 	211 	225 	(224) 	(215) 

	

195 	250 	272 	(265) 	(231) 

	

228 	228 	279 	(276) 	(259) 

	

290 	264 	260 	(249) 	(325) 

Subset 5: 	n5  = 1 	 227 	247 	(215) 	(267) 	220 

Subset 6: 	n6  = 5 	 250 	269 	(327) 	(250) 	(295) 

	

175 	214 	(250) 	(210) 	(210) 

	

260 	268 	(327) 	(248) 	(321) 

	

197 	218 	(235) 	(251) 	(258) 

	

248 	262 	(286) 	(251) 	(271) 

Subset 7: 	n7  =2 	 193 	(209) 	(219) 	(230) 	(255) 

	

256 	(277) 	(294) 	(260) 	(281) 

Subset 8: 	n8 = 1 	 (284) 	327 	(287) 	(336) 	(309) 

Note: Total sample size is N = 65. 
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Then 

E (zk) = Bk µ , 

cov ( Z k  ) = 	( BkEBk ), 

and the Zk  are independently distributed for k = 1, ..., K. Applying the least squares theory, 
we minimize 

E tr  nk  ( BkEBk ) — I  [Zk — Bk µ ] [ik 	• 

k=1 

The solution for a given value of E is 

K 	 —1 	K 

= 	E nk Bk  ( BkEBk ) -1  Bk 	!../ nk Bk  ( BkEBk ) - 1 Zk • 	 (2 ) 

k = 1 	 k=1 

If a normal distribution is assumed, then the least squares estimator is also the maximum 
likelihood estimator. Little (1982) has suggested the use of the EM algorithm for this pro-
blem and claimed that the normal distribution assumption is not necessary. That is, estimators 
of and E can be defined as the solution of the normal likelihood equations even if the underly-
ing-population is not normal. These estimators cannot then be considered maximum likelihood 
estimators, but only heuristic estimators that are consistent under certain general conditions. 
However, if a normal distribution is not assumed, then there is no justification in maximiz-
ing the normal likelihood equations to obtain estimators. An alternative heuristic estimator 
for E is given at the end of this section. The maximum likelihood estimator for E, assuming 
normality, are given from Srivastava (1985) as the solution of the following equation: 

K 	 K 

H = E nk  Bk  ( BkEBk ) -1  Bk — E Bk ( BkEBk ) -1 V  ( BkEBk ) -1  Bk = 6, 	(3) 
k=1 	 k=1 

where 

Vk = (Zk1 — Bloc, ...., Zk.nk — Bkµ) (Zk1  —  Bk/.4, ...., Zk,nk — Bkµ) '  • 

Methods for computing the solutions of (2) and (3) are given in Section 3. 

Note: Alternate estimators for the covariance matrix can be defined heuristically without 
the normality assumption. For example E can be defined as the value of E that 
minimizes 

nk I  tr[ ( BkEBk ) — I  Vk — nklk ] 2  ..I  
k=1 

(4) 

However, the covariance matrix must be positive definite; therefore any expression that 
is minimized must yield a positive definite solution. If one of the groups contains complete 
data, then (4) will be infinite for any singular matrix E; hence, there will exist a minimum 
for (4) in the space of positive definite matrices. A similar argument holds for the maximum 
likelihood estimators. 
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2.3 Asymptotic Distribution of µ. 
From (2) it follows that it is asymptotically normally distributed with mean µ and covariance 

matrix 
K 

P = [ 
!../ nk Bk  ( BkEBk ) -1  Bk ] -1 k ] -I  , 
k=1 

(5) 

which can be estimated by P obtained from P by substituting the Ê for E. Using this asymp-
totic theory, tests of significance and confidence regions (intervals) for ti or linear combina-
tions of µ can be obtained. Alternatively, the likelihood ratio tests given by Srivastava (1985) 
may be used for testing the hypothesis H: µ = 0 against the alternative A: µ O. The 
likelihood ratio test rejects the null hypothesis 1g-if 

X = 11 [ IBkEBkI iIBkEBkI] "k /2 >xp,. ,  

where E is the MLE of E under H and x. „ is the upper 100ao%o point of a chi-square 
distribution with p degrees of freedom. 

2.4 Maximum Likelihood Estimates for Example 1 

The maximum likelihood estimates for example 1 were obtained as: 

' 226.82 ' 

246.78 

µ = 	252.02 	and 	Ê = 

255.15 

` 255.22 ., 

' 1809 1220 1033 873 913 , 

1220 1642 992 1017 1121 

1033 992 1438 718 1189 

873 1017 718 1233 915 

` 	913 1121 1189 915 2508 J  

The estimated covariance matrix for the estimate of the mean vector is 

P -I  = 

' 28.05 18.78 15.96 13.46 14.08 ' 

18.78 25.67 15.42 15.84 17.51 

15.96 15.42 24.19 11.24 19.31 

13.46 15.84 11.24 23.33 15.38 

` 14.08 17.51 19.31 15.38 54.77 J  

Inference on µ can be made from the asymptotic distribution of the estimators given in 
Section 2.3. 

2.5 Imputation 

The imputation of the missing data can be made from the conditional distribution of the 
unobserved data given the observed data. That is define the matrices Ck for k = 1, ..., K 
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to be the complements of Bk. That is for a pk  x p matrix Bk with ones as the (s, is ) en-
tries for s = 1, ..., pk  and 0's elsewhere, the matrix Ck is defined as the (p — pk ) x p 
matrix with ones in the (t, i,) position and 0's elsewhere for i, is  for all 
t = 1, ..., (p — Pk ) and s = 1, ..., pk . If the response vector yk)  corresponds to the j-th 
observation from subset k, then the actual observed response vector is zki = Bkyki  and the 
unobserved vector is uki = Ckyki. The estimated value for the missing vector is given by 

ukJ  = Ck µ + [ CkEBk  1 [BkEBl:  l - ' ( zkj - Bkµ ) (6) 

Note that the estimated values for the missing vector have no random error. If the data 
is to be used at a subsequent analysis, with these imputed values, as if it were a complete 
data set, then the estimated error covariance matrix will be too small. The problem of 
underestimating the covariance matrix can be overcome by adding in an appropriate residual 
E to the estimated value µkb . If the first subset of complete data is sufficiently large then 
the residual vectors for missing observations in subset k can be randomly drawn from the 
set of values 

(Cky,I — Ckµ) — [CkËBk 1 [BktB/ 1 - ' (Bky1; — Bkµ ) for i = 1.....n 1 . 	(7) 

Example 1 (continued): 

The complete data set, including the imputed values based on (6) and (7) are given in Table 
1 for subsets 2-8 with the imputed values in parenthesis. 

3. COMPUTATIONAL PROCEDURES 

Equations (2) and (3) can be solved iteratively. A procedure using a combined Newton-
Raphson and steepest ascent method is given in Carter (1986) for a general case that includes 
linearly restricted means and covariances. The procedure is a generalization of the one given 
by Hartley and Hocking (1971). The method can be described as follows. For an initial choice 
of E, say Eo , suppose 

E =Eo + n 

is a solution. This expression is substituted into (3) and the equation is then expanded in 
a series involving only the linear terms of A. The following approximate solution for A results. 
Define 

Q = E (Dk®Dk  - DkOO Fk  - Fk©Dk ), 
k=1 

where A x®B denotes the kronecker product of two matrices A and B defined by 
AQxB = (a,B), 

Dk = Bk  ( BkEOBk 

and 
Fk = Bk  ( BkEOBk ) -' Vk ( BkEOBk ) -' Bk • 
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For any matrix A = (a 1 , ... , au )', we define vec (A) = (a l ', ..., ay ' )'. Then (3) can 
be written as approximnately 

Q  vec(A) = vec(E), 

where 

E  =  E (Dk  -  Fk)• 
k=1 

To insure the nonsingularity of Q, we shall write the solution for vec(A) as 

vec(A) = (Q + XI) -1  vec(E), 	 (8) 

where X is allowed to vary with the algorithm but is initially set to a very small number. 
For a given value of E, µ is obtained from (2) and then a value of A is obtained from (8) 
to produce an updated estimate for E. The procedure is then iterated until a desired level 
of convergence is reached. 

The above method can be extended to more complex structured covariance matrices; 
however, the procedure does require the inversion of Q + XI. For a large number of variables 
this matrix will be extremely large. In this instance the alternate method of solving (3) using 
the EM algorithm is preferable. Again the procedure is iterative, so calculations must be 
performed using the updated estimates of µ and E at each iteration. For an initial choice 
of E say E0, define the complete predicted vector ÿ k j  = Bk ' zkj + Ck ' kJ, where the 
predicted missing value  kJ is given in (6). Then 

K Êkjµ = (1 /N) E   
k=I j=1 

Define the matrix V by 
K nk 

V =  L./ L./  (ykj - fA ) (yk; - Ay.  
k=1  i=i  

The updated estimate of E is then given by 

= (1/N) [V + E nkCk i NkCk], 
k=I 

where Ilk  is the conditional variance of the incomplete data given the observed data for the 
k-th class defined by 

Hk = CkECI; — ( CkEBk ) 	) -1 ( BkECk ). 

The procedure is then iterated. The EM algorithm is advantageous for those situations where 
there exists simple closed form solutions for the likelihood equations in the complete data 
situations. If a Newton-Raphson procedure is necessary to solve the complete data likelihood 
equations then little is gained from the EM algorithm. 
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4. A REGRESSION MODEL 

4.1 Incomplete Response Variables. 

The model discussed in section 2 can be extended to handle the regression situation. The 
data is again partitioned into K subsets. Then the following regression model is formed: 

Zk = Bkf3A k  + Ek , for k = I, ..., K, 

where 4 is a pk  x nk  matrix of observed values, 13 is a p x q matrix of unknown 
parameters, Bk is as defined in Section 2, Ak is the design matrix for the matrix Zk and the 
columns of Ek are independently distributed with mean 0 and covariance matrix BkEBk . For 
a given E, the least squares estimator of (3 can be written from Carter (1986) explicitly as 

vec (3 = P -1  vec(E), 

where 

P = E nkBk ( BkEB,( ) -1Bk  Qx A kA k ' , 	 (10) 
k=1 

E = E Bk' (BkEBk) -1  ZkAk . 	 (11) 
k=1 

The maximum likelihood estimator of E is given by the same formula as (3), except that now 

Vk  = [Zk - BOA kl [Zk - BkI3Ad  i  • (12) 

The asymptotic distribution of can be written in the form 

vec(4) -- NP9 (vec((3), P -1 ). 	 (13) 

Inference on the regression parameters can be made from this asymptotic distribution or 
from the likelihood ratio statistic given in Srivastava (1985). 

4.2 Incomplete Explanatory Variables 

In Section 3.1, the design matrices were assumed to be known completely. In some in-
stances the explanatory variables can also be incomplete. If the explanatory variables are 
random, then these missing values can first be imputed for the explanatory variables given 
the observed data, using the procedure of Section 2 . Once imputed values for the explanatory 
variables are obtained then the method of Section 3.1 can be applied to estimate the regres-
sion parameters and to impute the missing response variables. 

4.3 The Likelihood Ratio Test. 

The likelihood ratio procedure can be used to determine if the variables in the model are 
significant. To test the hypothesis 

H: (3 = (3 1 F vs A: (3 	(3 1 F, 
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for Fan m x q matrix of full rank, the estimates of E are obtained under the null hypothesis  
(t) and under the alternate hypothesis (E). The null hypothesis is rejected at the a level  

of significance if  

— 2 f n X > X  (g-m)p: a+  
where  

~ 

X = 
~ 

~ BkEB,k , "k12 / I  Bk EBh 1 "02 .  
k=I  

(14)  

5. ESTIMATING A CHANGE POINT  

Consider a sequence of observations y; , j = 1, ..., N, with expected values E(y) =  

Srivastava and Worsley (1986) have given a procedure for estimating the point of change  

of the mean vectors Ai . It is first assumed that the change occurs at some point r. Then the  
following hypothesis is tested.  

H: A i  =... = µ N 

A: µl = ••• 	µr+I = ••• — µh'.  

The likelihood ratio statistic is then calculated as X r , for r = 1, ..., N — 1. The estimated  
point of change is that value of r that yields the maximum value of X r .  

The existence of incomplete data poses no problems for estimating the change point. The  
linear model is set up as for the complete data case, then the observations are grouped into  
the K subsets. Suppose that the observed portion of y is zk; . Then under the alternate  
hypothesis for a given r, E the estimate for E is given from (3) for the regression model defined  

in (9)-(12), where the parameter matrix a  is defined as  

a = (µl.µ2)  

and the design matrix for the k -th subset is defined by  

1 	... 	1 0 ... 0  
A   =  

0 ... 0 1 	... 	1  

where the i-th column of ilk has a one in the first row if observation zk; corresponds to the  

vector y and j <_ r and zero otherwise. Under the null hypothesis the population mean vec-
tor is considered the same for all N observations; hence, E the estimate for E is given from  

(2) and (3) for the one population mean problem. The likelihood ratio statistic is obtained  

from (14).  
Modifications of this procedure are possible. For example the vectors y for j = 1, ..., N  

could be sample means for N sampling time points. Multiple change points can be obtained  
by repeating the procedure on each section of the data. For 50 observations, if the change  

point occurs at point 20 then the procedure is repeated for points 1-20 and 21-50.  
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6. STRUCTURED COVARIANCE MATRICES  

For longitudinal studies the error vectors over time may not be arbitrary, but may follow 
a time series model. If such a model can be assumed, then the number of parameters to be 
estimated is reduced. A stationary time series would assume that the covariance matrix E 
can be written as 

1 	P1 
	

Pp - 1  

Pl  1  P I • • • • 	Pp-2  

~ 

E  = 62  (15)  

Pp- 1 Pp- 2 	P 1 	1 ~ 

Further models can be obtained. The correlations pi  can be structured. For example pi  can 
be set equal to pi' . The likelihood equations can be solved using the Newton-Raphson 
technique. Carter (1986) considered the case where the covariance matrix can be written as 
vec (E) = G7 for some matrix G. By defining -y ;  = a2p ;  for i = 1, ..., p —  1 and -yp  = a2 ,  
then the covariance matrix for the stationary time series can be expressed in this linearly  
restricted form. For example for p = 3 we have  

~ 61l  
r001 ~ 71  

6 12  100  72  

6 13  010  

621  100  

622  = 001  

623  100  

631  010  

632  100  

633  OO 1 J  

The estimate of E can be solved numerically from the likelihood equation G'H = 0, where  
H is defined in (3). Numerically the Newton-Raphson algorithm from Section 3 can be  
employed with the modification that the estimate for 7 at each iteration is given by  

ry = (G'QG + XI) -1 G' vec(E).  
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Periodic Business Surveys 

M.A. HIDIROGLOU and J.-M. BERTHELOTI 

ABSTRACT 

For periodic business surveys which are conducted on a monthly, quarterly or annual basis, the data 
for responding units must be edited and the data for non-responding units must be imputed. This paper 
reports on methods which can be used for editing and imputing data. The editing is comprised of con-
sistency and statistical edits. The imputation is done for both total non-response and partial non-response. 

KEY WORDS: Periodic survey; Statistical editing; Total/partial non-response; Imputation. 

1. INTRODUCTION 

Data are routinely collected by large organizations such as Statistics Canada based on pro-
perly designed sample surveys. If such data are collected on a periodic basis from the same 
sampling unit, there are several possibilities which will occur with respect to the data con-
sistency (quality) over a given time period. The sampling unit may report the data faithfully 
with no dramatic departure in continuity ("smoothness") as time progresses. The data may 
be reported faithfully, with questionable jumps between two time periods. The sampling unit 
may not report all the requested data items: this is known as pa rtial non-response. The sampling 
unit may report data sporadically with breaks of total non-response for some periods. These 
can occur simultaneously in a periodic survey which collects required data from a large number 
of sampling units. 

The problems which will be addressed in this article are the editing and imputation of data 
for sampling units that are contacted on a periodic basis by a surveying organization. The 
methods discussed are general for data of a multivariate nature composed of both quantitative 
and qualitative variables. The editing will include consistency and statistical edits. 

For quantitative data, consistency edits ensure that linear combination of the data fields 
within a given time period satisfy given requirements. For qualitative data, consistency edits 
ensure that variables correspond to well defined values. 

Statistical edits are used to isolate sampling units which may report some of their quan-
titative data fields in an inconsistent manner either from time period to time period or within 
a specific time period. Units with unusually high or Iow values will be termed "outliers". The 
identification of "outliers" is extremely important in an ongoing survey for two reasons. First, 
they influence statistics of the data set which may be for instance totals. This point has been 
studied by Hidiroglou and Srinath (1981). Second, the imputation of quantitative data for 
non-response units for periodic business surveys is usually based on trends or means: the 
removal of outlier units from the computation of these trends or means, will produce statistics 
that are not contaminated with there observations. For units which have partial non-response, 
data must be imputed for the missing fields. 

For large data sets, where timely release of the summary information is crucial, the editing 
and the imputation of data should be automatic and computer handled given some well specified 
rules. This is in agreement with Gentleman and Wilk (1975), and Fellegi and Holt (1976). 

I  M.A. Hidiroglou and J.-M. Berthelot, Business Survey Methods Division, Ilth Floor, R.H. Coats Building, 
Tùnney's Pasture, Ottawa, Ontario KIA OT6. 
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2. EDITING PERIODIC DATA 

2.0 Consistency Edits 

For a given unit i and time period t, let x; (t) represent the vector of data which is to be 
collected. The vector x,( t) may be decomposed into a series of elementary vectors for which 
independent editing and imputation are required. 

That is, 	 x,(t) = (4' ) (t), ..., x;(P) (1)) 

where 	 x,(P ) (1) = (x;P ) (t), ..., x;fP(t)) 

for 	 1 =1, ..., n; p=1, ..., P; t=1, ... , T 

and k,, is the number of variables in the p:th elementary vector. 
For each elementary vector x/" (t ), the consistency edits may be represented as 

A(P)(x/P) (t)) ,  < (c(P)), 

where A ( P )  is a fp  by kP  matrix representing the rules that the elements of the elementary 
vector x/P )  (1) must obey, and c ( P )  is a 1 by fp  vector which represents the constraints. This 
formulation allows one to define consistency edits for both qualitative and quantitative 
variables. For qualitative variables, the consistency edits could be used to check if the variables 
correspond to well-defined values. For quantitative variables, the consistency edits can check 
if certain variables are not larger (or smaller) than other variables or that a linear combina-
tion is equal to (or greater than or less than) a given variable. 

2.1 Statistical Edits 

Given that data are reported periodically, the problem is to isolate outlying observations 
within the time series. In the present context, an outlying observation i, will be defined as 
one whose trend for the current period to a previous period, for given variables of the ele-
ment vector xi (t), differs significantly from the corresponding overall trend of other obser-
vations belonging to the same subset of the population. Statistical edits can also be applied 
within a time period, by comparing the ratios of two correlated variables amongst themselves, 
within a given subset of the population. In this article, the statistical edit will only be discussed 
in terms of the trend between time periods. Similar, somewhat imprecise but working defini-
tions of outliers have also been given by other authors, for example: 

GRUBBS (1969) says that "An outlying observation, or outlier, is one that appears to deviate 
markedly from the other members of the sample in which it occurs." 

GUMBEL (1960) says: "The outliers are values which seem either too large or too small 
as compared to the rest of the observations." 

KENDALL and BUCKLAND (1957, p. 209), write: "In a sample of n observations it is 
possible for a limited number to be so far separated in value from the remainder that 
they give rise to the question whether they are from a different population, or that the 
sampling technique is at fault. Such values are called outliers. Tests are available to ascer-
tain whether they can be accepted as homogeneous with the rest of the sample." 
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2.1.1 Review of Some Methods Currently Used 

Methods for detecting outliers have been proposed by Dixon (1953), Grubbs (1969), Tietgen 
and Moore (1972), and Prescott (1978) to mention a few. Most of the test procedures for 
outlier detection proposed by these authors consider the problem as one of hypothesis testing. 
In the simplest cases, the null hypothesis is that the sample comes from a normal distribu-
tion with unspecified mean and variance, while the alternative hypothesis is that one or more 
of the observations come from a different distribution. Percentage points of a test statistic 
may be determined under the null hypothesis and compared with computed values of the 
test statistic in particular applications. Applying these methods to periodic data from large 
surveys presents problems for the following reasons. First, the assumption of normality of 
trends from one period to another may not hold. Second, these traditional methods require 
the existence of tables for determining critical values which define rejection regions. The 
method which we will propose in Section 2.1.2 does not have the above mentioned disadvan-
tages. It can be easily implemented on the computer, does not require the assumption of 
normality, and does not make use of tables. 

In  our specific context, and given elements of the vectors xi ( t) and  xi ( + 1), denote 
as  xi ( t) and xi ( t + 1) the responses for two consecutive periods for a given unit, where 
i= 1,  ...., n. Denote as r, the ratio of current period data to previous period data. One 
method which is known as the range edit, is to simply define fixed upper and lower bounds 
based on experience for comparison purposes. Ratios found outside these bounds are declared 
as outliers. A major drawback with this method is that the definition of outlier is too subjec-
tive and does not make use of the distribution of the ratios. 

A method that attempts to make use of the distribution of the ratios is the Chebychev ine-
quality edit. This edit is constructed by computing the lower bound as r — ksr  and the upper 
bound as 7 + ksr  where r = E"= i  r;/n and s, = E7=1  (r1 -7 ) 2/ (n — 1). This edit has 
two main drawbacks. First, the choice of k is subjective and can result in having an edit that 
cannot detect any outliers. This last point has been demonstrated by Wilkinson (1982). Se-
cond, "large" outliers may hide "smaller" outliers. This effect is known as the masking effect. 

An improvement to this method has been the use of quartiles and interquartile distances 
rather than the use of mean and standard error to come up with the upper and lower bounds. 
In this case, the edit is constructed by computing the lower bound as TM — k Dv  and the up 
per bound as rM  + k DrQ3  where TM is the median of the ratios, Dr 1 is the distance between 
the first quart ile and the median, and  Dr  Q  is the distance between the third quartile and the 
median. Since the quartiles are not affected;  by the tails of the distribution, it greatly alleviates 
the masking effect problem. However, this method has two drawbacks. First, in some very specific 
circumstances, it is possible that the outliers on the left tail of the distribution are undetectable. 
Second this method does not take into account the fact that in most of the periodic business 
surveys, the variability of ratios for small businesses is larger than the variability of ratios for 
large businesses (Sugavanam 1983). This fact is expressed by the following graph: 
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This drawback has the effect of identifying too many small units as outliers and not enough 
large units. This effect will be referred to as the "size masking effect". 

2.1.2 Proposed Procedure 

For two occasions t and t + 1, the overall trend for the data pair given by 

(xr (t), x; (t + 1) ), i = I,  ..., n 

is 
n 	 n 

R  =  E .x; (t + 1 ) / E x; (t). 
i =i 	 i =i 

Now, R may be expressed as 

where 

R = E 
; = i 

n 

I;  = x;(t)/ E x; (t) 
i =1 

and 	 r;  = x; (t + 1)/x; (t). 

1;  is a measure of the relative importance of the i: th unit amongst the n units at time t. The 
individual trends r;  must be transformed in order to ensure that outliers are detected at both 
tails of the distribution. This transformation is: 

1 — rM/r;, if0< r; < rM  
Si  = 

r;/rM  — I, if r;  ? rM  

where rM  is the median of the ratios. 
In order to bring in the magnitute of the data, the following transformation is required 

(Berthelot 1983): 

E;  = s;  (Max (x; (t), x; (t + 1)) 1 u 
• 

where 0 s U <_ 1. The Ei 's will be referred to as effects and the exponent U in the transfor-
mation provides a control on the importance associated with the magnitude of the data. This 
transformation allows us to place more importance on a small change associated with a 
"large" unit as opposed to a large change associated with a "small" unit. The values of 
the median and quartiles as used by Sande (1981) will be applied to the transformed, Ei 's, 
in order to detect potential outliers. Denoting as EQ1, EM  and EQ3 as the first quartile, the 
median and the third quartile respectively, define the following two deviations: 

do  = Max (EM  — EQ1, SAE t ), 

d03  = Max (EQ3  —  
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Outliers will be defined as all those units whose associated effect E;  lies outside the inter-
val (EM  — CdQI , EM  + CdQ3 ). The purpose of the AEM  term is to avoid difficulties which 
arise when EM  — EQ1 or EQ3 - EM  are very small. That is, the problem which may arise 
when the effects E;  are clustered around a single value with one or two modest deviations 
may produce false outliers. The parameter C controls the width of the acceptance interval. 
The parameter U controls the shape of the curve defining upper and lower boundaries. The 
effect of increasing U is to attach more importance with fluctuations associated with the 
larger observations. A value of 0.05 is suggested for A as it has proved to be adequate in 
practice. 

2.1.3 Treatment For Outliers 

Once units have been identified as possible outliers, they are flagged as such and 
brought to the attention of the survey takers. A decision must then be taken on how these 
abnormal observations are treated. Their existence may have arisen as a result of several 
factors. These factors include measurement error, incorrect interpretation of the question-
naire by the responding unit, or intrinsic variability of the population being surveyed. 
For units which have measurement error due to incorrect transcription of the data or 
incorrect responses, a simple follow-up will clear up the majority of these errors. For 
units which display intrinsic variability as a result of rapid growth, the reported values 
are correct but dominate too much the resulting summary tables. For those units, techni-
ques, which reduce the sampling weight as suggested by Hidiroglou and Srinath (1981) or 
change the values themselves as suggested by Ernst (1980), must be used in order to 
accomodate (minimize) the effect of outlying observations. For units having unrepresentative 
data which cannot be verified, their data must be substituted with other data based on im-
putation techniques. The different kinds of corrective actions taken on outlying units must 
be flagged as well. 

3. IMPUTING PERIODIC DATA 

The information collected by periodic business surveys, such as sales and employment 
are collected via samples using mail questionnaires or telephone interviews. Non-responding 
units are followed up as much as possible within allotted budgets in order to improve 
the response rates. The follow-up is usually done by mail in the case of the smaller 
to medium sizes non-responding companies and by telephone for the larger or dominating 
companies. Although following up delinquent companies improves response rates for a 
given reference period, there will be nevertheless, a group of non-responding companies 
which may be classified into either hard-core or late respondents. Hard-core non-respondents 
are units which require a great deal of persuation to respond, if at all. Late respondents 
are units which respond late with respect to the survey's reference period either because 
they do not mail back their questionnaire on time or because they need to be prompted 
by a follow-up questionnaire. The non-responding units must therefore be imputed in 
order to make up for their contribution to the particular estimator being used by the 
survey. In the case of Monthly Business Surveys, such as the Monthly Retail Trade 
Survey, totals (e.g., sales) are being estimated. Imputation procedures can also be used 
to generate values for units declared as outliers. These imputed values can be used in 
lieu of these outlying observations, if no valid explanation can be provided for their 
presence. 
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The units with no response whatsoever, will be termed as total non-respondents and those 
with some, but not all, required data items, will be termed partial non-respondents. Desirable 
features of an imputation system should include the following properties (Berthelot and 
Hidiroglou 1982): 
• it must automatically determine the most reasonable imputation procedure possible under 

the existing circumstances, 
• the imputation cell, the level at which the computation of trends and means (medians) is 

performed, will usually correspond to the finest level of stratification of the sample, 
• a minimum number of units must participate in the computation of trends or means (me-

dians), otherwise, the imputation cells are automatically collapsed (using a pre-determined 
pattern), until the minimum requirement has been satisfied, 

• it will recognize through the use of status codes that there are units which must not be 
imputed. These include seasonal units during the period that they are not operating, units 
temporarily out of business, or units which are no longer active, 

• births which have no previous business history will have their data imputed using the means 
(medians) of similar responding births, 

• units will be re-imputed for a number of periods previous to the current period: this is 
done in order to improve the strength of the imputations if the previous periods have been 
updated with data, 

• backward imputations will be applied to units which have been continuously imputed using 
a forward imputation procedure as soon as a good response is obtained for a given period, 

• imputation status codes will be associated with imputed units in order to provide a history 
of the procedure used for imputation, 

• the ranking for imputing non-responding units is as follows: trends (monthly, quarterly, 
annual), means (medians) with the most recent trends being given priority. For instance, 
in the case of a monthly system, monthly trends are used for units which have data (response 
or imputed) in the month prior to the one to be imputed. Annual trends are used mostly 
for units which are seasonal and which fail to provide a response as they emerge from 
their out of season period and for which a last year value existed for the month to be im-
puted. Imputations based on the trends are obtained by multiplying the trends by the unit's 
last month or last year value. In the event that trends cannot be applied, the mean (me-
dian) of the cell is used as an imputation. 
In order to formalize the preceding paragraphs in a mathematical fashion, let the number 

of units which are expected to respond for a given cell and given month be n. Let the number 
of non-respondents with total non-response be n 3, the number of respondents with total 
response be n 1  and the number of respondents with partial response be n 2. It is assumed 
that the sample design is stratified with the sampling being simple random without replace-
ment. Let the size for the follow-up sample of the non-respondents be m 3  (2 s m3  < n3, 
with m 3  having been selected from n 3  according to a randomized mechanism). Note that 
n4  = n — E;=  , n ;  units are not expected to provide any response to the survey process for 
a number of possible reasons. At a time t, they may be out of season, inactive, dead, or 
out of scope to the survey. For these units, the system will automatically associate zero values 
for all relevant fields in the given period. 

The imputation process will then be done in several different ways according to the type 
of non-response. 

3.0 Total Non-Response 

The imputation process for the total non-respondents will first be discussed. Bearing in 
mind that either the whole vector xi ( t) or that some of its elementary vectors as given in 



Survey Methodology, June 1986 	 79  

Section 2.0 must be totally imputed, denote as (x f1 (t), ..., xip  (t)) one of the elementary 
vector within x i  (t) where the editing and imputation process is independent from other 
elementary vectors within xi  (t ). Assuming that 

p-1  
x.(1)  > 

L./  xij  ( t  ),  
j=1  

(which implies that the sum of the first p-1 data elements of the elementary vectors are  
smaller than the path datum element, the total) xrp (t) will first be imputed as  

6  

j ip ) ( t ) = 	L./ [z(t) 6/ 1() 1  
k=1  

where (5/ k)  refers to the procedure used for imputation and z; k)is the associated imputed 
value. One of the six S il k)  values will be one and the other five must be zero (EL 1  
81 k)  = 1). The imputed 4k) (t) values will be as follows: 

4)(t) = [ u  Wr  Xrp(t)I  
rai  

E Wr  Xrp(t-1)] Xip(t- 1),  

rest  

z)(t) = [ L./  Wr Xrp(t)/  U  Wr xrp(t-Q)l xip(t -Q),  
rest 	 rest  

z(?), ( t )  = [ E  wr  Xrp(t)/ E wr  Xrp(t -1)] xip(t -1),  
res3 	 res3  

z ( !p (t)  = [ u  Wr xrp(t)/ E  Wr Xrp(t-Q)l Xip(t — Q),  
re sq 	 resq  

z ip(5) (t)  _ [ f~r / Wr Xrp(t)/ 	Wrl,  
ras 	 res5  

z (ip) (t)  = [E  Wr  Xrp (t) / !../ wrl,  
rar6 	 rES6  

wr  = inverse selection probability of unit r for the given cell. The subsets si  (i=1, ..., 6),  
will be determined by selecting the units which have provided a response for the p: th variable  
at time t and which have passed the edits. The conditions for each subset is  

s 1  = all units which have provided edited responses between times t and t —1,  

= all units which have provided edited responses between times t and t — Q,  

s3  = units in the follow-up subsample which have provided edited responses between  
times t and t-1,  
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54  =  units in the follow-up subsample which have provided edited responses between times 
t and t — Q, 

s5  = all units which have provided edited responses at time t, 

sb  = units in the follow-up subsample which have provided edited responses at time t. 

The choice of the imputation procedure will be governed by the following considerations. 
(i) Procedures 1 (or 2) will be used if there is a response or imputed value at time t— 1 

(or t  —  Q) and that it is believed that the trends for the non-respondents is the same 
as the one for the respondents, within the given cell, 

(ii) Procedures 3 (or 4) will be used if there is a response or imputed value at time t— 1  
(or  1—Q)  and that it is believed that the trends for the non-respondents differs from 
the one for the respondents within the given cell. 

(iii) Procedure 5 will be used if there is no response at either times t —1 or t — Q and that 
is believed that the mean of the non-respondents is equal to the mean of the respondents 
within the given cell, 

(iv) Finally, procedure 6 will be used if there is no response at either times t-1 or t — Q 
and that it is believed that the means of the respondents and non-respondents are different. 

The choices between the different procedures can be made using decision tables which 
determine the conditions and, given the condition, choose the best imputation procedure 
according to pre-determined rules. Once that xip  (t) has been imputed for an elementary vec-
tor, its remaining components can be imputed using the procedures for partial non-response. 

3.1 Partial Non-Response 

For an elementary vector (xi I  (t), xi2  (t ), ..., xip  (t)) which is part of  xi ( t ), let Sii  be the 
indicator variable which is equal to 1 if xis  (t) is present and zero otherwise at time t. Some 
additional notation is introduced at this point in order to ease the development. To this end, 
define 

p-I 
Si.R(t —1) = E 6ij  x,j (t- 1 )  

i = I 

= the sum of responses at time t —1, for which 
there is a response at time t 

p-I 

Si.NR(t -1 ) = !../ ( l -6u)  xu( t-1) 
J=I 

= the sum of responses at time t— 1, for which 
there is no response at time t, 

p-I 

siR(t) = E Si!  xij (t). 
i = I 

The partial imputation will be based on the assumptions that xip  (t) >_ E I=II xi1  (t) and that 
the distribution of the elements within xi  (t) is similar to the distribution of the elements 
within xi ( t —1) . Two separate cases will be discussed. 
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Case 1: Parts of the elementary vector missing and xip (t) present 

Two subcases are possible:  xip (t) = 

n- I 

i=1 

If all the elements of x i  (t) excluding xip (t) are missing, that is Ep __ 1 S ii  = 0, then we must 
have that si,NR  (I) = xip (t). If  some of the elements of xi  (t) excluding xip (t) are missing, 
that is EP=i  S ij  > 0, then si, NR (t) = xip (t) — si, R (t). 

P -1  

(ii) xip (t) > 
!../ xi

j (t ) 

j= 1 

If  all the elements of xi  (1) excluding xip (t) are missing, then si,NR  (t) = Si,NR (t — 1) 
Xip  (1) /Xip  (1-1).  I f some of the elements of xi  (t) excluding xip (t) are missing, the choice 
of si,NR  (t) is not so obvious. In any event, one must have that si , R(t) + si,NR  (t) < xip  (t ). 
To this end, four separate possible imputations for si, NR  (t) will be given in order of 
preference. 

(a) Si.NR (t) = [S, NR (t — l) + SLR (t —1)]   Xip  (t) X0(1 1) — Si . R (t) provided that 
Si, NR ( t ) a. O. Note that the condition xip  > Ep = i xij  (t) is met if si, NR  (t) >— O. 

(b) Si. NR ( t ) = Si, NR ( t  — 1)  [ Si. R ( t ) /si. R  ( t — 1) 

(c) Si. NR(t) = Si. NR(t  —1)   [xip (t) /xip (t —  1 ) ] 

(d) Si,NR(t) = xip (t) — Si.R (t). 

The preferred imputation will be the first one that does not violate the inequality condition. 
For all the above cases, the imputed (actual values) will then be 

I u2)(1) = ( 1- 60 iSi,NR( 1 )/si,NR( 1 - 1 )]xij(t — I) 

+ 	x00; j=1, ..., p - 1 

Case 2: Parts of the elementary vector missing and xip (t) is missing 

As in case 1, two subcases are possible: 
p-1 

( 1 ) xip ( 1 ) = L../ xij (t ) 
i= I 

If Ep -11  (5,j  = 0, then si,NR  (t) = I(t) where I;»(t) has been obtained using the imputa-
tion for total non-response. The imputation /P(t) is then used. If Ep=; So  > 0, I V )(t) 
will be used provided that si,NR  (1) = ./ 19 ) (t) — si, R (t) ? O. Otherwise, the following im-
putation must be used 

1;))(1 ) = ( 1 -Sij ) ESi.NR(t)/Si.NR( 1-1 ) ] Xij( 1 —  1 ) 

+ Siixii(1);j =1,  ..., p-1 

p- i 	 P- 1  
xii (t) or xip (t) > 

f../ 

i=1 
	

j =I 

(i) xip (t) = 
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and 41,»(t) is replaced by I;n ) (t) = EPT= 1i  I;p»(t)  

(ii) x;p (t) > 	xu (t)  

For this case, the x;p  (t) in case 1(ii) is replaced by 41  »(t) and the methods given for this  
case are used, provided that the above inequality condition is satisfied. If the condition  

cannot be met, 43)  (0 must be used and 41) (t) is replaced by 43 (t) = 43) (t).  
If the assumption, that the distributions of the data elements of vectors x;  (t) and x;  (t —1)  

is similar, does not hold, then each individual element must be imputed using procedures 
for imputation for total non-response. These imputations must then be adjusted in order 
to satisfy the inequality requirement x p  >_ Ep=  i l  x, . Hence, for example, for case 1(i), we 
would have for EP=  t1  Sij  = 0,  

p -1  
[x,p(1)/ E i;''(t) l 1;)'(t)  

j=1  

and for EP=  1' S;j  > 0  

~q~ 	 [ XlP(t)_=IiJ xlJ (1)
I () = () + S;  x;  (t); J = 1, ..., p —  1.  

J 	Epit  (1 -80  4l)(t) 	J J 

Similarly, cases 1(ii) and 2, could be developed using the imputed values I û I  »(t).  

4. CONCLUSION  

For periodic business surveys, it is important to have computer systems which can quick-
ly and accurately monitor the flow of in-coming data in terms of its quality. Conversely,  
for expected data that are not coming in, the system should impute as well as possible for  
the non-response given some well specified rules.  

The editing will cause the flagging of records in possible error. These errors can be term-
ed as critical and non-critical. All errors should be corrected by either reviewing the ques-
tionnaires or checking their authenticity with the respondent. If this is not possible on account  

of time or budgetary constraints, the most critical errors must be corrected. Given that the  

errors have been taken care of, the next step of the processing is to impute for the non-
respondents. Diagnostic summaries of the actions (edits or imputations) taken by the system,  
should be printed out in order to inform the survey analyst on the status of his data.  
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ABSTRACT 

A new processing system using the nearest neighbour (N-N) imputation method is being implemented 
for the National Farm Survey (NFS). An empirical study was conducted to determine if the NFS estimates 
would be affected by using imputation groups based on type of farm. For the specific imputation rule 
examined, the study showed evidence that the effect might be small. 

KEY WORDS: National Farm Survey; Item non-response; Nearest neighbour imputation; Match variable 
transformation. 

1. INTRODUCTION 

The National Farm Survey (NFS) is an annual multi-purpose survey of agricultural activi-
ty in Canada. The survey uses a 2-frame sample design i.e. a list frame of large farms (based 
on the quinquennial Census of Agricultu re) and an  area frame of agricultural land. The largest 
units in the list frame are sampled with certainty (i.e. with probability one) because of their 
disproportionate impact on the survey estimates. These units are called specified farms. The 
remaining farms in the list frame are stratified and sampled. The small farms in the survey 
population, which are comparatively very large in number, are covered by the area frame and 
sampled less extensively than the list frame farms. Thus three samples are selected: specified, 
list and area. The detailed NFS sample design has been described by Davidson and Ingram 
(1983), and Davidson (1984). 

The NFS is processed by a system adopted from predecessor surveys. This system employs 
the sequential hot-deck imputation method to adjust for unit and item non-response (Philips 
1979). A new survey processing system will be implemented in 1987 in order to integrate all 
the agricultural surveys conducted by Statistics Canada. This system will use the nearest 
neighbour (N-N) imputation method to adjust for item non-response. The decision to imple-
ment the N-N imputation method was based on many reasons, among which there are three 
important ones: First, the use of the N-N method is theoretically more justified than the exact-
matching sequential hot-deck method since the survey collects mostly quantitative data. 
Second, empirical studies, e.g. Kovar (1982), suggest that the two imputation methods would 
yield similar estimates for the NFS with the N-N method resulting in fewer outliers i.e. im-
puted data which have disproportionate contributions to the survey estimates. Third, switching 
to this new imputation method for the NFS would help standardize the survey methodology 
of all agricultural surveys, a long term goal of Statistics Canada. Currently, the Census of 
Agriculture and the Farm Tax Data Survey both use the N-N imputation methodology. 

This paper reports on an empirical study which attempts to provide information that will 
help in a more efficient implementation of the new imputation method. The next section 
describes briefly the N-N imputation method adopted in our study. Section three presents 
the study procedure and the main results obtained. Finally, we discuss our preliminary obser-
vations drawn from the results in section four. 

I Simon Cheung and Craig Seko, Business Survey Methods Division, Statistics Canada, 11t h  Floor, R.H. Coats Building, 
Tunney's Pasture, Ottawa, Ontario, Canada KIA 0T6. 
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2. NEAREST NEIGHBOUR IMPUTATION METHOD 

The method of donor imputation, in general, is to replace the missing or invalid values 
of a respondent (recipient) with the valid response of another respondent (donor) who is 
deemed to have the same characteristics as the recipient. The sequential hot-deck imputation 
method identifies donors sequentially in the course of processing as those reporting the same 
values as the recipient in the pre-specified match variables. This method, however, often 
fails to obtain an exact match when a match variable assumes a large number of possible 
values. To alleviate this, the range of the match variable is split into intervals and the donor 
is obtained by matching on the interval code. In nearest neighbour imputation, this problem 
is solved by selecting a donor based on a multivariate distance measure which represents the 
degree of similarity between the donor and the recipient as defined by the pre-specified match 
variables. The more similar two respondents are with respect to the match va riables, the smaller 
the magnitude of the distance. Thus, the best donor for a recipient is the donor candidate 
which has the smallest distance value from the recipient, i.e. its nearest neighbour in the 
sense of statistical distance. 

The nearest neighbour imputation method used in this study was proposed by Sande (1976, 
1981). This method uses the maximum norm based on transformed data as the distance func-
tion. The method is described briefly below. 

Let X = (x 1 , x2, x3, ...,xk ) be a vector of k match variables. Each match variable xi  
is transformed by ti  = F(y), where P(y) is the empirical distribution function of xi. Note 
that ti  follows the uniform distribution over [0, 1]. Then the distance between a given reci-
pient X` and a donor candidate Xd  defined by the maximum norm is 

d ( X', Xd) = max 	 t;d l 
J 

where 11 and tad  are the transformed values of the J" match variable xj  in X' and  X", 
respectively. The donor candidate with the smallest d-value will be selected and its response 
will be copied for the missing item of the recipient. The uniform transformation may be 
considered as an objective method to scale the match variables regardless of their natural 
distributions. 

3. EMPIRICAL STUDY 

3.1 Motivation 

In adopting the nearest neighbour imputation method for the NFS, some issues regarding 
detailed implementation of this method need to be resolved, particularly in regards to transfor-
ming match variables. The method of uniform transformation in the N-N imputation could 
be applied using all the records in the sample or using only subsets of the sample data. A 
group of unit respondents in which imputation for non-response takes place is called an im-
putation group. Different imputation groups would yield different transformed values which 
in turn would result in different selection of donor records. 



Survey Methodology, June 1986 	 101 

It was conjectured that transforming match variables within an imputation group defined 
by a homogeneity criterion which is closely related to the item to be imputed would result 
in a more correct scaling of the match variables, and hence would yield better imputed data. 
For example, in the NFS one may expect that match variable tranformation within imputa-
tion groups defined by farm type should yield better imputed data and hence better estimates, 
`better' being in the sense of bias and variance reduction. Unfortunately, the transformation 
of match variables is costly in terms of computer resources. If one does not need to transform 
within homogeneous imputation groups, savings in computer costs can be realized. 

The main objective of the study was to answer the following question in an experimental 
setting: `Do the two methods of match variable transformation, i.e., transformation using 
all records vs. within farm type groups, yield substantially different survey estimates? If so, 
which method yields better estimates?' 

3.2 Data Used in the Study 

After consultation with the subject matter analysts, the 1984 NFS sample for the pro-
vince of Alberta was selected for the study. The sample of approximately 2000 farms con-
sists of 50% crop farms, 27% livestock farms and 23% mixed farms. The population 
percentages of the three farm types were estimated to be 52%, 27% and 21% repectively. 
Farm types were assigned according to the main source of projected agricultural receipts 
of a farm. If at least 75% of a farm's projected agricultural receipts came from its livestock 
inventory, the farm was classified as a livestock farm. A similar rule was used to classify 
crop farms. The remaining farms were classified as mixed farms. 

3.3 Method of the Study 

We assumed that the data was `clean', even though it contained imputed values via the 
sequential hot-deck imputation procedure. Once the data had been classified by farm type, 
the following procedure was followed: 

i) Ten per cent of the values for each imputation variable was randomly set to a missing 
value within each farm type. This error generation was done independently for each im-
putation variable. 

ii) The generated non-responses were imputed using the N-N imputation method based on 
the two sets of imputation groups defined by the whole sample (called `whole') and by 
farm type (called `by-type'). The imputation procedures were carried out using the 
Numerical Edit/Imputation System (Statistics Canada 1982), as implemented within the 
P-STAT statistical package (Buhler and Buhler 1978). 

iii) The NFS weighted estimates for the variable totals for the province and for each farm 
type were produced based on each set of imputed data. 

iv) These steps were repeated 10 times to get 10 independent replications (i.e., simulations), 
and the results were averaged over the ten replications for each imputation variable. This 
average estimate was then compared with the estimate obtained based on the `clean' file, 
both at the provincial level and for each farm type. 

The whole experiment was repeated for higher non-response rates of 15% and 20% in 
order to observe the impact of nonresponse rates. 

The imputation and match variables used in the study are shown below: 
Imputation Variables 

UTIL 	= Utility expenses 
AUTO 	= Farm vehicle and machinery operating expenses 
TAX 	= Property tax 
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Match Variables 

Farm type (exact matching) 
FEED 	= Feed expense 
SEED 	= Seed expense 
INCOME = Gross agricultural receipts 

In addition, the donor's sample type was restricted by the recipient's. Recall that three 
types of samples are used in the NFS: specified, list, and area. A specified farm can be im-
puted by a farm from any of the sample types but can not be a donor to a list or area farm. 
Similarly, a farm from the list sample can be imputed from a farm in either the list or area 
samples but can only be a donor to farms that are in the list sample or are specified. Finally, 
farms in the area sample can only be imputed by another area farm but can serve as a donor 
to any of the three samples. These restrictions arise from the premise that if a list or specified 
farm was allowed to impute for an area farm, the imputed value could potentially raise the 
survey estimates to an unacceptable level because of the higher sampling weights associated 
with area farms. 

3.4 The Empirical Distribution Functions of the Match Variable 

Figure 1 shows the unweighted empirical distribution functions of the three match variables 
which are obtained from the imputation groups defined by the whole sample and by farm 
type. Note that the differences are substantial and hence could lead to the selection of dif-
ferent donor records for a given recipient. 

3.5 Results 

The results are tabulated in Table 1. For each imputation variable (UTIL, AUTO or TAX), 
each of the two sets of imputation groups (whole vs. by-type), and each level of non-response 
rate (1007o, 15% or 20%), the average value of the ten estimates for the variable total was 
calculated over the ten replications. The bias of this average value is displayed as a percen-
tage of the "clean" estimate. The average cv over the ten replicates is also displayed as a 
percentage. 

4. OBSERVATIONS AND DISCUSSION 

This study imputed for three farming expense variables. The donor records were selected 
by exact matching on farm type and by nearest-neighbour matching on three variables: gross 
agricultural receipts, feed expense and seed expense. The two expense match variables were 
believed to be of different effectiveness for the three farm types. For example, feed expense 
was expected to work better for livestock farms but not so for crop farms, etc. The strength 
of correlation between the match variables and the imputation variables presented in Table 2 
seems to support this expectation. 

Therefore the homogeneous subsets based on type of farm have differing relationships 
for the match variables. This might imply that transformations using imputation groups 
defined by these subsets would perform better than using the entire sample as an imputation 
group. The results, however, indicate that using these homogeneous subsets as imputation 
groups does not seem to yield substantially different estimates or lower bias. The bias itself 
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Table 1 
Percentage Bias and cv's for the Totals of the Imputation 

Variables after Imputation 

All Farms in Sample 
clean 3.137 2.831 3.224 

10% by-type 0.176 3.165 - 0.004 2.849 0.228 3.260 
whole 0.124 3.143 - 0.074 2.840 0.199 3.296 

15% by-type 0.339 3.195 0.604 2.885 0.255 3.275 
whole 0.336 3.131 0.278 2.870 - 0.624 3.289 

20% by-type 0.869 3.173 0.023 2.875 - 0.715 3.280 
whole 0.554 3.111 - 0.150 2.843 - 0.877 3.285 

Crop Farms 

clean 4.829 4.092 4.536 

10% bt-type 0.023 4.872 0.516 4.159 0.200 4.574 
whole - 0.221 4.829 0.328 4.155 0.371 4.625 

15% by-type 0.468 4.981 0.611 4.200 0.855 4.695 
whole 0.156 4.863 - 0.199 4.231 - 0.026 4.672 

20% by-type 0.402 5.008 0.620 4.238 - 1.201 4.770 
whole - 0.170 4.944 0.129 4.227 - 1.158 4.699 

Livestock Farms 

clean 6.770 5.596 9.527 

10% by-type 0.125 6.798 - 0.885 5.575 0.688 9.471 
whole 0.687 6.800 - 0.487 5.532 - 0.093 9.515 

15% by-type 0.234 6.829 0.156 5.523 0.346 9.325 
whole 0.789 6.797 0.646 5.533 - 1.666 9.227 

20% by-type 1.526 6.920 - 0.370 5.538 0.654 9.250 
whole 1.136 6.830 - 0.051 5.495 - 0.354 9.565 

Mixed Farms 

clean 7.433 7.190 6.993 

10% by-type 0.570 7.519 - 0.549 7.175 - 0.092 7.029 
whole 0.093 7.507 - 0.715 7.132 - 0.009 7.027 

15% by-type 0.219 7.404 0.957 7.150 - 1.437 7.143 
whole 0.115 7.407 1.142 7.107 - 1.335 7.152 

20% by-type 0.984 7.541 - 1.108 6.984 - 0.599 7.010 
whole 1.303 7.595 - 0.927 7.001 - 0.576 7.050 
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Table 2 
Correlation Coefficients between Match and 

Imputation Variablesa 

Farm 
Type 

Imputation 
variable 

Match variables 

FEED SEED INCOME 

UTIL 0.46 0.39 0.50 
whole AUTO 0.34 0.18 0.50 

TAX 0.10 0.16 0.27 

UTIL 0.13 0.57 0.69 
crop AUTO 0.25 0.28 0.65 

TAX 0.18 0.19 0.48 

UTIL 0.64 0.25 0.51 
livestock AUTO 0.41 0.47 0.52 

TAX 0.13 0.25 0.28 

UTIL 0.55 0.49 0.76 
mixed AUTO 0.48 0.46 0.73 

TAX 0.24 0.45 0.55 

a The coefficients are based on unweighted data from the 1984 NFS core sample in Alberta. 

seems negligible at low rates of non-response. As the non-response rate rises, the bias grows 
but is still not substantial. Except for the variable TAX, the differences between the estimates 
seldom exceed the 95 07o confidence limits. In the case of TAX, statistical significance, when 
detected, is usually at the 15% and 20% non-response rates. Unfortunately, the average 
estimates for the variables UTIL and TAX do show a pattern of consistent, positive bias. 
No explanation is obvious for this observation and further investigation is warranted to un-
cover the potential source of bias. 

Thus, there is no need to transform match variables by imputation groups defined by farm 
type for the imputation studied; transforming match variables using the whole sample leads 
to very similar survey estimates. This may not be the case for other imputation rules and 
patterns of non-response that are not random. These are topics for future studies. Although 
the imputed estimates compare well with the clean estimates in practical terms, however,there 
may still be some unknown sources of bias. These sources, if they exist, may be related to 
this imputation method, to the imputation rule examined in this study or some other uniden-
tified factor. It is suggested that the presence of bias be confirmed and if confirmed, its source 
determined. Further study is recommended to this end as well as to aid in determining future 
imputation rules for the National Farm Survey. 
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