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In This Issue 

This issue contains a special section on time series methods in surveys, a topic that has attracted 
considerable interest in recent years. Special thanks are due to W.A. Fuller and J.N.K. Rao for 
coordinating the editorial work for this section. 

The first two papers of the special section deal with the problems of sample design and 
maintenance, and estimation of various parameters of interest in repeated surveys. Fuller notes 
that repeated surveys designed to enable estimation of the parameters of the measurement error 
process can be very cost efficient. For a two-period survey with fifty percent overlap, he shows 
that generalized least square estimates of longitudinal parameters can have substantially lower 
variance than the simple estimator based only on the overlapping units. Wolter and Harter deal 
with the problem of sample maintenance for a recurring survey. The ingenious use of a Peano 
curve allows the sample maintenance to meet several desirable properties. They describe an 
application to a marketing survey. 

Bell and Hillmer discuss the underlying philosophy of the time series approach to estimation 
in repeated surveys based on the recognition of two sources of variation: time series variation 
and sampling variation. They obtain some theoretical results regarding design consistency of 
the time series estimators, and uncorrelatedness of the signal and sampling error series. They 
also observe that the use of signal extraction results from time series analysis can improve survey 
estimates by reducing their mean square error. 

For repeated surveys, better small area estimates can be obtained by combining the usujil 
approach based on synthetic estimation with the use of time series models. Pfeffermann and 
Burck examine the statistical properties of such predictors. They illustrate the procedure with 
the use of data on home sale prices. 

Time series described by ARIMA regression models with survey errors following an ARMA 
process is the subject of Binder and Dick's paper. Such models can be applied to data from surveys 
with a two-stage design where the first stage units are replaced randomly, while the second stage 
units have a rotating panel design. The authors give an example using Labour Force Survey data. 

Brillinger studies the relationship of births to time and geography using data for women aged 
25-29 in Saskatchewan. Smooth surfaces are obtained from data aggregated by census division. 
The Poisson-lognormal distribution is also fitted to the data. 

In the last paper of the special section, Laniel and Fyfe describe the problem of benchmarking 
sub-aimual series and briefly review some solutions proposed in the literature. They then present 
two new methods - one based on a model for trends and the other on a model for levels - and 
discuss their suitability. 

In his paper, Bandyopadhyay proves that for a class of estimators and sampling schemes, 
one can ignore the sampling weights when estimating a ratio. He applies this to a well-known 
example to illustrate the result and makes a comparison with estimation using a ratio of Horvitz-
Thompson estimators. 

In repeated surveys with rotation panels, knowledge of panel correlations is essential for certain 
statistical analyses, such as studies of composite estimators. Lee provides methodology for 
estimating correlations between panel estimates in the Canadiem Labour Force Survey. 

Misdating or "telescoping" is a recognized source of errors in retrospective surveys. Silberstein 
estimates telescoping effects to obtain estimates for the unbounded first wave in the U.S. 
Consumer Expenditure Interview Survey. She finds that estimates from the first wave are greater 
than estimates from subsequent waves even after accounting for telescoping effects and concludes 
that a shorter recall period for the first wave improves reporting in subsequent waves. 
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Stasny presents several models for gross flows in the presence of nonresponse. The models 
are divided into those with symmetric and asymmetric transition probabilities. Methods for 
obtaining parameter estimates for the various models are developed and applied to victimization 
data from the U.S. National Crime Survey. 

Finally, readers will notice that, with this issue. Survey Methodology has a new cover. The 
previous cover was used since December 1984 (Vol. 10 No. 2). Statistics Canada is making 
similar changes to all its publications to incorporate a unique logo and to create a standardized 
corporate look. 

The Editor 
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Analysis of Repeated Surveys 

WAYNE A. FULLER! 

ABSTRACT 

Repeated surveys in which a portion of the units are observed at more than one time point and some 
units are not observed at some time points are of primary interest. Least squares estimation for such surveys 
is reviewed. Included in the discussion are estimation procedures in which existing estimates are not revised 
when new data become available. Also considered are techniques for the estimation of longitudinal 
parameters, such as gross change tables. Estimation for a repeated survey of land use conducted by the 
U.S. Soil Conservation Service is described. The effects of measurement error on gross change estimates 
is illustrated and it is shown that survey designs constructed to enable estimation of the parameters of 
the measurement error process can be very efficient. 

KEY WORDS: Survey sampling; Least squares; Measurement error; Gross change. 

1. INTRODUCTION 

There is considerable interest in the analysis of surveys that are repeated in time. Evidence 
of this interest is the recently published proceedings of a conference on panel surveys edited 
by Kasprzyk, Duncan, Kalton and Singh (1989), sessions at the meetings of the International 
Statistical Institute held in 1987 and 1989, and the Statistics Canada Symposium on Analysis 
of Data in Time held in October 1989. Smith and Holt (1989) at the 1989ISI session in Paris 
call this a "resurgence of interest in the design and analysis of longitudinal studies." They note 
that researchers in areas such as sociology and health have long conducted panel surveys and 
cohort studies. They cite, as an example, Lazarsfeld and Fiske (1938). An example in a health 
related area is the study of Garcia, Battese, and Brewer (1975). 

Official agencies conduct many surveys, such as labor force surveys, on a regular basis. The 
output of such surveys is usually a sequence of reports, such as those on current employment 
and unemployment. Typically, very few statistics on the behavior of individual units over time 
have been reported from repeated official surveys. An example of a survey designed to produce 
longitudinal estimates is the U.S. Survey of Income and Program Participation. See Kasprzyk 
and McMillen (1987). While information on private surveys is less complete than that on 
government surveys, it seems that the most common use of repeated private surveys is also 
to produce a sequence of reports for points in time. However, the demand for longitudinal 
analysis has increased for both public and private data providers. 

The complex issues associated with repeated surveys are brought into focus when one 
attempts to develop a taxonomy for such studies. Duncan and Kalton (1987) list some seven 
objectives of surveys repeated over time. These are: 

A. To provide estimates of population parameters at distinct time points. 

B. To provide estimates of population parameters summed across time. 

C. To measure net change at the aggregate level. 

Wayne A. Fuller, Department of Statistics, Iowa State University, Ames, Iowa, 50011, U.S.A. 
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D. To measure components of change including 
i) gross change 

ii) change for an individual 
iii) variability for an individual. 

E. To aggregate individual data over time. 

F. To measure the frequency, timing and duration of events. 

G. To accumulate information on rare populations. 

While not mentioned explicitly, several of these objectives implicitly include the estimation 
of the parameters of subject matter models. 

Duncan and Kalton also define four kinds of surveys. Their definitions were: (I) repeated 
survey, in which no attempt is made to guarantee that pzuticular elements appear in more than 
one sample; (2) the pure panel survey, in which the same elements are observed at every point 
in time; (3) the rotating panel survey, in which there is a fixed pattern under which elements 
are observed for a fixed number of times and then rotated out of the sample; and (4) the split 
panel survey, in which a pure panel survey is combined with a repeated survey or a rotating 
panel survey. Duncan and Kalton present a table in which they outline how the different kinds 
of surveys are appropriate for the different kinds of objectives. 

An institution conducting a repeated survey faces all of the usual survey problems, but the 
problems are magnified relative to a one-time survey. The quality repetition of a survey requires 
maintaining consistent field, processing, data management, and estimation procedures over 
time. It is difficult to maintain cooperation over time and it is difficult to trace people who 
move. Response error is present in all surveys, but repeated surveys encounter problems of 
"conditioning" associated with repeated interviews. Also, response errors introduce incon
sistencies into data collected over time. Finally, the changing composition of units, such as 
families, over time complicates estimation and analysis. 

We shall examine only a few issues associated with repeated surveys. Our discussion is 
motivated by a large scale survey conducted by the U.S. Soil Conservation Service with the 
cooperation of Iowa State University. In Section 2 we review some of the estimation techniques 
applicable for repeated surveys. This discussion is continued in Section 3 with more emphasis 
on estimation of longitudinal parameters in panel surveys. In Section 4 we briefly describe the 
estimation procedures used in the U.S. Soil Conservation Service study. Section 5 contains 
a short description of the effects of measurement error on gross change estimates. 

2. ESTIMATION 

In this section we outline generalized least square estimation for surveys with only a subset 
of elements observed at successive times. Generalized least squares was the procedure first con
sidered by authors studying estimation for surveys repeated in time. Beginning with Jessen 
(1942), who was influenced by Cochran (1942), these authors considered the construction of 
minimum variance weights for a set of unbiased estimators available at each point in time of 
the survey. 

Jessen (1942) investigated the special case of sampling on two occasions with unequal 
numbers of observations, and studied the optimal allocation of units to overlapping and 
nonoverlapping sample groups. Patterson (1950) considered sampling on 7 occasions under 
several schemes of partial replacement of units. The simplest such sampling plan required the 
replacement of a fbced proportion of sampling units on each successive sampling occasion. 
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Also, Patterson (1950) assumed that for a given /, the differences Xu - x,,t = 1,2, . . . , 
followed a first-order autoregressive process, where x^ was the value of the i-th population 
unit at time t, and x, was the corresponding finite population mean. Under the resulting error 
model, he developed optimal estimators of the fixed x, values and of the differences x, - x,_i. 
He also considered the optimal estimation of x, under generalizations of the partial replace
ment plan, optimal sample size selection, and estimation with nonautoregressive errors. 

Least squares procedures were considered further by Eckler (1955), Gumey and Daly (1965), 
and Jones (1980). Composite estimation was a name given to certain types of estimators. See 
Rao and Graham (1964), Graham (1973) and Wolter (1979). Battese, Hasabelnaby and Fuller 
(1989) describe the application of the least squares procedure to a farm survey conducted by 
the U.S. Department of Agriculture. 

It seems fair to say that the parameters under consideration by these authors were means 
or totals at specific time points. That is, longitudinal parameters, such as the fraction of 
individuals in a particular class at both time 1 and time 2, were not explicitly considered by 
these authors. However, as we shall see, the least squares method extends to longitudinal 
parameters. 

Linear least squares has the desirable feature that estimators for a number of characteristics 
are internally consistent. That is, the least squares estimator of Fplus the least squares estimator 
of Z is the least squares estimator of Y + Z. However, if different vectors of observations 
are used to construct different estimates, the internal consistency is destroyed. 

In many applied surveys it is not possible to compute the optimum least squares estimators 
for all points in time because all available information cannot be used in the estimation. First, 
it is not possible to incorporate all data from the surveys of preceding times into a least squares 
analysis for the current time because the number of variables often exceeds the number of obser
vations. Second, the releasing organization may be restricted in the number of times they can 
revise previous estimates. This second point has been discussed by Smith and Holt (1989). 

To illustrate these estimation problems, we have constructed a small example. A two-way 
table for classification at two points in time, as observed in a very large sample, is given in 
Table 1. We have given names to the categories in this table, letting the first category be 
employed and letting the second category be unemployed. We shall assume that the population 
is constant over time. If there are births and deaths, then the table would need to be increased 
to a 3 X 3 table. Let us assume that we are interested in estimating the change in level from 
one period to the next. Let us also assume that we are interested in the gross change table which 
involves estimating the interior cells of the table. In the 2 x 2 table it is only necessary to 
estimate the (1, 1) cell and the marginal proportions to define all cells of the table. 

We assume a two-period study in which an equal number of elements are observed at each 
of the two times. We assume that one half of the elements observed at the first time are also 
observed at the second time. That is, of the elements observed at the second time, one half 

Table 1 
Hypothetical proportions for two points in time 

TIME 1 

Employed 
Unemployed 
Total 

Employed 

0.91 
0.03 
0.94 

TIME 2 

Unemployed 

0.02 
0.04 
0.06 

Total 

0.93 
0.07 
1.00 
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Table 2 
Covariance matrix of the vector of sample proportions, 

two time points and fifty percent overlap in sample 
(For a sample of size n multiply entries by 2 and divide by n) 

PEI 

0.0651 
0 
0 
0 
0 

PEI 

0 
0.0651 
0.0637 
0.0358 

0 

PEE 

0 
0.0637 
0.0819 
0.0546 

0 

P.El 

0 
0.0358 
0.0546 
0.0564 

0 

P.Ei 

0 
0 
0 
0 

0.0564 

Table 3 
Variance of alternative estimation procedures 

(For a sample of size n at each period, multiply entries by 2 and divide by n) 

Parameter 

PE-

PEE 

P.E 

PEE/P-E 

P.E - PE-

Simple 

0.0326 
0.0819 
0.0278 
0.0290 
0.0429 

Procedure 

Restricted GLS 

0.0326 
0.0397 
0.0258 
0.0229 
0.0367 

Full GLS 

0.0294 
0.0374 
0.0255 
0.0220 
0.0353 

were observed at the first time and one half are new to the sample. We take as our vector of 
observations the vector containing the proportion of elements in category 1 in the one half of 
the sample that is not observed the second time [ denoted by /*£•. i ] , the proportion of elements 
in category 1 at time 1 in the remaining half of the sample [denoted by PE.II . the proportion 
of elements that are in category 1 at both time 1 and time 2 for the portion of the sample that 
is observed at both time periods [denoted by PEE\ , the proportion of the elements in category 
1 at time 2 for the elements that are observed at both times [denoted by P.Ei\y and the 
proportion of elements in category I at time 2 for the portion of the sample that is observed 
only at time 2 [denoted by ^^£3]. 

We assume simple random sampling. Then, because the statistics are sample proportions, 
it is easy to write down the covariance matrix of the vector of five estimators. A multiple of 
that covariance matrix is given in Table 2. To obtain the covariance matrix for a sample of 
size n at each time period, divide every entry in the table by n and multiply by two. In Table 3 
we give the variance of alternative estimation procedures. In the first column is the variance 
of the procedure that uses as the estimator of the first period proportion only the elements 
appearing in the first period sample. To estimate the fraction appearing in category I (employed) 
both at time 1 and time 2, the simple procedure uses only the overlap elements, and to estimate 
the number in the first category at time 2, it uses only the sample observed at time 2. Thus, 
if we have a sample of 200 elements at each time period, the first period sample of 200 elements 
is used to estimate the first probability. The 100 elements observed at both time 1 and time 
2 are used to estimate the proportion of the elements in category I at both time 1 and time 
2, and the 200 elements observed at time 2 are used to estimate the time 2 proportion. 
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The last column is the variance of the best linear unbiased estimators constructed using 
generalized least squares. The estimators are constructed from the vector of five basic statistics 
and the covariance matrix of that vector. This estimator is of the form 

P = {X'V-^X)-^X'V-^Y, (1) 

where Kis given in Table 2, /3 = {PE., P.E> PEE), 

'l 1 0 0 0 ' 
A" = I 0 0 0 I 1 

^0 0 I 0 0^ 

and Fis the five-dimensional vector of direct estimates, 

y = {PElfPEl'PEEtPEl'PEi)-

The second column of Table 3 gives the variance of the restricted least squares estimators, 
where the restriction is that the estimator for the first period must be the estimator obtained 
from the initial sample. This would be an appropriate procedure if the agency never made a 
revision in the once published estimates. For example, the Bureau of Labor Statistics in the 
United States does not revise the unemployment statistics. Once released, they are the official 
estimates. Of course, the United States unemployment statistics are based on a more com
plicated sample and are based on a survey that is conducted over a longer period of time than 
our example. 

To describe the restricted generalized least squares estimator of Table 3, let the model be 

Y = X^ + e, 

where A" is a fixed n x k matrbc and 

E[ee'] = V. 

The generalized least squares estimator of/3, with some elements of/S restricted to be certain 
linear combinations of y can be constructed as follows. Consider the Lagrangian 

b 

{¥- X^)-V-'{Y- X&) - 2 Y MT'ifi - gi), 
1 = 1 

where T, is a fixed row vector and b is the number of restrictions. The solution to this 
minimization problem is defined by 

/x'V-^x r'\//s\ _ /x'v-^Y\ 
V r o)\x)-{ g ) ' 

where X' = (X,, Xj, ...,\i,),T' = (T,', T^, . . . , r ^ ) and g' = (g,, gz, . . . ,g6) . I fwe 
replace g by the linear combination GY, the equation becomes 

r^^nio^rr)"-
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This equation defines the restricted estimator of/3 as a linear function of Y. Hence the variance 
of the estimator of jS is the upper k x k portion of 

/x'v-^x r'\-' /x'v-^\ ^//x'v-^x r'\-' (x'v-^\\' 

This is not the only way to compute the restricted generalized least squares estimator. An 
alternative estimator of level and change that leaves the previous estimator unchanged is the 
composite estimator. See, for example, Wolter (1979). 

Several points are illustrated by this small example. First, with a correlation of 0.591 between 
employment at the two time periods, the improvement in the current estimate of employment 
from using generalized least squares is modest, about 10%. On the other hand, there is a very 
large improvement in the variance of the estimate of PEE from using generalized least squares. 
The variance of the generalized least squares estimator of PEE is about 45% of the variance 
of the simple estimator. The second important point is that the use of restricted generalized 
least squares to estimate PEE and PE produces estimates that are nearly as efficient as full 
generalized least squares. There is about a one percent loss for the estimate of P.E and about 
a six percent loss for the estimate of PEE • 

3. LONGITUDINAL ESTIMATORS 

Recall that our definition of a pure panel survey is one in which the same elements are 
observed at every time point of data collection. The pure panel survey is possible for observa
tions of certain physical units, such as plots of land. In the case of surveys of human popula
tions, the pure panel must be considered to be a figment of the statistician's imagination. In 
the real world, a fraction of the respondents from the first time are always unavailable at the 
second time. Good reviews of procedures for missing data are given by Lepkowski (1989) and 
Litde and Su (1989). Also see LitUe and Rubin (1987), Kalton (1983) and Madow etal. (1983). 

We have described the rotating panel survey in which the design calls for some elements 
to leave the study and some elements to enter the study at every time point at which the study 
is conducted. In this type of survey we might say that we have planned nonresponse for those 
elements that are rotated out of the sample. Thus, estimation in the presence of nonresponse 
and estimation for rotating panel surveys are related problems. 

Given that one does not obtain data from every respondent at every point in time of a 
repeated survey, one is faced with a choice among methods of handling planned and unplanned 
nonresponse. There are two simple, and common, procedures. If the interest is in following 
individuals over time, then very often the investigator retains in the study only those individuals 
that responded every time. A weighting procedure may be used to adjust the data using 
characteristics of the initial respondents and (or) external auxiliary data. This procedure is often 
used in special one-time studies of a specific population. In such situations the report on the 
study is released only after the entire study is completed. 

The second common type of estimation procedure is to construct estimates for each time 
period using the data that are available for that time period. This procedure is often used if 
the survey is repeated regularly, the results are released after each survey, no revisions are made 
in the releases, and no longitudinal estimates are produced. One-period-at-a-time estimation 
has the advantage of being very easy to compute at time / because no information from the 
previous period is used in calculating the current estimators. It generally gives good estimates 
(not optimal) of the current value, but rather poor estimates of change. 
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In fact, one might use both of these procedures in a single survey. The Survey of Income 
and Program Participation (SIPP) conducted by the U.S. Bureau of the Census is a panel survey 
with a rotating time-of-interview with a four-month recall period. The Census Bureau provides 
a set of weights at each time of the survey that can be used to construct estimates for that point 
in time using all individuals that respond at that time point. They also provide (a) the sample 
of individuals that responded all eight times for the period 1984-1985 with weights for these 
individuals, (b) the sample of individuals that responded all four times in 1984 with an 
appropriate weight and (c) the sample of individuals that responded all four times in 1985 and 
an appropriate weight. 

We outline an estimation procedure for a panel survey with nonresponse where the analysis 
is conducted at the end of the survey. It is assumed that a reasonable fraction of the units 
respond at all time points of the survey and that longitudinal analysis is of interest. The com
putational procedure consists of constructing weights for the units with complete response 
records. Information from respondents with incomplete records constitutes a form of auxiliary 
information. 

The first step in the analysis is to pick a few variables that are very important to the study. 
The number of variables that can be used will depend upon the sample size. The covariance 
structure of the vector of estimates composed of the simple estimates for each of these variables 
for each type of response pattern for each point in time where the estimate is appropriate, is 
computed. The covariance structure is a function of the response-nonresponse pattern. There 
are different definitions of simple estimators. For simple random sampling, simple estimators 
are simple means. For stratified samples, one might define the original vector to include 
estimates for each stratum. Alternatively, the simple estimator for a stratified sample might 
weight the responses in each stratum for nonresponse. The vector Fused in (1) is an example 
of a vector of simple estimates. 

Given the vector of simple estimators and the estimated covariance matrix of the vector, 
improved estimators for each of the time periods is constructed by generalized least squares. 
For example, if we had a panel study with three time points, there are seven response patterns. 
These are XXX, OXX, XOX, XXO, X(X), OAIO, OOA', where X denotes response and 0 denotes 
nonresponse. If we choose two variables of interest, the vector of simple estimates will contain 
12 X 2 = 24 estimates because there are 12 group-response times associated with the seven 
response patterns. In this example, generalized least squares would be used to produce six 
estimates, the estimates for the two variables for each of the three time periods. 

The generalized least square estimators for the selected characteristics become control 
variables for a next stage of estimation. Using regression weighting methods, weights are 
constructed for the individuals that responded at all time periods. The weights are constructed 
so that the generalized least squares estimates for each time period are reproduced by the 
weighted sample of 100% respondents. That is, the time estimates for the chosen variables are 
used as controls. 

The efficiency of the procedure depends upon the correlation between the chosen control 
variables and the analysis variable. If a control variable is also the analysis variable, the 
procedure will be very efficient. The procedure is less than fully efficient for the control 
variables only because a limited amount of information is used in the generalized least squares 
procedure. 

The strong advantage of the outlined procedure is that it produces a single tabulation data 
set that can be used to construct internally consistent estimates for all reporting times and for 
all gross change tables. The disadvantage is that estimates for particular points in time are less 
than fully efficient. 
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The variance of the procedure can be computed by analogy to the procedures used for double 
sampling. Let Yhe the characteristic of interest. For simplicity, assume a simple random sample 
at each time. We write the model to be used in estimation as 

y, = PY+ {Xf- px)0 + e, 

Px = E{X], 

e, ~ lnd(0,ff|). 

Let px be the generalized least squares estimator of px- Then our estimator for the mean 
of Yis 

PY = y + {px - x)e, 

where 6 is the vector of regression coefficients obtained in the regression of F, on Xf using the 
set of complete observations, and {y,x) is the mean vector for the elements observed at every 
time period. Let m be the number of complete observations. Then the variance of the estimator 
is, approximately 

V[py] = m-'al + 9'V[px\0, 

where y[p.x\ is the covariance matrbc of px. 

The least squares estimator we have described will perform well in most situations. However, 
it is possible for the estimator to produce negative estimates for quantities known to be non-
negative. This is because the estimator is linear and it is possible for some of the weights to be 
negative. Procedures have been developed to avoid this problem. See Huang and Fuller (1978). 

4. THE U.S. NATIONAL RESOURCE INVENTORY 

The Iowa State Statistical Laboratory cooperates with the U.S. Soil Conservation Service 
on a large survey of land use in the United States. The survey was conducted in 1958, 1967, 
1975, 1977, 1982, and 1987. A survey is currently being planned for 1992. 

The survey collects data on soil characteristics, land use and land cover, potential for 
converting land not used for crops to cropland, soil and water erosion, and conservation 
practices. The data are collected by employees of the Soil Conservation Service. Iowa State 
University has responsibility for sample design and for estimation. 

The sample is a stratified sample of the nonfederal area of 49 states (all except Alaska) and 
Puerto Rico. The sampling units are areas of land called segments. The segments vary in size 
from 40 acres to 640 acres. Data are collected for the entire segment on items such as urban 
land and water area. Detailed data on soil properties and land use are collected at a random 
sample of points within the segment. Generally, there are three points per segment, but 40-acre 
segments contain two points and the samples in two states contain one point per segment. Some 
data, such as total land area and area in roads, are collected on a census basis external to the 
sample survey. 

In 1982, the sample contained about 350,000 segments and nearly one million points. The 
1987 sample was composed of about 100,000 segments. The majority of the 1987 sample 
segments were a subsample of the 1982 segments. However, about 1,500 new segments were 
selected in areas of rapid urban growth. Data were collected on about 280,000 points in 1987. 
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Table 4 
Illustration of estimation procedure 

1982 

Cropland 
Other 
Urban 
Roads 
1987 TOTAL 

Cropland 

26,243 
771 

0 
17 

27,031 

Other 

179 
7,114 

0 
4 

7,297 

1987 

Urban 

13 
6 

623 
0 

642 

Roads 

6 
2 
0 

1,038 
1,046 

TOTAL 

26,441 
7,893 

623 
1,059 

36,016 

For the first time in 1987, it was decided that longitudinal data analysis would be performed 
for the period 1982-1987. Also for the first time, it was decided that the data were to be made 
available to the state Soil Conservation Service staff so that they could perform their own 
analyses. 

In 1987, the field personnel were provided with a preprinted work sheet containing the 1982 
information for the segment. They entered the information for 1987 on the basis of field obser
vation and aerial photography. Field personnel were permitted to change the 1982 data if they 
found it to be incorrect. Edit and checking procedures were applied throughout the processing 
operation. 

The sample was designed to produce reasonable estimates for units called Major Land 
Resource Areas. These areas are defined on the basis of soil and cover characteristics. There 
are about 180 Major Land Resources Areas in the study area. Also the acreage estimates for 
any county were to be consistent with the total acreage of that county. There are about 3,100 
counties in the sample. Because the sample must provide consistent acreage estimates for both 
counties and Major Land Resource Areas, the basic tabulation unit is the portion of a Major 
Land Resource Area within the county. There are 5,530 of these units, which we called 
MLRAC's. 

The design of the sample is a simple form of a panel survey in that the 1987 sample is nearly 
a subsample of the 1982 sample. It was decided to use as the control variables from the 1982 
study, the 1982 acres of 14 major land uses such as cropland, rangeland, forestland, and urban 
land. In addition, the external information, such as 1987 area in roads, and the segment infor
mation, such as 1987 area in urban land, is auxiliary information similar to that obtained from 
incomplete observations. 

Table 4 is a condensed version of an estimation table for one of the states in the survey. 
It contains only four uses instead of the 14 actually employed in the estimation. The entries 
in the right column are the 1982 estimates. The entries in the last row for urban land and roads 
are from the segment data and the external sources, respectively. The vector of sbc entries, (the 
first four entries of the last column, 1987 urban land, and 1987 roads) is a vector of totals cor
responding to the vector of estimated means, px of Section 3. 

The internal estimates of the table are essentially least squares estimates that satisfy the six 
control totals. In the actual estimation scheme it was necessary to use imputation methods when, 
for example, a change is reported in the segment data, but there is no corresponding change 
in the point data. 

The design produced large variances for the directly estimated change in small uses such 
as urban land, farmsteads, and small water bodies. Therefore, a small area estimation scheme 
was used to construct estimates of change for the major land resource areas within counties. 
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We used a computer program for small area estimation developed at Iowa State University. 
The theory for the small area estimation procedure is described in Fuller (1986). Estimated 
changes in five small land uses for each of the 5,500 MLRAC's were constructed with the small 
area program. This procedure is essentially an allocation program in that the sum of the 
MLRAC estimates is the state estimate. Estimates for the entries in Table 4 (with 14 categories) 
were constructed for each MLRAC. 

In this estimation, the small area MLRAC estimates, the external estimate for roads, and 
the state marginals for cropland were used as controls. The final step in the estimation pro
cedure was the assignment of weights to the point data such that the weighted point data give 
the estimates of Table 4 for each MLRAC. 

To summarize, the finsd product of the estimation procedure is a tabulation data set of points 
that permits estimation of complete two-way tables of 1982-1987 land use for any identifiable 
area designation. The estimates are consistent with previous estimates for major land use 
categories for the states and are consistent with data from sources outside of the point sample. 

Generally speaking, it is not possible to obtain good variance estimates from the tabula
tion sample, although segment and stratum identification are given in the data set. Simple 
variance estimates computed with the point data for principal uses, such as cropland, will be 
too large because of the control on the larger 1982 sample. Proper variance estimation requires 
the use of double sampling formulas. 

5. MEASUREMENT ERROR 

Measurement error can have a very large impact on the analysis of data over time. This 
impact may be moderate in the case of simple means reported at a sequence of times. However, 
in gross change estimation and in regression estimation, measurement error can be extremely 
important. 

To illustrate the magnitude of measurement error bias in estimators of gross change, let 
us return to the simple example of Table 1. If the data were collected by a procedure such as 
that of the U.S. Census Bureau, the work of Chua and Fuller (1987) demonstrates that the 
interior cells of the two-way table will be seriously biased. Also see Abowd and Zellner (1985), 
Poterba and Summers (1985), and Singh and Rao (1990). Under the Chua-FuUer model, the 
response error at the two points in time is assumed to be independent. Also it is assumed that, 
at each time, 

/"[response = £'|true = £•) = I — o; -I- aPE, 
/•{response = U\true = E\ = aPu, 
/•{response = U\true = U\ = 1 — a + aPy, 
P{ response = ^I t rue = U] = UPE, 

where a is the parameter of the response mechanism. Under this model the expected value for 
the proportion employed at any point in time is the true proportion. A consistent estimator 
for PEE under the Chua-FuUer model is 

irEE= (1 -a)-^{PEE- PEPEI^ " d " « ) ' ] ) . 

where PEE, PE- and PE are the direct estimators and a is a parameter of the response mecha
nism. Also see Battese and Fuller (1973). On the basis of the U.S. reinterview data, a value 
of a = 0.10 is not unreasonable. For our example, we have 
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Table 5 
Mean square error of alternative estimators for a sample of 10,000 at 

each time and 50% overlap 
(Mean square error of measurement error adjusted GLS = 100) 

Procedure 

Parameter Ordinary Measurement Error 

Simple Rest. GLS Full GLS Simple Rest. GLS Full GLS 

PE-

PE 

PEE 

111 
111 
1071 

111 
101 
967 

100 
100 
961 

111 
111 
250 

111 
101 
106 

100 
100 
100 

TtEE = (0.90)-^{0.91 - 0.93(0.94) (0.19)) 

= 0.9184. 

The corresponding two-way table of proportions adjusted for response error is 

( 

0.9184 0.0116\ 
0.0216 0.0484/, 

In this example, the bias in the direct estimator of P££ is 0.0084. Chua and Fuller estimate the 
bias to be about 0.0168 in the three-way table that includes the not-in-the-labor-force cate
gory. Table 5 contains a comparison of alternative estimation procedures for PEE- A sample 
of 10,000 is assumed. The first three procedures are those of Table 3. The last three are the 
three estimators adjusted for measurement error bias. In the variance calculations, a is assumed 
to have a standard error of 0.01. The estimators of PE- and P.E are not changed by the adjust
ment for measurement error bias. In this example, the squared bias in the ordinary estimator 
of PEE is about nine times the variance of the generalized least squares estimator. Thus, the 
measurement error bias dominates the mean square error of the estimator of PEE-

These results have serious implications for survey design. To illustrate this, we return to 
the gross change problem. Assume that our objective is to estimate the probability that a person 
will remain employed for two periods, PEE- We assume that it is possible to conduct inde
pendent reinterviews for each point in time, and that interviews at two points in time are 
independent. We assume that the only interview procedures permitted are: 

A. Interview and reinterview at one of the times. 
B. Interview at time one and interview at time two. 

We assume that the response error is unbiased and that a simple two-class (employed and 
unemployed) model is appropriate. We also assume that the probabilities of correct response 
depend only on the current class of the respondent. Let the response probabilities be defined 
in terms of a and let 

7 = (1 - a)-^. 

Let Bfj denote the ij-th element of the 2 x 2 matrbc of probabilities observed in the reinterview 
study. That is, Bfj is the probability that an individual responds / on the first interview and7 



178 Fuller: Analysis of Repeated Surveys 

Table 6 
MSB efficiency of MEM to direct 

MSE direct/MSE MEM 

500 

0.87 

Sample size, n 

1,000 5,000 

1.13 3.22 

10,000 

5.84 

on the reinterview. For this simple model we can obtain explicit expressions for the estimators. 
We have 

y = {On -0^)-\Bi-Bl) 

and 

1̂1 = y{Pn - Pi.P.i) + PiPi 

where 

1̂ = 1̂1 + 1̂2 = 1̂1 + ^21. 

Bjj, are the estimates from the reinterview study and Py are the estimates from the interviews 
conducted at the two time periods. 

In constructing the estimator, the reinterview study is used only to estimate the measurement 
error parameter. In fact, the reinterview study could be used in a generalized least squares 
procedure to improve the estimates of Pn, P], and P i . Under the assumption that all inter
views are of equal cost, it can be demonstrated that about one fourth of the resources should 
be used for the reinterview study. The relative efficiency of the measurement error procedure 
to the direct biased procedure is given in Table 6. 

In small samples, the direct procedure has a smaller mean square error because of the smaller 
variance. Recall that only three fourths of the observations furnish information on PEE = Pii-
However, for samples greater than 750, the squared bias dominates the mean square error of 
the direct procedure and the consistent measurement error procedure has a smaller mean square 
error. This small example demonstrates the efficacy of surveys containing a component to 
estimate the parameters of the measurement process. 

6. SUMMARY AND CONCLUSIONS 

We have reviewed some topics associated with the analysis of repeated data, without 
attempting a complete discussion of the topic. We have shown that procedures based upon 
least squares have the potential to provide large gains in efficiency. Because of size and timing 
considerations, it is not possible to include all available information in the construction of the 
least squares estimators. Thus, in practice, the statistician must choose a subset of variables 
to use in the construction of least squares weights. Estimation for a two-period survey conducted 
by the U.S. Soil Conservation Service was described. 
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We illustrated the large biases that measurement error can produce in longitudinal estimates 
such as gross changes estimates. We showed that measurement error methods exist that can 
be used to construct consistent estimators. The use of one fourth of the available resources 
to estimate the variance of the measurement error in order to use measurement error estima
tion methods can be justified. 
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Sample Maintenance Based on Peano Keys 

KIRK M. WOLTER and RACHEL M. BARTER* 

ABSTRACT 

We discuss frame and sample maintenance issues that arise in recurring surveys. A new system is described 
that meets four objectives. Through time, it maintains (1) the geographical balance of a sample; (2) the 
sample size; (3) the unbiased character of estimators; and (4) the lack of distortion in estimated trends. 
The system is based upon the Peano key, which creates a fractal, space-fiUing curve. An example of the 
new system is presented using a national survey of establishments in the United States conducted by the 
A.C. Nielsen Company. 

KEY WORDS: Recurring surveys; Sample maintenance; Changing population units; Peano key. 

1. INTRODUCTION 

We are concerned with recurring surveys conducted over time and the maintenance they 
require. Let 11, denote a survey universe at time t, with t = 0 denoting the inception of a new 
survey. We assume a probability sample of units of IIQ has been selected, and thus that it is 
feasible to construct unbiased (or at least consistent) estimators of the population total and 
other parameters of interest. As time goes by, we assume the universe is surveyed repeatedly 
at regular intervals of time, in part to track the "level" of the population, and in part to measure 
i ts ' 'trends". A panel or a rotation sampling design is usually employed for this purpose {e.g., 
see Rao and Graham (1964) and Wolter (1979) and the references cited by those authors). In 
all such surveys of people or their institutions, which is all we concern ourselves with here, 
the composition of the universe changes with time as births, deaths, and other changes occur 
to the status of the units. The survey frame, the sampling design, and the schemes for obser
ving or collecting the survey data must be maintained for such change; otherwise, the sample 
may become excessively biased and cease to be representative of the universe. 

The types of maintenance issues that arise in recurring surveys depend in part on the kind 
of universe under study, in part on the choice of sampling unit, and in part on the interplay 
between the sampling unit and the universe elemental units. We shall summarize briefly the 
issues that arise in four different situations: 

(i) establishment surveys with establishment as the sampling unit; 
(ii) establishment surveys with company or some similar cluster of establishments as the 

sampling units; 
(iii) surveys of people or households with the address or housing unit as the sampling unit; and 
(iv) surveys of people or households with the household or family as the sampling unit. 

In this work, we use the words "establishment" and "company" in a generic sense. An establish
ment may be a retail store, a manufacturing plant, a school, a hospital, a golf course, or any 
other similar, single-location entity, while the corresponding company would be the corporate, 
legal entity that owns the retail store, or the school district, and so on. In some cases, of course, 
the establishment and company will be synonymous, e.g., a single, independent grocery store. 

' Kirk M. Wolter and Rachel M. Harter, Statistical Research Department, A.C. Nielsen Company, Nielsen Plaza, 
Northbrook IL 60062, USA. 
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For case (i), the main universe dynamics include: 

• establishments arising from new construction 
• reclassified establishments from some out-of-scope category to an in-scope category 
• reclassified establishments from one in-scope category to another in-scope category 
• reclassified establishments from an in-scope category to an out-of-scope category 
• conversion of a structure from residential use to commercial use 
• conversion of a structure from commercial use to residential use 
• demolition of an existing establishment 
• establishment that moves in and out of vacancy status 
• changes in the configuration of an establishment, e.g., division into two or more estab

lishments. 

Case (ii) is far more complicated than case (i), principally because sampling units are now 
clusters of elemental units. All of the issues from case (i) apply to single-establishment com
panies. For multi-establishment companies, we face the following additional dynamics: 

• mergers wherein two companies combine to form a new successor company 
• acquisitions wherein one company is acquired by another, with the acquiring company as 

the sole successor company 
• joint ventures wherein two companies collaborate to form a new company that may be a 

subsidiary to both the parent companies 
• divestitures wherein a company spins off a new and independent company 
• divestitures where a company sells parts of itself to another acquiring company. 

In a sense, case (iii) is very similar to case (i) in respect to the kinds of universe dynamics 
that may arise: 

• housing units arising from new construction 
• reclassified housing units from some out-of-scope category to an in-scope category 
• reclassified housing units from one in-scope category to another 
• reclassified housing units from an in-scope category to an out-of-scope category 
• conversions from residential to commercial 
• conversions from commercial to residential 
• demolition of an existing housing unit 
• reconfigurations of existing structures, e.g., reconfigurations of apartments within a small 

multiunit structure. 

Note how closely these issues match those for case (i). 

Finally, case (iv) is very similar to case (ii) in terms of the composition and complexity of 
universe change. Maintenance issues include: 

• marriage, wherein a new successor family is created, possibly from whole predecessor families 
or from part families 

• new members move into an existing family, either eliminating another family or part of a 
family 

• divorce, wherein successor families may be created from one predecessor family 
• family members move away, either to join another existing family or to establish a new 

family 
• births of family members 
• deaths of family members 
• a whole family moves, thus requiring tracing and perhaps altering field-work assignments. 
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To handle the universe dynamics listed above, properly reflecting them in the sample, so 
that sample representativeness is retained over time, the survey organization must design and 
adopt an explicit system of maintenance. We define a sample maintenance system to be a 
sampling design and a universe updating methodology, possibly specified in the form of simple 
rules, that permit the statistician to achieve known, nonzero probabilities of inclusion for each 
of the elemental units in the population for each time period in the recurring survey, or failing 
that, to weight the survey data properly so as to achieve unbiased or consistent estimators of 
the population parameters of interest. From cases (i) through (iv) above, it is clear that a 
maintenance system must perform at least four functions: 
• give new elemental units a known, nonzero probability of selection 
• account properly for elemental units that may no longer exist in a substantive sense 
• not give elemental units multiple chances of selection into the sample; otherwise, if multiple 

changes are given, the system must appropriately record this information so that adjustments 
may be made in the estimation procedures 

• appropriately update the universe frame so as to facilitate and control the above activities. 

A general and necessary rule of thumb for any sample maintenance system is that the system, 
or the rules that define the system, must treat symmetrically universe changes both within and 
outside of the sample. If a proposed maintenance rule violates this rule of thumb, then there 
is risk of bias in estimators of totals and other universe parameters to be estimated. For example, 
consider two rules that might be used for case (ii) for sampling new companies created as the 
result of a divestiture. One possibility is to declare the new companies part of the sample // 
their predecessor companies were part of the sample, and otherwise, if their predecessors were 
not part of the sample, to subject the new companies to a new round of sampling. This rule 
is seen to give the new companies multiple probabilities of selection, and thus may result in 
biased estimation unless appropriate adjustments are made in the estimation procedure. (The 
adjustments we have in mind are related to the multiplicity rules studied by Monroe Sirken 
(1970) and others.) A second possibility is to declare the new companies part of the sample 
if and only if their predecessor companies were part of the sample. Because this second rule 
treats symmetrically the universe changes both within and outside of the sample, it is seen to 
result in unbiased estimation for the survey parameters of interest. 

In designing a sample maintenance system, the statistician must be guided not only by the 
statistical properties of the resulting estimators, but also by the cost, feasibility, and customer 
acceptance of alternative rules. Some rules may require additional data collection, thus entailing 
additional cost that must be planned from the inception of a new recurring survey. Certain 
applications may actually require that additional data be collected retrospectively. This may 
be impractical, or at the very least, may entail considerable nonsampling error, thus risking 
bias. Some rules may well be feasible and cost-effective, yet may not satisfy the requirements 
of the customers or users of the survey data. 

Finally, we note that this problem of maintenance is neither new nor newly recognized; for 
example, maintenance systems have been in place for years in many of the major recurring 
surveys at Statistics Canada, the United States Bureau of the Census, and the A.C. Nielsen 
Company. Nevertheless, there is remarkably little literature on this subject. For brief discus
sions of some maintenance issues, see Wolter et al. (1976) for case (ii), Hanson (1978) for case 
(iii), and Ernst (1989) for case (iv). Also see the broad comments of Duncan and Kalton (1987) 
on household surveys and Colledge (1989) on business surveys. 

In the balance of this article, we focus on case (i), where the establishment is both the 
sampling and elemental unit. This is the case we face in our establishments surveys at the 
A.C. Nielsen Company. Section 2 describes one of our major surveys, the Scantrack survey. 
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and the specific maintenance issues we face in that survey. We also describe some of the key 
objectives we had in designing a new maintenance system for this survey. 

The new maintenance system is based upon a parameter known in mathematics as the Peano 
key, which creates a fractal, space-filling curve. The Peano key is defined in Section 3, where 
we also provide several graphical displays for illustration purposes. We close the article in 
Section 4 by describing the rules that implement our new maintenance system. 

2. THE SCANTRACK SURVEY 

The Nielsen companies provide information from several marketing surveys. The media 
surveys, such as Nielsen Television Index and Nielsen Station Index, are based on samples of 
either housing units or households. Surveys for the packaged goods industry, including Nielsen 
Food Index, Nielsen Drug Index, and Nielsen Scantrack United States (NSUS), are based on 
samples of stores. The Single Source service, which ties together consumer purchasing behavior 
with household television viewing and retail marketing support, is based on both household 
and store samples. Although sample maintenance is an important issue to each of these surveys, 
the present discussion will focus on our Scantrack sample of grocery supermarkets, which is 
the basis for the NSUS service. The Scantrack sample includes 3,000 supermarkets, stratified 
by 50 metropolitan markets and a remaining United States stratum. Within a market, the sample 
is further stratified by major chain organizations. The frame is ordered geographically, and 
a systematic sample is selection within each stratum to achieve proper socio-economic represen
tation. This sample is also representative of store age, store size, and other factors associated 
with item sales. Although a geographically ordered systematic sample is exceedingly simple 
and straightforward, the choice of this sample design is justified based on years of experience, 
as well as the results of empirical studies in which various sample designs were tested on universe 
data. 

Stores in the Scantrack sample are equipped with electronic scanners at the checkout, which 
read bar codes on packaged goods. Bar codes are called universal product codes or UPC's. 
When the item is scanned, the transaction is entered into the store's computer where the UPC 
is matched with the item's price. Each week, the sample stores provide us with total sales move
ment and price data for every item that is scanned in the store. Since a supermarket typically 
carries over 10,000 UPC's, we receive and process over 30 million observations per week. 

In addition to scanner data, we obtain data on promotion conditions for the items in each 
of the sample stores, including whether an item was featured in a newspaper advertisement, 
store display, or store coupon. If an item was featured, we also know the type of newspaper 
advertisement used and the location of the display within the store. 

NSUS reports include estimated sales totals for individual items and aggregates of items 
for each market and the total United States. A ratio estimator is used, with all-commodity 
volume as the auxiliary variable. All-commodity volume, or ACV, refers to total sales of cdl 
items in a store, usually on an annual basis. ACV tends to be highly correlated with sales of 
individual items. In addition, the NSUS reports include estimates of sales and sales rates by 
promotion condition and estimates of year-to-year sales trends. 

Continuous maintenance is necessary for the Scantrack sample because the national super
market universe of approximately 30,500 stores is not static. In a recent 12-month period, 
approximately 2,200 new supermarkets opened, and 2,450 existing stores went out of business. 
Another 170 stores were reclassified during the year. Reclassification can result from any of 
a number of changes. Some smaller grocery stores enter the Scantrack universe when their 
ACV's surpass the $2-million-per-year threshold which defines a supermarket. A store might 
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change name or location, or be expanded through remodeling. Some stores change to an 
extended or economy format, such as a superstore, warehouse store, or other nontraditional 
supermarket. In 1979, about 3,800 extended and economy stores accounted for 17% of total 
supermarket sales. By 1988, the number of extended and economy stores had grown to over 
9,000, and they accounted for almost 50% of all supermarket sales {Progressive Grocer 1989). 
Sometimes, individual stores or entire chains are acquired by another organization affecting 
stratum definitions. 

In addition to universe changes, missing or faulty data situations arise that require substitu
tion of sample stores. Some selected sample stores do not scan, and some that do have incom
patible scanning equipment. If a store is consistently unable to provide us with usable data, 
it must be dropped from the sample. Sometimes a request for a sample change within an 
organization comes from the chain itself. Occasionally, a retailer simply refuses to cooperate. 

The principal objectives of our maintenance system for the Scantrack sample are: 
(1) the sample should maintain geographic balance through time 
(2) the system should maintain the sample size through time 
(3) the sample should adhere to principles of probability sampling so as to avoid bias in 

estimators of total sales, and 
(4) sample changes should not disturb excessively estimates of year-to-year trends. 

Geographic balance is a proxy for socio-economic balance. Because different neighborhoods 
have different purchasing patterns, geographical balance is important to achieving an efficient 
sample design {i.e., low sampling variability) over a wide range of products. Furthermore, 
geographic balance is an important factor in our customers' perception of an appropriate sample. 

A sample size decrease would adversely affect the standard errors of the estimators, and 
a sample size increase would adversely affect our costs. Neither outcome is desirable. Further
more, contracts with chain organizations specify sEunple sizes and cooperation payments, and 
any changes would have to be renegotiated. This too is undesirable. 

All applications involving Scantrack data reqiure efficient, unbiased estimators of total sales. 
Manufacturers and retailers need such data for everyday business decisions, such as how much to 
produce, how much to ship, how much to keep in inventory, and how to allocate store shelf space. 

Clients also require reliable year-to-year trend information for managing their businesses. 
Trend estimates help manufacturers assess the overall health of their businesses. Both manufac
turers and retailers benefit from knowing the longer-term performance of all major brands 
in all product categories. 

We describe the maintenance system that has been developed to meet these objectives in 
section 4. But first, we describe a new geographic ordering scheme in section 3. 

3. PEANO KEYS 

The Peano key is a parameter that defines a certain fractal, space-filling curve. It provides 
a mapping from (R̂  to (R' such that points in (R̂  or spatial objects can be arranged in a unique 
order (Peano order) on a list. In the application we have in mind, the spatial objects are sampling 
units, and the space (R̂  is represented by earth's geographic coordinate system. 

We obtain the Peano key by interleaving bits. See Peano (1908), Laurini (1987) and Saalfeld, 
Fifield, Broome and Meixler (1988). LetX = X,,... A'j A^z î and 7 = Y„... Y^YzYi repre
sent the longitude and latitude of an arbitrary point in A:-digit binary form. Then, the corre
sponding Peano key is P = A'̂ t̂ t • • • X2Y2X2Y2X1 Yi. Also see figure I for an example for 
the case k = 4. Note how simple it is to calculate the value of P. 
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LATITUDE LONGITUDE 

Y = Y Y Y Y 

4 3 2 1 
X = 

p = 

X X X X 

4 3 2 1 

X Y X Y X Y X Y 
4 4 3 3 2 2 1 1 

Figure 1. Creating the Peano Key by Bit Interleaving 

Given A:-digit (for any finite k) latitude longitude coordinates, the spacial "point" represented 
by the value of P is actually a square in (R^.Ask increases, the sizes of the squares decrease. 
In fact, as k tends to infinity, the value of P will tend to represent a specific point in (R .̂ 

The space-filling curve created by the values of the Peano key, P, is in the shape of a recur
sive N. Figure 2 illustrates the N-curve, using a grid of 1024 points. This figure displays the 
self-similarity feature of fractal images. 

The N-curve passes once and only once through each point in space, points being defined 
as squares whose size is determined by the number of digits carried in the latitude and longitude 
coordinates. The order of points on the curve (Peano order) is largely preserving of geographic 
contiguity. Thus, Peano order facilitates proximity searches. Peano order involves a few 
geographic discontinuities, such as the jump from point 516 to point 517 in figure 2, as does 
any mapping from (R̂  to (R*. 

In the specific application we envision here, economic establishments are arranged on a list 
in Peano order by means of their latitude and longitude coordinates. Probability samples of 
the establishments may be drawn systematically from the ordered list. Because the earth's 
coordinate system is stable, there is no ambiguity in determining the list position of new 
establishments. Thus, they may be subjected to sampling too. 

To illustrate this application, see figure 3 which displays a chain of retail establishments 
in the United States. Each establishment is described by a double-letter code. This code in 
natural lexicographic order signifies the Peano order of the establishments. 

In the next section, we describe a sample maintenance system that is based upon the 
establishments' Peano order. 
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Figure 2. Peano Order Based on 1024 Points 
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Figure 3. Chain of Retail Establishments in Peano Order 
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4. RULES FOR MAINTAINING THE SAMPLE 

We describe a system for maintaining samples of retail stores, taking proper account of 
births, deaths, scanning conversions, and other changes in the status of the retail store universe. 
As stated earlier, we developed the system for applications at the A.C. Nielsen Company. 

We consider a given and arbitrary sampling stratum, say of size N, and assume the universe 
of stores in the stratum is arranged in Peano order. For example, a stratum might include all 
stores in a given metropolitan market, such as Vancouver or Montreal. Ordering by Peano 
key values will turn out to be especially well-suited to the maintenance system that follows. 
Other ordering schemes may be considered for this work so long as they are stable across time 
and effectively map (R̂  to 61' in such fashion as to preserve geographic contiguity and to 
assign all birth stores a unique position in the ordering. 

We assume an original sample is selected systematically with equal probability from the 
ordered list of stores at time t = 0. Let Ujj denote the>th store in the i-th possible systematic 
sample, for / = 1, ..., kandj = I, . . . , « , , where kis the sampling interval and «,is the size 
of the/-th possible sample. If N = nk + r, r < Ar, then/• samples will be of size n, = n •¥ 1 
and k - r samples of size n, = n. In what follows, we shall also use the subscript " / " t o 
represent the sample actually selected. 

Let Py denote the Peano key value associated with Ujj. Let P^ and Py denote the smallest 
and largest possible Peano key values within the market under study. Thus, 

PL < Pn < Pii < ... <Pki<Pn< . . . <Pij< . . . < Pknk ^ Pu-

Note that we are assuming each store possesses a unique geographic location and thus a 
unique Peano key value. 

Let Y,ij denote the value of some characteristic of t/,y at time /. A standard unbiased 
estimator of the population total, Y,, is 

Y,i = kY y,ij> 
j=l 

while the ratio estimator is given by 

where the A'-variable is a measure of size and X, and X,i are analogous to Y, and f„, 
respectively. 

Define TVPeano key segments, Sy, by partitioning the range [Pi, Py] at the A'̂ store values 
Pfj. We let Sfj = [Pjj, Pi+ij), where it will be understood that Pk+ij represents Pij+i- A 
special definition is needed for the final segment. We define Ŝ „̂̂  = [Pt„^,Pc/] U [Pz,,Pii) 
so that the entire Peano range [PL,PU] is covered by theNsegments. This special definition, 
which treats the Peano range as if it were on a circle, is needed later to guarantee that all store 
births are given a nonzero probability of selection. Alternative segmentation schemes may be 
used without defeating the statistical properties of the maintenance system. 

Our maintenance scheme is based upon the Peano key segments. The basic idea is to view 
the systematic selection process as applying to the segments, with subsampling of stores within 
the selected segments. Thus, as a formal matter, the segment is the primary sampling unit (PSU), 
not the store. Of course, as of the time of initial sample selection, there is, by construction, 
only one store per segment. 
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4.1 Birth Sampling 

At a future point in time, say ^ , one or more new stores may open for business. Each new 
store will be assigned its unique Peano key value, and this value will be an element of one and 
only one Peano key segment. The Peano key permits us to automatically place new stores in 
their correct and unique positions one the ordered universe list. 

The simplest possible rule for sampling births is the following: 

Rule 1. A birth store is selected into the sample if and only if its Peano key value 
is an element of a selected Peano key segment. Birth stores whose Peano key values 
are elements of nonselected segments are themselves not selected. 

Given this rule, a birth store is selected with probability 1 /k. This occurs because its segment, 
which is unique, is selected with probability 1/k. Unfortunately, Rule I does not provide good 
control of the sample size over time. 

To control the sample size, we advocate some form of subsampling within PSU's. Let 
^iju Uij2, . . . . (///B. denote the stores in segment Sy. The original store is now labeled (/yi, 
whereas (/y2, C//y3, . . . , f/ya.. are the birth stores in Peano order. The number, Bjj - 1, of 
births in any given segment will be 0,1 ,or 2 in most applications. Then we may subsample as 
described in the following alternative rule. 

Rule lA. A birth store will be subjected to subsampling if and only if its Peano 
key value is an element of a selected Peano key segment. Associate with Uiji, t/y2, 
. . . , C/̂ B.̂ . the probabilities/7y,,j3y 2. • - •, PijBij,^^^^^Pijb > Oand E^y^ = 1. 
Now choose one of the stores according to this probability measure. Subsampling 
is independant from one selected segment to the next. Birth stores whose Peano 
key values are elements of nonselected segments are themselves not selected. 

The probabilities in Rule 1A may be equal or unequal. If unequal, they may be defined in 
proportion to some preliminary measures of size, or defined so as to accelerate or retard the 
replacement of the sample. 

We observe that our principal maintenance objectives are well-satisfied by Rule 1 A. First, 
the rule maintains geographic balance over time because there is always one unit selected from 
each of the originally selected segments, which themselves were geographically balanced by 
virtue of the systematic sampling design. Second, the rule maintains a constant sample size 

' over time because there is always one and only one store selected from each of the originally 
selected segments. Third, the rule is in accord with strict principles of probability sampling, 
whereby probabilities of inclusion are known and nonzero, and thus unbiased estimators of 
population totals are available. Finally, by appropriate choice of the Py^, we may control 
distortion in year-to-year trends. 

The unconditional probabilities of selection are given by 

'^ijb = k~ Piji, 

for b = I, ..., Bjj. That is, Ttyfc is equal to the probability of selecting the PSU times the 
conditional probability of selecting the store, given the selected PSU. 

Let Yi'ijt, denote the value of the unit Uijt,, and let Yt'ij+ denote the total for the (/,y)-th 
PSU. Then, the unbiased estimator of the population total Yf is given by 

"i 

y,'i = Y yt'ijbf''^ijb. 
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where ;','y7, is the value of the single unit selected from the (/,y)-th selected segment, with 
variance 

(1) 

where 

Varlfn] = ^ D (^ I ) Ynj^ - Y,)\ k Y Y ''''U' 
1 = 1 ^ y = l ^ 1 = 1 y = l 

^ /Ynjb ^ V 
'^I'ij = IJ Pijbi Yrij+ ] . 

^i \ Pijb ) 

The first term on the right side of (1) is the variance due to the sampling of segments. This 
is the original variance in the sense that it is the variance expression that applied at the time 
of original sample selection. The second term on the right side is the variance due to subsampling 
within segments. Note that a?-y vanishes for any segment in which birth subsampling has not 
occurred. Note also that the subsampling scheme achieves its minimum variance when, for 
each given / andy, the probabilitiesPy^, are defined to be proportional to Fj.yj. In this case, 
the within component of variance vanishes. For any real application, however, this propor
tionality condition will be satisfied only approximately. 

As usual, a first-order Taylor series approximation may be used to discover the variance 
of the ratio estimator. See Wolter (1986) for appropriate techniques to estimate the variance 
of both the unbiased estimator, f,-,, and the ratio estimator f̂ ,-,. 

As time passes, it will be necessary to periodically update the sample to reflect additional 
births and other changes in the universe. It may be desirable to schedule the updating at regular 
intervals of time, so as to facilitate management of the work. We will refer to these intervals 
as update cycles. Such cycles may occur monthly, bimonthly, quarterly, or at whatever interval 
makes sense in a particular application. Factors to consider in establishing the frequency of 
the updating cycles include cost of the updating process; desired accuracy of the estimators 
of level and trend; and perceptions of the customers or users of the data. 

Generally speaking, more frequent updating will cost more, achieve greater accuracy, and 
be perceived better by customers than less frequent updating. 

For an update cycle at any future time / ' , Rules I or IA may be used to maintain the sample. 
New stores are always placed automatically in their correct segment, by their Peano key values, 
and the subscript b reflects this order at each cycle. To explicitly reflect these ideas, we should 
have further subscripted the U's,B's,p 's, and TT '5 by time, but we avoided doing so as a nota-
tional convenience. The expressions for the estimators of total, f,-, and f̂ ,,, and their 
variances remain valid for each t'. 

4.2 Updating for Deaths 

Rules for maintaining a sample over time must obey an important general principle. They 
must treat equally both selected and nonselected units. In the case of deaths, this principle 
implies that all deaths, both those in and out of the sample, must be handled in the same fashion 
in any sample updating process. If this principle is not followed, the resulting estimators will 
be biased, and the bias may accumulate over time. 

In what follows, we describe procedures for death updating that follow this essential 
principle. There are two cases to consider: (i) deaths are not known on a universe basis, 
(ii) deaths are known on a universe basis. 
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For case (i), we suggest Rule 2. 

Rule 2. All deaths in the sample will be known. They should remain in the sample 
but be set to zero {i.e., y = 0) at the time of an update cycle. 

This rule permits unbiased estimation of the universe population totals. Deaths cause the 
estimator variances to increase, and estimators of variance will properly reflect this increase, 
provided the deaths are retained in the sample with zero values. 

For case (ii), we suggest Rule 3. 

Rule 3. Remove all deaths from the universe at the time of the next update cycle. 
Subject only the remaining live cases to sampling, including births. 

Rule 3 will cause the store count Bjj to change in segments where deaths have occurred, 
unless births exactly offset deaths. A replacement store will necessarily be selected within a 
given segment whenever the sample store from the segment has died ~ except when there is 
a death but no birth and B/j = 0- and a replacement store may be selected even when the 
sample store is alive and well. 

In the exceptional case, where By = 0, the sample size drops by 1. An interesting problem 
for future research is to investigate the mean square error of this rule versus that of an alter
native rule which selects a replacement store from the same zone of k stores, instead of 
permitting the sample size to drop by I. This alternative is conditionally unbiased but uncon
ditionally biased. 

Two additional issues must be addressed in handling deaths. The first issue concerns the 
coordination of birth and death updating. Store births and deaths will occur naturally at 
irregular intervals, depending upon business conditions and population growth. In some time 
periods, neither births nor deaths will occur. In other time periods, births may occur but not 
deaths, or vice versa. While in other periods, both deaths and births will occur. In theory, it 
would be possible to employ different update cycles for store births and deaths. For example, 
one might update bimonthly for both births and deaths, but in alternating months. This 
approach may have advantage in leveling the work load over time. On the other hand, alter
nating cycles may tend to defeat the ability of the sample to properly measure trends, creating 
a sawtooth pattern in the store time series as first births are introduced, then deaths dropped, 
then births, deaths, and so on. On balance, we recommend coincident sample updating for 
births and deaths so as to preserve trends. 

The second issue concerns the handling of deaths during the period from their actual 
occurrence until the next update cycle. This issue arises only if the frequency of the updating 
process is less than that of the data-collection process. If the two processes are coincident, then 
there are no new problems. If updating is the less frequent, then there are two alternatives: 

a) drop the deaths from the sample as soon as they are known to us (to be more precise 
statistically, this means the deaths are included in the sample with a value of zero) 

b) continue the deaths in the sample by imputing for them until the time of the next update 
cycle. 

Alternative a) is the simplest, cleanest way of proceeding. Aside from the problem of births, 
it is unbiased and permits correct variance estimators. Because of the birth problem, however, 
this alternative may have a negative effect on the ability of the sample to properly measure 
trends. As deaths occur during the first weeks of an update cycle, one can imagine a slight decline 
in the store time series, not because of fundamental change in economic conditions, but simply 
because the sample reflects deaths and not births. Alternative b) provides a short term fix to 
the problem of properly measuring trends. The essential notion here is that by imputing for 
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deaths, we implicitly make a correction for any births that have occurred since the last update 
cycle. This fix is not particularly elegant, and it is difficult to frame a rigorous, unassailable 
technical justification for it. On the other hand, history has shown that populations of eco
nomic establishments tend to be stable in the short run. Deaths are often associated with or 
are compensated by births, with the net size of the population remaining approximately level 
in the short run. The United States Bureau of the Census has used this alternative in its whole
sale trade survey, with quarterly update cycles and monthly data collection. See Wolter et al. 
(1976). 

4.3 Chronically Nonusable Stores or Scanning Conversions 

In this final subsection, we present sample maintenance rules for handling stores that are 
chronically nonusable, such as stores that do not scan; do scan but with such poor discipline 
as to render their data faulty and nonusable; or refuse to participate in the survey. We shall 
explicitly discuss nonscanning stores and sample maintenance rules for handling conversions 
from nonscanning to scanning and vice versa, although the material that follows may be seen 
to apply more generally to all conditions of chronic nonusability. We shall let A denote the 
set of scanning stores and B the set of nonscanning stores, where A \J B spans the entire 
universe. 

First, we treat conversions to scanning. There are two principal cases to consider: (i) scanning 
status is known for all stores prior to sampling; (ii) scanning status is not known prior to 
sampling, but is observed after sampling for the selected stores only. 

Case (i) is relatively easy to handle. Here is a natural rule: 

Rule 4. Do not subject nonscanning stores B to sampling. Sample only from the 
subuniverse of scanning stores ̂ 4. As a given nonscanning store converts to scanning, 
then treat it as a birth, subjecting it to birth sampling. Prior to conversion, non-
scanning stores B shall be represented in the universe by utilizing imputation or other 
missing data techniques. 

Given this rule and the prior data {i.e., scanning status) it assumes, the entire survey budget 
may be allocated to the sample of scanning stores. None of the sample resources need to be 
committed to nonscanning stores. 

To address case (ii), let i' denote the selected sample of stores, and let .ŝ  = s fl A and 
SB = s Ci B. By assumption, SA and Sg are not observed until after initial field work is 
completed. Obviously, all of these sets vary with time, but we suppress explicit time subscripts 
to simplify the notation. 

Sample s^ should be maintained by rules presented elsewhere in this paper for births and 
deaths. New rules are required to handle Sg. Here is an illustrative rule that treats the stores 
in Sg as nonrespondents. 

Rule 5. At time t, impute for store C/ŷ  € Sg the yalueynjt, = x,ijt,yA,/XA,, where 
Xfijt, is the value of an auxiliary variable for store Ufji^.y^, is the sample s^ total 
for the estimation variable, and x^, is the corresponding total for the auxiliary 
variable. Alternatively, imputation may occur by means of substitution, hot 
deck/matching, or other means. Now, act as if the data set is complete, applying 
standard estimators of the survey parameters of interest. At the time t/yT, converts 
to scanning, it shall be deleted from Sg and joined to s^, and the estimation shall 
still be performed by means of the standard estimators applied to the completed 
data'set. 
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Given Rule 5, the effective sample size is reduced because of imputation variance associated 
with the j>tijb- Substitution maintains a larger effective sample size than the other rules, but 
is clearly the most expensive to implement. All rules require limited field work on a continuous 
basis to monitor the scanning status of Ujji, € Sg. 

As an alternative to missing data techniques, we may observe the nonscanning stores using 
an alternative mode of data collection. Depending upon the data to be collected, this could 
involve a store audit or an interview conducted with store personnel by telephone, mail, or 
in person. This alternative would likely be more accurate than the imputation-based methods, 
yet additional cost and time may be involved, as well as burden associated with the manage
ment and control of two data collection methodologies. 

Finally, we treat conversions of sample stores from scanning to nonscanning. Such con
versions are likely to be relatively small in number and are treated here only for completeness. 
Let Ujji, € SA , ' . e., / is a scanning store in the sample. Note that Ujji, may be either a store that 
has scanned since being selected into the sample, or a store that converted to scanning after 
originally entering the sample as a nonscanner under Rule 5. 

Rule 6. At the time Ujjf, converts to nonscanning, it shall be deleted from SA, joined 
to Sg, and subsequently handled by missing data techniques, as in Rule 5. Standard 
formulae shall be applied to the completed data set. To simplify processing and 
field work, the method selected shall be identical to the method selected to handle 
conversions from nonscanning to scanning. 

In the bizarre instance in which a store flip-flops repeatedly between scanning and non-
scanning, one may handle the store by sequentially applying Rule 5 or 6, as the case may be, 
each time updating the sets SA and Sg. 
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for Repeated Surveys 
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ABSTRACT 

Papers by Scott and Smith (1974) and Scott, Smith, and Jones (1977) suggested the use of signal extraction 
results from time series analysis to improve estimates in repeated surveys, what we call the time series 
approach to estimation in repeated surveys. We review the underlying philosophy of this approach, 
pointing out that it stems from recognition of two sources of variation - time series variation and sampling 
variation - and that the approach can provide a unifying framework for other problems where the two 
sources of variation are present. We obtain some theoretical results for the time series approach regarding 
design consistency of the time series estimators, and uncorrelatedness of the signal and sampling error 
series. We observe that, from a design-based perspective, the time series approach trades some bias for 
a reduction in variance and a reduction in average mean squared error relative to classical survey estimators. 
We briefly discuss modeling to implement the time series approach, and then illustrate the approach by 
applying it to time series of retail sales of eating places and of drinking places from the U.S. Census 
Bureau's Retail Trade Survey. 

KEY WORDS: Repeated surveys; Time series; Signal extraction; U.S. Retail Trade Survey. 

1. INTRODUCTION 

Papers by Scott and Smith (1974) and Scott, Smith, and Jones (1977), hereafter SSJ, 
suggested the use of signal extraction results from time series analysis to improve estimates 
in repeated surveys. If the covariance structure of the usual survey estimates (Y,) and their 
sampling errors (e,) for a set of time points is known, these results produce the linear func
tions of the available Y,'s that have minimum mean squared error as estimators of the popula
tion values being estimated (say B,) for B, a stochastic time series. To apply these results in 
practice one estimates a time series model for the observed series Y, and estimates the 
covariance structure of e, over time using knowledge of the survey design. 

Section 2 of this paper gives a brief overview of the basic results and framework for the 
time series approach. Section 3 considers some theoretical issues and section 4 some applica
tion considerations for the approach. In section 5 we illustrate the approach with an example 
using two time series from the Census Bureau's Retail Trade Survey. 

2. BASIC IDEAS AND GENERAL CONSIDERATION 
OF THE TIME SERIES APPROACH 

The basic idea in using time series techniques in survey estimation that distinguishes it 
from the classical approach is the recognition of two sources of variability. Classical survey 
estimation deals with the variability due to sampling - having not observed all the units in 
the population. Time series analysis deals with variability arising from the fact that a time series 
is not perfectly predictable (often linearly) from past data. Consider the decomposition: 

' William R. Bell is Principal Researcher, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233, 
U.S.A., and Steven C. Hillmer is Professor, School of Business, University of Kansas, Lawrence, KS 66045, U.S.A. 
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Y, = Bf-{- e„ (2.1) 

where Y, is a survey estimate at time t,Bt is the population quantity of interest at time t, and 
e, is the sampling error. The sampling variability of e, is the focus of the classical survey 
sampling approach, which regards the ^,'s as fixed. From a time series perspective all three 
of Yf, B,,and e, can exhibit time series variation, as long as they are random and not perfectly 
predictable from past data. Standard time series analysis would treat Y, directly and ignore 
the sampling error in the decomposition (2.1), not treating e, explicity, but only indirectly 
in the aggregate Y,. In fact, time series analysts typically behave as if the sampling variation 
is not present and the true values are actually observed. The most basic thing to keep in 
mind about the use of time series techniques in survey estimation is that there are two distinct 
sources of stochastic variation present that are conceptualized, modeled, and estimated 
differently. 

2.1 Signal Extraction Results 

Suppose that survey estimates Y/ are available at a set of time points labelled t = 1 T. 
Let Y = (y,, . . . , Yj)' and similarly define 6 ande so we have Y = B -{• e. Assuming the 
estimates Yf are unbiased and B, and e, are uncorrelated (see section 3.2) 

E{Y) =E{B) = « = (M„ ...,tiT)' 

IY= ^e+ le, (2.2) 

where £• denotes expectation over both the sampling and time series model distributions, and 
Ey is the covariance matrbc ofY, etc. Hercju and Ig refer to the time series structure of B,, 
which is not subject to sampling variation. If Yi,B,, and e, do not require differencing, it is 
well known that, since Cov(^,F) = I^, using (2.2) the minimum mean squared error linear 
predictor ofB can be written 

e =u+ le^YHY-u) (2.3) 

= « + ( / - lelY'){Y-ii) (2.4) 

= tt+ ( / + E e E » - ' ) - ' ( r - « ) . (2.5) 

Another standard resuh is that the variance of the error of this estimate is 

Yar{6 - 6) = Ig - UIY' le = 'Le - lelr' le- (2.6) 

If normality of {B,Y) is assumed (2.3) - (2.5) give E{B \Y), the conditional expectation of 
B given Y, and (2.6) gives Var (;̂  | K), the conditional variance. 

If Y, requires differencing the preceeding results need to be modified. Assume e, does not 
require differencing, but B, and Y, need to be differenced once {i.e. by applying I - B where 
BY, = y;_i). Let the differenced data be W, = (1 - B)Y, = (I - B)B, -I- (I - B)e,for 
t = 2, ..., T. Let A = [Ay] be the {T - 1) x T differencing matrbc with A„ = - 1 , 
A, ,+ 1 = 1, and all other elements zero, and write Ay = W = AS -{- Ae. Then we use 
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6 =Y-e = Y- le^'li^'A{Y-ii), {2.1) 

Var{B - B) = le - lle^'lw^le- (2.8) 

The expressions (2.7) and (2.8) also apply when B, and Y, require a more general differencing 
operator {e.g. seasonal differencing), with appropriate definition of the differencing matrix 
A, as long as e, does not require differencing. These results are analogous to (2.4) and (2.6), 
but with A' Y,w^A playing the role of Ef'. The results are given in Bell and Hillmer (1990), 
where their optimality properties are discussed. They were essentially given by Jones (1980), 
but without real justification. 

Scott and Smith (1974) and SSJ used classical signal extraction results equivalent to (2.3) -
(2.6) based on covariance generating functions rather than covariance matrices. Bell (1984) 
considers such results for models involving differencing. Another approach (Binder and Dick 
1989, Bell and Hillmer 1989) involves putting time series models for B, and e, in state space 
form and using the Kalman filter and smoother, which can be viewed as an efficient way to 
compute the matrix results given above. Also, see Tam (1987) for use of the Kalman filter in 
an explicitly model-based approach to analysis in repeated surveys. In subsequent discussions 
we generally refer to the results (2.3) - (2.6), though our remarks easily extend to cover the 
use of (2.7) - (2.8). 

In many cases, for time series Y, and B/ that are always positive, we will want to take 
logarithms of Y, to help induce stationarity of B, and the sampling errors. In such cases we 
rewrite (2.1) as 

Y, = Bf{l -\- Uf) = B,u„ (2.9) 

where «, = e,/B, and «, = I + u,. Taking logs we get 

log(y,) = log{Bf) -I- log(I -I- Hf) = log{B,) -I- log(«,). (2.10) 

Letting/iand Eenowrefertolog(0) = {log{Bi), . . . , log(^7-))'. and Ey = Ee + Eufefer 
to log(y), analogous to (2.4) our estimate is 

log(.^) =ii+[l- E„Ey-'](log(y) -Ii). (2.11) 

The analogues to (2.6) - (2.8) are obvious. To estimate Bf we use exp [log(^,) ]; alternatively, 
one could use exp[log(^,) + Var(log(^,) - log(^,))/2] for a more "unbiased" estimate of 
B, with minimum mean squared error (see Granger and Newbold 1976). 

Notice that (2.3) - (2.6) require knowledge of ^ and any two of Ey, Ee, and Eg (the third 
can be obtained from (2.2)). In practice these will not be known exactly and will need to be 
estimated. Thus, the true minimum mean squared error linear predictor ̂ cannot be obtained 
exactly and (2.6) or (2.8) understates the mean squared error (MSE) since it does not account 
for modeling errors. (See Binder and Dick (1989) and Eltinge and Fuller (1989).) The basic 
assumption underlying the application of the preceeding results, which we shall call the time 
series approach to survey estimation, is that y and Ey can be well-estimated from the time 
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series data on Y, through a time series model, and Ee can be well-estimated using survey 
microdata and knowledge of the survey design (possibly also using a model). We discuss these 
issues further in section 4 and illustrate the approach with the example of section 5. 

2.2 Some General Considerations of the Time Series Approach 

Smith (1978), Jones (1980), and Binder and Dick (1986) review and discuss the approach 
known as Minimum Variance Linear Unbiased Estimation (MVLU). While both the MVLU 
and time series approaches can use data from time points other than / in estimating B,, they 
differ in that MVLU regards the tf/s as fixed and still only treats one source of variation, that 
due to sampling. MVLU was developed for cases (such as many rotating panel surveys) where 
more than one direct estimate of B, is available for each t and the e, 's are correlated over time 
due to overlap in the survey design. The use of Yj forj ^ t in estimating B, then comes from 
generalized least squares results and the correlation of the e,'s. We can see the distinction in 
terms of our results for the simple case (2.1) where only one direct estimate, Y,, of 6, is avail
able, by letting Var{6,) - oo to get the MVLU. Then E»"' -* 0 and (2.5) becomes 6 = Y,so 
without multiple estimates of B, the MVLU just uses Y, to estimate B,. These remarks apply 
generally to composite estimation (Rao and Graham 1964, Wolter 1979), which is often used 
as an approximation to MVLU. 

One question that may arise regarding the time series approach is why one should consider 
B, a stochastic time series? This issue has been discussed by SSJ and at length by Smith (1978). 
They observe that (1) users of data from repeated surveys treat the data Y, as a stochastic time 
series in modeling and would do the same with B, if it were available (as it essentially is for 
surveys with very low levels of error), and (2) classical results {e.g. Patterson 1950) for estima
tion in repeated surveys (MVLU) assume a time series structure for the individual units in the 
population, while maintaining the anomalous position that B,, which is a function of these 
individual units (such as the total), is a sequence of fbced, unrelated quantities. In fact, if we 
assume B, is a sequence of fbced, unrelated quantities, then data through any time point are 
irrelevant to the future behavior of the true series B,. If this were the case, then there would 
be litde point in doing the survey in the first place. The data would be out of date as soon as 
they were published. The real questions here are whether or not we can estimate the time series 
structure of B, and e, well enough to make beneficial use of this in survey estimation, how 
worthwhile these benefits may be, and what risks are involved in doing so? 

Along with opportunities for improving estimation in repeated surveys, the time series 
approach offers potential for improved results in other problems where typically only one of 
the two sources of variability is recognized. It also can potentially unify these as subproblems 
under one general approach. Such problems include preliminary estimation in repeated surveys 
(Rao, Srinath, and Quenneville 1989); seasonal adjustment (Wolter and Monsour I98I, 
Hausman and Watson 1985, Pfeffermann 1991); time series trend estimation and the related 
problem of detection of statistically significant change over time (Smith 1978); benchmarking, 
the reconciling of results from a repeated survey with the results from another survey or 
census estimating the same population characteristics (Hillmer and Trabelsi 1987, Trabelsi and 
Hillmer 1990); and inference about time series properties of the true series B, relevant to 
economic models (Bell and Wilcox 1990). 

Finally, we note that the decomposition (2.1) or (2.10) does not allow for nonsampling errors, 
nor does the time series approach treat them explicitly. Whether nonsampling error is gener
ally more or less of a problem for the time series approach than for the classical approach is 
unclear, but one may wish to consider the possible effects of known or suspected nonsampling 
errors on the time series estimators when applying them in particular situations. 
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3. THEORETICAL CONSIDERATIONS 

We now obtain some theoretical results relevant to the time series approach, and some 
properties of the resulting estimators. 

3.1 Consistency of Time Series Estimators 

Following Fuller and Isaki (1981) we let yJ (from the f'•* sample at time 0 be a sequence 
of estimators of the characteristic Bf of the f'*" population at time t where the populations and 
samples for f = 1,2, . . . are nested. (See their paper for details.) Definey^, B\e\ij}, E_J, E9, 
l,i,B\ and B', in the obvious fashion. We consider what happens to the time series estimators 
B' when the estimators Y^ are consistent, i.e. Y", ^ B'in some fashion as f — 00 for / = I, 
. . . , T, with T, the length of the series, remaining fbced. For now we assume n', E 9, and E i 
are known for each t, which generally means the time series models (including their parameter 
values) for the components are known. Since jt'and E9 are really superpopulation parameters 
for the time series, B^, we wish to estimate, we shall assume these are the same for each popula
tion f, that is, u' = n and E | = E9 (a positive definite matrix) for all f. This is also partly for 
convenience since we could get the same results assuming n' -' n and Ee — E» as f — 00. 

From (2.5) it would appear that Y' ^ 6' would imply B' -^ 6' as long as Ei ^ 0. This 
condition suggests we need mean square convergence of yf to B',. We thus consider estimators 
Yj of BUuch that E[ {Yj-Bf)^] = E[{e',)^] - Oasf - 00. Since£'[(e5)^] = Var(ef) -(-
[^(ej) lathis implies both Var(e{) -* OandE{e',) — 0. Assuming yJ — &{ in mean square 
for / = 1, . . . , r thus implies E i — 0. We can now establish 
Result 3.1: Consider B = {Bi ^7-)' given by (2.4). If Yj ^ B', in mean square as f — 00 
for ^ = 1, . . . , r , then 6' -^ B', in mean square as f ^ 00 for ^ = I, . . . , T. 

Proof: Fromy' = 6^ + e'with Ei — Owe have Ey — E9 (even if ;^'and e'are correlated.) 
From (2.4) we have 

e' - B' = {Y' - Oj) - Ei(E'y) - ' ( r - a)- (3.1) 

The first term on the right converges toO in mean square; the second has meanO and variance 
E i ( E y ) ~ ' E i — Oasf— 00. Since both terms converge to 0 in mean square so does B' - BK 

Convergence in probability is a more familiar concept in survey sampling. If YJ — B', as 
f — 00 in probability for / = I, . . . , Tthis does not guarantee Ei -* 0, which is mean square 
convergence, a stronger condition. If we assume there are random variables f, with finite 
variance such that | ef | < f, (almost surely) uniformly in i, then YJ — B\ in probability 
implies YJ ^ B'fin mean square (Chung 1968, p. 64). Therefore, using Result 3.1, we have 
Result 3.2: If Yj -^ B\ in probability as f — 00 for / = 1, . . . , 7 and there exist random 
variables f, with finite variance such that \ YJ - B\\ •< ^t (almost surely) uniformly in f, then 
Bj -^ B'I in probability as f — 00 for / = 1, . . . , T. 

These consistency results show that if the errors in the original estimates Y, of B, are 
small (Ee is small) then the errors d, — B, will be small as well. From (3.1) we see this is 
because B - Y becomes small as Ee becomes small, thus when there is little error in the 
original estimates y, the time series approach will not change them much. Binder and Dick 
(1986) have noted this phenomenon, and also pointed out that in this case it does not matter 
what time series model is used. That is, the convergence to 0 of (3.1) depends only on E i — 0 
and not on ju or E9. Thus, the consistency results extend to allowing fx, E9, and also Ei to 
be replaced by estimates 4', Ee, and Ei (which will generally come from estimated models -
see sections 4 and 5), as long as ^'and Ee converge to something as f ^ 00 (it doesn't matter 
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what as long as the limit of Ee is positive definite) and Ei -• 0, which should generally hold 
when Ei -* 0. It is also obvious that these results extend to the nonstationary case where B 
is given by (2.7) instead of (2.4). While the results show that the time series estimates behave 
sensibly in the situation of small error in the original estimates Y,, the gains from the time 
series approach will come in the opposite case - when Var(e,) is large. 

We can extend the consistency results to the case where we take logarithms and estimate 
log{Bi) using (2.11). In this case let H = Var(log(w^)) where log(«') = {log{u\) 
log(M7-))'. If we are taking logarithms it is reasonable to assume YJ and B' remain bounded 
away from 0, say \ Yj \ > Kand\ B', \ > K (almost surely) for alU and f for some constant 
K > 0. 

Result 3.3: If YJ - B', in mean square asl ^ oo for t = 1, ..., T, then log(y/) - log{B',) 
and log(^{) — log{Bl) in mean square as f — oo for ^ = 1, . . . , r . 

Proof: The analogue to (3.1) is 

log(f) - log{B') = (log(y') -log{6')) - Vu{U)-\log{Y') -Ii). 

If we can show E i — 0 we will have the result since this implies log(y') -^ log{B') in mean 
square, and the second term on the right behaves exactly as that in (3.1). Notice 

E[{u'fy] = E[(e',yi(B',y] < (^(ej)^)/^^ - 0 as f - oo, 

thusE[{u',)^] = £•[(«? - 1)2] - 0. This implies Var(Mj) - 0 and E{u',) - 1. By 
Jensen's inequality (Chung 1968, p. 45), since exp(.) is a convex function. 

1 < exp(E[log(M?)2]) < E{exp[log{u',y]) = E[{u',y]. 

ButE[{u^,)^] =Var(«{) -I- [E{u',)]^ ^ I soexp{E[log{u^,)^]) ^ I unplying£'[log(Mj)2] ^ 0 . 
This yields Var(log(t<J)) — 0 as desired. 

As before we could get a convergence in probability result by imposing a boundedness 
condition on the log(«f). Having log(^,) as an estimate of log{B,), we have the following 
Corollary to Resuh 3.3 for using exp[log(fl,)] as an estimate ofBf. 

Corollary 3.4: If Yj - B', in mean square as f - oo for / = 1, . . . , r, then (see (2.11)) 
exp [ log(ef) ] - ef in probability as f - oo for ^ = I, . . . , T. 

Proof: Since log(^J) -^ log{B',) in mean square implies convergence in probability, the result 
follows since exp(.) is a continuous function (Chung 1968, p. 66). 

An analogous result obviously holds for using exp [log((9f) + Var(log(^J) - log(0f))/2] to 
estimate B,, since then Var(log(^f) - log{B')) — 0 as f — oo. 

3.2 Uncorrelatedness of d and e 

Standard time series signal extraction results corresponding to (2.3) - (2.8) typically assume 
and B, and e, are uncorrelated with each other at all leads and lags (equivalent to independence 
under normality). Previous papers on the time series approach to repeated survey estimation 
have merely assiuned this, but since Bf and e, depend on the same population units it is not obvious 
that this assumption is valid. Fortunately, we can establish that it is valid under fairly general 
conditions. (Tam (1987) discusses how this fails under an explicitly model-based approach.) 
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We let yi, be the value of the characteristic of interest for the /"i unit in the population at 
time t, and let fi, = [y,,: i = 1, . . . , AT,) be the collection of all N, of these units. We con
sider time points / = I, . . . , rand let Q = (fii, . . . , fir)'. The;',, are random variables, 
as isB, = B,{ilt), which is a function of the j , , . The sample at time t, s, (denoting the indices, 
not the values, of the units selected), has probability of selection p (5, | fi). The estimator Y, 
of B, is a function of the values yj, for the units sampled, thus a function of both fi, and s,, i.e. 
y, = y,(fi,,5,). We could let Y, depend on the sample at times other than t, but we ignore 
that here for simplicity. 

We consider estimators Y, of B, that are design unbiased, which we shall define as 
£'(y, |fi) = 'LsiY,p{s, |fi) = B,. We could alternatively define design unbiasedness as 
E{Y, I fi,) = ts,Y,p{s, I fi,) = B,, and then would need to assume the sample selection 
process is such that p(.s, |fi) = p{s, \ Q,),soE{Y, |fi) = E{Y, \ fi,). If the sample design 
is noninformative thens, andfi are independent, implyingp(.y, | fi) = p{s, | fi,) = p{s,), 
and either definition of design unbiasedness reduces to Ei,y,p(5,) = B,. This is the usual 
definition, which generally assumes the >>„, and so fi, and B,, are fixed. (The assumption 
p{s, I fi) = p{s, \ il,) allows the sample selection process at time t {p{s, | fi)) to depend on 
the population values at time r (fi,), but assumes the population values at time points other 
than t {Qj for j T^ t) offer no additional information on s, beyond that in fi,. This might occur 
if sampling was with probability proportional to the size of an auxiliary variable at time t that 
was correlated with the yj, only at time /.) The assumptions we make here might even be 
generalized. 

Result 3.5: If Y, is design unbiased for all t then B, and e, are uncorrelated time series. 

Proof: Consider Coy{B,, e,) for any two time points t andj. Since Yj is design unbiased 
E{ej |fi) = E{Yj - Bj\U) = 0, implying£•[£•(£, IQ)] = E{ej) = 0. AkoE{B, • e, |fi) = 
B, • E{ej |fi) = 0 implying £'(e, . e,) = 0. ThusCov(e„e,) = E{B, - ej) - E{B,)E{ej) =0. 

Comment: If £(e, | fi) does not depend on fi then Cj is said to be "mean independent" of fi, 
which is known to be a stronger condition than e, and fi uncorrelated, though not as strong 
as stochastic independence (unless we have normality). This shows that actually we only need 
£•(6, I fi) = £•( y, I fi) - 9, to not depend on fi for B, and e, to be uncorrelated time series. 
This would cover cases where Y, has a constant additive bias (not dependent on fi,) as an 
estimate of B,, or, using approximate Resuh 3.6 which follows, a constant percentage (multi
plicative) bias. 

We now consider the logarithmic decomposition (2.10) when the Y, are design unbiased. 
We assume that My is Op{ri) where r, ^ 0 as f — oo in the superpopulation framework of the 
previous section, omitting the superscript f from random variables here for convenience. (See 
Wolter (1985, p. 222) for definition of the order in probability notation Op{ri). For example, 
when estimating a population mean we would often have Var {uj) < K/njt where Kis some 
constant and njgis the sample size at timejin the l^^ population. Then Qj = Op{n~(-^) from 
Wolter (1985, theorem 6.2.1).) From a Taylor series linearization of log(M;) = log(I -t- Uj) 
we have from Wolter (1985, theorem 6.2.2) 

log(M,) = Uj -t- Op{rf). (3.2) 

Using this we obtain the following. 

Result 3.6: If Y, is design unbiased for all t and Uj is Op{rt), then to terms that are Op{r}), 
log(^,) and log(M,) are uncorrelated time series. 
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Proof: From theorem 6.2.5 of Wolter (1985) Cov(log(e,),log(M,)) = Coy{log{B,), Uj) -I-
Op{r^). NoticeE{Uj \ fi) = E{ej \ Q)/Bj = 0implies£(«,) = 0, andE{log(B,)uj \ fi) = 
log{B,)E{aj I fi) = 0 implies E{log{B,)iij) = 0, so Cov(log(e,), Uj) = 0, establishing the 
result. 

3.3 Design-Based Properties of Signal Extraction Estimates 

Unconditionally, ̂ in (2.3) is unbiased (£•(!) = E{B) = « ) and has minimum MSE given 
by (2.6). It is easy to see that this is not the case when viewed from a design-based perspective. 
Suppose we begin with design-unbiased estimators Y, i.e. £'(y | fi) = B. From (2.2) and (2.4) 
we have B - B = ( / - E e E f ' ) e - E e E f ' ( : 0 - t f ) . With some algebra, we can show the 
design bias, variance, and MSE of ^ are given by 

E{B\ Q) -B = - E e E ? ' ( e - n), 

yar{6-B\Q) = Ee - EeEf 'Ee - E e E y ' E e E y ' E e , 

E[iS-e){6 -B)' | f i ] = E e - E e E y ' E e 

- E e E ? ' [ E e - {B -a) {6 - t f ) ' ] E y ' E e . (3.3) 

From a design-based perspective we see use of ̂ trades bias for a reduction in variance, since 
Ee - Var(^ - B I fi) is a positive semidefinite matrbc. Whether this reduces the conditional 
MSE (3.3) below Ee. the MSE of Y, depends on the last two terms in (3.3), and in turn on B. 
There can be particular realizations of 6 for which the conditional MSE of ^ exceeds Ee, 
though on average signal extraction reduces the MSE by Ee Ey' Ee, since the unconditional 
expectation of the bracketed term in (3.3) is zero. (Of course, (3.3) is unusable in practice since 
it depends on ̂ .) Also, as noted earlier, modeling error will contribute additional MSE to B, 
so another fundamental question, more difficult to answer (see Eltinge and Fuller 1989), is 
how the real unconditional MSE of f compares to Ee? 

4. APPLICATION CONSIDERATIONS 

Application of the time series approach to survey estimation requires estimation of the 
autocovariance structure of the sampling errors, estimation of the mean and autocovariance 
structure of the signal, and computation of the estimates B, and Var(^, - tf,) as discussed in 
section 2. The first two generally involve use of time series models, and are discussed in some 
detail in Bell and Hillmer (1989). Here we make some general remarks. We assume the Y, are 
design unbiased estimators of the B,. We illustrate application of the methods in the next 
seption with two time series from the Census Bureau's Retail Trade Survey. 

Sampling error autocovariances, Coy{e,,e,+fc), can be estimated in an analogous fashion 
to sampling variances, Var(e,), which is done routinely and for which many methods are 
available. (See Wolter 1985.) In practice, there may be difficulties in linking survey microdata 
over time to directly estimate sampling error covariances. Nevertheless, in what follows we 
assume we have available such estimates Cov (e, ,e,+^) for some set of time points / and lags k. 
Unfortunately, if there is a substantial amount of sampling error present (the situation where 
time series methods can make a difference), such autocovariance estimates are likely to have 
high variances themselves. This suggests some sort of averaging to improve the autocovariance 
estimates. 
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First.if we assume e, is covariance stationeuy, so Cov(e,,e,+^) = 7e(^) depends on A:but 
not t, then each Cov(e,,ey.^^) is estimating 7e(A:)^nd we can simply average them, i.e. take 
'ye(*) = ( L ~ /t)~'LCov(ej^,e,+;t)ifwehaveC'ov(ej^e,+t)for/ = I, . . . . T - A:. Alter
natively, Corr(e,,e,+;t) = Cov(e,,e,+;t)/[ Var(e,) Var(e,+;t)] ' can be averaged over t to 
estimate Corr(e,,e,+;t), which also depends on A: but not /, and the variance estimates can be 
averaged as before. 

Now suppose we are assuming e, is relative covariance stationary, so Coy{e,/B,, e,+ic/B,+tc) = 
Cov(M,,«,+;t) = yu{k) depends on A: but not/. If u, is Op (r,) for all/, as in section 3.2, then 
from(3.2)andtheorem6.2.5ofWolter(1985),Cov(log(M,),log(M,+t)) = Cov(M,,«,+t) -(-
Op{ri) » 7„(A:). Taking Coy{e,,e,+ic)/{Y,Y,+fc) as estimates of Cov («,,«,+;t), these can be 
averaged over t to estimate 7u (A:). Alternatively, using corollary 5.1.5 of Fuller (1976) we can 
show that Corr(log(«,),log(M,+t)) = Corr(M,,i7,+^) -I- Op{rf), and taking as estimates 
of^„(*) = Corr(«„w,+;t).{CSV(e„e,+;t)/y,y,+^ )/{[ vtr(e,) V^r(e,+t)]Vy,y,+;t] = 
Corr(e,,e,+^^), we can average the estimated autocorrelations of e, over t to estimate Pu{k), 
which are approximately the autocorrelations of log{u,). Relative variance estimates can be 
averaged as before. 

Actually, the usual survey estimates of variances and autocovariances will be estimating 
Var(e, | fi) and Cov(e,,e,+yt | fi). These estimates may also be suitable as estimates of 
Var(e,) and Coy{e,,e,+ic), e.g. if they make sense from a model-based perspective. If not, 
and if Y, is design unbiased so £'(e, | fi) = 0 , then averaging autocovariance estimates over 
time still makes sense. First, if e, is assumed stationary, then 7e(A:) = Cov(e,,e,+t) = 
E[Coy{e,,et+tc \ fi)], so we can average estimates of Cov(e,,c,+;t I Q) to estimate 7e(A:). 
Orif e, is relative covariance stationary, then since £•(«, | fi) = E{e, \ Q)/6, = 0,7„(A:) = 
Cov(u,,«,+Ar) = E[Coy{u,,u,+,c I Q)] = Cov(log(«,),log(«,+*:)) + Op{r}), and 
estimates of Cov(w,,w,+^ | fi) can be averaged to estimate 7„(A:). It is less clear how to justify 
averaging estimates of conditional (on fi) correlations, since £'[Corr(e,,e,+^^ I 0 ) ] 5>i 
Corr(e,,e,+t), though this may be true to a sufficient approximation. In general, approaches 
to estimation of sampling error autocovariance structures bear more investigation. 

Given an estimate of the sampling error covariance structure, and using any relevant 
information about the design of the survey, we can attempt to determine a time series model 
and its parameters to closely reproduce this structure. This is illustrated in the example of 
section 5. 

We now turn to developing a model for the signal, Bf. Since the behavior of most published 
time series Y, is dominated by their signals (otherwise, they would not be published), in 
developing models for signals B, we can draw on experience modeling time series y, without 
allowing for sampling error. Such experience suggests use of nonlinear transformations, 
differencing, and regression mean functions in the model for B, will be important. The loga
rithm is the most common nonlinear transformation used in time series, and taking log( y,) 
lets us model log{B,) through (2.10), with consequences for the sampling error discussed above. 
The following remarks are given in terms of use of (2.1), but apply equally well to use of 
(2.10). While other transformations could be considered, they would not generally yield a 
convenient decomposition of transformed y, in terms of transformed B, and some sampling 
error. Choosing between taking logarithms or not transforming seems sufficient for modeling 
many series. 

Assuming e, has mean zero (implied by design unbiasedness) and does not require 
differencing, B, and Y, will require the same differencing and have the same mean function. 
The mean function can often be modeled with a linear regression function, /i, = XIQ, 
for some vector of regression variables X, and parameters ^. We often use ARIMA 
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(autoregressive-integrated-moving average) models to account for the needed differencing and 
to explain the autocovariance structure of the differenced $,. A convenient approach to 
developing the B, model is to first model Y, ignoring the sampling error, and then use a model 
with the same regression terms and ARIMA order for B,. The parameters of the B, model can 
then be estimated using the time series data for Y, and the previously developed model for e,, 
holding the parameters in the model for e, fixed. Diagnostic checking may suggest modifica
tions to the B, model. The final fitted model can then be used in the signal extraction estima
tion of B,. The model fitting and signal extraction computations are not trivial; Kalman 
filter/smoother algorithms are discussed in Bell and Hillmer (1989). These have been 
implemented in some software recently developed in cooperation with members of the time 
series staff of the Statistical Research Division of the Census Bureau. This software was used 
in the analysis of the next section. 

5. EXAMPLE: U.S. RETAIL TRADE SURVEY - SALES 
OF EATING AND DRINKING PLACES 

As an illustrative example we analyze time series of sales (in millions of dollars) of Eating 
Places and of Drinking Places, which are estimated in the monthly U.S. Retail Trade Survey. 
The Retail Trade Survey has a list panel of large businesses that are selected into the sample 
with certainty and report sales every month, and 3 rotating list panels of smaller businesses 
that are selected into the sample by stratified simple random sampling. There is also a rotating 
panel area sample covering companies not in the list universe. Quarterly, a sample of new firm 
births is introduced, and firm deaths as determined from activity checks are removed from 
the sample. The rotating panels report current month and previous month sales at intervals 
of 3 months for the list sample and 6 or 12 months for the area sample. Horvitz-Thompson 
(HT) estimates of current and previous months' sales are constructed; the resulting time series 
shall be denoted Y,' and y,'_'i. From these composite estimators are constructed as described 
in Wolter (1979). The final composite estimates will make up our time series Y,. (While it 
might be interesting to instead analyze Y,' and y,'_'i directly, these estimates are not saved for 
a long enough period of time for seasonal time series modeling.) Sampling variances are 
estimated using the random group method (Wolter 1985, chapter 2) for the list sample with 
16 random groups, and the collapsed stratum method for the area sample. Further informa
tion on the survey is given in Isaki et al. (1976), Wolter et al. (1976), Wolter (1979), Garrett, 
Detlefsen and Veum (1987), Bell and Wilcox (1990). 

There are several complicating factors in the survey. The sample is redesigned and 
independently redrawn about every five years, with new samples having been introduced in 
September of 1977, and January of 1982 and 1987. This produces a break in the covariance 
structure of e, every five years, which can be handled by the Kalman filter/smoother as 
discussed in Bell and Hillmer (1989). We shall use data from September, 1977 through 
December, 1986, so there is one redrawing of the sample near the middle of our series. When 
a new sample is introduced approximate MVLU estimates are used for the first three months 
before switching to the composite estimates (Wolter 1979). This introduces a transient effect 
into the sampling error autocorrelations that we shall ignore. Finally, the monthly estimates 
are benchmarked to annual totals estimated from an annual survey and from the economic 
census taken every five years. To avoid this complication we use data that are not benchmarked. 
The reader should be aware, however, that for this reason the data used here do not agree with 
published estimates. 
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Table 1 

Sampling Error Correlations for Horvitz-Thompson Estimates 

Lag 

12 16 20 24 

Eating Places 
Averaged' 
From (5.1)2 

Drinking Places 
Averaged' 
From (5.1)2 

Number of Correlations Averaged 

Weights Used in Determining ^'s 

72 
.75 

.70 

.72 

23 

1 

.71 

.69 

.67 

.66 

19 

1 

.79 

.81 

.78 

.80 

15 

1 

.63 

.60 

.60 

.56 

11 

.5 

.65 

.53 

.60 

.50 

7 

0 

.77 

.61 

.61 

.59 

3 

0 

' Raw estimates of Corr(e,',e/) and Corr(e,'li,e/li) were available for all pairs of months from January, 1973 
through March, 1975. Averages of the correlations for the lags shown were taken after applying Fisher's transfor
mation, and the results then transformed back. 

2 Correlations are shown from model (5.1) form = 4 with parameters (̂ * = .604,012 = .723 (Eating Places) and 
0*= .580,012 = .714(DrinkingPlaces).TheseparametervaIuesweredeterminedtominimizetheweightedsum 
of squared deviations of the correlations from model (5.1) and the averaged correlations using the weights shown. 
Lags 20 and 24 were not used (given zero weight) because of the small number of correlation estimates available 
at these lags. 

5.1 Development of Sampling Error Models 

Our first step will be to develop a model for the correlation structure of the sampling errors. 
Let us write Y,' = B, + e,' for the current month ( 0 HT estimate, and y,'_'i = fl,_i + e,'_'i 
for the previous month (/ - I) HT estimate. We shall use the same models for el and e,'_'i. 
Estimates of Corr(e,',e,'_'i) are extremely high - typically .98 or higher. While this is partly 
artificial (due to businesses reporting the same figure for current and previous month sales, 
and possibly due to the way missing values are imputed), in the absence of other information 
it is difficult to distinguish characteristics of e,' from those of e,'_'i. 

Since the three rotating panels in the survey are drawn (approximately) independently 
(Wolter 1979), auto- and cross-correlations for (e,',e,'_'i) should be nonzero only for lags that 
are multiples of 3. Estimates of such lag correlations can be averaged over time assuming 
correlation stationarity. While estimates of lag correlations are not regularly produced for 
the Retail Trade Survey, this was done as part of a special study using micro-data (random 
group totals) from the Retail Trade Survey sample for January, 1973 through March, 1975, 
albeit at a time when the survey had four rotating list panels. Lacking more recent data, we 
"averaged" the correlations at lags 4, 8,12,16,20, and 24 for e,' and e,'_'i. (This was actually 
done after applying Fisher's transformation .5 log( (I -I- r)/{l - r)),to make the distri
bution of the transformed correlations more symmetric, and then transforming the results 
back.) The results are shown in Table I. They show fairly strong positive correlation in the 
sampling errors, and evidence of seasonality from the correlations at lag 12. A possible model 
given such data is 

(1 - <^'"B'")(I - *B'2)e,' = y,„ (5.1) 

where m = 4 for the 4-panel survey, with the same model assumed for e,'_'i with 112,̂ -1 
replacing vi,. (ui, and i;2 ,-1 are white noise with variance a^.) 
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A particularly convenient property of (5.1) is that if the sampling error in each panel would 
follow (5.1) with m = 1 if it were observed every month, then for any number m (that is a 
divisor of 12) of independent panels reporting successively, e,' follows (5.1). This allows us 
to use the 4-panel survey results in Table 1 to estimate ĉ"* and $, and (assuming 0 > 0) con
vert these to estimates of <t>^ and $, the parameters of the model for the current 3-panel survey. 
This was done by finding <̂ '* and $ to minimize the sum of squared deviations of the correla
tions from (5.1) with those of Table 1. (Lags 20 and 24 were dropped, and lag 16 given a weight 
of .5, due to the smaller number of correlation estimates that were averaged together at these 
higher lags.) This resulted in 4>^ = .685, ^ = .723 for Eating Places, and $^ = .664, 
* = .714 for Drinking Places. The resulting correlations form = 4 from (5.1) are shown in 
Table I, and may be compju-ed to the averaged correlations. More formal statistical estima
tion procedures for 0^ and #, as well as a possible test of model fit, could be considered. (We 
may pursue this later if sampling error autocorrelation estimates can be produced from more 
recent micro-data from the 3-panel survey.) 

We make the further assumption that Corr(e,',e,'_',_^) = p Corr{el,e,'_f,) for all /t. To 
justify this, note the population regression of e,'-'i_;t on e,'_;t is pe,'_*̂  -I- €, where if € is not 
uncorrelated with e,', at least it is certainly small since Var (€) = (1 - p^)yar{e,') and p is 
very near I. With this assumption (5.1) leads to the following bivariate model for (e,',e,'_',): 

('-''")('-*^'')[:;j=[::,-.]-[::;,.,]=<::]• <-• 
withp = Corr(ui,,i;2,,_i) = Corr(e,',e,'_'i). Estimates of Corr(e,',e,'_',) are regularly pro
duced and were available for 1982 through 1986. Averaging these (with Fisher's transforma
tion) produced p = .985 for Eating Places and p = .986 for Drinking Places. 

We can now use (5.2) to derive a model for the sampling error of the linear form of the 
composite estimator (Wolter 1979), which is given by 

y , ' " = (I - P)Y; -I- /3(y,'_'i' -l- Y; - y/J,) (preliminary estimator), 
(5.3) 

y,_i = (I - c^)y,'-'i -I- ay,'_'i' (final estimator). 

In the (3-panel) retail trade survey, values of o; = .8, /3 = .75 are used. It is easily seen that 
(5.3) also holds for the sampling errors, i.e. with y replaced by e. We can use the resulting 
relations to derive the following equation for e, in terms of e,' and e,'_'i: 

(1 - .15B)et = .2el' - .75e,'_'i + .8e,'. (5.4) 

Using (5.2) and (5.4) we then get 

(I - .755)(1 - <t>^B^){l - *5'2)e, = .2i;2, - .75u2,,-i -t- .8u„. (5.5) 

The right hand side is a first order moving average process (Box and Jenkins 1976, p. 121) whose 
parameters can be determined given estimates of a^ and p. Thus, (5.5) would yield an ARMA 
model for e,. 

Rather than pursue this further, we shall instead make the rather strong assumption that 
a model of the same form holds for log(M,) in log( y,) = log(9,) -t- log(M,), thus 

(1 - .755)(I - ct,^B^){l - <tfi'2)log(t/,) = (I - r,5)c,. (5.6) 
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Table 2 

Coefficients of Variation (CV)' for Retail Sales Estimates 

Eating Places 

Drinking Places 

Horvitz-Thompson 

CV 

.042 

.088 

Final Composite^ 

CV 

.025 

.052 

Signal Extraction^ 

Low High 

.017 .023 

.032 .038 

'CV = (Relative Variance) . 
^ The values for the final composite estimator are obtained using models (5.7a,b). 
^ The values for signal extraction actually vary over time, being highest at the end of the series and lowest near the 

middle. We show the lowest and highest values, which are attained for both series in January 1982 (low) and December 
1986 (high). The signal extraction variances are not symmetric in time because the sample redraw in January 1982 
is not exactly at the center of the series. 

We do this because estimates of sampling variance for these series are highly dependent on 
the level of the series; estimates of relative variance are much more stable over time. We also 
assume we can use estimates of relative variance and of p in determining t; and a|. Estimates 
y,', y,'_'i, V^(e,') and Var(e,'_'i) were available for 1982 through 1986. The resulting relative 
variance estimates were used in the spirit of maximum likelihood estimation for the lognormal 
distribution - taking the average of the logs of the relative variance estimates, adding one half 
of the sample variance of the logged estimates to this, and exponentiating the results. (Merely 
averaging the relative variance estimates produced similar results.) This was done separately 
for Rel Var( y,') and Rel Var( y,'_'i), and these two results were then averaged, producing a 
common relative variance estimate that is constant over time. The results are shown in Table 2 
under the heading "Horvitz-Thompson". Using these and the p's given earlier, one can solve 
for 7j and â  for the right side of (5.6). The resulting sampling error models are 

(1 - .75fi)(l - .685B^)(1 - .7235'^) log{u,) = (1 -t- .130fi)c, (5.7a) 

(Eating Places) a^ = 1.948 X 10~^ 

(1 - .75fi)(l - .664B^)(1 - .7I4S'2)log(M,) = (I + .I34B)c, (5.7b) 

(Drinking Places) a^ = 9.301 X 10"^ 

One can use the method of McLeod (1975,1977) to solve for Var(log(«,)) in these models, 
which is an estimate of the relative variance of the final composite estimator. The results are 
shown in Table 2. The corresponding coefficients of variation, .025 for Eating Places and .052 
for Drinking Places, are quite close to estimates published in the Census Bureau's Monthly 
Retail Trade Reports that are obtained more directly. 

5.2 Time Series Modeling and Signal Extraction 

Figures Ia,b show plots of the time series of final composite estimates y, for Eating Places 
and for Drinking Places, respectively. To develop models for B, we shall begin by modeling 
the y, series directly. Both series show trends and strong seasonality, with the magnitude 
of the seasonal fluctuations larger the higher the level of the series. This suggests taking 
logarithms and the need for differencing; both are typical for economic time series. Examination 
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Figure l.a Retail Sales of Eating Places - Composite Estimates (not benchmarked) 
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Figure l.b Retail Sales of Drinking Places — Composite Estimates (not benchmarked) 
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of sample autocorrelations for log( y,) and its differences suggested the difference operator 
(1 - B){1 — fi'^) for both series. Retail trade series are known to contain trading-day 
variation, which can be modeled by including seven regression variables in the model: Xy = 
number of Mondays in month t, ..., X^, = number of Sundays in month t. Following Bell 
and Hillmer (1983), a more convenient parameterization is obtained by using instead the vari
ables Ti, = Xu - Jfv, (number of Mondays - number of Sundays), . . . , Tg, = A'g, - X-,, 
(number of Saturdays - number of Sundays), T7, = EiA'„ (length of month/)-To identify 
the ARMA structures, the autocorrelations and partial autocorrelations of the residuals from 
regressions of (1 - B){1 - fi'^) log(y,) on (1 - B)(l - fi'^)r„, / = I, . . . , 7, were 
examined. This suggested an ARIMA (0,l,2)(0,I,I)i2 model for Eating Places, and an ARIMA 
(0,1,3)(0,1,1)12 model for Drinking Places. The resulting estimated models were 

(1 - B){1 - B'^)\log{Y,) - Y Pi^iil = (1 - -255 - •22fi^)(l - -795'^) a, 

(Eating Places) a^ = .000230 (5.8a) 

{l-B){l-B'^)\log{Y,) - Y ^iTi^ = {l-.21B-.15B^-\-.03B'){l- .568'^) a, 

(Drinking Places) â  = .000587. (5.8b) 

For brevity, we omit the estimates of the trading-day parameters. While the lag 2 and lag 3 
moving average parameters in (5.8b) are small, we shall retain them since we shall only use 
(5.8a,b) as starting points for modeling log{6,) for both series. 

Taking models of the form of (5.8a,b) for log{B,) with models (5.7a,b) for log(M,), the 
parameters of the models for log(e,) were estimated. For both series the seasonal moving 
average parameters were estimated to be very near 1(.985 for Eating Places and .992 for 
Drinking Places), implying nearly deterministic seasonality that can be modeled by cancelling 
a (1 - fi'^) from both sides of the B, model and instead including a trend constant and a 
seasonal regression function of the form Ei"7,M„, where My is 1 in January, - 1 in 
December, and 0 otherwise, . . . , Mn, is 1 in November, - I in December, and 0 otherwise 
(Bell 1987). Estimation of the resulting models produced the following: 

(I - fi)riog(fl,) - Y /̂ .̂ -v - Y "^'^"1 = •^''^2 -h (1 - .20fl - .29B^)b, 

(Eating Places) al = .000139 (5.9a) 

{1-B) \log{8,) - Y ^'Tu - Y "^'^"1 = -^^^^ -1- (I - .18B - .098^ - .42B^)b, 
L I i -^ 

(Drinking Places) ô  = .000244. (5.9b) 

We again omit the estimates of the regression parameters. We do not provide standard errors 
for the ARMA parameters; doing so for models of the sort used here is a topic for further 
research, made particularly difficult here by the unrealistic assumption that the sampling error 
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Figure 2.a Eating Places: Composite (solid) and Signal Extraction (dotted) Estimates 
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Figure 2.b Drinking Places: Composite (solid) and Signal Extraction (dotted) Estimates 

Seasonally adjusted sales 

1,000 

900 -

800 -

700 -

600 
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 

Figure 2.c Drinking Places: Alternative Signal Extraction Estimates 
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model is known. Examination of standardized residuals produced by the Kalman filter, and of 
their autocorrelations, suggested no major inadequacies with the fitted models for either series. 

The estimated models, (5.7a,b) with (5.9a,b), were used to produce signal extraction 
estimates of log{B,), which were then exponentiated to produce estimates of B,. The results 
are shown in Figures 2a,b for the series with the estimated seasonal and trading-day effects 
removed. Notice that signal extraction makes only slight differences in the estimates for Eating 
Places.which contained little sampling error Qow relative variance), but it makes a considerable 
difference in the estimates for Drinking Places, which contained much more sampling error 
(higher relative variance). Signal extraction variances for log(S,) were also produced; these are 
relative variances for the estimates of B,. Table 2 shows that, depending on the location in the 
series, signal extraction produces about an 8%-32% improvement in CV over the final com
posite estimates for Eating Places (though the composite estimate CV is small), and about a 
27%-38% improvement in CV for Drinking Places. As noted previously, these results are 
optimistic, since they assume the true component models are those that were estimated. To 
partly address concerns about this, we next examine the sensitivity of the results for Drinking 
Places to variation in the model parameters. 

5.3 Sensitivity Analysis for Drinking Places 

Here we focus on sensitivity of results to variation in the sampling error model, since this 
was determined with less information than the signal model. Our approach is to vary parameters 
of the sampling error model, then reestimate the signal model and redo the signal extraction. 
While it would be preferrable to have more formal statistical measures of the signal extrac
tion error due to model error (which the present state of theory and computer software does 
not allow), this approach should at least help indicate in what respects the signal extraction 
results are sensitive to parameter variation and in what respects they are not. 

Comparing models (5.8b) and (5.9b) gives some indication of the sensitivity of the signal 
model to changes in a .̂ the innovation variance of the sampling error model, since (5.8b) 
corresponds to ffc = Oand (5.9b) to CT^ = 9.3 X 10"^. The most noticeable differences are 
in the estimate of al, which is to be expected, and in the estimate of the seasonal moving 
average parameter, r;i2 say, which was found to be essentially I in obtaining (5.9b). Reestimation 
of the signal model for other values of â  yielded 1̂2 ^ .99 as long as ffc ̂  3.0 x 10"'. In 
light of this, and to simplify presentation of results, we assume »ji2 = 1 and use a signal model 
with seasonal indicator variables as in (5.9b). 

Figure 2.c. shows (seasonally and trading-day adjusted) signal extraction estimates B, corre
sponding to sampling error models with (<^ ,̂*) = (.564,.614) and (.764,.814), and with p = 
.986 and Var(log(M,)) = .00776 (the relative variance of the Horvitz-Thompson estimates) 
held fixed. These cover the extremes of B/ for the sensitivity analysis. The nature of the dif
ferent estimates 6, we have generated seems to roughly correspond to the value of CV56 = 
[Var(log(^56) - log{6ss)] '^\ the signal extraction coefficient of variation achieved at the 
middle of the series. (CV56 is very close to the lowest value, which is achieved at / = 53 - see 
Table 2.) The lower CVjg is, the smoother B, is. CVjg is 2.78%, 3.28%, and 3.70% for (</.̂ *) 
equal to (.564,.6I4), (.664,.7I4), and (.764,.814) respectively. Other estimates B, we generated 
lie closest to the signal extraction estimate in Figure 2.b. or 2.c. with the closest CV56. 

We now consider the sensitivity of CV56 to variations in the sampling error model 
parameters, beginning with p. The only parameter in (5.7b) affected by a change in p is ?;. Table 
3 reports the values of n and corresponding values of p considered, and the resulting CVsg's. 
We see CV56 is somewhat sensitive to changes in p, especially increases: CV56 for p = 1 (3.49) 
is 6% larger than for p = .985 (3.28), the value used for (5.7b). 
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Table 3 
Sensitivity of CVsg' for Drinking Places to Changes in r; (Changes in p) 

V 

p 

CV56 

.00 

.9375 

3.03 

- . 0 5 

.9642 

3.12 

- . 1 0 

.9792 

3.21 

- . 1 5 

.9888 

3.31 

- . 2 0 

.9953 

3.40 

- . 2 5 

1.000 

3.49 

CV5g is the signal extraction coefficient of variation for f = 56 (the middle of the series), expressed as a percentage, 
i.e. the square root of Var(log(e,) - log(e,)) multiplied by 100. 

Table 4 

Sensitivity of CV56 for Drinking Places to Changes in Var(log(«,))' (Changes in al) 

Var(log(«,)) 

CV(HT)2 

al X 10' 

CV56 

.00676 

8.22 

8.16 

3.16 

.00726 

8.52 

8.76 

3.23 

.00776 

8.81 

9.30 

3.28 

.00826 

9.09 

9.97 

3.35 

.00876 

9.36 

10.57 

3.40 

' Var(log(u,)) is the relative variance of the Horvitz-Thompson estimators. 
CV(HT) is the coefficient of variation of the Horvitz-Thompson estimators, expressed as a percentage, i.e. the square 
root of Var(log(«,)) multiplied by 100. 

Table 5 
Sensitivity of Results for Drinking Places to Changes in ((̂ ,̂4") 

* 

* 

.614 

.664 

.714 

.764 

.814 

.614 

.664 

.714 

.764 

.814 

.564 

16.90 
15.03 
13.04 
10.96 
8.79 

.564 

2.78 
2.95 
3.10 
3.24 
3.36 

(i) Values of al 

.614 

14.70 
13.00 
11.23 
9.40 
7.51 

X 10' for 

.664 

12.36 
10.87 
9.30 
7.78 
6.17 

given (<^ ,̂4') 

(ii) Values of CV56 for given (< '̂, 

.614 

2.88 
3.04 
3.19 
3.33 
3.45 

</.' 
.664 

2.99 
3.14 
3.28 
3.42 
3.54 

.714 

9.98 
8.72 
7.44 
6.15 
4.85 

.*) 

.714 

3.12 
3.26 
3.39 
3.51 
3.62 

.764 

7.64 
6.62 
5.60 
4.58 
3.58 

.764 

3.27 
3.38 
3.50 
3.60 
3.70 

We next consider the sensitivity of CVjg to changes in Var(log(«,)). The only sampling 
error model parameter this affects is al. Table 4 reports the values of Var(log (M, ) ) , its square 
root CV(HT), the corresponding al, and the resulting CVjg. We see less sensitivity of CV56 
here than in Table 3. 
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Finally, we examine the sensitivity of CV56 to </>' and $. Holding Var(log(«,)) fixed at 
.00776 and changing (< '̂,*) also changes al. Table 5 reports the grid of values used for (</>',*), 
and resulting values of al and CVsg. Notice al varies more here than in Table 4. We see CV56 
increases substantially as 0^ and * are increased. 

We conclude from this analysis that moderate changes in the sampling error model 
parameters have relatively small impacts on ^,. The largest changes we observed in B, were 
around 2 percent. The same moderate changes in the sampling error model parameters have 
relatively larger impacts on the signal extraction variances, with CVsg's changing by as much 
as 17 percent. This suggests that for this example the greatest concern in not knowing the 
sampling error model parameters may be in the effect on signal extraction variances, and the 
resulting measures of improvement over the composite estimates. However, in all the cases 
considered in the sensitivity analysis the signal extraction estimates showed a significant 
improvement in variance. 

5.4 Conclusions 

The Drinking Places example illustrates the potentijd gains that may be achieved with the 
time series approach to survey estimation. Both examples also illustrate the complex and delicate 
nature of the time series modeling that may be required. We view the results as preliminary 
for several reasons. First,the optimistic nature of the signal extraction variances that do not 
reflect parameter estimation error has been mentioned. Second, we have no clear explanation 
of why the signal extraction estimates lie above or below the composite estimates for long 
stretches of time. (This is obvious in Figure 2.b., and actually the case in Figure 2.a. as well.) 
For the Drinking Places example this behavior was evident throughout the sensitivity analysis, 
and so does not appear to be due to uncertainty in the parameters of the sampling error model. 
We are in the process of exploring whether this may be due to the forms of the sampling error 
model or signal model being incorrect. In fact. Bell and Wilcox (1990) report that the correla
tions of e'l and e,'_'i at lags not multiples of three are not necessarily zero, as was assumed by 
the model. 
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Robust Small Area Estimation Combining Time Series 
and Cross-Sectional Data 

D. PFEFFERMANN and L. BURCK» 

ABSTRACT 

The common approach to small area estimation is to exploit the cross-sectional relationships of the data 
in an attempt to borrow information from one small area to assist in the estimation in others. However, 
in the case of repeated surveys, further gains in efficiency can be secured by modelling the time series 
properties of the data as well. We illustrate the idea by considering regression models with time varying, 
cross-sectionally correlated coefficients. The use of past relationships to estimate current means raises 
the question of how to protect against model breakdowns. We propose a modification which guarantees 
that the model dependent predictors of aggregates of the small area means coincide with the corresponding 
survey estimators and we explore the statistical properties of the modification. The proposed procedure 
is applied to data on home sale prices used for the computation of housing price indexes. 

KEY WORDS: Kalman filter; Linear constraints; State-space models. 

1. INTRODUCTION 

Statistical Bureaus are often confronted with the demand to provide reliable estimators 
for small area means. The problem with the production of such estimators is that the sample 
sizes within those areas are usually too small to allow the use of direct survey estimators. As 
a result, new estimators have been proposed in recent years which combine auxiliary informa
tion (obtained from a census or administrative records) with the survey data obtained from 
all the small areas. The common feature of these estimators is that they can be structured in 
general as a linear combination of two components: a "synthetic estimator" of the formX/^ 
where .^, represents the average auxiliary information at the small area level and ^ is a vector 
of estimated regression coefficients; and a "correction factor" of the form {y/ - Xi$) where 
yi and Xj are the sample means of the target and the auxiliary variables. The correction factors 
are used to account for the variability of the small area means not explained by the auxiliary 
variables. The major difference between the various estimators is in the approach followed 
to determine the weights assigned to the two components in the linear combination, ranging 
from a "design based approach" (Sarndal and Hidiroglou 1989) to "empirical Bayes" (Fay 
and Herriot 1979) and "mixed linear models" (Battese, Harter and Fuller 1989, Pfeffermann 
and Barnard I99I). 

Very few studies are reported in the literature on the possible use of the time series relation
ships of the data to further increase the efficiency of the small area estimators. This is despite 
the fact that many of the small area estimators are derived from repeated surveys such as labour 
force surveys. The econometric literature contains a vast number of studies on the combined 
modelling of time series and cross-sectional data, see e.g. Rosenberg (1973b), Johnson (1977, 
1980), Maddala (1977, Chapter 7), Dielman (1983) and Pfeffermann and Smith (1985) for 
reviews. However, none of these studies is directed to the problem of estimating (predicting) 
small area means from survey data. Fitting time series models to survey data has been considered 

' D. Pfeffermann, Department of Statistics, Hebrew University, Jerusalem 91905. L. Burck, Unit for Statistical 
Analysis, Central Bureau of Statistics, Jerusalem 91130. 



218 Pfeffermann and Burck: Time Series and Cross-Sectional Estimation 

in the context of estimating aggregate population means, see the review papers of Smith (1979) 
and Binder and Hidiroglou (1988) and the more recent articles by Binder and Dick (1989), TUler 
(1989) and Pfeffermarm (1991). But again, these methods are not in routine use mainly because 
the classical survey estimators of the aggregate means are often almost as efficient when the 
models hold and more robust when the models fail to hold. 

The situation is clearly different when dealing with a small area estimation problem; it seems 
to us that for this kind of problem, the use of time series models can be of great advantage. 
Although the exact nature of the model to be used in a particular application is obviously 'data 
dependent', the class of models we consider in the next section is broad enough to apply to 
many, if not most of the small area estimation problems arising in practice. These models have 
the further advantage that their estimation is relatively simple. Estimation issues are discussed 
in Section 3. 

The use of a model always raises the question of how to protect against possible model 
failures and this question becomes even more sensitive when considering the use of a model 
for the production of official statistics. In Section 4 we consider this issue and propose a 
modification to the model dependent predictors which guarantees that for aggregates of the 
small area means for which the direct survey estimators can be trusted, the modified model 
predictors coincide with the survey estimators. The statistical properties of the modified 
predictors are explored. We conclude the article in Section 5 with empirical results which 
illustrate the performance of the model with and without the proposed modification. The data 
used for the illustrations are the sale prices of homes in the city of Jerusalem during the months 
of September 1985 through November 1989. These data are used routinely by the Central 
Bureau of Statistics in Israel for the computation of housing price indexes. 

2. REGRESSION WTTH CROSS-SECTIONALLY AND 
TIME VARYING COEFFICIENTS 

2.1 A General Class of Models 

In what follows we denote by Yfk the /i,^ x I vector of observations on a target variable 
Y, pertaining to an area k at time /, A: = I, . . . , A", / = 1, 2 We assume for convenience 
that n,k > 1 but as becomes evident later on, the model permits that some of the areas not 
be observed at certain times. Let Xff^define the corresponding /j,;t x {p •¥ I) design matrix 
of the auxiliary variables with a vector of ones as its first column. In many applications, 
the same row vector jf,̂  of auxiliary values applies to all the y values of a given time so that 
^tk = ln,icXtk where 1„̂ ^ is a column vector of ones of length n,ic. This is the case when the only 
available data are the small area survey estimators. Confidentiality as well as processing costs 
often preclude the use of micro data on individual survey respondents. The theory described 
in this article is not restricted to the availability of the micro data (see the example in Section 2.2) 
but data availability has an obvious effect on model specifications and precision of estimation. 

The regression model holding in area k at time t is defined as 

Y,k = Xfk^tk + i,k\ Ek,k) = 0, E{e,„e;„) = aUn,„ (2.1) 

where g,̂  = (/3,to, /3,*i 0,kp). 

We define the (superpopulation) mean of the target variable values in area k at time / to be 

Q,i, = E{M,„ I Q,„) =S,kQ,k (2.2) 
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where 

"' , = 1 '* ( = 1 

with / = 1, . . . , N,ic indexing the population units. Obviously, when x,̂ , = x,'fc, then ^tk = r̂*-

Let §,fc define an estimator for §,fi. Then 0,;̂  = ^,k§,k and 

. r- ",k f^lk -1 J / "r* \ 

^r*L,ti ,=;t;+i -I ^'*v,ti / 

implying that in the usual case of small sampling rates within the areas, 0,* can also be con
sidered as an estimator of the finite population mean Mf/c. For this reason we no longer 
distinguish between the finite and superpopulation means. 

The notable feature of (2.1) is that the coefficients g„t are allowed to vary both cross-
sectionally and over time. The following equations specify the variation of the coefficients over 
time: 

K:]=<:r]4o]-^- " 
where we use the notation /Ŝ y, y = 0, 1, . . . , p, to define fixed coefficients which we interpret 
below, and 7} to define fixed (2 X 2) matrices and where the residuals (T;,;^) satisfy 

E{r,,„j) = 0, E{r,,„jr,,„t) = 5yf, £('?/*,';/-</,«) = 0 for d > 0. (2.4) 

The implication of (2.4) is that residuals of different coefficients pertaining to the same time 
t are allowed to be correlated but the serial and cross serial correlations are assumed to be zero. 

Next, we illustrate the use of (2.3) by considering some simple cases: 

(a) Tj = [o {] implies that ,̂;y = /Ĵ y -I- ri,tcj so that /3̂ y represents, in this case, a common 
mean. This is the well known Random Coefficient Regression Model (Swamy 1971) which 
is often used in econometric applications. Obviously, by postulating, var(7j,<y) = 0, the 
model reduces to the case of a fixed regression coefficient over time. 

(b) Tj = [oo] implies that/3,x;y = 0,-i,kj + »/,ty which is the familiar random walk model, see 
e.g. Cooley and Prescott (1976) and LaMotte and McWhorter (1977) for application of 
this model in econometric studies. In this case the coefficient 0f^ is redundant and should 
be omitted so that 7} = I. 

(c) Tj = [o'^f] implies the first order autoregressive relationship 03,;y -Pig) = P(.0,-i,kj - Pkj) 
+ V,kj considered by Rosenberg (1973a). 

(d) Tj = [o }] implies that/3,;y = ^,-i,kj + &kj + »?,it/which defines a local approximation to 
a linear trend (Kitagawa and Gersch 1984). The coefficient jŜy represents, in this case, a 
fixed slope. 
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It should be emphasized that different matrices 7} can be used for different coefficients ^tkj-
In fact, by defining Q!,:t = (/3rto. &ko, 0,ki> Pki P,kp, 0kp); f = diag [ To, Ti, ..., Tp], 
a block diagonal matrbc with 7} as they-th block; G = /p+1 ® [o] where Ip+1 is the identity 
matrix of order j? -I- I and ® defines the Kronecker product and j , ^ = (r;,̂ ô. V,kh . . . . Vtkp)> 
the combined model holding for the coefficients §,t^ can be written as 

Ql,k = fqt-i^t, + Grjtfc; E{rj„,) = Q, E{yj,i,rj;_a,,,) = AjA (2.5) 

where A^ = 1 for rf = 0 and A^ = 0 otherwise, and A = [6,y] is defined by the variances 
and covariances dy (equation 2.4). 

The model defined by (2.5) specifies the variation of the regression coefficients of a specific 
area over time. The common approach to account for cross-sectional relationships between 
small area means is to allow for random small area effects which are time invariant { M̂ )̂ . The 
general model defined by (2.1) and (2.3) includes this case by writing r,;t = 1„^^M,̂  -I- X,tc§,ic 
+ t,k = ^ikSik + i,ky say, and specifying u,ic = i/,_i,t -I- ri,i, with Ugf^ = 0, var(r;i^) = a^ 
and var(7;,̂ )̂ = 0 for / > 1 (compare with case (b) above). By assuming in addition the 
autoregressive relationship defined by case (c) for the intercept variable and fbting the other 
regression coefficients (case (a) with zero residual variances), the resulting model is similar to 
the model considered by Choudhry and Rao (1989) except that in their general formulation 
of the model the observation residuals of equation (2.1) are allowed to be serially correlated. 
Notice that equation (2.1) now contains two random "intercept terms" but the model is 
nonetheless identifiable. Choudhry and Rao assume that the only available data are the survey 
estimators so that the estimation of the serial correlations needs to be carried out externally, 
using the micro observations. Alternatively, a model accounting for the serial correlations can 
be postulated. Choudhry and Rao assume an AR(I) model in their study. 

A more general way to account for the cross-sectional relationships between the small area 
means is to allow for non zero correlations between the residual terms ri,t^j and ri,„j of the 
models specifying the time series variation of the regression coefficients 0tkj and p,„j operating 
in areas k and m (equation 2.4). Often it is reasonable to assume that the correlations 
decay as the distance between the areas increases. This can be formulated as, £'(»;,yy, ri,„j) = 
^jjPjfj(l^yn^)y k 7^ m, where fj{k,m) is a monotonic decreasing function of the distances 
D{k,m). The case of geometrically decaying correlations is obtained by defining fj{k,m) = 
p\k-m\-i_ The case of fixed correlations is obtained by specifying fj{k,m) = 1 and in what 
follows we consider this case only. Allowing for fixed cross-sectional correlations for all the 
regression coefficients can be formulated as 

EiMUlm) = D{A)0, k ^ m (2.6) 

where £>( A) is the diagonal matrbc with the variances djj on the main diagonal and 0 is another 
diagonal matrix composed of the correlations pj. 

Before concluding this section we present the model defined by (2.1), (2.5) and (2.6) in a 
state-space form. Presenting the model in this form has important computational advantages. 

Let YI = (y,'i Yi'x) represent the vector of observations of length n, = Y,k n,k for all 
the areas at time t and let e,' = (e,'i, . . . , e,jf) represent the corresponding regression residuals. 
Define Z,̂ ^ = [ l„,*,Q„,;t,x,̂ i,0„,;t. .. • >x„cp> Qn,k] where 0„,fi is a vector of zeroes of length n,ic and 
x,f^ is the vector of values for they-th auxiliary variable, j = 1, . . . . p. Let Z, be the block diag
onal matrix composed of the matrices Z,^. The matrix Z, is of order/i, X [A" X 2 X (p-l- 1)]. 
Define also g,' = (g/,, . . . , g,^), g,' = (g/i, . . . , T;,^). I, = Diag [a^Un, . . . . a^nix]. 
T = Ix(S> f, and G = Ifc® G. 
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Using this notation, the model defined by (2.1), (2.5) and (2.6) can be written compactly 
as 

y, = Zfqt -I- e,; £"(£,) = 0, £"(§,€,') = E, (2.7) 

g, = T-g,,, + Gt;,; £(g,) = Q,£:(r,,3,') = A, (2.8) 

where A = [A«] ,k,i= 1 K with A« = A when A: = f and A« = D(A)0 when 
k jt i. The matrices Afc,are (/?-(- 1) x (p -I- I). 

The model defined by (2.7) and (2.8) conforms to the classical state-space formulation, 
see, e.g. Anderson and Moore (1979) and Harvey (1984). By this formulation, (2.7) is the 
observation equation and (2.8) is the state equation with g, defining the state vector. The 
apparent advantage of restructuring the model in a state space form is that the vectors g,, 
and hence the population means 0,^, as well as the estimation error variances can be esti
mated conveniently by means of the Kalman filter. We discuss the use of the filter in 
sections 3 and 4. 

2.2 Explicit Estimators of the Small Area Means 

In order to illustrate how past and neighbouring data are used under the model to 
"strengthen" the small area estimators we consider the case where the same vector x,f^ of 
auxiliary values applies to all the units of a given area at a given time. In this case the obser
vation equation can be formulated in terms of the sample means, i.e. 

Y,k = xlk^tk + i,k\ E{e,k) = 0, E{e]„) = aljn,,,, k = 1 K. (2.9) 

Suppose that the regression coefficients follow a random walk (case (b) of equation 2.3) 
so that for area k 

Ptkj = &i-i.kj + mkj\ E{ri„^) = 0, E{ri„,jri„ci) = ^jtJy ^ = 1 P (2.10) 

and for areas k ^ m, 

E{VikjVimj) = ^jjPj'y E{r)„,jri,„i) = 0, j jt i. (2.11) 

The random walk model implies that the coefficients drift slowly away from their initial 
value with no inherent tendency to return to a mean value. Obviously, for residuals T;,;̂  such 
that E{-i}]t^j) = 0 the corresponding regression coefficients are fbced over time. Notice also 
that since ,̂;t = ,̂_i,yt + g,t, the predictor of g,;̂  at time {t - I) is the same as the predictor 

Q,-l,kO^Q,-l,k-
Using the Kalman filter equations presented in section 3, it is shown in the Appendix that 

the estimator 0,;t of the small area mean 0,;̂  (equation 2.2) can be structured in this case in 
the following form 

( °k\ - *̂* A 
1 -,)(^tk- Xl,cS,-i,k) + : > j ykm{Y,m - x;„8,-i,r„) 

n,kVk/ n,kVi „^i (2.12) 
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where the coefficients [yicm) are the partial regression coefficients in the regression of 
e,k = {Y,ic - f,i:|,-i,t) against the prediction errors [e,„ = (F,„ - x;„Si-i,m)} obtained 
in the other areas and v̂  is the residual (unexplained) variance in the regression. 

The estimator 0,;̂  is composed of three components: the "synthetic" estimator, x,'ic §,-i,k, 
where ^,_i,;t is the optimal predictor of Q,ic based on all the observations up to and including 
timet - 1, the "correction factor" {7,^ - x,^^,_i,;t) based on the prediction error in area 
k, and an "adjustment factor" based on the prediction errors observed for the other areas. 
The first two components correspond to the components of the classical small area estimators 
discussed in the introduction. Notice that the smaller the sample size n,*, the smaller is the 
weight assigned to the current sample mean y,̂ ^ in the estimation of 0,̂ ^ and the larger is the 
weight assigned to the time series predictor xli^Qt-uk- The third component in the right hand 
side of (2.12) represents the information borrowed from neighbouring areas. The weight 
assigned to this component depends on the magnitude of the correlations pj between the cor
responding error terms [riikj] in the models holding for the regression coefficients (equation 
2.11). Obviously, when the regressions in the various areas are independent so that pj = 0 for 
ally and hence y/cm = 0 for all m, the third component vanishes and the predictor 0,̂ ^ reduces 
to a weighted average of the current mean Y,f^ and the time series predictor Xt'fc§t-i,k-

3. MODEL ESTIMATION AND INITIALIZATION 
USING THE KALMAN FILTER 

3.1 Estimation of the Regression Coefficients by Means of the Kalman Filter 

In this section we present the Kalman filter equations for the updating and smoothing 
of the state vectors g, defined by the equations (2.7) and (2.8) (the area regression coeffi
cients in our case). We assume that the V-C matrices £, and A are known. Estimation of 
these matrices is considered in section 3.2. The theory of the Kalman filter is developed in 
numerous publications (see e.g. Anderson and Moore 1979 and Meinhold and Singpurwalla 
1983) and so we restrict the discussion to aspects most germane to the small area estimation 
problem. 

Let g,_ 1 be the best linear unbiased predictor (blup) of g,_ j based on all the data observed 
up to time {t - I) . Since g,_i is blup for g,_i, g,|,_i = Tg,, , is the blup of g, at time 
(/ - 1). Furthermore, if P,_i = E{q,_i - g,_i) (g,_i - g,_i) 'is the V-C matrix of the 
prediction errors at time {t - 1), P,|,_, = rP,_,7" -\- GAG' is the V-C matrbc of the 
prediction errors (g,|,_i -a,). (Follows straightforwardly from 2.8). 

When a new vector of observations [Yt,Zt] becomes available, the predictor of g, and the 
V-C matrix P,_i are updated according to the formulae 

g, = g,|,_i + P,|,_iZ,'F,-i(y, - y,|,_i) 
(3.1) 

p, = {I -Pt\,-,ziFr'z,)p, ,\,-l 

where y,|,_i = Z,g,|,_, is the blup of Y, at time {t - I) so that e, = {Y, - f,|,_i) is the 
vector of innovations with V-C matrbc F, = (Z,/',|,_iZ,' -I- £,) . 

The new data observed at time t can be used also for the updating (smoothing) of past 
estimators of the state vectors and hence for the updating of past estimators of the small area 
means. Denoting by ̂  * the most recent month with observations, the smoothing is carried out 
using the equations 
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a,],' = g, + P,7"P,+'i|,(g,+ i|,. - 7g,) 

Pt\i' = P, + P,'J^'Pr+i\tiP,+ i\f ~ Pi+i\t)P,+ i\,'PPi'> t = 2, 3, ..., t* 

(3.2) 

whereP,|,. is the V-C matrix of the prediction errors (g,|,. — g,). Notice that g,.|,. = g,. and 
p,.|,. = Pf. define the starting values for the smoothing equations. 

Estimators of the small area means or aggregates of the means are obtained from the filtered 
(or smoothed) estimators of g, in a straightforward manner using the relationship 0,;̂  = 
StkSik = ZtkQltk = Ztk^tiA, where Z;,, = (1,0, X,f,i, 0, . . . , X,kp, 0) and Aft, is the appro
priate indicator matrix. Hence, if Qf = Ef=i ŵ Ô,*, then 0,"" = Y,^=\Wf^Zlf^A,i^qt = gl„q,, 
say. For given V-C matrices E, and A, the MSE's of the estimation errors are obtained as 

E(e,k - Q,k)^ = Z;„A,„P,A;aff, and E{erk - 0,1) = g;„P,g,„. (3.3) 

Notice that the MSE's in (3.3) are with respect to the joint distribution of the observations 
[Yffi] and the vectors of coefficients {g,fc] so that they represent average MSE's over the 
possible realizations of the area means. ' 

3.2 Estimation of the V-C Matrices and Initialization of the Filter 

The actual application of the Kalman filter requires the estimation of the unknown elements 
of the matrices E, and A and the initialization of the filter, that is, the estimation of the vector 
go and the corresponding V-C matrix Pg of the estimation errors. In this section we describe 
simple estimation procedures which can be used for these purposes. 

Assuming a normal distribution for the residual terms e, and ij, of equations (2.7) and (2.8), 
the log likelihood function of the vectors Y„+i y,., conditional on the first m vectors 
Yi, . . . . Ym> can be formulated as 

1 ' 
L(X) = constant - - Y ^^°^ 1 ^ / 1 + ?,'f,~^e,) (3.4) 

,=m + l 

where X contains the unknown model variances and covariances written in a vector form. The 
scalar m defines the number of time periods needed to construct initial values for the Kalman 
filter. (For the random walk model considered in section 2.2, m = 1, provided that sufficient 
data are available in every area to allow the computation of the OLS estimators of the vectors of 
coefficients). The expression in (3.4) follows from the prediction error decomposition, see 
Schweppe (1965) and Harvey (1981) for details. For given matrices E, and A, the innovations 
e, and the V-C matrices F, can be obtained by application of the Kalman filter equations (3.1). 

The computation of the likelihood function requires the initialization of the Kalman filter 
which can be carried out most conveniently by application of the approach proposed by Harvey 
and Phillips (1979). By this approach, the nonstationary components of the state vector are 
initialized with very large error variances which corresponds to postulating a noninformative 
prior distribution so that the corresponding state estimates can conveniently be taken as zeroes. 
(For the random walk model, initializing with a noninformative prior yields the OLS estimators 
after one time period, see Meinhold and Singpurwalla 1983, for a Bayesian formulation of 
the Kalman filter). The stationary components of the state vector are initialized by the cor
responding unconditional means and variances which may be part of the unknown parameters 
defining the arguments of the likelihood function. 
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Maximization of the likelihood function (3.4) can be implemented using the method of 
scoring with a variable step length. In particular, let X(o) define initial estimates of the un
known elements in X. Then the method of scoring consists of solving iteratively the set of 
equations 

hi) = hi-i) + mnhi-n'i) "'«[^(,-i)] (3.5) 

where X(,_i) is the estimator of X as obtained in the (/ - I)-th iteration, /[X(,_i)] is the 
information matrix evaluated at X,_i and g[X(,_i)] is the gradient of the log likelihood 
evaluated at X,_i. The coefficient r, is a variable step length introduced to guarantee that 
L [X(,) ] > Z. [ X(,_ 1) ] in every iteration. The value of r, can be determined by a grid search 
procedure in the region [0,1 ] . The formulae for the k-th element of the gradient vector and 
the ki-th element of the information matrix are given in Watson and Engle (1983). 

Having estimated the model variances and covariances, these estimates can be substituted 
for the true parameters in the Kalman filter equations (3.1) - (3.2) to yield the estimators of 
the regression coefficients and the V-C matrices and hence the small area estimators and their 
variances (see equation 3.3). Notice however that the estimated V-C matrices ignore the 
variability induced by the need to estimate the unknown elements contained in X. Ansley and 
Kohn (1986) propose correction factors of order 1 // * to account for this extra variation in state 
space modelling using first order Taylor approximations. Hamilton (1986) proposes a Monte 
Carlo procedure which consists of sampling from a multivariate normal distribution with mean 
given by the maximum likelihood estimator of the vector X and V-C matrix defined by the 
inverse of the information matrix, and estimating the state vectors for each random realization 
of the parameter values. This procedure is more flexible in terms of the assumptions involved 
and provides further insight into the sensitivity of the Kalman filter estimators to errors in the 
variance and covariance estimators. However, it is computationally more intensive. 

4. MODIFICATIONS TO PROTECT AGAINST 
MODEL BREAKDOWNS 

4.1 Description of the Problem and Proposed Modifications 

The use of a model for small area estimation seems inevitable in view of the small sample 
sizes within the areas. However it raises the question of how to protect against model break
downs. Testing the model every time that new data becomes available is often not practical, 
requiring instead the development of a "built-in mechanism" to ensure the robustness of the 
estimators when the model fails to hold. 

One possibility is to modify the regression estimators derived in the various time periods 
so that they satisfy certain linear constraints obtained by equating aggregate means of the raw 
data with their expected fitted values under the model. More precisely, we propose to augment 
the model equation (2.1) by linear constraints of the form 

Y ^^'^ Y '̂« = E ^^^ E '̂*'-̂ "t ^=1.2 , . ..,L{t), t=l, ...,t* (4.1) 
k i k i 

where the coefficients W^ are fixed, standardized weights such that Hkntk^t^ = I. An 
example for such a constraint would be the equation 
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A: I K K I K 

Y ^tkMj Y^"^=ll N„{x;kS,k) Y ^'* ("̂ -̂^ 
* = I ' k=l k=l I k=l 

where Muc is the direct, survey estimator in area A:. For X,fc = X,̂ ,̂ the equation (4.2) 
guarantees that the model dependent predictor of the aggregate population mean coincides 
with the corresponding survey estimator. Such a constraint can be justified by arguing that 
the survey estimators, although not reliable enough for estimating the small area means due 
to the small sample sizes, can be trusted when being combined for estimating the aggregate 
mean. Notice that "adding up" constraints are ordinarily imposed on statistical agencies 
anyway. Battese, Harter and Fuller (1988) and Pfeffermann and Barnard (I99I) use a similar 
constraint for analysing cross-sectional surveys. Often, the small areas can be grouped into 
broader groups, with sufficient data in each of the groups to justify the use of the survey 
estimators for estimating the corresponding group means. In this case, one can impose several 
constraints of the form (4.2) where the summation is now over the areas belonging to the same 
group. Notice in this respect that in view of the correlations between the regression coefficients 
operating in the various areas, a constraint applied to a sub-set of the areas will modify the 
regression estimates in all the areas. We illustrate this property in the empirical study. 

It is important to emphasize that the set of constraints in (4.1) does not represent external 
information about possible values of the regression coefficients. Rather, it serves as a "control 
system" to guarantee that the model estimators adjust themselves more rapidly to possible 
changes in the behavior of the regression coefficients. As a result, the variances of the modified 
regression estimators are slightly larger than the variances of the optimal estimators under the 
model. Obviously, when no such changes occur and the variances of the aggregate means are 
sufficiently small, one would expect the constraints to be satisfied approximately even without 
imposing them explicitly. As mentioned above, it is possible to incorporate several separate 
constraints in each time period but it is imperative that the variances of the corresponding 
aggregate means will be small enough to ensure that the modifications are indeed needed and 
do not interfere with the random fluctuation of the raw data. 

4.2 Inference Incorporating the Linear Constraints 

In Section 4.1 we proposed to amend the model equations (2.1) by imposing the set of 
constraints (4.1) thereby ensuring the robustness of the regression estimators against sudden 
drifts in the values of the coefficients. 

Computationally, this can be implemented most conveniently by augmenting the vectors 
y, of equation (2.7) by the scalars E* W,^ E, y,it,, augmenting the matrices Z, by the corre
sponding row vectors (W^ ln,iZ,i WJil IIUKZIK) and setting the respective variances of 
the residual terms to zero. The augmented set of equations, together with (2.8), form a pseudo 
state-space model which could be estimated using the Kalman filter equations (3.1). Notice 
that the pseudo V-C matrbc E/''* of the augmented residual vector is no longer positive 
definite (the last L{t) rows and columns of E/^' consist of zeroes) but this does not cause 
computational difficulties. 

The drawback of applying the Kalman filter to the pseudo model is that the V-C matrices 
of the regression estimators fail to account for the actual variability of the aggregate means 
appearing in the left hand side of (4.1). In order to deal with this problem, we propose to amend 
the formula for the updating of the V-C matrix P, (equation 3.1) so that the variances and 
covariances of the aggregate means will be taken into account. 
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Let y/'^' and Z/'̂ ^ represent the augmented y vector and Z matrix at time t and denote by 
E/^' tiie actual V-C matrbc of the residual terms [ y/"^' - Z^'^^q,]. The matrbc E/"^' is of 
order [n, -\- L{t)] with E, in the first n, rows and columns and the variances and covariances 
of the means E* Wl)P E, y,*, among themselves and with the vector Y, in the remaining rows 
and columns. Denoting by aj^l the robust predictor of g,_ i as obtained at time (/ — 1) using 
the pseudo model and by P,<f/ the actual V-C matrbc of the errors (g/r?| - g,_i), the 
modified state estimator at time t is obtained as 

g/^) = Tq^^l -I- P,<|1fl,Z,(^)'(F,<^))-'[y/^) - ZZ-^Tg/:^!] (4.3) 

where P,ffi, = {TP}:1\T' -I- GAG') andF,<^> = Z/^'P/l-^liZ/^)' -1- E/''^ (Compare with 
3.1). It is shown in the Appendix that the actual V-C matrbc P/'^ * of the errors (g/"^' - g,) 
satisfies the recursive equation 

p / ^ ' = [/ - Ar,(^)z/-^)]p,(|fl, -h Ar,<̂ )[E,<̂ > - E/''>]A:/^), (4.4) 

where K}^^ = P/i'?!, Z/ '" ' (F/^*)"' is the pseudo Kalman gain. The first expression on the 
right hand side of (4.4) corresponds to the usual updating formula of the Kalman filter (compare 
with 3.1)). The second expression is a correction factor which accounts for the actual variances 
and covariances of the means E* W}^* E, Ytf^, not taken into account in the first expression. 

The amended Kalman filter defined by the equations (4.3) and (4.4) produces robust predictors 
q}^' instead of the optimal, model dependent predictors, g, but otherwise uses the correct V-C 
matrices under the model. Thus, this filter can be used for the routine estimation of the vectors 
of coefficients and hence for the estimation of the small area means, and when the model holds 
it will give similar results to those obtained under the optimal filter. In periods where the model 
fails to hold, the updating formula (4.4) could be incorrect (depending on the particular model 
failures) but the predictors g/'̂ ^ will nonetheless satisfy the linear constraints (4.1). The 
smoothing equations (3.2) can likewise be modified to satisfy the linear constraints. 

5. EMPIRICAL RESULTS 

5.1 Description of the Data and Model Fitted 

In order to illustrate the important features of the class of models defined in Section 2, we 
fitted such a model to home sale prices in Jerusalem. The sale prices are recorded on a monthly 
basis and are routinely used by the Central Bureau of Statistics in Israel for the computation 
of monthly housing price indexes (HPI) adjusted for changes in quality. The HPI is computed 
separately for each city or group of cities and for each house size defined by the number of 
rooms, ranging from 1 to 5. The number of transactions carried out each month is very small 
in many of these cells and for I room apartments it occasionally happens that there are no 
transactions. The mean and standard deviation (S.D.) of the monthly number of transactions 
carried out during the period July 1987 - November 1989 are listed below. 

Size 

Mean 

S.D. 

1 

2.7 

2.6 

2 

29.0 

12.9 

3 

101.9 

50.4 

4 

39.7 

18.8 

5 

5.6 

3.5 



Survey Methodology, December 1990 227 

The need to adjust for changes in quality results from the fact that the transactions performed 
are not under control, giving rise to large differences in quality from one month to the other 
particularly in the small cells. The following quality measure variables (QMV) are recorded 
for every transaction: ^<" - the apartment floor area, X^ '̂ - the age of the apartment, A''^\ 
A"̂ *' - dummy variables defining districts within the city. 

The problems involved in the computation of the HPI and the method used in Israel are 
discussed at length in a recent article by Pfeffermann, Burck and Ben-Tuvia (1989). The 
following model was proposed by the authors as an alternative to the model in current use. 
The triple index "tki" defines the i-th transaction of size k in month t with Y,fci standing for 
the log of the sale price and Xj^j = log(^,^'),y = 1,2. 

Y,ki = Ptko + P,kiX,^\^ + P,k2X,iV + P,kiX,iV + Piki^lkV + ^,ki (5.1) 

PlkO = Pt-l,kO + ^kO + VlkO 

&,kj = 0t-l,kj + Vtkjy y = 1, . . ., 4, 
(5.2) 

with the error terms €,*, and ij,;y satisfying the assumptions (2.1), (2.4) and (2.5). Notice that 
the model assumed for the intercept term is the local approximation to a linear trend defined 
under case (d) of Section (2.1). The model assumed for the other coefficients is the random 
walk model defined under case (b). 

The regression defined by (5.1) forms the basis for the construction of an HPI 
adjusted for changes in quality. By fbcing the values of the QMV's at their average population 
values which are constant over time, (the values of these variables are adjusted approximately 
every five years), average sale prices can be computed using (5.1) and these averages are 
comparable between months since they refer to homes of similar qualities. 

Pfeffermarm, Burck and Ben-Tuvia discuss the considerations in selecting the model defined 
by (5.2) for the regression coefficients. They show empirical results \yhich validate the fitness 
of the model. However, the results of that study were obtained by fitting the model to each 
cell separately, that is, without accounting for the cross-sectional relationships of the regres
sion coefficients. This aspect of the model is explored in the present study. Another major 
purpose of the empirical study is to illustrate the performance of the modifications proposed 
in Section 4 to protect against model breakdowns. 

5.2 Estimation of the Model 

The model defined by (5.1) and (5.2) can be put in a state-space form similar to (2.7) and (2.8). 
In fact, the vectors g, and the matrices Z,, Tand G assume, in this case, simple structures, since 
fory = I, . . . , 4, 0ty = 0 (see case (b) of Section 2.1). Thus, g,i = (/3,«), /3«). 0,ki> . . . . ^/w). 
Z,k = [ln,k,Qn,k,^,i^K •. ..-J'rit"], f = [ei,ei -t- Cj.e^, .. ..gg], a 6 X 6 matrix with e, 
having a one in positiony and zeroes elsewhere and G = [§1,̂ 3, .. ..eg] whichis6 X 5. The 
matrix A is defined as in (2.5). The vector g, and the matrices Z,,T,G and A are obtained 
from the vectors {g,̂ )̂ and the matrices {Z,^), f, G and A in the same way as in (2.7) and 
(2.8). 

Having set the model in a state-space form we next attempted to estimate the unknown 
variances and covariances using the method of scoring algorithm described in Section 3.2. 
As it turned out, however, the computer time needed for convergence was way beyond the 
capacity of the IBM 1481 mainframe used for this study. Notice that the number of unknown 
parameters of the combined state-space model is dim(X) = 25 whereas the dimension of the 

file:///yhich
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state vectors and hence the dimension of the corresponding V-C matrices is dim(g,) = 30. The 
total number of observations per month ranges from 55 to 353. The computer program written 
for this study uses numerical derivatives so that each iteration of the method of scoring requires 
a separate sweep through all the data with each sweep involving [dim(X) -I- I] computations 
of the state vector g, and the V-C matrix P, (equation 3.1) at each point in time. These 
computations are needed in order to evaluate the log likelihood functions and hence the cor
responding derivatives. It is clear therefore that the computational costs increase with the length 
of the series, the number of observations, the size of the state vector and the number of unknown 
parameters. 

In order to deal with this problem we estimated the variance al (equation 2.1) and the 
matrix A (equation 2.5) separately for each of the five apartment sizes using the time series 
of observations corresponding to each size and then estimated the correlations pj (equation 
2.6) by a crude, grid search procedure. We found that setting p, = Vi for everyy gives satisfac
tory results both in terms of the behaviour of the innovations (the one step ahead prediction 
errors) and in terms of the smoothness of the regression coefficients corresponding to apart
ments of size one and five where the monthly sample sizes are very small. Notice that by 
estimating the variances and covariances defining the time series relationships of the regression 
coefficients separately for each size, one is more flexible in terms of the model assumptions 
although there is some loss of efficiency if the variances and covariances are indeed the same 
across the different sizes. 

5.3 Results 

Pfeffermann, Burck and Ben-Tuvia (1989) illustrate the adequacy of the time series models 
fitted to the various apartment sizes. As mentioned earlier, our purpose in this study is to 
compare the results obtained with and without the accounting for the cross-sectional correla
tions and to illustrate the performance of the modifications (4.1) in protecting against model 
breakdowns. 

In order to sharpen the comparisons as much as possible, we deliberately inflated the 
y-values by 5 percent in each of the following four months: October 1987, November 1988, 
January 1989 and May 1989. Thus all the y-values of all the apartment sizes corresponding 
to the months October 1987 - October 1988 were inflated by 5 percent, the y-values correspon
ding to November 1988 - December 1988 were inflated by 10.25 percent (5 percent on top of 
the previous 5 percent) and so forth. These kinds of model breakdowns (although obviously 
not in such magnitudes) may result from intentional devaluations of the currency and are of 
main concern when modeling sale prices. See Pfeffermann, Burck and Ben-Tuvia for further 
discussion. Similar model breakdowns may occur, for example, with series of unemployment 
rates in periods of abrupt economic recessions. 

Table I shows the average mean squared errors (AMSE) of the model residuals i,̂ ,̂ = 
(Yffci - $,ko - I.j=i Xjij $,f,j) and the model innovations %,- = [Y,/,, - (/3,_i,«, + /3«)) -
E/= 1 Xj^l 0,_ ikj ] (see equations 5.1 and 5.2), separately for each of the five apartment sizes. 
The AMSE's were computed as AMSE;t(e) = l/N Tfii (l//j, E,"ii €?<:,); AMSEt(e) = 
I /A^ E ,^ 1 (1 /«, E "I, ejki) where / = I, . . . , N indexes the months of July 1987 - November 
1989. We distinguish between four different estimators of the regression coefficients as defined 
by whether the model accounts for the cross-sectional correlations {pj s V2), {pj = 0) and 
by whether or not the estimators are modified to protect against the model breakdowns 
(abbreviated as "Rob. Inc." and "No Rob." in the table). The modifications were carried 
out by augmenting the observation equation of each month by three linear constraints of the 
form 4.2. These constraints forced the aggregate means of the fitted values in each of the three 
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Table 1 
Average Mean Squared Errors of Residuals and Innovations With and Without 

the Accounting for Cross-sectional Correlations and the Inclusion of the 
Robustness Modifications, by Size 

Apt. 
Size 

I 
2 
3 
4 
5 

Mean Squared Errors of Innovations 

P = 

Rob. Inc. 

.141 

.070 

.065 

.067 

.067 

'/2 

No Rob. 

.134 

.090 

.090 

.123 

.114 

P = 

Rob. Inc. 

.176 

.084 

.070 

.072 

.077 

= 0 

No Rob. 

.218 

.123 

.197 

.198 

.193 

Mean Squared Errors of Residuals 

P = 

Rob. Inc. 

.021 

.021 

.017 

.019 

.023 

'/2 

No Rob. 

.027 

.039 

.042 

.066 

.033 

P = 

Rob. Inc. 

.056 

.023 

.019 

.021 

.065 

B 0 

No Rob. 

.092 

.070 

.143 

.141 

.106 

districts to coincide with the corresponding means of the observed values. When incorporating 
the constraints, the model was fitted using the amended Kalman filter as defined by the 
equations (4.3) and (4.4). 

In order to illustrate the performance of the four sets of regression estimators in the various 
months and in particular, in and around the months where we inflated the data, we plotted 
the monthly MSE's of the innovations and residuals as obtained for 3 and 5 room apartments. 
The plots are shown in Figures I to 4. Notice that the values of Table 1 for 3 and 5 room 
apartments are correspondingly the averages of the values shown in the four figures. 

The main conclusions from the table and the graphs are as follows: 
Accounting for the cross-sectional correlations and including the linear constraints to pro

tect against the model breakdowns yields better results than in the other cases considered. This 
outcome is most prominent in the cells of 1 and 5 room apartments where the sample sizes in 
each month are very small. In the other three cells, there are only small differences between 
the case {p = Vi, Rob. Inc.) and the case (p = 0, Rob. Inc.) which could be expected since 
as the number of observations in each month increases, there is less borrowing of information 
from neighbouring cells (small areas in the more general context). The situation is different, 
however, when the linear constraints are removed. Accounting for the cross-sectional correla
tions yields in this case much better results than when not accounting for them and this is true 
for all the apartment sizes. Thus, by borrowing information from one cell to the other, the 
estimators of the regression coefficients adapt themselves much more rapidly to the sudden 
drifts in the data as seen also more directly in the figures [The four peaks in each graph are 
in the months where the data were inflated and as can be seen, the graphs corresponding to 
the case (p = Vi, No Rob.) return to their normjd level of the months before the inflation much 
faster than the graphs representing the case (p = 0, No Rob.) 

Another interesting comparison is between the case where the linear constraints are included 
and the case where they are not. Clearly, the inclusion of the constraints improves the results 
substantially when accounting for the serial correlations and the improvements are even more 
prominent when the serial correlations are set to zero. It is interesting to compare in this context 
the figures exhibiting the monthly MSE's of the innovations with the figures exhibiting the 
monthly MSE's of the residuals. In the four months where we inflated the data the MSE's of 
the innovations are high which is obvious since the innovations are the differences between 
the observations and their predictors from previous months. Still, when the linear constraints 
are included, the MSE's return to their normal level right after the months of inflation. As 
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Figure 1 Monthly Mean Squared Errors of Innovations, 3 Room Apartments 
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Figure 2 Monthly Mean Squared Errors of Residuals, 3 Room Apartments 
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Figure 3 Monthly Mean Squared Errors of Innovations, 5 Room Apartments 
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for the residuals, once the linear constraints are included, there is practically no increase in 
the MSE values in the months of inflation in the case of 3 room apartments and, when 
accounting for the serial correlations, only a slight increase in the case of 5 room apartments. 
However, when ignoring the serial correlations, the residual MSE's for 5 room apartments 
are much larger in the months of inflation than in the other months even when imposing the 
constraints. This outcome has a simple explanation. The linear constraints are imposed on the 
aggregate means of the fitted values in each district but since the number of observations in 
5 room apartments is a small fraction of the total number of observations, the constraints alone 
have a relatively small effect on the estimated regression coefficients in this cell. On the other 
hand, the constraints have a large effect on the estimated coefficients in the other cells so that 
when accounting for the cross-sectional correlations, the estimators corresponding to 5 room 
apartments are also modified since they are correlated with the other coefficients. 

The way by which the linear constraints protect against sudden drifts in the data is illuminated 
in Figure 5 where we plotted the monthly intercept estimates for 3 room apartments. 

As can be seen, with the linear constraints included, the intercept adapts itself to the new 
level of the data in the same month that the inflation occurs. Without the inclusion of the 
constraints, the adaption to the new level of the data takes several months. The plot of the 
monthly intercept estimates of 5 room apartments does not have this nice pattern since with 
the small sample sizes observed each month, the effect of the inflation is to alter also the other 
regression coefficients. 

Jul. 87 Jan. 88 

° ° (Pj = ?. Rob. Inc.) 

Jan. 89 

(Pj - i . No Rob.) 

Nov. 89 

Figure 5 Monthly Estimates of Intercept, 3 Room Apartments 
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Jul. 87 Jan. 88 

Optimal estimators 

Jan. 89 

-o Serial correlations set to zero 

Nov, 89 

OLS estimators 

Figure 6 Variances of Estimators of Cell Means (XIC), 3 Room Apartments 

Jul. 87 Jan. 88 Jan. 89 

— Optimal estimators o o Serial correlations set to zero 

Nov. 89 

Figure 7 Variances of Estimators of Cell Means (X10''), 5 Room Apartments 
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Our discussion so far centered on the empirical distribution of the model residuals and 
innovations. A major application of small area estimation is the prediction of the small area 
means (equation 2.2). Clearly, when a model yields residuals with well behaved properties it 
can also be expected to yield good estimators for the population means. Nevertheless, it is 
interesting to compare the theoretical variances of the small area means estimators as obtained 
with and without the accounting for the cross-sectional correlations, under the model which 
accounts for these correlations with pj = Vi. This comparison permits the assessment of the 
loss in efficiency when the serial correlations are ignored. 

Figures 6 and 7 show the monthly variances of the cell mean estimators as obtained for 3 
and 5 room apartments. (The variances have been multiplied by lO"*.) The figure for 3 room 
apartments also contains the variances of the ordinary least squares (OLS) estimators of the 
population means, that is, the variances of the estimators when estimating the regression 
coefficients in each month by OLS. These estimators are not operational in the case of 5 room 
apartments because of the very small monthly sample sizes. 

The important conclusion drawn from the two figures is that by accounting for the cross-
sectional correlations the variances of the resulting estimators can be reduced quite substan
tially, depending on the sample sizes. This is obviously the case in the case of 5 room apart
ments but is also true for 3 room apartments despite the fact that the sample sizes in these cells 
are relatively very large. The large sample sizes ordinarily obtained for 3 room apartments make 
the OLS estimators quite comparable to the estimators obtained when ignoring the cross-
correlations in the estimation of the population means. Notice however the big gap between 
the variance of the OLS estimator and the variance of the other two estimators in October 1987. 
In this month there were only 10 observations of 3 room apartments and it is here where the 
use of the past data has its main impact even when ignoring the cross-sectional correlations. 
(The number of observations for 3 room apartments in November 1987 is 28; in all the other 
months there are at least 46 observations.) 

Another important outcome arising from the two figures is the much greater stability of 
the variances of the optimal estimators under the model as compared to the variances of the 
estimators which ignore the cross-sectional correlations. Notice in this respect that the 
differences in the variances from one month to the other depend not only on the sample sizes 
in each month but also on the values of the explanatory variables (the design matrbc) and the 
amount of past data observed. Still, it is the sample sizes which mostly explains the differences 
in the variances of the estimators particularly towards the end of the series. 
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APPENDIX 

a) Derivation of Equation (2.12) 

When x,ki = x,,,, O,,, = xif,^,„ = zlkQt,k so that 0, = (0,i, . . . , 0,A:) ' = Z,q,. 
Also, for the random walk model the matrbc Tis the identity matrix and by equation (3.1) 

Ztq, = Z,q,_i -I- (Z,P,|,_,Z,')F,-'(y, - Z,g,_i) = 

(/ - l,Fr')Y, + l,Fr'Z,q,.i (Al) 

since P, = (Z,P,|,_iZ,' -¥ E,). Suppose for convenience that A: = I and define 

F, = P ' " ^ ' 1 and H, = Fr' = \^'"'i 1 were / „ and A„ 
L/l 'F22J Ibl ,H22} 

are scalars, /,' and h{ are [1 x {K - I)] and P22 and 7/22 are [ (/if - I) x (/(T - 1)]. 
Using this notation, it follows from (Al) that 

1 - -hu) ?„ + -hn (x/,!,_,.,) - - Y ^n —er*. (A2) 
n,i / «n ^ nn ^^ hn 

Let 7i = (712, . . . , 7IA:) = /I '^il ' defines the partial regression coefficients in the regression 
of S,i on {S,2, ••-, S,K) and v? = (/n - fiF^^f) define the residual variance in the 
regression. 

Equation (2.12) follows directly from (A2) since 

/i^22' = - ^bi; (fii -fiFn'fi)-' = hn 
hn 

by well known properties of the inverse of a partitioned matrix. 

(A3) 

b) Derivation of Equation (4.4) 

By (4.3), 

g,(̂ > = (/ - K^Zi^^qj^l + AT/ '̂y/-^). (A4) 

Hence, 

g/^' -Qc,= {I- KPzi^^){Tqj^\ - g,) + KP (y/^' - ZJ^^q). (A5) 

The prediction errors {Tqjj.\ - g<) are independent of the residuals (y/'^^ - Z^'^^q,) and so, 

P/-^) = E[{q}^^ - q){ql^^ - g,)'] = Q,PJC,UQI + Km^'Kr' (A6) 

where we denote for convenience Q, = {I - A'/^'Z/'^^). 



236 Pfeffermann and Burck: Time Series and Cross-Sectional Estimation 

By definition of the matrix F^ (see below 4.3), equation (A6) can be written in the form 

P,<^' = e,P,(fi, - Pf-^) , Z < ^ > ' A : / ^ ) ' -H KPEPKl'^y 

+ ̂ r ' (E/^ ' - ir)Kr' {M) 

which implies the relationship (4.4) by straightforward algebra. 
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ARBVLA Models 
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ABSTRACT 

A commonly used model for the analysis of time series models is the seasonal ARIMA model. However, 
the survey errors of the input data are usually ignored in the analysis. We show, through the use of state-
space models with partially improper initisd conditions, how to estimate the unknown parameters of this 
model using maximum likelihood methods. As well, the survey estimates can be smoothed using an 
empirical Bayes framework and model validation can be performed. We apply these techniques to an 
unemployment series from the Labour Force Survey. 

KEY WORDS: Kalman filter; Partial likelihood; Data smoothing. 

1. INTRODUCTION 

It is common practice to analyze data from surveys where similar data items are collected 
on repeated occasions, using time series analysis methods. Most standard methods for these 
analyses assume the data are either observed without error or have independent measurement 
errors. However, in the analysis of repeated survey data, when there are overlapping sampling 
units between occasions, the survey errors can be correlated over time. 

A commonly used model in the analysis of time series is the seasonal integrated 
autoregressive-moving average (ARIMA) regression model, which we discuss in this paper. 
We show how to incorporate the (possibly correlated) survey errors into the analysis. In par
ticular, we consider the case where the survey (design) error can be assumed to be an ARMA 
process up to a multiplicative constant. 

When such a model for the behaviour of the population characteristics is assumed, the 
minimum mean squared error, or, equivalentiy, the Bayes linear estimator for the characteristic 
at a point in time can be derived. This estimator incorporates the model structure which the 
classical estimators, such as the minimum variance linear unbiased estimators, ignore. When 
the model parameters are estimated from the survey data, the estimators are empirical Bayes. 

Blight and Scott (1973), Scott and Smith (1974), Scott, Smith and Jones (1977), Jones (1980), 
Rao, Srinath and Quenneville (1989) and others considered the implications of certain stochastic 
models for the population means over time. Hausman and Watson (1985) incorporate a 
measurement error model into the standard seasonal adjustment process. Miazaki (1985) 
assumed that the survey error could be modelled with a pure moving average process. In Binder 
and Dick (1989), these results were generalized using state space models and Kalman filters. 
In this paper, we extend the framework to include the model where differencing of the original 
series of the population means yields an ARMA model. We use the modified Kalman filter 
approach given by Kohn and Ansley (1986). To estimate the unknown parameters, we max
imize the marginal likelihood function using the method of scoring. This approach can also 
handle missing data routinely. We also show how the survey estimates can be smoothed to incor
porate the model features using empirical Bayes methods. Confidence intervals for these 

' D.A. Binder, Business Survey Methods Division and J.P. Dick, Social Survey Methods Division, Statistics Canada, 
Tunney's Pasture, Ottawa, Ontario, Canada KIA 0T6. 
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smoothed values are also given, using the method described by Ansley and Kohn (1986). Bell 
and Hillmer (1987) used a similar model but their initial conditions do not extend easily to 
include regression terms or missing values (while preserving the marginal likelihood approach). 

An example of this model is described in Section 5 using unemployment data from the 
Canadian Labour Force Survey. This example shows the implications on the estimates of the 
model parameters when the survey errors are taken into account. We derive a smoothed estimate 
of the underlying process under the model assumptions. Recursive residuals are produced and 
validation techniques are used to evaluate the various models. 

2. THE MODEL 

Suppose we have a series of point estimates from a repeated survey of a population 
characteristic, given by yi, y2, ..., yr- We assume that y, can be decomposed into three 
components, so that 

y, = xly -I- e, -I- e„ (2.1) 

where JC,'7 is a deterministic regression term, B, is a population parameter following a time 
series model, and e, is the survey error, assumed to have zero expectation. 

We first describe an integrated seasonal autoregressive-moving average model for [B,]. We 
let 5 be the backshift operator; V = 1 — fiandVj = 1 — 5^ where 5 is the seasonal period. 
We define the following polynomial functions: 

MB) = 1 - \iB - \2B^ - ... - XpB'', 

a{B) = 1 - aiB - aiB^ - ... - apB", 

v{B) = l - ViB - viB^ - . . . - VQBQ, 

and 

/3(fi) = 1 - 0iB - 02B^ - ... - PgB". 

The seasonal ARIMA {p,d,q) {P,D,Q)s model for [B,] is given by 

MB')a{B)V''V^B, = v{B')p{B)i„ (2.2) 

where the 6,'s are independent N(0,<7^). We define a(5) = X{B'')a{B),a {p -I- jP)-degree 
polynomial; A{B) = V^Vf, a {d -\- sD)-degree polynomial; b{B) = v{B')^{B), a 
{q -I- 5Q)-degree polynomial; A{B) = a{B)A{B), a {p -^ d -\- sP -^ sD)-degree poly
nomial; M, = A{B)B,, an ARMA(/? -I- sP,q -t- sQ) process. Therefore, alternative represen
tations of (2.2) are 

a{B)A{B)B, = b{B)e„ (2.3) 

A{B)Bf = b{B)i„ (2.4) 
and 

a{B)u, = b{B)e,. (2.5) 
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We now consider the survey errors [e,] of expression (2.1). It will be assumed that the 
sample sizes of the repeated survey are sufficiently large that the errors for the survey estimates 
can be approximated by a multivariate normal distribution. In the simplest case, where the 
surveys are non-overlapping and the sampling fractions are small, the e,'s can be assumed to 
be independent. In a rotating panel survey, the survey errors are usually correlated. In this case, 
since the correlations between survey occasions are zero after panels have been rotated out, 
a pure moving average process can be used to describe the survey error process. 

Alternatively, if a random sample of units are replaced on each survey occasion, a pure 
autoregressive process may best describe the process. More complicated models are also 
possible. For example, in a two-stage design, some of the first stage units may be replaced ran
domly on each occasion and the second stage units may have a rotating panel design. This might 
be approximated by an autoregressive-moving average process, as suggested by Scott, Smith 
and Jones (1977). 

In this paper, we assume that the survey error process is given by 

et = k,(j},, (2.6) 

where (w,) is an ARMA {m,n) process, given by 

<A(fi)w, = ik{B)r,, (2.7) 

and ;̂  

</.(fi) = I - ct>iB - <t>2B^ - ... - <t>„,B'"} 

a n d 

^(fl) = 1 - iPiB - hB^ - ... - ^„B''. 

The r],'s are independent N{0.T^). The factor k, has been included in (2.6) to allow for non-
homogeneous variances when the autocorrelation function is homogeneous in time. 

In the model just described we assume that r^, the A:,'s and the coefficients of <^(5) and 
of \I/{B) can be estimated directly from the survey data, using design-based methods. How
ever, in general, the other parameters are unknown. This includes 7, a^, and the coefficients 
of MB), a{B), v{B) and of /3(fi). The Jt,'s in the regression term are assumed known. 

3. STATE SPACE FORMULATION OF THE MODEL 

3.1 General Formulation 

The model described in Section 2 can be formulated as a state space model with partially 
improper priors. This has a number of advantages. It permits, through use of a modified 
Kalman filter, calculation of a marginal likelihood function, which can be maximized to 
estimate unknown parameters. It also accommodates smoothing of the original survey 
estimates, by removing the estimates of survey error from the data. 

In the state space model, two processes occur simultaneously. The first process, the obser
vation system, details how the observations depend on the current state of the process 
parameters. The second process, the transition system, details how the parameters evolve over 
time. 
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For the state space models we consider here, the observation equation is written as 

y, = filz, (3.1a) 

and the transition equation is 

z, = Fz,-i -1- G€„ (3.1b) 

where z, is an (r x I) state vector and h, is a fixed (/• x 1) vector. In the transition equa
tion, Fis a fbced {r x r) transition matrbc, G is a fixed {r x m) matrix and the ^,'s are 
independent normal vectors with mean zero and covariance U. 

The final requirement to complete the specification of the state space process is the initial 
conditions for ZQ. In this paper, we shall use the improper prior formulation given in Kohn 
and Ansley (1986). In general, we assume that zo has a partially diffuse r-variate normal dis
tribution with mean m(0 | 0) = 0 and covariance matrix V{0 \ 0), where 

V{0 I 0) = KVI{0 I 0) -h Fo(0 I 0) (3.2) 

for large K. The matrbc F, (0 | 0) specifies the diffuse part of the prior. We explain in Section 
3.2 how to obtain Fj (0 | 0) and Fo(0 | 0) for our model. 

We denote the conditional mean of z, given the observations up to and including time t' 
by m{t I t'), and the conditional variance by V{t | t'), where 

V{t\ t') = KVi{t\ t') -t- Vo{t\ t'). (3.3) 

Recursive formulae for the cases where / = t'andt = t' -\- 1 are given in Kohn and Ansley 
(1986). They refer to this as the modified Kalman filter. 

Since the model for [>»,) given by (2.1) contains survey errors [e,) an estimate of the com
ponents without survey error, given by 

>», (smoothed) = jc,'7 -I- B, (3.4) 

is often of interest. When the right hand side of (3.4) can be expressed as glz,, for some f/, 
then it is possible to obtain the conditional mean and variance of the linear combination glz, 
given all the data, using the modified Kalman filter. To do this, the recursions are applied up 
to time / to obtain m(/ | t) and V{t \ t). Then the state vector z, is augmented by the state 
^r,f+i = g,'z,, andm{t \ t) and V{t \ t) are also appropriately augmented. ThematrixPin 
(3.1b) is modified to add the equation ^,+i,;.+ i = z,,r+i- After these modifications, the 
modified Kalman filter can be used as before, so that the last component of m{T \ T) gives 
the conditional expectation of g,'z,, given all the data, yi, 72. . . . . J'r- As well, the last 
diagonal component of V{t \ t) gives the conditional variance. This procedure can be 
generalized to include any number of smoothed estimates and their conditional covariances. 
In applications, space limitations on the computer might preclude computing the smoothed 
values for a large number of time points. 

3.2 Model for 6 

Harvey and Phillips (1979) described a method to put the ARIMA model (2.4) into the 
state space form given by (3.1). The dimension of z, is r = max{p -l- d -\- sP -\- sD, 
q + sQ). By augmenting/I = {Ai, . • .,'Ap+d+sP+sD) or b = (6, bg+sg) with zeroes 
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to have dimension r, the ARIMA model may be written in the form given by (3.1), where 
h; = (I, 0 0), GI = {l, - bl, ..., - br-i) and 

F = 

Al 

Ar-l 
Ir-

L ^r I 0' 

where /,._i is the (r - 1) by (r - 1) identity matrix and 0' is a row vector of zeroes. 

In this formulation, the state vector z, = {Zu Zr,)' is defined as 

Zi, = Ai6,_i -I- >l, + ifl,-2 + . . . + ArB,_(r-i+l) 

- 6,_i€, - 6,€,_i - . . . - 6,._i6,_(,_,), (3.5) 

for / = 2, 3, . . . , r and zu = 6,. 

To complete the specification for [B,], initial conditions for zo are required. These are given 
in Ansley and Kohn (1985), a summary of which is provided here. 

From expression (2.5), [«,) is an ARMA process. We define 

_̂ = {Bo, ^ - 1 . . . . . 6-s)'> 

where S = max(0, p -\- sP -\- d -i- sD - 1). We let 

«_ = ("o. "-1 " - « ) ' . 

where R = max(0, p -{• sP - 1). Finally, we let 

W_ = {B_R^i, S_/?_2. . . . . ^-s) '> 

when S > R. 

Now, u_ is assumed to be a stationary ARMA process, so that its covariance matrbc can 
be derived from expression (2.5). It is assumed that w_ is N{0, KI) and is independent of «_. 
Since («_', w . ' ) ' is a non-singular linear combination of 6_, the covariance matrix for 0 can 
be derived. Using the form of expression (3.5) for ZQ. the initial covariance matrbc can be 
computed. Note that when both d and D are zero, so that no differencing takes place in the 
model, then w_ is the null vector and we have u_ = 0_. 

3.3 Model for the Observed Data 

In Section 2 we assumed that e, = A:, w,, where w, is an ARMA(w,rt) model. Therefore, 
from the discussion in Section 3.2, it is clear that e, can be represented in state space form, 
with h, = {k„ 0, . . . . 0)', and e, = hlz,. 

The regression component can be similarly represented by adding 7 to the state vector and 
initially, assuming that 7 has mean zero and covariance KI. Note that in the transition equa
tion 7 remains constant. 
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Since we can represent each of the components of 7, in expression (2.1) by a state space 
model, it is straightforward to combine the individual models into an overall model, by exten
ding the state vector to include the state vectors from the individual components. The obser
vation equation is then the sum of the three individual components. 

4. ESTIMATION OF THE STATE SPACE MODEL 

4.1 Estimation of the Parameters 

The unknown parameters of this model are (7̂ , and the coefficients of X(5), a{B), v{B) 
and /3(5). We transformed a^ to log{a^), in the numerical maximization procedure described 
below to avoid problems with negative parameter values. The model for the vector of obser
vations y = {yu y2> - • -, yr)' Siven in Section 3 is equivalent to 

y = Mri -\- ^, (4.1) 

where TJ isy-variate A'^(0, KI), fis r-variateN(0, W), andMis some fbced T x y matrix. We 
note that r; contains unknown constants including the regression coefficients; ^ i s a function 
of the ARMA parameters; Af is a function of the differencing structure. 

Kohn and Ansley (1986) recommended maximizing the limit of K-''^ times the likelihood 
function for the data, as K tends to infinity. It can be shown that this limit of the likelihood 
function is equivalent to the marginal likeUhood function of j ' - Mrj, where fj is the maximum 
likelihood estimate of TJ when Af and Ware known. Tunnicliffe-Wilson (1989) has shown that 
the Jacobian of the transformation from the data >» to {rj, y - Mrj) does not depend on the 
model parameters of >F whenever A/is known. Ansley and Kohn (1985) have shown that M 
does not depend on the unknown parameters. By using the modified Kalman filter, the com
putations for the marginal likelihood function are more straightforward than the approach 
given by Tunnicliffe-Wilson. 

The procedure we employed computes both the marginal likelihood function and its first 
derivatives with respect to the unknown parameters. This involves taking first derivatives 
of the initial conditions and of m{t | t') and the components of V{t \ t') for t = t' and 
t = t' + 1. All the computations were done using PROC IML in SAS. 

The likelihood function was maximized using a modification of the method of scoring. This 
modification allowed for varying step sizes. On each iteration, the likelihood function was 
computed at the previous step size, as well as at this step size multiplied and divided by a 
predetermined constant. (We used I. I as the factor.) The next step size was to choose the point 
which maximized the likelihood function among the three points. Each time a check was made 
to determine whether the parameters were in range. This was done by checking for positive 
semi-definiteness of the initial covariance matrix of the state vector. If it was out of range, 
the step size was divided again by the constant and the procedure repeated. 

To estimate the variance matrbc for the estimated parameters, the inverse of the Fisher infor
mation matrix was used. This is readily computed since the first derivatives of the likelihood 
function are available. 

4.2 Estimation of the Smoothed Values 

Smoothed values as defined in (3.4) for the estimates can be obtained by zeroing out that 
component of the state vector which corresponds to the survey error. However, this still leaves 
open the question of how to estimate its variance. To derive the standard error of the smoothed 
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estimate it is necessary to account for the fact that the unknown parameters have been estimated 
from the data, particularly when the data series is short; see Jones (1979). 

To obtain the variance of g'z,, it is sufficient to derive the variance Zj- - m (T | T), where 
rfi{T\ T) is the estimate of m{T\ T) at the estimated parameter values. This is because the 
state vector has been augmented to include g'z,- Now, 

ZT- m{T\ T) = [ZT- m{T\ T)] 

+ [m{T\ T) - rh{T\ T)]. (4.2) 

The first component of the right hand side of (4.2) has conditional variance 
V{T I T) = Vo{T I T), assuming that Vi{T | T) = 0. The second component of (4.2) 
represents a bias term and is independent of the first term, since it depends only on the data 
y. By taking a Taylor series expansion of the second term around the true parameter values 
and ignoring higher terms, we have the second component of (4.2) is 

m{T \ T) - m{T \ T) = l^^^^^P^]' {$ - <!>), (4.3) 

where <t> is the vector of unknown parameters and 4> is its estimate. Therefore, the asymptotic 
variance of (4.2) is approximately 

Yar[zT- m{T\ T)] = Fo ( r | T) 

where V^ is the covariance matrix for the unknown parameters. Expression (4.4) is estimated 
by using the estimated parameter values. This is the same approach as that given by Ansley 
and Kohn (1986). 

4.3 Generalized Recursive Residuals 

As Harvey and Durbin (1986) pointed out, useful quantities for performing model 
diagnostics are the generalized recursive residuals. In terms of our state space model, this is 
the difference between the observation and the one-step ahead prediction from the Kalman 
filter. These can be used for all time points t where Vi{t •\- 1 \ t) = 0. Under the model, 
these residuals are approximately independent normal. They can be standardized to have an 
estimated variance of unity under the model. Diagnostics similar to those used in classical regres
sion models can then be performed. 

5. ANALYSIS OF LABOUR FORCE DATA 

5.1 Parameter Estimation 

To demonstrate this procedure, we take data from the Canadian Labour Force Survey (LFS). 
The LFS is a monthly rotating panel survey with each panel containing one-sbcth of the selected 
households. A panel will remain in the sample for six consecutive months while the primary 
sampling units will rotate out after approximately two years. The sample selection follows a 
stratified multi-stage design. 
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The data were the monthly number of unemployed as published from January 1977 to 
December 1986 for the province of Nova Scotia and for the subprovincial region within Nova 
Scotia corresponding to Cape Breton Island. This province was selected because the sampling 
errors £u-e moderate compared to the larger provinces. Cape Breton Island was selected because 
its smaller sample size provides estimates with a larger relative variance. Graph la displays 
the logarithm of the Nova Scotia series and Graph lb shows the similarly transformed Cape 
Breton Island series. We used the logarithms as our inputs. 

Lee (1990) estimated the autocorrelations for the Nova Scotia survey error up to a lag of 
eleven. We derived the coefficients of the ARMA {m,n) survey error process given in (2.7) 
by matching these autocorrelations. A good fit was found using an ARMA (3,6) model. The 
resulting coefficients were: 

<t>i = 0.2575 ^1 = -0.1847 

02 = -0.3580 1^2 = -0.5873 

<i>i = - 0 . 6 0 4 1 iPj = 0.3496 

^4 = 0.0647 

T^ = 0.7246 ^̂ 5 = 0.0982 

^6 = 0.0347. 

The A:,'s of (2.6) were the estimated standard errors of the estimates, derived by taking a 
Taylor series approximation for the logarithms. 

A series of models were fitted to the Nova Scotia data with an assumption of no sampling 
error. The same models were then refitted, incorporating the model for the survey error process. 
In this case we could also compute smoothed values for the survey estimates and compare their 
standard errors with the standard errors of the original series. 

The preliminary model selected for the Nova Scotia data, ignoring the sampling error, was 
a seasonal ARIMA (1,1,0)(0,1,l)i2. However the moving average term for the seasonal com
ponent was estimated to be one, so a deterministic regression term was used to account for 
the seasonality. The 12 regression variables included a linear term and a dummy variable for 
each of the first 11 months. The dummy variable for a reference month took the value I for 
the reference month, - I for December and 0 for the other months. Note that an intercept 
term is not appropriate for this model because the first differences of the data are fitted. 

Further analysis of this reduced model showed that the moving average seasonal compo
nent was not required in the model. The final model selected for the Nova Scotia data was an 
ARIMA (1,1,0) with a deterministic regression component. This same model was then used 
for the Nova Scotia data with the survey error process incorporated. The same structural model 
was used for the Cape Breton Island series. 

Table 1 displays the parameter estimates. The estimates that do not incorporate the survey 
error component are in the Without Sampling Errors columns. First, examining the models 
for Cape Breton Island shows that the regression estimates are similar, as would be expected. 
Note that the autoregressive estimates (AR) are also similar and that the With Sample Error 
model has reduced the estimated model variance substantially. The column headed J-value 
displays the estimated parameter divided by its standard error. Note that the /-values for the 
autoregressive parameter are substantially different (-0.68 vs -2.85). This would lead to 
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Table 1 
Parameter Estimates - Unemployment Series 1977-1986 

Parameter 

Alpha 
Sigma 

Trend 
January 
February 

March 
April 
May 

June 
July 
August 

September 
October 
November 

Nova Scotia 

Without Sampling 
Error 

Estimate 

-0.296 
0.0597 

0.00427 
0.064 
0.083 

0.166 
0.106 
0.009 

-0.101 
-0.016 
-0.058 

-0.106 
-0.081 
-0.026 

r-value 

-3 .23 

1.01 
3.60 
4.80 

10.20 
6.60 
0.60 

-6 .00 
-1 .20 
-3 .60 

-6 .60 
-4 .80 
-1 .80 

With Sampling 
Error 

Estimate 

0.862 
0.0032 

0.00420 
0.048 
0.078 

0.165 
0.104 
0.016 

-0.088 
-0.014 
-0.062 

-0.105 
-0.071 
-0.029 

r-value 

2.08 

1.89 
1.93 
3.30 

6.40 
4.10 
0.70 

-3 .30 
-0 .63 
-2.37 

-3 .96 
-3 .08 
-1 .08 

Cape Breton Island 

Without Sampling 
Error 

Estimate 

-0.260 
0.1049 

0.00607 
-0.007 

0.027 

0.171 
0.099 

-0.008 

-0.029 
0.082 

-0.011 

-0.104 
-0.084 
-0.063 

r-value 

-2 .85 

0.79 
-0 .23 

0.89 

5.76 
3.33 

-0 .28 

-0 .96 
2.77 

-0.37 

-3.51 
-2 .83 
-2 .10 

With Sampling 
Error 

Estimate 

-0.231 
0.0520 

0.00598 
-0.003 

0.028 

0.164 
0.089 

-0.007 

-0.033 
0.081 

-0.009 

-0.098 
-0.069 
-0.074 

J'-value 

-0 .68 

1.50 
-0 .10 

0.97 

5.76 
3.19 

-0 .24 

-1 .17 
3.13 

-0 .30 

-3 .18 
-2 .44 
-2 .46 

accepting a model for the Cape Breton Island data with only a deterministic regression term 
when the survey error process is incorporated into the model. However, if the survey error is 
ignored in the analysis, too much significance would be attached to the autoregressive 
parameter. 

The results for the Nova Scotia models are also displayed on Table 1. Note that the reduc
tion in the estimate of the model variance by incorporating the sampling error structure is much 
greater for the Nova Scotia series than was achieved for the Cape Breton data. An important 
result in the Nova Scotia models is the difference in the estimates for the autoregressive com
ponent. Both models show that the AR component is highly significant in each model. The 
Without Sample Error model gives an estimate of c« = - 0.296; whereas the With Sample Error 
model gives an estimate of a = 0.862. Clearly, the interpretations that would be associated 
with these two estimates are entirely different. 

The smoothed estimates for the model incorporating sampUng error are shown superimposed 
on the original data series in Graph la. Graph lb shows the smoothed estimates for Cape Breton 
Island superimposed on the original series. The most notable item in these plots is the impact 
of the recession of 1981 on the smoothed estimates. Prior to the recession, the model tends 
to overestimate unemployment and after 1981 the model tends to underestimate the number 
of unemployed. 

5.2 Model Validation 

The plots of the generalized recursive residuals (described in Section 4.3) against the lagged 
generalized recursive residuals were produced for all the models. Graphs 2a and 2b show these 
plots for the two models for Nova Scotia. Note that Graph 2a shows less dispersion around 
the origin than Graph 2b, indicating a better fit when survey error is incorporated in the model. 
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Graph 4a Nova Scotia CUSUM of One Step Ahead Prediction Errors 
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Graph 4b Cape Breton Island CUSUM of One Step Ahead Prediction Errors 
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The same plots for Cape Breton Island are shown in Graph 3a and 3b. There is a striking 
similarity in the resulting residual plots for the two models from Cape Breton. However, none 
of the four plots give any compelling reason to doubt the underlying normal assumption of 
any of the models. 

To test that the models did not undergo a structural change, the recursive residuals can be 
cumulatively summed to create a CUSUM chart. Whereas using the tests described in Brown, 
Durbin and Evans (1975) produced no significant results, the chart does suggest some struc
tural change may be occurring. The CUSUM for Nova Scotia, as displayed in Graph 4a, shows 
quite clearly that prior to the recession the residuals are generally negative, implying that the 
model predictors are too large. During the 1981 recession the model produces mainly positive 
residuals. This impUes that the model predictors are too small. The CUSUM for the Cape Breton 
Island models is shown in Graph 4b. Here we can see that the model that includes the survey 
error undergoes an earlier structural change. 

We see, therefore, that model improvements can be made. By incorporating an extra regres
sion variable corresponding to the structural changes noted in the CUSUM chart, further 
analysis can be performed within the same general framework. The form of such a variable 
is currently being investigated. 

5.3 Summary 

These examples demonstrate the importance of accounting for survey errors in certain time 
series analyses. Using the modified Kalman filter, we have developed a flexible method for 
parameter estimation, data smoothing and model validation for a wide variety of commonly 
used models. 
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Spatial-Temporal Modelling of Spatially Aggregate 
Birth Data 
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ABSTRACT 

Births by census division are studied via graphs and maps for the province of Saskatchewan for the years 
1986-87. The goal of the work is to see how births are related to time and geography by obtaining con
tour maps that display the birth phenomenon in a smooth fashion. A principal difficulty arising is that 
the data are aggregate. A secondary goal is to examine the extent to which the Poisson-lognormal can 
replace for data that are counts, the normal regression model for continuous variates. To this end a 
hierarchy of models for count-valued random variates are fit to the birth data by maximum likelihood. 
These models include: the simple Poisson, the Poisson with year and weekday effects and the Poisson-
lognormal with year and weekday effects. The use of the Poisson-lognormal is motivated by the idea 
that important covariates are unavailable to include in the fitting. As the discussion indicates, the work 
is preliminary. 

KEY WORDS: Aggregate data; Borrowing strength; Contouring; Extra-Poisson variation; Locally-
weighted analysis; Maps; Periodogram; Poisson distribution; Poisson-lognormal 
distribution; Random effects; Spatial data; Time series; Unmeasured covariates. 

1. INTRODUCTION 

The concern of this work is spatial-temporal data, that is quantities recorded as functions 
of space and time. The analysis of such data should be "easy" because of the graphing 
possibilities, e.g. rate versus time or effect versus geography, in the manner of residual plots 
so often employed in regression analysis; however in the present case the aggregation of basic 
elements leads to substantial difficulties. 

The specific data studied consists of daily births for the calendar years 1986 and 1987 to 
women aged 25-29 for each of the 18 census divisions of the province of Saskatchewan. The 
corresponding population sizes, as determined in the 1986 Census, are also employed in order 
to compute rates. The reason that Saskatchewan was selected for this pilot study is that it is 
moderate sized and its boundaries and those of its census divisions are fairly regular. (The latter 
was important at the early stages of the work because computer based maps were then 
unavailable). Women aged 25-29 were selected because that was the 5 year age group with most 
births. These data were provided to the author by Statistics Canada. They are characterized 
by being aggregate, by being non Gaussian and by being non stationary in space and time. 

It is wished to understand the relationship of births to time and geography, specifically to 
allow temporal and spatial patterns of fertility and possible surprises to show themselves. There 
are two central aspects to the study; a locally-weighted analysis of aggregate data is developed 
and random effects models are set down and fit to handle extra-Poisson variation. The latter 
part may be viewed as an inquiry into the flexibility of the Poisson-lognormal to handle 
unmeasured covariates and errors. The locally weighted analysis proceeds by developing 
weights, Wi{x,y), that are meant to reflect the influence of the i-th census division (an 
aggregate) on the point location with coordinates {x,y). Given census division data, these 

' David R. Brillinger, Statistics Department, University of California, Berkeley, CA, 94720, U.S.A. 
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Figure 1. Top: Time series of annual births to women aged 25-29 in 1986 for the Province of Saskatchewan. 
Bottom: Periodogram of the square roots of the count graphed above. The solid lines provide approximate 
95% marginal confidence limits. The peak corresponds to a period of 7 days. 
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weights are then applied to individual terms of the log-likelihood or corresponding estimation 
equations and parameter estimates evaluated. 

It is to be emphasized that this is a preliminary report on work in progress. For example 
the fine structure of the data is not taken advantage of and no measures of uncertainty of the 
various estimates have been provided. The expressions employed for the weights, in this present 
work, are naive and bound to change form with further study, but the character of the analysis 
may be anticipated to remain of some interest. 

The companion paper Brillinger (1990) considers some aspects of the spatial case alone. 

2. BIRTHS AS A TIME SERIES 

The top graph of Figure 1 provides the total number of births in Saskatchewan for each 
day of 1986. The dashed line is the 1986 mean level. The solid line is the result of heavily 
smoothing the series and is meant to highlight any trend. This graph does not, with casual 
inspection, provide striking evidence of any special phenomenon. However when the 
periodogram of the square root of the counts is computed, see bottom graph of Figure 1, 
something of interest appears. (The square root is employed to make the series more nearly 
symmetrical and normal). The upper and lower solid lines on the graph provide approximate 
95% marginal confidence limits about a heavily smoothed version. A peak is apparent at a 
frequency of. 143 cycles/day corresponding to a period of 7 days. This periodic phenomenon 
is well known in the analysis of birth data, see e.g. Cohen (1983) and Miyaoka (1989) and 
references therein. It is usually ascribed to doctors intervening in the natural process of labour 
and inducing births particularly on weekdays. 

3. BIRTHS AS A SPATIAL PROCESS 

Figure 2 provides, for each census division, and for women aged 25 to 29 the annual rate 
of births for the years 1986 and 1987 combined. One sees the highest rate of .208 births per 
woman per year to occur in the northern half of the province while the two lowest rates appear 
in the census divisions containing Regina and Saskatoon. 

Figure 3 provides the numerical difference between the annual rate for 1987 and that for 
1986 for each of the 18 census divisions. (Note that the 1986 census population has been taken 
as the divisor in each case). The differences are scattered around 0. It is to be noted that these 
rates are, however, based on fairly widely varying population sizes. 

In the previous section the presence of a phenomenon of period 7 days was noted. Figure 4 
presents the difference between the average weekday rate and the average weekend rate, 
(weekdays meaning Monday through Friday) for each census division. In all but one census 
division, the weekday rate is higher. This is consistent with various other studies and, as sug
gested in Section 2, is very possibly due to doctors inducing labor on weekdays (to avoid births 
on weekends). 

The various rates presented in Figures 2, 3, 4 are average values for individual census 
divisions. 

4. PROBLEMS ARISING 

Maps of most quantities of direct interest that assign average values to the wholes of 
counties thereby lie, lie, lie. 
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With these graphic words Tukey (1979) deplores the use of maps such as those of Figures 
2,3,4 that are constant across geographic divisions. Indeed examination of Figure 2, as does 
common knowledge, suggests that the birth phenomenon quite likely varies smoothly across 
census division boundaries. A principal concern of this work is to develop contour maps dis
playing smooth variation. It is hoped that such maps will prove useful in the discovery of general 
stochastic descriptions of the phenomenon and will allow insightful exploratory analyses. 

A second concern of this work is with the statistical distribution of the counts themselves. 
A natural special stochastic model to employ is the Poisson. Yet in past studies the birth process 
has been found to relate to many socio-economic quantities, e.g. diet, lifestyle, weather, 
environment, weekday, holidays, age structure. Further the population of the various census 
divisions has varied around the Census Day values throughout 1986-87 and lastly the women's 
ages are scattered from 25 to 29. In summary it seems necessary to employ a more flexible model 
than the Poisson, specifically a model able to handle omitted covariates. The Poisson-lognormal 
will be employed in this work. As a sideline, due to the presence of the standard deviation 
parameter in the Poisson-lognormal, there will be a borrowing of strength that takes place in 
combining the data values, in the manner described by Mallows and Tukey (1982). (The term 
"borrowing strength" is employed, rather than for example "empirical Bayes" as some might 
prefer, because it has been in use for a substantial time period and because of its broader impUca-
tions). Dean et al. (1989) is another recent reference concerned with handling extra-variation. 

5. LOCALLY-WEIGHTED ANALYSIS 

In the case of nonaggregate data, locally-weighted fitting is a convenient fashion by which to 
estimate smoothly varying quantities. Suppose one has a variate y with probability distribution 
p{Y \ 0) depending on the finite dimensionsd parameter 0. Suppose one wishes an estimate 
of 0 particular to the location with coordinates {x,y). Suppose the datum Yj is available for 
location {Xi,yi). Let Wj{x,y) be a weight dependent on the distance of (Jf,,^,) to {x,y). 

Consider estimating 0 by maximizing the weighted log-likelihood 

Y Wi^x,y) logp{Yi\Q) (1) 

or (often equivalentiy) by solving the system of estimating equations 

Y^iix,y)'i{Yi\Q) =0 (2) 

with ^ ( y I 0) = dlogp/dQ, the score function. 

To illustrate the technique consider an elementary case, specifically take y to be normal with 
mean p. and variance a^. The locally weighted estimate of/* at {x,y) results from minimizing 

and is given by 

Y ^(^•^) ^Yf- ixY 

Hx,y) = Y ^(^'^) Yfl Y mx.y), 
i I i 
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Figure 2. The average annual birth rate for women 
aged 25 to 29 for the years 1986 and 1987, 
plotted above census divisions. "R" and " S " 
indicate the locations of Regina and Saskatoon 
respectively. 

Figure 3. The 1987 rate minus the 1986 rate for the 
same data as Figure 2. 

Figure 4. The average weekday rate minus the average 
weekend rate for the same data as Figure 2. 

Figure 5. The weights, Wj{x,y) applied in equations (1) 
or (2), computed via expression (4), for four of 
the census divisions. The weights are not shown 
for all the divisions in the interests of clarity. 
The contours at levels .50 and .99 are shown. 
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an expression with intuitive appeal. It is to be noted that such formulas are commonly used 
in computer graphics as interpolation procedures, see for example Franke (1982). 

Among references we may mention Gilchrist (1967) concerned with "discounting", Pelto 
et al. (1968), concerned with least squares, Cleveland and Kleiner (1975), who suggested the 
use of moving midmeans and Stone (1977) focusing on regression. In the discussion of Stone's 
paper, Brillinger (1977) suggested the form (2) for a general distribution and justified it as a 
Bayes' rule. Specifically consider the loss function 

L{Y\ 0) = -logp{Y\ 0 ) . 

Suppose an estimate is desired at r = {x,y). The Bayes' risk may be written 

E[L{Y\ 0,)) =E[E[L{Y\Q,) \r]]. 

Bayes' rule seeks 

minE[L{Y\ 0) I r) . 
e 

With data Yf, r,, and Wi{r)a kernel centred at r,, one approximates the conditional expected 
value here by 

E{logp{Y\ Q)\T\ ^ Y ^ ( ' ) ^ogp{Yf I 0) 

and so is led to expression (1). 

Tibshirani and Hastie (1987) develop an equi-weighted local Ukelihood estimation procedure. 
Cleveland and Devlin (1988) develop the least squares approach in real detail. Staniswalis (1989) 
studies and implements the general p case. Advantages of the locally-weighted technique 
include: no "hidden model" distribution assumption, the possibility of discerning non-
additivity, variants for resistance and influence, simple additivity of the observation compo
nent, and no matrix inversion (as, for example, kriging requires). 

The birth data of concern in this work is aggregate (or grouped) totals over census divisions. 
The procedure of the preceding section cannot therefore be employed directly. The problem 
is that of obtaining appropriate weights Wi{x,y) evidencing the effect of the census division 
/ on the location {x,y). Suppose | Rj | denotes the area of census division /. Then the naive 
weight function is 

Wi{x,y) = —— for {x,y) in Rj 
I ^1 I 

and equal 0 otherwise. In this work functions of the essential form 

Wi{x,y) = —— \ W{x - u,y - v)dudv (3) 
I ^/ I Rj 

will be employed where W{-)isa kernel appropriate for the nonaggregate case as for example 
studied in Cleveland and Devlin (1988). The formula (3) may be motivated by consideration 
of the Poisson point process case, see Appendix II. Estimates will be determined via the criteria 
(I) or (2) with Wj replaced by w,. 
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The specific weights employed at r = {x,y) in this preliminary work are 

w,(r) = exp{ - (1 - p)^lir - r,llV2T^) (4) 

outside the ellipse (rp - F,)S,~'(ro - r,)' = 4 = 5.991 and equal I inside. Here ilrll̂  = 
x^ + y^,p = rfo/V(r - f,)Sr'(r - f,)' and T = .025, where f, = E Uj and S, = varL̂ ,-
with Uj a variate uniformly distributed within /?,. This choice of p makes the weight function 
continuous. The logic is that the census divisions are approximated by ellipses with the same 
mean and variance-covariance matrix. (The specific values were chosen after a bit of experimen
tation, in part to make the area in the initial ellipse about .95 of the division's). One could have 
employed other shapes than ellipses, e.g. rectangles, but this is preliminary work and it is 
anticipated that later work will employ weights of the form (3). 

Figure 5 displays the .50 and .99 contours of the Wj{x,y) plotted for several of the census 
divisions. The contours are seen to follow the general shapes of the census divisions. The jag-
gedness in some of the contours results from the discreteness of the 40 x 40 grid employed 
in the computations. 

Other weight functions constructed with somewhat similar problems in mind may be found 
in Tobler (1979) and Dyn and Wahba (1982). Advantages of the present approach, as listed 
for the nonaggregate case above include: the terms in (1) or (2) are additive and do not interact, 
no matrix inversion is needed, and resistance to outliers is easily built in. 

Cliff and Ord (1975) Section 5.1, discusses measures of the influence of counties on other 
counties. The concern of this present paper however is the influence of a "county" on a point 
location. It is to be remarked that perhaps the weight, providing the influence, should depend 
on some covariates, e.g. county population. 

6. A POISSON FIT 

Throughout the analysis, the female population aged 25-29 and births to its members will 
be considered. Let / = I, . . . , 18 index census division. Let N, denote the census count of the 
women in the i-th division. (These are the counts for Census Day, 3 June 1986). Let Bj denote 
the total number of births to women aged 25-29 in the two years 1986-87. 

Suppose that the probability distribution p( •) of Section 5 is that 5, is Poisson with mean 
2NiH. (The presence of the multiplier 2 is so the parameter ^ is an annual birth rate). One logic 
for the Poisson assumption comes from the idea that birthdays are random, see Brillinger (1986). 

With the Poisson assumption, the locally weighted estimate of the annual birth rate at loca
tion {x,y) is given by 

ii{x,y) = Y Wi{x,y)Bjj2Y Wi(x,y)Nj. (5) 

These values are computed for {x,y) on a 40 by 40 grid and the corresponding contour plot 
is given in Figure 6. The contours are seen to vary smoothly. This (smoothed) rate varies from 
. 14 to .20, with the higher values in the upper half and the lower centred around the Province's 
most urban part. 

As indicated previously, the data under study has important temporal characteristics. Models 
need to take this into account. In particular the weekly periodicity needs to be handled as well 
as possible trends in population sizes. The following model seems worth considering. Letj be 
an indicator variable withy = 1 if the count is for a weekday andy = 2 if the count is for 
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Figure 6. Expression (5) graphed for the weights of (4) 
with Bj the count of births in census division 
/ during 1986-87 and Nj the corresponding 
population count of women aged 25-29. 

Figure 7. The estimated birth rate exp (a ] obtained by 
locally wdghted fitting assuming that the num
ber of births, B, given the population at risk, 
N, is Poisson with mean N exp I a ± |3 ± 7) 
with the first ± sign plus for weekdays and 
minus for weekends and the second ± plus 
for 1986 and minus for 1987. 

Figure 8. Plot of the estimated weekday effect /3 (xj-) 
obtained as per Figure 7. 

Figure 9. The estimated year effect 7 (xji) as per 
Figure 7. 
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a weekend. Let *̂  be a second indicator variable with k = 1 for 1986 and A: = 2 for 1987. Let 
Bjjfc denote the corresponding number of births in census division /. Suppose that Bjjf^ given 
TV,-is Poisson with mean N, exp {c« -t- /3y -I- 7^). |3, is the weekday effect, 7^ the year effect and 
it will be assumed that j3i -t- &2, 7i + 72 = 0 to make the model identifiable. If there is no 
weekday effect, then/3i,/32 = 0. Ifthereisnoyeareffect, then7i,72 = 0. Now, via locally-
weighted analysis presented in Section 5, one can obtain estimates of a, /3 and 7 as functions 
of location (xj'). (For simple balance in the computations, only the first 364 = 7 x 52 days 
of each year have been employed). 

Figure 7 provides the estimate exp {a {x,y)) obtained of the annual birth rate. It is interesting 
to note that, relative to the constant rate Poisson model, the contours have expanded out some
what from the urban areas. Figure 8 provides the estimated weekday effect, /Sj {x,y), obtained. 
In its case there is bulge to the east. These values are quite a different representation from that 
of the naive differences of Figure 4. In particular, now there is a reflection of the differing 
population sizes. Theorderof magnitude of the |3'sis .08 to .13 while a is order -2.1 to -1.6. 
Figure 9 provides the estimated year effect, y\{x,y). Its values vary from -.03 to .03. 
Numerically, the weekday-weekend effect is the larger. 

The just preceding analysis suggests that there are basic variables that can affect birth rates 
and that modelling and analysis needs to take this circumstance into account. 

7. POISSON-LOGNORMAL FTTS 

With a multi-dimensional explanatory variable x in hand, a Poisson model that has B of 
mean TV exp {x0) might do a good job of explaining the data. Examples of explanatory variables 
include: diet, lifestyle, weather, environment, holidays, population change, age structure, 
vagaries of boundaries. In the present situation, these variables are not at hand. The omitted 
variables in the model will be assumed specifically accumulated into an error variable. It will 
be assumed that, given e, the variate B is Poisson with mean TV/texp {e) and that e is normal 
with mean 0 and variance a^. In the case of this model B is said to have a Poisson-lognormal 
distribution. Some information on this distribution may be found in Shaban (1988). Sometimes 
e enters directly from the problem context, see Brillinger and Preisler (1983) for one example, 
but in the present case it is simply assumed present. 

A critical difficulty, that arises in working with a Poisson-lognormal model, is that closed 
expressions do not exist for the probability function. Yet the model is clearly flexible for 
introducing effects and handling unavailable variables. Following the work of Bock and 
Lieberman (1970), Pierce and Sands (1975) and Hinde (1982), one can proceed via numerical 
quadrature. The probability function may be written 

p{Y) = —\{ve'"-)^e\p[- ve''^]Hz)dz 

with <\> the standard normal density, with Y corresponding to B and with v corresponding to 
Np.. To proceed with a data analysis the integral is approximated by a finite number of terms 
involving nodes, Zi, and weights, W/, 

p (y) « — X) (ve''^')^exp{-ve«')H',. 
^ ' , = 1 

Listings of nodes and weights may be found in Abramowitz and Stegun (1964) for example. 



264 Brillinger: Modelling of Spatially Aggregate Birth Data 

0.̂ 4 

Figure 10. A plot comparable to Figure 7, except that 
now a normal error term is added to the 
linear predictor. 

Figure 11. A plot comparable to Figure 8, except now 
(as in Figure 10) a normal error term has 
been added to the linear predictor. 

h^^-^ 
, ai ) 

/ "X 

..xj^-i-K^^^^^ 

^ l" 
ai "j f 

<^ 

Figure 12. A plot comparable to Figure 9, except now 
(as in Figure 10) a normal error term has 
been added to the linear predictor. 

Figure 13. The estimated standard error, a (xj'), of the 
normal term added to the linear predictor. 
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Figures 10, 11, 12, 13 provide the results of fitting the Poisson-lognormal model including 
weekday and year effects and employing L = 5 nodes. The model assumes Bjj,; given TV, and 
Z is Poisson with mean 

Njexp[a -(- fij + yfc •\- aZ] 

Z denoting a standard normal deviate and further assumes the separate Z's independent. Here / 
indexes census division,y weekday or not and k year. Figure 10, a contour plot of exp (a {x,y)), 
again shows a dip around the urban region as in Figure 7. The irregularity in the figure sug
gests that in one case perhaps the estimation procedure converged to a local extremum. Figures 
11 and 12 similarly provide $ {x,y) and 7 {x,y). There are again suggestions of local extrema. 
Figure 13, a contour plot of a{x,y), is not easily described. It suggests that the estimate, a, 
is fairly variable. The estimate is seen to be of order of magnitude .1 and so comparable to 
the weekday effect of Section 6. 

All the work on estimation with the Poisson-lognormal, that we know about, involves some 
form of approximation. For example Clayton and Kaldor (1987) approximate the conditional 
Poisson log-likelihood by a quadratic and Aitchison and Ho (1989) also employ numerical 
integration, albeit after a transformation of the parameters. A new type of approximation has 
recently been proposed in Crouch and Spiegelman (1990). Its effectiveness for the Poisson-
lognormal remains to be studied. 

8. DISCUSSION 

Locally-weighted analysis and random effect models appear to provide a flexible means of 
dealing with a broad class of problems involving geographic data. The random effect terms 
have two important roles: handling omitted effects and borrowing strength for improved 
estimates of the principal parameters. For the Poisson alone, naive totals are efficient, yet there 
exists extra-Poisson variability due to omitted variables in the present case. 

The approach is computer intensive, because of the numerical integration and the maximum 
likelihood estimation at many points on a grid, but proved quite manageable on the Berkeley 
network of Sun 3/50's. 

Much future work remains including: tools for assessing fit, uncertainty computation and 
display, weight function choice (particularly choice of r in (4)), analyses for other age groups 
and provinces, and appropriate asymptotics. Further understanding needs to be gained as to 
why with nearby initial values the optimizing routine sometimes converged to somewhat distant 
estimates. An advantage of the present circumstance is that there exists immense amounts of 
other data to be made use of as work progresses. Examination of Figures 6 on shows an 
important limitation of the technique - it is providing too much fine detail in the northern half 
of the province. 

Other recent papers devoted to the analysis of vital statistics rates are: Cressie and Read 
(1989), Clayton and Kaldor (1987), Tsutakawa (1988) and Manton et al. (1989). These papers 
are however not directed at the problem of obtaining a smooth surface, which is the concern 
of this work. 

It is amusing to note that the presence of the weekly period in the phenomenon allowed the 
author to deduce early on in the work that a confusion had arisen over which data set was to 
be supplied. When the days of fewest births were determined for the initial data set supplied, 
the days were found to be (apparently) Friday and Saturday. This was because the year 1987 
had been supplied, and not the desired 1986. 



266 Brillinger: Modelling of Spatially Aggregate Birth Data 

After the analyses were completed it was learned that the birth counts were based on 1981 
census divisions, while the population counts were based on 1986. Luckily the boundaries have 
not changed much, but this circumstance provides yet more reason for wanting a procedure 
that can handle extra-variation. 

9. ADDENDUM 

In the paper a case has been made for the inclusion of an error term, e, to reflect pertinent 
covariates that were unavailable for the analysis. This led to the employment of the Poisson-
lognormal distribution. In Tukey (1990) an index of urbanicity of a census division is con
structed. It is based on the populations of the three largest places in the division. The values, 
Xj, of the index are given in Figure 14 and are seen to be lowest in the census divisions con
taining Regina and Saskatoon. 

The table below gives the results of employing Glim to fit the successive Poisson models 
for Bjji, given NJ: (i) Njexpla -^ Pj -\- y,,], (ii) A'jCxpIĉ  -I- 0j -{• y,, -^- dXj], and (iii) TV, 
exp (a -I- ffj -1-7^-1- 5iXj -h SjV,-̂ ). 

Variables 

weekday, year 

+ urbanicity 

-1- urbanicity* *2 

Deviance 

227.3 

86.69 

83.13 

d.f. 

69 

68 

67 

p-value 

.088 

Figure 14. The values of the Tukey index of urbanicity. 
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By bringing in this urbanicity variable, Xj, now a Poisson model is satisfactory for the 
circumstance. 

Finally the Referee made some comments that spell out quite specifically the assumptions 
and limitations of this present study. The work is continuing and the intention is to address 
these comments. Rather than paraphrasing, it seems more sensible to provide the referee's own 
words. 

"The choice of weights is ad hoc and requires more thought. If one had two divisions, 
both of the same area but with vastly different populations TV,, should the weighting be 
the same? It depends on whether area or population density is thought to be more impor
tant. Use of the latter may remove the spurious fine detail in the northern half of the 
province." 

"There are traps with TV,'s, which the author appears to be aware of, but I think the 
reader needs extra warning. It might help to have approximate measures of uncertainty 
([Section 1 ] promises none). Figure 3 cannot really be interpreted, since positive or negative 
values may be due to random fluctuations about zero. The contours in Figure 6 are calculated 
with vastly different precision, and in some respects are incomparable. And, [in Section 6], 
upon estimating a, & and 7, it would be tempting (but unwise) to assume that such values 
are significant." 

"All random variables in sight are assumed independent. Another way to motivate these 
weighted models is to assume a multivariate distribution, with the property that the conditional 
mean at {x,y), given the surrounding data, is a weighted combination of those data. Then the 
joint distribution exhibits dependence." 
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APPENDIX I 

In this Appendix a few computing details are provided. The census divisions and the 
province boundaries are specified as polygons. To compute the weights Wi{x,y) an algorithm 
was required to check whether a given point was inside a given polygon. To compute the mean 
and variance of a random point inside a given polygon, an algorithm for breaking a polygon 
up into triangles was required. Such algorithms are discussed in Preparata and Shamos (1985) 
for example. The approximate likelihood was maximized via the Harwell FORTRAN routine 
va09a. For the parallel computations the 40 by 40 grid was broken up into 20 disjoint segments 
and the computations thence carried out on 20 separate work stations. As in Brillinger and 
Preisler (1983), factors were introduced into the likelihood to stabilize the computations. 
Miyaoka (1989) found that the computations could be sensitive to the number of nodes 
employed. In the present series of computations, the number was increased until the results 
did not change much. There is also the problem of selecting inital values. Here they were taken 
to be the method of moment estimates, although these are perhaps too inefficient. 
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APPENDIX II 

For simplicity, consider the case of a point process [Xj] with rate function v on the line. 
The local weighted log likelihood for a Poisson process is, up to a constant, 

Y ^ix - Xj) logv{Xj) - \W{x - u)v{u)du. 
j 

So, the locally weighted estimate of the rate is 

v{x) = Y^W{x - Xj) \W{x - u)du, 

the usual form of estimate. Suppose now the line is broken into intervals /?,, and the aggregate 
count available is TV(/?,). One desires 

Y W{x-xj). 
xjtRj 

If this last is to be approximated by 0TV(/?,), then the method of moments leads to 

0 = I w{x - u)du \ Rj I 

and thence to expression (3). 
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Benchmarking of Economic Time Series 

NORMAND LANIEL and KIMBERLEY FYFEl 

ABSTRACT 

Benchmarking is a method of improving estimates from a sub-annual survey with the help of correspon
ding estimates from an annual survey. For example, estimates of monthly retail sales might be improved 
using estimates from the annual survey. This article deals, first with the problem posed by the bench
marking of time series produced by economic surveys, and then reviews the most relevant methods for 
solving this problem. Next, two new statistical methods are proposed, based on a non-linear model for 
sub-annual data. The benchmarked estimates are then obtained by applying weighted least squares. 

KEY WORDS: Survey errors; Non-linear model; Weighted least squares. 

1. INTRODUCTION 

Traditionally benchmarking has been defined as the method of adjusting monthly or 
quarterly figures derived from one source to annual values (benchmarks) obtained via another 
source (see Denton I97I, Cholette 1988a, and Monsour and Trager 1979). For example, the 
monthly shipments of Canadian Manufacturers could be adjusted so that they add up to the 
Annual Census of Manufacturers shipments figures. Another definition of benchmarking is 
the more general one of improving sub-annual estimates derived from one source with annual 
estimates obtained via a second source (see Hillmer and Trabelsi 1987). This definition assumes 
that the annual values are subject to error, which is not the case with the first definition. For 
example, the monthly inventories of Canadian Retailers derived from a sample survey could 
be improved using the end of year inventories obtained from the annual retail trade sample 
survey. This second definition of benchmarking corresponds to the situation encountered with 
many economic time series and is the one dealt with in this paper. 

The purpose of this article is twofold, first it describes in detail, the benchmarking problem 
as it appears for many time series produced by large scale economic surveys. Then, two 
well known benchmarking methods deaUng with a single time series are presented and 
discussed. Since both of these methods fail in some respects to resolve the problem, two 
other methods which use a non-linear weighted least squares approach are proposed. Finally, 
two of the above mentioned methods are illustrated with some simulated data and the results 
are discussed. 

2. PROBLEM DESCRIPTION 

The problem of improving a two-way table of sub-annual series of estimates with annual 
series of estimates from business surveys is described here, accompanied by the characteristics 
of the original data and a list of the features desired from a benchmarking procedure. 

' Normand Laniel and Kimberley Fyfe, Business Survey Methods Division, Statistics Canada, Ottawa, Ontario, 
KIA 0T6. 
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The sub-annual estimates are often biased due to frame coverage deficiencies. Undercoverage 
is caused by delay in the inclusion of new businesses and no representation of non-employer 
businesses (usually small ones) on the frame. These sub-annual estimates are usually derived 
from relatively small overlapping samples, implying that sampling variances are relatively large 
and that sampling covariances exist between sub-annual estimates of different time periods. 
In addition, most economic sub-annual surveys produce series of estimates for a number of 
industrial activities within a number of geograghical regions. These are published sub-annually 
in the form of industry by geographical region tables, where the cells as well as the marginals 
and the grand totals need to be benchmarked. 

As regards annual estimates, they can be assumed to be unbiased since in practice their frames 
do not suffer much from coverage deficiencies. Also, the annual estimates usually come from 
relatively large samples or censuses and thus have relatively small or no sampling errors 
associated with them, while their sampling covariances tend to be large because of substantial 
sample overlap between years. Another point to note about the annual estimates is that these 
figures come in approximately two years after the time to which they refer. For example, annual 
data for 1988 will not be released until some time in 1990, while sub-annual data are usually 
available a few months after the time period to which they refer. Therefore, when the sub-
annual estimates are to be benchmarked, there will be no annual benchmarks for some of the 
sub-annual periods. 

There are a number of features that a benchmarking procedure should have in order to be 
used for large scale survey estimates. First, the procedure should be simple enough that it can 
be used without too much data analysis. Second, it must be possible to produce preliminary 
benchmarking factors for periods for which benchmarks are not yet available. This feature 
allows benchmarking to be performed as the sub-annual data are produced. Otherwise discon
tinuities will be introduced in the sub-annual data. It is also desirable that the method mjuntain 
consistency between the grand-totals, marginal totals, and cell estimates for the benchmarked 
estimates in a table. 

More discussion on the last two features can be found in Laniel and Fyfe (1989) and (1990) 
and Cholette (1988a) and (1988b). The rest of this paper deals with the problem of bench
marking a single time series in the context described above. 

3. BENCHMARKING A SINGLE SERIES 

Four approaches to benchmarking a single time series of sub-annual flow or stock estimates 
are described in the following sub-sections. 

3.1 Denton's Method 

In his 1971 paper, Denton proposed procedures for benchmarking based on a Quadratic 
Minimization approach, each of which corresponds to a specific penalty function. One of these 
penalty functions is the proportionate first difference between the original and benchmarked 
series and is often used for the problem of benchmarking time series that was described in 
section 2. Denton's procedure can be presented in statistical terms by first stating that the 
sub-annual estimates follow the model: 

B, Bj-i 
— = -I- e,, t=l,2, ...,n (3.1) 
y, y,-i 
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subject to the restriction to the annual data: 

ZT= Y^" ^ = '̂̂ ' •••''"' ^ (̂ -̂ ^ 
leT 

where: 

t refers to a sub-annual period, 
T refers to an annual period, 

[y,] is a sequence of biased estimates of the sub-annual parameters (levels), 
{̂ ,1 is a sequence of fixed sub-annual parameters (true values of the levels), 
{e,) is a sequence of uncorrelated and identically distributed errors with mean vector and 

covariance matrix (0,a^/) and, 
[ZT] is a sequence of annual benchmarks. 

To find the benchmarked estimates, least squares are applied to the above restricted model. 
It is important to note that Denton's approach assumes that the bias follows a random walk 

and that both the sub-annual and annual data are observed without sampling errors. Unfor
tunately, these assumptions are unlikely to be satisfied by economic time series (see section 2). 

3.2 Hillmer and Trabelsi's Method 

In 1987, Hillmer and Trabelsi proposed an alternative approach to benchmarking based 
on the Box-Jenkins (1976) ARIMA models. They assumed that the sub-annual estimates follow 
the model: 

y, = B, -^ u, t = 1,2 n (3.3) 

and the annual estimates follow the model: 

ZT= Y^' + "T T= 1,2, ...,m, (3.4) 

where: 

[B,] is a sequence of stochastic sub-annual parameters (true values of levels) following an 
ARIMA model, 

{;',) is a sequence of unbiased estimates of the sub-annual parameters, 
{M,) is a sequence of sub-annual dependent sampling errors with mean vector and covariance 

matrix (0,Eu), 
[ZT] is a sequence of annual unbiased estimates, and 
[OT] is a sequence of annual dependent sampling errors with mean vector and covariance 

matrix (0,2a). 

Using the above models, they obtain the benchmarked sub-annual estimates by applying 
stochastic least squares. That is, they minimize £{8, - B,)^, the mean squared error. This 
technique is also referred to in time series terminology as signal extraction, and the derivation 
of the solution can be found in the paper written by Hillmer and Trabelsi. 

As it is stated with the models, this method takes into account the sampling variances and 
covariances of the sub-annual and annual estimates. Unfortunately, the approach does not 
accommodate biases in the sub-annual data. Also, since ARIMA modelling is being used in 
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this method, it would be costiy to implement for large scale surveys dealing with hundreds of 
series. Therefore it would be best to use this type of approach for only a small number of very 
important economic indicators. There would also be risks of oversmoothing the data if the 
ARIMA models are not properly specified. 

Cholette and Dagum(1989) modified the Hillmer and Trabelsi approach by introducing an 
"intervention" model instead of an ARIMA model. This allows the modelling of systematic 
effects in the time series, but according to the authors, this approach still possesses the same 
weaknesses as the original Hillmer and Trabelsi method. 

3.3 Model on Trends 

The following method was developed in an attempt to meet the benchmarking requirements 
of the economic surveys. It is based on the assumption that the sub-annual estimates follow 
the model: 

y, 0, 
= T- + V, t = 1,2, ...,n (3.5) 

yt-i B,_i 

and the annual estimates follow model (3.4), where: 

[B,] is a sequence of sub-annual parameters (true values), as in Denton's method, 

{V,) is a sequence of dependent sub-annual sampling errors of the trends with mean vector 
and covariance matrix (0,Ev)-

Least squares theory is applied to the above models to produce benchmarked estimates. The 
description of the Gauss-Newton algorithm necessary to solve this problem and the calcula
tion of the covariance matrbc of the benchmarked estimates are given in Laniel and Fyfe 
(1989) or (1990). 

This method can be used when the benchmarks come from either a census or annual over
lapping samples and when the sub-annual level estimates are biased, if the relative bias is a 
constant. The assumption of a constant relative bias will be verified in practice if the rate of 
the frame maintenance activities is relatively stable, that is, when the proportion of frame 
coverage deficiencies is fairly constant over time. This assumption also implies that the under-
covered businesses behave like the ones covered by the frame. 

One technical problem with this method is that the sampling variance-covariance matrix 
of the sub-annual trends cannot be calculated directly and an approximation has to be used. 
The first-order Taylor approximation has been tried but in some cases the resulting sampling 
variances and covariances were zero or negative when they should be positive. For this reason, 
an alternative model to (3.5) is presented in the next section. 

3.4 Model on Levels 

The following method is an alternative to the previous one and is suggested so that the 
sampling variance-covariance matrix of the sub-annual estimates would be easier to obtain. 
It assumes that the sub-annual estimates follows the model: 

y, = aBj -\- u, t = 1,2, . . . . n, (3.6) 

where a is a fixed parameter taking into account the constant relative bias and u, is the same 
as for equation (3.3). The annual estimates follow model (3.4). 
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Benchmarked estimates are obtained by applying least squares theory to the above models. 
The algorithm required to solve this problem is the same as for method 3.3. 

3.5 Discussion 

Among the methods reviewed here, the most appropriate one for benchmarking a single 
time series in the context of the large scale surveys is the new approach based on the model 
on levels. It has a statistical basis which allows us to calculate confidence regions and test the 
goodness of fit of the benchmarked model. To test for lack of fit one has to be careful in 
choosing a test since the benchmarked estimates, 6,, have quite a small number of degrees of 
freedom, m - 1 (the number of annual observations minus one), in comparison to the number 
of observations, n + m. This small number of degrees of freedom also suggests that with the 
model on levels, we can expect to get benchmarked estimates with a chronological pattern 
similar to the one observed in the sub-annual data. 

A current practical issue with benchmarking methods which take into account sampling 
errors such as in 3.4, is the derivation of sampling covariances between two level estimates 
corresponding to two different time periods. Should they be calculated directly using the 
sample design for all pairs of time periods or should they be modelled? From a theoretical 
point of view, it is better to calculate these directly, since the sequence of sampling errors is 
intrinsically a non-stationary stochastic process due to the population variance-covariance 
varying with time. However, calculating all sampling covariances can be cumbersome, thus 
leaving the issue of how to obtain sampling covariances still an open question. 

3.6 An Example 

As a comparison between Denton's method described in section 3.1 and the model on the 
levels approach suggested in section 3.4, these two methods were applied to a special and 
interesting benchmarking case. It is a situation where the annual estimates have sampling 
variances six times the size of the sampling variances of the corresponding monthly estimates. 
In such a case, the advantage of using the model on levels approach instead of Denton's method 
will be easily observed. 

The special case, though possible in practice, was made up of simulated data. Firstly, twenty-
four monthly estimates were taken from an existing economic survey. A sampling covariance 
matrix was arbitrarily given to these monthly estimates. The variances and covariances were 
calculated in by using an equal coefficient of variation through time and the following cor
relation pattern: 

Pij = 1 - L L H I J for / = I, 2, . . . , 24 and y = 1, 2, . . . , 24 
•̂  24 

where / and y are the indexes of a pair of monthly estimates. Then, two corresponding annual 
estimates were constructed as follows. The first annual figure was 25% larger than the sum 
of the first monthly figures. Whereas the second annual figure was only 5% larger than the 
total of the last twelve monthly observations. The two annual estimates were given sampling 
variances equal to six times the variances of the corresponding monthly totals and their 
correlation was fixed at 0.5. 

The monthly estimates are represented by the full continuous line and the annual estimates 
by the horizontal lines on figure 3.1. The two horizontal lines are equal to the values of the 
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annual figures divided by twelve. On the same figure, the line with long dots represents the 
monthly series benchmarked with the approach based on the model on levels. The line with 
short dots is the benchmarked monthly series with Denton's method. 

From figure 3.1, it can be observed that the series benchmarked with the model on levels 
approach has the same year-to-year movement as the original monthly series. Whereas the series 
benchmarked with Denton's method has the same year-to-year movement as the annual 
estimates. It can also be seen that both benchmarked series are over the original monthly series. 

The difference in the year-to-year movement between the two benchmarked series can be 
explained as follows. The approach based on the model on levels gives the benchmarked series 
a year-to-year movement essentially obtained by weighting the annual and sub-annual data 
with the inverse of their sampling variances. Since, in this example, the sub-annual estimates 
are much more reUable than the annual estimates, the benchmarked series got the year-to-year 
movement of the monthly figures. Whereas with Denton's method, the year-to-year movement 
of the benchmarked series is constrained to one of the annual series regardless of its reliability. 
In this sense the approach based on the model on levels is better than Denton's method. 

As a last comment on this example, the fact that both benchmarked series are above the 
original monthly series simply illustrates that both methods are providing a correction for the 
bias of the monthly estimates. 
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Figure 3.1 Plot of the original and two benchmarked monthly series and of the annual series 
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4. CONCLUSION 

The problem of improving sub-annual survey estimates with the use of annual survey 
estimates has been examined. A new and simple procedure to benchmark a single time series 
has been presented. This procedure could be implemented in a computer system to allow its 
use in an automated mode. The advantage of the procedure over more traditional methods 
{e.g., Denton's) is that it takes account of sampling errors. Some issues in using the proposed 
procedure for benchmarking a single time series have been discussed. Two important prac
tical questions have been pointed out: benchmarking a table of series and preliminary bench
marking. Approaches to address these two topics have to be explored. 
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Forgot the Sampling Scheme at the Estimation Stage? 

SHIBDAS BANDYOPADHYAY* 

ABSTRACT 

For a class of linear unbiased estimators in a class of sampling schemes, it is shown that one can forget 
the weights used for sample selection while estimating a population ratio by a ratio of two unbiased 
estimators, respectively of the numerator and the denominator defining the population ratio. This class 
of schemes includes commonly used sampling schemes such as unequal probability sampling with or 
without replacement, stratified proportional allocation sampling with unequal selection probabilities and 
without replacement in each stratum, etc. 

KEY WORDS: Ratio of unweighted totals; Symmetric sampling. 

1. INTRODUCTION 

Let m be the number of adult literates among t adult members in a sample of n families 
drawn from a given population. Let the population adult Uteracy rate R be estimated as 
r = m/t. Similarly, for a two- way table giving percentage distribution of persons by age-group 
and sex, let a cell entry be estimated by a ratio (multiplied by 100 to make it a percentage) of 
the number of persons classified into the cell to the total number of persons, in the sample 
of n families. 

Irrespective of the method of selection of the families, this simple ratio of two unweighted 
totals for estimating a ratio or a percentage distribution is acceptable to many non-statistical 
users. Indeed, in some survey reports, tables giving percentage distributions or rates are so com
puted, as if the sampling scheme had been a self-weighting one. 

If, however, the sampling scheme for selecting the n families had been a (single stage) 
PPSWOR, one is expected to go about finding weighted totals for obtaining unbiased estimators 
of numerators and respective denominators before computing a ratio or a percentage distribution. 

This study shows that, for sampling schemes such as a single stage PPSWOR but without 
any further assumptions, 
(i) a ratio of two unweighted totals estimates the corresponding population ratio, as a ratio 

of an unbiased estimator of the numerator to an unbiased estimator of the respective 
denominator; 

(ii) there is a class of sampling schemes, other than self-weighting designs, for which (i) holds. 
This class includes one stage unequal probability, with or without replacement, sampling 
schemes and stratified proportional allocation sampling with unequal probability without 
replacement selection in each stratum. 

2. SYMMETRIC SAMPLING SCHEMES 

Consider a finite population consisting of TV units Ui, C/2, . . . . U^. Let Yj and Xj, denote the 
values of two study variables, YaadX respectively, associated with the unit U,, i = 1,2, ...,N. 

' Shibdas Bandyopadhyay; Applied Statistics, Surveys and Computing Division, Indian Statistical Institute, 203 
Barrackpore Trunk Road, Calcutta 700 035, India. 
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The problem is to estimate a rate or a ratio R = T{ Y)/T{X) where T{ Y) = Yi -\- Y2 
-I- . . . -I- Yf^, and T{X) is similarly defined with the variable X. 

The usual procedure is to estimate T{ Y) and T{X) unbiasedly and take their ratio to estimate 
R. The aim of this paper is to follow the same procedure in such a way that the ratio becomes 
free of the selection probabilities of the sample units. 

Fix a sampling scheme. 

Let S denote the set consisting of all possible samples such that p{s) > 0, where/? {s) denotes 
the probability of drawing the sample s, and LusPis) = 1. 

For .s in S and / = I, 2, . . . . TV, 

n {i.s) = the number of times Uj is included in s, and a, = £5,5 n{i,s), the number of times 
Uj is included in all possible samples. 

S, p{s), Uj depend on the sampling scheme. 

Definition 2.1. A sampling scheme is said to be symmetric if a, = a, for all / = 1, 2, . . . , TV. 

The following estimator, based on the sample s, in the class of linear unbiased estimators 
of Godambe (1955) for T{ Y), was studied by Bandyopadhyay et al. (1977). 

N 

T{Y,s) = Y Yjn{i,s)a-^p-'{s). (2.1) 
; = 1 

Clearly, T{ Y,s) is unbiased for T{ Y). An estimator of the ratio R = T{ Y)/T{X), as a 
ratio of an unbiased estimator of T{ Y) to an unbiased estimator of T{X), based on a sample 
s, is 

R{s) = T{ Y,s)lT{X,s) = Y Yjn{i,s) a,"'/ Y ^ . " ( ' ^ «/"' • (2.2) 

( = 1 ' ( = 1 

For symmetric sampling schemes, a, = a for all / and (2.2) becomes 

Af , n 

R{s) = Y Yjn{i,s) Y ^inU,s) = 
/ = i ' 1 = 1 

unweighted total of lvalues in the sample 
unweighted total of A'values in the sample 

and the above observations are summarized in the following theorem. 

(2.3) 
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Main theorem. For a symmetric sampling scheme, a ratio of two unweighted totals estimates 
the corresponding population ratio as .a ratio of an unbiased estimator of the numerator to 
an unbiased estimator of the respective denominator, but the estimated ratio does not involve 
the selection probabilities of the population units in the sample. 

It may be noted that the inclusion probabilities of the units in the sample need not be equal 
for symmetric sampUng schemes. Thus, symmetric sampling schemes need not be self-weighting. 
Self-weighting designs require constancy of aip{s) for all / and s, and constancy of ajp{s) 
for all / and s does not make the sampling scheme symmetric. 

For a non-symmetric scheme, (2.2) is easy to compute as Q;,'S are easy to compute in most 
cases and there is no need to compute inclusion probabilities. 

For without replacement sampling of n units, there are (^l}) (un-ordered) samples 
containing a given unit f/,, so a, = (^Ii') for all / and thus, in particular, PPSWOR is 
symmetric. It may be noted that not all PPSWOR schemes result in ( ^ possible samples. As 
noted in Connor (1966), in some cases systematic PPS samples in a pre-determined order or 
randomized PPS systematic sampling may result in zero probability for some set of n units. 
The result applies if the PPSWOR scheme is such that no joint inclusion probability of any 
set of n units is zero. 

For with replacement sampling of n units, there are TV" (ordered) samples and so 
a, = /JTV""' for all / and thus, in particular, PPSWR is symmetric. 

For PPSWOR in each of k strata, the oi-value for each unit in theyth stratum is 

"'^tO 
which becomes a constant when allocation is proportional and if no joint probability of any 
set of units in any stratum is zero, where TV; and nj are respectively the population and sample 
sizes for theyth stratum, y = 1,2, . . . , A:. Similar allocation may be made to make a multistage 
sampling scheme symmetric. 

For PPSWR sampling, it may be noted that the unbiased estimator of T{ Y) given by (2.1) is 
inadmissible. This estimator can be improved upon by putting n*{i,s) and a,* respectively for 
n{i,s) and c<,, where n*{i,s) is I if n{i,s) is at least 1 and n*{i,s) is zero if n{i,s) is zero, and 
af is a defined with/i*(/,s). Here, a,* = TV" - (TV - 1)", the number of (ordered) samples 
containing a given unit C/,. It has not been possible to obtain a mathematical expression for 
relative efficiency in a closed form for comparison, even with respect to PPSWR schemes. 

Among the possibilitities for comparison of relative bias and relative efficiency, an empirical 
study is included for comparison with PPSWOR scheme. Another attractive possibility is to 
study large sample variance and bias using Taylor series expansions. 

It is clear that it is not possible to estimate the variance of R{s) without the weights or 
further assumptions. However, if 5i and S2 are two half-samples drawn by the same symmetric 
sampling scheme (like two independent PPSWOR samples of equal size), R is estimated as 
[R{si) -\- T?(.52)1/2, and its unbiased variance estimator is [R{si) - R{S2)]^/4. 

If T{X) is known, a ratio-type estimator for T{ Y) is T{X)T{ y,.s)/r(A',.s), which may be 
improved as in Bandyopadhyay (1980) depending on whether or not the sampling fraction is 
more than half. 

When the population units are divided into k non-overlapping clusters and the selection pro
bability of theyth cluster is pj then the design become symmetric with a, = I for all units in 
all the clusters. It may be noted that the sample size is the size of the selected cluster and so, 
the symmetric sampling schemes need not be fbced sample size designs. 



282 Bandyopadhyay: Forgot the Sampling Scheme at the Estimation Stage? 

3. EMPIRICAL STUDY ON BLVS AND MEAN SQUARE ERROR 

Yates and Grundy (1953) considered the following three hypothetical populations, each with 
4 population units. 

Population A Population B Population C 
X 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 O.I 0.2 0.3 0.4 

Y 0.5 1.2 2.1 3.2 0.8 1.4 1.8 2.0 0.2 0.6 0.9 0.8 

The sampling scheme is to draw a sample of size n = 2 by PPSWOR using A'-values as size 
measure. It is proposed to compare bias and mean square error of R{s) with those of R^^^. 
where Rj^^is the ratio of the Horvitz-Thompson (1952) estimator of T{ Y) to that of T{X). 
The result of the comparison is presented below. 

Populations: 

Relative bias of R{s) 
Relative bias of RHHS) 

MSE of R{s) 
MSE of RHT{S) 

Relative efficiency of R {s) to RHT(S) 

A 

0.02456 
-0.00379 

0.2946 
0.3159 

1.0723 

B 

-0.02785 
0.00552 

0.2946 
0.3642 

1.2362 

C 

-0.00496 
0.00232 

0.0824 
0.0690 

0.8374 

Though the absolute bias of R{s) relative to R is more than that of R^^l for the three 
populations, differences are small. R{s) is a more efficient estimator in populations A and 
B and RHAS) is more efficient in population C. 

Since the above three populations are more extreme than the situations usually met with 
in practice, it is anticipated that R {s) may be useful when the sampUng scheme is not available 
at the estimation stage. 
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Estimation of Panel Correlations for the 
Canadian Labour Force Survey 

HYUNSHIK LEEi 

ABSTRACT 

The Canadian Labour Force Survey uses the rotation panel design. Every month, one sbcth of the sample 
rotates and five sixths remain. Hence, under this rotation scheme, once a rotation panel enters in the 
sample, it stays 6 months in the sample before it rotates out. Because of this design feature and the way 
of selecting the rotate-in panel, the estimates based on the panels in the same or different months are 
correlated. The correlation between two panel estimates is called the panel correlation. Three kinds of 
panel correlations are defined in this paper: (1) the correlation (denoted by p) between estimates for 
the same characteristic based on the same panel in different months; (2) the correlation (denoted by y) 
between estimates of the same characteristic based on geographically neighboring panels in different 
months; (3) the correlation (denoted by T) between estimates of different characteristics based on the 
same panel in the same or different months. This paper describes a methodology for estimating these 
panel correlations and presents estimated correlations for selected variables using 1980-81 and 1985-87 
data with some discussion. 

KEY WORDS: Repeated panel survey; Rotation; Taylor method. 

1. INTRODUCTION 

The Labour Force Survey (LFS) is a continuing monthly household survey which employs 
rotating panel design. The sample consists of six equal size rotation panels one of which is 
replaced by a new panel each month. The rotated-in panel stays in the sample for six months 
before it rotates out from the sample. (For detailed description of the LFS methodology, readers 
are referred to Platek and Singh (1976) and Singh et al. (1990).) Therefore, the estimates based 
on the same panel consisting of the same sampling units in different months are highly cor
related. Moreover, an outgoing rotation panel is usually replaced by a neighboring panel. 
Because they are geographically close, estimates based on these neighboring rotation panels 
are also correlated. These correlations are called panel correlations. In this paper, we will 
describe and discuss how the panel correlations can be estimated and present their estimates 
for selected variables. The work was originated for the study of composite estimation technique. 
However, the results are applicable in any situation where the panel correlation plays a role. 

The paper is structured as follows. In Section 2, necessary definitions, notations and assump
tions are given. Methodology is described in Section 3 and results and discussion are given in 
Section 4. 

2. DEFINITIONS OF PANEL CORRELATION COEFFICIENTS 

To define various panel correlations we need to define common panels and the predecessor 
panel. A panel is identified by the panel number which indicates the duration of the panel in the 
sample. Thus, Panel 1 in month m, becomes Panel 2 in month m -I- 1, Panel 3 in month m -I- 2, 

' H. Lee, Business Survey Methods Division, Statistics Canada, 11th Floor, R.H. Coats Building, Tunney's Pasture, 
Ottawa, Ontario, KIA 0T6. 
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Table 1 
Common and Predecessor Panels Pertaining to Months m and m — j 

m 

1 

2 

3 

4 

5 

6 

m - 1 

(6) 
1 

2 

3 

4 

5 

OT - 2 

(5) 

(6) 

1 

2 

3 

4 

OT-3 

(4) 

(5) 

(6) 

1 

2 

3 

OT - 4 

(3) 

(4) 

(5) 

(6) 
1 

2 

OT - 5 

(2) 

(3) 

(4) 

(5) 

(6) 

1 

m — 6 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

OT - 7 

((6)) 

(1) 

(2) 

(3) 

(4) 

(5) 

OT - 8 

((5)) 

((6)) 

(1) 

(2) 

(3) 

(4) 

OT - 9 

((4)) 

((5)) 

((6)) 

(1) 

(2) 

(3) 

OT - 10 

((3)) 

((4)) 

((5)) 

((6)) 

(1) 

(2) 

OT - 11 

((2)) 

((3)) 

((4)) 

((5)) 

((6)) 

(1) 

Note: Single and double parentheses indicate single and double predecessors, respectively. 

and so on. Another term rotation group is often used to identify a panel regardless of its dura
tion in the sample. For instance. Rotation Group I which rotates in in January is identified 
as Rotation Group 1 throughout its stay in the sample until it rotates out in July. Then, Panel 
I in January indicates Rotation Group 1 and Panel 2 in February indicates the same rotation 
group which is now two months old and so on. 

Two panels in two different months which represent the same rotation group are caUed 
common panels. When a rotation group rotates out, it is usually replaced by a rotation group 
consisting of neighboring households and given the same rotation group number. A panel 
associated with the out-going rotation group is called a predecessor panel of a panel associated 
with the in-coming rotation group. Therefore, in the above example. Panel 6 in June which 
is associated with Rotation Group I is a predecessor panel of Panel I in July. Table 1 shows 
schematically the common and predecessor panels pertaining to given months m and m - j . 

Since each panel can be identified by two components, month and panel number, let 
P(month, panel number) denote a panel. Then P(/«, 4) and P(/7i - I, 3), for instance, are 
common panels I month apart. Similarly, P(/n, 4) and P(m - 2, 2) are common panels 2 
month apart. The correlation coefficient of estimates of a characteristic based on common 
panels that arey months apart is denoted by pj. Obviously, there are no common panels which 
are more than 5 months apart and thus, the subscript y can be at most 5. We assume that pj 
is independent of m and panel number. However, it is a function of y and varies between 
characteristics. 

The correlation coefficient of estimates based on a panel and its predecessor that arey months 
apart is denoted by yj. But in this case, y can go up to 11, /. e. 711 is the last correlation coeffi
cient in this series and it is the correlation between P(m, 6) and F{m - II, I). We assume 
again that 7's are independent of m and panel number. They do, however, depend on 
characteristic as well asy as p-correlations do. 

The third type of panel correlation is defined as the correlation between estimates for two 
different characteristics based on common panels and denoted by r, for common panels that 
arey months apart. Nowy can take values from 0 to 5. The same assumptions as for the p 's 
and 7's apply here as well. 

The formal definitions of p's, 7's and r's are as foUows: 

Let y^,! be the LFS estimate of a characteristic of interest obtained from P (w,/). We assume 
that V{ym,i) = aj regardless of m and /. Then, pj 's are defined by 

Coy{y„j,y„_jj_j) = pjoj, 1 < y < 5, y < / < 6, 



Survey Methodology, December 1990 285 

and 7y 's by 

Coy{y„j,y„-j,6+i-j) = yjoj, 

where 1 < / < y if 1 < y < 6 andy - 5 < / < 6 i f 7 < y < I I . 

It would be natural to conjecture that pj's and 7 / s decrease as the subscripty increases and 
that p / s are larger than Ty's because pj's are correlations pertaining common households while 
7^'s are those pertaining neighboring households. We can also define the correlation between 
a panel and the predecessor of the panel's predecessor (denoted by double parentheses and 
called double predecessor in Table I) in a similar way, say S, and thus, we have 67, Sg 
617. They will be smaller than 7;'s but could be quite close to them for the same subscript 
because double and single predecessors are close geographically. However, the 6-correlations 
are not considered here due to time and resource constraints. 

We assume that Cov (3'„,,,j„,,') = Oifl ^ / 'andCov(j;„, , , j„_;, , .) = OifP(OT - y , / ' ) 
is not a common panel nor a predecessor of P ( m , / ) . 

In order to define r-correlations, let x^j be the LFS estimate of another characteristic 
obtained from P ( O T , / ) and let F(x„,/) = a^beindependent of/wand/. Then r-correlations 
are defined by 

Goy{y,„^j,y„-j,i-j) = rjo^Oy, 0 < y < 5, j < I < 6. 

3. ESTIMATION OF THE PANEL CORRELATIONS 

Since a variance estimation computer program was available, the method described here 
was geared to use this program with minimum modification. The methodology used in the 
program is the generalized Keyfitz method (Choudhry and Lee 1987; Lee 1989a) better known 
as the Taylor method. The program can compute variance estimates of linear combinations 
of monthly estimates. 

We employ the following basic equality to estimate the desired correlations using the existing 
variance program: 

^ , ^ „ , V(A) -h V{B) - V{A - B) 
Cov(y4,B) = . (1) 

From the program, V{A - B), V{A) and K(S) can be obtained and so can Cov {A ,B) using 
(I). An expression for V{A - B) from which (1) can be obtained is also given in Kish (1965). 

3.1 Estimation of p-Correlations 

Let A = Zf=i ym,i and B = E / i i ym-i.i- ^ and B are obtained by eliminating Panel I 
from month m and Panel 6 from month m - 1, respectively. Note that the eliminated panels 
are uncommon and the remaining ones are all common. Using the variance program we 
compute estimates of V{A - B), V{A) and V{B) and obtain estimates of Cov {A,B) by {1). 
From the assumptions given in Section 2, it is easy to see that 

Coy{A,B) = Spiaj, 

V{A) = V{B) = 5aj, 
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and thus, 

Coy{A,B) 

'' - Tmwm- ^^^ 
An estimate of pi is then obtained by substituting estimates of Cov {A ,B), V{A) and V{B). 

Estimates of P2, P3 and p^ can be obtained in the same way by putting A = Y, f=j+iy„^,, and 
B = S/lYj'm-y./.y = 2, 3, 4. But there is some problem in estimating p^ this way. When we 
drop all uncommon panels from months m and m - 5, only one panel is left in each month 
and this causes problem in variance estimation for Self-Representing Units (SRUs). SRUs are 
large cities each of which is represented in the survey by independent sampling. There is no 
such problem for Non-Self-Representing Units (NSRUs) which are the areas outside of the 
SRUs, containing rural areas and small urban centers. In NSRUs, each Primary SampHng Unit 
(PSU), which becomes a replicate for variance estimation, has all rotation panels and thus, 
even after eUminating 5 uncommon panels, there is still one panel remaining in the PSU so 
that variance can be computed. In SRUs, however, rotation panels form replicates and if there 
is only one panel left, then there is only one replicate in each stratum and thus, variance can 
not be computed in the usual way. Therefore, ps was obtained by prediction using a nonUnear 
regression p = a -\- bt -i- ce-',t = 1, . . . . 4. Another way to estimate p; will be discussed 
later in Subsection 4.1. 

3.2 Estimation of 7-Correlations 

It is easy to see that Cov (^,fi) = (5pi -I- 7i)a^if>l = E/iiJ^n,/andfi = E,ii7„_,,, . 
In general, 

Cov(^,fi) = {(6 -j)pj-i-jyj]aj, 

where 

^ = i ; ym.,, 
1=1 

B= Yy'"-j'i' J = 1' • • • .4-
/=i 

Then, an estimate of 7, can be obtained from the following equation: 

1 r Coy {A,B) "1 

''^ = j['^V{A)V{B)-^'-'^'j' ^'^ 

by substituting estimated values on the right. There is a direct way to estimate these 
7-correlations including 75 by 

Coy {Aj,Bj) 

^̂  ~ ^V{Aj)V{Bj) ' ^"^^ 

where Aj = E/=i7m,/ and Bj = Y.f=7-jym-j.i, y = 2, . . . , 5. In Section 4, the two methods 
were compared by using empirical data. 
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Other 7-correlations (7y, y = 6 10) are obtained by (4) with 

6 

Aj = Y y"'.i' 
i=J-s 

1 2 - ; 

Bj = Y y'"-j''-
1=1 

There is no simple way of estimating 711 directly or indirectly. Both 75 and -yn were 
predicted by a log-linear model 7 = exp ( a -1- bt), t = 1, ..., 4, 6, ..., 10. 

3.3 Estimation of r-Correlations 

These correlations can be estimated by the same way as the p-correlations just by replacing 
ym,ibyx„j.LetA = lf=j+iXr„j and B = Zf=iym-j.iJ = 0, 1, . . . , 4. Then we have 

Coy{A,B) = (6 - j)rjaxay, 

V{A) = (6 -j)al, 

V{B) = (6 -j)aj, 

from which we get 

Coy {A,B) . n 1 /I r^^ 
r. = , y = 0, I , . . . , 4 . (5) 
•' -JV{A)V{B) 

All r ' s can be est imated using (5) except 75 which is predicted by a log-linear model , 
T = e x p ( o -I- bt), t = 1, . . . , 4. 

4. RESULTS A N D DISCUSSION 

By using the methods discussed in the previous section, estimates of p- and 7-correlations 
were computed from the 1980-81 and 1985-87 LFS da ta for 5 characteristics: In Labour Force 
(IN LF) , Employed (EMP) , Employed Agriculture ( E M P AG) , Employed Non-Agriculture 
( E M P NON-AG) , Unemployed ( U N E M P ) . The panel correlations were estimated for only 3 
provinces. Nova Scotia (NS), Ontar io (ONT), and British Columbia (BC) from the 1980-81 
da ta . However, the estimation was extended to all provinces when more recent data (March 
1985 - February 1987) were used. Moreover , 4 more characteristics, the employed and the 
unemployed of two age groups , 15-24 and 25 + ( E M P 15-24, E M P 25 -I-, U N E M P 15-24, 
U N E M P 25 -I-), were added. The estimation of r-correlations was done only for those addi
tional characteristics for N S , O N T and Alberta (ALT) from the 1985-87 da ta . 

In the following, only par t of these results will be presented and discussed. All the results 
are available in Lee (1989b). 
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4.1 Estimates of p-Correlations 

The results of estimated p-correlations are given in Table 2. Even though estimates for the 
5 characteristics (IN LF, EMP, EMP AG, EMP NON-AG, UNEMP) from the 1985-87 data 
are available for all provinces, the results for only 3 provinces, NS, ONT and BC, are presented 
for a historical comparison. Table 2 also shows the results for the other 4 characteristics (EMP 
15-24, EMP 25 -I-, UNEMP 15-24, UNEMP 25 +) from the provinces of NS and ONT. 

The p-correlations are generally high as expected because they are correlations for the common 
panels. The correlations for EMP AG are the highest and those for UNEMP are the lowest. 
It seems that the size of the p-correlation indicates the degree of mobility of the labour force 
with a particular characteristic. For instance, the high p-correlation for EMP AG shows a low 
mobility of the labour force in agriculture while a high mobility of unemployed labour force 
is demonstrated in its low p-correlation. The different levels of mobility of labour force in two 
age groups are also evident. The younger group (15-24) is more mobile than the older one (25 +). 

The decreasing trend of the p-correlations over time is clearly demonstrated in the results. 
The trend was extremely well fitted by a nonlinear regression model p, = a -\- bt •{- ce~'. The 
R-squares (multiple correlations) are close to I (> 0.98). Therefore, the predicted values for 
Ps seem to be very good. In Lee (1989a and 1989b), pj was obtained by extrapolating pj and 
P4 instead. The differences between the predicted and extrapolated values for ps, however, are 
very small. They are less than O.OI for all characteristics except for UNEMP, UNEMP 15-24 
and UNEMP 25 -I- where the largest difference is 0.03. 

Table 2 
Estimates of p-Correlations (1980-81 and 1985-87 Data) 

Prov 

NS 

ONT 

BC 

Characteristic 

INLF 
EMP 
EMP AG 
EMP NON-AG 
UNEMP 
EMP 15-24 
EMP 25 + 
UNEMP 15-24 
UNEMP 25 + 

INLF 
EMP 
EMP AG 
EMP NON-AG 
UNEMP 
EMP 15-24 
EMP 25 + 
UNEMP 15-24 
UNEMP 25 + 

INLF 
EMP 
EMP AG 
EMP NON-AG 
UNEMP 

PI 

0.862 
0.866 
0.913 
0.865 
0.590 

0.843 
0.852 
0.955 
0.861 
0.580 

0.849 
0.835 
0.896 
0.855 
0.516 

i 

P2 

0.797 
0.783 
0.837 
0.774 
0.455 

0.782 
0.779 
0.926 
0.791 
0.445 

0.767 
0.755 
0.809 
0.769 
0.407 

30-81 Data 

h 

0.744 
0.714 
0.756 
0.710 
0.333 

0.717 
0.709 
0.901 
0.724 
0.334 

0.705 
0.695 
0.733 
0.715 
0.334 

PA 

0.679 
0.651 
0.678 
0.649 
0.243 

0.674 
0.664 
0.861 
0.678 
0.286 

0.665 
0.651 
0.656 
0.661 
0.320 

PS 

0.622 
0.590 
0.598 
0.594 
0.145 

0.622 
0.611 
0.827 
0.625 
0.222 

0.622 
0.607 
0.582 
0.616 
0.294 

PI 

0.845 
0.863 
0.912 
0.873 
0.703 
0.773 
0.878 
0.618 
0.695 

0.846 
0.853 
0.962 
0.866 
0.579 
0.747 
0.888 
0.468 
0.622 

0.817 
0.851 
0.938 
0.857 
0.634 

85-87 Data 

P2 

0.769 
0.768 
0.867 
0.779 
0.546 
0.632 
0.800 
0.454 
0.554 

0.781 
0.771 
0.948 
0.795 
0.436 
0.605 
0.824 
0.339 
0.468 

0.753 
0.770 
0.886 
0.784 
0.524 

h 

0.730 
0.713 
0.825 
0.724 
0.426 
0.556 
0.754 
0.364 
0.443 

0.732 
0.706 
0.944 
0.746 
0.328 
0.500 
0.777 
0.257 
0.365 

0.701 
0.711 
0.847 
0.730 
0.459 

P4 

0.696 
0.686 
0.802 
0.697 
0.415 
0.495 
0.729 
0.300 
0.440 

0.681 
0.648 
0.937 
0.701 
0.291 
0.429 
0.732 
0.219 
0.313 

0.647 
0.651 
0.828 
0.679 
0.363 

h 

0.670 
0.660 
0.773 
0.670 
0.375 
0.446 
0.705 
0.246 
0.406 

0.635 
0.592 
0.934 
0.660 
0.238 
0.356 
0.691 
0.178 
0.256 

0.597 
0.597 
0.805 
0.632 
0.290 
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4.2 Estimates of 7-Correlations 

As mentioned in Subsection 3.2, there are two ways of estimating 72,73 and 74, that is, by 
formulae (3) and (4). We will call the method by (3) as Method 1 and that by (4) as Method 2. 
Only Method I can be used to estimate 71 while direct estimation of 75 is feasible only by 
Method 2. The two methods are compared in Table 3 using empirical data. In the table, 75's 
for Method 1 are predicted values by a log-linear model. The table shows that the two methods 
produced somewhat different results. The correlations produced by Method 2 clearly show 
an increasing trend contrary to our intuition while Method I gave more acceptable results. 
Moreover, if we compare these correlations with 71 in Table 4A (which had to be estimated 
by Method 1), Method I seems to produce more reasonable results than Method 2. Therefore, 
we adopted Method I. However, if everything is correct, the two methods should be equivalent 
and produce similar results. It seems that the real data do not conform to some extent with 
the assumptions we made to derive the formulae. 

Estimates of the 7-correlations are presented in Tables 4A and 4B. The size of 7-correlations 
is much smaller than that of p-correlations as we expected. But it also reflects differences 
in mobility of the labour force with different characteristics as seen from the results of 
p-correlations. 

The overall trend of 7's is somewhat fuzzy, especially for the results from the 1985-87 data. 
There are about 25% of cases - a case is a row entry in the tables - in Table 4B which show 
an increasing trend. In those cases, the log-linear regression lines have a positive slope even 
though it is fairly small in magnitude. Moreover, in most of those cases, R-squares are small, 
which indicates that fittings by the log-linear model are not good. This does not mean, however, 
that there are other models which can fit the data better. Rather it means that no clear trend 
is exhibited. Among the cases that show a decreasing trend, about half of the cases have an 
R-square greater than 0.5. 

The resuhs from the 1980-81 data show a quite different picture. There is only one case that 
shows an increasing trend and most of the cases have R-squares > 0.5. In fact, the results for 
NS and BC look more reasonable than those for ONT as far as the trend is concerned. 

Table 3 

Comparison of Estimates of 72. 73. 74 and 75 Obtained by Different Methods 
(Ontario, 1980-81) 

Characteristic Method 72 73 74 75 

INLF 1 
2 

EMP 1 
2 

EMP AG 1 
2 

EMP NON-AG 1 
2 

UNEMP 1 
2 

Note: Methods 1 and 2 are defined by the formulae (3) and (4) in Section 3, respectively. 

0.141 
0.107 

0.136 
0.100 

0.483 
0.321 

0.150 
0.117 

0.074 
0.043 

0.128 
0.105 

0.142 
0.115 

0.474 
0.370 

0.147 
0.134 

0.076 
0.056 

0.133 
0.116 

0.142 
0.126 

0.486 
0.407 

0.157 
0.145 

0.063 
0.046 

0.135 
0.120 

0.147 
0.133 

0.451 
0.448 

0.163 
0.149 

0.080 
0.043 
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Table 4A 
Estimates of 7-Correlations 

(1980-81 Data) 

Prov Characteristic 

NS INLF 
EMP 
EMP AG 
EMP NON-AG 
UNEMP 

ONT IN LF 

BC 

Prov 

NS 

EMP 
EMP AG 
EMP NON-AG 
UNEMP 

INLF 
EMP 
EMP AG 
EMP NON-AG 
UNEMP 

Characteristic 

INLF 
EMP 
EMP AG 
EMP NON-AG 
UNEMP 
EMP 15-24 
EMP 25 + 
UNEMP 15-24 
UNEMP 25 + 

ONT IN LF 

BC 

EMP 
EMP AG 
EMP NON-AG 
UNEMP 
EMP 15-24 
EMP 25 + 
UNEMP 15-24 
UNEMP 25 + 

INLF 
EMP 
EMP AG 
EMP NON-AG 
UNEMP 

71 

0.288 
0.262 
0.351 
0.238 
0.106 

0.161 
0.164 
0.477 
0.184 
0.141 

0.177 
0.211 
0.380 
0.207 
0.126 

71 

0.250 
0.170 
0.326 
0.146 
0.233 
0.107 
0.088 
0.051 
0.155 

0.162 
0.114 
0.508 
0.133 
0.030 
0.012 
0.354 
0.068 
0.052 

0.103 
0.125 
0.394 
0.080 
0.096 

72 

0.263 
0.219 
0.308 
0.187 
0.176 

0.141 
0.136 
0.483 
0.150 
0.074 

0.137 
0.146 
0.311 
0.166 
0.125 

72 

0.238 
0.183 
0.296 
0.168 
0.267 
0.127 
0.075 
0.080 
0.129 

0.138 
0.122 
0.518 
0.140 
0.047 

-0.006 
0.358 
0.039 
0.054 

0.095 
0.100 
0.443 
0.067 
0.086 

73 

0.265 
0.228 
0.283 
0.189 
0.091 

0.128 
0.142 
0.474 
0.147 
0.076 

0.117 
0.133 
0.301 
0.161 
0.114 

74 

0.250 
0.226 
0.237 
0.180 
0.097 

0.133 
0.142 
0.486 
0.157 
0.063 

0.119 
0.107 
0.272 
0.129 
0.103 

75 

0.236 
0.219 
0.205 
0.164 
0.091 

0.135 
0.147 
0.451 
0.163 
0.080 

0.119 
0.101 
0.241 
0.108 
0.091 

Table 4B 
Estimates of 

73 

0.247 
0.205 
0.246 
0.199 
0.241 
0.140 
0.117 
0.042 
0.177 

0.141 
0.121 
0.553 
0.132 
0.055 
0.018 
0.349 
0.038 
0.033 

0.113 
0.112 
0.426 
0.076 
0.084 

76 

0.233 
0.239 
0.190 
0.151 
0.076 

0.136 
0.149 
0.474 
0.167 
0.051 

0.112 
0.083 
0.216 
0.093 
0.076 

77 

0.211 
0.210 
0.141 
0.123 
0.066 

0.125 
0.148 
0.459 
0.166 
0.045 

0.101 
0.050 
0.198 
0.069 
0.062 

7-Correlations 
(1985-87 Data) 

74 

0.230 
0.196 
0.245 
0.201 
0.211 
0.133 
0.108 
0.024 
0.171 

0.134 
0.122 
0.561 
0.140 
0.047 
0.031 
0.343 
0.058 
0.017 

0.103 
0.111 
0.401 
0.072 
0.080 

75 

0.216 
0.185 
0.265 
0.178 
0.206 
0.112 
0.100 
0.054 
0.148 

0.132 
0.117 
0.571 
0.157 
0.043 
0.017 
0.319 
0.033 
0.034 

0.090 
0.116 
0.396 
0.091 
0.083 

76 

0.204 
0.157 
0.267 
0.153 
0.168 
0.105 
0.099 
0.061 
0.159 

0.135 
0.124 
0.569 
0.156 
0.048 
0.023 
0.312 
0.026 
0.033 

0.090 
0.135 
0.400 
0.109 
0.097 

77 

0.181 
0.158 
0.234 
0.152 
0.171 
0.099 
0.090 
0.079 
0.158 

0.127 
0.119 
0.582 
0.168 
0.039 
0.011 
0.298 
0.008 
0.026 

0.091 
0.123 
0.401 
0.111 
0.068 

78 

0.199 
0.200 
0.113 
0.121 
0.063 

0.127 
0.150 
0.429 
0.169 
0.060 

0.112 
0.068 
0.170 
0.038 
0.092 

78 

0.196 
0.194 
0.217 
0.189 
0.176 
0.107 
0.103 
0.081 
0.127 

0.116 
0.108 
0.617 
0.182 
0.030 
0.011 
0.285 
0.018 
0.018 

0.083 
0.121 
0.381 
0.118 
0.074 

79 

0.193 
0.188 
0.063 
0.136 
0.066 

0.124 
0.153 
0.394 
0.174 
0.077 

0.094 
0.058 
0.122 
0.023 
0.032 

79 

0.189 
0.198 
0.259 
0.199 
0.157 
0.090 
0.099 
0.058 
0.102 

0.111 
0.110 
0.668 
0.204 
0.039 
0.016 
0.276 
0.011 
0.021 

0.078 
0.118 
0.347 
0.112 
0.068 

710 

0.167 
0.161 
0.021 
0.091 
0.032 

0.122 
0.141 
0.323 
0.156 
0.136 

0.066 
-0.033 

0.078 
-0.004 

0.040 

710 

0.162 
0.219 
0.269 
0.216 
0.187 
0.074 
0.137 
0.011 
0.134 

0.103 
0.112 
0.650 
0.205 
0.048 
0.044 
0.240 

-0.002 
0.044 

0.030 
0.095 
0.334 
0.106 
0.083 

711 

0.164 
0.172 
0.007 
0.086 
0.031 

0.117 
0.146 
0.368 
0.165 
0.074 

0.070 
-0.015 

0.071 
-0.020 

0.031 

711 

0.160 
0.198 
0.231 
0.201 
0.147 
0.082 
0.118 
0.049 
0.124 

0.101 
0.111 
0.672 
0.210 
0.041 
0.029 
0.246 

-0.006 
0.022 

0.055 
0.114 
0.345 
0.124 
0.071 
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Table 5 
Estimates of r-Correlations 

x,: EMP 15-24, X2: EMP 25 +, x^: UNEMP 15-24, x^: UNEMP 25 +, 
(1985-87 Data) 

Province 

NS 

ONT 

Characteristic 

(jfl,X2) 

(Xl,Xi) 

{Xl,Xi) 

(Xl'XZ) 

(X2,Xi) 

(xi,x^) 

Ul.-*^2) 

(̂ I.-»̂ 3) 
(X\,Xi) 

(X2,Xi) 

(X2,X^) 

(X3,X4) 

*0 

0.150 

-0.440 

-0.036 

-0.029 

-0.437 
0.136 

0.092 

-0.420 

-0.065 

-0.061 

-0.392 

0.058 

h 

0.140 

-0.275 

-0.040 

-0.037 

-0.374 
0.127 

0.070 

-0.267 

-0.056 

-0.054 

-0.303 

0.043 

r2 

0.148 
-0.187 

-0.043 

-0.078 

-0.276 
0.094 

0.055 

-0.205 

-0.053 

-0.054 

-0.230 

0.022 

h 

0.181 

-0.135 

-0.015 

-0.049 

-0.182 

0.055 

0.040 

-0.161 

-0.036 

-0.042 

-0.187 

0.013 

U 

0.187 

-0.039 

0.024 

-0.016 

-0.231 
0.049 

0.028 

-0.145 

-0.028 

-0.089 

-0.181 

0.022 

H 

0.196 

0.126 

0.022 

-0.038 

-0.094 
0.020 

0.010 

-0.010 

-0.019 

-0.074 

-0.077 

0.001 

4.3 Estimates of r-Correlations 

Table 5 contains estimates of r-correlations obtained from the 1985-87 data for all possible 
combinations of EMP 15-24 (denoted by Xj), EMP 25-h {X2), UNEMP 15-24 (X3) and 
UNEMP 25 -I- (X4). The correlations between Xi and X2 are positive as well as those between 
X3 and X4. Other correlations are mostly negative. In terms of magnitude, only the correlations 
pertaining to {Xi, x^) and {X2, X4) are quite different from zero. Others are close to zero. 
These observations seem to agree with what we understand about the movement of labour force 
between the employed and the unemployed in the same age group. When the employment 
increases, the unemployment decreases and vice versa. The trend is obviously upward in these 
cases. 

The data were fit by a log-linear model and r^'s were predicted. The model fitting seems 
reasonable except for the correlations between (^2, ^̂ 3) whose R-squares are very small in both 
provinces NS and ONT. 

4.4 Conclusions 

The estimation of correlations from complex survey data is a difficult problem. It is so 
not because the derivation of formulae is difficult - in fact, the formulae given here are 
elementary - but because there are many practical constraints in applying the formulae. If we 
had not made the assumptions in Section 3, the estimation of the panel correlations by using 
the existing computer program would have been impossible. On the other hand, these assump
tions should be conformable to the real data to which the formulae are applied. In our case, 
there seem to be some unconformable elements in the assumptions we made to the real data, 
which was indicated by the discrepancy in the results obtained by formulae (3) and (4) (see 
Table 3). Nevertheless, the estimates are not thought to be unreasonable. 

In a study of the composite estimator for the LFS, the results given in this paper were 
successfully used to compare various composite estimators (Kumar and Lee 1983). Recently 
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Binder and Dick (1990) proposed a method for analyzing Seasonal ARIMA models by taking 
the survey errors into account. They applied their technique to the LFS data using the estimated 
panel correlations. However, in cases when the results to be obtained by the use of the estimated 
panel correlations are sensitive to the accuracy of these estimates, the results should be inter
preted carefully. 
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First Wave Effects in the U.S. Consumer 
Expenditure Interview Survey 

ADRIANA R. SILBERSTEIN^ 

ABSTRACT 

Panel responses to the U.S. Consumer Expenditure Interview Survey are compared, to assess the magnitude 
of telescoping in the unbounded first wave. Analysis of selected expense categories confirms other studies' 
findings that telescoping can be considerable in unbounded interviews and tends to vary by type of expense. 
In addition, estimates from the first wave are found to be greater than estimates derived from subse
quent waves, even after telescoping effects are deducted, and much of these effects can be attributed 
to the shorter recall period in the first wave of this survey. 

KEY WORDS: Bounding; Telescoping; Recall Bias; Conditioning. 

1. INTRODUCTION 

Respondents to retrospective surveys are asked to recall details of events within a specific 
time interval, or reference period, and this task of identifying the correct time in which events 
occurred may be as difficult as remembering the events. Misdating, or "telescoping", is widely 
recognized as a source of error in surveys, although it is rarely studied directly (Neter and 
Waksberg 1965). Respondents tend to include in the report events that occurred outside the 
reference period (external telescoping), e.g., when events are recalled as more recent than they 
actually are (forward telescoping). Data that can be vdidated with independent records show 
that both forward and backward misdating errors are made by respondents (Mathiowetz 1985). 
This could be "due to the respondent's wish to perform the task required.... When in doubt, 
the respondent prefers to give too much information rather than too little" (Sudman and 
Bradburn 1974, p. 69). The net effect of telescoping is generally forward. Bounding methods 
are designed to create boundaries around the reference period of the survey report, and, in 
so doing, avoid misdating errors by respondents. A method for bounding the starting point 
of the reference period, best applied during the interview, involves comparing events reported 
in a prior interview and deleting duplicate reports. Extending the reference period up to the 
interview day is a method commonly used to bound the end of the reference period. 
"Unbounded" reports result by necessity from one-time surveys, and for questions asked only 
once or for the first time in panel surveys, since no prior data exist to check for erroneous 
inclusions. These effects can be reduced by including "anchoring" techniques during the 
interview, e.g. constructing a time line (Mingay 1987, p. 132). 

This paper is concerned with reporting levels experienced by first time respondents of panel 
surveys, and provides a comparative analysis of first and subsequent interview waves. The 
study investigates potential telescoping, conditioning, and recall length effects in estimates of 
household expenditures, based on data reported in the U.S. Consumer Expenditure (CE) 
Interview Survey for the year 1984. This survey is one of two independent components designed 
to collect national data on household expenditures, the other component being the Diary Survey. 

' Adriana R. Silberstein is a Mathematical Statistician, Office of Prices and Living Conditions, Statistical Methods 
Division, U.S. Bureau of Labor Statistics, Washington, D.C. 20212, USA. 
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The survey is conducted by the Census Bureau under contract to the Bureau of Labor Statistics. 
The first wave of the CE Interview Survey is used to establish cooperation, collect initial inven
tory data on household possessions, and bound the second wave. There are four subsequent 
waves of interviews three months apart, collecting data for the previous three calendar months 
up to the interview day. The bounding method is as follows. Expenses reported for the por
tion of the calendar month in which the interview takes place (or "current month") are later 
transcribed onto the next wave questionnaire; this information is available to the interviewer 
to check for duplicate reports, but is not read to respondents. Data collected during the first 
wave pertain to expenditures for the current month and for one previous calendar month; these 
latter expenditures are excluded entirely from the estimates, while current month expenditures 
become part of the second wave. More details on collection and estimation methods can be 
found in the 1984 Bulletin (U.S. Bureau of Labor Statistics 1986), and are discussed by 
Silberstein and Jacobs (1989). 

The findings underscore the need for bounding methods in retrospective data collection, 
since sizable telescoping effects may be present in unbounded recall. In addition, the analysis 
points out that first time responses may yield higher estimates even after telescoping effects 
are deducted. These first wave effects may be a direct result of the shorter recall in this wave 
of the CE Interview Survey, although other factors are not excluded. A discussion of the analysis 
used to identify telescoping effects is included in section 2, and estimates of telescoping and 
first wave effects are included in section 3. Conclusions can be found in section 4. 

2. IDENTIFYING TELESCOPING EFFECTS 

2.1 Method of Analysis 

One approach for identifying telescoping errors, discussed by Kalton et al. (1989, p. 257), 
is to examine whether there are duplicates in individual responses to consecutive waves. This 
micro-level approach is not necessarily accurate, as the respondent for a given household may 
change from one wave to the next. The method is also impractical, since independent records, 
needed to reconcile discrepancies on dates, may not be readily available. Duplicate responses 
may not be recorded as such in an ongoing survey, even when they are identified during the 
interview, as in the CE Interview Survey. More commonly, telescoping effects are evaluated 
at the aggregate level, by comparing estimates of unbounded and bounded responses, with 
certain precautions. Tracking the experience of several panels is advisable in order to over
come seasonal incomparabilities, since bounded responses are reported subsequently to 
unbounded responses and, therefore, do not refer to the same time interval. Another factor 
to account for in the comparisons is panel conditioning, a phenomenon that refers to changes 
in respondent behavior as a result of being part of a panel, or to changes in the quality of 
reports. The assumptions made and the method of estimation used in this study are discussed 
in section 3, whereas the preliminary testing procedure is described here. 

The first step in the analysis is to ascertain whether symptoms of external telescoping can 
be detected from the survey data. A level of reporting in the first wave that is higher than 
expected is an indication of telescoping. Unbounded interviews are known to yield higher 
estimates than bounded interviews, as documented in several studies that compared unbounded 
and bounded responses (Neter and Waksberg 1964 and 1965; Murphy and Cowan 1976; 
Cantor 1985). Another indication is the presence of differential effects across separate types 
of the collected data. Major sources of differences in the way events are retrieved and stated 
by respondents are recall bias and telescoping. The relationship of these factors suggests that 
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smaller expenses are forgotten as time increases, but larger more salient expenses, that tend 
to be remembered better, are more often telescoped. 

Telescoping errors can also occur in bounded responses, causing the forward shifting of 
data within the reference period (internal telescoping). While overall estimates do not change 
as a result of these effects, the distribution for the three recall months is affected. Reports of 
apparel and home furnishing and equipment expenses were selected for the study, because 
characteristics of these expenses were helpful in the analysis. These commodities include expen
ditures of various degree of salience, and were grouped accordingly. They also tend to differ 
by degree of underreporting. Many apparel estimates are 40% below the estimates from the 
National Accounts (NA), and several estimates for home furnishings and equipment are also 
lower than NA estimates. Estimates for furniture and selected equipment categories, on the 
other hand, are only 7% below the independent estimates (Gieseman 1987, p. 11), and higher 
reports in the first wave can be interpreted as the result of external telescoping. 

The hypothesis evaluated is whether the first recall month of bounded waves, i.e., the month 
prior to the interview, is reported similarly to the past month in the first wave. The Hotelling 
T^ was used to test differences in eight expenditure groups within each of the two commod
ities. Given two vectors of means in a repeated-measures design, a two-tailed .05-level test of 
Ho.Gp. = 0 (equality of means) versus // i : C/x ?i 0 was applied. Ho was rejected if: 

[{Gx)'{GSG')-^Gx]l[np/{n - {p - I))] > Fp,„_p+i(.05), (1) 

where i is a vector of sample means within each commodity (ordered as shown in the tables), 
S is the covariance matrbc computed with the method of balanced repeated replication 
{n = 20 replicates), C is the contrast matrix shown below, and;? is the number of contrasts 
inC. 

G = 
(pxlp) 

I 0 .. 0 
0 I .. 0 

0 0 .. I 

- I 0 
0 - I 

0 0 .. - I 

Simuhaneous confidence intervals for individual comparisons by group were derived using 
the Bonferroni method (Johnson and Wichern 1988), with percentile /„(.05/2p). Expenditure 
means were computed using a log transformation of individual expenses reported in the first 
recall month. Sample weights included adjustments for nonresponse and subsampling, but 
excluded final weight factors for population controls, which were not available for the first 
wave. Note that weight adjustments for the first wave were computed only as part of this 
research, since they are not needed in the ongoing estimation process. 

Data from waves 2 to 5 were combined, since differences between these waves were very 
small. Responses by participants in all five waves (3200 respondents) were selected to assure 
comparability between the waves and bounding of waves 2 to 5. Unbounded interviews are 
experienced by new panel respondents, e.g. new occupants at a sample address, and by 
respondents who do not participate in one or more wave during the panel. In 1984, 89% of 
the interviews in waves 2 to 5 were bounded, 8% were unbounded because respondents were 
new to the panel and 3% were unbounded resulting from a previous refusal or other non-
cooperation (Silberstein 1988). Estimates are affected by unbounded responses, as pointed out 
by Biderman and Cantor (1984), but this aspect is not treated directly in this study. 
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2.2 Test Results 

Comparisons between means are shown in Table 1 in the original scale, i.e., without the 
log transformation used in the statistical tests. The first wave displays higher means in nearly 
all expense groups, and the overall test is significant. The tests for the individual groups 
reveal that significant differences are found only for large expenditures, such as coats and 
jackets in apparel and appliances and furniture in home furnishings and equipment. The 
groups with significant differences are more represented in wave 1 than in other waves, not 
surprisingly: they account for 19% of total apparel and 72% of total home furnishings in 
the first wave, compared to 16% and 67%, respectively, in the first recall month of other 
waves, as shown in Table 2 (columns I and 2). A greater number of expenses are also reported 
in wave I for these groups of expenses (Table 2, columns 3 and 4). In addition, the average 
dollar value of reported expenses in wave 1 tends to be different from the other waves for 
big-ticket items {e.g., major appliances), but very similar for smaller items (Table 2, columns 
5 and 6). 

Table 1 
Percent Difference in Expenditure Means 

Wave 1 
Versus First Recall Month of 

Waves 2 to 5 

% Difference s 
(a) 

APPAREL: (b) 
Coats, jackets, furs, suits 
Trousers, slacks, jeans 
Shirts, blouses, tops 
Sweaters, dresses, skirts 
Undergarments, hosiery 
Miscellaneous and combined clothing 
Footwear 
Other apparel items and services 

Overall test value: 4.16* 

HOME FURNISHINGS AND EQUIPMENT: (b) 
Major appliances 
Other appliances 
Furniture 
Large household and entertainment equipment 
Other household and entertainment equipment 
Home furnishing repair and services 
Dishes, decorative items, linens 
Floor and window coverings 

Overall test value: 13.86* 

(a) Positive values indicate first wave mean is greater. Base of percentages is mean of first recall month in waves 2 to 5. 
(b) Commodity totals not included in overall test. 
5 Standard error of percent difference. 
• Significant (a = .05). 

14.5* 

39.6* 
13.6 
9.7 

16:4 
6.9 

- 2 . 5 
2.1 

27.4 

48.6* 

76.1* 
56.3* 

111.0* 
34.2* 
19.1* 
7.0 

14.0 
52.5 

4.9 

12.9 
9.5 
5.6 
4.7 
5.4 
7.3 
6.1 

25.4 

8.4 

27.5 
17.0 
24.8 
16.0 
7.1 

14.6 
16.0 
24.3 
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Table 2 
Comparisons of First Wave and First Recall Month of Subsequent Waves 

Percent 
of 

Total 
Expenses 

Percent 
of Total 

Number of 
Expenses 

Wave 
1 

Waves 
2 to 5 

Wave 
1 

Waves 
2 to 5 

(1) (2) (3) (4) 

Average 
Dollar 

Value of 
Expenses 

Wave Waves 
1 2 to 5 

(5) (6) 

APPAREL: 100.0 100.0 100.0 100.0 

HOME FURNISHINGS AND 
EQUIPMENT: 100.0 100.0 100.0 100.0 

$ 35 

$123 

$ 33 

Coats, jackets, furs, suits 
Trousers, slacks, jeans 
Shirts, blouses, tops 
Sweaters, dresses, skirts 
Undergarments, hosiery 
Miscellaneous and combined clothing 
Footwear 
Other items and services 

19.2 
10.7 
10.0 
14.3 
5.2 

15.5 
11.7 
13.5 

15.7 
10.8 
10.4 
14.0 
5.6 

18.2 
13.1 
12.2 

9.3 
10.6 
12.0 
13.0 
16.8 
15.4 
12.8 
10.1 

8.6 
9.8 

12.2 
12.4 
16.7 

16.4 
13.6 
10.4 

71 
36 
31 
38 
11 

36 
33 
45 

59 
35 
29 
37 
11 

38 
31 
40 

$ 92 

Major appliances 
Other appliances 
Furniture 
Large household and entertainment 
equipment 

Other household and entertainment 
equipment 

Home furnishing repair and services 
Dishes, decorative items, linens 
Floor and window coverings 

11.4 
2.3 

28.3 

19.7 

10.7 
4.7 

12.9 
10.0 

9.6 
2.2 

19.9 

21.8 

13.4 
6.6 

16.8 
9.8 

4.2 
9.2 
8.9 

8.8 

22.7 
8.4 

33.1 
4.6 

3.4 
7.1 
7.5 

7.6 

22.8 
9.5 

37.5 
4.5 

370 
29 

385 

262 

58 
67 
46 

294 

277 
30 

251 

266 

56 
65 
39 

172 

These differences can be interpreted in several ways, e.g., they may indicate that more expen
sive purchases are reported in the first wave, or that purchases reported in the first wave are 
remembered as more expensive. Another interpretation is that a period of time longer than 
a month may be covered by respondents when the recall is unbounded, especially for large, 
easily remembered, expenses. In Table 3, comparisons by wave are extended to include the 
three recall months of subsequent waves. The findings are consistent with the previous tests, 
but tend to narrow in on the issue of telescoping effects. These comparisons are made on the 
basis of reporting rates according to the dollar value of the expense. The reporting rate is defined 
as the percentage of respondents reporting one or more expense of a given type. Note that indi
vidual expenses are generally entered on the questionnaire, with the exception of expenses for 
the same item, month and person in the family, which are usually reported as combined totals 
and counted as one "expense". 
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Table 3 
Monthly Reporting Rates by Expense Size 

APPAREL: 
No Apparel Expenses (a) 

Less than $10 
$ 10 to $ 40 
$ 40 to $100 
$100 and over 

Wave 1 vs 1st recall month of waves 2 to 5 
Overall test value: 29.1* 

Wavel 
Waves 2 to 5 

by Recall Month 

First Second Third 

(1) 

28.8 
38.4 
57.9 
35.1* 
17.0* 

Percent of respondents 
(2) 

29.3 
37.7 
55.2 
31.0 
13.7 

(3) 

38.2 
27.9 
45.3 
26.5 
11.5 

(4) 

45.5 
25.4 
41.0 
21.0 

8.8 

HOME FURNISHINGS AND 
EQUIPMENT: 

No Home Furnishing Expenses (a) 
Less than $10 
$ 10 to $ 40 
$ 40 to $100 
$100 to $400 
$400 and over 

Wave 1 vs 1st recall month of waves 2 to 5 
Overall test value: 17.0* 

48.1* 
12.3 
30.9 
21.3* 
18.7* 
8.6* 

51.2 
12.5 
30.0 
18.4 
13.8 
5.6 

58.5 
7.5 

25.0 
14.9 
12.1 
5.1 

62.4 
7.5 

22.1 
12.8 
10.3 
4.6 

(a) Category included in overall test. 
* Significant (a = .05). 

Consistent with the previous comparisons, the overall test is significant and the individual 
comparisons show that significantly more respondents report expenses of $100 or more in the 
first wave; reporting rates for smaller expenses are not significantly different, instead. When 
the three recall months are examined, the reporting rates for the first recall month appear to 
be closer to the first wave than to the other two months. The three recall months in waves 2 
to 5 show a famiUar pattern of decreased reporting, and noteworthy is the increase in the percent 
of respondents reporting "no expenses". This pattern is evident in each panel wave, as 
documented by Silberstein and Jacobs (1989) and further studied by Silberstein (1989), and 
is more likely due to recall effects than telescoping. When reporting rates are recomputed to 
include only respondents that report the commodity, it is found there are more similarities 
among the three recall months in subsequent waves than with the first wave. (The rates can 
be derived from Table 3, by using the percentage of reporters with expenses as the base.) These 
reporting rates for home furnishing items of $100 and over are 53% in the first wave and 40%, 
41%, and 40%, respectively, in the three recall months of other waves. For apparel items of 
$100 and over the rates are 24% in the first wave and 19%, 19%, and 16%, respectively, in 
the three recall months of other waves. These differences are beUeved to be symptomatic of 
external telescoping in the unbounded recall. 
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3. ESTIMATING TELESCOPING AND FIRST WAVE EFFECTS 

3.1 Telescoping Effects 

The hypothesis of equality of means impUed the response task in the first wave is similar 
to the one experienced for the first recall month in subsequent waves. The data did not sup
port the hypothesis, since differential effects were found, suggesting external telescoping in 
the first wave. The results tend to agree with the notion, forwarded by Loftus (1986, p. 196), 
that internal telescoping may "arise from a different cognitive mechanism" than external 
telescoping. A general definition of external telescoping (j3), on a monthly basis and assuming 
no panel conditioning, is given by the ratio of unbounded one month recall (with sample mean 
Xu) and bounded one month recall (with sample mean Xg): 

p = {EXfj/EXe) - 1. (2) 

This expression may be an overstatement since conditioning effects contribute to lower values 
for the bounded mean. Panel responses commonly display a downward trend, due to decreased 
reporting with increasing time-in-sample (TIS) (Bailar 1989). Conditioning effects (a) between 
two consecutive waves can be defined by the ratio of the two responses (with sample means 
je,and Je,+ i): 

a = 1 - {EXj+i/EXj). (3) 

A number of assumptions were made to develop telescoping estimates from the survey data. 
Expenditure means of bounded one month recall, needed for comparisons with the first wave, 
cannot be obtained directly from the three month recall. Monthly means computed by dividing 
the bounded three month recall by a factor of three are not acceptable, considering the recall 
loss evident in the third recall month of the CE Interview Survey. As an alternative, the first 
and second recall months were used to estimate bounded monthly means, assuming that recall 
bias in the second month is moderate and telescoping into the first recall month is mostly from 
the second recall month. The estimating method is an adaptation of the model developed by 
Neter and Waksberg in analyzing the 1960 experimental study of expenditures for Residential 
Alterations and Repairs (Neter and Waksberg 1964 and 1965). The model implies that tele
scoping and conditioning effects are multiplicative and conditioning compounds with time-in-
sample. Since conditioning effects are derived from relationships observed between second and 
third waves, two terms are necessary when estimating (2) under the assumption of conditioning. 
An estimate of telescoping is therefore: 

be = (%/JfB)(l - a)(l - a/2) - I. (4) 

The derivation of (4) is given in the appendix. The conditioning rate {a) was assumed to 
be constant between waves, considering the special subset of respondents in all five waves. 
(The Neter/Waksberg model assumed greater effects between the first and second wave.) 
Time-in-sample effects appear to be small in the CE Interview Survey, judging from a study 
that compared responses in waves 2 to 5 (Silberstein and Jacobs 1989). An explanation for this 
may be that declines in reporting are offset by improvements in reporting, as respondents 
become more knowledgeable about the reporting process. Two conditioning assumptions 
provided two estimates of telescoping effects, using (4): a = 0 (no conditioning), and a > 0 
conditioning, equal to the rate observed between second and third waves. Four apparel groups 
and three home furnishing and equipment groups showed some decline from second to third 
waves, displayed as positive proportions in column 5 of Table 4. These ratios, while not 
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Table 4 
Telescoping Estimates Based on Expenses 

Telescoping effects be 

If a = 0 If a > 0 

% s 'Vo i 

TIS effects 

APPAREL: 

Coats, jackets, furs, suits 
Trousers, slacks, jeans 
Shirts, blouses, tops 
Sweaters, dresses, skirts 
Undergarments, hosiery 
Miscellaneous and combined clothing 
Footwear 
Other items and services 

HOME FURNISHINGS AND 
EQUIPMENT: 

Major appliances 
Other appliances 
Furniture 
Large household and entertainment 
equipment 

Other household and entertainment 
equipment 

Home furnishing repair and services 
Dishes, decorative items, linens 
Floor and window coverings 

(1) 

28.4 

(2) 

7.0 

a Time-in-sample (TIS), or conditioning, effects when positive. 
J Standard error of percent difference. 

(3) (4) (5) 

-0.02 
46.2 
30.3 
27.7 
28.3 
22.2 

5.2 
18.1 
54.9 

63.1 

95.4 
76.4 

113.3 

38.7 

26.2 
15.6 
45.4 
89.4 

14.2 
8.6 
7.8 
5.9 
6.9 
9.5 
7.1 

35.8 

8.9 

30.7 
16.1 
25.2 

13.1 

8.9 
14.5 
14.4 
38.0 

-
12.3 
17.6 
8.7 
7.2 

-
-
-

. 

-
36.0 

-

36.5 

_ 
-
-

66.8 

-
11.8 
16.7 
15.0 
12.7 

-
_ 
-

. 

_ 
19.7 

-

33.7 

_ 
-
-

68.7 

-0 .01 
0.10 
0.05 
0.11 
0.08 

-0 .18 
-0 .08 
-0 .15 

-0 .04 

-0 .03 
0.16 

-0 .05 

0.01 

-0 .11 
-0 .29 
-0 .06 

0.08 

significant (.05 level), were applied as the conditioning loss between the first and the second 
wave. Net increases in reports were not considered realistic for the unknown conditioning 
between these two waves. 

The results give indications of the increase that would occur in the estimates in the absence 
of bounding. Table 4 shows estimates of telescoping effects in percentage form, excluding 
conditioning effects (column 1), and including them (column 3). Telescoping levels of 40% 
or higher are estimated for "Coats, etc.'' and "Other items and services" (a group that includes 
watches and jewelry), but much lower levels are estimated for other apparel groups. High 
telescoping levels (63%, on average) are estimated for home furnishing and equipment expenses. 
Telescoping estimates decrease considerably when some conditioning effects are taken into 
account, and would be even lower if greater conditioning effects were assumed between wave 
1 and wave 2. While these estimates are affected by sampling variability and the assumptions 
made, the results are consistent with findings reported in other surveys. Neter and Waksberg 
(1965) reported average telescoping effects of 55% with no conditioning losses and 39% with 
conditioning losses, for home improvement expenditures; telescoping effects were much lower 
for small jobs. Telescoping effects derived from the 1974/75 Crime Survey indicated telescoping 
effects of 44% for personal victimization incidents and 40% for property victimization 
(Murphy et al. 1976). 
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3.2 First Wave Effects 

Differences in responses between first and subsequent waves reflect many cognitive aspects 
of panel interviews. This section discusses some of the factors involved, and includes a 
preliminary investigation of net effects. Provided that respondents participate in the whole 
panel, there is a progressive relationship between respondent and interviewer and more clear 
expectations on both sides. Quite a few interview conditions change, however. While in some 
panel surveys subsequent waves may be presented as follow-ups to the first wave, in the CE 
Interview Survey respondents are asked to report for a period of time three times as long after 
the first wave and detailed income information is asked in waves 2 and 5. This greater reporting 
load, and a resulting faster interview pace, has a negative impact on reporting levels, even for 
the first recall month of these waves. More expense records, e.g., check books and bills, may 
be used in these waves compared to the first wave, making the bounded reports less likely to 
be affected by telescoping within the three recall months. The first wave is an easier interview, 
especially with regard to categories of expenses sensitive to the length of the reference period 
and the number of persons in the household, e.g. apparel expenses. The relative importance 
of these factors should be researched in field and laboratory studies. 

Separate estimates of first wave means, net of telescoping, were developed using the two 
sets of telescoping effects shown in Table 4. These means {Xgi) were derived by dividing the 
unbounded means by the telescoping estimates: 

XBI =Xu/{l + be). (5) 

Results are summarized by commodity in Table 5. Both estimates of net first wave means are 
higher than means of waves 2 to 5 for all recall months combined, shown in column 2. The 
total apparel mean is 10% higher in the first wave when conditioning effects are not included, 
and 16% higher when they are included. The home furnishing and equipment means are also 
higher, but at a smaller scale: 3% without conditioning and 5% with conditioning. These 
estimated effects, remaining after telescoping, are interpreted as resulting from the shorter recall 
period and lesser reporting load in the first wave. The differences between the two commodities 
and the results for specific groups of expenditures imply that potential gains in reporting tend 
to increase for smaller expenses, but become quite marginal for big-ticket items. 

Table 5 

Summary Comparisons of FirstWave and Subsequent Waves 
Annual Expenditure Means (Standard errors) 

APPAREL 

HOME FURNISHINGS AND 
EQUIPMENT 

Wave 1 

Waves 
2 to 5 

All Recall 
Months 

(a) 

Waves 
2 to 5 
First 
recall 

Month 

Wave I Net of 
Telescoping 

Assuming Assuming 
no TIS TIS 
Effects Effects 

(1) 

$1,663 
(59.6) 

$1,972 
(85.0) 

(2) 

$1,182 
(61.7) 

$1,179 
(59.7) 

(3) 

$1,452 
(71.0) 

$1,327 
(73.1) 

(4) 

$1,295 
(66.2) 

$1,209 
(61.5) 

(5) 

$1,370 
(n.a.) 

$1,235 
(n.a.) 

(a) Means differ from published 1984 estimates, due to special subset of respondents and missing final weight factors. 
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4. CONCLUSIONS 

This paper provides an investigation of potential telescoping effects in unbounded inter
views. These effects appear to be considerable, especially for more salient or prominent events. 
Results from the U.S. Consumer Expenditure Interview Survey indicate that estimates of large 
infrequent expenses, based on unbounded one month recall, may be between 30% and 50% 
overstated. Lower overstatement levels are more likely in estimates of small frequent expenses. 
These findings are in close agreement with other studies on the subject. The study demonstrates 
that external telescoping effects are much greater than internal telescoping effects within a three 
month recall period of subsequent waves. In addition, the first wave of the panel survey studied 
was found to exhibit higher means than the overall means for subsequent waves, even after 
estimated telescoping effects were deducted. Since the first wave in this survey has one month 
recall, it is concluded that considerable improvements in reporting levels can be expected from 
a shorter recall. The potential gains are estimated to be at least 10% for frequent expenditures, 
but would become marginal as the value of the expenditure increases. 

Although the one month recall is viewed as the major reason for the higher estimates, 
other factors are not excluded. Conditioning effects, assumed constant in this study, may 
vary between waves. Estimates of one month recall would be even greater, if higher condi
tioning effects were assumed between the first and second waves. Cognitive aspects of the 
interview, e.g., respondents cooperation and involvement, and interviewers' approach to 
collecting data, should be researched in order to understand panel conditioning. The issue of 
differential effects by type of expenditure should also be addressed within this context. Field 
and laboratory studies of these data collection aspects would have implications for improving 
panel survey methodology. 
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APPENDIX 

(1) Explanation of Selected Expenditure Groups 

SELECTED APPAREL 
Miscellaneous and combined clothing: nightwear, loungewear, accessories, uniforms, 
and clothing items for infants under 2. 

Other apparel items and services: watches, jewelry, sewing materials for making clothes, 
repair and alteration services, and clothing rental or storage. 

SELECTED HOME FURNISHINGS AND EQUIPMENT 

Other appliances: small electric kitchen and personal care appliances. 

Large household and entertainment equipment: lawn mowers, window air conditioners, 

televisions, sound equipment, and bicycles. 

Other household and entertainment equipment: radios, tape recorders, tools, calculators, 
camping or sports equipment, and infants equipment. 

(2) Estimates of Telescoping Effects 

(Adapted from: Neter and Waksberg (1965), 33-37). 

For each expenditure group 

Let: % = unbounded one month recall sample mean; 

XB = bounded one month recall sample mean, not directly observed in the CE Interview 
Survey; 

X2,Xi = one-month-average sample means from waves 2 and 3, respectively, computed using 
first and second recall months. 

Define: Telescoping effect /3, assuming no conditioning 

p = {EXU/EXB) - 1. (1) 

Conditioning effect, a, between two consecutive waves 

a = I - {EXj+i/EXj). (2) 

Then, assuming telescoping compounds on conditioning, 

l8c= {EXU/EXB) {I - a) - I (3) 

is the telescoping effect under conditioning. 

Using the estimated conditioning effect between 2nd and 3rd waves, a = I - (.?3/.f2). the 
estimated mean for bounded one month recall is: 

XB = {X2 + Xi)/2 

= {X2 + Je2(l - a ) ) /2 

= Je2(l - a/2). (4) 

Assuming a constant rate of conditioning and using (3) and (4), an estimate of the telescoping 
effect under conditioning, be, is: 

be = {XU/XB) (I - a) (1 - a/2) - 1. (5) 
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Symmetry in Flows Among Reported Victimization 
Classifications with Nonresponse 

ELIZABETH A. STASNY^ 

ABSTRACT 

The United States' National Crime Survey is a large-scale, household survey used to provide estimates 
of victimizations. The Natioiial Crime Survey uses a rotating panel design under which sampled housing 
units are maintained in the sample for three-and-one-half years with residents of the housing units being 
interviewed every six months. Nonresponse is a serious problem in longitudinal data from the National 
Crime Survey since as few as 25% of all individuals interviewed for the survey are respondents over an 
entire three-and-one-half-year period. In addition, the nonresponse typically does not occur at random 
with respect to victimization status. This paper presents models for gross flows among two types of 
victimization reporting classifications: number of victimizations and seriousness of victimization. The 
models allow for random or nonrandom nonresponse mechanisms, and allow the probabilities underlying 
the gross flows to be either unconstrained or symmetric. The models are fit, using maximum likelihood 
estimation, to the data from the National Crime Survey. 

KEY WORDS: Categorical data; Ignorable nonresponse; Longitudinal survey; National Crime Survey; 
Nonignorable nonresponse. 

1. INTRODUCTION 

The United States' National Crime Survey (NCS) is a large-scale, household survey con
ducted by the U.S. Bureau of the Census for the Bureau of Justice Statistics. Data from the 
NCS is used to produce quarterly estimates of victimization rates and yearly estimates of the 
prevalence of crime. The survey uses a rotating panel of housing units (HU's) under which 
individuals living in sampled HU's are interviewed up to seven times at sbc-month intervals. 

Individuals interviewed for the NCS are asked about crimes committed against them or 
against their property in the previous six months. In this work, we begin to explore the vic
timization status reported by households (HH's) within sampled HU's from one interview to 
the next. Victimization status for a HH will be considered in two ways: by the number of crimes 
reported (zero, one, and two or more) and by the type of crime reported (no crime, property 
crime, and personal contact crime). 

Since responses are not available from one NCS interview period to the next for all HH's, 
we must decide how to handle missing observations. The nonresponse problem is a serious 
problem in the longitudinal data available from the NCS. For example, Fienberg (1980) noted 
that complete, three-and-one-half-year records of NCS interviews are available for as few as 
25% of all individuals interviewed. In addition, the nonresponse typically does not occur at 
random with respect to victimization status (see, for example, Saphire (1984)). 

This work extends the models developed by Stasny (1986) for nonrandom nonresponse in 
estimating gross flows. In particular, the models presented here allow for symmetry in the matrbc 
of flows among victimization classifications as well as allowing for completely random 
nonresponse, ignorable nonrandom nonresponse, or nonignorable nonresponse. 

' Elizabeth A. Stasny, Department of Statistics, The Ohio State University, 1958 Neil Avenue, Columbus, Ohio 
43210, USA. 
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Section 2 of this paper provides a brief description of the NCS and the longitudinal data 
from the survey. Section 3 gives a general form of the models for symmetry in gross flow 
matrices with missing data and presents iterative procedures for obtaining maximum likelihood 
estimators (MLE's) for the parameters of the models. Section 4 describes the fits of the models 
to data from the NCS. Section 5 presents conclusions and suggests areas for future research. 

2. THE NATIONAL CRIME SURVEY AND DATA 

2.1 Survey Design 

The NCS is a stratified, multi-stage, cluster sample of HU's. The survey was begun in July 
1972 by the Law Enforcement Assistance Administration but has been administered by the 
Bureau of Justice Statistics since December 1979. The target population for the NCS is the 
civilian, non-institutionalized population of persons aged 12 and over living in housing units. 
The survey provides information on personal and household crimes committed against the indi
viduals in sampled HU's. The following crimes and attempted crimes are covered by the NCS: 
assault, auto or motor vehicle theft, burglary, larceny, rape, and robbery. Crimes not covered 
by the survey include kidnapping, murder, shoplifting, and crimes that occur at places of business. 

The NCS uses a rotating panel design under which a sampled HU is maintained in the sample 
for three and one-half years with interviews conducted at sbc-month intervals for a total of seven 
possible interviews. The initial interview at each HU, however, serves as a bounding interview 
and is not used for the purpose of estimation. Although there is a sbc-month interval between 
interviews at any one HU, NCS interviews are conducted in every month of the year; in order 
to make efficient use of trained interviewers, one-sbcth of the HU's in the sample are scheduled 
for interviews each month. Since the sampling unit for the NCS is the HU, no attempt is made 
to follow individuals who move away from the HU during the three-and-one-half-year period. 
Rather, new individuals entering the HU are included in the survey. Each different group of 
individuals who live in a HU during its time in the NCS sample is considered a separate HH. 

NCS interviews are conducted for all individuals 12 years of age or older who live in the 
sampled HU at the time of the interview. During the interview, individuals are asked about 
crimes committed against them or against the household in the previous six months. A single 
HH respondent is asked a series of six screening questions to elicit information on crimes com
mitted against the HH (burglary, larceny, and motor vehicle theft). Then an eleven-question 
screener is used to elicit information from each individual in the HH concerning personal crimes 
committed against that individual (assault, rape, and robbery). An incident report is completed 
for each crime mentioned in response to the screening questions. 

Additional information on the design and history of the NCS is provided, for example, by 
the U.S. Department of Justice and Bureau of Justice Statistics (1981), Saphire (1984), Dodge 
and Skogan (1987), and Montagliani (1987). A new sample design for the NCS has been used 
since January 1986. Taylor (1987) describes the redesign of the NCS and research associated 
with the redesign effort. The data used in this work, however, were collected under the original 
NCS design. 

2.2 The Longitudinal Data 

The data used in this work are from a large, longitudinal data set which includes all the 
regular NCS interview information collected from January 1975 to June 1979 except for the 
HU's that rotated into the sample in 1979. To make it easier to handle the data, this research 
uses only a subset of the data. The subset was created by taking a random start at the record 
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for the eighth HU in the full data set and then every fifteenth record after that. The resulting 
data set contains NCS records for 12,432 HU's. Because the HU's on the original longitudinal 
file are ordered in such a way that units from the same cluster appear together, the l-in-I5 
systematic sample should not include two or more HU's from a single cluster. Thus, this research 
does not consider the problem of correlations among HU's within clusters. 

2.3 Flows Among Victimization Classifications 

The hierarchical, longitudinal data were used to create summary matrices for the years 1975, 
1976, 1977, and 1978 showing flows among reported victimization classifications from each 
HH's first interview in a year to the HH's second interview for the year. Note that, since NCS 
interviews are conducted every month of the year, the first interview may occur at any time 
from January through June and the second interview may occur in July through December. 
Depending on the month of the interview, the victimizations reported in the first interview are 
those that occurred between the previous July and May while those reported in the second inter
view occurred between January and November. Thus, the analysis here explores only the 
reporting of crimes from one interview to the next. It cannot, for example, address issues of 
change in victimization reporting at various times of the year except in a very general sense. 

It should be noted that during the time when the data were collected, a reference-period 
experiment was conducted using a sample of NCS HU's. Since individuals in HU's included 
in the experiment were asked to report victimizations for reference periods other than the usual 
six-month period, those HU's were not used in this analysis. 

For the analyses here, each HH interviewed at least once during a given year was classified 
according to its reporting and victimization status at the two interview times. A victimization 
may have been reported by any member of the HH and may be against an individual or against 
the HH. Two sets of matrices showing victimization classifications are used in the analyses 
of Section 4. The matrices are given in Appendix I. 

The first set of matrices show cross-classifications of HH's by the number of victimizations 
reported in the first and second interviews for each year. The classifications are: crime free 
(no victimizations reported), single crime (one victimization reported), multiple crime (two or 
more victimizations reported), and missing (HH did not respond or rotated out of the sample). 
The second set of matrices show cross-classifications of HH's by the type of victimization 
reported. The classifications are: crime free, property crime (burglary, larceny, and motor 
vehicle theft), contact crime (rape, assault, robbery, purse snatching, and pocket picking), and 
missing. These type-of-crime groupings are the same as those used in the NCS. In cases where 
multiple crimes were reported by a single HH, the classification used is for the most serious 
crime reported (contact crimes are taken to be more serious than property crimes). 

Notice the large amount of nonresponse in the observed matrices shown in Appendbc I. Only 
about 50% of the HH's who responded in at least one of the two interviews responded at both 
interview periods. The models presented in the following section, will allow us to handle this 
nonresponse while exploring the structure of the underlying matrix of probabilities of flows 
among the victimization classifications. 

3. THE MODELS 

This section presents a general form of the models that will be used to explore gross flows 
among victimization classifications in the NCS data. The form of the models follows that pro
posed by Chen and Fienberg (1974) for contingency tables with completely and partially 
classified data. The models for nonresponse are those developed by Stasny (1986) as well as 
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a model for random nonresponse. The model for symmetry in the flows, however, does not 
appear in the previous work. The models are presented in a general form because they are 
applicable to problems other than estimating gross flows among victimization classifications 
using NCS data. 

3.1 Model for the Observed Data 

Consider observation units that respond to a survey in at least one of two interview periods. 
Suppose that, when a unit responds to the survey, that unit is classified into one of A" classifica
tions. If a unit does not respond to the survey, that urut is classified as missing. Then the 
interview-to-interview flow data may be represented as in Table I. 

Table 1 
Summary of Observed Data 

Time 2 
K Missing 

Time 

1 

1 

2 

K 

Missing 

^11 

X21 

• 

XKI 

XM\ 

xn 

X22 

XK2 

XM2 

XlK 

X2K 

XKK 

XMK 

X\M 

XlM 

XKM 

» 

where Xjj = number of units with survey or missing status / at time I andy at time 2. 

We suppose that each unit would fall into one of the cells of theK x K matrix of survey 
classifications if it were observed at both interview times. Letpjj be the probabiUty that a unit 
has status / at time I and statusy at time 2, where / andy take on the values 1,2, ..., K. Each 
unit in the {i,j) cell of the matrix of survey classifications has a chance of being missing at 
one of the two survey times. Let X,y be the probability that a unit in the {i,j) cell loses its 
classification at time t and, hence, is classified as missing at that time. Then the probabilities 
underlying the observed data are as shown in Table 2. 

Time 
1 

Table 2 
Probabilities Underlying Observed Data 

Time 2 
K 

[(1 - Xly - \2ij)Pij] 

Missing 

Missing 
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Assuming that the Pjj are probabilities from a multinomial distribution, the likelihood 
function for the observed data is proportional to 

K K 

'^ 1=1 J=l -^ 

/ = ! "-^=1 

(n[,l--r] 
There are 3/:^ -f 2^^ - 1 free parameters defined above and only AT̂  -I- 2 ^ observed cells of 
data with a single constraint on the total sample size. Thus there are too many parameters to 
estimate using the observed data and we must reduce the number of parameters in the model. 
In the following we reduce the number of parameters to be estimated by considering two models 
for the /7y-parameters and six models for the X,y-parameters. 

3.2 Models for the p and X Probabilities 

We consider two models for thepjfs, the probabilities of flows among survey classifica
tions: the unconstrained model and the model of symmetric flows. Under the model of 
unconstrained flow probabilities, there is a different probability, p,j, for every {i,j) cell of 
the flow matrix. Under the model of symmetric flows, we havepjj = Pjj for / T^ j so that the 
probability that a unit has survey classification / at time 1 andy at time 2 is the same as the 
probability that a unit has survey classification y" at time 1 and / at time 2. Note that symmetry 
in the cell probabilities of the flow matrix implies equality of row and column marginal totals. 
Thus the model of symmetry in flow probabilities implies a certain stability in the population 
since the expected number of units with a particular survey classification at time 1 is the same 
as the number with that classification at time 2. 

As defined above, the X,y's, the probabilities that units with survey classifications / at time 
1 andy at time 2 are missing at time t, depend on the time at which the nonresponse occurs 
and on the survey classifications at both times 1 and 2. We consider six simpler models for 
these probabilities. These models, along with the associated degrees of freedom under both 
models for thepjj, are given below: 

Model R: X,y = X, 

Model A: Xiy = Xjy, X2,y = X2,-, 

Model B: X,y = X,, 

Model C: Xnj = \j, \2ij = X,-, 

Model D: Xjy = Xj,, X2,y = X2y, 

Model E: Xnj = X,-, X2y = Xy, 

d.f. unconstrained Py 

2K - 1 

0 

2K - 2 

K 

0 

K 

d.f. symmetric Pjj 

{K^ -\- 3K - 2)/2 

{K^ - K)/2 

{K^ -^- 3K - 4)/2 

{K^ + K)/2 

{K^ - K)/2 

{K^ 4- K)/2 
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Model R is the model of random nonresponse. Under Model R, there is a single probability 
of nonresponse for all units at both times regardless of survey classification. Under Model A, 
the probability that a unit is missing at time t depends on both the time and the survey classifica
tion at the time when the unit responds. Note that if Model A is used for the X-parameters and 
the unconstrained model is used for thep,y, then the model is a saturated model which will 
fit the data exactly. Under Model B, the probability that a unit is missing at time t depends 
only on the time. Under Model C, the probability that a unit is missing at time / depends only 
on the unit's survey classification at the time when the unit responds. Under Model D, the pro
bability that a unit is missing at time t depends on both the time and the survey classification 
at the time when the unit is missing. If Model D is used for the X-parameters and the 
unconstrained model is used for thepjj, then the model is a saturated model which will fit the 
data exactly. Under Model E, the probability that a unit is missing at time t depends only on 
the unit's survey classification at the time when the unit is missing. 

Under Model R, nonresponse is said to be completely at random. Under Models A, B, and 
C, nonresponse is said to be ignorable nonresponse in that the nonresponse mechanism depends 
only on the observed data. Nonresponse under Models D and E is nonignorable nonresponse 
since the nonresponse mechanism depends on the missing data. (See Little and Rubin (1987) 
for more information on the types of nonresponse.) 

In the following two subsections, we describe procedures for fitting the models presented 
above. The fits of the models can be assessed using either the Pearson X^ statistic or G^, the 
likelihood ratio statistic. Both statistics have asymptotic x^ distributions, with degrees of 
freedom as shown above, given that the model is correct. In the following we use the notation 
"Model R-U" to denote the pairing of Model R for the X-parameters and the unconstrained 
model for thepjj. "Model R-S" will denote the pairing of Model R for the X-parameters and 
the symmetric model for thepjj. Similar notation will be used to denote the pairings of Models 
A, B, C, D, and E for the X-parameters with one of the two models for the Pjj. 

3.3 Estimation of thep and X Parameters Under Models R, A, B, and C 

The likelihood functions for the eight models created using one of the two models for the 
Pjj and Model R, A, B, or C for the X,y factor into two pieces: one piece a function of the 
/7-parameters alone and one a function of the X-parameters alone. Thus, the MLE's may be 
found separately for the two sets of parameters. In addition, thep-parameter estimates do not 
depend on which of these four models is used for the X-parameters, and the X-parameter 
estimates do not depend on which of the two models is used for the p-parameters. 

An iterative procedure for obtaining MLE's for thep-parameters under the unconstrained 
model paired with Model R, A, B, or C for the X-parameters is given in Chen and Fienberg 
(1974). The equations for this procedure are provided in Appendix II. 

Under the symmetric model for thep-parameters paired with Model R, A, B, or C for the 
X-parameters, the factor of the likelihood equation involving only thepjj's is as follows: 

^ 1 = 1 ^ ^ 1 = 1 j=i+l •' ^ i=l j=l -^ 

X fnp,^'A/j X f n ^ / ^ ^ - j , (1) 
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where a dot in a subscript indicates summation over that subscript. Equation (1) is maximized 
subject to the constraint that the sum of thepjj's is one. In general, an iterative procedure is 
required to obtain the MLE's. Letx.. = ^fLiEJLiXy be the total number of units observed 
at both times and let n = x.. -\- x.^ + XM.be the total number of units observed in at least 
one of the two interview times. Then the iterative procedure used in the data analysis reported 
in Section 4 is as follows: 

Iterative Procedure for Estimating Symmetric pij Under Models R, A, B, and C 

1. P,l°> = ^///>^-

Pir = (^y + xjj)/2x.. for / ^ j . 

2. P,r^'> = [xu + {XjM + XMi)pl,')pl:"]ln 

Pf = [i^ij + ^Ji) + (̂ /M + XMi)p\plpJ!^ + {xjM + XMj)plplpj^']lln for i^j. 

Step 2 is repeated for »/ = 0, 1, 2, . . . until the parameter estimates converge to the desired 
degree of accuracy. The initial estimates given in step 1 are merely suggested estimates. Other 
positive values satisfying the constraint that thepy's sum to one may be used. 

An iterative procedure for obtaining MLE's for the X-parameters under Model A and the 
closed-form estimator for the X-parameters under Model B are given in Chen and Fienberg 
(1974). An iterative procedure for obtaining MLE's for the X-parameters under Model C is 
given in Stasny (1986). The equations for these procedures are provided in Appendix II. 

Under Model R for the X-parameters, the factor of the likelihood equation involving only 
X is as follows: 

[ n n (* - 2>̂>'̂] ^ f ri'^H ^ f n ^ H -
^ 1=1 j=i ^ ^ 1=1 ^ ^ j=\ ^ 

The closed-form MLE for X is 

X = {x.M + XM.)/2n. 

3.4 Estimation of the p and X Parameters Under Model D 

The Ukelihood functions for the observed data under either Model D-U or Model D-S cannot 
be factored and all parameter estimates must be obtained simultaneously. An iterative pro
cedure for obtaining MLE's under Model D-U is given in Stasny (1988). The equations for 
this procedure are provided in Appendix II. Under Model D-S, the likelihood function for the 
observed data is as follows: 

fnAv"] X f n n Â l̂ X [ n n^^^l >< [ n n [(»- ̂ - - ^^TA 
*- , = 1 J ^ 1=1 y = i + l J ^ 1=2 j=i •' ^ i=l j=l ^ 

http://XM.be
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Equation (2) is maximized subject to the constraint that the sum of the Pjj's is one. In 
general, an iterative procedure is required in order to obtain the MLE's. The iterative procedure 
used in the data analysis reported in Section 4 is as follows: 

Iterative Procedure for Estimating Parameters Under Model D-S 

1. p,(<'> = Xjj/X.. 

Pi'P = (Xjj + xjj)/2x.. for / ?£y 

X//" = XM./n 

Xij" =x.M/n. 

2. P,<-" = n-^^xjj + Xj^y^^X^j^^l Y Pi-'V;'] + XMi^Pj^W^^I Y AJî 'N';']] 

pj- ' ) = (2«)-'ĵ ^y + xjj + X,^[PJ''X,JY Y ^ r ^z r ] 

XjM[pjrx^^^l Y /̂ '̂>^ r̂] + XMi[pjy^xif^ I Y Pii'%'i:'] 

^Mj[pjy\rIYPji-'K']] for i^j 

\r'> = Y U^jP^'^irl Y pji'%'>:']lY N ( i - \'r - \r)] 
j=l L I h = l - 1 / y=l 

^ 2 r " = Y r^/-AJ"X2r/ Y Ar^x,<;)l / £ [xy/(i - x,*-) - x,<.̂ ))]. 
1 = 1 L I h = l J / 1 = 1 

Step 2 is repeated for «< = 0, 1, 2, . . . until the parameter estimates converge to the desired 
degree of accuracy. The initial estimates given in step I are merely suggested estimates. Other 
values between zero and one satisfying the constraint that thepjj's sum to one may be used. 

3.5 Estimation of the p and X Parameters Under Model E 

The Ukelihood functions for the observed data under either Model E-U or Model E-S cannot 
be factored and all parameter estimates must be obtained simultaneously. An iterative pro
cedure for obtaining MLE's under Model E-U is given in Stasny (1988). The equations for this 
procedure are provided in Appendbc II. Under Model E-S, the likelihood function for the 
observed data is as follows: 
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f n̂ ''"l 4 n n Ĥ 4 n fî '̂̂  >< [n n [(̂  - ̂ ' - w] 
^ 1=1 -̂  *-1=1 ; = i + i ^ *-1=2 j=i ^ ^ 1=1 7=1 -^ 

K r K 
(3) ^[n[EHi^[n[sHi 

Equation (3) is maximized subject to the constraint that the sum of the Py's is one. In 
general, an iterative procedure is required in order to obtain the MLE's. The iterative procedure 
used in the data analysis reported in Section 4 is as follows: 

Iterative Procedure for Estimating Parameters Under Model E-S 

1. P,r> = x,//Ar.. 

PiP = {Xjj-^xjj)/2x.. for i^j 

X/"' = {XM- + X.M)/2«. 

2. p,<''+'> = n-'Uj -h {XjM + XMi)^tM"j Y PikV^ 

plf^'^ = (2«)-'fxy -H Xjj -h {XjM + XMi) {Pif'^-'j Y Pik'^n'^ 

+ (xjM + XMj)\Pji''\r E < ^ r ' fo-- '• ̂  J rj)[pi}''^rIYPI^'^^'']] ^°' 

,/'+•) = f; \{xjM + XMj)Pjry^rlYpj'i''''^l>"] 
j=i L / A=i J 

/ 1 ; [(Xij + xjj)i{i - x/') - x,('')]. 
/ ; = 1 

Step 2 is repeated for i' = 0, I, 2, . . . until the parameter estimates converge to the desired 
degree of accuracy. The initial estimates given in step I are merely suggested estimates. 
Other values between zero and one satisfying the constraint that thepy's sum to one may be 
used. 
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4. FITS OF THE MODELS TO NCS DATA 

The models described in Section 3 were fit to the NCS data described in Section 2. Recall 
that the NCS data for each of the years from 1975 to 1978 is summarized both by number of 
crimes reported in each of the two interviews during the year and by the type of crime reported. 
Since three survey classifications are used, we have K = 3. Standard errors of the parameter 
estimates were obtained using the observed information matrbc. 

Table 3a 

Estimates of Pjj for Flows Among Number-of-Crime Classifications 
Under Models R, A, B, and C 

1975 

First 

Interview 

1976 

First 

Interview 

1977 

First 

Interview 

1978 

First 

Interview 

Crime Free 

Single Crime 

Multiple Crime 

Crime Free 

Single Crime 

Multiple Crime 

Crime Free 

Single Crime 

Multiple Crime 

Crime Free 

Single Crime 

Multiple Crime 

Unconstrained Model 

Crime 
Free 

.666 
(.0075) 

.106 
(.0051) 

.036 
(.0032) 

.669 
(.0076) 

.098 
(.0051) 

.031 
(.0030) 

.670 
(.0079) 

.092 
(.0051) 

.028 
(.0030) 

.671 
(.0087) 

.111 
(.0061) 

.027 
(.0034) 

Single 
Crime 

.098 
(.0050) 

.029 
(.0031) 

.011 
(.0021) 

.101 
(.0052) 

.034 
(.0034) 

.014 
(.0023) 

.115 
(.0058) 

.026 
(.0032) 

.016 
(.0026) 

.097 
(.0062) 

.032 
(.0040) 

.013 
(.0027) 

Symmetric Model 

Second Interview 

Multiple 
Crime 

.029 
(.0031) 

.014 
(.0023) 

.012 
(.0021) 

.029 
(.0033) 

.014 
(.0025) 

.011 
(.0022) 

.032 
(.0034) 

.016 
(.0026) 

.006 
(.0017) 

.027 
(.0035) 

.009 
(.0022) 

.013 
(.0026) 

Crime 
Free 

.666 
(.0075) 

.102 
(.0035) 

.032 
(.0022) 

.669 
(.0076) 

.099 
(.0036) 

.030 
(.0022) 

.671 
(.0079) 

.103 
(.0037) 

.030 
(.0023) 

.671 
(.0087) 

.105 
(.0043) 

.027 
(.0025) 

Single 
Crime 

.102 
(.0035) 

.029 
(.0031) 

.012 
(.0015) 

.099 
(.0036) 

.034 
(.0034) 

.014 
(.0017) 

.103 
(.0037) 

.026 
(.0032) 

.016 
(.0018) 

.105 
(.0043) 

.032 
(.0040) 

.010 
(.0017) 

Multiple 
Crime 

.032 
(.0022) 

.012 
(.0015) 

.012 
(.0021) 

.030 
(.0022) 

.014 
(.0017) 

.010 
(.0022) 

.030 
(.0023) 

.016 
(.0018) 

.006 
(.0017) 

.027 
(.0025) 

.010 
(.0017) 

.013 
(.0026) 

Note: Estimated standard errors are given in parentheses. 
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4.1 Estimates of the p-Parameters Under Models R, A, B, and C 

Recall that thep-parameter estimates do not depend on the nonresponse mechanism under 
Models R, A, B, and C. For the iterative procedures used to estimate thepjj under both the 
unconstrained and symmetric models, the criterion used for stopping the iteration was that 
the expected counts in the (/,y) ceU of the flow matrbc, npjj, differed by no more than 0.5 
from one step of the iterative procedure to the next. In all cases, convergence occurred rapidly, 
taking at most sbc steps. The estimates of the Py when HH's are classified by numbers of 
crimes reported are given in Table 3a for both the unconstrained and symmetric models. The 
estimates of the Py when HH's are classified by types of crimes reported are given in Table 
4a for both the unconstrmned and symmetric models. 

Table 3b 
Estimates of Py for Flows Among Number-of-Crime Classifications 

Under Models D-S 

1975 

1976 

1977 

1978 

First 

Interview 

First 

Interview 

First 

Interview 

First 

Interview 

Crime Free 

Single Crime 

Multiple Crime 

Crime Free 

Single Crime 

Multiple Crime 

Crime Free 

Single Crime 

Multiple Crime 

Crime Free 

Single Crime 

Multiple Crime 

Crime 
Free 

.638 
(.0104) 

.106 
(.0047) 
.035 

(.0029) 

.645 
(.0100) 

.100 
(.0045) 

.034 
(.0029) 

.642 
(.0109) 

.106 
(.0054) 

.033 
(.0032) 

.636 
(.0118) 

.114 
(.0056) 

.028 
(.0029) 

Symmetric Model 

Second Interview 

Single 
Crime 

.106 
(.0047) 

.033 
(.0039) 

.015 
(.0019) 

.100 
(.0045) 

.037 
(.0041) 

.017 
(.0021) 

.106 
(.0054) 

.031 
(.0043) 

.021 
(.0023) 

.114 
(.0056) 

.040 
(.0051) 

.013 
(.0021) 

Multiple 
Crime 

.035 
(.0029) 

.015 
(.0019) 

.016 
(.0027) 

.034 
(.0029) 

.017 
(.0021) 

.015 
(.0029) 

.033 
(.0032) 

.021 
(.0023) 

.009 
(.0025) 

.028 
(.0029) 

.013 
(.0021) 

.015 
(.0030) 

Note: Estimated standard errors are given in parentheses. 
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Notice in both Tables 3a and 4a that the flow matrices of estimated probabilities under the 
unconstrained model for thepy appear to be fairly symmetric so that the model of symmetry 
in the flows is suggested as a reasonable model to consider. Also notice that the estimates 
of the Py do not appear to change much over the four years. The fits of these two models for 
the Py will be considered for each of the four models for nonresponse in Subsection 4.4 
below. 

Table 3c 

Estimates of Py for Flows Among Number-of-Crime Classifications 
Under Models E-U and E-S 

1975 

First 

Interview 

1976 

First 

Interview 

1977 

First 

Interview 

1978 

First 

Interview 

Crime Free 

Single Crime 

Multiple Crime 

Crime Free 

Single Crime 

Multiple Crime 

Crime Free 

Single Crime 

Multiple Crime 

Crime Free 

Single Crime 

Multiple Crime 

Unconstrained Model 

Crime 
Free 

.639 
(.0104) 

.110 
(.0061) 

.039 
(.0039) 

.645 
(.0100) 

.098 
(.0057) 

.035 
(.0037) 

.636 
(.0112) 

.094 
(.0060) 

.029 
(.0036) 

.639 
(.0118) 

.117 
(.0070) 

.027 
(.0037) 

Single 
Crime 

.102 
(.0061) 

.033 
(.0039) 

.014 
(.0025) 

.103 
(.0063) 

.037 
(.0041) 

.017 
(.0027) 

.124 
(.0083) 

.031 
(.0043) 

.020 
(.0031) 

.106 
(.0078) 

.041 
(.0051) 

.016 
(.0032) 

Symmetric Model 

Second Interview 

Multiple 
Crime 

.031 
(.0037) 

.016 
(.0026) 

.016 
(.0027) 

.032 
(.0041) 

.017 
(.0030) 

.016 
(.0029) 

.037 
(.0050) 

.021 
(.0031) 

.008 
(.0024) 

.029 
(.0042) 

.011 
(.0026) 

.015 
(.0030) 

Crime 
Free 

.639 
•(.0104) 

.106 
(.0047) 

.035 
(.0028) 

.645 
(.0100) 

.101 
(.0045) 

.033 
(.0029) 

.642 
(.0110) 

.106 
(.0055) 

.033 
(.0033) 

.637 
(.0118) 

.112 
(.0055) 

.028 
(.0029) 

Single 
Crime 

.106 
(.0047) 

.033 
(.0039) 

.015 
(.0019) 

.101 
(.0045) 

.037 
(.0041) 

.017 
(.0021) 

.106 
(.0055) 

.030 
(.0043) 

.020 
(.0023) 

.112 
(.0055) 

.041 
(.0051) 

.013 
(.0021) 

Multiple 
Crime 

.035 
(.0028) 

.015 
(.0019) 

.016 
(.0027) 

.033 
(.0029) 

.017 
(.0021) 

.016 
(.0029) 

.033 
(.0033) 

.020 
(.0023) 

.008 
(.0025) 

.028 
(.0029) 

.013 
(.0021) 

.015 
(.0030) 

Note: Estimated standard errors are given in parentheses. 



Survey Methodology, December 1990 317 

Table 4a 

Estimates of Py for Flows Among Type-of-Crime Classifications 
Under Models R, A, B, and C 

1975 

First 

Interview 

Crime Free 

Property Crime 

Contact Crime 

Unconstrained Model Symmetric Model 

Crime 
Free 

.666 
(.0075) 

.118 
(.0054) 

.025 
(.0026) 

Property 
Crime 

.105 
(.0053) 

.044 
(.0038) 

.007 
(.0016) 

Second Interview 

Contact Crime 
Crime Free 

.022 .666 
(.0026) (.0075) 

.010 .111 
(.0019) (.0037) 

.004 .024 
(.0012) (.0018) 

Property 
Crime 

.111 
(.0037) 

.044 
(.0038) 

.008 
(.0013) 

Contact 
Crime 

.024 
(.0018) 

.008 
(.0013) 

.004 
(.0012) 

1976 

First 

Interview 

Crime Free 

i'roperty Crime 

Contact Crime 

.669 
(.0076) 

.108 
(.0053) 

.021 
(.0025) 

.108 
(.0055) 

.047 
(.0040) 

.012 
(.0021) 

.023 
(.0028) 

.010 
(.0021) 

.002 
(.0011) 

.669 
(.0021) 

.108 
(.0011) 

.022 
(.0010) 

.108 
(.0011) 

.047 
(.0019) 

.011 
(.0009) 

.022 
(.0010) 

.011 
(.0009) 

.002 
(.0012) 

1977 

First 

Interview 

Crime Free 

' roper ty Crime 

Contact Crime 

.670 
(.0079) 

.103 
(.0053) 

.016 
(.0025) 

.128 
(.0061) 

.041 
(.0039) 

.008 
(.0021) 

.019 
(.0026) 

.008 
(.0018) 

.006 
(.0018) 

.671 
(.0078) 

.115 
(.0039) 

.018 
(.0018) 

.115 
(.0039) 

.041 
(.0040) 

.008 
(.0014) 

.018 
(.0018) 

.008 
(.0014) 

.006 
(.0017) 

1978 

First 

Interview 

Crime Free 

Property Crime 

Contact Crime 

.671 
(.0087) 

.119 
(.0063) 

.019 
(.0029) 

.104 
(.0064) 

.040 
(.0044) 

.011 
(.0025) 

.019 
(.0031) 

.010 
(.0024) 

.006 
(.0020) 

.671 
(.0088) 

.112 
(.0044) 

.019 
(.0021) 

.112 
(.0044) 

.040 
(.0044) 

.010 
(.0017) 

.019 
(.0021) 

.010 
(.0017) 

.006 
(.0020) 

Note: Estimated standard errors are given in parentheses. 
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Table 4b 
Estimates of Py for Flows Among Type-of-Crime Classifications 

Under Models D-S 

Crime 
Free 

Symmetric Model 

Second Interview 

Property 
Crime 

Contact 
Crime 

1975 

First 

Interview 

Crime Free 

Property Crime 

Contact Crime 

.635 
(.0101) 

.118 
(.0046) 

.026 
(.0026) 

.118 
(.0046) 

.052 
(.0046) 

.011 
(.0016) 

.026 
(.0026) 

.011 
(.0016) 

.005 
(.0016) 

1976 

First 

Interview 

Crime Free 

Property Crime 

Contact Crime 

.641 
(.0098) 

.110 
(.0046) 

.026 
(.0028) 

.110 
(.0046) 

.052 
(.0048) 

.015 
(.0021) 

.026 
(.0028) 

.015 
(.0021) 

.004 
(.0019) 

1977 

First 

Interview 

Crime Free 

Property Crime 

Contact Crime 

.642 
(.0104) 

.120 
(.0052) 

.019 
(.0024) 

.120 
(.0052) 

.050 
(.0049) 

.011 
(.0019) 

.019 
(.0024) 

.011 
(.0019) 

.008 
(.0022) 

1978 

First 

Interview 

Crime Free 

Property Crime 

Contact Crime 

.636 
(.0117) 

.121 
(.0057) 

.020 
(.0025) 

.121 
(.0057) 

.049 
(.0055) 

.012 
(.0021) 

.020 
(.0025) 

.012 
(.0021) 

.008 
(.0025) 

Note: Estimated standard errors are given in parentheses. 
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Table 4c 

Estimates of Py for Flows Among Type-of-Crime Classifications 
Under Models E-U and E-S 

1975 

First 

Interview 

Crime Free 

Property Crime 

Contact Crime 

Unconstrained Model Symmetric Model 

Crime 
Free 

.636 
(.0100) 

.124 
(.0063) 

.027 
(.0033) 

Property 
Crime 

.111 
(.0062) 

.053 
(.0047) 

.009 
(.0020) 

Second Interview 

Contact Crime 
Crime Free 

.024 .636 
(.0034) (.0101) 

.012 .117 
(.0023) (.0046) 

.005 .026 
(.0016) (.0026) 

Property 
Crime 

.117 
(.0046) 

.052 
(.0047) 

.011 
(.0016) 

Contact 
Crime 

.026 
(.0026) 

.011 
(.0016) 

.005 
(.0016) 

1976 

First 

Interview 

Crime Free 

i'roperty Crime 

Contact Crime 

.641 
(.0098) 

.110 
(.0059) 

.024 
(.0033) 

.110 
(.0065) 

.051 
(.0048) 

.016 
(.0028) 

.028 
(.0041) 

.014 
(.0028) 

.005 
(.0019) 

.641 
(.0098) 

.110 
(.0046) 

.026 
(.0028) 

.110 
(.0046) 

.052 
(.0048) 

.015 
(.0021) 

.026 
(.0028) 

.015 
(.0021) 

.005 
(.0019) 

1977 

First 

Interview 

Crime Free 

I'roperty Crime 

Contact Crime 

.636 
(.0108) 

.107 
(.0060) 

.015 
(.0028) 

.138 
(.0076) 

.050 
(.0048) 

.011 
(.0027) 

.023 
(.0035) 

.010 
(.0022) 

.009 
(.0023) 

.641 
(.0105) 

.121 
(.0051) 

.019 
(.0024) 

.121 
(.0051) 

.049 
(.0048) 

.011 
(.0018) 

.019 
(.0024) 

.011 
(.0018) 

.009 
(.0022) 

1978 

First 
Crime Free .641 .111 

(.0117) (.0078) 
.022 

(.0040) 
.640 

(.0117) 
.118 

(.0056) 
.021 

(.0026) 

Interview 
Property Crime .124 .048 

(.0071) (.0055) 
.012 

(.0029) 
.118 

(.0056) 
.048 

(.0054) 
.013 

(.0021) 

Contact Crime .020 .014 
(.0033) (.0031) 

.009 
(.0025) 

.021 
(.0026) 

.013 
(.0021) 

.008 
(.0025) 

Note: Estimated standard errors are given in parentheses. 
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4.2 Estimates of the X-Parameters Under Models R, A, B, and C 

Recall that the X-parameter estimates under Models R, A, B, and C are the same regardless 
of whether the unconstrained or symmetric model is used for thep-parameters. For the iterative 
procedures used to estimate the X-parameters under Models A and C, the convergence criterion 
used was that estimates of the X-parameters differed by no more than .0005 from one step 
to the next. Convergence took between 41 and 4150 steps when it occurred in fewer than 
10,000 steps after using the initial parameter estimates suggested in Appendix II. The factors 
of the likeUhood for the observed data involving only the X-parameters were, in some cases, 
not well behaved. This is particularly true for the likelihoods for the 1978 data under both 
Models A and C. In such cases, a grid search was used to locate appropriate starting points 
for the iterative procedures. A rough grid search was also used in all cases to verify that, when 
the iterative procedure converged, it appeared to have converged to a global rather than a local 
maximum. 

The estimates of the X-parameters under both the number-of-crimes and type-of-crime 
classifications for Models R, A, B, and C are given in Tables 5, 6, 7, and 8 respectively. 

Notice that under Models R and B the estimates of the X-parameters are the same for 
both the number-of-crimes and type-of-crime classifications because the probability of being 
a nonrespondent under those two models does not depend on survey classification. Under 
Models A and C, the X-parameter estimates corresponding to the crime-free classification 
are the same, within rounding error, for both the number-of-crimes and type-of-crime 
classifications since crime-free HH's are the same under both classifications. Also notice that, 
under Models A and C, the X-parameter estimates, the estimated probabilities of being a 
nonrespondent, generally increase as the number of victimizations or the seriousness of the 
crime increases. 

Table 5 

Estimates of X Under Model R 

Number-of-Crimes 
or Type-of-Crime 

Classification of Data 

1975 .224 
(.0035) 

1976 .232 
(.0035) 

1977 .237 
(.0036) 

1978 .250 
(.0040) 

Note: Estimated standard errors are given in parentheses. 
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Table 6 
Estimates of Xy and X2,- Under Model A 

Number-of-Crimes Classification of Data Type-of-Crime Classification of Data 

Xii Xi2 Xi3 X21 X22 X23 Xji X12 Xi3 X21 X22 X23 

1975 .208 .272 .327 .221 .234 .275 .208 .280 .322 .220 .246 .246 
(.0062) (.0159) (.0261) (.0064) (.0147) (.0242) (.0062) (.0151) (.0321) (.0064) (.0139) (.0303) 

1976 .206* . 2 6 1 * .397* .236* .254* .267* .206 .278 .381 .235 .253 .285 
(.0063) (.0152) (.0268) (.0066) (.0153) (.0248) (.0063) (.0146) (.0327) (.0066) (.0144) (.0319) 

1977 .192 .263 .309 .258 .281 .326 .192 .275 .267 .258 .269 .417 
(.0064) (.0152) (.0265) (.0070) (.0171) (.0285) (.0064) (.0144) (.0327) (.0069) (.0159) (.0369) 

1978 .207* .316* .302* .269* .280* . 321* .207* .305* .343* .269* .280* .334* 
(.0072) (.0182) (.0308) (.0079) (.0176) (.0300) (.0072) (.0174) (.0364) (.0079) (.0166) (.0362) 

Note: * Indicates cases in which the likelihood function is not well behaved. 
Estimated standard errors are given in parentheses. 

Table 7 

Estimates of Xi and X2 Under Model B 

Number-of-Crimes or Type-of-Crime Classification of Data 

X2 

1975 .223 .226 
(.0058) (.0058) 

1976 .225 .240 
(.0059) (.0060) 

1977 .209 .264 
(.0059) (.0064) 

1978 .227 .273 
(.0067) (.0071) 

Note: Estimated standard errors are given in parentheses. 

Table 8 
Estimates of X, Under Model C 

Number-of-Crimes Classification of Data Type-of-Crime Classification of Data 

1975 

1976 

1977 

1978 

Xi 

.214 
(.0039) 

.221 
(.0040) 

.225 
(.0041) 

.237* 
(.0046) 

X2 

.252 
(.0118) 

.257 
(.0116) 

.271 
(.0126) 

.297* 
(.0139) 

X3 

.300 
(.0199) 

.330 
(.0210) 

.317 
(.0235) 

.312* 
(.0236) 

h 

.214 
(.0039) 

.221 
(.0040) 

.225* 
(.0041) 

.237* 
(.0046) 

X2 

.262 
(.0109) 

.266 
(.0109) 

.273* 
(.0115) 

.292* 
(.0130) 

3̂ 

.284 
(.0262) 

.333 
(.0289) 

.339* 
(.0286) 

.339* 
(.0299) 

Note: * Indicates cases in which the likelihood function is not well behaved. 
Estimated standard errors are given in parentheses. 
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4.3 Parameter Estimates Under Models D and E 

Models D and E are more difficult to fit than Models R, A, B, and C because all parameters 
under Models D and E must be estimated simultaneously. For all sets of the NCS data, the 
likelihood functions under Models D and E were not well behaved and grid searches over 
the possible values of the X-parameters were required to locate suitable starting points for 
the iterative procedure. Since a grid search over the six X-parameters under Model D was 
extremely time-consuming, parameter estimates were obtained under Model D-S but not 
under Model D-U. Estimates of thep-parameters under Model D-S are given in Table 3b for 
the number-of-crimes classification and in Table 4b for the type-of-crime classification. 
The X-parameter estimates under Model D-S are given in Table 9 for both types of classifica
tions. Estimates of thep-parameters under Models E-U and E-S are given in Table 3c for the 
number-of-crimes classification and in Table 4c for the type-of-crime classification. The 
X-parameter estimates under Models E-U and E-S are given in Table 10 for both types of 
classifications. 

Notice that under Models D and E the estimates of Pn, the probability of remaining in 
the crime-free classification, are somewhat smaller that the corresponding estimates under 
Models R, A, B, and C; the estimates of the remairung p-parameters under Models D and E 
are somewhat larger than the corresponding estimates under Models R, A, B, and C. Under 
both Models D and E, the X-parameter estimates, the estimated probabilities of being a 
nonrespondent, generally increase as the number of victimizations or the seriousness of the 
crime increases. In the cases where the estimates decrease as the number of victimizations or 
the seriousness of the crime increases (in the 1978 data under Model D-S and in the 1978 number-
of-crimes data under Model E-S), the decreases are small and within the estimated standard 
error of the estimates. 

Table 9 

Estimates of Xj, and \2j Under Model D-S 

Number-of-Crimes Type-of-Crime 
Classification of Data Classification of Data 

All Ai2 Ai3 A21 A22 A23 Al l A12 A13 A21 A22 A23 

1975 .210 .246 .319 .194 .321 .387 .208 .264 .319 .192 .339 .372 
(.0085) (.0303) (.0368) (.0085) (.0282) (.0362) (.0084) (.0249) (.0523) (.0085) (.0235) (.0507) 

1976 .204 .276 .339 .217 .273 .444 .203 .280 .383 .215 .297 .453 
(.0083) (.0274) (.0344) (.0084) (.0291) (.0331) (.0083) (.0244) (.0443) (.0084) (.0255) (.0416) 

1977 .175 .307 .380 .249 .298 .374 .175 .304 .438 .248 .315 .341 
(.0086) (.0301) (.0403) (.0089) (.0326) (.0439) (.0086) (.0243) (.0424) (.0089) (.0259) (.0491) 

1978 .211 .278 .290 .236 .413 .384 .211 .276 .293 .236 .411 .391 

(.0094) (.0282) (.0433) (.0099) (.0261) (.0443) (.0094) (.0264) (.0563) (.0098) (.0246) (.0567) 

Note: Estimated standard errors are given in parentheses. 
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Table 10 

Estimates of X, Under Model E 

1975 

1976 

1977 

1978 

1975 

1976 

1977 

1978 

Number-of-Crimes Classification of Data 

Xi 

.202 
(.0060) 

.211 
(.0057) 

.210 
(.0063) 

.224 
(.0065) 

.202 
(.0060) 

.211 
(.0057) 

.213 
(.0061) 

.224 
(.0065) 

X2 

.285 
(.0235) 

.275 
(.0226) 

.315 
(.0259) 

.340 
(.0208) 

.285 
(.0235) 

.274 
(.0223) 

.301 
(.0267) 

.343 
(.0204) 

^3 

Type-of-Crime Classification of Data 

h 
Unconstrained Py 

.348 
(.0262) 

.387 
(.0232) 

.372 
(.0351) 

.342 
(.0296) 

.201 
(.0058) 

.209 
(.0056) 

.209 
(.0061) 

.225 
(.0065) 

Symmetric Py 

.351 
(.0258) 

.389 
(.0229) 

.376 
(.0339) 

.338 
(.0298) 

.201 
(.0059) 

.209 
(.0056) 

.213 
(.0060) 

.225 
(.0065) 

X2 

.302 
(.0180) 

.286 
(.0193) 

.318 
(.0183) 

.326 
(.0203) 

.301 
(.0180) 

.287 
(.0191) 

.309 
(.0190) 

.329 
(.0199) 

X3 

.336 
(.0418) 

.419 
(.0327) 

.394 
(.0295) 

.385 
(.0333) 

.341 
(.0408) 

.418 
(.0327) 

.391 
(.0302) 

.379 
(.0339) 

Note: Estimated standard errors are given in parentheses. 

4.4 Fits of the Models 

Table 11 shows the X^ and G^ values and the associated degrees of freedom for all twelve 
models (including Model D-U which must fit the data exactiy) and both types of survey 
classifications. Note that the models were fit as an illustration of the methods developed here 
and we have ignored the complex survey design. Although clusters are not a problem in our 
subsample of the NCS data, in a more complete analysis we would prefer to fit the models 
separately to data from different strata and then combine the strata estunates to obtain estimates 
for the entire population. 

Clearly, neither Model R, the model of random nonresponse, nor Model B, under which 
the probability of nonresponse depends only on time, fits the data well for either the 
unconstrained or symmetric models for the Py. 

Models C-U and C-S fit the 1975 data fairly well and give reasonable fits to the 1976 data. 
Since Model C-S fits the data reasonably well and is a more parsimonious model, we prefer 
it over Model C-U. Under Model C, the probability of nonresponse depends only on the vic
timization classification at the interview in which the HH responded, not on the time. Thus, 
Model C is the model of symmetry in the nonresponse probabilities for the two interview 
periods. When Model C is paired with the symmetric model for thep-parameters, we obtain 
symmetric expected cell counts for the observed flow data. Notice in the observed data shown 
in Appendbc I, that in 1977 and 1978 there is much more nonresponse at the second interview 
time than at the first interview time. This difference in nonresponse rates is the reason for the 
lack of fit of Model C to the 1977 and 1978 data. 
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Model R 
1975 
1976 
1977 
1978 

Model A 
1975 
1976 
1977 
1978 

Model B 
1975 
1976 
1977 
1978 

Model C 
1975 
1976 
1977 
1978 

Model D 
1975 
1976 
1977 
1978 

Model E 
1975 
1976 
1977 
1978 

Table 11 

Fits of the Models 

Number-of-Crimes Classification of Data 

Unconstrained Py 

X^ 

(d.f. 
42.7 
70.2 
74.2 
61.7 

(d.f. 
0.0 
0.0 
0.0 
0.0 

(d.f. 
42.7 
69.1 
47.1 
47.6 

(d.f. 
6.9 

21.2 
38.1 
31.1 

(d.f. 
0.0 
0.0 
0.0 
0.0 

(d.f. 
7.0 

21.0 
33.0 
32.0 

G^ 

= 5) 
41.2 
67.1 
75.2 
62.7 

= 0) 
0.0 
0.0 
0.0 
0.0 

= 4) 
41.1 
64.5 
45.4 
46.0 

= 3) 
6.9 

21.3 
38.3 
31.1 

= 0) 
0.0 
0.0 
0.0 
0.0 

= 3) 
7.0 

21.1 
33.0 
32.1 

Symmetric Pjj 

x" 

(d.f. 
45.9 
69.7 
83.9 
64.9 

(d.f. 
4.4 
0.6 

10.1 
3.7 

(d.f. 
45.9 
68.5 
58.7 
50.1 

(d.f. 
11.3 
21.8 
48.2 
34.7 

(d.f. 
5.0 

15.3 
11.5 
10.2 

(d.f. 
11.3 
21.8 
48.2 
34.6 

G^ 

= 8) 
45.6 
67.7 
85.3 
66.3 

= 3) 
4.4 
0.6 

10.1 
3.7 

= 7) 
45.5 
65.1 
55.5 
49.6 

= 6) 
11.3 
21.9 
48.4 
34.8 

= 3) 
5.0 

15.3 
11.5 
10.2 

= 6) 
11.3 
21.9 
48.4 
34.8 

Type-of-Crime Classification of Data 

Unconstrained p,y 

x" 

(d.f. 
38.2 
57.7 
85.4 
63.2 

(d.f. 
0.0 
0.0 
0.0 
0.0 

(d.f. 
38.2 
56.2 
57.0 
49.1 

(d.f. 
7.4 

15.1 
45.6 
29.9 

(d.f. 
0.0 
0.0 
0.0 
0.0 

(d.f. 
7.3 

14.8 
39.5 
30.9 

G^ 

= 5) 
36.9 
55.9 
84.8 
64.1 

= 0) 
0.0 
0.0 
0.0 
0.0 

= 4) 
36.9 
53.3 
54.9 
47.4 

= 3) 
7.4 

15.1 
45.7 
30.0 

= 0) 
0.0 
0.0 
0.0 
0.0 

= 3) 
7.3 

14.9 
39.5 
31.0 

Symmetric Py 

x" 

(d.f. 
42.0 
58.3 
94.8 
65.5 

(d.f. 
4.6 
0.5 

10.5 
2.7 

(d.f. 
42.0 
56.9 
68.4 
50.7 

(d.f. 
12.0 
15.6 
56.0 
32.6 

(d.f. 
5.6 

11.6 
18.0 
9.9 

(d.f. 
12.0 
15.6 
56.0 
32.6 

G^ 

= 8) 
41.5 
56.4 
95.3 
66.8 

= 3) 
4.6 
0.5 

10.5 
2.7 

= 7) 
41.5 
53.8 
65.4 
50.1 

= 6) 
12.0 
15.6 
56.3 
32.7 

= 3) 
5.6 

11.6 
18.0 
9.8 

= 6) 
12.0 
15.6 
56.3 
32.7 

9(8) = 20.09. 

The fits of Models E-U and E-S are quite similar to those of Models C-U and C-S respec
tively. This is not surprising since the interpretations of the model are quite similar. Under Model 
C nonresponse depends on the survey classification when the HH responds while under Model 
E it depends on the survey classification when the HH does not respond. Since the fits of these 
two models are similar, we cannot choose between the two models using the data alone. 
Logically, Model E seems more realistic since we might expect nonresponse to depend on the 
current victimization status. Since the two models provide similar fits to the data, it may be 
that the victimization status at the time when the HH responds is generally a good indicator 
for the victimization status when the HH does not respond. If that is the case, we would prefer 
to use Model C since it is easier to fit than Model E. 
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Model A-S, under which nonresponse depends on both the time and on the victimization 
status when the HH responds fits the 1975,1976, and 1978 data very well and gives a reasonable 
fit to the 1977 data. The fits of Model D-S are similar to those of Model A-S with the exception 
of the 1976 data which is fit much better by Model A-S. Again we caimot choose between Model 
A and D based on the data alone. (Models A-U and D-U fit the data exactly.) In general, we 
are quite pleased with the fits of Model A-S to both the number-of-crimes and type-of-crime 
data from all four years. Since Model A provides a reasonable fit to all the data, we conclude 
that nonresponse in the NCS does depend on victimization status. 

Notice that, in most cases, the fits of the models as measured by X^ and G^ do not change 
much when the symmetricPy model is used rather than the unconstrainedPy model. Since we 
gain 3 degrees of freedom going to the more parsimonious, symmetric model for thepy, we 
prefer this model to the unconstrained model for the Py. This choice of the symmetric model 
for the flow probabilities indicates that there is a certain amount of stability in victimizations 
reported in the first and second halves of the year in the NCS. This stability comes from the 
fact that symmetry in the underlying flow probabilities implies equaUty of marginal totals. Thus, 
the numbers of HH's having no crimes, one crime, or two or more crimes remain about the 
same from the first interview of a year to the second year. Similarly, the numbers of HH's 
having no crimes, a property crime, or a contact crime remain about the same from the first 
interview of a year to the second year. 

5. CONCLUSIONS AND FUTURE WORK 

We have seen that the model of symmetry in the matrices of flows among victimization 
classifications paired with a model under which nonresponse depends on both time and 
victimization status, provides a good fit to data summaries from the NCS. The same model 
fits the data when classification of HH's is by number of crimes reported or by type of crime 
reported. 

The work described here is, of course, only an initial attempt to explore nonresponse and 
flows among victimization classifications in NCS data. For example, we noticed that the 
estimated symmetric probabilities of flows among the classifications did not appear to change 
much over the four-year period from 1975 to 1978 but the estimated probabiUties of 
nonresponse did appear to change over this period. One might wish to fit a model to the NCS 
data which has constant flow probabilities but allows the nonresponse probabilities to change 
over time. If the nonresponse probabilities do actually change over time, not just from year 
to year but also from interview period to interview period, then it would be important to try 
to discover why these probabilities are changing. 

In the work presented here, all missing data were treated the same. In fact, data may be 
missing because a HU rotated out of the sample, because a HH moved into or out of the sampled 
HU, because no one was at home, because the HH refused to respond, or for some other reason. 
It may be reasonable to assume that data missing because a HU rotated out of the sample is 
missing at random, but that other types of nonresponse are not missing at random. Stasny (1988) 
presents models that allow for different types of nonresponse which could be used with the 
models of symmetry in flows presented here. In addition, the models here do not allow for 
HH's which are missing at both interview periods. Since there are, of course, such HH's, one 
may wish to explore Markov-chain model such as those given in Stasny (1987) which do handle 
nonresponse at both times. 
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Most importantly, one may want to consider more natural summaries of the data than 
were used here. The data used here were summarized by first and second interview for the 
year. A more meaningful summary would be, say, by month or quarter of the year. If such 
summaries were used, then the complex nature of the interview schedule for the NCS would 
have to be considered and accounted for in the models. For example, the response status for 
a HH would be the same for the six-month reporting period covered at any one interview 
time. The development of models taking this into account is an important area for future 
work. 
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APPENDIX I 
The Observed Data 

1975 

1976 

1977 

1978 

1975 

1976 

1977 

1978 

First 
Interview 

First 
Interview 

First 
Interview 

First 
Interview 

First 
Interview 

First 
Interview 

First 
Interview 

First 
Interview 

Crime Free 
Single Crime 

Multiple Crime 
Missing 

Crime Free 
Single Crime 

Multiple Crime 
Missing 

Crime Free 
Single Crime 

Multiple Crime 
Missing 

Crime Free 
Single Crime 

Multiple Crime 
Missing 

Crime Free 
Property Crime 
Contact Crime 

Missing 

Crime Free 
Property Crime 
Contact Crime 

Missing 

Crime Free 
Property Crime 
Contact Crime 

Missing 

Crime Free 
Property Crime 
Contact Crime 

Missing 

Classification by Number of Victimizations 

Crime 
Free 

1963 
306 
95 

866 

1884 
266 

82 
831 

1742 
228 
63 

716 

1370 
222 

50 
651 

Crime 
Free 

1963 
331 

70 
866 

1884 
295 

53 
831 

1742 
262 
29 

716 

1370 
238 

34 
651 

Second Interview 

Single 
Crime 

256 
73 
26 

193 

257 
84 
34 

197 

260 
56 
31 

194 

157 
50 
18 

174 

Multiple 
Crime 

67 
31 
24 
91 

53 
24 
18 

106 

66 
31 
10 
79 

45 
14 
19 
57 

Classification by Type of Crime 

Second Interview 

Property 
Crime 

271 
107 
17 

225 

266 
111 
26 

235 

283 
89 
12 

231 

173 
64 
15 

184 

Contact 
Crime 

52 
22 

8 
59 

44 
19 
4 

68 

43 
18 
9 

42 

29 
14 
8 

47 

Missing 

901 
179 
83 

951 
186 
75 

994 
177 
76 

831 
165 
66 

Missing 

901 
217 

45 

951 
211 

50 

994 
194 
59 

831 
184 
47 
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APPENDIX II: Procedures for Obtaining MLE's of thep and X Parameters 

Note that x.. = Yf=i'Lf=iXij is the total number of units responding at both times and 
n = x.. -\- x.M + XM- is the total sample size. The starting values given below for the iterative 
procedures are merely suggested values. Other positive values summing to one may be used 
as initial values for thep-parameter estimates, and other values between zero and one may be 
used as initial values for the X-parameter estimates. 

MLE's for Unconstrained py's Under Models R, A, B, and C 

1. PIP = Xjj/x.. 

2. p,(.>'+" = N + ""iMPlf^jPl'^ + XMjPl/^lP^p]ln. 

Step 2 is repeated for i' = 0, I, 2, . . . until thePy parameter estimates converge to a desired 
degree of accuracy. 

MLE's for X's Under Model A 

I. X,f = XM-/n and Xj*/" = x.M/n. 

2. a) Xir" = ̂ Mjl Y Ni^ - ^ r - >^r)] 
I 1=1 

b)X2<r"=x,M/£[Xy/( l-X<.^)-X^")] . 
' y = i 

Step 2 is repeated for»» = 0, 1, 2, . . . until the X-parameter estimates converge to the desired 
degree of accuracy. If XAA/> I.f=iXi,jOrxMh > i;f=iX,v,for some A, so that of all units re
sponding in a particular survey classification at one interview time more did not respond at 
the other interview time than did respond, then the corresponding parameter estimates will, 
at some step, fall outside of the 0 to 1 range and alternate formulas must be used in place of 
those given above (see Chen and Fienberg 1974). If for some JXMJ > I.f=iXij, then for that 
y, step 2a) given above is replaced by 

x<.-» = I - x';' - {XIPM[Y M l - ^.r - M;>)]](i - K'' - ^2';')' 

where h is chosen at each step of the iteration so that X̂ '̂ > X2*,''' for all / = 1,2, . . . A". 
If for some i XJM > I,f=iXij, then for that /, step 2b) given above is replaced by 

V r " = 1 - x/;> - (x<;>/x,^)r f; [xy/(i - x'" - x<;')]](i - x<;> - x^;)), 
^ j=i J 

where h is chosen at each step of the iteration so that X{̂* > \\p for ally = 1,2, ... K. 
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MLE's for X's Under Model B 

Xi = XM-ln and X2 = x.Mln. 

MLE's for X's Under Model C 

I. X/"' = {XjM^ XMi)l2n. 

2. X/''+" = {XjM + ^Mi)/[i;[(^,y + ^;i)/(l - X/̂ ' - X,<'>)]j 

Step 2 is repeated for J- = 0, 1, 2, . . . until the X-parameter estimates converge to the desired 
degree of accuracy. If x^i + XJM > E f=i (^/, + ^9/) for some /, then as for Model A an 
alternate formula must be used in place of step 2 above. In such cases, step 2 is replaced by 

X/-'+'> = I - Xi") -[X/'')/(X,M + XMi)] 

^ j=l ^ 

where h is chosen at each step of the iteration so that X "̂) > X/"' for allj=l,2,...K. 

MLE's for Parameters Under Model D-U 

I. pjp = Xjj/x.., X<?> = XM./n, and ^T = ^-Mln-

2. p<-') = n-^^xjj + XjM^i^^>4j'l Y p'>^'^2'^] + ^Mj[pl!\\''l Y W;'x,<;']] 

Xir" = Y k>;',j''x<")/ Y pifM-AJY N( i - ^n' - K'')] 
j=l L I h = l - 1 / 7 = 1 

x^r" = i : UM/̂ ,J '̂X<;)/ Y /'/rxl;;']/ E N ( I - ^u' - x ;̂')]-
1=1 L I h=i -1/ 1=1 

Step 2 is repeated for I' = 0, 1, 2, . . . until the X-parameter estimates converge to the desired 
degree of accuracy. 
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MLE's for Parameters Under Model E-U 

1. p , f = Xjj/x.. and X/°) = {XM. + x.M)l2n. 

2. p<-» = «-|xy -H XjM\p}p\r\ Y P'^^^''\ + ̂ Mj[pfj'-Krl Y <'^^"']] 

x/'"'> = [ Y ^jM[pr^f''l Y p}i^'^^'] + ^Mj^-'^rj Y ^iJ'^'S"]] 

X [Y (̂ i7 + ^ y i ) / ( l - X / " - X , < " > ) j " ' . 

Step 2 is repeated for ji = 0, 1, 2, . . . until the X-parameter estimates converge to the desired 
degree of accuracy. 
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