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In This Issue 

The risks involved in using standard statistical methods for the analysis of data from surveys 
with complex designs are becoming well-known. The special topic section in this issue contains 
three papers which provide guidance for the analysis of categorical data from such surveys. Tim 
Holt's efforts were instrumental in putting this section together. 

The paper by Rao, Kumar and Roberts, which is the first discussion paper published in Survey 
Methodology, reviews developments in the analysis of cross-classified categorical data, extends 
them, and applies them to data from two large, complex surveys. The authors also briefly discuss 
computational issues. Comments by Fay, Skinner and Molina and a reply by Rao, et al. follow 
the paper. 

Thomas describes a Monte Carlo study used to investigate several methods of obtaining 
simultaneous confidence intervals for proportions under a two-stage clustered design. He shows 
that some methods behave poorly, with actual coverage rates quite different from the nominal 
ones. Thomas concludes with guidelines on the choice of methods to use in practice. 

The fmal paper in the section on data analysis for complex surveys, by Morel, deals with logistic 
regression. Using the results of a Monte Carlo study, he shows that for small samples, a modified 
Taylorization method for estimating a covariance matrix results in smaller biases than the usual 
delta method. 

The bibliography by Nathan on randomized response which appeared in the previous issue 
of Survey Methodology attests to the large amount of research which has been devoted to the 
subject. In this issue, Franklin develops another approach to the randomized response model 
for sampling from dichotomous populations. The model is general in that it permits the use of 
randomization from a continuous distribution and mUltiple trials per respondent. Special atten­
tion is given to the case of randomization using the normal distribution function. 

MacGibbon and Tomberlin examine the problem of small area estimation with complex survey 
designs. Their empirical Bayes estimator is a compromise between the highly variable but unbiased 
classical estimator and the more stable but potentially highly biased synthetic estimator. 

A method of updating a PPSWOR sample which attempts to retain the same sample of pri­
mary sampling units is presented by Sunter. The method differs from earlier ones proposed by 
Kish and Scott (1971) and Fellegi (1963) in that it is valid for any sample size and does not require 
enumeration of all possible samples. The method is of particular importance for multistage survey 
samples which must be updated, but for which the cost of introducing new PSUs may be high. 

Revenue Canada tax files and Family Allowance files are used in Canada to provide popula­
tion estimates for provinces in non-census years. Verma and Raby examine the consistency of 
the estimates derived from these two sources. A comparison with the 1986 Census counts is also 
made. 

Swanson presents a method of obtaining confidence intervals for post-censal population 
estimates. He shows that a Wilcoxon test can be used to determine if a change in model, due 
to post-censal structural changes, is required. Using empirical data, Swanson shows that ignoring 
such a change leads to confidence intervals whose coverage is lower than expected. 

The Editor 
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Analysis of Sample Survey Data Involving 
Categorical Response Variables: 

Methods and Software 

J.N.K. RAO, S. KUMAR, and G. ROBERTS' 

ABSTRACT 

161 

During the past 10 years or so, rapid progress has been made in the development of statistical methods 
of analysing survey data that take account of the complexity of survey design. This progress has been 
particularly evident in the analysis of cross-classified count data. Developments in this area have included 
weighted least squares estimation of generalized linear models and associated Wald tests of goodness 
of fit and subhypotheses, corrections to standard chi-squared or likelihood ratio tests under ioglinear 
models or logistic regression models involving a binary response variable, and jackknifed chisQuared 
tests. This paper illustrates the use of various extensions of these methods on data from complex surveys. 
The method of Scott, Rao and Thomas (1989) for weighted regression involving singular covariance 
matrices is applied to data from the Canada Health Survey (l978-79). Methods for logistic regression 
models are extended to Box-Cox models involving power transformations of cell odds ratios, and their 
use is illustrated on data from the Canadian Labour Force Survey. Methods for testing equality of 
parameters in two logistic regression models, corresponding to two time points, are applied to data from 
the Canadian Labour Force Survey. Finally, a general class of polytomous response models is studied, 
and corrected chi-squared tests are applied to data from the Canada Health Survey (1978-79). Software 
to implement these methods using the SAS facilities on a main frame computer is briefly described. 

KEY WORDS: Corrections to chi-squared tests; Logistic regression; Power transformations; Wald tests; 
Weighted least squares. 

1. INTRODUCTION 

Standard statistical methods, based on the assumption of independent identically distributed 
observations, are being used extensively by researchers in the social and health sciences, and 
in other subject matter areas. These methods have also been implemented in standard statistical 
packages, including SPSSX, BMDP, SAS and GUM. In practice, however, much data are 
obtained from complex sample surveys involving clustering and stratification, so that the 
application of standard methods to these data without some adjustment for survey design can 
lead to erroneous inferences. In particular, standard errors of parameter estimates and 
associated confidence intervals can be seriously understated if the complexity of the sample 
design is ignored in the analysis of data. Moreover, the actual type I error rates of tests of 
hypotheses can be much bigger than the nominal levels. Standard exploratory data analyses, 
e.g., residual analysis to detect model deviations, are also affected. Kish and Frankel (1974) 
and others drew attention to some of these problems with standard methods, and emphasized 
the need for new methods that take proper account of the complexity of survey design. During 
the past 10 years or so, rapid progress has been made in the development of such methods, 
particularly for analysing cross-classified count data. This paper will focus on the analysis of 

I J.N.K. Rao, Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario; S. Kumar and 
G. Roberts. Social Surveys Methods Division, Statistics Canada, Ottawa, Ontario. 
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count data, but it should be noted that important results on other types of analyses have also 
been obtained: Regression analysis (Fuller 1975; Nathan and Holt 1980; Pfefferman and 
Nathan 1981; Scott and Holt 1982), principal component analysis (Skinner, Holmes and 
Smith 1986), factor analysis (Fuller 1986), logistic regression involving continuous covariates 
(Binder 1983). 

Rao and Scott {I 984) have made a systematic study of the impact of survey design on stan­
dard Pearson chi-squared or likelihood ratio tests for multiway tables of counts, under hierar­
chicallog-Iinear models. They have also obtained simple first order corrections to standard 
tests which can be computed from published tables that include "design effects" for cell 
estimates and marginal totals, thus facilitating secondary analyses from published reports (see 
also Gross 1984; Bedrick 1983; Rao and Scott 1987). These flfst order corrections take account 
of the design in the sense that the actual type I error rates of tests based on the corrected statistics 
are closer to nominal levels, compared to the standard tests which could have greatly inflated 
type I error rates. More accurate second order corrections, based on the Satterthwaite approx­
imation to a weighted sum of independent x2 variables, were also developed by Rao and Scott 
(l984), but these tests require the knowledge of a full estimated covariance matrix of cell 
estimates. Alternative methods that take account of the survey design include the Wald statistics 
based on weighted least squares (Koch, Freeman and Freeman 1975), and the jackknifed chi­
squared tests (Fay 1985), all requiring either the full estimated covariance matrix or access to 
cluster-level data. Fay (1985) and Thomas and Rao (1987) have shown that the Wald statistic, 
although asymptotically correct, can become highly unstable as the number of cells in the 
multiway table increases and the number of sample clusters decreases,leading to unacceptably 
high type I error rates compared to the nominal level. On the other hand, Fay's jackknife tests 
and the Rao-Scott corrections have performed well under quite general conditions. In some 
cases, the instability in the Wald statistic may be remedied by collapsing the table according 
to eigenvectors associated with the nonnegligible eigenvalues of the estimated covariance matrix 
adjusted for singularities caused by linear constraints on the probabilities, as proposed by Singh 
(1985); see also Singh and Kumar (l986). 

Roberts, Rao and Kumar (1987) assumed a logistic regression model for the cell (domain) 
proportions associated with a binary response variable, and obtained first order corrections 
to standard chi-squared and likelihood ratio tests of goodness-of-fit and nested hypotheses. 
Simple upper bounds to first order corrections, depending only on the design effects of cell 
response proportions, were also obtained to facilitate secondary analyses from published tables. 
Scott (1986) proposed an alternative method which uses standard tests on transformed data 
derived from the original data and the cell design effects. Roberts, Rao and Kumar (l987) also 
provided second order corrections to standard tests, but these require access to a full estimated 
covariance matrix of cell response proportions. Diagnostics for detecting outliers and influential 
points were developed as well, again taking the survey design into account. 

The primary purpose of this paper is to present various extensions of the previous methods 
and illustrate their use on data from large-scale surveys, including the Canada Health Survey 
(1978-1979) and the Canadian Labour Force Survey. It is assumed, throughout the paper, that 
the user has access to a full estimated covariance matrix of cell estimates. In Section 2, weighted 
least squares (WLS) estimators of the parameters of generalized linear models having singular 
covariance matrices, caused by linear constraints on the probabilities (or proportions), are 
presented. Associated Wald tests of goodness-of-fit and of subhypotheses are also provided. 
A smoothed version of the WLS estimators, and associated Wald tests of subhypotheses are 
given as well. These methods should be used only when the number of cells in a table is small 
and/or the number of sample clusters in the survey design is relatively large. 
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The methods for logistic regression models are extended, in Section 3, to Box-Cox models 
involving power transformations of cell odds ratios. These models, which include the logistic 
regression model as a special case, could provide significantly better fits than the logistic regres­
sion models, as demonstrated by Guerrero and Johnson (1982) in the context of binomial 
proportions. 

Methods for testing equality of parameters in two logit models, corresponding to two dif­
ferent time periods, are given in Section 4. If the hypothesis of equality is accepted, one could 
obtain "smoothed" estimates of cell proportions for the current period that are more efficient 
than the corresponding smoothed estimates based only on the current period data. 

Section 5 gives an extension of the type of results obtained for logistic regression models 
to a general class of polytomous response models. The special case of McCullagh's (1980). 
ordered response model is studied in detail. 

Finally, an account of the software for implementing the above methodology is given in 
Section 6. 

2. WEIGHTED LEAST SQUARES ESTIMATORS 
AND W ALD TESTS 

The approach of Koch, Freeman and Freeman (1975) is designed to estimate the parameters 
of generalized linear models of the form g* (p) = X* (3*, using a sample estimate, p, of the 
population cell probabilities denoted by aT-vector p, and a consistent estimate of COy (p) = 
Vp (say). In this method, the asymptotic covariance matrix of the u-vector g* (p) is assumed 
to be nonsingular (u < T); however, many models, including the traditionallogiinear model, 
are of the form g (p) = X{3, where g (p) is a T-vector with a singular asymptotic covariance 
matrix, and X is a T x r full rank matrix of known constants. It is possible to reduce the latter 
models to the nonsingular form g* (p) = X*{3*, as done by Grizzle and Williams (1972) for 
the loglinear model, but Scott, Rao and Thomas (1989) have developed the following unified 
approach for singular models, by appealing to the optimal theory for linear models having 
singular covariance matrices. 

The cell probabilities p and p are subject to linear constraints of the form K' p = ", and 
K' p = "', where K is a T x L full rank matrix of known constants and", is an L-vector of 
known constants "" (L < T). As a result, the covariance matrix of p will be singular. For 
example, in the case of stratified sampling with complex sample designs within strata, we can 
writeK = h ® 1m,,,,, = n;/n (i = I, ... , L) andp = (Pll" .P'm; ..• ; PLl" 'PLm) , with 
Pij = (n,/n)pij' where Pij is thej-th category probability within the ;-th stratum ( EjPij = I; 
; = I, ... , L; j = I, ... , m), n,is the sample size from the ;-th stratum, En, = n, 1m is a 
m-vector of I's, h is the identity matrix of order Land ® denotes the Kronecker product. 

Assume that X{3 can be written as Xo{3o + X,{3" where Xo is a T x L matrix such that 
K' H-'Xo is nonsingular and whereH = (ag/ap) ' is the T x Tmatrix of partial derivatives 
of g(p). In particular, Xo can be taken as K if the constraint matrix K is included in X, as 
frequently assumed. Since restrictions on p imply constraints on the parameters {3, {3o can be 
determined exactly from the constraints, for a given (3,. 

Weighted least squares estimators 

The model may be written as 

9 = g(p) = X{3 + 5 (2.1) 
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where {j is the error vector with P lim (j = 0, and g has a singular asymptotic covariance matrix 
Vg = H!'pH' which is consistently estimated as V. = liYpIi', assuming that Yp is a consis­
tent estimator of !'p. Here Ii = H(jJ). Scott, Rao and Thomas (1989) derived an asymp­
totically best linear unbiased estimator (ABLUE) of {3, as 

(2.2) 

where 

(2.3) 

is a nonsingular generalized inverse of v., and 

x, = II - X oX oA11X,. (2.4) 

A consistent estimator of the asymptotic covariance matrix of {3, is given by 

(2.5) 

Wald tests 

Letting {3 = (X'MX) -'X'Mg = ({3o,{3!>" a Wald test of goodness of fit of the model 
(2.1) is given by 

w = (g - X{3)'M(g - X{3) (2.6) 

which is distributed asymptotically as a x2variable with T - , degrees of freedom (d. f.). The 
model is considered tenable at the a-level if W> xt-r(a), the upper a-point of x2 with 
T - ,d.f.. 

Given the model (2.1), tests of linear hypotheses on the model parameters {3, can also be 
obtained. A Wald test of the linear hypothesis C,{3, = c, is given by 

(2.7) 

which is distributed asymptotically as a x2 variable with h d.f., where C, is a h x (, - L) 
full rank matrix of known constants (h < , - L), and c, is a h-vector of known constants. 
The hypothesis is rejected at the a-level if W, > x~(a), the upper a-point of x2 with h d.f. 
Note that {3o should not be included in the linear hypothesis since it is fixed by the design 
constraintsK'p = K'g-' (X{3) = 1l'. 

Smootbed version of ABLUE and associated Wald tests 

We can also obtain a smoothed version of ABLUE of {3" say {3t, using iteration, as follows: 

{3,+, = {3, + (X'M,X) -'X'M,H,(p - p,), t = 0,1,2, ... (2.8) 

with starting values Mo = M, {3o = (X'MX) -'X'Mg = {3, Ho = H({3) and Po = p({3). 
Further, M, = (v., + XoXo) -, with v., = H,YpH!, H, = H({3,) andp, = p({3,), t ;;,: 1. 
At convergence, we get {3' = ({30' ,{3t') , as tbe solution of tbe following equations: 

X'M({3)H({3)(p - p({3» = o. (2.9) 
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Equations (2.9) reduce to quasilikelihood equations (McCullagh 1983) when v,. is proportional 
to V(p), a known function of p. Here, the dependence on (3 is made explicit by writing 
p = p«(3), H = H«(3) and M =Vg + XoXo = M«(3). The smoothed estimate (3' also 
satisfies the constraints K'p = K'g-' (X(3) = .. , unlike p. The asymptotic covariance 
matrices of (3t and p, are identical, but (3t might perform better in small samples. 

Given the model (2.1), an alternate Wald test of the hypothesis C,(3, = c, is given by 

(2.10) 

which is distributed asymptotically as a x2 with h d.f., where 

estcov«(3t) = (xt'M*Xt}-', (2.11) 

and xt = [J- XoXoM'jX"M' = (V; + XoXo)-' with V; = H'~H" and H' = 
H«(3'). 

Example 

The previous results were applied to a two-way table from the Canada Health Survey 
(1978-79). This survey was designed to provide reliable information on the health of Canadians. 
The information collected was made up of an interview component for the whole sample and 
a physical measures component for a subsample. A complex multistage design involving 
stratification and clustering was employed, and the estimates of cell totals or proportions were 
subjected to post-stratification on age-sex, to improve their efficiency. The reader is referred 
to Hidiroglou and Rao (1987) for a description of the survey and the procedures used for 
estimating cell counts, proportions, and their estimated variances and covariances. For the 
physical measures component, a collapsed stratum technique for variance estimation was 
employed since a single primary sampling unit was selected in some of the strata. 

Table 1 gives the estimated proportions, Plj' derived from the physical measures component 
in a cross-classification of fitness level (recommended = I, minimal acceptable = 2, below 
acceptable or screened out = 3) and type of cigarette smoker (regular = I, occasional = 2, 
never = 3). The estimated covariance matrix of the Pij' ~,can be obtained from the authors. 

Since both the variables in Table 1 are ordinal, we considered the following loglinear model 
with linear x linear interaction: 

logpij = a + U'(I) + U2U) + 'Y(VI - v)(Wj - w), i = 1,2,3 j = 1,2,3 

Table 1 
Estimated Cell Proportions in a 3 x 3 Table (Canada Level): 

Type of Cigarette Smoker x Fitness Level (Sample Size n = 2505) 
Ages 15-64 

Type of 
cigarette smokers 

2 

3 

0.22005 

0.02301 

0.20329 

Fitness Level 

2 

0.14951 

0.00962 

0.09933 

3 

0.16998 

0.01146 

0.11374 

(2.12) 

file:///ogPij
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subject to side constraints LU,(i) = EjU2Ul = 0, where vi and Wj are known scores with 
means ~ and l1! respectively, For simplicity, equidistant scores were taken: Ui = 1,2,3; 
Vj = 1,2,3. The model (2.12) is of the form g(p) = X0f3o + X,Il, with gij(p) = logpij' 
Xo = K = 19, a 9 x I vector of I's, Ilo = ii, Il, = (u,(,),u'(2),u2(,),u2(2),1')', and 

I I 0 0 0 -I -I -I 

0 0 0 I I I -I -I -I 

X{= I 0 -I I 0 -I I 0 -I 

0 I -I 0 I -I 0 -I 

I 0 -I 0 0 0 -I 0 I 

NotingthatB = diag(pij',i = 1,2,3;j = 1,2,3), the Wald test of goodness-of-fit of the 
model (2.12) can be computed from (2.6), using the proportions Pij in Table I and the 
estimated covariance matrix, ~. We obtain 

W = 3.59 

which is not significant at the 5.,. level compared to x~_,(0.05) = XJ(0.05) = 7.81 (note that 
T = 9,r = 6). The Wald statistic Wis likely to be stable in this example since the number 
of cells T( = 9) is small relative to the number of sample clusters (= 50). 

We can also conduct a test of independence, i.e. l' = 0, given the model (2.12), using W, 
given by (2.7) or W;, based on the smoothed estimates Ilt, given by (2.10). Noting that 
C, = (0, ... ,0,1), c, = 0, we obtain 

W, = 8.23, W; = 8.75, 

both larger than X~ (0.01) = 6.63, the upper I.,. point of X2 with I d.f. The nested hypothesis 
of independence is therefore not tenable. 

Accepting the model (2.12), we obtain the following values of weighted least squares 
estimates, p" and smoothed estimates, {3*: 

p, = (0.912. - 1.550.0.339, - 0.255, - 0.086)' 

!l~ = -2.665, Il1 = (0.917,-1.568,0.344,-0.262,0.087)'. 

The estimate Il' can also be used to produce smoothed estimates of the Pij. pij = Pij(Il'). 
which satisfy the constraint E EPij(Il') = 1. 

3. BOX-COX TRANSFORMATION MODELS 

Logistic regression models are extensively used for the analysis of variation in the estimated 
proportions associated with a binary response variable. Suppose that the population of interest 
is partitioned into I cells according to the levels of one or more factors. Let Pi be the popula­
tion response proportion in the i-th cell. Then a logistic regression model for the proportions 
P i ·= Fi(!l) is given by 

10g(Fi/(1 - Fi)1 = x!ll. i = I •...• I. (3.1) 
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where xi = (Xli>'" ,X'i) , is an s-vector of known constants derived from the factor levels 
with Xli = I, and {3 is an s-vector of unknown parameters. 

Guerrero and Johnson (1982) extended the applicability of logistic regression models by 
introducing an additional parameter, A, through a Box-Cox power transformation of the odds 
ratios Fi I (I - Fi)' Their model is given by 

Vi(A) = (Fi/(l - Fi) )1') = x!{3, i = 1, ... ,1, 

where (3 and Xi are as in (3.1) and 

[Fi/(1 -Filll') = [ 
log[Fi/(l - Fi») 

A-I[[Fi/(l - Fill' - I] 

irA = 0 

irA ~ O. 

(3.2) 

The model (3.2) includes as a special case (A = 0) the logistic regression model (3.1). Guerrero 
and Johnson (1982) applied this model to data from the National Survey of Household Income 
and Expenditures in Mexico to explain the variation in female participation in the Mexican 
labour force. They found that a value of A = -6.63 provided a significantly better fit than 
the logit model (A = 0), the values of the standard chi-squared statistic being 4.8 (7 d.f.) and 
12.8 (8 d.f.) respectively. However, they applied standard methods for binomial proportions, 
ignoring the survey design. 

PseudoMLE 

In this section, the methods of Roberts, Rao and Kumar (1987) for the logistic regression 
model are extended to the power transformation model (3.2). Due to difficulties in obtaining 
appropriate likelihood functions for general sample designs, we use "pseudo" maximum 
likelihood estimates, Sand 5., obtained from the product binomial likelihood equations for 
{3 and A by replacing the simple response proportion 'Jni with the corresponding survey 
estimate Pi of Pi' and ni In with the corresponding survey estimate Wi of the domain propor­
tion Wi' Here 'i is the number of "successes" in a sample of size ni from the i-th cell, and 
n = 1: ni' See Guerrero and Johnson (1982), for the product binomial likelihood equations. 
The pseudo maximum likelihood estimates (m.l.e.), 0' = (S; 5.), can be obtained iteratively 
by a quasi-Newton procedure, as in Guerrero and Johnson (1982). The fitted response pro­
portions are given by F = Fi(O). 

Let fp be the estimated covariance matrix ofthe survey estimatesrP = (P" ... ,PI)', and 
let 

(3.3) 

Here D(1") = diag(1"i,i = I, ... ,I), D(1 - F) = diag(1 - Fi,i = I, ... ,J) and 
(iJF/iJO) ' is the I x (s + I) matrix of partial derivatives iJFi /iJ{3j and iJFi/iJA evaluated at 0: 

iJFi I iJ{3j = xjiFl (II Qi) I + I" 

(3.4) 

where Qi = 1 + A 1:jXji{3j' The estimated asymptotic covariance matrix of 0, taking account 
of the survey design, is then given by (see Roberts 1985) 

(3.5) 
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where.i = diag( WiPi(1 - Pi);; = 1, ... ,1) and D( W) = diag( Wi,; = I, ... ,I). 

It is also of interest to find the standard errors of the residuals Ri = Pi - Pi since the 
standardized residuals Ri/s.e. (Ri ) can be used to detect any outlying cell proportions. The 
estimated asymptotic covariance matrix of the vector of residuals R = (R" ... ,R1) , is given 
by 

estcov(R) = A estcov(9)A' = f'R' (3.6) 

where 

The square root of the diagonal elements, Vii R, of (3.6) provide the estimated standard errors 
of the Ri ,; = 1, ... ,1. ' 

Corrections to Standard Tests 

The standard chi-squared and likelihood ratio tests of goodness-of-fit of the model (3.2) 
are given by 

and 
I 

I 

X2 = n E (Pi - p i)2Wi/(pi(l - Pi») 
;=1 

(3.7) 

0 2 = 2;' E Wi [Pi log (Pi/Pi) + (I - Pi)log(1 - Pi)/(I - Pi»)), (3.8) 
;=1 

respectively, where the term in [1 of (3.8) equals - log ( I - Pi) at Pi = 0 and - logpi 
at Pi = I. 

Under product binomial sampling, it is well-known that both X2 and 0 2 are asymptotically 
identically distributed as a x2 variable with I - s - I d.f., but for general sample designs 
this result is no longer valid. In fact, X2 (or 0 2) is asymptotically distributed as a weighted 
sum, EOkWko of independent x2 variables, Wko each with I d.f., where the weights Ok 
(k = 1, ... ,1 - s - I) can be interpreted as "generalized design effects" (see Roberts 
1985). Under product binomial sampling, Ok = I for all k, and EOk Wk reduces to x2 with 
1- s - I d.f. 

A first-order correction toX2 (or 02)is obtained by treatingXt = X 2 /g. or Ot = 0 2/&. 
as x2 with I - s - I d.f., where 

I 

(1- s - 1)&. = E &k = n E f'ii,RW,/(pi(l - Pi») 
;=1 

and f'ii,R is the estimated variance of the ;-th residual Ri . 

(3.9) 

A more accurate, second order correction to X2 (or 0 2), based on the Satterthwaite 
approximation to EOk Wk, is obtained by treating 

2 X; 2 G; 2' 2 Xs = --or Os = --asX WIth (1- s - 1)/(1 + a) d.f. 
l+a2 l+a2 

(3.10) 
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Here ,,2 = I: (5k - 5.) 21 ( (l - s - I)ei? ) is the squared coefficient of variation of the 5, 
which can be computed, without evaluating the individual weights 5" from (3.9) and from 

I I 

E .51 = E E Vr,.R(nWj)(nlfWI];J,(I -];)(1 - J,) J, (3.11) 
;=1 1=1 

where Vi/.R is the (i,/)-th element of VR given by (3.6). 

Nested hypotheses, given the model (3.2), can also be tested by correcting the standard tests 
for nested hypotheses, but we omit this topic for simplicity (see Roberts 1985 and Kumar and 
Rao 1985 for details). It is simpler, however, to use Wald tests based on the estimates fi and 
the associated estimated asymptotic covariance matrix. 

Example 

The previous method was applied to data from the monthly Canadian Labour Force Survey 
(October, 1980). The Labour Force Survey design employs multi-stage cluster sampling with 
two stages in the self-representing urban areas and three or four stages in the non-self­
representing areas in each province. A detailed description of the sample design and associated 
estimation procedures for the Labour Force Survey is given in Statistics Canada (1977). 

The sample from the Labour Force Survey, for the present example, consisted of males aged 
15-64 who were in the labour force and not full-time students. Two factors, age and educa­
tion, were chosen to explain the unemployment rates via a Box-Cox transformation model. 
Age-group levels were formed by dividing the interval [15,64] into ten groups with thej-th 
age group being the interval [10 + 5j, 14 + 5j] for j = I, ... ,10 and then using the mid­
point of each interval, Aj ,= 12 + 5j, as the value of age for all persons in that age group, 
Similarly, the levels of education, Ek , were formed by assigning to each person a value based 
on the median years of school resulting in the following six levels: 7, 10, 12, 13, 14 and 16. 
The resultant age by education cross-classification provides a two-way table of I = 60 survey 
estimates, ~k> of employment rates ~k' The estimated covariance matrix Vp was based on 
more than 450 sample clusters. 

We considered the following transformation model for ~ k = Fj k (9) involving linear and 
quadratic age effects and linear education effect: 

Vjk(A) = IFjkl(l - Fjk] <A) 

= ~o + ~IAj + ~0J + ~~k> j = I, ... ,10, k = I, ... ,6. (3.12) 

Table 2 contains the pseudo m.l.e. of 9 = (~O'~h~2'~3' A) , and associated standard errors, 
and the test statistics X 2

, 0 2
, X~ and O~ for testing the goodness-of-fit of the model (3.12). 

The corresponding values under the logistic regression model (A = 0) are also given for 
comparison. 

It is clear from Table 2 that the value of X2 (or 0 2) is essentially equal to the correspon­
ding value under the logistic regression model. Thus in the present example the transforma­
tion model provides no improvement in the fit over the logistic regression model. This is also 
clear from the value of ~ (= 0.016) which is not significantly different from A = 0 when 
compared to its standard error (= 0.085). The estimates of regression coefficients are essen­
tially equal under the two models, but the standard errors of the fij under the Box-Cox model 
are much larger than the corresponding standard errors under the logistic regression model, 
due to the large standard error associated with ~ and the fact that the fij depend on ~. 
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Table 2 

Pseudo MLE of the Parameters (~' ,X), their Standard Errors and 
Test Statistics Under the Transformation Model and under 

the Corresponding Logistic Regression Model (X = 0) 

Transformation Model Logistic Regression Model 

estimate s.e. estimate S.e. 

~o -3.28 0.975 -3.10 0.247 

~I 0.219 0.0468 0.211 0.013 

~2 -0.00227 0.00049 -0.00218 0.00017 

~3 0.1579 0.0385 0.1509 0.0115 

}. 0.016 0.085 

Test Statistics 

value d.f. value d.f. 

X2 99.6 55 99.8 56 

02 102.6 56 102.5 56 

X~ 40.7 39.2 23.4 24.2 

O~ 42.0 39.2 23.9 24.2 

X~(0.05) 54.6 55 47.7 56 

0~(0.05) 56.4 55 48.9 56 

If the survey design is ignored and the value of X2 (or 0 2) is referred to X5.os (55) = 73.3, 
the upper 5"70 point of X2 with I - s - I = 55 d.f., we would reject the model (3.12). On 
the other hand, the value of X~ (or O~) when adjusted to refer to X5.os(55), denoted as 
X~ (0.05) (or 0~(0.05» in Table 2, is not significant at the 5"70 level, indicating that the model 
provides a good fit to the data, ~ k' 

Box and Cox (1982) and Hinkley and Runger (1984) argued that statistical inference about 
(3 should proceed with the scale determined by the estimate ~ regarded as IlXed. Thus, the 
estimated covariance matrix of $ is determined from (3.5) by replacing aF/a8by aF/a$ in the 
expression for B (equation (3.3». For our example, this argument would suggest that we can 
take ~ = 0 and use the estimates of (3 and associated standard errors (or estimated covariance 
matrix) under the logistic regression model, given in Table 2. 

4. TESTING EQUALITY OF LOGISTIC REGRESSION MODELS 

Structural changes between two time periods may be detected through tests of equality of 
parameters in the corresponding models. Such tests for standard linear regression models have 
been developed extensively in the econometric literature (see e.g., Amemiya 1985, Sec. 1.5.3). 

In this section, corrected chi·squared and likelihood ratio tests of equality of parameters 
in two logistic regression models, corresponding to two specified time periods, are obtained. 
If the hypothesis of equality is tenable, then "smoothed" (i.e., fitted) estimates of cell pro· 
portions for the current period can be obtained by combining the data for the two periods. 
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These estimates are more efficient than the corresponding smoothed estimate based only on 
the current period data. The methodology is applied to data from the October 1980 and October 
1981 Canadian Labour Force Survey, to study year-to-year structural changes. Note that the 
data for October 1980 has already been used, in Section 3, to illustrate the fitting of Box-Cox 
power transformation models, and it was found that a logistic regression model involving linear 
and quadratic age effects and linear education effect provides a good fit to the data. 

Let P,; be the population response proportion in the ;-th cell for the period t( = 1,2). Then 
a logistic regression model for the proportions P/i = F;({3,) = P,; is given by 

10g(P,;/(I - P,;)} = x[f3t, i = 1, ... ,1; t = 1,2 (4.1) 

where X; is an s-vector of known constants derived from the factor levels, as in (3.1), and 
{3, is an s-vector of unknown parameters for period t. We are interested in testing the com­
posite hypothesis {3, = (3z( = (3) to study structural changes between the two time periods. 
If the hypothesis is accepted, "smoothed" estimates of the proportions P2i for the current 
period (t = 2) can be obtained as F;(S) where S is the pseudo m.l.e. of the common 
parameter {3. 

PseudoMLE 

Let Pli and Pu (i = 1, ... ,1) be the survey estimates based on sample sizes n, and nz 
respectively. Extending the notation in Section 3, "pseudo" maximum likelihood estimates, 
S" are obtained from the product binomial likelihood equations for (3, by replacing the simple 
response proportions r,; I n/i with the corresponding survey estimates P/i of P/i and n,; In, with 
the corresponding survey estimates Itt; of the domain proportions w,; , thus yielding 

X' D( Itt )fi, = X'D( Itt )P" t = 1,2 (4.2) 

where fi, = F(S,) is the vector of fitted response proportions for period t, D( Itt) = 
diag (Itt;,; = 1, ... ,/), and X' = (x" ... ,xr). The estimates A are obtained iteratively 
by a quasi-Newton procedure. 

Under the hypothesis {3, = (3z( = (3), the pseudo maximum likelihood estimates, S , are 
obtained by iteration from the following pseudo likelihood equations: 

whereD( Itt) = (n,ln)D( u:;) + (nzln)D( w,.>.F = F(S) is the vector of fitted response 
proportions or smoothed estimates of cell proportions for the current period, and 
n, + nz = n. 

Let J/p be the estimated covariance matrix of (Pi ,Pi)' partitioned as 

Then the estimated covariance matrix of smoothed estimates F is given by 

estcov(F) = HJ/pH', (4.4) 
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where 

and 

! = diag( WcF,( I - F,»,; = I, ... ,J. 

If the residuals are defined as il, = F, - F, then the estimated covariance matrix of 
(il { ,il»' is given by 

(4.6) 

Here 

with 

and 

- , • • ,[ n
, 'f'] A'2 = - D(I¥C) - .1.X(X' .1.X) - X' Doh - ;; D( w,) , t = 1,2, 

where 

!, = diag( W"F,(I - F,),; = I, ... ,I). 

Corrections to Standard Tests 

The standard chi-squared and likelihood ratio tests of the nested hypothesis 13, = 132, given 
the model (4.1), are given by 

X2 = Xt + X~ 

and 

0 2 = Ot + O~, 

where 
I 

xl = n, E (F" - F,)2W,,! [F,(I - F,)l, t = 1,2 
;=1 

and 

0; = 2n, E W,{Ftilog(FtiIF,) + (I - Fti)log[(I - Fti)/(1 -F.>l] , t = 

(4.8) 

(4.9) 

(4.10) 

1,2. 

(4.11) 
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A first order correction to X2 (or 0 2) is obtained by treating X; = X 2/S. or 0; = 02 / S. 
as x2 with s d.f., where 

;=J ;=1 

and V;tR (ij) is the (i,j)th element of V;,R' A more accurate, second order correction to X2 
(or 0 2

), based on the Satterthwaite approximation, is obtained by treating 

X2 
X~ = __ c_ or 

1+ 1j2 

0 2 

o~ = __ c_ as x2 with sl(l + 02 ) d.f. 
I + 02 

(4.13) 

Here 02 = (Ei= ,Si - sR)/sR which can be computed from (4.12) and the following for­
mula for ESi: 

(4.14) 

where V'2R (ij) is the (i,j )-th element of V'2R' 

Example 

The previous method was applied to data from the October 1980 and October 1981 Cana­
dian Labour Survey, to study year-to-year structural changes. 

The logistic regression model involving linear and quadratic age effects and linear educa­
tion effect provided a good fit to data from both periods with the following estimates of fJ,: 

~,: (-3.08,0.211, -0.00218,0.1505) 

~2: (-3.05,0.179, -0.00169,O.1707J, 

wherelog(1"Uo/(l - 1"uo)J = ~'O + ~IIA) + ~'2AJ + ~,~o,j = I, ... ,10; k = I, ... ,6 
and 1",}O is the fitted employment rate in the U,k)-th cell for period t. One cell was omitted 
in the fitting since the domain sample size n2i is zero for the current period. 

Turning to the test of the hypothesis fJ, = fJ2, given the logistic regression models, we 
obtained the following values of X 2, 0 2, X;, 0; and X~, o~: 

X2 = 42.1 

G2 = 42.2 

X; = 24.6 

0; = 24.6 

X~ = 24.4 

o} = 24.4. 
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A1sos/(l + a2
) = 4/(1.0089) = 3.965 '" 4. ByreferringX~orG~toxg.o5(4) = 9.49, the 

upper 5"70 point of x 2 with 4 d.f., we reject the hypothesis 13, = 132 at the 5% level, indicating 
significant year-to-year structural changes for the month of October. The data for the two time 
perio<Js, therefore, should not be pooled to get smoothed estimates of unemployment rates, 
I - F] .. for the current period. 

5. POLYTOMOUS RESPONSE MODELS 

A variety of models has been suggested in the literature when the response variable is 
polytomous. The variety of models reflects, in part, the different scales of measurement possible 
for polytomous response variables, unlike binary response variables. In the main, there are 
nominal responses where any permutation of the response categories is equally valid, and 
ordinal responses where there is a natural ordering of the response categories. 

Suppose that the population of interest is partitioned into I cells (or domains) according 
to the levels of one or more factors. Let Pj (I) be the population proportion in the ilh cell having 
the/hresponse U = 1, ... ,J + I) so that r.f:i Pj(i) = I (i = I, ... ,1). Then a general 
polytomous response model for the proportions Pj (i) is given by 

Pj (i) = Fij (0), i = 1, ... ,1; j = I, ... ,J, (5.1) 

where 9 is an r-vector of unknown parameters (r ,;; IJ) and Fij (9) is a function of known 
form. In the nominal case, Haberman (1982) and others proposed the following model: the 
"multinomial logits" 10gPj (i) - r./"t.'llog Pj"(i) (J + 1) -I are assumed to be unknown 
linear functions of Xi, the s-vector of known constants derived from the factor levels, i.e., 

/

1+1 

Fij(O) = exp(x!13j) E exp(x!13k), i = 1, ... ,1; j = I, ... ,J + I 
k=l 

with r. 13k = O. Because of the latter constraint on the 13k, (5.2) may be expressed as 

Fij (0) = exp (x! 13j )/ [ t exp (x! Ild + 
k~' 

i = 1, ... ,I;j = 1, ... ,1. 

n exp( - x! 13k)] , 
k=1 

(5.2) 

(5.3) 

Note that (5.3) reduces to the usual logistic regression model in the special case of binary 
response. 

In the ordinal case, a simple model which also has the feature of being invariant under the 
grouping of response categories is given by (McCullagh 1980) 

log(Cj(i/(l - Cj(i) l = Vj - x!13, j = I, ... ,J; i = 1, ... ,1 (5.4) 

where Cj(i) = r.{~1 Pk(l) denotes the/h cumulative probability in the ith domain, and 9' = 
(v" ... ,V" Ii'). To express (5.4) in the form (5.1), we note that Pi = L -ICi, where Pi = 
(Pl(i)' ... ,PI(i)" Ci = (Cl(i) , ... ,C/(I)' and L -I is aJ X Jnonsingular matrix with 1 
in the diagonal, - I in the (i + I, i) th position (i < J) and 0 elsewhere. 
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PseudoMLE 

As before, we use pseudo m.l.e., 0 obtained from the product multinomial likelihood equa­
tions for 0 by replacing the simple response proportions nij Ini with the corresponding survey 
estimates Pj(i) , and niln with the corresponding survey estimate Wi of the domain propor­
tion Wi' Here nij is the number of units with the j th response in a sample of size ni from the 
itO domain and n = E ni' The fitted response proportions are then given by ft = F( 0) = 
(ft" ... ,ftn', where fti = (fti)"" ,ftiJ) , and Fij = Fij(O). 

Let Vp be the estimated covariance matrix of the survey estimates P = (PI(I)' ... ,PJ(I)' 
..• ,PI (I), ••• ,PJ(l)" and M = (oF/a8)', the /J x r matrix of partial derivatives oFijloO. 
calculated at O. Also, let Qi = diag(Fi) - FiF! and Q = diag(Qi,i = I, ... ,1). The 
expressions for the partial derivatives 8FijloO. for the models (5.3) and (5.4) are given in 
Roberts (I985). The estimated asymptotic covariance matrix of 0, taking account of the survey 
design, is then given by (see Roberts 1985). 

(5.5) 

where V = (D( IV) ® 1)Q-I and D( IV) = diag( Wi,i = I, ... ,I). In the special case of 
product multinomial sampling, Vp = V-lin and (5.5) reduces to (M'VM) -lin. 

The vector of residuals, R = P - ft, is also of interest, since it may be useful in detecting 
model deviations. The estimated asymptotic covariance matrix of R is given by 

estcov(R) = GVpG' (5.6) 

Corrections to standard tests 

For simplicity, we consider only the Pearson chi-squared test of goodness-of-fit of the model 
(5.1). It is given by 

I J+I 

X2 = n E Wi E (Pj(i) - ftij )2 / ftij. (5.7) 
i=l j=l 

Under independent multinomial sampling in each of the domains, it is well-known that X2 is 
asymptotically distributed as a x 2 variable with /J - r d.f. 

To t~st the nested hypothesis O2 = 0, given the model (5.1), let 81 be the pseudo m.l.e. of 
01 andFbe the corresponding vector of fitted response proportions, where 0' = (0, ,e2), 01 

isq x I and02 isu x I (q + u = r). The Pearson chi-squared test of the nested hypothesis 
is then given by 

I J+l 

x 2 (2JI) = n E Wi E (Fij - Fij)2lFij (5.8) 
;=1 j=l 

which is asymptotically distributed as x2 with u d.f. under independent multinomial sampling 
in each of the domains. However, for a general sample design, X2 and X 2 (2JI) are both 
asymptotically distributed as weighted sums of independent x 2 variables, each with I d.f., 
where the weights can be interpreted as "generalized design effects" of particular linear 
transformations of P (Roberts 1985). 
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A first-order correction to X 2 (211) is obtained by treating 

(5.9) 

where &.(211) is obtained by replacing 0' by (81,0') and Vp by Vp in the following definition 
for O. (211): 

" 
uo.(211) = E 0;(211) = trD(211). (5.10) 

;=1 

Here, tr denotes the trace operator andD(211) is a generalized design effects matrix given by 

(5.11) 

where Vp is the covariance matrix of P, \l = (D(W) ® I)Q-', Q is the block 
diagonal matrix with Q; = diag(Fi ) - FiF!, i = 1, ... ,1, F; = Fi(O), and H2 = 
II - M, (MI\lM,) -, MI\ljM2' where M, = (OF/OO,) ' and M2 = (oF/i102)'. 

A more accurate, second order correction to X 2 (211), based on the Satterthwaite approx­
imation, is obtained by treating 

(5.12) 

Here 0(211)2 is obtained by replacing 9 by (81,0') in the following definition of a(211 )2: 

(5.13) 

where 

" E 0;(211)2 = trD(211)2. (5.14) 
i=l 

The corrections to goodness-of-fit test X2 are obtained as special cases of (5.9) and (5.12) 
by treating the model as nested within a saturated model (i.e., a model where the unknown 
parameter 9 is of length /J). 

Example 

The previous methods were applied to data from the Canada Health Survey (1978-79). A 
brief description of the survey is provided in Section 2. 

The data set examined consisted ofthe estimated counts of females aged 20-64 cross-classified 
by frequency of breast self-examination (with the 3 categories: monthly, quarterlY,less often 
or never), education (with the 3 categories: secondary or less, some post-secondary, post­
secondary) and age (with the 3 categories: 20-24, 25-44, 45-64). 

The frequency of breast self-examination was considered to be the response variable, while 
education and age were taken as explanatory variables, so that the number of responses, J + I, 
equalled 3 and the number of domains, I, was 9. Both response and explanatory variables are 
ordered. 
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Table 3 

Survey Estimates of Cumulated Probabilities 

Age Education CI(ik) C'(ik) 

i = I, k = 1 20-24 s Secondary .25 .49 
k = 2 < Post-Secondary .25 .41 
k = 3 '" Post-Secondary .23 .47 

i=2,k=1 25-44 S Secondary .25 .50 
k = 2 < Post-Secondary .27 .44 
k = 3 ~ Post-Secondary .26 .44 

i = 3, k = 1 45-64 S Secondary .28 .51 
k=2 < Post-Secondary .24 .62 
k = 3 '" Post-Secondary .29 .56 

Table 4 
Statistics for Testing Goodness of Fit and Nested Hypotheses 

Goodness of Fit Nested Hypothesis 
(Age & Education) (Age only) 

37.7 7.1 

21.6 3.8 

18.5· 3.7· 

1.75 1.9 

0.83 0.1 

• The Satterthwaite statistic has been adjusted to refer to the same x? value as x~. 

The following model for the cumulated probabilities ofthe type described in equation (5.4), 
was considered: 

10g(Cj(ik)/(1 - Cj(ik») = "j + (jai + ek U = 1,2;i = 1,2,3;k = 1,2,3) (5.15) 

where Cj(ik) is thej'h cumulated probability for the ith age group and kth education group. 
As well, ai = Ai - A, where Ai is the midpoint of the ith age interval, and ek is the effect of 
the kth education group ( E ek = 0), ignoring the order ofthe education categories. Table 3 
contains the survey estimates of the cumulated proportions. Table 4 contains the test statistics 
X', Xt and X~ for testing the goodness of fit of (5.15) and also for testing the nested 
hypothesis of no education effect, ek = 0 for k = 1,2. 

First, considering the goodness of fit of (5.15), if the survey design is ignored and the value 
of X' is referred tOX5.os(13) = 22.4,theupper5"7opointofx'withIJ - 5 = 13 d.f., we 
would reject the model. On the other hand, the value of Xt or the value of X~ when adjusted 
to refer to X5.os(13), is not significant at the 5"70 level, indicating that the model provides a 
good fit to the data. 

For testing of the nested hypothesis, the value of Xt, or the value of X~ when adjusted to 
refer to X5.os (2) = 5.99 is not significant at the 5"70 level, indicating that the nested hypothesis 
of no education effect is tenable. 
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6. SOFTWARE 

Implementation of the methodology of the previous sections requires two stages of com­
putation - calculation of a vector of proportions, along with its estimated covariance matrix, 
and then calculation of model estimates, test statistics and their adjustments. 

Surveys like the Canada Health Survey and the Labour Force Survey, from which examples 
have been presented, have complex designs and large data bases. Because of these two factors, 
calculation of covariance matrices was done on a mainframe computer. Custom SAS and 
Fortran programs were used for this purpose. 

Computations required for the fitting and testing of goodness-of-fit models and sub­
hypotheses were done either on the mainframe computer using SAS (and the MATRIX 
procedure in particular), or on a microcomputer using the GAUSS programming package. 

These programs are available to other analysts at Statistics Canada. 
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COMMENT 

ROBERT E. FAY' 

The authors have made an exceUent contribution to the literature on the analysis of data from 
complex samples. By examining in tum four different models for categorical data: i) a log-linear 
model for a cross-classification; ii) a modification of the approach of Box and Cox to the trans­
formation of binary data; iii) a problem of inference about parameters of a logistic regression 
model; and iv) a polytomous response model, the authors present solutions to important indi­
vidual problems and illustrate the ways in which these flexible approaches to inference can be 
extended to other models for categorical data from complex samples. The applications are con­
nected by an underlying theory, much of it previously appearing in Rao and Scott (1984), but this 
paper usefully presents in greater detail the implications of the general theory for specific models. 

An omission from the paper is understandable but worth noting: for each model illustrated 
in the paper, replication provides an alternative strategy that, at times, may also be more con­
venient. In particular, the replication theory is complete for each of the applications, i), ii), 
and iv), to cross-classified data. In each case, tests of overall fit and comparisons of nested 
models can be assessed with the jackknifed chi-square test (Fay 1985) and standard errors for 
the parameters obtained through replication. 

Replication also can provide standard errors and covariances for parameters of logistic 
regression models, as in iii), enabling in some cases a Wald-type test for equality of sets of regres­
sion parameters. It also appears likely that the jackknifing approach extends to the Iikelihood­
ratio chi-square test in such situations involving continuous variables, although a firm proof 
of this conjecture is clearly required before application can be recommended. My point in caIling 
attention to replication as a competing strategy for the problems presented in the paper is not 
to imply that it represents a methodologically superior approach to the methods of Rao and 
Scott (1984); instead, the availability of this methodology provides an additional choice to solve 
these and similar problems of inference. For example, the focus on replication for the estima­
tion of variances from the current demographic surveys at the U.S. Census Bureau provides 
the potential to carry out analyses such as those presented in the paper. 

I also want to point out that the methods presented and the analogues from replication theory 
have a potential importance beyond the realm of design-based inference from complex sample 
surveys, which is the focus of the paper. One of these involves the use of mUltiple imputation 
or related approaches intended to represent the uncertainty due to missing data. The implied 
interpretation of variance within the domain of design-based inference can be extended to 
include uncertainty from missing data without requiring changes to the methodology presented 
in the paper. The general methodology may also be applicable to some problems of inference 
from complex designed experiments, in which the design poses problems of clustering or 
stratification similar to complex sample surveys. 

Of the four models discussed, however, I suggest that the Box and Cox transformation not be 
applied without consideration of alternative strategies, such as transformation of the x-variables 
instead. My own inclination would be to favor an analysis on a logistic scale, with possibly 
transformed predictors, unless the adaptation of the Box and Cox transformation obtains some 
distinct advantage, such as offering an additive model on the transformed scale in an instance 
where the logistic model does not provide as successful a fit without interaction terms. 

I am delighted to have the opportunity to commend the authors on a useful and instructive 
paper. 

1 Robert E. Fay, U.S. Bureau of the Census, Washington, D.C. 20233. 
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COMMENT 

C.J. SKINNER' 

This paper provides an excellent discussion of a variety of applications of weighted least 
squares (WLS) and pseudo maximum likelihood (PML) procedures to categorical data. Its clear 
presentation and use of real survey examples will, I hope, help to encourage survey analysts 
to take account of complex designs in their analyses. As the authors indicate, analytical 
statistical procedures which take account of complex designs have been developed extensively 
in recent years (see e.g. Skinner, Holt and Smith 1989) and are even beginning to be referred 
to in standard computer software (e.g. SAS 1985, pp 61-67). 

Commenting first on some specific aspects of the paper, I found Section 5 on polytomous 
variables to be especially valuable, given the wide occurrence of such data in surveys. A prop­
erty of ordinal variables is that they may often be expected to possess monotonic relationships 
and so, for example, lack of monotonicity between the fitted values of C, (lk) (or C2(ik) and 
the education variable k in Table 3 makes the result of the corrected tests, that there is no 
evidence of an education effect, more plausible than the result of the uncorrected test. 

The discussion of testing equality of two logistic regression models in Section 4 also seemed 
to me to be practically useful, although it would still seem to be possible theoretically to for­
mulate this test as one of a nested hypothesis within the framework of Roberts, Rao and Kumar 
(1987). 

Section 3 provides a useful illustration of how PML may be applied to general parametric 
models for categorical data. It is, however, gratifying that the more complex transformation 
model provides no significant improvement in fit over the logistic regression model, since the 
interpretation of the parameters of the transformation model is more difficult. For example, 
for the logistic model the coefficient for education may be interpreted as implying that the odds 
of being employed are increased by 160/. for each additional year of education for males of 
a given age (exp (.1509) = J.J6), whereas this interpretation is not generally available for the 
transformation model when A "" O. 

On a more general note I would be interested in the authors' views on the relative merits 
of WLS and PML. In the paper, these methods are presented quite separately, although both 
procedures would seem to be potentially applicable to a very wide class of models for categorical 
data under complex designs. Indeed both procedures are also applicable to models with con­
tinuous variables (Skinner, Holt and Smith 1989, Chapter 3); WLS requires just a statistic 
consistent for a known function of the parameters together with a consistent estimate of the 
covariance matrix of the statistic (Fuller 1984, Corollary 2), whereas PML is applicable very 
widely as described in Binder (1983). As a basis for discussion I list below a number of criteria 
on which WLS and PML might be compared; MI-M3 are relevant even under multinominal 
sampling, CI-C3 are specific to complex designs. 

M I Flexibility WLS may be more adaptable than PML for complex problems e.g. involving 
structural zeros. 

M2 Computation WLS computation tends to have a more standard form. 

M3 Small cell counts WLS is more sensitive to small counts, especially zeros. 

CI Adaptability of multinomial metbods to complex designs WLS seems more easily 
adaptable. 

I C.l. Skinner, University of Southampton, United Kingdom. 
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C2 Efficiency Under multinominal sampling WLS is usually asymptotically equivalent to 
PML (which is then just standard ML). It might be conjectured that WLS will always 
be at least as efficient as PML under complex designs, although this presupposes a I-I 
correspondence between WLS and PML estimation problems. If WLS is more efficient, 
is the gain usually negligible (cj. Scott and Holt 1982)? Are there general results here? 

C3 Degrees of freedom WLS estimators and associated Wald tests may be unstable if the 
degrees of freedom used to estimate v" are low. 
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COMMENT 

E.A. MOLINA! 

I would like to congratulate the authors on bringing together some recent methods devel­
oped for analyzing categorical data arising from sample surveys. The paper should be extremely 
useful for survey analysts who wish to take into account the impact of survey designs on the 
practical aspects of the analysis of survey data. In particular, it is important to emphasize that 
the methods discussed cover two different situations arising in practice: so called primary 
analyses, in which the researcher has all the relevant information at hand, and secondary 
analyses, in which the data provided do not include enough information about the popula­
tion units to enable the calculation of full covariance matrices of the sample estimators. 

The methods covered require the existence of a structural model for the data. There are situa­
tions, however, in which it is difficult to specify a single structural model that adequately 
describes categorical data. In large scale surveys there is often need to screen out many cross 
classifications at minimal cost. In such cases the use of measures of association is a common 
alternative. These non parametric methods were extended to sample survey data by Molina 
and Smith (1986, 1988). 

For the primary analysis of survey data the paper concentrates on weighted least squares 
and Wald tests. The results in Scott, Rao and Thomas (1989) are summarized and the rela­
tionship with quasi-likelihood is mentioned. I think that an important conclusion from that 
paper should be included in this section, namely the need to take into account the survey con­
straints K' p(X{3) = 11' when using quasi-likelihood methods. The reader may not be aware 
of the importance of the careful choice of the g-inverse in equation (2.9). Quasi-likelihood 
methods are now widely used and the relationship with weighted least squares methods is a 
relevant one. In fact, quasi-likelihood functions represent an interesting alternative for the 
analysis of survey data. However, there are practical problems since the method requires that 
we specify the covariance matrix as a function of p, the variance function. Quasi-likelihoods 
are largely determined by these variance functions (see, e.g., Morris 1982, and Jl'lrgensen 1987). 
If a matrix of estimates is given instead of a function, the method would be equivalent to the 
use of a normal distribution. 

Most of the paper is devoted to methods involving pseudo likelihoods. Since secondary 
analyses constitute the most common situation in practice, the methods presented are likely 
to be extensively used by survey analysts. I would like, however, to discuss some alternatives. 

The study of the impact of survey design on Guerrero and Johnson's (1982) transforma­
tion models is an important addition to the literature. However, Neider and Pregibon (1987) 
have proposed a family of functions, the extended quasi-likelihoods, that avoid some impor­
tant disadvantages of transformation models and can be fitted with GUM. If design effects 
are available, their methods can be adapted to survey data by incorporating them either in the 
variance functions or in the form of weights. Alternatively, design variables may be used to 
adjust the dispersion parameter in the models. In both cases, one advantage is that we can use 
the goodness of fit statistics and standard errors produced by GUM under these models to 
examine the data without the introduction of further corrections. 

These comments apply in general to the use of pseudo-likelihoods. The effect of ignoring 
the survey design may be treated as an increase or decrease in the expected variability that may 
be modelled as overdispersion or underdispersion by means of quasi-likelihoods or extended 
quasi-likelihoods. See, e.g., Pocock et al. (1981), Breslow (1984), Williams (1982), among 

I E.A. Molina, Universidad Simon Bolivar. Caracas and University of Southampton, United Kingdom. 
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others. As an example, I reanalyzed the data in Table I. The analysis given in the paper is the 
correct one, since it incorporates the true covariance matrix. Suppose, however, that this matrix 
is not available and that only the cell design effects are at hand. Using GLIM I fitted model 
(2.12) with a Poisson error ignoring the sampling scheme. This gives X' = 5.68,0' = 5.67. 
The Rao and Scott (1987) approximation for the chi square statistic gives X'(o) = 5.681 
2.25 = 2.52. For the independence model the uncorrected values are X' = 18.22, 0' = 
18.22, and the correction gives X' (0) = 18.2211.65 = 11.04. What can be done if the deffs 
are not available? . A simple quasi-likelihood approach to overdispersion is to estimate the mean 
deviance for the larger model, D = 5.68/3 = 1.89, and to use the inverse of this value as a 
weight (or as a new scale parameter). This give X' = 3.01 for model (2.12) and X' = 9.65 
for the independence model. The correct approach here is to use the excess in deviance (the 
difference between the log-likelihood ratio statistics) to test 'Y = 0, since 0' will equate the 
degrees of freedom for the larger model. The value is 6.65, which is just significant at the 1"0 
level. Both analyses are in agreement with the correct analysis given in the paper, but in other 
situations it may not be so. The quasi-likelihood model presented here is equivalent to assuming 
that the actual covariance matrix is a multiple of the one obtained under multinomial sampling, 
a model that may perform badly in several situations. The advantage is that it can be used when 
the only information available is that given by the variability inherent in the data, and the 
analysis performed in a standard statistical package like GLIM. If the deffs are available, other 
models involving them may be proposed, and a paper is in preparation. 

There is, however, no completely satisfactory substitute for an analysis involving the actual 
covariance matrix. The objective of this contribution is to highlight other possibilities when 
the full covariance matrix is not known. Quasi-likelihoods offer a fertile ground for further 
exploration, particularly in relation to survey data. The paper under discussion presents several 
alternatives and is an important contribution to the field. 
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RESPONSE FROM THE AUTHORS 

We thank the three discussants, Fay, Molina and Skinner, for their useful comments and 
for suggesting additional methods useful in the analysis of cross-classified data from complex 
sample surveys. 

(i) Response to comments of R.E. Fay 

We agree with Fay that replication methodology and associated jackknife chi-squared 
tests provide viable alternatives to the methods presented here, provided the survey design 
permits the use of a replication method such as the jackknife or the balanced half-sample repli­
cation. His CPLX program indeed offers a comprehensive analysis option whenever estimates 
are available at the individual replicate level. Also, as noted in the Introduction, Fay's jack­
knife tests and Rao-Scott corrections have performed well under quite general conditions in 
simulation studies, unlike the Wald tests based on weighted least squares. Rao-Scott correc­
tions are, however, also applicable to survey designs not permitting the use of a replication 
method. 

The software systems for the Canada Health Survey and the Canadian Labour Force Survey 
were set up to readily provide the estimated covariance matrix of cell estimates but not the 
replicate level estimates. As a result, the implementation of jackknife tests would have required 
some changes in the software systems. 

We are also thankful to Fay for pointing out that the methods presented here, and the 
analogues from replication theory, can also handle some problems of inference from complex 
designed experiments involving clustering and stratification. Indeed, one of us (J .N.K. Rao) 
recently used Rao-Scott type methods to fit dose-response models and to test hypotheses in 
teratological studies involving animal litters as experimental units (Rao and Colin 1989). These 
methods do not assume specific models for the intra-litter correlations, unlike other methods 
proposed in this area. 

We considered Box-Cox transformation models since Guerrero and Johnson (1982) obtained 
significantly better fits on some Mexican data compared to the logit model. We agree with Fay, 
however, that the Box-Cox models should not be applied without consideration of alternative 
strategies, such as transforming the predictors. As noted by Fay, the Box-Cox approach would 
be useful in these cases where it would lead to additive models on the transformed scale while 
the logit model would require interaction terms. 

(ii) Response to comments of E.A. Molina 

Molina is correct in saying that measures of association can be used to screen out many cross 
classifications at minimal cost. His joint work with T.M.F. Smith on extending the classical 
theory for measures of association to sample survey data involving clustering and stratifica­
tion is an important contribution. 

As noted in the Introduction, we assumed throughout the paper that the user has access 
to a full estimated covariance matrix of cell estimates. However, such detailed information 
is often not available for secondary analyses, and in fact even cell deffs may not be available, 
as pointed out by Molina. In the latter case, Rao and Scott (1987) showed that an F statistic 
used in GLIM for testing a nested hypothesis, such as 'Y = 0 given the model (2.12), is asymp­
totically valid whenever the covariance matrix of cell estimates, V, is proportional to the 
multinominal covariance matrix, P. The F-test, however, is less powerful than the Rao-Scott 
tests, unless the denominator degrees of freedom are high. In the latter case, the Ftest might 
work well even if the condition Vex P is not satisfied (see Rao and Scott 1987, p. 392). 
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For the data in Table I, F = 6.63 for testing l' = 0 given the model (2.12), which is not 
significant at the 5OJo level compared to F'.3 (0.05) = 10.01, the upper I % of the F distribu­
tion with I and 3 degrees of freedom (d.f.). On the other hand, the Wald test W, and the 
Rao-Scott test, both requiring detailed information on the estimated covariance matrix, are 
significant at the I % level compared to xf(O.OI) = 6.63. The F-test, therefore, appears to 
be less powerful here since the denominator d.f. is only 3. Molina's proposed test is, in fact, 
equal to F, but he was treating F as a x 2 variable with I d.f. which may not be valid due to 
small denominator d.f. 

The GLIM method does not provide a statistic for testing the goodness-of-fit of a model. 
Some information on the design effects is necessary for getting a valid test of goodness-of-fit. 

(iii) Response to comments of C.J. Skinner 

Skinner noted that the test of equality of two logistic regression models in Section 4 might 
be formulated as a test of a nested hypothesis within the framework of Roberts, Rao and 
Kumar (1987), using dummy x-variables. The framework of Roberts, Rao and Kumar, how­
ever, assumes one fixed sample size n whereas in Section 4 we have two fixed sample sizes n, 
and n2 for the two time periods. As a result, their results would need careful modification in 
order to be applicable to the present case of test of equality of two logistic regression models. 
Moreover, the dummy variable approach would involve the determination of estimates of 2s 
parameters iteratively, whereas the approach in Section 4 requires two iterative solutions, each 
involving only s parameters. Thus, the dummy variable approach could lead to convergence 
problems if s is not small. 

We treated WLS with singular covariance matrices separately in Section 2 since the logit­
type models in the remaining sections do not involve singular covariance matrices. WLS can 
also be applied to logit-type models but the resulting estimators and associated Wald tests 
may be unstable if the degrees of freedom associated with the estimated covariance matrix, 
Vp , are low (criterion C3 of Skinner). The six criteria proposed by Skinner for comparing 
WLS and PML are very useful. We prefer PML mainly on the basis of criterion C3. Regarding 
the relative efficiency ofWLS and PML estimators under complex designs, no general results 
are available, but WLS estimators are not likely to be significantly more efficient (and in 
fact, may be less efficient) if the degrees of freedom associated with the estimated covariance 
matrix are low. Clearly, further research on the relative efficiency of WLS and PML estimators 
would be useful. 
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ABSTRACT 

187 

The paper describes a Monte Carlo study of simultaneous confidence interval procedures for k > 2 
proportions. under a model of two·stage cluster sampling. The procedures investigated include: (i) stan· 
dard multinomial intervals; (H) Scheffe intervals based on sample estimates of the variances of cell 
proportions; (iii) Quesenberry.Hurst intervals adapted for clustered data using Rao and Scott's first 
and second order adjustments to X 2; (iv) simple Bonferroni intervals; (v) B-onferroni intervals based 
on transformations of the estimated proportions; (vi) Bonferroni intervals computed using the critical 
points of Student's t. In several realistic situations, actual coverage rates of the multinomial procedures 
were found to be seriously depressed compared to the nominal rate. The best performing intervals, 
from the point of view of coverage rates and coverage symmetry (an extension of an idea due to 
Jennings), were the t·based Bonferroni intervals derived using log and logit transformations. Of the 
Scheffe·like procedures, the best performance was provided by Quesenberry·Hurst intervals in com· 
bination with first·order Rao·Scott adjustments. 

KEY WORDS: Simultaneous inference; Complex surveys; Monte Carlo. 

1. INTRODUCTION 

Survey results are often presented as estimated proportions (or percentages) of popula­
tion units belonging to two or more distinct categories. Examples include many sociological 
studies (see for example Black and Myles 1986), marketing studies and opinion polls. As 
noted by Fitzpatrick and Scott (1987), inference on category proportions is often based on 
single binomial confidence intervals, even when more than two category proportions are being 
examined. This paper describes a study of several procedures for constructing simultaneous 
confidence intervals for the proportions 1fi' i = I, ... , k, of population units belonging to 
each of k distinct categories, using data from a two-stage cluster sample. Standard 
simultaneous confidence interval procedures for categorical data problems, reviewed by 
Hochberg and Tamane (1987), are based on the assumption of multinomially distributed 
sample counts, and are thus appropriate for data from simple random samples. When the 
data have been collected using sample survey designs that involve clustering, standard pro­
cedures are likely to perform poorly, as is the case when standard multinomial based tests 
are applied to data from complex sample surveys. In the latter case, it has been shown by 
many workers that clustering can lead to unacceptably high Type I error rates (see, for 
example, Fellegi 1980; Rao and Scott 1979, 1981; Holt, Scott and Ewing 1980). For 
simultaneous confidence intervals, therefore, it is natural to expect that clustering will lead 
to coverage probabilities that are lower than multinomial theory indicates. 

Estimation of simultaneous confidence intervals (SCI's) is an important adjunct to 
hypothesis testing. The present study thus represents a natural follow-up to Thomas and 
Rao's (1987) investigation of test statistics for the simple goodness of fit problem, under 

I D. Roland Thomas. School of Business. Carleton University. Ottawa, Ontario, KIS 5B6. 
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simulated cluster sampling. In this paper, adaptations of the standard SCI procedures are 
proposed, and their performance in small samples is evaluated using Monte Carlo techniques. 

The cluster sampling model that is used in the Monte Carlo study is described in Section 
2, and the SCI procedures to be examined are presented in Section 3. In Section 4, the design 
of the Monte Carlo experiment is described, together with procedures for evaluating confidence 
interval performance. The main results of the study are presented in Sections 5 through 7, 
followed in Section 8 by some final conclusions and recommendations. 

2. THE CLUSTER SAMPLING MODEL 

This investigation will focus on two-stage sampling in which a k-category sample of m units 
is drawn independently from each of r sampled clusters. 

For a sample of size n = mr,let m = (m" ... , mk_I)' represent the category counts for 
the whole sample, where mk = n - E f';ll mi' In terms of proportions, let it = (it l , ... , 

itk _ I )' = min be the vector of category proportions for the full sample. Further, define 
" = E ( it), where E denotes expectation under a suitable model of cluster sampling, and let 
Vln represent the (k - 1) x (k - l)covariancematrixofit.FollowingRaoandScott(l981), 
the ordinary design effect for the linear combination c' it of category proportions is c' Vel c' Pc, 
where P is n times the covariance matrix of r under multinomial sampling, i.e., P = diag (,..) 
- ...... ' , and c is a vector of dimension k - I. The largest design effect taken over all possible 
linear combinations is given by the largest eigenvalue of the design effect matrix D = p- I V. 
The eigenvalues of D, denoted in decreasing order by A" A2, ... , Ak_I' were termed 
generalized design effects by Rao and Scott (1981), and provide a quantitative summary of 
the variance inflation associated with a particular design, relative to simple random sampling. 
Under the multinomial distribution, corresponding to simple random sampling from large 
populations, Aj = 1 v j. Designs involving clustering usually yield generalized design effects 
greater than one on the average, i.e., X = E1,;i Ajl (k - I) > 1. Furthermore, studies of 
real survey data (Hidiroglou and Rao 1987; Rao and Thomas 1988) reveal significant variation 
among the A/s. This is conveniently represented by their coefficient of variation, given by 

(k-I )In 
a= E Aj![(k-l) P l-I . 

J=l 

(I) 

A suitable model of cluster sampling must therefore be capable of generating generalized design 
effects such that X > 1 and a > O. 

Brier (1981) proposed a model of two-stage cluster sampling in which individual clusters 
are represented by vectors of category probabilities, p, = (p,,, Pn, ... , Pt. k -I) , ,£ = I, ... , 
r, where for each cluster, P'k = 1 - E f,;i Pli' Each p, was independently drawn from a 
Dirichlet distribution with mean r, i.e. E(P,) = ", and second stage sampling of the m units 
per cluster was multinomial, conditional on the realized value of p, for that cluster. Let the 
vector of counts for each cluster be m, = (m,,, ... m,.k-Il, with m'k = m - Ef,;i mn. 
Thus for the full sample, m = E;~ I m. and in terms of proportions, it = E;~ I r" where 
it, = m,lm. Brier (1981) showed that under this model, E( it) = .... and V( it) = dPln, i.e., 
the covariance matrix of it is proportional to the multinomial covariance matrix, with the 
constant of proportionality d > I. Under this model, the design effect matrix is given by 
D = dh-" where Ik_1 is the identity matrix of order k - 1. Thus Ai = d V i, so that X = d 
and a = O. Brier's model can therefore represent variance inflation (X > I), but cannot 
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represent the unequal generalized design effects encountered in practice. Thomas and Rao 
(1987) used an extension of Brier's model in which the first stage p,'s are sampled 
independently from a mixture of two Dirichlet distributions, representing a population com­
posed of two distinct classes of clusters. This model, which is a special case of that proposed 
by Rao and Scott (1979), generates one distinct and k - 2 equal eigenvalues, with ~ and a 
being explicit functions of the Dirichlet parameters. This greatly facilitates the design of the 
Monte Carlo study by allowing for convenient control of the values of the clustering measures 
~ and a. Since it satisfies the basic requirements outlined above (~ > I, a > 0), Thomas and 
Rao's (1987) model will be used in this study. 

3. SIMULTANEOUS CONFIDENCE INTERVAL PROCEDURES 

3.1 Scheff. Intervals 

A standard Scheffe argument, based on the asymptotically exact probability statement 

(2) 

leads to simultaneous confidence intervals for linear combinations, f' .. , of the category pro­
babilities, where fis a vector of dimension (k - I). Appropriate choices of (then yield SCI's 
on the individual cell probabilities given by 

(3) 

where A = )(~-l (a) is the upper a percent point of a chi-squared distribution on k - I 
degrees of freedom, and Vii is the ith diagonal element of a consistent estimator of V (as 
r - (0) given by 

, 
V = n '(" (fr,- ir) (fr,- fr)'. 

r(r _ I) I.J 
1=1 

(4) 

Note that when the endpoint of an interval lies outside [0, I J, definition (3) must be modified 
by truncating the endpoint to 0 or I as appropriate. For multinomial sampling, Vii can be 
replaced by fr, (1 - ir/), in which case the Scheffe intervals reduce to those proposed by Gold 
(1963). The latter will be referred to as Scheffe-Gold intervals. The Scheffe intervals of equation 
(3) will be conservative, i.e., will have coverage exceeding (I - a) asymptotically since they 
make use of only a finite number of the availablefdirections (see Miller 1981, page 63). In fact, 
they will become very conservative as k increases, as can be shown using the following argu­
ment due to Goodman (1965). The coverage of the Scheffe intervals is equal to one minus the 
probability of occurrence of atleast one of the events ( (ir/ - 'K/) 21 (vnln) > )(~k-l) (a) l. 
i = I, ... , k; since the random variables (ir/ - 'K/) 21 (VI/In) each have chi-squared distribu­
tions on one degree of freedom asymptotically, the probability of each individual event can 
be evaluated. Using the Bonferroni inequality, lower bounds for the coverage can then be 
obtained; for a nominal coverage of 95'70 with k = 3,5,8 and 12, these bounds are .9571, 
.9896, .9986 and .9999 respectively. 
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3.2 Modified Quesenberry-Hurst Intervals 

Under the assumption of multinominal sampling, Quesenberry and Hurst (1964) solved the 
large sample probability statement 

(iT. _ ".)2 ] , 's A = 
"i 

for the cell probabilities "i, to get the SCI's 

[
iT + A!2n ± 

"iE 
(A/n) 112 [iT, (1 

I + A/2n 

I - a (5) 

(6) 

Under multinomial sampling, these intervals are asymptotically equivalent to Scheffe and 
Scheffe-Gold intervals, and will therefore exhibit similar asymptotic conservativeness. 

Quesenberry-Hurst (Q-H) intervals can be adapted for use with clustered survey data using 
the first and second order corrections to the distribution of X2 proposed by Rao and Scott 
(1981). Corresponding first and second order SCI's are obtained by replacing A in equation 
(3) by 

(7) 

respectively, where v = (k - 1)/(1 + 02 ) and ~,anestimateofthemeanofthegeneralized 
design effects, is given by (Rao and Scott, 1981) 

A k 

}.. = (k _1)-1 E (1- iT,) a" (8) 
;=1 

where a,,; = ... , k is an estimated cell design effect given byai = Vii/iT, (1 - iTi). The coef­
ficient of variation, a, is estimated by replacing}.. in equation (I) by ~, and k 'Al by the 
estimate k }..r = k k v~/iT, iTj • It turns out (see Thomas 1989) that the second order modified 
intervals are unnecessarily conservative, so that only the first-order modified Q-H intervals 
will be discussed in the remainder of the paper. 

3.3 Simple Bonferroni Intervals 

Since (loosely speaking) each iT, is asymptotically N( "10 vidn), the intervals 

(9) 

will have large sample coverage at least (1 - a) by the Bonferroni inequality, where ex' = ex/k 
and Za' i2 is the upper a' /2 percent point of the standard normal distribution. Intervals (9) are 
equivalent to Scheffe intervals with A in equation (3) replaced by A (3) = xr (ex' ), As noted 
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by Goodman (1965), they will be shorter than Scheme intervals for the usual values of a and 
k; e.g., a = 10/.,5%, or 10%. Goodman's (1965) multinomial Bonferroni intervals are given 
by equation (9) with vii replaced by .. , (I - ",). All endpoints of simple Bonferroni intervals 
that lie outside [0, I] will be truncated to 0 or I as appropriate. 

3.4 Transformed Bonferroni Intervals 

For suitably smooth g, g( .. ,) will be asymptotically N(g( ... ,), [ g/( ... ,)1 2 vI/In), where g/( "') 

denotes the partial derivative og( "') 10", evaluated at "" Bonferroni intervals can then be 
obtained by inverting corresponding intervals on the g( .. ,)'s, giving 

(10) 

Three g functions will be investigated: the square root gl ( ... /) = .. ,112 (previously investigated 
by Bailey 1980, for the case of multinomial sampling); the natural logarithm g2( "/) = In( "/); 
andthelogitgJ ( .. ,) = In( .. /I(I - .. /». Interval endpoints that lie outside [0,1] will again 
be truncated to 0 or I as necessary. 

Transformed Bonferroni intervals based on a jackknifed estimator of the variance of g( .. ) 
have also been examined (see Thomas 1989). It was found that there is little advantage to using 
jackknifed variance estimates; Taylor series variance estimates are therefore recommended for 
their simplicity. Intervals based on jackknife variance estimates will not be considered further 
in this paper. 

3.5 Variants of the Above Intervals 

Scheffe Intervals: Following Thomas and Rao (1987), Scheme intervals can be modified by 
replacing the critical constant A in equation (3) by A (4) = (k - I) (r - I) (r - k + I)-I 
F (k-IJ. (,-k+ I) (a), where F(k_I), (,-k+1) (a) is the upper a percent point of an F distribu­
tion on (k - I) and (r - k + I) degrees of freedom. 

Quesenberry-Hurst Intervals: Variants of the modified Quesenberry-Hurst (Q-H) intervals 
can also be defined, corresponding to the F forms of the first and second order corrected test 
statistic proposed by Thomas and Rao (1987). These again turn out to be conservative, and 
will not be considered further. 

Bonferron; Intervals: Heuristic arguments (see the appendix to Thomas and Rao 1987) 
suggest that the simple Bonferroni intervals can be improved by replacing Zo'/2 in (9) by 
(,_I (a' 12), the upper a' !2 percentage point of Student's (distribution on r - I degrees of 
freedom. This strategy will also be applied to the transformed Bonferroni intervals. 

4_ THE DESIGN OF THE MONTE CARLO STUDY 

4,1 Parameters and Random Numbers 

The parameters to be controlled are: (i) the nominal coverage level (I - a) of the SCI; 
(ii) ", the model probability vector; (iii) k, the number of categories; (iv) r, the number of sample 
clusters; (v) m, the number of units drawn from each sampled cluster; (vi) ~, the mean of the 
generalized design effects (eigenvalues); (vii) 0, the coefficient of variation of the generalized 
design effects. The nature and degree of clustering is represented by the pair (~, 0) as follows: 
(a) multinomial sampling (~ = 1,0.= 0); (b) constant design effect clustering (~ > I, 
o = 0); (c) non-constant design effect clustering (~ > 1,0 > 0), 
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Individual Monte C,arlo experiments were run for particular combinations of k, }., a and 
r max, the latter being the maximum number of clusters generated in one computer run. Most 
experiments were run at two values of }., namely 1.5 and 2.0, two values of a, namely a = 0 
(constant design effects) and a > 0 (one level of non-constant design effects), for equiprobable 
categories (11"/ = Ilk, i = I, ... , k). Three values of k (k = 3,5, 8) were initially selected 
to cover the range of numbers of categories commonly encountered in goodness-of-fit tests. 
An additional run was subsequently done for the case k = 12, }. = 2 and a > 0 to check on 
the range of applicability of the results. The number of units per cluster was set at m = 10 
for k = 3, 5 and 8, and at m = 20 for k = 12. Preliminary investigations showed coverage 
rates to be insensitive to the value of this parameter. For comparability of results over k, the 
non-zero settings of a were selected to make a/amax the same for each selected value of k, 
where a max = (k - 2) 112 is the maximum possible value of a. For k = 5, the non-zero value 
of a was set at 0.5, which is typical of the values encountered in practice, e.g., {j = 0.43 for 
k = 5, as reported by Rao and Thomas (1988). 

The initial focus on equiprobable categories allowed for a cost effective assessment of the 
influence of k, }. and a on coverage rates, and eliminated many of the possible SCI variants 
from further consideration. Additional experiments reported in Section 7 show that the 
procedures that passed this initial screening can in fact be applied when the cell probabilities 
are markedly unequal. Vectors of unequal probabilities were confined to the class 
r(k, q, <1», defined by the elements 1I"j = <1>, i = I, ... , q and 1I"j = (1 - q<l»/(k - q), 
i = q + I, ... , k. 

For details of the generation of the random clusters from the mixture Dirichlet multinomial 
distribution, the reader is referred to Thomas and Rao (1987). Each Monte Carlo experiment 
consisted of 1000 sets of up to 100 independent clusters, grouped into nested subsets. All SCI 
procedures were applied in turn to each subset, using two nominal coverage levels (95"7. and 
90"7.), thus improving the precision of comparisons between procedures at the same param­
eter settings, and between the same SCI procedures for different numbers of clusters. Most 
of the results presented will be for 95"7. nominal coverage; trends for 90"7. coverage were found 
to be qualitatively similar. 

4.2 Evaluation Procedures 

The percentage of Monte Carlo trials for which at least one of the k confidence intervals 
fails to cover the true parameter value is reported, and used for a preliminary screening of the 
main SCI procedures. This is a measure of the family error rate, which is equivalent to the 
actual significance level of the SCI when the latter is viewed as a test of goodness-of-fit. The 
family error rate, which will be referred to in this paper as the total error rate ER T, is used 
in place of the more commonly reported actual coverage rate (equal to one hundred percent 
minus the total error rate) because it can be conveniently split into two one-sided rates which 
will provide information on the symmetry or 'unbiasedness' of each SCI procedure. Jennings 
(1987) argued that coverage rates alone can provide a misleading assessment of single param­
eter confidence interval procedures, and recommended that the number of times that an interval 
falls above and below the true parameter value should be separately reported. In this paper, 
Jennings' suggestion has been adapted to simultaneous confidence intervals on 11"/, i EI, where 
lis the index set (I, ... , kl, by counting the number of Monte Carlo trials for which: 

(a) more intervals fall above their corresponding 11"" i E I, than fall below; 
(b) more intervals fall below their corresponding 1I"j, i E I, than fall above; 

(c) the same number (> 0) ofintervals fall above their corresponding 11"" i E I, as fall below. 
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Upper and lower error rates are then defined as ERu = rna + (n.,l2) 1 IN, and ERL = 
[nb + (nc12) 1 IN" respectively, where N, represents the number of Monte Carlo trials, and 
no, nb and nc denote the counts (a) through (c), respectively. The sum of ERu and ERL is 
clearly equal to the total error rate, ER T. These one-sided error rates will be used to compare 
SCI procedures whose overall error rates are acceptably close to the nominal rate "', over a 
range of parameter settings and cluster strengths. Average interval lengths and corresponding 
standard errors have also been computed, and will be used as final discriminators in the selec­
tion of the recommended procedures. 

5. A SUMMARY OF RESULTS FOR TOTAL ERROR RATES 

All results in this section are given in terms of the total error rate ERn defined in Sec­
tion 4. For lack of space, tables are presented only for the case of unequal design effects, 
(a > 0), with ~ = 2. More detailed results are given in Thomas (1989). In interpreting the 
tabulated results, it should be noted that for 1000 Monte Carlo trials, binomial standard 
errors of point estimates of true ERrS having magnitudes 5"70, 10"70 and 20"70 are 0.7"70, 
0.9"70 and /.3"70 respectively. As a general rule deviations from nominal rates, and differences 
between the error rates of different SCI procedures will be noted only when they are large 
enough to have practical significance, and exceed their Monte Carlo standard errors by a 
factor of at least two. 

5.1 Multinomial Procedures 

Results for multinomial intervals will only be summarized here; for details see Thomas 
(1989). Under cluster sampling, error rates for Goodman's Bonferroni intervals (see equation 
(9) with Vii replaced by iiil - ii'» are unacceptably high except for values of ~ close to I, i.e., 
unless the effect of clustering is small. The Scheffe-Gold and multinomial Quesenberry-Hurst 
intervals, on the other hand, can yield error rates that are close to the nominal value in certain 
cases, whenever their inherent conservativeness balances the error inflating effects of clustering 
(see also Andrews and Birdsall 1988). Unfortunately, this is not always the case; both procedures 
can display inflated error rates (ER T 2: 2",) for realistic combinations of category numbers 
and clustering strengths. 

Multinominal procedures should therefore not be used with complex survey data. Procedures 
are clearly required that directly account for the clustering, and provide good coverage for the 
required number of categories, over a wide range of clustering conditions. 

5.2 The Scheff" Procedures 

Total error rates for the x2-based Scheffe procedure of equation (3) and its F-based variant 
are summarized in Table 1 as functions of r, for the case", = 5"70, ~ = 2 and a > O. More 
detailed graphs are given in Thomas (1989). 

For the values of k studied, ERT for the x2-based Scheffe procedure of equation (3) increases 
rapidly as the number of clusters decreases, so that it should never be used for small numbers 
of clusters. The F-based variant, on the other hand, keeps ER T reasonably close to or below 
'" = 5"70 for all r. As r increases, ERT for F-based Scheffe remains fairly constant for the 
case k = 3, but becomes increasingly conservative for k 2: 5, as does the x2 version. These 
empirical trends with varying r can be explained in terms of two competing effects. As r 
increases, error rates for both procedures approach their asymptotic levels which are bounded 
above by 4.29"70, /.04"70 and 0.14"70, for k = 3, 5 and 8 respectively (see Section 3.1). 
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Table 1 

Total Error Rates for Scheffo! and Modified Q-H Intervals; 
'" = 5'10. ),. = 2. m = 10 

Total Error Rate (ERT) 

Scheff.! Scheff.! Modified Q-H 
k a r (x2 based) (F based) (first order) 

3 .29 15 9.2 5.9 5.0 
3 .29 30 5.7 4.7 5.1 
3 .29 50 5.4 5.0 5.4 

5 .5 15 8.8 5.2 4.3 
5 .5 30 4.0 3.0 2.7 
5 .5 SO 2.5 2.0 2.0 

8 .7I 15 12.7 7.4 2.4 
8 .71 30 4.2 3.0 2.7 
8 .71 50 2.7 1.6 2.5 
8 .71 100 0.8 0.7 2.3 

As r decreases. however. the conservativeness of the Scheffe procedures (for k "" 5) will be 
increasingly swamped by the effects of increasing non-normality of the estimated proportions. 
if. For the F-based version. the inflation in error rate due to non-normality is less than for the 
chi-squared version of equation (3). with the result that ER T for the F-based version never 
seriously exceeds the nominal 507. rate. For moderate levels of clustering (}. = 1.5). the 
behaviour of theF-based procedure is qualitatively similar to that described above for the case 
}. = 2. From the point of view of total error rate. therefore. the F-based Scheffe procedure 
is useable over a wide range of clustering situations. though its possible conservativeness is 
a disadvantage. 

5.3 Modified Quesenberry-Hurst Intervals 

Total error rates for the first order modified Quesenberry-Hurst (Q-H) procedure of Sec­
tion 3.2 are also shown in Table I for a = 5%. }. = 2 and a > O. 

Total error rates are close to or below the nominal 5% for all combinations of r and k shown. 
For moderate to large numbers of clusters (r "" 30). error rates for k = 5. and 8 are very 
similar. being approximately one half of the nominal rate (true also when k = 12). For the 
case of constant design effects (see Thomas 1989). error rates for first order modified Q-H 
intervals are conservative for k "" 5. particularly for large r. The absence ofthis Scheffe-like 
conservativeness for the more realistic case of unequal design effects shown in Table I can again 
be explained using the argument of Section 3.1. From equation (6). it is easily seen that the 
asymptotic coverage of the first-order modified Q-H intervals is given by one minus the pro­
babilitythatat least one of the random variables (if, - ",)2/ (}."I(l - "1)/n).i = I •...• 
k, will exceed the critical value )(~_t<a) asymptotically. When a > O. these individual 
random variables will not all be asymptotically distributed as chi-squared on one degree of 
freedom, so that the bound of Section 3.1 does not apply. The true bound on the error rate 
will be inflated since at least one of the random variables (if 1 - "I) 21 ( }."I( I - "1)/n) will 
be stochastically larger than (if 1 - "I) 21 (Piiln). whenever a> O. 
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Trends for the case X = 1.5 are similar (Thomas 1989). Overall, the results show that from 
the point of view of total error rates, first-order modified Q-H intervals provide a safe but 
somewhat conservative SCI procedure under realistic clustering conditions. 

5.4 Simple Bonferroni Intervals 

Total error rates for the simple Bonferroni intervals given by equation (9) are summarized 
in Table 2 for the case a = 50/., X = 2,0 > O,andk = 3,5and8.Alsoshownarecorrespon­
ding error rates for the I-based variants described in Section 3.5. 

From Table 2, it is evident that the error performance of both sets of SCI's is poor, both 
showing a strong tendency to high error rates for small to medium numbers of clusters when 
k, the number of categories, is five or more. Using critical values of Student's t distribution 
to compensate for the variability in the estimated variances of the category proportions clearly 
has the effect of generally lowering error rates. As can be seen from Table 2, however, this 
strategy is unable to prevent significant error rate inflation in the I-based intervals as the number 
of clusters decreases, except when k = 3. The trend to inflated error rates for small numbers 
of clusters (for both z and I-based intervals), is due to the increasing non-normality of the */s 
with decreasing r. This trend gets progressively more severe as k increases, which is to be 
expected since non-normality will become more pronounced, for a given value of r, as the values 
of the 1f/s get smaller. This is precisely what happens with increasing k in the case under study, 
for which irl = 11k II i. 

When k = 3, error rates for the I-based procedure are essentially constant, and close to 
the nominal level. For k = 8, on the other hand, ERr varies from close to 20% at r = 15 to 
approximately 8% at r = 100. From Table 2, and other results not shown, it appears that for 
k ~ 8, simple I-based intervals approach their Bonferroni limits very slowly as r - 00. Also, 
for k :s 5, error rates are close to the nominal level for moderate to large numbers of clusters 
(r ~ 40). Results for constant design effects, and for the case X = 1.5 are consistent with 
the above. From the point of view of total error rates (or equivalently of coverage rates), it 
is clear that simple I-based Bonferroni intervals are useable in practice over a range of realistic 
clustering situations only if k :S 5 and r ~ 40. 

k 

3 
3 
3 

5 
5 
5 

8 
8 
8 
8 

Table 2 

Total Error Rates for z and I-Based Simple Bonferroni Intervals; 
" = 5'10, A = 2, m = 10 

Total Error Rate (ERr) 

a r z-based I-based 

.29 15 10.0 5.6 

.29 30 6.3 4.9 

.29 50 6.5 5.5 

.50 15 15.0 9.7 

.50 30 8.8 7.2 

.50 50 7.2 5.5 

.71 15 29.6 19.1 

.71 30 15.0 11.0 

.71 50 11.5 9.8 

.71 100 8.1 7.8 
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5.5 Transformed Bonferroni Intervals 

The more detailed results given in Thomas (1989) demonstrate that the problem of error 
rate inflation exhibited by simple z-based Bonferroni intervals is not solved by the use of 
transformations alone. All three transformed z-based intervals again display severely inflated 
error rates for small to medium numbers of clusters. Fortunately, the effect of transforma­
tions on the I-based Bonferroni intervals is very different, as can be seen from the results 
summarized in Table 3. 

For k = 3,5 and 8, error rates for the log and logit intervals are close to the nominal 5 OJ. 
for all r values shown, with the logit intervals yielding slightly lower rates than the log intervals 
(see the footnote to Table 3). The I-based square root intervals, on the other hand, exhibit the 
undesirable characteristic of error rate inflation for small r, when k '" 8; they will not be 
considered further. For large numbers of categories (k = 12), both log and logit intervals 
do exhibit some error rate inflation for intermediate numbers of clusters (r = 30). This is not 
a serious drawback, however, as this number of categories is rarely encountered in practice. 
Results for constant design effects, and for the case },. = 1.5 are generally similar to those 
described above. 

It thus appears that for the ranges of k, r, },. and a that are likely to be encountered in 
practice, log and logit transformations (which reduce the non-normality in ir) used in com­
bination with I-based critical values (which compensate for the variability in the estimated 
variances) do yield intervals that provide the desired degree of control. These intervals will be 
explored further in Section 6 in terms of the symmetry of their error rates. 

Table 3 

Total Error Rates' for I-based Transformed Bonferroni Intervals; 
" = 5'7., ~ = 2, m = 10 for k s 8, m = 20 for k = 12 

Total Error Rate (ERTJ 

I-based Transformed Bonferroni 
k a r Square Root Log Logit 

3 .29 15 4.5 4.6 3.3 
3 .29 30 3.6 4.0 3.5 
3 .29 50 4.6 5.6 4.1 

5 .5 15 6.4 4.7 4.6 
5 .5 30 4.6 4.2 3.5 
5 .5 50 4.3 4.5 4.0 

8 .71 15 12.0 5.9 5.2 
8 .71 30 6.2 6.6 5.2 
8 .71 50 5.9 5.4 5.2 
8 .71 100 4.9 3.9 4.2 

12 .91 15 17.0 6.7 6.5 
12 .91 30 12.9 10.1 10.2 
12 .91 50 8.2 6.5 6.3 

I For k = 8 and r = SO, the correlation between ERTestimates for log and logit intervals is 0.92. 
Assuming this is typical for all rand k, the Monte Carlo standard error of the difference in log and 
logit error rates is approximately 0.3070. 



Survey Methodology, December 1 989 

Table 4 

Percentage Asymmetry (PERu)! in the Total Error Rate ror the Viable Procedures; 
a > 0", r = 50, m = 10 for k " 8, m = 20 for k = 12 

PERu = (ERuIERT) x 100% 

Scherf. Modified Q-H I-based Bonferroni 

" k X (F-based) (first order) (log) (logit) 

5% 5 1.5 19.2 58.7 61.0 48.9 
5"7. 5 2.0 0.0 45.0 61.1 48.8 
5% 8 1.5 0.0 63.2 67.5 56.8 
5% 8 2.0 0.0 65.2 64.9 49.0 
5% 12 2.0 0.0 46.9 53.8 51.6 

10% 5 1.5 16.3 49.4 59.2 48.4 
10% 5 2.0 6.1 50.0 61.8 48.6 
10% 8 1.5 0.0 60.7 67.3 55.8 
10% 8 2.0 0.0 65.6 60.7 50.0 
10% 12 2.0 0.0 47.5 56.0 51.4 

I For k = 8, A = 2 and a = SOlo, the correlation between PER uestimates for log and logit intervals 
is 0.82. Assuming this is typical. Monte Carlo standard errors for differences in log and logit PERu's 
are approximately 40/0 and 3% for IX = SOJo and 10010, respectively. 

2 For values of a for specific k. see Table 3. 

6. ERROR RATE SYMMETRIES FOR THE VIABLE PROCEDURES 

197 

This section presents results on error rate symmetry based on the decomposition of the total 
error rate ERTinto its two additive components ERuand ERL , as described in Section 4. The 
measure used in the tables is (ERuIERT) x 100%, i.e., the upper error rate expressed as a 
percentage of the total error rate. It will be denoted PERu. A symmetric SCI will have an 
empirical PERu that is close to 500/.; a PERu that is greater (less) than 50% will indicate an 
increased probability of non-coverage due to intervals lying above (below) their respective "is. 
For values of percentage symmetry between 50% and 80%, 95 % confidence intervals on the 
true PERu are approximately (PERu ± 14) % and (PERu ± 10)% for total error rates of 
5% and 10% respectively. 

6.1 Modified Scheffe and Quesenberry-Hurst Intervals 

Percentage symmetry results for the F-based Scheffe and the first order Quesenberry-Hurst 
(Q-H) intervals are given in Table 4 for a selection of parameter values. It can be seen that 
the Scheffe procedure displays extreme asymmetry, making it an unattractive SCI. The first 
order modified Q-H procedure displays only moderate asymmetry, and is therefore the better 
of the two in practice. 

The source of the asymmetry in the Scheffe intervals is again the non-normality of the un­
transformed -X/so In particular, the fact that "small" ii's generate "small" estimates of the 
variances Va and hence shorter intervals (c/. the multinomial case where fia = ;,,( I - ;,,) In, 
i = I, ... , k) increases the probability that non-covering intervals with lie below their respec­
tive ,,/s. This tendency to asymmetry will increase as the total error rate decreases, making 
the F-based Sheffe procedure particularly vulnerable to this effect. Since Scheffe intervals differ 
from simple Bonferroni intervals only through the critical constant used, asymmetry is also 
to be expected in the latter though it should not be as severe given that error rates for simple 
Bonferroni intervals are liberal. This is confirmed by study results, e.g., PER. = 4.9% for 
simple I-based Bonferroni intervals when r = 50, k = 8 and a = 0.71. 
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6.2 t-Based Transformed Bonferroni Intervals 

Table 4 also gives percentage symmetry results for t-based Bonferroni intervals based on 
the log and logit transformations. The results of the table suggest that logit intervals do pro­
vide more symmetric coverage than the log intervals, when k is in the range 5 to 8. Thus logit 
intervals might be considered preferable in practice to log intervals from the point of view of 
error rate symmetry. 

7. UNEQUAL CELL PROBABILITIES 

Table 5 presents results on total error rates and error rate symmetry under unequal cell pro­
babilities for the (-based log and logit transformed Bonferroni procedures, together with results 
for the first order modified Q-H procedure. Results are tabulated for six sets of unequal pro­
babilities, threefor the case k = 5, ~ = 2, a = 0.5, namely 1\"(5,3, .3), 1\"(5, 2, .425) and 1\"(5, 
I, .8), (see Section 4.1), and three for the case k = 8, ~ = 2, a = 0.71, namely 1\"(8, 3, .25), 
1\"(8,2, .35) and 1\"(8, 1,.65). For each "If vector, the remaining k - q elements all equal 0.05. 
Results for equiprobable cells are also displayed in Table 5 for comparison. 

It can be seen that deviations from equiprobability do affect total error rates for the 
modified Q-H procedure, particularly when k = 8. With the first element 11", = 0.65 the total 
error rate of modified Q-H is close to its error rate under equiprobability_ For the other two 
cases studied ("If, = "2 = .35, and .. , = "2 = "3 = 0.25), total error rates are considerably 
lower, closer in fact to the modified Q-H results obtained for the constant design effect case 
(see Thomas 1989). This difference in total error rates occurs because the pattern of cell design 
effects is different for each set of unequal probabilities, though the pattern of generalized 
design effects (the A'S) remains the same (A, = 2 + 2 V3,Aj = 2 - V3/3,j = 2, ... , 7 for 
~ = 2,a={212 = .707). When1\", = 0.65,thecelldesigneffectsared, = 5.7,dj = 1.82, 
i = 2, ... ,8. 

k 

5 
5 
5 
5 

8 
8 
8 
8 

Table 5 

The Effect of Unequal Cell Probabilities on the Total Error Rates (ERr) 
and Percentage Asymmetries (PERu) of the Modified Q-H 

and Transformed Bonferroni Procedures; 
r = 50, X = 2, a = 5%, m = 10 

Procedures 

Modified Q-H I-based Bonferroni 
(first order) (log) (logit) 

,,(k,q,<I» ERr PERu ERr PERu ERr PERu 

.. (5,1,0.8) 3.2 7.3 5.6 75.9 4.4 62.5 

.. (5,2,0.425) 1.4 82.1 4.8 57.2 4.6 47.8 

.. (5,3,0.3) I.5 76.7 4.2 51.2 3.9 38.5 
equi-prob. 2.0 45.0 4.5 61.1 4.0 48.8 

,,(8,1,0.65) 2.7 63.0 6.3 68.3 5.4 55.6 
,,(8,2,0.35) 0.6 83.3 4.9 58.2 4.4 51.2 
,,(8,3,0.25) 0.7 100 5.2 68.2 4.6 63.1 
equi-prob. 2.5 66.5 6.0 64.0 5.2 49.0 
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Use of a uniform adjustment factor ( },) will thus seriously underestimate the variance of the 
first estimated cell probability. leading to inflation of the error rate of the modified Q-H pro­
cedure. That the nominal error rate Ol = 5 OJo is not exceeded is due to the inherent conser­
vativeness of modified Q-H intervals in the constant design effect case (see Section 5.3). When 
"I = "2 = 0.35, corresponding design effects are d l = d2 = 2.36, di = 1.97, i = 3, ... , 8. 
These are much closer to constant design effects (di = 2.0, i = 1 •... , 8) hence the conser­
vative behaviour of the intervals in this case. It can also be seen from Table 5 that conservative 
ER /s are associated with highly asymmetric error rates. 

Despite the variation in cell design effects implied by the different probability vectors of 
Table 5, it can be seen that the transformed Bonferroni procedures exhibit very stable perfor­
mance. Total error rates (for 50 clusters) are close to the nominal rate (Ol = 5%) for both 
log and logit intervals, and neither exhibits serious asymmetry. Total error rates correspon­
ding to unequal probabilities do decrease with decreasing r over the range r = 50 to r = 15 
when k = 8 (results not shown). Variations in ERr are not severe, however; when r = IS 
clusters the minimum rate for the cases examined is approximately 2%. 

8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

In the search for procedures that take direct account of the survey design and that provide 
adequate control of error rates and error rate symmetry over a wide range of problem and 
clustering situations, Scheffe intervals based on estimated cell variances must be rejected: the 
chi-squared version of equation (3) on the grounds of poor error control, and the F-based 
version on the grounds of extreme asymmetry. Modifications to Quesenberry-Hurst intervals 
are somewhat conservative, though the version based on the first order Rao-Scott correction 
does provide a viable procedure. For Bonferroni intervals, the benefits of using critical points 
of the (-distribution instead of the standard normal are substantial. Even so, intervals based 
on 11' and its square root provide inadequate control of total error rates, particularly for small 
numbers of clusters when the distribution of 11' becomes increasingly non-normal. On the other 
hand, (-based Bonferroni intervals using both the log and logit transformations provide good 
control of total error rates and error rate symmetry, and are clearly superior to all other com­
peting intervals. Both log and logit transformed intervals «(-based) also appear to provide good 
control of error rates and error rate symmetry when the cell probabilities are unequal, differing 
in the cases studied by a ratio (maximum to minimum) of up to sixteen. From the point of view 
of total error rates there is little to choose between the log and logit intervals, though error 
rates for the latter are consistently a little lower. Logit intervals are superior from the point 
of view of symmetry. however. Estimates of confidence interval lengths (detailed results not 
shown) also favour the logit intervals, despite their slightly lower error rates. For example. 
for the equiprobable case with Ol = 5%, k = 5, }, = 2. a = 0.5 and r = 50, the average 
length of the confidence interval on "I (expressed as a 95% confidence interval) was .1915 ± 

.0014 for the log-based interval, and .1850 ± .0014 for the logit-based interval. For the case 
of unequal probabilities, with Ol = 5%. k = 8, }, = 2, a = 0.71, r = 50, "I = 0.65 and 
"2 = 0.05 (see Table 5), 95% confidence intervals for the average lengths of log and logit 
intervals were: for "I> .2865 ± .0012 and .2776 ± .0011. respectively; for "2, .0806 ± .0010 
and .0789 ± .0011, respectively. 

Before final recommendations are made. it is necessary to consider possible limitations 
imposed by the design of the Monte Carlo study. A potentially limiting feature is the use of 
a single specific sampling design, namely two-stage cluster sampling with SRS at the second 
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stage, given that practitioners will encounter data collected using a range of survey designs that 
might include stratification and multiple levels of unit selection. For large samples, the rele­
vant distribution theory requires knowledge only of first and second moments, assuming that 
a suitable central limit theorem applies (see for example Rao and Scott 1981). This study will 
therefore yield valid recommendations for large numbers of clusters, or more generally for 
large numbers of degrees of freedom for variance estimation (Rao and Thomas 1988), as long 
as the covariance matrix V/n and hence the generalized design effects can be appropriately 
modelled. Since the Dirichlet mixture model used in this study yields generalized design effects 
having means and coefficients of variation that are typical of those found in practice, recom­
mendations based on a large number of clusters or degrees of freedom (fifty or more) can be 
made with confidence. For small to moderate numbers of clusters, quantitative results may 
differ from design to design. Since the basic mechanisms underlying the results exhibited in 
this study, namely increasing non-normality of * for decreasing r plus the inherent conser­
vativeness of Scheffe-Iike procedures, will apply in general, it is expected that the qualitative 
trends for the different statistics exantined will be generalizable across a wide variety of designs, 
even when the number of clusters is not large. The basic aim of the study has been to identify 
procedures whose control of error rates is robust to variations in the study parameters, namely 
the number of categories, the number of clusters, the strength of clustering, and the skewness 
of the vector of category probabilities. The combination of parameters examined has covered 
much of the range likely to be encountered in practice, so it is reasonable to suggest that the 
robustness exhibited by the log and logit transformed Bonferroni intervals might extend to 
variations in survey design, for moderate numbers of clusters (or degrees of freedom). Further 
research on this question is clearly required. 

Subject to these caveats, I-based Bonferroni simultaneous confidence intervals based 
on the logit transformation are recommended for assessing up to k = 12 proportions of 
varying magnitude, under realistic clustering conditions. If conservativeness is deemed to be 
an asset, the first-order modified Quesenberry-Hurst procedure can be safely used. Both pro­
cedures require only a knowledge of the variances (or design effects) of the estimated cell 
proportions. 
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Logistic Regression Under Complex 
Survey Designs 

JORGE G. MORELl 

ABSTRACT 

203 

Estimation procedures for obtaining consistent estimators of the parameters of a generalized logistic 
function and of its asymptotic covariance matrix under complex survey designs are presented. A cor­
rection in the Taylor estimator of the covariance matrix is made to produce a positive definite covariance 
matrix. The correction also reduces the small sample bias. The estimation procedure is first presented 
for cluster sampling and then extended to more complex situations. A Monte Carlo study is conducted 
to examine the small sample properties of F-tests constructed from alternative covariance matrices. The 
maximum likelihood estimation method where the survey design is completely ignored is compared with 
the usual Taylor's series expansion method and with the modified Taylor procedure. 

KEY WORDS: Pseudo-likelihood; CPLX procedure; Cluster sampling; Adjusted covariance matrix. 

1. INTRODUCTION 

In the last few years a lot of attention has been given to the problems that arise when chi­
square tests based on the multinomial distribution are applied to data obtained from complex 
sample designs, It has been shown that the effects of stratification and clustering on the chi­
square tests may lead to a distortion of nominal significan~e levels. Holt, Scott and Ewings 
(1980) proposed modified Pearson chi-square statistics tests of goodness-of-fit, homogeneity, 
and independence in two-way contingency tables. Rao and Scott (1981) presented similar tests 
for complex sample surveys, In all these cases, the correction factor requires only the knowl­
edge of variance estimates (or design effects) for individual cells. Bedrick (1983) derived a cor­
rection factor for testing the fit of hierarchical log linear models with closed form parameter 
estimates. Rao and Scott (1984) presented more extensive methods of using design effects to 
ohtain chi-square tests for complex surveys, They generalized their previous results to multi­
way tables. Fay (1985) presented the adjustments to the Pearson and likelihood test statistics 
through a jackknife approach. 

The use of the conditional logistic model, Cox (1970), has become increasingly popular in 
the context of complex survey designs. Under suitable conditions, Binder (1983), proved the 
asymptotic normality of design-based sampling distribution for a family of parameter 
estimators that cannot be defined explicitly as a function of other statistics from the sample. 
His results are applied to binary logistic models. Further applications to the Canada Health 
Survey are also found in Binder et al. (1984), 

Chambless and Boyle (1985) derived a general asymptotic distribution theory for stratified 
random samples with a fixed number of strata and increasing stratum sample sizes, Their 
theoretical results were illustrated with logistic regression and discrete proportional hazard­
smodels, Albert and Lesaffre (1986) discussed the logistic discrimination method for classi­
fying multivariate observations into one of several populations. They restrict their attention 
to discrimination between qualitatively distinct groups. 

I Jorge O. Morel is Assistant Professor of the Department of Epidemiology and Biostatistics, University of South 
Florida, Tampa, Florida 33612. 
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Extensions to the case where the response consists of a polychotomous variable have been 
done by Bull and Pederson (1987) and Morel (1987). They show, by using Taylor's series expan­
sion, that the large sample variance of the beta estimates has the form 

where B- 1 is the covariance matrix that wrongly results from assuming independence and 
multinomial distribution in the response vector, and G is a matrix whose estimation is based 
in the complex survey design. 

More recently, Roberts, Rao and Kumar (1987) showed how to make adjustments that take 
into account the survey design in computing the standard chi-square and the likelihood ratio 
test statistics for logistic regression analysis involving a binary response variable. The 
adjustments are based on certain generalized design effects. Their results can be applied to cases 
where the whole population has been divided into I domains of study, a large sample is obtained 
for each domain, and in each domain a proportion "I, i = I, 2, ... , I, is to be estimated. It 
is assumed 

where XI is a k-vector of known constants derived from the i-th domain and {30 is a k-vector 
of unknown parameters. This procedure may be most useful when only the summary table 
of counts and variance adjustment factors are available, instead of the complete data set. 

In this paper an estimation procedure is presented for obtaining consistent estimators of 
the parameter vector of a generalized logistic model and its asymptotic covariance matrix when 
a complex sampling design is employed. The resulting estimated covariance matrix is always 
positive definite and asymptotically equivalent to the one obtained from Taylor's series expan­
sion. A correction for reducing the small sample bias in the estimated covariance matrix is also 
introduced. It is shown, via a Monte Carlo study, that this correction levels off the inflated 
Type I error that arises from ignoring the complex survey, faster than the Taylor's series expan­
sion. In this sense the correction proposed here produces, for small samples, results that are 
superior to the usual delta-method. 

The new procedure will be termed, henceforth, the CPLX procedure, or simply CPLX. The 
maximum likelihood estimation method and the Taylor's series expansion method will be 
termed MLE and TAYLOR, respectively. The CPLX procedure has been incorporated into 
PC CARP, a personal computer program for variance estimation with large scale surveys, see 
Schnell et al. (1988). 

2. LOGISTIC REGRESSION WITH CLUSTER SAMPLING 

Consider first single-stage cluster sampling where n clusters or primary sampling units 
are taken with known probabilities with replacement from a finite population or without 
replacement from a very large population. Let mj represent the size of the j-th cluster, j = I, 
2, ... , n, and let YJi, f = I, 2, ... , mj denote (d + 1) dimensional classification vectors. The 
vector yJi consists entirely of zeros except for position r which will contain a one if the f-th 
unit selected from the j-th cluster falls in the r-th category. Let Xjl be a k-dimensional row 
vector of explanatory variables associated with the f-th unit selected from the j-th cluster. 
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Then, for each j = I, 2, ... , n, and each £ = I, 2, ... , mj' the expectation of the r-th 
element of Yfi is determined by a logistic relationship as 

d 

'lfjt, = E(yj,,) = [I + E exp(xjl@f)r' exp(xjl@~ r = 1,2, ... , d 
$=1 

= I r=d+1. (2.1) 

Because the expected value function is nonlinear in the parameter vector /30 = (/37', 
@~', ... , @~')', it is necessary to use nonlinear estimation methods. Define the pseudo 10g­
likelihood L.(@) as 

n mj 

L.@ = E E wj(log '!fi)' Yfi, (2.2) 
j=l 1=1 

where '!], = ('lfjt" ... , 'lfjt.d+,) ' and Wj is the sampling weight for thej£-th sampling unit. 
This function can be viewed as a weighted log likelihood function, where the weights are the 
sampling weights and the yfi's are distributed as multinomial random variables. If the 
sampling weights are all one, then (2.2) becomes the log-likelihood function under the assump­
tion that the yfi's are independently mnltinomially distributed. 

Let PPSEUDO be the estimator of (30 that maximizes (2.2). This estimator is a solution to the - -
system of equations 

n mj 

E E Wj G(@,Xjl) [Diag('!Ji)r' (1'], - '!fi) = 0, (2.3) 
j=] t=1 

where 

and ® denotes the Kronecker product. 

The asymptotic normality of ~PSEUDO can be proved by defining the parameters of interest 
implicity as in (2.2) and then by extending the results given in Binder (1983). An alternative 
approach can be derived by making use of the pseudo-likelihood assumption and Proposition I 
in Dale (1986). Binder and Dale both provide the necessary regularity conditions. 

As n increases, 

l:...Ndk(O, lim [H.(@,,)]-' G.[H.W)]-') (2.4) 
n-CI!J 
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where, 
n mj 

Hn(@~ = E E Wj ~(!jt) ®XJtXjh 

)=1 f=L 

n mj 

Un(@~ = E E Wj(YH - ?Dt) ®XJi' 
)=1 £=1 

n mj 
Gn = E E wJVar(Yj,) 0xj,Xjl, 

j=l (=1 

Yjl and '!jl are the vectors yJi and '!Ji, without their last elements, respectively and Ndk 
denotes a dk-multivariate normal distribution. 

Neider and Wedderburn (1972) have shown that under binomial assumption, the pseudo 
log-likelihood function (2.2) can be solved by an iterative weighted least-squares procedure. 
Haberman (1974, p.48) shows that under regularity conditions a modified Newton-Raphson 
converges to the maximum likelihood estimator for the multinomial case. His proof does not 
depend on the existence of any consistent estimator of pO which allows the iterative algorithm 
to be initialized at ~ = O. Jennrich and Moore (1975) proved that when the multinomial 
assumption holds, the common Gauss-Newton algorithm for finding the maximum likelihood 
estimator of @o becomes the Newton-Raphson algorithm. Because of this equivalence of those 
algorithms and because a modified Newton-Raphson procedure always converge, we have 
adopted the modified Gauss-Newton algorithm described by Gallant (1987, p.318). 

CPLX first finds ~PSEUDO using an iterative procedure in which the estimate of @o at the 
q-th step is 

~[q.i(q)1 = ~[q-l.i(q-l)1 

where i(q) is a nonnegative integer such that 

(2.6) 

The modification of the iteration algorithm provided by i (q) guarantees the convergence of 
the procedure. The iteration is initiated by setting ~(O) = O. The algorithm is declared to have 
converged when the condition 

Ln(~[q.i(q)J) - Ln(~[q-l.i(q-l)l) 
ILn(~[q.i(q)l) I + 10-5 

is satisfied, where f can be 10-8. 

< f (2.7) 
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Observe that a consistent estimator of H.(flo) is H.(~PSEUDO) and a distribution free 
estimator of G. is 

(2.8) 
j=l 

where 
mj 

dj = E Wj(Yjl - 'I!il) ® xJ" 
1=1 

and a = n- I E7=1 dj • If within each cluster, the Yfl's are independent and identically 
distributed according to a multinomiw random vector with parameters (!.r. I), then it can be 
easily shown that the expectation of G. is precisely H.(flo). In practice the !jl'S in (2.8) are 
replaced with !jl where *'jlr is defined as in (2.1) with SPSEUDO substituted by flO, and a small 
correction is applied to obtain the estimator 

• (). = (nO - k)-I (nO - I) (n - I)-In E (dj - a) (dj - a)', (2.9) 

j=l 

where 
mj 

dj = E Wj(Yjl - !j/) ® x J" 
t=l 

• • a = n- I E dj and nO = E mj' 
j=l j=1 

The factor 

(nO - k)-I (nO - I) (n - 1)-1 n 

reduces to (n - k) -In if each cluster contains exactly one element. The factor (n - k) -In 
is the degrees of freedom correction applied to the residual mean square for ordinary least 
squares in which k parameters are estimated. The quantity in (2.9) is well defined for two or 
more clusters and the factor (nO - k) -I (nO - 1) should reduce the small sample bias 
associated with using the estimated function to calculate deviations. Therefore, a consistent 
estimator of the asymptotic covariance matrix of ~PSEUDO under the cluster sampling design is 

which can be used to test any hypothesis of the form Ho: C fJo = 0·. Under the null 
hypothesis, by Moore (1977) 

... 
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converges in law to a chi-square distribution with v = rank (C An C') degrees of freedom. 
Here, [C An C' J -I is any generalized inverse of CAn C'. 

The sums of squares and products matrix used in the construction of (}n is based on n 
observations, where n is the number of clusters. By analogy to the Hotelling T2 statistic, it is 
natural to adjust for degrees of freedom by multiplying (2.11) by the ratio 

n - v 
(2.12) 

v(n - I) 

to obtain an approximate F statistic with v and n - v degrees of freedom. In our case, this 
adjustment has the disadvantage that v may exceed n in a sample with a small number of clusters 
but a large number of individual elements. 

The covariance matrix constructed as if the elemental observations are a simple random 
sample is biased, but it can be used to make a small sample adjustment in the estimated 
covariance matrix. One might view the usual small sample degrees-of-freedom adjustment 
as the operation of adding to an initial estimator of the covariance matrix the quantity 
(n - v) -I V V, where V is also an estimator of the covariance matrix. In the usual case, V 
is also the initial estimator. In our case, we make the adjustment using the covariance matrix 
based on the elements as the second V. In our case, the use of the elemental covariance matrix 
has the advantage that the reSUlting sum is always positive definite. The adjustment is a func­
tion of the number of parameter estimated, dk. The adjustment is 

(I) if n > 3dk - 2 

(2.13) 

(2) if n s 3dk - 2 

(2.14) 

where r' = max(l,tr( [Hn(~psEuDO) 1 -I (}n )/dk). The upper bound of 0.5 for correction in 
(2.14) is arbitrary. Then, an approximateF-test with v and n - v degrees offreedom is obtained 
by substituting An for An in (2.11) and dividing the resulting quadratic form by v. In practice, 
the approximate degrees of freedom can be taken to be v and infinity. 

3. A MONTE CARLO STUDY 

In this section a Monte Carlo study is conducted to examine properties of F-Tests (2.11) 
involving model parameters. Data are generated under two different sampling schemes that 
correspond to single-stage cluster sampling where the primary units all have the same sampling 
weight and are taken from an infinite population. In the first sampling scheme all the elements 
within the cluster have the same explanatory vector x and therefore, the same conditional mean 
(2.1). This is the case where the logistic regression becomes weighted in the sense of several 
responses y's with the same covariate vector x. Different degrees of intra-class correlation are 
induced among the y's belonging to the same cluster. 
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The second sampling scheme, unlike the first, places different vectors of covariates for dif­
ferent subjects within the cluster. The conditional mean (2.1) is also satisfied and different 
degrees of intra-class correlation are controlled. The effect of the intra-class correlation is 
studied for both sampling schemes under three different estimation procedures: MLE where 
the clustering effect is completely ignored, TAYLOR where the large sample covariance matrix 
(2.10) is used, and CPLX where the adjusted covariance matrix (2.13-2.14) is employed. These 
last two procedures, for large samples, are asymptotically equivalent. For small samples CPLX 
performs better than TAYLOR. 

3.1 Sampling Scheme I 

Suppose that XI> X2, ••• , x. are k-dimensional independent and identically distributed 
normal random vectors with vector mean ~ and covariance matrix ~. For each j, 
'-12 h' h d 00 0 'd J - , , ... , n, suppose t at gIven Xi' t e ran om vectors YjO, Yjl, ... , Yj,m. are In epen-
dent and identically distributed multinomial random vectors, with parameters (1£]. I), where 
1!! satisfies the logistic function (2.1) evaluated at the true parameter vector fl" and atx = Xj' 

Let Ujl> Uj2, ... , Uj•mj be a set of independent and identically distributed uniform (0, I) 
random variables. For a known and fixed I, 0 :s 1:S I, define 

(3.1.1) 

and 

(3.1.2) 

i = 1,2, ... mj' 

It can be shown that within the j-th cluster, 

(3.1.3) 

Cov(.v!r, Y7t) = 6(1£7) if i = t, (3.1.4) 

and 

(3.1.5) 

Therefore, given Xj' the random vector tj = E ~J I Y!r does not have a multinomial distribu­
tion. Instead 

(3.1.6) 

and 

(3.1.7) 
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where f represents the intra-cluster correlation. Furthermore, if the m/s are constant, i.e., 
mj = m, the factor <I> = [I + f(m - I)] corresponds to the design effect defined by Kish 
(1965, p.258). An estimate of the design effect <I> is 

dk 

4> = (dk) -I [E d(i.i)/!i(i.i»)W- I , (3.1.8) 
t=] 

wher~ d(i.i) and !i(i.i) represent the (i,i)-th elements of An in (2.13)-(2.14) and 
[Hn(~psEuDO) )-1, respectively, and w is the average of the sampling weights for the entire 
sample. 

Under this sampling scheme, data (Xj' yJ,), j = I, 2, ... , n, £ = 1, 2, ... , m, were 
generated with k = 4, d = 3, m = 21, and parameters 

g= (1,-2,1,5)', (3.1.9) 

!;= Diag(O, 25, 25, 25), (3.1.10) 

~y = (-0.3, -0.1,0.1,0.2), (3.1.11) 

~~ = (0.2, - 0.2, - 0.2, 0.1), (3.1.12) 

and 

~~ = (-0.1,0.3, -0.3,0.1). (3.1.13) 

Based on (3.1.9)-(3.1.13), 1000 sets of samples with n clusters of size m, were generated 
according to (3.1.1)-(3.1.2) for different values of n, f, and <1>. The estimated Type I errors 
obtained from comparing the F-tests of Ho: fJ = fJo against F(12, "'; 0.05) = 1.753 were 
computed under the three different estimation procedures: MLE, CPLX and TAYLOR. A 
measure of the distortion of the estimated Type I errors relative to the nominal 0.05 is the 
relative bias which is defined as 

(0.05)"' 1 Estimated Type I error - 0.05 I. (3.1.14) 

Relative biases of the estimated Type I errors are reported in Table 3.1. For data gener­
ated with no intra-class correlation, (r2 = 0) the MLE procedure, as it is expected, provides 
small relative bias of the estimated nominal 5.,. level. CPLX produces in this case relative 
biases slightly greater than MLE. This is the penalty of estimating extra parameters in 
(2.13-2.14). 

The MLE procedure shows a strong distortion of the estimated Type I error when a positive 
intra-class correlation is present. This distortion increases as the intra-class correlation r2 gets 
bigger. In the case where f = 0.15 (<I> = 4) the relative bias of the estimated Type I error is 
about 18 indicating an inflated Type I error of about 95%. For the CPLX procedure, the 
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Table 3.1 

Relative Bias of the Estimated Type I Error for the F-test of Ho: {3 = f30 
with nominal 0.05 Level under Sampling Scheme I - -

Procedure 

n MLE CPLX TAYLOR 

20 0.00 1 0.24 0.60 16.42 
20 0.05 2 9.66 3.68 17.06 
20 0.10 3 15.24 3.98 17.44 
20 0.15 4 17.74 4.00 17.70 

30 0.00 1 0.08 0.06 12.82 
30 0.05 2 9.84 1.20 13.74 
30 0.10 3 15.52 1.76 14.22 
30 0.15 4 17.74 1.86 14.68 

40 0.00 0.04 0.32 9.66 
40 0.05 2 9.98 0.82 9.62 
40 0.10 3 16.20 1.02 11.66 
40 0.15 4 17.74 1.80 11.66 

SO 0.00 1 0.06 0.50 7.40 
50 0.05 2 9.76 1.44 8.38 
50 0.10 3 16.00 1.96 9.32 
50 0.15 4 17.80 2.20 9.70 

100 0.00 I 0.06 0.90 2.68 
100 0.05 2 10.02 1.66 3.90 
100 0.10 3 16.26 2.06 4.70 
100 0.15 4 17.78 2.24 5.10 

200 0.00 0.02 0.74 1.28 
200 0.05 2 10.46 1.00 1.64 
200 0.10 3 16.30 0.88 1.88 
200 0.15 4 18.00 1.52 2.12 

400 0.00 1 0.02 0.44 0.70 
400 0.05 2 10.14 0.66 0.90 
400 0.10 3 16.56 0.64 1.00 
400 0.15 4 17.86 0.56 0.84 

800 0.00 0.08 0.32 0.40 
800 0.05 2 10.36 0.22 0.36 
800 0.10 3 16.04 0.68 0.80 
800 0.15 4 18.12 0.50 0.54 
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relative bias decreases as the sample size increases from n = 20 to the cutting point of correc­
tion (2.14) which is 34 in this case. Then it slightly increases as the sample size approaches 
n = 100 and then decreases as the sample size keeps getting bigger. This pattern will be observed 
throughout the whole simulation. It represents the effect of the correction (2.13-2.14) in small 
samples. 

The Taylor procedure has large relative biases when the sample sizes are small. It varies from 
17 to 7 for sample sizes between n = 20 and n = 50. For large samples both methods CPLX 
and TAYLOR, provide as expected, similar results. In general, the CPLX shows relative biases 
smaller than the TAYLOR method. 

If the F statistics used for testing H o: (3 = (30 are multiplied by the number of parameters 
being tested, the resulting statistic is distributed as a chi-square random variable with 12 degrees 
of freedom. The Monte Carlo means and variances for these chi-square statistics are presented 
in Table 3.2. 

As e,!pected, the MLE method produces means and variances around 12 and 24, respec­
tively, when the design effect'" is one. CPLX has in this case means around 12 with greater 
variances that decrease when the sample size gets bigger. However, in the presence of any intra­
class correlation, the means and variances under MLE are too large, while CPLX shows con­
sistency with the asymptotic theory and the correction introduced in (2.13-2.14). The TAYLOR 
method has extremely high variances when the sample size is small. A possible explanation 
for this is that in some replications of the simulation the covariance matrix (2.10) was iII- con­
ditioned producing very large quadratic forms for (2.11). This problem attenuates when the 
sample size is bigger. Both methods, CPLX and TAYLOR, become asymptotic equivalent for 
large samples. 

Monte Carlo properties for the estimator (3.1.8) of the design effect are presented in Table 
3.3 for both CPLX and TAYLOR methods. The CPLX procedure shows smaller biases and 
slightly large standard errors. Both methods perform fairly well. 

For each category r, r = I, 2, 3 and each covariate s, s = I, 2, 3, 4, "t" statistics for the 
individual coefficient estimates were also computed as 

(3.1.15) 

The twelve "t"statistics provided by the CPLX estimation procedure were grouped together 
and the simulated percentiles were computed. Similar computations were performed for the 
MLE "t" statistics. Consequently, for each run the percentiles are based on 12,000 "t" values. 
Once these percentiles were calculated, the relative biases were estimated as 

(Standard Normal Percentile) - 'I Estimated Percentile - Standard Normal Percentile I. 
(3.1.16) 

The results of the relative bias for the estimated 5th and 95th percentiles for the "t" statistics 
are presented in Table 3.4 for both MLE and CPLX procedures. Under the MLE it is expected 
that these relative biases be close to ",0.' - 1. This is true because the "t" statistics under 
MLE are inflated by the factor ",0.'. This is clearly seen in Table 3.4 under the two columns 
for the MLE percentiles. The CPLX procedure has satisfactory relative biases for small sample. 
These biases become negligible, as expected, when the sample sizes get bigger. 
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Table 3.2 

Monte Carlo Properties of the Chi-square Statistic of Ho: {j = IJ" 
under Sampling Scheme I --

Procedure 

MLE CPLX TAYLOR 

n Mean Variance Mean Variance Mean Variance 

20 0.00 I 1l.5 22.2 12.0 32.7 81.9 12xlO' 
20 0.05 2 23.9 134.3 16.5 81.2 116.6 8x10' 
20 0.10 3 34.2 239.9 16.6 77.8 94.5 12x10' 
20 0.15 4 43.8 403.2 17.3 89.3 140.3 19xIO' 

30 0.00 1 1l.8 25.1 11.2 28.5 35.1 702.3 
30 0.05 2 23.8 121.4 13.2 41.2 34.1 691.6 
30 0.10 3 35.8 268.1 13.8 46.3 41.2 12x10' 
30 0.15 4 46.7 450.1 14.1 51.1 44.5 16x10' 

40 0.00 1 12.2 24.3 11.9 30.3 25.8 268.3 
40 0.05 2 23.2 96.5 12.6 33.6 25.4 201.4 
40 0.10 3 35.4 247.7 13.5 43.3 29.1 340.4 
40 0.15 4 46.2 428.9 13.8 44.4 30.2 331.4 

50 0.00 1 11.9 25.5 12.4 34.6 21.0 140.8 
50 0.05 2 23.9 112.5 13.7 43.8 22.7 153.6 
50 0.10 3 35.8 231.0 14.3 46.0 24.6 195.8 
50 0.15 4 46.7 424.0 14.5 55.4 25.2 234.6 

100 0.00 1 12.1 23.6 13.2 35.0 15.8 55.0 
100 0.05 2 23.9 102.6 13.8 39.2 16.5 62.1 
100 0.10 3 36.5 233.9 14.6 47.0 17.6 75.8 
100 0.15 4 47.5 350.4 14.6 43.0 17.9 70.6 

200 0.00 1 11.7 24.1 12.6 32.4 13.6 38.2 
200 0.05 2 23.9 93.9 13.1 33.1 14.1 39.1 
200 0.10 3 35.7 194.1 13.3 31.5 14.3 37.4 
200 0.15 4 48.0 399.6 13.5 35.7 14.6 42.7 

400 0.00 1 1l.9 24.9 12.3 29.3 12.7 31.3 
400 0.05 2 24.1 96.6 12.7 29.2 13.1 31.3 
400 0.10 3 36.9 208.5 13.1 29.2 13.6 31.4 
400 0.15 4 47.3 390.7 12.7 31.6 13.1 34.0 

800 0.00 11.9 24.0 12.1 26.4 12.3 27.2 
800 0.05 2 24.0 99.3 12.3 27.3 12.5 28.2 
800 0.10 3 36.4 239.3 12.6 30.1 12.8 31.1 
800 0.15 4 48.7 396.3 12.6 26.7 12.7 27.5 
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Table 3.3 

Monte Carlo Properties of ~ under Sampling Scheme I 

Procedure 

CPLX TAYLOR 

ReI. S.E. Rei. S.E. n Bias Bias 

20 0.00 I 0.28 0.23 0.23 0.22 
20 0.05 2 0.01 0.63 0.35 0.48 
20 0.10 3 0.07 0.93 0.40 0.70 
20 0.15 4 0.15 1.15 0.46 0.85 

30 0.00 I 0.33 0.22 0.17 0.20 
30 0.05 2 0.14 0.62 0.25 0.47 
30 0.10 3 0.08 0.88 0.30 0.66 
30 0.15 4 0.04 1.18 0.33 0.90 

40 0.00 I 0.26 0.18 0.14 0.18 
40 0.05 2 0.14 0.53 0.19 0.42 
40 0.10 3 0.10 0.83 0.22 0.67 
40 0.15 4 0.07 1.13 0.25 0.91 

50 0.00 I 0.18 0.18 0.11 0.17 
50 0.05 2 0.09 0.48 0.16 0.41 
50 0.10 3 0.07 0.75 0.18 0.64 
50 0.15 4 0.04 0.97 0.21 0.83 

100 0.00 I 0.07 0.13 0.06 0.13 
100 0.05 2 0.04 0.34 0.08 0.32 
100 0.10 3 0.01 0.54 0.10 0.51 
100 0.15 4 0.01 0.69 0.11 0.65 

200 0.00 I 0.03 0.10 0.03 0.09 
200 0.05 2 0.02 0.25 0.04 0.24 
200 0.10 3 O.oJ 0.38 0.05 0.36 
200 0.15 4 0.01 0.49 0.05 0.48 

400 0.00 I O.oJ 0.07 0.01 0.07 
400 0.05 2 0.01 0.19 0.02 0.19 
400 0.10 3 0.00 0.27 0.02 0.27 
400 0.15 4 0.00 0.37 0.02 0.37 

800 0.00 I 0.01 0.05 0.01 0.05 
800 0.05 2 0.00 0.13 0.01 0.13 
800 0.10 3 0.00 0.19 0.01 0.18 
800 0.15 4 0.00 0.24 0.01 0.24 
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Table 3.4 

Relative Bias of the Estimated 5th and 95th Percentiles for the "r" Statistics 
for the Coefficient Estimates under Sampling Scheme I 

Procedure 

MLE CPLX 
Percentile Percentile 

n ",0.5 _ I 5th 95th 5th 95th 

20 0.00 0.00 0.02 0.00 0.10 0.09 
20 0.05 0.41 0.40 0.38 0.04 0.02 
20 0.10 0.73 0.68 0.65 0.07 0.04 
20 0.15 1.00 0.84 0.79 0.07 0.04 

30 0.00 0.00 0.00 0.02 0.10 0.09 
30 0.05 0.41 0.43 0.38 0.01 0.02 

~ 30 0.10 0.73 0.73 0.70 0.02 0.01 
30 0.15 1.00 0.97 0.91 0.01 0.01 

40 0.00 0.00 0.01 0.01 0.07 0.08 
40 0.05 0.41 0.38 0.41 0.03 0.02 
40 0.10 0.73 0.70 0.72 0.03 0.01 
40 0.15 1.00 0.96 0.93 0.01 0.03 

50 0.00 0.00 0.01 0.01 0.05 0.07 
50 0.05 0.41 0.43 0.40 0.00 0.01 
50 0.10 0.73 0.71 0.70 0.01 0.00 
50 0.15 1.00 0.97 0.96 0.Q2 0.01 

100 0.00 0.00 0.00 0.02 0.01 0.00 
100 0.05 0.41 0.42 0.42 0.02 0.01 
100 0.10 0.73 0.71 0.74 0.01 0.Q3 
100 0.15 1.00 1.03 0.99 0.04 0.04 

200 0.00 0.00 0.01 0.01 0.00 0.00 
200 0.05 0.41 0.42 0.43 0.01 0.01 
200 0.10 0.73 0.71 0.72 0.01 om 
200 0.15 1.00 1.00 1.00 0.02 0.Q2 

400 0.00 0.00 0.01 0.01 0.01 0.01 
400 0.05 0.41 0.39 0.40 0.01 0.00 
400 0.10 0.73 0.76 0.77 0.03 0.04 
400 0.15 1.00 1.02 0.89 0.02 0.00 

800 0.00 0.00 0.00 0.01 0.00 om 
800 0.05 0.41 0.43 0.44 0.01 0.02 
800 0.10 0.73 0.76 0.70 0.02 0.01 
800 0.15 1.00 1.07 1.04 0.04 0.02 
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3.2 Sampling Scbeme II 

Let XI, X2, ••• , x. be a set of k·dimensional independent and identically distributed normal 
random vectors witb vector mean I!: and covariance matrix ~B' Tbese vectors X represent 
cluster means for tbe explanatory variables in tbe logistic function (2.1). Suppose tbat for tbe 
J-th cluster, J = 1,2, ... , n, xJo, xJ" ... , xY,m. are independent and identically distributed 
normal random vectors witb vector mean Xj an~ covariance matrix ~w. Given xJ" e = 0, I, 
•.• , mj' the (d + I)-dimensional random vector yJ, has a multinomial distribution with 
parameters (l!"J" 1), where the elements of l!"J, satisfy the logistic function (2.1) evaluated at 
the true parameter vector ~o and at X = xJ,. Furthermore, suppose tbat given tbe xJt's, the 
yJt'S are independent. 

Let ~I' ~~, ... , ~.m· be mj independent and identically distributed uniform (0,1) random 
variables tbat are also jointly independent from the xJ,' s and from the yJ,' s . Let I be a fixed 
and known number, 0 sIs 1. Tben define (Xjb Y!iJ, £ = I, 2, ... , mj in the following 
way: 

(3.2.1) 

and 

(3.2.2) 

Observe tbat witbin eacb cluster, tbe xjt's all have tbe same vector of conditional means Xj 

and that tbe covariance matrix between Xjt and Xjt is ~w if £ = t and 12 ~w otberwise. Also, 
note tbat the conditional mean of eacb y!t is the logistic function (2.1) evaluated at ~o and 
X = Xjb and that tbe vectors (Xjb yfl), £ = I, 2, ... , mj' exbibit an intra-class correlation of 
12 and an approximate design effect of q, = [1 + 12 (m - 1) 1 when all the m/ s are 
constant. 

Data (Xjb Y!t), J = I, 2, ... , n, £ = 1, 2, ... , mj' were generated under this cluster 
sampling scheme with k=4, d=3, and parameters 

I!: = (I, -6,4,8)', (3.2.3) 

~B = Diag(O, 25, 25, 49), (3.2.4) 

~w = Diag(O, 25, 36,36), (3.2.5) 

~y = (0.30, -0.05, -0.06,0.08), (3.2.6) 

(30 _2 = (0.06, -0.08, -0.10,0.07), (3.2.7) 

and 

~g = (0.70, -0.08, -0.10,0.11), (3.2.8) 
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Based on (3.2.3)-(3.2.8), 1000 sets of samples with n clusters of size mj = m = 6, were 
generated according to (3.2.1)-(3.2.2) for different values of n, f and <1>. The relative biases 
defined in (3.1.14) of the estimated Type I errors from comparing theF-tests of Ho: @ = @o 
against F(12, 00; 0.05) = 1.753 are presented in Table 3.5 under three different estimation 
techniques: MLE, CPLX and TAYLOR. 

In the presence of intra-class correlation, there is a strong distortion of the Type I error for 
MLE even in the case where f is relatively small (f = 0.2) for cluster size m = 6 . This 
distortion is reflected in the relative bias which ranges from approximately 7 to 18. These values 
indicate inflated Type I errors between 4Oor. and 95 or •. The CPLX procedure provides satisfac­
tory relative biases even for the case of small samples. The TAYLOR procedure has too high 
values for small samples. It becomes equivalent to CPLX for large samples. One more time 
CPLX seems to be superior to TAYLOR when the sample size is small. 

Table 3.5 

Relative Bias of the Estimated Type 1 Error for the F-test of Ho: {J = {30 
with Nominal 0.05 Level under Sampling Scheme II - -

Procedure 

n MLE CPLX TAYLOR 

20 0.0 1 0.54 0.46 13.52 
20 0.2 2 7.30 0.46 12.96 
20 0.4 3 13.70 0.68 13.96 
20 0.6 4 17.08 0.60 14.72 

30 0.0 1 0.28 0.78 7.78 
30 0.2 2 8.72 0.72 8.16 
30 0.4 3 14.84 0.72 9.32 
30 0.6 4 17.50 0.82 9.23 

40 0.0 1 0.36 0.56 5.16 
40 0.2 2 9.28 0.56 5.76 
40 0.4 3 15.38 0.64 5.84 
40 0.6 4 17.76 0.70 5.80 

50 0.0 1 0.44 0.56 3.44 
50 0.2 2 9.34 0.08 4.86 
50 0.4 3 15.48 0.38 4.36 
50 0.6 4 17.56 0.46 4.16 

100 0.0 1 0.16 0.04 1.26 
100 0.2 2 9.46 0.26 1.46 
100 0.4 3 15.94 0.44 2.00 
100 0.6 4 18.16 0.14 1.46 

200 0.0 1 0.10 0.26 0.76 
200 0.2 2 10.20 0.34 0.82 
200 0.4 3 16.22 0.02 0.48 
200 0.6 4 18.06 0.06 0.52 
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Table 3.6 

Monte Carlo Properties of the Chi·square Statistic of Ho! fl = flo 
under Sampling Scheme II --

Procedure 

MLE CPLX TAYLOR 

n f Mean Variance Mean Variance Mean Variance 

20 0.0 11.3 18.9 10.2 19.7 40.5 15xlO' 
20 0.2 2 20.3 62.8 10.5 21.4 39.2 IIx10' 
20 0.4 3 28.3 106.4 10.5 18.4 111.3 42x1O' 
20 0.6 4 35.2 152.6 10.3 18.2 IIx10' 50xlO' 

30 0.0 11.6 21.6 9.4 16.3 22.0 147.3 
30 0.2 2 21.8 75.2 9.9 17.5 22.7 161.2 
30 0.4 3 30.4 117.6 9.8 16.5 24.3 224.6 
30 0.6 4 39.3 191.0 9.5 14.5 24xlO' 60x10' 

40 0.0 1 11.6 21.3 9.9 19.4 18.1 86.7 
40 0.2 2 22.4 76.5 10.4 18.3 18.9 80.8 
40 0.4 3 31.8 153.2 10.2 17.8 19.2 90.4 
40 0.6 4 41.4 223.1 10.1 16.9 19.3 104.4 

SO 0.0 1 11.5 19.9 10.6 20.0 16.1 56.9 
SO 0.2 2 22.7 80.6 11.4 23.9 17.5 70.9 
SO 0.4 3 32.3 160.1 11.1 22.9 17.4 73.7 
SO 0.6 4 41.7 262.3 10.7 19.7 17.0 63.8 

100 0.0 1 11.8 21.5 11.8 25.2 13.9 36.2 
100 0.2 2 22.9 87.3 11.9 27.0 14.0 38.5 
100 0.4 3 34.7 191.8 12.3 27.9 14.4 40.7 
100 0.6 4 45.1 297.7 12.0 25.0 14.1 37.2 

200 0.0 1 12.0 23.8 12.1 26.3 13.0 30.3 
200 0.2 2 24.0 88.6 12.4 25.9 13.3 30.0 
200 0.4 3 34.5 175.2 12.0 23.3 12.8 27.0 
200 0.6 4 46.8 320.0 12.2 24.0 13.0 27.9 

Monte Carlo properties ofthe chi-square statistics of Ho! fl = flO (chi-square = 12 x F) 
are presented in Table 3.6 for the three estimation procedures under study. CPLX shows means 
and variances slightly below 12 and 24, respectively, when the sample sizes are small. This 
underestimation vanishes when the sample size increases. The TAYLOR procedure has too 
large means and variances when the sample size is small. For instance, for f = 0.6, the 
variance is in the order of billions when n is 30 or less. For large samples, both CPLX and 
TAYLOR, seem to provide similar results. The MLE method has acceptable results only when 
f = 0.00. Otherwise the estimated mean and variances are too large. 
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Table 3.7 

Monte Carlo Properties of :j, under Sampling Scheme II 

n 

20 0.0 I 
20 0.2 2 
20 0.4 3 
20 0.6 4 

30 0.0 I 
30 0.2 2 
30 0.4 3 
30 0.6 4 

40 0.0 
40 0.2 2 
40 0.4 3 
40 0.6 4 

50 0.0 
50 0.2 2 
50 0.4 3 
50 0.6 4 

100 0.0 I 
100 0.2 2 
100 0.4 3 
100 0.6 4 

200 0.0 
200 0.2 2 
200 0.4 3 
200 0.6 4 

ReI. 
Bias 

0.48 
0.16 
0.05 
0.01 

0.49 
0.25 
0.19 
0.16 

0.38 
0.22 
0.16 
0.16 

0.27 
0.15 
0.12 
0.11 

0.12 
0.06 
0.05 
0.06 

0.05 
0.03 
0.D2 
0.02 

CPLX 

Procedure 

S.E. 

0.22 
0.53 
0.87 
1.24 

0.18 
0.48 
0.84 
1.12 

0.16 
0.45 
0.70 
0.98 

0.14 
0.42 
0.67 
0.89 

0.10 
0.32 
0.50 
0.59 

0.07 
0.24 
0.34 
0.40 

ReI. 
Bias 

0.04 
0.26 
0.34 
0.39 

0.02 
0.19 
0.24 
0.27 

0.02 
0.14 
0.20 
0.19 

0.02 
0.12 
0.15 
0.16 

0.01 
0.07 
0.D7 
0.D7 

om 
0.D3 
0.04 
0.D3 

TAYLOR 

219 

S.E. 

0.20 
0.42 
0.72 
1.03 

0.16 
0.40 
0.69 
0.94 

0.14 
0.38 
0.60 
0.86 

0.13 
0.37 
0.60 
0.81 

0.10 
0.31 
0.48 
0.57 

0.07 
0.23 
0.33 
0.40 

Monte Carlo properties for the estimator of the design effect proposed in (3.1.8) are 
presented in Table 3.7 under the CPLX and TAYLOR procedures. The TAYLOR procedure 
seems to perform slightly better than CPLX for small samples. Both procedures, in general, 
provide reasonable values. They seem to be equivalent for large samples. 
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Table 3.8 

Relative Bias of the Estimated 5th and 95th Percentiles for the "/" Statistics 
for the Coefficient Estimates under Sampling Scheme II 

Procedure 

MLE CPLX 
Percentile Percentile 

n ",0.5 _ I 5th 95th 5th 95th 

20 0.0 0.00 0.01 0.00 0.15 0.18 
20 0.2 0.41 0.37 0.32 0.06 0.09 
20 0.4 0.73 0.63 0.57 0.02 0.05 
20 0.6 1.00 0.79 0.74 0.05 0.05 

30 0.0 0.00 0.02 0.00 0.15 0.16 
30 0.2 0.41 0.39 0.38 0.10 0.10 
30 0.4 0.73 0.68 0.63 0.07 0.08 
30 0.6 1.00 0.91 0.86 0.05 0.07 

40 0.0 0.00 om 0.00 0.12 0.15 
40 0.2 0.41 0.39 0.40 0.10 0.06 
40 0.4 0.73 0.65 0.60 0.07 0.09 
40 0.6 1.00 0.99 0.89 0.04 0.05 

50 0.0 0.00 0.01 0.01 0.10 0.10 
50 0.2 0.41 0.39 0.40 0.05 0.04 
50 0.4 0.73 0.73 0.72 0.02 0.01 
50 0.6 1.00 1.00 0.95 0.00 0.01 

100 0.0 0.00 0.01 0.01 0.04 0.05 
100 0.2 0.41 0.40 0.37 0.02 0.02 
100 0.4 0.73 0.72 0.73 0.00 0.00 
100 0.6 1.00 1.00 1.02 0.01 0.02 

200 0.0 0.00 0.02 0.01 0.00 0.01 
200 0.2 0.41 0.40 0.45 0.01 0.02 
200 0.4 0.73 0.71 0.68 0.01 0.01 
200 0.6 1.00 1.03 0.95 0.02 0.02 

The relative biases (3.1.16) of the 5th and 95th percentiles of the "I" statistics (3.1.15) are 
presented in Table 3.8 under the MLE and CPLX procedures. MLE has a relative bias, as 
expected, close to zero in the absence of intra-class correlation. This bias increases when the 
t2 gets bigger. On the other hand, CPLX has small relative bias in general and for large sample 
this bias becomes negligible. 
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A generalization of CPLX procedure to stratified sampling can be done as follows. Sup­
pose that the population has been divided into i = I. 2 •...• L strata. Let mij represent the 
size of thej-th cluster in the i-th stratum. ni the number of clusters selected in the i-th stratum. 
and Yij, the multinomial response of the £-th element in the j-th cluster in the i-th stratum. 
f = 1,2, ... , mu,j = 1,2, ... , ni, i = 1,2, ... , L. It is assumed that ?EOt. the expected value 
of Yij,. satisfies the logistic relationship (2.1) for a given explanatory vector Xijl' 

A consistent estimator of (to. say ~PSEUOO. can be found by maximizing the function 

L nj mij 

Ln ((t) = E E E wiJ(log ?!'u,) , yu,· (4.1) 
;=1 j=1 1=1 

Algorithm (2.5) is performed with three indexes i.j. i. The adjustment given by (2.13) and (2.14) 
is applied with 

L 

n = E nj, (4.2) 
;=1 

L nj mij 

Hn(~psEUoO) = E E E Wij .1 (!U,) ® Xij,Xij,. (4.3) 
;=1 j=l f=l 

L nj" .... 

(; = [(nO - k) -I (nO I)] E (ni - 1)-lni(1 -Ji) E (iiij - ili)(iiij - ili)'. (4.4) 

'=1 j=) 

mij 

tlU = E Wjj(Yij/ - !ijf) ® Xijr. 
t=1 

ni 

iI; = n;-l E aib 
j=l 

Ji = sampling rate of i-th stratum, and 

L nj 

nO = E E mij' 
;=) )=1 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

The estimation procedure can be extended in a stepwise manner to multi-stage sampling 
designs by maximizing (4.1) up to elemental units. The summation of (4.3) should be extended 
in order to include all the final sampling units. The key part is (4.4). The construction of (; 
must be based on the complex survey. This could be a difficult task for mUlti-stage sampling. 
Results for stratified two-stage sampling are presented in Fuller. et al. (1986. p. 82). 
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5. SUMMARY 

In this paper, we have outlined a methodology for obtaining asymptotic normal estimators 
of the parameters of a generalized logistic function involving a multinomial response variable 
under complex survey designs. A consistent estimator of the asymptotic covariance matrix under 
the complex sampling design is (2.10), which results from the usual Taylor's series expansion. 
This covariance matrix produces for large samples correct Type I errors for the F-tests involving 
model parameters. More important, itis shown that correction (2.13-2.14) provides a covariance 
matrix that reduces the small sample bias. This adjusted covariance matrix has some important 
characteristics: 

I. It levels off the inflated Type I error, originated from ignoring the complex survey, 
faster than the usual delta-method. 

2. It is positive definite when H. (~PSEUDO) is positive definite regardless if (2.9) is 
singular or not. 

3. It is asymptotic equivalent to (2.10). 

The results of a Monte Carlo study were reported in Section 3. Data satisfying the logistic 
conditional mean (2.1) were generated under two different single-stage cluster sampling 
schemes. It was studied, among other things, the effect of the intra-class correlation and the 
design effect on the relative biases of the estimated Type I errors for theF-tests of Ho: {j = {jo. 

The simulation showed, as expected, a strong relative bias when the naive maximum likelihood 
method is employed. For small samples, the Monte Carlo results favor the use ofthe adjusted 
covariance matrix over the one that arises from the usual delta-method. 
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Continuous Randomization 
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ABSTRACT 
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A randomized response model for sampling from dichotomous populations is developed in this paper. 
The model pemiits the use of continuous randomization and m~ltiple trials per respondent. The special 
case of randomization with normal distributions is considered. and a computer simulation of such a 
sampling procedure is presented as an initial exploration into the effects such a scheme has on the amount 
of information in the sample. A portable electronic device is discussed which would implement the 
presented model. The results of a study taken. using the electronic randomizing device, is presented. 
The results show that randomized response sampling is a superior technique to direct questioning for 
at least some sensitive questions. 

KEY WORDS: Randomized response; Randomization with continuous distributions; Computer 
simulation. 

1. INTRODUCTION 

Surveys often seek to estimate the proportion of indh:iduals satisfying a particular condi­
tion. If the condition involves a highly personal or controversial subject (e.g., seeking new 
employment, sexual behavior) or of an illegal nature (e.g. drug usage, criminal activities), survey 
respondents may be reluctant to answer honestly or may refuse to answer a direct question 
as to whether they satisfy the condition of interest. In such cases, it is difficult to make inferences 
about proportions on the basis of a survey in which sensitive questions are asked directly. 

Randomized response sampling plans utilize a stochastic or randomizing device to enable 
respondents to provide answers to sensitive questions without fully revealing information 
regarding the sensitive issue. The actual outcome of the device for a particular respondent is 
observed by the respondent but not by the interviewer. However, the properties of the device 
are known to the experimenter, and this enables the experimenter to make inferences about 
the proportion of interest without knowing specifically about any single individual. The 
stochastic device introduces noise into the information-gathering process, but the resulting loss 
of information may be preferable to the uncontrollable noise introduced by nonresponse or 
lying when direct questions are used. 

The original randomized response model was proposed by Warner (1965) and involved a 
dichotomous randomization for a dichotomous population. His model was studied from a 
Bayesian viewpoint in Winkler and Franklin (1979). The randomized response model with two 
or more trials per respondent was introduced by Gould, Shah and Abernathy (1969) and fur­
ther developed by Liu and Chow (1976). Both papers demonstrated the superiority of the 
multiple trials per respondent in improving the efficiency of the estimate over the single trial 
model of Warner's. However, both also note that multiple trials might produce simulta~uslY 
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growing suspicion and lowered "truth telling" over the single trial model. The survey paper 
prepared by Horvitz, Greenberg, and Abernathy (1976) discusses several other plans with 
discrete randomization devices. In addition a thorough theoretical development and review 
of results is contained in the recent volume by Chaudhuri and Mukerjee (1988) entitled "Ran­
domized Response: Theory and Techniques." A more general model, using either discrete or 
continuous randomization, is presented in Warner (1971) and these more general models were 
discussed from a Bayesian viewpoint by Pitz (1980), Smouse (1984), and O'Hagen (1987). A 
few surveys have actually been undertaken, some showing the randomized response methods 
are superior to direct survey methods (e.g. Gould et al. 1969 and Liu and Chow 1976) and a 
few others of uncertain results (e.g. Brewer 1981). However, only Poole (1974) developed a 
specific continuous randomization distribution (uniform) to estimate a continuous distribu­
tion and this was implemented by having respondents report their answer multiplied by a 
number chosen randomly from a random number table. 

In this paper, we consider a randomized response model for sampling from a dichotomous 
population, but using a continuous randomization distribution. With Warner's original ran­
domized response technique, the randomizing device determines which question the respon­
dent answers. But with the method developed in this paper, the question for a respondent is 
fixed by whether or not he belongs to the sensitive group. The randomization here chooses 
values from two distributions (one for "yes" and the other for "no") and the respondent 
provides the value appropriate to his group membership. Multiple trials are incorporated into 
the model by having the respondent provide a single multi-digit response. This provides a 
potential benefit over usual multiple trial techniques in that the respondent perceives he/she 
has provided just one answer when in fact the multi-digit response incorporates several trials 
of the respondent. 

The general model, for which the randomization can be handled via any type of distribu­
tion, is presented in Section 2. The special case in which the randomization involves normal 
distributions is discussed in Section 3, along with an approximating procedure for assessing 
the effect of randomization and multiple trials per respondent. Section 4 presents a computer 
simulation investigating the role that specific choices of means and standard deviations play 
in the efficiency of surveying by using normal distribution randomization with multiple trials. 
Section 5 presents a way of implementing normal distributions as the randomizing distribu­
tion through the use of a computerized, electronic device that generates and displays random 
normal values. Such a device was felt to be potentially superior to "drawing cards" or "flip­
ping a spinner" since these methods may not be properly implemented by the respondent or 
the interviewer. The results of a survey taken using that electronic device to investigate five 
sensitive questions are examined in Section 6. Finally, a summary and a brief discussion of 
design issues are considered in Section 7. 

2. THE MODEL 

Suppose that we are interested in 8, the proportion of individuals belonging to Group A 
among the members of a particular population. A simple random sample of n individuals is 
chosen from the population with n ~ I, where we assume that the population is large enough 
relative to n so that the sampling process can be viewed effectively as sampling with replace­
ment/,t\ total of k trials are conducted with each respondent, where k ~ 1. On trialj for respon­
dent i, random values are drawn from the distribution functions Gu and Hu. The respondent 
sees both values and is asked to report the value from GU if he or she belongs to Group A and 
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the value from Hij otherwise. The researcher knows the exact form of Gij and Hij but sees only 
the value reported by the respondent, denoted by Zij' and, thus, does not know from which 
distribution it came. 

Inferences must be made about 0 based on the kn sample observations zij' with i = I, ... , 
n andj = I, ... , k. For convenience, we assume in the remainder of this paper that Gij and 
Hij are absolutely continuous with corresponding densities gij and hij; the development for the 
discrete case is analogous. The conditional density function of zij given 0 is 0 gij (zij) + 
(1 - 8) hij (zij), and the likelihood function for the entire experiment is: 

L(~IO) = g [OB gij (Zij) + (I - 0) B hij (Zij)] forO:s 0 :sI, (2.1) 

where ~ = (~h ... , ~o) and ~i = (Zit, ... , Zit>· 
Expanding the likelihood function using the binomial theorem allows the likelihood func­

tion to be written in the form 

o 

L(~ 1 0) = 1: a, 0' (1 - 0)0-' where 0 :S 0 :S 1 and (2.2) 
1=0 

(2.3) 

G'h ... , G,c representing the c = U) combinations oft items out of n. Here 0'(1 - 0)"-' 
is the Bernoulli likelihood conditional upon exactly t respondents being in Group A, and a, 
is the likelihood of ~ given t. The mixture form in 2.2 arises because we are unable to observe 
a specific t in our sample. 

A special case of (2.1) arises when we assume that the same randomizing distributions are 
used for all n respondents. Thus,gij = gjandhij = hJori =-1. .. n and thus (2.1) reduces to 

L(.IO) = g [0 B gi (Zij) + (1 - 0) B hj (Zij)] for 0 :S 0 :S 1. (2.4) 

Whichever the form, in order to find the maximum likelihood estimates, a direct computer 
grid search must be made. This is feasible since 0 is only a one-dimensional quantity and is 
restricted to the interval from 0 to I. This can be easily accomplished by using well-known search 
techniques applied to the log of the likelihood function. (See, for example, Kennedy and Gentle 
1980). 

3. RANDOMIZATION WITH NORMAL DISTRmUTIONS 

Although any continuous distribution (e.g. Weibull, uniform, etc.) can be used as the ran­
domizing distribution in the model discussed in Section 2, in this section only the normal dis­
tribution will be examined. Furthermore, suppose that the same randomization distributions 
are used for all respondents, so that form (2.4) is the appropriate likelihood. Thus, gj and hj 
are normal densities with means P,gj and p'/U and standard deviations "gj and "/U' respectively. 
Then the likelihood function in Section 2 can be related to these normal densities. 
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The amount of information that can be obtained about 9 obviously depends on the means 
and standard deviations that are chosen. At one extreme, if fLgj = fLhj and "gj = "hj for 
j = I, ... , k, then 9 drops out of the likelihood function and ~ (the sample) will provide no 
information about 9. At the other extreme, if I fLgj - fLhj I - 00 for any j with "gj and ."hj fIxed 
or if "gj - 0 and "hj - 0 for any j with a fixed I fLgj - fLllj I .. 0, then we are effectively able 
to determine which group each respondent belong,; to and the sampling process thus approaches 
Bernoulli sampling in 9. 

An approximation to L (~I 9) as developed by Winkler and Franklin (1979) makes it easier 
to assess the effect of randomization and multiple trials with the choice of specific means and 
standard deviations. That is, for each sample, we can approximate the actual likelihood func­
tion given by (2.4) with an approximate likelihood function of the form 

L*(r*, n*1 9) = 9" (1 - 9)·'-'"'. (3.1) 

Taking the first and second derivations of the log of the approximating likelihood (3.1) and 
solving to find the maximum (0) and the curvature at that maximum yields: 

(3.2) 

and 
[

8
2

log L*(r*,n*19)] = 
89

2 
9 = 0 

n' 
(3.3) 

Next taking the fIrst derivative of the log of the exact likelihood (2.4) and setting it to equal 
zero gives the equation that will yield the exact maximum likelihood estimate for 9: 

• k k 
-Vi - 1]; E = 0 where 'Yi = II gj (Zij) , 'Ii = II hj (zij)' (3.4) 

i~1 9'Yi + (1-9)'1i j~1 j~1 

A grid search produces for (3.4) its solution (0,). Taking the second derivative of the log of 
the exact likelihood (2.4) yields: 

[ 
82 log L (~I 9)] = 

892 (3.5) 

Substituting 0, into (3.5) gives the curvature of the actual log likelihood at {j, (the maximum). 
Equations (3.2) and (3.3) are two equations in two unknowns, r' and n*. Setting (3.2) = 0, 
and (3.3) = (3.5) allows us to solve for r' and n' so that the approximating log likelihood 
has the same maximum ° = 0" and curvature at that maximum as does the actual log 
likelihopd. Thus, the randomized response sample outcome of ~ can be thought of as approx­
imately equivalent to a non-randomized response sample (i.e. regular Bernoulli sampling) with 
r* members out of n* in the sensitive group. In this sense, n* can be thought of as a rough 
measure of the amount of information in the randomized response sample which is of size n. 
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OF THE CHOICE OF MEANS AND 

STANDARD DEVIATIONS 
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To investigate the impact of a given set of means and standard deviations for the normal 
randomizing distributions as well as the impact the size of 8 and k (the number of trials) has 
upon ,* and n* the randomized response sampling process was simulated by generating, via 
computer, repeated samples from a Bernoulli process with parameter 8 and k sets of two·digit 
responses for each sample. In our simulation, we let I'gj = 50, I'hj = 40, and rTgj = rThj = rT 

forj = \, ... , k. We considered two values of 8 (.10 and .25), two values of rT(6 and 9), three 
values of n (50, 200, and 500), and three values of k (1,2, and 3). Such values were chosen 
since they will register two-digit deviates that would overlap in disrribution considerably and 
provided then a bench mark for later choices in the actual survey environment. For each of 
the 36 combinations of parameters, we replicated the sampling procedure 25 times. The solu­
tions of,. and n* were found numerically for each sample, and the average values of n* for 
the 25 replications with each set of parameter values are given in Table 1. 

The average values of n* vary considerably. At the worst extreme, when rT = 9,8 = .10, 
and only one trial per respondent is used, n* tends to be only \0-\5 percent of n. On the other 
hand, when rT = 6, 8 = .25, and three trials are used per respondent, n* is about 75 percent 
of n. As expected, the average value of n* (the effective sample size) increases as n (the number 
of respondents) increases or as k (the number of trials per respondent) increases. In addition, 
decreasing rT or increasing 8 also leads to a higher n*. 

For each combination of parameters, the mean and variance of 8 over the 25 trials were 
determined. The average values of 8 are very close (within 5"70) to the corresponding values 
of 8, and the v.ariance of 8 tends to increase as the average n* decreases and, hence, tends to 
validate the simulation. 

Table 1 
Average Values of the Effective Sample Size (n*) for Various Sample Sizes (n) and the 

Number of Trials per Respondent (k) 

8 = .10 8 = .25 

n k rT = 6 u = 9 u = 6 u = 9 

1 16.2 7.0 17.3 9.2 
50 2 27.3 13.1 30.6 17.8 

3 32.6 18.1 38.2 23.6 

1 58.3 24.8 79.0 41.2 
200 2 103.1 49.6 124.4 72.9 

3 136.6 77.7 151.0 97.7 

1 148.4 59.6 196.9 103.6 
500 2 261.1 129.3 309.5 181.2 

3 345.8 193.1 375.6 242.7 
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5. A PORTABLE, COMPUTERIZED RANDOMIZING DEVICE 

Randomized-response sampling, using randomization with normal distributions and mUltiple 
trials, provides flexibility to the experimenter, who can select means and variances as well as 
the number of respondents and the number of trials per respondent. However, this flexibility 
is not of any value, unless the sampling scheme actually can be implemented in practice. The 
sampling scheme utilizing Bernoulli randomization can be implemented in a number of ways 
(e.g., with cards or colored beads). However, the scheme developed in this paper requires 
generation of random normal values by some portable device. 

A computerized, electronic device was built around the Intel 8080 microprocessor to generate 
and display random normal values. Each value is obtained by summing 16 uniformly distributed 
random numbers and transforming that sum to achieve a normal deviate with the desired mean 
and standard deviation. From the Central Limit Theorem, the resulting values should be 
approximately normally distributed, and extensive tests indicate that the values produced by 
the device do indeed behave like random normal values. This technique was chosen over other 
possible methods of generating normal deviates due to the simplicity of programming such 
a method in machine instructions for this specific microprocessor. For more details concer­
ning the generation of the random normal values and the testing of the device, see Franklin 
(1977), Kennedy and Gentle (1980), as well as Knutg,(l969). 

The final, resulting device was approximately the size of a cigar box and is easily held in 
the hand. Power can be supplied either by a battery pack or by an extension cord. 

For display purposes, the random normal values are truncated to two digits, and the device 
is designed to display six such two-digit numbers simultaneously in "windows" of six digits 
each. One window displays values chosen from g,;g2, and g, which appears 'as a single six­
digit number in the "Yes" window. The other window displays values chosen from h" h2' and 
h, which also appears as a single six-digit number for "No". The six means and standard 
deviations are stored permanently in the device, but they can be changed easily by using a small, 
detachable keyboard. 

The actual surveying process is accomplished in the following manner. First, the interviewer 
asks the respondent a sensitive question about Group A. The respondent then pushes a button 
to activate the device, and two six-digit numbers appear in the windows within about one quarter 
of a second. If the respondent is a member of Group A, the number in the first window (the 
"Yes" window) is reported; otherwise, the number in the second window (the "No" window) 
is reported. To convince the respondent of the "randomness" of the values, he or she is 
encouraged to press the button several times and to observe the resulting numbers before the 
sensitive question is actually asked. Note that although k = 3, the respondent perceives a 
response as a single six-digit number, and we are thus actually obtaining three trials with a single 
six digit response. Hence, the advantage of multiple trials per respondent is exploited without 
the usual accompanying disadvantages coming into play. 

6. SURVEY RESULTS AND CONCLUSIONS 

Two simultaneous, but independent, surveys were conducted on the campus of a large urban 
university of students enrolled in that university. The first asked five sensitive questions of a 
respondent by the direct question method. The second asked the same five sensitive questions' 
of a different respondent but using Randomized Response Sampling with continuous ran­
domization implemented by the electronic device presented in the previous section. For the 
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study k = 3 and 1-'" = 1-"2 = 1-'" = 40 and I-'h, = I-'h2 = I-'h, = 50 with (1.) = (1hj = 5 for 
j = 1,2,3. These values were chosen in accordance to the finding of the computer siI;nula­
tion discussed in Section 4. A different group of students was systematically selected (one in 
five) for each of the two surveys from students on the campus and individually interviewed. 
Each student surveyed was given a brief introduction as to the purpose of the survey and asked 
if they wished to participate. Less than 10"70' of all individuals stopped by both survey teams 
declined to participate. If the individual was willing to participate, he/she was then asked to 
provide his/her social security number to verify that he/she was, indeed, enrolled in the univer­
sity. All respondents of both surveys had their social security number checked against an 
administrative master list of students and those not recorded as enrolled students were 
eliminated from the study (less then 5 percent of those surveyed). 

Requiring their social security number also deliberately injected the element of associating 
the individual's identity with his responses. For many surveys (i.e. telephone, mail-in ques­
tionnaires, house-to-house surveys, etc.), this is the case and plays a significant role in the will­
ingness of a respondent to answer truthfully. It was felt that it was precisely in such' 'revealing" 
circumstances that randomized response sampling can benefit the researcher most. The resulting 
sample sizes for the direct and randomized response methods were n, = 473 and n2 = 477. 
The five sensitive questions were: 

Q I - "Have you ever cheated on an exam here at this university?" 
Q2 - "Would you ever cheat on your income tax?" 
Q3 - "Would you ever steal from an employer?" 
Q4 - "Have you smoked any marijuana in the last 30 days?" 
Q5 - "Have you ever participated in a homosexual act?" 

All five questions were felt to be sufficiently sensitive so that any gains by randomized 
response sampling over direct sampling could be easily apparent. In addition, as a final ques­
tion, the respondents in the randomized response group were asked' 'Do you think your friends 
would be more willing to tell the truth if they were asked sensitive questions by this technique?" 
This was asked in an effort to measure the acceptance and confidence ofthe person being inter­
viewed that this particular randomized response technique did provide personal protection and 
anonymity. 

The estimates of the proportion of respondents who are in the sensitive group are presented 
in Table 2 for both direct (8id ) and randomized response (8ir ) for question i along with the 
estimate of nt (the effective sample size) for the randomized response method using the 
method discussed in Section 3. Also is presented the z value of a one-sided test of hypothesis 
Ho: Bid - Bir = 0 vs Ha: Bid - Bir < 0, along with the observedp-values. The tests were con­
ducted using n, and nt as sample sizes and hence give a much more conservative result than 
if n, and nz were utilized. 

It is noteworthy that the randomized response method gave a higher estimate of B for each 
of the five sensitive questions than the direct survey method. Furthermore, for Questions I, 
2, and 5, the randomization response method gave statistically significantly higher estimates 
of B (p-values < .001 for all three) than the direct survey method. Hence, there seems to be 
conclusive evidence that, at least for some sensitive issues, the randomized response method 
with continuous randomization does provide better estimates of population proportions. It 
should also be noted that by ?~r choices of I-'~j' I'hj' (1<j and (1hj and k = 3 th~t nr typi~a1IY was 
75 to 85 percent of the ongmal sample SIze n2 and thus most of the mformatlOn was 
"recovered" by our randomized response method. 
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Table 2 

Estimates of 8 and Results of Testing Equality of 8's for Direct and Randomized 
Response Sampling with Respective Sample Sizes of n, = 473 and nz = 477 

Question 

2 
3 
4 
5 

Bid 

.0634 

.1797 

.1078 

.1882 

.0042 

8ir 

.2013 

.2941 

.1207 

.1942 

.0355 

Effective sample size 
n' , z-value p-value 

394.5 6.098 < .0001 
408.1 3.997 < .0001 
384.8 .583 .2810 
409.5 .234 .4091 
339.0 3.341 .0004 

Furthermore, it is instructive to consider the nonsignificant results for Questions 3 and 4. 
This information (if the three significant results are ignored) could lead an observer to con­
clude that randomized response techniques are not particularly advantageous over direct ques­
tioning. However, in the light of the three significant differences revealed, this lack of 
significance perhaps could be interpreted as the question really was not "sensitive enough" 
to lead to dramatic differences in O's or even that the question was "so sensitive" that the respon­
dent chose to lie even with the randomized response technique. In addition, Question 1 "Have 
you ever cheated on an exam?" seemed to the experimenter to be relatively "unsensitive" but 
in retrospect the answer to this question when tied to the social security number of the respon­
dent (given before the questioning process started) presented a much more threatening cir­
cumstance than was initially realized. Thus, perhaps some of the confusion about the efficacy 
of the randomized response technique is related to the "true sensitivity" of the question for 
the interviewee as opposed to the "perceiv~d sensitivity" by the interviewer or experimenter. 
These aspects need further examination. 

Finally, 88.9"7. (424 of the 477) felt "their friends would be more likely to answer truthfully 
sensitive questions by this randomized response technique." While some reservations may be 
expressed by the respondents' "desire to please the interviewer," nevertheless, this over­
whelming percentage coupled with the significant differences already discussed seem strong 
evidence that this technique was accepted and felt to be protective of the interviewee. 

7. DISCUSSION 

The model developed in this paper permits the use of continuous, as well as discrete, ran­
domizing distributions in utilizing randomized response sampling from a dichotomous popula­
tion. In order to implement the model using randomization with normal distributions, a 
computerized, electronic device was also developed and discussed. The device is portable, lias 
programmable means and standard deviations for the six normal distributions and provides 
from a single six digit response, three separate two digit trials. Such a system has both poten­
tial advantages and disadvantages over other randomized response techniques. 

First, as alluded to in the introduction, a computerized randomizing device could be superior 
to the standard randomized response methods of "drawing cards" or "flipping a spinner" 
since these methods may not be properly implemented by either the respondent or the inter­
viewer which would induce uncontrolled error. (See Abernathy, Greenberg and Horvitz (1970) 
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for a discussion of the problems of "insufficient card shuffling" and "card loss" as well as 
insufficient interviewer training). Since the production of the randomizing values is com­
puterized, the distributional problems that can and have accompanied the use of cards, beads, 
and spinners are eliminated because the problem of "random selection of values" is taken out 
of the hands of the interviewer and respondent and placed in the "hands" of the computer. 
If the computerized device fails, it is usually a complete, catastrophic crash of the whole chip 
which is readily apparent and very. very rare. 

The second (and perhaps greatest) advantage is in the ability of the device to present a choice 
of two numbers each six digits in length from which the respondent chooses to answer "yes" 
or "no" . But what seems to the respondent as a single six digit answer is in fact three separate 
two digit answers and in effect provides three trials per respondent. Thus, the benefits of 
multiple trials per respondent are gained but, since the respondent is unaware of the multiple 
trials format, without the usual accompanying disadvantages (noted by Liu and Chow 1976) 
coming into play. 

In addition, the freedom to choose the six means and six standard deviations provides 
the experimenter with additional flexibility over standard randomized response techniques. 
For instance, if it is felt that the differences in the first two digits are most noticeable to 
respondents, the experimenter can make'l'h, and "h, close to (or even equal to) I'gl' and "gl' 

respectively. Similarly, if the middle two digits might receive the least attention, the experimenter 
could attempt to gain the most information from these values by separating I'h2 and 1'., the 
furthest. It is also possible to wire the displays in other than the obvious manner. For instance, 
the two digits of the first random normal value could appear as the fifth and second digits of 
the six digit number instead of the first and second digits. This flexibility in wiring, together 
with the the choices of parameters should provide a sampling scheme that is quite informative 
to the researcher without seemingly to threaten the respondent. 

It should also be noted that while for this particular microprocessor it was convenient to 
utilize randomization with normal distributions, several other continuous distributions (e.g. 
uniform, Weibull) or even multi-valued discrete distributions (e.g. multinomial or poisson) 
could have been used. Further investigation into newer microprocessors as well as different 
randomizing distributions is recommended. 

There are, however, some potential disadvantages associated with this particular randomized 
response technique. The cost of such a randomizing device since it involves a microprocessor 
is the order of fifteen hundred to two thousand dollars to produce. However, its versatility 
in wiring and programming would hopefully allow a device to be used in many investigations 
over several years and thus help to defray its rather high cost. 

More difficult to quantify is the respondent's perception of the computerized device and 
the degree of confidence or suspicion he/she might have about the device. Do respondents fear 
that the computerized device is somehow "storing" their answer that somehow later can be 
deciphered to expose them? From the survey results, it seems that greater truth telling was 
secured by using the computerized randomizing devices over the direct survey method. Never­
theless, further study is recommended to compare this randomized response technique which 
uses the computerized device with other more standard randomized response techniques. 

In practice, several matters are relevant in the consideration of design issues (; .e., the selec­
tion of means and standard deviations for the device). In order to gain more information for 
a given sample size, we should increase Il'gj - I'hj I and decrease "gj and "hj for j = 1,2, 3. 
However, as this is done, it will become clearer to the respondent that, despite the randomiza­
tion, the response is very revealing concerning the respondent's group membership. As a result, 
the respondent may not answer honestly or may refuse to answer. Additional study is needed 
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to determine optimal values for choice of means and standard deviations. The results in Table 
I give some indication of the effects of varying a common standard deviation. But from a prac­
tical viewpoint, the field survey seemed to indicate that the choice of means separated by two 
standard deviations was able to both gain the confidence of the respondent and (with the 
multiple trials) to gain back from 75 to 85 percent of the original sample size without the usual 
"loss of confidence" that accompanies multiple trial techniques. 

In particular, the field trial compared the direct survey techniques with the randomized 
response using the electronic device discussed with I'hj = 40 and I'g. = 50 and Uhj = Ugj = 5 
for j = I, 2, 3 for the normal, randomizing distributions. Ofthe fiv~ sensitive questions which 
were asked of the two (independent) groups, the randomized response method provided 
significantly greater estimates (p < .001) than the direct method for three of the questions. 
In addition, 88.9"10 of the subjects interviewed by the randomized response technique felt "their 
friends would be more likely to tell the truth if they were asked sensitive questions by this 
technique". Thus, it seems that (for at least certain questions), this randomized response 
sampling technique achieved greater honesty in response than the direct sampling method. 

The question of protection of the respondent's privacy needs to be discussed. It is not ethical 
to tell the respondent that his or her group membership is disguised by the randomization, if, 
in fact, the disguise is transparent to the researcher (e.g. for example, by-recording only even 
numbers for "YES" and only odd numbers for "NO"). With the electronic device that has 
been discussed, it seems indeed possible to provide true privacy without losing much informa­
tion. If the means and standard deviations are programmed into the device and are not pro­
vided to an interviewer, the interviewer will find it very difficult to discriminate between group 
members and non-group members in the interviewing process, particularly if the wiring is 
"scrambled". Thus, the flexibility that enables us to gain information without threatening the 
respondent also helps to disguise the actual group membership from the interviewer. 
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ABSTRACT 

237 

Empirical Bayes techniques are applied to the problem of "small area" estimation of proportions. Such 
methods have been previously used to advantage in a variety of situations, as described, for example, 
by Morris (1983). The basic idea here consists of incorporating random effects and nested random effects 
into models which reflect the complex structure of a multi-stage sample design, as was originally pro­
posed by Dempster and Tomberlin (1980). Estimates of proportions can be obtained, together with 
associated estimates of uncertainty. These techniques are applied to simulated data in a Monte Carlo 
study which compares several available techniques for small area estimation. 

KEY WORDS: Logistic regression; Random effects models; Bayes estimation; EM algorithm. 

1. INTRODUCTION 

1.1 The Problem 

Complex mUlti-stage surveys are used to obtain estimates of proportions in many research 
disciplines (e.g., epidemiology, economics, criminology etc,). Not only are estimates for local 
areas and other special subgroups required, but there is also a need for reliable measures of 
the accuracy of these estimates, This suggests to us the need for improved methodologies for 
this estimation problem and related statistical inference, 

In addition, the techniques based on the standard normal theory used by Fay and Herriot 
(1979) to estimate income, a continuous random variable, in small areas are no longer directly 
applicable to the problem of estimating proportions for discrete outcome variables. Here, it 
is the logit transform of the proportion, not the proportion itself, that will be modelled in a 
linear way. This creates the same problems of estimation as in classical statistical logistic regres· 
sion theory, (See Haberman 1978.) Unfortunately, fewer attempts have been made to solve 
this obviously more complex problem in small area estimation. 

In order to address the problem of inference from a relatively thinly spread complex, multi­
stage survey to small areas or domains not necessarily included in the survey, we have chosen 
an explicitly model-based approach. This was proposed originally by Dempster and Tomberlin 
(1980) for the estimation of census undercount from a post-enumeration survey, The meth­
odology uses both a random effects, multiple logistic regression model and empirical Bayes 
techniques. This directly yields estimates of uncertainty associated with the estimated propor­
tions for small areas via a Bayesian paradigm. This explicitly model-based method differs 
substantiallY from the implicitly model-based approach of the synthetic estimation techniques 
of Gonzalez and Hoza (1976, 1978), Gonzalez and Waksberg (1975), and others. 
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As a typical complex survey will often be a nested structure of primary sampling units 
(PSU's), secondary sampling units (SSU's) within PSU's, tertiary sampling units (TSU's) within 
SSU's and, finally, households within TSU's; the explicitly model-based approach will allow 
us to take into account the complexitly of the sample design. The purpose of introducing a 
random effects model is to allow the data to determine, by empirical Bayes techniques, an 
appropriate compromise between the classical unbiased estimates which depend only on data 
in the specific local area, and the fixed effects estimates which pool information across areas. 

In Section 1.2, a literature review is given and a solution to the problem of estimating pro­
portions for small areas is proposed. The model and its associated estimates are made explicit 
in Sections 2 and 3 respectively. The results are applied to simulated data in a Monte Carlo 
study presented in Section 4. 

1.2 The Review and a Proposed Solution to the Problem 

Because of the growing need for small area statistics in recent years, and because reliable 
estimates for small areas or subdomains are not usually directly available by classical sample 
survey methods, several researchers have focused on the problem of small area estimation. 
This has necessitated the use of explicitly or implicitly model-based methods which allow for 
• 'borrowing strength" across small areas in order to increase the effective sample size for estima­
tion, and hence the accuracy of the resulting estimates. Although much of the research in this 
area has applied linear model techniques and concentrated on the estimation of means or totals, 
rather than proportions, a discussion of the literature on these estimators and the criteria used 
to evaluate them can add valuable insight into our problem. 

Classical theory dictates that estimators should be design-consistent and, if possible essen­
tially design-unbiased. However these estimators are not always particularly useful when the 
sample sizes are small. 

Gonzalez (1973) described the method of synthetic estimation as follows: "An unbiased 
estimate is obtained from a sample survey for a large area; when this estimate is used to derive 
estimates for sub-areas on the assumption that the small areas have the same characteristics 
as the larger area, we identify these estimates as synthetic estimates." It seems its first reported 
use was by the U.S. National Center for Health Statistics (1968) for the calculation of state 
estimates oflong and short term disability rates. Various authors subsequently tried to formalize 
this concept of synthetic estimation, in particular, for means of continuous outcome variables, 
using both ad hoc and model-based approaches. Gonzalez (1973), Gonzalez and Waksberg 
(1975), Gonzalez and Hoza (1976) and Levy and French (1978) used previous census data to 
form post-strata which are subsequently used to combine information across small areas under 
the assumption that the mean response is similar across a section of these areas. Levy (1971), 
Ericksen (1973, 1974) and O'Hare (1976) employed regression methods in order to incorporate 
auxiliary information in small area estimation. The accuracy of this method has been evaluated 
in terms of its average sampling mean squared error over all small areas in a region. 

Ericksen (1974) warned. that there is no systematic methodology for the assessment of the 
bias or accuracy of synthetic estimators. Despite these shortcomings, synthetic estimation still 
remains a potentially powerful and attractive tool. There have been many reported empirical 
evaluations both on actual and simulated data sets of synthetic estimation in recent years, 
including Levy (1971), Gonzalez (1973), Gonzalez and Hoza (1978), and Schaible (1979). Several 
of these types of studies are described in a volume edited by Platek and Singh (1986). 

Royall (1970, 1973), using a model-based approach, also considered the problem of 
estimating totals in finite popUlations, when auxiliary information is available. He established 
a probability model of the relationship between the variable of interest and the auxiliary variable 
and then derived optimal subdomain predictors. 
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Holt, Smith and Tomberlin (1979) and Laake (1979) applied the predictive approach of 
Royall to the problem of small area estimation. Laake (1979) found that in contrast to the syn­
thetic approach, where biased estimators are usually obtained without an explicit method of 
estimating the bias, the prediction approach yielded estimates of mean squared error (MSE) 
as a tool for the comparison of estimators. In the problem of estimating small area totals, Holt, 
Smith and Tomberlin (1979) specified various possibilities of population structure in order to 
model the assumed relationship across subareas. With a specified model, it becomes possible 
to determine whether or not it is supported by the data and also to study the effect of model 
misspecification on the bias of the observed estimators. Under different models, the variance 
of the estimator, the estimate of the variance and MSE change. They built model-based con­
fidence intervals, which have interpretations in terms of repeated realizations under the super­
population model. 

Purcell and Kish (1979, 1980) reviewed the different existing techniques of small area estima­
tion, subdividing them into the following broad categories, regression-based procedures, the 
use of empirical Bayes and of Bayesian methods, superpopulation prediction theory, clustering 
techniques, and categorical data analysis methods. They underlined the fact that small area 
domain estimation should not be considered as a homogeneous problem, but that there exist 
many other interacting factors such as domain size which should be taken into account when 
choosing the type of estimator. Siirndal (1984) later confirmed this. 

The most serious shortcoming of model-dependent estimators is that useful estimates of 
mean squared errors are not available using fixed effects models because associated variance 
estimates do not reflect the bias inherent in estimates based on models having a reduced set of 
parameters. Two different approaches were then taken to the problem of small area estimation. 

Fay and Herriot (1979) used the James-Stein theory of estimation (James and Stein 1961) 
on sample data to determine estimates of income for small places from the 1970 US Census 
of Population and Housing. In fact, they used an empirical Bayes approach which originated 
with Robbins (1955) and has been described by Efron and Morris (1975), thus formalizing the 
meritorious suggestion of Madow and Hansen (1975) of forming a weighted average of the 
sample and regression estimates. A similar approach by Schaible, et. al. (1977) gives a method 
for arriving at a composite estimator which is the weighted average of the unbiased and syn­
thetic estimators. For other examples of empirical Bayes methods for small area estimation 
based on standard normal theory see Stroud (1987) and Cressie (1988). 

Battese, Harter and Fuller (1988), using a prediction approach, proposed a nested error 
regression model in order to estimate means. A more general model, a random coefficients 
regression model, had been previously proposed for a similar problem by Dempster, Rubin 
and Tsutakawa (1981). They used Bayesian techniques to estimate fixed and random effects 
in covariance component models when the covariances and variances are tentatively assumed 
to be known and the EM algorithm to subsequently estimate these unknown parameters. The 
introduction of random effects models not only allows for standard maximum likelihood 
estimation, but also provides measures of the reliability of the final estimates of the parameters 
in the form of posterior variances. 

Ericksen (1980) suggested using the mean squared error (MSE) to evaluate effectiveness of 
regression in small area estimation. He attempted to answer such questions as: When should 
more predictor variables be added to the regression equation? Should James-Stein weighting 
procedures be used when the synthetic and the regression estimate are far apart? He also warned 
of the effects of outliers on both the resulting estimate and its estimated error. Perhaps the 
effect on small area estimators of the failure of the linear model assumptions should be more 
seriously studied. 
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Although applied to the estimation of counts such as unemployment and mortality statistics, 
most of these techniques described were designed primarily for continuous outcome variables. 
Purcell and Kish (1980) introduced a categorical data analysis method for obtaining estimates 
of counts for small domains. Essentially, their methodology involves fitting log-linear models 
to the data, omitting some of the higher order interaction terms and obtaining estimates by 
the iterative proportional fitting algorithm described by Deming and Stephan (1940). We 
propose to extend these models to the problem of estimation of proportions in small domains 
as originally conceived by Dempster and Tomberlin (1980) by applying empirical Bayes tech­
niques to logistic regression models with random effects. This would have the added advan­
tage that a measure of uncertainty of the small area estimates would be available through the 
approximate posterior variances. The estimator proposed here is similar in nature to the com­
posite one used by Schaible et. 01. (1977) for unemployment rates, the principal difference being 
in the method for choosing the weights. We feel, however, that the empirical Bayesian para­
digm gives a more natural and intuitive method for determining the weights. Empirical Bayes 
estimation based on simple logistic random effects has already proven useful in studying 
regional variation in mortality rates by Miao (1977). Somewhat more complex random effects 
models have been used for proportions on data from the World Fertility Survey (Wong and 
Mason, 1985) and for Poisson parameters on automobile insurance data (Weisberg, Tomberlin, 
and Chatterjee 1984 and Tomberlin 1988). 

Roberts, Rao and Kumar (1987) fitted logistic regression models to binary outcome data 
obtained using complex sampling schemes, constructed "pseudo-maximum likelihood" 
estimators, and compared their estimates to unbiased ones. They also proposed a goodness­
of-fit test for their model, which takes the sampling design into account. A fundamental dif­
ference between our approach and that of Roberts, et. 01., is that by incorporating the 
characteristics of the sample design into the model, we can estimate parameters, and obtain 
readily interpretable measures of their reliability by means of standard maximum likelihood 
techniques. 

2. THEMODEL 

Following the framework of Dempster and Tomberlin (1980), in its most general form, we 
specify a model which describes the probabilities associated with individuals in the population 
as a function of categorical variables, continuous covariates and sampling characteristics. The 
models we consider in this paper are specific examples of the following, 

logit ( ".') = 8. + X., § + q" (2.1) 

where"., represents the probability of a "response" for the v-th unit in the I'-th cell, the 
subscript I' refers to a set of categorical variable covariates, and the subscript v refers to a set 
of nested sampling characteristics, indicating PSU, SSU within PSU, and so on. The param­
eter 8. represents a sum of fixed classification effects, the parameter q" represents a sum of 
random effects associated with sampling characteristics, the vector X.' represents a vector of 
quantitative covariates, and the parameter § is a vector of fixed logistic linear regression 
parameters. The random effects parameters are assumed to have some parametric distribu­
tion, usually a multivariate normal distribution. The probabilities"., are obtained by inver­
ting the logit transformation as follows, 
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"'.,= [\ +exp(-(8. + X.' + cI>,»)]-'. (2.2) 

For purposes of illustration, consider the following simple example. Let the proportion of 
interest be the labour force participation rate. Suppose we have one classification variable 
indicating sex and one continuous covariate indicating the age of the individual. Suppose fur­
ther that the sample design is a simple, two stage cluster sample. In the first stage, a sample 
of counties is drawn and simple random samples of individuals within selected counties are 
drawn at the second stage. 

For estimation purposes, consider the following model, 

logit ( .... ,) = 8. + X.' (3 + cl>i (2.3) 

cl>i - LLd. Normal (0, .,2). (2.4) 

Here, the classification subscript, IL, indicates the sex of the individual; the sampling 
characteristics subscript, v = ij, indicates thej-th individual within the i-th PSU; X., indicates 
the age of the individual and cl>i is a random effect associated with the i-th PSU. 

The consequence of assuming that the PSU effects are independent, identically distributed 
is that PSU departures away from the fixed part of the model are treated as exchangeable; that 
is, apart from effects of age and sex, no systematic information exists regarding differential 
employment rates among the counties in the population. Obviously in a realistic situation, such 
information would exist, for example, dominant industry, distance from principal markets, 
retail sales, etc. In such cases, this auxiliary information should be incorporated into the model. 
However, for purposes of illustration, we will continue with this simple model. The choice of 
a normal distribution of the error terms is a mathematical convenience, and the consequences 
of this choice must also be evaluated after actual data analysis. Extensions from the simple 
model described in (2.3-4) to include additional covariates, both categorical and quantitative 
is straight forward. 

In theory, extensions to the model allowing for more complex sample designs is also simple. 
For example, data drawn using a three stage sample could be modelled using nested random 
effects as follows. 

(2.5) 

cl>i - Normal (0, .,~) 

Here, the sampling characteristics subscript, v = ijk refers to the k-th individual within the 
j-th SSU within the i-th PSU. The parameter cl>i is the random effect associated with the i-th 
PSU, and cl>j(,) is the nested random effect associated with the j-th SSU within the i-th PSU. 
Stratification variables could also be incorporated within the fixed effects part of the model. 
While it is simple to write down the models corresponding to sample designs with several stages, 
without further research, it is not yet clear how difficult it will be to produce estimates based 
on these more complex models. 
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In an actual application. it would be necessary to use the data to identify predictor variables. 
This would require the development of some sort of model selection techniques. While not 
the primary focus of this paper. one might conceive of such a technique being based on an 
initial analysis using conventional variable selection techniques for logistic regression models 
as described by Haberman (1978). for example. Such an analysis could be conducted. ignoring 
the random effects parameters. Having chosen a set of predictors. the random effects would 
then be incorporated in the manner dictated by the sample design. 

3. ESTIMATES 

In this section. we develop empirical Bayes estimates for the simple model described in equa­
tions (2.3-4). First. it is assumed that the variance component. (12. is known. and Bayesian 
estimates of the probabilities ",ij are obtained. Then. the EM algorithm. as described by 
Dempster. Laird and Rubin (1977). is used to obtain the maximum likelihood estimate of (12 
allowing for empirical Bayes estimates. Finally. posterior variances of these estimates are 
obtained. The development of these estimates is similar to that described by Laird (1978) and 
by Tomberlin (1988). 

3.1 Bayes Estimates 

As noted by Laird (1978) in her analysis of contingency tables. by Dempster. Rubin and 
Tsutakawa (1981) in their analysis of variance components for linear models. and by Tomberlin 
(1988) in his analysis of Poisson data. a Bayesian analysis of a mixed model such as described 
in (2.3-4) can be obtained by placing a flat prior on the fixed parameters. 0, and {J and the 
proper prior given in (2.4) on the random parameters. <l>i' 

Let the vector of 0-1 outcome variables indicating membership in the labour force be 
represented by y and let l[represent a vector of the individual probabilities ",ij' The data are 
then distributed as a product binomial given by. 

(3.1) 
p.ij 

The prior distribution of the parameters is given by. 

2 [ <l>r] p(fl..!I!.{Ji(1) oc exp - E -2 . 
i 2(1 

(3.2) 

Thus. the joint distribution of the data. y. and the parameters is given by. 

(3.3) 
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From this, the posterior distribution of the parameters is given by, 

(0 '" Q I 2 X) ply, ~, 1!, (j I ,,2, X) 
p -''''' fJ Y,", ply I ,,2, X) • 

(3.4) 

It is not feasible to obtain a closed form expression for the posterior given in (3.4) due to the 
intractable integration required to obtain the marginal distribution of y. Here we adopt the 
approximation employed by Laird (1978) and by Tomberlin (1988). The posterior is expressed 
as a multivariate normal distribution having its mean at the mode of (3.4) and covariance matrix 
equal to the inverse of the information matrix evaluated at the mode. 

Obtaining the mode requires solving the following set of equations. This can be accomplished 
by using a multivariate Newton-Raphson algorithm. 

E YIJ.;j Xp.i) = E 7rp.i) Xp.i} (3.5) 
p.i) IJ.O 

E Yp.ij = E 1r Jlii (3.6) 
ij ij 

E (Y.ij - ".ij) 
pj 

- ~; = 0 (3.7) 2 • 

" 
The posterior covariance matrix of the parameters is found by inverting the negative of the 

second derivative matrix of the log of (3 .4) taken with respect to the parameters, and evaluated 
at the mode. Note that neither the equations for the mode, nor the covariance matrix involve 
the intractable denominator of (3.4). 

Elements of the inverse of the posterior covariance matrix are given by, 

_a2 
E ".ij (I - 1rp.ij) X;u a{j2 = 
p.ij 

(3.8) 

_a2 
E ".ij (I - tp.i) a02 = 

• ij 

(3.9) 

_a2 
E ".ij (I - ".ij) 

at/>; = ,,2 
pj 

(3.10) 

_a2 
E ".ij (I - ".ij) X.ij -- = a(3 ao. 
ij 

(3.11 ) 

_a2 
E 7r p.ij (1 - fr p.ij) XII-i} -- = a{j at/>i .j 

(3.12) 

_a2 
E ".ij (1 -- = - 7rll ij)· ao. at/>; j 

(3.13) 
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3.2 Empirical Bayes Estimates 

To obtain empirical Bayes estimates, the prior variance, u 2, must be estimated from the 
data. A reliable estimate requires a reasonable number of PSU's in the sample; otherwise, if 
the number of PSU's is too small, a purely Bayesian approach is recommended. We propose 
to estimate the prior variance using an EM algorithm as described by Dempster, Laird and 
Rubin (1977). The general framework for the estimates is similar to that employed by Laird 
(1978) for contingency table analysis, and Tomberlin (1988) for Poisson data in a two way 
classification. The estimates for the simple two-stage sample are obtained in exactly the same 
way as used by Leonard (1988). 

The algorithm is initiated by choosing a starting value, Ufo), for the variance component. 
The posterior distribution of the random effects, <p" is then obtained by carrying out a Baye­
sian analysis as described in Section 2. This posterior distribution is then used to implement 
the E-step. The expected value of the sufficient statistic is calculated conditional on the data. 
The M.step is then completed by merely calculating the maximum likelihood function of the 
sufficient statistics. For a more complete description of the EM algorithm for regular exponen­
tial densities, see Dempster, Laird and Rubin (1977). The process is then repeated with a Baye­
sian analysis based on the updated estimate of the variance component, ufl). The algorithm 
is continued until it converges. 

3.3 Estimates of Small Area Proportions 

Estimates together with associated posterior variances and covariances for parameters of 
the model given in (2.3-4) are presented in Sections 3.1 and 3.2. These estimated parameters 
are then employed to obtain estimates for small area proportions using a predictive approach. 
Assuming that the sample sizes within each area are small compared to those of the correspon­
ding populations, this can be accomplished by averaging the individual estimated probabilities: 

(3.14) 

where N, is the number of individuals in the i-th small area, and where the estimated pro­
bability associated with the f'ij-th individual, iT ,ij is obtained by inverting the logistic function 
as follows, 

Wp.ij = '" ""'-1 [1 + exp( - (6, + X,ijij + </>,) ) ) . (3.15) 

To develop posterior variances for the estimates of small area proportions, it is convenient 
to adopt a more conventional notation for the linear part of the model, using dummy variables 
to indicate classifications. Let Z,iJ represent a vector of predictor variables, both quantitative 
and qualitative, associated with the f'ij-th individual and let r represent a vector of the 
parameters of the model. Then, 

(3.16) 
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(3.17) 

Then, using a standard Taylor Series method, the posterior variance of the estimated small 
area proportion can be approximated as, 

(3.18) 

Here, t is the posterior covariance matrix of the estimated logistic regression parameters t. 
Should the samples within small areas be substantial parts of the associated populations 

within those areas, then some additional gains in precision could be made by predicting only 
for the non-sampled units, in the spirit of the finite population sampling prediction methods 
originally described by Royall (1970). 

4. THE SIMULATION STUDY 

A simulation study was carried out to illustrate the characteristics of three different 
methodologies for producing local area estimates of proportions. The three methods evaluated 
were, the classical unbiased estimates, model-based estimates similar to the straightforward 
"synthetic estimates" of Gonzalez and Hoza (1978), and a modification of the proposed 
empirical Bayes estimates described in section 3, above. Data were simulated for a two-stage 
sample design. The 15 primary sampling units (PSU's) were also treated as the local areas for 
which individual estimates of labour force participation rates were required. Within each of 
the 15 PSU's, simple random samples of 25 individuals were drawn, for a total sample size 
of 375. The local area populations were assumed to be infinite so that complications associated 
with finite population sampling could be avoided. 

As evaluations for local area estimates were required, it was decided to simulate resampling 
at the second stage only. That is, the same 15 PSU's were drawn for each of the simulation 
studies. Each replicate consisted of a different sample drawn within these PSU's. The study 
was based on 205 replications. 

The data were generated using the model described in equation (2.3). The parameters were 
defined as follows, 

-0.5 (4.1) 
-1.0 

0.1. 

The random parameters tf>i were generated from a normal distribution having mean zero and 
standard deviation 0.25. The "., were obtained by inverting the logistic transformation as 
given in equation (3.15). 

Here, 61 and 62 are the fixed effects associated with men and women respectively. That is, 
the odds ratio for labour force participation of men to that of women is exp [0.5] = 1.65. 
The parameter fJ is the slope parameter associated with age, and the tf>i are the logistic random 
effects associated with the 15 PSU's, or local areas. 
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Table 1 

Population Labour Force Participation Rates by Local Area 

Local Area 2 3 4 5 6 7 8 

Participation Rate 0.79 0.79 0.96 0.88 0.90 0.95 0.86 0.96 

Local Area 9 10 11 12 13 14 IS 

Participation Rate 0.61 0.87 0.81 0.91 0.94 0.92 0.83 

The predictor variables, were generated with identical distributions for each of the 15 local 
areas. Age was distributed uniformly on the interval 20 to 40 years, the sex of each individual 
was drawn from a Bernoulli distribution with proportion 0.5, and the two predictor variables 
were assumed to be independently distributed. The population labour force Participation rates 
for the 15 local areas are displayed in Table 1. As each local area was assumed to have the same 
distribution on the predictor variables, the only source of variation from area to area was the 
random local area effects, the tJ>j. The random nature of these effects can produce a substan­
tial variation in local area participation rates as is particularly evidenced by local area 9. 

The observed local area sample proportions were used as unbiased estimates. The synthetic 
estimator was based on the following fIXed effects, logit model, 

(4.2) 

where, '11'., and 0. are defined as for the random effects model in (2.3). Notice, only data from 
a particular local area are used to form the unbiased estimator while data are pooled from all 
local areas to obtain the synthetic estimator. However, the synthetic estimators will be biased 
to a degree which depends on the extent that model (4.2) fails to capture differences between 
local areas. 

The third estimator studied here is a modification of the proposed empirical Bayes estimator 
described in Section 3. Due to the amount of computer time required to estimate the variance 
component associated with the local area effects, in fact, the Bayes estimator described in Sec­
tion 3.1 was employed. The prior variance used for these estimates was the known value of 
the variance given in (4.1) used to simulate the data. As a result ofthis compromise, the results 
for the "empirical Bayes" estimator given below would be expected to be somewhat better 
than those which would be obtained using a true empirical Bayes estimator. However, sen­
sitivity analyses aimed at determining the effect of changes in the prior variance indicate that 
the results which would be obtained using the empirical Bayes estimator would not be expected 
to substantially differ from those reported here for the modified estimator. 

To look at bias, (in the classical sense of design-based inference) the estimates were averaged 
over all 205 replicates. Averages for each of the 15 local areas, for each estimation method 
are presented in Figure 1. The population rates are plotted as the "True Proportions". These 
rates are almost exactly the same as the average unbiased estimates, and for the most part, 
are not visible on the graph. This confirms the unbiased nature of the classical estimates. 

The synthetic estimates do not vary much from local area to local area. As each local area 
rate is based on the same pooled, fIXed parameter estimates, the only source of variability from 
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Figure 1. Averages of the estimated labour force participation rates for each of the three estima­
tion methods plotted by local area 

local area to local area is the small variability in the realized distributions of the predictor 
variables. The bias of this estimator can be large, as for example is the case for local area 9, 
where the synthetic method has a large positive bias. On the other hand, it should be noted 
that the synthetic method could not be expected to perform very well where there is little 
variability between the local area distributions of predictor variables. 

The averages of the proposed estimates are in between the two extremes of the unbiased 
and synthetic estimates. They are biased, again in the classical sense, but their biases are smaller 
than those of the fixed effects model synthetic estimators. 

Empirical Root Mean Square Errors (RMSE) were also calculated for each of the three esti­
mators. These are presented in Figure 2. This plot demonstrates graphically where the synthetic 
estimator performs well and where it performs poorly. For local areas 7 and 10, where the local 
area effect is close to zero, the expected value of the synthetic estimator is very close to the popula­
tion proportion. In these areas, the synthetic estimator has by far the smallest RMSE. By pooling 
data from the whole sample, it obtains a small sampling variance. On the other hand, in local 
area 9 where the local area effect is quite large, the associated RMSE for the synthetic estimator 
is also very large, due to its large bias. The modified empirical Bayes estimator obtains most 
of the reduction in RMSE that results from pooling the data across local areas, without suf­
fering from the large bias associated with the synthetic estimator in those areas with large local 
area effects. In all but two cases, the modified empirical Bayes estimator achieves a smaller RMSE 
"than the unbiased estimator. For local area 3, the RMSE's for the two estimators are about the 
same, and for local area 9, with a large local area effect, that of the modified empirical Bayes 
estimator is somewhat larger than that of the unbiased estimator. In short, the modified empirical 
Bayes estimator is sometimes the best of the three and never the worst. 
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Figure 2. Empirical Root Mean Square Errors associated with each of the three estimation 
techniques plotted by local area 

One of the principal shortcomings of the usual, fIXed effects synthetic estimators is the dif­
ficulty in obtaining useful measures of associated accuracy. One can only obtain measures of 
sampling variances. Measures of bias which reflect model inadequacies are not available. For 
unbiased estimates, on the other hand, the usual estimates of sampling variability are also mean 
square error estimates as there is no bias. For empirical Bayes estimates, measures of uncer­
tainty are available from the posterior covariance matrix of the parameters. These posterior 
variances reflect sampling variability as well as the "bias" which comes from simple fIXed effects 
model inadequacies. This latter SOurce of uncertainty is captured via the variability in the local 
area effects parameters. 

The usefulness of these measures of uncertainty are compared graphically in Figure 3. The 
vertical axis corresponds to the empirical root mean square error (RMSE) which is obtained 
by comparing the individual replicate estimates with the known population proportions for 
each local area. The horizontal axis corresponds to the "reported RMSE". For the classical 
unbiased estimates, these are merely the sampling standard deviations for simple random 
sampling. For the synthetic estimates, they are also sampling standard deviations, corrected 
for the cluster sampling. The "reported RMSE" for empirical Bayes estimates are the square 
roots of the posterior variances of the estimated proportions which were obtained using the 
methods described in Section 3.2 above. 

Note that the points corresponding to the unbiased estimates lie along a line indicating 
that the reported RMSE's are very close to the empirical RMSE's. This is as expected since 
there is no bias in these, so the reported RMSE's and the empirical RMSE's are merely 
sampling standard deviations. As opposed to this, the points corresponding to the synthetic 
estimates are in a cluster above 0.015 to 0.020 on the horizontal axes. For these estimates, 
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Figure 3. Empirical Mean Square Error vs "Reported Mean Square Errors" for each of the three 
estimation techniques 

the' 'Reported RMSE's" are estimates of sampling standard deviations, which for these pooled 
estimates are all quite small. However, the empirical RMSE's for these estimates are quite a 
different story. They range from 0.015 to 0.100, with one outlier in excess of 0.250 (local area 
9). Sampling variances alone are not sufficient to describe the uncertainty associated with the 
estimates. 

The case for the modified empirical Bayes estimators is again in between these two extremes. 
However, with respect to the relationship between reported RMSE and empirical RMSE it is 
much closer to the corresponding relationship for the unbiased estimators. With the excep­
tion of the point associated with local area 9, the average reported RMSE's are very close to 
the corresponding empirical RMSE's. 

5. CONCLUSIONS 

In the simple simulation of a two-stage sample where PSU's correspond to local areas, the 
modified empirical Bayes estimators have been shown to be superior, overall to two standard 
alternatives. These have been evaluated in three ways, design-bias, root mean square error, 
and validity of estimable measures of uncertainty. The classical estimator is shown to be superior 
in terms of design-bias, as expected since it is design unbiased. In addition, valid estimates of 
RMSE's are available using standard techniques. However, these estimators suffer from large 
RMSE's due to the fact that they are formed from limited amounts of data. Indeed, unlike 
the other two alternatives, no estimates can be formed at all for local areas not in the sample. 



250 MacGibbon and Tomberlin:Small Area Estimates of Proportions 

At the other extreme, the synthetic estimator is far more stable than either of its competitors. 
Since all estimates are based on data from the whole sample, associated sampling variances 
are much smaUer than those of the other two estimators. On the other hand, this estimator 
is unable to adjust for local areas which are quite different from the rest. This is the case, even 
when data are available in the sample that would indicate such a difference. As important, 
estimates of uncertainty in the form of sampling standard deviations for this estimator are par­
ticularly misleading since they are unable to account for departures from the fIxed effects model. 

As a compromise between these two estimators, the modifIed empirical Bayes estimator per­
forms well on all three assessments. By using the data from the specifIc local areas to the extent 
it is reliable, this estimator avoids the large biases associated with the synthetic estimator. On 
the other hand, by pooling information from the whole sample, it has smaller sampling 
variances than the unbiased estimator, and generally smaller RMSE's. Finally, posterior 
variances are available as useful measures of uncertainty. 

Several tasks remain in the investigation of the proposed estimators. First, the effect of using 
true empirical Bayes estimators instead of modifIed ones must be assessed. Some guidelines 
for minimum number of sampling units for valid empirical Bayes inference are required. True 
empirical Bayes estimates employ estimated prior variances and methods which account for 
this additional uncertainty are required. For example, the bootstrap techniques investigated 
by Laird and Louis (1987) could be used. Second, the estimation techniques need to be 
generalized to handle three and more stages of sampling. While the theoretical extension is 
trivial, the computational implications are not. Finally, these techniques must be applied to real 
data before recommending their adoption as a standard alternative for local area estimation. 
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It is sometimes required that a PPSWOR sample of first stage units (psu's) in a multistage popUlation 
survey design be updated to take account of new size measures that have become available for the whole 
population of such units. However, because of a considerable investment in within-psu mapping, segmen­
tation, listing, enumerator recruitment, etc., we would like to retain the same sample psu's if possible, 
consistent with the requirement that selection probabilities may now be regarded as being proportional 
to the new size measures. The method described in this article differs from methods already described 
in the literature in that it is valid for any sample size and does not require enumeration of all possible 
samples. Further. it does not require that the old and the new sampling methods be the same and hence 
it provides a convenient way not only of updating size measures but also of switching to a new sampling 
method, 

KEY WORDS: PPSWOR; Sample updating; PPS sequential sampling. 

1, INTRODUCTION 

It is sometimes required that a PPSWOR sample of first stage units (psu's) in a multistage 
population survey design be updated to take account of new size measures that have become 
available for the whole population of such units. This occurs, for example, when the psu's are 
census enumeration areas (or collections of census enumeration areas) and a new census has 
made new popUlation/housing counts available or when, because of observed uneven growth 
in EA populations in an intercensal period, it is decided to do an interim update of size measures 
in a sampling stratum, However, because of a considerable investment in within-psu mapping, 
segmentation, listing, enumerator recruitment, etc., we would like to retain the same sample 
psu's if possible, consistent with the requirement that selection probabilities, originally pro­
portional to the old size measures, may now be regarded as being proportional to the new ones, 
A comprehensive treatment of the problem for n = 1 is given by Kish and Scott (1971) and 
is itself a generalization of a method given earlier by Keyfitz (1951). They point out that their 
method may be extended without difficulty to with replacement sampling (PPSWR) for n > I. 
Their method may also be used (Drew, Choudhry, and Gray 1978; Platek and Singh 1978) for 
n > I when the PPSWOR procedure used is that due to Rao, Hartley and Cochran (1962), 
since this method involves the formation of n random groups and subsequent selection of a 
single psu from each group. It breaks down however if we wish, as indeed we probably would, 
to form new random groups according to the new size measures. Fellegi (1966) provides two 
methods applicable to a PPSWOR sample of n = 2 drawn by the Fellegi (1963) procedure. 

The method given in this paper is similar to the second Fellegi method and, when applied 
to the examples in the Fellegi paper, gives very similar results. Unlike that method, however, 
it does not require the enumeration of all possible samples and hence is a feasible procedure 
for any value of nand N. Although it is formally applicable to any PPSWOR method for which 
it is feasible to calculate the selection probability of any sample selected it has its highest utility 
for PPSWOR methods in which all, or nearly all, n-tuple subsets are possible samples with 
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probabilities approximately proportional to the product of their unit probabilities. The method 
of this type, used for purposes of illustration, is the author's pps sequential method (Sunter 
1986, 1989). 

2. REPLACEMENT PROCEDURE THEORY 

We wish to reselect a PPSWOR sample, originally selected with probabilities ("11, "'2, 
... , "'n) proportional to original size measures (ZII' Z'2, ... , Z'n) under a new set of prob­
abilities ("2', "22, ... , "2nJ proportional to new size measures (Z2" Z22, ••• , Z2n)' How­
ever, we want to do this in such a way that we have a high probability of retaining the original 
sample. 

We assume that for any particular n-tuple S, including of course S', the original sample 
actually selected, it is possible to calculate both P, (S), its selection probability under the 
original scheme, and P2 (S), its selection probability under a new scheme. For many samples 
in many schemes (e.g. pps systematic) one or both of these probabilities may be zero although, 
obviously, P, (S') cannot be zero. 

The procedure is as follows: 

Step 1: (a) 

(b) 

(c) 

Step 2: (a) 

(b) 

Calculate P, (S'), P2 (S'). 

If P2 (S') 2: P, (S') then retain the sample. 

If P2 (S') < P, (S') retain the sample with probability P2(S')1 
P, (S'). If rejected proceed to Step 2. 

If the original sample was not retained then draw a new sample. 
S, say. with probability P2(Sd. If P2 (S,) < P,(Sd then reject the 
sample. otherwise retain with probability 1 - P,(S,)IP2(S,). If 
rejected proceed to Step 2(b). 

If the Step 2(a) sample was not retained then draw a new sample, S2 
say. and proceed as for Step 2(a).' 

(c). (d), ... Repealthe Step 2(a), 2(b), ... procedure until a sample is retained. 

The sample eventually retained by this process has the required probability structure for 
both unit probabilities and unit pair joint probabilities. In other words, it may be regarded 
as having been drawn under the new scheme. In particular, since it has the same joint probability 
stucture, it has the same sampling variance. 

Let P* denote the probability that the process does not terminate at Step I, po. the condition­
al probability that it does not terminate at Step 2(a) given that it did not terminate at Step 1. 
Obviously p •• is then also the conditional probability that the process does not terminate at 
any subsequent step given that it did not terminate at any step preceding that step. We now have 

P' = E (l - P2(S;lIP,(S,»P,(S,) 

i:P2(Si) < PI (S;) 

= E (P, (S,) - P2(S,» (I) 

i:P2(S;) < PI (Sj) 
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where i now indexes the n-tuple subsets of the N population units, and 

P" = I E (1 - PI (Si)IP2(Si»P2(Si) 

i:PJ (5j) < P,.(Sj) 

= I E (P2(Si) - PI(Si» (2) 

;:PI (Sj) < ~(Si) 

while, since EiPI(Si) = E;P2(Si) = I, it is easy to see that the summation terms on the 
right of (I) and (2) respectively must be equal and we have P' = I - p". 

Denoting ultimate selection probability by P' we now have, by design: 

For i:P2(Si) < PI (Si) 

P' (Si) = PI(Si) (P2(Si)IPI (Si» 

= P2 (Si) , as required. 

For i:P2 (Si) "" PI (Si) 

P' (Si) = PIISi) + P' (1 - PI (Si)IP2(Si) )P2(Si) 

+ P'P"(I - PI (Si)IP2(Si»P2(Si) 

+ p'(p,,)2(1 - PIISi)IP2(Si»P2(Si) 

+ p'(p,,)3(1 - P I (Si)IP2(Si»P2(Si) 

+ ... 

= PIIS,) + P'(P2(S,) - PI(S,»/(I - P") 

= P2(S,) 

as required. 

Finally, we observe that the expected number of Step 2 "trials", given that the original 
sample was not retained at Step I, is given by the binomial waiting time distribution as 
1/(1 - P") = liP'. 

3. APPLICATION AND EXAMPLES 

The new scheme need not be the same (even apart from the change in unit probabilities) 
as the old one. We could switch, for example, from a sample originally drawn under pps 
systematic sampling to one drawn under the author's (Sunter 1986, 1989) pps sequential scheme 
or even from PPSWR (pps with replacement) to a PPSWOR scheme. In the latter case, of 
course, an original sample with multiple inclusions of a single psu has zero probability of selec­
tion in the new PPSWOR scheme. The procedure may still be used, it may be noted, even if 
we have included new psu's in the stratum but are retaining the same sample size. 
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The procedure probably has its highest practical utility, as measured by its probability of 
retaining the same sample, when both the old and the new schemes are such that all, or nearly 
all, samples are possible and their probabilities are approximately proportional to the product 
of their unit selection probabilities. Under these circumstances, and provided that the changes 
in size measures are not extreme, PI (Sj) and P2(Sj) tend to have about the same values so that 
the probability of retaining the same sample will be relatively high. A practical PPSWOR 
method with the required properties is the author's, referred to above. Since we will use this 
method in the examples of the next section, we now describe it. There are two variants, in both 
of which we have to find a suitable ordering ofthe population and accumulate the size measures 
(which we assume to be scaled to sum to 1), in reverse order (so to speak), to give: 

N 

Zj = E Zj; i = 1, 2, .. 0' N. 

Variant 1: Order the population in any way such that 

(a) nZj S Zj; i = 1,2, .. N - n 

(b) (n - i)Zj < Zj; i = n, n + 1, ... , N - 1. 

Then select units until exactly n have been selected according to: 

( 
I if nj = N - i + I 

P(Uj I nj) = 
njZj/ Zj otherwise 

where nj is the number of sample units still required to be selected when we arrive at the 
i-th population unit. 

It is always possible to satisfy the ordering requirements (a) and (b). For example ordering 
by increasing size obviously satisfies both as does ordering by decreasing size down to the point 
(if any) at which (b) fails and then by increasing size. The latter ordering has some advantage 
in that it tends to minimize the slight (and, for practical purposes, negligible) deviation from 
strict pps for the last n units (see Sunter 1986). Variant 2 avoids these deviations altogether 
by taking advantage of the fact that if it occurs that there are nj + I units remaining in the 
population for any i, then it is usually possible to simply discard one of these units with 
appropriate probability and retain the others. 

Variant 2: Order the population in any way such that 

Then 

(a) nZj S Zj; i = 1,2, .. N- n-I 

(b) (n - i)Zj < Zj; j ~ i ~ N - n. 

(i) select according to P( Uj I nj) = nz;lZj until either nj = 0 or nj = 
N - i, then 

(ii) if nj > 0 discard one of the remaining units, say that indexed j, with 
probability I - njZj/Zj and select the others. 
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An algorithm for finding an ordering satisfying the requirements for Variant 2 is given in 
Sunter(1986) and is incorporated in the program used for the simulations of the next section. 
In both variants 7rij maybe calculated according to 

7rij = n (n - I )ZiZj1ij 

where i < j (in the indexing of the ordering actually used) and 

1i = (1/Zi + 1)(1 - zl/Z,) ... (I - zi_I/Zi)' 

These expressions are exact for i < j s N - n + I, and provide a very close approxima­
tion otherwise. They are easily calculated and give the method the advantage, unique among 
practical procedures for PPSWOR with n > 2, of the availability of variance estimation with 
negligible bias. 

Pascal-like pseudocode for a routine that selects a sample according to Variant I, at the 
same time calculating its probability and the value of 1i for each selected unit, is given in an 
Appendix. It is easily extended to Variant 2 or modified to the calculation of P(S) for an already 
selected sample. 

3.1 Example 1 

To illustrate these procedures we take first an example with n = 2 and N = 4, small enough 
for sample enumeration and manual calculation, where it will be seen that, in order to obtain 
the "new" size measures, we simply inverted the order of the original assignment. The Variant 
2 ordering algorithm mentioned above gives (4,1,2,3) for the first set of size measures and 
(1,4,3,2) for the second. There are six possible samples, listed in column (I) of Table 2, whose 
probabilities under the Variant 2 algorithm are easily calculated, with results shown in columns 
(2) and (3). Column (4) gives the probability of retaining this sample at Step I, given that it 
was the original selection. Column (5) gives the conditional probability of retention at any 
subsequent Step 2, given that no sample was retained at a preceding step. 

It may be verified that the overall probability of retention of the same sample, given by the 
sum of the products of the values in columns (2) and (4), is 0.5465. This value may be com­
pared with the overall probability of retention of the same sample when the new sample is 
selected independently, given by LPdSi)P, (Si) = 0.1168. Thus even in this rather extreme 
example, we have considerably increased the likelihood of retaining the same sample. 

PSU 

2 

3 

4 

Table 1 

Selection Probabilities 

Zii 

0.15 

0.20 

0.30 

0.35 

Z2i 

0.35· 

0.30 

0.20 

0.15 
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Table 2 

(I) (2) (3) (4) (5) 
Sample PI(S) P2(S) P 21 dS) P 212 (S) 

1,2 0.0231 0.3231 1.0 0.9286 

1,3 0.1154 0.2154 1.0 0.4643 

1,4 0.1615 0.1615 1.0 0 

2,3 0.1615 0.1615 1.0 0 

2,4 0.2154 0.1154 0.5357 0 

3,4 0.3231 0.0231 0.0715 0 

3.2 Example 2 

In a more realistic set of examples we now take n = 4 for a population of 100 psu's with 
"original" size measures independently assigned from the uniform or rectangular distribu­
tion R (1,3). "New" size measures are assigned in a number of ways, described below. For these 
examples it is no longer feasible to enumerate all possible samples or to perform the sample 
selection and sample probability calculations manually. However, writing a computer program 
to do the latter and to apply the reselection procedure was a straightforward task. The pro­
gram was used to perform 200 iterations, for each example, of selection of a sample using 
Sunter's Variant 2 with probabilities proportional to the first set of size measures with subse­
quent application of the procedures described above for reselection of a sample with probabil­
ities proportional to the second set of size meaures. The program, running on an XT-compatible 
operating at 7.16 MHz, generated and sorted the populations of size measures and performed 
200 iterations of the sample selection and reselection in about three minutes. 

Case I, in which we have assigned new size measures from the same distribution indepen­
dently of their original values, may be seen as a "worst practical case" scenario. Case 2, in 
which 1007. of the psu's have doubled in size with the rest remaining unchanged, is an approx­
imation of a "scattered development" scenario. Case 3 illustrates the random perturbation 
of size measures by an amount rectangularly distributed over an interval equal to the original 
size measure. From Table 3 it may be seen that with probabiliities ranging from 0.67 in the 
"worst case" scenario to 0.81 in the "scattered development" scenario, we retain the original 
sample. For those cases in which the original sample is rejected the average number of Step 
2 trials required to select a new sample agreed closely with the predicted value of 1/ P' . 

Case 

2 

3 

Table 3 

200 Iterations of a Size Measure Update Procedure, n = 4, M = 100; 
Original Size Measures from R(I,3) 

Step I 
Average 

Source of 1C'2j Retentions Step 2 
Trials 

Z2i = R(1,3) 134 2.98 

Z2i = 2'zli for 10"1. of psu's 153 5.53 

Z21 = R (zlj/2,3zl ;l2) 154 4.17 

Estimated 
p' 

0.33 

0.19 

0.25 
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APPENDIX 

Pseudocode for Variant 1 of PPS Sequential Sampling 

It is assumed here that the population of size measures has already been given a suitable 
ordering, say by the algorithm given in Sunter (1986) and that its index, i, in this ordering iden­
tifies the unit. Size measures, scaled to sum to I, are stored in an array Z [ I .. PopSize] with 
their cumulative values (accumulated from Pop Size down to I) stored in an array 
Z [I .. PopSize]. The meaning of the variables will be clear from the names that they are given. 
The results are to be stored in an array Sample [I .. SamSize,1 .. 3] in which the elements are 
population index i, unit probability 'If" and Tj respectively. "Random" is a function that 
returns a random number uniformly distributed on the the interval (0,1). The indentations in 
the code written below are intended to facilitate the visual pairing of the begin/end's that 
delineate a compound statement. 

( Variables initialization I 

i = I; SamProb = I; NumRem = SamSize; Gamma = IIZ[2]; 

(Sampling routine I 

while NumRem > 0 do 

begin 

if i > I and i < PopSize then 

Gamma = Gamma*(1 - z[i - 1]/Z[i])'Z[i]/Z[i + I]; 

ifi = PopSize - NumRem + I or Random < = Numrem'z[ij/Z[i] 

then 

begin 

if i < > PopSize - NumRem + I then 

SamProb = SamProb'NumRem'z[iJ/Z[i]; 

NumRem = NumRem - I; 

Sample[SamSize - NumRem,lJ = i; 
Sample[SamSize - NumRem,2J = SamSize*z[i]; 

Sample[SamSize - NumRem,3] = Gamma; 

end else SamProb = SamProb'(1 - NumRem*z[i]/Z[i]); 

i = i + I; 

end. 
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This paper examines the adequacy of estimates of emigrants from Canada and interprovincial migra­
tion data from the Family Allowance files and Revenue Canada tax files, The application of these data 
files in estimating total population for Canada, provinces and territories, was evaluated with reference 
to the 1986 Census counts. It was found that these two administrative files provided consistent and 
reasonably accurate series of data on emigration and interprovincial migration from 1981 to 1986. 
Consequently, the population estimates were fairly accurate. The estimate of emigrants derived from 
the Family Allowance file could be improved by using the ratio of adult to child emigrant rates com­
puted from Employment and Immigration Canada's immigration file. 

KEY WORDS: Interprovincial migration; Emigration; Population estimates; Census counts; Accuracy. 

1. INTRODUCTION 

The national Census, conducted every five years since 1951, provides a wide range of 
demographic data on the Canadian population. However, unlike some other industrialized 
countries, Canada does not have a continuous population registration to derive basic 
demographic data and track the movement of people over different geographic areas for non­
census years, To fill this gap, since the 1940s Statistics Canada has developed a program of 
population and family estimates. For example, population estimates for Canada, provinces 
and territories, census divisions, and census metropolitan areas are produced using the latest 
census counts and several administrative data sources, including: Revenue Canada tax files 
and Family Allowance files for migration; Vital Statistics registration for births and deaths; 
and Immigrant Visa and Record of Landing Registration for immigration. 

The strengths and weaknesses of these administrative files for estimating population and 
migration compared with 1981 Census data have been discussed elsewhere. (Statistics Canada 
1987; Verma and Parent 1985; Norris, Britton and Verma 1982). In this paper, the accuracy 
of estimates of the components of population change for provinces and territories using the 
Family Allowance and Revenue Canada data sources will be evaluated by comparison with 
the 1986 Census counts. This evaluation will compare 1971, 1976 and 1981 data. 

The paper is presented in the following sections: data sources and the methods of estima­
tion; results of the evaluation; and conclusions and discussion, 

2. DATA SOURCES AND THE METHODS OF ESTIMATION 

This section describes the procedures for estimating total population, interprovincial migra­
tion, and emigration. 

I Revised version of a paper presented at Statistics Canada Symposium on Statistical Uses of Administrative Data, 
November 1987. 

2 Ravi B.P. Verma and Ronald Raby. Demography Division. Statistics Canada. 4-A Jean Talon Building, Ottawa, 
Ontario, KIA OT6. 
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2.1 Total Population 

Quarterly and annual estimates of the total population of Canada and the provinces and 
territories, and annual totals for census divisions and census metropolitan areas, are produced 
by the component method. At the national level, the number of births and immigrants are added 
to, and the number of deaths and emigrants subtracted from, the base population (taken from 
the latest Census of Canada). By province and for smaller areas, estimates of internal migra­
tion are also taken into account. 

The component method is expressed as follows: 

P(t + ;) = P(t) + [B(t,t + ;) - D(t,t + ;) 

+ [(t,t + i) - E(t,t + ;) 1 + N(t,t + i). 

Where, for any given province: 

P(t + /) = estimate of population at time t + ; 

P (t) = Census population counts at time t 

B = number of births between time t and t + i 
D = number of deaths between time t and t + i 
[ = number of immigrants between time t and t + i 

E = number of emigrants between time t and t + i 

N = number of net interprovincial immigrants between time t and t + i 

(I) 

(t,t + i) = interval between the last census date and the reference date of the estimate. 

2.2 Interprovincial Migration 

Two administrative files are used to produce annual and quarterly estimates of interprovin­
cial migration. Preliminary estimates are derived from Family Allowance files, while final 
figures are estimated from Revenue Canada income tax files. 

2.2.1 Preliminary Estimates 

The number of adult migrants is estimated using child migration figures derived from Family 
Allowance files, and ratios of adult out-migration rates to child out-migration rates Uj .• ) 
based on the most recent Revenue Canada tax file (calculated for I or 2 years before the refer­
ence date). Recipients of Family Allowance cheques must notify the Department of Health 
and Welfare of changes in address. These changes are compiled monthly for both province 
of origin and destination, by size of family (the number of children per family receiving the 
allowance). Coverage of the population by Family Allowance is comparable to that of the 
census (Statistics Canada 1987, p. 46). Estimates of the number of interprovincial out-migrants 
for all age groups are calculated as follows: 

M MU•k ).O-17 
U.k).IS+ = . IU.k) . Pj,ls+ 

Pj .O-17 

Iu,k) = 
M U,k).18+ M U,k).(}'17 

+ -;;'--'--
Pj .O-17 

(2) 

(3) 
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MU,k),O+ = M U,k),18+ + M U,k),0-17 (4) 

where: 

M U,k),O+ = estimated total number of persons out-migrating from provincej to province k 

M U,k),18+ = estimated number of adult out-migrants (aged 18 +) from province j to 
province k 

Mi.;,k),18+ = number of adult out-migrants from province j to province k derived from 
Revenue Canada tax files 

Mi.;,k),O-I7 = number of child out-migrants (aged 0-17) from provincejto province kderived 
from Revenue Canada tax files 

M U,k),0-17 = number of child out-migrants from provincejto province k, based on Family 
Allowance files 

fU,k) 

Pj ,18+ 

Pj ,0-17 

= estimated number of adults in province j, the difference between the total 
population estimates and estimates of the child population based on Family 
Allowance files 

= total number of children receiving Family Allowance payments in provincej 

= estimation factor for adult migrants from province of origin j to province 
of destination k, based on estimates of migration from Revenue Canada tax 
files 

= number of adults in province j, Demography Division population estimates 

= number of children in provincej, Demography Division population estimates, 

2.2,2 Final Estimates 

Revenue Canada tax files are used to produce final estimates of interprovincial migrants. 
All individuals receiving an annual income above a specified minimum are required to file an 
income tax return by the end of April of each year. Migrant tax filers are identified by com­
paring area of residence from two consecutive tax returns. Information on the number and 
ages of dependents is imputed from the total amount of personal exemptions claimed by filers. 
An adjustment is made for segments of the population not covered by the Revenue Canada 
system; this includes people who neither file an income tax return nor appear as dependents 
in another filer's return (Norris and Standish 1983; Statistics Canada 1987). 

2,3 Emigration 

In Canada no system exists for recording emigrants; hence, their numbers must be estimated. 
Revenue Canada income tax files with an "out-of-Canada" address one year and an "in­
Canada" address for the previous year are used to identify emigrants. The emigrant status of 
children under 17 years of age is determined from change of address notifications from Family 
Allowance recipients. By combining information from these two administrative files, both 
preliminary and final estimates of emigrants are generated. The estimation procedures are 
similar to those used to estimate preliminary interprovincial migration: 
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where: 
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E~.0-17 
+ --­

Pc,O-J7 

t!.j = estimated annual number of emigrants from province} 

t!.e = estimated annual number of emigrants from Canada 

(5) 

(6) 

(7) 

Ej .O-17 = number of emigrants from province} aged 0 to 17 who were eligible for 
Family Allowance 

P j .0-17 = number of children in province} who are eligible for Family Allowance 

Pj •18 + = adult population of province} obtained by subtracting the number of 
children eligible for Family Allowance from the total estimated population 

fe = annual adjustment factor for estimating adult emigration from Canada, 
based on Revenue Canada tax files. 

E~.18+ and E~.0-17 = estimated numbers of adult and child emigrants from Canada, based on 
Revenue Canada tax files. 

Pe.18+ and P e.O-17 = estimated June 1st population of adults and children for Canada, based 
on the component method. 

The method of estimating the number of emigrants was modified in March 1989, affecting 
estimates after 1986. The new method combines counts by age of emigrants from Canada to 
the United States (from the U.S. Department of Justice, Immigration and Naturalization 
Service), and estimates of the numbers of emigrants from Canada to countries other than the 
U.S. based on Family Allowance files and anfe factor calculated from immigration files (see 
Raby, Martel and Cartier 1989). 

3. EVALUATION OF ESTIMATES OF THE COMPONENTS OF 
POPULATION CHANGE 

Each component of population change (births, deaths, immigrants, emigrants and inter­
provincial migrants) may contain a degree of bias and error. However, the data on births, deaths 
and immigration can be regarded as more accurate than the estimates of emigrants and inter­
provincial migrants. In 1982, the methods of estimating emigrants and internal migration were 
thoroughly updated (see Statistics Canada 1987). These revised methods are evaluated below. 
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Table 1 

Estimates of Emigrants by Different Methods, Canada, 1976-1981 .nd 198i-1986 

Method 1976-81 

Residua)· 
(a) Un.djusted 277,558 
(b) Adjusted for Undercover.ge 196,955' 
(c) Adjusted for Net Undercover.ge 194,155' 

Revenue Canada Tax File 207,420 

Family Allow.nce Method 278,624 

Reverse Record Check 296,724 

·Residual Method: 
Emigrants = ([ Births - Deaths] + [Immigrants]) - Intereensal growth of population 

between time t and t + 5. 

265 

1981-86 

476,373 
134,857' 
218,148' 

165,272 

235,481 

288,376 

1 The undercoverage rates were 2.040/0 for the 1976 Census, 2.01 % for the 1981 Census, and 3.21010 for the 1986 Census. 
2 The 1976.1981 and 1986 Census net undercoverage rates were 1.53070,1.51070 and 2.40"'0 respectively. They are 

estimated using the U.S. experience of overcoverage which is 25070 of the undercoverage rate. 
Source: Demography Division, Statistics Canada. 

3.1 Emigration Data 

Table I presents estimates of emigrants from Canada by using different methods and data 
sources for 1976-1981 and 1981-1986. For 1981-1986, the estimate using the residual method 
is considerably higher than the estimate based on the Family Allowance file. The residual 
method subtracts the population growth between 1981 and 1986, unadjusted for census under­
coverage, from natural increase and immigration. Since births, deaths and immigration data 
are assumed to be accurate, the higher estimate by the residual method can be attributed to 
the difference in undercoverage rates for 1981 and 1986. After adjusting the 1981 and 1986 
Census counts for undercoverage (2.01 "7. and 3.21"70 respectively), the estimate by the residual 
method was found to be 134,857. This figure is lower than estimates obtained using both the 
Family Allowance file (235,481) and the Revenue Canada tax file (165,272). 

This low estimate may result from different rates of overcoverage in the 1981 and 1986 
Censuses. No estimate of overcoverage is calculated in the Reverse Record Check study, but 
the rate can be assumed to be similar to the U.S. Census rate which is 25"70 of the undercoverage 
rate. After adjusting the 1981 and 1986 Census counts for net coverage rates of 1.51"70 and 
2.40"70 respectively, the residual estimate (218,148) was close to the Family Allowance-based 
estimate (235,481). 

For 1976-1981, the estimating methods do not produce similar results. The number of 
emigrants estimated by the residual method adjusted for net undercoverage was 194,155, which 
is close to the estimate based on Revenue Canada tax files (207,420), but considerably lower 
than the Family Allowance method estimate (278,624) or the Reverse Record Check estimate 
(296,724). 

One possible source of error in the current method is thele factors, which are adult-child 
emigrant ratios, estimating the number of emigrants aged 18 + from 1981-1986. These ratios 
were obtained from the emigration data provided by the Revenue Canada tax files. 

Table 2 shows Ie values derived from different data sources. The Ie factors from the 
Revenue Canada tax files are less than unity and higher than unity from the three other data 
sources: interprovincial migration data from income tax files, immigration files, and data on 
Canadian emigrants to the United States. The estimates of emigrants from these sources are 
also higher than the Revenue Canada-based estimate. 
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Table 2 

Estimates of Emigrants by Family Allowance Method Using Different Values 
offe (Adult-Child Emigrant Ratios). 1981-1986 

Value of fe Factor 
Data Source of fe 

1981-82 1982-83 1983-84 1984-85 1985-86 

I. Revenue Canada Tax 
Files 0.8698 0.8768 0.9052 0.8592 0.8592 

2. Interprovincial 
Migration Data from 
Income Tax Files 1.0760 1.1000 1.0664 1.0290 1.0029 

3. EIC Immigration 
Data 1.0801 1.0926 1.1723 1.1254 1.0694 

4. Canadian Emigrants 
to the U.S.A. 1.2300 1.2774 1.3196 1.3745 1.4232 

Source: Demography Division. Statistics Canada. 

Number 
of 

Emigrants 

235.481 

265.816 

275.762 

316.268 

Eachle factor source shows annual variations. The Ie factors for Canadians emigrating to 
the United States are particularly high. indicating that 2307. to 42% more adults emigrated to 
the U.S. than did children. This is not surprising. as the southern American states have always 
been attractive to retirees. Hence the Ie factor based on U.S. data may not be suitable for 
estimating Canadian emigrants to countries other than the U.S. 

Similarly. thefc factors for interprovincial migration. based on the income tax file. suggest 
that adult migrants have exceeded child migrants by up to 1007. from 1981 to 1986. However. 
the adult migrant group likely contains a high proportion of younger adults. who tend to move 
more often between provinces than other age groups. Hence this data source is also very specific 
and thus not suitable for computing the overall Ie factor. 

According to some authors (Beaujot and Rappak 1988). emigrant and immigrant flow data 
are associated. making it possible to compute anle factor from the Emloyment and Immigra­
tion Canada (EIC) immigration file'!e factors from the EIC immigration file are intermediate 
between those derived from interprovincial immigrant data and U.S. emigrant data. The figure 
based on thefc factor from the immigration file (275.762) is higher than the official estimate 
of emigrants (235,481), but is close to that derived from the 1986 Reverse Record Check study 
(288.376). If the official estimate of the number of emigrants were increased to 275.762. the 
1986 error of closure between the population estimate and census counts would be reduced 
from 0.95% to 0.79%. 

In sum. for the 1981-86 period the estimates of emigrants seemed to be improved by taking 
Ie factors from the Canada Employment and Immigration (EIC) immigrant file rather than 
the Revenue Canada tax file. 

Yet in March 1989. it was discovered that emigrant estimates based on Family Allowance 
files and anle factor derived from EIC immigration data were still too low after 1986. This 
seems to be a result of the high proportion (33%) of Canadian emigrants destined for the U.S. 
from 1981 to 1986. according to U.S. data. 

An analysis was also made of a method combining U.S. Department of Justice. Immigra­
tion and Naturalization Service data on the numbers emigrating to the U.S. from Canada; child 
emigrant counts (ages 0-17) from Family Allowance files and anfc factor obtained from the 
EIC immigration file for all countries other than the U.S. For 1981 to 1986. the estimated 
number of emigrants by this method was 285,413. This revised estimate is much closer to the 
Reverse Record Check study figure (288.376). 
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Table 3 

Estimates of Net Interprovincial Migration from 1986 Census Data on Mobility, 
Family Allowance Files. Income Tax Files, and Residual Method, 

Canada, Provinces and Territories, 1981-1986 

Geographic 1986 Family Income 

Area Census' Allowance Tax 
Files Files 

CANADA 0 0 0 
Nfld. -16,550 -14,837 -15,051 
P.E.!. 1,540 293 751 
N.S. 6,275 5,204 6,895 
N.B. -1,370 -2,239 -65 
Que. -63,295 -76,040 -81,254 
Onto 99,355 115,497 121,767 
Man. -1,555 -3,700 -2,634 
Sask. -2,820 -668 -2,974 
Alta. -27,665 -34,073 -31,676 
B.C. 9,500 13,289 7,382 
Yukon -2,665 - 2,381 -2,775 
N.W.T. -755 -345 -366 

I Population 5 years of age and over. 
2 The residual metbod for estimating net interprovincial migration is: 

Net Migration = Growth of Census Population between time t and t + 5 
- [(Births - Deaths) + (Immigration - Emigration)]. 

Source: Demography Division, Statistics Canada. 

3,2 Interprovincial Migration Data 
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Residual 
Method' 

-238,178 
-26,111 

-509 
-4,095 

-11,212 
-167,286 

57,147 
-8,180 

-13,564 
-50,811 
-12,418 
-1,643 

504 

To test the accuracy of estimates of interprovincial migration obtained from the Revenue 
Canada tax file, two evaluations were conducted: (i) a comparison of sets of interprovincial 
migration data derived from the Revenue Canada tax files and Family Allowance files; and 
(ii) a comparison of the errors of closure of population estimates for two sets of internal migra­
tion data. 

Table 3 presents net interprovincial migration estimates derived from four sources: 1986 
Census data on mobility; the Revenue Canada tax file; the Family Allowance file; and the 
residual-based net migration estimate. For all provinces, estimates of internal migration derived 
from the 1986 Census mobility data, the Revenue Canada tax file and Family Allowance files 
were consistent on the direction of net migration. All sources except the residual-based method 
show positive net migration for Prince Edward Island, Nova Scotia, Ontario and British 
Columbia. In other provinces, net migration was negative. 

The estimates of net interprovincial migration from Family Allowance files and Revenue 
Canada tax files are not strictly comparable to the residual method. By definition, the sum 
of net interprovincial migration in Canada, should be zero. However. the sum produced using 
the residual method is about 238,000. In addition, the differences between the residual-based 
and the Revenue Canada/Family Allowance-based net interprovincial migration estimates are 
very high in Newfoundland. New Brunswick. Quebec, Ontario and Alberta. 

The coefficient of variation (the ratio of the standard deviation of the average absolute error 
of closure for the provinces to the average absolute error of closure) was used to measure the 
relative accuracy of the internal migration estimates. The other estimates of the components 
of population change were assumed to be accurate. Statistically, a coefficient of variation of 
20'7. to 30'70 is normally acceptable. 
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Table 4 
Error of Closure Between Alternative Population Estimates and Census Counts 

by Province and Territory 1971, 1976, 1981 and 1986 

Geographic Area 

Newfoundland 
Prince Edward Island 
Nova Scotia 
New Brunswick 
Quebec 
Ontario 
Manitoba 
Saskatchewan 
Alberta 
British Columbia 
Yukon 
Northwest Territories 

Average Absolute Error 
10 provinces 
Provinces and 
Territories 

1971 

Income FA 
Tax 

-2.08 -1.64 
-2.09 -2.01 
-1.68 -2.39 
-1.93 -2.65 
-0.33 -0.97 

0.11 0.99 
0.29 0.38 
0.44 -0.33 

-0.14 0.52 
0.01 -1.34 

-5.36 -5.99 
-2.12 2.64 

0.91 1.33 

1.38 1.82 

Error of Closure' (%) 

1976 1981 1986 

Income FA Income FA Income FA 
Tax Tax Tax 

0.49 1.34 1.63 2.30 1.97 2.01 
0.17 2.11 -0.05 1.02 0.99 0.63 

-0.20 1.18 0.30 0.40 1.24 1.04 
-1.29 1.81 0.13 0.54 1.58 1.04 
-0.05 -0.18 -0.30 -0.07 1.32 1.40 

0.15 0.16 0.64 0.37 0.72 0.65 
-0.27 0.39 1.07 0.87 0.51 0.41 

0.45 0.37 -0.31 0.28 1.08 1.31 
-1.07 -1.11 -2.39 -2.64 0.73 0.63 

0.28 -1.10 0.03 -0.07 0.59 0.79 
-0.87 3.79 -1.98 2.06 -4.78 -3.10 

-12.98 -3.39 -7.08 0.43 -1.44 -1.40 

0.44 0.97 0.69 0.86 1.07 1.01 

1.52 1.41 1.33 0.92 1.41 1.22 

Note: From 1976 to 1980. Revenue Canada data for children were available for age group O-IS only. Therefore the 
f U,k) factors were calculated using migrants aged 0-15 and 16 + instead of 0-17 and 18 + . 

1 Error of closure is calculated using the following equation: 

(
Estimate - Census count) 

Error of closure = x 100 
Census count 

Income Tax: Revenue Canada Income Tax File. FA: Family Allowance File. 
Source: Estimates of interprovincial migration based on Family Allowance data, Demography Division, Statistics 

Canada. 
Estimates of jnterprovincial migration based on tax data, Small Area and Administrative Development 
Division, Statistics Canada. 

Table 5 
Coefficients of Variation of the Average Absolute Error of Closure between the Population 

Estimates and Census Counts among Provinces (n = 10), by Source of Interprovincial 
Migration Estimates, 1%6-1971, 1971-1976, 1976-1981 and 1981-1986 

Period Source AAE Standard Coefficient of 
(1,1 + 5) (I + 5) Deviation Variation ("10) 

(1) (2) (3) = (2 + 1) X 100 
1966-1971 Income Tax 0.91 0.2863 31 

FA 1.33 0.2642 20 
1971-1976 Income Tax 0.44 0.1317 30 

FA 0.97 0.2135 22 
1976-1981 Income Tax 0.69 0.2463 36 

FA 0.86 0.2855 33 
1981-1986 Income Tax 1.07 0.1496 14 

FA 1.01 0.1570 16 

Note: AAE: Average absolute error of closure. 
Income Tax: Revenue Canada Income Tax File. 

FA: Family A1lowance File. 
Source: Demography Division. Statistics Canada. 
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However, one could argue that the coefficient of variation is not a good indicator of the 
quality of internal migration data. For example, a set of estimates with an absolute error of 
closure of 100/. for every province would give a coefficient of variation of zeros and conse­
quently would be preferable to a set of estimates with closure errors ranging between - 1.0% 
and 1.0%. For cases like this, a quality measure that takes into account the size of the absolute 
error of closure as well as the standard deviation of absolute closure errors is clearly required. 
However, the likelihood of the provinces having the same absolute error of closure is extremely 
low (see Table 5), hence, the application of the coefficient of variation in this paper seemed 
to be valid. 

Table 5 shows the coefficient of variation (computed from figures in Table 4) for popula­
tion estimates based on two sets of internal migration estimates and the census counts for 1971, 
1976, 1981 and 1986. Before 1976, the coefficients of variation for migration data from tax 
files were 50% higher for data from the Family Allowance file. This was expected, since the 
method for estimating migration from tax files was in the developmental stage. Futhermore, 
in estimating the number of interprovincial migrants, the Jj factor (adult to child migration 
rates) was based on Census mobility data, an approach found to be less satisfactory than the 
current method. However, for 1976-1981 and 1981-1986, the gap in the coefficient of variation 
between the tax and Family Allowance migration data narrowed considerably. 

The tax-based migration data coefficient of variation was 9% higher in 1981 and 12% lower 
in 1986 than the coefficient of variation based on the Family Allowance file. Hence, the two 
sets of data are comparable, producing similar provincial estimates and errors of closure with 
the same level of variation among provinces. Since the coefficient of variation for each set is 
under 20%, they provide acceptable data on internal migration. 

In conclusion, estimates of interprovincial migration from the Revenue Canada tax files 
for 1981-1986 are consistent with estimates from the Family Allowance file. By province, they 
yield small variations in the errors of closure. 

4. CONCLUSION AND DISCUSSION 

The Family Allowance files and Revenue Canada tax files play important roles in providing 
consistent emigration and internal migration estimates for Canada, and for the provinces and 
territories. For 1981 to 1986, estimates of emigrants and interprovincial migrants obtained from 
these files are acceptable for estimating total population. 

Nationally the error of closure (the difference between the population estimates and census 
counts) for 1986 was higher than for the census years 1971, 1976 and 1981. In addition, the 
errors of closure by province in 1986 were positively biased, indicating that in all provinces 
the estimates were higher than census counts. 

These discrepancies are largely a result of differences in coverage of the 1981 Census popula­
tion, which was used as the bench-mark, and coverage of the 1986 Census population. The 
Reverse Record Check estimate of the 1981 undercoverage rate for Canada was 2.01 %. The 
estimate for the 1986 Census was considerably higher, 3.21 %. 

Errors in the estimates of the other components of change may also partly account for the 
discrepancies. 
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Confidence Intervals for Postcensal Population 
Estimates: A Case Study for Local Areas 

DAVID A. SWANSON1 

ABSTRACT 

271 

This paper presents a technique for developing appropriate confidence intervals around postcensal 
population estimates using a modification of the ratio-correlation method termed the rank-order pro­
cedure. It is shown that the Wilcoxon test can be used to decide if a given ratio-correlation model is 
stable over time. If stability is indicated, then the confidence intervals associated with the data used 
in model construction are appropriate for postcensal estimates. If stability is not indicated, the con­
fidence intervals associated with the data used in model construction are not appropriate, and. more­
over, likely to overstate the precision of postcensal estimates. Given instability. it is shown that confidence 
intervals appropriate for postcensal estimates can be derived using the rank-order procedure. An 
empirical example is provided using county population estimates for Washington state. 

KEY WORDS: Population estimation; Confidence intervals; Ratio-correlation regression. 

1. INTRODUCTION 

A method of generating confidence intervals for postcensal estimates was not available until 
Espenshade and Tayman (1982) introduced a time·series regression estimation technique 
utilizing age-specific postcensal death rates. The Espenshade-Tayman technique represents an 
important breakthrough in estimation technology; however, like most breakthroughs it has 
limitations, of which two are notable: 

1, The technique is likely to be unsatisfactory at the subprovincial or substate level (Espen­
shade and Tayman 1982); and 

2, It is a major departure from the standard regression technique used in Canada and the United 
States for estimating county-equivalent populations, namely, ratio-correlation. This depar­
ture is a particularly salient issue in terms of data requirements and the experience of people 
responsible for making county-equivalent and other subprovincial level population 
estimates. (Statistics Canada 1987). The term "county equivalent" is defined as a Census 
Division in Canada (Statistics Canada 1987) and as a county in nearly all U.S. states; notable 
exceptions in the U.S. include Alaska, in which county-equivalents are Census Areas, Loui­
siana, where Parishes functions as counties~ and Virginia~ in which Hindependent cities" 
are induded as county-equivalents. 
This paper presents a means of developing confidence intervals for postcensal county­

equivalent populations using the rank-order procedure, a modification of the ratio-correlation 
method introduced by Swanson (1980) that exploits causal modeling concepts to take into 
account postcensal structural changes in a given ratio-correlation model. 

There are three issues relevant to the development of confidence intervals made using the 
ratio-correlation method. The first has to do with model stability over time, If the structure 
of associations among model variables is invariant over time, then the confidence intervals 

1 David A. Swanson, Department of Sociology. Pacific Lutheran University. Tacoma, Washington 98447, U.S.A. 
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constructed in regard to the model data set will apply to the population estimates generated 
by the model from the estimation data set. Although it has been consistently documented 
that it is not prudent to assume model invariance (D' Allesandro and Tayman 1980; Ericksen 
1973, 1974; Mandell and Tayman 1982; Namboodiri 1972; O'Hare 1976, 1980; Smith and 
Mandell 1984; Spar and Martin 1979; Swanson 1980; Swanson and Prevost 1986; Swanson 
and Tedrow 1984; Tayman and Schafer 1982; Verma et al. 1983), it would be useful to have 
a testing procedure for stability. This leads to the second issue, namely, the use of a statistical 
test. If the test indicates that stability can not be assumed, and yet confidence intervals 
associated with, say, a model constructed using 1960-70 data, are applied to estimates 
generated for, say, 1979, they are likely to overstate the level of precision in the 1979 estimates. 
Thus, the third issue is the need for a procedure that will generate appropriate confidence 
intervals. 

In the report that follows, a description of ratio-correlation is provided along with the 
modification that forms the basis for developing appropriate confidence intervals. Next, the 
logic for developing these confidence intervals is formally described, followed by an empirical 
example showing both the test for instability and the generation of both "inappropriate" 
and "appropriate" confidence intervals. 

2. METHODOLOGY FOR POPULATION ESTIMATION 

Ratio-correlation is a regression method designed to measure the temporal change in county­
equivalent population proportions using observed temporal change in proportions of symp­
tomatic indicators such as registered voters, covered employment and public school enroll­
ment. The temporal change is measured by simply taking a ratio of proportions at two points 
in time. 

Since enumerated population numbers for all county-equivalents are available only from 
the federal census, a ratio-correlation regression model is always constructed using two points 
in time separated by a regular number of years. It is formally described as 

where 

and 

k 

Rit = ao + E (bjl (Xi)jt + E 
j=J 

ao = the intercept term to be estimated 

bj = the regression coefficient to be estimated 

E = the error term 

j = symptomatic indicator, (1 "j " k) 

= county-equivalent (I " i " n) 

t = the year of the most recent census 

R;, = [..!JL] + [ Pi
•
t
-

z J 
E Pi.t E Pi.t-J 

(l.A) 
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(X;)"j = [~] ... [ S;,I_, ] . 
E S;,I E S;,I_, J 

(I.B) 

where 

Z = the number of years between each census 

P = Population 

S = Symptomatic Indicator 

Once a model is constructed, it is used to develop a postcensal estimate for time t + x by 
substituting (S;, l+xl E S;,I+x)j into the numerator of the right-hand side of equation [I.B] 
while (S;,II E S;,I)j is substituted into the denominator of the right-hand side of equation 
[I.B]. This means that once R;,I+X is obtained, an actual population for area i at time = 
t + x is developed by introducing an independently estimated total population, P,+X' into 
equation [1.A] and algebraically solving equation [1.A] for P;.I+X' Since E P;,,+X does not 
usually equal the independently derived total, P,+X ' an adjustment is made to force the 
summed population figures to the independently estimated total. 

One limitation of ratio-correlation is that its structure is invariant over time, which is why 
the rank order procedure was introduced by Swanson (1980). The rank -order procedure is based 
on the fact that information contained in the zero-order correlations found in an estimation 
data set can be exploited due to work by Land (1969, Chapter IV); work that is based on the 
fundamental theorem underlying path analysis as developed by Wright (1921). It involves a 
theoretical reversal of the dependent variable in the regression model, the population variable, 
as an unmeasured, causally prior variable and a just-identified structure - a minimum of three 
predictor variables (in the regression model), the covariance of which is assumed to be due to 
the fact that they are all causally related to the population variable. 

3. METHODOLOGY FOR CONFIDENCE INTERVALS ESTIMA nON 

If the relationships found among the variables in the model data set remain stable over time 
(as shown through the rank-order procedure) then the same relationships should be found 
among the variables in the estimation data set. This stability would indicate that the S.E.E. 
associated with the model data set is appropriate for generating confidence intervals for the 
estimation data set. However, if stability does not exist, then the S.E.E. associated with the 
model data set is not appropriate, and may, in fact, generate confidence intervals that overstate 
the precision of postcensal estimates. These considerations lead to the question of determining 
stability through statistical inference. 

In answering the question just posed, consider that we are examining related pairs of 
variables. This implies that the Wilcoxon matched-pairs signed rank test could be used 
(Mosteller and Rourke 1973). In using this test, the null hypothesis is that there are no dif­
ferences between the population estimates (scores) produced by the unmodified and modified 
regresion models. 

The key to developing confidence intervals for postcensal county equivalent population 
estimates is found in the fact that the rank-order procedure generates a set of regression coef­
ficients for the estimation data set. From these coefficients, estimates of R 2 and the S.E.E. 
for the estimation data set can be developed, and the estimated S.E.E. leads directly to the 
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development of confidence intervals. First, recall that the coefficient of multiple determina­
tion, R 2, is simply the sum of the products of each zero-order correlation between an indepen­
dent variable and the dependent variable, and the standardized regression coefficient for each 
independent variable (Hayes 1973), so that S.E.E. is (Hayes 1973) 

where 

S.E.E. = [(n) (S;) (I - R2)] 1/2 
n-2 

n = number of cases (county-equivalents) 

S; = variance of the dependent variable 

R2 = coefficient of multiple determination 

The formula for generating a confidence interval around a given estimated value for a point 
on a (population) regression line is provided by Kmenta (1971) 

Y; ± (tn-2 •• /2) (S.E.E.) 

An important point to realize is that the confidence interval is not directly generated for 
a population estimate, rather it is for the estimated ratio of proportions, or Ru + x' However, 
as shown by Espenshade and Tayman (1982), a confidence interval around one variable can 
be translated for another variable algebraically substituted for the first. Thus, by finding the 
lower and upper confidence boundaries of Ru + x' these lower and upper confidence boun­
daries can be translated into the population values: 

(Ru+x ) ± (tn-2 •• /2) (S.E.E.) 

[ 
PIt+x ] [ Pit ] = -- + -- ± (tn-2 •• 12) (S.E.E.) 
EPu+x EPIt 

which leads to 

and 
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4. EMPIRICAL STUDY 

Table l.A in Swanson (1980) gives the zero-order correlations relating to a ratio-correlation 
model for estimating county civilian populations under sixty-five years from employment, 
voters, and grades 1-8 enrollment for the state of Washington, for the period 1950-1960. 
Characteristics of the model constructed from these data are given in Table I.B. while Tables 
2.A and 2.B provide similar results for the 1960-1970 period as found in Swanson (1980). This 
latter set forms the estimation data over which the procedure will be described. 

Although full knowledge of the estimation data set is available, the procedure is used as 
if this were not the case. Of course, what is known in any estimation problem is the zero-order 
correlation matrix for the independent variables, which is used in conjunction with the fun­
damental theorem of path analysis to estimate the coefficients for the modified model. Using 
the complete rank-order procedure, the modified model (Swanson 1980) is: 

Y = 0.046618 + 0.066786X, + 0.50727X2 + 0.38736X3• 

Estimates for 1970 of the county civilian population under sixty-five years of age (adjusted 
to the independently estimated state total) resulting from the preceding modified model are 
presented in Table 1 along with the actual enumerated populations. 

The Wilcoxon test was conducted for the Washington data using the procedure in the SPSSx 
NPAR Tests command (SPSS 1986). To save space, the unmodified and modified population 
estimates are not presented. They can be found in Table 3 of Swanson (1980). Under the null 
hypothesis, the probability of obtaining Z = -3.2096 is 0.0013. Thus, the null hypothesis 
is rejected and it is assumed that instability exists for Washington counties in going from the 
model constructed using 1960/1950 data to the true unknown model associated with 1970/1960 
data. 

As a note of interest, the Chow test (Chow 1960) validated the results of the Wilcoxon test 
by showing that the difference between the "true" 1970-1960 ratio-correlation model and the 
1960/1950 ratio-correlation model was statistically significant. 

Had the results of the Wilcoxon test led us not to reject the null hypothesis, we would have 
used the unmodified coefficients from the 1960/1950 model dataset to generate 1970 popula­
tion estimates for Washington counties. Further, the S.E.E. for this same model (0.05022) 
would have been used to generate confidence intervals for the 1970 estimates. However, the 
results of the Wilcoxon test led us to reject the null hypothesis in this case. This indicates the 
modified coefficients developed using the rank -order procedure should be used in lieu of the 
unmodified model. Further, it indicates the need for a revised S.E.E., one that is not likely 
to overstate the precision of the 1970 estimates. 

Using the estimated values found in the 1970 example data for Washington state (Swanson 
1980) we find 

iF = (0.07533) (0.75290) + (0.47085) (0.92146) + (0.49481) (0.88082) = 0.926 

and 

S
" E _ [(39) (0.2145)2 (1 - 0.926)] 112 

( .n. .)-
39-2 

= 0.0599 
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Table 1 

90'1. Confidence Interval for the Estimated Civilian Population 
Under Sixty-Five Years by County, 

State of Washington 1970 

Enumerated Lower Estimated Upper 90'1. Confidence 
County Population Limit Population Limit Interval (in 

percent) 

Adams 11102 10335 11458 12581 ± 9.80 

Asotin 11862 10469 11814 13154 ± 11.38 

Benton 63144 60405 67511 74616 ± 10.53 

Chelan 35862 31733 36177 40620 ± 12.28 

Clallam 30023 28063 31294 34525 ± 10.32 

Clark 116663 101183 111437 121690 ± 9.20 

Columbia 3771 3683 4161 4639 ± 11.49 

Cowlitz 62586 55170 61581 67992 ± 10.41 

Douglas 15287 14569 16252 17935 ± 10.36 
Ferry 3336 2963 3397 3831 ± 12.78 

Franklin 23983 21960 24631 27302 ± 10.84 

Garfield 2546 2447 2761 3075 ± 11.37 

Grant 38921 37561 42606 47651 ± 11.84 

Grays Harbor 52583 46294 52114 57935 ±11.17 

Island 20589 20512 22148 24040 ±7.39 

Jefferson 9235 8440 9473 10506 ±1O.90 

King 1054271 935664 1037937 1140203 ± 9.85 

Kitsap 86529 77022 85821 94619 ± 10.25 

Kittitas 22764 17649 19863 22077 ± 11.15 
Klickitat 10729 10440 11923 13406 ± 12.44 

Lewis 39265 35747 40122 44497 ±1O.90 

Lincoln 8168 7939 9107 10275 ± 12.83 

Mason 18411 16057 17827 19596 ± 9.93 

Okanogan 22952 21002 23795 25688 ± 10.97 

Pacific 13310 11270 12795 14320 ± 11.92 

Pend Oreille 5185 5147 5893 6639 ± 12.86 

Pierce 339048 314272 346728 379184 ± 9.36 

San Juan 3089 2636 2918 3201 ± 9.66 
Skagit 45703 43255 48758 54261 ± 11.29 

Skamania 5330 4787 5358 5929 ± 10.66 

Snohomish 245193 213164 231996 250827 ± 8.12 
Spokane 251057 227372 256723 286072 ± 11.43 

. Stevens 15178 13869 15780 17692 ± 12.11 
Thurston 68719 63644 69540 75436 ± 8.48 

Wahkiakum 3137 3033 3397 3761 ± 10.72 

Walla Walla 36608 33727 38271 42812 ± 11.87 
Whatcom 72111 63218 70670 78122 ± 10.54 

Whitman 34843 28960 32409 35858 ± 10.64 

Yakima 128960 120347 136203 152219 ± 11.69 
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Note, that from Table 2 in Swanson (1980), the actual R2 and S.E.E. values are 0.878 and 
0.05077, respectively. In comparison with the actual S.E.E. of 0.05077 , the estimated S.E.E. 
is higher. This is appropriate given that we are more uncertain about the precision of estimates 
generated by the rank-order procedure than we would be about the precision associated with 
the "true" model, if in fact, the true model was obtainable. With the rank-order procedure, 
we can now generate a confidence band from the following formula: 

Yi ± (137,0/2) (0.0599) 

In Table I an empirical example using a 900;. confidence interval is given for the 1970 
estimated county population figures presented also in Table I. Here, the 90% confidence 
interval is given by: 

[ 
Pi1960 ] (3032053) [(RiI970 ) ± (1.69) (0.0599)] 

2522141 

In examining the confidence intervals given in Table I in combination with the enumerated 
populations provided, it is found that in only one county (Kittitas) is the enumerated popula­
tion outside of the 90.,. confidence interval. In this instance, the enumerated population exceeds 
the upper limit by 687 people. At a 90.,. level of confidence, the intervals are fairly wide, with 
a mean of 10.81, a minimum of ± 7.39 percent for Island county and a maximum of ± 12.83 
percent in Lincoln County. Compare these with the mean of the absolute percent errors 
associated with the 1970 estimates, which is 4.89 (Swanson 1980). This comparison suggests 
that the 90% level generates intervals that are too broad for practical use. Given this, it is of 
interest to consider which level of confidence would be more appropriate. I t is also of interest 
to consider the effect of using the unmodified S.E.E. (0.05022) from the 1960/1950 model. 
We would expect that the confidence intervals generated by the unmodified model would be 
too optimistic. That is, at a given level of confidence, there would be fewer than expected 
counties for which the interval encompassed the actual population. To explore these issues, 
Table 2 was constructed. 

In Table 2, two distinct sets of information are provided. For both sets, however, a com­
parison is made between the unmodified and modified estimates and their associated confidence 
intervals. In regard to the issue of expecting optimistic confidence intervals for the 1970 
estimates generated by the unmodified model, Table 2 indicates that at varying levels of con­
fidence ranging from 90% down to 50%, the intervals are, indeed, optimistic in that for only 
two of the six levels examined are the expected number of county estimates within the specified 
level of precision. At the 80% level, for example, only 28 (72 percent) of the counties have 
enumerated 1970 populations within the confidence interval specified around the estimates; 
at the 60.,. level, only 22 (56%) of the counties have enumerated 1970 populations within the 
confidence interval specified around the estimates. 

The second aspect of Table 2 is the mean interval associated with a given level of confidence. 
At the 90% level, the mean of the intervals associated with the unmodified model is 9.10 per­
cent; for the modified model it is 10.81 percent. At the 50.,. level, the means are 3.66". and 
4.35%, respectively. Thus, it is clear that the 60.,. and 50.,. levels of confidence generate a 
mean interval that is more in line with the mean absolute percent error, which is 4.88 for the 
modified model. 
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Level of 
Confidence 

90% 

80% 

70% 

66.66% 

60% 

50'1, 

90'1, 

80% 

70'1, 

66.66% 

60% 

50% 

Swanson: Confidence Intervals for Postcensal Estimates 

Table 2 

Number (01,) of Counties in Which Actual 1970 Population 
was Inside the Confidence Interval 

Unmodified 
S.E.E. (0.05022) 

35 (89.7%) 

28 (71.8%) 

24 (61.5%) 

24 (61.5%) 

22 (56.4%) 

20 (51.3%) 

Modified 
S.E.E. (0.0599) 

38 (97.4% ) 

33 (84.6% ) 

29 (80.6% ) 

26 (66.66%) 

23 (59.0% ) 

22 (56.4% ) 

Mean Interval (in percent) 

Unmodified Modified 
S.E.E. (0.05022) S.E.E. (0.0599) 

9.10 10.81 

7.02 8.38 

5.66 6.75 

5.59 6.40 

4.59 5.47 

3.66 4.35 

In examining the issue of confidence intervals, it appears that a procedure is needed for 
generating confidence intervals that are not misleading in terms of the precision of postcensal 
county-equivalent population estimates. However, guidance is also needed on selecting a given 
level of confidence that is appropriate for the estimates. Of interest in this regard is the work 
of Stoto (1983) on empirical confidence intervals for population projections. One of Stoto's 
(1983:18) findings is the high and low population projections produced for the United States 
by the Bureau of the Census (1977) correspond to a 66.66"70 confidence interval. It may be 
the case that for county-equivalent postcensal populations, that the 66.66% confidence level 
is also appropriate, although in this test this level of confidence generates a mean interval of 
6.4 percent for the modified estimates, which is somewhat above their mean percent error (4.9). 
Another consideration is the length of time between the year for which a postcensal estimate 
is desired and the preceding census. In the example, the maximum period of postcensal time 
in the United States was used, 10 years. For each county, we have, in essence, a situation in 
which maximum uncertainty exists in regard to estimates. From this perspective, the relatively 
wide interval generated for each county at a 90 percent level of confidence is appropriate. We 
would expect that structural model changes occur relative to time. Hence, a narrower band 
would likely be generated in the first year following the end-census year of model construc­
tion than in the second year; and so on through the intercensal period. 
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5 •. CONCLUSION 

At this point it should be clear that the rank·order procedure is not being presented as a 
fully-validated technique for constructing confidence intervals around postcensal county­
equivalent population estimates. However, it appears to offer a reasonable starting point. Even 
with its limitations, the use of the Wilcoxon test and the confidence intervals developed using 
the rank-order procedure appears capable of providing benefits to those responsible for making 
such postcensal population estimates. In the first place, as noted by Espenshade and Tayman 
(I 983), it is important to provide the users of postcensal population estimates some notion of 
their accuracy as do both the Wilcoxon test and the confidence intervals. Second, with the selee· 
tion of appropriate confidence intervals, a formal means is available for resolving disputes 
over the population of a given county-equivalent by using hypothesis testing procedures. Third, 
S.E.E. can be used as a basis for selecting one model over another. This means that a set of 
different ratio-correlation models could be considered for any given postcensal estimation year 
and, further, that a formal criterion is available for selecting one model over another. This 
feature could be useful in the event that the ratio-correlation estimates generated by a federal, 
provincial or state demographic center, are challenged in a given postcensal year, an event that 
has become more frequent, especially in the U.S. (0' Allesandro 1987). 
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