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In This Issue

Papers covering a variety of topics are included in this issue of Survey Methodology. In the first
paper, Biemer and Atkinson present a general methodology for constructing and evaluating model
prediction estimators of measurement bias for a stratified two-phase design with simple random
sampling in each phase. For evaluation, they extended the bootstrap methodology of Bickel and
Freedman to two-phase sampling. The example used for illustration indicates that improvements
over the traditional net difference estimator and thus savings in the cost of reinterview surveys are
possible. ‘

The paper by Armstrong and Mayda was originally intended for the special section Record Linkage
and Statistical Matching, The authors consider model based estimation of classification error rates
in record linkage. The class of models considered allows for non-independence of match status of
different matching fields within a record pair. Estimation methods are developed and different
methods of error rate estimation are compared using both synthetic and real data,

Pfeffermann and Bleuer consider estimation for small areas using data from a rotating panel survey
over time, Their approach is model based, with a state space model for the population values over
time and separate autoregressive models for the survey error series from each panel. To achieve a
measure of robustness, the small area estimators are further constrained to add up to direct survey
estimators within pre-defined larger areas. The approach is demonstrated using Canadian Labour
Force Survey data for the Atlantic provinces.

Mian and Laniel discuss two iterative procedures to find the maximum likelihood estimates of
a non-linear benchmarking model that seems suitable for economic time series from large sample
surveys. Closed form expressions for the asymptotic variances and covariances of the benchmarked
series and of the fitted values are also provided. The methodology is illustrated using Canadian retail
trade data. :

Deville uses superpopulation models 1o anticipate, before data collection, the variances of estimates
of ratios. Based on models that are both simple and realistic, he produces expressions of varying
complexity and then optimizes them. He deals with the problem of estimating the frequency of errors
in the population of forms collected during the quality control of the French census.

Asymptotic techniques are used by Casady and Valliant to study post-stratification from a design-
based, conditional point of view. The authors derive the large sample bias and mean squared error
of the standard post-stratified estimator, the Horvitz-Thompson estimator, a ratio estimator and
a new post-stratified regression estimator. The developed theory is empirically tested using real and
artificial populations. The problem of bias due to defective frames is also addressed.

Bandyopadhyay and Adhikari study estimation based on frames where some units are listed more
than once, each tline with a different identification. The mean square errors of estimators from
imperfect and perfect frames are compared. Estimation of a population ratio, mean and total when
no auxiliary information is available on the frame is considered.

Roesch, Green and Scott present a generalized concept for all of the commonly used methods
of forest sampling. The concept views the forest as a two-dimensional picture which is cut up into
pieces like a jigsaw puzzle, with the pieces defined by the individual selection probabilities of the
trees in the forest.

The paper by Kalton and Citro is a revised version of the keynote address given at the Statistics
Canada Symposium 92 on longitudinal surveys. The paper discusses how different designs for surveys
over time satisfy various analytic objectives. The author then concentrates on panel surveys and talks
about decisions that need to made when designing them.

The Editor
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Estimation of Measurement Bias Using
a Model Prediction Approach

PAUL P. BIEMER and DALE ATKINSON!

ABSTRACT

Methods for estimating response bias in surveys require ““unbiased’’ remeasurements for at least a subsample of
cbservations. The usual estimator of response bias is the difference between the mean of the original observations
and the mean of the unbiased observations, In this article, we explore a number of alternative estimators of response
bias derived from a model prediction approach. The assumed sampling design is a stratified two-phase design
implementing simple random sampling in each phase. We assume that the characteristic, y, is observed for each
unit selected in phase 1 while the true value of the characteristic, g, is obtained for each unit in the subsample selected
at phase 2. We further assume that an auxiliary variable x is known for each unit in the phase 1 sample and that
the population total of x is known. A number of models relating y, p and x are assumed which vield alternative
estimators of E£(y — u), the response bias, The estimators are evaluated using a bootstrap procedure for estimating
variance, bias, and mean squared error. Qur bootstrap procedure is an extension of the Bickel-Freedman single
phase method to the case of a stratified two-phase design. As an illustration, the methodology is applied to data
from the National Agricultural Statistics Service reinterview program. For these data, we show that the usual differ-
ence estimator is outperformed by the model-assisted estimator suggested by Sidrndal, Swensson and Wretman (1991),
thus indicating that improvements over the traditional estimator are possible using the model prediction approach.
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1. INTRODUCTION

It is well-known in the survey literature that when
responses are obtained from respondents in sample
surveys, the observed values of measured characteristics
may differ markedly from the true values of the character-
istics. Evidence of these so-called measurement errors in
surveys has been collected in a number of ways. For
example, the recorded response may be checked for accu-
racy against administrative records or legal documents
within which the true (or at least a more accurate) value
of the characteristic is contained. An alternative approach
relies on revised reports from respondents via reinterviews.
In a reinterview, a respondent is recontacted for the pur-
pose of conducting a second interview regarding the same
characteristics measured in the first interview, Rather than
simply repeating the original questions in the interview,
there may be extensive probes designed to elicit more
accurate responses, or the respondent may be instructed
to consult written records for the ‘*book values’ of the
characteristics. For some reinterview surveys, descrepancies
between the first and second interviews are reconciled with
the respondent until the interviewer is satisfied that a
correct answer has been obtained. Forsman and Schreiner
(1991} provide an overview of the literature for these types
of reinterviews. Other means of checking the accuracy of
survey responses include: (a) comparing the survey

statistics (i.e., means, totals, proportions, efc.) to statistics
from external sources that are more accurate; (b) using
experimental designs to estimate the effects on survey
estimates of interviewers and other survey personnel; and
(c) checking the results within the same survey for internal
consistency.

The focus of the current work is on estimators of
measurement bias from data collected in true value
remeasurement studies, /.e., record check and reinterview
studies, where the objective is to obtain the true value of
the characteristic at, perhaps, a much greater cost per
measurement than that of the original observation.

Because of the high costs typically involved in condue-
ting reinterview studies, repeated measurements are
usually obtained for only a small fraction of the original
survey sample. While the sample size may be quite ade-
quate for estimating biases at the national and regional
levels, they may not be adequate for estimating the error
associated with small subpopulations or rare survey
characteristics. In this paper, our objective is to consider
estimators of response bias having better mean squared
error properties than the traditional estimators. The basic
idea behind our approach can be described as follows,

In a typical remeasurement study, a random subsample
of the survey respondents is selected and, through some
means, the true values of the characteristics of interest are
ascertained, Let n; denote the number of respondents to

! Paul P. Biemer, Principal Scientist, Center for Survey Research, Research Triangle Institute, Research Triangle Park, NC 27709; Dale Atkinson,
Supervisory Mathematical Statistician, National Agricultural Statistics Service, 3251 Old Lee Highway, Room 305, Fairfax, Va 22030.
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the first survey and let n, denote the number selected for
the subsample or evaluation sample. The usual estimator
of response bias is the net difference rate, computed for
the n, respondents in the evaluation sample as

NDR = 7, — fg, (1.1)

where p, is the sample mean of original responses and ¢,
is the sample mean of the true measurements. A disad-
vantage of the NDR is that it excludes information on
the n; — n, units in the original survey who were not
included in the remeasurement study. Further, the esti-
mator does not incorporate information on auxiliary
variables, x, which may be combined with the informa-
tion on y and u available from the survey to provide a more
precise estimator of response bias.

Given that we have a stratified, two-phase sample
design and resulting data (y, p, x), our objective is to
determine the “‘best’” estimator of measurement bias given
these data. Our basic approach is to identify a model for
the true value, g; which is a function of the observed
values, y;, i = 1, ..., ny, and any auxiliary information,
x, that may be available for the population. The model is
then used to predict y; for all units in the population for
which y; is unknown. These predictions can then be used
to obtain estimates of the true population mean, total, or
proportion, Thus, estimators of the response bias for these
parameters can be derived from the main survey. Since the
approach provides a prediction equation for g; which is
a function of the observations, estimators of response bias
can be computed for areas having small sample sizes. In
this case, the prediction equation for u; may be augmented
by other respondent variables such as demographic charac-
teristics, type of unit, unit size, geographic characteristics,
and so on.

The basic estimation and evaluation theory for a predic-
tion approach to the estimation of response bias is presented
in the following sections. Under stratified random
sampling, estimators of means and totals, their variances
and their mean squared errors are provided. Results from
application to National Agricultural Statistics Service
(NASS) data are also presented.

2. METHODOLOGY FOR ESTIMATION
AND EVALUATION

2.1 The Measurement Error Model

To fix the ideas, we shall consider the case of simple
random sampling without replacement (SRSWOR) from
a single population. Generalizations to stratified random
sampling are straightforward and will be considered
subsequently,

Let U = {1, 2, ..., N} denote the label set for the
population and let §, = (1,2, ..., m ], without loss of
generality, denote the label set for the first phase
SRSWOR sample of n; units from U.

For y;, i€8,, assume the model

Y=y + yui + ¢, 2.1)

where p; is the true value of the measured characteristic,
g and -y are constants, and ¢; is an independent error term
having zero expectation and conditional variance, o2;.

Since the focus of our investigation is on the bias
associated with the measurements y;, consider the expec-
tation of y;. Let E(y;| ) denote the conditional expecta-
tion of y; over the distribution of the ¢; holding the unit
i fixed and let E(y;) = E;[E(¥;| {}] denote the expecta-
tion of E (y;| ) over the sampling distribution. Then, for
a given unit, i,

E(vi| i) = vo + v (2.2)
and, hence, the unconditional expectation is
E(y) = v + vM, 2.3)

where M =TI, u,/N. Thus, the measurement bias is

B=E(y— ) =7 + (y - DM. (2.4)

The parameter, y,, is a constant bias term that does
not depend upon the magnitude of M. Note that this
definition of v, is consistent with the usual definition of
measurement bias obtained from the simple model

Yi=p + o€, (2.3)

with ¢; ~ (7yo, aff). (See, for example, Biemer and Stokes
1991.)

Consider the estimation of . Assume that a subsample
of size n, of the original »#, sample units is selected and
the true value, u;, is measured for these #, units. The true
value may be ascertained either by a reinterview, a record
check, interviewer observation, or some other means. Let
S, € 8§, denote this so-called second phase sample. The
usual estimator of the measurement bias is the NDR
defined in (1.1). If the assumption that ‘‘the true value,
u;, is observed in phase 2, for all i€S,”’ is satisfied, then
the NDR is an unbiased estimator of B. It may further be
shown that the variance of the NDR is

n\ s Sy
E}(1-2)=2(1 -3
nyj ny 555,

2
+ (1 - ﬂ)s—” (1 — r)z}, (2.6)
njn
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where si = Yies, (B — #2)%/ (ny — 1) with analogous
definitions for s2 and s,,, and r = s,,,/s2.

The NDR may be suboptimal in a number of situations
which occur with some frequency. To see this, consider
estimators of B of the form

Ega = Yz = BRas 2.7
where ¥, = Ejﬂg yifn, g = 1,2,
Bre = By + a(¥ — J2) (2.8)

and fi; = Y, p;/n2, for a a constant given the sub-
sample, §;. It can be shown that the value of & that
minimizes Var (b,,) is

a=r for g =1,
or (2.9)
a=r—1 for g=2.

Thus, for g = 1 or 2, the “optimal”’ choice of b, is

50[)[ =F — g + r(p — i, (2.10)
which differs from the NDR by the term (r — 1) (5, — 7).
Since, in general, §; # ¥,, NDR is optimal only if r = 1.
It can be shown that this corresponds to the case where
yin 2.1) is 1.

In this paper we shall explore alternatives to the NDR
which incorporate information on y for units in the set
§; ~ S, as well as information on some auxilliary
variable, x. To illustrate the concepts, we shall restrict
ourselves to “‘no-intercept’’ linear models initially, i.e.,
models for which vy = 0in (2.1}. This important class of
models includes the difference estimator as well as ratio
estimators.

2.2 Model Prediction Approaches To Estimation

Model prediction approaches to the estimation of
population parameters in finite population sampling are
well-documented in the literature. Cochran (1977) and
other authors have demonstrated the model-based foun-
dations of the ubiquitous ratio estimator. There is also
considerable literature on the choice between using weights
that are derived from explicit model assumptions in
estimation for complex surveys or eliminating the sample
weights, Proponents of so-called model-based estimation
recommend against the use of weights in parameter estima-
tion (see, for example, Royall and Herson 1973; and
Royall and Cumberland 1981). They contend that the pro-
babilities of selection in finite population sampling,
whether equal or unequal, are irrelevant once the sample
is produced. The reliability criteria used by model-based
samples are derived from the model distributional assump-
tions rather than sampting distributions. If an appropriate
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model is chosen to describe the relationship between the
response variable and other measured survey variables,
“model-unbiased’’ estimators of the population parameters
may be obtained which have greater reliability than esti-
mators which incorporate weights.

On the other side of the controversy are the design-
based samplers. Instead of the model-based assumptions,
design-based samplers assume that an estimator from a
survey is a single realization from a large population of
potential realizations of the estimator, where each poten-
tial realization depends upon the selected sample. The dis-
tribution of the values of the estimator when all possible
samples that may be selected by the sampling scheme are
considered is referred to as the sampling distribution of
the estimator. Criteria for evaluating estimators under the
design-based approach then consider the properties of the
sampling distributions of the estimators. Under this
approach, weighting of the estimators is required to achieve
unbiasedness if unequal probability sampling is used.

Although the estimators of B considered here represent
all three classes of estimators, the objective of this paper
is not necessarily to compare design-based, model-assisted,
and model-based estimators. Rather, we first seek to
develop a systematic approach for evaluating alternative
estimators for a given two-phase sample design. The
problem considered is the following: Given a two-phase
sample design and estimators of B = NB denoted by B,
By, ..., B, how does an analyst identify which estimator
minimizes the mean squared error? A second objective of
the article is to specify a number of alternative estimators,
and apply a systematic approach for evaluating the
estimators. As an illustration, the methodelogy will be
applied to data from the National Agricultural Statistics
Service’s December 1990 Agricultural Survey.

2,3 The Estimators Considered in Our Study

Extending the previously developed notation to stratified,
two-phase designs, let N, denote the size of the Ath
stratum, forh = 1, ..., L. A two-phase sample s selected
in each stratum using simple random sampling at each
phase. Let n, and ny, < n;; denote the phase | and
phase 2 sample sizes, respectively, in stratum A. Let S,
and S,;, € §,, denote the label sets for the phase | and
phase 2 samples, respectively, in stratum s, Assume the
following data are either observed or otherwise known:

outcome variables: y; ¥ i€S),
true values: w; ¥ €Sy,
auxilliary variables: x; v i€S,,.

Further assume that X, = L.y, x; is known for
h =1, ..., L where U, is the label set for the Ath stratum.
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2.3.1 Weighted Estimators of M and B

As a matter of convenience, we shall consider the
estimation of the bias for an estimator of a population
total denoted by M. The usual estimator of M = NM is
the unbiased stratified estimator given by

My, = E Ny fizp, (2.11)
n

where jizn = Lics,, #i/n2y- The corresponding estimator
of B = NB is N times the NDR defined in (1.1). For
stratified samples, it is

Bbr = ?251 - err, (2.12)

where Yo = T4 NypPoy and §ay = Ties,, yi/tas. Note
that (2.12) does not incorporate the information on y for
units with labels i€S;; ~ S,,. An alternative estimator
that uses all the data on y is

By = Yig — My, (2.13)

where ¥ = TaNuJpand By = Ties,, Vil tipe

A number of model-assisted estimators can be specified
for two-phase stratified designs. These may take the form
of either separate or combined estimators (see, for
example, Cochran 1977, pp. 327-330). Further, the ratio
adjustments may be applied to either phase 1 or phase 2
stratum-level estimators. Because stratum sample sizes are
typically small in two-phase samples, only combined
estimators shall be considered here.

As the emphasis in this paper is on the development of
the methodology for model-based estimates of measurement
bias and their evaluation, we shall consider a simple, special
case of the model (2.1); viz., o = O or the no-intercept
model. However, generalizations of the no-intercept meth-
odology to multivariate intercept models do not afford any
difficulties and will be considered in a subsequent paper.
Thus, letting v = 0in (2.1) we have

Yi =y + g, (2.14)

where -y is an unknown constant and we assume ¢; ~
(0,02 ;). The least squares estimator of yis ¥ = Fag/fings
where §y; = Yo, /N and jry, = Mag/N. Thus, a model-
assisted estimator of p; is yi/¥ = fiseyi/ P2 and of M is

- M
Myp = 2= figr. (2.15)
You

Using this estimator of M, two estimators of B cor-
responding to (2.12) and (2.13) are

Byr = Yoy — My (2.16)

and

Bigr = Vi — Moge. (2.17)
A third estimator of B can be obtained via the model
Yi=f8x; + e, (2.18)

where 8 is a constant and ¢; ~ (0,02x;). This leads to a
ratio estimator of Y,

= sy, (2.19)

Thus, the corresponding estimator of B is

Bour = Yiur — Masp. (2.20)

Finally, Sirndal, Swensson and Wretman (1992, p. 360)
suggest a general estimator of M in two-phase sampling.
Applying their equation 9.7.2 to the model in (2.14) under
stratified sampling yields

Mssw = Mop + 2 (X - X). @21)

Xost
Note that this estimator is simply (2.15) with the addition
of the unbiased estimator of zero. The resulting estimator
may have smaller variance than Mg if this term is
negatively correlated with M,p. Likewise, their estimator
of Y reduces to ¥, defined in (2.19). Thus the corre-
sponding estimator of B is

Bosw = Yo — Msw, (2.22)

which is identical to Besy = B,y plus the second term
of the right hand side of (2.21).

2.3.2 Unweighted Estimators of M and B

Rewrite M as

M

Yut+ Y omt+ ) ow

ieS i€$) ~§ iel~§
i€Sa 1-% 1 2.23)

Mgy + M- + M_y,

say, where S, = Uf_; S;4, £ = 1, 2. The strategy for
unweighted, model-based estimation is to replace y; in
M.z and M _,} by a prediction, {; obtained from a
model.

Using the model in (2.14), an estimator of g, is

i = yi'y,

where now ¥ = p,/i;. Thus, an estimator of M _y) is
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Mg,y =

> I3

E)’i

i€S)~ 8 (2 24)

= — (mP — ny ),

where ¥, = Lies, Vil igs iz = Lics, #i/M, and 1y = Ly gy,
for g = 1, 2. Further, using the model
pp = 0x; + &, (2.25)

where § is a constant and &; ~ (0, afx,-), we obtain
{2.26)

where Xyy_5, = Yiev- s, Xi Thus, a model based estimator
of Mis

My = Mgy + M_ay + My,

(2.27)

= My + M.y,

where My, = ny i35/,
Likewise, ¥ can be rewritten as
Y = E Yi + E Yi
i€§) €U~35|

(2.28)

= Yu + Y-y

and we wish to predict y; in Y,.,. Using the model in
(2.18) a model-based estimator of ¥, _, is

?—1 = —Xy_g
(=1 % 1

and, thus, an estimator of Y is

?M = Y(]) + }7(—!)' {2.29)
Thus, B is estimated as
By = Yy — My,. (2.30)

Versions of Bogz, Bisens Bagr and By, which are more
robust to model outliers may also be constructed. The
corresponding estimators, denoted by Byop, Bi20n, Baur
and By, respectively, may be formed by eliminating those
data points which deviate substantially from the model
predictions and computing the model-based or model-
assisted estimators using the remaining data. To illustrate,
consider the estimator M in (2.15). For this estimator,
let
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On = 5 en)?
(M = Dshey = 3 ZE—TH0 - (2.3y)
phRi#0 Hhi

denote the sum of squares of residuals for the model (2.14),
Then, in calculating the estimator of ~, only those units
in ie$;, where Sy = (i€Sa: | Yin — Yo | = 3ves i}
are used. Denoting this estimator of v as ¥, the estimator
of Mis My = Y,/ where ¥ = Jypo/fizs, and fip, and
Vo, are the stratified means of g; and y; for ieSy;,. The
other robust model prediction estimators may be computed
analogously.

Many other unweighted, model-based ¢stimators may
be explored in the context of our two-phase design. For
example, an intercept term may be added to models (2.14),
(2.18), and (2.25). Further, slope and intercept parameters
may be specified separately for each stratuim or combina-
tion of strata.

2.4 Estimation of Mean Squared Errors Using Bootstrap
Estimators

Although it is possible, under the appropriate design-
based or model-based assumptions, to derive closed form
analytical estimates of the variance of the estimators we
are considering in this study, we have elected instead to
use a computer-intensive resampling method. First, we
seek a method which is easy to apply since there are poten-
tially many estimators which will be considered in our
study. Secondly, it is important to evaluate each estimator
using the same criteria and a consistent method of variance
estimation is essential to achieving this objective. Thus,
it is essential that we employ a variance estimation method
which can be applied to estimators of any complexity,
under assumptions which are consistent and which do not
rely upon any model assumptions. It is well-known that
model-based variance estimation approaches are quite sen-
sitive to model failure (see, for example, Royall and
Herson 1973; Royall and Cumberland 1978; and Hansen,
Madow and Tepping 1983). Royalt and Cumberland
(1981) discuss several bias relevant alternatives including
the jackknife variance estimator.

Our approach is similar to that of Royall and Cumber-
land except rather than using a jackknife estimator, we
employ a bootstrap estimator of the variance. For inde-
pendent and identically distributed observations, Efron
and Gong (1983) show that the bootstrap and the jackknife
variance estimators differ by a factor of n/(n — 1) for
samples of size n. Thus, the robustness properties Royall
and Cumberland demonstrate for the jackknife estimator
also hold for the bootstrap estimator.

Other properties of the bootstrap estimator have led us
to choose it above other resampling methods. The jack-
knife and balance repeated replication (BRR) methods are
not easily modified for the two-phase sampling design of
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our study. However, the bootstrap is readily adaptable to
two-phase sampling. Further, Rao and Wu (1988) provide
evidence from a simulation study that the coverage proper-
ties of bootstrap confidence intervals in complex sampling
compare favorably to the jackknife and BRR.

Our general approach extends the method developed
by Bickel and Freedman (1984) for single phase, stratified
sampling, to two-phase stratified sampling. Since the
bootstrap procedure is implemented independently for
each stratum, we shall, for simplicity, describe the method
for the single stratum case.

2.4.1 Estimation of Variance

Extending the bootstrap method to two-phase sampling
is not simply a matter of subsampling the single phase
bootstrap samples. Recall that true values are known only
for the units in S, and, therefore, the bootstrap sampling
scheme must necessarily confine the selection to units in
S;. Therefore, let S; and S, denote the phase 1 and phase 2
samples, respectively, selected from U using SRSWOR.
Let S, ., denote the label set, §; ~ S,. Let © = 0(5,.2.5;)
denote an estimator of © which may be a function of the
observations corresponding to units in both S, and S, _,.
Define N, n;, ny and n, _, as the sizes of sets U, S, Sy and
S} -2, respectively. Consider how the bootstrap is applied
to obtain estimates of Var(9).

The simplest case is when N/n, is an integer, say k.
First, we form the psuedo-population label set

Us = Uy U Ulon, (2.32)
where Uj,) consists of k copies of the units in S, and
U% (12, consists of & copies of the units in §;_,. We then
perform the following three steps:

1. Draw a SRSWOR of size n, from U}, and denote
this set by S3.

2. Draw a SRSWOR of size n,_, from U} ., and
denote this set by S¥_,.

3. Compute 8} = 6,(St.,, S3) which has the same func-
tional form as ©(S, ., $;), but is computed for the
n = n_3 + myunitsin §¢ = §¥_, U §3.
Repeat steps 1 to 3 some large number, Q, times to

obtain 8, ..., 3. Then, an estimator of Var(8) is

o £y * Fy+y 2
. e; — o
s = 2 55T

g=1

, (2.33)

where ©* =T 2_, 62/0.

Using the methods of Rao and Wu (1988), it can now
be shown that varggs(8) is a consistent estimator of
Var(6).If N = kn, + r, where Q0 < r < n,, the procedure
is modified as follows using the Bickel and Freedman

procedure. First, form the pseudo-population U/} as above
consisting of kn; units. In addition, form the pseudo
population Ug = Ug( .z U U}y, of size (K + 1)ny
where Uy, -2y and Upy, consist of £ + 1 copies of the
labels in 8, _, and §;, respectively. Then, for «Q of the
bootstrap samples, select St = §f_, U S3 from U} and for
(1 — a)Q samples, select St from the psuedo-population,
U/} using the three-step procedure described above, where

- (D) (i)

2.4.2 Estimation of Bias and MSE

(2.34)

The bootstrap procedure can also provide an estimate
of estimator bias. The usual bootstrap bias estimator
(see Efron and Gong 1983; Rao and Wu 1988) is
b(6) = 6 — & where 8* =L,8:/0 and 6 is the
estimate computed from the full sample. Note that
é;(q =1, ..., Q) and O have the same functional
form and are based upon the same model assumptions.
Thus (8) does not reflect the contribution to bias due
to model failure. We propose an alternative estimator of
bias which we conjecture is an improvement over £(9).

Recall from (2.4) that 8 = E(y; — u;) where E(-)
denotes expectation over both the measurement error and
sampling error distributions. Thus, B may be rewritten as
B =%, (Y; — w)}/N where Y; = E(y;| §). Since ¥,
is unknown and unobservable for all i€, B is also
unknown and unobservable. Therefore, we shall construct
a pseudo population resembling U, denoted by U/*, such
that B* = B*(y; — u,) is known, where E*(-) is
expected value with respect to both the measurement error
and the sampling distributions associated with U*.

Let U*= U%_, U where U} consists of k, = N,/ny
copies of the units in S,,. Here we have assumed &, is an
integer, but we will subsequently relax the assumption.
Further, denote by yf the value of the characteristic
for the unit jeU*. This value is equal to the y; for the
corresponding unit in §,. Thus, the population total of
the y¥is Y* =Y ;e ¥F = ¥y, for ¥, defined in (2.13).
Analogously, define the true value for unit i€ U* as p! = g,
for ieU* corresponding to j€S,. For j€S,_,, u;
is unknown; however, for our pseudo-population we
could generate pseudo-values for the u} such that
M* =% ut = My, where My, is defined in (2.11).
Thus, for U*, B* = Y, — My, = B, defined in (2.13).
As we shall see, it is not necessary to generate the pseudo-
values for u} in order to evaluate the bias in the estimators
of B*,

Note that under stratified sampling, U* = U}, as
defined in Section 2.4. Further, the bootstrap procedure
described in this section is equivalent to repeated sampling
from U* and the alternative estimators 8, ..., ép of B
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may also be considered estimators of B*. Since B* is
known, the bias of © as an estimator of B*is B* = 6 — B*
and the corresponding MSE may be estimated as

MSE = ¥ (6, - BY/Q
q

= vargss(9) + (6* — B*)?,  (2.35)

where vargs(9), éq, and 6*are defined in Section 2.4,
It can be easily verified that these results still hold when
k) is non-integer.

Thus, the bootstrap procedure provides a method for
evaluating the MSE of alternative estimators for
estimating B*. Further, the pseudo-population U* is a
reconstruction of I/ based upon copies of the values for
the units in 5 and S;. Thus, it is reasonable to use A* and
MSE* to evaluate alternative estimators of B.

3. APPLICATION TO THE AGRICULTURAL
SURVEY

3.1 Description of the Survey

The National Agricultural Statistics Service (NASS)
annually conducts a series of surveys which are collectively
referred to as the Agricultural Survey (AS) program. The
purpose of these surveys is to collect data related to specific
agricultural commodities at the state and national levels.
Each December in the years 1988-1990, reinterview studies
designed to assess the measurement bias in the data col-
lected by Computer Assisted Telephone Interviewing
(CATI) were conducted in six states: Indiana, lowa,
Minnesota, Nebraska, Ohio, and Pennsylvania. The reinter-
view techniques employed in these three studies are very
similar to those used by the U.S. Census Bureau (see, for
example, Forsman and Schreiner 1991). However, unlike
the Census Bureau’s program, the major objective in the
NASS studies is the estimation of measurement bias rather
than interviewer performance evaluation.

As noted above, only AS responding units whose
original interview was conducted by CATI were eligible
for selection into the reinterview sample. The reasons for
this restriction on sampling were primarily cost, timing,
and convenience. However, a large proportion of the AS
is conducted by CATI and, thus, information regarding
AS measurement bias for this group would provide impor-
tant information for the entire AS program.

For the NASS reinterview studies, the interviewing staff
consisted of a mix of field supervisors and experienced
field interviewers. This interviewing staff, which was a
separate corps of interviewer's from those used for CATI,
conducted face-to-face reinterviews in a subsample of AS
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units for a subset of AS survey items. To minimize any
problems that respondents may have with recall, the
reinterviews were conducted within 10 days of the original
interview. Differences between the original AS and reinter-
view responses were reconciled to determine the *‘true””
value. Considerable effort was expended in procedural
development, training, and supervision of the reinterview
process to ensure that the final reconciled response was
completely accurate. For the most part, the wording of the
subset of AS questions asked in the reinterview was iden-
tical to that of the parent survey. The reinterviewers
attempted to contact the most knowledgeable respondent
in order to ensure the accuracy of the reconciled values.
In this report, only the 1990 data are analyzed. Table 1
presents the reinterview sample sizes for this study.

Table 1
Sample Sizes by Survey Item

x y I

U 5, s,

[tem

All wheat stocks 108,267 8,176 1,157

Corn planted acres 225,269 8,211 1,157
Corn stocks 225,269 7,990 1,115
Cropland acreage 278,045 8,274 1,141
Grain storage capacity 207,460 8,126 1,104
Soybean planted acreage 171,761 8,211 1,156
Soybean stocks 171,761 8,113 1,130
Total land in farm - 276,450 8,309 1,159
Total hog/pig inventory 248,571 8,247 1,142

Winter wheat seedings 108,267 8,211 1,150

3.2 Comparison of the Estimators of M and B

Using the December 1990 Agricultural Survey and its
corresponding reinterview survey data, the estimators
developed in the previous section were compared. Estimates
of standard errors and mean squared errors were computed
using the Bickel-Freedman bootstrap procedure described
in Section 2.4, with @ = 300 bootstrap samples. Table 2
displays the resuits for six of the estimators: B, the
traditional difference estimator; B,,z, the weighted ratio
estimator; 8,5, the robust (outlier deletion) version of
B our; Bssw, the Sirndal, Swensson and Wretman esti-
mator; By, the unweighted model-based estimator; and
By, the robust (outlier deletion) version of By,.
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3.3 Summary of Results

Table 2 presents a summary of the results from our
study. The first data column is the known value of
B* = E(y! — p?), the bias parameter for the pseudo-
population, L/*, The other data columns contain the values
of the estimators with their standard errors in parentheses,
where s.e. (0) = Jvarps(9). The last four rows of the
table correspond, respectively, to:

(a) the number of items (out of 10) for which a 95% con-
fidence interval contains B*;

(b) the average coefficient of variation (C.V.);

(c) the average square root of MSE (RMSE); and

(d) the average absolute relative bias.

A striking feature of these results is the large disparity
among the six estimators across all commeodities; par-
ticularly for All Wheat Stocks. For this commodity, the
range of estimates is —94.2 to 103.2. Also indicated (by

the T symbol) in Table 2 is whether a 95% confidence
interval, i.e.,, [ — 2s.e. (8),8 + 2s.. (8)],covers the
parameter B*. The best performer for parameter coverage
is Besy which produced confidence intervals that covered
B* for eight out of ten commodities. £,, was the next
best with six and B,, was third with five. The traditional
ratio estimator and its robust version were the worst per-
formers with only one commodity having a confidence
interval covering B*.

Application of the mean squared error criterion presents
a different picture. Here, B,, emerged as the estimator
having the smallest average root MSE. However, Booy
and B,,, are not much greater. Further, Bggy was the
estimator having the smallest average absolute relative
bigs. Only two commodities were estimated with signifi-
cant biases using this estimator. Thus, it appears from
these results that Bggy is the preferred estimator using
overall performance as the evaluation criterion.

Table 2
Comparison of Estimators with, 8*, the Pseudo-Population Value of the Biast

Characteristic B* By, Bour B, Besw B, B,
All wheat stocks 42.3 —6.1 103.2 —94.2 -0.91 19.2% 1¢.61
(12.3) (17.6) {16.5) (24.8) (16.5) (16.7)
Corn planted acreage -1.8 1.1% 11.7 10.1 0.3t -4.7% -5.0
(L. {1.3) (1.1 (1.2) {1.9) {1.5)
Corn stocks -6.4 —5.4% 2.4 0.2 -6.5% -7.9¢ -9.31
(1.5) (1.6} (1.3) (1.6) (2.4) (2.2)
Cropland acreage 27.0 —-19.6 -15.0 7.0 —-19.6 —36.8 —12.8
(8.3) (8.3) (3.1) (8.2) (11.0) (4.0}
Grain storage capacity -3.37 1.4% 323 29.5 -0.13 -6.9 -6.8
a.7 a7 (2.6) 3.9 (3.0) 2.5
Soybean planted acreage -44 0.8 13.0 9.9 ~0.3 -2.9 -2.7
{0.8) {1.0) 0.9 1.0) (1.1) {1.0)
Soybean stocks —-0.01 2.8% 21.3 5.0 0.2 -11.0 —8.8
3.1) 2.9 (2.3) 3.5 (3.6} (3.4
Total land in farm —-20.0 —24.7% —18.81 -2.6 -25.7% —44.5% -21.2
(10.4) (12.5) (1.6) (10.7) (13.4) (5.8)
Total hogs/pigs inventory -0.1 -2.1 34 - 0.0t -2.21 —2.5t —1.6%
0.9 (1.n {1.0) (L. (1.3) (1.0)
Winter wheat seedings -0.6 -0.5¢ 38 1.8 —-1.2% 1.1 1.1
0.4 0.6) (0.5) (0.6) 0.4) (0.4
Number of items where C.I. covers B* 6 1 1 8 5 3
Average C.V. 1.01 .30 11,1 9.5 41 A8
Average RMSE 13.2 22.4 25.2 12.9 14.9 10.8
Average | Relbias | 30.8 220.0 53.4 4.9 113.1 91.3

t Standard errors in parentheses.

1 95% confidence interval covers the pseudo population parameter.
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4. CONCLUSIONS AND RECOMMENDATIONS

In this article, we developed a general methodology for
constructing and evaluating weighted and unweighted
model prediction estimators of measurement bias for
stratified random, two-phase sample designs. The proposed
estimators incorporate information on the observations,
¥, from the first phase sample, and an auxilliary variable,
x. Model robust versions of the estimators were also con-
sidered and evaluated. The ultimate goal of model predic-
tion estimation is to identify estimators which make
*‘optimal’’ use of the data (y, r, x). The general estima-
tion and evaluation methodology for achieving this goal
was illustrated for the ordinary regression model with no
intercept. However, the methodology can be easily extended
to multivariate, intercept models.

Our proposed evaluation criteria are based upon esti-
mates of bias, variance, and mean squared error computed
using a bootstrap resampling methodology. The method
of Bickel and Freedman was extended to two-phase
sampling for this purpose. It was shown both analytically
and empirically that the usual NDR estimator is not
optimal under the model prediction approach to estimating
measurement bias. Our analyses found that, for the six
estimators we considered, the estimator derived from the
work of Sarndal er af. (1992), was the best overall
estimator by the bootstap evaluation criteria.

Incorporating auxiliary information into the estimation
of measurement bias creates a number of practical prob-
lems which may increase the costs and reduce the timeliness
of producing the estimates. First, the auxiliary variable,
x, must be available, at least in aggregate form, for all
socioeconomic and geographic domains for which model
prediction estimates are desired. This could be a large data
management task. Further, the complexity of the variance
estimator using analytical methods increases with the
complexity of the bias estimator. Although simpler, the
bootstrap variance estimation method can be prohibitively
expensive if computer time must be purchased. However,
these difficulties are not insurmountable, especially if a
high-powered microcomputer is available. Further, given
the cost of reinterview surveys for estimating measurement
bias, even moderate increases in precision in the bias
estimators can result in substantial cost savings.

The model prediction approach has the potential for
extracting the maximum information on response bias
from reinterview surveys and thus model prediction
estimators will usually be more efficient than the tradi-
tional net difference estimator. In addition, the model
prediction approach may also offer a means for extra-
polating estimates of bias to areas which were not sampled.
As an example, in the NASS application, the reinterview
sample was drawn only from the CATI areas for reasons
of operational convenience and cost efficiency. However,
by using prediction models which are functions of the
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original responses and other available characteristics, it
may be possible to predict the measurement bias in the
non-CATT survey areas from the local characteristics of
these areas — a type of ““synthetic’’ estimation. Although
this application of model-based estimation was not con-
sidered in this paper, it is a natural extension of the meth-
odology and one which will be evaluated in a subsequent
study.

Also for future research, we intend to incorporate
multivariate, intercept models in the estimation of mea-
surement bias. Since the bootstrap evaluation criteria
developed in this article are general, no changes in the
evaluation methodology are required to handle the addi-
tion of variables in the estimation models. Further, the
model assumptions and the methods for handling outliers
will be refined and evaluated in a subsequent paper.
Finally, we need to explore the effect on estimation of
departures from the model assumptions, particularly the
assumption that the reinterview observation is without
error. As Fuller (1991) has shown, if the reinterview is
fallible but unbiased, the variance of the predicted values
increases but the predictions are still unbiased. Thus,
under these assumptions, one could explore the relative
precision of the alternative estimators of measurement bias
in order to determine the robustness of the model predic-
tion approach.
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Model-Based Estimation of Record
Linkage Error Rates

J.B. ARMSTRONG and J.E. MAYDA!

ABSTRACT

Record linkage is the matching of records containing data on individuals, businesses or dwellings when a unique
identifier is not available. Methods used in practice involve classification of record pairs as links and non-links using
an automated procedure based on the theoretical framework introduced by Fellegi and Sunter (1969). The estima-
tion of classification error rates is an important issue. Fellegi and Sunter provide a method for calculation of classifica-
tion error rate estimates as a direct by-product of linkage. These model-based estimates are easier to produce than
the estimates based on manual matching of samples that are typically used in practice, Properties of model-based
classification error rate estimates obtained using three estimators of model parameters are compared,

KEY WORDS: Mixture model; Latent variable model; Iterative scaling.

1. INTRODUCTION

Computer files containing information about individuals,
businesses or dwellings are used in many statistical applica-
tions. The linking of records that refer to the same entity
is often required. The process of linking records referring
to the same entity is called exact matching,. If all records
involved in an application have been accurately assigned
a unique identifier, exact matching is trivial. Record
linkage methods deal with the problem of exact matching
when a unique identifier is not available. In that case, each
record typically includes a number of data fields containing
identifying information that could be used for matching.
Problems in matching are due to errors in these data or
due to the same value for a particular field being valid for
more than one entity.

Applications of record linkage include the undupli-
cation of lists of dwellings or businesses obtained from
various sources to create survey frames. In addition, record
linkage is widely used in applications related to health and
epidemiology. Work in this area typically involves matching
records containing information on individuals in industrial
or occupational cohorts to records documenting the illness
or death of individuals. For example, record linkage meth-
odology for follow-up studies of persons exposed to radia-
tion is discussed in Fair, Newcombe and Lalonde (1988).

The record linkage problem can be formulated using
two data files that correspond to two populations. Each file
may contain information for all entities in the corresponding
population or information for a random sample of
entities. The file A contains N, records and the file B
contains Ny records. The set of record pairs formed as the
cross-product of A and B is denoted by C ={(a,b);

a€A,beB). C contains N = N, - Ny record pairs. The
objective of record linkage is to partition the set Cinto two
disjoint sets - the set of true matches, denoted by M, and
the set of true non-matches, /.

‘The theoretical framework introduced by Fellegi and
Sunter (1969) is the basis of a great deal of applied work,
For each record pair, a decision is taken congerning whether
or not the records refer to the same entity after examining
data recorded on files A and B. The possible decisions are
link (A,), non-link {A;) and possible link (A4,). There
are two types of errors. First, decision 4, may be taken
for arecord pair that is a member of U, the set of true non-
matches, Second, decision 45 may be taken for a record
pair that is a member of set M, the set of true matches.
Acceptable levels of classification error are specified
before the files are linked. A record pair is classified as a
possible link if the data do not provide sufficient evidence
to justify classification of the pair as a link or non-link at
error levels less than or equal to those specified. Accurate
estimation of classification error rates associated with
various decision rules is necessary to determine an
appropriate rule. The classification error rate for true non-
matches is P(A, | U}. The error rate for true matches is
P{Ay | M).

Estimates of classification error rates can be obtained
by selecting a sample of record pairs from the set C and
manually determining the true match status of sampled
pairs. Applications of this approach are described in
Bartlett et al. (1993). Sampling may be both costly and
cumbersome to implement, particularly when the same
linkage must be done for a number of pairs of files, each
with slightly different characteristics. Belin and Rubin
{1991) describe another method of error rate estimation

! J.B. Armstrong and J.E. Mayda, Statistics Canada, Business Survey Methods Division, 11-RH Coats Bldg, Tunney's Pasture, Ottawa, Ontario,
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that requires true match status for record pairs in a pilot
study. In contrast to the straightforward sampling approach,
the Belin-Rubin method provides a framework for the
apptication of information obtained from the pilot study
to larger linkages involving similar data.

The Fellegi-Sunter framework provides a method for
calculation of error rate estirnates using estimates of proba-
bilities that record pairs will agree on various combinations
of data fields. Calculation of these model-based error rate
estimates is straightforward and manual determination
of the true match status of record pairs is not required.
However, they often have poor properties in applied work.
See, for example, Belin (1990). In this paper, the potential
for improvement of the properties of model-based error
rate estimates through careful estimation of agreement
probabilities is examined.

Three alternative estimation methods are evaluated.
The approaches described use only the information on
files A and B. They do not rely on auxiliary information.
Model-based error rate estimates obtained using each
alternative are compared with actual error rates using
both synthetic data that incorporate important charac-
teristics of data from health applications of record
linkage, and information from an actual record linkage
application.

The plan of the paper is as follows. Section 2 includes
details of the model-based classification error rate estima-
tion method introduced by Fellegi and Sunter, The model
for agreement probabilities that forms the basis of subse-
quent discussion of estimation methods is also specified.
Two estimation methods that rely on an important inde-
pendence assumption are described in Section 3. A third
alternative that does not require independence is discussed
in Section 4. The results of comparisons of the three
approaches using synthetic data are reported in Section 5.
The results of evaluation work with information from a real
application are described in Section 6. Section 7 contains
some concluding remarks.

2. THEORETICAL CONCEPTS

Relevant aspects of the theory for record linkage devel-
oped by Fellegi and Sunter (1969) are summarized in this
section, In the Fellegi-Sunter framework, estimates of
classification error rates are calculated using estimates of
probabilities of agreement on various combinations of
data fields. Applications of the theory of Fellegi and
Sunter usually involve the assumption that the probability
that a record pair will agree on a particular data field is
independent of the results of comparisons for other fields.
The theory is nevertheless very flexible, allowing for any
pattern of dependence between results of comparisons for
different data fields. A parameterization of dependence
in terms of loglinear effects is given.

Armstrong and Mayda: Model-Based Linkage Error Rates

2.1 Model-Based Classification Error Rate Estimation

To obtain information related to the classification of
a record pair as a link (A,), non-link (Aj) or possible
link (A;), data fields containing identifying information
are compared. In an application involving records refer-
ring to persons, separate comparisons of family names,
given names, and dates of birth might be performed. The
outcome of a comparison is a numerical code representing
a statement like “‘names agree’’, ‘“‘names disagree’’,
“‘name missing on one or both files”’, ““names agree and
both are George’’ or ‘*names disagree but their first two
characters agree’. The outcome codes used in applied
work differ between applications and between comparisons
in the same application. The smallest number of outcome
codes that can be used for any comparison is two - corres-
ponding to agreement and disagreement. An outcome
code corresponding to ‘“missing on one or both files’’ is
usually needed in applied work. The agreement outcome
may be replaced by a number of value-specific outcomes
(such as ““names agree and both are George’’). Certain
disagreements may be coded as partial agreements (such
as “‘names disagree but their first two characters agree”).

For present purposes, we consider agreement and disa-
greement outcomes only. In the case of K matching fields,
we introduce the outcome vector x/ = (x4, x4, ..., x%)
for record pair j. We have x4 = 1if record pair j agrees
on data field k and x4, = 0 if record pair j disagrees on
data field &.

Newcombe et al. (1959) introduced the idea that decisions
concerning whether or not a pair of records represent the
same entity should be based on the ratio

R(x) = P(x| M)/P(x| U), (1}

where x = (x|, X3, ..., Xg) is the generic outcome
vector, P(x | M) is the probability that comparisons for
a record pair that is a true match will produce outcome
vector x, and P(x | U) is the probability of x for a record
pair that is a true non-match. The optimality of record
linkage methods involving this ratio was demonstrated by
Fellegi and Sunter.

In the Fellegi-Sunter framework, a linkage rule assigns
a probability of each classification decision (A4,, A, and
A3) to each outcome vector. The decision function cor-
responding to outcome vector x is d{x) = (P(4,] x),
P(A,| x), P(A3| x)). Acceptable rates of classification
error for true non-matches and true matches are specified
before linkage is conducted. We denote these pre-specified
error rates by p and X respectively. Among the class of
record linkage rules satisfying the relations P(A, | U) =< u
and P(A; | M) =< X for fixed values of u and A, Fellegi
and Sunter define the optimal linkage rule as the rule that
minimizes P(A,), the probability that a record pair will be
classified as a possible link. The optimal rule has the form
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d{x)y = (1,0,0) if & > 7
dix') = (P,1 — B,0) if o =7
dx) = (0,1,00 if 7 <ol <7 @)

dix’) = (0,1 - P, P) if o =7

dix)) = (0,0,1) if ol <7,

where 7, = 73, the “weight”’ ’ is defined as o’ =
log(R(x}) and P, and P, are positive constants in the
interval [0,1). (Refer to Fellegi and Sunter (1969} for full
details.} Determination of 7, and 7, requires the estimation
of classification error rates corresponding to various choices
for these threshold values, underscoring the importance
of accurate estimation of classification error rates in the
Fellegi-Sunter framework.

Model-based estimates of classification error rates can
be calculated using estimates of outcome probabilities for
true matches and true non-matches. Let P(x| M) and
P(x | ¥) denote estimates of the probabilities of outcome
vector x for true matches and true non-matches and denote
the ratio of these estimates by R (x). The model-based
estimate of the classification error rate for true matches
based on decision rule (2) is

A=Y, Puxim+p Y, PxiM ()
xeL(r) x€Q(12)

where L(7;) = {x; log(R(x)) < 73} and Q(7;) =
{x; log(R(x)) = 7).

The model-based estimate of the classification error
rate for true non-matches is

p= Y PxIUy+ B Y Pux|lU) @
x€G(r) xeQ()

where G(7)) = {x; log(R(x)) > 7] and Q(7}) =
fx;log(R(x)) = 7} '

2.2 A Model For Outcome Probabilities

Calculation of model-based classification error rate
estimates requires estimation of P(x| M) and P(x| U)
for each of the 2% possible values of x. The probability
"density function for x is a mixture of two probability den-
sities given by

Jx) =pP(x| M) + (1 —p) P(x| U}, (5

where p is the probability that a record pair chosen at
random is a true match. The outcome probabilities depend
on the frequency distributions of identifiers for entities
represented on files A and B, as well as the probabilities
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that errors are introduced when identifiers are recorded on
the files. Fellegi and Sunter (1969, pp. 1192-1194) describe
a method of estimating agreement probabilities involving
their definition in terms of frequency distributions and error
probabilities. They recommend use of the method when
prior information is available.

In the present paper, we consider situations in which
the data on files A and B and the outcome vectors x/,
J=1,2, ..., N, represent the only information available
for estimation of outcome probabilities. A loglinear structure
for the outcome probabilities is the most general parame-
terization. The saturated loglinear model for outcome
probabilities for true matches is

log(P(x| M)} = M(0) + M(1), + M(2),, + ...
+ M(K)g + M(1) M(2),, 0 + ...

+ MK = 1) M(K) g e + - -

+ MY MQ2) .. M(K)y s, xer (0)

with the usual restrictions

Y Mgy =0, J=1,2,.. K,
Xj

Y MUDM(D)y vy, = 1 MUDMU),, o, =0,
x r

VJ|, Jz, efc.,

as well as the restriction

E P(xiM) = 1.

X

The saturated model for P(x| U) is analogous.

If saturated loglinear models for P(x| M) and P(x| U)
are employed, the density function includes 25+' — 1
unknown parameters. It is not possible to identify all these
parameters when no auxiliary information is available. In

" order to obtain a model that can be identified and to

simplify the estimation problem, the assumption that the
outcomes of comparisons for different data fields are
independent is often employed. Under the assumption of
independence, we denote the probabilities of agreement
among record pairs that are true matches and true non-
matches, respectively, by '

Mg = P(Xk

1| M), k=1,2, ..., K,

we= Plxpy=110), k=12,..., K.
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Outcome probabilities can be written as

K
Pix| M) =TT m* (1 = my) =0,
k=1

K
Px| Uy = T wic (1 — w)' =%,
k=1

This model involves 2 - X + 1 unknown parameters,
namely (m, u, p), where m =(my, mq, ..., m;),
u ={u, u, ..., u;). There are, of course, a number of
intermediate models between the saturated model and the
independence model. Methods that can be used (o estimate
the independence model are described in Section 3. Esti-
mation of intermediate models is discussed in Section 4.

3. ESTIMATION UNDER INDEPENDENCE
ASSUMPTION

3.1 Method of Moments

A methods of moments estimator of P(x| M) and
P(x| U) can be employed in the case of independence. The
estimator is based on asystemof2 - K + 1eguationsthat
provide expressions for functionally independent moments
of x in terms of the parameters. The equations are

(-

ki

K K
=pN[] m + A =) NT] .,

k=i k#i

i=12 .., K

i=12,....K,
)

K K K
E(ka) =pNH mp+ (1 =p)NTT -
k=1 k=1

k=1

E(x;) = pNm; + (1 — p) Nu;,

To obtain estimates of the parameters using the method
of moments, it is necessary to solve the equations after
expectations have been replaced by averages calculated
using record pairs in C. The equation system for X = 3
was given by Fellegi and Sunter, who also derived a closed
form solution that exists if some mild conditions are
satisfied. Their paper included a word of caution concerning
use of the method in the case of departures from independ-
ence. For K > 3, a closed form solution is not available
but standard numerical methods can be used. Parameter
estimates obtained using the method of moments are statis-
tically consistent if the independence assumption is true,

3.2 Iterative Method

The iterative method was developed by record linkage
practitioners, Although the method is not based on the
probability distribution of the outcome vector, it does
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make use of the independence assumption. Application of
the iterative method is described by several authors,
including Newcombe (1988). Statistics Canada’s record
linkage software, CANLINK, is set up to facilitate use of
the iterative method.

The method requires initial estimates of the agreement
probabilities for true matches and non-matches. For true
matches, guesses based on previous experience must be
employed. To obtain initial estimates of agreement proba-
bilities among record pairs that are true non-matches it is
typically assumed that these probabilities are equal to the
probabilities of agreement among record pairs chosen at
random, namely that,

wp=Plx,=1), k=1,2,... K.

Suppose that J(k) different values for data field &
appear on file A and/or file B, Denote the frequencies of
these values on file A by fi, fia,. . .+ fraxy and denote
the file B frequencies by g1, £k2, . . -+ 8ra(xy- For a partic-
ular value one, but not both, of the counts may be zero.
The initial estimate of u is

JiK)
dy = 3 (fygg)/N. (®)
i=1

Given these probability estimates, initial sets of matches
and non-matches, denoted by M° and U° respectively,
are obtained using a decision rule

jeM® if W > 49,
JjeU" if w < 7.

Next, frequency counts among record pairs in the sets
M?® and U? are used as new estimates of agreement
probabilities. These estimates are used to obtain new sets
of matches and non-matches and the iterative process is
continued until consecutive estimates of agreement praba-
bilities are sufficiently close.

In most applications, the assumption that the probability
of agreement among record pairs that are true non-matches
is equal to the probability of agreement among all record
pairs is a good one and iteration does not lead to any
important changes in estimates of non-match agreement
probabilities. However, the first iteration often produces
large changes in agreement probability estimates for true
matches. Typically, there are no substantial changes at the
second iteration.

It should be noted that the statistical properties of the
iterative method are unclear. In practice, performance
of the method will depend on the choice of the initial
thresholds 79, 9. These thresholds are typically chosen
subjectively. The simulations reported in Section 3 provide
information about the effects of various initial thresholds.
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4. RELAXING THE INDEPENDENCE
ASSUMPTION - ESTIMATION
USING ITERATIVE SCALING

Methods of estimation for latent variable models can
be used to estimate agreement probabilities when the
dependence between outcomes of comparisons for different
matching fields is parameterized in terms of loglinear
effects. Winkler (1989) and Thibaudeau (1989) have
estimated agreement probabilities using loglinear models
including all interaction terms up to third or fourth order
to parameterize dependencies. The formulation presented
here facilitates use of loglinear models including selected
interactions. Match status can be considered a latent
variable with two levels (true match and true non-match).
Let ¢y, and ¢, , denote the numbers of true non-matches
and true matches, respectively, with outcome vector xin
arecord linkage application involving K matching variables.
These counts are, of course, unobservable since the value
of the latent variable for each record pair is unknown.
Instead, ¢, = ¢5 + €| is Observed.

Using the parameterization of dependence in terms of
loglinear effects and a saturated model for true matches,
we can write

log{c,y/(Np)) = M(0) + M(1),, + M(2),, + ...
+ M(K)y + MIDM(2)y .y, + ..
+ MK — DM(K) o e + - -

+ MM 2) ... M(K)yxy, o
with the usual restrictions. A similar expression for true
non-matches is available. The latent variable model corre-
sponding to these saturated loglinear models is

log(csy /W) = G(0) + Zg + G(1)y + ...

+ G(K)y + ZG(1)g, + o + ZG(K)yy,

+ .o+ GG .G(K) s,

XK

+ ZG(G(2) ... G(K)sxymy, ... g
where the index s has value zero for true non-matches and
one for true matches, wy = (1 — p)Nand w; = pN. The
parameters are analogous to the parameters of a saturated
loglinear model for a contingency table of dimension
25+ The usual restrictions apply. For example, the term
ZG (1), represents the interaction of the latent variable
and the first matching variable and

) ZG(1)sn = ) ZG(1)y = 0.

]
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This model conforms to the general latent variable
mode) of Haberman (1979, p. 561). Additional restrictions
must be imposed to identify and estimate the parameters.
For simplicity, we will consider only hierarchical models.
In addition, we restrict attention to models that allow all
non-zero effects to interact with the latent variable.

In subsequent discussion we will denote latent variable
models using symbols G(1}, G(2), ..., loglinear models
for true matches using M (1), M(2), ... and loglinear
models for true non-matches using U/(1), U(2), ... .
In the case of four matching variables, for example, the
model G(1)G(2), G(3), G(4) is a latent variable model
including a general level term, main effects for all four
matching variables and a term for the interaction of mat-
ching variables one and two, as well as a main effects term
for the latent variable (the interaction of the generai level
term and the latent variable), terms for the interaction of
each matching variable and the latent variable and a term
for the interaction of matching variables one and two and
the latent variable. The model includes 12 parameters that
must be estimated. The number of parameters that must
be estimated in one of the latent variable models considered
here is twice the number of parameters in the corresponding
loglinear model.

The iterative scaling method of Haberman (1976) can
be used to estimate latent variable models. The Haberman
estimation method operates by raking tables that contain
estimated counts for each outcome among true matches
and true non-matches. Denote the estimated counts for
outcome vector x after / iterations of the Haberman
algorithm by C“"i, cand C‘.‘;}‘ « for true matches and true non-
matches, respectively. Starting values C{ , and €§ , can
be constructed using estimates of agreemerft probabilities
and the proportion of true matches obtained under the
independence assumption, Each iteration of the algorithm
involves a series of raking operations on the current table
for true matches and the analogous rakes on the current
table for true non-matches. Using the notation for hierar-
chical models introduced above, a set a raking operations
is performed for each of the interaction terms that define
the model. For four matching variables and the model
G(1)G(2), G(3)G(4), two sets of raking operations are
performed - one for the G({1)G(2) interaction and a
second for the G (3)((4) interaction. For each iteraction,
one raking operation is performed for every level of the
corresponding classification variable. Let S, denote the
set of outcome vectors at level f of term g. The raking oper-
ation on the table of true matches at iteration 7 for level
! of term g involves computation of

i—1
0x )

3

— ai—1 e ai—1
Yix = CxClx f(cl,:_c +

AP oaie aie
e=08 Yovaf ) 65 VxS,
XESgl X€5g/
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The algorithm is terminated when changes between
estimated counts for consecutive iterations are smaller
than a given tolerance.

Haberman (1976) notes that the iterative scaling algo-
rithm may converge to a local maximum of the likelihood
function rather than to the maximum likelihood estimate.
Experiments with different starting values using data sets
employed in the evaluation reported in Section 5 did not
yield any examples of this problem.

5. COMPARISON OF ESTIMATION
METHODS - SYNTHETIC DATA

In this section, the results of comparisons of the estima-
tion methods described in Section 3 and Section 4 are
presented, The comparisons involved application of each
approach to a series of synthetic data sets generated using
Monte Carlo methods.

Synthetic data records containing four personal iden-
tifiers (family name, middle initial, given name, date of
birth) were employed. Information on possible values of
each identifier, as well as their relative frequencies, was
taken from the Canadian Mortality Data Base for 1988.
This database, which is frequently used in health applica-
tions of record linkage, contains a separate record for each
individual death.

The independence assumption was violated among true
matches in each synthetic data set. Information on the fre-
quency of outcome vectors for true matches obtained from
various record linkage projects conducted by the Canadian
Center for Health Information at Statistics Canada was
used during data generation. Most of the projects involved
matching a cohort file to the Canadian Mortality Data
Base. The frequency of each outcome vector among the
true matches is shown in Table 1. The dependence in these
data is clear. Although approximately 88.3% of the true
matches agree on given name, the probability of agreement
on given name given disagreement on middle initial and
agreement on family name and birth year is only
381/1366 — about 27.9%. The value of the likelihood ratio
test statistic for the independence hypothesis is 3604. This
value is very extreme relative to the chi-square reference
distribution with 10 degrees of freedom. (Note that one
degree of freedom is lost due to the zero count for the cell
(1,0,0,0).)

For each synthetic data set, file A records were generated
by selecting identifiers according to relative frequencies in
the 1988 Canadian Mortality Data Base. In order to simplify
the data generation process, the choice of family names
was restricted to the 100 most common non-francophene
family names and the 100 most common francophone
family names found on the 1988 file. The choice of given
name was restricted to the 50 most common francophone
given names and the 50 most common non-francophone
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given names. All name choices excluded typographical
variations. All middle initials and birth years found on the
1988 file were considered. Records with anglophone given
names were more likely to receive an anglophone family
name than records with francophone given names (reflec-
ting the distribution of names in the Canadian population).
Otherwise, identifiers were selected independently.

Table 1

Qutcome Frequencies, Set of True
Matches, Synthetic Data

Outcome by Identifier:

0= Disagreement, 1 = Agreement Frequency
Given MigFlle Family  Birth Count Percent-
Name Initial Name Year age
0 0 0 0 7 0.03
0 ¢ 0 i Kk} 0.12
0 0 1 0 125 0.45
0 0 1 1 985 154
0 1 0 0 5 0.02
0 1 0 | 39 0.14
0 1 1 0 202 0.73
0 1 l 1 1,848 6.65
1 0 0 0 0 0.0
l 0 0 1 13 0.05
1 0 1 0 50 0.18
1 0 1 1 381 1.37
1 1 0 0 44 0.16
1 1 0 1 451 1.62
1 1 1 0 1,751 6.30
1 1 1 | 21,860 78.65
Total 27,794 100

The starting point for file B was an exact copy of file A.
Each file B record was a true match with exactly one file A
record. To introduce dependence among true matches, an
outcome vector was drawn from the frequency distribution
in Table I for each file B record. Identifiers corresponding
to zeroes in the outcome vector were re-selected. Conse-
quently, the set of outcome vectors for true matches was
a sample from the Table 1 distribution. The synthetic data
sets also included mild departures from the independence
assumption for true non-matches since the selection of
given and family names was not completely independent.

Each set of simulation results reported subsequently is
based on 50 Monte Carlo trials. Each trial involved genera-
tion of files A and B of size 500, estimation of m and u,
determination of thresholds corresponding to various



Survey Methodology, December 1993

model-based classification error rate estimates and calcula-
tion of actual error rates corresponding to the thresholds.
The same series of 50 synthetic data sets was used for each
set of simulations. Note that the set C contains 250,000
record pairs including 249,500 true non-matches for each
Monte Carlo trial. In order to reduce computing time
required by the simulations, only 49,500 true non-matches
were used for each trial. (A small scale test was conducted
to verify that reducing the number of true non-matches
had a negligible effect on the estimated agreement proba-
bilities.) True non-matches were removed from C by dividing
files A and B into five corresponding blocks of size 100
and excluding record pairs involving records from blocks
that did not correspond.

The method of moments equation system was solved
using a variation of Newton’s method that is described in
detail in Moré et al. {1980). Computer code from IMSL
(1987) was employed. Agreement probabilities of 0.9 for
true matches and 0.1 for true non-matches for all matching
ficlds were used as starting values for the solution of the
equation system. The method did not appear sensitive to
starting values.

The properties of the iterative method depend on the
definitions of the initial sets of matches and non-matches,
MP?and U°. Recall that, given initial probabilities, record
pairs are classified according to

JEM® if o > 49,
JeU if o < 4.
When the iterative method was implemented for the

simulations reported here, 73 was set equal to 75. For each
Monte Carlo trial, 7{ was determined such that

PjeU | w' > + v - PeU | o = 1) = p°,
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for some y€[0,1), where the estimated probabilities are
based on the initial iterative estimates of u. Record pairs
with weight 7§ were classified in M° with probability ~.
That is, the initial set of matches used by the iterative
method was chosen to correspond to an estimated classifi-
cation error rate of u° for true non-matches. Starting
values for mip, k = 1, 2, ..., 4, were set 10 0.9.

The zero count in Table 1 (agreement on given name,
disagreement on all other identifiers) was treated as a
structural zero during data generation. Among loglinear
models involving no more than six parameters the model
that gives the best fit to the Table 1 data is M{1)M(2),
M(3), M(4). This model, involving dependence for out-
comes of comparisons for given name and middle initial,
does not fit particularly well. The likelihood ratio test
statistic for lack of fitis 57,95 - an extreme value relative
to the chi-square reference distribution with 9 degrees of
freedom. The latent variable model G{1)G(2), G(3),
((4) was estimated for each synthetic data set using
iterative scaling. This model fit the synthetic data sets
somewhat better than the model M(1)AM(2), M(3), M(4)
fit the true match data. The largest lack of fit test statistic
among the fifty synthetic data sets was 25.03 and the
model was rejected only ten times at the 5% level of
significance.

Averages of classification error rate estimates obtained
using the synthetic data sets and the corresponding Monte
Carlo standard errors are reported in Table 2 for true non-
matches and Table 3 for true matches. After multiplica-
tion by 99, the error rates for true non-matches represent
numbers of misclassified true non-matches divided by
numbers of true matches. Results are given for the method
of moments and iterative scaling, as well as the iterative
method with »® = 0.0000625, 0.00025 and 0.001. The
biases in estimated error rates for true non-matches are
generally small. The iterative method with z® = 0.001

Table 2

Classification Error Rates, True Non-matches, Synthetic Data
(Monte Carlo Standard Errors in Parentheses)

Actual Rate (X 99)

Estimated Rate

(x 99) Method of Iter. Method Iter. Method Iter. Method Iter,
Moments 0 = 0.0000625 u¢ = 0.00025 ¢ = 0.001 Scaling
0.02 0.0188 0.0208 0.0208 0.0207 0.0195
(0.0008) (0.0008) (0.001) (¢.001) (0.001)
0.04 0.0381 0.0408 0.0407 0.0405 0.0397
(0.001) (0.0013) {0.0016) (0.0016) {0.0016)

0.06 0.057 0.0626 0.0615 0.0602 0.059
(0.0012) {0.0015) {0.0018) {0.0019) (0.0018)
0.08 0.076 0.0855 0.0838 0.0804 0.0785
(0.0015) (0.0017) (0.0019) (0.0022) (0.0019)
0.10 0.095 0.1086 0.1061 0.1007 0.0978
(0.0019) (0.0021) {0.0022) (0.0026) (0.0021)
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Table 3

Classification Error Rates, True Matches, Synthetic Data
(Monte Carlo Standard Errors in Parentheses)

Actual Rate

Estimated Rate

Method of Iter. Method Iter. Method Iter. Method Iter.
Moments u® = 0.0000625 u® = 0.00025 #0 = 0.001 Scaling
0.02 0.0580 0.1179 0.0507 0.0149 0.025
(0.0013) (0.0041) (0.0014) (0.0008) (0.0012)
0.04 0.0773 0.1362 0.0735 0.0359 0.0455
{0.0014) {0.004) (0.0012) (0.0018) (0.0016)
0.06 0.0966 0.1542 0.0954 0.0660 0.0646
(0.0014) (0.0038) (0.0012) (0.0014) (0.0018)
0.08 0.1159 0.1722 0.1165 0.0866 0.0841
(0.0014) {0.0036) (0.0012) {0.0017) {0.0019)
0.10 0.1348 0.1904 0.1319 0.1025 0.1043
(0.0014) (0.0035) (0.0014) (0.002) (0.002)

provides the best estimates, followed by iterative scaling.
For true matches the performance of the iterative method
is very sensitive to the choice of u°. Although the iterative
method performs well for u® = 0.001, the biases for
1 = 0.0000625 and 4° = 0.00025 are substantial. Esti-
mates of classification error rates for true matches obtained
using the method of moments also include large biases.
Biases in estimates based on iterative scaling are relatively
small.

Table 4

Classification Error Rates, True Non-matches,
Modified Synthetic Data
{Monte Carlo Standard Errors in Parentheses)

Actual Rate (x 99)
Estimated Rate

(x 99) Method of Iter.
Moments Scaling
0.02 0.018% 0.0194
{0.0008) (0.001)
0.04 0.0385 0.0396
(0.0011) (0.0016)
0.06 0.0577 0.0389
(0.0013) (0.0019)
0.08 0.0767 0.0785
{0.0016) (0.002)
0.10 0.0957 0.0978
(0.002) (0.0021)

The information in Tables 4 and 5 is based on a serics
of synthetic data sets generated using a modified version
of Table 1. Expected values of Table 1 cell counts under
the model M(1)M(2), M(3), M(4) were used for data
generation. The biases in model-based classification error

rate estimates obtained using the method of moments are
greatly reduced using the latent variable model G(1)G(2),
G (3), G(4) estimated using iterative scaling, particularly
for true matches.

Table 5

Classification Error Rates, True Matches,
Modified Synthetic Data
{Monte Carlo Standard Errors in Parentheses)

Actual Rate
Estimated Rate Method of Iter.

Moments Scaling

0.02 . 0.0553 0.0208
(0.0014) (0.0011)

0.04 0.0747 0.0415
(0.0014) {0.0016)

0.06 0.094 0.0608
(0.0014) (0.0018)

0.08 0.1134 0.0805
{0.0014) (0.002)

0.10 0.1325 0.1007
(0.0015) (0.002)

6. COMPARISON OF ESTIMATION
METHODS - REAL DATA

Results of comparisons of the three estimation methods
using data from a record linkage application are presented
in this section. Two data files used in empirical work
reported by Fair and Lalonde (1987) were employed. The
first file contained information on Ontario miners
obtained from the Workmen’s Compensation Board.
The second file included information from the Canadian
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Mortality Data Base (CMDB) for individual deaths during
the period 1964 to 1977 inclusive. The miners’ file included
only those records with a valid social insurance number,
The second file contained records that had survived an
initial comparison exercise designed to eliminate records
with no similarity to any of the records on the miners’ file.
The vital status of each miner at the end of 1977 had been
classified as “confirmed dead”’, ‘“‘confirmed alive” or ‘‘lost
to follow-up’’ based on a previous linkage, combined with
thorough follow-up procedures, including manual review.
Records on the miners’ file for individuals “‘confirmed
dead’’ included the CMDB death registration number.
More information on the construction of the files and the
procedures used to determine true link status can be found
in Fair and Lalonde.

Four identifiers - given name, NYSIIS code of mother’s
maiden name, day of birth and birth month - were chosen
as matching fields for the comparison. Records on the
miners’ file with vital status ‘““lost to follow-up’ were
eliminated. After records with missing values for at least
one matching field or for birth year were also removed,
file A (based on the miners’ file) contained 45,638 records
and file B (based on the CMDB) included 24,597 records.
Restricting comparisons of the two files to pairs of records
with the same NYSIIS representation of family name and
birth years differing by at most one, there were 26,500 true
non-matches and 2063 true matches.

Frequencies of outcomes among true matches and true
non-matches are shown in Table 6. All loglinear models
corresponding to a non-saturated latent variable model
(that is, all models with fewer than eight parameters) are
rejected by the frequency data for true non-matches at a
very low level of significance. Among models with fewer
than eight parameters the model (1), U(2)U(4),
U(3)U(4) corresponds to the lowest likelthood ratio
test statistic for lack of fit - 35.29. The model M (1),
M(2)M(4), M(3)M(4) provides an adequate fit to the
true match data (likelihood ratio test statistic of 10.29).

Agreement probability estimates were computed using
the method of moments, the iterative method and iterative
scaling using the latent variable model G(1), G(2)G(4),
G{(3)G(4). The likelihood ratio test statistic for the inde-
pendence model corresponding to the method of moments
estimator is 108 (six degrees of freedom). The independ-
ence model is rejected by the data at a very low significance
level. In contrast, the likelihood ratio test statistic for the
latent variable model G(1), G(2)G(4), G(3)G(4)is 1.44
(two degrees of freedom), suggesting an adequate fit.
Model-based estimates of classification error rates corres-
ponding to each set of probability estimates were calculated
for various thresholds. Actual classification error rates are
compared to model-based estimates for true non-matches
in Table 7 and true matches in Table 8. The error rates for
true non-matches have been rescaled so that the number
of true matches is in the denominator.
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Table 6
Outcome Frequencies, Real Data
C_)utcome by ldentifier: Count
0= Disagreement, 1 = Agreement
NYSIIS of T
Given Mother’'s Dayof Birth True o
Name  Maiden Birth  Month Matches Matches
Name

0 0 0 0 4 22,100
0 0 0 l 3 888
0 0 1 0 1 2,322
0 0 1 1 128 211
0 1 0 0 3 199
0 1 0 1 7 19
0 | I 0 27 27
0 1 1 1 242 13
1 0 0 0 9 576
1 0 0 1 10 32
1 0 1 0 52 94
1 0 1 1 392 4
1 1 0 0 27 13
1 1 Y 1 32 1
i 1 1 0 115 0
1 1 1 1 1,001 1
Total 2,063 26,500

Model-based classification error rate estimates obtained
using the iterative method are very inaccurate, particularly
for true non-matches, regardless of the value of uo. Error
rate estimates obtained using iterative scaling are stightly
less accurate than estimates based on the method of
moments for true matches. However, they are con-
siderably more accurate than method of moments
estimates for true non-matches.

Some words of caution are necessary. Even though the
model U(1), U{2)U{4), U(3}U(4) does not adequately
describe the dependencies among true non-matches, the
iterative scaling algorithm obtained a good fit using an
estimate of the proportion of matched records (0.0747)
that differs somewhat from the true value (0.0722). A
similar fit can also be obtained using the model
G(1)YG(2), G(1)G(3), G(4) and an estimate of 0.077 for
the proportion of matches, Error rate estimates based on
themodel G (1)G(2), G(1)G(3), G(4) are no better than
estimates obtained using the method of moments.
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Table 7
Classification Error Rates, True Non-matches, Real Data

Actual Rate (x 12.84)

Estimated Rate

(x 12.84) Method of Iter. Method Iter. Method Iter. Method Iter.
Moments ud = 0.0000625 #0 = 0.00025 p® = 0.001 Scaling
0.02 0.0368 1.311 0.1839 0.186 0.0339
0.04 0.0796 1.314 0.1888 0.193 0.0649
0.06 0.1224 1.317 0.1917 0.1967 0.0684
0.08 0.1573 1.323 0.1990 0.1954 0.1106
0.10 0.1863 1.333 0.60 0.4066 0.1282

Table 8
Classification Error Rates, True Matches, Real Data
Actual Rate

Estimated Rate Method of Tter. Method Iter. Method Tter. Method Iter.
Moments #0 = 0.00006235 w0 = 0.00025 #0 = 0.001 Scaling
0.02 " 0.0166 0.0141 0.0193 0.0225 0.0105
0.04 0.0318 0.0264 0.029 0.0278 0.0263
0.06 0.0598 0.0383 0.0472 0.0326 0.0529
0.08 0.0782 0.0416 0.1372 0.0488 0.0784
0.10 0.0966 0.045 0.1393 0.1371 0.0958

7. CONCLUSIONS

In this paper, the issue of classification error rate
estimation for record linkage has been discussed. The
Fellegi-Sunter framework provides for the calculation of
classification error rate estimates using estimates of agree-
ment probabilities. These model-based estimates typically
have poor properties in practice. It has been demonstrated
that their properties can be improved through careful
estimation of agreement probabilities. Three estimation
methods have been evaluated using synthetic data as well
as information from a real application.

For two of the three methods, the assumption that
outcomes of comparisons for different data fields are
independent was employed. This assumption was not valid
for either the synthetic data or the real data. The synthetic
data included strong dependencies for true matches and
minor dependencies for true non-matches. Dependencies
in the real data were particularly strong for true non-
matches. Classification error rate estimates obtained using
the method of moments, which relies on the assumption
of independence, included substantial bias for synthetic
data and were relatively inaccurate for real data. The
magnitude of the bias in classification error rate estimates
for synthetic data obtained using the iterative method

depended on the definition of an initial set of matches.
Although some definitions of the initial set of matches led
to relatively small biases, others produced estimates with
biases much larger than those obtained using the aiter-
native methods. For the real data, all the definitions of the
initial set of matches considered led to very inaccurate
error rate estimates. There are no mathematical rules
available for the choice of an initial set of matches for
the iterative method. The results in this paper provide no
evidence to recommend its use,

The third method relies on a parameterization of
dependencies between outcomes of comparisons for dif-
ferent data fields using loglinear effects. Under this
parameterization, estimates of agreement probabilities
that do not rely on the independence assumption can be
obtained through use of the iterative scaling method to
estimate the parameters of a latent variable model. For the
synthetic data sets with lack of independence, model-based
classification error rate estimates obtained using iterative
scaling included much smaller biases than estimates based
on the independence assumption. Although the latent
variable model fit most synthetic data sets better than a
model based on the independence assumption, it sometimes
exhibited significant lack of fit. When the synthetic data
was modified to improve the fit of the latent variable
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model, there was no evidence of bias in model-based
classification error rate estimates. The real data included
impaortant departures from independence for both true
matches and true non-matches. Model-based error rate
estimates obtained using iterative scaling were slightly less
accurate than estimates based on the method of moments
for true matches and considerably more accurate for true
non-matches.

The results reported here indicate that properties of
model-based classification error rates estimates can be
improved using an appropriate estimator of agreement
probabilities. Latent variable models and iterative scaling
provide a method of incorporating dependencies between
outcomes of comparisons for different data fields during
estimation of agreement probabilities.
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Robust Joint Modelling of Labour Force
Series of Small Areas

D. PFEFFERMANN and S.R. BLEUER!

ABSTRACT

In this article we report the results of fitting a state-space model to Canadian unemployment rates. The model assumes
an additive decomposition of the population values into a trend, seasonal and irregular component and separate
autoregressive relationships for the six survey error series corresponding to the six monthly panel estimators. The
model includes rotation group effects and permits the design variances of the survey errors to change over time.
The model is fitted at the small area level but it accounts for correlations between the component series of different
areas. The robustness of estimators obtained under the model is achieved by imposing the constraint that the monthly
aggregate model based estimators in a group of small areas for which the total sample size is sufficiently large coincide
with the corresponding direct survey estimators. The performance of the model when fitted to the Atlantic provinces
is assessed by a variety of diagnostic statistics and residual plots and by comparisons with estimators in current use.

KEY WQORDS: Design variance; Kalman filter; Panel survey; Rotation bias; State-space model.

1. INTRODUCTION

A time series model for survey data is the combination
of two distinct models. The “‘census model” describing
the gvolution of the finite population values over time and
the survey errors model representing the time series rela-
tionships between the survey errors of the survey esti-
mators. There are at least four main reasons for wishing
to model the raw survey estimators:

(a) The model based estimators of the population values
resulting from the modelling process have in general
smaller variances than the survey estimators, partic-
ularly in small areas where the sample sizes are small.

(b) The model we employ yields estimators for the seasonal
effects and for the variances of these estimators as a
by-product of the estimation process.

{c) The mode! can be used to forecast the population
values, the trend and the seasonal components for time
periods beyond the sample time period for which the
direct survey estimators are available. Such forecasts
are important when assessing the performance of the
model and for policy decision making.

(d) The model can be used to detect turning points in the
level of the series and assess their significance. (Work
on this problem will be addressed in a separate article).

The methodology described in this article integrates the
methodologies presented in Pfeffertnann and Burck (1990)
and Pfeffermann (1991) with some new modifications and
extensions. The main features of the model are as follows:
1. The model decomposes the population values into the

unobservable components of trend, seasonality and
irregular terms. Smoothed predictors of the three

components (and hence of the population values) based
on all the available data, and standard errors of the
prediction errors are obtained straightforwardly by
application of the Kalman filter. The standard errors
are modified to account for the extra variation induced
by the use of estimated parameter values.

. The model uses the distinct monthly panel estimators

as input data. The use of the panel estimators has two
important advantages over the use of the mean esti-
mators: (i) It identifies better the time series model
holding for the survey errors by analysing contrasts
between the panel estimators, (i) It yields more efficient
estimators for the model parameters and hence better
predictors for the unobservable model components.

. The model accounts for changes in the variances of the

survey errors over time and for possible rotation group
effects.

. The model can be applied simultaneously to the panel

estimators in separate small areas. The census model
is extended in this case to account for the cross-
correlations between the unobservable components of
the population values operating in these areas.

. A modification to ensure the robustness of the small

area estimators against possible model breakdowns is
incorporated into the model equations. The modifica-
tion consists of constraining the model based estimators
of aggregates of the population values over a group of
small areas for which the total sample size is sufficiently
large to coincide with the corresponding aggregate
survey estimators. As a result, sudden changes in the
level of the series are reflected in the model based
estimators with no time lag.

! D. Pfeffermann, Department of Statistics, Hebrew University, Jerusalem 91905; S.R. Bleuer, Social Surveys Methoeds Division, Statistics Canada,

Ottawa, Ontario, K1A 0T6.
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The model and the robustness modifications are
described in more detail in section 2. Empirical results
obtained when fitting the model to the four Atlantic
provinces of Canada are presented in section 3. Section 4
contains a short summary with suggestions for extension
of the analysis.

Before concluding this section we mention that in the
U.S., the state unemployment estimates are produced
for most of the states based on time series models which
have a similar structure to the model used in our study.
See Tiller (1992) for details. A major difference between
the two models is that in the U.S., the model postulated
for the population values includes also explanatory
variables so that the trend and the seasonal component
only account for the trend and seasonal variations not
accounted for the explanatory variables. The models fitted
to the survey errors are like in our case of the ARIMA
type and they likewise account for changes in the variances
of the survey errors. They are otherwise different because
of the very different sample rotation schemes used in the
two countries. Another notable difference between the
two models is that in the U.S., the models are fitted to
each state separately and the input data consist of only the
mean survey estimates, that is, one observation for every
month. As a result, the models do not account for rotation
group biases.

2. A STATE-SPACE MODEL FOR CANADA
UNEMPLOYMENT SERIES

2,1 The Canadian Labour Force Survey

Data on unemployment are collected as part of the
Labour Force Survey (LFS) carried out by Statistics
Canada. The Canadian LFS is a rotating monthly panel
survey by which every new sampled panel of households
is retained in the sample for six successive months before
being replaced by another panel from the same PSU’s or
strata. The PSU’s are defined by geographic locations (city
blocks or urban centers in the urban regions and groups
of enumeration areas in the rural regions). The strata are
homogeneous groups of PSU’s defined by geographic
locations such as city tracts, census subdivisions and
enumeration areas, In the urban regions, (about 2/3 of the
sample), every PSU is represented in only one panel. In
the rural regions, the PSU’s are represented in all the
panels but with different enumeration areas in different
panels. As a result, the separate panel estimators can be
assumed to be independent, a property validated and
utilized in other studies, see e.g. Lee (1990). For a recent
report describing the design of the LFS and the construc-
tion of the direct survey estimators, the reader is referred
to Singh et al. (1990).

2.2 The Census Model

In what follows we consider a single small area. In
section 2.4 we consider joint modelling of the panel
estimates in a group of small areas. The model postulated
for the population values is the Basic Structural Model
{(BSM) which consists of the following set of equations.

Y=L +S8 +¢€; Ly=L_+ R+ n
11
R, =R, + %gs; E S,r+j = Ns- 2.1
i=0

In (2,1) Y, is the population value (‘‘true” unem-
ployment rate) at time ¢, L,, is the trend level, R, is the
increment, S, the seasonal effect and €, the irregular term
assurned to be white noise with zero mean and variance
ag. Thus, the first equation in (2.1) postulates the classical
decomposition of a time series into a trend, seasonal and
irregular components. This decomposition is inherent in
the commonly used procedures for seasonal adjustment,
see e.g. Dagum (1980). Notice however that in the present
case the series {Y;} is itself unobservable. The series
(nze}s {nre) and [ns} are independent white noise
disturbances with mean zero and variances o7, 6% and
a§ X g(¢) respectively. Hence, the second and third
equations of (2.1) define a local approximation to a linear
trend whereas the last equation models the evolution of the
seasonal effects such that the sum of every 12 successive
effects fluctuates around zero. Notice that the variances
of the error terms ys, are time dependent. The functions
g(1t) are specified at the end of section 3.1.

The theoretical properties of the BSM in comparison
to other models are discussed in Harrison and Stevens
(1976), Harvey (1984) and Maravalt (1985). Empiricai
results illustrating the performance of the model are shown
in Harvey and Todd (1983), Morris and Pfeffermann
(1984) and Pfeffermann (1991). Although more restricted
than the family of ARIMA models, the BSM is now
recognized as being flexible enough to approximate the
behaviour of many diverse time series.

2.3 The Survey Errors Model

The model holding for the survey errors was identified
initially by analyzing separately the pseudo error series
e¥) = ¥ —5), t =1, ..., N, where i is the
estimator of ¥, based on j-th panel j = 1, ..., 6, (the
panel surveyed for the j-th successive month} and y, =
¢, »¥/6 is the mean estimator. Notice that
G = 5 = (e — L5, e/'/6), where &/} =
(y¥! — Y;) are the true survey errors. Thus, the notable
feature of the contrasts ( y,‘” — ¥,) is that they are func-
tions of only the survey errors irrespective of the model
holding for the population values.
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There are two prior considerations in the choice of a
model for the survey errors:

(a) The model should account for possible rotation group
biases or more generally, allow for different means for
the survey errors of different panels.

(b) The model should account for changes in the variances
of the survey errors over time.

Rotation group biases may arise from providing dif-
ferent information on different rounds of interview,
depending on the length of time that respondents are
included in the sample, or on the method of data collec-
tion, say, whether by telephone or by home interview. (In
the Canadian LFS, the first panel is interviewed by home
visits, the other panels are interviewed by telephone).
Another possible reason for differences between the panel
survey error means is differences in the nonresponse
patterns across the panels. See Pfeffermann (1991) for
further discussion with references to earlier studies on
this problem.

Changes in the variances of the survey errors over time
occur when the variances are function of the level of the
series. Indeed, as revealed by figure 1 in section 3, the
estimates of the standard deviations of the survey errors
are subject to seasonal effects with a seasonal pattern that
follows the seasonal pattern of the population values,
Another possible explanation for changes in the variances
of the survey errors is changes in the sampling design. For
example, the overall sample size of the Canadian LFS was
reduced in 1985-1986 from 55,000 households to 48,000
households. This reduction in the sample size was
associated with other changes in the design. See Singh
et al. (1990) for details.

Application of simple model estimation and diagnostic
procedures to the pseudo survey errors suggest a 3rd order
autoregressive (AR) model for the standardized survey
errors &) = (e — 8,)/8D(e!), i.e.

e = ¢y &5V + 9p 3V + ¢ 213V
+ud j=1,...,6 (22

where 8; = E(e’) are the rotation group biases, SD(e)
are the design standard deviations and « are independent
white noise with mean zero and variances a7. It is assumed
that }:f-=l 8; = 0 which implies that the mean survey
estimator, 7,, is unbiased. See Pfeffermann (1991) for
discussion on the need to constraint the bias coefficients.
Subsequent analysis when fitting the combined model
defined by (2.1) and (2.2) (see section 2.4) validates this
model with the further observation that the coefficients
(#1, d2, ¥;3) can be assumed to be equal forj = 4, 5, 6.
Furthermore, for the first panel an AR(1) model already
gives a good fit whereas for the second and third panel an
AR(2) model is appropriate although with different
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coefficients. These relationships hold for each of the four
Atlantic provinces.

One of the referees of this article raised the question of
whether the AR(3) model defined by (2.2) is flexible
enough to account for the panel estimates correlations at
high lags which are believed to be high because of *““PSU
effects’’. As mentioned in section 2,1, panels rotating out
of the sample are replaced by panels from the same PSU’s
and it usually takes several years before a PSU is exhausted
and replaced by a neighbouring PSU. Lee (1990) presents
two sets of panel estimates correlations for the Canadian
LFS. The first set, denoted by p;, are the correlations
between estimates produced from the same panel so that
Jranges from 1 to 5. The second set, denoted by Y;» are
the correlations between estimates produced from a panel
and its predecessor so that j ranges from 1 to 11. The
p-correlations are generally high as expected but it should
be emphasized that they are lower for the unemployment
series than for the employment series, demonstrating the
high mobility of the unemployment Labour Force. The
rr-correlations are much smaller than the p correlations but
as mentioned by the author, the computation of these
correlations is much less reliable and their behavior is
somewhat fuzzy showing occasionally an increasing trend.
We computed the serial correlations based on the models
{(2.2) with the ¢-coefficients replaced by their estimated
values and found in general a close fit to the p-correlations
at all the lags from 1 to 5. The correlations at higher lags
are different from the corresponding v-correlations but
interesting enough, they are in most cases higher and
always decrease as j increases.

Another question related to the model (2.2) raised by
the referees is whether one could apply the log transfor-
mation to the raw data for stabilizing the survey error
variances, rather than modelling the standardized errors.
There are two main reasons for not using the log transfor-
mation in our case. Foremost, the use of this transfor-
mation would imply a multiplicative decomposition for
the population unemployment rates which is counter to
common practice of postulating an additive decompo-
sition, In Statistics Canada the unemployment rates in the
two larger provinces out of the four considered in our
study are deseasonalized by postulating the additive
decomposition. In the U.S. the models fitted to the state
unemployment series likewise postulate an additive
decomposition. See Tiller (1992}. The second reason is that
changes in the survey error variances may result from
charges in the sampling design and in particular, from
changes in the sample sizes. Such changes cause discrete
shifts in the variances which cannot be handled effectively
by the log transformation. As noted also by one of the
referees, transforming the data has the drawback of
producing nonlinearity in aggregating the estimates over
the panels and/or the small areas.
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The model defined by (2.2) satisfies the two prior
considerations discussed above. The actual application of
the model requires however two modifications:

1. For the first three panels there is not a long enough
history to permit the fitting of an AR(3) model. For
example, the survey error e!) corresponds to the
panel which is in the sample for the first time, In order
to overcome this problem, we replace the missing
survey errors by the survey errors corresponding to the
panels previously selected from the same PSU’s or
strata. For example, the AR(2) model fitted to &% is

&P = ¢n &N + e+ u®.  @3)

Notice that the panel surveyed for the second time at
month f replaces at time (¢ — 1) the panel surveyed
for the sixth time at month (¢ — 2) so that both panels
represent the same PSU’s or strata. The use of surrogate
survey errors in the case of the first three panels may
explain the different models identified for these panels
as compared to the model identified for the other three
panels.

2. The true standard deviations of the survey errors are
unknown whereas the survey estimates of the standard
deviations are themselves subject to sampling errors.
To overcome this problem, we use smoothed values
of the estimated standard deviations, obtained by
fitting the relationship

12
(SD), = $(SDY—1 + %ot + Y, %Dy 2.9

i=1

with the y-coefficients estimated by ordinary least
squares. The notation (S?D), defines the raw,
unsmoothed estimate of the design standard deviation
of the mean survey estimator, 7, at month fand (D;,}
are dummy variables accounting for monthly seasonal
effectssothat D;, = lwhent = 12k + L,k =0, 1,
.., 12 and D;, = 0 otherwise. The
smoothed standard deviations of the panel survey
errors are obtained as SD(e) = V6(SD),. The
latter estimates are used as surrogates for the true,
unknown, standard deviations.

L i=1, .

2.4 State-space Representation and Estimation of the
Model Holding for the Survey Estimators

It follows from (2.1) that the panel estitnators can be
modeled as

=L +8+¢€+e j=1,..,6 (2.5

where

Li=L_y+R_i+m R =R+ pp;
1
E Si4j = sis (2.6)
j=0

with [€,), (9], {ng and (#5,] defined asin (2.1). The
separate models defined by (2.5), (2.6) and (2.2) can be
cast into a compact state-space representation with y, =
i, ..., »'®) as the input data, similar to the repre-
sentation in Pfeffermann (1991). Following that represen-
tation, the survey errors {(and in the present study also the
census irregular terms) are included as part of the state
vector so that there are no residual terms in the observa-
tion equation defined by (2.5). Unlike in Pfeffermann
(1991), however, the transition matrix and the Variance-
Covariance (V-C) matrix of the state error terms are not
fixed in time since they depend on the design variances of
the survey errors which, as explained in section 2.3, change
over time.

The state-space representation of the model permits us
to update, smooth or predict the state vectors and hence
the seasonal, trend and population values at any given
month ¢ by means of the Kalman filter. Denote by g, the
state vector corresponding to month ¢. The state vector
comprises the trend level, increment and seasonal effects,
the rotation group biases and the survey errors. See
Pfeffermann (1991) for details. By ‘‘updating®’ we mean
estimation of g, at month ¢ based on all the data until and
including month ¢. **Smoothing’* refers to the estimation
of g, based on all the available data for all the months
before and after month f, Smoothing is required for
improving past estimates as, for example, when estimating
the seasonal effects or when estimating changes in the
population values or the trend levels, *‘Prediction” of state
vectors corresponding to postsample months is important
for policy making. Predictions within the sample period
allow to assess the performance of the model, e.g. by com-
paring the forecasted panel estimates as derived from the
predicted state vectors with the actual estimates. See
section 3 for details. The theory of state-space models and
the Kalman filter is developed in numerous publications,
see Pfeffermann (1991} for the filtering and smoothing
equations with references. Notice that the filtering and the
smoothing equations not only yield the three sets of
estimators for any given month ¢ but also the V-C matrices
of the corresponding estimation errors.

The actual application of the Kalman filter requires
the estimation of the unknown model parameters and
the initialization of the filter, that is, the estimation of
the initial state vector ¢ and the corresponding V-C
matrix of the estimation errors. For a single small area,
the unknown model parameters are the four variances of
the error terms in the census model (2.1) and the eight
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autoregression coefficients and six residual variances in the
panel survey error models (2.2). (The rotation group
means are included in the state vectors as fixed, time
invariant coefficients). In order to reduce the number of
free parameters in the combined state-space model, we
assume o} = o° X 67,/ = 1, ..., 6, where {d?} are the
residual variances in (2.2) and 6} are the estimates of the
residual variances obtained by fitting the autoregression
equations to the pseudo survey errors e/, Y defined in sec-
tion 2.3. This assumption reduces the number of unknown
parameters from 18 to 13. (The estimates &J.-Z are very
close for j = 4, 5, 6 and have been set equal).
Assuming that the error terms in the census and survey
error models have a normal distribution, the unknown
model parameters can be estimated by maximization of
the likelihood. See Pfeffermann and Burck (1991) for a
brief description of the application of the method of

_scoring maximization algorithm and for the initialization

of the filter. That article includes references to more
rigorous discussions.

2.5 Adjustments to Account for the Use of
Estimated Parameter Values

Once the unknown model parameters have been
estimated, the Kalman filter equations can be applied with
the true parameter values replaced by the parameter
estimates. As noted in section 2.4, the Kalman filter not
only produces estimates for the state vectors but also the
V-C matrices of the corresponding estimation errors. A
possible problem arising from the use of these V-C
matrices, however, is that they ignore the extra variation
implied by parameter estimation, thus resulting in
underestimation of the true variances.

Formally, let &, (A) define the estimator of o, at month
t, based on all the data available until some given month
n, where A represents the estimators of the unknown model
parameters. The estimation error can be decomposed as

(&) — ) = [&N) —a] + [&R) — &M, 2.1

which is the sum of the error if A were known plus the
error due to estimation of A. The two terms in the right-
hand side of (2.7) are uncorrelated. A simple way to verify
this property is by noting that &,()\) = E(q,| Y, )
where Y represents all the available data. By conditioning
on Yand )\, [&(\) ~ &(\)] is nonstochastic whereas
E{fa,0) — o]} ¥, r} = 0. It follows therefore from
(2.7) that

Qr = Efla(®) — el 1a(D) — &)
= E{[&(\) — alla () — ¢’}
+ Bf[&(A) — &)1 &) — &)1}
= A, + B,. (2.8)
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In order to estimate A, and B, we condition on Y and
follow the approach proposed by Hamilton (1986). By this
approach, realizations A, kK = 1, ..., Kare generated
from the asymptotic normal posterior distribution of A,
that is, from a N(\, A) distribution where ) is the max-
imum likelihood estimator of ) and A is the asymptotic
V-C matrix of A. (Both A and A are obtained from the
method of scoring). The Kalman filter is then applied with
each of these realizations yielding estimates &, (A x)) with
V-C matrices P;{h,). The matrices A, and B, are
estimated as

I‘L = P,(?_\(,,));

x| -
L=

~
i

=

K
E (& Q) — &M1& Q) — &1
k=t 2.9

Ansley and Kohn (1986) propose an estimator for B,
based on first order Taylor series approximation. The use
of their estimator is computationally less intensive but the
procedure proposed by Hamilton is somewhat more
flexible in terms of the assumptions involved and it enables
a better insight into the sensitivity of the Kalman filter
output to errors in the parameter estimators.

2.6 Joint Modelling in Several Small Areas

The model considered so far refers to a single area.
When the sample sizes in the various areas are small, more
efficient estimators can often be derived by modelling in
addition the cross-sectional relationships between the area
population values. Clearly, the increase in efficiency
resulting from such joint modelling depends on the sample
sizes within the small areas and the closeness of the
behaviours of the area population values over time.

The survey errors are independent between the areas
so that any joint modelling of the survey estimators
applies only to the census model. For modelling the unem-
ployment rates in the four Atlantic provinces, we follow
Pfeffermann and Burck (1990) and allow for nonzero
contemporary correlations between corresponding error
terms of the census models operating in these provinces.
Thus, if ¥/, = (6/%, 7{?, 947, n§”) denotes the vector
of error terms at time ¢ assoc1ated with the census model
operating in area g, it is assumed that C, , = E(y,, v5})
is diagonal but with possibly non zero covariances on the
main diagonal. The actual implication of this assumption
is that if, for example, there is a significant increase in the
trend level in one province, similar increases can be
expected to occur in other provinces.

The resulting joint model holding for the four provinces
{or more generally for a group of areas) can again be cast
into a state-space form, see equations (2.7) and (2.8) in



1564 Pfeffermann and Bleuer: Robust Joint Modelling of Labour Force Series

Pfeffermann and Burck (1990}). A major problem with the
fitting of this model, however, is the joint estimation of
all the unknown parameters which is computationally too
intensive in terms of computer time and storage space.
(The computer program written for the application of the
method of scoring uses numerical first order derivatives
so that each derivative requires a separate sweep through
all the data. Each sweep involves the computation of the
Kalman filter equations for each month included in the
sample period).

To deal with this problem, we first fitted the models
defined by (2.5), (2.6) and (2.2) separately for each of the
provinces. We also postulated equal correlations between
the corresponding error terms of the separate census
models across the provinces so that

bop = Cod' CopCip' =0 1 =<ab =4, (210
where C, , = E(y,,¥:). The four correlations maximizing
the likelihood of the joint model were determined by a grid
search procedure with the other model parameters held
fixed at their previously estimated values.

The assumption of equal correlations reduces the
number of unknown parameters considerably. It can be
justified also by the small number of areas considered for
this study implying that no other pre-imposed structure
on these correlations can be safely detected. More sub-
stantively, a simple breakdown of the Labour Force by
industry (Table 1 of Section 3) shows very similar relative
frequencies in the four provinces suggesting a high degree
of homogeneity in their economies.

2.7 Modifications to Protect Against Model Failures

The use of a model for the production of official
statistics raises the question of how to protect against
possible model failures. As discussed below, testing the
model every time that new data becomes available is not
feasible requiring instead the development of a built-in
mechanism to ensure the robustness of the estimators
when the model fails to hold.

For modelling the Labour Force series in small areas
we employed the modification proposed by Pfeffermann
and Burck (1990}. By this modification, the updated state
vector estimates at any given time ¢, are constraint to
satisfy the condition

A
E W Y, =
a=1

where ¥, is the model based estimator of the population
value Y, in area @, 3, = 1/6 ¥ 5., » is the corre-
sponding survey estimator and w,, = M,, /M, is the rela-
tive size of the Labour Force in that area so that M, =
T4 i Mgand L4_, w, = 1. Notice that T4, w, ¥,

A

E Wtaym t=l:2!--'!

a=1

(2.11)

and E‘,L, w, ¥, are correspondingly the model based
estimator and the direct survey estimator of the aggregate
population value in the group of areas considered. The
condition 2.11 can be written alternatively as ¥ 7_, w,
&, = Owhereg, = Ef=1 el)/6 is the mean survey error
for state o, Pfeffermann and Burck {1990) show how to
modify the Kalman filter equations so that it produces the
consirained state vector estimator and its correct V-C
matrix under the model {without the constraint), for every
month ¢.

The rationale behind the modification is simple. Tt
assumes that the total sample size in all the areas is suffi-
ciently large and hence that the aggregate survey estimators
can be trusted. This assumption in fact dictates the level
of aggregation required, see below. By constraining the
aggregate model based estimators to coincide with the
aggregate survey estimators, the analyst ensures that any
real change in the population values reflected in the survey
estimators will be likewise reflected in the model based
estimators. Notice that without constraining the
estimators, sudden changes in the level of the series, for
example, will be reflected in the model based estimators
only after several months because these estimators depend
not only on current data but also on past data. On the
other hand, if no substantial changes occur, the model
based estimators can be expected to satisfy approximately
the constraints even without imposing them explicitly.
Thus, the constrained estimators should perform almost
as well as the unconstrainted estimators in regular time
periods.

The assumption that the total sample size in all the areas
is large and hence that the aggregate survey estimator is
sufficiently close to the corresponding population value
is critical. It guarantees (in high probability) that the
modification will only occur when there are real changes
in the population values and not as a result of large
sampling errors. Admittedly, and as noted by one of the
referees, in the application of the method to the Atlantic
provinces described in section 3, the aggregate estimator
is based on only four provinces so that its standard error
is about 50 percent of the standard errors of the province
survey estimators, depending on the province sample sizes.
(The province survey estimators are independent, condi-
tional on the corresponding population province values).
Thus, if the constraints are to be used in practice, the
aggregation should be carried out over a larger set of
provinces or other small areas.

The following two alternative approaches have been
suggested for dealing with the robustness problem:

(i} Perform a time series outlier detection as proposed for
example in Chang, Tiao and Chen (1988).

(ii) Model the time series of proportions {%,, = 7,/
YA Pu.a=1, ..., (A — 1)} if these time series
exhibit smoother behavior than the series {7,}.
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The detection of outliers is an important aspect of any
modelling exercise but the question remaining is how to
modify the population value estimates once observations
(survey estimates) are detected as outliers. Notice in this
respect that our main concern is with current estimates that
is, the most recent available estimates. In Chang, Tiao and
Chen (1988), the motivation for the outlier detections is
to remove their effect from the observations so as to better
understand the underlying structure of the series and
improve the estimation of the model parameters. But if
the cause of an outlier observation is a real shift in the level
of the population values, this shift should not be removed
but rather accounted for in the model based estimators.
Harrison and Stevens (1976) propose to account for such
changes by modifying the prior distribution of the state
vectors, e.g. by increasing the variances of the state vector
errors so as to allow for more rapid changes in the state
vector estimators. See Morris and Pfeffermann (1984) for
an example. Qur approach of constraining the model
based estimators to coincide with aggregate survey
estimators provides a more automatic procedure that does
not require timingly prior information.

The second approach suggested for dealing with the
robustness problem is appealing since abrupt changes in
the population values can be expected to cancel out in the
ratios #,. The main disadvantage of the use of this
approach is that the model holding for the ‘true’ ratios =,
is naturally very different from the model holding for the
population values Y, as defined by (2.1) and in particular,
it no longer provides estimates for the trend and the
seasonal effects which, as mentioned in the introduction,
is one of the major uses of our approach. It is also not clear
how to extract the estimates for the population values ¥
from the model holding for the ratios #,,, without some
additional assumptions, like, for example, our assumption
that the aggregate survey estimator is sufficiently close to
the corresponding population value,
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The use of constraints of the form (2.11) was previously
considered by Battese, Harter and Fuller (1988) and by
Pfeffermann and Barnard (1991) for analyzing cross-
sectional surveys. Pfeffermann and Burck (1990) present
empirical results illustrating the good performance of the
modified estimators in abnormal time periods. See also
section 3.

3. FITTING THE MODEL TO THE ATLANTIC
PROYINCES, EMPIRICAL RESULTS

The model defined by (2.2), (2.5) (2.6) and (2.10) was
fitted to the monthly panel estimators in the four Atlantic
provinces in two stages. In the first stage the model defined
by (2.2), (2.5) and (2.6) was fitted to each of the provinces
separately. In the second stage, the correlations defining
the matrix ¢ of (2.10) were estimated using a grid search
procedure. (See section 2.6). The estimators obtained are,
Diag(¢) = (0.5, 0.25, 0.80, 0.0). The data used for
estimation of the model cover the years 1982-1988, Data
for 1989 were used for model diagnostics by comparing
the results within and outside the sample period.

3.1 Preliminary Analysis

Table 1 shows a breakdown of the Labour Force in the
four provinces by industry. The figures in the table refer
to March 1991. The (expected) sample sizes of the LFS are
also shown. As can be seen, the percentage breakdowns
in the four provinces are very similar justifying the
assumption of equal correlations between the error terms
of the census models across the provinces. The similarity
of the percentage breakdowns suggests also possible
improvements in the efficiency of the model based
estimators derived from the joint model over estimators
which ignore the cross-sectional correlations between the
province population values.

Table 1
Labour Force by Industry in the Atlantic Provinces, March 1991

Nova Scotia

New Brunswick

Newfoundland Prince-Edward

Island

Sample size 4,409 3,843 2,970 1,421
Thousands %y Thousands % Thousands %o Thousands U

Agriculture 7 1.7 7 2.3 ¢.5 0.2 6.0 9.8
Other primary industry 18 4.4 13 4.2 18.0 7.7 4.0 6.6
Manufacturing 44 10.7 37 11.9 230 9.9 6.0 9.8
Construction 24 59 21 6.8 18.0 7.7 4.0 6.6
Transp. and communication 35 8.6 30 9.6 20,0 8.6 5.0 8.3
Trade and Commerce 81 19.8 61 19.6 41.0 17.6 10.0 16.4
Finance 20 4.9 12 3.0 6.0 2.6 0.5 0.8
Services 143 35.0 107 34.4 83.0 356 19.0 31.1
Public Administration 36 8.8 22 7.0 23.0 9.9 6.0 9.8
Unclassified 1 0.2 1 0.3 0.5 0.2 0.5 0.8
Total 409 100.0 311 100.0 233.0 100.0 61.0 100.0
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Two other prior considerations mentioned in section
2.3 are that the model should account for possible rota-
tion group effects and for changes in the variances of the
survey errors over time. In order to obtain initial estimates
for the rotation group effects, we averaged the pseudo
survey errors, ef) = (y¥) — g,),j =1, ..., 6averall
the months in the sample period. We then divided the
averages by the conventional estimates of the standard
errors. (The errors e&,’ are correlated over time but the
correlations are small because except for lags 6, 12 efc. the
data of any given panel refer to different PSU’s in the
urban areas and different enumeration areas in the rural
areas. See section 2.1). Notice that in the absence of
rotation group effects, E{e{’}) = 0 for all j and ¢
irrespective of the model postulated for the population
values.

This preliminary (model free) analysis yields similar
results to the results obtained under the full model,
presented in Table 2 of section 3.3.

Next consider the variances of the survey errors.

Figure 1 plots the seasonal effects of the aggregate
survey estimators in the four provinces along with the
seasonal effects of the standard errors of these estimators
{multiplied by 100}. Denote as before by w,, the relative
labour force size in province « at time ¢, The aggregate
survey estimator is defined as ¥ = Y 4., w, 5, (Equation
2.11). The standard error of yf is (SD*), = [T A W,
(SD)2,]1*. The seasonal effects were estimated by
application of the additive model of X-11 so as not to bind
them to any particular model. We chose the additive model
since we assume the additive decomposition for the survey
estimators. (As revealed from Figure 4, the seasonal effects
of the aggregate survey estimators produced by X-11 are
very close to the seasonal effects obtained under the
model). :

Figure ! shows that the standard errors are influenced
by seasonal variations with a seasonal pattern that follows
closely the seasonal pattern of the survey estimators and
hence of the corresponding population values.

As discussed in section 2.3, rather than using the
original estimates of the design standard errors in the
models fitted to the panel survey errors we use smoothed
values, thus reducing the effect of the sampling errors on
the former estimators. Figure 2 plots the two sets of
estimators for Prince Edward Istand (P.E.I.) province
which is the smallest province in the Atlantic region and
hence has the smallest sample sizes. As can be seen, the
effect of the smoothing is to trim the extreme raw estimates
but otherwise the smoothed values behave similarly to the
raw estimates. The plots for the other provinces show a
similar pattern but the differences between the raw and the
smoothed estimates are smaller because of the larger
sample sizes in these provinces.
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We conclude this section by specifying the models
postulated for the seasonal effects in the four provinces.
QOur initial model assumed fixed variances for the error
termsns, = ¥ /LS4t = 1,2, ... (seeequation 2.1).
The predicted errors 4, = ¥ i1y §,,; obtained under
that model were found to decrease in absolute value as a
function of time in three out of the four provinces and
increase in time in the remaining province. Notice that
under the model defined by (2.1), with constant variances
of the state error terms, the Kalman filter converages
to a steady state by which the V-C matrices of the state
vector estimators and hence of 4, are constant. Thus,
we modified the initial model such that VAR{4,) =
o x g(t) where for the provinces of Nova Scotia,
Newfoundland and P.E.I. g(#) = ¢{~%% whereas for
New Brunswick g{¢) = 1.

3.2 Results

3.2.1 Rotation Group Biases

Table 2 shows the rotation group Biases (RGB) and
their estimated standard errors (SE) in the four provinces
as obtained under the full model defined by (2.3), (2.5),
(2.6) and (2.10}.

Table 2

Rotation Group Biases and Standard Errors
in the Four Provinces (x 100)

Nova New Newfound- Ff;mccd
Scotia Brunswick land war
Panels Island

RGB SE RGB SE RGB SE RGB SE

-0.20 0.10 -002 011 -047 013 0.32 0.17
0.18 0.09 0.40 0.10 0.42 012 0.18 0.15
0.32 0.08 0.24 0.09 0.47 0.12 031 0.15
0.06 0.07 0.01 0.09 0.18 0.12 0.03 0.15

-0.03 008 -0.15 010 -010 0.13 -0.25 0.16

-0.34 008 -0.50 ©¢.11 -050 0.14 -0.60 0.16

[ Y L A

The RGB behave fairly consistently across the provinces.
Thus, the biases for the 3rd and 6th panel are all highly
significant using the conventional #-statistic, having a
positive sign for the 3rd panel and a negative sign for the
6th panel. The biases for the 4th and 5th panels have again
the same sign in all the provinces and they are all non-
significant.

For the 2nd panel all the biases are positive but the bias
in P.E.I. is not significant. (P.E.I. is the province with the
smallest sample size}. It is also in P.E.I. that the sign of
the bias for the 1st panel is different from the signs in the
other provinces,
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As discussed in section 2.3, there is more than one
possible reason for the existence of RGB but the results
emerging from the Table provide a strong indication that
whatever the reason is, the biases found for some of the
panels are real and not just the outcome of sampling
errors. A drawback of the present analysis, however, is
that the RGB are assumed to be fixed over time. Section 4
proposes a more flexible model.

3.2.2 Goodness of Fit
A. TESTING FOR NORMALITY

Let 7§ = (v — y 1)) define the innovation
when predicting the j-th panel estimator one month ahead
and denote I, = (I\V, ..., I{%. The use of maximum
likelihood estimation in this study assumes that the vectors
I, are normal deviates (see section 2.4). To test this
assumption, we computed the empirical distribution of the
standardized innovations { (SNY’ = [I¥/SD(IE) 1,
t=(k+1),...,N) and compared it to the standard
normal distribution using the Kolmogorov-Smirnov test
statistic. This test statistic was computed for each of the six
panels in the four provinces yielding P-values larger than
0.15in 21 out of the 24 case¢s. (The tests were performed
using PROC UNIVARIATE of the SAS package. By this
procedure, if the sample size is greater than fifty as it is
in our case, the data are tested against a normal distri-
bution with mean and variance equal to the sample mean
and variance). Applying the same test procidure to
the standardized innovations {(S!),, = [,,/SD(1,)],
t=(k+1),...,N) wherel, = [L %, 1Y/6] yields
P-values larger than 0.135 in all the four provinces.

The estimators of the standard deviations of the innova-
tions used for the tests are those produced by the Kalman
filter, without accounting for the variance component
resulting from parameter estimation (see section 2.5), The

latter component is negligible even in P.E.I. which has the
smallest samples sizes among the four provinces. We come
back to this finding in section 3.4,

B. PREDICTION ERRORS WITH DIFFERENT
PREDICTORS

Table 3 contains summary statistics comparing the
behaviour of the prediction errors (innovations) in the
four provinces as obtained for three different sets of
estimators of the state vectors: (1) The estimators obtained
under the separate models (SM) defined by {2.2), (2.5)
and 2.6; (2) the estimators obtained under the joint model
(JM) defined by (2.2), (2.5), (2.6) and (2.10); (3) the
estimators obtained by imposing the robustness con-
straints (2.11) on the joint model (ROB). Below we define
the summary statistics using as before the notation
1,9’ = (y¥ - ﬁgf(,_l)) for the prediction error when
predicting the j-th panel estimator one month ahead.

MB, = TN, (L8 19/6)/(N — k) - mean bias
in predicting the mean survey estimator
.}-’ra = E?:]yf(&”/6'

SO0 T Ngsr I/ (N — k)| /6 - mean
absolute bias in predicting the panel estimators.

I

MAB,

SQRE, = (Eilis 6 T I /9012 /(N — )} -
square root of mean square relative prediction
error in predicting the mean survey estimator.

The above summary statistics are shown separately for
the sample period of July 1983 - December 1988 and for
the postsample period of January 1989 - December 1989.
In the latter case, the data were added one data point at
a time so that for predicting the survey estimator of
February 1989 for example we used the data observed until
January 1989 and so forth.

Table 3

Prediction Errors in the Four Provinces,
Summary Statistics (x 100)

Nova Scotia New Brunswick Newfoundland Prince Edward Island
SM IM ROB SM IM SM IM ROB SM IM ROB
7.83 - 12.88
MB -.11 -.07 —.06 -.12 —.09 -.25 —.18 - .08 06 14 13
MARB 12 11 .10 .14 A2 .29 24 20 .20 .23 23
SORE 5.76 5.62 5.70 5.48 5.47 7.03 6.91 6.96 9.34  9.13 9.17
1.89 - 12.89
MB .14 1 04 A7 .47 .36 .33 17 .84 .85 .86
MAR 32 32 .30 51 ) .39 37 .29 .84 .85 .86
SQRE 6.39 6.27 6.82 6.25 6.25 5.92 5.90 5.61 9.45  9.26 9.30
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The main conclusions from Table 3 are as follows:

(1) The results obtained for the three sets of predictors are
in general very similar, indicating that for the data
analyzed the use of the joint model improves only
slightly over the use of the separate models and that
there are no abrupt changes in the level of the series
in the years considered.

(2) The errors when predicting the survey estimators are
small both within and outside the sample period,
suggesting a good fit of the model. Notice that except
in P.E.I., the relative prediction errors as measured by
the statistics SOQRE, ar¢ all less than 7%.

(3) The biases of the prediction errors in the postsample
period are larger than in the sample period with rela-
tively large differences in New Brunswick and P.E.I.
This outcome by itself could suggest some model
failure in the year 1989. Inspection of the monthly
panel prediction errors in the four provinces for this
year, (not shown in the Table), indicates however that
although the errors are in general mostly positive, the
relatively targe biases are mainly the result of one or
two extreme errors which, with only 12 data points, has
a large effect on the average summary statistics. It
should be noted also that the estimated unemployment
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rates in the four provinces in the year 1989 are between
0.11 and 0.18 so that a prediction bias of .005 or even
.009 as obtained for P.E.L. is not high. Clearly, the
model can be modified to account for these biases if
they persist with additional data. On the other hand,
notice that the discussion above refers only to the bias
of the prediction errors since the bias of the model
based estimators of the concurrent population values

is controlled by the robustness constraints (2.11).
In view of the very similar results obtained for the three
sets of predictors considered and in order to highlight the
performance of the robustness constraints, we deliberately
deflated the unemployment rates in the period March 1985
to March 1987 by 33%, deflated the rates in the period
April 1987 - November 1988 by 25% and inflated the
rates in the period December 1988 - December 1989 by
33%, The effect of these operations is to introduce sudden
driftsin the datain themonthst = 39,¢ = 64and¢ = §4.
Figure 3 displays the aggregate, one step ahead prediction
errors (APE), I} = T oo wu [ L /=1 (0 = 79 -1y) /6]
as obtained for the joint model with and without the

robustness constraints, and for the separate models.
The clear conclusion from Figure 3 is that by imposing
the constraints, the APE in the periods following the three
months with sudden drifts are smaller than the APE

8 8
6 - - 6
4 - — 4
2 2
o 0
2 -2
-4 4
-6 -6

J J
1984 1985 1986

With robustness constraints

o—0o Without robustness constraints

J J J J
1987 1988 1989 1990

»——x Separate models

Figure 3. Aggregate One-Step Ahead Prediction Errors of the Three Sets of Predictors (x 100) for Contaminated Data
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obtained without the constraints. Thus, in March 1985 for
example, ¢ = 39, the APE are very large in absolute value
both with and without the constraints which is obvious
since the predictors use only the data until February 1985.
The APE corresponding to the robust predictors return
however, to their normal level much faster than the APE
of the nonrobust predictors. A similar behaviour is seen
to hold in the other two periods. Another notable result
featured in the graph is that in the periods following the
months with the sudden drifts, the joint model performs
better than the separate models even without imposing the
robustness constraints. Thus, by borrowing information
from one province to the other, the joint model adapts
itself more rapidly to the new level of the series. For more
illustrations of the performance of the robustness con-
straints see Pfeffermann and Burck (1990).

C. COMPARISONS WITH ESTIMATORS
PRODUCED BY X-11

As a final assessment of the appropriateness of the
model, we compare the estimates of the seasonal effects
and the trend levels as obtained under the model, with the
estimates produced by the X-11 procedure (Dagum 1980).
The latter is known to be less dependent on specific model
assumptions. This procedure is the commoaly used
method for seasonal adjustment throughout the world.
Figure 4 displays the average seasonal effects for the four
provinces as obtained by X-11 and under the model.
Figure 5 displays the corresponding trend level estimates.
The averages are computed using the weights (w;,)
employed in previous analyses. The model based estimates
shown in the two figures are the smoothed estimates
which, like X-11, employ all the data in the sample period.

As can be seen, the seasonal effects produced by the two
approaches are very close. The trend level estimates are
also close but the X-11 trend curve is smoother than the
model curve. Similar close correspondence between X-11
and the model is obtained for each of the four provinces
separately, including, in particular, P.E.I. with its
relatively small sample sizes.

3.3 Comparison of Design Based and Model Dependent
Estimators

We mention in the introduction that one of the major
reasons for wishing to model the raw survey estimators is
that the model produces estimates for the population
values which, at least in small areas, are more accurate
(when the model holds) than the survey estimators. We
computed the two sets of estimates for the four provinces
and found that as expected, the estimates produced by the
two approaches behave very similar but the design based
estimators are less stable, having in general higher peaks
and lower troughs. Animportant aspect when comparing
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the two sets of estimates is their performance in estimating
year to year changes of the population values. Such com-
parisons are free of the obscuring effects of seasonality.
Figure 6 displays the results obtained for P.E.l.. The
model dependent estimates are the smoothed values of the
joint model which use all the data in all the months. As
can be seen, the estimates produced by the model are much
more stable and vary only mildly from one month to the
other compared to the design based estimates. Figure 7
displays the standard errors (S.E.) of the unemployment
rates estimators in P.E.I. as computed under the design,
{smoothed values, see Figure 2}, and under the joint
model. Also shown are the S.E. when fitting the separate
model defined by (2.2), (2.5) and (2.6) and the corre-
sponding S.E. after accounting for the use of parameter
estimates instead of the unknown parameter values. See
section 2.5 for details. (The latter have been computed
only for the separate model to save in computing time).

There are three notable features emerging from the
graphs:

(1) The S.E. of the model dependent estimators under the
joint model are only mildly smaller than the S.E.
obtained for the separate model but considerably
smaller than the S.E. of the survey estimators.

(2) The S.E. of the model dependent estimators behave
similarly to the S.E. of the survey estimators, a direct
consequence of accounting for the changes in the
variances of the survey errors over time in the model.
See section 2.3 for details.

(3} Accounting for the use of estimated parameter values
in the computation of the S.E. of the model dependent
estimators has only a marginal effect on the computed
S.E. Recall that P.E.I. is the province with the smallest
sample sizes. The effect of accounting for the use of
parameter estimates in the other provinces is even
smaller.

4. SUMMARY

This article illustrates that data collected by a complex
sampling design, consisting of several stages of selection
with rotating panels, can be successfully modelled by a
relatively simple model. The model consists of two parts:
the census model holding for the population values and
the survey errors model describing the time series relation-
ship between the survey errors. The use of the model yields
more accurate estimators for the population values and
their components like trend and seasonality and it permits
estimating the S.E. of these estimators in a rather simple
way. The model equations can be modified to secure the
robustness of the model-dependent estimators against
possible model failures.
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Figure 6. Year to Year Changes in Design Based and Model Dependent Estimates of P.E.I. Unemployment Rates ( x 100)
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The model used in this article can be extended in various
directions. Foremost, the model should be applied
simultaneously to more provinces or other small areas to
ensure that the aggregate sample estimators ¥ 4_, wy, 7,
are sufficiently close to the corresponding population
values. See the discussion in section 2.7. Incorporating in
the model an outlier detection mechanism to further assess
the performance and suitability of the model is another
valuable addition.

Two other extensions are to relax the assumption of
constant variance for the error term ¢, in the census model
and to let the rotation group biases to change over time.
The first extension is suggested by the observation made
in section 3.1 that the variances of the survey errors are
subject to seasonal effects, with a seasonal pattern that is
similar to the seasonal pattern of the raw estimates. Fitting
the equations (2.4) in the four provinces indicates also the
existence of a mild trend in the variances which again
behaves similar to the trend of the raw survey estimates.
Thus, the variances of the survey errors seem to depend
on the magnitude of the survey estimators which suggests
that the variances of = V(€) change with the level of
the population values. As a first approximation one could
assume that ¢7 is proportional to the corresponding
variance of the survey error.

Letting the rotation group biases change over time is
a natural extension of the model, considering that the
population values means are time dependent. Modelling
the evolution of the group biases can however be problem-
atic because of possible identifiability problems with the
maodels holding for the trend and the seasonal effects.
See the discussion in Pfeffermann (1991).

The last two extensions are important and should be
explored but based on our experience with the unemploy-
ment data, we expect that they will affect the model
estimators very mildly.
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Maximum Likelihood Estimation of Constant Multiplicative
Bias Benchmarking Model with Application

IJAZ U.H. MIAN and NORMAND LANIEL!

ABSTRACT

The maximum likelihood estimation of a non-linear benchmarking model, proposed by Laniel and Fyfe (1989; 1990),
is considered. This model takes into account the biases and sampling errors associated with the original series. Since
the maximum likelihood estimators of the model parameters are not obtainable in closed forms, two iterative
procedures to find the maximum likelihood estimates are discussed. The closed form expressions for the asymptotic
variances and covariances of the benchmarked series, and of the fitted values are also provided. The methodology

is illustrated using published Canadian retail trade data,

KEY WORDS: Autocorrelations; Bias model; Generalized least squares; Sampling errors.

1. INTRODUCTION

Benchmarking methods are very commonly used for
improving sub-annual survey estimates with the help of
corresponding estimates, called benchmarks, from an
annual survey. The improvement generally is in terms of
reductions in the biases and variances of the sub-annual
estimates. For example, the monthly retail trade estimates
might be improved using estimates from annual retail trade
surveys. The sub-annual estimates are often biased due to
coverage deficiencies in the frame. Undercoverage is
caused by delay in the inclusion of new businesses and non-
representation of non-employer businesses in the frame.
Furthermore, the variances of the sub-annual estimates
are often larger than those of the corresponding annual
estimates, and the sampling covariances exist between the
estimates from different time periods due to overlap of the
samples. On the other hand, the annual estimates can be
assumed unbiased because, in practice, their frames do not
suffer much from coverage deficiencies. Detailed discus-
sions on benchmarking can be found in Laniel and Fyfe
(1989; 1990), Cholette (1987; 1988), and others.

Several procedures for benchmarking time series are
available in the literature. Based on a quadratic minimiza-
tion approach, Denton (1971) proposed several procedures
to benchmark a single time series. Cholette (1984) proposed
a modified version of Denton’s order one proportional
variant method where he removed the starting condition
to avoid transient effects. The assumptions made by
authors are very unlikely to be satisfied by most economic
time series. More specifically, their models assume that the
bias associated with sub-annual estimates follows a
random walk and that both the sub-annual and annual
data are observed without sampling errors. In general the
estimates come from sample surveys and hence they are
subject to sampling errors.

Hillmer and Trabelsi (1987) proposed an alternate
approach to benchmarking which is based on an ARIMA
model (see e.g., Box and Jenkins 1976). Although this
approach takes into account the sampling covariances of
the sub-annual and annual estimates, the approach does
not accommodate biases in the sub-annual estimates.
Cholette and Dagum (1989) modified the Hiltmer and
Trabelsi approach by replacing the ARIMA model by an
“‘intervention’” model. This approach allows the modelling
of systematic effects in the time series but still possesses
the same weaknesses as found in the Hillmer and Trabelsi
model (Laniel and Fyfe 1990},

In order to overcoine the deficiencies mentioned above,
Laniel and Fyfe (1989; 1990) proposed a non-linear bench-
marking model on levels. The authors provided a complex
algorithm to find the generalized least squares (GLS)
estimates (and their asymptotic covariances) of the model
parameters. This model takes into account the sampling

- covariances of the sub-annual and annual estimates, and

can be used when the benchmarks come either from cen-
suses or annual overlapping samples. This model also
assumes a constant multiplicative (relative) bias associated
with the sub-annual level estimates. Other constant multi-
plicative bias benchmarking models has been proposed by
Cholette (1992) and Laniel and Mian {1991). Cholette
assumes a model in which both the bias and errors are
multiplicative. The author used the GLS theory to find the
estimates of the model parameters after making a loga-
rithmic transformation on the model. Laniel and Mian
(1991) have provided an algorithm to find the maximum
likelihood estimates of a constant multiplicative bias
benchmarking model with mixed {a mixture of binding
and non-binding) benchmarks. The binding benchmark
here is an estimate from a census (i.e., an estimate with
zero variance) and the non-binding benchmark on the other
hand is an estimate based on a sample. The assumption

! [jaz U.H. Mian and Normand Laniel, Social Survey Methods Division, Statistics Canada, Ottawa, Ontario, K1A 0T6, Canada.
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of a constant multiplicative bias will be verified in practice
if the rate of frame maintenance activities is relatively
stable, that is, when the proportion of frame coverage defi-
ciencies is fairly constant over time. This assumption also
implies that the covered and uncovered businesses in the
frame possesses the same average period-to-period ratios
with respect to the variable of interest. The nature of bias
associated with sub-annual estimates may vary from one
time series to another. Cholette and Dagum (1991) have
proposed a benchmarking method which assumes a con-
stant additive bias associated with the sub-annual estimates.

The purpose of this paper is to consider the maximum
likelihood (ML) estimation of the parameters of Laniel
and Fyfe’s model and the results are based on the report
of Mian and Laniel (1991). Their modetl is described in the
next section. Two iterative processes to find the ML esti-
mates of the model parameters are discussed in Section 3,
The closed form expressions for the asymptotic covariances
of the estimators of model parameters and of the fitted
values are provided in Section 4. The published Canadian
retail trade data collected by Statistics Canada are used to
illustrate the methodology.

2. CONSTANT MULTIPLICATIVE BIAS
MODEL (CMBM)

In order to meet the benchmarking requirements of the
economic surveys, the following constant multiplicative
bias model (CMBM) has been proposed by Laniel and
Fyfe (1989; 1990). The model assumes that the biased sub-
annual estimates y, follow the relationship given by

y;=B&,+a:, t=1,2,...,n (2.1)

and the unbiased annual estimates z follow the rela-
tionship

Ir = EG,+bT, T=12,...,m, (2.2)
teT

where the subscripts # and T denotes respectively the sub-
annual and annual time periods, @, is the unknown fixed
sub-annual parameter, 8 is an unknown constant bias
parameter associated with y,, and g, and b, are sampling
errors associated respectively with y, and zy. The above
model is a hybrid type {mixed) model in which bias is
multiplicative but errors are additive.

Before proceeding further, let us define the column
vectors ¥y = (¥, V2 - s ¥a) s 2= (21,22 -+ o2 Tm) s
a=(a,a ...,a), b= (b, by ..., b)), and
©=1(6,6, ...,49,)’. The CMBM model, given by
(2.1) and (2.2), can be rewritten as

w = X‘ge + Uu
(2.3}
= Xo8 + X0 + u,

where

XB = (6In:D’)’s XB = (9::0:).-’ XD= (O’ZD’)',

u=(ab')’, D = (dn),
(2.4)

w=(y:z'},

I, is an identity matrix of order n, 8 is a zero vector or
matrix of an appropriate order, and dy, is an indicator
function equal to 1 for t €T and to 0 otherwise. It is
assumed that the sampling error vectors 4 and b follow multi-
variate normal distributions such that @ ~ MN(0,V,,)
and & ~ MN(0,V,;). Alsa, in the general case, g and b
are correlated, which means that Cov(a,b) = ¥,, =
Vi, # 0.1t is shown in the next section that the ML and
GLS estimators of the © and £ are same for this model.
Thus the assumption regarding the normality of @ and &
is required only to obtain the Fisher information matrix
(and hence variances) of the ML estimators.

3. MAXIMUM LIKELIHOOD ESTIMATION

The log-likelihood function under CMBM can be
written as

inL) = — LM pon —%ln| Vi —-;-Q,
G.1)
where
0= (w— X;8)' V' (w — X;0) (3.2)
and

V= (Vaa Vab) .
Veie Voo
The ML estimates of the model parameters © and 3
can be obtained, assuming ¥ known, by maximizing the
log-likelihood function (3.1) or equivalently by minimizing
the quadratic term Q (3.2). For this particular model, the
ML and GLS estimators of the model parameters are the
same and the distinction between them will be made only
if the need arises. Taking the first order partial derivatives

of In{L) with respect to © and 3, respectively, and then
equating them to zero, we have

dln(L) s e
6 =X;Vl{w - X30) =0,
(3.3)
dln(L} A
% =X4 V1w - X30) =0.
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Since E(w) = X3 0 under the model (2.3), the above
equations are estimating equations in the sense of Godambe
(1960) and they are information unbiased. [t is interesting
to note that X3 ¥~ and X3 ¥ ' do not depend on w so
that the equations (3.3) converge to zeros and hence have
consistent roots as long as E(w) = X 0. That is, even
when V in the above eguations is replaced by some of its
consistent estimate the equations will provide consistent
estimates of the vector © and 3. Also note that the above
equations are non-linear in the parameters to be estimated
and it is not possible to obtain explicit expressions for the
estimators of @ and 3. Therefore some iterative procedure,
such as the well-known Fisher-Newton-Raphson method
(also called method of scores by Fisher), may be used to
obtain the estimates. The elements of expected Fisher
information matrix needed to implement the Fisher-
Newton-Raphson method are provided in Section 4.

An alternate way to find the ML estimates of the model
parameters is to solve the estimating equations {3.3)
successively. By solving the first expression of (3.3), the
estimate of @, as a function of 8, is given by

~

0

08 = X4V ' X ' X5V 'w.  (3.4)

Similarly, by solving the second expression of (3.3), the
estimator of 3, as a function of ©, is given by

B =B(0) = [0 Vai(y — ¥ Vi (z — DB))]/
[0 V28], (3.5
where

_ -1
l{m‘.b = Vaa - Vab %)b %a'

The ML estimates of © and 3 can be obtained by success-
ively calculating equations (3.4) and (3.5) until conver-
gence. This procedure has an advantage over the Fisher-
Newton-Raphson method as it is easy to implement.
However, for this kind of algorithm, the convergence is
usually very slow, We will compare these two methods in
Section 6 to check the speed of their convergence.

Once the ML estimates of the model parameters are
obtained, one can find the fitted sub-annual values y = 30
and the fitted annual values { = D®.

Initial Guess for 8 and 8
In order to obtain an initial guess for 8, say Ay, let us
rewrite the model (2.3} as

w* = X3 8 + u*,

where w* = ((Dy)':(z — D)), X§ = ((DO)":0")"
and u* = ((Da)’:b') ‘. Thus the ML estimate of 3 is
given by
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B=|xg (vt wHf[Xs O X8, (3.6)

where

DV, D' DVy
F* = Cov(u*) =
Voa D' Vo

Using the fact that E(z) = D@, and replacing DO by z
in (3.8), an initial guess for 8 may be taken as

e [ Y1)

(3.7
[2" DV D) 7 Dylf[2" (DVero D7) " 2]

The initial estir[late of 9 can be obtained from (3.4) by
replacing 8 by 3,.

4. COVARIANCES OF THE ESTIMATORS

In this section, we derive the expressions for the asymp-
totic covariances of the ML estimators of CMBM
parameters by inverting the Fisher information matrix,
say . The asymptotic covariances of the fitted sub-annual
and annual values are provided by using the delta method.
First, let us consider the derivation of the covariances of
the ML estimators of @ and 3. The elements of § (/.e., the
negative expectations of the second order partial
derivatives of In(L)) are given by

SRS
0, = — |2 iy
| 60 00" |
{ __E_'M— =a'Vv-lLe
22 . aﬁz | aqa.b
and
3%In(L)
Q,=0, = —E| ——=—| = X;V~'Xs.
12 21 [ 90 3.6 ] 4] [c]

Therefore, the Fisher information matrix of order (n +
1) X (n + 1) is given by

— I:nll QIZ] (4 l)
Q)
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Inverting @ by using the algebra of partitioned matrices
we have

Cov(9) = 07},

var(f) = 23!,

(4.2)
Cov(8,8) = — a759,,05'
= — 7' 9,93,
where
=0, — 9:03' %, ‘
(4.3)

Doy =M — 00705,

Once the covariance matrix € ~! is available, the asymp-
totic covariances of the sub-annual fitted values § can be
obtained by using the delta method (see e.g., Rao 1973).
Let A be the matrix of first order partial derivatives of y
with respect to the elements of (@':8)’. Clearly, the
n X (n+ l)ymatrixisA = (B7,:0). Now, by using the
delta method, the asymptotic covariance matrix of § is
given by

Cov(j) = AR 1A, (4.4)

Furthermore, the covariance matrix of the annual fitted
values Z, from the standard multivariate normal theory,
is given by

Cov(f) = DL D', (4.5)

where D and &, ; are as defined by (2.4) and (4.3),
respectively.

5. MAXIMUM LIKELIHOOD ESTIMATION
WHEN ¥, = 0

In this section we consider the ML estimation of the model
parameters for the special case when the error vectors a
and b are uncorrelated (i.e., Cov{a,b) = V,, = Vi, = 0).
Usually this is the case in sample surveys when annual and
sub-annual samples are drawn independently from each
other. Reduction in the results of Sections 3 and 4 can be
seen by substituting ¥,, = ¥V}, = 0in the equations. As
an example, for this special case, the ML estimators of ©
and 8, given by (3.4) and (3.5), reduce to

0° = 0*(8) = (8°V,' + D'Vy'D) ™!

(BVa'y + D'Vg'?)

and

I

B = g~(0) = [0' v ly|[[e°V..' @],

respectively. These equations must be solved successively
to obtain the required estimates.

Similarly, the elements of the Fisher information matrix
reduce to

oh = B*Vz' + D'Vyp' D,

&
N'
I

0'v,'o,

o =W = pr,le.

6. AN APPLICATION

Here we present an example using published Canadian
retail trade data which results from monthly and annual
retail trade surveys conducted by Statistics Canada. The
monthly retail trade estimates and their coefficients of varia-
tion (CV) are available from the Statistics Canada publication
“Retail Trade’” (Catalogue No. 63-005 Monthly). There
are two types of monthly retail trade estimates, namely
preliminary and revised estimates. We use the revised but
seasonally unadjusted (raw) estimates for this example,
Since the CVs of the revised estimates are not available,
the CVs of the preliminary estimates are used to approx-
imate the variances of the revised monthly estimates. The
data for the period January 1985 to December 1988 are
used in this example, Another difficulty was to find the
autocorrelations for monthly retail trade estimates. Based
on some monthly retail trade data, Hidiroglou and Giroux
(1986) provided the estimates of autocorrelations at lags
1, 3, 6, 9 and 12 for three different kinds of stratum in
several provinces of Canada. As an approximation to the
autocorrelations of monthly retail trade estimates, the
averages of their estimates of autocorrelations for the
strata in the Province of Ontario and Standard Industrial
Classification Code 60 (Foods, Beverages, and Drug
industries) are used. The approximate {averaged) auto-
correlations, say p(k), are given in Table 1.

Table 1

Approximate Autocorrelations p(k) for the Monthly
Retail Trade Estimates

Lag & 1 3 6 9 12

(k) 0.970 0.940 0.918 0.914 0.962
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The method of ordinary least squares and an algorithm
of McLeod (1975} for the derivation of theoretical auto-
correlations for autoregressive moving-average time series
was used to revise the observed autocorrelations. An
ARMA (1,0)(1,0),, seasonal multiplicative model was
fitted on the five observed autocorrelations by minimizing
the sum of squared differences between the observed and
theoretical autocorrelations. Then the estimated model
parameters and the above mentioned algorithm of McLeod
were used to calculate the autocorrelations for all other
lags of interest. Given that the ARMA model is correct for
theoretical autocorrelations, this approach provides a
consistent estimate of the autocorrelation function. These
final (revised) approximate autocorrelations for up to
47 lags are given in Table 2 and were used to approximate
the covariances for monthly retail trade estimates via
multiplication with the standard deviations.

Table 2

Revised Approximate Autocorrelations p* (&) for the Monthly
Retail Trade Estimates for up to 47 Lags

Lagk o*(k) | Lagk o*(k) | Lagk o*(k) | Lagk o*(k)

0 1.0000 12 0.9602 24 0.88% 36 0.8100
I 0.9758 13 0.9345 25 0.8647 37 0.7869

2 09555 14 0.9126 26 0.8433 8 0.766%
10939 15 0.8943 27 0.8253 3¢ 0.7501
4 0.9266 16 0.8798 28 0.8i07 40 0.7363
5 09177 17 0.8687 29 0.799%4 41 0.7254
6 09126 18 0.8612 30 0.7%13 42 0.7176
7 09113 19 08572 31 0.7854 43 0.7126
& 09136 20 0.8567 32 0.7843 44 0.7106
9

0.9196 2l 0.8595 33 0.7862 45  0.7114
10 0.9293 22 0.8661 34 0.7909 46 0.7151
11 0.9429 23 0.8760 35 0.7989 47 0.7217

At the time this study was performed, the annual retail
trade estimates were only available for years 1985 through
1988. These estimates are available from Statistics Canada
publication ““ Annual Retail Trade’’ (Catalogue No. 63-223
Annual). The variances of annual retail trade estimates are
not available from the literature and have been computed
from the actual survey data. The covariances between
maonthly and annual estimates are zero because the samples
of monthly and annual retail trade surveys were drawn
independently from each other. The annual retail trade
¢stimates are from dependent samples, thus their
covariances are non-zero. But the estimates of covariances
are not readily available via regular survey processing and
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a study would be required to obtain them. Consequently,
for the purpose of this example, we assumed that the
covariances between annual retail trade estimates are zero.

An interesting question was raised by one of the ref-
erees. He asked what will happen when the variances and
covariances of survey estimates are not known. Thisis a
difficult problem and cannot be answered so easily. How-
ever the model presented assumes these variances and co-
variances are known. In general, the estimating equations
used to find the maximum likelihood estimates need only
the consistent estimates of variances and covariances. It
is a common practice in benchmarking problems to
estimate these variances and covariances from survey data
since the theoretical values are never known (see, e.g.,
Hilimer and Trabelsi 1987).

The computations required for this example are per-
formed by an algorithm written in the GAUSS program-
ming language for micro computers. The initial estimate
of 8 for the iterative process, obtained form (3.7), is given
by B, = 0.9162. The initial estimate of the parameter
vector @ is obtained from (3.4), after replacing 8 by ;.
Both the Fisher-Newton-Raphson and successive iteration
methods, as discussed in Section 3, are used to find the
ML estimates of the model parameters. The final ML
estimate of 3 is found to be very close to the initial estimate
and is given by 8 = 0.9016 with CV = 0.0065. It is
interesting to note that the Fisher-Newton-Raphson
method converged very quickly to a final solution for this
example. In fact it converged in only 6 iterations (about
1 minute) for a ten digit precision whereas the successive
calculations method converged, with the same precision,
in over 500 iterations (over 45 minutes), on a 386DX-25Mhz
personal computer. However, as they should, both methods
converged to the same final solution., The covariance
matrix of the estimated vector (07:3)’ is obtained by
inverting the Fisher information matrix £, given by (4.1),
after replacing parameters by their ML estimates. The
original series of the monthly retail trade estimates and the
benchmarked series of the ML estimates along with their
CVs are given in Table 3. The fitted sub-annual series
along with their CVs are also given in this table (last two
¢olumns), The original and benchmarked series are also
plotted in Figure 1. The results show that the original
behaviour of the series is not disturbed by benchmarking
and a very large reduction in the CVs of sub-annual
estimates is achieved. The original series of the annual
retail trade estimates and fitted annual values along with
their CVs are given in Table 4. The variances of the fitted
values in Tables 3 and 4 are obtained by using expressions
(4.4) and (4.5), respectively, after replacing parameters by
their ML estimates. The results of fitted values also show
alarge reduction in the CV’s of the original estimates. That
is, the reliability of the monthly and annual series are
increased by benchmarking.
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Table 3
Monthly Retail Trade Estimates, ML Estimates of the 8,’s and Fitted Values
(all in millions of dollars) Along with their CV’s

Year Month ¥ CV{y)* o, Ccv(6,) 9, CV(#)
1985 l 8,689.668 0.008 9,686.630 0.00210 8,733.384 0.00667
2 8,390.380 0.008 9,350.078 0.00210 8,429 951 0.00665

3 10,107.485 0.006 11,248.048 0.00233 10,141.146 0.00496

4 10,541.145 0.008 11,741,785 0.00200 10,586.294 0.00656

5 11,763.659 0.007 13,094,151 0.00198 11,805.576 0.00570

6 11,067.487 0.008 12,321.326 0.00189 11,108.803 0.00647

7 10,810,755 0.008 12,029 467 0.00184 10,845.666 0.00643

8 11,289.656 0.009 12,554.808 0.00206 11,319,309 0.00726

9 10,336.540 0.009 11,484,216 0.00205 10,354.073 0.00728

10 11,213.751 0.010 - 12,447.696 0.00256 11,222.737 0.00809

11 11,935.495 0.010 13,234.412 0.00258 11,932.034 0.00808

12 13,300.288 0.008 14,734,891 0.00188 13,284.853 0.00643

1986 1 9,753.373 0.009 10,794.009 0.00221 9,731.787 0.00716
2 9,249,279 0.009 10,227.777 0.00224 9,221.277 0.00709

3 10,609.952 0.008 11,729.293 0.00207 10,575.031 0.00622

4 11,637.936 0.008 12,860.626 0.00206 11,595.032 0.00614

5 12,695.108 0.008 14,024,139 0.00205 12,644.046 0.00605

6 11,826.254 0.008 13,059.556 0.00202 11,774,385 0.00598

7 11,940.908 0.010 13,164.500 0.00233 11,869.002 0.00740

8 11,866.547 0.010 13,070.205 0.00232 11,783.987 0.00743

9 11,540,397 0.009 12,712.283 0.00202 11,461.287 0.00670

10 12,208.845 0.010 13,430.932 0.00235 12,109.215 0.00747

11 12,201.498 0.010 13,418.219 0.00240 12,097.753 0.00747

12 14,479.170 0.009 15,933.951 0.00215 14,365.916 0.00670

1987 1 10,271.723 0.012 11,276.676 0.00357 10,166.956 0.00891
2 9,951.105 0.010 10,945.319 0.00261 9,868.208 0.00737

3 11,492,162 0.008 12,663.849 0.00230 11,417,620 0.00584

4 12,867.443 0.009 14,172,605 0.00235 12,777.501 0.00652

5 13,508.434 0.012 14,850,143 0.00343 13,388.765 0.00862

6 13,608.274 0.011 14,973.985 0.00287 13,500.418 0.00786

7 13,278.474 0.023 14,483.340 0.01066 13,058.057 0.00165

8 12,728.196 0.008 14,028.998 0.00227 12,648.426 0.00577

9 12,616.239 0.009 13,888.982 0.00233 12,522,188 0.00659

10 13,760.829 0.008 15,156.409 0.00227 13,664.890 0.00592

1t 13,380.142 0.008 14,733,240 0.00227 13,283.365 0.00597

12 16,269.757 0.007 17,928.148 0.00241 16,163.867 0.00525

1988 1 11,134,013 0.010 12,234,529 0.00274 11,030.548 0.00753
2 10,959.374 0.010 12,042.761 0.00276 10,857.651 0.00754

3 13,177,788 0.008 14,508.565 0.00233 13,080.800 0.00602

4 13,666,311 0.009 15,035.737 0.00243 13,556.094 0.00676

5 14,267.530 0.006 15,742,039 0.00379 14,192.890 0.00448

6 14,432.944 0.009 15,884,130 0.00240 14,320.997 0.00673

7 13,960.825 0.009 15,363.957 0.00240 13,852.014 0.00673

8 13,691.315 0.008 15,073.691 0.00233 13,590.312 0.00606

9 13,773,109 0.008 15,159.075 0.00235 13,667.294 0.00613

10 13,900.743 0.009 15,279.950 0.00255 13,776.282 0.00696

11 14,453,461 0.009 15,884.279 0.00260 14,321.132 0.00700

12 17,772,990 . 0.009 19,529.791 0.00267 17,607.895 0.00702

*Source: Statistics Canada publication *‘Retail Trade” (Catalogue No. 63-005 Monthly).
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Figure 1. Original and Benchmarked Series of Monthly Retail Trade Estimates for All Stores in Canada

Table 4

Annual Retail Trade Estimates and Annual Fitted Values
(in millions of dollars) Along with their CV’s

Year ¥ CVi(zy) ir  CV{zy)
1985 143,965.400 0.00033 143,927.507 0.00032
1986 154,377.100 0.00031 154,425.491 0.00030
1687 169,944 .600 0.00193 169,101.697 0.00128
1988 181,594.000 0.00137 181,738.512 0.00127

*Source: Statistics Canada publication “*Annual Retail Trade”
(Catalogue No. 63-223 Annual).

7. CONCLUSIONS

The non-linear model discussed here seems to be very
appropriate for benchmarking an economic time series
from large sample surveys. The proposed iterative proce-
dures to find the maximum likelihood estimates of the
model parameters are very simple to implement in practice.
However, the convergence of the successive calculation
method is very slow in comparison to the Fisher-Newton-
Raphson method. The closed form expressions for the
covariances of the ML estimators are provided. These
estimates and their covariances may be used to make
inferences regarding model parameters. Furthermore,
expressions for the fitted sub-annual and annual values
along with their asymptotic covariances are also provided.
The methodology presented in this article scems to provide
a good fit to the Canadian retail trade data. However, the
goodness of fit tests for this and other benchmarking
models need to be developed.
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Optimum Two-Stage Sample Design for Ratio Estimators:
Application to Quality Control -
1990 French Census

JEAN-CLAUDE DEVILLE!

ABSTRACT

This study is based on the use of superpopulation models to anticipate, before data collection, the variance of a
measure by ratio sampling. The method, based on models that are both simple and fairly realistic, produces expres-
sions of varying complexity and then optimizes them, in some cases rigorously, in others approximately. The solution
to the final problem discussed points up a rarely considered factor in sample design optimization: the cost related

to collecting individual information.

KEY WORDS: Census quality control; Superpopulation model; Two-stage sample design optimization; Multiple

objective survey,

1. INTRODUCTION

The survey method used for quality control of French
census data pointed up a number of new and interesting
problems, three of which are dealt with in this paper. After
discussing them in general terms, we describe their specific
application to the census.

In all cases, the problem is one of optimizing a two-
stage survey in which the primary units are census collection
districts. Units are selected using an index 4 that varies in
a population U of districts and is, in concrete terms, a
processing unit of the census forms collected.

The first problem is that of estimating the frequency
of a characteristic in the population of forms (the fact of
containing an error). Keeping in mind the accuracy defined
for this estimate, an attempt is made to minimize survey
cost with a cost function in the form

CT = mCO + HC], (11)

where m is the number of pritnary units (districts) sampled,
C, the cost of processing one PU, n the number of final
units {forms} sampled and C, the cost of processing one
final unit. The problem is fairly common when a mean is
to be estimated (see for example W, Cochran (1977)). Our
solution is more complete as it takes into account the great
variability in primary unit size.

The second, more unique, problem is also more signifi-
cant. The final population (i.e. the forms) is made up of
G separate groups (g = 1to ). We are looking for an
estimate of the frequency of occurrence of a characteristic
in each group, with an accuracy defined for each one. The
constraint resides in the fact that, because the primary
units are common to all groups, sampling within one PU
affects all groups.

The objective is to minimize survey cost, which is
expressed as

e}
Cr=mC, + Y 7,C,, (1.2)

g=1

where n, is the total number of final units in group g and
C, the cost of processing one final unit in group g. In
practice the groups are made up of the different types of
census forms.

The third problem is related to coding control, We do
have an a priori measure of the difficulty of coding each
form, Formally, therefore, we have, at the level of each
individual { in the population, a quantitative variable X,
such that the probability (within a meaning to be defined)
of the individual having the characteristic to be measured
is approximately proportional to X;. We are seeking to
use this information to minimize the cost of control
(measurement of the frequency of the ‘‘coding error”
characteristic) subject to a defined survey accuracy.

In each case, plausible and simple superpopulation
models allow us to evaluate the anticipated variance of the
survey. In a manner of speaking, thisis an almost standard
illustration of model assisted survey sampling as described
in Sdrndal, Swensson, Wretman (1992).

2, OPTIMUM ESTIMATE OF THE PROPORTION
OF RECORDS CONTAINING ERRORS
TWO-STAGE SAMPLE DESIGN

Each primary unit k (district) has a known number N,
of individuals (forms). Of this number, D display the
characteristic of interest (i.e. contain an error). The aim
is to estimate:

! Jean-Claude Deville, Chef de la Division des Méthodes Statistiques et Sondages, Institut National de la Statistique et des Etudes Economiques,

18, boul. Adolphe Pinard, 75675 Paris, CEDEX 14.
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P=EDk/ENk.

The survey is done by drawing a sample s of primary
units (PU), with ., the probability of inclusion in the
first order and min the second order, to be determined.
Subsequently, if primary unit & is drawn in s, n; individuals
drawn by simple random sampling without replacement
are checked; dj denotes the number of forms containing
errors that will be found.

Estimator £, of P, = D, /N, is expressed B, = d, /n,
and D, = N, B, gives an unbiased estimate of D,. The
estimator of P is expressed

T De
s M

P=—. .
v R
s T

2.1

This is the ratio of the unbiased estimators of D and N,
the total number of forms. Although this number is
known, estimator (4.1) is obviously more accurate than
I/N ZS D}/‘H’k .

We have
Var(P) = EVar(P|s) + Var E(B|s). (2.2
Now

Var(P| s) =N"ZE =N
k k

N P —Pk)Nk(l 1)
5 7'% Nk_l

- N,
where N = E =*
s T

Hence

2 —
EVar(P|s) = n-2 ) Tk Pl = BON, P")N"(i—i)

v T Ne—l e NpJ
(2.3)
Furthermore,
Y D
. M
E(P|s) = ——
Yy N
s T

The variance of this value is obtained by linearization
following introduction of variable Z, = D, — PN, =
N.(P, — P).

Deville: Optimum Two-Stage Sample Design

)_

We obtain

Var E(P|s) = N2 Var( E

5 &

Taking into account that ¥, Z, = 0:

2
VarE(P| s) = N'Z(E Zk +EE 22y WH).
k

T k#! Ty
(2.4)

The sum of (2.3) and (2.4) gives us the variance of
estimator (2.1).

2.1 Introduction of a Model

Not only is the variance of # difficult to manipulate,
it contains unknown parameters. The problem may be
circumvented by formulating the hypotheses required to
produce a superpopulation model. It is assumed below
that the parameters of this model may be estimated from
the results of a preliminary test covering a very small
portion of the population. In the model, expectation is
denoted by E; (variance by Var;) and all the random
variables are assumed independent of the sampling
process.

The model has the following specifications:

(a)} Dy has a binomial distribution (N, py). In the model,
P, is thus an estimator of p,.

(b) py is itself random; we assume p, to be independent
and have the same distribution, with

Ezpk = P,

Var p, = o*

for any k, in particular whatever the value of N,.

In the model, after conditioning with p; , we obviously
have

E (Dy| pi) = N oy,
Var (Dy | pi) = Nepe(l = py).

The anticipated variance of Pis E; VarP, to which we
now turn our attention. For its evaluation, we denote

(a) E;(P, — P)? = E(E,(P, —~ py + P — P} 1)

_P(1-P) -

+ az,
Ny
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(b) E; P() — Py) = E{E:((P — PHY| pi))

= E, po(1 )Nk—l
£ Py Pr N

N, — 1
P(l — P) — o))k ——
(P( ) = @) ~

(¢) E; Z; Z; = 0, because of the independence of Z, and
Z,, clearing one extremely cumbersome term and ;.

When we combine all the pieces of (2.3) and (2.4), a
minor algebraic miracle occurs, producing the expression

. NZ 2
ENar P = N2 E —k(az + T—)
v Tk Ay

2.1.1)
where 72 = P (1 = P) — o’

{by nature a positive quantity)

Comment:

The algebraic miracle is easily explained if we are not
seeking the variance in the sole context of sample design.
It is in fact the result of a model slightly more general than
the one suggested.

Suppose we wish to estimate the total N¥ = §,¥;0f a
variable Y and suppose that, to this end, a two-stage
sample is drawn: in the first stage, primary units k are
drawn with =, probability and, in the second, #, final
units are drawn by simple random sampling.

We are assuming a model in which:
K; = Y + 40 + E,',

with o, a variable linked to the PU of index k. oy is
independent, subject to the same zero expectation and has
a variance ¢2. €; is also independent, centred and has
a variance 72, With 7 = w0, /N, (N, = size of PU
number k), the Horvitz-Thompson estimator of the fotal
is ¥ = ¥ Y;/=!, the sum being extended to the sample.
In the model, and conditionally in the sample, we have

N N2 2
Var, (Y| s) = E —’;(02 + T—).

s Mk

For this expression, expectation is again expressed in
the form of equation (2.1.1).
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2.2  Search for an Optimum Sample Design

The maximum variance of P is set by the criteria
selected for quality control. As the survey is repeated for
each processing unit, it is only natural to seek to minimize
the expected survey cost given in (2.1.1), i.e.

E Y (Cp + mCy) = 2 m(Cy + mC). (2.2.1)
s u

The problem of optimization is expressed as:
To minimize E m (Cp + 1, Cy)
u

with the constraints

N2 2
N2 Y, —k(az + 7—) <V

v M

and for any k, n;, < N.

Let us now apply a Lagrange multiplier X to the first
constraint - which will obviously be saturated - and
multipliers p, to the others. We obtain the solutions

N?. 2
C, + mC, = \—¢ (02 + l) (2.2.2)
Tk ny
and, for any k:
NZ 2
Cim =A% Do, (2.2.3)
Ty ny

with
p‘.k=0if nk<Nk and }Lk>0 if nk=Nk.

For the use of Lagrange multipliers, see for example
Luenberger (1973).

For all primary units in which g, = 0 (the largest), we

obtain
np = 1(&)V1 = n*,
a C]

Each primary unit receives the same allocation, which
corresponds to the consistent accuracy principle. Going
back to equation (2.2.3), we observe that, again for these
primary units, the probability of inclusion m; must be
proportional to size Ny, i.e.

(2.2.4)

o= NECTY n—iNk. 2.2.5)
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This is the standard proof of a self-weighting one-stage
survey in which the first stage is drawn with probabilities
proportional to a measure of size. (See for example
Cochran 1977),

Since n, is independent of Ny, it is impossible to have
ny = Nj or p, > 0 unless Ny = n*. Equation (2.2.2)
gives us the probability of inclusion to within one factor:

2 b3 N\ 2 2\
= NN, a” + T/ Ny = NANS Neo® + 17 )
C, + C\N, N.C + C,

(2.2.6)

Relations (2.2.5), valid if N; = n*, and (2.2.6) valid
if Ny, = n*, establish that 7 is proportional to a known
variable T, = f(N,), for which the graph is given in
Figure 1.

To fully define the survey, the number m of primary
units to be drawn must still be set. T = ¥, Ty is also a
known quantity,

If we restrict ourselves to fixed size sampling, we have
#x = m T, /T. m may be determined by importing this
value into the variance constraint, i.e.

NZ
NVm=T E ?"(02 + 72/n).
v fx

If, as a first approximation, assuming 7, = N,, we
obtain the simplified form:

mV, = a* + r%/n*.

We now have a full solution to the problem.

Tr J}

¥

n* Nk

Figure 1. Graph of = as a function of N,
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3. OPTIMUM ESTIMATE FOR A TWO-STAGE
SURVEY IN WHICH THE PRIMARY
UNITS ARE STRATIFIED

The harsh facts of the situation complicate the problem
somewhat: because a number of types of forms must be
controlled separately, a fairly general problem, described
below, arises.

For each primary unit (a district in a processing unit)
we know the population N;, of secondary units belong-
ing to & groups, The *“‘population”’ of PU number & is
Niy = Lg Ny that of group gis Ny, = T N, As
described above, we are looking for the probability of
inclusion m, with which to sample PU number %, the
number of PUs to be drawn and the allocation Mg of the
sample among the various groups in PU &, knowing that
these s, units are drawn by simple random sampling
from among the N, units available.

3.1 Search for an Optimum Model Assisted Design

In each group, we postulate a model identical to the one
formulated in section (2.1) (or the more general form
described in the comment on that section).

For g = 1to G, we have therefore:

. _ Ni
ve = E; Var(B,) = N72 . W—:(a: + 73/ 1)
(3.1.1)

The cost function is expressed in the general forin (1.2).
We are seeking to minimize the expected survey cost

Cr= Y wk(ca + B nkgcg), (.1.2)
2

v

under constraints ¥, < V,, where quantities V, are exter-
nally fixed (e.g. quality of data to be obtained, tightness
of control.

In this form, the problem can prove fairly complex. We
write a general form of a Lagrange multiplier:

L=)Cr+ LAV
14

The problem sets A = 1, A, being multipliers to be
determined. In a simple variant, values are set for Ag:
we wish to minimize a given linear combination of vari-
ances under 4 cost constraint. In all the hypotheses, by
differentiation with respect to ny, (considered a real
variable), we obtain

AmE Cy = N N3Z Nk, 72 /n},. (3.1.3)
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m; being for the moment to be defined to within one
factor, we may write

AN\E N,
i nkg = (_g) Tg ‘Ykg . (3'14)
C, Nyg
By summing over &, we deduce that
A\ #
Enyg= 2 mng= (=) n .19
U Cg

The total size of the sample in each group is thus directly
linked to multiplier A,.

Differentiation of the Lagrange multiplier with respect
to m, gives us new relations which, when combined with
(3.1.4), are miraculously simplified to give

2
C, = % cg(fé) iy, (3.1.6)
] Tg
or, if we introduce the numbers
C %3
n} = (_") T_S,
G/ o
we write
2
Y (%) =0 3.1.7)
g\

As may be seen in equation (2.2.4), n is the number
of secondary units to be drawn per PU if there is a single

group; ny, is always less than nf.

From (2.1.4), (3.1.5) and (3.1.7) we obtain the relations:

a- L mna()

+e

(3.1.8)

Thus, =, is proportional to Ty such that 77 = Tehe crg2
N}cg /Ni ¢ Which appears to be a satisfactory measure of
size. The relations (3.1.4) show that, if & is fixed, n, is
proportional to ng )\g” 0 Nig /Ny s taking into account
(3.1.7), we obtain

(3.1.9

3.2 Explicit Solutions to Two Specific Cases

(a) If N, were known, i.e if ¥ A;v, were minimized
under a cost constraint, then (3.1.2) and (3.1.9) could
be used to calculate ;. By transfering

— mTk/T(T =Y 1.m
[5)

number of primary
units to be drawn
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to budget constraint Cr = C%, we find that

*_mE(CTk-'-EC"sg eng)

Nig

ie.

)\'ﬁ
m = c;/(ca + ) Comp % "8).
g

T

If a single A, is not equal to zero, it is fairly easy to
check that the result is the one given at the end of section
(2.2).

(b) The initial problem (min Cr under V, < <) is re-
solved fairly easily in two specific cases.

bl - Maximum dispersion of the groups. For any PU
k, we have Ny, = N, for a given k. The prob-
lemn is broken down into G separate problems,
each being of the type examined in section 2.

b2 - Minimum dispersion. The distribution is the
same in all the PUs; in other words, for any & and
any g, we have

N .
Nig = Niy ;{g with (N

T is then proportional to N, and n,, is quantity ng u,
independent of k.

With m, = mN; /N, we obtain by writing V, = V,:

- 2 2"
mV, = ai + Tg/h‘g U,

ie.
2 2
g T
m= 5 4yt —E—
Ve 1V,

Thus we obtain G-1 linear relations between the u, ',
in principle permitting full resolution of the problem,
knowing that the sum of u? is equal to 1.

3.3 A Numerical Algorithm for Determining the
Optimum Solution to the General Case

An iterative numerical resolution of the problem may
be achieved as follows.

Step 1: An approximate sample allocation is set in each
group (1, ; units in group g). The process may be
facilitated by using the approximate solution
based on the hypotheses in point (a) or point (b).

Step 2: The value of A, is determined from relations
(3.1.5):

= 2 2
A = an.,.g/'rg.
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Step 3: m is determined from relations (3.1.8). Specifi-
cally, the sum of = sets the number of PUs to be
drawn.

Step 4: ny, is determined from relations (3.1.4). Subse-
quent iteration is possible by returning to step 2,
in the expectation that the algorithm will converge
toward the optimization solution.

Comment: The probability of drawing a type g unit is

A \%
Tknkg ng = C_ Tg/N+g.
g

Because it does not depend on primary unit &, it is the same
for each unit in a given group g (equal probability survey).
Size n, g, or at least its mathematical expectation, may be
deduced from the sample in group g. In practice, sample
size is sometimes set arbitrarily: this entails determining
Ap or, implicitly, variances V,. This is another fairly
common result.

4. OPTIMUM ESTIMATE ASSISTED BY A
MEASURE OF THE DIFFICULTY
OF CODING A RECORD

The task is to estimate the proportion of forms con-
taining a coding error in universe U of all forms coded in
a given week by one regional branch. The problem is
identified by the following characteristic: because all [Fs
are precoded, it is possible, using information drawn from
the trial census, to attribute to each one a positive
numerical variable X, representing its ‘‘difficulty’’. This
variable is calibrated in such a way that Y; (equal to 1 if
thereis an error and 0if there is not) has an “‘expectation’’
proportional to X;.

The same cost control considerations suggest a two-
stage survey.

- In the first stage of the survey, we draw a sample s; of
districts & (primary units), with 7, unequal probabilities
to be determined. ¢ denotes the probability of inclu-
sion, double in value in this instance.

- In the second stage of the survey, a sample s, of final
units (forms) in primary unit sample & is drawn. ik
denotes the probability of inclusion of the unit in primary
unit &, ;) the probability of inclusion of the pair (i./)
in the primary unit; and § = Uy, S;, the sample of
final units.

Xy = Yiex X; denotes the total of X; in primary unit
k, X = Yiev, Xx = Lu X; and similar notations are
used for all the variables. (U/, denotes the population of
primary units - districts, I the population of final units -
forms).

Deville; Optimum Two-Stage Sample Design

The aim is to estimate a quantity in the form R =
Yo Y:/ Ly W; where Wis a known variable for each form.
This may be W; = 1 or W; = X, whichever measure of
the error rate seems the more satisfactory.

4.1 Selection of Estimator and Variance

(a) For primary unit k, the total ¥, of the ¥; for iek is
commonly estimated by the ratio

Y, = Xk( E Yi/7rr'|k)/( ) Xr'/‘"'iuc) = Xy dy
Sk sk
where d; estimates ¢, = Y, /X, with a slight biais.

(b) To estimate ratio Y/X, we use

Y X
E R E a, =&
n 5] Ty 5 (U3
) DIECH (1
5 s 5 Ty
(c) If we wish to estimate R, we note that
Yy X
R=-.—,
X W

where X and W are known totals (e.g. total difficulty, total
number of forms). As variable X; was selected for its
good correlation with Y;, an a priori valuable estimator
of Ris

R=3¢

Tl

and the only real question concerns the estimate of
= Ekaka/X.

(d} we have
Var(d) = Var E(d| s,) + E Var(d| s,).

For the first term, taking into account the fact that 4,
is an approximate unbiased estimator of a,, we may write

Var E(d| s)) = XLZVar( E (a,,——a)Xk)

51 Ty

1 (E (ax — g)ZX;%

= 12
XN\ Tk Ly

+ LY (@ - a)(a - ) i(ﬁ-"‘lff’ﬂ) @.L1)

k=1 T T
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For the second term, conditiong! on s, we have

Loz s .
31 k :(E _k) Z Var(ﬁk):rzk_

Var{ ——
E Xk R3] (3 K]
51 g

For this quantity, the expectation is approximately

XZ

X2} E Var(a,| s))2%, 4.1.2)
k Tk

with

Yi

Tk 1 Y, — a. X;
Var(d, | s;) = Var ¢ —ZVarE mLE sl
Z X, X Sk Tk
Sk Tk

L(Ecn—mxﬁ

=32
X\ ek ik

+EE (Y, — o Xi)(Y; — akX}')ijlk)A

kst Tk ik

As in the preceding sections, we arrive at formulae that
are complex and, in the final analysis, unusable. A model
will simplify things somewhat.

4.2 Introduction of a Model

The model has the same structure as those used
previously:

(a) a, is an independent random variable with the same
expectation and the same variance:

Eap = a Varg a, = ol

The variance takes into account operator influence,
which we make no attempt to isolate, and also such factors
as day of the week, time of day, day of the month erc. . . .

(b) Conditional on a;, ¥;in primary unit & is an indepen-
dent Bernoulli variable with E; (Y;| k) = a,X;

Var, (Y;| k) = a,X; — a} X?.
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Comment:

Variable X;, which has no actual concrete meaning, is
defined to within one factor of scale. Conversely aX; and
aX;, being probabilities, have an invariant physical inter-
pretation. In what follows, one must always keep in mind
that the results are invariant if X, is multiplied by an
arbitrary factor, on condition that « and ¢ are divided by
the same factor. Var(d) in particular has no concrete
meaning; Var(4X) is an exception.

As before, we examine anticipated variance, expecta-
tion under the model of the sum of (4.1.1) and (4.1.2).

For the first term, the expectation of the cross products
is of course zero. The expectation under the model for this
term is thus:

X 2g? E ﬁ
ko T

For the second term, we find (in light of the definitions
given in 4.2.a and 4.2.b)

X: 1 X, — atXx?
X—ZEJ._EEEE(akI ak Xi)
K T X o Tilk

_x2 T4 Y aX;, - (a® + az)x,?.
k T Tk

Therefore, overall

X2
E, Var(dX) = ¢ ), =
kel, Tk

.= (a2 2y x?
+EiEaX, (a +a)X,.
ke, i ek Tilk

No algebraic miracle occurs here. For simplification,
we assume that (a® + ¢2) X7 is negligible in the face of
aX;. Numerically, we may expect aX; = 2to 5 x 1072
and (a® + o) X? = 310 30 x 10 ~* whence the approx-
imation

Xt 1 X;
EVar(@X) = o2 ), 2k 4 oY, = ¥ A
keU, Tk kely, T ek Tk

4.3 Sample Design Optimization
We use the following cost function:

C= 2 (C, + Cnp).

51
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Here,n, = Y Tk is the size of the sample drawn in
district k£ {(supposedly set at fixed size 5,). Its expectation
is

Cr= 3 m(C, + Cny).
kel,

Let

ik = nkP,-(with E P = 1) and Qy = m.ng.
ik

The problem of optimization is now

Min: Co E e + C[ E Q;c
k k

X} i X;
under:azz—k+aE—E =,
PR k Ok iex P

In this form, we are pleased to observe that the terms
in ¥; X;/P; may be minimized independently of the other
terms. In other words, 1, has no impact on this term.
Leaving optimization of the second stage of the survey
until later, S}* denotes the optimized value of ¥;X;/P,.

With a Lagrange multiplier A, by differentiation with
respect to w, and J,, we obtain

i.e. |m proportional to X, | (4.3.1)

2 C % Vi S*
*C| = aa ok whence ! n, = (=°) 4 2¢ | 4.3.2)
Q C o Xy

Specifically, the primary units are drawn with pro-
babilities proportional to total difficulty, a standard
resolution (see for example Sdrndal, Swensson, Wretman,
1992, Chapter 12),

We now move on to sub-district sampling (second stage
of survey).

Beginning with a simple, straightforward case, forms
are drawn one by one. Minimization produces P, propor-
tional to [X; . A simple calculation shows that Sf =
Yiex JX; . We can now calculate n, using (4.3.2), and our
problem is fully resolved.

In practice, things are more complicated. For fairly
obvious reasons, only forms for entire households are
selected. In other words, the second stage of the survey is
a cluster survey. The values of P, are the same (i.e. P,,)
for all the members of a given cluster (houschold) #1.

Deville: Optimum Two-Stage Sample Design

Let X, be the sum of X; individuals i in household m,
The problem is to minimize ¥ X,,/P,, under ¥n,P, = 1,
with n,, the size of household m. We easily reach solution

P, = m/ L 1 X,

with X, = X,,/n,,, mean difficulty of forms IF in
household m. From this we determine S} = Yn, jJX,,.

This solution enables us to determine the number n;, of
Jinal units to be drawn using (4.3.2). However, the number
of clusters (households) has not been determined: this snag
was predictable. In fact, the cost function does not imply
this constraint. To obtain the number m, of clusters to be
drawn, we arrange matters so that the expectation of the
number of final units is equal 10 n,. Thus,

mk(Enmm)/EJFr;

whence
L
n—
2w X

m; =

Taking into account (4.3.2), we also have

e o (c_*)_E_JY_

Cl' a Xk
and the probability a given household being drawn is thus

my Xm .
Y %,

Following a number of algebraic manipulations, the
value of the optimum variance is found to be:

(aX)? aa~"S* (C\"%
E, Var (4X = 1+ - =1 .
¢ (aX)opr . ( T x (Co

This form respects the homogeneous character of the
different factors. In particular, we have a =" 8*/X =
a* $*/aX: the denominator may be interpreted as total
number of errors in a lot; the numerator is homogeneous
for a given size,
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We now have a full solution to the problem.

Comment 1:

In both cases discussed, S; is multiplied by C* if X; is
multiplied by C. The formula that gives #, is thus invariant
on the scale of measurement.

Comment 2:

The solution that entails drawing clusters favours small
clusters made up of final units with a high index of difficulty.

Comment 3:

Asin preceding sections, we determine the probabiiity of
single selection, but not the probability of dual selection.
Therefore the algorithm for the draw, which sets the latter,
has no influence. This is quite common, keeping in mind
that the complementary data used to optimize the draw
determines =; and =;; but have no influence on dual
probabilities.

5. APPLICATIONS TO CONTROL BY SURVEY
OF THE QUALITY OF THE 19%0
FRENCH CENSUS

5.1 Problem of Data Capture Control

The sampling techniques described in sections 2 and 3
were designed to control data capture for the 1990 Census.
A brief description of the operation would enhance
understanding of the nature of the statistical problems
involved.

The basic collection unit is the district, which corre-
sponds, in a city, to a block of houses and, in the country,
to a village or group of hamlets. It covers 2 population
that ranges from zero inhabitants to approximately 2,000
(the mean values are 150 dwellings and approximately
350 inhabitants),

When collection is completed and the results are
audited, the various census forms (specifically individual
forms (IF) and dwelling forms (DF)) are meticulously
counted for each district. The summary data for a district
are computerized; the forms themselves, collated into
district files, are forwarded to data capture.

Groups of districts comprising approximately 100,000
dwellings are constructed. The processing units (PU) are
processed for INSEE by contractors. INSEE, the ““client’*
in terms of control theory, monitors the quality of each
contractor’s work by sampling a specific number of forms
in each PU.

The aim of the survey described in paragraph 2 is to
estimate, to an accuracy (standard deviation) of one point,
the proportion of forms containing an error in each PU.
The maximum proportion of forms containing an error
cannot exceed 4%. A trial census covering approximately
400 districts allows for an estimate of the values of the two
model parameters. We find:
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o = P? = 14.107*

2= P =410"%,

Cost function (1.1) is assessed in terms of working
time. Based on on-site control measures, 5 minutes is the
estimate of the time required to process one district folder
(from the time it is taken from the shelf to the time it is
returned there) and 30 seconds the estimate of the time
required to process one IF. With the numerical data,
design optimization based on the hypotheses in section 1
allows for control of 40 districts per processing lot and
16 forms per district. ‘

After discussing the solution with the team responsible
for the census, it emerged that two types of documents
(individual forms (IF) and dwelling forms (DF)) were to
be controlled. The first approximation had taken no
account of the latter, which are less likely to contain errors

~ and take only about half as long to code as IFs. However,

some districts {e.g. a commune with a thriving tourist
industry) contain a large majority of secondary dwellings,
and so produce many DFs but very few [Fs. Because the
situation required in-depth study, the theory given in
section 3 was developed.

In the case of the census, the number of groups G is
equal to 2 (g = 1 for the IFs and g = 2 for the DFs).
The numerical data for the two groups are:

- P, =004 o =P =P (1 —P)

- 012 = PI - 2P12:
P, =00l o,=P, 1i=P,—F}
- 9, = (0,0075)* B, = (0,0150)%.

For the cost function, we selected C, = 5 minutes,
C; = 0.5 minute and C; = 0.25 minute. Optimization
of the problem according to the hypotheses in section 3.2.b
entailed examining 73 districts per processing unit. In
practical terms, it meant processing 15 individual forms
{and related DFs) for each district. For the districts that
produce fewer than 15 TFs, all TFs were processed. For
districts with zero IFs, 4 DFs were processed (if this number
was less than the number of DFs in the district).

Comment:

The method described in part 2 seems to have a fairly broad
field of application. One example: it was used to sample
the 1992 French survey on migration of foreign nationals.
For population centres with under 20,000 inhabitants, the
sample was drawn in two stages. The first stage of the
survey covered the 90 departments in which this type of
population centre occurs. The foreign population (based
on the census) was divided into 8 nationality groups, for
which equally accurate indicators had to be found.
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5.2 Problems Related to Coding

The second step in data preparation is known as
operation COLIBRI {Codification en Ligne des Bulletins
du Recensement des Individus). The operators in the
regional branches of INSEE receive forms classified by
district and code them for the 25% survey.

In practice, each operator works at a monitor that
displays the identifier of the next dwelling to be included
in the 25% sample, for which all IFs must be coded.

Coding quality is also controlled by survey. The control
unit is all the work done in one week in a regional branch.
The entire operation takes a little over one year in the
22 regional branches, and entails more than 1,000 surveys.
The household is the unit to be controlled (i.e. all the
IFs in a household drawn for inclusion in the control
sample). The objective is to estimate the proportion of
forms containing an error. This is done by automatic
detection of forms in which there is a no match situation.
The number of errors is determined by reconciliation.
The control theory is discussed in section 4 of this paper.
The index of difficulty of the forms was developed from
the data captured for a study based on the previous census
and by test. The procedure and results related to these
control measures are described in detail in G. Badeyan
(1992). '

The practical and numerical application of the theory
rests on hypotheses concerning the orders of magnitude
of the different parameters (which requires linking them
to a simple physical interpretation). In the census prepara-
tion phase, without accurate prior measurement, we used
the values o/ = 0.5 and C,/C, = 0.1.

Pursuant to a number of hypotheses concerning the
other parameters, and after discussing the matter with
experts, it was decided that the control would cover
50 districts, with approximately 20 IFs controlled in each
one {by region and by week). Since model parameters
can be re-estimated at any stage in the process, the initial
order of magnitude can obviously be adjusted as the
survey proceeds.

Final Comment:

The problem produces somewhat surprising results that
are worthy of consideration.

In the first instance, as we assumed it would be possible
to separate each form, the forms were drawn with a prob-
ability proportional to individual difficulty. We assumed,
to some extent, that the ¢ost of using individual infor-
mation was zero. )

In the second instance, the actual control progess, it was
assumed that cost was infinite and the only information

Deville: Optimum Two-Stage Sample Design

with negligible cost was the information related to an
entire household. The solution shows that the probability
of drawing an individual (IF) as a function of the mean
difficulty of coding the forms for the entire household of
which the individual is a member.

The same phenomenon occurs in the district draw. If
it is possible to separate the IFs, they are drawn with
probabilities proportional to total difficulty; within a
district, the difficult IF has a greater probability of selec-
tion. Conversely, suppose we are unable to separate IFs
within a district. This will be the case, for example, if the
designation of IFs o be controlled cannot be implemented
in real time because of inadequate processing facilitics.
Districts would then be selected in proportion to mean
difficulty: within a district, it would be necessary to
proceed by simple random sampling.

In the first instance, the survey gives precedence to large
districts, from which difficult IFs tend to be drawn. In the
second instance, precedence is given to small difficult
districts, from which forms are selected with equal prob-
ability. fn both instances, we are seeking to increase the
probability of surveying difficult IFs. The difference
resides simply in the possibility (i.e. the cost) of collecting
information when we need it.
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Conditional Properties of Post-Stratified Estimators
Under Normal Theory

ROBERT J. CASADY and RICHARD VALLIANT!

ABSTRACT

Post-stratification is a common technique for improving precision of estimators by using data items not available
at the design stage of a survey. In large, complex samples, the vector of Horvitz-Thompson estimators of survey
target variables and of post-stratum population sizes will, under appropriate conditions, be approximately multivariate
normal., This large sample normality leads to a new post-stratified regression estimator, which is analogous to the
linear regression estimator in simple random sampling. We derive the large sample design bias and mean squared
errors of this new estimator, the standard post-siratified estimator, the Horvitz-Thompson estimator, and a ratio
estimator. We use both real and artificial populations to study empirically the conditional and unconditional properties

of the estimators in multistage sampling.

KEY WORDS: Asymptotic normality; Regression estimator; Defective frames; Ratio estimator; Horvitz-Thompsen

estimataor.

1. INTRODUCTION

1.1 Background

A major thrust in sampling theory in the last twenty
vears has been to devise ways of restricting the set of
samples used for inference. In a purely design-based
approach, as described in Hansen, Madow, and Tepping
(1983), no such restrictions are imposed. Statistical pro-
perties are calculated by averaging over the set of all
samples that might have been selected using a particular
design. Although it is generally conceded that some type
of design-based, conditional inference is desirable (Fuller
1981, Rao 1985, Hidiroglou and Sarndal 1989), satisfac-
tory theory has yet to be developed except in relatively
simple cases. Alternative approaches are prediction
theory, developed by Royall (1971) and many others, and
the Bayesian approach, found in Ericson (1969), which
avoid averaging over repeated samples through the use of
superpopulation models. A design-based approach to
conditioning was introduced by Robinson (1987) for the
particular case of ratio estimates in sample surveys.
Robinson applied large sample theory and approximate
normality of certain statistics to produce a conditional,
design-based theory for the ratio estimator.

In this paper, we extend that line of reasoning to the
problem of post-stratification. Convincing arguments
have been made in the past by Durbin (1969), Holt and
Smith (1979) and Yates (1960) that post-stratified samples
should be analyzed conditional on the sample distribution
of units among the post-strata. However, as Rao (1985)
has noted, the difficulties in developing an exact, design-
based, finite sample theory for post-stratification in general

sample designs may be intractable. Model-based, condi-
tional analyses of post-stratified samples are presented in
Little (1991} and Valliant (1993). The alternative pursued
here is design-based and uses large sample, approximate
normality in a way similar to that of Robinson (1987} as
a means studying conditional properties of estimators.

1.2 Basic Definitions and Notation

The target population is a well defined collection of
elementary (or analytic) units. For many applications the
elementary units are either persons or establishments. We
assumne the target population has been partitioned into first
stage sampling units (FSUs). For person based surveys the
FSUs are commonly households, groups of households or
even counties, while for establishment based surveys it is
not uncommon that the individual establishment is an FSU.
In any event, the collection of FSUs will be referred to as
the first stage sampling frame (or just sampling frame).
It is assumed that there are M FSUs in the sampling frame
and they are labeled 1, 2, ..., M. We also assume that the
population units can be partitioned into K ‘‘post-strata’’
which can be used for the purposes of estimation.

We let ¥ represent the value of the characteristic of interest
{e.g. weekly income, number of hours worked last week,
restricted activity days in last two weeks, efc.) for an ele-
mentary unit. Associated with the /" FSU are 2K real
numbers:

yix = aggregate of the y values for the elementary units
in the i FSU which are in the £"" post-stratum,

N,; = number of elementary units in the /™ FSU which
are in the k' post-stratum.

I Robert J. Casady and Richard Valliant, U.S. Bureau of Labor Statistics, 2 Massachusetts Ave. N.E., Washington D.C., 20212-0001.
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For each post-stratum we then define

Y. = LM,y = aggregate of the y values for all ele-
mentary units in the k' post-stratum,

N, = Y™, N, =total number of elementary units in
the &' post-stratum.

In what follows we assume that the N, are known
fixed values. In some surveys, the N.;, may actually be
estimates themselves but our analysis is conditional on the
set of N, used in estimation. In the Current Population
Survey in the United States, for example, each N, is a
population count projected from the previous decennial
census using demographic methods. The population aggre-
gate of the y values is given by ¥.. = Y £_, Y, and the
total population sizeby N.. = ¥ §_| N,;. In sections 1-3,
we assume that the sampling frame provides ‘‘coverage”’
of the entire target population. In section 4, we consider the
problem of a defective frame, i.e. one in which the coverage
of the frame differs from that of the target population.

1.3 Sample Design and Basic Estimation

Suppose that the first stage sampling frame is parti-
tioned into L strata and that a multi-stage, stratified design
is used with a total sample of m FSUs. In the following,
the subscript representing design strata is suppressed in
order to simplify the notation. For the subseguent theory,
it is unnecessary to explicitly define sampling and estima-
tion procedures for second and higher levels of the design.
However, for every sample FSU, we require estimators
Vixand Nygso that By, [Fi] = v and By, [Nyl = Ny
where the notation E,_ indicates the design-expectation
over stages 2 and higher. Letting «; be the probability that
the /™™ FSU is included in the sample and w; = 1/%;, it
follows that the estimator ¥, = ¥/, w; ), is unbiased for
-Y., and the estimator N, = ¥/, w;Nj, is unbiased for N,.

1.4 An Analogue to Robinson’s Asymptotic Result

Robinson (1987) studied the ratio estimator (X/£) 5,
under simple random sampling with 7, being the sample
mean of a target variable ¥, X; being the sample mean of
an auxiliary variable x, and X the population mean of x.
Under certain conditions (¥, %) will be asymptotically,
bivariate normal in large simple random samples. From
Robinson’s results it follows that the linear regression
estimator y, + S(X — £,) is asymptotically design-
unbiased conditional on X.. Results in this section extend
that result to complex samples.

Following Krewski and Rao (1981), we can establish
our asymptotic results as L — oo within the framework of
a sequence of finite populations [II, } with L stratainIL;.
It should be understood that we implicitly assume (without
formal statement) the sample design and regularity conditions
as specified in Krewski and Rao and more fully developed
in Rao and Wu (1985). Details of proofs add little to those
in the literature and are omitted.

Casady and Valliant: Properties of Post-Stratified Estimators

Converting to matrix notation, we let ¥ =
(Yoo YRl'sN= 1INy . NGl ¥ o= 8, . Pl
N =[N ...Ngl  and V = var{[ ¥ N]'] where
Y = (1/N..)Pand N = (1/N..)N. Note that ¥, which
uses N, . in the denominator, is a notational convenience
and does not estimate means in the post-strata. Analogous
to conditions C4 and C5 of Krewski and Rao (1981), we
assume that

. Y,
ILIE'IQ= Nik = Mgy for k = 1,2, ey K, (])

. Ny
lim — = >0 for k
N P

L—oo

1,2,...,K,and (2)

Ell EIZ

i V = =
25 z [221 In

] (positive definite), (3)

where ¥ is partitioned in the obvicus manner. Note that
we have again suppressed the subscript representing design
strata. Assumptions (1)-(3) simply require that certain key
quantities stabilize in large populations. Condition (2), in
particular, assures that no post-stratum is empty as the
population size increases. We now state the following.

Result: Assume the sample design and regularity conditions
specified in Krewski and Rao and that=):32l exists; then,
given /V, the conditional distribution of ¥ is asymptotically
MM, + IR (N —M,), m~'¥), where ), = T —
Lnln'Lu, My =lim ¥ = (¢ p ... éxpgl and
M, =L11_12N = [¢) ... o],

Proof. This result is analogous to the result for K = 1
given by Robinson (1987) and follows directly from the
fact that the random vector

W ¥ =M = TuIn' (N - M)
m

N — M,

tends in distribution to

(o] Lo )

Strictly, as in Robinson, we consider the conditional dis-
tribution of ¥ for ¥ in a cell of size e~ for small e.
Note that in some sample designs 1’V = N.. (such as
those in which a fixed number of elementary units are
selected with equal probabilities) in which case ¥5' does
not exist; in such cases only the first K — 1 post-strata are
considered for the purpose of conditioning.

In the next section, the asymptotic mean of ¥ is used
to motivate a linear regression estimator of the population
mean of the y’s.
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2. CONDITIONAL PROPERTIES OF ESTIMATORS
FOR THE POPULATION MEAN

2.1 Estimators for the Population Mean

The population mean is, by definition,
K

M =L1i_n°1°(Y../N..) =L1i_n.}°(1’Y/1’N) = E Py by
k=1

where 17 is a row vector of K ones. Note that the mean
4 is not a finite population parameter but rather a limiting
value. In large populations (L —oe) u and the actual finite
population mean will be arbitrarily close. Four estimators
of the population mean will be considered. The first three
are standard estimators found in the literature while the
fourth is a new estimator motivated by the asymptotic,
joint normality of ¥ and N:

(1) Horvitz-Thompson estimator
Pur = 1'F/1'N = 1'Y.

(2) Ratio estimator

= -

Yo = 1'9/1'N = 1" ¥/1'N.

(3) Post-stratified estimator

o —-IK N % ﬂ:
YP5=N"E N,.._ Y.k=rY

k=1 &
where

ro= [N.I/N.l, ,NK/NTK]

(4) Linear regression estimator
Yir=[1(Y - LpIn'(N - M))].

The linear regression estimator is motivated by the form
of the large sample mean of the conditional random
variable ¥ | A listed at the end of section 1.4 and is very
similar to the generalized regression estimator discussed
by Sdrndal, Swensson and Wretman (1992). The linear
regression estimator (4) was also discussed in the context
of calibration estimation by Rao (1992). It should be noted
that the ratio estimator does not require that N, or their
sum N., be known. The Horvitz-Thompson estimator
only requires that N.. be known, whereas the post-
stratified and linear regression estimators require that
[Nyl k= 1, ..., K} be known. In practice, the linear
regression estimator has the additional complication that
the covariance matrices ¥, and ¥, are unknown and
must be estimated from the sample. In implementing ¥; »
in section 3, the known finite population quantities
(1/N..)N will be used in place of the limiting vector M;.
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2.2 Conditional Expectations and Variances of the
Estimators

Using the asymptotic setup given earlier, the expecta-
tions and variances of the four estimators can be computed
conditional on N. For the case of post-stratification, condi-
tioning on Nin a complex design is a natural extension of
conditioning on the achieved post-stratum sample sizes in
a simple random sample. In other situations, however, the
question of what to condition on is a difficult one that may
not have a unique answer (e.g., see Kiefer 1977). First,
define the following three matrices:

H=Y,Y5',
R=H - D(u), and
P=H-D(u),

where D{u) = diag(p, ..., &) and D{u) =
diag(g,, ..., pe) are K x K diagonal matrices . Below,
we state the mean and variance of the four estimators
without providing any details of the calculations. When
the sample of first-stage units is large, each of the esti-
mators has essentially the same conditional variance. The
Horvitz-Thompson, ratio, and post-stratified estimators
are, however, conditionally biased, whereas the linear
regression estimator is not. Thus, the linear regression
estimator has the smallest asymptotic mean square error
among the four estimators considered here. Rao (1992)
also noted the optimality of the regression estimator within
a certain class of difference estimators and its negligible
large sample bias,

(1) Horvitz-Thompson estimator:
Elfur| N1 = p +[1'H(N — My)]
var [ $ur| Nl = m™ (1" (Zy = £285' Ta)ll
=m~'[1'VA] = Vyryg.

(2) Ratio estimator:

E[Vp| N = p + (j;—) [1'R(N — My)]

4 +[1'R(N = M)} + o(m™)

var[}:’R| ﬁ} (N../N..)ZVHT(C)

VHT(C) + o(m - (3'{2)) .

H
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{3) Post-stratified estimator:
Elfos| N1 = & + [F"P(N = My)]
=u+ [I'P(N - My)] + o(m™")
var [ Fps | N1 = m™'[r' Vir]
= Vyree + o(m~ B2,
(4) Linear regression estimator:
E(7e| N} = &
var[ ¥z | Nl = Vurio -

As noted in section 1, some minor modifications of the
above formulas are necessary for designs, such as simple
random sampling, in which 1’~N.. = N... The derivation
of the requisite modifications is straightforward and is not
detailed here.

The large-sample biases of the first three estimators
depend on N — M,. In other words, their biases are
determined by how well the sample estimates the popula-
tion distribution among the post-strata. In some special
cases each of the first three can be conditionally unbiased.
The post-stratified estimator, for example, will be approx-
imately unbiased if 1° (H — D{u,)) = 0’. This occurs
in simple random sampling and is possible, though certainly
not generally true, in more complex designs. The matrix
H can be interpreted as the slope in a multivariate regres-
sion of ¥ on NV or of ¥ on N when the sample estimates
are close to the population values. Thinking heuristically
in superpopulation terms, if E;(y;x) = py Ny, as in
Valliant (1993), with E; denoting an expectation with
respect to the model, then E¢(Y.,) = p; N.;.. The slope of
the regression of ¥, on N . is then e and, in the unusual
case in which the ¥,’s are independent, H is diagonal.
In fact H = D(p;}, 50 the conditional design-bias of
the post-stratified estimator would be zero. If, on the
other hand, the model has an intercept, i.e. if E;(Y.;) =
o + py Ny, then the post-stratified estimator may have
a substantial conditional design-bias. We will use this line
of reasoning in the empirical study in section 3 to devise
a population for which fm is conditionally biased.

Similar model-based thinking can be applied to the
Horvitz-Thompson and ratio estimators to identify
populations where the conditional design-biases will be
predictably small for large samples. Suppose, as above,
that the ¥ + 5 are independent. If each post-stratum total
is unrelated to the number of units in the post-stratum, /.e.
a peculiar situation in which E; (Y.,) does not depend
on N, then ¥y, is conditionally design-unbiased. If
E: (Y4} = uN., implying that all elementary population
units have the same mean regardless of post-stratum, then
¥, is conditionally design-unbiased.
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2.3 Unconditional Expectations and Variances of the
Estimators

Unconditionally, all estimators are approximately
design-unbiased as noted below. The relative sizes of the
variances depend on the values of ¥ 5, Y, #, and
D(p). This is similar to the case of simple random
sampling of a target y and an auxiliary x. In that case,
whether the ratio estimator, y, X/%,, or the regression
estimator, 7, + b(X — X,), has smaller design-variance
also depends on the values of certain population parameters.

{1) Horvitz-Thompson estimator:
E(Yur] = ¢
var[$yr] = m~'[17 T ,01].
(2} Ratio estimator:
E[%k] = 4 + o(m™")

var[ Y] = m U1 [E), - 2uTy + #2Znll]

+ ofm =),

(3) Post-stratified estimator:
E[Yps] = u + o(m™")
var[Fps] = m™'[1' [Ty - 2D(m) T
+ D(u) L2 D(p)11] + ofm =¥/,

{4) Linear regression estimator:

The unconditional expectation and variance are the
same as the conditional expectation and variance.

3. SIMULATION RESULTS

The theory developed in the preceding sections was
tested in a set of simulation studies using three separate
populations. The population size and basic sample design
parameters for the three studies are listed in Table 1. The
first population consists of a subset of the persons included
in the first quarter sample of the 1985 National Health
Interview Survey (NHIS) and the second population consists
of a subset of the persons included in the September 1988
sample from the Current Population Survey (CPS). Both
the NHIS and CPS are sample surveys conducted by the
U.S. government. The variable of interest for the NHIS
population is the number of restricted activity days in the
two weeks prior to the interview and the variable of interest
for the CPS population is weekly wages per person.
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Table 1

Population Size and Basic Sample Design Parameters
for Three Simulation Studies

. Pc_)p. No. of ;:?r;p(i
Population S;\z[e ) F. i}fjs FSUs
m
HIS 2,934 1,100 115
CPS 10,841 2,826 200
Artificial 22,001 2,000 200

Post-strata in the NHIS and CPS populations were
formed on the basis of demographic characteristics {as is
typically done in household surveys) in order to create
population sub-groups that were homogenous with respect
to the variable of interest. For the NHIS population the
variables age and sex were used to define 4 post-strata and
for the CPS population the variables age, race, and sex
were used to define 8 post-strata,

The third population is artificial; it was created with the
intention of producing a substantial conditional bias in
the post-stratified estimator of the mean. As noted in
section 2.2, ¥pg will be conditionally biased if the FSU
post-stratum totals for the variable of interest, conditional
on the number of units in each FSU/post-stratum, follow
a model with a non zero intercept. With this in mind, we
generated the population in such a way that

E(Vix| Niu) = o +BN; + YNk, ()

where Ny, is the number of units in the & post-stratum
for the i'" FSU-and oy, 8 and y are constants. Specifically,
five post-strata were used with oy, = 100k (k= 1, ..., 5),
8 = 10andy = —.05. Intotal two thousand FSUs were
generated with the total number of units in the /™ FSU,
say V;., being a Poisson random variable with mean 10,
Then, conditional on N,., the numbers of units in the five
post-strata (i.e., Niy, Nia, ..., Nj5) for the i FSU were
determined using a multinomial distribution with para-
meters N, and p, = 20fork =1,2, ..., 5.

For FSUs having N;; = 1, the value of the variable of
interest for the j unit in the £™ post-stratum for the i™
FSU was a realization of the random variable

Yijik = ag/Nig + B + yNjp + € + e + €3,4Ns.

(=1, ..., Ny Ny = 1),
where e, ¢, and €3, are three independent standar-
dized chi-square (6 d.f.) random variables. This structure
implies that E(y; | N;;) is given by (4). Furthermore, the
values of the variable of interest for units within an FSU
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are correlated and the correlation depends upon whether
the units are in the same post-stratum or not. This same
algorithm was used in each of the 100 design strata. Twenty
FSUs were generated in each design stratum giving a total
of 2,000 FSUs.

A single-stage stratified design was used for the NHIS
population with “‘households’’ being the FSUs. Ten design
strata were used and an approximate 10% simple random
sample of households was selected without replacement
from each stratum. Each sample consisted of 115 house-
holds and each sample household was enumerated com-
pletely. A total of 5,000 such saimnples was selected for the
simulation study.

Two-stage stratified sample designs were used for both
the CPS and artificial populations. For the CPS popula-
tion, geographic segments, employed in the original survey
and composed of about four neighboring households,
were used as FSUs and persons were the second-stage
units. In both populations, 100 design strata were created
with cach stratum having approximately the same number

"of FSUs and a sample of m = 2 FSUs was selected with

probability proportional to size from each stratum using
the systematic sampling method described by Hansen,
Hurwitz and Madow (1933, p. 343). Thus, 200 FSUs were
selected for both populations. Second stage selection was
also similar for both populations. For the CPS population
a simple random sample of 4 persons was selected without
replacement in each sample FSU having N;. > 4 and all
persons were selected in each sample FSU where N, < 4.
For the artificial population the within FSU sample size
was set at 15 rather than 4 which resulted in the complete
enumeration of most sample FSUs. A total of 5,000 samples
were selected from each of the populations for the simula-
tion study.

In each sample, we computed }-}HT: }_:'R, )_}PS and two
versions of f’m. For the first version of the regression
estimator, denoted ¥; g(emp) in the tables, i was estimated
separately from each sample as would be required in prac-
tice. Each component of ¥ ; and ¥,, was estimated
using the ultimate cluster estimator of covariance, appro-
priate to the design, as defined in Hansen, ef al. (1953,
p-419). The second version, denoted ¥; z(theo) , used the
same value of H in each sample, which was an estimate
more nearly equal to the theoretical value of the H matrix.
For the CPS and artificial populations, the theoretical H
matrix was estimated from empirical covariances derived
from separate simulation runs of 5,000 samples. For the
NHIS population the design was simple enough that a
direct theoretical calculation of H was done. As the sample
of FSUs becomes large, the performance of ?LR(emp)
should approach that of ¥, r(theo). The performance of
¥, r(theo) is, consequently, a gauge of the best that can be
expected from the empirical version of the regression
estimator for a given sample size.
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Table 2 lists unconditional results summarized over all
5,000 samples from each population. Empirical root mean
square errors (rmse’s) were calculated as rmse ( }_;') =
[E3_(Y, — 1?%/51% with S = 5,000 and ¥, being one
of the estimates of the population mean from sample s.
In the CPS and artificial populations, results for the
Horvitz-Thompson and the ratio estimators were nearly
identical so that only the former is shown. Across ali
samples, the bias of each of the estimators was negligible.
As anticipated by the theory, ¥, p(theo) was the most
precise of the choices, although the largest gain compared
to ¥pg was only 4.7% in the artificial population. The
need to estimate H destabilizes the regression estimator as
shown in the results for ¥, p(emp). For the NHIS and
CPS populations, }_’Lﬂ(emp) has a larger root mse than
both ¥, z(theo) and ¥ps. The most noticeable loss is for
the NHIS population where the root mse of f’,_R(emp) is
about 15% larger than that of either ¥; g(theo) or ¥ps.
This result is consistent with the smaller FSU sampte
size and hence less stable estimate of H for the NHIS
population,

Figures 1-3 present conditional simulation results. The
5,000 samples were sorted by the theoretical bias factors
presented in section 2.2. The sorting was done separately
for each of the estimators of the population mean. In the
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Figure 3. Artificial population simulation, m = 200

cases of the two regression estimators, which are theoret-
ically unbiased in large samples, the bias factor for f’PS
was used for sorting. The sorted samples were then put
into 25 groups of 200 samples each and empirical biases
and root mse’s were computed within each group. The
group results were then plotted versus theoretical bias
factors in the figures. The upper sets of points in each
figure are the empirical root mse’s of the groups, while the
lower sets are empirical biases, The two regression estima-
tors are conditionally unbiased as expected. The other esti-
mators, however, have substantial conditional biases that,
in the most extreme sets of samples, are important parts
of the mse’s. For the CPS population, the range of the bias
factors for ¥y is so much larger (- 10 to 10) than that of
the other estimators that we have omitted ?HT from the
plot for clarity. In the neighborhood of the balance point,
N = N, all estimators perform about the same, but,
because of a lack of data at the design stage, we have no
control on how close to balance a particular sample may
be. The safest choice for controlling conditional bias is,
thus, ¥, z(emp). This finding is similar to that of Valliant
(1990), who noted that, in one-stage, stratified random or
systematic sampling, the separate linear regression
estimator is a good choice for controlling bias, conditional
on the sample mean of an auxiliary variable,
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Table 2

Simulation Results for Three Populations.
5,000 Samples were Selected from Each Population

Estimator bﬁesl-f’ rmse( l'?} 100*[M - I:I
(%) rmse ( ¥pg)
HIS population
Yur 12 141 05
Yz .10 141 02
Yos 11 141 0
¥, rlemp) .19 162 14.71
¥, a(theo) .08 140 ~.96
CPS population
Yur ~.01 10.25 15.8
Pos 0 8.85 0
¥, glemp)  —.03 9.11 3.0
¥, altheo)  —.01 8.79 -6
Artificial population
Yur .02 2.30 -2.93
¥ps 12 2.37 0
¥, plemp) 04 2.31 ~2.41
¥, x(theo) 02 2.26 ~4,70

4. DEFECTIVE FRAMES

The conditional biases discussed in the previous sections
were of a technical, mathematical nature. A more serious,
practical problem in many surveys, that can also lead to
bias, is poor coverage of the target population; we address
this situation in this section.

4.1 The Basic Problem of Defective Frames

In most real world applications not all of the elemen-
tary units in the population are included in the sampling
frame. In household surveys, it is not unusual for some
demographic subgroups, especially minoritics, to be poorly
covered by the sampling frame. Bailar (1989), for example,
notes that in 1983 the sample estimate from the CPS of
the total number of Black males, ages 22-24, was only 73%
of an independent estimate of the total population of that
group. Corresponding percentages for Black males, ages
25-29 and 60-61, were 80% and 76%.
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To formalize the discussion of this type of coverage
problem, suppose that N, now refers to the number of
elementary units in the frame and that N.; is the actual
number of population elements in the &'" post-stratum.
In the discussion below terms with a dot on the top are
population values while terms with no dot are frame
values. Letting Y., be the aggregate of the y values aver
all population elements in the &£ post-stratum, then it
follows that the true population mean is given by

Y.k

=

-
]

F=n

K N K
E}\TN_k E@cmf

=
2

=
]

Obviously, all four of the estimators of the mean given in
section 2 are biased (both conditionally and uncondi-
tionally) for j; the additional bias term being given by
pu — jfor all of the estimators. 1t should be noted that this
bias term is of1) so it will dominate the other bias terms
listed in section 2.2 as the number of FSUs increases. There
is another even more basic problem; namely, in most cases
the individual frame values N, are not known so only the
ratio estimator is well defined. For example, the Horvitz-

. Thompson estimator of the mean as defined in section 2

requires N, the total number of units in the frame, but
N.. may be unknown. On the other hand, the N.; {or least
the proportions ¢,} may be known from independent
sources and hence be available for the purposes of
estimator construction. In household surveys, for instance,
the N, may come from intercensal projections of popula-
tion counts.

Before attempting to construct unbiased estimators for
i it should be noted that

K
po=i= 3 (b — 0 e — i)

k=1

K K
+ E (br — Sudite + E b (pe — i) -
k=1

k=1

So, if we assume that for each post-strata the mean of the
units in the frame is equal to the true population mean,
(i.e. pp = ji. for every k) then the bias term reduces to

K K

p= =Y (6 — ddme = ), (b — dadinee
k=1 k=1

This is very strong (and also very expedient) assumption;

however, addressing the problem of defective frame bias

without such a condition is virtually impossible.
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4.2 Alternative Estimators

The basic strategy is to construct an estimator for the
defective frame bias, p — j&, and then subtract this esti-
mator from the estimators studied earlier. Two cases need
to be considered:

Case 1. The frame parameters (¢, 1 <= & < K}
are unknown, and

Case 2. The frame parameters {¢,, |
are known,

A
=
1A
=

Case 1. For this case only the ratio estimator is well defined
and the only obvious candidate for an estimator of the
bias is

P 5 K 5
B=% (T-0)F=fe- Lt

J’\l‘}-o'f k=1 Nf-k

Using the strategy given above, the resulting estimator for
o is

Y]=

el
o

bl

- K -
R—BI=E ¢k
k=1

-k
-k

z

This is the “‘post-stratified’’ estimator usually found in
practice, Tt is straightforward to verify the following pro-
perties of ¥}:

E(V\ Nl =i+ [p'P(N - M) + o(m™)

where L. .

. [¢’1 By ¢K:|

p = Ty T ey T
P B2 by

var[ ¥, | N1 = m~'[p'V.p] + o(m D)
E[¥{] = 4+ o(m™")

var[ %11 = m~'[p’ [Ty — 2D () T

+ D{pu;) EzZD(.‘"k”P] + O(m—(3j2)).

The attempt to correct for the defective frame bias is
successful in the sense that ¥, is unconditionally unbiased
for 1. However, the conditional bias is still present.

Case 2. For this case it can be verified that the estimator

_ M)]

S

B,=(1- P)'[f’— Elzzi_z‘(
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is approximately, conditionally unbiased foruy — jand,
as ¥, p is conditionally unbiased for g, it follows directly
that the estimator

is both conditionally and unconditionally, approximately
unbiased for ji. It can also be verified that

var[ ¥, | N] = var[¥,] = m~'[p'V.p].

In addition to the problems of the linear regression
estimator cited earlier, this estimator is usually not even
well defined as the frame parameters {¢, 1 < k& <=K] are
rarely, if ever, known when the frame is defective.

5. CONCLUSION

This study has generalized the asymptotic techniques
suggested by Robinson (1987) to study the problem of post-
stratification from a design-based, conditional point-of-
view. An important paper in the conditional study of post-
stratification was that of Holt and Smith (1979), one of
whose basic premises was that ¥pg is conditionally un-
biased. This will be true (at least asymptotically) only if
V'(H — D{u)) = 0'; so, in general, this premise is false.
In fact, simple random sampling of elementary units may be
one of the few realistic cases where this basic premise is true.

From a conditional point of view the linear regression
estimator is preferable among the four studied here. Only
the regression estimator is conditionally unbiased. The
post-stratified estimator is no better (or worse) than either
the Horvitz-Thompson or the ratio estimator; all have con-
ditional bias terms of order m ~{**), All of the estimators
have the same conditional variance to terms of order m~;
furthermore, the conditional variance does not depend on
N, the vector of estimated proportions in the post-strata.
Consequently, because of its conditional unbiasedness, the
regression estimator has the smallest conditional mean
square error.

The Horvitz-Thompson, ratio, and post-stratified esti-
mators are unconditionally unbiased. Although somewhat
illogical, one might attempt to make a case for the esti-
mators by comparing their unconditional properties with
the conditional properties of the lincar regression estimator.
But even from this mixed perspective, the ¥; z(theo} esti-
mator is clearly superior to the others. Not only is it condi-
tionally unbiased, but the conditional variance of the linear
regression estimator can be no larger than the unconditional
variance of any of the other estimators. In large FSU samples,
the empirical version of the regression estimator will inherit
these good properties of ¥, g(theo) and also perform well.
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The problem of a defectiv: frame introduces complica-
tions not found otherwise. Each of the estimators of the
mean studied here is biased both conditionally and uncon-
ditionally. Bias adjustments are possible only under the
restrictive assumption that the mean of units within each
post-stratum is the same for all population units whether
they are included or excluded from the frame.

An area we have not addressed is variance estimation.
A design-based variance estimator for the regression esti-
mator can be obtained using the methods of Sirndal,
Swensson and Wretman (1989).
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Sampling from Imperfect Frames with Unknown
Amount of Duplication

SHIBDAS BANDYOPADHYAY and A.K. ADHIKARI!

ABSTRACT

This study covers such imperfect frames in which no population unit has been excluded from the frame but an
unspecified number of population units may have been included in the list an unspecified number of times each
with a separate identification, When the availability of auxiliary information on any unit in the imperfect frame
is not assumed, it is established that for estimation of a population ratio or a mean, the mean square errors of
estimators based on the imperfect frame are less than those based on the perfect frame for simple random sampling
when the sampling fractions of perfect and imperfect frames are the same. For estimation of a population total,
however, this is not always true. Also, there are situations in which estimators of a ratio, a mean or a total based
on smaller sampling fraction from imperfect frame can have smaller mean square error than those based on a larger

sampling fraction from the perfect frame.

KEY WORDS: Imperfect frame; Efficiency.

1. INTRODUCTION

A frequent problem that arises while pianning surveys
is the non-availability of complete frames. The Interna-
tional Statistical Institute recognized the importance of
studying the problem of sampling from imperfect frames
and arranged discussions by experts on this topic during
its 34th Session held in Ottawa, Canada where Hansen
et al. (1963) and Szameitat and Schaffer (1963) presented
invited papers. One may also refer to Singh (1977, 1983).
Wright and Tsao (1983) have written a bibliography on
frames to bring attention to problems which arise when
sampling from imperfect frames.

Recently two separate surveys were undertaken by the
Indian Statistical Institute to evaluate the impact of
government sponsored programmes for the uplift of eco-
nenic conditions of fishermen’s community in West Bengal,
India. In the first survey (1988), the households were
selected using the membership registers of the Fishermen’s
Co-operative Societies (FCS). In the second and more recent
survey, the list of beneficiary fishermen of the Fish
Farmer’s Development Agency (FFDA) was used. It was
known that not all FCS members or FFDA beneficiaries
would be from different households, but it was not
possible to identify the FCS members or the FFDA
beneficiaries belonging to the same household without
contacting the households. Thus, when FCS membership
registers or FFDA beneficiary lists were used for household
selection, the frames contained an unknown number of
duplication. Since the household information was collected
by personal interview, it was possible to identify the dupli-
cation in the selected households only. The values of the

variables associated with the households in the sample
were divided by the respective number of duplications in
the frame while retaining the duplicate households in the
sample under separate identification.

The set-up of imperfect frames discussed here is a
special case of Rao (1968). One of the referees has pointed
out that the situation discussed in the paper also occurs
at Statistics Canada in certain frames for business surveys.

Imperfect frames to be covered in this study are those
in which no population unit has been excluded from the
frame but any papulation unit may have been included in
the frame an unspecified number of times with a separate
identification each time. It is assumed that it would be
possible to ascertain, at the data collection stage, the
number of duplicates in the frame for each selected unit.
The possibility of selecting two or more duplicates of a
population unit in the sample is not excluded. The
availability of auxiliary information on the units in the
imperfect frame is not assumed and only simple random
sampling without replacement (SRSWOR) schemes are
discussed.

Since the total number of population units will not be
known from the imperfect frames to be covered here,
problems of estimation of a mean of a population character
and its total are not identical.

Here is the main question discussed in this paper. Which
is better: to up-date the imperfect frame and select a
sample, or to use the imperfect frame?

In the two surveys on fishermen’s households, it was
felt that most of the economic variables of interest would
be highly related to the number of FCS members/FFDA
beneficiaries in a household in the sense that the variability

! Shibdas Bandyopadhyay and A.K. Adhikari, Indian Statistical Institute, Calcutta, India 700 035,
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of such an economic variable per FCS member/FFDA
beneficiary would be less than the variability of the eco-
nomic variable per household. It was felt that one could
effectively use an imperfect frame in such situations.

It will be established that for situations such as above
estimators of a ratio, a mean, or a total based on smaller
sampling fraction, imperfect frame can have smaller Mean
Square Error (MSE) than those based on a larger sampling
fraction from the perfect frame.

Even when the variability is not related to the number
of duplications as discussed above, it will be established
that for estimating a ratio or a mean, using an imperfect
frame wiil be preferable to using a perfect frame, from the
MSE point of view, when the sampling fractions of the
imperfect and the perfect frames are same.

2. NOTATIONS AND RELATIONS

Consider a finite population consisting of N units U,
Uy, ..., Uy Let U, U3, ..., Uiy be the units listed in
an imperfect frame. For k = 1, 2, ..., r, let A, denote
the sub-population of the original NV units consisting of
N, distinct population units. Each of the units in A, is
tisted in the imperfect frame exactly & number of times
under separate identifications. Assume that

(a) each U, belongs to an A for some £, (i.e., each U, is
included in the imperfect frame at least once) and

(b) if U} is selected in the sample using the imperfect
frame, it will be possible to identify, at the data collec-
tion stage, the corresponding U; and the associated
value of & (/.e., the number of duplicates of U; in the
incomplete frame under separate identifications, one
of which is the selected unit U}) for which U; belongs
to Ak'

The following relations are valid.

Ni+No+ ... + N, = N;
Nkao,k=1,2,---:r'
N|+2N2+...+rN,~—-M,

where r, Ny, N, ..., N,, and N are all unknown and
only M is known with M = N; M may be written as, for
unknown o,

M=N({l+a), a=0 (2.1)

Let X and Y values on the unit U; be X; and Y, respec-
tively, (i = 1,2, ..., N).Sinceeach U}, (/ = 1,2, ...,
M), can be identified with a U; for some i, (i = 1,
2, ..., N}, and since U; belongs to 4, for some k,
(k =1,2,...,r),define X, Yand C values for the unit
U} as

X; = Xk, Y} =Yk, C' = 1/k.
Because of assumptions (a) and (b), X*, Y*, and
C* values are observable for the selected units from the
imperfect frame.
The following relations connect the measurements in
the imperfect frame to those in the perfect frame.

M N
Y vy =MY"=Y Y, =NV
i=1

i=1

*

(@)

= N;

M
L o =u
i=1

M
Y, (7 — 7)? = No} — §(2, )

Jj=

+ (NT)2(1/N = 1/M),

where

N
Noy =Y (Z - Zy

i=1

and

iU eAg

S(az) =3 (- l/k)[ )y Zf"}; 22
k=2

(Cr — C*y = N(1 = N/M) — 8(0, Y);

M

~
"

(Yy - 7)(C; - C")

akS

-,
Il

= NY(I — N/M) — §(1, ).
For the unit U, let

D, =Y, - Y W,=Y — RX;, where R = ¥/X.
2.3)

Since no auxiliary information on the units is assumed,
comparisons will be done on the basis of a SRSWOR
sample. Let m be the size of the sample from the imperfect
frame and 7 be the corresponding sample size had the
frame been perfect. Define efficiency of a perfect frame
compared to the corresponding imperfect frame, for any
estimator, as

MSE based on a sample of size m

from the imperfect frame

= . 2.4
P MSE based on a sample of size n 24

had the frame been perfect
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Also define f as the common sampling fraction when
the sampling fractions are same, i.e.,

n=fN, m=fM=n(l + a). 2.5)

3. RESULTS

Before we proceed to answer the main question raised
in Section 1 on the choice of sampling from the perfect
frame against sampling from the imperfect frame, we
briefly look at the alternatives from cost considerations.
If the total cost of up-dating the imperfect frame is
expected to be more than the additional cost of data collec-
tion from the (m — #) extra units, it is economical to use
the imperfect frame with a larger sample size than to up-
date the imperfect frame; this is so when

b| m —n
i} =1, 3.1
by ( N ) G-

where b, is the per-unit data collection cost and &y is the
per-unit up-dating cost. It may be noted that one needs to
visit effectively N units to up-date the incomplete frame
since the remaining (M — N} units are duplicates and can
be identified because of assumption (b). It may also be
noted that, even from a SRSWOR sample from the
imperfect frame, the extra number of units to be canvassed
isat most {(m — n) since the sample may contain the same
unit under separate identifications. These observations
lead to (3.1) for preference of using an imperfect frame.

As has been pointed out in Section 1, the total number
of population units N will not be known from the imperfect
frame. Thus the problems of estimation of a mean and a
total are not identical; the problem of estimation of a mean
essentially is the problem of estimation of a ratio, but a
total can be estimated directly and unbiasedly, based on
a SRSWOR sample of size m from the imperfect frame.
It is thus appropriate to estimate a population ratio
(similar to domain estimation) with estimation of a mean
as a special case, and then to treat estimation of a total
separately.

3.1 Estimation of a Ratio

For estimation of a ratio R = ( ¥/.X), the usval ratio
estimator is

R = y*/5*,

where the lower case letters represent the corresponding
quantities based on a sample, * is the mean of Y* values
based on a sample of size m from the imperfect frame etc.
7* and x* are respectively unbiased estimators of (N¥/M)
and (NX/M). Using the delta method the MSE of R,
E(R — R)%,is given approximately by

1956

M-m
m{X*) (M - WM

M
row (3-2)
i=1

using the relations of Section 2, (3.2) can be rewritten as

MM — m)

MSE(R) = ————
m(NX)2(M - 1)

[No%y — S(2,)},

where W values are defined in (2.3) and the W* values
correspondingly obtained. It follows from (2.2) that
S(2,W) = 0, and hence from (3.2) one has

_ 52,W) -

0=<1 = 1. 3.3
N3, (3.3)

It now follows from (2.4) that efficiency p is

p = aM(M — m)(N - 1) {1 _ S(2, W)]

mN(N — n) (M — 1) Noi,
(3.4)

When sampling fractions are equal, p can be written as

_ (1 + a)(N-=1) {1 _ S(Z,W)]
(1 + «)(N - 1) + « Nedy V7

(3.5)

It, therefore, follows from (3.3) that p given by (3.5)
satisfies

0=p=l {3.6)

and thus it is advantageous to use imperfect frame for
estimation of a ratio.

It may be noted that ${2, W) is nondecreasing in « and
for fixed ¢, S(2, W) has a larger value when the units with
larger W values are replicated in the imperfect frame. Since
o is fixed for a given set of N W values, there may be
situations in which p in (3.4) is less than 1 (as a matter of
fact S(2, W) is equal to No2, when W values are all equal
and equal to 0) and consequently, there will be situations
when sampling from imperfect frame will be preferable
even with smaller sampling fraction to sampling from
complete frame.

3.2 Estimation of a Mean

As seen in section 3.1, 7* is an unbiased estimator of
(NY)/M where M is known but & is unknown. Thus it
is necessary to estimate N to get an estimator for ¥. It may
be noted that ¢* is an unbiased estimator of (N/M), and
thus

Y = y*se
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is a natural ratio-type estimator gf ¥. On replacing #* in
Section 3.1 by &*, the MSE of ¥ is given by

MM - m)

MSE(Y) = — 0
(¥ mNI (M — 1)

{NHE) - S(Zs D)])

where D values are defined in (2.3). Replacing W in
Section 3.1 by D we may conclude that (3.6) holds and
imperfect frame is better when (2.5) is true.

3.3 Estimation of a Total

To estimate a total, say N¥, based on a SRSWOR
sample of size m from the imperfect frame, the usual
estimator is

(NY) = Mp*,
which is unbiased for N¥, with variance
MSE(Mp*} = Var(Mp*)

_ MM — m)
m(M - 1)

{1 1
[Na%, - 52,9 + (NY)Z(E - E})}

One may write p as

_ nM(M — m}y(N - 1)
T OmMN(N - 1) (M — 1)

1 _8(2,Y) - (NDY (/N = 1/M)
No3 )

It is clear from the expression of Var (Mp*) that

{S(Z,Y) - (N?)z(% - mﬂl})}/m%,, (3.7)

is less than or equal to unity. However, o« and ¥ values may
be so chosen that expression in (3.7) is negative. In such
a case, even when (2.5) is true, imperfect frame with larger
sampling fraction is inefficient. However, if the scatter of
Y* values are more homogeneous compared to Y values,
ie., if

(Yr — 792, (3.8)

M

N
E (Y, - =
i=1

J

then the expression in (3.7) is always nonnegative. Now,
one can draw similar conclusions as in Section 3.1, for
example, (3.6) is valid when (2.5) is true.

4. AN ILLUSTRATION

As pointed out earlier, in the fishermen’s survey,
ultimate sampling units of beneficiary-fishermen were
selected from the list of beneficiaries available. Being a
multidisciplinary survey, many characteristics of the
sampling units were observed from each of the sampling
unit which either related to the household or to the fishing/
fishery enterprise to which the sampling unit belonged.
Since only the number of beneficiaries (M) was known
and the number of corresponding households/enterprises
(V) was not known, it was not possible to see the effect
of using the imperfect frame for this survey. Flowever for
illustration in this paper, we take the samples drawn from
one geographical area (a block within an administrative
district in the West Bengal State) as our population and
see the effect of resampling from it. In this area, there are
27 beneficiaries (M) and 23 distinct enterprises (N), 19 of
the enterprises have single ownership (N} and 4 are of
joint-ownership type (N,)}. Our characteristics of interest
are the cost of renovation of water areas (Y) and the
acreage of operated water areas (X).

The summary statistics of ¥ and X are as follows:

Y vi=58815 3 X, = 2336,

R = (E Y,-)/(E X,-) = 251777,

S(2,Y) = 212,201,800, S(2,D) = 145,101,018,
S(2,W) = 104,505,327,
2303 = 442,702,791, 230% = 13.6503 and

230%, = 394,790,716,

where W is defined in (2.3).

To find the effect of sampling from the list of 27 bene-
ficiaries we find estimates of
R = Renovation cost per acre of water area,
X = Average water area per enterprise in acre and

NX = Total acreage of water areas operated by all
23 enterprises.

The table below gives the efficiencies for different
choices of m and n.
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Efficiency of sampling from perfect frame compared
to sampling from imperfect frame (p)

Sample sizes Efficiency for estimators of

" m R X NX
2 2 0.8695 0.6453 0.9508
4 4 0.8841 0.6561 0.9668
6 6 0.9022 0.6696 0.9866
8 8 0.9225 0.6866 1.0117
8 9 0.7791 0.5781 0.8519

10 10 0.9551 0.7088 1.0444

10 11 0.8172 0.6065 0.8937

It can be seen that in most cases sampling from imperfect
frame are more efficient.

ACKNOWLEDGEMENT

Authors wish to thank an Associate Editor and the
referees for their valuable suggestions towards improve-
ment of this paper.

197

REFERENCES

HANSEN, M.H., HURWITZ, W.N., and JABINE, T.N.
(1963). The Use of imperfect lists for probability sampling
at the U.S. Bureau of Census. Bulletin of the International
Statistical Institute, 40, 497-517, (with discussions).

INDIAN STATISTICAL INSTITUTE (1988). A study of
Fishermen in West Bengal: 1985-1986.

RAQO, I.N.K. (1968). Some non-response sampling theory when
the frame contains an unknown amount of duplication.
Journal of the American Statistical Association, 63, 87-90.

SINGH, R. (1977). A note on the use of incomplete multi-
auxiliary information in sample surveys. Austrafian Journal
of Statistics, 19, 105-107.

SINGH, R. (1983). On the use of incomplete frames in sample
surveys. Biometrical Journal, 25, 545-549,

SZAMEITAT, K., and SCHAFFER, K.A. (1963). Imperfect
frames in statistics and the consequences for their use in
sampling. Bulletin of the International Statistical Institute,
40, 517-538, (with discussions).

WRIGHT, T., and TSAQ, H.J. (1983). A frame on frames: An
annonated bibliography. Statistical Methods and Improvement
of Data Quality, (Ed. T. Wright). New York: Academic
Press, 25-72.






Survey Methodology, December 1993
Vol. 19, No. 2, pp. 199-204
Statistics Canada

189

An Alternative View of Forest Sampling

FRANCIS A. ROESCH, JR., EDWIN J. GREEN and CHARLES T. SCOTT!

ABSTRACT

A generalized concept is presented for all of the commonly used methods of forest sampling. The concept views
the forest as a two-dimensional picture which is cut up into pieces like a jigsaw puzzle, with the pieces defined by
the individual selection probabilities of the trees in the forest. This concept results in a finite number of independently
selected sample units, in contrast to every other generalized conceptualization of forest sampling presented to date.

KEY WORDS: Forest sampling; PPS sampling.

1. INTRODUCTION

The sampling of forests is often accomplished as a two
part process; first a random point is located in the forest
and then a cluster of trees in the vicinity of the point is
selected for the sample by some rule. The {wo most
common rules are known as (circular, fixed-area) plot
sampling and (horizontal) point sampling. In the former,
all trees for which the center of the cross-section of the bole
at 4.5 feet above the ground is within a constant horizontal
distance (d) of the random point are included in the
sample. In the latter, tree i is selected for the sample if this
center is within a horizontal distance ar; of the random
point, where r; is the radius of the cross-section and « is
a constant, chosen appropriately to obtain a desired
sampling intensity. Tree i would be selected with probabil-
ity proportional to wd? in plot sampling (the probability
is the same for all trees) and with probability proportional
to wr? (basal area of tree {) in point sampling (larger trees
have a higher probability of selection).

There has been much discussion in the forestry
literature about what the sample unit actually is in the
various methods of forest sampling. The tree is considered
the sample unit from one point of view (e.g. Oderwald
1981), while from other points of view, the cluster of trees
associated with the point (e.g. Palley and Horwitz 1961;
Schreuder 1970), the circular plot (e.g. Cunia 1965), and
the point (e.g. Husch 1955) are considered the sample
units. These various viewpoints are supported by different
statistical tools. For example, treating the tree as the
sample unit requires the use of finite population sampling
theory, while considering the point as sample unit requires
the use of the somewhat more advanced theory of infinite
population sampling. In addition, plot sampling has tradi-
tionally been presented from the viewpoint of the plot as
the sample unit, whereas point sampling has usually been

presented from the viewpoints of the tree or the point as
the sample unit. Therefore, these very common and quite
similar sampling mechanisms artificially appear disparate.

We will show a conceptualization of the primary sample
unit that is applicable to every type of forest sampling
scheme which selects trees based on the location of a
random point. We will also show that this conceptualiza-
tion is simple and that it provides a finite number of
mutually exclusive and independently selected sample
units. This is in contrast to the view of the tree or the
cluster of trees as the sample unit, because trees are not
selected independently and clusters of trees are not
mutually exclusive. It also differs from the views of the
randomly placed point or the plot as the sample unit,
because there are an infinite number of units in these cases.
We will also suggest that this alternative conceptualization
is often more appropriate.

2. THE JIGSAW PUZZLE VIEW

Suppose that there are NV trees in the forest with labels
1,2, ..., N. Associated with the N trees are values of
interest ¥ = {J|, ¥, ..., Pn}, K-circles K = (K, K,
..., Ky}, and selection areas of sizes 4 = {4, A5, ...,
Apn}. Grosenbaugh and Stover (1957) first defined the
K-circle in the context of point sampling. For our purposes
the K-circle of tree i, K, is an imaginary circle, centered
at tree center, with radius 4 in plot sampling and radius
ar;in point sampling. The selection area for tree J, of size
A; (in acres), is the portion of tree s K-circle which is
within the forest, and is the area from within which a
random point will select the tree for the sample.

When discussing point sampling, Palley and Horwitz
(1961) contend that ‘*. .. the primary sampling unit is a
cluster of trees associated with a locus of origin. The locus

! Francis A. Roesch, Jr., Mathematical Statistician, Institute for Quantitative Studies, Southern Forest Experiment Station, USDA, Forest Service,
701 Loyola Avenue, New Orleans, LA 70113; Edwin J. Green, Professor of Forestry, Cook College-Rutgers University, P.O. Box 231, New Brunswick,
NJ 08903; and Charles T, Scott, Project Leader, Forest Ecosystem Modeling Unit, Northeastern Forest Experiment Station, USDA Forest Service,
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of origin is a point in the case of point sampling ...”".
Actually the locus of origin is not a point because the
cluster of trees is not selected only from that point but
rather from an infinite set of points within a specific area.

We offer the alternative view of the sampie units being
the mutually exclusive sections of ground resulting from
the overlapping selection areas of the individual trees in
the forest.

The treatment of the ground broken up into primary
sampling units is clearly shown in Figure 1, for example.
The correspondence between the population, sampling
frame and sample unit as given in say Cochran (1977, p. 6)
is apparent: the population (or the puzzle picture)is divided
up into mutually exclusive, exhaustive sample units (zhe
puzzle pieces) which together comprise the sample frame.
Each ground segment has a definite probability of selection
and the total of these probabilities over all segments is 1.
We will call this the jigsaw puzzle view.

Associated with each ground segment are attributes of
interest, the measurement of which will result in identical
values from any point in that segment of ground. The crux
of the matter is that individual points are equivalent within
any particular segment. The ground segments, of course,
are selected with probability proportional to size. In the
case of point sampling, the segment size is determined by
the basal areas and spatial distribution of the trees and the
constant « chosen. Once o is chosen, the sample frame
at a particular point in time is fixed. In the case of plot
sampling, the size of the segment is determined by ¢ and
the spatial distribution of the trees. Thus, regardless of the

Figure 1. The Puzzie Pieces. Trees 1, 2 and 3 are centered at their
respective numbers. The surrounding circles represent
the selection areas of the trees. Each of the lettered
segments represents a sample unit,

method used to determine the sample trees (e.g., plot
sampling or point sampling), all schemes can be thought
of as cutting the puzzle up in some way, selecting the pieces
with probability proportional to their size, and then turning
each piece over to read the attributes associated with it.

Returning to our proposition that this view is often
more appropriate, we note that the purpose of most forest
surveys is to describe the forest, not the individual trees.,
Our aggregations are usually made on a per acre or hectare
basis, /.e. units of the forest land, not units of the tree.
From the same place we may measure many other things
besides the trees such as topographic and site character-
istics. It is therefore usually more appropriate to view
pieces of the forest as the sample units rather than indi-
vidual trees in the forest.

Although we will be working mostly in the context of
forest sampling in general, our discussion is easily applied
to any specific type of forest sampling which relies on the
selection of trees by some function of randomly placed
points. The only difference is the definition of the ground
segments, or how we dissect the picture into puzzle pieces.
For example, in plot sampling the ground is divided into
pieces defined by overlapping circles of equal size, while
in point sampling the definition is by overlapping circles
of sizes proportional to each corresponding tree’s basal
area.

To examine this further, suppose that we randomly
drop a point on the surface of a forest and use any function
to select sample trees. Suppose also that within our forest
are three trees (1, 2, and 3) whose selection areas overlap,
In Figure 1, trees 1, 2 and 3 are centered at their respec-
tive numbers with their selection areas shown as circles.
Each lettered segment represents a different sample unit.
If the point falls in segment ¢, the empty cluster is chosen,
in segment b, the cluster containing only tree 1, in segment
d, the cluster of all three trees, efc. Tree 1 would therefore
be selected from segments b, ¢, 4 or e. This results in a
situation somewhat analogous to that described in Kish
(1965, sec. 11.2), if we were to consider the tree to be the
primary sample unit, in which a list to be sampled from
contains duplicate listings of the same unit. In this case,
the list would be one of clusters of trees, in which most
trees are associated with more than one cluster. The
clusters are selected with probability proportional to the
size of the ground segment. The standard technique of
weighting duplicate elements of a list, discussed by Kish,
considers rather the selection of primary units with equal
probability.

The jigsaw puzzle view reduces the complexity of the
sampling mechanism in one sense by first mapping the tree
population into the ground segment population and
thereby reducing the sample list from a list of clusters of
trees in which trees belong to more than one cluster to a
list of unique ground segments. Our claim below that
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forest sampling simulations can be simplified by the jigsaw
puzzle view is supported wholly by the tradeoff between
the one time cost of this reduction in the complexity of the
sample list and the need to select from that list many times.
To map the tree population into the segment popula-
tion, an observation for a segment would preferably be the
sum of weighted tree values, the weight for each tree being
proportional to its probability of being observed from that
particular segment. The probability that sampled tree i/
was selected from the particular ground segment j is:

where:

A; = the area of segment j in acres, and

7. = 1 if segment j is part of the k-circle of tree §
Y 0 otherwise. ‘

The sum over j of p;;is 1. We can now write the observa-
tion for each segment as a sum of weighted tree values:

N
Y= E pi; Vi (1
i=1

Now suppose that we randomly drop # points on the
surface of a forest with the same assumptions as above
{our sampling is with replacement). An unbiased estimator
of the total value of interest for a sample selected with
probability proportional to size is:

=
=

Yi

A;

-
Il

3|2
E

~.
]

(2)

1]
3>
1O

Y
A;

«
]

where:
M
Ar = E A;; the total area of the forest in acres,
i=1
m = the number of sample points,
M = the number of ground segments, and

W; = the number of times the jth unit appears in the
sample.

Note that W;is an integer between 0 and m, inclusive. A;
and y; are fixed and W is random. In addition, we will
define:
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; ; the total value of interest across all trees, and

b<
[
=

-~
]

Y =

M

;s the total value of interest across all segments.

-
]

To show that ¥ is unbiased for Y, we will first show ¥ to
be unbiased for ¥* and then show that Y* equals Y.
Following Cochran (1977, p. 252-255), we can show Yto
be unbiased for ¥*:

- ATM.Vj
E[Y] = E|— -~ W
i [WZ:AJ J]
J=1
N 3)
Ar Ji
= — —~ F[W;].
m EA- (W)

e,

J=1

W; is a multinomial random variable and its expected
value is equal to m(A;/A7). Therefore

M
E[f] =Y y=1 (4)

i=1

We can now show that ¥ is unbiased for ¥ by showing that
Y* = Y. Substituting the right hand side of equation (1)
for y, in the definition of Y*, we get:

M
= E Epijff- (5)

j=1 i=1

After substituting in the definition of p;; and rearranging
the order of summation:

. 1 M
Y= E yil:f E Ajzﬁ]' (©)

Because

the term within the brackets on the right hand side of (6)
equals 1, and

N
Y = E ﬁ'- =Y. Q.E.D- (7)
i=1

By definition, the variance of ¥ is
. 1 M Aryi o\?

vYy = { — A [—L - v). 8

) (’”AT) E, ’ ( A ) ©

i=
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The sample estimate of the variance is then (Cochran
1977):

~ 1 i ATJ”J ~ 2
1= —— PORLA S .
v(Y) ( D jE= 1 ( : Y) 9

J

The general development in equations (1) through (9)
can be used for any specific type of forest sampling which
follows the two part process of selecting trees from ran-
domly placed points.

As a further example of the use of the jigsaw puzzle
view, we will illustrate the sample frame when point
samples are used to measure forest growth, For the greatest
efficiency, measurements are taken at two points in time
and the same random points are used both times. This type
of sampling for forest growth is known as remeasured
point sampling and has been discussed at length in the
literature, most recently by Van Deusen e a/. (1986) and
Roesch et al. (1989, 1991, 1993). If a remeasured point
sample had been taken, and Figure 1 represented time 1,
the puzzle for the overall sample might be cut up into
pieces like those in Figure 2. Trees 1, 2 and 3 are the
same as those in Figure 1 and tree 4 is a tree which grew
into the stand between times 1 and 2. The inner circles re-
present the trees’ point sample areas of selection at time |1

Fignre 2. Puzzle pieces defined by location, size, and time. An
example of sample units in a remeasured point sample.
Trees | and 3 have grown and survived, tree 2 grew
somewhat betfore dying and tree 4 is ingrowth.

(say «r;, including a subscript for time) and the outer
circles represent the point sample areas of selection at
time 2 (wr;, is larger due to an increase in basal area).
Tree 4 only has an outer circle since it did not exist at
time 1 and tree 2 only has an inner circle since it died prior
to time 2. The dotted circle represents the selection area
tree 2 would have had at time 2 if time 2 had occurred just
prior to the tree’s demise. Therefore, the dotted circle does
not contribute to the definition of the segments.

If the random point lands in segment ¢, trees 1 and 3
would be measured at both times and tree 2 would be
measured only at time 1; in segment b, tree 1 would be
measured at both times and tree 3 would only be measured
at time 2, This exemplifies the fact that even though
another dimension was added to the sample (the time
dimension), the forest sample concept remains the same,
since the time dimension can be collapsed down onto
the puzzie picture. So, in addition to the conditions
mentioned above, the definition of the segments depends
upon the exact times of each measurement. This concept
of the sample unit is helpful in understanding the esti-
mators of the components of change from time 1 to time 2
given in Van Deusen et al. (1986) and Roesch et al.
(1989 and 1991).

3. DISCUSSION

Given the simplicity of the jigsaw puzzle concept, one
might wonder why this view of forest sampling has not
been proposed before. The most compelling reason is
probably that the above estimators cannot be calculated
when the 4,’s are unknown. Since a particular tree’s area
of selection might be divided between many of the puzzle
pieces and the size of a particular puzzle piece may be
limited by trees not sampled by that piece, the selection
areas of both sample and non-sample trees must be known
to calculate the 4;’s of the selected segments. For example,
referring to Figure 1, if our point landed in section ¢, we
would sample trees 1 and 2 and the area of ¢ + o would
be readily calculable. However, to calculate ¥ and v( ¥),
we need the area of ¢ alone, for which we do not have
adequate sample information. We will show that this
apparent deficiency is unimportant by showing that ¥ can
be reexpressed in terms which are calculable. This will, in
fact, always be the case no matter which sampling method
is described by the jigsaw puzzle view.

The jigsaw puzzle view of point sampling is actually a
mapping of the tree population into the associated ground
segment population. We can reexpress ¥ to show that it
is equivalent to the usual point sampling estimator which
is based upon the tree population. Expanding equation (2)
to include the definition of y; and subsequent rearrange-
ment gives:
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(10)

where w; equals the number of times tree / is selected for
the sample. The final expression in (10) is the usual point
sample estimator.

The purpose of this paper, therefore, is not to introduce
a new set of estimators for sampling systems which already
have reasonably good estimators, but rather to show how
sampling schemes of quite disparate justifications in the
literature are related in general. This alternative avenue
of understanding may be useful in many ways. For one,
we believe that some abstract forest sampling systems may
be easier to understand if put into the framework described
above, Qur experience is that students, for instance,
readily grasp the idea of point sampling when taught as
merely a method of dividing the forest up into non-
overlapping jigsaw puzzle pieces which are then sampled
with probability proportional to size. Researchers who are
interested in developing new forest sampling schemes or
new estimators for existing schemes may benefit from this
view because it provides another path for understanding
new sampling schemes and for programming the forest
sampling simulations used to test the new methods. The
simulation discussed in Roesch (1993), for example, was
simplified by using the jigsaw puzzle view rather than the
other conceptualizations of the forest sampling frame
which had been suggested up to that time. The simplifica-
tion stemmed from the fact that the bulk of the simula-
tion could be used for many different sampling schemes
with only minor modifications to the subroutine which
dissected the puzzle.
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Because forest sampling simulations often start with a
mapped forest, the 4;'s are readily obtainable. Once the
puzzle is dissected, y; can be calculated for each piece.
The simnulator then simply selects these pieces from a list
in proportion to their size. Contrast this with the simu-
lation resulting from the view of the point as the sample
unit. In this latter simulation, a random point would be
dropped and the tree list searched for all of the trees close
enough to that point to be selected for the sample. Then
the attributes of interest would be calculated. Since the
probability of selecting a point from an infinite population
twice is zero, this list search and calculation would have
to be repeated for each random point, possibly resulting
in repeated calculation of the attributes from the same
cluster of trees. For simulation purposes, the optimal
approach to programming will depend upon the length of
the tree list to be searched, the degree of clustering in the
tree population, and the number of random points.

4. CONCLUSION

We’ve presented a generalized forest sampling concept
which utilizes a finite number of ground segments as the
sample units existing within a land-area based sample
frame. We have also given estimators based on this con-
cept. The jigsaw puzzle view should be of help in under-
standing the similarities and differences between different
methods of forest sampling by putting all of the methods
into the same framework. Although we would not nor-
mally utilize the associated estimators in their given form
in an actual forest survey, we can always find an equivalent
calculable form. The additional benefit of an alternative
route for sampling simulations is not only one of academics
but also economics. Given the amount of time and money
it takes to acquire data in forestry studies, the ability to
easily test the properties of different sampling methods
before they are applied in the field is of paramount impor-
tance. We would not endeavor to undermine the impor-
tance of a thorough theoretical development of proposed
forest sampling schemes as the crucial first step, but
simulation of these schemes before implementation may
help uncover overlooked problems. This alternative con-
ceptualization will, in general, facilitate comparisons
within any group of forest sampling schemes.
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Panel Surveys: Adding the Fourth Dimension

GRAHAM KALTON and CONSTANCE F. CITRO!

ABSTRACT

Surveys across time can serve many objectives. The first half of the paper reviews the abilities of alternative survey
designs across time - repeated surveys, panel surveys, rotating panel surveys and split panel surveys - to meet these
objectives. The second half concentrates on panel surveys. Tt discusses the decisions that need to be made in designing
a panel survey, the problems of wave nonresponse, time-in-sample bias and the seam effect, and some methods

for the longitudinal analysis of panel survey data.

KEY WORDS: Panel surveys; Rotating panel surveys; Repeated surveys; Panel attrition; Time-in-sample bias; Seam

effect; Longitudinal analysis.

1. INTRODUCTION

Survey populations are constantly changing over time,
both in composition and in the characteristics of their
members. Changes in composition occur when members
enter the survey population through birth (or reaching
adulthood), immigration, or leaving an institution (for a
noninstitutional population) or leave through death,
emigration, or entering an institution. Changes in
characteristics include, for example, a change from married
to divorced, or from a monthly income of $2,000 to one
of $2,500. These population changes give rise to a range
of objectives for the analysis of survey data across time.
This paper reviews survey designs that produce the data
needed to satisfy these various objectives.

The paper is divided into two parts. The [irst part con-
tains a review of the general issues involved in conducting
surveys across time, including the objectives of such
surveys and the types of survey design that may be
employed. This part is to be found in Section 2. The
second, and main, part of the paper discusses one partic-
ular survey design, a panel survey that follows the same
sample of units through time. The considerations involved
in designing, conducting, and analyzing a panel survey are
reviewed in Section 3. Section 4 provides some concluding
remarks.

2. SURVYEYS ACROSS TIME

This section presents an overview of analytic objectives
across time, of designs for surveys across time, and of the
extent to which different designs can satisfy the various
objectives. The discussion relies heavily on Duncan and
Kalton (1987), which contains a more detailed treatiment
of these issues.

Changes in population characteristics and composition
over time lead to a variety of objectives for surveys across
time. These objectives include the following:

(a) The estimation of population parameters (e.g., the
proportion of the population in poverty) at distinct
time points.

(b) The estimation of average values of population
parameters across time {e.g., the daily intake of iron
averaged across a year).

(c) The estimation of net changes, that is changes at the
aggregate level (e.g., the change in the proportion of
unemployed from one month to the next).

(d) The estimation of gross changes and other components
of individual change {e.g., the proportion of persons
who were in poverty one year and were not in poverty
in the following year).

{e) The aggregation of data for individuals over time {e.g.,
the summation of twelve monthly incomes to give
annual income).

(f) The collection of data on events occurring in a
specified time period (e.g., becoming unemployed),
and on their characteristics {(e.g., duration of spells of
unemployment).

(g) The cumulation of samples over time, especially
samples of rare populations (e.g., women who become
widowed).

(h) The maintenance of a sample of members of a rare
population that was identified at one point of time
{e.g., scientists and engineers identified from a large-
scale survey at one point of time).

! Graham Kalton, Westat, 1650 Research Blvd., Rockville, Maryland, U.S. A, 20850; Constance F, Citro, National Research Council, 2101 Constitution

Ave. N.W,, Washington, D.C,, U.5.A., 20418,
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A number of survey designs have been developed to
provide the data needed to address these objectives. These
designs are:

* Repeated survey. A repeated survey is a series of sepa-
rate cross-sectional surveys conducted at different time
points. No attempt is made to ensure that any of the
same elements are sampled for the individual surveys.
The elements are sampled from a population defined in
the same manner for each individual survey (e.g., the
same geographical boundaries and age-limits) and many
of the same questions are asked in each survey.

8 Panel survey. A panel survey collects the survey data for
the same sample elements at different points of time.

* Repeated panel survey. A repeated panel survey is made
up of a series of panel surveys each of a fixed duration.
There may be no overlap in the time period covered by
the individual panels, for instance one panel may start
only as (or after) the previous one ends, or there may
be an overlap, with two or more panels covering part of
the same time period.

* Rotating panel survey. Strictly, a rotating panel survey
is equivalent to a repeated panel survey with overlap.
Both limit the length of a panel, and have two or more
panels in the field at the same time. However, it seems
useful to distinguish between the two designs because
they have different objectives. Rotating panel surveys
are widely used to provide a series of cross-sectional
estimates and estimates of net change (e.g., of unemploy-
ment rates and changes in such rates), whereas repeated
panel surveys with overlaps also have a major focus on
longitudinal measures {e.g., durations of spells of unem-
ployment). In consequence, repeated panel surveys tend
to have longer durations and have fewer panels in
operation at any given time than rotating panel surveys.

® Overlapping survey. Like a repeated survey, an over-
lapping survey is a series of cross-sectional surveys
conducted at different time points. However, whereas
the repeated survey does not attempt to secure any
sample overlap from the survey at one time point to the
next, an overlapping survey is designed to provide such
overlap. The aim may be to maximize the degree of
sample overlap while taking into account both the
changes desired in selection probabilities for sample
elements that remain in the survey population and also
changes in population composition over time.

s Spiit panel survey. A spiit panel survey is a combination
of a panel survey and a repeated survey or rotating panel
survey.

The choice of design in a particular case depends on the
objectives to be satisfied. Some designs are better than
others for some objectives but poorer for other objectives.
Some designs cannat satisfy certain objectives at all. For
a detailed discussion, see Duncan and Kalton (1937).

The strength of a repeated survey is that it selects anew
sample at each time point, so that each cross-sectional
survey is based on a probability sample of the population
existing at that time. A panel survey is based on a sample
drawn from the population existing at the start of the
panel. Although attempts are sometimes made to add
samples of new entrants to a panel at later time points,
such updating is generally difficult to do and is done
imperfectly. Moreover, nonresponse losses from a panel
as it ages heighten concerns about nonresponse bias when
the panel sample is used to estimate cross-sectional para-
meters for later time points. For these reasons, repeated
surveys are stronger than panel surveys for producing
cross-sectional and average cross-sectional estimates
(objectives (a) and (b)). With average cross-sectional
estimates, another factor to be considered is the corre-
lation between the values of the survey variables for the
same individual at different time points. When this corre-
lation is positive, as it generally is, it increases the standard
errors of the average cross-sectional estimates from a panel
survey. This factor thus also favours repeated surveys over
panel surveys for average cross-sectional estimates.

The superior representation of the samples for a repeated
survey af later time points also argues in favour of a
repeated survey over a panel survey for estimating net
change (assuming that the interest in net change relates to
changes in both population composition and character-
istics). However, in this case the positive correlations of
the values of the survey variables for the same individuals
across time decreases the standard errors of estimates of
net change from a panel survey. Hence the presence of this
correlation operates in favour of the panel design for
measuring net change.

The key advantages of the panel design are its abilities
to measure gross change, and also to aggregate data for
individuals over time (objectives (d) and (e)). Repeated
surveys are incapable of satisfying these objectives. The
great analytic potential provided by the measurement of
individual changes is the major reason for using a panel
design.

Repeated surveys can collect data on events occurring
in a specified period and on durations of events (e.g., spells
of sickness) by retrospective questioning. However, retro-
spective questioning often introduces a serious problem
of response error in recalling dates, and the risk of tele-
scoping bias. A panel survey that uses a reference period
for the event that corresponds to the interval between
waves of data collection can eliminate the telescoping
problem by using the previous interview to bound the
recall (/.e., an illness reported at the current interview can
be discarded if it had already been reported at the previous
one). Similarly, a panel survey can determine the duration
of an event from successive waves of data collection,
limiting the length of recall to the interval between waves.
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Repeated data collections over time can provide a
vehicle for accumulating a sample of members of a rare
population, such as persons with a rare chronic disease or
persons who have recently experienced a bereavement.
Repeated surveys can be used in this manner to generate
a sample of any form of rare population. Panel surveys,
however, can be used to accumulate only samples of new
rare events (such as bereavements) not of stable rare char-
acteristics (such as having a chronic disease). If a sample
of members with a rare stable characteristic (e.g., persons
with doctoral degrees) has already been identified, a panel
survey can be useful for maintaining the sample over time,
with suitable supplementation for new entrants at later
waves (for an example, see Citro and Kalton 1989).

Rotating panel surveys are primarily concerned with
estimating current levels and net change (objectives (a) and
{c)). As such, elements are usually retained in the panel for
only short periods, For instance, sample members remain
in the monthly Canadian Labour Force Survey for only
six months. The extent to which individual changes can
be charted and aggregation over time can be performed
is thus limited by the short panel duration. A special
feature of rotating panel surveys is the potential to use
composite estimation to improve the precision of both
cross-sectional estimates and estimates of net change (see
Binder and Hidiroglou 1988; Cantwell and Ernst 1993).
See also Fuller er al. (1993) for an alternative method
of using past information in forming estimates from a
rotating panel design.

Like rotating panel surveys, overlapping surveys are
primarily concerned with estimating current levels and net
change. They can also provide some limited information
on gross change and aggregations over time. Overlapping
survey designs are applicable in situations where some
sample overlap is required and where the desired element
selection probabilities vary over time, This situation arises
in particular in establishment surveys, where the desired
selection probability for an establishment may vary from
one cross-sectional survey to the next to reflect its change
in size and type of activity. In such circumstances, a
Keyfitz-type procedure can be applied to maximize the
retention of elements from the previous survey while
taking account of changes in selection probabilities and
population composition (see, for example, Kevfitz 1951;
Kish and Scott 1971; Sunter 1986). The U.S. Internal Rev-
enue Service Statistics of Income Division’s corporate
sample provides an example of an overlapping survey
design (Hinkins er al. 1988).

By combining a panel survey with a repeated survey or
a rotating pane! survey, a split panel survey can provide
the advantages of each. However, given a constraint on
total resources, the sample size for each component is
necessarily smaller than if only one component had been
used. In particular, estimates of gross change and other
measures of individual change from a split panel survey
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will be based on a smaller sample than would have been
the case if all the resources had been devoted to the panel
component.

In comparing alternative designs for surveys across
time, the costs of the designs need to be considered. For
instance, panel surveys avoid the costs of repeated sample
selections incurred with repeated surveys, but they face
costs of tracking and tracing mobile sample members and
sometimes costs of incentives to encourage panel members
to continue to cooperate in the panel (see Section 3). If two
designs can each satisfy the survey objectives, the relative
costs for given levels of precision for the survey estimates
need to be examined.

3. PANEL SURVEYS

The repeated measures over time on the same sampled
elements that are obtained in panel surveys provide such
surveys with a key analytic advantage over repeated
surveys. The measurements of gross change and other
components of individual change that are possible with
panel survey data form the basis of a much greater under-
standing of social processes than can be obtained from a
series of independent cross-sectional snapshots. The power
of longitudinal data derived from panel surveys has long
been recognized (see, for instance, Lazarsfeld and Fiske
1938; Lazarsfeld 1948), and panel surveys have been
carried out in many fields for many years. Subjects of
panel surveys have included, for example, human growth
and development, juvenile delinquency, drug use, victim-
izations from crime, voting behaviour, marketing studies
of consumer expenditures, education and career choices,
retirement, health, and medical care expenditures. (See
Wall and Williams (1970} for a review of early panel studies
on human growth and development, Boruch and Pearson
(1988) for descriptions of some U.S. panel surveys, and
the Subcommittee on Federal Longitudinal Surveys (1986)
for descriptions of U.S. federal panel surveys.) [n recent
years, there has been a major upsurge in interest in panel
surveys in many subject-matter areas, and especially in
household economics. The ongoing U.S. Panel Study of
Income Dynamics began in 1968 (see Hill 1992 for a
description of the PSID) and similar long-term panel
studies have been started in the past decade in many Euro-
pean countries. The U.S. Bureau of the Census started to
conduct the Survey of Income and Program Participation
(SIPP)in 1983 (Nelson ef al. 1985; Kasprzyk 1988; Jabine
et al. 1990), and Statistics Canada introduced the Survey
of Labour and Income Dynamics (SLID) in 1993. The
growth in interest in panel surveys has also given rise to
an increase in literature about the methodology of such
surveys, including such recent texts as Kasprzyk et al.
(1989}, Magnusson and Bergman (1990), and Van de Pol
(1989).
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This section reviews the major issues involved in the
design and analysis of panel surveys. The treatment is
geared towards repeated panel surveys of fixed duration
like the SIPP and SLID, but most of the discussion applies
more generally to all forms of panel survey.

3.1 Design Decisions for a Panel Survey

The time dimension adds an extra dimension of com-
plexity to a panel survey as compared with a cross-
sectional survey. In addition to all the decisions that need
to be made about the design features of a cross-sectional
survey, a wide range of extra decisions needs to be reached
for a panel survey. Major design decisions include:

» Length of the panel. The longer the panel lasts, the
greater is the wealth of data obtained for longitudinal
analysis. For instance, the longer the panel, the greater
the number of spells of unemployment starting during
the life of the panel that will be completed before the end
of the panel, and hence the greater the precision in
estimating the survival function for such spells. On the
other hand, the longer the panel, the greater the prob-
lems of maintaining a representative cross-sectional
sample at later waves, because of both sample attrition
and difficulties in updating the sample for new entrants
to the population.

It can sometimes be beneficial to vary the length of
the panel between different types of panel members.
Thus, for instance, when the analytic objectives call for
it, panel members with certain characteristics (e.g.,
members of a minority population) or whoe experience
certain events during the course of the regular panel
(e.g., adivorce) can be retained in the panel for extended
periods of observation.

® Length of the reference period. The frequency of data
collection depends on the ability of respondents to recall
the information collected in the survey over time. Thus,
the PSID, with annual waves of data collection, requires
recall of events occurring in the previous calendar year,
whereas SIPP, with four-monthly waves of data collection,
requires recall for the preceding four months. The longer
the reference period, the greater the risk of recall error.

* Number of waves. In most cases the number of waves
of data collection is determined by a combination of the
length of the panel and the length of the reference
period. The greater the number of waves, the greater the
risk of panel attrition and time-in-sample effects, and
the greater the degree of respondent burden.

¢ Overlapping or non-overiapping panels. With a repeated
panel survey of fixed duration, a decision needs to be
made as to whether the panels should overlap across
time. Consider, for instance, the proposal of a National
Research Council study panel that the SIPP should be
a four-year panel (Citro and Kalton 1993). One possibility

is to run each panel for four years, starting a new panel
when the previous one finishes. Another possibility is
run each panel for four years, but starting a new panel
every two years. Yet another possibility is to run each
pangl for four years, starting a new panel every year,

The design of nonoverlapping panels has the benefit of
simplicity, since only one panel is in the field at any one
time. It also produces a large sample for longitudinal
analysis; for instance, the panels with the nonoverlap-
ping design can be roughly twice the size of those with
the design that has two overlapping panels at any one
time. However, this increase in sample size for non-
overlapping panels does not apply for cross-sectional
estimates, since the data from the panels covering a given
time point can be combined for cross-sectional estima-
tion, Also, the cross-sectional estimates for a time period
near the end of a panel with the nonoverlapping design
are at greater risk of bias from attrition, time-in-sample
bias, and failure to update the sample fully for new
population entrants than is the case with an overlapping
design, in which one panel is of more recent origin.
Moreover, the overlapping design permits the examina-
tion of such biases through a comparison of the results
for the two panels for a given time period, whereas no
such examination is possible with a nonoverlapping
design. Another limitation of the nonoverlapping design
is that it may not be well positioned to measure the effect
of such events as a change in legislation. For instance,
if legislation takes effect in the final year of 4 nonover-
lapping panel, there will be little opportunity to evaluate
its effect by comparing the situations of the same indi-
viduals before and for some period after the legislation
is enacted. With overlapping panels, one of the panels
will provide a wider window of observation.

* Panel sample size. For a given amount of annual
resources, the sample size for each panel is determined
by the preceding factors. A larger panel for longitudinal
analysis can be achieved by lengthening the reference
period and by employing a nonoverlapping design. The
sample size for cross-sectional estimates can be increased
by lengthening the reference period, but not by using a
nonoverlapping design.

The above list determines the major parameters of a

panel survey design, but there still remain a number of
other factors that need to be considered:

* Mode of data collection. As with any survey, a decision
needs to be made as to whether the survey data are to be
collected by face-to-face interviewing, by telephone, or
by self-completion questionnaire, and whether computer
assisted interviewing (CAPI or CATI) is to be used. With
a panel survey, this decision needs to be made for each
wave of data collection, with the possibility of different
modes for different waves (for instance, face-to-face
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interviewing at the first wave to make contact and estab-
lish rapport, with telephone interviewing or mail ques-
tionnaires at some of the later waves). When modes may
be changed between waves, consideration needs to be
given to the comparability of the data across waves.
Sometimes a change in mode may involve a change in
interviewer, as for instance would occur with a change
from face-to-face interviewing to a centralized CATI
operation. Then the effects of a change of interviewer
between waves on the respondent’s willingness to continue
in the panel and on the comparability of responses across
waves also need to be carefully considered.

¢ Dependent interviewing. With panel surveys there is the
possibility of feeding back to respondents their responses
at earlier waves of data collection. This dependent inter-
viewing procedure can secure more consistent responses
across waves, but risks generating an undue level of con-
sistency. The ease of application of dependent inter-
viewing depends on the length of the interval between
waves and the mode of data collection. Processing the
responses from one wave to feed back in the next is easier
to accomplish if the interval between waves is a long one
and if computer assisted interviewing is employed.
Edwards et al. (1993) describe the use of dependent inter-
viewing with CAPI in the Medical Care Beneficiary
Survey, a survey which involves three interviews per year
with each respondent.

® Incentives. Monetary or other incentives (e.g., coffee
mugs, calculators, lunch bags) may be offered to sampled
persons to encourage their participation in a survey.
With a panel survey, incentives may be used not only to
secure initial participation but also to maintain coopera-
tion throughout the duration of the panel. There is an
issue of when are the best times to provide incentives in
a panel survey (e.g., at the first wave, at an intermediate
wave, or at the last wave of the panel). Panel survey
researchers often send respondents a survey newsletter,
frequently giving some recent highlights from the survey
findings, at regular intervals, both to generate goodwill
for the survey and to maintain contact with respondents
(see below). Birthday cards sent at the time of the
respondents’ birthdays are also often used for these
purposes.

* Respondent rules. Survey data are often collected from
proxy informants when respondents are unavailable for
interview. With a panel survey, this gives rise to the
possibility that the data may be collected from different
individuals at different waves, thus jeopardizing the com-
parability of the data across waves. The respondent rules
for a panel survey need to take this factor into account.

e Sample design. The longitudinal nature of a panel survey
needs to be considered in constructing the sample design
for the initial wave. Clustered samples are commonly
employed for cross-sectional surveys with face-to-face
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interviewing in order to reduce fieldwork travel costs and
to enable frame construction of housing unit listings to
be performed only for selected segments. These benefits
are bought at the price of the increase in the variance of
survey estimates arising from the clustering. The optimum
extent of clustering depends on the various cost factors
involved and the homogeneity of the survey variables in
the clusters (see, for instance, Kish 1965). With a panel
survey, the use and extent of any clustering should be
determined in relation to the overall panel with all its
waves of data collection. In particular, the benefit of
reduced ficldwork costs disappears for waves of data
collection that are conducted by telephone interviewing
or mail questionnaire. Also the migration of panel
members to locations outside the original clusters reduces
the benefit of the initial clustering for fieldwork costs
at later waves. (However, some benefits of the initial
clustering still operate for the large proportion of mobile
persons who move within their own neighbourhoods.)

Oversampling of certain population subgroups is widely
used in cross-sectional surveys to provide sufficient
numbers of subgroup members for separate analysis.
Such subgroups may, for instance, comprise persons
with low incomes, minority populations, persons in a
specified age-group, or persons living in certain geo-
graphical areas. Such oversampling can also be useful
in panel surveys, but caution is needed in its application.
With long-term panels, one reason for caution is that the
objectives of the survey may change over time. Over-
sampling to meet an objective identified at the start of
a panel may prove harmful to objectives that emerge
later. Another reason for caution is that many of the
subgroups of interest are transient in nature (e.g., low
income persons, persons living in a given geographical
area). Oversampling persons in such subgroups at the
outset of the panel may be of limited value for later
waves: some of those oversampled will leave the
subgroup while others not oversampled will join it.
Thirdly, the definition of the desired subgroup for longi-
tudinal analysis needs to be considered. For instance,
SIPP data are used to estimate durations of spells on
various welfare programs. Since such estimates are
usually based on new spells starting during the life of the
panel, it may not be useful to oversample persons already
enrolled on welfare programs. See Citro and Kalton
(1993) for a discussion of oversampling for the SIPP.

When oversampling of a certain subgroup of the popula-
tion (e.g., a minority population) is desired for a panel
survey, the oversampling may require a large screening
operation. The assessment of the cost of such screening
should be made in the context of the full panel with all
its waves of data collection. An expensive screening
operation at the first wave may well be justifiable in this
context.
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* Updating the sample. When the sole objective of a panel
survey is longitudinal analysis, it may be sufficient to
adopt a cohort approach that simply follows the initial
sample selected for the first wave. However, when cross-
sectional estimates are also of interest, it may be neces-
sary to update the sample at each wave to represent new
entrants to the population. Updating for all types of new
entrants is often difficult, but it is sometimes possible
to develop fairly simple procedures to account for
certain types of new entrants. For instance, in a panel
of persons of all ages, babies born to women panel
members after the start of the panel can be included as
panel members. The SIPP population of inference
comprises persons aged 15 and over. By identifying in
initial sampled households persons who are under
15 years old but who will attain that age before the end
of the panel, by following them during the panel, and
by interviewing them after they reach 15 years of age, a
SIPP panel can be updated for this class of new entrants
(Kalton and Lepkowski 1985).

Attention also needs to be paid to panel members who
leave the survey population. For some the departure is
clearly permanent (e.g., deaths), but for others it may
be only temporary (e.g., going abroad or entering an
institution). If efforts are made to keep track of tempo-
rary leavers, they can be readmitted to the panel if they
return to the survey’s population of inference.

Panel surveys such as SIPP and PSID collect data not
only for persons in original sampled households, but
also for other persons - nonsampled persons — with
whom they are living at later waves. The prime purpose
of collecting survey data for nonsampled persons is to be
able to describe the economic and social citcumstances
of sampled persons. The issue arises as to whether any or
all nonsampled persons should remain in the panel after
they stop living with sampled persons. For some kinds of
analysis it is useful to foltow them, However, to follow
them would eat significantly into the survey’s resources,

When data are collected for nonsample members, these
data may be used simply to describe the circumstances
of sample members, in which case analyses are restricted
to sample members, with nonsample members being
assigned weights of zero. Alternatively, nonsample
members can be included in cross-sectional analyses. In
this case appropriate weights for sample and nonsample
persons need to be developed to reflect the multiple ways
in which individuals may appear in the dataset, Huang
(1984), Ernst (1989) and Lavallée and Hunter (1993)
describe the fair share weighting approach that may be
used for this purpose.

Tracking and tracing. Most panel surveys encounter the
problem that some panel members have moved since the
last wave and cannot be located. There are two ways to
try to handle this problem. First, attempts can be made

to avoid the problem by implementing procedures for
tracking panel members between waves. One widely-
used procedure when there is a long interval between
waves is to send mailings, such as birthday cards and
survey newsletters, to respondents between waves,
requesting the post office to provide notification of
change of address if applicable. Another tracking device
is to ask respondents for the names and addresses or
telephone numbers of persons close to them (e.g.,
parents) who are unlikely to move and who will be able
to provide locating information for them if they move.

The second way to deal with lost panel members is to
institute various tracing methods to try to locate them.
With effort and ingenuity, high success rates can be
achieved. Some methods of tracing may be specific for
the particular population of interest (e.g., professional
societies for persons with professional qualifications)
while others may be more general, such as telephone
directories, computerized telephone number look-ups,
reverse telephone directories for telephone numbers of
neighbours, mail forwarding, marriage licence registers,
motor vehicle registrations, employers, and credit
bureaus. It can be useful to search death records for lost
panel members, particularly for long-term panel
surveys. Panel members found to have died can then be
correctly classified, rather than being viewed as non-
respondents. Methods of tracing are discussed by
Burgess (1989), Clarridge er «/. (1978), Crider et al.
(1971) and Eckland (1968).

3.2 Problems of Panel Surveys

Panel surveys share with all surveys a wide range of
sources of nonsampling error, This section does not review
all these sources, but rather concentrates on three sources
that are unique to panel surveys, namely wave nonresponse,
time-in-sample bias and the seam effect.

3.2.1 Wave nonresponse

The nonresponse experienced by panel surveys at the
first wave of data collection corresponds to that experienced
by cross-sectional surveys. The distinctive feature of panel
surveys is that they encounter further nonresponse at
subsequent waves. Some panel members who becormne non-
respondents at a particular wave do not respond at any
subsequent wave while others respond at some or all
subsequent waves. The former are often termed attrition
cases and the latter non-attrition cases. The overall wave
nonresponse rates in panel surveys increase with later
waves, but with well-managed surveys the rate of increase
usually declines appreciably over time. For example, with
the 1987 SIPP panel, the sample loss was 6.7% at wave
1, 12.6% at wave 2, and it then increased slowly to 19.0%,
at wave 7 (Jabine er a/. 1990). The tendency for the
nonresponse rate to flatten off at later waves is comforting,
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but nevertheless the accumulation of nonresponse over
many waves produces high nonresponse rates at later
waves of a long-terim panel. For instance, in 1988, after
21 annual rounds of data collection, the PSID non-
response rate for individuals who lived in 1968 sampled
households had risen to 43.9% (Hill 1992).

The choice between the two standard general-purpose
methods for handling missing survey data - weighting
adjustments and imputation - is not straightforward for
wave nonresponse in panel surveys. For longitudinal
analysis, the weighting approach drops all records with
one or more missing waves from the data file and attempts
to compensate for them by weighting adjustments applied
to the remaining records. This approach can lead to the
loss of a substantial amount of data when the data file
covers several waves. On the other hand, the imputation
approach retains all the reported data, but requires con-
ducting wholesale imputations for missing waves. A com-
promise approach uses imputation for some patterns of
wave nonresponse (e.g., those with only one missing wave,
where data are available from both adjacent waves), and
weighting for others (see, for example, Singh et al. 1990},
For cross-sectiona) analysis, separate data files may be
created for each wave. These files can comprise all the
respondents for that wave, with either weighting adjust-
ments or imputations for the wave nonrespondents.
Kalton (1986) and Lepkowski (1989) discuss general
methods for handling wave nonresponse, Lepkowski et al.
(1993) discuss imputations for wave nonresponse in the
SIPP, and Michaud and Hunter (1993) describe plans for
handling wave nonresponse in the SLID.

With wave nonresponse there is the possibility of
collecting some or ali of the data for the missing wave at
a subsequent interview, However, the quality of the retro-
spective data collected in this way needs to be carefully
assessed. An experiment was conducted to examine the
utility of this approach with the 1984 SIPP panel, using
a missing wave form to collect responses for a skeleton set
of core questions for the missing wave {(Huggins 1987;
Singh 1993). The analyses showed substantialty fewer tran-
sitions in receipt of income, assets, and government
assistance from the missing wave form than from bench-
mark data. In consequence the use of the missing wave
form was discontinued. Administrative records may some-
times provide another possible source of skeletal data for
missing waves.

3.2.2 Time-in-sample bias

Time-in-sample bias, or panel conditioning, refers to
the effect that panel members’ responses at a given wave
of data collection are affected by their participation in
previous waves. The effect may reflect simply a change in
reporting behaviour. For example, a respondent may
recognize from previous interviews that a *“Yes’’ response
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to a question leads to follow-up questions, whereas a
“No’* answer does not. The respondent may therefore give
a *“No’’ answer (o avoid the burden of the extra questions.
Alternatively, a respondent may learn from previous inter-
views that detailed information on income is needed, and
may therefore prepare for later interviews by collecting the
necessary data. The time-in-sample effect may also reflect
a change in actual behaviour. For example, a respondent
may enroll in the food stamp program as a result of learning
of its existence from the questions asked about it at earlier
waves of data collection.

A recent experimental study of panel conditioning in
a four-year panel study of newlyweds found some evidence
that participation in the study did affect marital well-
being (Veroff ef ai. 1992). However, that study used
in-depth interviewing techniques that are more intrusive
than those used in most surveys. A number of studies of
panel conditioning that have been conducted in more
standard survey settings have found that conditioning
effects do sometimes occur, but they are not pervasive
{Traugott and Katosh 1979; Ferber 1964; Mooney 1962;
Waterton and Lievesley 1989).

A benefit of rotating and overlapping panel surveys
is that they enable estimates for the same time period
obtained from different panels to be compared. Such
comparisons have clearly identified the presence of what
is termed ‘‘rotation group bias’’ in the U.S: and Canadian
Labour Force Surveys (e.g. Bailar 1975, 1989, and U.S.
Bureau of the Census 1978, for the U.S. Current Population
Survey; Ghangurde 1982, for the Canadian Labour Force
Survey). Rotation group bias may reflect nonresponse bias
and conditioning effects. In analyses comparing the
overlapping 1985, 1986 and 1987 SIPP pancls, Pennell and
Lepkowski (1992) found few differences in the results
from the different panels.

3.2.3 Seam effect

Many panel surveys collect data for subperiods within
the reference period from the last wave of data collection.
The SIPP, for instance, collects data on a monthly basis
within the four-month reference period between waves.
The seam effect refers to the common finding with this
form of data collection that the levels of reported changes
between adjacent subperiods (e.g., going on or off of a
welfare program from one month to the next) are much
greater when the data for the pair of subperiods are
coliected in different waves than when they are collected
in the same wave. The seam effect has been found to be
pervasive in SIPP, and to relate to both recipiency status
and amounts received (see, for example, Jabine ef al.
1990; Kalton and Miller 1991). It has also been found.in
PSID (Hill 1987). Murray et al. (1991) describe approaches
used to reduce the seam effect in the Canadian Labour
Market Activity Survey.
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3.3 Longitudinal Analysis

There is a substantial and rapidly expanding literature
on the analysis of longitudinal data, including a number
of texts on the subject {e.g. Goldstein 1979; Hsiao 1986;
Kessler and Greenberg 1981; Markus 1979). This treat-
ment cannot be comprehensive, but rather identifies a few
general themes.

® Measurement of gross change. As has already been
noted, a key analytic advantage of a panel survey over
a repeated survey is the ability to measure gross change,
that is, change at the individual level. The basic approach
to measuring gross change is the turnover table that
tabulates responses at one wave against the responses to
the same question at another wave, The severe limitation
to this form of analysis is that changes in measurement
€rrors across waves can lead to serious bias in the esti-
mation of the gross change (for further discussion, see
Kalton et al. 1989; Rodgers 1989; Abowd and Zellner
1985; Chua and Fuller 1987; Fuller 1990; and Skinner
1993},

Relationship berween variables across time. Panel surveys
collect the data necessary to study the retationships between
variables measured at different times. For instance, based
on the data collected in the 1946 British birth cohort, the
National Survey of Health and Development, Douglas
(1975) found that children who were hospitalized for more
than a week or who had repeated hospitalizations between
the ages of 6 months and 3% years exhibited more
troublesome behaviour in school and lower reading scores
atage 15. In principle, cross-section surveys may employ
retrospective questions to collect the data needed to
perform this type of analysis. However, the responses
to such questions are often subject to serious memory
error, and potentially to systematic distortions that affect
the relationships investigated.

® Regression with change scores. Regression with change
scores can be used to avoid a certain type of model
misspecification. Suppose that the correct regression
maodel for individual  at time £ is

Yo = a + Bx; + vz, + €,

where x;, is an explanatory variable that changes value
over time and z;, is an explanatory variable that is con-
stant over time (e.g., gender, race). Suppose further that
Z; 15 unobserved; it may well be unknown. Then 8 can
still be estimated from the regression on the change
scores:

Yieery = Yy = BKgeny — Xu) + €y — €irs

{Rodgers 198%; Duncan and Kalton 1987).

* Estimation of spell durations. The data collected in
panel surveys may be used to estimate the distribution
of lengths of spells of such events as being on a welfare
program. In panel surveys like the SIPP, some indi-
viduals have a spell in progress at the start of the panel
(initial-censored spells), some start a spell during the
panel, and some spells continue beyond the end of the
panel (right-censored spells). Thus, not all spells are
observed in their entirety. The distribution of spell dura-
tions may be estimated by applying survival analysis
methods, such as the Kaplan-Meier product-limit
estimation procedure to all new spells (including right-
censored new spells) starting during the life of the panel
(e.g. Ruggles and Williams 1989).

Structural equation models with measurement errors.
The sequence of data collection in a panel survey provides
a clear ordering of the survey variables that fits well
with the use of structural equation modelling for their
analysis. This form of analysis can make allowance for
measurement errors, and with several repeated measures
can handle correlated error structures {e.g. Jéreskog and
Sérbom 1979),

4. CONCLUDING REMARKS

The data sets generated from panel surveys are usually

extremely rich in analytic potential. They contain repeated

measures for some variables that are collected on several

occasions, and also measures for other variables that are
asked on a single wave. Repeated interviewing of the same

sample provides the opportunity to collect data on new

variables at each wave, thus yielding data on an extensive

range of variables over a number of waves. A panel data
set may be analyzed both longitudinally and cross-
sectionally. Repeated measures may be used to examine
individual response patterns over time, and they may also

be related to other variables. Variables measured at a

single wave may be analyzed both in relation to other

variables measured at that wave and to variables measured

at other waves,
The richness of panel data is of value only to the extent

that the data set is analyzed, and analyzed in a timely

manner. Running a panel survey is like being on a tread-
mill: the operations of questionnaire design, data collection,
processing and analysis have to be undertaken repeatedly
for each successive wave. There is a real danger that the
survey team will become overwhelmed by this process,

with the result that the data are not fully analyzed. To

avoid this danger, adequate staffing is needed and a well-
integrated organization needs to be established.

In addition it is advisable to keep the panel survey
design simple. The survey design should be developed to
meet clearly-specified objectives. Adding complexities to
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the design to enhance the richness of the panei data set for
other uses should be critically assessed. Although persua-
sive arguments can often be made for such additions, they
should be rejected if they threaten the orderly conduct of
any stage of the survey process.

As noted earlier, measurement errors have particularly
harmful effects on the analysis of individual changes
from panel survey data. The allocation of part of a panel
survey’s resources to measure the magnitude of such errors
is therefore well warranted (Fuller 1989). Measurement
errors may be investigated either by validity studies
{comparing survey responses with ‘“true’” values from an
external source) or by reliability studies (e.g., reinterview
studies). The results of such studies may be then used in
the survey estimation procedures to adjust for the effects
of measurement errors.
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Before having a manuscript typed for submission, please examine a recent issue (Vol. 10, No. 2 and onward) of Survey
Methodology as a guide and note particularly the following points:
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Layout

Manuscripts should be typed on white bond paper of standard size (8'42 % 11 inch}, one side only, entirely double
spaced with margins of at least 1% inches on all sides.

The manuscripts should be divided into numbered sections with suitable verbal titles.

The name and address of each author should be given as a footnote on the first page of the manuscript,
Acknowledgements should appear at the end of the text.

Any appendix should be placed after the acknowledgements but before the list of references.

Abstract

The manuscript should begin with an abstract consisting of one paragraph followed by three to six key words.
Avoid mathematical expressions in the abstract.

Style

Avoid footnotes, abbreviations, and acronyms. ‘

Mathematical symbols will be italicized unless specified otherwise except for functional symbols such as
“exp()”’ and “log(?)’”’, etc.

Short formulae should be left in the text but everything in the text should fit in single spacing. Long and important
equations should be separated from the text and numbered consecutively with arabic numerals on the right if
they are to be referred to later. :
Write fractions in the text using a solidus. ‘

Distinguish between ambiguous characters, (e.g., w, w; 0, O, 0; 1, 1).

Italics are used for emphasis. Indicate italics by underlining on the manuscript.

Figures and Tables

All figures and tables should be numbered consecutively with arabic numerals, with titles which are as nearly
self explanatory as possible, at the bottom for figures and at the top for tables.

They should be put on separate pages with an indication of their appropriate placement in the text. (Normally
they should appear near where they are first referred to). .
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References in the text should be cited with authors’ names and the date of publication. If part of a reference
is cited, indicate after the reference, e.g., Cochran (1977, p. 164},

The list of references at the end of the manuscript should be arranged alphabetically and for the same author
chronologically. Distinguish publications of the same author in the same year by attaching a, b, ¢ to the year
of publication. Journal titles should not be abbreviated. Follow the same format used in recent issues.






