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In This Issue 

In August of 1991 a symposium in honour of Professor V.P. Godambe on the occasion of 
his 65th birthday was held at the University of Waterloo. Papers presented at this symposium 
were in the areas of foundations of inference, theory of estimation, and theory of survey sampling, 
all areas in which Professor Godambe has an interest and to which he has made significant 
contributions. The special section Inference with Survey Data in this issue, which is dedicated 
to Professor Godambe, contains some of the sampling related papers from the symposium. As 
a group these papers discuss many important issues for inference with survey data such as the 
role of modelling, robustness, complex survey designs, resampling methods, and the effects of 
imputation. 

Royall considers model based estimation for finite population parameters. He describes the 
conflict between designs which provide model efficiency and those which are robust to model 
failure. Robustness is achieved through balanced samples. He presents a class of models for which 
the optimal sample is already balanced so that, for models in that class, there is no conflict between 
robustness and efficiency. 

Smith and Njenga discuss model based and randomization based inference for sample surveys 
and suggest a robust non-parametric modelling approach to inference. Based on simulations using 
both real and synthetic data, they conclude that their estimator of a regression coefficient is robust 
to violations of assumptions of linearity and homoscedasticity, has good efficiency, and has 
reasonable conditional and unconditional properties. 

Rao, Wu, and Yue review recent developments in resampling methods for complex survey 
designs, particularly the jackknife, balanced repeated replication, and the bootstrap. In a simula
tion study using a synthetic population they evaluate and compare variance estimators and 
confidence intervals for the population median. 

Mantel considers model assisted estimation of a finite population mean based on a sample 
survey. He suggests that models should be extended so that the finite population mean is a known 
function of the optimal census based estimate of a model parameter. The extended model is then 
a compromise between model efficiency and finite population relevance. 

Krieger and Pfeffermann discuss maximum likelihood estimation of model parameters. They 
describe various approaches in the literature and consider the problem of informative designs. 
They propose the use of weighted distributions where the weights are modelled as functions of 
the covariates and of the variable of interest. The approach performs reasonably well in a 
simulation study. 

In the final paper of this special section Sarndal considers the problem of variance estimation 
when imputation is used to complete a data set. Overall variance is derived as the sum of a 
sampling variance and an imputation variance. The suggested variance estimator is a design 
based estimator of the sampling variance with a model based correction for bias and a model 
based estimator of the imputation variance. Some examples and an empirical evaluation are 
presented. 

Armstrong and Wu formulate the problem of sample allocation for a general two-phase 
survey design as a constrained programming problem. By exploiting its mathematical structure, 
they propose a solution that consists of iterations between two subproblems that are computa
tionally much simpler. They provide empirical results showing that the proposed method works 
very well. 
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Couper and Groves examine whether experienced interviewers achieve higher response rates 
than inexperienced interviewers, controlling for differences in survey design and attributes of 
the population assigned to them. After demonstrating that the relationship is positive and 
curvilinear, they attempt to explain the mechanisms by which experienced interviewers achieve 
these rates and elaborate the nature of the relationship. 

Lahiri and Wang propose new estimators for the "cost weights" and "relative importances" 
which are needed to construct the U.S. Consumer Price Index Numbers. The proposed estimators 
are composite estimators that combine information from relevant sources. A numerical 
comparison with four rival estimators is also presented. 
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Robustness and Optimal Design Under Prediction 
Models for Finite Populations 

RICHARD M. ROYALL 

ABSTRACT 

In many finite populadon sampling problems the design that is optimal in the sense of minimizing the 
variance of the best linear unbiased estimator under a particular working model is bad in the sense of 
robustness - it leaves the estimator extremely vulnerable to bias if the working model is incorrect. However 
there are some important models under which one design provides both efficiency and robustness. We 
present a theorem that identifies such models and their optimal designs. 

KEY WORDS: Balanced sample; Bias protection; Model failure; Working model. 

1. INTRODUCTION 

The "ratio estimator" of a finite population total T = y, -\- . . . -\- y/s! is f = Nxy^x^, 
where x = (JCi -I- . . . -f A:/V)/A^ is the known population mean of an auxiliary variable and 
Xs and ys are sample means. This is the best linear unbiased (BLU) estimator of T under the 
model M: 

E{Y,) = 0Xj, 

coy{Yj, Yj) 
(a'^Xj i 
(0 e 

= J 
else. 

This estimator is biased under alternative models having different regression functions, in 
general, but protection against bias under specific alternatives can be assured by careful choice 
of the sample, as will be described below. 

Throughout this paper we will be concerned with populations for which a particular model, 
such as M, is believed to apply, at least to a satisfactory degree of approximation. Our inferences 
will be made with reference to this model. For example, we will call an estimator 7 unbiased 
onlyif£'jvf(7'- T) = 0. On the other hand, we recognize that the model is an approximation 
and that it might be seriously wrong. Thus we describe it as a working model, and seek sampling 
and estimation procedures that are robust in the sense of performing well, not only under that 
working model, but also under alternative models that might better describe the relationships 
between variables in our population. 

We denote by M(6o,S|. • • • 5y : v) the general polynomial regression model: 

J 

E{Yj) = Y ^j^j^i 
7 = 0 

' Richard M. Royall, Johns Hopkins University, Baltimore, MD 21205 U.S.A. 
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cov "̂ •'̂ > - [ r ' T ' 
where 8j is a zero-one indicator of whether the regressor x^ is included in the model. The best 
linear unbiased estimator under this model is denoted hy f{8o, ..., 8j : v). Thus our first 
model was M(0, 1 : x), and 7'(0, I : x) is the ratio estimator. 

Royall and Herson (1973) showed that T{0,1 : x) remains unbiased under M(6o, • • •, 5y : v) 
for any vector (6o> • • •. 8j) of zeroes and ones, and any Vj, . . . , Vyv, if the sample is balanced 
onX, x^, ..., x^: 

N 

Y ^'1" ̂  Y ^'1" •> ^ ̂ '^ •̂• 

This means that in a balanced sample 7'(0,1 : x) is robust in the sense that it remains unbiased 
under regression models that are much more general than the working model M{0, 1 : x). 
Royall and Herson (1973, sec. 4.5) also detailed how approximate balance ensures the 
approximate unbiasedness of f{0,l:x). Furthermore they showed that in a balanced sample 
this estimator retains not only its unbiasedness but also its optimality under a wide variety of 
polynomial regression models, including M{1 : 1), M{1, 1 : x), and M{0, 1, 1 : x^). 
Specifically, the estimator is optimal under any polynomial regression model of degree J or 
less, provided only that the model's variance function is expressible as a linear combination 
of the regressors. 

The robustness of the ratio estimator in balanced samples is achieved at a high cost in 
efficiency under the original working model M{0, 1 : x). Under this model the sample that 
minimizes the variance consists of the n units whose x-values are largest, and the efficiency 
of a balanced sample is only x/max^(x^). (Royall and Herson 1973). 

For the linear regression estimator, theoretical results have been established that are quite 
analogous to those sketched above for the ratio estimator, but with one important difference. The 
estimator is T'(I, 1 : I) = Niy^ -f b{x - x^)], where b = Y,s(Xi — x^).)',7lj(x/ - x^)^. It 
is the optimal (BLU) estimator under the constant variance linear regression model, M{ 1,1:1). 
When the sample is balanced, this estimator is robust, remaining unbiased (and optimal) under 
the same broad class of polynomial regression models as the ratio estimator. But unlike the 
ratio estimator, the regression estimator achieves robustness in balanced samples at no cost 
in efficiency - the variance under the working model M{ I, I : 1) is minimized in balanced 
samples, where x^ = x. This phenomenon occurs because the error variance E{T — T)^ 'is 
the sum of a constant and a term proportional to {x - x^)^ var{b). Minimizing yar{b) 
requires maximizing ^^(x, - x^)^, but this term is eliminated altogether in samples with 
Xj = X. 

Are there other models under which the same sample that minimizes the variance of the 
BLU estimator can also protect against bias under a wide range of alternative models? In 
particular, are there such models for problems requiring non-constant variance functions? We 
show that the answer is positive, giving a theorem that characterizes a family of models with 
the desired property and identifies the corresponding optimal samples. The results in this paper 
integrate and generalize those of Kott (1984) and Tallis (1986). They are also closely related 
to the work of Pereira and Rodrigues (1983) and Tarn (1986), as well as that of Isaki and 
Fuller (1982). 
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2. BASIC RESULTS 

It is convenient to shift to vector and matrix notation, in which y is the population vector 
{Yi,Y2, ..., y^,)' and the model M{X: V) specifies that E{Y) = X0 and var ( Y) = Fa^ 
where A'is anN x p matrix of regressors, Fis diagonal, and the vector 0 and the scalar a^ 
are unknown. For a given sample s of n units we list the sample units first, so that 

=G;>-©.-ay. 
where Y^ is the {N - /i)-vector corresponding to the non-sample units, etc. We let 1̂  and Î  
denote vectors (I, . . . I ) ' of lengths n and (A^ - n). 

The population total 'is T = 1/7^ -I- I/y;. After the sample s is observed, the first 
component, 1^%, is known. The BLU estimator of T is obtained by adding to this known 
quantity the BLU predictor of 1/7 :̂ 

f{X: V) = 1;F, -h i;Xr0{X: V), 

where 0{X: V) = (A^K^ ^X,)'^ X^Vf' Y,. The error variance is 

var ( f (A ' ; V) - T) = i;{X;Ar'Xr + K)l,a\ 

where >1̂  = X^Vf^Xg. These formulas simplify when the vector VI is in the linear manifold 
generated by the columns of A', which we denote by 911 (X). 

Lemma 1. If Kl 6 311 (A') then 

f{X: V) = l'X0{X: V) 

and under M{X : V) 

yar{t{X: V) - T) = {I'XAs'^X'l - l'Vl)a^. 

Proof: The estimator simplifies because VI 6 Jll{X) means that VI = Xc for some vector 
c, so that X^l, = X^Vf ^X,c, from which we have l^Xj = c'X^V'' y, = l/y,. The variance 
formula follows from cov(f, T) = cov(rA'|3, i ; r j = I'XAs'^X^l^ = I'A'c = I ' K l . 

Lemma 1 shows that for models with VI € 911 (A'), the sample affects the variance only 
through A~'. This simplifies both the study of how the variance depends on the sample and 
the search for efficient samples. 

The collection of samples that satisfy 

i;Wf '^'Xs/n = l'X/1'W'^n, 

where WisanN x Â  matrix, will be denoted by fi(A': W). When M îs the identity matrix, 
I, B{X : I) is the collection of samples that are balanced on the columns of X Royall and 
Herson (1973) proved that BLU estimators under a wide family of polynomial regression models 
are greatly simplified in balanced samples: 
Theorem 1. Under M{X : V) with VI iM{X), if s € B{X : I) then 
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f{X: V) = {N/n)l^Ys 

var{t{X: V)) = [(N/n) - l]l'Flff^ 
(1) 

The next theorem shows that if K = /then the variance in (1) is the minimum possible, i.e. 
balanced samples B(A': / ) , are optimal if 71 € 911 (A'); it also identifies optimal samples for 
a class of models with more general variance structure. 

Theorem 2. Under M{X : V) if both VI and V'^'l € 911 (A-), then 

var(f(A': V) - T) >[{!'V'^'l)^/n - I'FIjff^; 

the bound is achieved if and only if s € B{X : K), in which case 

f{X: V) = {l'V'''l){i;vr'''Y,)/n. 

Proof: Since VI € 911 (A'), the quantity to be minimized is a'A^'^a, where a = X'l 
(Lemma 1). Now V'^'l € M{X) implies that there is a/7-vector Ci for which V'^'l = Ac, and, 
since Kis diagonal, this ensures that K/M^ = X^Ci for every sample 5. From this it follows 
that CiAsCi = n, and the desired inequality then follows from Schwarz's: 

{a'As-'a){clAsCi) = {a'A.'^a) • n > (fl'c,)^ 

The necessary and sufficient condition for equality is a' = kc(As, where k = I'V'^'l/n. This 
is equivalent to 5 € fi (A: V) because c{As = i; V^ ~ '^'X^. The simple forms for the estimator 
f{X : V) and its variance are then easily obtained algebraically. 

The formulas in Theorem 2 are familiar in conventional (randomization-based) sampling 
theory. The BLU estimator f{X: V) takes the simple form of the Horvitz-Thompson estimator 
fffj = X Ĵz/Tr,, when Xj, the inclusion probability for unit /, is proportional to vf\ And the 
variance bound is the one established by Godambe and Joshi (1965, Theorem 6.1) for the model-
based expectation of the random sampling variance. 

Suppose that we have, for a working model M{X : V) that satisfies the conditions of 
Theorem 2, an optimal sample s and BLU estimator T. If we now consider a more general model 
M{X, Z: V) with additional regressor(s) Z, the resuhs of Theorem 2 continue to apply so long 
as the sample belongs to fi(Z : F) as well as toB{X: V). Our sample and estimator remain 
optimal under the more general model, and the variance is unchanged. That is, we can maintain 
optimality under our working model (minimum variance sample and BLU estimator) and also 
protect against bias caused by the additional regressor(s) Z by imposing the additional constraint 
B{Z : V) on the sample. This procedure not only protects our estimator from bias under 
M{X, Z: K), it ensures that our sample and estimator both remain optimal under the more 
general model. Of course unbiasedness is ensured under the even more general model 
M{X, Z : W), where Wis any covariance matrix. 

3. EXAMPLES 

Four models have been particularly prominant in finite population sampling theory. In the 
polynomial regression model notation of section 1 these are M( 1: I), M( 1,1 : 1), M(0,1 : x), 
and M(0,I : x^). Optimal estimators under the first three models are the expansion, 
regression and ratio estimators, respectively. The optimal estimator under the fourth model. 
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f(0,I : x^) = 'Zsy, -\- {N - n)Xr'Zs(yi/"Xj), is approximated by the mean-of-ratios 
estimator Tffj = NxYjs(yi/nXj) when the sampling fraction n/Nis small. 

One approach to finding a practical sampling and estimation strategy under one of these 
four working models is to use the best linear unbiased estimator under the model, while ensuring 
robustness by choosing a sample in which the estimator remains unbiased under more general 
polynomial regression models. For the first two models, M{ 1:1) and M( 1, 1 : I), we have 
seen that this strategy produces bias-robustness for free, at no cost in efficiency under the 
working model. Under both of these models bias protection requires simple (unweighted) 
balance; but the models satisfy the conditions of Theorem 2 with V = I, which implies that 
simple balance is optimal. 

For the other two models, however, there is tension between robustness and efficiency. In 
section 1 we noted that under M(0,1 : x) the ratio estimator is optimal, and while the optimal 
sample consists of the n units maximizing x̂ , protection from bias under M{ 1,1 : x) requires 
a sample where x̂  is not maximized but set equal to the population mean, x. The situation 
under M(0, 1 : x^) is similar: the optimal sample is again the one where the sample mean Jf̂  
is maximized, but protection of the optimal estimator against bias under polynomial regression 
models requires an "overbalanced" sample, in which the sample mean equals Er-^?/Er^/ 
(Scott, Brewer and Ho 1978). 

Under both of these models, M(0, I : x) andM(0, 1 :x^), robustness can be achieved at a 
smaller cost in efficiency by starting with a more general working model. Theorem 2 shows the 
way. Consider first the model M(0, I :x^). If we use 7'(0, I :x^) in an over-balanced sample, 
the error variance is ({Nx)^/n -'Zxf + I,s(Xi - x^)^)(7 .̂ But if we use the more general 
working modelM(0, 1, 1 : x^) and estimator f{0, I, I : x^), the theorem shows that any sample 
in which x̂  = E-^f/E^/ is optimal, yielding the minimum variance ({Nx)^/n - T,Xi]a^. 
Now bias protection against even more general polynomial regression models can be obtained 
at no cost in efficiency by imposing the additional constraints of Condition B{X : V) i.e. 
E jx/"'/n =Y, i^x-j/ Y^i'xjj = 0, 3, . . . , / . Under these constraints on the sample, collectively 
called ir-balance, r(0, 1,1 : x^) is the mean-of-ratios estimator (Kott 1984). This sample and 
estimator remain optimal under all models of the form M(6o, 1, 1, 63, . . . , 6y : x^). 

Balanced samples 5(A : V) do not always exist. The above example illustrates this; when 
n becomes so large that n/N > N{x^)/Y,x} there can be no x-balanced sample, because 
otherwise the variance formula would become negative. Note that the condition n/N > 
N(x^)/'Zx} implies that max(x,) > Nx/n, so that in such populations there is no probability 
sampling plan with inclusion probability proportional to x. 

To generalize the other model, M(0.1 : x), so that the theorem will apply we can add a 
regressor, x'''': 

E{Yj) = 0iaxf^ -h/3,x,-

var( Yj) = a^Xj. 

According to Theorem 2 any sample satisfying 

Y x^ln = Y ^il Y ^'' (2) 
1 ' I 

,'/2 V V - - ' / ; , is optimal under this model, yielding the best linear unbiased estimator Y,Xi E -̂̂ / Viln 
and the minimum variance, {( Y,xl'^^)^/n - Nx]a^. This variance compares favorably with 
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that of the ratio estimator in a balanced sample, Nx(N/n - l)a^. Now optimality of the sample 
and the estimator if in fact E{ Y,) = 0o + 0\/2Xi''' + i8iX, -I- 02xf can be maintained (with 
no increase in variance) by imposing the additional conditions on the sample: 

N 
.'/2 Y^r''ln = NlYxr 

(3) 

Y xV'jn = Y ^fl Y '^' 

These conditions, (2) and (3), give the BLU estimator the simple form: 

Y ^i' Y ^yi'^'^y"^ 

which is of course the Horvitz-Thompson estimator for a probability-proportional-to-x'''' 
sampling plan. 

4. PROBABILITY SAMPLING 

The results in Section 2 are important in relation to an unobserved regressor Z. If Z were, 
like X, known for all population units, then we could use M{X, Z : V) as the working model 
and f{X,Z: V) as the estimator in the first place. But suppose that we are unaware of the 
importance of Z and are using the working model M{X : V) and the estimator f{X : V) when 
in fact M{X, Z : V) applies. In this context we will refer to a sample from B{X : V) as 
"balanced on A." Although we can choose a sample that is balanced on A, we cannot ensure 
that it will be balanced on Z, and if it is not, then our estimator is biased: 

E{f{X: V) - T) = [(l / /7)(rK'/^l)(i;n- ' /%) - l'Z]y. 

where y is the Z-coefficient: EY = X0 + Zy. 

Random sampling can help to provide protection against biases like this. If we use a proba
bility sampling plan with inclusion probabilities, TT, = nv'f^/1 'V'^'l, i = 1,2, ..., N, then 
we will have balance on Z in expectation: 

EJ^Vs-'^'Z,/n = l'Z/1'V'^'l, 

the subscript ir indicating that the expectation is with respect to the random sampling plan, not 
a prediction model. Furthermore, if our samphng plan is one under which var^ (1 ' K/" '^'Zs/n) 
approaches zero as n grows, then the probability that we will draw a sample that is 
badly unbalanced, say one in which |l^Vf'^'Zs/n - l'Z/l'V'^'l\ > d, can be made small 
by taking a large enough sample, n. That is, probability sampling can provide balance on Z 
"in probability." 

The strength of this result is in its scope-it applies for any matrix Z of regressors whatsoever. 
In particular it appHes for the matrix X of regressors in our working model, as well as for 
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overlooked regressors. The weakness of course is that it applies to the sample selection process, 
not to a result of that process. The sample actually drawn will, with predictable frequency, 
be badly unbalanced on the known regressors X. If balance on A is important in a particular 
study, it should not be left to chance (This was documented empirically by Royall and 
Cumberland 1981). Restricted random sampling plans which guarantee that the selected sample 
will be balanced on X, such as Wallenius's "basket method" (1980), might represent a 
reasonable compromise strategy. 

It sometimes happens that a regressor Z that is ignored when the sample is selected becomes 
available afterwards, as in the case of post-stratification for example. If it is determined that 
the selected sample is badly balanced on Z, then probability sampling has failed to provide 
the expected protection against bias under M{X, Z : F); if it is too late to draw another sample, 
then to protect against the bias we must use an estimator that is unbiased under this model. 
That is, probability sampling does not guarantee approximate balance on Z; it only ensures 
that we have a good chance at approximate balance. It justifies confidence that a given sample 
is reasonably well balanced, in the absence of evidence to the contrary. It does not justify 
ignoring evidence of imbalance when it occurs. 

Note that under the above probability samphng plan the estimator ( 1 ' F'-'M ) (l̂ Vf'''' Y^) /n, 
which is T{X: V) if both VI and V''''l belong to 911(A) and 5 is in fi( A : K), is unbiased with 
respect to the probability distribution generated by the sampling plan. But if the sample actually 
selected is not balanced on A(/.e. if 5 is not inB{X : V)) then this estimator is not unbiased 
u n d e r M ( A : V). 
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Robust Model-Based Methods for Analytic Surveys 

T.M.F. SMITH and E. NJENGA' 

ABSTRACT 

This paper reviews the idea of robustness for randomisation and model-based inference for descriptive 
and analytic surveys. The lack of robustness for model-based procedures can be partially overcome by 
careful design. In this paper a robust model-based approach to analysis is proposed based on smoothing 
methods. 

KEY WORDS: Analytic surveys; Robustness; Smoothing methods. 

1. INTRODUCTION 

The concept of robustness in finite population inference from both the randomisation and 
model-based viewpoints is examined. In his seminal paper on a unified theory of sampling from 
finite populations Godambe (1955) not only proved his famous non-existence theorem but also 
made suggestions for robust finite population inference. He proposed a superpopulation model 
for the unit variables y, and suggested that strategies, that is the choice of both design and 
estimator, should be based on the model expectation of the sampling variance. He then imposed 
/7-unbiasedness to obtain optimum strategies. These ideas were amplified in several papers 
including Godambe (1982) and Godambe and Thompson (1977). The results obtained include 
the apparent optimality of irps sampling and the Horvitz-Thompson (1952) estimator. But the 
inefficiency of this strategy in multipurpose surveys is well known so we find these results on 
optimality and robustness less convincing than the apparently negative results on the 
foundations of inference. 

The lack of robustness of many model-based procedures is well known, see Hansen et al. 
(1983), and much of the work of Royall and his colleagues, for example Royall and Herson 
(1973a,b) has been devoted to constructing robust model-based strategies. After reviewing this 
work we propose a robust model-based method for estimating many complex statistics 
employed in the multivariate analysis of survey data which adjusts for the effects of selection. 
Our proposal is not a strategy but is a procedure which can be employed for the analysis of 
survey data after the sample is drawn. 

2. FORMAL STRUCTURE 

In order to examine robustness we must first structure finite population inference in the 
formal manner pioneered by Godambe (1955). We consider a population of N^units with label 
set U = 11, 2, . . . , A'̂ ). Attached to unit / is a vector of values, y,, which will be measured 
on the sample units, and^^/ = {yi, ..., ^/v) denotes the finite population matrix of values. 
A sample, s, is a subset of f/drawn according to some rule. We are concerned here with rules 
based only on prior information, 2,, available on all the units in the population. Let ^y denote 
the prior information for the whole population, and let p{s \ gy) denote the sampling rule. 

T.M.F. Smith, University of Southampton, United Kingdom; E. Njenga, Kenyatta University, Kenya. 
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Since the rule does not depend on^y it is uninformative. If p{s \ gy) is a random sampling 
rule then it determines a probability distribution over f, the set of all samples, which is the 
basis for randomisation inference. The sample data comprises d^ = {{i,yi): ies]. Let y^ 
denote the matrix of sample values, then an estimator is a function of the data, ds, and of the 
prior information, gu, which includes auxiliary information. We denote by Ep, Vp, expecta
tions and variances with respect to the distribution/;(5 | gu)-

In a model-based approach it is further assumed that the population values yu are random 
variables. A major problem with this approach is to specify a parametric probability model 
for the joint distribution of all these random variables, which must be based on all the prior 
information including that on the structures of, and relationships between, the units in the 
population. So models must reflect hierarchical groupings (clusters) and block groupings 
(strata), as well as correlations between the variables. This structure is potentially so complex 
that attention is usually restricted to means and covariance matrices. In general let f{yu I Zu',h) 
denote the conditional finite population distribution, where X is a vector of unknown 
parameters. For predictive inference about finite population values, such as totals, this is a 
sufficient specification. For analytic inference about parameters in the marginal distribution 
of ̂  we must additionally specify the marginal distribution of the prior values lu- Let f{zu',^) 
denote this distribution, then the marginal distribution of yu is 

f(^u',§) = I/(^(/ I ^u',W(^u',^)dZu, (2.1) 

where 0 = g(K^) is the parameter of analytic interest. 
Applying the sampling rule to the population generates the data, ds. The joint distribution 

of the data, ds, and prior values, ^ c is 

f(ds,W,>^,^) = P(s I Zu) \f(yu I W,'b)f(Zu',^)dys 
(2.2) 

= P(s I gu)f(& I W,>^) f(Zu;<^), 

where s denotes units not in s. This distribution is the basis of a model-based approach to 
inference. We let E„„ V„„ denote expectations and variances with respect to the model. 

An implication of (2.2) is that the sampling rule,p{s \ gy), must be completely known to 
the person making the inference, as must the values of ly. Absence of knowledge may render 
p{s I Zy) informative about the unobserved values yg, see Scott (1977), Sugden and Smith 
(1984), in which case it cannot be taken outside the integral in (2.2). 

In this general set-up, embracing both random selection and modelling of values, randomisation 
inference corresponds to the case where the values yy are unknown constants and the model 
distribution becomes degenerate at the point ^y. The only probability remaining is that in 
p{s I gy), and this distribution over the set f of all possible samples is the basis of randomisa
tion inference. Note that the randomisation distribution is completely specified by knowledge 
of the sampling rule and of the prior values, gy. It does not depend on any unknown 
parameters or on the survey values, yy . This rendersp (5 | gy) uninformative because there 
is less information 'mp{s \ gy) than in gy itself. This accounts for the negative nature of 
Godambe's results about randomisation inference. 

In contrast model-based inference depends solely on the model component of (2.2), since 
p{s I Zy) contains no information about j ' ^ . Predictive inferences about ̂ ^ are made using the 
conditional distribution, f{yu I j'J,5c/;^)> independent of the randomisation distribution, 
p{s I ly). The sampling rule is still important at the design stage, for it affects efficiency and 
robustness, but it has no role to play at the inference stage. Random sampling also provides 
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a guarantee that the sampling rule is in fact uninformative, providing a scientifically accep
table sampling procedure. Model-based inferences may not be robust, however, because they 
may depend strongly on the choice of model, as demonstrated by many authors including 
Hansen et al. (1983). 

A compromise solution is to employ both components of (2.2), the model and the 
randomisation distribution, in the choice of estimator. This was proposed by Godambe (1955) 
as a positive response to his negative results. He proposed using as a criterion the model 
expectation of the randomisation variance, namely E^ yp{ts), where Is is an estimator of a 
finite population total T. To find an optimum solution in a particular class of models Godambe 
restricted the choice of Is to the class of/^-unbiased estimators. This restriction has been much 
criticized and subsequently several authors, including Brewer (1979), Sarndal (1980), Isaki and 
Fuller (1982), Little (1983), have proposed replacing exact unbiasednesses by some form of 
approximate unbiasedness. This is usually expressed in the form of asymptotic design 
unbiasedness which requires the construction of a hypothetical sequence of finite populations 
with sizes tending to infinity. Although one may feel unhappy with this mathematical 
construction the suggestion that strategies, chosen before drawing the sample, should be based 
on considerations of the average under a model of a repeated sampling procedure is perfectly 
acceptable. The controversial issue is the choice of distribution for making inferences after 
the sample has been drawn. 

3. ROBUSTNESS 

Robustness is not a well defined concept in statistics. The Encyclopedia of Statistical Sciences, 
(Kotz and Johnson 1988), states that: 

"a robust procedure performs well not only under ideal conditions but also under 
departures from the ideal." 

It goes on to say that both the nature of departures from the ideal and the meaning of ' 'performs 
well" must be specified. With this broad definition in mind we now examine robustness for 
randomisation and model-based inference for finite population totals. The general perception 
is that randomisation inference is robust and that model-based inference is not. 

Godambe's negative results can be interpreted to mean that randomisation inference is 
impossible in general. This is certainly true for heterogeneous populations, such as Royall's 
axe, ass and box of horseshoes, or for populations with a few very extreme values, but for 
homogeneous populations the evidence overwhelmingly shows that randomisation inference 
is not only possible but also works in a well defined sense. 

Employing randomisation inference implies abandoning certain statistical principles, such 
as the likelihood principle, and replacing them by an appeal to the central limit theorem. The 
assertion is that under repeated random sampling using the specified rulep{s \ gy) 

for any 4 which is approximately p-unbiased for T, where both A^and n are large, but n/N 
is small. Although proved formally only under SRS and related schemes, empirical evidence 
shows that the randomisation coverage properties of 95% confidence intervals of the form 
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Is ± 1.96jVp{ir), (3.2) 

where Vp{ts) is a consistent estimator of Vp{ts), are approximately correct except for extreme 
designs or heterogeneous populations. 

Godambe and Thompson (1977) express their views about this approach in the following 
terms. 

"The use of such a confidence interval may be interpreted as follows: 

I: We are fairly sure a priori that y belongs to that subset of R'^ for which the 
interval covers T{y) for 95% of all possible samples. 

II: There is no way that the sampledy-values, in conjunction with whatever other 
information we may have about the population, have altered the conviction 
in I. Thus even after sampling we believe that if the design were implemented 
again and again on this population the interval would cover T{y) approximately 
95% of the time. 

The robustness of the interval arises of course from the fact that only very weak 
and essentially informal conditions are required for the validity of its interpretation 
in the sense of I and II." 

Very similar views are expressed by Hansen et al. (1983). 

"For probability-sampling designs the computed confidence intervals, for samples 
large enough, are valid in the sense that the randomization probability that the 
confidence intervals contain the value being estimated is equal to or greater than 
the nominal confidence coefficient, independent of the distribution of the charac
teristics among the elements of the population from which the sample is drawn." 

"Robustness is usually understood to mean that inferences made from a sample 
are insensitive to violations of the assumptions that have been made. In principle, 
and ordinarily in fact, robustness is achieved in probability-sampling surveys by 
the use of sampling with known probabilities (i.e., randomization) and consistent 
estimators, and using a large enough sample that the central limit theorem applies, 
so that the estimates can be regarded as approximately normally distributed." 

Note that this concept of robustness does not appear to require any specification of ideal 
conditions or of departures from the ideal. Random sampling and consistent estimation are 
all that is required. Brewer and Sarndal (1983) are quite explicit: 

' 'Probability sampling methods are robust by definition; since they do not appeal 
to a model, there is no need to discuss what happens under model breakdown." 

How can a statistical procedure be so robust? 

The reason is that the entire procedure is under the control of the statistician, no attempt 
is made to introduce "nature" into the structure. The randomisation distribution has a known 
form and does not depend on unknown parameters. There is no need to make an inference 
about p{s I gy). Similarly the framework for inference is chosen by the statistician, it is 
repeated sampling using/?(5 | gy). Different statisticians may use different sampling rules and 
estimators but the procedure represented by (3.1) gives approximately correct coverage 
properties in every case, and so is robust. This is an example of criterion robustness. However, 
any given procedure may not be efficient for the totals of some variables. We have already 
highlighted the well known inefficiency of the Horvitz-Thompson estimator which occurs when 
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the survey variable is negatively correlated with the size variable. The search for efficiency 
robustness over a wide range of variables leads frequently to the recommendation that the design 
should be a stratified SRS design, see, for example, Godambe (1982), Hansen et al. (1983). 

In model-based inference the statistician is playing the game of modelling "nature". 
Probability distributions such as f{yy \ 2(/;X) are chosen by the statistician but their true form 
is unknown, as also are the values of the parameters. If an estimator, tg of T, is chosen then 
its expected value and variance will depend on the choice of model. Deviations from the model 
may lead to changes in the mean and variance and hence to changes in confidence intervals 
based on applying the central limit theorem to the model residuals. In model-based inference 
the robustness due to the central limit theorem is more limited than that in randomisation 
inference since it applies only to the residuals. Some model deviations can be controlled by 
choosing an appropriate design, as in Royall and Herson (1973a,b), but there can never be 
complete robustness. The framework for inference is also completely different. Instead of 
employing the unconditional distribution based on repeated sampling model-based inference 
employs the conditional distribution given the selected sample s. 

Can these two positions ever be reconciled? Before sampling, when choosing strategies, they 
can. Both schools of thought have the same prior information, gy, and both use models to 
suggest designs and estimators and choose strategies based on the overall mean squared error 

E,„Ep{ts - T)\ (3.3) 

Randomisers usually impose a constraint such as approximate p-unbiasedness while modellers 
may impose approximate model unbiasedness and the two positions can be reconciled by 
choosing a sample design such that the model-unbiased estimator is also p-unbiased. This 
strategy utilizes the full structure of (2.2) and gets the best of both worlds. 

After sampling there appears to be little hope of reconciliation. The two frameworks for 
inference are quite different, one being based on an unconditional distribution the other on 
a conditional distribution. Royall and Cumberland (1981) have demonstrated convincingly how 
much difference this can make. Incidentally they have also demonstrated the lack of robustness 
of some of the conventional model-based variance estimators. 

One case where reconciliation is possible occurs in stratified sampling. Both randomisers 
and modellers have converged on stratified sampling as a robust design, and for SRS within 
strata model-based and p-hased inferences coincide. This provides evidence for one of the few 
positive results in sample surveys: 

Theorem: Stratification is a good thing. 

Proof: See Cochran (1977, Ch.5). 

Stratification allows us to look at the problem of robustness more closely. If both a randomiser 
and a modeller adopt the same stratification, and both also adopt the same SRS design within 
strata, then for a given sample they will both make identical inferences. Now suppose on the 
basis of further analysis or evidence it is agreed that an extra level of stratification should have 
been used. How does this affect the respective inferences? The modeller now has to say that 
the original model was misspecified and hence that inferences from that model would be biased. 
Both the estimator and the variance of the original model would be wrong. The randomiser, 
however, can say that the extra information is interesting, and could be used to post-stratify 
the original results, but that it can also be ignored if necessary because the original inferences 
are still valid in the sense defined in (3.2). All that has happened is a possible loss of efficiency. 
In one case the original inference is condemned as not being robust, in the other case the same 
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inference is apparently robust. The modellers bias, when averaged over repeated samples, is 
transformed for the randomiser into a component of sampling variance, or a loss of efficiency. 
So if initially randomisers and modellers start from the same position then deviations from 
that position are interpreted differently. In one case it is a bias in the other case a variance. 
Can this really be called robust in one case and not robust in the other? 

4. ANALYTIC INFERENCE 

In analytic inference the target for inference is no longer a known function of the finite 
population values, yy, so that even if n = N^there is still residual uncertainty in the inference. 
Examples are tests of hypotheses, where the null hypothesis of no difference is meaningless 
in a fixed finite population. Possible targets for inference are the parameters X, ^, of the model 
(2.2), or functions of them such as ̂  in (2.1). Other targets are the parameters in finite popula
tions related to the given finite population in some known way, perhaps through a spatial or 
time series structure. Methods for analytic inference have recently been reviewed by Skinner 
et al. (1989). 

The starting point for analytic inference is the specification of the superpopulation model 
which aims to show how the finite population is related to the superpopulation. A common 
assumption is that the finite population is generated as IID random variables from a super-
population. Whether this can be justified for populations with structure, such as clustering 
or stratification, is debatable. In this paper we assume that it is true, at least within broadly 
defined strata. With this assumption a SRS from the finite population is itself an IID sample 
from the superpopulation and inferences can be made directly from the sample to the 
superpopulation. If the sample is not a SRS, but is drawn using a design/?(5 | gy) which uses 
the information in Zu, tlien the achieved sample is no longer an IID sample from the super-
population. This is the problem of selection and the effect of selection must be taken into 
account in the final inference. 

The superpopulation model establishes a hierarchy, 

superpopulation D finite population D sample. 

If the finite population is IID from the superpopulation then finite population parameters, 
such as means, are related to the corresponding superpopulation parameters by 

yu = E„,{yy) + Op{N-'''). (4.1) 

Since A'̂  is usually very large an inference about yy is a good approximation to an inference 
about E,„ {yy). Inferences about yy using the p-weights associated with the sampling rule 
p{s I Zu) are the basis of the randomisation approach to analytic inference. Note that this 
approach depends strongly on the IID assumption for the finite population. 

For more complex analyses, such as logistic regression analysis, the pseudo-MLE approach 
in Skinner et al. (1989, sec. 3.4.4.) and Binder (1983) can be used to define both the finite 
population parameter of interest and the randomisation estimator. The finite population 
parameter is usually defined through an estimating equation, see Godambe (1960) and Godambe 
and Thompson (1986). As in Section 3 confidence intervals are based on the unconditional 
distribution generated by repeated random sampling. 

Model-based analytic inference is based on the complete model of the survey population yy, 
the design variables Zy, and the sample selection rule p{s \ Zu), that is 
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f(yu,Zu,s',^,^) = f(yu I 2f/;X)/(2t/;0)p(5 | zu)- (4.2) 

For random sampling rules the selection scheme leaves the conditional distribution/(^^ | 2t/;X) 
unchanged, but changes the marginal distribution of Zu from/(2(y;0) before selection to 

8s(Zu',^) =f(Zu',^)P(s I Zu) (4.3) 

after selection. Thus inferences about X are unaffected by selection but inferences about (/>, 
and hence about B = g{\,(^), the parameters of the marginal distribution/(j;'^/;^), are 
affected by selection. For these latter inferences the sample data cannot be treated as though 
it were a SRS from the superpopulation model. 

If we assume that the superpopulation distributions are multivariate normal then 

(i) E(y I z) is linear in z, and 

(ii) V{y \ z) — X, independent of z-

Under these assumptions of linearity and homoscedasticity a model-based estimator of the 
covariance matrix, Y.yy, of ^ is given by 

^yy ~yys Pyz sZzzu ZzzslPyz, \^-^) 

as shown in Skinner et al. (1989 Section 6.4), where Vyys, V^^, by^ are sample covariance 
matrices and a matrix of regression coefficients based on treating the sample data as IID from 
the conditional distribution/(^[/ | Zu',h) • ^^ '^^i' (4.4) the Pearson adjusted estimator after 
Pearson (1903). 

Theoretical and empirical studies by Pfeffermann and Holmes (1985), Holmes (1987) and 
Njenga (1990), have shown that model-based inferences from (4.4) are not robust to departures 
from the assumptions of linearity and homoscedasticity. Nathan and Holt (1980) proposed 
a/7-weighted version of (4.4) as a more robust alternative. This estimator is formed by replacing 
all the equally weighted sums in (4.4) by the corresponding/7-weighted sums. The resulting 
estimator is called the probability weighted maximum likelihood estimator {pwml). The 
properties of this estimator have been studied empirically and theoretically in Holmes (1987), 
Njenga (1990) and in Skinner, Holt and Smith (1989, Ch.8). It was found to have similar uncon
ditional properties to alternative p-weighted estimators, such as the Horvitz-Thompson 
estimator of Y,yy, and superior conditional properties. In the simulation study in Section 6 the 
pwml estimator is taken to represent the entire class of p-v/e'ighted estimators. Since the 
/7-weighted version of V^ in (4.4) is a design consistent estimator of I^„ the resulting 
estimator is a design consistent estimator of Y,yy We now investigate a new robust model-
based procedure. 

5. A NONPARAMETRIC MOMENT-BASED ESTIMATOR 

In this section we attempt to overcome the lack of robustness of model-based estimators 
such as (4.4) which depend strongly on assumptions of linearity and homoscedasticity. If the 
finite population is realized as IID observations from the superpopulation and if interest centres 
on the superpopulation parameters iiy, Y,yy in the marginal distribution of ^, then the approach 
we adopt uses the fact that the sample data are IID from the conditional distribution/(j^ | z) 
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while the design variables Zu are an IID sample of size Â  from the marginal distribution of 
Z. For simplicity we assume that only one design variable has been used, such as a measure 
of size, so that z is a scalar random variable. 

We assume that the conditional mean and covariance matrix of y given z are smooth 
functions of z of unknown form. Let 

E{yjz) = li(z), (5.1) 

y(:y\z) ^^yy(Z). (5.2) 

These parametric functions can be estimated using some form of nonparametric estimation 
such as linear smoothing. Examples of linear smoothing methods are kernel estimation, see, 
for example, Gasser and Muller (1979), local regression, see, for example, Cleveland (1979), 
and smoothing splines, see, for example, Silverman (1985). We propose estimating the functions 
in (5.1) term by term using the kernel estimator 

B(z) = Y ^*(^'^;)^y (5-3) 
jis 

We constrain the sum of the weights to be unity so that the estimator is a weighted average 
and employ the Gaussian kernel with k being the bandwidth. These estimators have been 
extensively studied and a recent review is Gasser and Engel (1990). 

The structure in (5.1) and (5.2) implicitly assumes that we can write 

yj = i^(Zj) + ij, J^s, (5.4) 

so that 

ij = li ~ &(^j), J^^- (^•^) 

Thus 

lyi/ = (Hj - i(Zj)) (yj - P^(Zj))"" (5.6) 

is an estimator of Y.yy(Zj)- Applying a linear smoother to each term aai,{zj) of Y,yy(Zj) gives 

Oab(z) = Y ^h(Z,Zj)ejaej,,, (5.7) 

JiS 

where Wj,{z,Zj) is a kernel with band width h which will usually be wider than the band width 
k chosen for the estimation of the conditional mean, (5.3). 

The estimates of the marginal moments then employ the standard results that 

y,y = E,{,x{z)), (5.8) 

llyy =E,{Eyy{Z)) + K, (/. ( Z ) ) . (5.9) 
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Now 

Uy = i ii{z)f{z)dz, 

and our proposed estimator is 

^y = i[ii(z)f{z)dz. (5.10) 

Since Â  is large we propose using the empirical p.d.f. (Parzen 1962), giveii by 

dF{z) =f{z) = 1/N, if z = zj. j=l,...,N, (5.11) 

= 0 , otherwise . 

Substituting in (5.10) gives the estimator 

N 

tf^ = ^ " ' E A(2y). (5.12) 
y = i 

To estimate ^yy we adopt a similar procedure for the first term of (5.9). The second term 
can be written 

Vz(li(z)) = j {n{z) - iiy){ii{z) - ny)'^f{z)dz. (5.13) 

For our estimator we propose 

N 

VM(Z)) = N-' Y (&(Zj) - &y)(^(Zj) - a(y))''- (5.14) 

Thus the proposed estimator of is ?„„ is 

tyy = ^ - ' r Y ^^yy^^j") + (̂ (̂ -̂̂  - &y)(&(zj) - y^)^)l . (5.15) 

Njenga (1990) examines the asymptotic statistical properties of these estimators. 

One of the main reasons for estimating Lyy is to carry out some form of multivariate analysis, 
such as a regression analysis between two or more of the components of;'. In the next section 
we report the results of a simulation study in which the simple regression coefficient between 
two ̂ '-variables is estimated from stratified random samples with different sampling fractions. 

6. ESTIMATING A REGRESSION COEFFICIENT 
A SIMULATION STUDY 

Let^ = (^'i,^2)^ with mean ŷ  = (/ii,/.i2)^and covariance matrix 

\_a2i al J 

file:///_a2i
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We are interested in estimating a function of Y,yy, the simple linear regression coefficient, 

Bi2 = (7i2/<72. (6.1) 

The elements of 'Zyy will be estimated using: 

(i) the Pearson adjusted estimator of Y,yy based on (4.4), 

(ii) the probability weighted version of (4.4), 

(iii) a kernel estimator based on (5.14). 

The corresponding estimators of B12, or of its finite population equivalent Bi2y, are denoted 
Bi2,mh ^12 ,pwmi and Bi2,nw respectively. The estimator ^12,^/ is indexed by "ml" because it is 
also the MLE under a multivariate normal model. The estimator Si2,„w is indexed "nw" after 
Nadaraya (1964) and Watson (1964). The first two estimators were chosen because of their 
good performance in previous simulation studies, see Skinner et al. (1989, Ch.8). 

We carried out three types of simulation study. In the first simulation study we generated 
a multivariate normal population to compare the performance of the new estimator with the 
maximum likelihood estimator which is optimal for this population. In the second simulation 
study we generated a quadratic homoscedastic population to compare the estimators when only 
the linearity assumption is violated. In the last simulation study we compared the estimators 
when the structure of the population is unknown, i.e. we used a 'real' population. In these 
simulation studies we carried out both conditional and unconditional analyses. The former 
allow us to assess whether a particular estimator is good in some samples and poor for others 
whereas the latter averages over all possible samples for a particular design. 

The new estimator uses the Gaussian Kernel 

Wk{Zi,Zj) = qexpl- {Zj - Zj)^/2k^}, iiU, jis, 

where c, = l/lj^s exp[ - (z, - Zj)^/2k^]. A simulation with different values of the band 
width k showed that the mean squared error was relatively constant for a wide range of values 
of k and that this was achieved by trading off bias against variance. We selected values for 
k that gave relatively small values for the bias for each stratified sample design. 

Since the 'real' population available to us was 6,962 observations from the 1975 UK Family 
Expenditure Survey we constructed all three populations to be of this size with mean vector 
and covariance matrix 

H = 

Ml 

M2 

_ ^ z _ 

. 5 = 

a? <̂ 12 <riz 

<^2. <'2z 

ol 

The actual values of E are shown in Table 6.1. 
The design variable is based on the expenditure on food, the independent variable is the 

total income and the dependent variable is the total expenditure. This finite population was 
stratified into five strata according to increasing values of the design variable, such that the first 
stratum contains 1,393 units with lowest values of z, second, third, fourth contain 1,392 units 
each and the fifth contains the last 1,393 units with the highest z values. 
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Table 6.1 
Parameter Values from the Real Population 

Variable 

yi Expenditure on all items 
y2 Total income 
z Expenditure on food 

S.D. 

0.668 
0.849 
0.658 

Table 6.2 

Stratified Sample 

Sample design 

Dl Proportional allocation 
D2 Increasing allocation 
D3 U-shaped allocation 

« i 

20 
5 

40 

"2 

20 
9 
8 

Designs 

"3 

20 
16 
4 

1 
0.75 
0.41 

Correlation matrix 

"4 

20 
30 

8 

1 
0.28 

"5 

20 
40 
40 

1 

Symbol 

A 
V 
+ 

The sample designs used were based on those used by Holt, Smith and Winter (1980). 
Denote a stratified random sampling design by («i . . . ^5) with nj, units selected from the /i"̂  
stratum, h = 1, . . . , 5, then the designs are shown in Table 6.2, together with the symbols 
used in the plots. 

For the various stratified sample designs we selected 1,000 independent samples of size 100 
from the finite population. The sampling distribution of the various statistics under investiga
tion were estimated from these 1,000 repeated samples. We obtain the unconditional results 
by averaging the statistics under investigation over all the 1,000 samples. 

To assess the conditional properties of the estimators the 1,000 samples were divided into 
20 groups of 50 samples each according to increasing values of A^= {S^^ — Sjj)/Sjj for the 
nw and ml estimators where 

Szz = N-'ly{Zj - Zy)\ S,„ = « - ' ls(Zi - Zs)\ 

Zu = l^'^IuZi, Zs = «~'Ei^/. 

and of A*f = ( S ^ — S^)/S^^ for the pwml estimators where 

Szzs = Y,sWi(Zi - ^?)^ zf = Y,sWiZi, Wj = (A^TT,)"' and ir,-

denotes the probability of including the /"' unit in the sample such that the first group 
contained the 50 samples with the smallest values of Afj (or A*[) and so on up to the 20th 
group which contains the 50 samples with the largest values of Af̂  (or A*[). We assume that 
the variation in A^ (or A*[) within each group is small. The conditional distribution of the 
various estimators given A^ (or Aj/) can then be plotted. 

The biases, standard deviations and mean square errors reported in simulation studies I and 2 
are computed around the value of Bi2y in the finite population generated from the model. This 
enables them to be compared with the values generated from the real finite population in 
simulation study 3. 
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Table 6.3 
Unco 

Sample design 

Dl 

D2 

D3 

nditio 
N = 

nal Ab 
6,962, 

solute Bias 
n = 100 

Bl2,ml 

0.0003 

0.0007 

0.0026 

es of the Three Estimators of 
True Value S12 = 0.595 

Absolute biases of 

Bl2,pwml 

0.0003 

0.0019 

0.0018 

^12 

Bl2.nw 

0.0185 

0.0269 

0.0159 

Table 6.4 

Uncondidonal Standard Deviation of the Three Estimators of B12 

Sample design 

Dl 

D2 

D3 

B\2,ml 

0.0500 

0.0522 

0.0486 

Standard deviations 

Bl2,pwml 

0.0500 

0.0693 

0.0710 

Bl2,nw 

0.0507 

0.0531 

0.0503 

Table 6.5 
Unconditional Mean Square Errors of the Three Estimators of B12 

Sample design 

Dl 

D2 

D3 

B\2,ml 

0.0025 

0.0027 

0.0024 

Mean square errors 

Bl2,pwml 

0.0025 

0.0048 

0.0050 

B\2,nw 

0.0029 

0.0035 

0.0028 

Simulation Study 1 

In the first simulation study the 6,962 finite population values were generated from a 
multivariate normal distribution with correlation matrix given in Table 6.1. These data should 
be favourable to the estimator fii2,m/. 

The unconditional biases, standard deviations and mean squared errors are shown in Tables 
6.3, 6.4 and 6.5. 

As expected the estimator fii2,m/ is best in terms of mean squared error. The new estimator 
î2,niv does surprisingly well, it has a large bias but a similar standard deviation. The size of 

the bias for a very smooth (linear) population is consistent with the results in other studies, 
see Gasser and Engel (1990). A very wide bandwidth is needed to capture a very smooth 
function. 
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Figure 6.1 Scattergram of group means of B i2,m/ 
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Group means of B 
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Figure 6.3 Scattergram of group means of Bi2,nw 

The conditional plots are shown in Figures 6.1, 6.2 and 6.3. These plots show that there 
is no additional pattern to the bias beyond the absolute level of bias shown in Table 6.3. Previous 
studies have shown consistent patterns of bias for SRS estimators and simple /(-weighted 
estimators, see Skinner et al. (1989, Chs. 7 and 8). 

Simulation Study 2 

Repeated sampling from a quadratic homoscedastic population 

This simulation study is similar to one carried out by Holmes (1987). We generated 6,962 
finite population values of {yii,y2i,Zi) i = 1 . . . 6,962 by first generating a value of z, from 
the uniform distribution U{0,10). Using this generated value of z, the corresponding values 
of yij and y2j are obtained from the relationships; 

and 

y2i = m2 + HiZi + R2Zi + £2/ 

yu = mi + HiZi + Rizf + e,,-. 

where €2/ and ei, are random variables from normal distributions with mean zero and constant 
variance, and ^1 7!^ 0, R2 9^ 0. Following Holmes (1987) we chose the parameters in these 
expressions so that the regressions of yi and y2 on z are monotonically increasing functions 
of z and the regression of yi on ^2 is approximately linear so that the regression coefficient 
B12 will be a meaningful parameter to estimate. 



Survey Methodology, December 1992 201 

Table 6.6 

Unconditional Standard Deviation of the Three Estimators of B12 
N = 6,962, n = 100 True Value B,2 = 0.857 

Sample design 

Dl 

D2 

D3 

^12,m/ 

0.0119 

0.0923 

0.0124 

Absolute biases of 

"\2,pwml 

0.0119 

0.0132 

0.0098 

Bn.nw 

0.0171 

0.5556 

0.0104 

Table 6.7 
Unconditional Standard Deviation of the Three Estimators of B12 

Design 
Standard deviations 

^12,m/ Bi2_pwml ^12,nw 

Dl 0.0877 0.0877 0.0877 

D2 0.0972 0.1230 0.1150 

D3 0.0785 0.1110 0.0797 

Table 6.8 
Unconditional Mean Square Errors of the Three Estimators of B12 

Sample design 

Dl 

D2 

D3 

^ 
^I2,m/ 

0.0078 

0.0180 

0.0063 

Mean square errors 
„ 

B\2,pwml 

0.0078 

0.0153 

0.0124 

^ 
B\2,nw 

0.0080 

0.0164 

0.0065 

The unconditional resuhs of the three estimators of the regression coefficient are given in 
Tables 6.6, 6.7 and 6.8. 

We see from the tables that the ml estimator is severely biased and very inefficient for the 
increasing allocation design D2, but is approximately unconditionally unbiased and efficient 
for the designs Dl and D3. Thepww/estimator as expected is approximately unconditionally 
unbiased across all the sample designs considered. Though more biased than the pwml 
estimator, the nw estimator is less biased than the ml estimator for the unequal probability 
designs. We also see that the nw estimator is more efficient than ml for the design D2 and 
approximately equally efficient for design D3. It is also more efficient than the pwml estimator 
for the U-shaped design D3. 
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The plots of the conditional analysis are shown in Figures 6.4, 6.5 and 6.6. 
We see from Figure 6.4 that the ml estimator is approximately conditionally unbiased for 

the design Dl and D3, and has no additional conditional bias for the design D2. From Figure 
6.5 we see that the pwml estimator has no additional conditional bias for any of the designs. 
We see from Figure 6.6 that the nw kernel estimator has only a small additional conditional 
bias within each of the three probability designs. 

Simulation Study 3 

Repeated sampling from a multivariate 'Real' population 

In this simulation study we employ the 6,962 actual data points from the Family Expen
diture Survey for the finite population. We consider the same variables as in section 3.1 and 
sample repeatedly from this population to investigate the robustness properties of the three 
regression estimators. We expect the real population to violate all the normality assumptions. 

The unconditional results are shown in Tables 6.9, 6.10 and 6.11, and we see that the nw 
kernel estimator is the most efficient and is approximately unconditionally unbiased across 
all the probability designs. The ml estimator is less biased and more efficient than the pwml 
estimator for the unequal probability designs. 

The plots of the conditional analyses are shown in Figures 6.7, 6.8 and 6.9. 
We see from Figure 6.7 that the ml estimator is approximately conditionally unbiased for 

the designs Dl and D2 but has a slight conditional bias for design D3. From Figure 6.8 we see 
that the/>wm/estimator has no additional conditional bias for any of the designs. From Figure 
6.9 we see that the nw kernel estimator is approximately conditionally unbiased for the three 
probability designs. 
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Table 6.9 

Uncondidonal Absolute Biases of the Three Estimators of B12 
N = 6,962, n = 100 True Value B,2 = 0.595 

Sample design 

Dl 

D2 

D3 

^12,m/ 

0.0245 

0.0260 

0.0128 

Absolute biases of 

B]2,pwml 

0.0245 

0.0408 

0.0355 

Bl2,nw 

0.0056 

0.0060 

0.0072 

Table 6.10 
Unconditional Standard Deviation of the Three Estimators of B12 

Sample design 

Dl 

D2 

D3 

^12,m/ 

0.111 

0.106 

0.111 

Standard deviation 

Bl2,pwml 

0.111 

0.132 

0.122 

Bl2,nw 

0.111 

0.108 

0.111 

Table 6.11 
Unconditional Mean Square Errors of the Three Estimators of B12 

Sample design 

Dl 

D2 

D3 

^12,m/ 

0.0130 

0.0120 

0.0125 

Mean square errors 

Bl2,pwml 

0.0130 

0.0192 

0.0161 

^12,«M' 

0.0121 

0.0117 

0.0123 

We conclude from these simulation studies that the new estimator 0i2,„w has performed 
well. When the assumptions of linearity and homoscedasticity are violated it appears to be 
robust across a variety of designs, to have good efficiency and to have reasonable conditional 
as well as unconditional properties. We know from previous studies that 0i2,pwmi performs as 
well as more conventional/7-weighted estimators unconditionally and has far better conditional 
properties. The fact that in this study the new estimator Bi2,„«, apparently has better properties 
than the pwml estimator, which was chosen to represent the class of/7-weighted estimators 
because of its performance in other simulation studies, suggests that it is an approach that could 
be considered in analytic studies of a small number of key parameters. 



Survey Methodology, December 1992 205 

Group means of B 

0.60 -

0 50 

A 

A 

A 

' » A 

' ' r « 

' A A 

» 

01 A 

D2 V 

03 + 

A 

1 

* 
• * 

• • 

* * * 

t , 

1 1 i 

-1.00 -0.25 0.50 

Group means of A' 

1.25 2.00 

Figure 6.7 Scattergram of group means of B 12 mi 

Group means of B 

0.60 -

• •» 

••t 

0.50 

01 
02 

03 

A 
V 
+ 

-0.50 0.00 

Group means of A 

0.50 
'F 

ZZ 

1.00 

Figure 6.8 Scattergram of group means of B j 2,pwm/ 



206 Smith and Njenga: Robust Model-Based Methods for Analytic Surveys 

Group means of B 

0.60 -

0.50 -

• 

* 
• » 

• » A 

* 
. . : * . * 
- ' . ' . / ' • • . • 

. • • ' * 

• , 
4 

• 

1 1 1 

01 A 

02 V 

0 3 + 

1 

-1.00 -0.25 0.50 

Group means of A 

1.25 2.00 

ZZ 

Figure 6.9 Scattergram of group means of B12 nw 

ACKNOWLEDGEMENTS 

The authors wish to thank an anonymous referee for many helpful comments which 
improved the presentation of the paper. E. Njenga was supported by a grant from the British 
Council. 

REFERENCES 

BINDER, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys. 
International Statistical Review, 51, 279-292. 

BREWER, K.R.W. (1979). A class of robust designs for large scale surveys. Journal of the American 
Statistical Association, 74, 911-915. 

BREWER, K.R.W., and SARNDAL, C.-E. (1983). Six approaches to enumerative survey sampling. 
Incomplete Data in Sample Surveys, (Vol. 3). New York: Academic Press, 363-368. 

CLEVELAND, W.S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal 
of the American Statistical Association, 74, 829-836. 

GASSER, T., and MULLER, H.G. (1979). Kernel estimation of regression functions. Smoothing 
Techniques for Curve Estimation, (Eds. T. Gasser and M. Rosenblatt). New York: Springer-Verlag, 
23-68. 

GASSER, T., and ENGEL, J. (1990). The choice of weights in kernel regression estimation. Biometrika, 

11, 377-381. 
GODAMBE, V.P. (1955). A unified theory of sampling from finite populations. Journal of the Royal 

Statistical Society, B, 17, 269-278. 



Survey Methodology, December 1992 207 

GODAMBE, V.P. (1960). An optimum property of regular maximum likelihood estimation. Annals of 
Mathematical Statistics, 31, 1208-1211. 

GODAMBE, V.P. (1982). Estimation in survey sampling: Robustness and optimality. Journal of the 
American Statistical Association, 11, 393-403. 

GODAMBE, V.P., and THOMPSON, M.E. (1977). Robust near opdmal estimation in survey practice. 
Bulletin of the International Statistical Institute, 47, 129-146. 

GODAMBE, V.P., and THOMPSON, M.E. (1986). Parameters of superpopulation and survey 
population: their reladonships and estimation. International Statistical Review, 54, 127-138. 

HANSEN, M.H., MADOW, W.G., and TEPPING, B.J. (1983). An evaluadon of model dependent 
and probability sampling inferences in sample surveys. Journal of the American Statistical Association, 
78, 776-793. 

HOLT, D., SMITH, T.M.F., and WINTERS, P.D. (1980). Regression analysis of data from complex 
surveys. Journal of the Royal Statistical Society, Ser. A, 143, 474-487. 

HOLMES, D. (1987). The effect of selection on the robustness of multivariate methods. Unpublished 
Doctoral thesis. University of Southampton, U.K. 

HORVITZ, D.G., and THOMPSON, D.J. (1952). A generalization of sampling without replacement 
from a finite universe. Journal of the American Statistical Association, 47, 663-685. 

ISAKI, C.T., and FULLER, W.A. (1982). Survey design under the regression superpopulation model. 
Journal of the American Statistical Association, 11, 89-96. 

KOTZ, S., and JOHNSON, N.L. (1988). Encyclopedia of Statistical Sciences, (Vol. 8). New York: John 
Wiley, 157. 

LITTLE, R.J.A. (1983). Estimating a finite populadon mean from unequal probability samples. Journal 
of the American Statistical Association, 78, 596-604. 

NADARAYA, E.A. (1964). On esdmadng regression. Theory of Probability Application, 9, 141-142. 

NATHAN, G., and HOLT, D. (1980). The effect of survey design on regression analysis. Journal of 
the Royal Statistical Society, B, 42, 377-386. 

NJENGA, E.G. (1990). Robust estimation of the regression coefficients in complex surveys. Unpublished 
Ph.D. thesis. University of Southampton. 

PARZEN, E. (1962). On the estimation of the probability density function and mode. Annals of 
Mathematical Statistics, 33, 1065-1076. 

PEARSON, K. (1903). On the influence of natural selection on the variability and correlation of organs. 
Philosophical Transactions Royal Society of London, A, 200, 1-66. 

PFEFFERMANN, D. J., and HOLMES, D. (1985). Robustness consideradon in the choice of method 
of inference for regression analysis of survey data. Journal of the Royal Statistical Society, A, 148, 
268-278. 

ROYALL, R.M., and CUMBERLAND, W.G. (1981). An empirical study of the ratio estimator and 
estimators of its variance. Journal of the American Statistical Association, 76, 66-88. 

ROYALL, R.M., and HERSON, J. (1973a). Robust estimation in finite populations I. Journal of the 
American Statistical Association, 68, 880-889. 

ROYALL, R.M. and HERSON, J. (1973b). Robust estimation in finite populadons II. Journal of the 
American Statistical Association, 68, 890-893. 

SARNDAL, C.-E. (1980). On ir-inverse weighting versus best linear weighting in probability sampling. 
Biometrika, 67, 639-650. 

SCOTT, A.J. (1977). On the problem of randomization in survey sampling. Sankhya, C, 39, 1-9. 

SKINNER, C.J., HOLT, D., and SMITH, T.M.F. (1989). Analysis of Complex Surveys. New York: 
Wiley. 



208 Smith and Njenga: Robust Model-Based Methods for Analytic Surveys 

SILVERMAN, B.W. (1985). Some aspects of the spline smoothing approach to nonparametric curve 
fitdng. Journal of the Royal Statistical Society, B, 47, 1-52. 

SUGDEN, R.A., and SMITH, T.M.F. (1984). Ignorable and informative designs in survey sampling 
inference. Biometrika, 71, 495-506. 

WATSON, G.S. (1964). Smooth regression analysis. Sankhya, A, 359-372. 



Survey Methodology, December 1992 2 0 9 
Vol. 18, No. 2, pp. 209-217 
Statistics Canada 

Some Recent Work on Resampling Methods 
for Complex Surveys 
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ABSTRACT 

Resampling methods for inference with complex survey data include the jackknife, balanced repeated 
replication (BRR) and the bootstrap. We review some recent work on these methods for standard error 
and confidence interval estimation. Some empirical results for non-smooth statistics are also given. 

KEY WORDS: Balanced repeated replication; Bootstrap; Jackknife; Stratified multistage designs; 
Variance estimation. 

1. INTRODUCTION 

Standard sampling theory is largely devoted to estimation of mean square error (MSE) of 
unbiased or approximately unbiased estimators F of a population total Y. An estimator of 
MSE, or a variance estimator, provides us with a measure of uncertainty in the estimator Y. 
It is a common practice to assume that the estimator Y'ls approximately normally distributed 
and then use a two-sided confidence interval Y ± Za/2s( Y) or a one-sided confidence interval 
{Y - ZaS{Y),oo)or{- <x>,Y + z„5( f ) ) , where 5(7) is the standard error of 7 (/.e., square 
root of estimated MSE) and z„ is the upper a-point of a N{0, 1) variable. These intervals cover 
the true total Y with a probability of approximately 1 - a in large samples, but the actual 
coverage probability could be significantly lower than 1 - a in small samples or in highly 
clustered samples. For nonUnear statistics, such as ratios, regression or correlation coefficients, 
the well-known linearization (or Taylor expansion) method is often used (see Rao 1988 for 
detailed applications). Resampling methods, such as the jackknife, balanced repeated replica
tion (BRR) and the bootstrap, are also being used, and in fact several agencies in the U.S.A 
and Canada have adopted the jackknife method of variance estimation for stratified multistage 
surveys. An advantage of the linearization method is that it is applicable to general sampling 
designs, but involves the derivation of a separate standard error formula, s{d), for each 
nonlinear statistic, d. On the other hand, resampling methods employ a single standard error 
formula for all statistics d. However, the jackknife and the BRR methods are strictly applicable 
only to those stratified multistage designs in which clusters within strata are sampled with 
replacement or the first-stage sampling fraction is negligible. The bootstrap method of Rao 
and Wu (1987) works for more general designs, but it is computationally cumbersome and its 
properties for complex designs have not been fully investigated. 

This paper provides an account of some recent work on resampling methods for complex 
surveys. Some empirical results on jackknife and bootstrap variance estimation for non-smooth 
statistics, such as the median, under stratified cluster sampling and stratified simple random 
sampling are also given. 

' J.N.K. Rao, Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario KIS 5B6. 
C.F.J. Wu, Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1. 
Kim Yue, Social Survey Methods Division, Statistics Canada, Ottawa, Ontario KIA 0T6. 



210 Rao, Wu and Yue: Resampling Methods for Complex Surveys 

2. STRATIFIED MULTISTAGE SAMPLING 

Large-scale surveys often employ stratified multistage designs with large numbers of strata, 
L, and relatively few primary sampling units (clusters), n),{> 2), sampled within each stratum 
h. In fact, it is quite common to select nh = 2 clusters within each stratum to permit maximum 
degree of stratification of clusters consistent with the provision of a valid variance estimator. 
We assume that subsampling within sampled clusters is performed to ensure unbiased estimation 
of cluster totals Y,,,, i = 1, ..., n^; h = 1, ..., L. 

Let Wf,jit{> 0) he the survey weight attached to the k-th sample element (ultimate unit) in 
the i-th sample cluster belonging to h-th stratum. Often, the basic weights ŵ ,,̂  are subjected 
to post-stratification adjustment to ensure consistency with known totals of post-stratification 
variables. For example, the Canadian Labour Force Survey uses a generalized regression 
estimator to ensure consistency. We shall, however, ignore this complication in the present 
paper. An estimator of the population total Yis of the form 

^ = Y ^Mkyhii^' (2-^^ 
(Mk)is 

where s denotes the sample of elements and yhn^ is the value of a characteristic of interest, y, 
associated with the sample element {hik)€s. We assume complete response on all items. 

It is a common practice to sample the clusters with probabilities proportional to sizes (pps) 
and without replacement to increase the efficiency of the estimators compared to pps sampling 
with replacement and to avoid the possibility of selecting the same cluster more than once in 
the sample. However, at the stage of variance estimation the calculations are greatly simplified 
by treating the sample as if the clusters are sampled with replacement and subsampling done 
independently each time a cluster is selected. This approximation leads to overestimation of 
variance of Y, but the relative bias is likely to be small if the first stage sampling fraction is 
small in each stratum. 

Writing Y as 

Y '>" (2.2) 
h = l 

with 

''hi = Y ("''Whik)yhik, fh = Y '•'"•/"'" 

we note that the r/,, are independent and identically distributed (iid) random variables with the 
same mean, Yf,, and the same variance in each stratum h, under with replacement sampling 
of clusters. It therefore follows that an unbiased estimator of variance of Y is given by 

s^{Y) = Y'^'rh/rth, (2.3) 
h 

with 
"h 

{n„ - l)sj, = Y ('•M - fh)'. 
( = 1 

Under without-replacement sampling of clusters, s^ {Y) will overestimate the true variance of Y. 
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We are also often interested in estimating the population distribution function, F{t), 
and the/7-th quantile, 0 = F~\p), 0 < p < 1; in particular, the population median 
6 = F~'(1/2). The survey estimator of F(f) is given by 

F(t) = Y "^i^ik^i^ik, (2.4) 
{hik)is 

where % i = w ĵ/̂ t/SiH/Arare the normalized weights (Ê W/î t = l)anda/„-<. = 1'if yhik ̂  t, 
Ohik — 0 otherwise. The sample p-th quantile is obtained as 

e=F-\p). (2.5) 

In practice, d is computed by first arranging the sampled values yhn^ in an ascending order, say 
[y^hik) ], and then cumulating the associated weights Wj,,!^ untilp is first crossed. The first y^^n^) 
encountered after crossing/»is taken as the sample p-th quantile, §. Woodruff (1952) obtained 
confidence intervals for a quantile, and Rao and Wu (1987) obtained a simple variance estimator 
using Woodruff's interval (see also Kovar, Rao and Wu 1988, Francisco and Fuller 1991). Shao 
(1991) considered general L-statistics, including the sample Lorenz curve and the Gini coeffi
cient, which are examples of smooth L-statistics, and the sample quantiles which are examples 
of non-smooth L-statistics. 

Many nonlinear parameters of interest, such as population means, ratios, regression and 
correlation coefficients, can be expressed as smooth functions, d = g (K), of a vector of totals, 
Y = {Yi, ..., F^)', of suitably defined variates. An estimator of d is given by ^ = g{Y). 
The linearization method may be used to estimate the variance of g( F), under any complex 
design (see Binder 1983 and Rao 1988). 

3. RESAMPLING METHODS 

Resampling methods, such as the jackknife and the bootstrap, are widely used in the iid 
case. Suitable modification/extensions of these methods have also been developed to handle 
survey data involving stratification and clustering. We now give a brief account of some recent 
work on three such methods: jackknife, balanced repeated replication and bootstrap, in the 
context of stratified multistage sampling. 

3.1 Jackknife 

For simplicity, assume § = g{Y), a smooth function of the estimated total Y. Let 
d(gj) = g{ Y(gj)) be the estimator of d obtained from the sample after omitting the data from 
they'-th sampled cluster in g-th stratum {j = 1, 

{hik)is 

1 , . . 

{gik)is^ 
i^j 

.,ng; 

: "^ 
>« -

g 

1 

= 1, 

^gik\ 

t • • • 3 

'^ygik-

,L), where 

Y(gj) = Y "^"ikyhik + Y ——j-^^'M-^s*- ^^'^^ 

Note that Y^^j^ is obtained by changing the weight of {gik)-th element to ngWgji^/{n^ - 1), 
/' ?£ y, but retaining the original weights, w,,,!^, for h ?i g. A customary delete-1 cluster jack-
knife variance estimator of 6 is given by 
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s'AO) = Y -— Y (̂ ^«» - ^^'' (3-2) 
g=\ "« j=l 

Two variations of s^{9) are obtained by changing 6 in (3.2) to 9^g) = Y,j^(gj)/''ig and 
(̂..) = EgE^(g7)/''. where n = E^^g- In the Hnear case, § = Y, all the jackknife variance 

estimators reduce to the "correct" variance estimator, s^{ F), given by (2.3). Rao and Wu 
(1987) made a second order analysis of the resampling variance estimators when § is expressed 
as a smooth function of totals, F. Their main results on the jackknife are: (1) Different jack-
knife variance estimators are asymptotically equal to higher order terms, as the number of 
strata, L, increases. (2) In the important case of «;, = 2 for all h, the linearization variance 
estimator, s\{d), and any jackknife variance estimator are asymptotically equal to higher 
order terms, indicating that the choice between the two methods should depend more on 
operational considerations than on statistical criteria. 

A drawback of the customary delete-1 jackknife method in the case of independent and 
identically distributed (i.i.d.) observations is that, unlike the bootstrap, it fails to provide a 
consistent variance estimator for non-smooth statistics, such as the median. Shao and Wu 
(1989), however, have shown that this deficiency of the delete-1 jackknife can be rectified by 
using a more general jackknife, called the delete-rf jackknife, with the number of observations 
deleted, d, depending on a smoothness measure of the statistic. In particular, for the sample 
quantiles, the delete-c? jackknife with (/satisfying/J'''Vc? — Oand/j - c? — ooas/j — oo leads 
to consistent variance estimators in the case of i.i.d. observations. This result suggests that 
a similar effect might hold in the case of delete-1 cluster jackknife for stratified multistage 
sampling since all the sampled elements in a sampled cluster {gj) are deleted in computing 
s^j{d) given by (3.2). At present we are studying this problem theoretically, but we performed 
a limited simulation study which suggests that the delete-1 cluster jackknife variance estimator 
5y(^) might perform quite well. We now report the results of the simulation study for the 
median, 6 = F-'^{Vi). 

For the simulation study, we generated stratified cluster samples [y^k, k = 1, ..., M; 
i = I, ..., n/,; h = 1, . . . , L) employing the nested error model j'/uvt = fx,, -\- a,,, -\- e/„jtwith 
fl/,/ ~ N{0,a\j,) and ehjic ~ N{0,ali,), where the cluster size. Mis assumed to be equal for all 
clusters {hi), and the intra-cluster correlations, alh/{alh + ^Ih) = Ph, are assumed to be equal 
for all strata h {i.e., p/, = p). The normalized survey weights are given by w,,,!^ with w,,,!^ = 
Wf,/ {nf,M) and If/, denotes the relative size of stratum/i. The number of strata L ( = 32), strata 
means, Hh, variances a\ = a],,, -\- a^h and sizes Wj, were chosen to correspond to real populations 
encountered in the US National Assessment of Educational Progress Study (Hansen and 
Tepping 1985). We generated 1,000 independent stratified cluster samples with n/, = 2 for 
each selected combination {p,M) and then computed the bias and relative bias of the jackknife 
variance estimator, s]{e), for the median: Bias[sj{9)] = Y,tsj,{9)/1,000 - MSE{9), 
where s^,{9) is the value of s]{9) for the t-th simulated sample {t = I, . . . , 1,000) and Rel. 
Bias[s]{9)] = B'ias[sj{9)]/MSE{9). We calculated MSE(^) from an independent set of 
10,000 stratified cluster samples for each {p,M):MSE{9) = I , {9, - e.)V 10,000, where 
e', is the value of 0 for the Mh simulated sample, 0. = £eVlO,O0Oand? = 1, . . . , 10,000. 

Table 1 reports the simulated values of bias and relative bias (in brackets) of the jackknife 
variance estimator for selected combinations of p and M. First, we note that for the special 
case of stratified simple random sampling (p = 0, M = 1), the relative bias is very large 
(116%) thus confirming the inconsistency of s]{9) in this case. Second, we observe that both 
the bias and relative bias decrease as M increases for a given p. Moreover, for a given cluster 
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Table 1 
Bias and % Relative Bias (in Brackets) of Jackknife Variance Estimator for 

the Median Under Stratified Cluster Sampling {n/, = 2, L = 32) 
and Selected Values of Equal Intra-Cluster Correlation, p, 

and Equal Cluster Size, M 

p 

0 
0.05 
0.10 
0.20 
0.30 
0.50 

1 

7.5(116) 
-
-
-
-
-

10 

.28(41) 

.22(27) 

.28(28) 

.31(22) 

.32(18) 

.44(17) 

M 

20 

.09(29) 

.09(18) 

.10(14) 

.11(10) 

.11 (7) 

.15 (6) 

30 

.04(15) 

.05(12) 

.06 (9) 

.08 (8) 

.07 (5) 

.11 (5) 

50 

.01(15) 

.03 (8) 

.02 (3) 

.03 (3) 

.01 (1) 

.04 (2) 

size M, the bias generally increases with p, but the relative bias in fact decreases because MSE (6*) 
is increasing faster than the bias as p increases. It is indeed gratifying that the relative bias is 
no more than 10% for M > 30 and p > O.IO or M > 20 and p > 0.20. 

3.2 Balanced Repeated Replication (BRR) 

Balanced repeated replication (BRR) was proposed by McCarthy (1969) for the important 
special case of nj, = 2 clusters per stratum. A set of R balanced half-samples (replications) 
is formed by deleting one cluster from the sample in each stratum. This set may be defined 
by a/? X L design matrix (6^), 1 < r < R,l < h < L with 6^ = -I- 1 or - I according 
as whether the first or second sample cluster in the /i-th stratum is in the Mh half-sample, and 
£;. h\h''h' = 0 for all /i ^ h', i.e. the columns of the matrix are orthogonal. A minimal set of 
/? balanced half-samples may be constructed from Hadamard matrices (L -I- I < /? < L -I- 4) 
by choosing any L columns, excluding the column of -H I's. 

Let ^'''' be the estimator of 9 obtained from the r-th half-sample. Note that 6'''' is obtained 
from 9 by changing the weight of {hik)-th element to 2w ,̂4. or 0 according as the (/i/)-th 
cluster is selected or not selected in the half-sample. A BRR variance estimator of 9 is given by 

1 ^ 
s\^^(9) =-^Y (̂ '*'' - ^)'- (̂ -̂ ^ 

T=\ 

Several variations of 5BRR(^) are also available; for example, 9 may be changed to ^( •) = 
Y,rS^'^^/R. In the linear case, 6 = Y, all the BRR variance estimators reduce to the "correct" 
variance estimator, s^{Y), as in the case of the jackknife. 

Krewski and Rao (I98I) established the consistency of s]{9) and 5BRR(^) for smooth 
statistics 9 = g{Y), as L increases. Rao and Wu (1985) made a second order analysis and 
showed that 5BRR(^) and sl{9) are not asymptotically equivalent to second order terms, 
unHkesy(^) and5 i (^ ) . Shao and Wu (1992) established the consistency of 5BRR(^) for the 
quantiles, 9 = F''^{p). 

The BRR method has been extended to the case of « / , = / ? > 2 clusters per stratum for 
p prime or power of prime (Gurney and Jewett 1975), but the number of replications, R, 
needed is much larger than in the case of nj, = 2. In many survey designs «/,'s are not equal. 
To accommodate the general case of unequal nj,, Gupta and Nigam (1987) and Wu (1991) 
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advocated the use of mixed-level orthogonal arrays of strength two for drawing balanced 
replicates, where /i/, is the number of symbols in the h-th column of the array. Orthogonality 
of the array guarantees that the replicates drawn are balanced. Unlike the case of equal nj,, 
the adjustment of survey weights is more complicated. A correct method was given by Wu 
(1991). From his formula (6), two separate adjustments should be applied to the sampled and 
unsampled units in each replicate. Simple algebra on Wu's equation (6) shows that Wi,jji is 
changed to w^̂ . = [I -I- (nj, — l)'^']Wj,j,cO^ ^Mk = [1 - (>^h — 1)''''] W/I/A: according as the 
{hik)-th element is selected or not selected in the replicate. (Note that lv̂ 7̂ . = 2 and wl'n; = 0 
for n/, = 2). The remaining calculation of *̂''* and ^BRR(^) are the same as in (3.3). Further
more, these modified survey weights can be applied to ̂  = F~^{p) and more general 9 = T{F), 
where T is a functional of F. All we need to do is to change w,,,!^ in (2.4) to w^^ or vv̂^̂t 
according as the {hik)-th element is selected or not selected in the r-th replicate to get F*''' of 
F for the r-th replicate, and ^'''' = T{F^''^). The calculation of the BRR variance estimator 
is the same as in (3.3). 

There are two problems with the use of mixed orthogonal arrays. First, the array size can 
be large for general «/,. Second, orthogonal arrays do not exist for any combination of nj,'s. 
A practical solution is to group the «/, sample psu's in stratum h into two to four groups of 
psu's and then apply the method to the groups by treating the groups as units in the BRR 
method. This extension is called the grouped BRR method. As shown by Wu (1991), its effi
ciency loss can be relatively small, compared to the full BRR, if the groupings are done 
judiciously. For example, more groups are needed if nj, is large and the units within the 
stratum are more heterogeneous. For n), = 2, 3 or 4, many mixed orthogonal arrays have 
been constructed (see, for example, Dey 1985 and Wang and Wu I99I). If nj, can only take 
2 or 4, saturated orthogonal arrays for any combination can be easily constructed as in Wu 
(1989). That is, the number of replications can be as small as possible. It is therefore possible 
to compile a large collection of mixed orthogonal arrays for practical use if nj, is restricted to 
2, 3 or 4. 

The BRR method and extensions considered thus far only take one unit (psu) per stratum 
for each replicate. If /?/, is large, say more than 3, Sitter (1992) proposed the use of orthogonal 
multi-arrays to allow the number of resampled units per stratum to be greater than one. It may 
require fewer replicates and it can cover cases where orthogonal arrays of strength two are not 
available; for example, nj, = 6. 

3.3 Bootstrap 

The bootstrap method for the iid case has been extensively studied (Efron 1982). Rao and 
Wu (1987) provided an extension to stratified multistage designs, but covering only smooth 
statistics 9 = g{Y). They required that, in order to have valid variance estimation in the case 
of small «/,, some scale adjustment, similar to those in Section 3.2, is necessary. What they 
did not reaHze is that the scale adjustment should be made on the survey weights Wj,,^. rather 
on theyj,ji( values directly, which is what they proposed. As a result, their method cannot be 
extended to cover the quantile 9 = F~^{p). We now present a general method that covers 
smooth as well as non-smooth statistics for arbitrary sizes, «/,. It works as follows: (i) Draw 
a simple random sample of mj, clusters with replacement from the nj, sample clusters, 
independently for each h. Let ml, be the number of times {hi)-th sample cluster is selected 
(El 'f^hi = i^h)- Define the bootstrap weights 

whk = [{1 - (rrihKnh - 1))'̂ M + (/«;,/(«/, - l)y''{n„/m„)mt,]w„j„. (3.4) 
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If the {hi)-th cluster is not selected in the bootstrap sample, mf,, = 0 and the second term of 
(3.4) vanishes. If mj, is chosen to be less than or equal to nj, - 1, then the bootstrap weights 
ŵ ,jt are all positive if w/,„(. > 0 for all (/!//:)€5 Calculate 6*, the bootstrap estimator of 0, using 
the weights ŵ /jt in the formula for 6. The bootstrap median, for example, is calculated as 
before using the normalized bootstrap weights w^jk = ŵ „t / Hs^hik, provided all w^ji^ > 0. 
(ii) Independently replicate step (i) a large number, B, of times and calculate the corresponding 
estimates 9*i), ..., 9*B). 

The bootstrap variance estimator 5BOOT(^) = E*{9* - E*9*)^, is approximated by 

1 ^ 
51OOT(^) = - D [^U) - ^]'- (3.5) 

^ 6=1 

Avariationof (3.5)isobtainedbychanging^to0*.) = 'Zb^lb)/^. Inthelinearcase,5BOOT(^) 
reduces to the "correct" variance estimator s^{Y). 

Rao and Wu (1987) obtained bootstrap-^ confidence intervals for smooth functions, 
9 = g(F), by approximating the distribution of / = {9 — ^) Ay(^) by its bootstrap counter
part t* = {9* - 9)/sj{9*), where s]{9*) is obtained from(3.2) with w,̂ ,;t changed to ŵ ,̂ .. A 
two-sided (I - a)-level confidence interval for 9 is then given by (^ - tySj{9),9 - tlsj{9)], 
where tl and ty are the lower and upper a/2-points of t* obtained from the bootstrap 
histogram of ?*i), . . . , t*g). One-sided confidence intervals can also be obtained from the 
bootstrap histogram. Empirical work by Kovar, Rao and Wu (1988) for smooth functions 
indicates that the bootstrap-f interval with mj, = n,, — 1 tracks the error rates in both the 
lower and upper tails better than the jackknife interval [9 - Za/2^j{9),9 + Za/2Sj{9) ], but 
the total error rate is not distinguishable from the latter, i.e., for two-sided intervals, they exhibit 
similar performance in terms of actual coverage probability. If a variance stabilizing transfor
mation can be found, such as the tanh ~' transformation on the estimated correlation coeffi
cient, then the problem of uneven error rates in the two tails for the jackknife interval seems 
to be corrected. This suggests that the jackknife interval, or any other normal-theory interval, 
based on such transformations can be useful when the transformations are known, while the 
bootstrap provides an alternative when such transformations do not exist or are unknown. 

We now present the results of a limited simulation study on the performance of the proposed 
bootstrap method in the case of the median. Employing the Hansen-Tepping basic popula
tion I with L = 32 strata (see Kovar et al. 1988, Sections 3 and 6 for details), we generated 
500 independent stratified simple random samples with nj, = 5 and then computed the relative 
bias and coefficient of variation (relative stability) of the Woodruff-based variance estimator 
with a = O.I (see Kovar et al. 1988, eq. (2.8)), the BRR variance estimator (3.3) and the 
bootstrap variance estimator (3.5) and its variation obtained by changing 9 to 9*.y We used 
tf'ih — "h - I and nj, - 3 and B = 500 bootstrap repUcates for each sample, while the BRR 
replicates were obtained from an orthogonal array with 250 runs. The true MSE of 9 was 
approximated by selecting 10,000 independent stratified random samples. We also calculated 
the error rates in each tail (nominal rate of 5% in each tail) and standardized lengths of the 
normality-based confidence interval using the BRR variance estimator, the Woodruff interval 
and the bootstrap interval obtained from the percentile method using the bootstrap histogram 
of 9*1), ..., d*B) for each sample. 

Table 2 reports the simulated values of the relative bias, coefficient of variation, lower (L) 
and upper (U) error rates, and standardized lengths. First, we note that the bootstrap variance 
estimator (3.5) has a larger relative bias and a slightly larger coefficient of variation (CV) than 
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Table 2 
% Relative Bias and Vo CV of Variance Estimator and Error Rates 

and Standardized Lengths of Confidence Intervals 
(Nominal Level of 5% in Each Tail) for the Median Under Stratified 

Simple Random Sampling L = 32, n^ = 5) 

Method 

Woodruff 

BRR 

Bootstrap*: 
m,, = 4 

m,, = 2 

% Rel. Bias 

4.2 

3.1 

12.6 
(7.5) 

13.0 
(7.8) 

<Vo CV 

47 

31 

52 
(48) 

54 
(49) 

Error Rate 

L 

4.2 

5.0 

5.0 

5.0 

U 

5.6 

5.0 

5.2 

4.8 

St. Length 

0.997 

1.004 

0.987 

0.988 

* Results for the variation of the bootstrap variance estimator are given in the brackets. 

its variation obtained by changing ^ to 6*.): Relative bias of 12.6% vs. 7.5% and CV of 52% 
vs. 48% for mj, = nj, — 1 = 4. On the other hand, the BRR variance estimator has the 
smallest relative bias (3.1%) and the smallest CV (31%), while the Woodruff-based variance 
estimator has a smaller relative bias (4.2%) and a comparable CV (47%). Secondly, the lower 
and upper error rates are close to the nominal level (5%) for the bootstrap and the BRR 
intervals, while the error rates are slightly uneven for the Woodruff interval (L = 4.2% and 
U = 5.6%). Finally, we note that the standardized lengths are roughly equal for all the 
methods. Overall, the bootstrap variance estimator and the bootstrap intervals based on the 
percentile method did not exhibit better performance relative to either the BRR variance 
estimator and the associated normality-based interval or the Woodruff-based variance estimator 
and the Woodruff interval. 
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An Estimating Function Approach to Finite 
Population Estimation 

HAROLD J. MANTELl 

ABSTRACT 

Godambe and Thompson (1986) define and develop simultaneous optimal estimation of superpopula
tion and finite population parameters based on a superpopulation model and a survey sampling design. 
Their theory defines the finite population parameter, 9/̂ . as the solution of the optimal estimating 
equation for the superpopulation parameter d; however, some other finite population parameter, 0, may 
be of interest. We propose to extend the superpopulation model in such a way that the parameter of interest, 
<t>, is a known function of 0/̂ . say 0 = /(0/v) • Then <f> is optimally estimated by/(9^), where 6s is the 
optimal estimator of djsi, as given by Godambe and Thompson (1986), based on the sample s and the 
sampling design. 

KEY WORDS: Estimating functions; Generalized linear estimator; Finite population parameter. 

1. ESTIMATION OF A MEAN 

The problem discussed in this paper is the estimation of a finite population parameter such 
as the mean based on a sample survey. There is also a hypothesized superpopulation regression 
model relating the variable of interest to some known covariables. The objective is an estimation 
procedure which has good properties with respect to both the sampling design and the hypothe
sized model. The approach here is based on the work of Godambe and Thompson (1986). 

We suppose that we have a finite population of labeled individuals/* = ( / : /= 1, . . . ,A'^). 
With each individual / is associated an unknown variable y, and a vector of covariables, x,. 
The vector x, may be known for all /€P or only for / in the sample and the population mean 
.S/v would be known. Letting £'^ denote expectation with respect to the superpopulation model, 
the model assumptions are: 

(i) y, and yj are independent for / ?i j 

(ii) E„,{yi) = xf0 for some unknown real vector 0 

(iii) E„,{yj — xf0)^ = a^v„ i = 1, ..., N, for known v, and some unknown a^. 

Following Godambe and Thompson (1986) we define a finite population parameter /3/v as 
the solution of the linearly optimal estimating equation 

g* ^ Y ^y- - ;̂'''5)̂ '/̂ ' = 0' (1) 

that is, 

0N = {Xl,V^'A^) - ' A / ; K ^ V N , (2) 

H.J. Mantel, Social Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada KIA 0T6. 
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where yN= (yu . • •, yis/), VN is a diagonal matrix with entries v,, . . . , Vyv, and A/v is a 
matrix with Â  rows, the /th row being xf. 

Now 0i.jis unknown. Godambe and Thompson (1986) defined and developed simultaneous 
optimal estimation of 0 and 0^ based on the model and the sampling design. We will denote 
the data from a sample survey by x^ = ( ( ' , J/), i^s}. 

For simultaneous estimation of 0 and /3yv we consider estimating functions h{xs, 0) such 
that Ep{h) = ^* in (I), where Ep denotes expectation with respect to the sampling design. A 
function h* in this class is called optimal if for all other h in the class E„Ep[hh^} -
E„,Ep[h*h*'''} is non-negative definite. Theorem I of Godambe and Thompson (1986) shows 
that the optimal function h* is given by 

h*{Xs,&) ^ Y '<y>~ xl0)Xi/it,v„ (3) 

where ir,- is the probability under the sampling design that individual / is included in the sample 
5. We will denote the root of this function by 0s, that is, 

0s = {xjn- • vr 'Xs) -' xl n -' F - ' ys, (4) 

where ys is the vector of yjS for /€5, 11̂  and Vs are diagonal matrices with entries TT, and v, 
respectively, Us, and Aj is the matrix with rows xf, /€i'. 

So far we have discussed only estimation of 0 or 0js/. Our problem was to estimate yf^, the 
population mean of the yjS. One possibility is to use a generalized regression estimator, 

;'GREG = xUs + 1/n- '(>-, - Xs0s)/N, (5) 

where 1̂  is a vector of I's whose length is the size of the sample s. This estimator is discussed, 
for example, by Sarndal, Swensson and Wretman (1992). The first part of the estimator 
gives good model properties while the second part gives good design properties. However, 
the model and design justifications of J'GREG in (5) do not depend on the particular form of 
4 , and there is no immediately apparent reason why 4 in (5) could not be replaced by 
a purely model based estimator of 0. The design optimality of 4 is apparently irrelevant. 

The estimator we will propose here more closely integrates the hypothesized model with the 
finite population parameter Jyv- Since 0^ in (2) is optimally estimated by 4 in (4), functions 
of 4v are optimally estimated by the same function of 4 - IfJ'N - « ̂ jŜv for some vector «then 
we would estimate y^^ by u ̂ 4 • Such a u exists if and only if I ^ 1/v is in the column space of 
Ayv, in which case, with Fyvl/v = X^a, we may take u = Xj^Vfi^X^a/N = x^- The idea 
then is that if 1̂ 1̂ ^ is not in the column space of A^v. we will add it. In doing so we lose 
something of model efficiency, though the augmented model remains valid in Ught of the 
original model. We relax model efficiency to gain some sort of finite population relevance. 
As an interesting special case we note that when the model variances do not depend on / our 
approach leads to including an arbitrary constant term in the regression model. 

The approach taken here seems quite similar to that of Little (1983) who suggests model 
based estimation restricting attention to models that yield asymptotically design consistent 
estimators. Alternatively, Isaki and Fuller (1982) suggest restricting to designs for which the 
model based estimator is asymptotically design consistent. 
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2. COMPARISON TO THE GENERALIZED REGRESSION ESTIMATOR 

Let Pf̂  be the design matrix for the augmented model, that is 

IV^= {Vi,l^,X^). (6) 

For the discussion of this section we assume that I^l/v is not in the column space of Ayv. 
Similarly, let WJ be the augmented form of A ,̂ and y, Y/V, and 7^ be the augmented forms of 
0, 0N, and 4 respectively. 

For convenience, we will refer to our estimator of the population mean as the augmented 
regression estimator, 

.VAREG = vP-vTs- (7) 

We first show that Ĵ AREG is also a type of generalized difference estimator. From (6), if 
« is a vector of appropriate length with the first entry equal to one and the rest zeros then 
Wjs/U = V̂ lAf and WJu = 1̂ 1̂ . Then 

i/nr'wji, = u''wlVs-%-'Wsys = w^w'/K-'nr'j, = i/n,-'j'. 

and it follows that the second part of the generalized regression estimator in (5) with 4 
replaced by YJ is equal to 0. 

Secondly, let us compare JAREG in (7) to J'GREG in (5). A few tedious calculations give us that 

J'AREG = XJSI0S + {Ci/C2)lJ'Hs~^{ys - Xs0s)/N, 

where 

— 1 T.I 1/..1.. _ y.t y ^ i / - i T T - ' K ^ - ' v7"n-H '̂ i — ^N(^N^N ~ X;^{Xs Vs Us Xs) XgHs I5) 

and 

C2 = ilUs-^Vsis - A,(A/F-'n-'A,)-'A/n,-'ij. 

Written in this way JAREG appears very similar toj'GREG except for an adjusted weight for the 
second part. It does not seem possible to give an heuristic explanation of the weight (C1/C2). 
However, we note that Ci is just the population sum of the residuals from a weighted regres
sion of the v,'s onto the x,'s based on the sample s, and C2 looks something like a Horvitz-
Thompson estimator of Ci, except that the residuals also depend on the sample s. For large 
samples from large populations we would expect (C1/C2) to be close to I. 

In comparing JAREG with J'GREQ we may say that>'AREG is more design based and^GREC is 
more model based. Of course, J'GREG 'S design consistent, but J'AREG has also a finite sample 
design justification in that 7^ is the solution of an estimating equation which is design unbiased 
for the parameter defining equation of 0isi. Parameter defining equations are discussed by 
Godambe and Thompson (1984, 1986). 
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3. VARIANCE ESTIMATION AND CONFIDENCE INTERVALS 

A method of confidence interval construction which would be consistent with the general 
philosophy of estimating functions would be to construct an asymptotically multivariate normal 
pivotal based on h* and an estimator of its variance. Approximate confidence regions for yj^ 
would then correspond to probability regions of the estimated multivariate normal distribu
tion of this approximate pivotal. However, we are not interested in 7/v but in a non-injective 
function of -y/y. We will adopt the more straight-forward approach of estimating the variance 
of J'AREG directly. 

Sarndal, Swensson, and Wretman (1989) have investigated variance estimation for JQREG 

in (5) for the case that the second part is zero. As we have seen in section 2, our estimator 
JAREG is precisely of that type. Their variance estimator may be written as 

^g^ Y TJ hSisSisgjsSjs, (8) 
lis jiS 

where Ay = {itjj - 7r;7ry)/Xy, Tty is the design probability that both individuals / and j 
are included in the sample s, gjs is the /th element of the row vector wj^{ lVlVs~ 'llj"' JVs) ~' 
W^Vs'^ and ijs = (yj - xfys)/-^,. See Sarndal, Swensson and Wretman (1989) for a detailed 
discussion of the model and design properties of Vg in (8). Note that ^AREG in (7) may be 
written as JAREG = Lis gisyi/'^i and 

J'AREG - ys = Y ^"^'^ ^ ^N('ys - TAf) . 
iis 

where e,7v = (j',- - W,^7A')/"•/. Now, with 1^1;̂  = W «̂> we have vv/J = l^I^Fy^'W^/A'^ = 
a^WjiVj^' Wf^/N, so that for large samples gjs will be near I /N for ids. The design variance 
of >'AREG is then approximately equal to 

• Y Y ^j^iNejN/N\ 
HP jiP 

where A;̂  = (ir,y - 7r,7ry), and this may be estimated by 

^1 = Y 1^ h^is^js/N^- (9) 

K| in (9) was considered in early work on the general regression estimator, for example, 
Sarndal (1981, 1982). Now Vg in (8) may be thought of as a version of K, in (9) adjusted for 
the reaUzed values of gjs, Us. Sarndal, Swensson and Wretman (1989) show that Vg in (8), as 
well as being design consistent for the design variance of J'AREG. is often model unbiased or 
nearly model unbiased for the model mean squared error of '̂AREG-

Now approximate confidence intervals for j/v could be constructed based on a standard 
normal approximation to the distribution of (JAREG - J'N)/1 ^ ) '̂ -̂ The justification of this 
procedure, from both a design and a model point of view, is asymptotic and the question of 
its appropriateness for particular finite samples must be addressed. One possibility is to compare 
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a set of confidence intervals obtained by this procedure to a set of purely model based intervals 
based on a further assumption of normality of errors and a /-statistic. If the two sets of intervals 
are wildly different there may be reason to doubt the validity of the jointly model and design 
based intervals, but more work is needed before this question can be answered satisfactorily. 

An alternative approach to variance estimation in this framework is given by Binder (1983). 
The design variance of h* as an estimator of ̂ * at -y/v could be estimated using standard design 
based techniques substituting -ŷ  for 7;̂ . and then the variance of 7̂  as an estimator of 7^ 
would be derived from a Taylor linearization of /i* about 7/v. Taylor linearization could again 
be used to derive an estimator of the variance of a function of 7̂  as an estimator of the same 
function of 7;v 

4. AREAS FOR FURTHER RESEARCH 

We have seen how the approach described here could be used for the estimation of finite 
population means or, more generally, for functions of linear regression parameters. It is natural 
to wonder whether and how the approach may be adapted to the estimation of other types of 
finite population parameters such as distribution functions and quantiles or to estimation for 
small areas. 

Consider the special case of estimation of a distribution function at one point. There are 
two possible approaches to incorporate covariate information into a model. The first is to model 
the probability explicitly as a function of the covariates, an example is the logistic model. A 
second approach, which is common in the context of estimating a distribution function, as 
in Chambers and Dunstan (1986), Rao, Kovar and Mantel (1990), and others, is to model the 
residuals from a regression of the observed variable onto the covariables as being independent 
and identically distributed from some unknown distribution. The present approach requires 
that the parameter of interest be a function of the finite population parameter. Can this 
approach be adapted for the estimation of distribution functions or quantiles? 

Another important problem in survey sampling is small area estimation, that is estimation 
of totals, means or proportions for subsets of the finite population. A good review is given 
in Platek, Rao, Sarndal and Singh (1987). An obvious adaptation of the approach of Section 1 
is to apply it separately within each domain of interest, what might be described as post-stratified 
generalized regression estimation. Note that this approach would require the totals of the 
covariates for each domain of interest. A very common approach in small area estimation is 
to borrow strength across areas via a model relating small areas to each other and to some 
covariates. A good review is given in Singh, Mantel and Thomas (1991). A very fruitful 
approach has been the empirical Bayes estimation based on random effects models which was 
introduced by Fay and Herriot (1979). Liang and Waclawiw (1990) discuss estimating functions 
for empirical Bayes models. Can the idea of modelling to borrow strength across small areas 
be formulated in such a way that the parameters of interest become functions of a population 
parameter? 
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Maximum Likelihood Estimation from Complex 
Sample Surveys 

ABBA M. KRIEGER and DANNY PFEFFERMANN 

ABSTRACT 

Maximum likelihood estimation from complex sample data requires additional modeling due to the 
information in the sample selection. Alternatively, pseudo maximum likelihood methods that consist 
of maximizing estimates of the census score function can be applied. In this article we review some of 
the approaches considered in the literature and compare them with a new approach derived from the 
ideas of 'weighted distributions'. The focus of the comparisons is on situations where some or all of the 
design variables are unknown or misspecified. The results obtained for the new method are encouraging, 
but the study is limited so far to simple situations. 

KEY WORDS: Design adjusted estimators; Ignorable and informative designs; Pseudo likelihood; 
Weighted distributions. 

1. INTRODUCTION 

Survey data are often used for analytic inference about model parameters such as means, 
regression coefficients, cell probabilities etc. The models pertain to the population data and 
are therefore referred to as the census models. The problem in applying 'classical' maximum 
likelihood methods to survey data is that the model holding for the sample can be very different 
from the model holding for the population due to sample selection effects. 

In order to illustrate the problem and some of the solutions proposed in the literature, consider 
the following simple example. A population Uis made up of Nunits labelled 11, ..., N\. 
Associated with unit / is a vector (Yj,Zj) of independent measurements drawn from a bivariate 
normal distribution with mean /x' = (My.Mz) and variance-covariance {V - C) matrix 

(^YZ, <^l J 

The values {y,, z,) are observed for a sample s of n < < N units selected by a probability 
sampling scheme. It is desirable to estimate fiy and ay. We consider three cases distinguished 
by the selection process and data availability. 

Case A - The sample is selected by simple random sampling with replacement and only the 
values ((;',, z,), ids] are known. Denoting the sample labels as [1, . . . , « ) , we have that 
Yi, ..., Y„ ~ N{IJLY, al) yielding 

ina 

Ay = ;'. = L f= lyi/"', &Y = li=i(yi - ys)V« = sj (i.i) 

as the MLE of/iyandffy-. Clearly^^^(/iy) = /xyandf^fl [«/(« - l)]ay] = o;̂ where£;vf| •) 
defines the expectation under the model, with the sample units held fixed. 

' Abba M. Krieger, Department of Statistics, University of Pennsylvania, Philadelphia, PA 19104. Danny Pfeffermann, 
Department of Statistics, Hebrew University, Jerusalem 91905. 
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Case B - The sample is selected with probabilities proportional to Zj with replacement such 
that at each draw k = 1, ..., n,Pi = P{i(.s) = Zj/ Y.jLi Zj. The data known to the analyst 
are {yi,Zi,ids] and {z„+i, ...,ZN]. Suppose that Corr(y,Z) > 0. This implies that 
P{ Yj > fly \ ids) > 1/2 since the sampling scheme tends to select units with large values of 
Z and hence large values of Y. Clearly, the estimators defined in (1.1) are no longer MLE in 
this case. 

The situation just described corresponds to the 'classical' example of missing data often 
analyzed in the literature (Anderson 1957). The MLE of jiy and ay are now 

fiY = ys + b{Z - Zs); a\ = s\ + bHsl - si), (1.2) 

where Z = E f = i V ^ . Zs ^lUiZi/n, b =E"=i(J', - ys)(Zi - z.)/E"=i(2, - Zs)\ 
5 | =l'i'=\(Zi - Z)^/Nand si = I"=i(z,- - Zs)^/n. Notice that the effect of the sample 
selection can be dealt with in this case by modeling the joint distribution of the response variable 
Yand the design variable Z. The sample selection process is then ignorable (see section 2.1). 

Case C - Same as Case B but only the sample values [ {y,, Zj), ids] and the sample selection 
probabilities [P,, ids] are known. Even though the values of z„ / =1 , . . . , Nare known at 
the sampling stage, it is often the case that information on the design variables or the inclusion 
probabilities for units outside the sample is not included in the files released to analysts 
performing secondary analysis. 

The estimators defined by (1.2) are no longer operational in this case since the population 
mean and variance of Z are unknown. For large populations, however, such that Z= constant, 
an approximate MLE estimator of ny is obtained as ix^ = ys -^ b*{l/N - Ps) wherePs = 
E f= 1 Pj/n and b* = E f=, (yj - Ps) (Pj - Ps)/T.i=i (Pi - Ps) ̂ - The rationale for ix^ is that 
Pi = Zj/NZ so that for Z = constant, {Yj,Pj) is bivariate normal with P ='Zf=iPi/N = 1/N. 
This estimator is an example of using the sample selection probabilities as surrogates for the 
design variables when information on the latter is incomplete, as recommended in Rubin (1985). 

A possible way to obtain approximate MLE under Case C is to follow what is known in 
the literature as the pseudo likelihood approach. We describe the approach in more detail in 
section 2, but it basically consists of maximizing a design consistent estimator of the census 
score function, that is, the score function that would have been obtained in the case of a census. 
The latter is unaffected by the design. Application of this approach yields, under Case C the 
estimators 

My = yps^l U^yiilU^h dl = sl = l f^iwf{yj - yps)'llUi< (1-3) 

where w* = (l/nP,). Since yps and si are design consistent for Y = E /li.V//^ and S\ = 
E/l i ( j / - Y)^/N respectively, they are also consistent for fxy and ay in the sense that 
plim„—oo,w_co {yps,sl) = (piy, ffy). 

In this article we discuss a different approach for maximum likelihood estimation that is 
operational in principle even when the only information available to the analyst is the sample 
data. The method is derived from the theory of weighted distributions (Rao 1965, 1985, Patil 
and Rao 1978) and it utilizes the sample selection probabilities. The method is illustrated for 
the case of normal distributions with two different sampling designs and is shown to perform 
well in these cases. Another apparent advantage of the proposed approach emerging from the 
empirical study is that it is not very sensitive to misspecification of the design variables. 
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In section 2 we review the different approaches for MLE from survey data considered in 
the literature. Section 3 outlines the basic steps of the new approach. The empirical study is 
described and summarized in section 4. Section 5 contains concluding remarks. 

2. REVIEW OF APPROACHES CONSIDERED IN THE LITERATURE 

In this section we review briefly the approaches considered in the literature for MLE or approx
imate MLE from survey data. To better understand the complexity of the problem, we first 
discuss the notion of ignorable sampling designs. For a more detailed review of maximum likelihood 
and other approaches for analytic inferences from sample surveys see Pfeffermann (1993). 

2.1 Ignorable and Informative Sampling Designs 

Let Z' = (Z|, . . . , ZK) represent K design (auxiliary) variables used for designing the survey 
and denote by Z = {z\, • • •, ZN) ' theN X K matrix of measurements on Z so that Zj is the 
vector associated with unit /'. The design variables may include strata indicator variables and 
quantitative measurements of cluster and unit characteristics. Let / ' = {Yi, ..., Yp) represent 
the survey response variables. We assume for convenience that Yis separate from Z although 
as we mention below and consider in the empirical study, the sample selection probabilities 
may depend on the F-values directly. The matrix Y = (y,, .. .,yis/) of the response variables 
values can be decomposed as Y = [Ys,Yg] where Y^ = {yi,ids] and Y^ = lyi,i(.s]. Let 
/ = (/i, . . . , //v)' be a vector of sample inclusion indicators such that /, = 1 for ids and 
/, = 0 otherwise. 

The basic problem of MLE from complex survey data, as illustrated in the introduction, 
is that in general,/(}^;X*) ?̂  f/(y;X)c/>} where the symbol/(• ; •) defines probability density 
functions (pdf). As further illustrated in the introduction, this problem can sometimes be 
resolved by modeling the joint distribution of Yand Z. Thus, suppose that the values of Z 
are known for every unit in the population and that 7 is observed for only the sample units. 
The joint pdf of all the available data can be written as 

f{Ys,I_,Z;9,<^,p_) = \f{Ys,Y-s \ Z;9i)P(I \ Y,Z;p_i) g{Z;<^)dYs. (2.1) 

Ignoring the sampling selection in the inference process implies that inference is based on the 
joint distribution of Ys and Z, that is, the probability P ( / | Y, Z; pi) on the right hand side 
of (2.1) is ignored. Hence the inference is based on 

f{Ys, Z;9,c^) = \f(Ys,Ys \ Z;_ ,̂) g{Z;(^)dYs. (2.2) 

The sample selection is said to be ignorable when inference based on (2.1) is equivalent to 
inference based on (2.2). This is clearly the case for sampling designs that depend only on the 
design variables Z, since in this c a s e P ( / I Y, Z;p^i) = P{I \ Z;jO|). The exact conditions for 
the ignorability of the sample selection process are defined and illustrated in the articles by 
Rubin (1976), Little (1982) and Sugden and Smith (1984). 

The complications of MLE from complex survey data based on (2.1) or (2.2) are now 
apparent. First and foremost, it requires that all the relevant design variables be identified and 
known at the population level. As often argued in the literature, (see Pfeffermann 1993 for 
references), this is not necessarily the case. Secondly, it requires that the sample selection is 
ignorable in the sense discussed above or alternatively that the probabilities P{I \ Y,Z;p) be 
modeled and included in the likelihood. Finally, the use of MLE requires the specification of 
the joint pdf / ( Y,Z;9,<^) = f{Y \ Z;9i)g{Z; ^). 
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2.2 Exact MLE Based on Factorization of the Likelihood 

Factoring the likelihood in the case of multivariate normal data was first suggested by 
Anderson (1957). The factorization is possible when the observed data have a nested pattern, 
that is, the set of survey variables Xi, ..., Xp can be arranged such that Xj is observed for all 
units where Xj+i is observed,7 = 1, . . . , {p — 1). Extensions to other distributions and 
more general data patterns are given in Rubin (1974). Holt, Smith and Winter (1980) apply 
the ideas to MLE of regression coefficients from complex survey data. 

Suppose that the sample selection is ignorable so that inference can be based on the joint 
distribution/(Ys,Z;9,(^) = f{Ys \ Z;9i) g{Z;<j)). The likelihood can be factored accordingly as 

L{9,<^_;Ys,Z) = L{9i;Ys \ Z) L{<^;Z). (2.3) 

Assuming that the parameters 9i and 0 are distinct in the sense of Rubin (1976), MLE of ^1 
and 0 can be calculated independently from the two components. 

Application of (2.3) to the case where (Y- ,Zj ) are multivariate normal yields the following 
MLE for txy = E{Y) and Ey = V(y) (Anderson 1957). 

h = ys + §(? - Zs); tY = Syy -\- B[Szz - Szz]B', (2.4) 

where (J„| ,) = E "=i(i'„?,)/", ?= E i l i Zj/KSzz = liLi(Zj - Z){Zi - Z)'/N,Szz = 
E i=i(Zi - Zs) (Zj - Zs)'/n andB = E "=i Cv, -^5) (?/ - l5)'^zi'//7. 

The MLE of the coefficient matrix B12 of the multivariate regression of 7] on Y2 where 
Y' = {Yi,Yi) is obtained straightforwardly from (2.4). Thus, if 

i;y = 
L u . L12 

1,21. 1,22. 

where 

Ijj = COV[{Y[,YJ)'], i,j = 1, 2, B12 = X n L 2"2' and fl,^ = tu t n -

For the explicit expression of B12 see Holt, Smith and Winter (1980). 

2.3 Design Adjusted Estimators (DAE) 

Assume that the sample selection mechanism is ignorable. Let (/si{9;Y) denote the log 
likelihood for 6 that would be obtained in the case of a census. Denote by /jyv( Y \ Z, }^;^2) 
the conditional distribution of 7given Z and 5̂  and let Ej,^{ • | Z, 5 )̂ define the expectation 
operator under h/.^. The DAE 9/sfD of 9 as proposed by Chambers (1986) is defined as 

Ehi^[- IN(§ND) I Z,Ys] = min[E„J- M9) \ Z , y j ; 0 € 0 ) . (2.5) 

Notice that the expectation £'yv£)(̂ ) = -£'%[^A'(^) I Z,Ys] depends on the vector parameter 
^1 of the conditional distribution/(Y \ Z;9i). The estimator ^^ij of (2.5) is computed by 
substituting ^1 for ^1 where ^1 is the MLE of ^1 obtained from the data ( Ys,Z). 
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Simple algebra shows that for the multivariate normal model considered in section 2.2, the 
DAE of /iy and Ey are the same as the MLE defined by (2.4). A possible advantage of this 
approach, however, is that it can be applied to other loss functions. 

2.4 The Pseudo Likelihood Approach 

The prominent feature of this approach is that it utilizes the sample selection probabilities 
to estimate the census likelihood equations. The estimated equations are then maximized with 
respect to the vector parameter of interest. No information on the values of the design variables 
is needed, although as illustrated in the empirical study, knowledge of these values at the 
population level can be used to improve the efficiency of the estimators. 

Suppose that the population values Y, are independent draws from a common distribution 
f{Y;9) andletfyv(^; Y) = Y,^=ilosf(Yi',§) define the census log likelihood function. Under 
some regularity conditions, the MLE, 9, solves the equations 

U{9) = dlN(9; Y)/d9 = ir=i«(e;^,) = 0, (2.6) 

where "d" defines the derivative operator and u{9,yj) = dlog f(Yi;9)/d9. The pseudo MLE 
of 9 is defined as the solution of y{9) = 0 where y{9) is a design consistent estimator of y{9) 
in the sense that pHm„_c„_A'-oo[^(^) - y{9)] = 0 for all ^eO. The commonly used 
estimator of y{9) is the Horvitz-Thompson (1952) estimator so that the pseudo MLE of ^ is 
the solution of y{9) = E ?=i>^r«(^; >'/) = Q where for selection without replacement 
wf = [1/P{ids)] and for selection with replacement w* = {l/nP,). 

For the multivariate normal model, the pseudo MLE of /xy and Ey are 

yy = i:u<:iillU^<\ IY= ):u<(yj - iiY)(yj - y)'ilU<- (2.7) 

The pseudo MLE of the matrix coefficients B12 is obtained as B12 = E 12 E 22 • 

Various examples for the use of this approach under different models can be found in Skinner 
et al. (1989). See also Binder (1983), Chambless and Boyle (1985), Roberts, Rao and Kumar 
(1987) and Pfeffermann (1988). 

Information on auxiliary design variables known at the population level can be used to 
improve the efficiency of the design estimators of y{9). The "probability weighted MLE" 
as proposed by Nathan and Holt (1980) and by Smith and Holmes (Skinner et al. 1989, 
Ch. 8) are examples of the use of the population values of the design variables. The estimators 
have the same structure as the exact MLE derived from (2.4) but with unweighted sample 
statistics replaced by weighted statistics. For example, {ys,Zs) in (2.4) are replaced by 
E f=iw* {y„Zi)/Z ?=!>*'(* > with similar substitutions for the other expressions. 

An important property of pseudo MLE is that they are in general design consistent for the 
population quantities that would be obtained by solving the corresponding census likelihood 
equations, irrespective of whether the model is correct and/or whether the sampling design 
is informative. See Pfeffermann (1993) for the implications of this property with references 
to other studies. Other theoretical properties of pseudo MLE are studied by Godambe and 
Thompson (1986). 
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3. MLE DERIVED FROM WEIGHTED DISTRIBUTIONS 

3.1 General Formulation 

The weighted pdf of a random variable A"" is defined as 

r(x) = w{x)f(x)/w, (3.1) 

where/(x) is the unweighted pdf and w = \w{x)f{x)dx = £ ' [H'(A)] is the normalizing factor 
making the total probability equal to unity. Situations leading to weighted distributions occur 
when realizations X from/(x) are observed and recorded with differential probabilities w{x). 
The expectation w is then the probability of recording an observation and/'*'(x) is the pdf of 
the resulting random variable X". 

The concept of weighted distributions was introduced by Rao (1965). Patil and Rao (1978) 
discuss various practical situations that give rise to pdf's of the form (3.1). One special case 
that occurs in many applications is when w{x) = | x | where | x | is some measure of the size 
of X. The pdf obtained in this case is called 'size biased' or 'length biased'. The properties of 
that distribution under a variety of densities/(x) are examined in Cox (1969) and Patil and 
Rao (1978). Estimation of weighted distributions is considered by Vardi (1982). 

How can the concept of weighted distributions be utilized for analytic inference from complex 
samples? Consider as before a finite population U =[1, ..., N] with random measurements 
X{i) = Xj' = (^/,z/) generated independently from a common pdf/2(x;6) =/(>', | 2,;^i) 
g{Zi;<^). Suppose that unit / is sampled with probability w{Xj;g) that depends on the 
measurements x, and possibly also on an unknown vector parameter a. Denote by X" the 
measurements recorded for unit ids. The pdf of X-^ is then 

/i'^(x,; a, 8) = f{Xj \ ids) = P[ids\ X{i) = x,] h{Xj;8J/P{ids) 

= w(x,-; g)/2(x,;6)| \w{Xj;a)h{Xj;d)dXj. (3.2) 

Analytic inference focuses on the vector parameter 6 or functions thereof as the target 
parameters. Let s = {I, . . . , « ) define a sample of fixed size n < < N selected with 
replacement such that at each draw/: = 1, ..., n, P{jds) = w{xj;a),j = 1, ...,N.The 
joint pdf of (A", / = 1, . . . , « ) is then n"=i/!"'(x,;a,6) so that the likelihood is 

L{8;Xs,s) = const X nf=,/i(x,;6)/[fw(x;a)/z(x;6)dx] ", (3.3) 

where A '̂ = [xj, . . . , x„]. The likelihood (3.3) has the following properties: 

(1) It is defined in terms of the vector parameter 6. This has an advantage over the use of the 
factorized likelihood (2.3) where 6 does not enter the likelihood directly. 

(2) It is a function of the selection probabilities w(x,;a) that enter into the denominator. 

(3) The likelihood relates to the conditional distribution of the sample data given the units 
in the sample. This is different from the likelihood derived from the pdf in (2.1) which 
is the joint pdf of the sample data and the vector/ of sample indicators. An example of 
the use of the latter pdf in conjunction with weighted distributions for MLE is given in 
Godambe and Rajarshi (1989). 
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(4) The use of the likelihood (3.3) requires a definition of the joint pdf h (x;6) holding in the 
population and a specification of the relationship between the sample selection probabilities 
and the variables observed for the sample. The need to define the population pdf is common 
to all of the approaches for MLE proposed in the literature. The specification of the func
tions H'(x) is unique to the present approach. This step can be carried out however by 
modeling the empirical relationship in the sample between the selection probabilities and 
the observed measurements. Having identified a suitable model, the probabilities »v(x,a!) 
can be estimated from the sample and the estimates can be substituted into the likelihood. 
In what follows we consider two examples which are analyzed empirically in section 4. 

3.2 Examples 

We assume the model considered in section 2 in which XI = {Y- ,Z!) are independent 
realizations from a multivariate normal distribution with mean fix = (iiY,Hz) and V — C 
matrix 

Lxx — 
L YY' L YZ 

L,ZY> Lzz_ 
(3.4) 

Consider the following sampling designs: 

Dl - PPS selection with replacement: Let T, = a{ Yj -\- a^Zj define a single design variable 
and suppose that the sample is selected with probabilities proportional to the /"-values such 
that at each draw k = 1, ...,n, P{ids) = tj/NT, i = 1, . . . , Â  where T = Eyli tj/N. We 
assume that Â  is large enough so that the difference between T and /xj- = E{T) can be 
ignored. The coefficients a = (a/.g^) are fixed. In special cases gi = 0 hence 7" is a func
tion of only the auxiliary design variables Z or ^2 = (̂  m which case T is only a function of 
the response variables Y. Suppose as before that it is desirable to estimate the mean yy and 
the K - C matrix E yy or functions thereof. 

When «! = 0 and T is known for every unit in the population, one can estimate the 
unknown parameters using the factorization (2.3). The corresponding MLE are given in (2.4) 
with Z replaced by T. Suppose however that the only information available to the analyst is 
the sample values x/ = {y,',z,'), i = 1, .. ., n and the sample selection probabilities 
P, = tj/NT. Under the assumption T = JXT, the likelihood for [jix, Hxx^ ""̂ ^ ^^ written using 
(3.3) as 

L{iJix,llxx',Xs,s) = nf=, (a'x,)0(x,;ttA-. llxx)l(qiiliY + qii Hz)", (3-5) 

where 0 {x;ixx, Zxx) ^^ ^^^ normal pdf with mean jxx and V — C matrix E;̂ ,̂ ' ̂ ^^ likelihood 
in (3.5) is a function also of the unknown vector coefficients a. However, the values of a can 
actually be found up to a constant c (which cancels out in the likelihood) by regressing the sample 
selection probabilities P, against a. 

In the simulation study described in section 4, we consider the case where not all the design 
variables are known even for the sample units. Thus, suppose that Z,' = (Zi„Z2,) and that 
the data available to the analyst consist of the selection probabilities Pj, i = 1, ..., n and 
the observations (xf = {yf ,Z\i), i = 1, . . . , « ) . The Hkelihood (3.3) is now 
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L{ii^,I,xx',x:,s) = UUi w(xf)0(xf;<.i, Y,xx)/(w*)", (3.6) 

where w(x*) are the selection probabihties expressed as functions of x*. Clearly, the 
probabilities vv(x*) are not fully determined by the values x* unless ^22 = 0. Assuming 
normality 

w{Xi,a) = ao + g*'^/ + oi^Zii -t- e,-, (3.7) 

where [e,) is white noise. Thus, the likelihood (3.6) can be approximated by substituting 
^•(x*) = a* + qt'y, -I-c^f^i/for w(x*). The values of g* = ( a j , g* ,a j ) ' can be estimated 
from the regression (3.7) and then substituted into the likelihood. 

D2 - Stratified sampling with Tas the stratification variable: Suppose that the population U 
is divided into L strata t/,, . . . , [ 4 of sizes A î, . . . , A't, E A=1 A'A = M based on the ascending 
values of T. Consider a simple random stratified sample of size n = E A=1 "A selected without 
replacement with fixed sample sizes [«,,). The weighted pdf of X-^, the measurements 
recorded for unit ids is in this case [compare with (3.2)] 

Pih{Xj;8)/w if ?, < / (1) 

P2h{Xi;8)/w if r<" < ?,• < t^^^ 
h''{Xj;q,8) = f{Xj I ids) = { ' (3.8) 

Pf^h{Xj;8)/w if r<^-" < f,-

where Pf, = {n,,/N,,) and for [A'^) sufficiently large, the probability w = P{idS) can be 
closely approximated as 

w = P{ids) ^ Pi\ 4>{t)dt+Y^j;-iP„\ 4>{t)dt + Pf^\ 6{t)dt, (3.9) 

where 4){t) denotes the normal pdf of T. 

Suppose that the strata are large enough so that selection within the strata can be considered 
as independent. Define /ij- = E{T) = a'fix, a]- = V a r ( r ) = g ' EA-X g and let ^^ = 
fioc (j>{t)dt. For given boundaries [/""') and the vector coefficients g, the likelihood for 
8 can be written as 

L{d;Xs,s) = const X nf=,;!(x,;6)n^= jP^""/ 

[Pi *i + lh=2Ph[^h - ^h-i] + PL[1 - * L - i ] ] " . (3.10) 
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Hausman and Wise (1981) use a variant of the Hkelihood (3.10) for estimating the vector 
of regression coefficients in a situation where the strata boundaries are determined by the values 
of the dependent variable. They assume that the strata boundaries are known, but allow the 
selection probabilities within the strata to be unknown in which case they are included in the 
set of unknown parameters with respect to which the likelihood is maximized. 

In many practical situations, the strata boundaries are unknown and have to be estimated 
from the sample data. When the data include the values [tj, i= 1, . . . , « ) , the vector a can 
be estimated from the regression of tj on x„ as in the PPS example discussed before. 
Furthermore, if (/(I) < . . . < f(„)) are the ordered values of the ^,'5, the strata boundaries 
can be estimated as, ?*" = '/^(^(ni) + '(nj + i)) ••• ? '^~" = '/z('(„•) + t(n* + \)) where 
n* = EA=I '«A- Substituting these estimates into (3.10) yields an approximation to the 
likelihood which can then be maximized as a function of 6. 

The situation is more complicated when the values t, are unknown even for units in the 
sample. In the simulation study we attempt to deal with this problem by predicting t, using 
Fisher's Linear Discriminant Function, that is, specifying the vector coefficients a to be such 
that it maximizes the ratio of the between groups sum of squares to the within groups sum of 
squares of linear combinations g'X,. The groups are the strata. Once the predictors f, = a'x, 
are formed, the strata boundaries are estimated as in the previous case but with f, instead of 
tj. Also, fir = q'lxx and a]- = a' '£^^ a. Substituting these estimators in (3.10) yields an 
approximation to the likelihood which can be maximized with respect to 8. 

As in the PPS example, the likelihood (3.10) can be modified to the case where only some 
of the design variables are known or observed. Maximization of the modified likelihood is 
carried out following the same steps as above. 

4. SIMULATION RESULTS 

4.1 General 

In order to illustrate and compare the performance of the various MLE procedures described 
in this paper, we ran a small simulation study which consists of two stages. In the first stage 
we generated a single finite population of size Â  = 8,000 such that x,' = {yii,y2i,Zii,Z2i), 
i = 1, ..., 8,000 are multivariate normal. In the second stage we selected independent samples 
of size n = 800 using the two sampling schemes described in section 3.2 with two different 
definitions for the design variable. The number of samples selected in each case was 300. We 
computed the various estimators for each of the samples based on the available sample data 
and then computed the empirical bias and root mean square error (RMSE) over the selected 
samples. In order to study and compare the conditional properties of the estimators considered, 
we classified the 300 samples selected in each case into 10 groups, based on the ascending values 
of the sample mean of the design variable and computed the bias and RMSE within each of 
the groups. In what follows we describe the various stages in some more detail. 

4.2 Generation of the Population Values and Sample Selection Schemes 

Values of Zii and Z2i were generated independently from a normal (20, 10^) distribution. 
Values;'], were generated as;'!, - Zu + Z2i + ei,; €1, ~ A (̂0, 10^). Values;'2/were generated 
as;'2/ = yu + O.Szii + 0.5z2, + €2,-; ez,- ~ A (̂0, 20^). 



234 Krieger and Pfeffermann: ML Estimation from Complex Sample Surveys 

We employed the two sampling schemes described in section 3.2 using two different definitions 
for the design size variable, (i) r,- = 0.5 (z,, -I- Z2i) and(ii)/, = 0.25 (j',, -f y2i + Zu + Z2,)-
Thus, selection based on the first design variable satisfies the ignorability conditions defined 
in section 2.1, provided that the data for (Z|,Z2) are known for the entire population. When 
these data are only known for the sample, the sampling design is ignorable only with respect 
to the conditional distribution/(;'i,j21 Zi,Z2). When selection is based on the second design 
variable, the sampling design is informative. 

For the stratified selection D2, we generated eight equal sized strata defined by the ascending 
values of the size variable. The sample sizes within the strata were such that they increase with 
increasing values of the t,'s. 

4.3 Estimators Considered 

The parameters estimated in our study are the mean vector and the K - C matrix of the 
marginal distribution of (71,72)- We consider seven different estimators for the design Dl 
and nine estimators for the design D2. See section 3.2 for description of the computations 
involved in the derivation of the various estimators. 

DESIGN Dl 

ML(Zi,Z2) 

WML{Zi,Z2) 

ML{Zi) 

WML{Zi) 

CPL 

WDML{X*) 

WDML{X*,Zi) 

- The exact MLE for the case where the design is ignorable, (equation 2.4). 

- The estimators obtained from ML (Z|,Z2) by replacing the unweighted 
sample statistics by probability weighted statistics (see the discussion 
below equation 2.7). 

- Same as ML{Zi,Z2) but with Zi as the only design variable so that 
Z = Zi. 

- Same as WML{Zi,Z2) but with Z, as the only design variable. 

- The classical pseudo likehhood estimators (equations 2.7). 

- The (weighted distribution) estimators obtained by maximization of the 
likelihood in (3.6). 

- The estimators obtained by maximizing the likehhood in (3.6) but with 
the mean and variance of Z] fixed at their population values. 

DESIGN D2 

The first 5 estimators are the same as the estimators for the design Dl . The other 4 estimators 
are defined as follows: 

WDML {X*) - The estimators obtained by maximizing the likelihood (3.10) with the a* -
coefficients [(equation (3.7)] estimated by the linear discriminant function. 

- Same as WDML{X*) but with the mean and variance of Z, fixed at 
their population values. 

- The estimators obtained by maximizing the likelihood (3.10) when the 
values ts= {tl, ..., t„) are known for units in the sample. 

Same as WDML {X*,ts) but with the mean and variance of Zi fixed at 
their population values. 

It should be emphasized that the estimators derived based on the weighted distributions are 
not really MLE because of the approximations involved in the maximization procedures as 
described in section 3.2 (see also comment 2 below). 

WDML{X*,Zi) 

WDML {X*,is) 

WDML{X*,ts,Zi) 
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Comments 

(1) The estimators we consider can be classified according to the sample and population data 
they use and according to whether the design variables are correctly specified and the 
ignorability conditions are met. Thus, the estimators ML(Zi,Z2) and fVML{Zi,Z2) use 
the population values of Z] and Z2 and the sample values of 7] and 72. As mentioned in 
section 2.4 and further discussed in Pfeffermann (1993), the use of lVML{Zi,Z2) is to 
protect against possible model misspecifications or informative sampling schemes. The 
estimators ML (Z,) , WML{Zi), WDML{X*,Zi) and WDML{X*,ts,Zi) use the known 
population data for Zj but not the data for Z2 even for the sample units. The use of these 
estimators corresponds to situations where the design variables are misspecified or the values 
of some of them are unknown. The estimator WDML{X*) uses only the sample 
information for 7i, 72 and Z, and the sample selection probabilities. The estimator 
WDML {X*,ts) uses in addition the sampling values of the design variable. The estimator 
CPL uses only the sample values of 7 | and 72 and the sample selection probabilities. 

(2) We maximized the likelihood derived from the weighted distributions using a quasi-Newton 
method in the subroutine library IMSL. The method employed requires partial derivatives 
of the likelihood with respect to each of the parameters as user supplied input. An issue 
that arose in the maximization is worth mentioning. It is easier to parameterize the 
Hkelihood in terms of E~ ' where E is the covariance matrix among 7| , 72 and Z]. 
Furthermore, to insure that the six parameters that define E""' are unconstrained, we use 
the elements of the upper triangular matrix B so that B'B = E~'- Any choice of the 
values for B leads to a matrix E~' that is positive semi-definite. 

4.4 Results 

We present the results obtained when estimating ^i = E{Yi), a\ = Var( 7]) and ^21 -
the slope coefficient in the regression of 72 on 7], as representative of the results obtained 
when estimating the other parameters. Tables 1-3 contain the RMSE of the various estimators 
as obtained for the two sampHng schemes and the two choices of the design variable. RMSE's 
dominated by large biases are indicated by an asterisk. 

The main results emerging from the tables (and from estimating the other model parameters) 
can be summarized as follows: 

(1) The estimator ML (Zi,Z2) outperforms all of the other estimators when the ignorability 
conditions are met, but it is severely biased when the sampling design is informative. The 
estimator I^ML(Zi,Z2) is essentially unbiased in aH of the cases, but the use of the 
sampling weights increases the variance. Still, this estimator dominates in general the 
estimator CPL especially under the PPS design because of the use of the population values 
of (Z„Z2). 

(2) The estimator ML(Zi) is severely biased in almost all of the cases. Notice in particular 
the large biases in the case where t, = 0.5 (z,, -I- Z2i), illustrating the sensitivity of the 
MLE's to the exact specification of the design variables. Like with I^ML(Zi,Z2), the 
estimator WML{Zi) is unbiased, and for the PPS design it outperforms the estimator CPL. 

(3) The estimator CPL is unbiased in all of the cases. An interesting result emerging from the 
tables is that relative to the other estimators considered, it performs better in estimating 
the mean than in estimating variances and covariances. An intuitive explanation for this 
outcome is that in the latter case the sampHng weights are used twice, thereby increasing 
the variance. 
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Table 1 

RMSE of Estimators of /i] for Different Sampling Schemes and Design Variables 
(True Mean: ft, = 4 0 ) 

Estimators 

ML(Z,,Z2) 

WML{Zi,Z2) 

ML(Zi) 

WML(Zi) 

WDML{X*,Zi) 

WDML(X*) 

CPL 

WDML{X*,is) 

WDML(X*,ts,Zi) 

Dl -

tj = 0.5zi 

0.43 

0.43 

2.67* 

0.58 

0.56 

0.80 

0.77 

-

-

PPS Sampl 

ti 

ing 

= 0.25X,-

1.86* 

0.57 

4.38* 

0.90 

0.63 

0.90 

1.19 

-

-

D2 - Stratified Sampling 

tj = O.Szj 

0.47 

0.50 

6.39* 

0.62 

1.51* 

3.59* 

0.56 

0.74 

0.74 

tj = 0.25X,-

3.43* 

0.52 

8.32* 

0.58 

0.59 

0.49 

0.47 

0.43 

0.57 

RMSE dominated by bias. 

Table 2 

RMSE of Estimators of a\ for Different SampHng Schemes and Design Variables 

Estimators 

ML(Zi,Z2) 

WML(Zi,Z2) 

ML(Zi) 

WML{Zi) 

WDML(X*,Zi) 

WDML{X*) 

CPL 

WDML(X*,ts) 

WDML{X*,ts,Zi) 

Dl -

// = 0.5z,-

12.33 

14.00 

24.32* 

18.61 

14.36 

16.37 

21.11 

-

-

PPS SampHng 

tj = 0.25xi 

18.35* 

18.72 

33.66* 

26.61 

17.41 

19.68 

29.06 

-

-

D2 - Stratif 

tj = O.Szj 

16.00 

20.87 

35.16* 

24.22 

26.94* 

41.08* 

24.19 

26.18* 

25.70* 

led Sampling 

tj = 0.25X/ 

29.00* 

19.83 

53.66* 

20.35 

15.49 

15.34 

20.18 

15.46 

15.72 

RMSE dominated by bias. 
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Table 3 
RMSE of Estimators of B21 for Different Sampling Schemes and Design Variables 

(True Coefficient: B21 = '-33) 

Estimators 

ML(Z,,Z2) 

WML{Zi,Z2) 

ML(Zi) 

WML(Zi) 

WDML(X*,Zi) 

WDML(X*) 

CPL 

WDML {X*,Is) 

WDML(X*,ts,Zi) 

Dl -

tj = O.Szj 

0.043 

0.054 

0.045 

0.055 

0.043 

0.044 

0.055 

-

-

PPS Sampling 

/,• = 0.25X,-

0.069* 

0.060 

0.078* 

0.062 

0.047 

0.049 

0.063 

-

-

D2 - Stratified Sampling 

tj = 0.5zj 

0.048 

0.068 

0.056 

0.069 

0.049 

0.050 

0.069 

0.048 

0.048 

tj = 0.25x,-

0.120* 

0.066 

0.134* 

0.065 

0.045 

0.046 

0.065 

0.045 

0.045 

RMSE dominated by bias. 

(4) For the PPS design, the estimators WDML {X*) and WDML {X*,Zi) perform very well 
with WDML{X*) clearly dominating CPL and WDML{X*,Zi) dominating WML{Zi). 
Interestingly, the estimator WDML{X*) performs in general better than the estimator 
H''ML(Zi) despite the use of less information. The fact that WDML{X*) outperforms 
CPL could be explained by the fact that it is more "model dependent", akhough as 
discussed in section (2.4), one way of viewing CPL is as the estimator maximizing the design 
unbiased estimator of the likelihood equations holding in the population. 

(5) Next consider the stratified design. In the case were t, = 0.25x„ the picture is very similar 
to the PPS case with WDML{X*) dominating again both CPL and WML{Z\). Actually, 
there is little to choose in this case among the four estimators derived from the weighted 
distribution likelihood despite the use of different sample and population data by each 
estimator. When tj = 0.5z„ all of the four estimators are inferior to WML{Zi) and CPL 
although interestingly enough, not with respect to the estimation of the regression coeffi
cient where they all perform very similar to the optimal ML (Zi,Z2). The particularly poor 
performance of WDML{X*) (and to a much lesser extent of WDML{X*,Zi)) in 
estimating the mean and variance is mainly the result of incorrect specification of the strata 
boundaries and hence incorrect specification of the denominator of the likelihood (3.10). 
This problem can possibly be resolved by either including the strata boundaries and the 
a* - coefficients relating the values t, to the observed data (equation 3.7) as part of the 
unknown parameters in the likelihood (3.10), or by replacing the linear discriminant func
tion by some other (nonlinear) function such as logistic regression. The latter approach 
has the advantage of reducing the number of parameters over which the likelihood has to 
be maximized, which can be crucial when the number of strata is large. 
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We considered so far the unconditional bias and RMSE of the estimators. As mentioned 
in section 4.1, we studied also conditional properties by computing the bias and RMSE's over 
samples with similar sample means of the design variable. The conclusions reached from that 
study are very similar to the conclusions stated before. Thus, estimators which are approx
imately unbiased unconditionally are also approximately conditionally unbiased and vice versa. 

This result is somewhat surprising because it has often been illustrated in the literature that 
the CPL estimator, for example, has poor conditional properties. Possible explanations in our 
case are that the sample size considered is large or that the division of the sample into the ten 
groups was not sharp enough. Because of space Hmitations we omit the results illustrating con
ditional properties of the estimators. 

5. CONCLUDING REMARKS 

The results of the simulation study show that estimators obtained by maximizing the 
likelihood derived from weighted distributions are a favorable alternative to the pseudo 
likelihood estimators obtained by maximizing design consistent estimators of the census 
HkeHhood equations. The estimators perform particularly well in our study when using an 
informative sampHng scheme for which the "classical" MLE can become severely biased. The 
use of these estimators requires, however, the modeHng of the relationship between the sample 
selection probabihties and the observed sample data. As illustrated in the simulation study, 
failure to model or estimate the relationship correctly may introduce large biases. 

The key question to the practical use of these estimators is therefore whether the model 
relating the sample selection probabilities to the observed response and design variables can 
be successfully identified from the sample data. It would seem that this question can only be 
answered by considering actual surveys that use common sampling designs. Other important 
questions related to the use of these estimators are the availability of reliable variance estimators 
so that accurate confidence intervals can be set and the protection against misspecification of 
the parent distribution of the response variables in the population. These two questions are 
common to other MLE procedures. We hope that the initial results of our study will encourage 
further research on these and other related questions. 
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Methods for Estimating the Precision of Survey Estimates 
when Imputation Has Been Used 

CARL-ERIK SARNDAL 

ABSTRACT 

In almost all large surveys, some form of imputation is used. This paper develops a method for variance 
estimation when single (as opposed to multiple) imputation is used to create a completed data set. 
Imputation will never reproduce the true values (except in truly exceptional cases). The total error of 
the survey estimate is viewed in this paper as the sum of sampling error and imputation error. Conse
quently, an overall variance is derived as the sum of a sampling variance and an imputation variance. 
The principal theme is the estimation of these two components, using the data after imputation, that 
is, the actually observed values and the imputed values. The approach is model assisted in the sense that 
the model implied by the imputation method and the randomization distribution used for sample selection 
will together determine the appearance of the variance estimators. The theoretical findings are confirmed 
by a Monte Carlo simulation. 

KEY WORDS: Single value imputation; Variance estimation; Imputation model; Model assisted 
inference. 

1. DIFFERENT TYPES OF IMPUTATION 

This paper reports work carried out in connection with the development of Statistics 
Canada's Generalized Estimation System (GES). Variance estimates are to be routinely 
calculated in the different estimation modules that define the GES. There was a need to develop 
suitable methods for variance estimation when the data set contains imputed values, which 
is the case in practically all surveys. 

Two principal approaches to estimation with missing data are weighting and imputation. 
In the recent literature, the weights used to compensate for nonresponse are usually viewed 
as the inverse of the response probabilities associated with an assumed response mechanism. 
Since the response probabilities are ordinarily unknown, they need to be estimated from the 
available data. Imputation, on the other hand, has the advantage that it yields a complete data 
matrix. Such a matrix simpHfies data handling, but it does not imply that "standard estimation 
methods" can be used directly. The imputed values are sample-based, thus they have their own 
statistical properties, such as a mean and a variance. 

In our age, imputation is an extensively used tool. It is interesting to note what Pritzker, 
Ogus and Hansen (1965) say about imputation poHcy at the US Bureau of the Census: "Basically 
our philosophy in connection with the problem of . . . imputation is that we should get 
information by direct measurement on a very high proportion of the aggregates to be tabulated, 
with sufficient control on quality that almost any reasonable rule for . . . imputation will yield 
substantially the same results . . . With respect to imputation in censuses and sample surveys 
we have adopted a standard that says we have a low level of imputation, of the order of 1 or 
2 percent, as a goal." 

' Carl-Erik Sarndal, Departement de matĥ matiques et de statistique, Universite de Montreal, C.P. 6128, succursale A, 
Montreal (Quebec) H3C 3J7. 
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Ideally, we should still strive for the goal of only one to two percent imputation. But in our 
time most surveys carried out by large survey organizations show a rate of imputation that 
is much higher. Clearly, if 30% of the values are imputed, the effects of imputation can not 
be ignored. Imputation can create systematic error (bias) in the point estimate; this is perhaps 
the most serious concern. But even if an imputation method can be found such that there is 
no appreciable systematic error, one must not ignore the often considerable effect that 
imputation has on the precision (the variance) of the point estimate. There is a need for simple 
yet valid variance estimation methods for survey data containing imputations, so that the 
coefficients of variation of the survey estimates can be properly reported. 

A variety of imputation methods have been proposed. These can be classified in different 
ways. One way to classify is by the number of imputations carried out. In single imputation 
methods, a single value is imputed for a missing value. A complete data matrix is obtained, 
in which the imputed values are flagged. Estimates are calculated with the aid of the completed 
set. In multiple imputation, two or more values are imputed for each missing value. Several 
completed data sets are thus obtained. Estimates are calculated with the aid of the completed 
data sets. 

Imputation methods also differ with respect to the modeling underlying the imputation. 
Some imputation methods use an explicit model, as when the imputed value is obtained by 
a regression fit, a ratio or mean imputation. In other methods, the model is only implicit, as 
in hot deck imputation and nearest neighbour donor imputation. The distinctions just made 
are important for this paper. 

Statistics Canada currently uses imputation methods such as nearest neighbour donor, 
current ratio, current mean, previous value, previous mean, auxiliary trend. All of these are 
single imputation methods. The imputed values originate in the Generalized Edit and 
Imputation System (GEIS), from where they enter into the Generalized Estimation System 
(GES), where the point estimates and the variance estimates are calculated in a number of 
different estimation modules. This paper deals in particular with current ratio imputation, which 
represents a case of explicit modeling. 

2. SOME THOUGHTS ON MULTIPLE IMPUTATION 

Multiple imputation was suggested by D.B. Rubin around 1977. His ideas are explained in 
a number of papers, of which Herzog and Rubin (1983) and Rubin (1986) are expository, and 
in a book, Rubin (1987). Multiple imputation has advantages as well as disadvantages; the same 
is true for single imputation. 

Rubin (1986) sees as a disadvantage of single imputation that " . . . the one imputed value 
cannot in itself represent uncertainty about which value to impute: If one value were really 
adequate, then that value was never missing. Hence, analyses that treat imputed values just 
like observed values generally systematically underestimate uncertainty, even assuming the 
precise reason for nonresponse are known." 

Multiple unputation is attractive because it communicates the idea that imputation has variabiUty. 
It is precisely this variability - the variability within and between the several completed data 
sets - that is exploited in the variance estimation methods proposed under multiple imputa
tion. These methods make powerful use of basic statistical concepts. (On the other hand, one 
can argue that sample selection also has variability, but most surveys cannot afford more than 
a single sample, and estimation must be carried out with this unique sample.) 

Simple examples show that treating imputed values just like observed values can lead to severe 
underestimation of the true uncertainty; survey samplers have long been aware of this. And 
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it is a fact that users sometimes treat imputed values just like observed values, with wrong 
statement of precision as a result. With modern computers, it is easy to impute by some rule 
or another, but not so easy to obtain valid variance estimates. 

The citation above seems to conclude that because a single imputed value does not display 
variation, we cannot obtain reasonable variance estimates; we are necessarily led to underestima
tion. I do not share this opinion. The methods that I discuss show that valid variance estimation 
is indeed possible with single imputation. 

A method for variance estimation in the presence of imputed values should have the following 
properties: (a) a sound theoretical backing; (b) robustness to the assumptions underlying the 
imputation; (c) it must be practical, easy to carry out, and readily accepted by users. 

While multiple imputation has the ingredients (a) and (b), it is clear that, in some applications 
at least, it does not have the property (c). In the development of the GES we must depend on 
procedures that are easy to administer and easy to accept by the user. The user of a data set 
(someone who is not primarily a statistician) can easily understand that the statistician imputes 
once, with the objective to fill in the best possible value for one that is missing. While it is true 
that for some purposes, such as secondary analyses, it might be interesting to have several 
completed data matrices, the costs of storage of multiple data sets will often rule out this option. 

Multiple imputation may well be useful in other contexts and for other reasons than those 
that are essential to the development of the GES. The multiple imputation method has indicated 
one way of handling the problem of understatement of the variance, at least for some situations. 
The method has recently come under criticism by Fay (1991) and is not the only answer. Let 
us see what can be done with single imputation methods. The method described below is based 
on Sarndal (1990). 

3. IMPUTATION VARIANCE AND SAMPLING VARIANCE 

An imputation rule corresponds to an (explicit or implicit) model for the relationship among 
variables of interest to the survey. That is, when the analyst has fixed an imputation rule, he 
or she has in fact chosen a model. The principle for the developments that follow is that if this 
rule is considered good enough for the point estimates (no systematic error), the rule is also 
good enough for the corresponding estimates of variance. In other words, the model maker 
should take responsibility for control of the bias as well as for the appropriateness of the 
variance estimate. 

Let [/ = {1, ..., k, ..., N]hea finite population; let y denote one of the study variables 
in the survey. The objective is to estimate the population total ofy, t = EoV/t- (If C is any set 
of population units, where C ^ U, Y,c is used as shorthand for Ei5c> for example, / ='Luyk 
means Y,kiuyk-) A probability samples s is selected with a given sampling design. The inclusion 
probabilities are known, and ordinary design-based variance estimates would be obtained if 
all units kds are observed. However, there are missing data. Let r he the subset s for which 
the values yi^ are actually observed. For the complement, s — r, imputations are calculated. 
The data after imputation consist of the values denoted y^j^, kds, such that 

y*k 

where y/^ is an actually observed value, and yimp,k denotes the imputed value for the unit k. 
The case r = s implies no imputation; all data are actual observations. 
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Let us write the estimator of t that would be used in the case of 100% response (that is, r = s) 
as t = Y^kis^kyk = I.s'^kyk, where W/, is the weight given to the observation j ^ . . For example, 
in simple random sampling without replacement (SRSWOR) of n units from A'̂ , ŵ  = N/n 
foraH A:e5 when the expanded sample mean is used to estimate?, and ŵ . = {zy/Zs)(N/n) = 
(lluZk)/(I,sZk) for all kds when the ratio estimator is used with z as an auxiliary variable. 

When the data contain imputations, the estimator of t is f» = Y,s^ky*k • That is, we assume 
that the weights ŵ  are identical to those used when all data are actual observations. This 
principle is used in the estimation modules of the GES. It embodies an assumption that 
imputation by the chosen rule causes little or no systematic error in the estimates. 

The variance of an estimated total is increased by imputation, because imputation does not 
(except in truly exceptional circumstances) reproduce the true value ĵ t̂- Concrete evidence of 
this is the fact that if the imputation rule is applied to the actually observed sample units, there 
will always be error. If the rule is not without error for the responding units, it is not without 
error for the nonresponding units either. In Section 4 we express the variance of f» as a sum 
of two components, a sampling variance, and a variance due to imputation, 

V — V 4- V. 
"̂  tot ' sam ' ' imp • 

The imputation variance V,^^ is zero if all data are actually observed values, or if the impu
tation procedure is capable of exactly reproducing the true value yi^ for every unit requiring 
imputation. (Neither case is likely in practice.) The procedure given in Section 4 uses the data 
after imputation, y^j^, kds, to obtain estimates of each of the two components, leading to 

V = V 4- V 
"̂ tot "̂ sam I " împ-

The component Kjan, is calculated in two steps: 

(1) Compute the standard design-based variance estimate using the data after imputation. (For 
example, if SRSWOR is used, and /- = 5, the standard unbiased variance estimate of 
Nys is N^{l/n - l/Af)Ej(.V* - ys)^/("- I)- This formula, calculated on the data 
after imputation, yields 7V^(l/« - 1/N)'£,s{y*k - J'»5)^/(" - 1), where y^s is the 
mean of the n values y^ j^.) 

(2) Add a term to correct for the fact that many imputation rules give data with "less than 
natural" variability, which would lead to understatement of the sampling variance unless 
corrective action is taken. Finally, the component Î nip is readily computed from the data 
after imputation. The user will easily accept the argument that the variance obtained by 
the standard formula is not sufficient in itself; something must be added because the imputa
tion rule is less than perfect. 

The method has the good property that if no imputation is required, that 'is,r = s, then 
Î mp = 0 and Kjan, equals the "standard variance estimator" that one would have used with 
100% actually observed values. 

4. THEORETICAL DEVELOPMENTS 

The total error of f» is decomposed as 

/» — t = {t — t) + (f, — t) = sampHng error -I- imputation error. 
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The imputation error is the difference between the unknown estimate that would have been 
calculated if the data had consisted entirely of actual observations and the estimate that can 
be calculated on the data after imputation. The imputation error is 

U - t = - Y ^'<^'" 
s — r 

where 

^k = yk ~ yimpsk 

is an imputation residual which can not be observed for a unit k d s-r. The magnitude of e<. 
depends on how weU the imptitation model fits. The residuals are small if the imputation method 
gives nearly perfect substitute values. To pursue the argument, different directions may be 
taken. Here, we use a model assisted approach in which three different probability distributions 
are considered. The corresponding expectation symbols are written as £j, Es, and £,. Here, 
^ indicates "with respect to the imputation model"; vindicates "with respect to the sampling 
design", and r indicates "with respect to the response mechanism, given s". The model is 
implied by the imputation rule, so it is known; the sampling design is the given probability 
sampling distribution, so it is also known; the response mechanism is an ordinarily unknown 
distribution governing the response, given the sample s. 

Theestimator/» is overaH unbiased in the sense that £'|£'i£'r(/, — t) = 0 if two conditions 
hold: 

(a) the order of the expectation operators can be changed so that E^EsEr( •) can be evaluated 
as EsEr{E^{- \s,r)\, and 

(b) the imputation residual ê  = JA: - y\mp,k has zero model expectation for every kdr, that 
is, E^(eii) = 0, which implies that £5(/^ — t) = 0. 

Condition (a) is satisfied if the response mechanism is one that may depend on 5 and on 
auxiliary data, but not on the j'-values, yi^, kds. That is, the probabiHty ^(r) of reaHzing the 
response set/• is of the form Q'(/-) = q{r\ s, [xi(:kds]), vfhere [xi(:kds] denote the auxiliary 
data. The response mechanism can then be said to be ignorable. 

We now examine the overall variance given by 

Ko, = E^EsEA(U - tf], 

which may also be called the anticipated variance under the imputation model ^. We obtain 

Ko. = E^sr(h) = E^EsEr[ (h - tf] 

= E^EsEA{f- t) + {t\ - 0 ) ' 

= E^Vp + EsErV^,, (4.1) 

where Vp = Es{{f - /) )̂  is the design-based variance of t, supposing Ms design unbiased for 
the total t. (For an estimator with some slight design bias, Vp is the design-based mean square 
error of t.) Note that {f - t) depends on s only, and not on r. Moreover, 

V,c ^ EA{U - t)^\s,r\ 
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is the model variance of the imputation error, conditionally on s and r. The subscript c stands 
for "conditional". The derivation of (4.1) assumes that condition (a) holds so that the expec
tation E^ can be moved inside EsE^, and that the mixed term 

2E^Es[{t- t){E,{U - n\s]] (4.2) 

vanishes or is sufficiently close to zero that we can ignore it. This would be the case if the 
expected imputation error is zero or negligible under the response mechanism, conditionally 
on the realized probability sample s. Even if (4.2) is not exactly zero for the mechanism that 
determines the response, we can in many cases approximate (4.2) by zero and still use the method 
below to obtain a variance estimate that is much better than pretending naively that imputed 
data are as good as actually observed data. For ratio imputation and SRSWOR, which is an 
application considered in Section 5, the term (4.2) is exactly zero. 

If we denote V^^^ = E^^p and V,^^ = EsE^V^c in (4.1), then 

V — V 4- V. 
' tot "̂ sam ' "̂ itnp 

or 

overall variance = sampling variance -I- imputation variance. 

The objective is to estimate the overall variance, so that a valid confidence interval for the 
unknown t can be calculated. Our approach is to obtain separate estimates, V^^^ and l̂ mp. of 
the two components V^^^ = £^I^and Î n,p = f'̂ '̂rFjc. The data available for this estimation 
are y^ic, kds. The argument for obtaining ^an, and Ifmp is as follows: 

(i) Estimation of the sampling variance component. Let Vp he the standard (design-unbiased 
or nearly design-unbiased) estimator of the design variance I^. Denote by V^p the quan
tity obtained by calculating Vp from the data after imputation, y^j^, kds. For many imputa
tion rules, V^p underestimates V^^,„. The underestimation is compensated in the following 
way. Evaluate the conditional expectation 

Ei{Vp- Kp\s,r) = Fdif. 

Then for given 5 and r, find a model unbiased estimator, denoted K̂ jf, of V^^. This will 
usually require the estimation of certain parameters of the model ^. Consequently, 

E^{Vii(\s,r) = E^{Vp - V,p\s,r). 

Then 

' s am ~ *P "'' ' a i f 

is overaU unbiased for the component V^^m = E^Vp, as the following derivation shows: 

E^EsE,{V,,„,) =EsEAE^{V,p) +£|(Kdif)l 

= EsEAE^{Vp)] =E^Es{Vp) 

= FyV = V 
^^ 'p ' s a m -



Survey Methodology, December 1992 247 

(ii) Estimation of the imputation variance component. Simply find an estimator, Kĵ . that is 
model unbiased for V^^.. That is, E^{V^c) = l^^c- Again, this may require the estimation 
of unknown parameters of the model ^. Then V^^. is overall unbiased for the imputation 
variance component P̂ p̂. since 

hst,,.tL^\ y^c) — LstL,.y^,. ' imp • 

Finally, an overall unbiased estimator of V^^i is given by 

V = V + V 
'̂ tot — 'sam ' 'imp> 

where Kjam = V^p + V^K and V̂ p̂ = V^^. Note that the role of Kjif is to correct for the fact 
that the data after imputation may display "less than natural" variation. This often happens 
whenj'jmp .̂ equals the predicted value from a fitted regression, that is, "the value on the line". 
The variation around the Hne is not reflected in the predicted value. 

To be overall unbiased, the estimator V^^, constructed above requires that condition 
(a) holds, that (4.2) is zero, and that the imputation model is correct, so that K̂jf and V^c 
are model unbiased for V^if and V^^, respectively. Mild departures from the assumed 
imputation model may not have serious consequences, but if the imputation model is grossly 
misspecified it is clear that Î ot niay be considerably biased because of the model bias of V^^ 
and V^c- Monte Carlo simulations reported in Lee, Rancourt and Sarndal (1992) show that 
the variance estimator Ĵot is fairly robust to imputation model breakdown. To add the terms 
Kjif and V^c is in any case a vast improvement on simply using the naive uncorrected variance 
estimator V^p. 

Note that if the imputation model holds, an unbiased variance estimate is obtained with 
the method even if the response probabilities differ among units, as long as they depend 
on the Ar̂ -values only. That is, we can allow a systematic response pattern such that large 
x^-value units are less likely to respond than smaH Xj^-value units. If the response probabilities 
depend expHcitly the ^^ -̂values, then the situation is different; the response mechanism is 
nonignorable and condition (a) does not hold. There will now be bias in Kjo, due to 
nonignorability; the simulations in Lee, Rancourt and Sarndal (1992) throw some light on the 
magnitude of this bias. 

Example. The sample s is drawn with SRSWOR; n units from N. Let m denote the size of the 
response set r. Suppose the respondent mean is imputed for units requiring imputation. The 
corresponding imputation model ^ states that yi( = 0 + £*. where the ej^ are uncorrelated 
errors terms with ^^(eyt) = 0, Kj(€yt) = a^. That is, y^i, = yi^ if kdr and y^i^ = 0 = y/if 
kds - r, and we obtain the estimator f« = {N/n) Y,sy*k = Ny^. Here the standard design-
based variance estimator for 100% response is I^ = N^(i/n — i/N)Y,s(yk —ys)^/(''i —I); 
when this formula is computed on data after imputation we get V^p = N^{l/n — 1/N) 
{{m - l)/{n - 1) )S^r, where Ŝ r =I,r(yk - yr)^l(fn - 1). Other derivations give V^,^ = 
N^{l/n - 1/N)[{n - m)/{n - 1))S^, and V^^^ = N^{l/m - l /«)Sj,. Thus, V,^^ = 
Kp + Kiif = N^{l/n - l/Af)S^„and V^^i = N^{l/m - 1/A )̂S „̂ which is easy to accept 
as a "good" variance estimator for this simple imputation rule. The following table shows 
the contribution of each of the three terms to the total variance estimator P̂ o,, for different 
rates of imputation, assuming that A'̂  is large compared to m and n, and {m - l)/m « 
{n - l)/n « 1. 
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Imputation rate in 

100 (1 - m/n) 

10 
20 
30 

<Vo 

^*P 

81 
64 
49 

% contribution tol^ot 

'dif Mmp 

9 10 
16 20 
21 30 

The table illustrates the dangers of acting as if imputations are real data: with 30% imputed 
values, the standard formula variance estimator V^p in this example covers less than half of 
the correctly estimated total variance. Imputation by the respondent mean is useful as an 
example; the results are particularly simple. But usually in practice, respondent mean imputation 
is neither justified nor efficient. The underlying model is not sophisticated enough to avoid 
systematic error in the point estimates, and the residuals Cj^ = yi^ — y^can vary considerably. 

5. APPLICATION TO IMPUTATION BY THE CURRENT 
RATIO METHOD 

The method assumes that a positive auxiliary value x̂ . is known for every unit kds. If 
k d s-r. Vie impute;'in,p,/t = BXj^ with B = {'Zryk)/(lLrXk)- The data after imputation are 

C yk if kdr 

y*k = j 

(^ BXj; if k d s — r. 

The model behind current ratio imputation is 

yk = 0Xk + fyt. (5.1) 

where the ê  are uncorrelated model errors such that 

E^{e,) = 0, V^{ei,) = a \ . (5.2) 

Suppose that the sample s is selected by SRSWOR. Let the respective sizes of 5, r, and s - r 
be n, m, and n - m. If no imputation was needed, the estimator of / = Ec/J'/t would be 
t = A^J^.Using the data after imputation, we get 

f» = {N/n) Y y*k = NXsPr/Xr. (5.3) 

(Overbar and subscript s,r, or s - r indicates "straight mean", for example, yr =1, ryk/f^^, 
Xs-r = I,s-'rXi(/{n — m), etc.) Using the results of the preceding section, we have Î ot — 
Vsam + Kmpwith K̂ ^̂  = E^{N\l/n - l/N)SJy] and Vi^p = EsE,[N^{l/m - l/n)Cia'^}, 
where S],y = Y,u(yk — yu)^/(^ ~ 1) and Ci = XsXs-r/Xr, a known constant. The mixed 
term (4.2) is exactly zero in this case. Our method of variance estimation gives Î ot — 
Kam + flmp. whcrC 

Î sam = N\l/n - l/N)[Sl^s + Coa^\, (5.4) 
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Ĵ mp ^ N^(l/m - I/«)C,ff2, (5.5) 

where S^,^ = Y,s(y*k - y*s)^/(" - 1) is the variance calculated on data after imputation, 
and we have chosen to estimate a^ by the model unbiased formula 

2 I i:r{yk - Bx,)^ 
a'- = 

xAl - {l/m){cvxy\ m - 1 

where cv^r = Sxr/Xr is the coefficient of variation of x in the response set r. The constant Co 
is obtained as 

_ 1 2 2 
Co = ~J^E^{Sys — Oy^s), 

where 

sL = 
n - 1 

^ Y'^yk-ys)' 
2 - _J_ V Is,. _ ,-^2 
ys 

s 

is the (unknown) sample variance based on data with 100% actual observations. After 
evaluation, 

_i_r y. E ^ ^ 1 ^s-rXk^sXkl 

n - l l t ^rXk « ^rXk J 

If m is not too small, the approximations a^ ~ { Y.r^\)/( HrXk) with Cj^ = yi^ - BXj^ and 
CQ = (I - /7j/«)Xs_r are sufficiently good for most applications. 

We can write the imputation variance component as 

limp = N^{\/m - l/n)AXsa^, 

where A = Xs-r/x^. The constant A reflects the selection effect due to nonresponse. If large 
units are less inclined to respond than small units, then A may be considerably greater than 
unity, and, for a given a sample s and a given number m of respondents, the component V,^^ 
tends to be large, relative to a case where, say, all units are equally likely to respond. This 
tendency makes good sense intuitively. 

Two special cases are noted: (1) If all x^ = I, the estimated total variance becomes simply 

I^tot = Ĵ sam + V,^p = N^(l/m- l/N)S\r, 

where S\r is the variance of the m actual observations yi^. This agrees with the variance 
obtained under a two-phase sampling design with SRSWOR in each phase. (2) If no imputa
tion is required, that is, 'if s = r, then P̂ p̂ = 0, and 

Ko. = ^ a m = i V ' ( l / « - \m)S ys-

That is, our method yields the well known variance estimator for SRSWOR. 

A Monte Carlo study with 100,000 repeated response sets r was carried out to confirm the 
above results for current ratio imputation. A finite population of size Â  = 100 was generated 
according to the model consisting of (5.1) and (5.2). The typical response set r was obtained 
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as follows: Draw a SRSWOR sample s of size n = 30; given s, generate r by a response 
mechanism in the form of independent BernoulH trials, one for each kds, with probability 0̂ . 
for the outcome "response''. Three different response mechanisms were used: Mechanism 1: 
^^increases withj'^insuchaway that^^t = 1 - exp( - aij^t); Mechanism 2: 0;t increases as 
yit^ decreases in such a way that ^̂  = exp( - 02.̂ 4); Mechanism 3: 0̂  is constant at 0.7, that 
is, a uniform response mechanism. The constants O] and 02 in the first two response 
mechanisms (which can be described as non-ignorable) were fixed to obtain an average response 
probability of 0.7. The sizes of the reaHzed response sets r thus varied around a mean of 21 
for all three mechanisms. For each r, the point estimate f» given by (5.3) was calculated as 
well as three different variance estimators, V = V{U). These were: (1) the model assisted 
variance estimator V[oi = Ksam + împ equal to the total of (5.4) and (5.5); (2) the two-phase 
sampling variance estimator N^{l/n - l/N)Syr -I- N'^{l/m - l/n)Y,rei/{m - I), an 
estimator which follows from standard two-phase sampling theory with an assumption of 
SRSWOR subsampling of m respondents from the n units in the initial sample (Rao 1990); 
and (3) the standard unadjusted variance estimatorN^{l/n - 1 /N)S^»^obtained by acting 
as if imputations are as good as actual data. The results are shown in the following table. 

Estimator V 

Model assisted 

Two-phase 

Standard unadjusted 

Mechanism 1 

-0 .20 

9.95 

-25.73 

Relative bias of Kin 

Mechanism 2 

-4 .64 

-12.49 

-37.90 

% 

Mechanism 3 

-3 .99 

-1 .11 

-33.21 

The relative bias of an estimator V was calculated as (mean ( V) - var (f»)) /var (f, ), 
where mean ( V) is the mean of the 100,000 values of V, and var(f» ) is the variance of the 
100,000 values of f». The simulation shows that the model assisted variance estimator 
^ot = ^̂sam + ^mp is nearly unbiased for all three response mechanisms. In a way, this is not 
surprising because the population was generated to agree with the ratio imputation model. 
Mechanisms 1 and 2 are of the nonignorable kind and do not verify condition (a) of Section 
4 required for unbiasedness of Kĵ t. Interestingly, though, in this example the bias of V̂ot 
remains small despite this. The two-phase estimator works well for the uniform response 
mechanism 3, the case for which it was conceived; otherwise it is biased. Finally, to act as if 
imputed data are as good as actual data leads, as expected, to a dramatic understatement of 
the true variance for all three mechanisms. A more extensive Monte Carlo study of ratio 
estimation is reported in Lee, Rancourt and Sarndal (1992). This paper gives an idea of the 
effect of imputation model misspecification, which is also discussed in Rao (1992). 

6. IMPUTED VALUES THAT HAVE AN ADDED RESIDUAL 

We can distinguish two types of imputed values: (1) the imputed value yimp,k consists of a 
predicted value only, ypred,k, as when the value on a fitted regression line or surface is used. 
For example in the current ratio imputation method as used above, yimp,k = >pred,Ar = Bx/; 
with B = {'Zryk)/(I,rXi(); (2) the imputed value yimp,k consists of a predicted value and a 
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residual, so that y[mp,k - 3'pred,* + ^*- The residual term, whose purpose is to make 
imputed values more like actual observations, may be obtained by sampling the residuals 
e,^ = y/f - ypred.k calculated for the responding units kdr. A scheme for this is given below. 
This type of imputation is sometimes recommended in the literature as a means of preserving 
the distributions of the imputed data; see, for example, the discussion in Little (1988). The 
imputation process then requires more effort to complete, and for the purposes of the GES 
(whose principal aim is valid estimation of the precision of survey estimates), it is not clear 
that the advantages gained are worth the extra effort. 

Let us, however, indicate one scheme for imputation by "predicted value plus residual" 
in the case where the current ratio imputation model is taken as the point of departure: For 
kdr, calculate C/t = yi, - BXj, with B = { Y.ryk)/('LrXk), then 4 = ej^/yBcj,. This gives a 
supply of m "standardized residuals" 4 - Then for a unit k d s-r, calculate el = VX^̂ ^A-. 

where ê . is drawn by SRSWR from the supply, and Xj, belongs to the unit requiring imputa
tion. Then large x-value units tend to obtain larger residuals el, which is consistent with the 
model. Then set e* = el - (Y.s-rel)/(n - m). E or k d s-r,'impute y,rnp,k = Bx,, -t- e*, 
k d s-r; for kdr, we have actual observations, j ^ : - Since thee* were made to sum to zero over 
s - r , the point estimator is given by / , = {N/n) Zsy*k = NXsyr/Xr as in Section 5, but its 
variance is different. It can be shown that E^EsErE„{Sl^s - ^Is) ~ 0. where E„ denotes 
average with respect to the random selection of a standardized residual. That is, the difference 
between the variance calculated on data after imputation, S^» ,̂ and the unknown variance of 
a sample consisting entirely of actual observations, S^s, is approximately zero on the average. 
WecanuseKsam - ^''•{1/n - 1/A^)S^»^ as an approximately overall unbiased estimator of 
the sampling variance component. There is no need now to add a correction Kjif. However, 
an estimator of the imputation variance Î mp - N'^{l/m - I/«) C, ff^ must stiH be calculated 
and added to V^^m-

7. CONCLUDING REMARKS 

The continued work on the variance estimation techniques outlined in this paper has the 
following objectives: (1) extensions to imputation procedures based on models that are implicit 
only, in particular the nearest neighbour donor method; (2) extensions to the case where there 
is a mixture of several imputation procedures in the same survey. 

Deville and Sarndal (1992) present results for an extension in which the Horwitz-Thompson 
estimator, i = EJJ'A:/'TA:, serves as the prototype. The estimator using data after imputation 
is then 

h = Y y'"''^'' "'" ( I^ Xj^/TTjA B = Y yklT^k - Y ^i<''^k' 
r ^ s — r ' s s—r 

where Cf. = yi^ - x^B is the imputation residual for unit k obtained by multiple regression. 
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A Sample Allocation Method for Two-Phase 
Survey Designs 

J.B. ARMSTRONG and C.F.J. WU' 

ABSTRACT 

Motivated by a business survey design at Staristics Canada, we formulate the problem of sample allocation 
for a general two-phase survey design as a constrained nonlinear programming problem. By exploiting 
its mathematical structure, we propose a solution method that consists of iterations between two 
subproblems that are computationally much simpler. Using an approximate solution as a starting value, 
the proposed method works very well in an empirical study. 

KEY WORDS: Optimal allocation; Convex programming. 

1. INTRODUCTION 

The purpose of this paper is to propose a method of sample allocation for two-phase survey 
designs. Suppose it is necessary to stratify a population of size TV into L strata according to 
an auxiliary variable, z, whose information is not known before sampling. Values of a second 
auxiliary (size) variable, x, that is correlated with the variable of interest, y, are known for 
all units in the population. At the first phase of sampling, the population is divided into G 
strata according to X. An initial sample is drawn from size stratum g(^ = 1 , 2 , . . . , G ) , using 
simple random sampling with sampling fraction Vg, and the z-value for each sampled unit is 
observed. At the second phase, units in the sample from size stratum g with z-value in class 
h{h = 1,2, . . . , L) , are subsampled using sampHng fraction Ug/,. The value of; ' is observed 
for units in the second-phase sample. 

In the case of no size stratification (G = I) Cochran (1977) gives the allocation that 
minimizes the variance of the estimate f = I/, Efezn/i J'i/('' • ^ii) of the population total 
Y = Y,h^h • Yh, subject to a fixed survey cost, C, where Nj, and Yj, are the population size 
and population mean, respectively, for stratum h and E(6i2nA >/ denotes the sum of j'-values 
for units in the second phase sample, 52, with z-value in class h. If survey estimates are used for 
analytical purposes, the variance of the estimated total for z class/i, 7/, = EteznA >'//(" • "h), 
is also of interest. Sedransk (1965), Booth and Sedransk (1969), Rao (1973) and Smith (1989) 
have studied allocation problems involving the minimization of a function of variances of 
estimated class totals, subject to a cost constraint. 

The method described in this paper can be used to solve the allocation problem for general 
G when there is a constraint on the variance of the estimated total for each z class. The method 
was motivated by an application in a business survey conducted by Statistics Canada. The survey 
involves the sampling of tax records for businesses. 

Information about the population of taxfilers is made available to Statistics Canada by 
Revenue Canada. There is a requirement to produce estimates of financial variables for domains 
defined by a cross-classification of four-digit Standard Industrial Classification (SIC4) and 
province. Only two digits of SIC are coded by Revenue Canada with sufficient accuracy. In 

'J.B. Armstrong, Business Survey Methods Division, Statistics Canada, Ottawa, Ontario KIA 0T6 and C.F.J. Wu, 
Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 301. 
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order to standardize the precision of estimates for SIC4 domains within each province, a 
two-phase sample design was implemented. The first-phase sample of taxfilers is selected at 
Revenue Canada using strata defined using SIC2 and gross business income (size). Before the 
second phase sample is selected, an SIC4 code, considered more accurate than codes available 
from Revenue Canada, is assigned to each sampled unit by Statistics Canada. Strata defined 
using SIC4 and size are employed during selection of the second-phase sample. The same size 
boundaries are used for both phases of sampling. A detailed description of the sample design 
can be found in Choudhry, Lavallee and Hidiroglou (1989b). 

First-phase sample selection is done using BernoulH sampling (also called Poisson sampling). 
Suppose that taxfiler / falls in first-phase stratum g within a particular province x SIC2 cell. 
To determine whether taxfiler / is included in the first-phase sample, a pseudo-random number 
in the interval (0,1), say R,, is generated using the taxfiler's unique identification number. The 
taxfiler is included in the first-phase sample if Rid{0,Vg). BernoulH sampHng based on a 
different set of pseudo-random numbers is used to select the second-phase sample. Using 
Bernoulli sampling, selection and processing can begin before complete information about the 
taxfiler universe is available. This advantage of BernouHi sampling is important, since taxfiler 
universe information is accumulated over a two-year period. Sample sizes obtained using 
Bernoulli sampling are random. Choudhry, Lavallee and Hidiroglou (1989b) derive the variance 
of Î _sTRAT = Y,gl,iis2ngnhyi/(vg • Ug/,) using simple random sampling as an approximation 
to Bernoulli sampling as discussed in Sunter (1986). Under the approximation, a simple random 
sample of fixed size ng = Vg • Ng is selected in size stratum g at the first phase. Let ngf, denote 
the number of units with SIC4 h in the first-phase sample for size stratum g. At the second 
phase, a simple random sample of size ngj, = Vgh • ngi, is selected for SIC4 h and size stratum 
g, with Vgi, considered fixed. The variance of ?/,-STRAT is given by 

where 

'^gh — ^gh • Sgh, 

"gh 

and Sgj, is the population variance in the second-phase SIC4 x size stratum gh. 

The plan of the paper is as foHows. In Section 2, the optimal allocation problem is formulated 
in the context of the two-phase tax sample. An iterative solution procedure, called the exact 
method, is proposed. Section 3 includes a description of an approximation to the optimal 
allocation that can be used to obtain starting values for the exact method. The results of an 
empirical study involving comparison of various starting values for the exact method are 
reported in Section 4. Section 5 concludes the paper. 

2. EXACT METHOD 

In this section the optimal allocation problem is described and an iterative solution method, 
called the exact method, is proposed. To formulate the problem in the context of two-phase 
tax sampling, it is sufficient to consider one SIC2 cell in a particular province containing TV 
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units. The cost of selecting a unit in the first-phase sample is A",, regardless of the stratum in 
which the unit falls, while the cost of selecting a unit in the second-phase sample is A'2, 
regardless of stratum. Under Bernoulli sampling, the cost function is 

F* =Ki- ^ «; + /:2 • Y Y "«"• 
g g It 

Since sample sizes ng and ngj, are random, we use the expected cost 

F = Ki- Y^g'^g + ^2- Y E " « • -̂ s" • ̂ ^"^ (̂ ) 
g g h 

Rao (1973) and Smith (1989) also solve aHocation problems for two-phase sample designs using 
expected values of random cost functions. In the tax sampling context, the total cost for a 
province is the sum of the costs for all SIC2 cells within the province. The estimated coefficient 
of variation of the cost of two-phase tax sampling for the province of Quebec, calculated using 
1988 data, was about 1.85%. Coefficients of variation for overall (national) costs were smaller. 

It is necessary to minimize (1) with respect to Vg, g = 1, 2 ..., G, and Vgi„ g = 1, 
2, ..., G, h = 1,2, ..., Hunder the constraints 

y; (—— i V A/- + E f- - i V ŝ" ̂  ^^^ • ^̂ '' h = i,2, ...,H, (2) 
7 \h • ^gh / g ^^s / 

0 < vg< 1, g = 1,2, ...,G, 

0<vgh<l, g = 1,2, ...,G, h = 1,2, ...,H, 

where Cj, denotes the target coefficient of variation for SIC4 domain h. 

Attempts at direct solution of this problem using the IMSL (1987) implementation of the 
successive quadratic programming algorithm of Schittkowski (1985) produced mixed results. 
The algorithm worked well for problems with small numbers of variables and constraints. 
However, satisfactory solutions for problems including more than approximately 35 variables 
or more than approximately 50 constraints could not be obtained. 

Some costs obtained using direct application of Schittkowski's algorithm in the tax sampling 
context are given in Table I. The algorithm was applied to the allocation problems for some 
SIC2 cells in the province of Quebec involving large numbers of variables and/or constraints 
using data for tax year 1988. All first-phase and second-phase sampling fractions were started 
at one when the direct approach was used. The lowest cost obtained using the method that 
we call the exact method, which will be described later in this section, is also given. The 
information in the table indicates that direct use of the IMSL implementation of Schittkowski's 
algorithm is an inappropriate strategy for SIC2 ceHs with large numbers of variables and 
constraints. 

The exact method is based on a substantial simplification of the problem defined by (1) and 
(2) that can be achieved by exploiting its structure. In particular, we divide the problem into 
two main steps that can be solved iteratively. At the first step, (1) is minimized with respect 
tovg,g = 1,2, . . . , G, conditional on values for aO second-phase sampling fractions. This 
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Table 1 

Results for Direct and Exact Methods 

SIC 2 

30 

35 

39 

427* 

No. of 
variables 

62 

37 

38 

39 

No. of 
constraints 

86 

51 

50 

48 

Cost ($) -
direct 

5155** 

551 

1667 

27528** 

Cost ($) -
exact 

1897 

512 

1450 

3383 

* Three digits of SIC are used for first-phase stratification for construction industries. 
•• The IMSL routine terminated with an internal error that could not be rectified after consulting published 

documentation. 

step requires the use of nonHnear optimization techniques. The second step involves minimizing 
(1) with respect to the second-phase sampling fractions, conditional on the values of the first-
phase sampling fractions obtained in the first step. No iterations are required for this minimiza
tion, since it has a closed form solution. Furthermore, it can be done independently for each 
h = 1,2, . . . , / / . After completion of the second step, the first step is repeated and the iterative 
process continued. Convergence is declared when changes in the cost function between 
consecutive iterations are smaU. 

Let uj'* and v^j,^ denote the estimates of the optimal values of Vg and Vgj, obtained after / 
iterations (each iteration including one repetition of the two steps described above). At the 
beginning of iteration / -I- 1, the transformation of variables given by Aj'"^" = I /u '̂+ " - I 
is required. This transformation redefines the optimization problem involved in the first step 
of the iteration as a problem with linear constraints and a convex objective function. Such a 
convex programming problem is easier to solve. 

More precisely, each iteration involves: 

(i) Minimization of 

^ = E (̂ . + f E '̂ .*̂" • .̂'.)/( î" + 1) 

with respect to Ag'", g = 1,2, ..., G, subject to the constraints 

^A<'» -f 1 
ĉ  • ^̂' - E ( T F ^ ' - 0 • ^̂^ - E î' 

g \ "gi^ / g 

A<" > 0, g= 1,2, ...,G. 

' • 5„;, > 0, h = 1,2, ...,H 'gh 

g 

(ii) Calculation of Ug"* = l/(Ag"' -1- l),g = 1,2, . . . , G. Minimization, independently for 
each/! = I, 2, . . . , / / , of 

Eh=Y -̂ i" • "̂ î ' • ^̂  'gh 

with respect to v^j,\ g = 1 ,2 , . . . , G, subject to the constraints 
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"*•«-? C]^'-')-^'"-?(?^-')""*-°' 
0 < v^p < 1, ,? = 1,2, . . . , G , 

where h is considered fixed. 

It will be shown in Section 3 that solution of step (ii) does not require use of numerical 
methods. Therefore, the exact method only requires the solution of a series of convex 
programming problems, each involving only G variables. A convex programming problem is 
much easier to solve than a general nonlinear programming problem. A local solution of a 
convex programming problem is also a global solution. 

Let F ' ' ' denote the value of the cost function, (1), obtained using Ug*'' and v^iK The F ' ' ' 
values form a monotonically decreasing sequence and therefore converge to a limit. Whether 
this limit value and the corresponding sampling fractions give the global minimum depends 
on the starting value. This problem is caused by the geometry of the constraints in (2). In practice 
one should try several starting values to get the best solution. One starting value is given by 
the approximate method, which is described in the next section and does not require iterations. 

3. APPROXIMATE METHOD 

In this section, an allocation method that gives an approximation to the optimal allocation 
is described. The method was first suggested by Choudhry, Lavallee and Hidiroglou (1989a). 
Assuming that all the second-phase sampling fractions are equal to one, an approximation to 
the optimal allocation of the first-phase sample is calculated. Then the second-phase sample 
is allocated, conditional on the first-phase sampling fractions. Since the cost of sampling a 
unit in both phases of sampling does not depend on the stratum in which the unit falls, 
minimizing cost is equivalent to minimizing sample size at each step of this method. 

At the first step of the method, an approximate solution to the optimal allocation problem 
for a one-phase sample design is calculated. This step involves finding the minimum, 
independently for each h, of 

f"" - Y ^^l" • ̂ g (3) 

with respect to Vg^j,, g = 1, 2, ..., G. The notation Vg^j, is used to denote the fact that a 
sampling fraction for size stratum g is determined subject to only one precision constraint, 
namely the constraint for SIC4 domain h, where h is fixed. In particular, the minimization 
must be done subject to the constraints 

£ ( - - • ) {Ag„ + Bg„) ^ a- Yf,, (4) 

0 < vg^j, < 1, g = 1,2, ...,G. (5) 

One can show that the minimum of (3) is obtained when (4) holds with equality, so that 
the problem defined by (3), (4), and (5) is equivalent to finding the critical point of the lagrangian 
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E = Y "̂ i"̂ * + ^ • [<^^ ^̂  - E ( 7 ; - ') • ^̂ g" + ^̂ "̂ j • 
s ° 

Setting the derivatives with respect to Ugî  equal to zero yields 

vg^j, = {{Ag„ + Bg,)/Ng)''' • { - X)'/% g - 1, 2, . . . , G. (6) 

Setting dL/d\ = 0 we obtain 

{->s)''^ = Y ((^^^ + ^s") • ^s^'''I('^'x 'Yl+ Y ^^sh + Bgh)) • (7) 

After substitution of (7) into (6), we obtain the optimal sampling fraction for size stratum g 
given only one precision constraint, for SIC4 domain h, 

Vg\h - yy^gh -I- "gh + Bgi,)/Ng)'' 

Y ((Agh + Bg„) • NgY'^Ucl -Yl-^ Y (̂ ẑ- + ^s"^) (8) 

If one or more of the sampling fractions given by (8) are greater than one, one can set them 
equal to one and solve a modified allocation problem with a reduced number of strata. This 
approach corresponds to the overallocation procedure discussed by Cochran (1977). It is 
necessary to calculate (8) for /J = 1,2, ..., H. The approximate first-phase sampHng fraction 
for size stratum g, v*, is set equal to the largest value in the set [ u*|;,, h = 1,2, . . . , / / ) for 
g = 1,2, . . . , G, an approach that ensures that the precision constraint for each SIC4 domain 
will be satisified. 

Given first-phase sampHng fractions, optimal second-phase sampling fractions can be easily 
determined. Assume that, for the SIC2 x province cell h, the size strata included in the 
allocation problem correspond to a set of integers, T. We set the second-phase sampling 
fractions equal to one for those size strata that are not included in the allocation problem. 
Normally, one would have T = [1,2, . . . , G) but because of overallocation during alloca
tion of the second-phase sample, for example, F may not include all integers between 1 and G. 
The problem of allocating the second-phase sample is equivalent to the problem of finding 
the minimum of 

Eh^Y "g" • "* • ^^^ (̂ ^ 
gir 

with respect to Vgj,, gdV, subject to the constraints 

tfv W / ^g 
(10) 

giV -'sh 

0 < vg„< I, gdr, (II) 
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where 

Mh = Cl- Yl- Y i-^^- "^^ • (Ah + Bgh) • 
g \ g / 

Note that the expected number of units with SIC4 h in the second-phase sample for size 
stratum g, u | • T\̂ ;„ is employed in (9). It is easy to show that (9) attains a minimum when the 
constraint (10) holds with equality. Consequently, the minimization problem is equivalent to 
finding the critical point of the lagrangian 

Lj, = Y^gh- vl -Ngj, + X- (MJ,-Y- ( - - l ) • ^ ) , 

with respect to and Vgj,, gdV, and X, subject to the constraints 

0 < vg„ < 1, gdT. 

Setting the first derivatives of Lj, equal to zero and simplifying, one obtains 

vgh= { - \ - Agj,/Ng„)''' • (l/i;g*), gdV, (12) 

(--^y'' = Y (^s" •Ag„y''/Drh, (13) 
g 

where 

Dvh = Cl-YlY (;^) • ^̂ ^ - E ( ^ - l) • (A/. + Sgh)-

Note that there is no solution to the allocation problem unless D^j, is positive. Substituting (13) 
into (12) yields 

vlh = (Agh/Ngj,)'"' • {1/v*) - Y (^gh • Agh)'''/Drh- (14) 
gir 

If v^j, is greater than one for certain gh, the overallocation procedure described above can 
obviously be employed. Note that (14) also provides the solution for step (ii) of each exact 
method iteration. 

4. EMPIRICAL STUDY 

The approximate method serves two purposes. First, it provides a good starting value for 
the exact method. Second, it may be easier to implement in practice. In this section, we report 
the results of an empirical comparison using data from the province of Quebec for tax year 
1988. Results obtained using the exact method with various starting points, as well as the 
approximate method, are reported. Since the quantities TVĝ ,, Yj, and Sgi, required by both 
methods were unknown, estimates based on the data were used. 
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The size stratification used by the survey, including four take-some strata and one take-all 
stratum, was employed. Allocations were computed for 64 SIC2 cells (all of the Quebec data 
excluding a few small SIC2s). The number of sampling fractions determined in these allocations 
ranged from 8 to 92 with a median of 24. The number of constraints ranged from 9 to 115 
with a median of 31. There were 20 SIC2 cells involving more than 35 variables and 18 of these 
cells also involved more than 50 constraints. A total of 1850 second-phase strata including about 
230,000 population units were involved. 

The first-phase sampling cost, corresponding to the cost of microfilming or photocopying 
a tax return at Revenue Canada, sending the information to Statistics Canada and determining 
an SIC4 code, was set at $1.40 per unit. The second-phase sampling cost, corresponding to 
the cost of transcribing values for financial variables, was set at $7.00. These costs are 
comparable to those incurred during operation of the actual survey. 

Allocations were computed using the exact method with three starting values: I - solution 
of the approximate method; II - all first-phase sampling fractions set to one with the corre
sponding conditionally optimal second-phase fractions; and III - a randomly chosen set of 
feasible first-phase sampling fractions, with the corresponding conditionally optimal second-
phase fractions. In addition, the exact method was started at a perturbation of each of these 
starting values. The perturbed value for the first-phase sampling fraction for size stratum g 
for starting value I was uj"' =: 0.1 -I- 0.9 • i;|, where u|is the solution of the approximate 
method. Second-phase sampling fractions were started at values that are optimal, conditional 
on the perturbed first-phase fractions. Starting value III was perturbed analogously. The 
perturbed value corresponding to starting value II was v^f = 0.1 -I- 0.9 • u|^, where u|^is 
optimal, conditional on a census at the first phase of sampling. For each starting value, the 
best result obtained using either the value itself or the corresponding perturbed value was 
retained. Convergence was declared if the absolute relative change in the cost function between 
consecutive iterations was less than lO""*. The IMSL implementation of Schittkowski's 
successive quadratic programming algorithm was used to solve nonlinear programming 
problems. 

Results are reported in Table 2. Total costs for four akernatives are given. In addition, the 
number of SIC2 cells for which each starting value for the exact method produced better results 
than alternative starting values is shown. Computing costs are not reported, since they were 
small enough to be inconsequential. 

The results indicate that the approximate solution provided the best starting values for the 
exact method. Although starting value II produced better results than starting value I for 17 
SIC2 cells, the total cost associated with starting value II was higher than the total cost for 
the approximate method. The exact method performed poorly when starting values were 
determined by random selection of a feasible set of first-phase sampling fractions. 

Table 2 

Resuhs for Exact and Approximate Methods 

Method 

Total cost ($) 

No. cells with best result* 

1 

122779 

48 

Exact - Starting value 

11 

139347 

17 

III 

200998 

1 

Approximate 

130228 

* For two cells starting values I and II produced the same result, which had lower cost than the result obtained using 
starting value III. Consequently, the numbers reported in this row of the table add to 66 rather than 64. 
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Although the total cost using the exact method with starting value I was only 5.7% lower 
than the cost of the approximate method, it should be noted that the exact method with starting 
value I can do no worse than the approximate method. The exact method with starting value I 
produced better results than the approximate method for 42 cells. 

5. CONCLUSION 

A sample allocation problem for two-phase survey designs is formulated as a constrained 
optimization problem in Sections I and 2. If the numbers of variables and constraints involved 
in the problem are small, the solution can be obtained through direct application of numerical 
methods. However, the direct approach does not work well for large numbers of variables and 
constraints. 

By exploiting the mathematical structure of the problem, it can be divided into two sub-
problems: the first is a convex programming problem with linear constraints that involves a 
much smaller number of variables, and the second can be solved without the use of numerical 
methods. The algorithm proposed in Section 2 consists of iterations between the two 
subproblems. It is computationally simpler and more effective in practice than the direct 
approach for problems involving large numbers of variables and constraints. An approximate 
solution to the sample allocation problem that does not require use of numerical methods is 
proposed in Section 3. The empirical study in Section 4 shows that it works especially well as 
a starting value for the algorithm proposed in Section 2. 
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The Role of the Interviewer in Survey Participation 

MICK p. COUPER and ROBERT M. GROVES' 

ABSTRACT 

Using data from a survey of U.S. Census Bureau interviewers, this paper examines whether experienced 
interviewers achieve higher response rates than inexperienced interviewers, controlling for differences 
in survey design and attributes of the populations assigned to them. After demonstrating that the 
relationship is positive and curvilinear, it attempts to explain the mechanisms by which experienced inter
viewers achieve these rates and elaborate the nature of the relationship. It examines what behaviors and 
attitudes underlie the higher success, with the hope that they might be instilled in trainees. 

KEY WORDS: Interviewers; Nonresponse; Response rates; Survey participation. 

1. INTRODUCTION 

Survey methodologists have long suspected the interviewer to be an important source of 
variation in response rates. Indicators of this include observed differences among trainees in 
the ability to absorb and put into practice the interviewing guidelines, interviewer variation 
in item missing data rates, individual interviewers' response rates, and the ability of some inter
viewers to convert the initial refusals of others. However, several of these indicators are affected 
by the fact that interviewers often do their work in different subpopulations, and thus face 
different challenges to complete their assignments. 

Much of what we believe about the impact of the interviewer on survey participation remains 
untested or inconclusive. In an oft-cited study, Durbin and Stuart (1951) found experienced 
interviewers to be "decidedly superior" to student volunteers in terms of response rates. Groves 
and FuHz (1985) found that novice interviewers (1 to 6 months of tenure) had the highest refusal 
rates in a telephone survey. In a study cited by Inderfurth (1972), nonresponse rates for Census 
Bureau interviewers trained in 1962 and 1963 declined steadily over the first months of service, 
reaching the level of experienced interviewers after 22 months. In contrast. Singer, Frankel 
and Glassman (1983, p. 74) found the effect of experience on response rates in a telephone 
survey to be counter-intuitive, that is, more experienced interviewers did not achieve higher 
response rates. They do note, however, that this resuH is based on only six interviewers. In 
a study of 16 field interviewers in Sweden, Schyberger (1967) found nonresponse rates to be 
higher for experienced than for newly recruited interviewers. In short, the common belief of 
experienced interviewers being more successful is not uniformly supported empirically. 

This paper examines the role of various interviewer characteristics, particularly experience, 
in achieving respondent cooperation. It should be noted that the interviewer represents only 
one part of a large set of factors that can affect survey participation. Such factors include 
respondent characteristics, the respondent-interviewer interaction, survey design features, and 
contextual and situational factors. For a review of these factors, see Groves, Cialdini and 
Couper (1992). 

' Mick P. Couper and Robert M. Groves, U.S. Bureau of the Census and University of Michigan. Room 2315-3, 
Bureau of the Census, Washington, DC 20233. 
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We should also note that different models may be more suitable for different components 
of nonresponse. For instance, interviewer motivation, tenacity and effort expended may be 
more important in reducing noncontacts, while persuasion skills play a greater part in the refusal 
component of nonresponse. The data analyzed here do not permit us to distinguish between 
these components of nonresponse. This may weaken the explanatory power of the models tested. 

In this paper we will address two questions: (a) do experienced interviewers achieve higher 
response rates? (b) if so, what are the mechanisms underlying the relationship between 
experience and rates? These questions are important to the survey research community. If the 
behaviors used by successful experienced interviewers can be taught to inexperienced inter
viewers, then their success might be transferred to the new recruits. If not, then the value of 
reducing turnover among experienced interviewers remains high for survey organizations. 

2. TOWARD A MODEL OF SURVEY PARTICIPATION 

A number of interviewer characteristics can be identified that have a potential impact on 
survey participation. These are illustrated in Figure 1. The effects of interviewer experience, 
expectations and behavior on response rates, controlling for assignment area and survey design 
features, will be explored. Each of the sets of variables will be discussed in turn. 

2.1 Interviewer experience 

First, interviewers' experience is expected to have a positive effect on the response rates they 
obtain. This stems from lessons learned through trial and error application of alternative tech
niques over time, and from alternative training guidelines and experiences on different surveys. 
Experience thus has two components: length and breadth. Length of experience might be 
indicated by the number of years a person has worked as an interviewer. One indicator of 
breadth of experience is the number of different organizations an interviewer has worked for, 
or the number of different kinds of studies an interviewer has worked on. It is argued that length 
and breadth of experience both serve to increase the variety of different interviewing situa
tions to which an interviewer is exposed. 

We expect the relationship between length of experience (as measured by tenure) and response 
rates to be curvilinear. Experience in the first few years of interviewing will have a greater impact 
on response rates than in later years. After a certain point, the number of new situations faced 
by interviewers decHnes, and interviewers become comfortable dealing with the wide variety 
of sample persons and assignment areas they may face. After this, additional years of experience 
may not produce further gains in response rates. 

An alternative hypothesis is that self-selection rather than experience produces higher 
response rates among interviewers with longer tenure. In other words, it is not that individual 
interviewers get better over time, but that better interviewers tend to stay, while weaker 
interviewers leave the job. We believe that a combination of these two factors explains varia
tions in interviewer performance. However, the self-selection hypothesis cannot be tested in 
a cross-sectional study such as this, and caution must be exercised in drawing inferences from 
these analyses. 

If experienced interviewers achieve higher response rates, we hypothesize that this takes place 
through the intervening effects of interviewer expectations {e.g. confidence) and behavior {e.g. 
effective oral presentation). Note that we posit no direct effect of experience on response rates. 
In other words, is it possible to identify interviewer attitudes and behaviors that may account 
for possible differences in response rates? 
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2.2 Interviewer expectations 

It is hypothesized that positive interviewer expectations lead to higher response rates. Inter
viewers who have a greater belief in their ability to persuade sample persons to participate, 
who believe in the legitimacy of the work they are doing, and who are confident that most people 
agree to participate in surveys, are likely to get higher response rates than those who believe 
otherwise. This argument has some empirical support in the study by Singer, Frankel and 
Glassman (1983), in which it was found that interviewers who anticipated prior to the survey 
that the task of persuading respondents was "moderately easy", achieved higher response rates 
than those who believed the task to be "moderately difficult". 

2.3 Interviewer behavior 

With regard to interviewer behaviors, we seek to identify the mechanisms by which greater 
experience and positive expectations translate into higher response rates. The behavior of 
interviewers in gaining cooperation from sample persons may be likened to that of other 
"compliance professionals" (such as salespersons, fundraisers, etc.). Based on an extensive 
review of experimental and observational evidence, Cialdini (1984, 1990) identifies six 
compliance principles used to decide whether to accede to a request. Briefly, these principles 
are as follows: 

(a) Reciprocation: One should be more willing to comply with a request to the extent that the 
compliance constitutes the repayment of a perceived gift, favor, or concession. 

(b) Consistency: After committing oneself to a position, one should be more wilHng to comply 
with requests for behaviors that are consistent with that position. 

(c) Social validation: One should be more willing to comply with a request to the degree that 
one believes that similar others would comply with it. 

(d) Authority: One should be more willing to yield to the requests of someone who one perceives 
as a legitimate authority. 

(e) Scarcity: One should be more willing to comply with requests to secure opportunities that 
are scarce. 

(f) Liking: One should be more willing to comply with requests of liked others. 

We are interested in the extent to which interviewers make use of these principles to persuade 
sample persons to participate in a survey. 

It is argued that interviewers who make appropriate use of each of these strategies are likely 
to have greater success in persuading reluctant sample persons to participate. However, the 
use of such techniques indiscriminately in aU situations may backfire. For example, the invoca
tion of the authority principle in areas where suspicion of government is high may well have 
a negative effect on cooperation. The use of these compliance principles may not be univer
sally effective in all situations or for all sample persons. 

Thus, it is not just whether these techniques are used by interviewers, but also how they are 
used. Two concepts are of interest here. One is the number of different techniques that an inter
viewer has at his/her disposal, and the second is how appropriately such techniques are applied. 
The first we will refer to as the "repertoire of techniques" available to the interviewer. A novice 
interviewer may learn one or two "canned" introductions during training, and use them on 
all sample persons he/she encounters. In contrast, the experienced interviewer has a wide reper
toire of approaches upon which to draw, and can apply them as the situation warrants. 
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The second concept is that of appropriate application of the skills or techniques at the inter
viewer's disposal. We refer to this as "tailoring". An interviewer is expected to be an "astute 
psychological diagnostician" (Cannell 1964), to be able to size up a situation quickly, and apply 
the appropriate persuasive messages. These skills are gained through experience, either on the 
job or in life in general. The novice interviewer, with fewer skills and less confidence, may rigidly 
adhere to a small number of "tried and trusted" approaches. The experienced interviewer is 
better able to tailor his/her approach to each potential respondent. 

It may be that adaptability and appropriate application of persuasive techniques are more 
critical than the actual behaviors or techniques themselves. If so, it should be possible to develop 
a more parsimonious model using only the latter concepts and dropping the specific behaviors 
measured. 

2.4 Assignment area 

To examine the effect of interviewers on survey participation, we need to take into account the 
fact that they are assigned different areas to interview. Ideally, the research design would have 
randomly assigned interviewers to sample areas, removing any statistical confounding between 
interviewer and population characteristics. Without such randomization, we attempt to specify 
those population characteristics important to response rate and statistically control for them. 

First, the problem of obtaining cooperation from sample persons in inner-city areas is well 
known (see Steeh 1981, Smith 1983). House and Wolf (1978) found that rising crime rates, 
particularly in high density urban areas, have been a major deterrent to survey participation, 
and to trusting and helping behavior in general (Korte and Kerr 1975). We expect this arises 
both because of residents' reluctance to interact with strangers, and unease among interviewers 
on entering these neighborhoods. 

Turning to characteristics of sample households, household size has been found to correlate 
positively with response rates (see Gower 1979; Paul and Lawes 1982; Rauta 1985). Single-
person households tend to have relatively high refusal rates (see Brown and Bishop 1982; Wilcox 
1977). This may be due in part to the large proportion of elderly persons living alone. Families 
with dependent children, on the other hand, tend to have higher response rates. Lievesley 
(1988) notes that higher response rates in certain areas of the U.K. may be explained by 
the high probability of finding someone at home arising from high proportions of children 
aged 0-4. 

The findings on sample person characteristics are somewhat more mixed. A number of 
researchers (see Brown and Bishop 1982; Hawkins 1975; Herzog and Rogers 1988; Weaver 
1975) have found age to be associated with nonresponse. The impact of other sample person 
characteristics such as race, education, socio-economic status, gender, etc. are somewhat incon
sistent (see Groves (1989) and Goyder (1987) for reviews of these factors). 

2.5 Survey design features 

Finally, survey design features (topic, burden, respondent selection rules, etc.) are likely 
to influence a sample person's decision to participate, both directly and in terms of constraints 
on interviewer expectations and behavior. 

2.6 Interaction effects on response rate 

We suspect that there may be a number of statistical interaction effects of influences on 
nonresponse. One question is whether there are some areas (such as high density central city 
areas) in which interviewer experience is more important than other areas. For example, high 
density urban areas may be more diverse, requiring greater experience to deal with a greater 
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variety of different situations. Behavior in areas where the situations presented to interviewers 
are all very similar could be more easily learned, as fewer persuasion strategies would be needed. 

We also suspect that different surveys may obtain varying response rates for different 
subpopulations as a result of the differential salience of the survey topic to such groups. For 
example, it may be expected that the National Crime Survey (which focuses on criminal 
victimization) may get higher response rates in high crime areas than in low crime areas. 
Similarly, the National Health Interview Survey (which measures health-related activities) may 
obtain higher response rates in areas with an older than average population. Similar interactions 
may be expected between the Consumer Expenditure Survey and such variables as average 
household size and income level. 

3. METHOD 

3.1 Data collection strategies 

The results in this paper are part of a larger study of survey participation in face-to-face 
surveys in the United States. The first part of the work involved a series of focus groups with 
interviewers working on a variety of different surveys around the country. The insights gained 
from these groups led to the development of a structured questionnaire to test some of these 
hypotheses on a larger audience of interviewers. 

The interviewer surveys had the goal of measuring behavioral, experiential and attitudinal 
influences on levels of cooperation obtained by interviewers. The questionnaire was developed 
and tested by staff at the Survey Research Center in collaboration with staff from the U.S. 
Census Bureau. 

This questionnaire was administered to U.S. Census Bureau interviewers working on the 
following three personal visit surveys: 

(a) the Consumer Expenditure Quarterly Survey (CE), sponsored by the Bureau of Labor 
Statistics; 

(b) the National Health Interview Survey (HIS), sponsored by the National Center for HeaUh 
Statistics; and 

(c) the National Crime Survey (NCS), sponsored by the Bureau of Justice Statistics. 

The questionnaire was mailed in February, 1990, to Census Bureau interviewers working 
on these three surveys. All interviewers were paid their normal salary rate for completing the 
questionnaire (most were paid for an hour of their time). In an effort to seek candid responses 
and eliminate the threat of supervisory intervention, interviewers were assured that their indi
vidual responses would not be seen by or discussed with any of their supervisors, and that the 
results would be reported only as statistical totals. 

Questionnaires were mailed back to the central office. Reminder letters and telephone calls 
were used to increase the response rate. A total of 1,013 completed questionnaires were received, 
representing a response rate of 97.1%. A number of questionnaires were excluded from the 
analyses reported here. AU supervisory interviewers (256) were excluded. These people often 
have no regular assignments of their own, and typically work on a number of different surveys. 
They are often used for refusal conversion, or to "clean up" otherwise incomplete assignments. 
With supervisory interviewers excluded, transfer of assignments from one interviewer to another 
on these surveys is rare. For purposes of calculating interviewer-level response rates, each 
nonresponse case was counted against the original interviewer, regardless of whether it was 
later converted by another. In addition, those interviewers who started work during the period 
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in which the interviewer survey was administered, and for whom no historical response rate 
information was available, were also excluded (46 interviewers). This left a total of 711 inter
viewers, 207 from CE, 139 from HIS and 365 from NCS. The numbers of cases included in 
the analyses may be further reduced due to missing data on certain variables. 

3.2 Data structure 

In addition to the questionnaire responses, other variables were added to the data file. These 
included a set of variables to represent each interviewer's assignment area. Typically, the 
primary sampling unit (PSU) in which an interviewer works consists of one or more coterminous 
counties. County-level data were extracted from the County and City Data Book (Bureau of 
the Census 1988), aggregated to the PSU level, and attached to the interviewer records. Note 
that these variables can only reflect gross differences in assignment area and cannot, for 
example, distinguish between central city and suburban areas. 

The date each interviewer was hired by the Census Bureau was obtained from administrative 
records to create a variable to serve as a measure of tenure. Although it does not indicate length 
of experience on a particular survey, it does reflect the length of time an interviewer was 
employed by the Census Bureau. 

A major drawback of this study is that it was not possible to obtain measures of race, age, 
gender, or other demographic attributes of the interviewer. Confidentiality restrictions 
prevented access of personnel records for this information, nor could these be asked in the 
interviewer questionnaire. 

3.3 Analytic plan 

Three different surveys are represented in the data set. Instead of introducing control 
variables measuring key design features of the surveys, dummy variable indicators of the survey 
were used to control on important design differences among them. 

The dependent variable is aggregate response rate for the six month period, October 1989, 
through March 1990. It was not possible to obtain interviewer-level data on the components of 
nonresponse (particularly refusals) for this period. These rates thus do not distinguish between 
noncontact and refusal components of nonresponse. Hence, it should be noted that the analyses 
reported here are based on interviewer-level response rates rather than refusal rates. 

The nonresponse rates for the three surveys for 1990 (based on national sample totals) are 
presented in Table I. 

Refusals as a proportion of total nonresponse varies from 87% for CE to 52% for NCS. 
We suspect that different sets of factors operate to affect these two components of nonresponse. 
Ideally, separate models would be fitted for each component, but this was not possible given 
the current data. To the extent that factors affecting refusals are different from those affecting 
other components of nonresponse (such as noncontacts), the results will be confounded (see 
Lievesley 1988). It can also be seen that nonresponse rates for these three surveys are low to 
begin with. This may further restrict the ability of these models to explain differences among 
interviewers. 

Given that the size of the interviewer assignments vary (and hence affect the variance of 
the measured individual response rates), we used weighted least squares (WLS) with assignment 
size as the weight. Comparisons of the WLS results with those using ordinary least squares 
(OLS) solutions were made, and it was found that WLS reduces the size of the coefficients 
marginally, but does not affect the sign or relative strength of the coefficients. All the analyses 
reported here are based on the WLS solutions. 
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Table 1 
1990 Nonresponse Rates for Three Surveys 

Survey 
Nonresponse 

rate 

% 

13.4 

4.5 

3.1 

Refusal 
rate 

% 

11.6 

2.8 

1.6 

Consumer Expenditure Survey 

Health Interview Survey 

National Crime Survey 

A series of tests were performed to determine the appropriateness of the models specified. 
A number of outliers in the dependent variable were detected. However, removal of these 
outliers had little or no effect on the results obtained, and they were therefore retained in 
all analyses. Tests of the normality assumption were also conducted. The normal probability 
plots show that the residuals from these models do not differ markedly from a normal 
distribution. 

It is hypothesized that the effect of tenure on response rate is greater in the first few years. 
The tenure variable is transformed (the natural log is used) to reflect this. The transformed 
variable indeed produced an improvement in fit over the linear tenure variable. 

A more detailed description of the variables used in these analyses can be found in 
Appendix A. 

4. LIMITATIONS 

Before describing the analyses, it is important to note some of the limitations of these data. 
First, these findings refer only to interviewers working on three ongoing national surveys at 
the Census Bureau at the time at which the interviewer survey was conducted. It is not possible 
to generalize to other face-to-face or telephone surveys conducted by academic or private sector 
organizations. 

Furthermore, the data are cross-sectional in nature. Cohort and period effects are confounded 
with the effects of experience. That is, any observed response rate differences by interviewer 
experience may be due to changes in the quality of interviewers hired over time, in the effec
tiveness of interviewer training over time, or in differential turnover by interviewer quality. 
Hypotheses can be constructed to support both positive and negative effects of these factors 
on response rates. Hence, the measured impact of interviewer experience on response rates 
is a complex combination of these factors. Longitudinal measurement of interviewers is needed 
to disentangle these effects. 

Interviewers are not randomly assigned to areas. Although we have attempted to control 
for a number of characteristics of assignment area that may impact on response rates, there 
may be many other factors that could explain differences in response rates across assignment 
area. Further, we are limited to weak controls, on attributes of counties and groups of counties, 
not on attributes of specific assignment areas within counties given to interviewers. A hierar
chical analysis containing data on individual respondents and interviewers assigned to them 
would improve these control factors. 
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Finally, the dependent variable was measured for a time period up to and including the 
administration of the interviewer questionnaire. More recent response rate data were not 
available at the time. Given that behaviors and expectations were not measured before the 
response rates were obtained, caution should be exercised in attributing causality. 

Despite these limitations, these data provide us with the opportunity to test prevailing beliefs 
about the role of interviewer experience in response rates, and to explore the role of interviewer 
expectations and behavior in face-to-face surveys. 

5. RESULTS 

First, we measured the impact of experience, controlling for characteristics of assignment 
areas and dummy variables for the surveys (Model 1 in Table 2). Let us first examine the coef
ficients of the control variables. With few exceptions, most of the assignment area variables 
have a significant impact on response rates. Both population density and crime rate act as 
expected, with lower response rates being obtained in high crime, high density areas. The 
negative effect of household size is contrary to expectation. This may be explained in part by 
the fact that these surveys all collect information from or about all adult household members, 
thereby increasing the reporting burden for large households. This is contrary to many surveys 
where a single adult is selected from each household. The effect of age is as hypothesized, with 
response rates tending to be lower (but not significantly so) in areas with larger proportions 
of persons over 65, but higher in areas with many households who have young children. 

The large effects for the two survey variables (relative to the omitted category of the 
Consumer Expenditure Survey) reflect differences in the mean response rates for these three 
surveys. Such differences can be attributed to a host of survey design differences (length of 
the interview, respondent selection rules, panel versus cross-sectional designs, content of the 
questionnaires, etc.) that are beyond the scope of this paper. Nevertheless, it is clearly necessary 
to control for these differences. 

Now, let us examine the measured effect of experience, given these control variables. It can 
be seen that tenure has a strong positive effect on response rates, even when controlling for 
the nature of the area to which an interviewer is assigned. This appears to confirm prevailing 
beliefs about the role of interviewer experience. Interviewer differences in response rates appear 
to be more than simply artifacts of differences in the areas to which they are assigned, and 
experience plays a key role in such interviewer differences. 

The inclusion of an indicator for breadth of experience was also tested, but found to have 
no significant effect in the presence of the remaining variables. It thus appears that, for Census 
Bureau interviewers at least, experience working for other survey organizations does not appear 
to have any marginal impact on response rates over and above that of tenure. 

Does tenure have a differential impact on response rates in different assignment areas? 
Model 2 in Table 2 includes an interaction term between the log of tenure and population 
density. An additional interaction term between tenure and crime rate was also tested, but this 
coefficient was found to be insignificant, and the interaction had little impact on remaining 
elements of the model. The interaction term in Model 2 is statistically significant, but the sign 
is opposite to that expected. We hypothesized that experience would have a greater impact in 
high density areas, but this does not appear to be the case. An alternative explanation may 
be a "burnout effect". More experienced interviewers in high density urban areas may be losing 
their enthusiasm sooner than experienced interviewers in less stressful rural areas, and this 
contributes to lower response rates. Interviewer burnout may be one factor contributing to 
higher turnover rates in the large metropolitan areas. 
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Interactions between the three surveys and various assignment characteristics were also tested. 
None of these appear to have any noticeable effect in these models, and are not discussed further. 
As a further test for the presence of additional interactions involving the survey variables, 
separate models were fitted for each of the three surveys. The models obtained are essentially 
the same for each of the three surveys examined. Thus, although the level of response differs 
across the three surveys, the relative impact of tenure on response rates appears to be the same. 

Given that it appears that experienced interviewers achieve higher response rates regardless 
of the areas to which they are assigned, we can proceed to address the question of how experience 
impacts on levels of cooperation. What makes a more experienced interviewer better at gaining 
cooperation from respondents? 

The first step involves the addition of interviewer expectation variables to Model 2. The 
results are presented as Model 3 in Table 2. All three expectation variables act in the expected 
direction, although only one achieves statistical significance at traditional levels. It appears 
that those interviewers who have a greater belief in their ability to convince reluctant respondents 
to participate, actually achieve higher response rates. 

It should be cautioned that the causal link between expectations and response rates cannot 
be established in a cross-sectional study such as this. It may be that greater success leads to 
greater expectations of future success, rather than the other way around. This interpretation 
opposes the hope that instilling a greater sense of self-efficacy in interviewers will produce 
higher levels of response. Nevertheless, this finding is an intriguing one that demands further 
attention. 

The next step was to add the set of interviewer behaviors into the model. The results can 
be seen in Model 4 in Table 2. Two things can be noted about these results. First, the inclusion 
of this set of interviewer behaviors failed to explain away the effect of tenure. In fact, the 
coefficient for tenure is hardly affected by the addition of either the expectation variables or 
the behavior variables. 

Second, the results for the specific behaviors are somewhat mixed. It was expected that the 
coefficients for all the behavior variables would be positive. This is not the case. The results 
for authority and reciprocation indicate that interviewers who use these techniques achieve 
higher response rates. In contrast, use of the scarcity principle appears to have the opposite 
effect. Pressure on a respondent to meet certain deadlines may well backfire. The remainder 
of the behavior variables do not appear to have a significant effect on the response rates attained 
by Census Bureau interviewers. 

It was suggested earlier that a reduced model, using only repertoire and tailoring, should 
be considered. In Table 2 it was seen that these two variables do not have significant effects 
in the presence of the other behavior variables. Even after removing the other behavior variables 
from the model, repertoire and tailoring still have little impact on response rates. Thus, the 
argument that the way interviewers use various compliance techniques are more important than 
the actual behaviors themselves gains little empirical support from these data. However, the 
measures of these two concepts may be weak, and a better test of their role should be done 
at the contact-level of analysis. 

6. DISCUSSION 

This paper set out to measure whether experienced interviewers achieve higher response rates 
than inexperienced interviewers. It found they do. It then tried to explain why they do. It largely 
failed. One reason may be that the model is incorrect. However, continued discussions with inter
viewers and supervisory staff lead us to believe that this theoretical formulation has some merit. 
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Four explanations can be posited. First, the model is being tested at the wrong level of 
aggregation. Although the questionnaire focused on what interviewers usually or typically do, 
we are more interested in how they act in specific situations. A more appropriate test of these 
ideas should be conducted at the contact or household level. Second, the measurement of 
various concepts may be inadequate. Improvements in the translation of concepts from the 
compliance literature into specific interviewer behaviors may be made. Third, it should again 
be noted that these models deal with response rates not refusal rates. It may be that certain 
behaviors are more appropriately directed at persuading sample persons to participate (aimed 
at reducing refusals), while others may serve more to gain access to sample persons (the non-
contact portion of nonresponse). Separate models for these two processes could not be devel
oped here. Finally, other unmeasured characteristics of interviewers (appearance, voice quality, 
dress, etc.) may also play a role in influencing the respondent's decision. 

These possible shortcomings do not negate the role of these behaviors in affecting response 
rates. Rather, the findings suggest further research and analysis to explore the relationships 
between specific behaviors and their application on the one hand, and interviewer-level response 
rates on the other. We feel that this line of inquiry has merit, and are working toward a fuller 
understanding of the role of interviewer experience, expectations and behavior in survey 
participation. 
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APPENDIX A 

VARIABLES USED IN ANALYSES 

The creation of the variables used in the analyses are summarized here. Copies of the 
questionnaire can be obtained from the authors. 

Dependent variable 

Response rate: This is the response rate obtained by each interviewer for the six-month period 
in question, expressed as a percentage. 

Assignment area 

Population density: Population density (persons per square mile). 

Crime rate: Crime rate (crimes per 100,000 population). 

Percent 65 or older: Percentage of population 65 years of age and older. 

Percent under 5: Percentage of population under 5 years of age. 

Household size: Average household size. 
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Survey 

Set of dummies to indicate which survey each interviewer works on: 

HIS: Does interviewer work on the Heakh Interview Survey. 

I := Yes 

0 = No 

NCS: Does interviewer work on the National Crime Survey. 

1 = Yes 
0 = No 

CE: (the Consumer Expenditure Survey) is thus the omitted category. 

Interviewer experience 

Tenure: 

Breadth of experience: 

Measured in days of service employed at the Census Bureau as an 
interviewer, rescaled to fractional years. 

A count of the number of different survey organizations for which 
an interviewer has worked. 

Interviewer expectations 

Confidentiality: Interviewers were asked whether they thought there were any situation under 
which the Census Bureau would give individual survey response to any of 
a number of agencies (FBI, CIA, INS, IRS, state and local government 
agencies). 

I = High confidentiality belief (Census Bureau would not give responses 
to any of these agencies). 

0 = Low confidentiaHty belief (Census Bureau would give responses to one 
or more of the agencies). 

Rate/quality: Trade-off between response rate and data quality. Which one of the 
following statements comes closest to how you feel as an interviewer: 

1 = It's better to persuade a reluctant respondent to participate than to 
accept a refusal. 

0 = It's better to accept a refusal from a reluctant respondent. 

Efficacy: Interviewers were asked the extent to which they agreed or disagreed with 
the following statement: With enough effort, I can convince even the most 
reluctant respondent to participate. 

Four-point ordinal scale, 1 = strongly disagree, 4 = strongly agree. High 
score indicates greater belief in self-efficacy. 

Interviewer behaviors 

Authority: Interviewers were asked how often they left various materials (request for 
appointment, copy of the advance letter, etc.) at respondents' home when 
they found no-one at home. The responses to these questions were combined 
to form a scale of frequency of use of these authority-enhancing materials. 
High score indicates greater use of authority. 
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Reciprocation: How often do you make a point of compHmenting something about respon
dent's home or personal appearance? 
1 = Always, sometimes 

0 = Rarely, never 

Social proof: How often do you say "Most people enjoy doing the interview"? 

1 = Always, sometimes 

0 = Rarely, never 

SaHency: How often do you explain to respondents how the survey results could affect 
them personally? 

1 = Always, sometimes 

0 = Rarely, never 

Scarcity: How often do you tell a respondent that the interview must be completed by 
a certain date? 

1 = Always, sometimes 

0 = Rarely, never 

Consistency: Before a respondent has shown any sign of cooperating, how often do you 
begin asking the survey questions? 

1 = Always, sometimes 

0 = Rarely, never 

Repertoire: In an open-ended question, interviewers were asked to list all things they 
usually do to persuade reluctant respondent to participate. A count of the 
number of distinct things mentioned serves as an indicator of the repertoire 
of techniques available. 

Tailoring: In a series of 15 behavior items, interviewers responded whether they always, 
sometimes, rarely or never performed such behavior. An indicator of tailoring 
in the appHcation of various persuasion techniques is obtained by counting 
the number of times an interviewer used the middle categories (sometimes 
or rarely) to these questions. A high score indicates greater use of tailoring. 
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Consumer Price Index Numbers 

P. LAHIRI and WENYU WANG 

ABSTRACT 

We consider the problem of estimating the "cost weights" and "relative importances" of different item 
strata for the local market basket areas. The estimation of these parameters is needed to construct the 
U.S. Consumer Price Index Numbers. We use multivariate models to construct composite estimators 
which combine information from relevant sources. The mean squared errors (MSE) of the proposed and 
the existing estimators are estimated using the repeated half samples available from the survey. Based 
on our numerical resuHs, the proposed estimators seem to be superior to the existing estimators. 

KEY WORDS: Consumer expenditure; Composite estimation; Consumer Price Index; Cost weight; 
Diary survey; Half sample; Laspeyres Index; Mean squared error; Synthetic estimation. 

1. INTRODUCTION 

The U.S. Consumer Price Index (CPI) is an indicator of price changes for a set of items, 
goods and services, whose quantity and quality are fixed over a period of time. The U.S. Bureau 
of Labor Statistics (BLS) computes a number of consumer price indices each month for various 
geographical areas, consumer units and item classification {vide BLS Handbook of Methods 
1988). 

The smaHest group of item classification for which the BLS computes the CPI is known 
as an "item stratum". It is a prespecified set of consumer goods and services, e.g., fresh whole 
milk, which can be purchased in the retail market during a "base period" by a specified set 
of consumer units. A consumer unit may consist of all members of a particular household 
related by blood, marriage, adoption, or other legal arrangements. A number of item strata 
constitutes an expenditure class {e.g., dairy products). 

The U.S. is divided into eight major areas for sampHng purposes. A major area may be either 
"self-representing" or "non-self-representing" and belongs to one of the four regions (Northeast, 
Midwest, South and West). A self-representing area consists of all large cities within a region. 
A non-self-representing area generally consists of a county or a group of contiguous counties. 
For publication purposes, a major area is further divided into a number of "market basket 
areas" or "publication areas". 

The Laspeyres formula used by the BLS to compute the CPI for a given area and an expen
diture class (say, E) is defined below. Let 

Pj, = the average price of all items in the /th item stratum at time t {t = 0,T), 

QjQ = the quantity of all items in the rth item stratum purchased at time t = 0 (base period). 

' p . Lahiri, Department of Mathematics and Statistics, University of Nebraska-Lincoln, Lincoln, NE 68588 0323, 
USA. Wenyu Wang, SUNY Health Science Center at Brooklyn, Box 1203, 450 Clarkson Avenue, Brooklyn, NY 
11203, USA. 
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Then the Laspeyres index at time t = Tis given by 

Ir = Y Q'oPiT Y Q'O '̂" 
HE I HE 

Y C,{Pjr/Pjo) 
HE 

HE 

= ^HE^i(PiT/Pio) , 

where 

Q = QioPiO - total expenditure for aH items in the /th item stratum at / = 0, 

^i = Cj/ E/efQ = proportion of total expenditure spent on the /th item stratum at / = 0. 

The quantities C, and R, are referred to as the "cost weight" and "relative importance" 
of the /th item stratum within the expenditure class, E. 

The Bureau of Labor Statistics computes the consumer price indices using data from the 
U.S. Consumer Expenditure Survey (GES). The survey has two different components - Diary 
survey and Interview survey, each having separate sampling schemes and questionnaires. In 
this paper we consider data from the Diary survey only. The sampling design selects all the 
primary stage units (PSU's) within a particular self-representing area with certainty. But only 
a sample of PSU's is selected for a particular non-self-representing area according to a probabiHty 
sampling scheme. From each selected PSU, a sample of consumer units (CU's) is selected again 
using some probability sampling design. Each respondent keeps a diary of expenditures on 
various items for two consecutive 1-week periods. For a detailed account on the CPI and CES, 
the reader is referred to the BLS Handbook of Methods (1988). 

The efficiency of the traditional sample survey estimators of the cost weight and relative 
importance of an item stratum at the publication area level is generally very low compared to 
their efficiency at a larger area {e.g., major area) level. This is due to the fact that only a few 
consumer units are available from a given pubHcation area. Thus, there is a need to improve 
the traditional estimator by borrowing strength from related resources. Marks (1978) and Cohen 
and Sommers (1984) considered certain composite estimators which pool information from 
related areas. Ghosh and Sohn (1990) obtained composite estimators of the cost weight and 
relative importance using an empirical Bayes approach. 

The current procedure used by the Bureau of Labor Statistics consists of several steps. First 
composite estimators of the relative importances are obtained using a method suggested by 
Cohen and Sommers (1984). The estimators of the cost weights are then obtained from these 
estimators of the relative importances using an iterated "raking" procedure. The final estimates 
of the cost weights for the entire expenditure class and for the major area are identical to the 
corresponding preliminary estimates. One reason for ensuring this "data consistency" by raking 
may be due to the fact that the performances of the preliminary estimators are generally 
satisfactory at a higher level of aggregation compared to their performances at a lower level. 
At the last step, the final estimators of the relative importances are obtained directly from the 
final cost weight estimators by division. 
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Unlike earlier authors, we use the correlations between the item strata in proposing our 
composite estimators in Section 2. The shrinkage factor of the composite estimator obtained 
by minimizing the mean squared error within an appropriate class of estimators involves some 
unknown parameters. These unknown parameters are estimated using the balanced repeated 
replications available from the survey. The estimator proposed by Cohen and Sommers (1984) 
turns out to be a special case of our estimator if one assumes that the preliminary estimators 
are all uncorrelated. 

In Section 2 we concentrate our attention to the estimation of the cost weight of an item 
stratum for a publication area. However, we can obtain estimators of the cost weights at a 
higher level of aggregation (e. g., expenditure class for a publication area, etc.) by appropriate 
summation. From our study, it turns out that in terms of the mean squared error criterion these 
estimators always perform better than the corresponding preliminary estimators and hence 
better than the BLS estimators (note that due to the raking procedure the BLS estimators are 
identical to the preliminary estimators at higher levels of aggregation). 

In Section 3 we propose a composite estimator of relative importance of an item stratum 
at the publication area level. Instead of using the preliminary estimators of the cost weights 
we use the preliminary estimators of the relative importances for all the item strata belonging 
to the expenditure class under consideration. The preliminary estimators of relative importances 
of all the item strata within an expenditure class add up to unity. Thus, the variance covariance 
matrix of the preHminary estimators is singular and this makes the problem different from the 
problem of estimation of the cost weights. Our procedure deletes one item stratum in an 
optimal manner and thus avoids the problem of singularity of the variance covariance matrix 
of the preliminary estimators. Our numerical resuHs show that in terms of the mean squared 
error criterion the proposed estimator is always the best among all the rival estimators 
considered. 

In Section 4, we present all the numerical results. We have evaluated different estimators 
of the cost weight and relative importance based on estimated mean squared error obtained 
by using the balanced repeated half samples (see McCarthy 1969, Ghosh and Sohn 1990). Based 
on our results, the proposed estimators seem to be superior to all the rival estimators considered 
in the paper. 

2. ESTIMATION OF THE COST WEIGHT 

Let Xjjj be the average of two consecutive weeks of expenditure for all the items in the /th 
item stratum by the /th consumer unit belonging to they'th publication area within a particular 
major area (/ = I, ..., I;j = 1, ..., m; I = 1, . . . , /jy). Let Ŵ , be the sampling weight 
attached to the /th consumer unit in thev'th publication area {j = 1, ..., m;l = 1, ..., nj). 
This represents a number of consumer units in the population and is obtained by the Census 
Bureau using a complex procedure which takes into account various factors such as inclusion 
probabilities, nonresponse, etc. In this section, we consider estimation of 9jj, the true average 
weekly expenditure per consumer unit for the /th item stratum andyth publication area. The 
cost weight is simply defined as Nj9ij, where Nj denotes the total number of consumer units 
in they'th publication area. The preliminary estimator of 9ij is given by 

"j I "j 

Yij = Y ^j'^'ji £ f*S/. ('• = 1. • • •'^; j = 1, ...,m). (2.1) 
/=1 ' /=1 
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Similarly, the corresponding estimator for the major area is given by 

m "J I m "j 

y=i 1=1 I j=\ 1=1 

The variabiHty of Y,. is much lower than that of Yjj. Thus, a composite estimator of 9jj 
which increases the precision is needed. Let 7; = {Yij, ..., Y,j)'and 9j = {9jj, ...,9fj)', 
j = 1, ..., m. Let Î  be the true variance covariance matrix of Yj, {j = 1, ..., m). Under 
a synthetic assumption, i.e., 9j = n, a I x 1 column vector, {j = 1, ..., m), the best 
estimator of 9j is given by 

( m \ -I m 

Y ^n Y ^r'Yj' (2.3) 
which is obtained by minimizing Y,f=\{ Yj - yi)' Vf^{ Yj - fi) with respect to fi. The syn
thetic assumption, however, is hardly satisfied. In the other extreme when there is absolutely 
no similarity between the 9j's, it is appropriate to take Yj as an estimator of 9j. When the real 
situation is in between these two extremes one may take a composite estimator given by 

§jj{ajj) = (1 - ajj)Yjj + ajjej'ix, (2.4) 

where Ujj's are constants (0 < Ujj < I ) , e,- is a / x I column vector having I for the /th 
elements and 0 for the others. 

We obtain a,y by minimizing the mean squared error 

E[{{1 - Ujj) Yjj + ajjeiii - 9jj]^ \ 9jj] (2.5) 

with respect to Ujj. The optimal choice is given by 

- _ L ^y = i / -I ^2 5) 
"'' ~ E[{Yjj - elil)^ \9j,j = 1, ...,m]' 

Thus, the optimal estimator of 9ij in the class described by (2.4) is given by 

9jj = (I - djj)Yjj -h djjeiil. (2.7) 

Remark 1: Inthederivationof the optimal estimator ^,y, the quantities I^, (y = 1, ...,m) 
and£•[{Yjj - e-fl)^] dj,j = 1, ..., m] are assumed to be fixed and known. 

Remark 2: The estimator proposed by Cohen and Sommers (1984) can be obtained from 9jj 
as a special case when 

yj = [Y ^ ' ) Diag((7?, ...,aj). 
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Note that according to their assumption the correlation between any two item strata is zero 
which appears to be very restrictive from our study. 

Remark 3: Note that using a familiar matrix inversion result (see Rao 1973), 

which is positive definite. Also, 

E[{Yjj - e'jH)' I 9j,j = 1, ...,m] = e/Vjlvj + ( D K') '1 ' Vjei 

Also, when 9j = n, one gets djj = 1 and thus djj = e-ji.. Otherwise the size of the shrinkage 
factor depends on the size of 

[««-<£ ^-')"'(P"'«')] 
The larger the distance of 9jj from e/( I f= i K^~') ~' ( E f= i V~ ̂ 9j) the smaller is the size of djj. 
This means that if a particular area is very different from the general nature of all the areas 
then our procedure will give less weight on the synthetic part of the estimator. This explains 
the great deal of variation of the shrinkage factors in Table I. 

We shall estimate djj using the 20 balanced repeated half samples available from the survey. 
Let wjf^ denote the weight assigned to the /th consumer unit of the yth area for the kth 
repHcation (y = 1, ..., m; I = 1, ..., nf, k = 1, . . . , 20). These replicated weights are 
constructed by the Census Bureau using a complex procedure. For any replication, approx
imately half the consumer units receive zero weights and the remaining consumer units receive 
positive weights. 

Table 1 
Shrinkage Factors Ojj in West Non-Self-Representing Area 

/ ' 

1 

2 

3 

4 

5 

6 

1 

0.8479225 

0.8434894 

0.0969009 

0.4446537 

0.6999551 

0.0318442 

2 

0.7057626 

0.5692695 

0.0786758 

0.5444809 

0.3460123 

0.4981756 

2 

0.9214804 

0.8092725 

0.6953904 

1 

0.5487382 

0.2598752 
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Define 

fl* -
'{''-in'--']"} 

•J . 20 

^ " k=i 

J=\ -• " -y^^i 

y,f = Y ^IP^UIIY ^ • ' ' ' 
/ = i ' 1=1 

Yik) - ry(.*) YS-''U ' 
^ J — I ^ ij , • • •, ^ ij J > 

20 

Vj = 1/20 2 ] [ Yj^"^ - YJ] [ y;<*' - Yj] ' 
k = l 

Then we propose the following estimator of 9jj: 

9rj= (1 - a*j)Yjj + afje!},. (2.8) 

Remark 4: Using argument given in Remark 3, a* > 0. But it is possible that sometimes a* 
may exceed unity. Thus, we consider the following estimator: 

Bjj = (1 - ajj)Yjj + a,jeli>., (2.9) 

where Ojj = min [ 1 ,a*j]. 

In Table 1, we give values of fly for the West non-self-representing area. 

3. ESTIMATION OF THE RELATIVE IMPORTANCE 

Let Rjj = Yjj/ E f= 1 Yjj be the preliminary estimator of the relative importance rjj = 
Qij/l'i=Aj, ('• = 1, . . . , /;y = 1, . . . , m). LetRj = {Rij, . ..,R,j)', (/' = 1, . •., w) . Since 
'Z'i=\Rij =1, (j - I, • •., m),the variance covariance matrix of Rj is singular. Thus, the 
method described in Section 2 is not directly applicable to this situation. In order to avoid this 
singularity problem, we delete one item stratum from the expenditure class under consideration. 
Without any loss of generaHty, let the /th item stratum be deleted. Then apply the procedure 
described in Section 2 to obtain the following estimator for r,y, (/ = 1, . . . , / - I; 
j = 1, ..., m) 

r*j = (1 - djj)Rjj + <3jjelL (3.1) 
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where 

dij 

df. 
"U 

Rj'^ 

= min[l , dfj]. 

4A-[I;A-]-]. 

'^^ k=i 

= YtpJY yip, 
1 ( = 1 

= {Rip, ...,R^l'lij)', 

For / = /, 

20 

A =;^i; (^/'-^v)(^f'-^.)'. 20 
k=l 

•ik) - [i:A"']"'[i:A-'^f'] 

' =[i:^']""[|i^'^] 
20 

^^'' = 4 D ^^^P - ^'j^'' 20 k=l 

Y (^i/')"'^/> Y (AV')-'. 
7 = 1 - I ' 7 = 1 

dfj = min[l , Jfy] , 

r '" 1-1 

s* L /= 1 J 
20 

20 
Y [R,r -R^"']-

k = l 

/?/.*' = ri;(AV')-'^i/' 
L , - r 7 = 1 7=1 
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We estimate rfj by a univariate procedure which yields the following estimator of rfj, 
U = 1, ...,m): 

rrj= (1 - 4 ) i ? / y + dfjRf. 

We obtain the final estimator of rj as rj = {fij, ..., ffj)', where fjj = f*j/E f=ir*. There 
are / possible choices of deleting one item stratum. We choose the combination which yields 
the smallest average (over item strata) estimated MSE. One may obtain an alternative estimator 
of rfj by subtracting £ /= / fjj from unity. However, according to the procedure, there is a 
positive probability that rij estimate is negative. 

4. NUMERICAL RESULTS 

In this section, we evaluate various estimators of the cost weight and relative importance 
based on estimated mean squared error. We consider four rival estimators: the preliminary 
estimator, estimator proposed by Cohen and Sommers (1984), the estimator currently used 
by the BLS and the empirical Bayes estimator considered recently by Ghosh and Sohn (1990). 
The Cohen-Sommers estimator of the cost weight (before raking) is given by 

e,f = 0CS* jf I ̂ -cs* -Yjj\< z-sd{Yjj) 

= Yjj + c-sd{Yjj) if '̂,f* > Yjj -H z-sd{Yjj) 

= Yjj - c-sd{Yjj) if e^f * < Yjj - c-sd{Y,j) 

where 

= (1 -dlf')Y,j^df^Yj., 

a,j^ = min [l, (I - A ,̂/7V)[1 Y (̂ )*' - ^^) ' ] / [^ E (^'" - ^*"^']] 

m n; 

yr-Y Y^l'^^'ui Y i; ^'*'' 
/ = i / = i ' ; = i / = i y = l 1=1 I 7 = 1 ' = 1 

NJ = total number of consumer units in the population for they'th publication area, 

m 

^=Y^j' 
7 = 1 

«d(>^7)=j[^|(>^f'-^/]> 

c = a safety factor determined by the BLS (see Table 2). 
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Table 2 

Values of the Safety Factor c for the Major Areas 

Major 
Area 

c 

NCNS 

1 

1.0 

NCSR 

2 

.5 

NENS 

3 

1.0 

NESR 

4 

.5 

SSNS 

5 

3.0 

SSSR 

6 

.25 

WWNS 

7 

1.0 

WWSR 

8 

.5 

NCNS: North Central (Midwest) non-self-representing. 
NCSR: North Central self-representing. 
NENS: North East non-self-representing. 
SSNS: South non-self-representing. 
SSSR: South self-representing. 
WWNS: West non-self-representing. 
WWSR: West self-representing. 

Their estimator for the relative importance is given by 

where 

pCS _ pCS* 
'U ~ 'U 

if |r,y^* - Rjj\ ^c-sd{Rjj) 

= Rjj -I- c-sd{Rjj) if /=,f * > Rjj -I- c-sd{Rij) 

= Rjj + c-sd{Rij) if /=,f * < Rjj - c-sd{Rij), 

r^^* = (I - (3,^^)Rjj -\- d,!j^R^^, 

R?'= Y L ^'^V// D E E ^'^V" 
7=1 1=1 

I m nj 

i=\ J=\ l=\ 

^ij^ = d^^* if 0 < J , f * < I , 

= 0 if J , f * < 0, 

= 1 if c?,f* > I , 

- 20 , 2 0 

^ Y ^^IP-""u)'-iY ( ^ - i " -%)(^P ' ' ' - ^P) 
^cs* 

20 
k=\ 

20 
k=l 

20 

^ Y (Rip - R?''"')' 20 
k=l 

m "j 

Rcs^k, = X; X; wjpxjjj D E E «̂ *̂'̂ >" 
j=\ i=\ I i=i j=\ 1=1 

I m 1/ 
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1 '' 
sd(̂ //) -JT^Y ( < ' - ^'jy 20 

k=l 

Since '£ f=, r,)'^ r^ 1, for our comparison purpose, we have divided r^^ by Yi'i=i ''u^-

The procedure currently used by the Bureau of Labor Statistics (see United States Department 
of Labor 1988) consists of a number of steps. 

Step 1: Obtain an estimator of the cost weight as follows: 

fl.CS(l) _ pCS Y ^ y . 
"u ~ 'u ZJ '•'• 

( = 1 

Step 2: Final estimator of ^^ is obtained from 9,j^^^^ using a "raking" procedure. The final 
estimator, denoted by 9^^^, satisfies the following two conditions: 

1=1 1=1 

m m 

Y Nj9^ = Y ^ ^ -
7 = 1 7 = 1 

Step 3: Finally an estimator for the relative importance is obtained as follows: 

.̂BLS _ ^.BLs/ y ^.BLS 

' / = i 

In our numerical work, we have estimated Nj by Y,"ii Wj. 

The MSE of an estimator Cjj of 9jj is given by: 

MSE = E{eij - 9jj)^ 

= E{ejj - Yjj)^ - V{Yjj) + 2 Coy{ejj,Yjj), 

where it is assumed E{ Yjj \ 9jj) = 9jj. The above formula is given in Cohen and Sommers 
(1984). As in the Ghosh and Sohn (1990) we estimate the three terms by the balanced repeated 
half samples available from the survey. For example, 

E{ejj-yij)'^lY (^'^' - ^ ' ' ) ' ' 
k=l 

1 ^° 

^^ k=\ 
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Table 3 

Average Estimated MSE's for Different Estimators of djj 

Major 
Area 

NCNS 

NCSR 

NENS 

NESR 

SSNS 

SSSR 

WWNS 

WWSR 

yu 

.020047 

.036620 

.018162 

.052883 

.021757 

.047500 

.052387 

.018223 

Average Esdmated MSE of 

oGS 
Vij 

.011549 
(22) 

.024783 
(32) 

.013299 
(26) 

.051100 
(3) 

.013146 
(39) 

.028984 
(38) 

.029938 
(42) 

.033529 
( -83) 

flCS 

^u 

.009342 
(53) 

.016017 
(56) 

.007327 
(59) 

.038911 
(26) 

.009954 
(54) 

.031743 
(33) 

.017433 
(66) 

.009925 
(45) 

flBLS 

.014885 
(25) 

.023627 
(35) 

.013046 
(28) 

.045610 
(13) 

.014415 
(33) 

.044238 
(6) 

.030069 
(42) 

.014898 
(18) 

'̂-7 

.009428 
(52) 

.016155 
(55) 

.005504 
(69) 

.028958 
(45) 

.006418 
(70) 

.009270 
(80) 

.010849 
(79) 

.005761 
(68) 

Note: The figures in the parenthesis represents percent improvement over the preliminary estimator, Yjj. 

20 

Coy {ejj,Yjj) ^ - V (eiP - e,,) ( l ^ f - Yij) • 
20 

k=l 

In the above e,j*' is the estimator Cjj based on the kth half sample (^ = 1, . . . , 20). For 
example, 

e,f<*) = (1 -fl,f)i^f + a,fy/*>, 

0,f) = (1 - ajj)Yjf -hajjeili w 

We obtain 9,j^^ '*' by the multistep procedure used to obtain 9^^^ where we replace Yjj, Rjj, 
r,j^ by y^j*', i?,}*̂ ' and r-j^'-''^ respectively. Note that the above procedure does not take into 
account the variation due to the estimation of the coefficients (/.e.,fl,y's) in the composite 
estimators. Cohen and Sommers (1984) recommended the use of half samples of half samples, 
or quarter samples to capture this additional variabiHty. We could not use their procedure since 
our dataset did not contain these quarter samples. 

The data we analyze arise out of 1982-83 Consumer Expenditure Survey (Diary survey). The 
expenditure class we consider is dairy products. There are in all six item strata in this class. 
They are (1) fresh whole milk, (2) other fresh milk and cream, (3) butter, (4) cheese, (5) ice 
cream and related products, and (6) other dairy products. 
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The MSE's of all the estimators considered are estimated for each publication area and item 
stratum. In Table 3 we report the average estimated MSE's of the estimators of 9ij, the average 
being taken over aU the item strata and all the publication areas within a major area. Notice 
that all the composite estimators except the one proposed by Ghosh and Sohn (1990) are better 
than the preliminary estimator for all the major areas in the average MSE sense. Both 9-f and 
9ij are better than 9^^^. Our proposed estimator 9jj is better than 9,y^ in six out of eight 
major areas. In two major areas (NCNS and NCSR), 9^^ is better than %, but the difference 
is very negligible. 

In Tables 4 and 5, we try to demonstrate that the raking procedure may not be necessary. 
In Table 4, the parameter of interest is S /= idjj, the true cost weight for the expenditure class. 
Here, due to the ' 'raking" procedure, Ef=i^;;''^ = l ' = i i ^ ; - We propose an alternative 
estimator as Y, Ui^ij and compare the average estimated MSE (over publication areas in a 
major area) with that of Y. i=iYij- In all the cases, we gain considerably. 

Table 4 
Average Estimated MSE's of Two Estimators of Average Consumer 

Expenditure for the Expenditure Class 

Major 
Area 

NCNS 

NCSR 

NENS 

NESR 

SSNS 

SSSR 

WWNS 

WWSR 

Preliminary 
Estimator 

0.12384 

0.29819 

0.21658 

0.67486 

0.21506 

0.68415 

0.35446 

0.19292 

Proposed 
Estimator 

0.07969 

0.13040 

0.07602 

0.20119 

0.08303 

0.06462 

0.05175 

0.05524 

Percent 
Improvement 

36 

56 

65 

70 

61 

90 

85 

71 

Table 5 
Average Estimated MSE's of Two Estimators of Average Consumer 

Expenditure for the Major Area 

Major 
Area 

NCNS 

NCSR 

NENS 

NESR 

SSNS 

SSSR 

WWNS 

WWSR 

Preliminary 
Estimator 

0.008181 

0.003672 

0.006174 

0.011680 

0.007501 

0.004434 

0.008203 

0.002786 

Proposed 
Estimator 

0.0045468 

0.0031047 

0.0029128 

0.0056922 

0.0036401 

0.0013751 

0.0022560 

0.0007882 

Percent 
Improvement 

44 

15 

53 

51 

51 

69 

72 

72 
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In Table 5, the parameter of interest is the cost weight of an item stratum for the major 
area. The preliminary estimator (identical to the BLS estimator due to the raking procedure) 
is (Ej"=iE/'ii^^7>^y)/(Ej"=iEr^|f^77)- Our estimation procedure can also generate 
estimators at the major area level. We propose the estimator as 9,. =Y,T=i i T ^ i ^ / ^ij/ 
(lj'=i'^"=i^ji)- T^^ average estimated MSE's for these two estimators are reported in 
Table 5. Here also our estimator is superior to the preHminary (BLS) estimator. 

The results of Table 4 and 5 suggest that the data consistency step followed by the BLS may 
not be necessary. Indeed, it may be possible to improve the traditional estimators at higher 
levels of aggregation also. 

Table 6 provides the average estimated MSE's (over aH the item strata and publication areas 
in a major area) of various estimators of relative importance. Notice that as in Table 3, all 
the estimators other than r^^ are better than the preliminary estimator Rjj for all the major 
areas. Our proposed estimator r,y is the best among all the estimators considered. 

Recently, Swanson (1992) has compared different methods of estimating cost weights for 
12 of the approximately 70 expenditure classes in the CPI. His investigation shows that overall 
our proposed method is superior to aH the rival methods. 

Table 6 

Average Estimated MSE's for Different Estimators of Relative Importance 

Major 
Area 

NCNS 

NCSR 

NENS 

NESR 

SSNS 

SSSR 

WWNS 

WWSR 

Rij 

.0006342 

.0009125 

.0003588 

.0004264 

.0005071 

.0006564 

.0013709 

.0003540 

Average Esdmated M S E of 

fGS 
'IJ 

.00046480 
(27) 

.00071967 
(21) 

.00026894 
(25) 

.00072001 
(-69) 

.00033736 
(33) 

.00048569 
(26) 

.00086849 
(37) 

.00070770 
(-100) 

pCS 
'ij 

.00033143 
(48) 

.00040226 
(56) 

.00014146 
(61) 

.00028862 
(32) 

.00019352 
(62) 

.00053173 
(19) 

.00051474 
(62) 

.00021384 
(40) 

pBLS 
'ij 

.00042130 
(34) 

.00044815 

(51) 

.0001620 
(55) 

.00030555 
(28) 

.00021385 
(58) 

.00053603 
(18) 

.00061901 
(55) 

.00023255 
(34) 

'ij 

.00018592 
(71) 

.00021309 
(77) 

.00011105 
(69) 

.00016744 

(61) 

.00011925 
(76) 

.00030979 
(53) 

.00028519 
(79) 

.00013750 
(61) 

Note: The figure given in the parenthesis represents percent improvement over Rjj. 
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4. Figures and Tables 

4.1 All figures and tables should be numbered consecutively with arable numerals, with 
titles which are as nearly self explanatory as possible, at the bottom for figures and 
at the top for tables. 

4.2 They should be put on separate pages with an indication of their appropriate place
ment in the text. (Normally they should appear near where they are first referred to). 

5. References 
5.1 References in the text should be cited with authors' names and the date of publication. 

If part of a reference is cited, indicate after the reference, e.g., Cochran (1977, p. 164). 
5.2 The list of references at the end of the manuscript should be arranged alphabetically 

and for the same author chronologically. Distinguish publications of the same author 
in the same year by attaching a, b, c to the year of pubHcation. Journal titles should 
not be abbreviated. Follow the same format used in recent issues. 




