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Estimating a Monthly Index Based 
on Trimestrial Data 

JOHN G. KOVARi 

ABSTRACT 

A problem of estimating monthly movements in rents based on data collected every four months is ex­
plored. Five alternative composite estimators of the rent index are presented and justified, both from 
an intuitive as well as theoretical point of view. An empirical study testing and comparing the proposed 
methods is described and summarized. Recommendations are put forth. 

KEY WORDS: Index numbers; Rotating samples; Composite estimation. 

1. INTRODUCTION 

The rent component of the Consumer Price Index is based on data collected on a six month 
rotating basis using a Labour Force Survey Supplement. Since changes in rents generally occur 
on an annual basis, the effective sample size of the Labour Force Survey design is reduced. 
Furthermore, special annual benchmarks, which are obtained by revisiting the June sample 
of dwellings one year later, indicate that the rent component can suffer from varying degrees 
of bias (Dolson 1982). To ameliorate the situation, several data collecting schemes were pro­
posed in order to combine the monthly data with the yearly benchmarks in a continuous and 
timely fashion. One of these methods, which collects data every four months, was selected 
for practical application. 

The proposed design consists of four sets of four rotation groups of rented dwellings, each 
set of which is to be surveyed in one of four consecutive months, on a rotating basis. Each 
month, one rotation group is surveyed for the first time and the other three are those that 
rotated in four, eight and twelve months ago respectively. Each group would thus be surveyed 
four times over a period of thirteen months,before rotating out of the sample. Every month, 
data on current rents, as well as matched rents collected four months ago, are available from 
exactly three rotation groups (the fourth group is new and thus has no matching "backrents"). 
Yearly benchmarks can be calculated monthly based on one rotation group. This paper discusses 
several methods of estimating a monthly index based on such trimestrial data. 

In estimating the indices, the constraints of the Consumer Price Index publication policy 
must be kept in mind. In other words, it must be practically as well as technically possible 
to produce the indices on a monthly basis for each of the index cities. The estimates must 
be timely: produced no later than mid-month following the reference month. Furthermore, 
no revisions can be made once the indices are pubUshed. While not entirely essential, it would 
be desirable that any proposed estimator be able to reflect (real) sudden changes in trend very 
quickly. On the other hand, in order to remain credible,the indices must be relatively stable: 
volatile, saw-toothed indices are to be avoided. 

' John G. Kovar, Business Survey Methods Division, Statistics Canada, 11th floor, R.H. Coats Building, Tunney's 
Pasture, Ottawa, Ontario KIA 0T6. 
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In Section 2, five estimators will be presented, justified, and compar'id on a theoretical 
basis. Some empirical adjustments to these indices wiU be discussed in Section 3. In order 
to compare the performance of these estimators over time and between locations, a simula­
tion study involving eight cities with observations over a period of 48 months was performed. 
The resuUs of the study are presented in Section 4. The conclusions and recommendations 
can be found in Section 5. 

2. INDEX ESTIMATORS 

In this paper, only matched indices will be considered. While relative changes could easily 
be derived by comparing independent (unmatched) estimates of rent levels at distinct time 
points, such estimates of levels would have to be very reliable, necessitating prohibitively 
large sample sizes. Moreover, past studies indicate that such direct estimators tend to be 
volatile, upwardly biased and generally not practical in use (Szulc 1983). In what follows, 
therefore, an estimate of relative change between two time points wiU be based only on those 
units that report rents for both of these time points. 

We wiU denote by x,„ the total rent paid, in the current month m, by a certain subset 5 
of dwellings in a given city. Thus, more rigorously, 

Xm = '^ Xmi. (2-1) 

(€5 

where x^, denotes the rent paid by the /-th dwelling in month m. The rent index is custom­
arily estimated by chaining one month relatives, that is, the ratios of average rents between 
two consecutive months denoted by r%_\. In other words, the index in month m, /„, over 
a base period zero, is estimated recursively by 

4 = 4 - 1 X fZ-x - 100 X r i X /=? X ... X fiz\ X /=;;;_,. (2.2) 

where 100 is the (abritrary) level of the index at time zero. The difficulty then rests only 
in estimating the relatives. 

In general, consider the relative change in rent in month m over month 1, denoted by 
/•p This "m over 1 relative" can be estimated by 

f'^=Xrr,/X^. (2.3) 

However, if one considers matched indices only, the only estimable relatives under the 
proposed design are the four-month relatives, in other words, those of the form r^_4y, 
j = 1, 2, 3, because it is only in these cases that there are common units between the two 
months. These relatives are estimated by 

fm-ij — Xm/X„_4j, (2.4) 

where the set s of dwelUngs consists of only those units that report rents at both time m 
and m-4j. Unfortunately, the interest lies in estimating monthly relatives of the form r ^ . j . 
On the positive side, the rotation scheme ensures that a four-month relative is available every 
month. It is also assumed that units rotating out of the sample are replaced by equivalent 
units rotating into the sample. As such, the set s of common dweUings in (2.1) depends on 
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the time m only and any future reference to it, while implicitly retained, can thus be sup­
pressed in what follows. For a rigorous discussion of these assumptions and the effect on 
the index if the assumptions fail, the reader is invited to consult Szulc (1983) and Kovar (1984). 

In the following paragraphs, five methods of estimating monthly relatives from four-month 
relatives will be described. Each will be justified intuitively as well as theoretically, and its 
advantages and disadvantages will be pointed out. The first three methods are derived on 
a theoretical basis alone while the fourth attempts to exploit the rotation pattern of the survey. 
All four assume that at least a four month back history of data is available. The last approach 
takes advantage of prior empirical knowledge: that of high probability of observing one change 
in rent per year. Methods two and four have been discussed earlier by Kovar (1984). 

2.1 Hnterpolated Index (Additive Index) 

One way of estimating the relative r^_| is to estimate the previous month's rent, x^- i . 
This can be accomplished, among other methods, by linearly interpolating the observed rents 
at time m and m — 4, that is, by assuming that the rents increase (decrease) linearly over 
time. Note that this assumption does not require each individual rent to increase every month 
by a fixed amount, but merely that the sum of all the rents does. In general, to describe 
linear interpolation briefly, consider two measurements of the same quantity at two distinct 
time points, say;', and;',.^. Suppose that we wish to estimate the value of y at some point 
between the times t - s and /, say at time t - u {u < s). Assuming that the measurements 
increase linearly in time, y,_u can be estimates from y, and y,_s by 

>-,_„ = (I --)y, + -y,-s (2.5) 
5 S 

or in the case at hand, where s = 4 and M = 1, by 

y,-i = iy^)y, + i'A)y,-^. (2.6) 

Thus the previous month's total rent can be estimated by 

x„,_, = ('/4)x„,_4 + {'A)x„ (2.7) 

and consequently, the monthly relative for month m by 

C - , = - ^ ^ = — ^ ^ . (2.8) 

The index is then derived by chaining the relatives as in (2.2) above. 
Provided that the rents follow the linear interpolation model, that is, provided that we 

can write the current month's rent as a recursive function of previous months' rents, namely, 
as 

^m •^m — \ -\- d = Xo -^ md, (2.9) 

then it can be shown that the index at time m is given by /„, = X^/XQ, as is desired. In other 
words, if the data foUow the model in (2.9), the index will suffer no time lags. But, of course, 
if the model were true at all times, the index would be fixed for all time points, based on 
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any two observations. Since this is clearly not the case, one can at best use (2.8) as an 
approximation over short periods of time only. In that case, however, if the relationship 
in (2.9) is not exact, the index at time m will depend on all the rents between time —4 and 
m. In other words, the index is then susceptible to accumulating various biases over time. 

Note that the same index would be derived by assuming that the four-month increment, 
Xm ~ Xm-4, occurred in 4 equal additive steps: (x^ — Xm_4)/4. Since then, the previous 
month's rent would be estimated by 

Xm-\ = X„ - (X„, - X„_4)/4, (2.10) 

which is the same as (2.7); hence the alias: additive index. 

2.2 Geometric Index 

In this section, in contrast to the above, we will attempt to estimate the relative directly. 
We first note that 

r;;;_4 = — = (2.11) 
Xm—4 Xff,_\ X^^2 Xm — 3 Xm — 4 

_m „m —1 „m —2 ^m — 'i 
'm—\ 'm — 2 rm — 3 '^m—4-

We then assume that the four relatives on the right hand side of (2.11) are equal, or 
equivalently, that the four-month movement is due to four equal movements which act 
multiplicatively (Kosary et al. 1982). Under this assumption, the relationship (2.11) can be 
written as 

C - i = irZ-,)"'. (2.12) 

From (2.2) and (2.3), assuming that there are no sample changes or that units rotating 
out of the sample are replaced by equivalent units rotating into the sample, the index in month 
m over the base period zero becomes 

Im — h ^ fO ^ f"! ^ ••• X fm-l 

= /o X {rl,)''' X {ri2)''' X ... X (C_4)'/ ' 

I, 
\ X/n — 3 X^ _ 2 X^ _ 1 X^ j 

" ( A : _ 3 X _ 2 X _ , X O ) ' / ' (2.13) 

In other words, the index is a ratio of two geometric averages; hence the name geometric 
index. We note that at any time, assuming the panels are stationary, the index depends on 
eight months worth of data only, and thus is independent of any movements between time 
0 and m—4, though in practice matched sets contributing to each r%_^ are different, so the 
cancellation is only theoretical. By contrast the index suffers from one-month to three-month 
lags and will thus tend to dampen true sudden changes. These changes, however, will be 
reflected eventually, that is, the index will selfcorrect (Kovar 1984). 
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As a point of clarification, note also that the relatives in (2.12) can be rewritten as 

Xm ^ r ^ ^ l '^' 

or as 

Xm-\ = (X^-n) ' {Xm) 

or finally as 

log(x^_,) = ('/4)log(x^_4) + {y4)\og{xJ. (2.14) 

The geometric index is therefore equivalent to an index derived by estimating the previous 
month's rent by linearly interpolating the logarithms of the observed rents at time m and 
m—4. (See (2.6) with y„ = logx^.) 

2.3 Incremental Index 

Analogous to the above geometric index, here we assume that the four consecutive month­
ly relative net increments are equal and acting additively. More precisely, we can write r^as 

r'C= 1 -^ i'^ 

where /7'is the relative net increment in month m over month 1. To estimate r^_| we need 
therefore/'m-i. Assuming that the available /'™_4 = 4/J5J_i, the relative r^_i can be 
estimated. Namely, we will estimate /^_i by 

c - i = iy^)im-4 = iy^)ic - 1) = ('/4) ( ^ ^ - i ) , (2.15) 

and r;;;_i by 

f^m-l - 1 + ' m - 1 - : • (2 .16) 
4X„_4 

We note that r^_i = x^/x^^x and thus (2.16) can be written as 

Xfn Xfjj -r JA^_4 

Xm~\ ^Xffj^t^ 

or as 

— = C / O - ^ + (̂ /4) —. (2.17) 
Xm — 1 Xm — 4 Xff, 

In other words, the incremental index corresponds to one which would be derived by 
estimating the previous month's rent by Unearly interpolating the reciprocals of the observed 
rents at time m and m — 4. (See (2.6) with y^ = x^ ' . ) 
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As is the case with the interpolated index, the incremental index will be independent of 
the intermediate observations only under the restrictive condition that the interpolation model 
be followed. In this case, analogous to (2.9), the model is 

I I 
— = - -\- md. (2.18) 
Xm XQ 

However, in most real situations, the chained incremental index will depend on all the 
data between times —4 and m and therefore will be susceptible to various accumulating biases. 

Since all three indices discussed to this point can be described in terms of linear interpolation 
of various functions of the observed rents, it is also possible to compare them theoretically. 
It can in fact be shown that the three indices are ordered in magnitude, from smallest to 
largest in the order of their presentation. That is, in an inflationary situation the interpolated 
index will always be smaUer in absolute value than the geometric index which in turn will 
always be dominated by the incremental index. The reverse holds true when the trend is 
downward, that is, when prices are decreasing. As one referee pointed out, this phenomenon 
can be explained by noting that "the interpolated, geometric and incremental relatives are 
respectively the weighted arithmetic, geometric, and harmonic means of rent quotations four 
months apart. The standard relationship between these means explains the behaviour of the 
estimates in inflationary or deflationary times". 

2.4 Carried Index (Arithmetic Index) 

The carried index is constructed by taking advantage of the rotating sample at hand. Noting 
that all units reappear periodically in the sample, we construct the index by simply carrying 
each unit's rent value forward until a new observation is recorded. In this way all units on 
the file have a matching previous month's rent arid thus the monthly relative, r ^ - i . can be 
constructed in a straightforward manner. The obvious drawback is that the rent increases 
(decreases) are not recorded until observed. However, since all changes are eventually recorded, 
the index will selfcorrect (Kovar 1984) but will suffer from a mixture of one to three-month 
lags. Just as for the geometric index, sudden (real) changes wiU be dampened but the carried 
index will reflect them eventuaUy. 

On the technical side, we note that in computing the carried index for any given month 
one quarter of the observations on the file reflect a four-month movement, whereas three 
quarters of the observations are carried for one to three months and reflect no change. In 
fact, in month m we observe A:,„ and carry Xm_i, X;„_2 and A:m_3. Similarly, in month m-1 
we observe Xm_i and carry Xm_2, -"̂ m-s and x,„_^. The monthly relative is therefore given by 

m _ ^m • Xff, _ 1 -r Xff, - 2 "T Xff,.-^ 
rm — l — • (^•^") 

Xm-\ + -"^m-l + Xf„_2 + Xm-4 

Chaining the relatives as in (2.2), and assuming again that the samples are stationary, 
we obtain the index for month m over the base period zero as 

T _ T ^m-i + •'^m-Z + Xm-\ + Xf„ 
Im — VQ • (Z.ZV) 

X _ 3 -1- X_2 + X-i 4- XQ 

In other words, the index is a ratio of two arithmetic averages. Analogous to the geometric 
index, the carried index depends on eight months worth of data only, and thus is independent 
of the movements between time 0 and m — 4. As mentioned above, it too suffers from one 
to three-month lags, and therefore dampens sudden changes. 
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2.5 Annual Index 

Empirical observations suggest that most units change rent once a year. One could therefore 
argue that yearly relatives are more stable than monthly relatives, since the distribution of 
individual monthly relatives \yiU necessarily demonstrate two spikes, one around the annual 
relative and the other at I. The rotation pattern of the proposed rent pilot (Kovar 1984) en­
sures that an annual relative be estimable every month, that is that r'!},_xi be available. To 
compute the annual index on a monthly basis, we note that for any chained index the following 
relationships hold: 

/m = '•-_,/,„_, (2.21) 

and 

Im/Im-n = C-n- (2.22) 

From these relationships we obtain an expression for a monthly relative r^_| as 

''m-l = f'm-n^m-ll/^m-l- (2.23) 

These relatives can then be chained as above to produce an index. Since such a relation­
ship is recursive, we need 12 months worth of indices to be able to "start up". One possi­
bility that exists, is to define the index for the first 12 months, by analogy to the geometric 
index, as 

h = (4-12) * " U = L2, .... 12. (2.24) 

As defined, the annual index is independent of intermediate changes. On the other hand 
it wiU be saw-toothed unless individual monthly sample sizes are large. This is due to the 
fact that consecutive monthly estimates are totally independent. Moreover, it must be noted 
that the lagging problem will be at least as serious in the case at hand as it is for the indices 
presented earlier. 

3. ADJUSTMENTS 

In this section, two adjustment procedures for the above indices will be discussed. First, 
because the first four indices suffer from one to three month lags, they will smooth out true, 
sharp peaks. From prior data, it has been observed that rent indices do exhibit sharp rises, 
in certain cities, with some regularity. To "correct" the smoothed out index, an empirical 
adjustment wUl be proposed. By contrast, due to the volatiUty of the annual index, a smoothing 
adjustment will also be proposed. 

3.1 Empirical Adjustments 

It is known, for example, that most rents in Montreal change in July. The first four in­
dices discussed in the previous section would distribute this July change over July, August, 
September and October. One could however adjust the index in July to reflect a larger change 
and counter adjust it in the foUowing three months. More precisely, the index could be 
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multiplied by r* in the reference month and then by {r*)~'^' in each of the foUowing three 
months. Since all the proposed indices are chained indices, in the third month after the 
reference month the four multipliers will offset each other, leaving no trailing biases. As 
for the choice of r*, this will depend on continued empirical observations in each particular 
city. 

It is to be noted that such adjustments must be performed in rare situations only and with 
great care. It is imperative that the particular situation be monitored, for h is not uncommon 
for such aberrations to disappear suddenly. 

3.2 Smoothing 

As a last effort in redeeming a volatile, saw-toothed index, one could consider smoothing 
it. Like the above adjustments, smoothing should be considered in rare and extreme situations 
only: in cases where no other alternative exists. The smoothing procedure we consider here 
involves averaging the index at time m with a linear extrapolation to time m of the smoothed 
index from time m - 1 and m - 2. One possible choice of the smoothed index at time m, 
Sm, is then given by 

Sm = Im/2 + {2Sff,_i - S„_2)/2 

= 5,„_, -I- {Iff, - S„_2)/2. (3.1) 

Since the smoothing operation basicaUy projects past data into the future, the smoothed 
index will extend past trends and therefore introduce some lags. Moreover, the method is 
recursive and consequently could also introduce unwanted biases. Other smoothing methods 
could be considered, although the utility of smoothing an index that suffers from serious 
lags is questionable. 

4. EMPIRICAL STUDY 

The study described in the following paragraphs was initiated in order to test the perfor­
mance over time of the proposed indices and adjustments. The study provides quantitative 
information on the ability of the indices to track the true index accurately. It supports the 
mostly heuristic observations made above and reinforces the theoretical ones. 

4.1 The Population 

The population of rented dwellings used in this study was designed to duplicate the real 
situation as closely as possible. For this purpose, the cities,their sizes, and their sample sizes 
were selected to correspond to those used by the Rent Component of the CPI. Since all real 
data on rents is available for periods of six months only, the needed thirteen months of data 
had to be simulated. Eight cities were chosen for this purpose. Some are large, some are 
small, some have periodic jumps in their indices, but all are CPI index cities and have suffi­
cient amount of rent data avaUable. Moreover, whUe some of the indices in these cities are 
strictiy increasing, others are both increasing and decreasing. 

Only the initial rents of all units (those collected when the unit rotated in) on the CPI 
rent database for the years 1979 to 1984 inclusive, for the eight cities mentioned above, were 
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Table 1 
Average Sample Sizes (Distinct Units) and the Index at 8401 

for Eight Cities Based on the Simulated Population 

Average Monthly Index at 8401 
City Sample Size (8001 = 100) 

Halifax 51 144.3 

Montreal 268 136.6 

Ottawa 35 130.0 

Toronto 170 130.4 

Winnipeg 105 132.0 

Edmonton 112 125.2 

Calgary 97 123.5 

Vancouver 105 130.5 

retrieved. For each unit, twelve additional months worth of data were then simulated using 
the observed parameters. (This approach is operationally easier then simulating seven months 
of data in addition to the existing six.) More precisely, for each unit, first a decision was 
made whether or not a change in rent will occur sometime in the next twelve months. The 
probability of this event was set to be equal to the observed probability of a rent change 
in that particular city and year. Then, given that a change was to occur,the appropriate month 
was selected proportional to the observed incidence of rent changes, again specific to the 
city and month at hand. The actual amount of the rent change was assumed to be distributed 
normaUy with a fixed mean and variance. Robust estimates of these two parameters were 
obtained from the existing data for each city and each month. 

All programming was done in SAS (Statistical Analysis System). The random numbers 
were generated using the routines RANUNI and RANNOR. The resulting population con­
sists of eight cities and four years of fully rotated data (that is,discarding start up months). 
The average monthly sample sizes and the value of the simulated index for January 1984 
(with Jan 1980 = 100) can be seen for each city in Table I. The indices, calculated for each 
of the cities, resemble very closely those observed originally. In the following comparisons, 
the indices of the simulated population were taken to be the true reference points to be 
reproduced. 

4.2 Comparison of Indices 

For the purpose of calculating the indices, it was assumed that of the 13 available obser­
vations for each unit, only those for months I, 5, 9 and 13 were actually observed. All 
calculations were then based on this (4/13) subsample.The five indices described above were 
calculated for each city and compared to the true index. All indices are fixed at 100 in January 
1980. The empirical adjustment was tested with the Montreal, Halifax and Winnipeg data, 
for the month of July, January and October respectively. While the results for all the possible 
combinations of cities and indices are too numerous to include herein, they are available 
from the author. Some selected highlights will be put forth in the following paragraphs. 
While not exhaustive, they are hoped to be representative as well as indicative of the situation 
at hand. 
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Figure 3. Plot of the True Index and the Incre­
mental Index for the City of Ottawa 
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Figure 5. Plot of the True Index and the Annual 
Index for the City of Ottawa 
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As can be seen in Figures 1-5, all five indices track the true index reasonably weU, even 
in the case of smaU sample sizes such as in the city of Ottawa. As expected, the first four 
indices show some lags, those being more pronounced in the carried and interpolated index. 
(Note that the lagging problem could likely be accentuated by generating the population with 
exponentially increasing prices). Not surprisingly, the annual index is rather volatile. For 
cities with large sample sizes however,(e.g. Toronto), the annual index performs well (see 
Figure 6). While the smoothing adjustment of Section 3.2 does indeed smooth the index, 
the results are less than satisfactory as can be seen in Figure 7 (c.f. Figure 5). Perhaps a 
larger number of points should be used for the extrapolation but then the lagging problem 
would be even more pronounced. Figure 8 further demonstrates how sudden unexpected 
changes in trends are reported with a delay. However, expected jumps in the index (as in 
July in Montreal, Figure 9) can be adjusted successfully using the adjustment procedure of 
Section 3.1 (Figure 10). 
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Table 2 

Mean Square Errors of Five Indices in Eight Cities 

City 

Halifax 

Montreal 

Ottawa 

Toronto 

Winnipeg 

Edmonton 

Calgary 

Vancouver 

Interpolated 

30* 

48* 

17 

36 

27* 

46 

56 

70 

(3) 

(3) 

(3) 

(4) 

(3) 

(1) 

(2) 

(5) 

Geometric 

19* 

24* 

12 

27 

17* 

64 

81 

53 

(2) 

(2) 

(2) 

(3) 

(2) 

(4) 

(4) 

(2) 

Incremental 

12* 

9* 

8 

20 

10* 

88 

121 

39 

(1) 

(1) 

(1) 

(2) 

(1) 

(5) 

(5) 

(1) 

Carried 

48 

160 

22 

29 

66 

55 

64 

64 

(4) 

(5) 

(4) 

(5) 

(5) 

(3) 

(3) 

(4) 

Annual 

74 (5) 

82 (4) 

95 (5) 

13 (1) 

41 (4) 

50 (2) 

46 (1) 

60 (3) 

Note: 1. Bracketed figures indicate ranking within cities. 
2. Starred figures are results of adjusted indices as per Section 3.1. 

Mean square errors of the five indices away from the true index have been calculated for 
each city (Table 2). The three interpolation based indices (interpolated, geometric and in­
cremental) have been adjusted for the cities of Montreal, Halifax and Winnipeg. Table 2 
also presents the rankings (from smallest to largest) of the mean square errors of the five 
indices within each city. The carried and the annual index tend to perform the worst. The 
three interpolation-based indices perform relatively aUke. In general, in cities where the index 
is climbing consistently, the performance of these three indices worsens in the order: incre­
mental, geometric, interpolated. The order is reversed in cities where sharp decreases in the 
index have been observed. It is unlikely, however, that the strategies could be interchanged 
based on observed behaviours only. 

5. SUMMARY 

Both the theoretical as well as the empirical observations suggest that the yearly index 
is too volatile in cities where sample sizes are not large enough. Smoothing, at least of the 
type described, has proven fruitless. For this reason the annual index should be reserved only 
for those rare cases where sample sizes permit. On the other hand, the annual index could 
be used in conjunction with one of the more stable four-month indices to produce a compos­
ite estimate analogous to that proposed by Kosary et al. (1982). However, empirical obser­
vations would be needed to determine the appropriate weights to be used in averaging the 
two indices. 

By contrast, the carried, and to some degree, the interpolated index tend to be too smooth. 
That is they tend to smooth out all peaks in addition to demonstrating a one or two (index) 
point lag. While the incremental and geometric indices are not entirely free of these lags, 
they tend to track the true index a little more closely. The incremental index performs the 
best overall, however, because of the mathematical "cleanliness"of the geometric index (i.e. 
its theoretical independence of its history and its correspondence to the chaining structure), 
it is the latter that is recommended here. In other words, the geometric index does not retain 
terms that could cause biases in the long run. 
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It is also apparent that whenever possible, prior knowledge can be used to improve the 
index. Empirical adjustments as described in Section 3.1 can be useful, provided that they 
are well founded. If their use is contemplated, h is imperative that the empirical knowledge 
that leads to their application be monitored and its continued existence verified. 
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Regression Analysis Using Survey Data 
with Endogenous Design 

ARIE TEN CATE» 

ABSTRACT 

This paper discusses the influence of the sampling design on the estimation of a linear regression model. 
Particularly, sampling designs will be discussed which are dependent on the values of the endogenous 
variable in the population: endogenous (or "informative") designs. A consistent estimator of the regres­
sion coefficients is given. Its variance is the sum of a sampling design component and a disturbance 
term component. Also, model-free regression is briefly discussed. The model-free regression estimator 
is the same as the model estimator in the case of an endogenous design. 

KEY WORDS: Regression; Survey sampling; Endogenous design. 

1. INTRODUCTION 

The heart of any statistical model is the assumption that the value of one or more variables 
is generated by drawing from some probability distribution; for example, a regression model 
with normally distributed disturbances. In this paper a finite set of elements which behave 
according to such a model will be considered. This set is called the population. Next, a sample 
is drawn from this population, without replacement. The subject of this paper is the influence 
of the sampling design on the estimation of the parameters of the model. This influence 
depends mainly on whether the design is exogenous or endogenous with respect to the model. 
In the case of an endogenous (or "informative") design, the sampling probabilities depend 
on the value of the endogenous ("dependent") variables. Then, the design should not be 
ignored in the estimation of the model parameters. The nature of the problem is indicated 
in Figure 1, where a stratified sampling design is shown. There are 3 strata, defined in the 
endogenous variable of a regression model. The middle stratum has a higher sampling fraction 
than the other two. The diagram shows that the slope of the regression line estimated using 
the sampled data points only, is biased downwards if one ignores the design. This bias does 
not vanish in large samples. This can be seen in an intuitive manner by imagining that every 
white and black dot in Figure I denotes a large number of identical data points. Even if 
this large number tends to infinity, the slope of the estimated regression line will be biased 
downwards, because the shape of the scatter will remain the same. 

There is a rapidly growing body of literature on the application of regression techniques 
in finite population sampling. This literature deals with a variety of problems. One problem 
is, how to use regression techniques in order to estimate a finUe population total. Another 
problem concerns the estimation of population parameters such as ^xy/Lx^, where the 
summation runs over all elements of the finite population. Reviews of the literature about 
these problems are given by Nathan (1981) and Smith (1981). A third problem is the estimation 
of the parameters of a regression model, using a sample from a finite population. This problem 
can be solved relatively easily in the case of a exogenous design. See Porter (1973, Section 
1.2), DuMouchel and Duncan (1983), and textbooks such as Cramer (1971, p. 143). Texts 
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Figure 1. The Effect of Endogenous Stratification on the Estimated Regression Line 

such as Kmenta (I97I, Section 8.3) and Johnston (1972, Section 9.2) discuss the closely related 
topic of stochastic regressors. See also White (1980a) for non-linear regression. Our topic, 
regression analysis with endogenous design, is more complicated. Hausman and Wise (I98I) 
discuss stratified endogenous designs in a very simple case: two strata and a regression model 
consisting of a constant term only. Jewell (1985) gives some iterative estimators for the case 
of endogenous stratification. 

Regression analysis with endogenous design is related to the problem of endogenous non-
response in regression analysis (see Heckman (1979)). However, we have a lesser problem 
here, since the probabilities involved in the sampling process are assumed to be known: they 
constitute the chosen design. On the other hand, as we shaU see in Subsection 6.1, variance 
estimation with an endogenous design is in general rather difficult. 

Regression analysis with endogenous design may be compared with logit analysis with 
endogenous design, also called logit analysis with choice based sampling or case-control 
sampUng. See Manski and McFadden (1981, Chapters 1 and 2) and Breslow and Day (1980, 
Section 6.3). 

The contents of the rest of the paper are as follows. In Sections 2 and 3 the main theorems 
are given. These theorems give a consistent estimator of the parameters of a linear regression 
model, using a sample with an endogenous design. Consistency is defined here in a similar 
way as in the discussion of the bias in the example above, though slightly more subtle: the 
x-values are replicated a large number of times and the j'-values behave according to the 
regression model. In Sections 4 and 5 the variance of the estimator of the regression coeffi­
cients is studied. Section 6 discusses the estimation of this variance. Section 7 deals with model-
free regression. Section 8 discusses the various motives for weighted regression and finally. 
Section 9 concludes the paper. 
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2. THE MODEL, THE SAMPLE AND A 
REGRESSION ESTIMATOR 

In this section the asymptotic properties of an estimator of a regression model are studied 
within the framework of finite population sampling without replacement. Asymptotic theory 
for samples drawn without replacement from a finite population may seem a contradiction 
since such a sample must be bounded. This contradiction is solved by increasing both the 
population size and the sample size, without bound, at the same rate. The dependence between 
the inclusions of population elements in the sample constitutes another problem, especially 
in the case of complex sampling designs. Here we use an idea of Brewer (1979). In Brewer's 
system, limit theorems on sequences of independent variables can be used, while the results 
may still be applied to complex designs. Basically, this system consists of the replica idea 
already introduced informally above. This replica idea will be used extensively throughout 
the rest of this paper. For another approach, see Robinson (1982). 

First, the structure of the population and the model are given. Consider a finite set of 
Âo elements. Each element has r real-valued exogenous non-stochastic characteristics, 
together forming an (A'o x r)-matrix XQ. One of the fundamental assumptions of this paper 
is the following. /The population consists of K repUcas of this set of A'o elements, having 
N = KNQ elements. Its matrix of exogenous variables is X, with 

X=i„® Xo. (I) 

Here, t/̂  is the /f-vector with all elements equal to unity and <S> denotes the Kronecker 
matrix product. Aymptotic results will be derived by allowing K to tend to infinity. 

The model assumptions describe the standard linear model. Each of the Â  elements of 
the population has a score on a stochastic, endogenous, variable. Together they form an 
A^-vector y. It is assumed that 

E^ {y) = Xp (2) 

for some fixed, unknown r-vector /3. E^ denotes the expectation over all y^R^. Next we 
define 

t=y - X0. (3) 

It is assumed that the N elements of £ are i.i.d. It follows from (2) that all elements of 
£ have expectation zero. Their variance is a^, that is, 

£ j ( £ £ ' ) = a^I. (4) 

Sampling is done without replacement here, as is common practice. The sample is described 
by a diagonal {N x N)-matrix T, such that 

'« = [ 0 
I if population element / is in the sample 

otherwise 
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for all / = 1 Â . Obviously, 7 is idempotent. The sample space S is the set of all such 
matrices T. This set is finite. The sampling design is some probability distribution over the 
elements of the sample space S. The sampling design is endogenous here, meaning that it 
depends on y. Hence, the sampUng design itself is stochastic. (A design which does not de­
pend on y is called exogenous, or uninformative.) Let T be partitioned in a square K X K 
array of {NQ X NQ) blocks. Let T^ be the A:-th diagonal block, related to the A:-th replica. 
Similarly, let y be partitioned in K A'o-vectors, such that y' = {y{, yi, .... yk> •••> yk)-
It is assumed that the sampling design depends on y in the following sense: the K pairs 
(T'l.j'i),..., {T^.yx) are i.i.d. 

The expectation over all elements of S, conditional on y (or £), plays an important role 
in this paper. It is denoted by Ep. Then we define 

n^Ep{T). (5) 

It is assumed that 11 is known. The diagonal elements of 11 are called inclusion probabilities: 
the probabilities that the population elements are included in the sample. The matrix 11 is 
partitioned in a square K x K array of (A'o x A'o) blocks. Let 11;. be the k-tb diagonal 
block, related to the A:-th replica. Note that each Xl̂ t is stochastic because it depends on y^. 
By the above assumption, the IIi, ..., Ilyj. are i.i.d. The dependence of the 11;̂  on>' is denoted 
by a function F, such that 

n* = F{y,) (6) 

for all A: = I, .... K. It is assumed that F{yk) is non-singular for every ;'^. In other words, 
the inclusion probabilities are always positive. 

This framework and Brewer's (1979) differ in somewhat. Brewer has no endogenous 
variables and therefore all his 11^ are nonstochastic and equal. One may also compare this 
approach with the idea of "constant in repeated samples" in the econometric literature; see 
e.g. TheU (I97I, p. 364). 

The stage is now set for the estimation of |3. The stochastic properties of estimators will 
be considered over aU pairs {y,T)i:{R'^ x S). The corresponding expectation will be 
denoted by E^Ep. We shaU consider a generaUzed least square estimator of ;8, say /3, with 
weights equal to the square roots of the inclusion probabilities, as follows, 

iS = [{n-'^'X)'T{fl-'^'X)]-^ {U-''''X)'T{n-'^'y) 

= ( A " n - ' r A ' ) - ' A " n - ' 7 > . (7) 

RecaU that the matrix 11 is known. Note that X and y relate to the population, but T ef­
fectuates summation over the sampled elements. As an alternative to considering j3 as a 
generaUzed least squares estimator, assume that aU elements of 11" ' are integer numbers. 
Then, if each observation / in the sample is copied 7r,7' times, j3 is the ordinary least squares 
estimator appUed to this inflated sample. In this view, no square roots of the probabilities 
are involved. See also Hausman and Wise (I98I, p. 373). The main theorem of this paper is: 

Theorem 1. Under the assumptions made above ((1), (2) and the distribution of £ and 7"), 
the generalized least squares estimator /3, defined in equation (7) is consistent for /T-* oo. 

The rest of the section is devoted to the proof of this theorem. The following lemma will 
be used in this proof and the proof of subsequent theorems. 



Survey Methodology, December 1986 125 

Lemma 1. Consider an N-vector z, such that z = tk'^Zo, where ZQ is some fixed A'o-vector. 
Consider also an N-vector TJ, partitioned such that T/' = {vi> vi- •••> vk)- Each jj^ has A'o 
elements. Assume that each rii^ is a function of XQ, /3 and ek> ai' functions being the same. 
Then 

plim ( ^ z ' n - ' T r , ) =z6E({rio), 
(8) 

where £{ ( T/O ) is the expectation of any Tĵ t, being equal for all k. 

Proof of lemma 1: Consider the expectation of n^'r^tT;^: 

E^Ep{Uk-'TkVk) = E^[nk-'Ep{Tk)Vk] =E^{vk). (9) 

for all A:. Since the distribution of r/̂  is the same for each k, one may write 

E^Ep{Uir'TkVk) = E^{vo) (10) 

for aU k. Also, the K vectors ZoIf'Tytl* are i.i.d. Thus, Khintchine's theorem applies as 
follows, 

plim (lz'n-'Tr,\ = plim (I V) z6Uir'TkVk\ = £{£•/, ( zdnfT , , , ) 
K-co \Ii / AT-oo \ ^ k ' 

= z6E^Ep{Ur'T,vi). (II) 

Substitution of (10) in (I I) gives the lemma. The proof of theorem I is now straightforward. 

Proof of theorem 1: The generalized least squares estimator of the theorem can be written as 

$ = {X'n-^TX)-^X'U-^Ty = 0 -{• {X'U-^TX)-^X'U-^n. (12) 

Thus, 

pUm/3 = /3 -t- [plim ( - ^ ' n - ' 7 - . Y ) 1 plim (-X'U-^Tt) 

= /?-(- {XI,XQ)-'X^O = 13. (13) 

The expression A'o'A'o is formed by repeated application of lemma I, substituting the col­
umns of A" for both z and rj. Notice that £'{(A'o) = Ao since A'o is a constant. The expres­
sion A'QO is formed by repeated appUcation of lemma I, substituting the columns of X for 
z and £ for rj. 
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3. THE ESTIMATION OF THE DISTURBANCE VARIANCE 

The regression model described in Section 2 has two parameters: /3 and a^. Theorem I 
considered estimation of j8; in this section the estimation of a^ will be considered. The result 
of this section is given in the following theorem. 

Theorem 2. The disturbance variance a^ is estimated consistently by the weighted sam­
ple variance of the residuals ofy if these weights are equal to the inverse of the square root 
of the inclusion probabilities. 

Proof: The variance estimator of the theorem is 

v2 — c , ' T T - ' T ' . .\ - 1 ^ 

with 

Let 

and 

Then 

d^ = {L^W'TL,^)-'e'e (14) 

e = U-''''T{y - X$). (15) 

y = n-'/^rv, (16) 

X=n-''''TX, (17) 

£ = n-'^'n. (18) 

e=y-X0=y- X{X'X) '^X'y (19) 

and 

e'e = y'[lN - X{X'X)-^X']y = {X0 + £)'[/;v - X{X'X)-^X']{X0 + e) 

= I'l - l'X{X'X)-''X'l. (20) 

The first term in the right-hand side (RHS) of (20) converges in probability as follows 

plim ( - £ ' e ) = plim ( - £ ' n ~ ' 7 £ ) = plim -tX,n~'rdiag(£)£ 

= ^k^io^NQ) = NQO^. (21) 

Here, diag(£) indicates the diagonal matrix with as the diagonal. Lemma I has been applied 
with tyv substituted for z and diag(£)£ for ri, using model equation (4). Next, consider the 
second term in the RHS of (20). 
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plim -£ 'A^(A^ 'A^) - 'A ' '£ 

= 0'(;^,5^o)"'0 = 0. (22) 

In the derivation of (22), use has been made of lemma I in the same manner as in the 
derivation of (13). The combination of (20), (21) and (22) gives 

plim (le'e) = NQO^ (23) 
/f-OO \Ii / 

Finally, lemma I is applied to the first factor in (14), with i/̂  substituted both for z and 
7). This gives 

plim (-i^/n-'Tiyv) = AQ. (24) 

With (23) and (24) we have 

plim (d^) = a\ (25) 
/ f -oo 

which proves the theorem. Finally it may be useful to note, as a corollary of (23), that 

Qe-'e (26) 

is also a consistent estimator of a^. 

4. THE VARIANCE OF $ 

In this section the asymptotic variance of the estimator $ is given. 
Theorem 3. The asymptotic variance of $ is given by 

Var(i3) = {X'X)-^X'VX{X'X)-\ (27) 

with 

V = iE{[diag(£)n-'Pn-'diag(£)], (28) 
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and 

P = Ep{Tu'T). (29) 

The elements of P are the so-called second order inclusion probabilities: the probabUity 
for any pair of elements of the population of being included in the sample. The diagonal 
of P is equal to the diagonal of 11. The rest of this section is devoted to a proof of this 
theorem. 

Proof: Consider the asymptotic distribution for K-* oo of 

K'^'{& - &) = K'^'[{X'll-^TX)-'^X'fl-^Ty - /3] 

= A' ' ' ' ^ (A"n- '7A') - 'A"n- '7£. (30) 

Since 

plim (^X"n-'TX\ = X^Xo, (31) 

the asymptotic distribution of K'^'- {$ - 0) is equal to the asymptotic distribution of 6, 
with 

6 = K-'''{XiXo) -'X'U-'n = K-'''{XiXo) " ' ^ XiUir'Tk^ = X''"' J ] 6*. (32) 
k k 

and 

5* = (A'oA'o) ~ A'oIIir Tktk, (33) 

for aU k = 1. .... K. (See e.g. Rao (1973), p. 122). Since the vector 6^ {k = 1, .... K) are 
i.i.d. and also 

E^Ep{bk) = {X(>Xo) -'XiE^Ep{nk-'Tkek) 

= {X6Xo) -'XiE^[Uir%{Tk)^] 

= {XiXo)-'XiE^{ek) = 0 , (34) 

the variance of b, say Var(6), is equal for all K and also equal to the variance of the asymp­
totic distribution of b for AT^oo. This variance can be written as 

Var(6) =E^Ep{bkbn (35) 

for any A:€ {1, ..., K]. Since the vectors 5^ are i.i.d. this may be rewritten as 
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Var (5) = ̂  X) ^f^p(M*) 
k 

= ^-{X6Xo)-' \E^P f ^ X6U-k'Tkekel,TkUk-'Xo\ 1 ( ^ o ^ o ) " ' 

= K{X'X)-^[E^Ep{X'n-^Tee'Tn-^X)] ( A " ^ ) " ' 

= A ' (A"A' ) - 'A"(£ ' j£ 'p [d iag(£)n- ' r i i ' 7n - 'd iag(£) ] 1A'(A"A')-' 

= K{X'X)-^X' ( £{ [d i ag (£ )n - ' £p (7 ' u ' r ) n - ' d i ag (£ ) ] ]X{X'X)-K (36) 

Division of Var (5) by K gives Var(/3) and completes the proof. 

5. A DECOMPOSITION OF VAR(/S) 

The variance formula (27) can be rewritten as 

Var(/3) = a^{X'X)-^ -\- (A"A') " 'A" I^A'(A"A') " ' (37) 

with 

V* = £ ' j [ d i a g ( £ ) ( n - ' P n - ' - i i ' ) d i a g ( £ ) ] , (38) 

using (4). The first term in the RHS of (37) might reasonably be called the ^-component 
of the variance of $. This component would contain all the variance of j3 if the whole popula­
tion was sampled. It is entirely due to the variation in the disturbance £ and U is the famUiar 
expression for that case. The second term in the RHS of (37) might be called the p-component 
of the variance of /3. This component contains the matrices 11 and P, which describe the 
sampUng design. This component looks like the variance formula of the estimator of a total 
or average of a finite population. The theory of such estimators will be discussed briefly 
in the rest of this section, as an aid in the interpretation of the /7-component of Var(^). 

Consider a finite population of A'̂  elements. (No replica structure is assumed here). Each 
element of this population has a score on some real non-stochastic variable, collected in an 
N-vectorx. From this population a sample without replacement is taken. The sample is describ­
ed by the diagonal matrix T, as before. Also as before, 

n^ Ep{T) (39) 

and 

P^Ep{Tu'T), (40) 

the first order and second order inclusion probabilities, respectively. There is no regression 
model here, so 11 and P are fixed known matrices. Horvitz and Thompson (1952) suggested 
to estimate the population total A"t by 

X = x'U-^Ti (41) 



130 Ten Cate: Regression Analysis Using Survey Data 

Obviously this is an unbiased estimator, in view of (39). The variance of X is 

Var(X) = Ep{X'^) - [Ep{X)]^ = Ep{x''U.-^Tu'TTl-^x) - x'u'x 

= x'(n-'pn-' - u')x. (42) 

The last member of equation (42) is the variance formula of the Horvitz-Thompson 
estimator, which can be found in textbooks on sampling, such as Cochran (1977), though 
usually not in matrix format. The expression in parentheses in the last member of (42) is 
equal to the expression in parentheses in (38), the definition of V*. The latter is contained 
in the formula of the/>-component of Var(/3). Thus, the diagonal elements of thep-component 
of the variance matrix Var(/3) can be considered as the ^-expectation of the /j-variance of 
the Horvitz-Thompson estimator of the row totals of {X'X) ~' A" diag (E). These totals 
are the elements of the vector {X'X) ~ ' A " £ . 

6. THE ESTIMATION OF VAR(/3) 

6.1 The General Case 

In this section the estimation of the asymptotic variance Var(/3) is considered. Consistent 
estimation of Var(|8) is rather difficult, since this requires knowledge of the relationship F 
between y and the sampling design, as it appears in the matrix V. In practice, only the sampling 
design for the actual values of y wUl be known. In general, it is difficult to tell from this 
design only, what the design would be like if .y took on different values. In a sense not only 
a regression model is involved, but also a model of the designer himself! 

For the moment we assume that the function F is known, and therefore K is a known 
function of A" and the parameters of the model. (See Subsection 6.2 for a special case). This 
is expressed as foUows. 

V = V{0,a^;X). (43) 

It is assumed that V{0, a^; X) is a continuous function. For the sake of brevity, Kis defined 
as 

V^ V{M^;X), (44) 

where and 0 and a^ are consistent estimators of /3 and a^ respectively. The rest of this sub­
section gives a theorem on consistent variance estimation, and its proof. Consistent estimation 
of Var(/3) by var(|8) is interpreted here as follows: 

plim/i:var(3) = lim KVar{0). (45) 
/f-'OO A'-OO 

Theorem 4. Under the assumptions made above, the asymptotic variance Var(;3) is estimated 
consistently by 

var(/3) = ( A " n - ' 7 A ' ) - ' A " 7 ' ( - j 7 ' A ' ( A " n - i r A ' ) - ' , (46) 
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where ( V/P) denotes the matrix consisting of the elements of V divided by the correspon­
ding elements of P. 

Proof: First the structure of Kwill be considered. Let Kbe partitioned in a square K x K 
array of {NQ X NQ) blocks. The {k, r)-th off-diagonal block of K is equal to 

E( [diag{tk)Uk-'Ep{Tku'Tf)nf-'diag{er) ] 

= E^ [diag{ek)U,^%{Tk)u'Ep{T^)n,"'diag(£,) ] 

= E^{tkc;) = 0, (47) 

using the assumed replica structure of the population and the sampling design. The diagonal 
blocks of V are identical and depend on A'o. Thus, K(/3, a^; X) can be written as 

V{0,a^;X) = If,'S>Vo{0,a^;Xo), (48) 

where Ko(/3, a^; XQ) is an A'o X A'o matrix function. Together with (1), equation (48) can 
be used to rewrite K'Var{$) as follows. 

A:Var(^) = {XiXo)-'XiVoXo{X6Xo)-\ (49) 

where VQ denotes Vo{0, a^; XQ). The RHS of (49) is independent of K and therefore equal 
to its Umit as K tends to infinity. Next, the LHS of (45) is considered. 

/srvar(^) = Q A - ' n - ' r A - ^ F - A ' T / ' - ' ) TA-l (^-A-'n- 'rAT^ (50) 

EarUer, in the derivation of (13) and (22), use has already been made of 

plim (lx'U-'Tx\ = XiXo. (51) 
/r-*oo \ A : / 

It foUows from the assumption that V{0, a^; X) is a continuous function, that 

pUm Vo = Vo. (52) 
/r-»o> 

where VQ denotes Vo{$, a^; XQ). Using (I), (48) and (52) gives 

= pUm i ^ 1x6 Tk (^\ TkXo] = Xi VOXQ: (53) 
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Here PQ denotes Ep {T/cit' T^), which is the same for aU k = 1, .... K. The last equality 
sign results from the application of Khintchine's theorem, since the terms in the second 
summation over k in (53) are i.d.d. with/7-expectation equal to A'o FoA'o. Finally, the com­
bination of (50), (51) and (53) gives 

plimA:var(^) = {X6XQ)-'X(,VQXQ{X{>XQ) (54) 
AT-oo 

which is the same expression as the RHS of (49). 

6.2 Stratified Sampling 

In this subsection the computation of the matrix T{ V/P)T is given for a special case: 
(I) the disturbances are normally distributed, and (2) the sampling design is an endogenously 
stratified sampling design, such that the inclusion probability TT,, of element / of the popula­
tion is a function/of only the /-th element of y, say y(iy Thus, 

= fiy(i))> (55) 

for / = I, .... N. As an example, consider the stratified sample which was shown in Figure 
I. The design contains three strata there. The elements in the middle stratum have the highest 
inclusion probability. Figure 2 shows the corresponding function / . 

f{y) 

0 - • y 

Li L-, 

Figure 2. The Probability Function / Corresponding to Figure 1 

In general, let there be H strata, indicated by h = 1, ..., H. Let the boundaries of these 
strata be LQ, L , , ..., LH. Typically, Lo = - oo and LH = -I- oo. Let Tr(/,) be the inclusion 
probability of the population elements in stratum h. More formally, the function / ( • ) is 
such tbatfiy) equals 7r(A) if ^/,-i ^ y < Ey,. The values of Tr(/,) and L/, are usuaUy known 
in practice, since the actual sampling design depends on their values. 
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In stratified sampling, the second order inclusion probability of any two population 
elements not in the same stratum equals the product of their respective first order inclusion 
probabilities: their inclusions in the sample are independent. For any two population elements 
in the same stratum this holds approximately. Thus, approximately the off-diagonal elements 
of P are equal to the off-diagonal elements of Hit '11. The diagonal of P is equal to the diagonal 
of n, as before. Thus, approximately, 

p = Uu'u - n^ -f- n. (56) 

Then 

V = E^ [diag(£)(ii' - I + n-')diag(£)] 

= £•{[££' - diag2(£) -I- diag2(£)n-'] = E^[diagHe)n-^], (57) 

in view of assumption (4). Thus K is a diagonal matrix here. Then 

T{^\T= m-%[diagHt)n-'], (58) 

which is also a diagonal matrix. Now consider a population element /, which is included in 
the sample. Then, using (58) and assuming normally distributed disturbances. 

[<?>]„ 4.1 i J/<-̂ "̂.'-' 
h=l 

;v2 /< , H-l 

- — + r ( )-^[iLh- x;$)/a] . (59) 
'̂ ic C"•(//) ^^ j \ir(A) Tt(h + \)/ J 

Here, ^{•;d^) indicates the normal density with mean zero and variance d .̂ The function 
^(•) is defined as 

•i{x) = f ^{t;l)t^dt = i>{x) - x<p{x;l). (60) 

where $(•) denotes the cumulative density function for the standard normal distribution. 
In the derivation of (59), use has been made of ^ (Lo) = 0 and ^ {L^) = I. 

7. MODEL-FREE REGRESSION 

7.1 Consistent Estimation 

As a digression from the main theme of this paper, model-free regression will be con­
sidered in this section. Firstly, model-free regression can be usefully applied in the case of 
doubt about the vaUdity of a linear model. See FuUer (1975), who studies model-free regres­
sion for some specific designs. Van Praag (I98I, 1982) studies model-free regression in the 
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case of repeated sampling from some probabUity distribution. See also DuMouchel and 
Duncan (1983). White (1980b, Section 3) studies related problems. Secondly, the so-called 
regression estimator of a population total uses model-free regression. See textbooks such 
as Cochran (1977), the review papers mentioned above by Nathan (1981) and Smith (1981) 
and Bethlehem and Keller (1983). 

The purpose of model-free regression is the estimation of the population parameter vector 

b^ {X'X)-'X'y, (61) 

without assumptions about the probabUity distribution ofy. In fact, both A'and j ' are con­
sidered non-stochastic. Further, the same replica structure as in Section 2 is used, as foUows. 

X = IK®XQ, (62) 

and 

y = i-x'^yo. (63) 

where yo is some fixed A'o-vector. As before, the K diagonal matrices Tk {k = 1, ..., K) 
are i.i.d. These matrices describe the sample as in Section 2. Together the matrices Tk form 
the matrix T. No additional assumptions are made concerning the distribution of T. 

It is proved relatively easily, along the same lines as in Section 2, that the weighted estimator 
/3 defined before in (7), is a consistent estimator of b defined in (61). See also Jonrup and 
Rennermalm (1976), who indicates jS as an "approximately unbiased" estimator of b, and 
Van Praag (1982, Section 4d), where "selectivity bias" with known inclusion probabiUties 
is studied for the model-free case. 

It foUows in the same manner as in Section 4 that in the model-free case the asymptotic 
variance of /3, say VarMF(/3), equals 

VarMF(^) = {X'X)-^X'VX{X'X)-', (64) 

with 

e^y - Xb, (65) 

F = diag ( e ) n - ' P n - ' d i a g (e), (66) 

and with P defined as before in (29). Notice that Fin (66) differs from Kin (28) in the omis­
sion of the ^-expectation and the substitution of e for e. 

It is interesting to rewrite VarMF(/3) in the same way as Var(/3) was rewritten in Section 
5. In doing so, use wiU be made of 

A"e = 0, (67) 

which foUows directly from (61) and (65). The Var^rdS) can be rewritten as 

VarMF(^) = ( ^ ' A ' ) - ' A " d i a g ( e ) ( n - ' P n - ' - i i ' ) d i a g ( e ) A ' ( A " X ) - ' 

-I- {X'X)-^X'ee'X{X'X)-^ 

= ( A " A ' ) - ' A " d i a g ( e ) ( n - ' P n - ' - u ' ) d i a g ( e ) A ' ( A " ^ ) - ' . (68) 
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The last member of (68) corresponds with the/7-component of the decomposition of Var(/3) 
in (37). It may be concluded from (68) that in model-free regression the variance of the 
estimator of the regression coefficients consists of the/j-component, while the ^-component 
vanishes. 

Notice finally that, using the discussion at the end of Section 5, the last member of (68) 
can be written as 

(A"A')-'E(A"A')-', (69) 

where the matrix L is the p-variance-covariance of the row totals of A"diag(e). A similar 
result was reached by Binder (1983, Section 4), though along different Unes. 

8. DISCUSSION 

In this section some practical considerations are given concerning the use of weights in 
regression analysis. Several motives for the use of weights are discussed shortly, related to 
the preceding technical sections of this paper. 

First of all, it must be noted that the difference between weighted and unweighted regres­
sions may be of some significance. An important example is the case where business firms 
are the unit of study - either farms, industrial enterprises of any other kind of business firms 
varying considerably in the number of employees. At the Netherlands Central Bureau of 
Statistics, for instance, the classification by number of employees is a standard stratification 
variable in sampling designs of business firms, giving a considerable range of inclusion proba­
bilities - the large units chosen with relatively large probabilities. In studies with employment 
as the endogenous variable, such a sampUng design is endogenous, which calls for weighted 
regression; the large unUs receiving small weights. 

Secondly, in the case of units varying widely in size, a major problem with regression 
analysis is the heteroscedasticity of the error term. This calls for weighted regression, of the 
same sort as the weighting due to an endogenous design discussed in Section 2: large units 
receiving small weights. 

Finally, there is a third motive for the weighting of sampled data: the notion of a model 
free regression, as discussed in Section 7 above. Again, the weights here are of the same 
sort as the weights in Section 2. 

Summing up, there seems to be no reason not to incorporate the sampUng design in 
regression analysis. 

9. CONCLUSIONS 

In this paper the estimation of a regression model with survey sample data has been studied. 
In particular, samples drawn with an endogenous design have been studied; for example, 
a sample stratified on the endogenous variable. It has been shown that for such a sample 
the weighting of the observations with the inverse of the square root of the sampling frac­
tions gives a consistent estimator. The concept of consistency used here is a modification 
of Brewer (1979). The asymptotic variance of the estimator has been given, as well as a 
consistent estimator of this variance. The variance is the sum of a sampling component and 
a model component. 
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Also, model-free regression has been considered. Model-free regression requires the same 
weighting as endogenous stratification. The variance of the estimator of the model-free regres­
sion coefficients contains only the sampUng component, and not the model component. 

Finally, some practical considerations relative to the weighting of the data have been given. 
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A Cluster Analysis of Activities of Daily Living 
From the Canadian Health and Disability Survey^ 

D.A. BINDER and G. LAZARUS^ 

ABSTRACT 

The Canadian Health and Disability Survey, administered as a supplement to the Canadian Labour 
Force Survey in October 1983, collected data on potentially disabled persons by means of a screening 
questionnaire and a follow-up questionnaire for those screened-in. The data from the screening ques­
tionnaire, consisting of a set of activities of daily living, were used to group respondents according 
to identifiable characteristics. A description of the groups of respondents is provided along with an 
evaluation of the methods used in their determination. An incompletely ordered severity scale is proposed. 

KEY WORDS: Disability scale; Discriminant analysis. 

1. INTRODUCTION 

Considerable efforts have been made to acquire a better understanding of the disabled 
population. These efforts have focussed on the development of a useful vehicle for captur­
ing the potentially disabled population as well as the analysis of survey data for the purposes 
of gaining a better understanding of the various dimensions of disability and to develop useful 
measures of severity. Examples of papers which examine these issues are Dolson et al. (1984) 
and Raymond et al. (1981), among others. This paper chronicles the development of an ex­
ploratory technique in order to gain a better understanding of the disabled population in 
Canada. In particular, a cluster analysis based on results of several discriminant analyses 
was performed. 

The next section presents information about the Canadian Health and Disability Survey. 
The third section describes the development of the clusters. Section 4 focusses on the 
characterization of the clusters. Some analysis of the behaviour of the derived clusters is 
given in Section 5. The paper concludes with some closing remarks. 

2. BACKGROUND 

In response to a need for data on disabled persons in Canada, Statistics Canada under­
took a program to create a disability database. The Canadian Health and Disability Surveys 
(CHDS) were administered as supplements to the Canadian Labour Force Survey (LPS) in 
October 1983 and June 1984. In both cases, separate questionnaires were administered to 
children and to adults. In the October survey, the adult questionnaire was administered to 
everyone in the LPS sample (the frame includes about 97% of the Canadian population ag­
ed 15 or more). In June, the adult survey was restricted to those aged 15 to 64 from the 
six provinces with the smaller sample sizes in October (i.e. Newfoundland, Prince Edward 
Island, Nova Scotia, New Brunswick, Manitoba and Saskatchewan). Children from all pro­
vinces were surveyed in both October and June. 

' This is a revised version of the paper presented at ASA meetings. Social Statistics Section, Las Vegas, August 1985. 
^ D.A. Binder and G. Lazarus, Social Survey Methods Division, Informatics and Methodology Branch, Statistics 

Canada, 4th Floor, Jean Talon Building, Tunney's Pasture, Ottawa, Ontario, Canada, KIA 0T6. 
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This paper concentrates on work which utilized only the data from the adults question­
naire in October 1983. This survey obtained 92,945 adult respondents from approximately 
47,000 households. 

2.1 Questionnaire 

2.1.1 Screening Section 

The Labour Force Supplement included a screen which was used to identify respondents 
for a follow-up questionnaire. The screening section consisted of nineteen items - seventeen 
activities of daily living, an activity limitation item and an item about mental handicap. The 
activities of daUy living (ADL's) are a set of activities which any person would perform dur­
ing the course of his/her regular living pattern. The set used here was a modified version 
of those developed by the Organization for Economic and Co-operative Development (OECD) 
and has been utilized by several other countries. 

The ADL's are presented in Table I with the questionnaire identification and the orienta­
tion of the specified activity. Two ADL's are related to hearing troubles, two to vision troubles, 
four to mobility troubles, one to speaking and being understood and the remaining eight 
to agility troubles. 

Table 1 
Activities of Daily Living 

Questionnaire 
Item 

AlO 

A l l 

A12 

A13 

A14 

A15 

A16 

A17 

AI8 

A19 

A20 

A2I 

A22 

A23 

A24 

A25 

A26 

Description 

Walking 400 Metres 

Walking up and down stairs 

Carrying 5 kg. object for 10 metres 

Moving from one room to another 

Standing for long periods 

When standing, bending down to pick up 

object 

Dressing and undressing 

Getting in and out of bed 

Cutting own toenails 

Using fingers to grasp or handle 

Reaching 

Cutting own food 

Reading newsprint 

Seeing clearly a face across the room 

Hearing conversation with another person 

Hearing conversation with two or more persons 

Speaking and being understood 

Orientation 

Mobility 

Mobility 

Mobility 

Agility 

MobiUty 

Agility 

Agility 

Agility 

AgiUty 

Agility 

Agility 

Agility 

Vision 

Vision 

Hearing 

Hearing 

Speaking and 
being understood 
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An example of the wording of these questions in the screening section of the question­
naire is as follows: (A20) Does . . . . have any trouble reaching? The activity limitation item 
(A27) concerned limitation "in the kind or amount of activity he/she can do at home, at 
work or going to school because of a long-term physical condition or health problem". The 
final item in the screen section (A28) concerned mental handicap. 

It should be noted that the survey was concerned with long-term conditions or health pro­
blems - those that had lasted or were expected to last more than six months (excluding pregnan­
cy). An individual was screened in if he/she had trouble with at least one of the ADL's, 
the activity limitation item or had a mental handicap. (Proxy responses were required for 
mentally handicapped individuals). 

2.1.2 Follow-up Section 

The follow-up section of the questionnaire was completed for individuals selected by the 
screening section. This section included an item which sought to determine if the respondent 
was completely unable to perform the ADL('s) he/she had trouble with. Other segments of 
the follow-up questionnaire pertained to: nature of the disability (related to trouble seeing 
or reading, trouble hearing, trouble speaking and being understood, and mobility); problems 
related to the ability to work or the workplace itself; obstacles to education and availability 
of special educational facilities; problems related to local and long-distance travel; and pro­
blems in current residence and special facilities. The information in the follow-up question­
naire, given above, could be used to analyze the cluster characteristics, or to develop a severity 
index (see Lazarus; 1985a, 1985b). 

3. CLUSTERS 

This section presents a description of the procedures used in the development of the clusters. 
The clustering procedures employed were developed specifically for this application. Technical 
details concerning the methods used are given in Sections 3.2 and 3.3. All computations were 
performed using SAS. 

3.1 Methodology 

This section summarizes the methodology used to derive the final clusters. The clustering 
procedure consisted of two steps: 

a) a divisive step, where the 12,907 individuals were sequentially partitioned using PROC 
CANDISC. 

b) an agglomerative step, where the partition was collapsed. 

For the divisive step, the following procedure was employed iteratively. First, the starting 
point put all the observations into a single cluster. Each step subdivided each of the current 
clusters into two groups. For each of the current clusters, a canonical correlation analysis 
was performed by taking each non-constant variable as a grouping variable and using all 
other non-constant variables as explanatory variables. The cluster was then split into two, 
based on the discriminant analysis with the largest F-value. In this way the determinant of 
the between-sums-of-squares matrix is maximized. 

For the agglomerative step, subjective criteria were used, based on the magnitude of the 
F-value, the size of the groups and the plots of the points. Collapsing was accomplished in 
the reverse order of splitting, for the most part. 
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For the divisive step, data based on both unweighted and weighted covariances were used 
separately. The results were essentially the same. It was decided to continue without the sampl­
ing weights because of the added complexity which would be incurred by their inclusion. 
Furthermore, the weights were not expected to be important with respect to the characteristics 
of the clustered individuals. Inclusion of weights is necessary for evaluation and analysis. 

3.2 Description 

The cluster analysis was a procedure which grouped together those screened in respondents 
with similar but not necessarily identical "profiles". For our purposes, a respondent's pro­
file consisted of the responses to the seventeen ADL's (yes, has trouble/no, does not have 
trouble), responses to the major activity Umitation item (positive/negative), and the mental 
handicap item in the screening section of the questionnaire. 

Table 2 detaUs the final clusters. The symbols U and Z demonstrate how the groups are 
defined. The symbol U means that the group is defined through that variable being one, 
i.e. 100% by definition. The symbol Z is used when the defining screening section item is 
zero, i.e. 0% by definition. Note that six of the nineteen screening items are not used ex­
plicitly in the process of classifying respondents. These are All, A13, AI8, A20, A23 and A24. 

4. CLUSTER CHARACTERIZATION 

This section explores the ways and means of identifying the clusters. The concepts of "trou­
ble orientation" and "umbrella" group are introduced and the clusters are ranked accor­
ding to the severity of disabiUty. 

4.1 Trouble Orientation 

Threshold values were estabUshed to assist in the cluster classification process. The values 
were chosen by ordering the clusters according to orientation and locating an obvious gap 
in the ^(NADL) for the orientation, where ^(NADL) referred to the average number of 
troubles among ADL's AIO - A26. In general, a cluster was recognized as having trouble 
with an activity orientation when the £'(NADL) for a particular orientation exceeded the 
established threshold value. For example, for mobility orientation, ^(NADL) was computed 
for activities AIO, Al I, A12 and AI4. The £'(NADL) for each cluster over each orientation 
may be found in Table 3. 

Clusters were labelled as follows. If a cluster had trouble with an activity, the correspon­
ding letter was included in the label. Two clusters, containing individuals who had trouble 
speaking and being understood or were mentally handicapped, were "special". Clusters which 
had neither mobility nor agility troubles exceeding the established values were so designated 
with an N. For example, HMAI and HMA2 refer to clusters with a large proportion having 
hearing, mobility and agiUty problems, but no particular problem with vision. Alternative­
ly, VNI refers to a cluster with the exact opposite set of problems. 

4.2 Umbrella Groups 

Clusters with simUar orientation patterns became members of specified "umbrella" groups, 
where they could be better compared using £'(NADL) within the umbrella. Table 4 shows 
the clusters according to the "umbreUa" groups to which they belong. 
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Table 2 
Cluster Analysis Results 

Cluster 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Cluster 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

AIO 

U 
U 
U 
U 
Z 

z 
z U 

u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
u 
z 
z 
z 
z 
z 
z 
z 
z 
z 

A20 

63.7 
35.3 
34.6 
16.4 
17.7 
24.9 
4.6 

78.4 
50.0 
55.2 
45.8 
39.4 
20.7 
34.4 
66.3 
20.7 
16.7 
29.5 
19.4 
8.0 
9.7 

41.9 
18.1 
0.8 
23.7 
7.3 
2.4 
11.8 
18.0 

All 

92.7 
77.0 
85.1 
65.6 
18.7 
36.3 
9.2 

94.7 
92.9 
95.7 
92.2 
91.9 
61.0 
91.3 
93.6 
74.9 
66.7 
74.0 
79.6 
59.0 
14.7 
26.5 
29.0 
2.4 

35.6 
13.5 
17.0 
10.3 
38.7 

A21 

42.2 
11.8 
5.9 
1.9 
8.4 
3.5 
0.6 

U 
Z 

z 
z 7.5 
5.5 
1.5 

16.6 
0.7 

20.8 
12.1 
1.0 
0.0 
7.1 
19.5 
1.9 
2.0 
1.4 
1.2 
0.3 
8.3 
1.6 

A12 

79.9 
63.1 
66.5 
36.7 
18.2 
23.2 
5.3 

88.6 
82.1 
81.0 
71.7 
71.3 
48.8 

U 
U 
Z 

58.3 
55.5 

U 
Z 

12.6 
40.9 
26.1 
2.4 

U 
Z 

13.7 
6.9 

26.3 

A22 

38.6 
U 
Z 
Z 

u 
z 
z 32.6 

u Z 

z 
u 
u 
z 
z 
z 
z 
z 
z 
z 
u 
z 
z 
z 
z 
z 
z 
z 
z 

A13 

59.7 
16.0 
19.4 
6.4 
3.4 
4.8 
0.3 

67.3 
55.4 
55.7 
21.1 
25.0 
4.3 

23.6 
29.9 
10.9 
12.5 
7.5 
11.5 
2.7 
1.9 
7.0 
2.1 
0.0 
2.4 
0.3 
0.3 
0.0 
0.6 

A23 

27.1 
50.8 
3.4 
1.6 

46.3 
1.4 
1.3 

16.7 
30.4 
0.5 
1.8 

45.6 
42.7 
1.0 
2.1 
0.0 
0.0 
0.0 
0.5 
0.7 

41.1 
1.4 
0.8 
0.0 
0.3 
0.7 
0.3 
0.0 
6.5 

A14 

89.8 
77.0 
75.8 
55.9 
25.6 
49.5 
10.8 
93.9 
89.3 
91.9 
83.7 
81.3 
55.5 
81.4 
84.0 
65.7 
37.5 
59.5 
60.8 
45.6 
19.4 
41.4 
43.3 
2.0 

32.9 
16.8 

u Z 
Z 

A24 

73.3 
11.1 
63.7 
57.9 
59.6 
50.9 
60.5 
1.2 
5.4 
0.0 
0.6 
4.4 
1.2 
0.9 
2.1 
0.4 
0.0 
0.0 
0.2 
0.4 
2.6 
1.4 
0.7 
0.0 
0.0 
0.5 
0.3 
0.5 
5.7 

A15 

85.5 
55.6 

U 
Z 

24.6 
U 
Z 

89.0 
91.1 
93.8 
74.1 

U 
Z 
U 
U 
U 

z 
z 
z 
z 13.9 

59.1 
U 

z 
z 
z 
z 
z 
z 

A25 

U 
U 
U 
U 
U 
U 
U 

z 
z 
z 
z 
z 
z 
z 
z 
z 
z 
z 
z 
z 
z 
z 
z 
z 
z 
z 
z 
z 
z 

AI6 

U 

z 
z 
z 4.9 

11.8 
1.1 

U 
U 
U 
U 

z 
z 
z 
z 
z 
z 
z 
z 
z 5.5 
U 

z 
z 
z 
z 
z 
z 
z 

A26 

23.4 
9.6 
2.5 
2.6 
12.8 
4.2 
5.6 

32.2 
10.7 
2.4 
3.0 
5.0 
6.7 
1.3 
5.9 
2.0 

U 
Z 

z 
z 8.7 

7.0 
1.2 

27.2 
1.4 
1.9 
0.3 
0.5 
8.5 

A17 

62.7 
11.2 
15.8 
4.5 
6.9 
16.6 
0.9 

74.7 
58.9 

U 
Z 

16.9 
4.9 
16.8 
19.3 
12.9 
0.0 
10.4 
2.9 
2.2 
4.7 
32.1 
13.0 
0.4 
3.1 
1.8 
2.4 
0.1 
2.2 

A27 

94.4 
85.0 
88.7 
73.3 
55.7 
71.3 
26.3 
96.3 
100.0 
89.0 
90.4 
93.1 
78.0 
89.4 
92.0 
82.3 
91.7 
82.1 
73.5 
66.7 
55.3 
76.3 
66.6 
62.2 

U 
U 
Z 

z 
z 

A18 

86.8 
46.5 
49.6 
21.5 
21.7 
28.4 
4.4 

94.7 
87.5 
85.2 
59.0 
58.1 
32.3 
40.2 
56.1 
32.8 
37.5 
29.5 
14.6 
10.4 
22.2 
47.4 
19.0 
7.7 
8.5 
4.2 
6.2 
7.8 
10.9 

A28 

6.3 
1.6 
1.1 
1.0 
7.9 
1.0 
1.6 
9.8 
5.4 
1.9 
0.6 
1.9 
4.3 
1.2 
1.6 
0.4 

33.3 
1.2 
1.0 
0.6 
9.2 
4.7 
0.4 

U 
Z 

z 
z 
z 
z 

A19 

60.1 
31.0 
26.5 
17.7 
20.7 
21.1 
7.1 

84.0 
30.4 
33.3 
28.9 
31.9 
14.0 

U 

z 
16.4 
20.8 

U 
Z 

z 
11.5 
35.8 
13.5 
3.3 
18.0 
9.1 
5.4 

U 
Z 

Size 

303 
187 
355 
311 
203 
289 

1,770 
245 
56 
210 
166 
160 
164 
187 
677 
458 
24 
173 
582 
857 
618 
215 

1,164 
246 
295 

1,923 
371 
204 
494 
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Table 3 
Average Number of Troubles by Orientation 

Cluster 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

Hearing 

1.733 

1.717 

1.637 

1.579 

1.596 

1.509 

1.605 

0.012 

0.054 

0.000 

0.006 

0.044 

0.012 

0.009 

0.021 

0.004 

0.000 

0.000 

0.002 

0.004 

0.026 

0.014 

0.007 

0.000 

0.000 

0.005 

0.003 

0.005 

0.057 

Vision 

0.657 

1.508 

0.034 

0.016 

1.463 

0.014 

0.013 

0.493 

1.304 

0.005 

0.018 

1.456 

1.427 

0.010 

0.021 

0.000 

0.000 

0.000 

0.005 

0.007 

1.411 

0.014 

0.008 

0.000 

0.003 

0.007 

0.003 

0.000 

0.065 

Mobility 

3.624 

3.171 

3.274 

2.582 

0.625 

1.091 

0.253 

3.772 

3.643 

3.686 

3.476 

3.445 

2.653 

3.727 

3.776 

2.406 

2.625 

2.890 

3.404 

2.046 

0.467 

1.088 

0.984 

0.068 

1.685 

0.303 

0.310 

0.172 

0.650 

Agility 

5.841 

2.170 

2.543 

0.710 

1.211 

2.152 

0.246 

7.203 

4.480 

5.256 

3.319 

2.838 

0.884 

3.178 

2.941 

1.964 

2.083 

1.890 

0.494 

0.233 

0.852 

3.498 

1.688 

0.352 

0.587 

0.258 

1.170 

1.285 

0.418 

Total 

11.855 

8.566 

7.488 

4.887 

4.895 

4.766 

2.117 

11.480 

9.841 

8.947 

6.819 

7.783 

4.976 

6.924 

6.759 

4.374 

4.708 

4.780 

3.905 

2.290 

2.756 

4.614 

2.687 

0.482 

2.273 

0.573 

1.486 

1.462 

1.190 

4.3 Severity 

One area of analytic interest is the development of an index of severity of disabiUty. The 
notion has been considered previously by Raymond et al, among others. 

The index of severUy would be useful in as much as it would allow for simple comparisons 
of disability among the screened-in respondents. The use of ^(NADL) to draw such com­
parisons presumes that the orientations are self-weighting, noting, for example, that two 
ADL's are devoted to hearing troubles while four are devoted to mobility troubles. Also, 
the multidimensional nature of severity of disability is hidden by a single score such as 
^(NADL). 
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Table 4 
Ordering of Clusters by "Umbrella" Groups 

Umbrella 
Group Cluster 

Sample 
Count (̂NADL) ID 

HV (Hearing/Vision) 

H (Hearing) 

V (Vision) 

S (Special) 

MA (Mobility/Agility) 

M (Mobility) 

A (Agility) 

N (Neither) 

2 
5 

I 
3 
4 
6 
7 

9 
12 
13 
21 

17 
24 

8 
10 
11 
14 
15 

16 
18 
19 
20 

22 

23 
25 
26 
27 
28 
29 

187 
203 

303 
355 
311 
289 

1,770 

56 
160 
164 
618 

24 
246 

245 
210 
166 
187 
677 

458 
173 
582 
857 

215 

1,164 
295 

1,923 
371 
204 
494 

8.566 
4.895 

11.855 
7.488 
4.829 
4.760 
2.120 

9.841 
7.783 
4.976 
2.756 

4.708 
0.482 

11.480 
8.947 
6.819 
6.924 
6.759 

4.374 
4.780 
3.905 
2.290 

4.614 

2.687 
2.273 
0.573 
1.486 
1.462 
1.190 

HVMAl 
HVNl 

HMAI 
HMA2 

HMl 
HAl 
HNl 

VMAl 
VMA2 

VMl 
VNI 

SMAl 
SNl 

MAI 
MA2 
MA4 
MA3 
MA5 

M2 
Ml 
M3 
M4 

Al 

Nl 
N2 
N6 
N3 
N4 
N5 

Table 4 presents an ordering of clusters according to "severity" within umbrella groups. 
This within group ordering better reflects the notion that severity is multidimensional than 
would an overall ordering. 

5. CLUSTER CHARACTERISTICS 

The principal components technique was used to examine the behaviour of the resulting 
clusters. Raymond et al also employed principal components; the main difference being that 
analysis here is based upon group means rather than individuals. 

5.1 Methodology 

We considered a subset of screened in cases, where more information per case is available. 
In particular, we added the responses to questions of the form: (BIOI) Is . . . completely 
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unable to walk 400 metres without resting? This Une of questioning was used for each of 
the ADL'S, A10-A26. Thus, 11,412 of the original 12,907 individuals who were screened 
in were usable. The other 1,495 were dropped because of non-response problems. These "com­
pletely unable" items were coded with " I " when the individual indicated that he/she was 
completely unable to perform the specified ADL, otherwise , a "0" was coded. 

The means were obtained for the nineteen screening items and seventeen follow-up items 
for each cluster. The means for the completely unable items were then multiplied by the ratio 
of the overaU average number of ADL's to the overall average of completely unable items 
in order to scale them consistently and to avoid the scaling problems associated with prin­
cipal components analysis. 

Principal components were obtained using the nineteen screening section and seventeen 
follow-up item means as variables, using the "clusters" as observations and weighting ac­
cording to cluster size. The clusters were then ordered according to each of the first four 
principal component scores. 

The final stage involved the pooUng of cluster cases according to "umbrella" group 
membership and finding the means of the first four principal component leadings for each 
of the eight' 'umbrella'' groups, where the weights were the numbers of members in the ' 'um­
brella" groups. 

5.2 Results 

We present the results in two stages. In the first stage, we examine the principal com­
ponents and attempt to label them according to the scores. We also explore the "umbrella" 
group construct in terms of the principal component means. In the second stage, we examine 
the ordering of the clusters according to the first four principal components. 

5.2.1 Components 

The first four principal components for the nineteen screening section items and the seven­
teen follow-up items explained just over seven-eighths of the total variance and appeared 
to be most useful for our purposes. 

The loadings of the first principal component are positive on aU but four items (A24, 
A25 and B24I are hearing oriented, A28 is mental handicap). The negative loadings are close 
to zero. This first component appears to be an overall measure of strength. The first prin­
cipal component explained nearly 66% of the total variance and is denoted as "OVERALL". 

There are negative loadings on AIO, All , A12, AI4 and A15 of the second component. 
The loading for AI5 is nearly zero, however. Loadings are positive for ADL's with an agility-
trouble orientation as well as for hearing-trouble and vision-trouble orientations. It appears 
then that this component polarizes mobiUty trouble against agility, hearing and vision troubles. 
The second component is labelled "AHV/M". 

The third principal component has positive loadings for mobility and hearing oriented 
ADL's and negative loadings for agility and vision oriented ADL's. This third component 
is denoted "MH/AV". 

The fourth principal component has positive loadings for mobility and vision oriented 
ADL's and negative loadings for agility oriented ADL's. This fourth component is designated 
"MV/A". 

5.2.2 Mean Loadings 

Table 5 presents the average differences of the principal component scores from the mean 
scores over all 11,412 individuals, for each of the eight "umbrella" groups. We can 
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Table 5 
Average Differences of Principal Component 

Scores from Mean Scores 

Umbrella Group 

Hearing/Vision 
Hearing 
Vision 
Special 

Mobility/Agility 
Mobility 
Agility 
Neither 

Sample 
Count 

346 
2741 

888 
151 

1311 
1893 
195 

3887 

PRINI 
(Overall) 

0.68 
-0 .33 

0.30 
-1 .02 

3.31 
0.30 

-0 .19 
-1.11 

Differences 

PR1N2 
(AVH/M) 

1.26 
0.54 
0.69 

-0 .04 

-0 .33 
-0 .80 

0.31 
-0 .16 

PR1N3 
(MH/AV) 

0.61 
0.81 

-0 .76 
-0.47 

-0.21 
0.18 

-0 .80 
-0.41 

PR1N4 
(MV/A) 

1.06 
-0 .25 

1.27 
-0 .06 

-0 .33 
0.33 

-0 .78 
-0 .22 

now check to see if the incomplete ordering presented earlier is consistent with the results 
from the principal components analysis. We note the following observations are taken from 
Table 5. 

i) The mobility/agility "umbreUa" group has the highest difference on the first principal 
component "overaU", while the "umbrella" group "neither" has the lowest difference. 
The difference for the hearing/vision group is positive as is the mean for the vision 
group. The hearing group difference is negative, however, evidence that individuals 
with hearing-oriented troubles tend not to have other disabilities. There may be an 
in-cUnation to draw the same kind of conclusion with respect to agility-oriented 
troubles. It is observed that the mobility/agility and mobility groups have positive dif­
ferences while the agility "umbrella" group has a negative difference. However, in this 
case, the result is somewhat ambiguous because the agility-oriented ADL's included 
speaking trouble (A26), a so-called "special" trouble area and it is clear indeed that 
the special "umbrella" group has a negative difference for the first principal component. 

ii) The second component set mobility-oriented troubles (-) against agility, hearing and 
vision-oriented troubles (-t-). Positive differences are recorded for the hearing/vision, 
hearing, vision and agility "umbreUa" groups while negative differences are associated 
with the mobility/agility, mobility and neither groups, as expected. The difference for 
the special groups is nearly zero. 

Ui) The third component set mobility-oriented and hearing-oriented troubles (-I- )against 
agility-oriented and vision-oriented troubles ( - ) . Again, the results are consistent. 

iv) The fourth principal component set mobility and vision-oriented troubles (-I-) against 
agility-oriented troubles ( - ) . The results are again consistent with the umbrella-group 
construct. 

5.2.3 The Scales 

Table 6 shows the ranks of the clusters according to the first four principal component 
scores and ^(NADL). Recall that the component loadings are for 11,412 cases and utilize 
follow-up information as well as screening section information while the ^(NADL) scale is 
based on 12,907 cases and uses screening information only. 

The cluster ranking according to principal components was done as follows. The compo­
nent representing overall strength (OVERALL) ranked clusters from highest to lowest scores. 
The ranking of clusters on AHV/M tended to put clusters with mobility-oriented troubles 
at the bottom end as opposed to clusters with agility, hearing or vision oriented troubles 
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which were ranked higher up on this scale. The ranking of clusters on MH/AV tended to 
put clusters with mobility or hearing troubles at or near the bottom of the scale while clusters 
with agility or vision-oriented troubles were ranked higher. Finally clusters with agility-oriented 
troubles were ranked higher on MV/A than the others. Given the bipolar nature of com­
ponents 2, 3 and 4, it was necessary to make an arbitrary decision as to a trouble orientation 
scale. As cluster 8 had shown itself to be highly severe according to the ^(NADL) scale, 
it was determined that cluster 8 should be similarly ranked along the other scales. 

For most clusters, the rankings fluctuate over a wide range. This reflects the nature of 
the criteria upon which the scales were based. The first principal component, which provides 
an overall measure of strength, may be the most suitable candidate for ranking the clusters. 
Firstly, it incorporates the screening section information used in the development of the 
£'(NADL) measure. As a result, the rank orderings provided by the OVERALL and £'(NADL) 
scales are quite similar. The additional follow-up information used in the construction of 

Table 6 
Cluster Rank According to Alternative Scales 

Cluster 

2 
5 

1 
3 
4 
6 
7 

9 
12 
13 
21 

8 
10 
14 
11 
15 

18 
16 
19 
20 

22 

23 
25 
27 
28 
29 
26 

17 
24 

ID 

HVMAl 
HVNl 

HMAI 
HMA2 

HMl 
HAl 
HNl 

VMAl 
VMA2 

VMl 
VNI 

MAI 
MA2 
MA3 
MA4 
MA5 

Ml 
M2 
M3 
M4 

Al 

Nl 
N2 
N3 
N4 
N5 
N6 

SMAl 
SNl 

PRINI 
(Overall) 

9 
22 

3 
10 
16 
20 
29 

2 
4 

13 
23 

1 
5 
6 
7 
8 

14 
15 
11 
18 

17 

21 
19 
24 
28 
25 
26 

12 
27 

PRIN2 
(AHV/M) 

4 
2 

3 
14 
15 
8 
7 

6 
10 
11 
5 

1 
20 
24 
23 
28 

26 
25 
29 
27 

9 

17 
22 
19 
12 
16 
18 

21 
13 

PRIN3 
(MH/AV) 

27 
22 

24 
28 
29 
25 
26 

4 
7 

11 
2 

1 
13 
16 
17 
20 

19 
18 
23 
21 

3 

6 
10 
15 
9 

12 
8 

14 
5 

PRIN4 
(MV/A) 

28 
25 

6 
10 
20 

3 
9 

23 
27 
29 
26 

1 
4 
7 
8 

18 

21 
17 
24 
22 

2 

5 
16 
12 
11 
15 
14 

19 
13 

^(NADL) 

5 
12 

1 
7 

13 
15 
24 

3 
6 

11 
20 

2 
4 
8 
9 

10 

14 
18 
19 
22 

17 

21 
23 
25 
26 
27 
28 

16 
29 
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this component leads us to believe that OVERALL is better than other scales such as 
£'(NADL). It is worth noting that the ranking was done on all 29 clusters and depicted in 
Table 6 on an "umbrella" group basis. The "umbrella" group information was not incor­
porated into the principal components analysis, however. 

6 CLOSING REMARKS 

A clustering technique was employed to group screened-in individuals according to similar 
screening section profiles. The clusters were then ordered according to the information con­
tained in the screening section of the questionnaire (the incomplete ordering based on 
^(NADL) and presented in Table 4) and finally according to information contained in the 
screening and follow-up sections of the questionnaire (the OVERALL scale presented in Table 
6). This last scale is deemed presently to be the most suitable of those considered here. 
However, it could be argued that no single index of severity exists and in fact the severity 
index should be defined as a 4-dimensional scale corresponding to our principal components. 
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Additive Versus Multiplicative Seasonal Adjustment When 
There Are Fast Changes in the Trend-Cycle^ 

GUY HUOT and NAZIRA GAIT^ 

ABSTRACT 

The seasonal adjustment of a time series is not a straightforward procedure particularly when the level 
of a series nearly doubles in just one year. The 1981-82 recession had a very sudden great impact not 
only on the structure of the series but on the estimation of the trend- cycle and seasonal components 
at the end of the series. Serious seasonal adjustment problems can occur. For instance: the selection 
of the wrong decomposition model may produce underadjustment in the seasonally high months and 
overadjustment in the seasonally low months. The wrong decomposition model may also signal a false 
turning point. This article analyses these two aspects of the interplay between a severe recession and 
seasonal adjustment. 

KEY WORDS: Decomposition models; ARIMA; Lead-lag relationship. 

1. INTRODUCTION 

1981 and 1982 were atypical years afflicted by a severe recession. This recession has pro­
foundly affected the evolution and structure of economic time series, and consequently their 
seasonal adjustment. Seasonally adjusted time series are necessary to diagnose the socio­
economic health of a country. In turn, social and economic policies founded on these data 
influence decisions in both the private and public sectors. Thus, this recession raises many 
questions. One can readily see that a prompt examination of seasonal adjustment is necessary. 

The series under consideration here are: initial and renewal claims received (for unemploy­
ment benefits) and beneficiaries. It is difficult to see how their trend and cycle components 
evolve when they are contaminated by seasonal variation, namely intra-annual climatic and 
institutional factors. Seasonal adjustment permits a better detection of fundamental tenden­
cies, such as turning points, and evaluation of the present performance of the economy. 

This article analyses some aspects of the interplay between a severe recession and seasonal 
adjustment. In just one year, that is in 1981, this recession has nearly doubled the level of 
beneficiaries. Such a sudden large change prompts questions about the structure of the series, 
the choice of the X-11-ARIMA decomposition model, the determination of turning points 
at the end of the series, and the use of ARIMA forecasts for seasonal adjustment. 

In section 2, we discuss two important consequences of using a wrong decomposition model, 
namely a systematic over- and under-adjustment of series and the possibility of having a false 
turning point at the end of the series. In section 3, we use the lead-lag relationship between 
the claims and beneficiaries series to help seasonally adjust the latter series. 

The ARIMA forecasts generally help to reduce the revision to the seasonal factors and 
they can help to provide a more accurate recognition of the turning points at the end of the 
series. Section 4 considers this question. 

' This paper was presented at the 145'̂  Annual Meeting of the American Statistical Association, Las Vegas, 
Nevada, 1985. 

^ Guy Huot, Time Series Research and Analysis Division, Statistics Canada. N. Gait, University of Sao Paulo, Brazil, 
was visiting Statistics Canada when the paper was written. 
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2. DECOMPOSITION MODELS FOR SEASONAL ADJUSTMENT 

Most of the claims and beneficiaries series have similar characteristics, so we have chosen 
to study one claims series and one beneficiaries series which can clearly illustrate some of 
the problems pecuUar to seasonal adjustment during a severe recession. It should be noted 
that the results of our analysis are equally valid during a sudden strong expansion in the 
economy. It is the sudden large change in the level of the series caused by the recession or 
the expansion that is important. 

The X-Il-ARIMA program (Dagum 1980) wiU be used to seasonally adjust these series. 
The program is appUed to the claims and beneficiaries series, using data from January 1973 
and May 1975 respectively, up to February 1983. 

The X-II-ARIMA program provides three decomposition models for the estimation 
of the time series components. The program assumes an additive relationship between the 
components 

O, = TC, -I- S, -I- /, (2.1) 

or a multiplicative one 

O, = TC, S, I, (2.2) 

or a log additive one 

log O, = logTC, -t- log 5, -I- log /, (2.3) 

where O stands for the observed and unadjusted series; TC, the trend-cycle; S and /, the 
seasonal and irregular components; and t, the time. 

Seasonal adjustment means removing the seasonal variations S, from the raw data 0„ 
thus leaving a seasonally adjusted series consisting of TC, and /,. In order to know whether 
a certain series contains a significant amount of seasonality and if so, whether an additive 
or multiplicative model provides the better fit, one can perform a test for the presence of 
seasonality and a model test on the series (Higginson 1977). The first test shows that both 
series contain a very significant amount of seasonality. According to the second test, the 
multipUcative model fits the beneficiaries series better when tested from May 1975 to June 
1981. When the series is extended to February 1983, taking into account the impact of the 
recession on the series, the additive model then fits better. On the other hand, the model 
test favours neither the additive nor the multiplicative model for the claims series. 

One usually adjusts the series using only one model, however, figure 1 shows the 
beneficiaries series adjusted using the two models, both without using the ARIMA option. 
During 1980 and 1981, the difference between the additive and multiplicative adjustments 
was small compared with the difference observed in 1982. 

The multiplicative model assumes that the seasonal variation is proportional to the level 
of the trend-cycle. During 1982, the seasonal amplitude did not increase in this way. Conse­
quently, using the multiplicative model is Ukely to overestimate it from June to November, 
the seasonally low months. As figure 1 shows, in underestimating the number of seasonal 
beneficiaries, the multipUcative model has drastically overestimated the number of seasonal­
ly adjusted beneficiaries. The converse is also true. 
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Figure 1. Beneficiaries 

The additive model, on the other hand, does not assume that the components of the series 
evolve proportionately. Figure I confirms that the trend cycle increased while the seasonal 
amplitude remained constant. Thus, the additive model provides the better seasonal adjustment. 
It performs better in 1982 than the multiplicative model and is acceptable in 1980 and 1981. 

By mid-1982, it was not easy to tell which of the additive or multiplicative models would 
adjust the beneficiaries series better. Since this series was adjusted multiplicatively until June 
1981, one would normally continue to do so in 1982. During 1982, were there some clues 
or pieces of evidence showing that the multiplicative model was no longer adequate? 

The acceptance or rejection of model, given a sudden large change in the level of a series, 
clearly has to be based on a thorough analysis of the data. The set of quality control statistics 
included in the X-II-ARIMA program is not meant to detect that kind of problem in the model. 
In this experiment with the multiplicative model, none of the ten individual control statistics 
failed the guideline. However, the F test for the presence of moving seasonality showed the 
presence of increasing moving seasonality during 1982 in the final unmodified SI ratios. 

Besides a systematic over and under-adjustment of the series, another consequence of using 
a wrong decomposition model is the possibility of having a false turning point at the end 
of the series. 
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Let us say that a cyclical turning point has occurred if the seasonally adjusted series shows 
a change in direction that persists for at least 5 months. Once the beneficiaries series has 
been seasonally adjusted multiplicatively, figure I shows the possible presence of a turning 
point around October 1982, where the upward trend has suddendly changed to a downward 
trend. This turning point seems to be confirmed when the series ending in December 1982 
is extended by one month. The additively adjusted series, on the other hand, shows no turn­
ing point. The two results conflict. Thus, either the multiplicative model is signaling a false 
turn or the additive model is missing the turning point. 

It is not that easy to show that the multiplicative model has signalled a false turn. The 
multiplicative model has created a turning point around October 1982. Table 1 shows that 
in the very short run, the updating of the series did not reverse this turning point. 

Table 1 

Multiplicatively Adjusted Beneficiaries Series 
(in thousands, July 1982 - February 1983) 

July 

124 

124 

124 

124 

123 

123 

Aug. 

131 

130 

130 

130 

130 

129 

Sept. 

140 

140 

140 

140 

140 

139 

Oct. 

142 

141 

142 

142 

142 

Nov. 

141 

138 

141 

141 

Dec. 

131 

131 

134 

Jan. 

121 

121 

Feb. 

123 

3. LEAD-LAG RELATIONSHIP BETWEEN THE CLAIMS AND 
BENEFICIARIES SERIES 

Leading indicators are sensitive to the evolution of the economic climate. They are measures 
of anticipations or new commitments, and as such they give an advance indication of changes 
expected in the trend-cycle of coincident and lagging indicators. 

Figure 2 shows the claims series as a leading indicator for the beneficiaries series. The 
performance of the seasonally adjusted indicators can be tested using the criteria of Klein 
and Moore (1982). The two series satisfy these criteria. First, the correspondence between 
the series is one-to-one - the number of cycles is the same in each series. Second, there is 
uniformity in timing - the claims series always lead. Third, these are monthly series and they 
are current, or up-to-date. Thus, the claims series is likely to predict an upward or a downward 
change in the trend of the beneficiaries series. 

The lead-lag relationship between the two series can help to seasonally adjust the 
beneficiaries series. It reduces the likelihood of mistaking an irregular turn for a cyclical tur­
ning point. Figure 2 shows September 1982 to be a turning point in the multiplicatively ad­
justed claims series. This is also true for the additive adjustment of the series. Since the 
cross-correlations between the two series shows a lead-lag relationship of 5 to 6 months, the 
September 1982 turning point in the claims series indicates that the multiplicative model ap­
plied to the beneficiaries series has signalled a false turn around October 1982. However, 
the leading indicator predicts a turning point around March 1983 in the beneficiaries series. 
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Figure 2. Claims and Beneficiaries. The Number of Beneficiaries has been Divided by 3 in Order 
to Make the Scale of Both Series Compatible. 

4. ARIMA EXTRAPOLATIONS 

An optimal seasonal adjustment procedure has to minimize the revision to the current 
seasonal factors and also has to produce reliable estimates of the trend-cycle, particularly 
of turning points, at the end of the series (Dagum 1979). The analysis carried on in the previous 
sections is based on seasonally adjusted data without using the ARIMA option. In this sec­
tion, we shall focus on the use of the ARIMA forecasts as a variable that can provide an 
accurate recognition of the turning points. 

The automatic X-11-ARIMA program proceeds as follows: 

I . Three univariate ARIMA models of the general multiplicative form {p,d,q) {P,D,Q)s 
(Box and Jenkins 1970) are fitted to the monthly or quartely series that is to be seasonally 
adjusted. The models are 

(O.LD (0.1,1), 
(0,2,2) (O.Ll), 
(2,L2) (0 ,LI) , 

when the series is seasonally adjusted additively. For series adjusted multiplicatively, the 
same models are used and the log transform is applied to the data for the first two models. 
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2. The series is extrapolated one year in advance; and 
3. provided the extrapolations are acceptable, the ordinary X-II method is then applied 

to the series thus extended. 

Figure 3 shows the beneficiaries series seasonaUy adjusted both additively and 
multipUcatively, using the automatic X-Il-ARIMA options. The ARIMA models that best 
fit and forecast the series ending in December 1982 are (0,2,2) (0,l,I)i2 when the series is 
seasonally adjusted additively and log (0,2,2) (0,I,I)i2 when adjusted multiplicatively. The 
log (0,2,2) (0,l,I)i2 model has forecast a decrease in the series, while the (0,2,2) (0,l,l)i2 
model has maintained the upward trend. 

Figure 3. shows the multiplicative seasonal adjustment of the beneficiaries series using 
both the upward trend and the downward trend extrapolations. One can see from the com­
parison of figure I with figure 3 that ARIMA extrapolations did not modify the multiplicative 
estimates of the trend-cycle in the last year. The multiplicative model is still signalling a turning 
point around October (downward trend, log transform). The multiplicative model applied 
to either the non-extended beneficiaries series (figure 1) or to the extended series is questionable. 

By the end of 1983, one could see that the true turning point has actually occurred around 
February 1983. Thus, the October or November 1982 turning point can hardly be corrected 
by extrapolation when it is due to the wrong selection of the decomposition model. 

700 
1982 1983 

Time 

A. Original Series 
B. Extrapolations Using Log (0,2,2)(0,1,1) 
C. Extrapolations Using (0,2,2)(0,1,1) 
D. Multiplicative Adjustment Using ARIMA Extrapolations with Log (0,2,2)(0,1,1) 
E. Additive Adjustment Using ARIMA Extrapolations with (0,2,2)(0,1,1) 
F. Multiplicative Adjustment Using ARIMA Extrapolations with (0,2,2)(0,1,1) 

Figure 3. Beneficiaries Series Seasonally Adjusted Additively and Multiplicatively with Different 
ARIMA Extrapolations 
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Over and under-adjustment and problems of identifying the turning points occurred in 
other series as well. Figure 4 shows for instance, the series of "benefits paid" when seasonaUy 
adjusted multiplicatively with actual d ata available to the end of 1984. The seasonally 
adjusted series tends to oscillate systematically around the trend-cycle curve at the turning 
point, thus over- and underestimating the benefits paid. After the turning point, the oscilla­
tion decays to the trend-cycle curve; showing that the multiplicative model is doing poorly 
around the turning point. Note that this series has strong trading-day-variation which has 
also been removed. 

5. SELECTION OF THE OPTIMAL SEASONAL 
ADJUSTMENT PROCEDURE 

Figure 5 summarizes the criteria for seasonal adjustment that have been taken into ac­
count to overcome the problems due to the interplay between the 1981-82 recession and 
seasonal adjustment of the beneficiaries and claims series. The selection of the best seasonal 
adjustment procedure was primarily based on the first criterion. 

In order to avoid over- and underestimation and false turning points in the seasonally 
adjusted figures, the appropriate decomposition model has to be selected. A thorough analysis 
of the data should be conducted by: 

1. performing a model test on the series. 
2. adjusting the series both additively and multiplicatively if the effort is justified. If the 

differenc e between the two adjustments becomes significant as in figure 1, one has to 
check for underadjustment in the seasonally high months and for overadjustment in 
the seasonally low months. One can also look in table D8 of the X-I 1-ARIMA program 
at the F tests for the presence of stable and moving seasona lity. The decomposition 
model that better adjusts the series will usually show the higher F value for stable 
seasonality and the lower F value for moving seasonality. 

3. checking for turning points. For the claims series, both decomposition models have signal­
ed a turn in August or September 1982. On the other hand, for the beneficiaries series, 
only the multipUcative model has signaUed a turn in October 1982. Thus either the 
multiplicative model is signalling a false turn or the additive model is missing the turning 
point. The analysis has shown this turn to be a false one resulting from the drastic over-
estimation of the number of seasonally adjusted beneficiaries in the seasonally low months 
as shown in Figure I. 

4. using a hi- or multivariate approach to accurately estimate the turning points at the end 
of the series. The lead-lag relationship between the claims and beneficiaries series can 
help to seasonally adjust the beneficiaries series. It reduces the likelihood of mistaking 
an irregular turn for a cyclical turning point. Since the lead is about 5 to 6 months, 
the September 1982 turning point in the claims series confirms that the multiplicative 
model applied to the beneficiaries series has signalled a false turn in October 1982. 
However, the leading indicator is predicting a turning point around March 1983 in the 
beneficiaries series. 

5. using the ARIMA option with concurrent seasonal factors. It usually gives smaller revi­
sions to the seasonal factors wheth er an additive or a multiplicative seasonal adjust­
ment is made. However, a false turning point can hardly be corrected b y extrapolations 
when it is due to the wrong selection of the decomposition model. 
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6. checking both the raw and seasonally adjusted data. One cannot rely on tests only. For 
instance, the set of quality control statistics included in the X-11- ARIMA program is 
not meant to detect under- or overestimation of the series or false turning points. 

7. all the above recommendations apply if the series is not strongly affected by trading-
day-variation. If trading-day-variation is present, then it must be removed before the 
ARIMA option is used. 
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ABSTRACT 

Nearly all surveys and censuses are subject to two types of nonresponse: unit (total) and item (partial). 
Several methods of compensating for nonresponse have been developed in an attempt to reduce the 
bias associated with nonresponse. This paper summarizes the nonresponse adjustment procedures used 
at the U.S. Census Bureau, focusing on unit nonresponse. Some discussion of current and future research 
in this area is also included. 
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1. INTRODUCTION 

The Bureau of the Census has long recognized the potential seriousness of measurement 
errors ascribed to survey nonresponse, and has consistently incorporated nonresponse ad­
justment or compensation procedures in the estimation methodologies for its numerous and 
varied surveys and censuses. The objectives of this paper are to provide an overview of pro­
cedures employed by the Census Bureau in compensating for nonresponse, primarily unit 
nonresponse. By unit nonresponse we mean that little or no information for the principal 
survey variables is obtained for the sample unit in question. 

This presentation will include (I) a discussion of the general weighting scheme used for the 
demographic surveys; (2) a review of some of the distinct problems associated with non-
response in the Survey of Income and Program Participation (SIPP); (3) a discussion of 
the handling of unit nonresponse for the economic surveys and censuses; and (4) a section 
on imputation for earnings for the Current Population Survey. In addition to providing 
descriptions of the various nonresponse compensation methods used by the Census Bureau, 
the authors will cite specific problems associated with those methods and note the Bureau's 
current nonresponse research activities and concerns. 

2. NONRESPONSE IN DEMOGRAPHIC SAMPLE SURVEYS 

At any given time, the Bureau of the Census may be involved with the conduct of 25-30 
recurring or special demographic surveys. The concerns of these surveys include labor force 
participation, individual and family income, health care, transportation, leisure activities, 
crime, and other topics reflective of the current interests of the nation's people, governments, 
businesses, and institutions. Unit nonresponse rates for these surveys range from between three 
and four percent for the National Crime Survey to over 25 percent, which was recorded for 
the 1984 National Survey of Natural and Social Scientists and Engineers. 

David W. Chapman and Leroy Bailey are Principal Researchers, Statistical Research Division, U.S. Bureau of 
the Census, Washington D.C. 20233. Daniel Kasprzyk is a Special Assistant, Office of the Chief, Population 
Division, U.S. Bureau of the Census, Washington D.C. 20233. 
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Weight adjustment within classes (Oh and Scheuren 1983), or cell balancing, is the predomi­
nant technique used to compensate for unit nonresponse in the Census Bureau's demographic 
surveys. There is variation among the surveys relative to the determination of adjustment 
classes within which weighting occurs. For some surveys, ancillary data available to define 
weighting classes are limited to basic geographic and survey design information, while for 
others a considerable amount of demographic and economic data are accessible. 

The nonresponse adjustment factors for the Bureau's demographic surveys are usually 
"^1 the inverse of the survey's weighted or unweighted response rate. In a small number of the 

<^ V-surveys this adjustment factor is modified slightly to reflect information gleaned from follow-
up subsamples of the initial nonrespondents. Since the Census Bureau's general approach 
to survey nonresponse is essentially the same for all of its major demographic surveys, a 
general description will be given in Section 2.1 of the nonresponse adjustment procedure for 
the National Crime Survey (NCS), as the example of a "typical" Census Bureau application 
of weighting. Section 2.2 will consist of a discussion of alternative procedures and current 
unit nonresponse research in the demographic areas. 

2.1 The National Crime Survey 

The NCS sample is a national probabiUty sample of about 72,000 households which is 
divided into six panels, each of which is interviewed in a given month and again at six-month 
intervals over three years. The survey focuses on measuring household crimes and the extent 
of victimization of household members age 12 and older by assault (including rape), burglary, 
larceny, auto theft, and robbery. [For a detaUed description of the NCS, see U.S. Depart­
ment of Commerce, Bureau of the Census (1977).] 

Estimates for the NCS, which are produced quarterly, are derived by initially inflating 
the sample data by the inverse of the related selection probabilities. The noncontacts and 
refusals account for about three to four percent of the survey's occupied units in any given 
month. Adjustments for these units are made by applying adjustment factors to the weighted 
respondent data in weighting classes. An attempt is made to define these classes in such a 
way that the respondents and nonrespondents in each class have similar survey characteristics. 

V''' In order to temper the impact of the nonresponse adjustment on the variance of the survey 
estimates, some of the smaller weighting classes generally have to be collapsed with other 
classes before a final nonresponse adjustment can be effected. Collapsing of classes also takes 
place if the weight adjustment factor becomes too large for one or more classes. [See Hanson 
(1978).] Collapsing is discussed further in Section 4. 

Since the NCS employs a self-response method of interviewing, there is concern about 
the amount of within household nonresponse. Consequently, a separate set of weighting 
cells exists to compensate for within-household nonresponse. These cells or weighting 
classes, as well as those used for the household nonresponse adjustment, are indicated in 
Tables 1-3. The NCS household and within household nonresponse rates for 1984 are shown 
in Table 4. 

ToillustratetheNCSestimatorof a total, there is a selection probabiUty ir, = 1, 2, ..., N, 
associated with each of the A^units in the population. It is assumed that among the n sample 
units, n^ are respondents. The NCS estimator for the population total, after adjusting for 
unit nonresponse, takes the following form: 

M 

N̂cs = E i ; ( w - ' i : —' 
1=1 -^m j=\ k=\ 
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Table 1 
NCS Noninterview Adjustment Cells for 

Within Household Nonresponse 

Household 
Relationship 

Head of Household 

Wife of Head 

All other Persons 

Persons by Age, by Race of Head 

Black 

12-24 25-44 45-64 65-1-

Non-black 

12-24 25-44 45-64 65-1-

Table 2 
NCS Household Noninterview 

Adjustment Cells for 
Standard Metropolitan 

Statistical Areas (SMSA's) 

Race 

White 

Not White 

Central 
City of 
SMSA 

Balance of 
SMSA 

Urban Rural 

Table 3 
NCS 

Household Noninterview 
Adjustment Cells for 

Non-SMSA's 

Race 

White 

Not White 

Urban 

Rural 

Non-
farm Farm 

where for sample units in the k"' within household and f' household weighting classes, 

yjkt = value of the (th sample respondent, 
"Rjk = number of sample respondents, 
njk = number of sample cases, 
Zj = the estimated household response rate, 
Uk = the estimated within household response rate, 
TVjki = selection probability for the (th sample respondent, 
P = total number of within household nonresponse weighting classes, 
M = total number of household nonresponse weighting classes. 

Implicit in the formation of the NCS nonresponse weighting classes, as well as those for 
other demographic surveys, are the foUowing assumptions: 

1. There is "significant" correlation between the major survey variables and the covariates 
used to define noninterview adjacent classes. 

2. Within each household nonresponse weighting class, E{y,fj) = E{y^j), where y,^j and 
ygj are the means for the sample respondents and nonrespondents, respectively, in the 
J''' weighting class. 

3. The weighting class means differ, that is, E{yifj) ^ E{ynj'), j jtj'. 

(Assumptions analogous to 2 and 3 above are also implicit for within household nonresponse 
adjustment classes.) 
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Table 4 
NCS Noninterview Rates - 1984 

Household Noninterviews 

Total Interviewed HH's 

Total 

Rate 

No one at home 

Temporarily Absent 

Refusal 

Other 

Within Household Noninterviews 

Total 

Rate 

Household Noninterviews 

Total Interviewed HH's 

Total 

Rate 

No one at home 

Termporarily Absent 

Refusal 

Other 

Within Household Noninterviews 

Total 

Rate 

Average 
1984 

11,769 

430 

3.5 

0.9 

0.6 

1.9 

0.1 

685 

2.5 

Jan. 

11,916 

446 

3.6 

0.8 

0.6 

2.1 

0.2 

655 

2.6 

July 

9,869 

411 

4.0 

0.9 

1.0 

2.1 

0.1 

709 

3.1 

Feb. 

11,925 

540 

4.3 

1.1 

0.6 

2.6 

0.2 

751 

3.0 

Aug. 

9,446 

409 

4.2 

0.9 

1.0 

2.3 

0.1 

678 

3.1 

Mar. 

11,743 

481 

3.9 

0.9 

0.8 

2.2 

0.1 

701 

2.8 

Sept. 

9,895 

337 

3.3 

0.6 

0.6 

2.0 

0.1 

666 

2.9 

Apr. 

11,809 

446 

3.6 

0.9 

0.6 

2.2 

0.1 

806 

3.0 

Oct. 

9,350 

406 

4.2 

1.0 

0.6 

2.4 

0.3 

728 

3.4 

May 

11,918 

388 

3.2 

0.7 

0.4 

2.0 

0.1 

804 

2.9 

Nov. 

9,692 

387 

3.8 

1.2 

0.4 

2.1 

0.3 

735 

3.3 

June 

9,482 

348 

3.5 

1.0 

0.7 

1.9 

0.1 

697 

3.2 

Dec. 

9,410 

346 

3.5 

1.0 

0.4 

2.1 

0.1 

803 

3.7 

The selection of weighting classes for this procedure is constrained by the requirement 
that measurements for the weighting class variables (covariates) must be available (either 
before or during the survey) for both the respondents and the nonrespondents. This essen­
tially restricts the characteristics by which classes are defined to those associated with 
geography, race, urbanicity, housing unit characteristics, and design levels. The bias reduc­
tion capability of the procedure depends, in part, on the extent to which the NCS nonresponse 
weighting classes satisfy the three assumptions given above. No definitive results relating 
to this concern are currently available, but relevant research is underway and more empirical 
studies seem warranted. 
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2.2 Alternatives to Sample Weighting 

There are a number of plausible alternatives to weighting to adjust for nonresponse. See, 
for example. Little (1986, Section 5). However, there are no definitive results which show 
that any of them offer appreciable advantages. Subsections 2.2.1 and 2.2.2 contain brief 
descriptions of two alternatives which are currently being investigated for application to 
demographic surveys. 

2.2.1 Separate Estimates for Dissimilar Types of Nonresponse 

In demographic surveys, nonrespondents can be placed into four categories: refusal (REF), 
not-at-home (NAH), other occupied unit (OTO), or a unk from which a response was not 
obtained due to extenuating circumstances. These are referred to as type A noninterviews. 
The NAH group can be divided into those households or individuals whose extended absence 
from their homes precludes an interview during the scheduled interview period (NAH^), and 
the group which is expected to return home sometime during the survey period (NAHj). 

The authors are not aware of any data which show that the four nonresponse groups are 
generally similar. In fact, the Census Bureau's Current Population Survey and the Canadian 
Labour Force Survey suggest that the NAH5 households are likely to be smaller, younger, 
and have a larger proportion of employed people than the other groups. The NAH^ group 
is usually older with a relatively low employment rate. The interviewed group may be more 
reflective of the REF and OTO groups. [See Palmer and Jones (1967) and Paul and Lawes 
(1982).] It is conceivable that separate treatment of the four nonresponse groups could pro­
duce a better overall adjustment for nonresponse than is obtained from the current procedure. 
This option is being investigated by an NCS nonresponse adjustment research group. 

2.2.2 Weighting With Response Probabilities 

Several weighting techniques have been advanced which make use of the concept of response 
probabUities. Most of these techniques are based on concepts introduced by Politz and 
Simmons (1949) which group sample respondents according to estimates of their probabilities 
of responding. The factors with which the sample data in the resukant weighting groups are 
inflated are the inverses of the estimated response probabiUties. The Politz-Simmons pro­
cedure has some serious limitations, such as its inapplicability to refusals. However, there 
have been a number of fairly recent extensions and applications of the procedure, including 
those presented by Anderson (1978), Thomsen and Sirling (1983). These methods may be 
applicable to recurring surveys for which extensive callbacks are made. 

Research is in progress regarding the development of models which may be used to estimate 
response probabilities for several demographic surveys for units with similar values of the 
"independent variables." The feasibility and merits of computing nonresponse adjustment 
factors, as well as constructing weighting classes based on such models (sometimes referred 
to as response propensity stratification), are being examined. [See Rosenbaum and Rubin 
(1983) and Little and Samuhel (1983). ] Moreover there are continued efforts to develop more 
objective methods of sample weighting for nonresponse, which are designed to control 
nonresponse-related errors. 

3. THE SURVEY OF INCOME AND PROGRAM PARTICIPATION 

The Survey of Income and Program Participation (SIPP) is a new, ongoing national 
household survey program of the U.S. Bureau of the Census. The purpose of SIPP is to 
improve the measurement of information related to the economic situation of households 
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and persons in the United States. It is the culmination of a large-scale development program, 
the Income Survey Development Program (ISDP), which examined concepts, procedures, 
questionnaires, recall periods, and the like. For a description of the ISDP, see Yeas and Lin-
inger (I98I). Data from SIPP are expected to be useful in studying the Federal transfer system, 
estimating program costs under changes in program eligibility rules, evaluating the effects 
of program changes on selected population subgroups, as well as studying changes to the 
tax system. 

In October 1983 SIPP began as an ongoing survey program with one sample panel of 
approximately 21,000 occupied households eligible for iriterview in 174 Primary Sample Units 
(PSU's) selected to represent the noninstkutional population of the United States. (Beginning 
in 1985 a new panel is being introduced in February of each year; the 1985 panel consisted 
of 14,500 households eligible for interview.) 

Each household is interviewed once every four months for approximately 2'/2 years to 
produce sufficient data for longitudinal analysis while providing a relatively short recall period 
for reporting monthly income. The reference period for the principal survey items is the 4 
months preceding the interview. This design provides eight interviews per household, and 
allows cross-sectional estimates to be produced from more than one panel. 

To facilitate field and processing operations, each sample panel is divided into four ap­
proximately equal subsamples, called rotation groups; one rotation group is interviewed in 
a given month. Thus, one cycle or "wave" of interviewing, using the same questionnaire, 
takes four consecutive months. Cumulative household noninterview rates are given in Table 
5 for the 1984 SIPP panel. 

At the time of the interviewer's visit, each person 15 years old or older who is present 
is asked to provide information about himself/herself; a proxy respondent is asked to pro­
vide information for those who are not available. An important design feature of SIPP is 
that all persons in a sample household at the time of the first interview remain in the sample 
even if they move to a new address during the next 2'/2 years. For cost and operational 
reasons, in-person interviews are only conducted at new addresses that are within 100 miles 
of a SIPP primary sampling unit. The geographic areas defined by these rules contain over 
96% of the U.S. population. An attempt is made to conduct a telephone interview with those 
moving outside the 100-mile limit. 

Table 5 
Cumulative Household Noninterview Rates 

for the 1984 SIPP Panels 

Wave 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Sample Loss 

4.9% 

9.4% 

12.3% 

15.4% 

17.4% 

19.4% 

21.0% 

22.0% 

22.3% 
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After the first interview, the SIPP sample is a person-based sample, consisting of all in­
dividuals who were Uving in the sample unit at the time of the first interview. Individuals 
aged 15 and over who subsequently share living quarters with original sample people are 
also interviewed in order to provide the overall economic context of the original sample 
persons. 

More detailed information concerning the SIPP design, content, and operations can be 
found in Nelson, McMillen, and Kasprzyk (1985). 

3.1 Nonresponse Adjustments in SIPP 

Data collected in SIPP can be viewed from two perspectives: cross-sectional or longitudinal. 
From the former point of view, each SIPP interview is treated as a separate cross-sectional 
survey, providing point-in-time estimates. For examples of these estimates, see U.S. Depart­
ment of Commerce, Bureau of the Census (1984a). From the longitudinal point of view, 
data are collected at more than one point-in-time, and the survey record is viewed not as 
a set of unrelated observations, but as a set of variables with logical dependency between 
two or more points-in-time. Data processing operations, as well as statistical estimation, are 
treated from this point of view, and therefore, rely on the use of data collected at two or 
more interviews. 

Since SIPP can be viewed from both the longitudinal and cross-sectional perspectives, 
SIPP's public-use microdata files include cross-sectional data files issued on a wave-by-
wave basis as well as longitudinal files. This implies two distinct systems to treat survey 
nonresponse. 

3.1.1 Cross-Sectional Unit Nonresponse Adjustments 

The cross-sectional unit nonresponse adjustment in SIPP is similar to the way noninter­
view adjustments are made in other Census Bureau recurring surveys. The following variables 
were used to define household noninterview adjustment cells for the first interview wave of 
SIPP. See U.S. Department of Commerce, Bureau of the Census (1983 and 1984b). 

1. Census Region - Northeast, Midwest, South, West. 

2. Residence - Standard Metropolitan Statistical Area (SMSA), non-SMSA. 
3. Place/not place - defined for units not in an SMSA, 

Central city/balance - defineds for unks in SMSA's. 
4. Race of reference person - black, non-black 
5. Tenure - owner of home, renter. 
6. Household size - 1, 2, 3, 4 or more, 
7. Rotation group - I, 2, 3, 4. 

Two criteria must be met by each weighting class: (1) the weighting class must contain 
at least 30 unweighted unks and (2) the noninterview adjustment factor for a weighting 
class must be less than or equal to 2.0. For a given rotation group, the collapsing 
procedure to satisfy these two criteria is applied independently for each of the four tenure 
by race combinations. (For the first wave, there was no w/7/i/«-household nonresponse 
adjustment factor.) 

In subsequent waves of SIPP, the household nonresponse adjustment factor accounts for 
noninterviews associated with units which have moved and cannot be located or have moved 
more than 100 miles from a SIPP PSU and cannot be contacted by telephone as well as units 
which are refusals, etc. Adjustments are performed for each month of the reference period, 
as well as the interview month, to account for an increase in the number of noninterviews 
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caused by splits of sample households. The procedure is similar to that described for 
determining the Wave I household nonresponse adjustment factor; however, the variables 
used to define the weighting classes differ. Those variables are: 

1. Race (white, nonwhite) and Spanish-origin (Spanish, non-Spanish) of reference person: 
a) reference person is white and not Spanish, and b) others. 

2. Household type - three categories: a) female householder, no husband present, with 
own children under 16, b) householder's age is sixty-five years or older, and c) others. 

3. Education level of the reference person: a) less than 8 years, b) 8-11 years, c) 12-15 
years, and d) 16 or more years. 

4. Type of income received (using the most recently completed interview for members 
of the household) - two categories: a) households which received at least one of the 
following sources of income - Supplemental Security Income; Black Lung Payments; 
Aid to Families with Dependent Children; General Assistance, Indian, Cuban, or 
Refugee Assistance; foster child care payment; Women's, Infants', and Children's Nutri­
tion program; Food Stamps; and Medicaid; and b) others. 

5. Assets - two categories: a) households in which at least one member held an asset type 
other than a savings account or an interest-bearing checking account, and b) all others. 

6. Tenure: a) owner of home and b) renter. 
7. Public housing or rent subsidies-renters are identified as a) those living in public housing 

projects or receiving rent subsidies from the government; and b) those not living in 
pubUc housing projects and not receiving rent subsidies from the government. 

8. Household size: 1, 2, 3, 4 or more. 

The variables used for household nonresponse adjustments for the second and subsequent 
SIPP interviews differ from the first wave variables because of additional data available 
after the first interview for use in nonresponse procedures for later interviews. Fifty-three 
weighting classes were created using these variables with tenure as the principal variable for 
partitioning the sample. [For a description of these weighting classes see U.S. Department 
of Commerce, Bureau of the Census (1984c).] Although a cell coUapsing strategy has been 
defined which merges cases in cells exhibiting similar poverty-related characteristics, little 
collapsing takes place since the nonresponse adjustment factors are calculated for three 
rotation groups (the SIPP data processing cycle) rather than one rotation group, as in the 
first interview. 

There is a within-household nonresponse compensation procedure for the second and subse­
quent waves. This procedure is to "hot deck" (i.e., duplicate) the entire record of a sample 
respondent who presumably has survey characteristics that are similar to those of the 
nonrespondent. 

3.1.2 Longitudinal Nonresponse Adjustments 

Since persons identified as living at the sample address at the time of the first interview 
constitute the SIPP sample for waves subsequent to the first, the most useful and logical 
way of describing the nature of the SIPP nonresponse problem from the longitudinal view­
point is in terms of individuals or persons. Each individual's microdata record is an extended 
record containing variables which oftentimes reflect the same measure at different points 
in time. Thus, in a panel survey of n waves there exist 2" possible noninterview patterns for 
a sample person. Noninterview patterns of the original sample persons for the first five in­
terviews (waves) of the 1984 panel are given in Table 6, adapted from Kalton, McMillen, 
and Kasprzyk (1986). 
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Table 6 
Interview patterns of the Original Sample Persons for the First Five Interviews 

of the 1984 SIPP Panel 

Response Pattern Percent 

Response every interview (5 interviews) 
Pattern: XXXXX 79.1 

/Apparent attrition cases 13.8 
Patterns: XXXXO 3.8 

XXXOO 3.1 
XXOOO 3.2 
XOOOO 3.7 

First and fifth interviews conducted, but one and more interven­
ing interview missing 4.1 
Patterns: XXXOX 1.6 

XOXXX 0.6 
XXOXX 1.2 
XXOOX 0.1 
XOXOX 0.1 
XOOOX 0.3 
XOOXX 0.2 

Fifth interview missing and one or more intervening interviews 
missing 0.7 
Patterns: XOXXO, XOXOO, XOOXO, XXOXO 

Left the universe (deceased, institutionalized, living in armed 
forces barracks, moved overseas) 2.3 
Total 100.0 

(25,128) 

The first SIPP longitudinal microdata file will contain twelve months (three interviews) 
of data from the 1984 SIPP panel, with the individual as the principal analytic unit. The 
sample of cases to be weighted for this file will be only those persons with three completed 
interviews. Those sample persons with only one or two interviews will be treated as 
nonrespondents. Their reported data wiU help to define nonresponse adjustment classes. 

Since the first microdata longitudinal file contains only persons responding to all three 
interviews, the nonresponse adjustment issue is virtually the same as for the cross-section 
case. There are, however, two nonresponse adjustment factors applied to the initial sampUng 
weights. See Kobilarcik and Singh (1986). The first adjustment factor accounts for households 
classified as noninterviews in the first interview wave. The second factor accounts for persons 
who did not supply all three interviews. 

For the first adjustment factor, only those household variables available at the first 
interview can be used. Adjustment factors are calculated separately within cells defined by 
the following variables: 

a. Census Region 
b. Residence (metropolitan, non-metropolitan) 
c. Race of reference person 
d. Tenure (own, rent) 
e. Household size 
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The second set of adjustment factors is implemented on a person basis. The factors are 
calculated within cells defined by the following characteristics: 

a. Monthly household income 
b. Program participation status of the person's household 
c. Labor force status 
d. Race 
e. Years of school completed 
f. Type of assets of person's household 

CeUs are collapsed whenever they do not contain thirty sample persons or the nonresponse 
adjustment factor exceeds 2. 

As the survey progresses, more sophisticated methods of adjusting for longitudinal 
nonresponse will be developed which make use of the data provided for partial respondents 
(i.e., for sample persons that provide some, but not aU, of the interview waves requested). 
It is not obvious how to treat the partial response cases. Data gaps associated with persons 
who miss one or more interviews can be viewed as either person nonresponse, and typically 
handled by weighting adjustments, or as item nonresponse, usually handled by some type 
of imputation method. For example, one might consider an individual with a (R,NR,R) pat­
tern as a case of item nonresponse since the missing interview is bounded on both sides by 
completed interviews; but one might consider an individual with an (NR,R,NR) pattern as 
total unit nonresponse, treating it the same as (NR,NR,NR). However, we need to recognize 
that even in the case of the response pattern (R,NR,R) for an individual, four kinds of response 
patterns are still possible at the item level. Thus, many options can be considered when 
developing nonresponse compensation procedures for the SIPP longkudinal data base. This 
issue is discussed by Kalton (1986) and by Kakon, Lepkowski, and Lin (1985). 

3.2 SIPP Research Activities 

There are two areas where work has recently begun which should aid future decisions con­
cerning nonresponse adjustments. First, the SIPP questionnaire, beginning during the fourth 
interview, contains a "Missing Wave" section. This section uses a short series of questions 
on labor force participation, income sources, and asset ownership/nonownership for 
respondents in the current wave who did not respond in the preceding wave. Respondents 
who miss two or more consecutive interviews are not eligible to complete the "Missing Wave" 
section. By emphasizing data collection at the expense of minor reporting burden, the per­
son nonresponse problem can be reduced to an item nonresponse problem. An evaluation 
of the quality of the retrospective data wiU be necessary prior to using these data. 

The second area of work concerns general strategies in the treatment of person-wave 
nonresponse in the SIPP. Graham Kakon and his colleagues at the Survey Research Center 
wUl (I) compare longitudinal imputation and weighting strategies for handling person-wave 
nonresponse, (2) evaluate imputation and weighting models in terms of the analysis of change 
across waves and aggregation across waves, and (3) develop preliminary criteria for the choice 
of method for treating person-wave nonresponse. A discussion of these and other issues which 
wiU be studied can be found in Kakon (1986), and Kalton and Miller (1986). 

Finally, there are several other research topics for which work is planned. These include: 
(1) quantifying the selection of variables used for determining weighting classes; (2) assessing 
the robustness of the survey estimates on the population and selected subgroups under dif­
ferent nonresponse compensation procedures, and different weighting class cell collapsing 
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strategies; (3) investigating the potential for making separate nonresponse adjustments by 
type of noninterview; (4) investigating the effect of deleting reported survey data to simplify 
the nature of the SIPP missing data problem; and (5) evaluating the longitudinal nonresponse 
compensation procedures adopted for the first SIPP longitudinal research file. 

4. UNIT NONRESPONSE PROCEDURES FOR ECONOMIC 
CENSUSES AND SURVEYS 

The Bureau of the Census carries out six economic censuses every five years, the most 
recent ones covering 1982. These six economic censuses are identified by the following 
trade areas: 

(1) Retail Trade 
(2) Wholesale Trade 
(3) Service Industries 
(4) Manufactures 
(5) Mineral Industries 
(6) Construction 

In addkion to the economic censuses, the Census Bureau carries out the Census of Govern­
ments and the Census of Agriculture. Though not part of the economic censuses, they are 
conducted during the same years as the economic censuses for processing efficiencies and to 
allow for data linkage. In nearly all of these economic areas the Census Bureau also carries 
out a number of monthly, quarterly, and annual surveys. 

Like the demographic areas, there is some unit nonresponse for all of the economic censuses 
and surveys. In most cases, missing data are imputed based on (a) previous responses provided 
by the nonrespondent, (b) data from administrative records, and (c) relationships established 
between various data items. Rather than reporting the percent of units not responding, the level 
of nonresponse for an economic census or survey is usually given as the percent of one or more 
item totals that are imputed. These percents will be referred to as imputation rates. 

Explanations of the unit nonresponse methods used for five of the six economic censuses 
are given in Section 4.1. Section 4.2 addresses unit nonresponse procedures for three economic 
surveys, and Section 4.3 covers such procedures for the Census of Agriculture. Research 
and evaluation activities with regard to nonresponse procedures for economic censuses and 
surveys are discussed in Section 4.4. 

More detailed explanations of the nonresponse procedures used in these censuses and several 
related surveys are given by Bailey, Chapman and Kasprzyk (1985). 

4.1 The Economic Censuses 

The frame for the economic censuses is the Standard Statistical EstabUshment List (SSEL), 
a computer file maintained by the Census Bureau. The SSEL is comprised of all employer 
establishments reported by multi-unk employer companies in the Census Bureau's Company 
Organization Survey (COS) and aU single-unk companies that filed a tax form wkh IRS. The 
COS is an annual survey of multi-unit companies. Companies that have at least 50 employees 
are surveyed each year, while companies with fewer than 50 employees are surveyed every 
three years. Each company in the COS is sent a list of the establishments it reported most 
recently in the survey and asked to update the list. They are also asked to provide, for each 
establishment, employee counts for the first quarter of the previous year and total payroll 
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for the previous year. For the economic censuses, each estabUshment on the SSEL, except 
small single-unit establishments, is sent a census questionnaire (via its company) designed 
for its standard industrial classification (SIC) code. 

Although there are many similarities among the unit nonresponse procedures used 
in the six trade areas, some important differences exist. In the foUowing description 
of the unit nonresponse adjustment procedures used for five of the economic censuses, 
the trade areas that use essentiaUy the same procedure will be grouped together 
as follows: 

(a) Retail trade, wholesale trade, services 
(b) Manufactures, mineral industries 

4.1.1. Retail Trade, Wholesale Trade, Service Industries 

These three parts of the economic censuses are often referred to collectively as the 
business census. For these trade areas, data for the census year are collected on sales 
receipts, employment, and payroU. The imputation rate for sales/receipts varies from 
10 to 15 percent for retail and wholesale trade and is about 20 percent for service 
industries. 

For any establishment that does not provide the census data, responses are generally im­
puted using tax form information available from the Internal Revenue Service (IRS). For 
payroU information, the IRS has four quarters of data avaUable for each employer iden­
tification (EI) number from tax forms. A company may have one or more EI numbers. Payroll 
data for a particular company are obtained by adding up the payroll figures for all EI numbers 
used by the company. First quarter employment counts are also available by EI number from 
IRS records and can be aggregated to the company level. For sales/receipts, various IRS 
forms are used depending on whether the nonresponding company is a sole proprietorship, 
partnership, or corporation. 

The imputation procedure is complicated by the difference between the census enumeration 
unit and the IRS tax unit. For the business census, the unit of enumeration is the establish­
ment (i.e., a single location). However, the tax unit for the IRS is an EI number. There may 
be one or more establishments reporting under the same EI number. If a nonresponding 
company has only one location (i.e., is a single-unit company), then it wUl have only one 
EI number and imputation is straightforward. However, for a multi-unit nonresponding 
company imputation is more complex since, in general, IRS data will not be available for 
each establishment. In such a case, the company structure is determined first by referring 
to the SSEL to obtain a list of aU establishments contained in a company and all EI numbers 
used by the company. The total for a company for each data item is obtained by adding 
the item across all EI numbers used by the company, as discussed above. The company total 
is distributed to estabUshments by prorating the total based on the most recent data available 
for the company from an annual or monthly survey. If no data are available, an equal 
proration is used. If there is nonresponse for only a portion of the establishments in a multi-
unit company, data for the nonresponding establishment are imputed based on prior 
year relationships. 

4.1.2 Manufactures, Mineral Industries 

In these two economic censuses, general information is obtained on the number 
of employees, hours worked, and on production levels by four-digit standard industrial 
classification (SIC) codes. Imputation rates vary from about 10 to 15 percent. The unit 
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nonresponse procedure used depends on the type of company that did not respond (i.e., single-
unit or multi-unit) and on whether or not a previous year's record is available. Thus, there 
are four types of nonresponse cases that occur. The method of treating nonresponse for these 
four cases follows: 

(1) Single-unit company, previous year data are available from the Annual Survey of 
Manufactures. 

In this case annual payroll is obtained from IRS tax forms and compared to the previous 
payroll total reported. The percent change from the previous period is determined. 
This percent change is applied to all data items in the previous record to obtain an 
imputed current record,execpt for employment and value of shipments whenever these 
are available from IRS. 

(2) Single-unit company, no previous year data are available. 

In this case, sets of ratios are developed between census items within each four-digit 
SIC, with payroll as the "seed." That is, the relationships are developed in such a 
way that all items can be imputed from these relationships either directly or indirectly 
if a payroll figure is obtained. The specific relationships are derived from historic data 
reported by the respondents in the same industry. Then the (seed) value of payroll 
is obtained from IRS tax records and aU other items are imputed from the relation­
ships derived. 

(3) Establishment in a multi-unit company, previous year data are available for the 
establishment. 

First, for each four-digit SIC, an aggregate growth factor between the previous and 
current period is developed from external sources for each of the following key items: 
payroll, employment, change in inventory, and change in capital expenditures. These 
four growth factors are applied to the appropriate prior year data items for each 
establishment to obtain imputed responses for the current period. These four imputed 
items are then used as "seeds" to impute other items. 

(4) Establishment in a multi-unit company, no previous year data are available for the 
establishment. 

In this case, basic data on payroll and employment are obtained for each establish­
ment from the SSEL discussed earlier in Section 4.1. As indicated, the SSEL obtains 
data on employment and payroll obtained for all establishments included in the COS. 
Then, using the SSEL data as a base, the data record for each establishment is imputed 
from relationships developed between the SSEL data items and the other census items. 
This procedure is analogous to that used in case (2) above. 

4.2 Economic Surveys 

The Census Bureau conducts a large number of monthly, quarterly, and annual economic 
surveys in addition to the economic censuses. In particular, most of the six census trade 
areas have monthly or annual surveys. The unit nonresponse procedures used for the 
Monthly Retail Trade Survey and the Truck Inventory and Use Survey are described below. 
The unit nonresponse adjustment procedure used for the Annual Survey of Manufactures 
(ASM) is not described here since it is virtuaUy the same as that used for the Census of 
Manufactures, described in Section 4.1.2. Imputation rates for the ASM vary from 5 to 
10 percent. 
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4.2.1 Monthly Retail Trade 

The Monthly Retail Trade Survey includes about 30,000 reporting units: about 3,000 
selected with certainty and 27,000 selected on a probabiUty basis. The certainty cases are 
surveyed each month, while a third of the noncertainty cases are surveyed each month. This 
provides a monthly mailing of about 12,000 reporting units. For a multi-unit company in the 
survey, a subsample of the establishments in the company is selected for inclusion. Monthly 
retail sales is the only item enumerated in the survey. The imputation rate for retail sales 
is about II percent. 

If a single-unit certainty company or a sample establishment in a multi-unit certainty 
company does not report for a given month, a value for sales is imputed from the previous 
month's figure by multipling it by a "ratio of identicals." This adjustment ratio is derived 
by dividing the weighted sum of the current month sales by the weighted sum of the previous 
month sales for all establishments in the same adjustment cell for which sales were reported 
for both the current and previous months. Adjustment ceUs are generally defined by the first 
three digits (or four digits in a few cases) of the SIC code, by type of establishment (i.e., 
whether or not it belongs to a large multi-unit firm), and by sales size class. The weight used 
for each reporting unit used in computing the ratio of identicals is the inverse of the pro­
bability of selection of the reporting unit. 

If a multi-unit certainty company does not report sales for any of its establishments, the 
sales values are imputed for each establishment and for the entire company as in the previous 
case: applying the ratio of identicals for the appropriate adjustment cell to the previous month 
sales figures. If such a company does report current monthly sales for the entire company, 
the imputed establishment responses are ratio adjusted to be consistent with the reported 
total for the entire company. 

For noncertainty companies, imputation for missing sales data is carried out in a way 
similar to that used for certainty cases, except that an extra step is required since noncertainty 
companies report every three months. The first step is to impute the previous month's sales 
for a nonrespondent based on the response provided three months ago. This is done by 
multiplying the sales reported three months ago by a ratio of identicals based on the weighted 
sum of sales during the previous month and the weighted sum of sales three months ago 
(cell by cell). Once the previous month sales are imputed, the current month sales is generated 
from the imputed value for the previous month using the same method described for 
certainty cases. 

If a nonrespondent is in the survey for the first time, the previous month's sales (if it's 
a certainty case) or the sales figure three months earlier (if it's a noncertainty case) is imputed 
from the sales reported in the most recent census, if available. If the nonrespondent was 
not in the most recent census, then it would be a birth case for which two months of sales 
data generally would have been provided at the time the company was added to the frame. 
This data would be seasonally adjusted and then inflated to an annual-based figure. The 
imputation would then be carried out as though a census sales figure had been available for 
the nonrespondent. 

4.2.2 Truck Inventory and Use Survey (TIUS) 

The TIUS is conducted every five years and provides data on the physical and operational 
characteristics of trucks nationwide. These characteristics include type of trailer (vehicle con­
figuration), kinds of products carried, type of gasoline used, and annual miles driven. The 
universe for the survey consists of the truck registrations from all 50 states and the District 
of Columbia. The sample size is about 120,000 truck registrations. About 75 percent of the 
trucks selected for the survey respond. 
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Adjustments for unit nonresponse are made by "weighting up" the respondents to 
the total sample, separately within weighting classes. The weighting classes are taken 
to be the sample strata which consist of cross-classifications by state and body type 
(5 categories). The nonresponse weight adjustment is based on the number of trucks; within 
each class (stratum), the inkial weight of each respondent is multiplied by the ratio of 
the number of trucks in the stratum to the sum of the initial weights of the respondents 
in the stratum. 

Of the economic surveys investigated, the TIUS is the only one that uses a weight 
adjustment procedure to account for unit nonresponse. With other economic surveys, 
alternate sources of basic information are generally available to "build" a record for 
a nonrespondent. 

4.3 Census of Agriculture 

The census of agriculture provides data relating to the Nation's farming, ranching, 
and related activities. It is the leading source of agricultural statistics and the only 
source of consistent, comparable data about agriculture at the county. State, and 
national levels. 

The task of nonresponse adjustment for the census of agriculture is made complex by 
the fact that the SSEL cannot be as effectively used as it is in the other economic areas. 
The agricultural census mailing list is constructed by combining several overlapping sources. 
The resultant frame may contain some duplication and always contains some nonfarm en­
tities. Thus, the nonresponse methodology must first identify, or estimate, the extent to which 
an adjustment is needed before it can take place. 

For the 1982 census, nonrespondents were designated as large or small based on whether 
their expected sales were above or below $100,000. A 100% telephone follow-up was 
conducted for all of the large nonrespondents. The small nonrespondents were then stratified 
based on other mail list characteristics. A sample of these units was followed up by mail 
and telephone to obtain estimates, by strata within states, of the percent of nonrespondents 
which were actually farms. These estimates were then used, along with data on in-scope 
percents of respondents by county, to make estimates of the number of nonrespondent farms 
at the county level for each stratum. The weights of a randomly selected sample of respondents 
by couiky, consistent with the estimated number of nonresponding farms, were then inflated 
by two. All other respondents retained their weight of one. 

4.4 Research Activities for Nonresponse Adjustments in Economic Surveys 

Probably the most important source of information for unit nonresponse imputation in 
economic surveys is IRS data from tax forms. Some differences between the IRS figures and 
those collected in the economic census may arise because of differences in definitions, forms, 
or the data collection procedures used. A study by Dyke (1984) compared administrative 
(IRS) data used to impute sales/receipts, payroll, and employment in the 1977 business 
census with corresponding responses obtained in a follow-up sample of nonrespondents. In 
general, he found that the survey values reported in the follow-up survey exceeded those 
obtained from administrative sources. The sizes of the differences varied by item. Also, the 
differences were more pronounced for multi-unit establishments. Additional comparisons 
of this type are needed. If systematic differences are identified, adjustment factors to apply 
to IRS figures may be developed. 
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For several of the censuses and surveys, a "ratio of identicals" is calculated and 
used to obtain a factor to apply to a previous-period figure to obtain an imputed value 
for the current period. It is possible that this ratio computed among all sample cases 
that reported in both periods may not apply very well to the nonrespondents for some 
items. Bailey (1986) looked at alternatives to using ratios of identicals for imputing missing 
values such as linear regression and quadratic regression, using various sets of independent 
variables. 

With many of the economic unit nonresponse imputation methods, the sample cases -
both respondents and nonrespondents - are placed into cells prior to computing (a) 
some type of ratio between current and prior periods for an item or (b) some type of rela­
tionship between the survey items and the basic items: payroll, employment, and receipts. 
A research project to investigate alternate choices of cell definition for the Monthly Retail 
Trade Survey was recentiy completed by Huang (1986). She found that for some SIC's an 
alternate procedure of defining cells reduces the mean square error (MSE) of estimated sales 
substantially. In addition, she compared the current method of imputing - using ratios 
of identicals - to three alternate methods with respect to bias and MSE. The current method 
was evaluated as the second best procedure. However, she concluded that the slight gains 
of the optimum procedure may not be worth the additional requirements associated with 
using it. 

5. IMPUTATION FOR EARNINGS IN THE CURRENT POPULATION SURVEY 

5.1 The Hierarchical Hot Deck 

The Current Population Survey (CPS) is a Census Bureau ongoing monthly survey of 
about 60,000 U.S. households per month. The CPS, sponsored by the Bureau of Labor 
Statistics, primarily collects labor force and employment information. Each March, the 
CPS administers an income supplement as part of the survey questionnaire. About 11-12% 
of the sample members do not respond to the income questions. Therefore, a special 
procedure, referred to as the "hierarchical hot deck," has been developed to impute for 
missing responses. 

With the hierarchical hot deck, missing earnings values are inserted from the response 
record of another sample unit - a donor. The goal in selecting a donor is to find one with 
survey characteristics similar to those of the item nonrespondent. The first step in the pro­
cess of finding suitable donors is to partition the entire sample, excluding total noninterview 
cases, into cells based on multi-way classifications of a number of survey characteristics. 
Within each cell a list is made of the respondents and nonrespondents for a given item. Donors 
from the list of respondents are assigned to the nonrespondents systematically, with a ran­
dom start. If there are more nonrespondents than there are respondents in a cell for a given 
item, the responses of some, or perhaps aU, of the respondents in the ceU will be used more 
than once. In some cells, there may be one or more nonrespondents but no respondents for 
an item. 

To avoid the problem of having nonrespondents with no donors available, the process 
of defining cells and selecting donors for the item nonrespondents is carried out several times. 
At each stage, fewer cells are defined than were defined for the previous stage. For the final 
stage the^number of cells defined is small enough so that it is certain that there wUl be donors 
available in each cell. The cells defined at successive stages are formed by collapsing the cells 
used at the previous stage. Each item nonrespondent will have one or more donors assigned. 
The donor used to obtain an imputed value will be the one identified at the earliest stage. 
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The major advantage of this hierarchical procedure is that a very large number of cells can 
be defined at the first stage, due to the backup stages used. Whenever a donor is found at the 
first stage, the item nonrespondent and donor will be matched on a large number of survey 
characteristics. In such cases there should be a good chance that an adequate imputation 
is made. In other cases the item nonrespondents and donors will be matched on fewer 
characteristics. This hierarchical procedure trys to pick donors in a way that maximizes the 
number of matched relevant survey characteristics. 

For a more detailed description of this of this procedure, see Welniak and Coder (1980), 
Oh and Scheuren (1980a), or David, Little, Samuhel, and Triest (1986, Section 2). 

5.2 Evaluation of the CPS Hierachical Hot Deck 

There have been some evaluation studies of the CPS Hot Deck: Welniak and Coder (1980); 
Oh and Scheuren (1980a and 1980b); Lillard, Smkh, and Welch (1982); and David et al. (1986). 
One of the weaknesses noted of the CPS hot deck is that donor values may be used repeatedly, 
resulting in variance increases. The procedure could be modified to avoid using donor values 
more that once or twice; however, this change has not been made. The CPS hot deck pro­
cedure is based on the assumption that the distribution of responses for a survey variable 
is the same for respondents and nonrespondents in the same cell - the ignorability assumption. 

David et al. (1986) developed several model-based alternatives to the CPS hot deck and 
evaluated them and the CPS hot deck with respect to mean absolute and mean relative error. 
These evaluations were based on a CPS-IRS matched file. In creating this file, an attempt was 
made to match the March 1981 CPS file to the IRS tax records for 1980. Despite the hot 
deck's apparent limitations, the CPS hot deck had a lower mean absolute and mean relative 
error than did the model-based alternatives. However, the models were developed for only 
10% of the full CPS sample used to develop the hot deck procedure. 

6. SUMMARY AND AREAS OF FUTURE STUDY 

In this paper an attempt has been made, primarily through examples, to describe the current 
approaches being taken to nonresponse adjustments in the U.S. Census Bureau's censuses and 
surveys. Emphasis has been placed on the need for additional empirical and theoretical studies 
in both the demographic and economic areas in order to provide more objective guidelines (a) 
to design nonresponse compensation procedures and (b) to measure the effects of nonresponse 
on survey results for a variety of survey conditions. 

Some of the research caUed for in this paper is already underway but more will be needed. 
For example, to what extent can available ancillary data be used in conjunction with model­
ing and data analysis procedures to identify the key functional relationships needed to pro­
vide a "reasonably" accurate description of the response/nonresponse structure applicable 
to a given survey? 

In general, adjusting for nonresponse is just one of several steps taken to reduce the variance 
and bias of survey results. The degree to which these other steps aid in reducing the impact of 
nonresponse is an area for further research. Moreover, there should be continued efforts in 
support of research on recurring issues such as the impact of unit nonresponse weights and item 
nonresponse imputation on complex variance estimators, model approaches to determining 
appropriate adjustment factors, and the effectiveness of combining various types of 
nonresponse adjustment techniques. 
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Hot Deck Imputation Procedure Applied 
to a Double Sampling Design 
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ABSTRACT 

From an annual sample of U.S. corporate tax returns, the U.S. Internal Revenue Service provides estimates 
of population and subpopulation totals for several hundred financial items. The basic sample design 
is highly stratified and fairly complex. Starting with the 1981 and 1982 samples, the design was altered 
to include a double sampling procedure. This was motivated by the need for better allocation of resources, 
in an environment of shrinking budgets. Items not observed in the subsample are predicted, using a 
modified hot deck imputation procedure. The present paper describes the design, estimation, and evalua­
tion of the effects of the new procedure. 

KEY WORDS: Double sampling; Hot deck; Imputation. 

1. INTRODUCTION 

When the U.S. Internal Revenue Service (IRS) is mentioned, the first words to cross 
one's mind may not be "sample surveys" But every April, those of you from the U.S. 
take part in at least one of our administrative "surveys" and file an individual income 
tax return. We sample this administrative data annually for statistical purposes. Another 
of our major programs is an annual sample of U.S. corporate tax returns; that is the sample 
survey discussed here. 

The primary interest at a Symposium like this is in non-response or other undesirable missing 
data. Despite our extensive enforcement efforts, we at IRS also have such non-response 
problems. However, the present paper is concerned with a different type of missing data 
problem: missingness that is not unexpected, but is designed (see also, Strudler, Oh, and 
Scheuren 1986, for another example). We take the liberty of discussing these problems because 
we use techniques usually associated with non-response, e.g., hot deck imputation (Ford 1983). 
Our case allows an evaluation of the imputation procedure, since the underlying non-response 
mechanism is known. 

Double sampling has been introduced in our corporate tax return sample in an effort to 
reduce costs with only a "tolerable" loss of information. Reweighting to account for the sub-
sampling stage is a standard estimation approach in double sampling (e.g., Cochran 1977); 
however, in our application, we would have had to reweight almost on an item-by-item basis. 
This was judged unacceptable by our users, who require rectangular data sets. (For an analogous 
approach in a Canadian context, see CoUedge et al. 1978.) 

The imputation technique used - hot deck imputation - is procedurally simple. The need 
to discuss the appUcation of such a relatively simple procedure may surprise theoreticians; 
but, as we wUl show, the problems of implementation within the setting of a large statistical 
operation are many. 

Susan Hinkins, Statistics of Income Division, Internal Revenue Service, P.O. Box 369, Bozeman, Montana 59771. 
Fritz Scheuren, Statistics of Income Division, Internal Revenue Service, 1111 Constitution Avenue, N.W., Washington, 
DC 20224. 
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In the remainder of the present paper, we describe in some detail the double sampling 
procedure and the imputation technique employed. Preliminary results on the impact of these 
procedures are also presented and the last section contains our conclusions and future plans. 
A brief theoretical discussion of the estimators we are using and their properties is given 
in an Appendix. 

2. DESCRIPTION OF THE SAMPLING PROCEDURES 

An annual sample of U.S. corporate tax returns is used by IRS to estimate National totals 
of both tax and economic variables. For example, approximately three million corporate 
tax returns will be filed for 1985, and the IRS sample will contain over 90,000 of these returns. 
(In Canada, there are two separate corporate tax return samples, each designed to meet nar­
rower purposes. The Revenue Canada Taxation sample (e.g., Burpee and McGrath 1982) 
was developed for tax policy simulation purposes. The Statistics Canada sample (e.g., Am­
brose 1985) is intended primarily to estimate economic aggregates. It is our belief that separate 
designs in the U.S., but not entirely separate processing systems, could lead to improvements 
in efficiency over the current procedures; however, the work done (Clickner et al. 1984) in­
dicates that the problem is quite difficult and progress has been slow.) 

The annual estimates obtained are for the entire corporate population and for subpopula-
tions, usually defined by industrial activity and size. The underlying population is highly 
skewed. For most variables, a small proportion of the population accounts for a substantial 
fraction of the total dollar amount. Examples for 1982 corporations are given in Exhibk 1. 

A highly stratified sample design is used; small corporations are selected with small pro­
bability and large corporations are selected with certainty (Jones and McMahon 1984). The 
strata are defined by industrial classification and the size of the corporation (i.e., in terms 
of assets and net income). Selection probabiUties for each stratum are determined by employing 
a modified form of Neyman allocation. Almost all of the returns in the 100% strata (returns 
selected with certainty) have total assets of $50 miUion or more. A form of post-stratified 
raking ratio estimation is used to weight the sample results (Leszcz, Oh, and Scheuren 1983). 

Retrieving the information from each sampled return is a time-consuming and expensive 
process. Over 600 items may be retrieved from a return, and these items are not simply extracted; 
they are also carefully checked and redistributed to compensate for taxpayer reporting varia­
tions. The complete process is referred to as "edking the return". The cost of "editing" 
varies by degree of complexity. It may take only twenty-five minutes to edit a fairly simple 
return but as long as a week to edit a really compUcated one. The quality of the editing is 
vital to our estimates, as these checks reduce, but do not eliminate reporting inconsistencies. 

Exhibit 1 
Degree of Concentration of Selected Corporate Variables 

Selected 
Items 

Number of Returns 

Total Assets 

Total Receipts 

Total Income Tax 

Assets 
Under 

$50 Million 

99.6% 

16.3 

39.3 

25.9 

Assets 
$50 MiUion 

or more 

0.4% 

83.7 

60.7 

74.1 

Source: Internal Revenue Service, 1985. 
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Indeed, nonsampling error is a serious concern in the data "editing" process, particularly 
for the largest corporations. In order to spend proportionately more resources on reducing the 
nonsampling error for the large returns, we introduced stratified double sampling for the 
smaUer returns; specifically, certain data items were retrieved on only a subsample of the 
returns (i.e., a subset of returns with assets under $50 million). Although this change would 
increase the error for some variables on the small returns, we expected that the procedure 
would have little adverse effect on the estimates of national totals, or on the subdomain 
estimates of primary interest to our major users. There were two main reasons for this con­
jecture: 

- As already noted, corporate returns with total assets of $50 million or more were not 
subject to the extra sampling step. 

- The information loss due to the subsampling was reduced by the choice of the items 
or variables to be subject to subsampling. 

By and large, as will be shown, the results obtained so far confirm our expectations. 

Items Selected for Subsampling 

When certain miscellaneous items on a return are nonzero, the taxpayer must attach a 
schedule providing addkional information. For example, if the item "Other Income" is 
nonzero, the corporation must describe what was included under this category. The schedules 
are attached on separate sheets of paper and have no standard form or length. The process 
of editing a schedule has several parts: finding the schedule, deciding whether the taxpayer 
included appropriate amounts in "Other Income", and making changes if there are errors. 

Beginning with the tax year 1981 corporate program, the statistical editing of data from 
the tax return was done in stages, and certain items were initially transcribed for statistical 
use directly from the return. Employing automatic tests, items or schedules could then be 
"flagged" for abstraction or further scrutiny in later stages (Cys et al. 1982). This new strategy 
allowed us to: 

- Retain original taxpayer information as reported so that the amount of editing change 
could be evaluated. Prior to the 1981 sample, we had no information regarding the 
extent of the adjustments being made by editing. The editors only recorded the final 
resuk. (See PoweU and Stubbs 1981.) 

- Decide whether or not to review a particular schedule based on the initial information 
transcribed. (Again, prior to the 1981 program, editors were, of course, required to 
completely edit all schedules.) 

For the 1981 and 1982 corporate programs, seven items and their associated schedules 
were picked for subsampling: schedules for Other Income, Other Deductions, Other Costs 
of Goods Sold, Other Current Assets, Other (Noncurrent) Assets, Other Current Liabilities 
and Other (Noncurrent) Liabilities. 

The reported amounts on a corporate return may be modified substantially as a result 
of the edking. For example, consider the "Other Income" schedule shown in Exhibit 2. The 
original amounts (in column 1) are observed initially for every return. The variables being 
subsampled are changes that would be made if the Other Income schedule were edited (col­
umn 2). In this hypothetical case, we have an original Other Income amount of $1,600, which, 
when examined by the edkor, could be reclassified as including $900 from Business Receipts, 
$300 in Rents and $400 that really belongs in Other Income. The variables of interest are, 
of course, the final ("corrected") amounts for each item. 

Before implementing the new processing system, an experiment was run comparing the 
amount of time it took to do the reduced, initial transcription and the amount of time it 
took to do the complete editing (reading all schedules). As expected, the reduced edit was 
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Exhibit 2 
Illustration of Editing Other Income 

Income Type Original Change Final 
Amounts($) Amount($) Amounts($) 

Other Income 

Receipts 

Rents 

Interest 

1,600 

500 

0 

700 

-1,200 

-1-900 

-1-300 

0 

400 

1,400 

300 

700 

significantly faster (and therefore, cheaper). Considerable resources could be saved by sub-
sampling. (Conservatively, we extrapolated 1981 cost savings of at least $300,000, assuming 
only Umited use of the subsampling technique.) 

Double Sampling 

We are now ready to describe the basic two-dimensional stratification chosen for our double 
sampling. The returns are stratified into "crucial" returns (Group A) versus the remaining 
returns (Group B). "Crucial" returns include all returns with total assets of $50 million or 
more, thereby including the important "large" returns and most returns selected into the 
sample with certainty. In addition, crucial returns should include corporations of any size 
for which the likeUhood of an editing change was high. What we want, obviously, is a sub-
sampling plan that has us edit all schedules that have a high probability of a change (especially 
a large change) and lets us subsample the rest. 

In an attempt to predict which schedules are likely to change, a record is included in Group 
A if the original amount in Other Income, to continue our Ulustration, is unusually large 
compared to the amount in Total Income. 

Also, since we do not want to impute large amounts, cases where Other Income is above 
a certain dollar value should be included in Group A, as well. (Unfortunately, this was done 
only indirectly.) By inference. Group B is supposed to include only small returns which we 
believe are likely to have little or no change made as a result of editing. (See Barker et al. 
1982, for details.) 

For the crucial returns in Group A, all variables (items) are always completely observed. 
Only returns in Group B are subject to the subsampling of the seven schedules mentioned 
earlier. Even for Group B returns, the original amounts for all items are always recorded; 
therefore, some information is obtained for every item. The information not obtained for 
some records in Group B is the change due to editing a schedule. It is these changes that 
are being imputed using the procedure described in the next section. Not all variables are 
affected by the subsampUng. For example, of the 600 items picked up for the 1981 corpora­
tion program, only 56 were in any way affected by the double sampling; however, of the 
approximately 100 major income and balance sheet items, nearly one half could be affected. 

3. THE IMPUTATION PROCEDURE 

The missing information (i.e., changes from editing) in Group B was imputed using a 
hot deck procedure within adjustment cells. A record with schedules to be imputed was mat­
ched to a donor record, in the same adjustment cell, with these same schedules edited. (The 
formation of adjustment cells is described later in this section.) 
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In 1981, the subsampling rate was 10% for the returns subjected to subsampling: one out 
of ten was selected systematically for editing (these were the hot deck "donors") and the 
other nine were left to be imputed. In 1982, the subsampling rate was kept at 10% for non-
financial returns (trade, manufacturing, etc.) but was raised to 20% for financial returns 
(banks, insurance companies, etc.) 

Within an adjustment cell, the number of returns, n', can be divided into the number 
of donors, n ", and the number of imputes, n' — n". Because of the small subsampling rate, 
the number of donors is almost always smaller than the number of imputes. In particular, 
let n ' — n" = rn" + t where r and / are nonnegative integers and 0 < t < n". Then the 
hot deck procedure selects all n" donors r times, and selects the remaining t units by simple 
random sampling without replacement. 

To continue our illustration, recall that the item of interest is Z, the final "corrected" 
amount for Other Income; Z can be written as Z = X — Y, where X is the original tax­
payer amount in Other Income and Y is the change made due to editing the Other Income 
schedule. It is only the change, Y, that is unobserved and must be estimated for a subset 
of the returns in Group B. 

If we simply employ a conventional hot deck procedure and estimate the unobserved y, 
value, on record /, with the observed value yj from donor record j , then the resulting estimate 
of the final value z, may not satisfy the edit checks. For example, assume the donor record 
had $30,000 originally as Other Income, and $15,000 was removed when the schedule 
was edited. Suppose that on the record to be imputed, the original amount in Other 
Income is $10,000, then the imputed change of $15,000 would result in a negative estimate 
for other income: 

z, = x, - y, = 10,000 - 15,000 = -5,000. 

Since the amount for Other Income must be nonnegative, edit checks would fail and ad­
ditional adjustments would have to be made to the record. (See Sande 1982, for a general 
discussion of this problem.) Since the original amount is always observed, it seemed more 
reasonable to "hot deck" the relative change R = Y/X rather than the actual change Y. 
In this example, since the donor record had one half of the amount in Other Income remov­
ed after reading the schedule, then 1/2 should be removed on the imputed record. The 
estimated final amount in Other Income is then 

Zi = X, - y, = 10,000 - (1/2)10,000 = -1-5,000. 

In addition to satisfying the edit checks, we expected the ratio procedure to reduce the 
variance of our estimates relative to the basic hot deck approach; however, the variance of 
the estimator is not analytically tractable and must be measured empirically. We have not 
yet verified in our corporation application the smaller variance that we conjecture; but simula­
tion results do support the approach we have taken. However, by introducing the ratio, our 
estimators are now biased. We conjectured that the biases would be small and in fact they 
were, for the most part, as we shall show. 

The model associated with our imputation procedure is based on the definition of the 
double sampling strata being used and on the definition of the adjustment cells. Several con­
structive steps were taken to make the approach reasonable. In the initial stratification, an 
attempt was made to subsample only those records that were likely to have no changes or 
only small changes. Also, the adjustment cells were subjectively chosen to be homogeneous 
with respect to the magnitude of the relative editing change that might be made. In particular. 
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The coded tree branches above correspond to the following: 

A = Retail, B = Wholesale, C = Transportation and Utilities, D = Other, E = Very Small, 
F = Small, G = Medium. 

Figure 1. Hierarchy of Ratio Hot Deck Adjustment Cells 

the adjustment ceUs are defined in terms of industrial classification, corporation size and 
the pattern of items present on the return. There were thirty categories defined by various 
industrial and size criteria (see Figure I). In addition, sixteen item patterns were treated 
separately, defined by the presence/absence of Other Income (2 classes), the presence/absence 
of either Other Deductions or Other Costs of Goods Sold (2 classes). Other Current Assets 
or Other Assets (2 classes) and, finally. Other Current Liabilities or Other Liabilities (2 classes). 
The maximum number of adjustment cells was 30 x 16 = 480. 

For each item pattern, a hierarchical structure was developed so that collapsing could be 
done when there were an insufficient number of donors for use in the imputation (see Figure 
1). The first division is into financial returns (banks, insurance companies, etc.) versus non-
financial records; cells are not collapsed across this division. The next levels of the hierarchy 
separate cases according to fairly broad industrial classes and according to the size of the 
corporation, in terms of assets and net income. Recall that the largest corporations are not 
subject to subsampling and, so, should not need imputation; hence, broad industrial and 
size groups seemed sufficient. 

The quality of our estimation depends on how much collapsing takes place. In 1981, we 
had 36,586 returns with at least one schedule to impute, and 3,989 donors. For the non-
financial returns we never collapsed across the major industrial classification, and, in fact, 
we always had some size distinction. Many cells were not combined at all, but maintained 
the maximum detail possible. In contrast, for financial returns the size variable was often 
lost by combining all cells, and major industries were sometimes combined (Hinkins 1983). 
For one pattern, all financial returns were combined into the same cell. 

Based on our 1981 experience, several changes were made in the 1982 double sampling design: 

- Due to the extensive collapsing of ceUs for financial returns in 1981, the subsampling 
rate for smaU financial returns was doubled to improve the estimates (from 10% to 
20%, as noted earUer). 
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Table 1 

Selected Statistics on Hot Deck Ratio Imputation, 1981-1982 

Item 

NUMBER 

Donors 

Imputes 
Adjustment Cells 

DONOR CELL SIZE 

Average 
Maximum 
Minimum 

DONOR-TO-IMPUTE RATIOS 

Average 
Maximum 
Minimum 

Tax Year 1981 

Financial 

908 
7,912 

113 

8 
68 

1 

.11 
1.00 
.05 

Non-
financial 

3,081 
28,674 

238 

13 
58 

1 

.11 

.25 

.05 

Tax Year 1982 

Financial 

1,806 
10,719 

142 

13 
126 

2 

.17 
2.00 

.05 

Non-
financial 

4,697 
43,477 

260 

18 
98 
2 

.11 

.28 

.05 

Note: For 1982, cell sizes of 2 donors each were required in order to make possible the calculation of the variance. 

- In 1981, the double sampling procedure was not appUed across the entire sample, but 
was restricted to certain processing centers. Other processing centers collected all in­
formation, as before. In 1982, the procedure was applied across the whole sample. The 
relative number of records inl982 with some items imputed was 63 percent, compared 
to 40 percent in 1981. 

- In order to estimate the hot deck imputation variance (Oh and Scheuren 1980; Rubin 
and Schenker 1986), an additional restriction was imposed on the 1982 design, in that 
we required that there be at least two donors in each adjustment cell. (See Table 1.) 

In 1982, there were 54,196 records to be imputed from 6,503 donors, and there was con­
siderably less collapsing of adjustment cells (Hinkins 1984). In particular, for financial records, 
94 percent of the records imputed in 1982 were in adjustment cells defined with some size 
distinction, compared to 75 percent in 1981. Table I provides a selection of other statistics 
on the operation of the 1981 and 1982 systems. 

4. INITIAL EVALUATION OF BIAS 

The evaluation of the 1982 double sampUng system is still underway, but some initial results 
are available on the potential biasing effects of the imputation. Bias should be small if R, 
the ratio of the editing change to the original amount, is always small, or if R is constant 
within adjustment cells. We have taken the approach of looking for the "worst" cases of 
bias by looking for examples where R is nekher small nor constant. We confine attention 
to only two variables: Other Income and Business Receipts. 
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Figure 2. Changes in Other Income: Group B Donors only 
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Unbiased Model 

The ratio bias in the hot deck imputation we are using would be zero if the relationship 
Y = RX were to hold for all members of each adjustment cell chosen. An overall plot of 
the data might be useful, to look at the degree to which this model holds for Other Income. 
In Figure 2, therefore, we have plotted the Group B donors separately for financial and non-
financial corporations. There is a distinct difference between these two categories. Nonfinan­
cial returns are much less likely to change; in 1982, 14 percent of the nonfinancial donors 
had a change made to Other Income, compared to 59 percent of the financial records. Also, for 
financial returns at least, it looks as if the model E{Y) = RX might be appropriate. Further 
work along these Unes is intended, but the scatterplot encourages us to believe that, by and 
large, existing biases would be small. 

Actual Bias Measures 

Table 2 provides relative bias measures for selected worst case industries. These are shown 
for all returns in that industry and returns with assets under $25 million (i.e., for corpora­
tions likely to be most affected by the new procedures). Of the items changed in the double 
sampling the Other Income schedule showed some of the largest values of R and the most 
disperse distributions ofR. The greatest change as a resuk of edking Other Income was made 
in the Business Receipt amount. It should be noted that the bias estimates in Table 2 are 
subject to considerable sampling error (Czajka 1986). Except for the very smallest amounts, 
however, it is conjectured that the estimates shown probably have the correct sign and are 
of the appropriate order of magnitude. 

These examples indicate that within small subpopulations, there can be noticeable bias 
effects. However, even wkhin a major industry, selected for ks potential problems, the bias 
across all sizes is relatively smaU. 
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Table 2 
Estimated Relative Biases for Business Receipts and Other Income 

by Selected Minor Industries, 1982 

Selected 
Minor 
Industries 

WHOLESALE TRADE 

Machinery, Equipment and Supplies 
Miscellaneous Trade 

RETAIL TRADE 

Auto Dealers and Service Stations 

FINANCE AND INSURANCE 

Banking 
Credit Agencies Except Banks 
Insurance Agents 

Business Receipts 

All 
Returns 

-1 .40 
-0 .30 

-0 .30 

-0 .02 
-0 .50 
-0 .60 

Assets 
Under 

$25 Million 

Other 

All 
Returns 

ncome 

Assets 
Under 

$25 Million 

(Biases as percent of applicable total) 

- 2 . 6 
-0 .5 

- 0 . 5 

- 0 . 7 
- 2 . 2 
-0 .7 

0.4 
- 1 . 3 

3.3 

0.1 
- 0 . 9 

1.2 

0.6 
- 2 . 4 

4.6 

2.4 
- 9 . 0 

2.3 

Note: All calculations are based on design-weighted estimates of the biases involved. The industries were selected 
to represent worst case examples. 

Czajka's results (1986) indicate that for global estimates (across all industries), the bias 
effect of the imputation is small (less that 1% in all cases; considerably less than .05% in 
most cases). 

There is no question that some of the biases in Table 2 appear large and warrant concern; 
however, it is important to realize that the overall effect on the root mean square error of 
the bias is small for all returns, generaUy 5% or less. These results give us strong evidence 
that the procedures employed did little or no harm to the data needed by our users; that, 
however, is not to say that major improvements, like those envisioned for 1985 and 1986, 
should not be made. 

5. FUTURE PLANS AND SUMMARY 

Double sampling and imputation were not used for the 1983 and 1984 samples because 
of processing constraints. They will be used again starting with the 1985 sample. As part 
of reinstituting the imputing process, we are planning to make several changes: 

- It will no longer be necessary to initially transcribe certain items for statistical purposes 
before subjecting the records to double sampling. The fields needed are now being ob­
tained directly from the IRS revenue processing system, so they are available before we 
begin reading and editing the tax return; thus, before editors first look at a return, we 
can designate whether or not they should review certain schedules. This makes the use 
of stratified double sampling even more appealing; the savings should increase. 

- However, because of the new processing system, only three schedules are now available 
for subsampling. The schedules for 1985 are Other Income, Other Deductions and Other 
Costs of Goods Sold; the remaining four schedules used in 1981 and 1982 had to be 
dropped from the subsampUng design. 
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- Despite the modest success of the 1981 and 1982 procedures, changes will be made for 
1985 in the imputation methods. For example, the current definition of the adjustment 
cells could be improved, and separate imputation depending on the pattern of items 
represented needs to be reconsidered. The possible use of predictive mean matching 
within adjustment cells also bears examination (Little 1986). For 1986, refinements in 
the subsampUng plan will need to be looked at too. 

- Finally, we would like to base our estimates, in some way, on previous years' data, 
so as to be able to impute missing information earlier in the processing. In order 
to minimize the collapsing of adjustment cells, the 1981 and 1982 imputation process­
ing had to wait for aU records to be available. This delayed production by several weeks. 
We could avoid this problem by further increasing the number of donors; but, the editing 
of more records has the obvious disadvantage of increasing costs. On the other hand, 
by basing our approach in part on the previous year's data, we might not only improve 
the estimation, but also allow the imputation calculations to be done in the mainstream 
of processing. 

Overall Summary 

In this paper, we have described the reasons we had for making major changes in our 
statistical processing of corporate returns: 

- The traditional complete data estimate was rejected in favor of double sampling because 
of cost considerations. 

- The usual double sampling estimator (reweighting the complete data) was rejected 
because it did not result in a rectangular data set. 

- A conventional hot deck approach was rejected because the resulting estimates could 
fail the edit checks. 

Instead, the relative change was estimated using ratio hot deck imputation within adjust­
ment cells. 

We conjectured that because the double sampling procedure was restricted to a subset 
of the "small" corporations, the estimates of interest to our major users should be virtually 
unaffected; indeed, these estimates could even be improved, by better allocating our resources 
to validate and correct the records of the larger corporations. Our results so far largely vin­
dicate these conjectures. 

Compared to the traditional complete data estimator, the use of double sampling 
and hot deck imputation increased the mean square error of estimates in two ways; bias 
was introduced, and the variance of the estimator was increased. Our preliminary results 
indicate that there could be a significant bias effect for some estimates; however, the 
examples were chosen because they appeared to be cases where the hot deck ratio method 
would be weakest. Even so, the estimated overall effect of the procedure on the root 
mean square error appears relatively small. Looking at the increase in variance, the largest 
component is usually due to the decrease in sample size (double sampling). This increase 
in variance also turned out to be relatively small, since only one component of the final amount 
(the change) is imputed; the variance of the original values appears to dominate the variance 
of the changes. 

In conclusion, while there are improvements to make, we feel encouraged to continue 
with our current double sample design and imputation technique. Perhaps at another 
Conference of this type we will be able to report on the further results of our research. 
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APPENDIX: SOME BASIC THEORY 

This appendix provides some technical details on the double sampUng procedure as applied 
in our particular situation. We contrast several potential estimators for the double sampling 
design we chose. An overaU summary of the bias and variance expressions for these different 
approaches is found in Table A. 

For this discussion, we ignore the underlying stratified sample design and act as if a simple 
random sample had been taken, or equivalently we consider estimates within a sampling 
stratum. To do otherwise would make the notation exceedingly complex, but would not change 
the main points we wish to make. 

Let us again consider just one of the items subject to subsampling, namely Other Income 
as before. The variable of interest is Z, the final, corrected value of Other Income, and Z 
can be decomposed as 

Z = X - Y. 

where X = the original taxpayer (or revenue processing) value of Other Income, 
y = the change made to Other Income after reviewing the schedule. 

The population values and parameters are indicated by upper-case letters and the sample 
statistics by lower case. The population parameters of interest are the finite population mean 
and variance, i.e.. 

Z =YJ ^i'N = X - Y. 

SHZ) = 2] iZi - Z)^/{N - 1). 

Complete Sample - Prior to the introduction of double sampling, the estimates were calculated 
from a complete sample of size n', and the unbiased estimator of Z was 

z = '^ Zi/n' 

= X - y. 

Ignoring the finke population correction (Â  is large), the variance is 

Var(2) = S^{Z)/n'. 
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Table A 

Selected Properties of Alternative Estimators 

Estimator Bias Variance 
Satisfy 
Edit? 

Complete Sample 

Double Sample 

Hot Deck 
Amount (Y) 

Ratio (R) 

Combined Ratio 

0 

0 

0" 

* i 

bi 

Var(2) Yes 

Var(z) -t- CiSl(Y) Yes 

Var(?) + c, (1 +C2)Sl{Y) No 

Var(z) + K, Yes 

Var(?) + V2 Yes 

^ In general, the basic hot deck procedure is unbiased only when it results in final values that satisfy the edit checks. 

In Table A, we use the properties of ? as a benchmark, to compare among alternative 
estimators. 

Double Sampling Estimation - Using Cochran's notation (Cochran 1977, 12.2), the original 
sample of size «' has now been stratified into the two groups A and B, with n^' and /ig' 
units respectively. A subsample of size ng is selected from group B. The original taxpayer 
amount A'is recorded for all n' = n^' -\- ng' records. The changes due to editing Other 
Income, Y, will be recorded for all n^' units in group A and for the random subsample 
of ng units in group B. 

Since the double sampling procedure only applies to variable Y, within group B, the double 
sampling estimator of Z is 

Zd = X - yd 

= X - {Y^yAi+ inB/ng) Yi yej)/"' 

and Zd is unbiased. 
Let Ng = number of population units falling in stratum B, 

Fg = Ng/N, proportion of population falling in stratum B, 
Yg = population mean in stratum B, 
Sl{Y) = L{Yg, - Yg)^/{Ng - I), / = 1, 2. .... Ng, 
1/K = the subsampling proportion = ng/n'g. 

If the sampUng proportion, 1/K, is assumed fixed (in our application, 1/K = .10 or .20), 
it follows (Cochran 1977) that the unconditional variance of Zd is, ignoring the fpc, 

Var(Zrf) = Var(z) -I- c,Sl{Y), 

= {S^{Z) + Pg{K- l)Sl{Y)\/n', 

where c, = Pg{K - l)/n'. 
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Therefore the price paid for the reduction in cost due to not editing every schedule, is 
the increase in variance due to double sampling. This increase in variance looks potentially 
damaging because/f is large. However, recall that Z = X — Y, and the increase in variance 
is a function only of the variance of Y within subpopulation B. We expect S^ {X) to 
dominate S^{Y), which should further dominate S\{Y), i.e. 

S^{X) >> S^{Y) >> S\{Y). 

This is because the size of the variance is related to the mean value, and Y should be small 
compared to X. (For most items, we expect the amount misclassified to be small, compared 
to the original amount). Therefore we expect S|( Y) to be so much smaller than S^ (Z) that 
Pg{K — l)Sg{Y) wiU stiU be relatively smaU compared to S^{Z), and so the increase in 
variance due to subsampling wUl be relatively small. This is not guaranteed, but Czajka's 
results bear this out, for most items (Czajka 1986). 

Hot Deck Imputation - Hot deck imputation was used, within adjustment cells, to 
reconstruct a rectangular data set. In particular, a return with schedules to be imputed 
was matched to a donor in group B, in the same adjustment cell, with these same 
schedules edited. 

Imputing the missing values ofy with a hot deck procedure, using simple random sampl­
ing, further increases the variance over using the double sampUng estimate {Id). However 
the additional increase in variance due to using hot deck imputation is small compared to 
the increase due to double sampling. This relative increase in variance due to imputing, denoted 
as Ci in Table A, is bounded and in our case is small. (When K > 1, ci < 0.125. See, for 
example, Hansen, Hurwitz, and Madow 1953). 

As discussed in the paper, there is a problem with using an ordinary hot deck approach. 
If we simply estimate the unobserved y, value, on record /, with the observed value y^ 
from donor record j , then the resulting estimate of the final value z-, may not satisfy 
the edit checks. Additional corrections would have to be made to the record. Since the original 
amount is always observed, it seemed more reasonable to "hot deck" the relative change 
R = Y/X rather than the actual change Y. In addition to satisfying the edk checks, we 
expected the ratio procedure to reduce the variance of our estimates relative to the basic 
hot deck approach; however the variance of our estimator is not analytically tractable 
and must be measured empirically. Also, by introducing the ratio, our estimators are 
now biased. We conjectured that the biases would be smaU and in fact they were, for the 
most part, as seen in Table 2. In practice, the hot deck imputation was done within adjust­
ment cells, created by post-stratifying the records into what we hope are homogeneous cells. 
The effect of this post-stratification should be to reduce variance and bias effects, but 
that is dependent on our skill in defining the imputation cells (an area with ample room 
for additional work). 

Ratio or Regression Estimation - We are also considering ratio (or regression) estimates 
within cells, instead of the hot deck estimates. For example, z = x, — r x,, where r = y/x 
is calculated within appropriate cells. Referring to Table A, the increase in variance, V2, 
using the ratio estimator could be approximated using the formulas for the ratio estimator 
(e.g., Cochran 1977). However, these formulas are large sample approximations, and our 
sample sizes are almost always quite small. (In this case, the sample size is the number of 
donors, ng, in an adjustment cell.) Therefore, empirical results are needed here. 
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Similarly, the bias, 62̂  can be found using the resuks for ratio estimators. Unlike the hot 
deck ratio, the bias of the ratio estimator goes to zero as the sample size increases and in 
this sense the ratio estimator is more robust. In fact, the hot deck ratio estimator is unbiased 
only if the model Y = I3X is correct. (Of course, the bias of both estimators goes to zero 
as the fraction of missing data goes to zero). However, even if the model Y = I3X is incor­
rect, the ratio estimator is consistent. 

There are of course many other options; multivariate regression models could be in­
vestigated. We are stiU in the early stages of this project and we certainly have our work 
cut out for us now and in the upcoming years. 
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Comparison of Weighting and Imputation Methods 
for Estimating Unsampled Data 

SYLVIE MICHAUDl 

ABSTRACT 

The Canadian Census of Construction (COC) uses a complex plan for sampling small businesses (those 
having a gross income of less than $750,000). Stratified samples are drawn from overlapping frames. 
Two subsamples are selected independently from one of the samples, and more detailed information 
is collected on the businesses in the subsamples. There are two possible methods of estimating totals 
for the variables collected in the subsamples. The first approach is to determine weights based on sampling 
rates. A number of different weights must be used. The second approach is to impute values to the 
businesses included in the sample but not in the subsamples. This approach creates a complete "rec­
tangular" sample file, and a single weight may then be used to produce estimates for the population. 
This "large-scale imputation" technique is presently applied for the Census of Construction. The pur­
pose of the study is to compare the figures obtained using various estimation techniques with the estimates 
produced by means of large-scale imputation. 

KEY WORDS: Weighting; Large-scale imputation; Unsampled. 

1. INTRODUCTION 

The Census of Construction (COC) is an annual survey which attempts to estimate ex­
penses in the construction field. Although it is called a "census", in fact only businesses 
having a gross income exceeding $750,000 are surveyed. Various financial and non-financial 
data are collected by means of a long questionnaire mailed to these firms. For businesses 
with a gross income between $10,000 and $750,000, expenses are estimated from a sample 
of administrative data. First, two samples are selected independentiy from overlapping 
sample frames. Two subsamples are then drawn from one of the samples in order to obtain 
additional information. 

Variables collected in the subsamples may be estimated in two different ways. The method 
currently used for the Census of Construction is to impute values for the businesses included 
in a sample, but not in a subsample. This creates a complete "rectangular" file, from which 
estimates for the overall population may be produced using only one weight. An alternative 
would be to calculate weights based on the probabilities of selection; these would have to 
be calculated separately for different subsets of data. The purpose of this study is to compare 
the estimates obtained by weighting with the estimates obtained by imputation. 

The study was carried out on a population of unincorporated businesses only because, 
for fiscal year 1983, the sample selection strategies for unincorporated and Incorporated 
businesses were different. The strategy used for corporations will be modified for fiscal 1984 
to be equivalent to the strategy for unincorporated businesses. The strategy for unincorporated 
businesses was therefore examined. One hopes that the conclusions of this study will remain 
the same for incorporated businesses. 

S. Michaud, Business Survey Methods Division, Statistics Canada, 11th floor, R.H. Coats Building, Tunney's Pasture. 
Ottawa, Ontario, Canada, KIA 0T6. 
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2. DESCRIPTION OF THE SAMPLING PLAN 

As mentioned above, two independent samples are drawn from overlapping sample frames. 
The first is the prespecified sample selected for the Census of Construction; it is stratified 
by gross business income (GBI), province and 3-digit 1970 Standard Industrial Classifica­
tion (SIC) code. The sample frame used is not completely up-to-date. It contains some 
"deaths", i.e. businesses which are no longer within the scope of the COC for various reasons 
(a firm which no longer exists, is no longer engaged in a construction activity, or whose gross 
income is below $10,000). Furthermore, the sample frame does not contain "births" or 
businesses which have changed activities and are now part of the construction industry. The 
second sample is a "cross-sectional" sample, selected independently by Revenue Canada from 
a complete database containing businesses in all SIC groups (not only construction). It is 
used to estimate "births". This sample is stratified by Gross Business Income ranges. Figure 
1 below illustrates the situation. 

Two independent subsamples are selected from the units of the prespecified sample: a 
financial subsample and a subsample of "other characteristics" (OC). The OC subsample 
is drawn directly from the prespecified sample, while the financial subsample is selected us­
ing data transcribed from the sample (and so "deaths" are not subsampled). Further details 
concerning the sampling plan may be found in Giles (1983). 

"deaths" "prespecified alive businesses" "births" 

1 prespecified sample 

r 
/ 
/ 
/ / 

/ 
f 

cross-sectional sample 

/ 
/ 

/ 
/ 
f 
/ 
/ 
1 

Figure 1. Representation of RC SampUng Plan 
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3. IMPUTATION TECHNIQUE 

The COC uses a large-scale irnputation technique to estimate the variables selected in a 
given subsample (i.e. values are imputed for each variable, for all records not selected in 
the subsamples). The imputation is carried out independently for each subsample. (The im­
putation is done in phases, and the imputation phases of the various subsamples are mutual­
ly independent and apply different techniques.) In each phase, the nearest neighbour is chosen 
from a subset of potential donor records, and is used to impute the variables which were 
not sampled. 

The imputation is carried out differently for each subsample. 
In the case of the financial subsample, the imputed value is the donor's value, adjusted 

by the ratio of an auxiliary variable which is available for both the donor and the candidate 
(the candidate being the record .which is missing data to be imputed). (Note: The actual pro­
cedure is more complicated: the variables are imputed hierarchically and linear constraints 
are placed on the imputed values (the second variable is dependent on the value imputed 
to the first variable, etc.). Additional informationpn this procedure may be found in Philips 
and Emery (1976). A more detailed overview is also provided in CoUedge et al. (1978)). 

Suppose we use the foUowing notation: 
Y: the variable of interest (known for the donors, to be imputed for the candidate) 
X: an auxiliary variable available for both the donor and the candidate 
c: denotes the candidate 
d: denotes the donor 
/: denotes an imputed value. 

For the financial subsample variables, the imputed value Y[ is defined to be: 

Yl = Y, - ^ 
Xr 

Ud 
For the OC subsample variables, the imputed value is simply the value on the donor record: 

Y[= Y, 

The imputation procedure produces a complete rectangular file (the records of aU the 
businesses that were selected in one of the samples contain values for aU the variables of 
the samples/subsamples). Sampling weights may then be used to generate estimates for the 
overall population. 

The weight assigned to a given record is the inverse of the probabiUty of it being selected 
into at least one of the samples. If we use the following notation: 

P{presp/,) : the probability of a record being selected in stratum h of the 
prespecified sample 

P{crosSk) : the probabUity of a record being selected in stratum k of the cross-
sectional sample 

hk : cross-classification of records 
h : denotes the stratum of the prespecified sample 
k : denotes the stratum of the cross-sectional sample, 

then the weight associated with each unit may be expressed as: 

^Kk = 1 - [1 - P{prespf,)] [1 - P{crosSk)] 
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Births and deaths cannot be cross-classified. Deaths have a zero weight Wf, = 0 and the 
weight of a birth, Wk, is the inverse of the probability of being selected in stratum k of the 
cross-sectional sample. More details may be found in Bankier (1982). 

Therefore, when the imputation technique is used, the estimator of the total is 

"Ilk 

i" = E ^̂M D yjL 
h.k J=\ 

where yjtk = yjhk if J ^ subsample 

= yjlik if j i subsample. 

4. WEIGHTING TECHNIQUE 

If a weighting technique were used to estimate subsample variables, there would be a 
number of possible estimators. The estimators are in the same form for both subsamples, 
but different weights are used. 

The first estimator (Y]) would be based on the sampling plan used, adjusted for under-
coverage of the population. In each of the SIC, PROV and GBI strata (Standard Industrial 
Classification, province, gross business income), a prespecified sample is selected. Once they 
have been transcribed (units sampled and still alive), the units are classified to two strata: 
"outside survey field" and "within survey field".The subsamples are chosen from the "wkhin 
survey field" stratum. (We may assume that all the units in the "outside survey field" stratum 
have been subsampled and have a mean equal to zero.jThe estimator contains a correction 
factor that compensates for undercoverage of the sample frame (calculated using informa­
tion from the cross-sectional sample). 

The second possible estimator {fi) is a simplified version of the first estimator, Y\. In­
stead of assuming a double sampUng to determine "within survey field" and "outside survey 
field" units, we could assume that a prespecified stratified sample is selected from "within 
survey field" units. A subsample is selected from the prespecified sample. The estimator 
must once again be adjusted to take undercoverage into account. If the differences between 
the first and second estimator turn out to be insignificant, the second would be a better choice 
because it is simpler. 

The third possible estimator (Y3) is an estimator based on data from the cross-sectional 
sample only. We could assume that the units selected in both the subsample and the cross-
sectional sample are selected from the cross-sectional sample. The reasoning behind such 
an estimator is that the cross-sectional sample is drawn from a complete sample frame. 
However, since the subsamples are selected from the prespecified sample, and not from the 
cross-sectional sample, the size of the subsamples in the cross-sectional sample will be small. 

Finally, a fourth estimator (Y^) could be obtained by supposing that the subsample is 
selected from the complete sample (prespecified sample -I- cross-sectional sample), and that 
the complete sample comes from multiple frames. This fourth estimator is the one that most 
closely resembles the estimator obtained after large-scale imputation. Indeed, both of these 
estimators assume that births and new businesses "react" like the rest of the population. 
The imputation procedure does not make any special adjustment for such businesses, and 
the weighted estimator is not stratified in such a way as to distinguish these units. In addi­
tion, both estimators take into account the fact that the sample comes from a number of 
frames. The same sampling weight is therefore used in both cases to produce data up to the 
population level. 



Survey Methodology, December 1986 201 

As mentioned above, the variables collected in the financial subsample are adjusted by 
the ratio of an auxiliary variable during the imputation. 

We could therefore propose another type of estimator for the variables collected in the 
financial subsample: a ratio estimator. The auxiliary variable used would be the same one 
used for the imputation. As is the case for the simple weighting, different estimators could 
be calculated. 

The various estimators and their variances are described in mathematical terms in the 
Appendix. 

5. RESULTS 

In the study, four of the seven variables in the financial subsample were considered. 
As for the subsample of other characteristics, eight variables are collected for all businesses, 

while other variables are avaUable for certain SIC groups only. The study was therefore limited 
to these eight variables. 

The variables in the financial subsample presented in this report are "ADD" (additions 
to fixed assets) and "RM" (repair and maintenance). For the OC subsample, results are given 
for the variable "PCON" (percentage of construction in a specific field). However, the PCON 
variable is not published directly, but is multiplied by total expenses to obtain expenses in 
a specific field: PEXP. This second variable was the one studied. 

As mentioned earlier, the variables in the OC subsample are not adjusted by a ratio 
during the imputation procedure. The ratio estimators will therefore not apply to these 
variables. 

Tables 1, 2 and 3 provide values for the different estimators and estimates of their respec­
tive variances, based on 1983 tax data for unincorporated businesses. 

In the first place, we see that there are no significant differences between the first two 
estimators. (According to the predetermined definitions, the second estimator is a simplified 
version of the first one.)The simplified version will therefore be retained. 

Table 1 
Estimated Values of PEXP (%EXP*EXPCONS) and Standard Deviation of PEXP 

Estimate (x lO") 

Standard deviation ( x lo ' ) 

Table 2 

Estimated Values of ADD and Standard Deviation of ADD 

y. 

3.44 

3.5 

Yl 

3.43 

3.5 

^3 

3.96 

8.4 

n 
3.66 

3.2 

Yl 

3.70 

Estimate ( x 10^) 

Standard deviation ( x 10^) 

Yl 

2.08 

1.9 

Yl 

2.10 

1.9 

Yi 

2.14 

2.0 

n 

1.84 

1.0 

% 2 

7.82 

0.8 

^Q3 

5.06 

2.2 

YQ^ 

5.2 

0.8 

Y\ 

1.4 



^1 

1.5 

6.9 

Yl 

1.5 

6.9 

^3 

1.43 

8.9 

n 
1.55 

5.3 

YQI 

0.9 

3.1 

^23 

1.63 

11.0 

YQ^ 

1.67 

4.3 

i'l 

1.75 
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Table 3 

Estimated Values of RM and Standard Deviation of RM 

Estimate (x 10 **) 

Standard deviation ( x 10*) 

In general, for the variables in the financial subsample, the imputation technique appears 
to yield results similar to those produced by the weighting method {Y^). The estimator ob­
tained by considering only units drawn from the cross-sectional sample (Y3) seems more 
variable than the other estimators. This variability could be explained by the smaller number 
of units used to calculate this estimator. It should be pointed out that these comparisons 
are based only on an observed sample, and so the conclusions are somewhat limited. However, 
owing to the nature of the data (often percentages and subdivisions of activity in the con­
struction field), which is relatively stable in the strata (3-digit 1970 SIC, province and GBI), 
it was considered unnecessary to analyse these variables in greater depth. 

For the variables in the financial subsample, it was found that the estimators adjusted 
by the ratio do not always seem appUcable (for example, the ADD variable). The estimates 
which they produce are extremely biased. One possible explanation is that the ADD variable 
and the auxiliary variable used have a high frequency of zero values. A "bad" sample in 
certain strata can thus inflate the estimates inordinately. 

Some problems were also encountered with the imputation system (data imputed when 
they should not have been, data not imputed), which in certain instances may have affected 
the estimates obtained by the imputation method. Since the results were based on an observ­
ed sample only, and because it was difficult to estimate the impact of the system-related pro­
blems, it was decided that a simulation would be done. 

6. SIMULATION 

The simulation was carried out using a data subset, namely those businesses that had been 
selected in the financial subsample (all of the variables studied are present for this data subset). 
Then an attempt was made to apply a simplified version of the technique used by the Census 
of Construction. A stratified sample was selected, using sampling rates similar to those of 
the survey. The variables of the financial subsample, for the data not selected in the sample, 
were considered as missing, and then imputed by the system. The sample selection process 
and the imputation were repeated thirty times. 

Estimates were produced, allowing us to compare the results obtained by summing the 
non-imputed and imputed data with the estimates produced using sampUng weights equal 
to the inverse of the sampling rate. Since the value for the population is known, the bias 
and the variance of the estimates were calculated. The results for the ADD and RM variables 
are shown in Tables 4 and 5. 

For the ADD variable, the value produced by ratio estimation differs significantly from 
the estimates obtained by imputation or by weighting. The bias of the estimate is also 
significantly not null. For the RM variable, all the estimators are equivalent (equal variances, 
bias not significant at a 5% level, estimates not significantly different). 
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Table 4 
ADD Estimates Obtained by Simulation 

Estimate ( x lO'') 

Standard deviation ( x 10^) 

Bias (X lO') 

Population 

1.41 

Weighting 

1.43 

1.11 

.22 

Ratio 

1.24 

.85 

-1 .73 

Imputation 

1.41 

1.15 

-0.07 

Table 5 
RM Estimates Obtained by Simulation 

Estimate ( x 10^) 

Standard deviation ( x l o ' ) 

Bias ( x 10^) 

Population 

1.06 

Weighting 

1.06 

4.52 

-0.07 

Ratio 

1.07 

4.11 

-0.95 

Imputation 

1.04 

4.87 

-1 .38 

7. CONCLUSIONS 

According to the study results, there do not appear to be significant differences between 
the large-scale imputation technique and the weighting technique, for the variables in the 
other characteristics subsample. This was foreseeable, inasmuch as the variables studied seem 
to be relatively stable within each stratum. 

The conclusions for the variables in the financial subsample are based on the results of 
the simulation. These seem to indicate that the estimates obtained by weighting by the in­
verse of the probability of selection are comparable to the estimates obtained from large-
scale irnputation. 

The ratio estimator does not appear appropriate for the ADD variable (or for the other 
variables analysed, but not discussed in this report). Continuation of the study will try to 
determine whether a regression estimator would be more appropriate, and to evaluate the 
impact of the imputation on the variable correlation structure. 
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APPENDIX 

The following notation may be used for the proposed estimators: 

h : stratum of the prespecified sample 
k : stratum of the cross-sectional sample 
Nl, : size of the "prespecified" population in stratum h 
Nih : size of the "prespecified" population with "alive businesses (within the 

scope of the survey) in stratum h (estimated) 
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Nif, : size of the "prespecified" population wkh businesses "outside the scope 
of the survey" in stratum h (estimated) 

Nk '• size of the population in stratum k, estimated using information from 

the cross-sectional sample 

N'k '• size of the population in stratum k, estimated using information from 

foth samples (multiple frames) 

n^ : number of units sampled in stratum h of the prespecified sample 

/5i/, : number of units sampled and transcribed in stratum h of the prespecified 

sample 

n'k : number of units sampled and transcribed in stratum k 

tfiiij : number of units subsampled from among "alive" businesses in stratum h 

y : variable of one of the subsamples 

X : auxiUary variable available for all units of the samples 

s],h : estimate of the variance ofy for the units of the subsample in stratum h 
s\h '• estimatee of the variance of x for the units of the subsample in 

stratum h 
Syxh : estimate of the covariance of x and y in stratum h. 

- _ / A l pre-spec. + AbirthsN y- . ^ ^ S p 

\ -^1 pre-spec J ^ "h ^11, f^^ ''"' 

\ A l̂ pre-spec / ^ \ « A " V 

X w,,sl(---) + -sU- ) 

(Nh - «/ , \ m^h 
where G,, = { — ) , TA = «/, -r-> and W^t, = 

\Nf, - 1 ) nih 

+ - Wi,{l - W,,)^yl 
"h 

/ A l pre-spec. + AbinhsX _ _ TV,, l ' ' ' 

\ ^Vl pre-spec. / ^ ^ , ^ .^^ 

Vi^Yi) = / ^ ' pre-spec. + ^ b i r t h s \ 2 N^ 

V A^. pre-spec. J ^ ' m , / ' 
Nl,, - ifii,,) sjh 

A mih 

* f^lk J 

^ , /Nk - 'fiik\ 
V{Y,) = l^Nkf^, ) S 
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iv) y^ = T.— L y^j 
k ' " i t 7=1 

. ^ , , /Nk - in\k\ 
V{Y,) = V T V , ( ) 

Nk - tfii. , 2 
Syk. 

Ratio estimators may be calculated and, like simple estimators, they may take on different 
forms, depending on the hypotheses postulated. For example, the ratio estimator correspon­
ding to estimator 4 would be: 

YQ4 = '^ Nk Fsub̂ , -^ 
k sub^ 

where X samp,̂  is the mean of variable X for the units selected in the complete sample, 
which are in stratum k 

X sub̂  is the mean of X for the units selected in the subsample, which are in 

stratum k 

Y subk is ths mean of variable Y in stratum k of the subsample. 

^YQ,) = E {Nk)^(— - - ) \sj^ + Rls\ - 2RkSy,^ + I— - ^\s]^ 
k ^tn\k n^k/ t. \h^k Nk/ J 

where Rk = 
Y suhk 

X subyt 
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A Regression Approach to Estimation 
in the Presence of Nonresponse 

CARL ERIK SARNDALl 

ABSTRACT 

In the preseirice of unit nonresponse, two types of variables can sometimes be observed for units in 
the "intended" sampler, namely, (a) variables used to estimate the resporise mechanism (the response 
probabilities), (b) variables (here called co-variates) that explain the variable of interest, in the usual 
regression theory sense. This paper, based on Sarndal and Swensson (1985 a, b), discusses nonresponse 
adjusted estimators with and without explicit involvement of co-variates. We conclude that the presence 
of strorig co-variates in an estimator induces several favourable properties. Among other things, 
estimators making use of co-variates are considerably more resistant to nonresponse bias. We discuss 
the calculation of standard error and valid confidence intervals for estimators involving co-vai-iates. 
The structure of the standard error is examined and discussed. 

KEY WORDS: Response mechanism; Adjustment group method; Co-variate; Robustness. 

1. INTRODUCTION 

We consider a finite population U = [1, ..., k, ..., N] from which a sample 5 of size 
ri is drawn vvith a sarhpling design under which the A:-th unit has the (strictly positive) pi'o-
bability irk of being selected. The sampling weight associated with the k-th unit is thus TT^"'. 

We may admit a complex sampling design, not necessarily self-weighting, for example, a 
three-stage design with stratified selection of primary units. The probability under the design 
of jointly including the units k and / is denoted TT̂ / ( TT̂ /̂ > 0 for all k 7^1, and Vkk is iriter-
preted as equal to iTk). 

Given s, a certain unit nonresponse is assuiried to occur. The responding subset of s is 
denoted by r, ks size by m. The variable of interest, y, is observed for k e r only. To counteract 
the biasing effects of the nonresponse, we assume for the purpose of this paper that the widely 
used adjustment group method is employed: the sample s is subdivided into H groups 
Si, ..., .?/,, ...j 5// of respective sizes «|, .;., «/,, ..., «//. The response set r is correspondingly 
divided into the subsets r,, ..., r,,, .-.., /•//, of respective sizes Wi, ..., m,,, ..., m^- The 
response rate in group h is denoted /;, = m,,/nj,. The method calls for attaching (in addi­
tion to the sampling weight) the "adjustment weight" /^ ' to an observation coniing from 
group h. (The sizes and the composition of the adjustment groups at the population level 
are here assumed unknown.) We have: 

h = j ] «/,; w = Yd rrih-
h = l li = l 

' Carl Erik Sarndal, Department of Matheifiatics and Statistics, University of Montreal, Moritreal, Quebec, Canada, 
H3C 3J7. 
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Let t = '^uyk be the unknown population total to be estimated. (If ^ is an arbitrary set 
of units, we shall systematically write E^ yk for E ,̂̂  yk.). The usual adjustment class 
estimator of t then becomes 

The adjustment group method is motivated theoretically by an assumption that units within 
the same group respond wkh the same (unknown) response probability. (More formally, this 
is expressed as Model A in Section 3 below.) The method clearly requires that group identity 
can be determined for each unk kes. The (categorical) variables that permk this grouping 
can thus be regarded as variables used for the estimation of an underlying response mechanism. 

A different category of variable may be observable for each kes, namely, variables that 
explain J', in the ordinary regression theory sense. These variables will be termed co-variates. 
When incorporated in the estimator, such variables will not only reduce variance but also 
make the estimator more resistent to nonresponse bias. (They are not auxiliary variables in 
the usual sense of this term, since they are available not for the entire population U but only 
for the intended sample s.) 

We shall thus keep a firm distinction in this paper between two types of variables observ­
ed for kes, those that are used to estimate the response mechanism, and those that explain 
the target variable y. Little (1983), in presenting a general framework for data with 
nonresponse, distinguishes several types of variables. One attempt to describe our situation 
in terms of Little's setup would be to say that the set of complete item variables in Little's 
terminology are, in our case, further subdivided into one subset of variables used to model 
the nonresponse mechanism, and another subset (the co-variates) serving as explanatory 
variables for the incomplete item variable >'. Our approach to inference is that of "quasi-
randomization" (Oh and Scheuren 1983), where "quasi" refers to the fact that the non-
response selection phase must be modelled, whereas the sample selection phase is controlled 
by the sampler. 

2. SOME SIMPLE NONRESPONSE ADJUSTED ESTIMATORS 
OF THE POPULATION TOTAL 

A slight development of the often seen formula (l.I) leads to a (generally somewhat 
"better") alternative in which the sampUng weights TTJ^^ can be said to be more fully used: 

yk 

I \ A- '' '̂ * 
'EXP ~ [2J 

T^k/ H 1 

The formula (which becomes identical to (I.I) for a self-weighting design) can be written 
as an expansion of the response set mean: 

''EXP = Npf, 
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namely, if we let the expansion factor be iV = Ê  1/T*^ and 

D/ZT'E. , -
h=i ^ * 

| / . ' E 4 <-) 
The symbol tilde will be used to indicate a properly weighted mean statistic. The "tilde mean" 
Pr, being a response set mean, is calculated by attaching to the k-tb unit the multiplicative 
weight: 

sample weight x non response adjustment weight = ir^~' /^~' 

for each unit k in the h-tb adjustment group. 
The expansion estimator /EXP is appropriate for the nonresponse situation: it takes into 

account the sampling design and it makes an effort to adjust for nonresponse. However, 
^Exp can be improved upon if more information is at hand. Suppose that a single (and 
always positive) co-variate x is also observed for Are5. In the image of the classical ratio 
estimator, we can then construct 

/ Xk\ h = \ '" '^K , yf 

'^'"^ " X,, 

h = l k 

say, where the tilde mean Xf is formed according to (2.1) with Xk instead of '̂̂ t, and 

^ TTk 

E -

The tilde mean x^, being formed at the level of the intended sample s, employs sample 
weights only. (This type of mean can be calculated for the x-variable, which is observed for 
aU kes, but obviously not for j-variable, which is observed for ker only.) 

The classical regresson estimator formula corresponds, in our context, to 

'"REG = N[yf -Ir b{Xs - Xf)] 

with 
H 

h = l 

b = 
H 

Y\fh'y, {Xk-Xf)^/T^k 
tti ^'^ 
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(Note: sample weighting as well as nonresponse weighting is used in b too.) 
In summary, we have a series of three estiiriators 

kxv = Nyf, (2.2a) 

4 A =NXS^Z> (2.2b) 
Xr 

4 E G = N[yr + b{x,- Xf)]. (2.2c) 

All three are properly sample weighted and nonresponse weighted. The obvious differences 
have to do with the co-variate: t^xp uses no co-variate, whereas ?RA and i^^Q do. It is also 
clear that fRA appeals to an underlying relationship between y and the co-variate x in the 
form of a line through the origin, the slope of which is estimated by yr/Xf. In the case of 
4EG> the relationship is a regression with a non-zero intercept. We shall further explore the 
role of the cO-variate. 

If the f)opuiation size N is knovvn, it is in general better to replace TV by Â  in (2.2a) to 
(2.2c), yielding 

(2.3a) 

(2.3b) 

(2.3c) 

For estimating the population total, Â  must be knowti in these three estimators, which 
may not be the case; However, for estimating the population mean Y, they lead, by dividing 
by N, to the convenient exjjressions 

Ĵ EXP = Sr. (2.4a) 

(2.4b) 

J'REG = Pr-^ b{Xs- Xf). (2.4c) 

The three series of estimators (2.2), (2.3), and (2:4) are easy to accept on intuitive grounds 
since all that is involved are elementary weighting principles* plus standard ratio feature or 
regression feature. Soitiewhat less elementary is to draw the proper consequences for variance 
estimation and the construction of valid confidence intervals. These questions are discussed 
in Section 4. (Contrary to what the rather informal presentation of the estimators (2.2) to 
(2i4) may suggest* the formulas are not "ad hoc" but the result of a formalized general estiiha-
tion procedure (with a itiUltiVariate regression) for two phases of selection; see Sarndal and 
Swerissoii (I985a)i Most iinportantly, the variance estimators and confidence intervals follow 
directly from this theory.) 

^'EXP = Nyf, 

-.* yr 
IRA = Nx, - ; 

Xf 

"̂REG = Nipf -\^ b{Xs -- Xf)]. 

'RA 
y_r 

Xr 
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3. RESPONSE MODELS 

The nonresponse weights in the estimators seen in Section 2 can be justified through a 
response mechanism model involving individual response probabilities that are constant for 
each unit in a given group. More formally, eorisider the response mechanism: 

MODEL A: 

(1) The probability of response is constant (and equal to an unknown constant 0^) for 
aU units k e s,,; h = 1, ..., H. 

(2) The units respond independently of each other. 

The theoretical response probabilities 0/, may vary considerably between groups. (An in­
dication that large differences in response propensity may exist between different siibsets 
is, of course, an incentive to set up adjustinent groups, and to weight accordingly.) 

Consider a fixed sample realization, 5. The group frequencies «i, ..., «/,, ..., n^ are then 
fixed. Let us also consider a fixed value of the vector of group response frequencies 
rn = (Wi, ..., w/,, ..., m„). With s and « fixed, the "selection" under Model A of a 
response set r^ can be shoyvn to conform to a simple random selection of W/, from n,,. The 
conditional r.esponse probability of a iinit k in the h-tb group is therefore 

m^ 
•^k\s.m = — = fh> aU kesh. (3.1) 

nh 

(This consideration underlies the weight/A~' used in the estimators.) Similarly one can show 
that given s and m, the probabiUty under Model A that .units k and / respond is 

fh :if k = I 

, fhimh - 1) 
ni\s,m = S -^ if k 9^1 eSf, ,(3.2) 

" A - 1 

fhfh' if kes^; leSh' {h 9^ h') 

i T'^kkis.m is by definition equal to Trk\s,m •) These quantities (\yhich rerriind us of stratified 
randoin sainpli.ng with m^ units chosen frpin Ph in the h-tb stratum) are important for the 
c.aleulation of variance estimates and standar.d .errors; see below. 

Ill practice, the analyst decides how to set tip his groups Sh. The decision is crucial, for 
it \will determine the adjustment weights/A~ ' , and thus the numerical value of the estimate 
of,/, the variance estimate, and the confidence interval. Two different groupings may lead 
iO widely ,differ,ent point estimates and confidence intervals. 

The analys.t is ri.o.t so riaive as to .think that response probabilities exis.t that .ar,e exactly 
.equal within the group that he has identified.. He does, however, believe (aiid usually with 
good reason) that more valid point estimates and confiderice intervals wiU resuk >yith these 
groups (and thereby the weights/^~') than without them. The adjustment group approach 
is a souiid and firmly established practice. 

On closer scrutiny, several things may be wrong with a response model such as Model 
A: the response probability is perhaps not cons.tant wkhin groups. And, even if k were, the 
particular groups postulated by the model are perhaps wrongly defined; there should have 
beeii more groups than assumed, etc. Two cases must therefore be distinguished for the con­
tinued discussion: 

file:///yhich
file:///will


212 Sarndal: Regression Approach to Nonresponse Problem 

(a) The assumed response mechanism (ARM; here in the form of Model A) is true. In 
practice, this is unlikely to be exactly the case. 

(b) The ARM is more or less false. This is the unpleasant truth in the majority of all prac­
tical situations, and it leads to nonresponse bias. In the case of Model A, the groups 
may be formed more or less incorrectly. 

As is usual in statistics, the statistical analyst will formulate the model corresponding to 
the best of his judgement; accordingly, he will draw certain inferences (confidence statements, 
for example). Then he will wonder about the robustness of these conclusions, that is, how 
well do they hold up if the model is false? In the same order of things, let us consider these 
questions in our particular situation. 

4. VARIANCE ESTIMATORS BASED ON A CERTAIN 
ASSUMED RESPONSE MECHANISM 

Model A, wkh a specified set of groups, is assumed to hold. The response rates, fn = 
m,,/nh, h = 1, ..., H, have been estabUshed. With this as a starting point, let us examine 
the variance estimators needed to construct a confidence interval at a specified 100( 1 - «)% 
level. If iis one of the estimators in Section 2, and Model A really holds, we have: 

(a) t is unbiased (except for a usually unimportant technical bias) 
(b) an approximately 100(1 - a )% confidence interval for t is: 

i ± Zi-c/i^Vi't). 

where the constant z, _„/2 is exceeded with probability o;/2 by the unit normal variate. 
Under repeated draws of samples 5 and, for each fixed s, repeated realizations (obeying 

the assumed Model A) of response sets r, the interval will contain the true population total 
100(1 - a )% of the time. 

The variance and the estimated variance will be determined by two sets of selection pro­
babilities: 

1. Vk and TTki, the probabilities of inclusion (first and second order) that accompany the 
sampUng phase; 

2. TTkis.m. •^ki\s.m the Conditional response probabilities (first and second order) associated 
withthe response Model A ("the nonresponse phase"). 

In our case, as a consequence of Model A, Trk\s,m> and T:ki\s.m> are given, respectively, 
by (3.1) and (3.2). As for TTk and ir̂ t,, full generality is assumed; any design may be used 
for the sampling phase. 

A detaUed analysis will show that the total variance of any one of the estimators f seen 
in Section 2 can be broken down into two components: 

V{i) = F,(f) -I- Vi{i) 

where K, (f) may be termed the sampUng variance and V2{t) the nonresponse variance. The 
exact formulas given in Sarndal and Swensson (1985a) are not reproduced here, but one notes 
that the components have some reasonable properties: 

1. Vi{i) = 0 if the whole population U is observed (a census rather than a sample 

survey); 
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2. 1^2(0 = 0 if the response is complete {r = s); 
3. 1^2(0 is greatly reduced in the presence of a strong co-variate, but Vf{f) is not af­

fected by the co-variate (naturally enough, since it is observed forkes only). 

Let us examine somewhat more closely the variance estimators. If F,(0 denotes the 
estimator of K,(0, / = 1, 2, the total variance V{f) will be estimated by an expression of 
the form 

Vin = K,(0 + 1/2(0. 

Here, the estimated sampling variance component is 

Vi 
ker ler ^'^k'^l T^kl/ T^klls.m 

where Trki\s,m is given by (3.2), and x^, T^ki are the inclusion probabiUties of the sampling 
design. The estimated nonresponse variance component is 

with 

The quantities ŵ  and Wk differ from one estimator f to another. Let us look first at the 
estimated nonresponse variance, Vi{f). This component is of "stratified form": the factor 
n^ {1 //W/, - I /«/,) is characteristic of a stratified simple random selection with m,, units 
chosen from /?/, in the h-tb stratum. The reason for this structure lies in the conditional 
response probabilities Trki\s,m given by (3.2). 

The quantities w^ have the following appearance: 

h = 

<f2 -
'^wru 

m 

"hi ~ ~ ) ^wru 
\mh nJ 

1 v^ , 
, _lL/-/^^* %̂) 

For ?Exp and t^xp- Wk = 
yk - yr 

» 

^ - , .* yk - iyr/Xr)Xk 
For /RA and /RA: W^ = , 

T^k 

^ - ^ -* yk - yr - b{Xk - Xf) 
For /REG and / REG : ŵ , = 

'^k 

The expressions for w^ are sample weighted regression residuals. Consequently, if Xk is a 
powerful explanatory variable for yk, one will ordinarily have that the variance of the w^ 
(and thus K2(/')) is smaller for the RA and REG estimators than for the EXP estimator, 
where the quantity Wk is just a deviation of yk from the response set mean yf. Consequent­
ly, in fortunate circumstances, the part of the standard error that is due to the nonresponse 
will be reduced to near-zero levels, namely, when x and y have near perfect correlation. 

The estimated sampling variance component K|(/") is of less interest in this discussion, 
since k is not directly influenced by the co-variate. It should be mentioned, however, that the 



214 Sarndal: Regression Approach to Nonresponse Problem 

Uk are determined as follows: t^xp, /'RAJ and /"REG* "* - yk, whUe for the "starred" series 

of estimators /'EXP. ^"RA. .and /'REG. Uk "^ yk - Ss, wherp A = i^s yk/jk)/il!fsM'^k) is 

the mean of the predicted values from the regression fit, so that for /EXP. yk - Sr for all 

k; for /'RA, A = (J'rZ-^r)-^*; and for /REG, .V* = j'r - 6(^* - •̂ /•)-
A special cas.e arises when m^ = nf, for all h (that is, no nonresponse). Then Vi (/") = 0 

(as is reasonable), aiid T:ki\s.m - 1 for all k and /, leaving the non-zero component 

^>(^)- E E ( — - - ) UkU, 

which is the well-known variance estirnator for the case of full response. 

5. ROBUSTNESS PROPERTIES WHEN THE ASSUMED 
RESPONSE MECHANISM IS FALSE 

Unbiased estimates and valid confidence intervals can be obtained with the aforementioned 
estimators, provided the ARM (given by Model A) holds. The presence .of a strorig co-variate 
brings about a reduction of the nonresponse component of the variance. 

More interesting in a real-life situation is the case where the ARM breaks down. This case 
must be considered, because even the most careful judgement in setting up adjustment groups 
is bound to be less than perfect. The extent of the departure of the true response behaviour 
from that of the ARM will now determine behaviour of the various estimators. The statistical 
properties (bias, coverage rate achieved by confidence iiitervals, etc.) are in other words func­
tions of the extent of model breakdown. 

In Sarndal and Swensson (1985a), a small scale Monte Carlo experiment was carried out 
to study the impact of certain types of breakdown in Model A. For purposes of illustration, 
we cite a few results from this study. 

The true ARM in the experiment had H = 4 adjustment groups, wkh different response 
probabilities between groups (but constant response probability for all units in the same 
group). 1,000 simple random samples were drawn, and each sample was exposed to simulated 
nonresponse according to the true ARM (which is taken as known, since this is a controlled 
experiment). 

As expected from theory, when the ARM underlying /'EXP and /RA was true, there is 
essentially no bias, and the empirical coverage rates of the confidence intervals agree essen­
tially with the nominal 95% rate. The advantage of /'RA Ues in a smaller component of 
variance due to nonresponse. (See "ARM is true" in Table I.) 

False ARM'S were created by joinirig together groups of the true ARM. The estimator 
and the confidence interval (based on the false ARM) will then be calculated on the basis 
of fewer groups than ought to be the case. The case "ARM is false" in Table I represents 
the extreme situation where all four groups of the true ARM were joined into one, meaning 
that one acts in the estimation process as if all units throughout the population had the same 
(unknown, but estimated) response probability. The table shows that the co-variate estimator, 
/"RA. when conipared to the no-co-variate estimator, /^XP. has the follo\ying (not unexpected) 
advantages: (a) strong resistance to nonresponse bias (1.26 versus 4.85); (b) much better preser­
vation of the nominal 95% confidence coefficient (92.6% versus 46.3% empirical coverage 
rate). In addition, /'RA has a variance advantage, and therefore shorter confidence intervals 
on the average. 
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Table 1 
Comparison of ^̂ xp ^̂ d̂ /R^ 

ARM 
is true 

ARM 
is false 

Estimator 

'EXP 

/RA 

/EXP 

/RA 

Absolute 
bias 

0.00 

-0 .01 

4.85 

1.26 

Mean of the 
variance 

component V2 

1.99 

0.78 

2.55 

0.78 

Empirical 
coverage rate 

(95% nominal) 

95.2% 

95.5% 

46.3% 

92.6% 

6. CONCLUSION 
In summary, we have argued in this paper that two different categories of variables (observ­

ed for k in the intended sample s) are of importance: 

(a) variables suitable for estimating the response mechanism (in the case of Model A, these 
variables allow the construction of the adjustment groups); 

(b) variables (here called co-variates) that are powerful predictors of the ̂ -variable; when 
used in the estimator formula, they reduce variance and improve the robustness pro­
perties. 

Whenever possible, one should thus be on the outlook for sukable co-variates. One should 
also note that when several .y-totals are to be estimated,the appropriate co-variates may dif­
fer from one >'-variable to the other, whereas the weighting classes would probably be set 
up to apply uniformly for all variables of interest. 

REFERENCES 

LITTLE, R.J.A. (1983). Models for nonresponse in sample surveys. Journal of the American Statistical 
Association, 11, 237-250. 

SARNDAL, C.E., and SWENSSON, B. (1985a). A general view of estimation for two phases of selec­
tion. Part 1: Randomized subsample selection (Two-phase sampling). Part 11: Nonrandomized sub-
sample selection (Nonresponse). Promemorior fran P/STM no. 20, Statistics Sweden. 

SARNDAL, C.E., and SWENSSON, B. (1985b). Incorporating nonresponse modelling in a general 
randomization theory approach. Bulletin of the International Statistical Institute (45 th session), 51:3, 
15.2.1-16. 

OH, H.L., and SCHEUREN, F.J. (1983). Weighting adjustment for unit non-response. In Incomplete 
Data in Sample Surveys, Vol. 2, (Eds. W.G. Madow, I. Olkin, and D.B. Rubin), New York: Academic 
Press, 143-183. 





Survey Methodology, December 1986 217 
Vol. 12, No. 2, pp. 217-230 
Statistics Canada 

Ratio Estimation with Subsampling the Nonrespondents 
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ABSTRACT 

The procedure of subsampling the nonrespondents suggested by Hansen and Hurwitz (1946) is con­
sidered. Post-stratification prior to the subsampling is examined. For the mean of a characteristic of 
interest, ratio estimators suitable for different practical situations are proposed and their merits are 
examined. Suitable ratio estimators are also suggested for the situations in which the Hard-Core are 
present. 

KEY WORDS: Auxiliary information; Post-stratification; Biases; Mean square errors; Linear model; 
Hard-Core. 

1. INTRODUCTION 

Consider a finite population of size A'̂ and a random sample of size n drawn without replace­
ment. In surveys on human populations, frequently «i units respond on the items under ex­
amination, but the remaining {n-n{) units do not provide any response. The initial survey 
may be conducted through the mail or telephone calls, perhaps computer-aided. 

In Sections 2, 3 and 4, we consider Hansen and Hurwitz's (1946) procedure of subsam­
pling a portion of the (« —«|) nonrespondents. In this procedure the population is suppos­
ed to be consisting of the response stratum of size Nx and the nonresponse stratum of size 
M2 = {N-Ni). 

In Section 2, we discuss two procedures for post-stratifying the sampled units, prior to 
the subsampling of the nonrespondents. 

Two ratio estimators for the mean of an item are considered in Section 3. Biases and Mean 
Square errors of these estimators are compared in Sections 3 and 4. In Section 4, two more 
ratio estimators, which may be suitable for some practical situations, are proposed and their 
relative merits are examined. 

The Hard-Core problem is considered in Section 5. Six different estimators for this situa­
tion are proposed. Optimum conditions suitable for each one of the estimators are briefly 
described. 

2. HANSEN AND HURWITZ'S ESTIMATOR AND 
POST-STRATIFICATION 

Consider a characteristic of interest y,, i = (I, 2, .... N). Let Y = {I,'^yj)/N and 
S^ = £ f (>',• - Y)^/{N - 1) denote the mean and variance of the population. Let Pj = 
(Ef>.y,)/Af, and S} = Ef" (;', j - y , )V (Ni - I) denote the mean and_variance of the 
response group. Similarly, let Y2 = (Ef2^,) / N2 and S | = Ef^ ( j , - Y2)^ / {Ni - 1) 
denote the mean and variance of the nonresponse group. The population 

P.S.R.S. Rao, Department of Statistics, University of Rochester, Rochester, NY 14627, U.S.A. 
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mean can be written as F = W^Yt -\- W2Y2, where IK, = {Ni/N) and W2 = {N2/N). 
The sample mean y^ = (£" '>>,)/«, is unbiased for 7], but has a bias equal to 
W2{Yx - Y2) in estimating Y. 

2.1 SubsampUng the Nonrespondents 
Hansen and Hurwitz (1946) suggest drawing a subsample of size m = n2/k, k > 1, from 

the /J2 nonrespondents and assume that responses are available from aU of them. The sam­
ple mean y2m = {^Tyi)/ni is unbiased for the mean j'2 of the AI2 units. The estimator for 
Y suggested by the above authors is 

YHH = Wi.yi -h W2y2m, (2.1) 

where Wi = {ny/n) and W2 = («2//i). 
For a given set of «i respondents and «2 nonrespondents, this estimator is unbiased for 

y = w^y -I- W2>'2 — {^1 yi)/n. Thus, it is unbiased for Y. 
The variance of this estimator is 

V{ff,„) = ^i^l^S^ -f W2 ^-^^^^Sl (2.2) 
n n 

where / = {n/N); see Cochran (1977, p. 371). 
Let 5? = £[''(>', - J i )V( r t i - 1) and ^ L = LT{yi - Pim)^ / {m - 1) denote the 

variances of the «i responses and the m subsampled units. An unbiased estimator of the 
variance is 

„ r f ^ ( ^ - / ) \ini-l)s\+ (/t2 - ^ ) ^ L 1 
V \ YHH ) — \ 

:i - / ) \ni (J, - F „ „ ) ^ - ^ n2{P2m - fHH)^'\ 

n V n - 1 J 

{N - l)w2(k - Dsjff, 

N{n-1) ' (2.3) 

(1 
-I-

-I-

This expression can also be obtained from the variance estimators for double sampling 
and stratification derived by Cochran (1977, p. 333) and Rao (1973); see also Rao (1983). 

Post-stratification and subsampling 

The {n — ni) nonrespondents may be classified into (L — 1) strata of sizes {ni, n^, .... n^) 
according to an auxUiary characteristic, or for convenience in sampUng at the next phase. 
Subsamples of size m,, = {n^/kh), k/, > I , provide the means y^m = Ej"'' yhi/m,, and 
variances s L = 2" ' ' (7/,/ - yhm)^/imh - U-

The unbiased estimator for Y now is 

L 

? = E "'"y"'"' (2.4) 
1 

where w^ = {n,,/n) and .p,^ = Pi-
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The variance of the above estimator is 

n 2 " 

where S^^ ='^i''{yhi - ?A)V(AA - I). The estimator for the variance is 

. il - f) S^ inn - k,)sL il - f) 1, n,{y„„ - ?)' 
v{Y) = > 1 V 

n ^ {n - 1) n ^ {n - 1) 

(A - 1) i^ , 
"̂  N{n - 1) E ^"(^^ - 1) 'f""- (2-7) 

where k^ = 1, Pim = Ji, and s]f„ = if as defined earlier. 

Other types of post-stratification may be considered. For instance, the n unks, respondents 
as well as the nonrespondents, may be post-stratified into L strata according to an auxiliary 
variable. The/j-th stratum wUl now have/7 î respondents (Ef/J;,, = «,) with mean .ŷ ,, and 
«/,2nonrespondents {'^'i n,,2 = ni). A subsample of size W;,2 = («/,2//:;,) from then/,2 units 
will provide the mean yh2m- An unbiased estimator for the mean Y^ of the h-tb stratum now is 

f _ n hi Phi + nh2yhim ,. 
^h — (•2.8) 

«/, 

where «/, = («;,, -I- n,,2)' and the unbiased estimator for F is 

L z. _ _ 
V^ - \^ "h ^ _ Ŷ  'hnyfn+J'hiyhim ,« r,, 
^ - L 'n "' E n • (2.9) 

1 1 

The variance of this estimator and ks estimate can be found as in the above case. 
The estimator in (2.4) is preferable if there is much difference among the means of the 

response and nonresponse strata. The estimator in (2.9) should be preferred if the means 
of the respondents and nonrespondents differ in each stratum, and if there is much difference 
among the means of the strata. 

Sarndal and Swensson (1985) consider unequal probabilities of selection at the first phase 
and subsampling the nonrespondents after post-stratification. 

3. RATIO ESTIMATORS 

Let Xj, i = (I, 2,...^ N), denote an auxiliary characteristic with population mean 
X = (E, Xi)/N. Let ^1 and X2 denote the means of the response and nonresponse 
groups. Let x = (E"x,)//i denote the mean of aU the n units. Let jf, = (E"';C,)//II and 
Xi = {E"2 A:,) //I2denote the means of the «i responding units and the «2 nonresponding 
units. Further, let .X2m = (E^J:,)/ / /? denote the mean of the w = («2/A-) subsampled units. 
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The population variances of x and y are denoted by Sl and S^, and the population 
covariance by Sxy. The correlation coefficient is Pxy = {S^y/SxSy). The sample variances 
are denoted by si and Sy. As before, the subscripts 1 and 2 denote the response and 
nonresponse groups. 

3.1 The Convential Estimator for the Mean 

The ratio estimator for F is 

ti =—X = r*X (3.1) 

where p* is the same as Y^H in (2-1), x* = (w,Xi -I- W2X2m), and r* = {y*/x*); see 
Cochran (1977, p. 374). Now, 

^̂  _ _ ^ {y* -RX*)X ^ ^_^ _ ^^^^ ^̂  _ . _ - X ^ ^3_^^ 

where R = {Y/X). The approximation in (3.2) is obtained by expressing {1/x*) in Taylor's 
series, and it is valid for large values of the sample sizes n and m. From (3.2) the bias of /, is 

Bi = E{t, - Y) = ^ ^ - ^ {RSl - Sxy) -^ ^ ' ^ ^ - ~ ^̂  {RSI2 - Sxy2). (3.3) 
nX nX 

The bias vanishes only if (a) the regression of ;> on x goes through the origin for both 
the response and nonresponse strata and (b) the slopes of both the regressions are equal to 
R. The first condition is needed for the ratio estimator to be the optimum estimator for F. 
For the second condition to be satisfied, R2 = {Y2/X2) should not differ much from 
Ri = ( F i / ^ i ) . 

From (3.2), a large sample approximation to the Mean Square Error (MSE) of /] is 

M, = E{ti - F)2 = ^-}—lIl s^ -I- 1̂ 2 
n 

i k - 1) „2 
^dl 

n 

^1''-''S12 

(3.4) 

(3.4a) 
n ^ {N - 1) 

where S^ = E^(>', -RXi)^/{N-l) and Sj^ = ^ ^ {yhi - RXM )^/{N„-l)forh = l,2. 
The expression in (3.4) is briefly indicated by Cochran (1977). 

An estimator for this MSE is obtained by replacing S^ in (3.4a) by 
sli = Efi iyi - r*Xi)^/{n, - 1), S ^ by 5 ^ = Er(.y, - r*Xi)^/{m - I) and W,, by w .̂ 
It is possible to suggest alternative estimators for the above MSE. 

3.2 An Alternative Estimator for the Mean 

In some situations, there may not be any nonresponse on the auxiliary characteristic. Family 
size, years of education, years of employment, and the like, are the above type of auxiliary 
variables. 



Survey Methodology, December 1986 221 

The subsample provides the means Xim and y2m. However, since X = {'L"xi)/n is 
available, for F we may consider 

t2='-^X= "•^' t ' " ' ' ' " ' X. (3.5) 

Since the expectation of y* conditional on the first sample is equal to y, the bias in /2 
is the same as the one in YR = {y/x)X. We note that fg is the ratio estimator for the case 
of complete response. This result can also be derived from the expression 

/2 - F = ^-^^X -^ ^ ^ ^ X. (3.6) 

Since the conditional mean of y* is equal to y, the bias of /2 is 

B2 = E{t2 - F) - ^^-^ {RSl - Sxy). (3.7) 
nX 

If the regression of j ' on AT for the entire population goes through the origin, the bias of 
/2 in (3.7) vanishes. If the regression for the second stratum also goes through the origin, 
the bias of /, in (3.3) would be small only when /?2 = (Y2/X2) is close to R. 

From (3.6), the MSE of /2 is 

M2 = E{t2 - Y)^ ^ ^-^—^ Si + l ^ ^ i i j l i l 5̂ 2 (3.8) 
n n 

N - 1 

Note that S^ = S; -\- R^Sl - 2RSxy. An estimator of this MSE is obtained by 
replacing S^i, Sli. Sji, and W^ by s^i, 5̂ 2, 5̂ 2. and w^ respectively, where 

"1 

1 

m 

Sd2= l^ iyi- r**x,)^/{m - I). 
1 

m 

s\i = X) iyi-y2n,)^/im - I) . 

In theses expressions, r** = {y*/x). 
Compariiig the approximate expressions in (3.4) and (3.8), we find that when 

/?, = ( F, /Xi) does not differ much from R2 = { F2/^2). /2 wiU have smaller MSE than 
/i provided the correlation P2 in the nonresponse stratum is not too high. Secondly, if /?i 
differs much from Ri, /2 may have smaller MSE than /[ even when P2 is high. The follow­
ing Section contains further comparisons between these two estimators. 
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3.3 Further Comparisons 

In this Section, we compare /] and /2 through the linear model. For the two groups, we 
consider the models 

yu = a, + I3xi -h e,,, / = (1, 2, .... A, ) (3.9a) 

and 

yii = a2 + PXi + 621. i = ih 2, ..., N2), (3.9b) 

with the following assumptions: 

E{eii I Xi) = 0, E{eueu') = 0, K(ei,|x,) = Vix',; 

Eieii \ Xi) = 0, £'(62,^2/') = 0, V{e2i\Xi) = V2xl 

We note that (/ ?s /' ) and in practice f may lie between zero and 2. Further e^ and £2/ 
are assumed to be uncorrelated. Biases and MSE's of /| and /2 are obtained in the Appen­
dix with the assumption that the response group of size Â i and the nonresponse group of 
size A'2 are samples from the super-populations represented by the above models. 

Comparisons of the biases 

Let /denote the observations from the first initial sample. Since E[{1 /x*) \I] >{l/x) 
and E{l/x) > {1/X), from (A.2) and (A.3) we find that both /] and /2 overestimate F. 
Further the bias B^ of /j is larger than the bias B2 of /2. From (A.6) and (A.7), 

awW2ik - l)Sl2 
Bi - B2 = -^ (3.10) 

nX 

This difference in the biases increases with the size of the nonresponse stratum and decreases 
with an increase in the size of the subsample. 

Comparison of the MSE's 

From (A.9) and (A.20), the difference in the MSE's of /] and /2 is 

M, - M2 = {Ai - A2) - C2 -I- ( A - D2). (3.11) 

From (A. 10), (A.21), and (A.22), 

W-i(k — 1) 
{At - A2) - C2 = 13 V{a„) + a i - 0^X^] ' ' , SI2. (3.12) 

n X 

We note that 

K(a„) = a}V{Wi) -{• a2V{W2) + 2aia2Cov(Wi, W2) 

N - n 

{N - l)n 
{a, - a2)'WtW2. (3.13) 
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The difference in (3.12) becomes large as a, and 02 differ much from each other. A suf­
ficient condition for the right side of (3.12) to be nonnegative is that aw>px. Further 
analysis of this resuk shows that the above difference becomes large if C^ = {Sx/X) 
becomes larger than Cy = {Sy/Y) as the correlation Pxy = {Sxy/SxSy) increases. 

From (A. 12) and (A.24), 

Di - D2 = E{[2{b - b*) + 3{b*^ - b^)]e*^] 

-\- 2E[b* - b - b*^ + b^) Ee*]. (3.14) 

We note that {b* - b) = {x* - x)/X = W2{X2m - X2)/X. Further, E{b* - b) = 0. 
When ( = 0, from (3.14) and the results in (A.14) and (A.17), to 0 (n"^) , 

£>, - D2 = 3E[{b*^ - b^)e*^] - 2E[{b*^ - b^)E e*] 

3W2{k - l)Sl2 2W2{k - 1)5^2 
= T^ (^^'iVi + kW2V2) zr:: ( W'l V, -|- W2V2) 

n^X^ 2 2 ' j,^^-^i V 1 1 11, 

W2{k - 1) 
= {[2(1 -f) + i jdf ' .v , -f W2V2) + 3(A:- 1)W2V2} r ^ T — S ^ -

n X 

(3.15) 

This expression clearly is nonnegative. 

When i = 1, from (3.14), (A.I5) and (A.I6), to 0 ( « - ' ) 

Di-D2 = 2E[{b-b*)^'''''''^^''''''-^'\ 

+ 2£[(6*-5)^"'^'"'^/-'^-"--^]. 
(3.16) 

Noting that E[{b* - b) Xi|/| = 0, from (3.16), 

D, - D2= -{2/n) E[kwlx2f„{X2m - X2)]V2 -I- ( 2 / A ) E[wiX2m{X2m " ^^2)] V2 

= - {2/n)kE[wlV{X2m\I)]vi -i- {2/N) E[wlV{X2,f,\I)]v2 

_ 2{Nk-n) W2{k- DSli 

Thus, when I = 1, D2 > D^. However, the difference in (3.17) becomes negligible when 
n is large. 

The above results suggest that when f = 0, /, has larger MSE than /2 if a is larger than 
^X. When f = 1, /, will have larger MSE than /2 if a is considerably larger than I3X. 
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4. SEPARATE RATIO ESTIMATORS 

4.1 The First Estimator 

If {Xi,X2) are known, the separate ratio estimator for F that can be suggested is 

?S = W,/-,X, + H'2/-2^2. (4.1) 

where r, = {y^/Xi) and r2 = {y2/X2). However, {Xy X2) can be estimated by (jf,, ^2) 
and (j'2m/-^2m) is an estimator of r2. With these estimates, an estimator for F is 

/3 = w,J;, -I- W2^:^ X2. (4.2) 
X2m 

This estimator can be used if X2 is available but X is not; however, it does not make 
use of Xi. 

From (4.2) 

/3 - F = ( j ' - F) -t- W2{X2/X2m)iy2m " '•2-^2m)- (4-3) 

If m is large, from (4.3) the bias in t^ is 

B,=E{t,-Y) = ^ ^ ^ {R2SI2 - Sxy2). (4.4) 
nX2 

The MSE of /j is 

M, = Ei„-?,'.^J-Zjlsi.'Mi^Si^ ,4.5, 
n n 

where SJ2d2 = Ef̂ ^ iyi - /?2^,) '/(A2 - 1). 
An estimator for this MSE is obtained by replacing the first term on the right of (4.5) by 

v(j') = (I -f)sj/n, Sl2di byslidi = E7'(>', - r2mXi)^/{m - 1), wherer j^ = iy2n,/X2m). 
and 1̂ 2 by W2. 

4.2 The Second Estimator 

An estimator that utilizes X and X is 

4̂ = /3 ( f ) = ( w , J , + W2|^^2) ( f ) . (4.6) 

It may be beneficial to consider this estimator since the conditional mean of t^ for large m 
is equal to y, and hence the conditional expectation of t^ becomes equal to {y/X)X. 

From (4.6), 

t, - Y = (^^X - Y^ -^- W2 ( ^ ) {y2m - '•2 X2m ) (^^ . (4.7) 

If n and m are large, the bias of t^ is 

B, =E{t,-Y)^ - ^ i - ^ {RSl - Sxy) + ^ ^ ^ (/?2Sl2 - Sxy2). (4.8) 
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The MSE of /4 is 

>2 ^ (1 -f) c2 ^ u. ( k - \ ) ,2 M4 = £'(/4 - y)-' = -̂  — s'd + W2 
n n 

^rldl 

_ (I -f) Z{NW, -DSlh ^ W2{k- 1) 2 , , „, 

n N — 1 n 

An estimator ofM4 is obtained by replacing Srfi, S^ , Sl2di> and W2by s^i, s%, sl2d2' and 
W2 respectively, where 

"1 

4 i = E iyi- r*Xi)^/ini - I) , 
1 
m 

SII=YJ iyi-rxi)^/im - 1), 
1 

m 

slid! = Yi (•̂ ' ~ ''2mXi)^/{m - 1). 

We note that r* = {y*/x*) as defined in Section (3.1). 

Comparing (4.5) and (4.9), we find that t^ will have smaller MSE than t^ if the popula­
tion correlation between x and y is high. 

Further investigation is needed to evaluate the merits of the above two separate estimators 
relative to the estimators in the previous Section. 

5. RATIO ESTIMATORS IN THE PRESENCE OF THE HARDCORE 

It is becoming increasingly apparent that in spite of subsampUng the nonrespondents and 
a number of call-backs, a significant proportion of the sampled units, the hard-core, do not 
respond to the items in the survey. 

For this situation, we consider the population to be composed of three groups of 
sizes {Ni,N2, A3), A = E] A,, with means (F , , F2, F3) and variances (S^i, Sji, S^3). 
The means and variances for the auxiliary characteristic are {Xi, X2, Xj) and 
iSli, Sli, Sli). The population means of these two items are F = (IF, F, -H W2Y2-t ^^Y^) 
and X = ( WiXi •+ W2X2 + W^X^), where E ] IF, = I. Let /?, = ( F, Z^ , ) , /?2 = (5̂ 2 /^2) 
and/?3 = (F3/X3). 

In the initial sample of size n, only «i units respond and provide the means (Je,, y^). The 
number of units (/I2, "3) in the last two groups are not known, but their sum 
(«2 + «3) = (n — «!) is known. The means {X2, x^) of the auxiliary characteristic may 
be known, but {y2, j'3) for the item of interest are not observed. 

We consider the situation where in the subsample of size m = {n — n^) /k, only m2 units 
respond and provide the means (JC2m. Pim)- The remaining m^ = {m — m2) units, the 
"hard-core", do not respond. Note that m^ is not defined. 

In Rao and Jackson (1984), a number of estimators for F for the above situation are ex­
amined, without utilizing the auxiliary information. In this Section, we suggest the follow­
ing six estimators that utilize the additional information. We briefly present the conditions 
for which these estimators may be the optimum ones. For the sake of space, we have not 
presented the derivations for these estimators. 
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( I ) . The difference between i?i, R2 and R^ is negligible. The m^ units of the third 
group, the hard-core, is a random subsample of the m2 respondents at the 
second phase. In this case, 

f,,="^'^^^"-"^^''-X. (5.1) 
«,^l -I- (« - n, )X2m 

( I I ) . Same conditions as in I, but poor correlation in the second and third groups. 
For this case, 

^ ^ " ' ' ' ^ ' " - " • ' ' ^ X . ,5.2, 
nX 

(III). ^3 = (Ni^ i -1- A 2 ^ 2 ) / ( M + N2) and F3 = (AiFi -f- A2F2)/(Ni -I- A2), 
and {Ri, R2, R3) do not differ much from each other. Under these conditions, 

F „ = " - ^ l ^ ^ ; P . (5.3, 
niXi -f km2X2m 

Note that, since E{m2/m) = n2/{n - ni), an unbiased estimator of «2 is 
[{n - « ! ) /m] AW2 = km2. 

(IV). Same conditions as in (III), but poor correlation in the second and third groups. 
For this case, 

t„,^"j^ll^X. ,5.4, 
{ni-i-km2)x 

(V). The three ratios differ from one another. The n^ units of the third group are a 
random subsample from the /I2 units of the second group. In this case. 

rn , ( n - « i ) j 2 m 1/X\ 
= -.Pi + -X2 ( - ) . (5.5) 

L« " X2m A\X / 

(VI). The three ratios differ from one another. The n^ units of the third group are a 
random subsample from the («i -I- «2) units of the first two groups. Under 
these conditions. 

/ «i km2 y2m \ /X\ 
YH6 = — — — Pi + ——r- - ^2 I - • (5.6) 

\« i -I- km2 «i -I- km2X2m / \X / 
WhUe we expect the above conditions to be satisfactory, further research is needed to 

evaluate the performances of the above six estimators. 
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APPENDIX: BIASES AND MSE'S UNDER 
THE SUPER POPULATION MODEL 

Let aw = IT,a, -I- W2a2, a„ = w,a, -f W2a2. 

N m m 

^ = E ^'^^' ^' ^ E ^'^"'' 2̂m = Y ^'^"^ "̂"̂  ^* = ^̂ 1̂ 1 + W2e2m-
I I I 

Now 

? = aw + I3X-\- E, (A.l) 

'i - j ^ = -TTttw - aw + -fX - E, (A.2) 
X X 

and 

t2- Y = -a„ - aw+ ^(^ - l)x-t%X - E. (A.3) 

1. Biases 

Let 6 = (.? - A') / X and b = {X - X) /X. Taylor's expansion about X gives 

X * *, 
^ = I - 6 + b \ . . . (A.4) 
AT 

and - = 1 - 6 -f 52 ^ ^ ^ . 

With these expansions, from (A.2) and (A.3), to 0(/7-') the biases of /, and /2 are 

B - ^ ^ „ - [ (^ ~ ^ ^ ^ I ^ 2 ( A : - l ) _ 2 l 

and 

Bi=^aw= [^^^Sl'j aw. {A.l) 

2. Mean Square Error of /, 

From the expansion in (A.4), 

/X\ 2 * *, 

(^] = 1 - 2 6 -I- 36 2. (A.8) 

From (A.2), the MSE of /] can be written as 

M, =E{tt - F)2 =A, + D„ (A.9) 
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where 

X 2 
Ax = E{^a^ - aw) 

X 

= E[{1 - 26* + 3b*^)al] + a}y- 2E[{1 - b* -\- b*^)a„] 

= V{a„) + [3E{al) - 2a]y] [V{X*)/X''] 

= V{a„) + {3V{a„) + a]y]{V{X*)/X''] (A.IO) 

and 

— 4 

D, = E{- X - E)\ (A.ll) 
X 

With the expansions in (A.4) and (A.8) 

* — — 
e — - t X 1 *-i --, ., X - * 

{^X - E)^ = ( ^ ) ^ e 2 -f £2 _ 2{^)Ee 
X X X 

= (1 - 26* -I- 36*^)g*2 -\- E^ - 2(1 - 6* -h b*^)Ee* 

= {e* - E)^ - (26* - 36*2)e*2 + 2(6* - b*^)Ee*. (A.12) 

Now, 

g*2 = M;2e2 + ^2g2^ ^ 2^,^251 2̂™- (A. 13) 

Thus, conditional on «, and «2> when f = 0, 

* wj kw\ W|V| -I- A:M'2V2 

E{e ^|«|, rt2) = —vi + V2 = . (A.14) 
n, «2 n 

Similarly, when f = 1, 

* w-? / "1 \ {kW2)^ / ^ \ 
E{e 2|«i. «2) = ;;^v, ( ^ Xij + — ; ^ V 2 ( ^ x , l 

= -(WiV,.?, -I- W2/:V2X2m)- (A.15) 
n 

Further, 

. 1- «! m N - ( n i + m) 
Be* = - \ V e, + V Ci + Y] e, I (w,g, + W2e2m) (A. 16) 

. 1- «! m /v-(ni + m) -i 

= i[E^'+E^'^ E^'J 
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From (A. 16), when / = 0, 

- -* 1 
E{Ee ) = - (wiv, -I- W2V2). (A.17) 

Similarly, when i = 1, 

E{Ee*) = ^(W,V,X, + W2V2X2m). (A.I8) 

3. Mean Square Error of /2 

From the expansion in (A.5) 

( ^ y =1 - 26 + 36^ (A.19) 

From (A.IO), the MSE of /2 can be written as 

M2 = E{t2 - F)2 = A2 + Ci + D2. (A.20) 

With the expansions in (A.5) and (A.19) 

A2 = £•( lOw - awj 

= ^ [ ( 1 - 26 -1- 3b^)al\ + a]v- 2 £ [ ( 1 - 6 -I- 6 ' ) a „ ] a „ . 

= V{a„) -I- [3E{al) - 2a]y\ \v{X)/X^'\ 

= Via^) + [ 3 K ( a „ ) -f ajv] [v{X)/X^], (A.21) 

c2 = ^^E(^-^yx^ 

= P^E{X* - X)^ = 0^E[wi{X2m - X2)^] 

= p2^^iAj:J}s2^^ (A.22) 
n 

and 

Di=E(^-_X-Ey. (A.23) 

With the expansions in (A.5) and (A. 19) 

{-e* - Ey = {e* - E)^ - (26 - 3b^)e*'^ -\- 2(6 - b'^)Ee*. (A.24) 

We note that 

£ • - ( « „ - aw) y _ )X\ = E[{X* - X) (a„ - aw)] = 0. (A.25) 
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