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In This Issue 

Papers covering a variety of topics are included in this issue of Survey Methodology. In the first 
paper, Biemer and Atkinson present a general methodology for constructing and evaluating model 
prediction estimators of measurement bias for a stratified two-phase design with simple random 
sampling in each phase. For evaluation, they extended the bootstrap methodology of Bickel and 
Freedman to two-phase sampling. The example used for illustration indicates that improvements 
over the traditional net difference estimator and thus savings in the cost of reinterview surveys are 
possible. 

The paper by Armstrong and Mayda was originally intended for the special section Record Linkage 
and Statistical Matching. The authors consider model based estimation of classification error rates 
in record linkage. The class of models considered allows for non-independence of match status of 
different matching fields within a record pair. Estimation methods are developed and different 
methods of error rate estimation are compared using both synthetic and real data. 

Pfeffermann and Bleuer consider estimation for smaU areas using data from a rotating panel survey 
over time. Their approach is model based, with a state space model for the population values over 
time and separate autoregressive models for the survey error series from each panel. To achieve a 
measure of robustness, the small area estimators are further constrained to add up to direct survey 
estimators within pre-defined larger areas. The approach is demonstrated using Canadian Labour 
Force Survey data for the Atlantic provinces. 

Mian and Laniel discuss two iterative procedures to find the maximum likelihood estimates of 
a non-linear benchmarking model that seems suitable for economic time series from large sample 
surveys. Closed form expressions for the asymptotic variances and covariances of the benchmarked 
series and of the fitted values are also provided. The methodology is illustrated using Canadian retail 
trade data. 

DeviUe uses superpopulation models to anticipate, before data collection, the variances of estimates 
of ratios. Based on models that are both simple and realistic, he produces expressions of varying 
complexity and then optimizes them. He deals with the problem of estimating the frequency of errors 
in the population of forms collected during the quality control of the French census. 

Asymptotic techniques are used by Casady and Valliant to study post-stratification from a design-
based, conditional point of view. The authors derive the large sample bias and mean squared error 
of the standard post-stratified estimator, the Horvitz-Thompson estimator, a ratio estimator and 
a new post-stratified regression estimator. The developed theory is empirically tested using real and 
artificial populations. The problem of bias due to defective frames is also addressed. 

Bandyopadhyay and Adhikari study estimation based on frames where some units are listed more 
than once, each time with a different identification. The mean square errors of estimators from 
imperfect and perfect frames are compared. Estimation of a population ratio, mean and total when 
no auxiliary information is available on the frame is considered. 

Roesch, Green and Scott present a generalized concept for all of the commonly used methods 
of forest sampling. The concept views the forest as a two-dimensional picture which is cut up into 
pieces like a jigsaw puzzle, with the pieces defined by the individual selection probabiUties of the 
trees in the forest. 

The paper by Kalton and Citro is a revised version of the keynote address given at the Statistics 
Canada Symposium 92 on longitudinal surveys. The paper discusses how different designs for surveys 
over time satisfy various analytic objectives. The author then concentrates on panel surveys and talks 
about decisions that need to made when designing them. 

The Editor 
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Estimation of Measurement Bias Using 
a Model Prediction Approach 
PAUL P. BIEMER and DALE ATKINSON 

ABSTRACT 

Methods for estimating response bias in surveys require "unbiased" remeasurements for at least a subsample of 
observations. The usual estimator of response bias is the difference between the mean of the original observations 
and the mean of the unbiased observations. In this article, we explore a number of alternative estimators of response 
bias derived from a model prediction approach. The assumed sampling design is a stratified two-phase design 
implementing simple random sampling in each phase. We assume that the characteristic, y, is observed for each 
unit selected in phase 1 while the true value of the characteristic, p, is obtained for each unit in the subsample selected 
at phase 2. We further assume that an auxiliary variable x is known for each unit in the phase 1 sample and that 
the population total of J: is known. A number of models relating;', p and x are assumed which yield alternative 
estimators of £(>• — /i), the response bias. The estimators are evaluated using a bootstrap procedure for estimating 
variance, bias, and mean squared error. Our bootstrap procedure is an extension of the Bickel-Freedman single 
phase method to the case of a stratified two-phase design. As an Ulustration, the methodology is applied to data 
from the National Agricultural Statistics Service reinterview program. For these data, we show that the usual differ­
ence estimator is outperformed by the model-assisted estimator suggested by Sarndal, Swensson and Wretman (1991), 
thus indicating that improvements over the traditional estimator are possible using the model prediction approach. 

KEY WORDS: Reinterview; Repeated measures; Response error; Bootstrap. 

1. INTRODUCTION 

It is well-known in the survey literature that when 
responses are obtained from respondents in sample 
surveys, the observed values of measured characteristics 
may differ markedly from the true values of the character­
istics. Evidence of these so-called measurement errors in 
surveys has been collected in a number of ways. For 
example, the recorded response may be checked for accu­
racy against administrative records or legal documents 
within which the true (or at least a more accurate) value 
of the characteristic is contained. An alternative approach 
relies on revised reports from respondents via reinterviews. 
In a reinterview, a respondent is recontacted for the pur­
pose of conducting a second interview regarding the same 
characteristics measured in the first interview. Rather than 
simply repeating the original questions in the interview, 
there may be extensive probes designed to elicit more 
accurate responses, or the respondent may be instructed 
to consult written records for the "book values" of the 
characteristics. For some reinterview surveys, descrepancies 
between the first and second interviews are reconciled with 
the respondent until the interviewer is satisfied that a 
correct answer has been obtained. Forsman and Schreiner 
(1991) pro vide an overview of the literature for these types 
of reinterviews. Other means of checking the accuracy of 
survey responses include: (a) comparing the survey 

statistics {i.e., means, totals, proportions, etc.) to statistics 
from external sources that are more accurate; (b) using 
experimental designs to estimate the effects on survey 
estimates of interviewers and other survey personnel; and 
(c) checking the results within the same survey for internal 
consistency. 

The focus of the current work is on estimators of 
measurement bias from data collected in true value 
remeasurement studies, i.e., record check and reinterview 
studies, where the objective is to obtain the true value of 
the characteristic at, perhaps, a much greater cost per 
measurement than that of the original observation. 

Because of the high costs typically involved in conduc­
ting reinterview studies, repeated measurements are 
usually obtained for only a small fraction of the original 
survey sample. While the sample size may be quite ade­
quate for estimating biases at the national and regional 
levels, they may not be adequate for estimating the error 
associated with small subpopulations or rare survey 
characteristics. In this paper, our objective is to consider 
estimators of response bias having better mean squared 
error properties than the traditional estimators. The basic 
idea behind our approach can be described as follows. 

In a typical remeasurement study, a random subsample 
of the survey respondents is selected and, through some 
means, the true values of the characteristics of interest are 
ascertained. Let «, denote the number of respondents to 

' Paul P. Biemer, Principal Scientist, Center for Survey Research, Research Triangle Institute, Research Triangle Park, NC 27709; Dale Atkinson, 
Supervisory Mathematical Statistician, National Agricultural Statistics Service, 3251 Old Lee Highway, Room 305, Fairfax, Va 22030. 
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the first survey and let «2 denote the number selected for 
the subsample or evaluation sample. The usual estimator 
of response bias is the net difference rate, computed for 
the /?2 respondents in the evaluation sample as 

NDR = y2 M2. (1.1) 

where j'2 is the sample mean of original responses and p.2 
is the sample mean of the true measurements. A disad­
vantage of the NDR is that it excludes information on 
the «! — rt2 units in the original survey who were not 
included in the remeasurement study. Further, the esti­
mator does not incorporate information on auxiliary 
variables, x, which may be combined with the informa­
tion on y and p available from the survey to provide a more 
precise estimator of response bias. 

Given that we have a stratified, two-phase sample 
design and resulting data {y, p, x), our objective is to 
determine the "best" estimator of measurement bias given 
these data. Our basic approach is to identify a model for 
the true value, p,, which is a function of the observed 
values, yi, i = 1, . . . , «ii and any auxiUary information, 
X, that may be available for the population. The model is 
then used to predict pj for all units in the population for 
which Pi is unknown. These predictions can then be used 
to obtain estimates of the true population mean, total, or 
proportion. Thus, estimators of the response bias for these 
parameters can be derived from the main survey. Since the 
approach provides a prediction equation for /x, which is 
a function of the observations, estimators of response bias 
can be computed for areas having small sample sizes. In 
this case, the prediction equation for p, may be augmented 
by other respondent variables such as demographic charac­
teristics, type of unk, unit size, geographic characteristics, 
and so on. 

The basic estimation and evaluation theory for a predic­
tion approach to the estimation of response bias is presented 
in the following sections. Under stratified random 
sampling, estimators of means and totals, their variances 
and their mean squared errors are provided. Results from 
application to National Agricultural Statistics Service 
(NASS) data are also presented. 

2. METHODOLOGY FOR ESTIMATION 
AND EVALUATION 

2.1 The Measurement Error Model 

To fix the ideas, we shall consider the case of simple 
random sampling without replacement (SRSWOR) from 
a single population. Generalizations to stratified random 
sampling are straightforward and will be considered 
subsequently. 

Let U = ( 1 ,2 , . . . , Â ) denote the label set for the 
population and let Si = [1,2, . . . , / J j ) , without loss of 
generality, denote the label set for the first phase 
SRSWOR sample of «, units from U. 

For J',, i€Si, assume the model 

yi = To + 7/̂ / + «/. (2.1) 

where /x, is the true value of the measured characteristic, 
7o and y are constants, and e, is an independent error term 
having zero expectation and conditional variance, a^,. 

Since the focus of our investigation is on the bias 
associated with the measurements j ' , , consider the expec­
tation of yi. Let E (>», | /) denote the conditional expecta­
tion of yi over the distribution of the e, holding the unit 
/ fixed and let E (j',) = E, [E (j', | /) ] denote the expecta­
tion ofE(yj I /) over the sampling distribution. Then, for 
a given unit, /, 

£(^,-1 /) = 70 + 7M/ 

and, hence, the unconditional expectation is 

(2.2) 

E(3',) = 70 + yM, (2.3) 

where M = Y^fLi PJ/N. Thus, the measurement bias is 

B = E{yj - Pi) = 70 + (7 - \)M. (2.4) 

The parameter, 70, is a constant bias term that does 
not depend upon the magnitude of M. Note that this 
definition of 70 is consistent with the usual definition of 
measurement bias obtained from the simple model 

yi M, + €/. (2.5) 

with e, ~ (70, afi). (See, for example, Biemer and Stokes 
1991.) 

Consider the estimation of JB. Assume that a subsample 
of size /i2 of the original ni sample units is selected and 
the true value, pi, is measured for these ^2 units. The true 
value may be ascertained either by a reinterview, a record 
check, interviewer observation, or some other means. Let 
S2 £ S] denote this so-called second phase sample. The 
usual estimator of the measurement bias is the NDR 
defined in (1.1). If the assumption that "the true value. 
Pi, is observed in phase 2, for aU /€S2" is satisfied, then 
the NDR is an unbiased estimator ofB. It may further be 
shown that the variance of the NDR is 

[('-:;)f('-i) 
-(- (l-"-iyI{l-r)^], (2.6) 
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where 5^ = S^.j^ (/̂ y ~ P2)^/(n2 - 1) with analogous 
definitions for sj and 5̂ ,̂, and r - s^y/sj. 

The NDR may be suboptimal in a number of situations 
which occur with some frequency. To see this, consider 
estimators of B of the form 

5ga — yg ~ i^Ra' 

where j'g = T,jesg yj/"g, g = 1 , 2 , 

fi'Ra = A2 + a{yi - y2) 

(2.7) 

(2.8) 

and p2 = Ejes2 /^y/^i. for ^ a constant given the sub-
sample. Si- It can be shown that the value of a that 
minimizes Var(5go) is 

or 

a = r for g = 1, 

a = r — I for g — 2. 
(2.9) 

Thus, for g = 1 or 2, the "optimal" choice of bgg is 

^opt = yi - [1^2 + r{yi - h)], (2.10) 

which differs from the NDR by the term (r— I) (Ji — j'2) • 
Since, in general, yi ^ j'2, NDR is optimal only if r = 1. 
It can be shown that this corresponds to the case where 
7i in (2.1) is 1. 

In this paper we shall explore alternatives to the NDR 
which incorporate information on y for units in the set 
S] ~ S2 as well as information on some auxilliary 
variable, x. To illustrate the concepts, we shall restrict 
ourselves to "no-intercept" linear models initially, i.e., 
models for which 70 = 0 in (2.1). This important class of 
models includes the difference estimator as well as ratio 
estimators. 

2.2 Model Prediction Approaches To Estimation 

Model prediction approaches to the estimation of 
population parameters in finite population sampling are 
well-documented in the Uterature. Cochran (1977) and 
other authors have demonstrated the model-based foun­
dations of the ubiquitous ratio estimator. There is also 
considerable literature on the choice between using weights 
that are derived from explicit model assumptions in 
estimation for complex surveys or eliminating the sample 
weights. Proponents of so-called model-based estimation 
recommend against the use of weights in parameter estima­
tion (see, for example, Royall and Herson 1973; and 
Royall and Cumberland 1981). They contend that the pro­
babilities of selection in finite population sampling, 
whether equal or unequal, are irrelevant once the sample 
is produced. The reliability criteria used by model-based 
samples are derived from the model distributional assump­
tions rather than sampling distributions. If an appropriate 

model is chosen to describe the relationship between the 
response variable and other measured survey variables, 
"model-unbiased" estimators of the population parameters 
may be obtained which have greater reliability than esti­
mators which incorporate weights. 

On the other side of the controversy are the design-
based samplers. Instead of the model-based assumptions, 
design-based samplers assume that an estimator from a 
survey is a single reaUzation from a large population of 
potential realizations of the estimator, where each poten­
tial realization depends upon the selected sample. The dis­
tribution of the values of the estimator when all possible 
samples that may be selected by the sampling scheme are 
considered is referred to as the sampling distribution of 
the estimator. Criteria for evaluating estimators under the 
design-based approach then consider the properties of the 
sampling distributions of the estimators. Under this 
approach, weighting of the estimators is required to achieve 
unbiasedness if unequal probability sampling is used. 

Although the estimators of fi considered here represent 
all three classes of estimators, the objective of this paper 
is not necessarily to compare design-based, model-assisted, 
and model-based estimators. Rather, we first seek to 
develop a systematic approach for evaluating alternative 
estimators for a given two-phase sample design. The 
problem considered is the following: Given a two-phase 
sample design and estimators of B = NB denoted by Bi, 
B2, • •., Bp, how does an analyst identify which estimator 
minimizes the mean squared error? A second objective of 
the article is to specify a number of aUernative estimators, 
and apply a systematic approach for evaluating the 
estimators. As an illustration, the methodology will be 
applied to data from the National Agricultural Statistics 
Service's December 1990 Agricultural Survey. 

2.3 The Estimators Considered in Our Study 

Extending the previously developed notation to stratified, 
two-phase designs, let N/, denote the size of the hth 
stratum, for /i = 1, ..., L.A two-phase sample is selected 
in each stratum using simple random sampUng at each 
phase. Let «]/, and /72/, < n^, denote the phase 1 and 
phase 2 sample sizes, respectively, in stratum h. Let Sn, 
and S21, ^ Si/, denote the label sets for the phase 1 and 
phase 2 samples, respectively, in stratum h. Assume the 
following data are either observed or otherwise known: 

outcome variables: ^, V /€Si/, 

true values: /x, V /6S2/, 

auxUUary variables: x, V i^Sn,. 

Further assume that Xf, = Y.iiUi, Xi is known for 
h = 1, ..., L where [4 is the label set for the hth stratum. 
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2.3.1 Weighted Estimators of M and B 

As a matter of convenience, we shall consider the 
estimation of the bias for an estimator of a population 
total denoted by M. The usual estimator of M = NM is 
the unbiased stratified estimator given by 

M, '2s; = Y^> hl^2h> (2.11) 

where p2h = Y,iiS2i, l^i/"2ii- The corresponding estimator 
of B ^ NE is N times the NDR defined in (1.1). For 
stratified samples, it is 

Bia — Y7 2sl M^ 2si> (2.12) 

where fis/ = E;, N,,y2h and J2/, = LiS2,, >'//«2/,- Note 
that (2.12) does not incorporate the information on j for 
units with labels /'€Si;, ~ S21,. An alternative estimator 
that uses all the data on y is 

•̂ 12$/ - Yi^, — M2SI, (2.13) 

where f i„ = E/,A /̂,.Vi/, and J,/, = E,65i;,7//«i/r 

A number of model-assisted estimators can be specified 
for two-phase stratified designs. These may take the form 
of either separate or combined estimators (see, for 
example, Cochran 1977, pp . 327-330). Further, the ratio 
adjustments may be applied to either phase 1 or phase 2 
stratum-level estimators. Because stratum sample sizes are 
typically small in two-phase samples, only combined 
estimators shall be considered here. 

As the emphasis in this paper is on the development of 
the methodology for model-based estimates of measurement 
bias and their evaluation, we shall consider a simple, special 
case of the model (2.1); viz., 70 = 0 or the no-intercept 
model. However, generalizations of the no-intercept meth­
odology to multivariate intercept models do not afford any 
difficulties and will be considered in a subsequent paper. 
Thus, letting 70 = 0 in (2.1) we have 

yi = jf^i + £/. (2.14) 

where 7 is an unknown constant and we assume e, ~ 
(0,a^Pj). The least squares estimator of 7 is 7 = y2st/f>-2st> 

where J îs/ = Y2s,/Nand p2st = M2si/^- Thus, a model-
assisted estimator of pj is yi/y = P2siyi/y2st and of M is 

^2stR — ~ ^ ' U / -
Y2SI 

(2.15) 

Using this estimator of M, two estimators of B cor­
responding to (2.12) and (2.13) are 

B 2slR — Y2st — M2S1P (2.16) 

and 

Bl2s,R = Yi„ - M2s,R. (2.17) 

A third estimator of B can be obtained via the model 

yi = 0Xi + e„ (2.18) 

where |S is a constant and e, ~ {0,alxi). This leads to a 
ratio estimator of Y, 

(2.19) 
'•Isl 

Thus, the corresponding estimator of fi is 

Ex2slR — YxsiR - M2S1R. (2.20) 

Finally, Sarndal, Swensson and Wretman (1992, p. 360) 
suggest a general estimator of M i n two-phase sampUng. 
Applying their equation 9.7.2 to the model in (2.14) under 
stratified sampling yields 

Mssw = M2s,p + ^ ' ( X - Xi„). (2.21) 
X2st 

Note that this estimator is simply (2.15) with the addition 
of the unbiased estimator of zero. The resulting estimator 
may have smaller variance than M2s,p if this term is 
negatively correlated with Mur/?- Likewise, their estimator 
of y reduces to Y^stp defined in (2.19). Thus the corre­
sponding estimator of B is 

BsSW — YxsiR — Msswy (2.22) 

which is identical to Bssw - Bx2stR Plus the second term 
of the right hand side of (2.21). 

2.3.2 Unweighted Estimators of M and B 

Rewrite M as 

^ = D M/ + Y '̂ ' + Y "' 
i(S2 iiSi~S2 iiU-Si 

(2.23) 

= M(2) -I- M(i_2) + M(~l), 

say, where Sg = U^=i Sg^, g - 1, 2. The strategy for 
unweighted, model-based estimation is to replace /x, in 
M(i_2) a n d M ( _ i ) by a prediction, /x„ obtained from a 
model. 

Using the model in (2.14), an estimator of pj is 

A/ = yi/y, 

where now 7 = y2/P2- Thus, an estimator of M(i_2) is 
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1^2 
^(1-2) = — Y yi 

y 2 , 

M2 

y2 

iiSi~S2 

{nipi - «2J'2). 

(2.24) 

where J'g = E/sSg J'/Zig. P-i = E/€S2 M//«2. and «g = l,, n^,,, 
for g — 1,2. Further, using the model 

Pi = bXj -I- ^j, (2.25) 

where 5 is a constant and ^, ~ (0, ff|jc,), we obtain 

^ 2 

•^2 

(2.26) 

where Xu^si = E;6(/~Si ^i- Thus, a model based estimator 
of Mis 

IYIM = M(2) + M(i_2) + A/(_,) 

= M(,) -I- M(_i), 

where M(I) = /ii P2yi/y2-

Likewise, Y can be rewritten as 

Y-Y y^ Y y 
iiSi iiU~Si 

- Y(i) + J'(~i) 

(2.27) 

(2.28) 

and we wish to predict j ' , in ^"(-i). Using the model in 
(2.18) a model-based estimator of 5 (̂~i) is 

Y - ^ X 
Xl 

and, thus, an estimator of Yis 

YM = Y(i) -\- >^(-i). 

Thus, B is estimated as 

BM = Y^ — M^. 

(2.29) 

(2.30) 

Versions of B2stR, Bi2sip, Bx2stR and Bf^ which are more 
robust to model outliers may also be constructed. The 
corresponding estimators, denoted by Bi^tR, 5i2sr/?. ^^2S(R 

and BM, respectively, may be formed by eliminating those 
data points which deviate substantially from the model 
predictions and computing the model-based or model-
assisted estimators using the remaining data. To illustrate, 
consider the estimator M2y,/j in (2.15). For this estimator, 
let 

(«2/, - l)sles,h = Y 
Ixfji^O 

(yhi - y i^hi)' 

y-hi 
(2.31) 

denote the sum of squares of residuals for the model (2.14). 
Then, in calculating the estimator of y, only those units 
in iiS2h where S2,, = (/eSz/,: | .v,/, - ypn, \ < 35„^,,,J^) 
are used. Denoting this estimator of 7 as 7, the estimator 
of M is M2s,R = Yis,/y where 7 = y2s,/ii2s! and p2s, and 
y2si are the stratified means of pj and yj for /eS2/,. The 
other robust model prediction estimators may be computed 
analogously. 

Many other unweighted, model-based estimators may 
be explored in the context of our two-phase design. For 
example, an intercept term may be added to models (2.14), 
(2.18), and (2.25). Further, slope and intercept parameters 
may be specified separately for each stratum or combina­
tion of strata. 

2.4 Estimation of Mean Squared Errors Using Bootstrap 
Estimators 

Although it is possible, under the appropriate design-
based or model-based assumptions, to derive closed form 
analytical estimates of the variance of the estimators we 
are considering in this study, we have elected instead to 
use a computer-intensive resampling method. First, we 
seek a method which is easy to apply since there are poten­
tially many estimators which will be considered in our 
study. Secondly, it is important to evaluate each estimator 
using the same criteria and a consistent method of variance 
estimation is essential to achieving this objective. Thus, 
it is essential that we employ a variance estimation method 
which can be applied to estimators of any complexity, 
under assumptions which are consistent and which do not 
rely upon any model assumptions. It is well-known that 
model-based variance estimation approaches are quite sen­
sitive to model failure (see, for example, Royall and 
Herson 1973; Royall and Cumberland 1978; and Hansen, 
Madow and Tepping 1983). Royall and Cumberland 
(1981) discuss several bias relevant alternatives including 
the jackknife variance estimator. 

Our approach is similar to that of Royall and Cumber­
land except rather than using a jackknife estimator, we 
employ a bootstrap estimator of the variance. For inde­
pendent and identically distributed observations, Efron 
and Gong (1983) show that the bootstrap and the jackknife 
variance estimators differ by a factor of n/(n — 1) for 
samples of size n. Thus, the robustness properties Royall 
and Cumberland demonstrate for the jackknife estimator 
also hold for the bootstrap estimator. 

Other properties of the bootstrap estimator have led us 
to choose it above other resampling methods. The jack-
knife and balance repeated replication (BRR) methods are 
not easily modified for the two-phase sampUng design of 
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our study. However, the bootstrap is readily adaptable to 
two-phase sampUng. Further, Rao and Wu (1988) provide 
evidence from a simulation study that the coverage proper­
ties of bootstrap confidence intervals in complex sampling 
compare favorably to the jackknife and BRR. 

Our general approach extends the method developed 
by Bickel and Freedman (1984) for single phase, stratified 
sampUng, to two-phase stratified sampling. Since the 
bootstrap procedure is implemented independently for 
each stratum, we shall, for simplicity, describe the method 
for the single stratum case. 

2.4.1 Estimation of Variance 

Extending the bootstrap method to two-phase sampling 
is not simply a matter of subsampling the single phase 
bootstrap samples. Recall that true values are known only 
for the units in S2 and, therefore, the bootstrap sampling 
scheme must necessarily confine the selection to units in 
S2. Therefore, let Si and S2 denote the phase 1 and phase 2 
samples, respectively, selected from Lousing SRSWOR. 
Let Si _ 2 denote the label set. Si ~S2. Let© == 0(Si_2.S2) 
denote an estimator of 0 which may be a function of the 
observations corresponding to units in both S2 and Si _2-
Define A', ni,n2 and /7i_2 as the sizes of sets U, Si, S2 and 
Si _2. respectively. Consider how the bootstrap is applied 
to obtain estimates of Var(O). 

The simplest case is when N/ni is an integer, say k. 
First, we form the psuedo-population label set 

u*A = t/5(2) u t/;5(i-2), (2.32) 

where U^^2) consists of k copies of the units in S2 and 
^^ (1 - 2) consists of k copies of the units in Si _ 2. We then 
perform the following three steps: 

1. Draw a SRSWOR of size «2 from UX(^2) and denote 
this set by S2. 

2. Draw a SRSWOR of size /Ji_2 from U%^l^2) and 
denote this set by Si*_2-

3. Compute O* - 0i (S*_2. SI) which has the same func­
tional form as 0(Si_2. S2), but is computed for the 
"1 = «i~2 + "2 units in S* = S*_2 U Sf. 

Repeat steps 1 to 3 some large number, Q, times to 
obtain 0*, . . . , 0^. Then, an estimator of Var(0) is 

procedure. First, form the pseudo-population U% as above 
consisting of kni units. In addition, form the pseudo 
population Ug = f/B(i~2) ^ ^B{2) of size {k -\- l)«i 
where (/B(I~2) and UB^2) consist of A- -I- 1 copies of the 
labels in Si_2 and S2, respectively. Then, for aQ of the 
bootstrap samples, select S* = Si'_2 U SJ from U^ and for 
(1 - Q!)Q samples, selects* from the psuedo-population. 
Up using the three-step procedure described above, where 

y nj V N-lJ- (2.34) 

2.4.2 Estimation of Bias and MSE 

The bootstrap procedure can also provide an estimate 
of estimator bias. The usual bootstrap bias estimator 
(see Efron and Gong 1983; Rao and Wu 1988) is 
6 (0) = 0* - 0 where 0* = E^^^/Q and 0 is the 
estimate computed from the full sample. Note that 
Qg{q = 1, .. ., Q) and 0 have the same functional 
form and are based upon the same model assumptions. 
Thus b{Q) does not reflect the contribution to bias due 
to model failure. We propose an alternative estimator of 
bias which we conjecture is an improvement over b{Q). 

RecaU from (2.4) that B = E(j, - /x,) where E( •) 
denotes expectation over both the measurement error and 
sampling error distributions. Thus, B may be rewritten as 
E ='LiLi (Yi - Pi)/N where Yi = E{yi\ i). Since Y, 
is unknown and unobservable for all i^U, B is also 
unknown and unobservable. Therefore, we shall construct 
a pseudo population resembling U, denoted by U*, such 
that B* = E*(j, — Pi) is known, where E*(-) is 
expected value with respect to both the measurement error 
and the sampling distributions associated with U*. 

Let U*= U^=i L̂^ where t/^ consists of A-;, = N,,/ni,, 
copies of the units in Si/,. Here we have assumed kf, is an 
integer, but we will subsequently relax the assumption. 
Further, denote by y* the value of the characteristic 
for the unit /€ U*. This value is equal to the yi for the 
corresponding unit in Sj. Thus, the population total of 
the;'fisy* =E/6C/'.>'f = f̂ , for f,̂ , defined in (2.13). 
Analogously, define the true value for unit /€ U* as p* = pj 
for /eC/* corresponding to y€S2. For y6Si_2> M; 
is unknown; however, for our pseudo-population we 
could generate pseudo-values for the p* such that 
^* = Y,iiU' l^t = ^2si where M2S1 is defined in (2.11). "^ (Q* — Q*)^ — Law Pi — JW2s( ""'^^'c JW25/'» ' Jc i iucu 111 vz , . i i ; 

varBss(Q) = Y n - ] ' ^̂ -̂ ^̂  Thus, for [/*, 5* = fi„ - M2,, = B,2„ defined in (2.13) 
q=l 

Where©* ^l^iBpQ. 

Using the methods of Rao and Wu (1988), it can now 
be shown that varBSS(^) is a consistent estimator of 
Var(0). If A'̂  = kni + r, where 0 < r < ni, the procedure 
is modified as follows using the Bickel and Freedman 

As we shall see, it is not necessary to generate the pseudo-
values for p* in order to evaluate the bias in the estimators 
ofB*. 

Note that under stratified sampUng, U* = U^, as 
defined in Section 2.4. Further, the bootstrap procedure 
described in this section is equivalent to repeated sampUng 
from U* and the alternative estimators 0i, . . . , 0^ of B 
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may also be considered estimators of B*. Since B* is 
known, the bias of© as an estimator of fi* is fi* = 0 - fi* 
and the corresponding MSE may be estimated as 

MSE = 2] (^^ - ^*'>^'Q 

= varBss(Q) + (0* - B*)\ (2.35) 

where varBss{^), Qg, and ©* are defined in Section 2.4. 
It can be easily verified that these results still hold when 
k,, is non-integer. 

Thus, the bootstrap procedure provides a method for 
evaluating the MSE of alternative estimators for 
estimating B*. Further, the pseudo-population U* is a 
reconstruction of U based upon copies of the values for 
the units in Si and S2. Thus, it is reasonable to use B* and 
MSE* to evaluate alternative estimators of B. 

3. APPLICATION TO THE AGRICULTURAL 
SURVEY 

3.1 Description of the Survey 

The National Agricultural Statistics Service (NASS) 
annually conducts a series of surveys which are collectively 
referred to as the Agricultural Survey (AS) program. The 
purpose of these surveys is to collect data related to specific 
agricultural commodities at the state and national levels. 
Each December in the years 1988-1990, reinterview studies 
designed to assess the measurement bias in the data col­
lected by Computer Assisted Telephone Interviewing 
(CATl) were conducted in six states: Indiana, Iowa, 
Minnesota, Nebraska, Ohio, and Pennsylvania. The reinter­
view techniques employed in these three studies are very 
similar to those used by the U.S. Census Bureau (see, for 
example, Forsman and Schreiner 1991). However, unlike 
the Census Bureau's program, the major objective in the 
NASS studies is the estimation of measurement bias rather 
than interviewer performance evaluation. 

As noted above, only AS responding units whose 
original interview was conducted by CATI were eligible 
for selection into the reinterview sample. The reasons for 
this restriction on sampling were primarily cost, timing, 
and convenience. However, a large proportion of the AS 
is conducted by CATl and, thus, information regarding 
AS measurement bias for this group would provide impor­
tant information for the entire AS program. 

For the NASS reinterview studies, the interviewing staff 
consisted of a mix of field supervisors and experienced 
field interviewers. This interviewing staff, which was a 
separate corps of interviewers from those used for CATI, 
conducted face-to-face reinterviews in a subsample of AS 

units for a subset of AS survey items. To minimize any 
problems that respondents may have with recall, the 
reinterviews were conducted within 10 days of the original 
interview. Differences between the original AS and reinter­
view responses were reconciled to determine the "true" 
value. Considerable effort was expended in procedural 
development, training, and supervision of the reinterview 
process to ensure that the final reconciled response was 
completely accurate. For the most part, the wording of the 
subset of AS questions asked in the reinterview was iden­
tical to that of the parent survey. The reinterviewers 
attempted to contact the most knowledgeable respondent 
in order to ensure the accuracy of the reconciled values. 

In this report, only the 1990 data are analyzed. Table 1 
presents the reinterview sample sizes for this study. 

Table 1 

Sample Sizes by Survey Item 

Item 

All wheat stocks 

Corn planted acres 

Corn stocks 

Cropland acreage 

Grain storage capacity 

Soybean planted acreage 

Soybean stocks 

Total land in farm 

Total hog/pig inventory 

Winter wheat seedings 

X 

U 

108,267 

225,269 

225,269 

278,045 

207,460 

171,761 

171,761 

- 276,450 

248,571 

108,267 

y 

s, 

8,176 

8,211 

7,990 

8,274 

8,126 

8,211 

8,113 

8,309 

8,247 

8,211 

IJ-

S2 

1,157 

1,157 

1,115 

1,141 

1,104 

1,156 

1,130 

1,159 

1,142 

1,150 

3.2 Comparison of the Estimators of M and B 

Using the December 1990 Agricultural Survey and its 
corresponding reinterview survey data, the estimators 
developed in the previous section were compared. Estimates 
of standard errors and mean squared errors were computed 
using the Bickel-Freedman bootstrap procedure described 
in Section 2.4, with Q = 300 bootstrap samples. Table 2 
displays the results for six of the estimators: B2st, the 
traditional difference estimator; B^ISIR, the weighted ratio 
estimator; B îs.y?. the robust (outlier deletion) version of 
Bx2stR; Bssiv> the Sarndal, Swensson and Wretman esti­
mator; BM, the unweighted model-based estimator; and 
BM, the robust (outlier deletion) version of B^. 
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3.3 Summary of Results 

Table 2 presents a summary of the results from our 
study. The first data column is the known value of 
B* = E{y* — pf), the bias parameter for the pseudo-
population, U*. The other data columns contain the values 
of the estimators with their standard errors in parentheses, 
where s.e. (0 ) = Jvar^ss (©) • The last four rows of the 
table correspond, respectively, to: 

(a) the number of items (out of 10) for which a 95% con­
fidence interval contains B*; 

(b) the average coefficient of variation (C.V.); 
(c) the average square root of MSE (RMSE); and 
(d) the average absolute relative bias. 

A striking feature of these results is the large disparity 
among the six estimators across all commodities; par­
ticularly for All Wheat Stocks. For this commodity, the 
range of estimates is - 94.2 to 103.2. Also indicated (by 

the X symbol) in Table 2 is whether a 95% confidence 
interval,/.e., [0 - 2s.e. ( 0 ) , 0 -I- 2s.e. (0)],covers the 
parameter B*. The best performer for parameter coverage 
is Bssw which produced confidence intervals that covered 
B" for eight out of ten commodities. B2s, was the next 
best with six and 4v/ was third with five. The traditional 
ratio estimator and its robust version were the worst per­
formers with only one commodity having a confidence 
interval covering B*. 

Application of the mean squared error criterion presents 
a different picture. Here, Bf^ emerged as the estimator 
having the smallest average root MSE. However, Bssw 
and B2S1 are not much greater. Further, Bssw was the 
estimator having the smallest average absolute relative 
bias. Only two commodities were estimated with signifi­
cant biases using this estimator. Thus, it appears from 
these results that Bssw is the preferred estimator using 
overall performance as the evaluation criterion. 

Table 2 
Comparison of Estimators with, B*, the Pseudo-Population Value of the Blast 

Characteristic B* B. 2sl B 'x2slR B 'x2stR B, 'ssw 
B, 'M ^M 

All wheat stocks 

Corn planted acreage 

Corn stocks 

Cropland acreage 

Grain storage capacity 

Soybean planted acreage 

Soybean stocks 

Total land in farm 

Total hogs/pigs inventory 

Winter wheat seedings 

42.3 

1.8 

-6.4 

27.0 

•3.37 

-4.4 

-0.01 

-20.0 

-0.1 

-0.6 

- 6 . 1 
(12.3) 

l.U 
(1.1) 

- 5 . 4 t 
(1.5) 

-19 .6 
(8.3) 

1.4t 
(3.7) 

0.8 
(0.8) 

2.8t 
(3.1) 

-24 .7 t 
(10.4) 

- 2 . 1 
(0.9) 

- 0 . 5 t 
(0.4) 

6 

1.01 

13.2 

30.8 

103.2 
(17.6) 

11.7 
(1.3) 

2.4 
(1.6) 

-15 .0 
(8.3) 

32.3 
(3.7) 

13.0 
(1.0) 

21.3 
(2.9) 

-18 .8 t 
(12.5) 

3.4 
(1.1) 

3.8 
(0.6) 

1 

.30 

22.4 

220.0 

-94 .2 
(16.5) 

10.1 
(1.1) 

0.2 
(1.3) 

7.0 
(3.1) 

29.5 
(2.6) 

9.9 
(0.9) 

5.0 
(2.3) 

- 2 . 6 
(7.6) 

-o.ot 
(1.0) 

1.8 
(0.5) 

1 

11.1 

25.2 

53.4 

- 0 . 9 t 
(24.8) 

0.3t 
(1.2) 

- 6 . 5 t 
(1.6) 

-19 .6 
(8.2) 

-o.it 
(3.9) 

- 0 . 3 
(1.0) 

0.2t 
(3.5) 

-25 .7 t 
(10.7) 

- 2 . 2 t 
(1.1) 

- 1 . 2 t 
(0.6) 

8 

9.5 

12.9 

4.9 

19.21: 
(16.5) 

-4.71: 
(1.9) 

-7.91: 
(2.4) 

-36 .8 
(11.0) 

- 6 . 9 
(3.0) 

- 2 . 9 
(1.1) 

-11 .0 
(3.6) 

-44.51: 
(13.4) 

- 2 . 5 t 
(1.3) 

I.l 
(0.4) 

5 

.41 

14.9 

113.1 

10.61: 
(16.7) 

-5.0 
(1.5) 

-9.31: 
(2.2) 

-12 .8 
(4.0) 

- 6 . 8 
(2.5) 

- 2 . 7 
(1.0) 

- 8 . 8 
(3.4) 

-21.2 
(5.8) 

- 1 . 6 t 
(1.0) 

l.I 
(0.4) 

3 

.48 

10.8 

91.3 

Number of items where C.l. covers B* 
Average C.V. 
Average RMSE 
Average | Relbias | 

t Standard errors in parentheses. 
% 95% confidence interval covers the pseudo population parameter. 

http://-o.it
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4. CONCLUSIONS AND RECOMMENDATIONS 

In this article, we developed a general methodology for 
constructing and evaluating weighted and unweighted 
model prediction estimators of measurement bias for 
stratified random, two-phase sample designs. The proposed 
estimators incorporate information on the observations, 
;', from the first phase sample, and an auxilliary variable, 
X. Model robust versions of the estimators were also con­
sidered and evaluated. The ultimate goal of model predic­
tion estimation is to identify estimators which make 
"optimal" use of the data (;', p,x). The general estima­
tion and evaluation methodology for achieving this goal 
was illustrated for the ordinary regression model with no 
intercept. However, the methodology can be easUy extended 
to multivariate, intercept models. 

Our proposed evaluation criteria are based upon esti­
mates of bias, variance, and mean squared error computed 
using a bootstrap resampling methodology. The method 
of Bickel and Freedman was extended to two-phase 
sampling for this purpose. It was shown both analytically 
and empirically that the usual NDR estimator is not 
optimal under the model prediction approach to estimating 
measurement bias. Our analyses found that, for the six 
estimators we considered, the estimator derived from the 
work of Sarndal et al. (1992), was the best overall 
estimator by the bootstap evaluation criteria. 

Incorporating auxiUary information into the estimation 
of measurement bias creates a number of practical prob­
lems which may increase the costs and reduce the timeliness 
of producing the estimates. First, the auxiliary variable, 
X, must be available, at least in aggregate form, for all 
socioeconomic and geographic domains for which model 
prediction estimates are desired. This could be a large data 
management task. Further, the complexity of the variance 
estimator using analytical methods increases with the 
complexity of the bias estimator. Although simpler, the 
bootstrap variance estimation method can be prohibitively 
expensive if computer time must be purchased. However, 
these difficulties are not insurmountable, especially if a 
high-powered microcomputer is available. Further, given 
the cost of reinterview surveys for estimating measurement 
bias, even moderate increases in precision in the bias 
estimators can result in substantial cost savings. 

The model prediction approach has the potential for 
extracting the maximum information on response bias 
from reinterview surveys and thus model prediction 
estimators will usually be more efficient than the tradi­
tional net difference estimator. In addition, the model 
prediction approach may also offer a means for extra­
polating estimates of bias to areas which were not sampled. 
As an example, in the NASS application, the reinterview 
sample was drawn only from the CATI areas for reasons 
of operational convenience and cost efficiency. However, 
by using prediction models which are functions of the 

original responses and other available characteristics, it 
may be possible to predict the measurement bias in the 
non-CATI survey areas from the local characteristics of 
these areas - a type of "synthetic" estimation. Akhough 
this application of model-based estimation was not con­
sidered in this paper, it is a natural extension of the meth­
odology and one which will be evaluated in a subsequent 
study. 

Also for future research, we intend to incorporate 
multivariate, intercept models in the estimation of mea­
surement bias. Since the bootstrap evaluation criteria 
developed in this article are general, no changes in the 
evaluation methodology are required to handle the addi­
tion of variables in the estimation models. Further, the 
model assumptions and the methods for handling outliers 
will be refined and evaluated in a subsequent paper. 
Finally, we need to explore the effect on estimation of 
departures from the model assumptions, particularly the 
assumption that the reinterview observation is without 
error. As Fuller (1991) has shown, if the reinterview is 
fallible but unbiased, the variance of the predicted values 
increases but the predictions are still unbiased. Thus, 
under these assumptions, one could explore the relative 
precision of the alternative estimators of measurement bias 
in order to determine the robustness of the model predic­
tion approach. 
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Model-Based Estimation of Record 
Linkage Error Rates 

J.B. ARMSTRONG and J.E. MAYDA^ 

ABSTRACT 

Record linkage is the matching of records containing data on individuals, businesses or dwellings when a unique 
identifier is not available. Methods used in practice involve classification of record pairs as links and non-links using 
an automated procedure based on the theoretical framework introduced by Fellegi and Sunter (1969). The estima­
tion of classification error rates is an important issue. Fellegi and Sunter provide a method for calculation of classifica­
tion error rate estimates as a direct by-product of linkage. These model-based estimates are easier to produce than 
the estimates based on manual matching of samples that are typically used in practice. Properties of model-based 
classification error rate estimates obtained using three estimators of model parameters are compared. 

KEY WORDS: Mixture model; Latent variable model; Iterative scaling. 

1. INTRODUCTION 

Computer files containing information about individuals, 
businesses or dwellings are used in many statistical applica­
tions. The linking of records that refer to the same entity 
is often required. The process of linking records referring 
to the same entity is called exact matching. If all records 
involved in an application have been accurately assigned 
a unique identifier, exact matching is trivial. Record 
linkage methods deal with the problem of exact matching 
when a unique identifier is not available. In that case, each 
record typically includes a number of data fields containing 
identifying information that could be used for matching. 
Problems in matching are due to errors in these data or 
due to the same value for a particular field being valid for 
more than one entity. 

Applications of record linkage include the undupli-
cation of lists of dwellings or businesses obtained from 
various sources to create survey frames. In addition, record 
linkage is widely used in applications related to health and 
epidemiology. Work in this area typically involves matching 
records containing information on individuals in industrial 
or occupational cohorts to records documenting the illness 
or death of individuals. For example, record linkage meth­
odology for follow-up studies of persons exposed to radia­
tion is discussed in Fair, Newcombe and Lalonde (1988). 

The record linkage problem can be formulated using 
two data files that correspond to two populations. Each file 
may contain information for all entities in the corresponding 
population or information for a random sample of 
entities. The file A contains N^ records and the file B 
contains NB records. The set of record pairs formed as the 
cross-product of A and B is denoted by C = ((a,b); 

a^A,biB]. C contains N - N^ • Np record pairs. The 
objective of record linkage is to partition the set C into two 
disjoint sets - the set of true matches, denoted by Af, and 
the set of true non-matches, U. 

The theoretical framework introduced by Fellegi and 
Sunter (1969) is the basis of a great deal of applied work. 
For each record pair, a decision is taken concerning whether 
or not the records refer to the same entity after examining 
data recorded on files A and B. The possible decisions are 
link (Al), non-Unk (.43) and possible link {A2). There 
are two types of errors. First, decision / l , may be taken 
for a record pair that is a member of U, the set of true non-
matches. Second, decision A^ may be taken for a record 
pair that is a member of set M, the set of true matches. 
Acceptable levels of classification error are specified 
before the files are linked. A record pair is classified as a 
possible link if the data do not provide sufficient evidence 
to justify classification of the pair as a Unk or non-Unk at 
error levels less than or equal to those specified. Accurate 
estimation of classification error rates associated with 
various decision rules is necessary to determine an 
appropriate rule. The classification error rate for true non-
matches is P{Ai I U). The error rate for true matches is 
P(Ai\ M). 

Estimates of classification error rates can be obtained 
by selecting a sample of record pairs from the set C and 
manually determining the true match status of sampled 
pairs. Applications of this approach are described in 
Bartlett et al. (1993). Sampling may be both costly and 
cumbersome to implement, particularly when the same 
linkage must be done for a number of pairs of files, each 
with slightly different characteristics. Belin and Rubin 
(1991) describe another method of error rate estimation 

' J.B. Armstrong and J.E. Mayda, Statistics Canada, Business Survey Methods Division, 11-RH Coats Bldg, Tunney's Pasture, Ottawa, Ontario, 
K1A0T6. 
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that requires true match status for record pairs in a pilot 
study. In contrast to the straightforward sampling approach, 
the Belin-Rubin method provides a framework for the 
application of information obtained from the pilot study 
to larger linkages involving similar data. 

The Fellegi-Sunter framework provides a method for 
calculation of error rate estimates using estimates of proba­
bilities that record pairs will agree on various combinations 
of data fields. Calculation of these model-based error rate 
estimates is straightforward and manual determination 
of the true match status of record pairs is not required. 
However, they often have poor properties in applied work. 
See, for example, Belin (1990). In this paper, the potential 
for improvement of the properties of model-based error 
rate estimates through careful estimation of agreement 
probabilities is examined. 

Three alternative estimation methods are evaluated. 
The approaches described use only the information on 
files A and B. They do not rely on auxiliary information. 
Model-based error rate estimates obtained using each 
alternative are compared with actual error rates using 
both synthetic data that incorporate important charac­
teristics of data from health applications of record 
linkage, and information from an actual record linkage 
application. 

The plan of the paper is as follows. Section 2 includes 
details of the model-based classification error rate estima­
tion method introduced by Fellegi and Sunter. The model 
for agreement probabiUties that forms the basis of subse­
quent discussion of estimation methods is also specified. 
Two estimation methods that rely on an important inde­
pendence assumption are described in Section 3. A third 
aUernative that does not require independence is discussed 
in Section 4. The results of comparisons of the three 
approaches using synthetic data are reported in Section 5. 
The results of evaluation work with information from a real 
application are described in Section 6. Section 7 contains 
some concluding remarks. 

2. THEORETICAL CONCEPTS 

Relevant aspects of the theory for record linkage devel­
oped by FeUegi and Sunter (1969) are summarized in this 
section. In the Fellegi-Sunter framework, estimates of 
classification error rates are calculated using estimates of 
probabilities of agreement on various combinations of 
data fields. Applications of the theory of Fellegi and 
Sunter usually involve the assumption that the probability 
that a record pair will agree on a particular data field is 
independent of the results of comparisons for other fields. 
The theory is nevertheless very flexible, allowing for any 
pattern of dependence between results of comparisons for 
different data fields. A parameterization of dependence 
in terms of loglinear effects is given. 

2.1 Model-Based Classification Error Rate Estimation 

To obtain information related to the classification of 
a record pair as a Unk (^4)), non-Unk (A^) or possible 
Unk (A2), data fields containing identifying information 
are compared. In an application involving records refer­
ring to persons, separate comparisons of family names, 
given names, and dates of birth might be performed. The 
outcome of a comparison is a numerical code representing 
a statement Uke "names agree", "names disagree", 
"name missing on one or both files", "names agree and 
both are George" or "names disagree but their first two 
characters agree". The outcome codes used in applied 
work differ between applications and between comparisons 
in the same application. The smallest number of outcome 
codes that can be used for any comparison is two - corres­
ponding to agreement and disagreement. An outcome 
code corresponding to "missing on one or both files" is 
usually needed in applied work. The agreement outcome 
may be replaced by a number of value-specific outcomes 
(such as "names agree and both are George"). Certain 
disagreements may be coded as partial agreements (such 
as "names disagree but their first two characters agree"). 

For present purposes, we consider agreement and disa­
greement outcomes only. In the case of A'matching fields, 
we introduce the outcome vector x-' = (x-'i ,x{, ..., x-'x) 
for record pairy. We have x{ = 1 if record pairy agrees 
on data field k and x{ = 0 if record pairy disagrees on 
data field k. 

Newcombe el al. (1959) introduced the idea that decisions 
concerning whether or not a pair of records represent the 
same entity should be based on the ratio 

R{x) = P{x\ M)/P{x\ U), (1) 

where x = (x,, X2, . . ., x^) is the generic outcome 
vector, P(x \ M) is the probability that comparisons for 
a record pair that is a true match will produce outcome 
vector X, and P(x\ U) is the probability of x for a record 
pair that is a true non-match. The optimality of record 
linkage methods involving this ratio was demonstrated by 
FeUegi and Sunter. 

In the Fellegi-Sunter framework, a linkage rule assigns 
a probability of each classification decision (Ai,A2 and 
^13) to each outcome vector. The decision function cor­
responding to outcome vector x is d{x) = (P(Ai \ x), 
P{A2 I x),P{A->, \ x)). Acceptable rates of classification 
error for true non-matches and true matches are specified 
before linkage is conducted. We denote these pre-specified 
error rates by p and X respectively. Among the class of 
record linkage rules satisfying the relations P(/4i I U) < p 
and P(Ai \ M) < X for fixed values of p and X, Fellegi 
and Sunter define the optimal linkage rule as the rule that 
minimizes P{A2), the probability that a record pair will be 
classified as a possible Unk. The optimal rule has the form 



Survey Methodology, December 1993 139 

d{x-') = (1,0,0) if oiJ > r, 

CO-' = T ) d(x-') = (P^,l - P,,0) if 

d{xJ) = (0,1,0) if 72 < Wf< Ti (2) 

d{xJ) - (0,1 - P x , P x ) if O)̂  = T2 

C/(X^) = (0,0,1) if J < 72 

where T) > T2, the "weight" ŵ  is defined as w-' = 
log(/?(x-')) and P^ and Px are positive constants in the 
interval [ 0,1). (Refer to Fellegi and Sunter (1969) for full 
details.) Determination of T] and T2 requires the estimation 
of classification error rates corresponding to various choices 
for these threshold values, underscoring the importance 
of accurate estimation of classification error rates in the 
Fellegi-Sunter framework. 

Model-based estimates of classification error rates can 
be calculated using estimates of outcome probabilities for 
true matches and true non-matches. Let P{x \ M) and 
P{x I U) denote estimates of the probabilities of outcome 
vector X for true matches and true non-matches and denote 
the ratio of these estimates by R{x). The model-based 
estimate of the classification error rate for true matches 
based on decision rule (2) is 

X= Y P(x\M)+Px Y P(^\^) (3) 
xiL(T2) xiQ(72) 

where L ( T 2 ) = [x; \og(R(x)) < T2I and Q ( T 2 ) = 
[x;\og{R{x)) = 72). 

The model-based estimate of the classification error 
rate for true non-matches is 

p= Y ^(^1 ^) + -̂M Y ^(^1 ^) ("̂^ 
jf€G(7-i) xiQ(Ti) 

where G(ri) = [x; \og{R{x)) > r, 1 and ( 2 ( T , ) = 
{x;log(R(x)) = T,). 

2.2 A Model For Outcome Probabilities 

Calculation of model-based classification error rate 
estimates requires estimation of P{x \ M) and P{x \ U) 
for each of the 2'^ possible values of x. The probability 
density function for x is a mixture of two probability den­
sities given by 

f(x) = pP{x\M) -^ {I - p)P{x\U), (5) 

where p is the probability that a record pair chosen at 
random is a true match. The outcome probabilities depend 
on the frequency distributions of identifiers for entities 
represented on files A and B, as well as the probabilities 

that errors are introduced when identifiers are recorded on 
the files. Fellegi and Sunter (1969, pp. 1192-1194) describe 
a method of estimating agreement probabilities involving 
their definition in terms of frequency distributions and error 
probabilities. They recommend use of the method when 
prior information is available. 

In the present paper, we consider situations in which 
the data on files A and B and the outcome vectors x-', 
j = 1,2, ..., N, represent the only information available 
for estimation of outcome probabiUties. A loglinear structure 
for the outcome probabilities is the most general parame­
terization. The saturated loglinear model for outcome 
probabilities for true matches is 

l o g ( P ( x | M ) ) = M{0) + M ( 1 ) ^ , + M(2)^2 + ••• 

-\- M{K),^-\- M(1)M(2)^,,^2 + ••• 

-^ M{K - I) M{K),^_^^,^-^- . . . 

+ M ( 1 ) M ( 2 ) ...M{K),^^,^ ,^, (6) 

with the usual restrictions 

YJ^(J)XJ^ 0, y = 1,2, ...,K, 

Y M(Ji)M{J2),j^,,j^ = Y ^(Ji)^(Ji)xj^,xj^ = 0, 
^y, 

as well as the restriction 

v / , , / 2 . etc.. 

YP(X\M) ^ \ . 

The saturated model for P{x \ U) is analogous. 

If saturated loglinear models forP(x \ M) and P{x \ U) 
are employed, the density function includes 2'̂ "'"' — 1 
unknown parameters. It is not possible to identify all these 
parameters when no auxiUary information is available. In 
order to obtain a model that can be identified and to 
simplify the estimation problem, the assumption that the 
outcomes of comparisons for different data fields are 
independent is often employed. Under the assumption of 
independence, we denote the probabilities of agreement 
among record pairs that are true matches and true non-
matches, respectively, by 

mi, = P{x„ = 1 I M) , k ^ 1,2, ...,K, 

Uk P{x„ = 1| t / ) . A: = 1,2, . . . , A : . 
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Outcome probabilities can be written as 

K 

P(x\M) ^Yl mik{\ - m,t) *'"'*', 
k=\ 

K 

p(x\ t/) = n "'̂ '̂ (̂  ~ «*)'"''*. 
k = l 

This model involves 2 • K -l- 1 unknown parameters, 
namely {m, u, p), where m = (mi, m2, • • •, m/,), 
u ={Ui,U2 M -̂). There are, of course, a number of 
intermediate models between the saturated model and the 
independence model. Methods that can be used to estimate 
the independence model are described in Section 3. Esti­
mation of intermediate models is discussed in Section 4. 

3. ESTIMATION UNDER INDEPENDENCE 
ASSUMPTION 

3.1 Method of Moments 

A methods of moments estimator of P(x\ M) and 
P(x\ U) can be employed in the case of independence. The 
estimator is based on a system of 2 • K -H 1 equations that 
provide expressions for functionally independent moments 
of X in terms of the parameters. The equations are 

(
K ^ K K 

Y{xk\ =pNYl m, + (1 - P)NY[ U,, 
k^i ' kiti k^i 

i ^ 1,2, ...,K 
E(Xj) = pNmj + {\ - p)Nui, i = 1,2, ...,K, 

(7) 

make use of the independence assumption. AppUcation of 
the iterative method is described by several authors, 
including Newcombe (1988). Statistics Canada's record 
linkage software, CANLINK, is set up to facilitate use of 
the iterative method. 

The method requires initial estimates of the agreement 
probabilities for true matches and non-matches. For true 
matches, guesses based on previous experience must be 
employed. To obtain initial estimates of agreement proba­
biUties among record pairs that are true non-matches it is 
typically assumed that these probabilities are equal to the 
probabiUties of agreement among record pairs chosen at 
random, namely that. 

"A: P(x^ = 1 ) , k = 1,2, K. 

Suppose that J{k) different values for data field k 
appear on file A and/or file B. Denote the frequencies of 
these values on file A b y / t j , /(.2. • • •. fkj(k) and denote 
the file B frequencies by gk\,gk2> . . . . SkJ(.k)- For a partic­
ular value one, but not both, of the counts may be zero. 
The initial estimate of U/, is 

I/O 

J(k) 

Y (fkjSkj)/N. (8) 
y = i 

Given these probability estimates, initial sets of matches 
and non-matches, denoted by M " and C/° respectively, 
are obtained using a decision rule 

y€M° if J > T?, 

jiU° if J < T°2. 

Next, frequency counts among record pairs in the sets 

( K ^ K K Next, trequency counts among record pairs m the sets 

n .^Ar) = ^ ^ n '"* + (1 - /?) . ^ P J "*• A^° and C/̂  are used as new estimates of agreement 
k=i ^ k=i k=\ probabUitles. These estimates are used to obtain new sets To obtain estimates of the parameters using the method 

of moments, it is necessary to solve the equations after 
expectations have been replaced by averages calculated 
using record pairs in C The equation system for K = Ti 
was given by Fellegi and Sunter, who also derived a closed 
form solution that exists if some mild conditions are 
satisfied. Their paper included a word of caution concerning 
use of the method in the case of departures from independ­
ence. For K > 'i,a closed form solution is not available 
but standard numerical methods can be used. Parameter 
estimates obtained using the method of moments are statis-
ticaUy consistent if the independence assumption is true. 

3.2 Iterative Method 

The iterative method was developed by record linkage 
practitioners. Although the method is not based on the 
probability distribution of the outcome vector, it does 

probabilities. These estimates are used to obtain new sets 
of matches and non-matches and the iterative process is 
continued until consecutive estimates of agreement proba­
bilities are sufficiently close. 

In most applications, the assumption that the probability 
of agreement among record pairs that are true non-matches 
is equal to the probability of agreement among all record 
pairs is a good one and iteration does not lead to any 
important changes in estimates of non-match agreement 
probabilities. However, the first iteration often produces 
large changes in agreement probabiUty estimates for true 
matches. Typically, there are no substantial changes at the 
second iteration. 

It should be noted that the statistical properties of the 
iterative method are unclear. In practice, performance 
of the method will depend on the choice of the initial 
thresholds T?, 7°. These thresholds are typically chosen 
subjectively. The simulations reported in Section 5 provide 
information about the effects of various initial thresholds. 
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4. RELAXING THE INDEPENDENCE 
ASSUMPTION - ESTIMATION 
USING ITERATIVE SCALING 

Methods of estimation for latent variable models can 
be used to estimate agreement probabilities when the 
dependence between outcomes of comparisons for different 
matching fields is parameterized in terms of loglinear 
effects. Winkler (1989) and Thibaudeau (1989) have 
estimated agreement probabilities using logUnear models 
including all interaction terms up to third or fourth order 
to parameterize dependencies. The formulation presented 
here facilitates use of logUnear models including selected 
interactions. Match status can be considered a latent 
variable with two levels (true match and true non-match). 
Let Co_.v and Ci^ denote the numbers of true non-matches 
and true matches, respectively, with outcome vector x in 
a record linkage application involving K matching variables. 
These counts are, of course, unobservable since the value 
of the latent variable for each record pair is unknown. 
Instead, c^ = CQ^ + c, ^.is observed. 

Using the parameterization of dependence in terms of 
loglinear effects and a saturated model for true matches, 
we can write 

log(c,,,,/(7V/7)) = M(0) + M(l )^ , + M(2).,2 + . . . 

-^ M(K),^-\- M(1)M(2),.,,^2 + ••• 

-I- M{K - l)M{K), + iXK-hXK 

+ M(\)M{2) . . . M(/!r)^,,^2. . . . . ^ j ^ ' 

with the usual restrictions. A similar expression for true 
non-matches is available. The latent variable model corre­
sponding to these saturated loglinear models is 

log(c,,.,/w,) = G(0) + Z, + G(l);,, + . . . 

+ G{K),^ + ZG(1),,,., + ... + ZG{K)s,,^ 

-^ . . . + G ( 1 ) G ( 2 ) . . . G ( A : ) , „ , 2 , . . , , ^ . 

+ Z G ( 1 ) G ( 2 ) . . . G(/r),,;,„^2. •••^yc' 

where the index 5 has value zero for true non-matches and 
one for true matches, WQ - (1 - p)Nand w, = pN. The 
parameters are analogous to the parameters of a saturated 
loglinear model for a contingency table of dimension 
2'^'^K The usual restrictions apply. For example, the term 
ZG (1 )s^xi represents the interaction of the latent variable 
and the first matching variable and 

Y ZG{l)s,xi = Y ^<^( 1)̂ .-1 = 0 -
5 Xl 

This model conforms to the general latent variable 
model of Haberman (1979, p. 561). Additional restrictions 
must be imposed to identify and estimate the parameters. 
For simplicity, we will consider only hierarchical models. 
In addition, we restrict attention to models that allow all 
non-zero effects to interact with the latent variable. 

In subsequent discussion we will denote latent variable 
models using symbols G(1) ,G(2) , . . . , logUnear models 
for true matches using M(l), M(2), ... and loglinear 
models for true non-matches using U{1), U{2), . . . . 
In the case of four matching variables, for example, the 
model G(1)G(2) ,G(3) ,G(4) is a latent variable model 
including a general level term, main effects for all four 
matching variables and a term for the interaction of mat­
ching variables one and two, as well as a main effects term 
for the latent variable (the interaction of the general level 
term and the latent variable), terms for the interaction of 
each matching variable and the latent variable and a term 
for the interaction of matching variables one and two and 
the latent variable. The model includes 12 parameters that 
must be estimated. The number of parameters that must 
be estimated in one of the latent variable models considered 
here is twice the number of parameters in the corresponding 
loglinear model. 

The iterative scaling method of Haberman (1976) can 
be used to estimate latent variable models. The Haberman 
estimation method operates by raking tables that contain 
estimated counts for each outcome among true matches 
and true non-matches. Denote the estimated counts for 
outcome vector x after / iterations of the Haberman 
algorithm by C'l^^ and Co_̂  for true matches and true non-
matches, respectively. Starting values C^^x and CQ,^. can 
be constructed using estimates of agreement probabilities 
and the proportion of true matches obtained under the 
independence assumption. Each iteration of the algorithm 
involves a series of raking operations on the current table 
for true matches and the analogous rakes on the current 
table for true non-matches. Using the notation for hierar­
chical models introduced above, a set a raking operations 
is performed for each of the interaction terms that define 
the model. For four matching variables and the model 
G(1)G(2) ,G(3)G(4) , two sets of raking operations are 
performed - one for the G(1)G(2) interaction and a 
second for the G (3) G (4) interaction. For each iteraction, 
one raking operation is performed for every level of the 
corresponding classification variable. Let Sg/ denote the 
set of outcome vectors at level / of term g. The raking oper­
ation on the table of true matches at iteration / for level 
/ of term g involves computation of 

7i,x = c^cl-'/(cl7^' -I- ci". ' ) , 

XiSgl I XiSgl 

'gl-
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The algorithm is terminated when changes between 
estimated counts for consecutive iterations are smaller 
than a given tolerance. 

Haberman (1976) notes that the iterative scaling algo­
rithm may converge to a local maximum of the likelihood 
function rather than to the maximum likelihood estimate. 
Experiments with different starting values using data sets 
employed in the evaluation reported in Section 5 did not 
yield any examples of this problem. 

5. COMPARISON OF ESTIMATION 
METHODS - SYNTHETIC DATA 

In this section, the results of comparisons of the estima­
tion methods described in Section 3 and Section 4 are 
presented. The comparisons involved application of each 
approach to a series of synthetic data sets generated using 
Monte Carlo methods. 

Synthetic data records containing four personal iden­
tifiers (family name, middle initial, given name, date of 
birth) were employed. Information on possible values of 
each identifier, as well as their relative frequencies, was 
taken from the Canadian Mortality Data Base for 1988. 
This database, which is frequently used in heaUh applica­
tions of record linkage, contains a separate record for each 
individual death. 

The independence assumption was violated among true 
matches in each synthetic data set. Information on the fre­
quency of outcome vectors for true matches obtained from 
various record linkage projects conducted by the Canadian 
Center for Health Information at Statistics Canada was 
used during data generation. Most of the projects involved 
matching a cohort file to the Canadian Mortality Data 
Base. The frequency of each outcome vector among the 
true matches is shown in Table 1. The dependence in these 
data is clear. AUhough approximately 88.3% of the true 
matches agree on given name, the probabiUty of agreement 
on given name given disagreement on middle initial and 
agreement on family name and birth year is only 
381/1366 - about 27.9%. The value ofthe likelihood ratio 
test statistic for the independence hypothesis is 3604. This 
value is very extreme relative to the chi-square reference 
distribution with 10 degrees of freedom. (Note that one 
degree of freedom is lost due to the zero count for the cell 
(1,0,0,0).) 

For each synthetic data set, file A records were generated 
by selecting identifiers according to relative frequencies in 
the 1988 Canadian Mortality Data Base. In order to simpUfy 
the data generation process, the choice of family names 
was restricted to the 100 most common non-francophone 
family names and the 100 most common francophone 
family names found on the 1988 file. The choice of given 
name was restricted to the 50 most common francophone 
given names and the 50 most common non-francophone 

given names. All name choices excluded typographical 
variations. AU middle initials and birth years found on the 
1988 file were considered. Records with anglophone given 
names were more likely to receive an anglophone family 
name than records with francophone given names (reflec­
ting the distribution of names in the Canadian population). 
Otherwise, identifiers were selected independently. 

Table 1 
Outcome Frequencies, Set of True 

Matches, Synthetic Data 

Outcome by Identifier: 
0 = Disagreement, 1= Agreement 

Given 
Name 

0 

0 

0 

0 

0 

0 

0 

0 

Middle 
Initial 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

Family 
Name 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

Birth 
Year 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

Total 

Frequency 

Count 

7 

33 

125 

985 

5 

39 

202 

1,848 

0 

13 

50 

381 

44 

451 

1,751 

21,860 

27,794 

Percent­
age 

0.03 

0.12 

0.45 

3.54 

0.02 

0.14 

0.73 

6.65 

0.0 

0.05 

0.18 

1.37 

0.16 

1.62 

6.30 

78.65 

100 

The starting point for file B was an exact copy of file A. 
Each file B record was a true match with exactly one file A 
record. To introduce dependence among true matches, an 
outcome vector was drawn from the frequency distribution 
in Table 1 for each file B record. Identifiers corresponding 
to zeroes in the outcome vector were re-selected. Conse­
quently, the set of outcome vectors for true matches was 
a sample from the Table 1 distribution. The synthetic data 
sets also included mild departures from the independence 
assumption for true non-matches since the selection of 
given and family names was not completely independent. 

Each set of simulation results reported subsequently is 
based on 50 Monte Carlo trials. Each trial involved genera­
tion of files A and B of size 500, estimation of m and u, 
determination of thresholds corresponding to various 
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model-based classification error rate estimates and calcula­
tion of actual error rates corresponding to the thresholds. 
The same series of 50 synthetic data sets was used for each 
set of simulations. Note that the set C contains 250,000 
record pairs including 249,500 true non-matches for each 
Monte Carlo trial. In order to reduce computing time 
required by the simulations, only 49,500 true non-matches 
were used for each trial. (A small scale test was conducted 
to verify that reducing the number of true non-matches 
had a negligible effect on the estimated agreement proba­
biUties.) True non-matches were removed from C by dividing 
files A and B into five corresponding blocks of size 100 
and excluding record pairs involving records from blocks 
that did not correspond. 

The method of moments equation system was solved 
using a variation of Newton's method that is described in 
detail in More et al. (1980). Computer code from IMSL 
(1987) was employed. Agreement probabilities of 0.9 for 
true matches and 0.1 for true non-matches for all matching 
fields were used as starting values for the solution of the 
equation system. The method did not appear sensitive to 
starting values. 

The properties of the iterative method depend on the 
definitions of the initial sets of matches and non-matches, 
A/" and t/". Recall that, given initial probabilities, record 
pairs are classified according to 

y€M° if J > T?, 

jiU^ if J < TI. 

When the iterative method was implemented for the 
simulations reported here, r2 was set equal to T?. For each 
Monte Carlo trial, T? was determined such that 

P(jiU \o^J > r'i) +y • P{j€U \ cô  = r^) - / , 

for some yC [0,1), where the estimated probabiUties are 
based on the initial iterative estimates of u. Record pairs 
with weight T? were classified in M^ with probability y. 
That is, the initial set of matches used by the iterative 
method was chosen to correspond to an estimated classifi­
cation error rate of /x" for true non-matches. Starting 
values for m/i, k = 1,2 4, were set to 0.9. 

The zero count in Table 1 (agreement on given name, 
disagreement on all other identifiers) was treated as a 
structural zero during data generation. Among logUnear 
models involving no more than six parameters the model 
that gives the best fit to the Table 1 data is M{ 1 )M(2), 
M(3 ) ,M(4 ) . This model, involving dependence for out­
comes of comparisons for given name and middle initial, 
does not fit particularly well. The likelihood ratio test 
statistic for lack of fit is 57.95 - an extreme value relative 
to the chi-square reference distribution with 9 degrees of 
freedom. The latent variable model G(1 )G(2 ) ,G(3 ) , 
G(4) was estimated for each synthetic data set using 
iterative scaling. This model fit the synthetic data sets 
somewhat better than the model M( 1 )M(2), M(3), M(4) 
fit the true match data. The largest lack of fit test statistic 
among the fifty synthetic data sets was 25.03 and the 
model was rejected only ten times at the 5% level of 
significance. 

Averages of classification error rate estimates obtained 
using the synthetic data sets and the corresponding Monte 
Carlo standard errors are reported in Table 2 for true non-
matches and Table 3 for true matches. After multiplica­
tion by 99, the error rates for true non-matches represent 
numbers of misclassified true non-matches divided by 
numbers of true matches. Results are given for the method 
of moments and iterative scaling, as well as the iterative 
method with p° = 0.0000625, 0.00025 and 0.001. The 
biases in estimated error rates for true non-matches are 
generally small. The iterative method with p'^ - 0.001 

Table 2 
Classification Error Rates, True Non-matches, Synthetic Data 

(Monte Carlo Standard Errors in Parentheses) 

Estimated Rate 
(X 99) 

0.02 

0.04 

0.06 

0.08 

0.10 

Method of 
Moments 

0.0188 
(0.0008) 

0.0381 
(0.001) 

0.057 
(0.0012) 

0.076 
(0.0015) 

0.095 
(0.0019) 

Iter. Method 
pO = 0.0000625 

0.0208 
(0.0008) 

0.0408 
(0.0013) 

0.0626 
(0.0015) 

0.0855 
(0.0017) 

0.1086 
(0.0021) 

Actual Rate ( x 99) 

Iter. Method 
fiO = 0.00025 

0.0208 
(0.001) 

0.0407 
(0.0016) 

0.0615 
(0.0018) 

0.0838 
(0.0019) 

0.1061 
(0.0022) 

Iter. Method 
^0 = 0.001 

0.0207 
(0.001) 

0.0405 
(0.0016) 

0.0602 
(0.0019) 

0.0804 
(0.0022) 

0.1007 
(0.0026) 

Iter. 
Scaling 

0.0195 
(0.001) 

0.0397 
(0.0016) 

0.059 
(0.0018) 

0.0785 
(0.0019) 

0.0978 
(0.0021) 
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Table 3 

Classification Error Rates, True Matches, Synthetic Data 
(Monte Carlo Standard Errors in Parentheses) 

Estimated Rate 

0.02 

0.04 

0.06 

0.08 

0.10 

Method of 
Moments 

0.0580 
(0.0013) 

0.0773 
(0.0014) 

0.0966 
(0.0014) 

0.1159 
(0.0014) 

0.1348 
(0.0014) 

Iter. Method 
pO = 0.0000625 

0.1179 
(0.0041) 

0.1362 
(0.004) 

0.1542 
(0.0038) 

0.1722 
(0.0036) 

0.1904 
(0.0035) 

Actual Rate 

Iter. Method 
pO = 0.00025 

0.0507 
(0.0014) 

0.0735 
(0.0012) 

0.0954 
(0.0012) 

0.1165 
(0.0012) 

0.1319 
(0.0014) 

Iter. Method 
pO = 0.001 

0.0149 
(0.0008) 

0.0359 
(0.0018) 

0.0660 
(0.0014) 

0.0866 
(0.0017) 

0.1025 
(0.002) 

Iter. 
Scaling 

0.025 
(0.0012) 

0.0455 
(0.0016) 

0.0646 
(0.0018) 

0.0841 
(0.0019) 

0.1043 
(0.002) 

provides the best estimates, followed by iterative scaling. 
For true matches the performance of the iterative method 
is very sensitive to the choice of p°. Although the iterative 
method performs well for p° = 0.001, the biases for 
M° = 0.0000625 and p° = 0.00025 are substantial. Esti­
mates of classification error rates for true matches obtained 
using the method of moments also include large biases. 
Biases in estimates based on iterative scaling are relatively 
smaU. 

rate estimates obtained using the method of moments are 
greatly reduced using the latent variable model G (1) G (2), 
G (3), G (4) estimated using iterative scaling, particularly 
for true matches. 

Table 5 
Classification Error Rates, True Matches, 

Modified Synthetic Data 
(Monte Carlo Standard Errors in Parentheses) 

Classifica 

(Monte C 

Estimated Rate 
(X 99) 

0.02 

0.04 

0.06 

0.08 

0.10 

Table 4 

tion Error Rates, True Non-matches, 
Modified Synthetic Data 

;arlo Standard Errors in Parentheses) 

Actual Rate (x 99) 

Method of Iter. 
Moments Scaling 

0.0189 0.0194 
(0.0008) (0.001) 

0.0385 0.0396 
(0.0011) (0.0016) 

0.0577 0.0589 
(0.0013) (0.0019) 

0.0767 0.0785 
(0.0016) (0.002) 

0.0957 0.0978 
(0.002) (0.0021) 

Estimated Rate 

0.02 

0.04 

0.06 

0.08 

0.10 

6. 

Actual Rate 

Method of 
Moments 

0.0553 
(0.0014) 

0.0747 
(0.0014) 

0.094 
(0.0014) 

0.1134 
(0.0014) 

0.1325 
(0.0015) 

COMPARISON OF ESTIMATION 
METHODS - REAL DATA 

Iter. 
Scaling 

0.0208 
(0.0011) 

0.0415 
(0.0016) 

0.0608 
(0.0018) 

0.0805 
(0.002) 

0.1007 
(0.002) 

The information in Tables 4 and 5 is based on a series 
of synthetic data sets generated using a modified version 
of Table 1. Expected values of Table 1 cell counts under 
the model M(1)M(2) , Af(3), M{4) were used for data 
generation. The biases in model-based classification error 

using data from a record linkage application are presented 
in this section. Two data files used in empirical work 
reported by Fair and Lalonde (1987) were employed. The 
first file contained information on Ontario miners 
obtained from the Workmen's Compensation Board. 
The second file included information from the Canadian 
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Mortality Data Base (CMDB) for individual deaths during 
the period 1964 to 1977 inclusive. The miners' file included 
only those records with a valid social insurance number. 
The second file contained records that had survived an 
initial comparison exercise designed to eliminate records 
with no similarity to any of the records on the miners' file. 
The vital status of each miner at the end of 1977 had been 
classified as "confirmed dead", "confirmed alive" or "lost 
to follow-up" based on a previous linkage, combined with 
thorough follow-up procedures, including manual review. 
Records on the miners' file for individuals "confirmed 
dead" included the CMDB death registration number. 
More information on the construction of the files and the 
procedures used to determine true link status can be found 
in Fair and Lalonde. 

Four identifiers - given name, NYSIIS code of mother's 
maiden name, day of birth and birth month - were chosen 
as matching fields for the comparison. Records on the 
miners' file with vital status "lost to follow-up" were 
eliminated. After records with missing values for at least 
one matching field or for birth year were also removed, 
file A (based on the miners' file) contained 45,638 records 
and file B (based on the CMDB) included 24,597 records. 
Restricting comparisons of the two files to pairs of records 
with the same NYSIIS representation of family name and 
birth years differing by at most one, there were 26,500 true 
non-matches and 2063 true matches. 

Frequencies of outcomes among true matches and true 
non-matches are shown in Table 6. All logUnear models 
corresponding to a non-saturated latent variable model 
(that is, all models with fewer than eight parameters) are 
rejected by the frequency data for true non-matches at a 
very low level of significance. Among models with fewer 
than eight parameters the model ( / ( I ) , U{2)U{4), 
U{2)U(4) corresponds to the lowest Ukelihood ratio 
test statistic for lack of fit - 35.29. The model M ( l ) , 
M(2)M(4) , M(3)M(4) provides an adequate fit to the 
true match data (UkeUhood ratio test statistic of 10.29). 

Agreement probability estimates were computed using 
the method of moments, the iterative method and iterative 
scaling using the latent variable model G(1) ,G(2)G(4) , 
G (3) G (4). The likelihood ratio test statistic for the inde­
pendence model corresponding to the method of moments 
estimator is 108 (six degrees of freedom). The independ­
ence model is rejected by the data at a very low significance 
level. In contrast, the likelihood ratio test statistic for the 
latent variable model G(1) ,G(2)G(4),G(3)G(4) is 1.44 
(two degrees of freedom), suggesting an adequate fit. 
Model-based estimates of classification error rates corres­
ponding to each set of probability estimates were calculated 
for various thresholds. Actual classification error rates are 
compared to model-based estimates for true non-matches 
in Table 7 and true matches in Table 8. The error rates for 
true non-matches have been rescaled so that the number 
of true matches is in the denominator. 

0 = 

Given 
Name 

0 

0 

0 

0 

0 

0 

0 

0 

Table 6 

Outcome Frequencies, Real Data 

Outcome by Identifier: 
Disagreement, 1 = Agreement 

NYSIIS of 
Mother's 
Maiden 
Name 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

Day of 
Birth 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

Birth 
Month 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

Total 

Count 

True 
Matches 

4 

3 

11 

128 

3 

7 

27 

242 

9 

10 

52 

392 

27 

32 

115 

1,001 

2,063 

True 
Non-

Matches 

22,100 

888 

2,322 

211 

199 

19 

27 

13 

576 

32 

94 

4 

13 

1 

0 

1 

26,500 

Model-based classification error rate estimates obtained 
using the iterative method are very inaccurate, particularly 
for true non-matches, regardless of the value of /n". Error 
rate estimates obtained using iterative scaling are slightly 
less accurate than estimates based on the method of 
moments for true matches. However, they are con­
siderably more accurate than method of moments 
estimates for true non-matches. 

Some words of caution are necessary. Even though the 
model Lf(l), Lf(2)C/(4), L^(3) t/(4) does not adequately 
describe the dependencies among true non-matches, the 
iterative scaling algorithm obtained a good fit using an 
estimate of the proportion of matched records (0.0747) 
that differs somewhat from the true value (0.0722). A 
similar fit can also be obtained using the model 
G(1)G(2) ,G(1)G(3) ,G(4) and an estimate of 0.077 for 
the proportion of matches. Error rate estimates based on 
the model G(1)G(2),G(1)G(3),G(4) are no better than 
estimates obtained using the method of moments. 



146 Armstrong and Mayda: Model-Based Linkage Error Rates 

Table 7 
Classification Error Rates, True Non-matches, Real Data 

Estimated Rate 
(X 12.84) 

0.02 

0.04 

0.06 

0.08 

0.10 

Method of 
Moments 

0.0368 

0.0796 

0.1224 

0.1573 

0.1863 

Iter 
pO = 

Method 
0.0000625 

1.311 

1.314 

1.317 

1.323 

1.333 

Actual Ra te (x 12.84) 

Iter. Method 
p° = 0.00025 

0.1859 

0.1888 

0.1917 

0.1990 

0.60 

Iter. Method 
^0 = 0.001 

0.186 

0.193 

0.1967 

0.1994 

0.4066 

Iter. 
Scaling 

0.0339 

0.0649 

0.0684 

0.1106 

0.1282 

Table 8 
Classification Error Rates, True Matches, Real Data 

Estimated Rate 

0.02 

0.04 

0.06 

0.08 

0.10 

Method of 
Moments 

0.0166 

0.0318 

0.0598 

0.0782 

0.0966 

Iter. Method 
^0 = 0.0000625 

0.0141 

0.0264 

0.0383 

0.0416 

0.045 

Actual Rate 

Iter. Method 
pO = 0.00025 

0.0193 

0.029 

0.0472 

0.1372 

0.1393 

Iter. Method 
^0 = 0.001 

0.0225 

0.0278 

0.0326 

0.0488 

0.1371 

Iter. 
Scaling 

0.0105 

0.0263 

0.0529 

0.0784 

0.0958 

7. CONCLUSIONS 

In this paper, the issue of classification error rate 
estimation for record linkage has been discussed. The 
Fellegi-Sunter framework provides for the calculation of 
classification error rate estimates using estimates of agree­
ment probabilities. These model-based estimates typically 
have poor properties in practice. It has been demonstrated 
that their properties can be improved through careful 
estimation of agreement probabilities. Three estimation 
methods have been evaluated using synthetic data as well 
as information from a real application. 

For two of the three methods, the assumption that 
outcomes of comparisons for different data fields are 
independent was employed. This assumption was not valid 
for either the synthetic data or the real data. The synthetic 
data included strong dependencies for true matches and 
minor dependencies for true non-matches. Dependencies 
in the real data were particularly strong for true non-
matches. Classification error rate estimates obtained using 
the method of moments, which reUes on the assumption 
of independence, included substantial bias for synthetic 
data and were relatively inaccurate for real data. The 
magnitude of the bias in classification error rate estimates 
for synthetic data obtained using the iterative method 

depended on the definition of an initial set of matches. 
Although some definitions of the initial set of matches led 
to relatively small biases, others produced estimates with 
biases much larger than those obtained using the alter­
native methods. For the real data, all the definitions of the 
initial set of matches considered led to very inaccurate 
error rate estimates. There are no mathematical rules 
available for the choice of an initial set of matches for 
the iterative method. The results in this paper provide no 
evidence to recommend its use. 

The third method relies on a parameterization of 
dependencies between outcomes of comparisons for dif­
ferent data fields using loglinear effects. Under this 
parameterization, estimates of agreement probabilities 
that do not rely on the independence assumption can be 
obtained through use of the iterative scaling method to 
estimate the parameters of a latent variable model. For the 
synthetic data sets with lack of independence, model-based 
classification error rate estimates obtained using iterative 
scaling included much smaller biases than estimates based 
on the independence assumption. Although the latent 
variable model fit most synthetic data sets better than a 
model based on the independence assumption, it sometimes 
exhibited significant lack of fit. When the synthetic data 
was modified to improve the fit of the latent variable 
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model, there was no evidence of bias in model-based 
classification error rate estimates. The real data included 
important departures from independence for both true 
matches and true non-matches. Model-based error rate 
estimates obtained using iterative scaling were slightly less 
accurate than estimates based on the method of moments 
for true matches and considerably more accurate for true 
non-matches. 

The results reported here indicate that properties of 
model-based classification error rates estimates can be 
improved using an appropriate estimator of agreement 
probabiUties. Latent variable models and iterative scaUng 
provide a method of incorporating dependencies between 
outcomes of comparisons for different data fields during 
estimation of agreement probabilities. 
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Robust Joint Modelling of Labour Force 
Series of Small Areas 

D. PFEFFERMANN and S.R. BLEUER 

ABSTRACT 

In this article we report the results of fitting a state-space model to Canadian unemployment rates. The model assumes 
an additive decomposition of the population values into a trend, seasonal and irregular component and separate 
autoregressive relationships for the six survey error series corresponding to the six monthly panel estimators. The 
model includes rotation group effects and permUs the design variances of the survey errors to change over time. 
The model is fitted at the small area level but it accounts for correlations between the component series of different 
areas. The robustness of estimators obtained under the model is achieved by imposing the constraint that the monthly 
aggregate model based estimators in a group of small areas for which the total sample size is sufficiently large coincide 
with the corresponding direct survey estimators. The performance of the model when fitted to the Atlantic provinces 
is assessed by a variety of diagnostic statistics and residual plots and by comparisons with estimators in current use. 

KEY WORDS: Design variance; Kalman filter; Panel survey; Rotation bias; State-space model. 

1. INTRODUCTION 

A time series model for survey data is the combination 
of two distinct models. The "census model" describing 
the evolution of the finite population values over time and 
the survey errors model representing the time series rela­
tionships between the survey errors of the survey esti­
mators. There are at least four main reasons for wishing 
to model the raw survey estimators: 

(a) The model based estimators of the population values 
resulting from the modelling process have in general 
smaller variances than the survey estimators, partic­
ularly in small areas where the sample sizes are small. 

(b) The model we employ yields estimators for the seasonal 
effects and for the variances of these estimators as a 
by-product of the estimation process. 

(c) The model can be used to forecast the population 
values, the trend and the seasonal components for time 
periods beyond the sample time period for which the 
direct survey estimators are available. Such forecasts 
are important when assessing the performance of the 
model and for policy decision making. 

(d) The model can be used to detect turning points in the 
level of the series and assess their significance. (Work 
on this problem will be addressed in a separate article). 

The methodology described in this article integrates the 
methodologies presented in Pfeffermann and Burck (1990) 
and Pfeffermann (1991) with some new modifications and 
extensions. The main features of the model are as follows: 

1. The model decomposes the population values into the 
unobservable components of trend, seasonality and 
irregular terms. Smoothed predictors of the three 

components (and hence of the population values) based 
on all the available data, and standard errors of the 
prediction errors are obtained straightforwardly by 
application of the Kalman filter. The standard errors 
are modified to account for the extra variation induced 
by the use of estimated parameter values. 

2. The model uses the distinct monthly panel estimators 
as input data. The use of the panel estimators has two 
important advantages over the use of the mean esti­
mators: (i) It identifies better the time series model 
holding for the survey errors by analysing contrasts 
between the panel estimators, (ii) It yields more efficient 
estimators for the model parameters and hence better 
predictors for the unobservable model components. 

3. The model accounts for changes in the variances of the 
survey errors over time and for possible rotation group 
effects. 

4. The model can be applied simultaneously to the panel 
estimators in separate small areas. The census model 
is extended in this case to account for the cross-
correlations between the unobservable components of 
the population values operating in these areas. 

5. A modification to ensure the robustness of the small 
area estimators against possible model breakdowns is 
incorporated into the model equations. The modifica­
tion consists of constraining the model based estimators 
of aggregates of the population values over a group of 
small areas for which the total sample size is sufficiently 
large to coincide with the corresponding aggregate 
survey estimators. As a result, sudden changes in the 
level of the series are reflected in the model based 
estimators with no time lag. 

' D. Pfeffermann, Department of Statistics, Hebrew University, Jerusalem 91905; S.R. Bleuer, Social Surveys Methods Division, Statistics Canada, 
Ottawa, Ontario, KIA 0T6. 
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The model and the robustness modifications are 
described in more detail in section 2. Empirical results 
obtained when fitting the model to the four Atlantic 
provinces of Canada are presented in section 3. Section 4 
contains a short summary with suggestions for extension 
of the analysis. 

Before concluding this section we mention that in the 
U.S., the state unemployment estimates are produced 
for most of the states based on time series models which 
have a similar structure to the model used in our study. 
See Tiller (1992) for details. A major difference between 
the two models is that in the U.S., the model postulated 
for the population values includes also explanatory 
variables so that the trend and the seasonal component 
only account for the trend and seasonal variations not 
accounted for the explanatory variables. The models fitted 
to the survey errors are Uke in our case of the ARIMA 
type and they likewise account for changes in the variances 
of the survey errors. They are otherwise different because 
of the very different sample rotation schemes used in the 
two countries. Another notable difference between the 
two models is that in the U.S., the models are fitted to 
each state separately and the input data consist of only the 
mean survey estimates, that is, one observation for every 
month. As a result, the models do not account for rotation 
group biases. 

2. A STATE-SPACE MODEL FOR CANADA 
UNEMPLOYMENT SERIES 

2.1 The Canadian Labour Force Survey 

Data on unemployment are collected as part of the 
Labour Force Survey (LFS) carried out by Statistics 
Canada. The Canadian LFS is a rotating monthly panel 
survey by which every new sampled panel of households 
is retained in the sample for six successive months before 
being replaced by another panel from the same PSU's or 
strata. The PSU's are defined by geographic locations (city 
blocks or urban centers in the urban regions and groups 
of enumeration areas in the rural regions). The strata are 
homogeneous groups of PSU's defined by geographic 
locations such as city tracts, census subdivisions and 
enumeration areas. In the urban regions, (about 2/3 of the 
sample), every PSU is represented in only one panel. In 
the rural regions, the PSU's are represented in all the 
panels but with different enumeration areas in different 
panels. As a result, the separate panel estimators can be 
assumed to be independent, a property validated and 
utilized in other studies, see e.g. Lee (1990). For a recent 
report describing the design of the LFS and the construc­
tion of the direct survey estimators, the reader is referred 
to Singh et al. (1990). 

2.2 The Census Model 

In what follows we consider a single small area. In 
section 2.4 we consider joint modelling of the panel 
estimates in a group of small areas. The model postulated 
for the population values is the Basic Structural Model 
(BSM) which consists of the following set of equations. 

r, = L, + S, + €,; L, = L,_, + /?,_, + TJ .̂,; 

^1 — Rt-\ + VRII Y ^'+J ~ VSf (2.1) 
7 = 0 

In (2.1) Y, is the population value ("true" unem­
ployment rate) at time t, L,, is the trend level, R, is the 
increment, S, the seasonal effect and €, the irregular term 
assumed to be white noise with zero mean and variance 
CTg. Thus, the first equation in (2.1) postulates the classical 
decomposition of a time series into a trend, seasonal and 
irregular components. This decomposition is Inherent in 
the commonly used procedures for seasonal adjustment, 
see e.g. Dagum (1980). Notice however that in the present 
case the series [Y,] is itself unobservable. The series 
{1LI]> [VRI] ^nd [rjsi] are independent white noise 
disturbances with mean zero and variances a i , CT| and 
al X g(t) respectively. Hence, the second and third 
equations of (2.1) define a local approximation to a linear 
trend whereas the last equation models the evolution of the 
seasonal effects such that the sum of every 12 successive 
effects fluctuates around zero. Notice that the variances 
of the error terms r;̂ , are time dependent. The functions 
g{t) are specified at the end of section 3.1. 

The theoretical properties of the BSM in comparison 
to other models are discussed in Harrison and Stevens 
(1976), Harvey (1984) and Maravall (1985). Empirical 
results illustrating the performance of the model are shown 
in Harvey and Todd (1983), Morris and Pfeffermann 
(1984) and Pfeffermann (1991). Although more restricted 
than the family of ARIMA models, the BSM is now 
recognized as being flexible enough to approximate the 
behaviour of many diverse time series. 

2.3 The Survey Errors Model 

The model holding for the survey errors was identified 
initially by analyzing separately the pseudo error series 
,U) = 
• t.p - (yt - yi), t = I, • • •, ^< where y^' is the 

estimator of Y, based ony'-th panel y = 1, . . . , 6, (the 
panel surveyed for the y-th successive month) and y, = 
Y.j=i yy^/6 is the mean estimator. Notice that 
(>'/'•' - Pi) = (e}'^ - Vj=i e / 'V6), where e/^' = 
^^yU) _ Y,) are the true survey errors. Thus, the notable 
feature of the contrasts {y^'* - ;',) is that they are func­
tions of only the survey errors irrespective of the model 
holding for the population values. 
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There are two prior considerations in the choice of a 
model for the survey errors: 

(a) The model should account for possible rotation group 
biases or more generally, allow for different means for 
the survey errors of different panels. 

(b) The model should account for changes in the variances 
of the survey errors over time. 

Rotation group biases may arise from providing dif­
ferent information on different rounds of interview, 
depending on the length of time that respondents are 
included in the sample, or on the method of data collec­
tion, say, whether by telephone or by home interview. (In 
the Canadian LFS, the first panel is interviewed by home 
visits, the other panels are interviewed by telephone). 
Another possible reason for differences between the panel 
survey error means is differences in the nonresponse 
patterns across the panels. See Pfeffermann (1991) for 
further discussion with references to earlier studies on 
this problem. 

Changes in the variances of the survey errors over time 
occur when the variances are function of the level of the 
series. Indeed, as revealed by figure 1 in section 3, the 
estimates of the standard deviations of the survey errors 
are subject to seasonal effects with a seasonal pattern that 
follows the seasonal pattern of the population values. 
Another possible explanation for changes in the variances 
of the survey errors is changes in the sampling design. For 
example, the overall sample size of the Canadian LFS was 
reduced in 1985-1986 from 55,000 households to 48,000 
households. This reduction in the sample size was 
associated with other changes in the design. See Singh 
et al. (1990) for details. 

Application of simple model estimation and diagnostic 
procedures to the pseudo survey errors suggest a 3rd order 
autoregressive (AR) model for the standardized survey 
errors e^^ = (e^^ - 0j)/SD{e,^^), i.e. 

e^' = 4>ji e(>T" + 4>j2 eH-l'' + ^ji eHr,'^ 

-f u^\j= 1, . . . , 6 , (2.2) 

where |8y = E(e,^') are the rotation group biases, S£)(e,^') 
are the design standard deviations and M,*̂ ' are independent 
white noise with mean zero and variances af. It is assumed 
that Ey=i i3y = 0 which implies that the mean survey 
estimator, y,, is unbiased. See Pfeffermann (1991) for 
discussion on the need to constraint the bias coefficients. 
Subsequent analysis when fitting the combined model 
defined by (2.1) and (2.2) (see section 2.4) validates this 
model with the further observation that the coefficients 
{<}>ji, 4>j2, 4>ji) can be assumed to be equal fory" = 4, 5, 6. 
Furthermore, for the first panel an AR(1) model already 
gives a good fit whereas for the second and third panel an 
AR(2) model is appropriate although with different 

coefficients. These relationships hold for each of the four 
Atlantic provinces. 

One of the referees of this article raised the question of 
whether the AR(3) model defined by (2.2) is flexible 
enough to account for the panel estimates correlations at 
high lags which are believed to be high because of "PSU 
effects". As mentioned in section 2.1, panels rotating out 
of the sample are replaced by panels from the same PSU's 
and it usually takes several years before a PSU is exhausted 
and replaced by a neighbouring PSU. Lee (1990) presents 
two sets of panel estimates correlations for the Canadian 
LFS. The first set, denoted by p,, are the correlations 
between estimates produced from the same panel so that 
y ranges from 1 to 5. The second set, denoted by yj, are 
the correlations between estimates produced from a panel 
and its predecessor so that y ranges from 1 to 11. The 
p-correlations are generally high as expected but it should 
be emphasized that they are lower for the unemployment 
series than for the employment series, demonstrating the 
high mobility of the unemployment Labour Force. The 
7-correlations are much smaller than the p correlations but 
as mentioned by the author, the computation of these 
correlations is much less reliable and their behavior is 
somewhat fuzzy showing occasionally an increasing trend. 
We computed the serial correlations based on the models 
(2.2) with the 0-coefficients replaced by their estimated 
values and found in general a close fit to the p-correlations 
at all the lags from 1 to 5. The correlations at higher lags 
are different from the corresponding 7-correlations but 
interesting enough, they are in most cases higher and 
always decrease asy increases. 

Another question related to the model (2.2) raised by 
the referees is whether one could apply the log transfor­
mation to the raw data for stabilizing the survey error 
variances, rather than modelling the standardized errors. 
There are two main reasons for not using the log transfor­
mation in our case. Foremost, the use of this transfor­
mation would imply a multiplicative decomposition for 
the population unemployment rates which is counter to 
common practice of postulating an additive decompo­
sition. In Statistics Canada the unemployment rates in the 
two larger provinces out of the four considered in our 
study are deseasonalized by postulating the additive 
decomposition. In the U.S. the models fitted to the state 
unemployment series likewise postulate an additive 
decomposition. See Tiller (1992). The second reason is that 
changes in the survey error variances may result from 
charges in the sampling design and in particular, from 
changes in the sample sizes. Such changes cause discrete 
shifts in the variances which cannot be handled effectively 
by the log transformation. As noted also by one of the 
referees, transforming the data has the drawback of 
producing nonlinearity in aggregating the estimates over 
the panels and/or the small areas. 
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The model defined by (2.2) satisfies the two prior 
considerations discussed above. The actual appUcation of 
the model requires however two modifications: 

1. For the first three panels there is not a long enough 
history to permit the fitting of an AR(3) model. For 
example, the survey error e / " corresponds to the 
panel which is in the sample for the first time. In order 
to overcome this problem, we replace the missing 
survey errors by the survey errors corresponding to the 
panels previously selected from the same PSU's or 
strata. For example, the AR(2) model fitted to e/^' is 

where 

^i = J^t-\ + ^ r - i + 'nLt\ Ri = ^t-i + VRU 

^(2) _ <^21^,^'/ + 022^,L'i + " / " • (2.3) 

Notice that the panel surveyed for the second time at 
month t replaces at time (t — I) the panel surveyed 
for the sixth time at month (/ - 2) so that both panels 
represent the same PSU's or strata. The use of surrogate 
survey errors in the case of the first three panels may 
explain the different models identified for these panels 
as compared to the model identified for the other three 
panels. 

2. The true standard deviations of the survey errors are 
unknown whereas the survey estimates of the standard 
deviations are themselves subject to sampling errors. 
To overcome this problem, we use smoothed values 
of the estimated standard deviations, obtained by 
fitting the relationship 

^ 12 

(SD), = y{SD),_i -^yot -i- Y 7/Ar, (2.4) 
< = i 

with the 7-coefficients estimated by ordinary least 
squares. The notation {SD), defines the raw, 
unsmoothed estimate of the design standard deviation 
of the mean survey estimator, y„ at month t and (Z?,,) 
are dummy variables accounting for monthly seasonal 
effects so thatZ),-, - 1 when / = 12A: -I- /, A: = 0, 1, 
. . ., / = 1, . . . , 12 and Z)„ = 0 otherwise. The 
smoothed standard deviations of the panel survey 
errors are obtained as 5D(e/^') = yft{Sb),. The 
latter estimates are used as surrogates for the true, 
unknown, standard deviations. 

2.4 State-space Representation and Estimation of the 
Model Holding for the Survey Estimators 

It follows from (2.1) that the panel estimators can be 
modeled as 

y^^ = L, -H S, -1- €, -h ey\ y = 1, . . . , 6, (2.5) 

Y ^'+j - •^s/. (2.6) 
7 = 0 

with (€,), [TIU], [riRr] and (r;s,) defined as in (2.1). The 
separate models defined by (2.5), (2.6) and (2.2) can be 
cast into a compact state-space representation withy,' = 
(yi'K • • •. j / * ' ) as the input data, similar to the repre­
sentation in Pfeffermann (1991). Following that represen­
tation, the survey errors (and in the present study also the 
census irregular terms) are included as part of the state 
vector so that there are no residual terms in the observa­
tion equation defined by (2.5). Unlike in Pfeffermann 
(1991), however, the transition matrix and the Variance-
Covariance (V-C) matrix of the state error terms are not 
fixed in time since they depend on the design variances of 
the survey errors which, as explained in section 2.3, change 
over time. 

The state-space representation of the model permits us 
to update, smooth or predict the state vectors and hence 
the seasonal, trend and population values at any given 
month / by means of the Kalman filter. Denote by a, the 
state vector corresponding to month t. The state vector 
comprises the trend level, increment and seasonal effects, 
the rotation group biases and the survey errors. See 
Pfeffermann (1991) for details. By "updating" we mean 
estimation of g, at month / based on aU the data until and 
including month t. "Smoothing" refers to the estimation 
of q, based on all the available data for all the months 
before and after month t. Smoothing is required for 
improving past estimates as, for example, when estimating 
the seasonal effects or when estimating changes in the 
population values or the trend levels. "Prediction" of state 
vectors corresponding to postsample months is important 
for policy making. Predictions within the sample period 
aUow to assess the performance of the model, e.g. by com­
paring the forecasted panel estimates as derived from the 
predicted state vectors with the actual estimates. See 
section 3 for details. The theory of state-space models and 
the Kalman filter is developed in numerous publications, 
see Pfeffermann (1991) for the filtering and smoothing 
equations with references. Notice that the filtering and the 
smoothing equations not only yield the three sets of 
estimators for any given month t but also the V-C matrices 
of the corresponding estimation errors. 

The actual application of the Kalman filter requires 
the estimation of the unknown model parameters and 
the initialization of the filter, that is, the estimation of 
the initial state vector go and the corresponding V-C 
matrix of the estimation errors. For a single smaU area, 
the unknown model parameters are the four variances of 
the error terms in the census model (2.1) and the eight 
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autoregression coefficients and six residual variances in the 
panel survey error models (2.2). (The rotation group 
means are included in the state vectors as fixed, time 
invariant coefficients). In order to reduce the number of 
free parameters in the combined state-space model, we 
assume aj = a^ x 'dj,j = 1, . . . , 6, where {aj) are the 
residual variances in (2.2) and aj are the estimates of the 
residual variances obtained by fitting the autoregression 
equations to the pseudo survey errors e^J defined in sec­
tion 2.3. This assumption reduces the number of unknown 
parameters from 18 to 13. (The estimates aj are very 
close fory = 4, 5, 6 and have been set equal). 

Assuming that the error terms in the census and survey 
error models have a normal distribution, the unknown 
model parameters can be estimated by maximization of 
the likelihood. See Pfeffermann and Burck (1991) for a 
brief description of the application of the method of 
scoring maximization algorithm and for the initialization 
of the filter. That article includes references to more 
rigorous discussions. 

2.5 Adjustments to Account for the Use of 
Estimated Parameter Values 

Once the unknown model parameters have been 
estimated, the Kalman filter equations can be applied with 
the true parameter values replaced by the parameter 
estimates. As noted in section 2.4, the Kalman filter not 
only produces estimates for the state vectors but also the 
V-C matrices of the corresponding estimation errors. A 
possible problem arising from the use of these V-C 
matrices, however, is that they ignore the extra variation 
implied by parameter estimation, thus resulting in 
underestimation of the true variances. 

Formally, let g, (X) define the estimator of g, at month 
t, based on all the data available until some given month 
n, where X represents the estimators of the unknown model 
parameters. The estimation error can be decomposed as 

[g,(X) - g , ] = [g,(X) - g , ] + [g,(X) - g , ( X ) ] , (2.7) 

which is the sum of the error if X were known plus the 
error due to estimation of X. The two terms in the right-
hand side of (2.7) are uncorrelated. A simple way to verify 
this property is by noting that g,(X) - E(g , | Y, X) 
where y represents all the avaUable data. By conditioning 
on Y and X, [g,(X) - g,(X)] is nonstochastic whereas 
E( [g,(X) - g,] I Y,\] = 0. It follows therefore from 
(2.7) that 

Q, = E{[g,(X) - g J [ g , ( X ) -a,]'} 

= E{[g,(X) - g , ] [ g , ( X ) - g , ] ' ) 

+ E[[g,(X) - g,(X)][g,(X) - g , (X)] ' ) 

= A,-hB,. (2.8) 

In order to estimate A, and fi, we condition on Yand 
follow the approach proposed by Hamilton (1986). By this 
approach, reaUzations X( .̂), k — 1, . . . , A" are generated 
from the asymptotic normal posterior distribution of X, 
that is, from a N{\,A) distribution where X is the max­
imum UkeUhood estimator of X and A is the asymptotic 
V-C matrix of X. (Both X and A are obtained from the 
method of scoring). The Kalman filter is then applied with 
each of these reaUzations yielding estimates g,(X(;t)) with 
V-C matrices P,{'K{k))- The matrices A, and B, are 
estimated as 

1 

k 
^' = l Y [«'(?^w)-^,(X)][g,(X(i))-g,(S)]'-

(2.9) k = l 

Ansley and Kohn (1986) propose an estimator for B, 
based on first order Taylor series approximation. The use 
of their estimator is computationaUy less intensive but the 
procedure proposed by Hamilton is somewhat more 
flexible in terms of the assumptions involved and it enables 
a better insight into the sensitivity of the Kalman filter 
output to errors in the parameter estimators. 

2.6 Joint Modelling in Several Small Areas 

The model considered so far refers to a single area. 
When the sample sizes in the various areas are small, more 
efficient estimators can often be derived by modelling in 
addition the cross-sectional relationships between the area 
population values. Clearly, the increase in efficiency 
resulting from such joint modelling depends on the sample 
sizes within the small areas and the closeness of the 
behaviours of the area population values over time. 

The survey errors are independent between the areas 
so that any joint modelling of the survey estimators 
applies only to the census model. For modelling the unem­
ployment rates in the four Atlantic provinces, we foUow 
Pfeffermann and Burck (1990) and allow for nonzero 
contemporary correlations between corresponding error 
terms of the census models operating in these provinces. 
Thus, if V,;,, = (€/"', r;/?>, r?]?', -q^f) denotes the vector 
of error terms at time t associated with the census model 
operating in area a, it is assumed that C^^ = E{v,a v/^) 
is diagonal but with possibly non zero covariances on the 
main diagonal. The actual implication of this assumption 
is that if, for example, there is a significant increase in the 
trend level in one province, similar increases can be 
expected to occur in other provinces. 

The resulting joint model holding for the four provinces 
(or more generally for a group of areas) can again be cast 
into a state-space form, see equations (2.7) and (2.8) in 
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Pfeffermann and Burck (1990). A major problem with the 
fitting of this model, however, is the joint estimation of 
all the unknown parameters which is computationally too 
intensive in terms of computer time and storage space. 
(The computer program written for the application of the 
method of scoring uses numerical first order derivatives 
so that each derivative requires a separate sweep through 
all the data. Each sweep involves the computation of the 
Kalman filter equations for each month included in the 
sample period). 

To deal with this problem, we first fitted the models 
defined by (2.5), (2.6) and (2.2) separately for each of the 
provinces. We also postulated equal correlations between 
the corresponding error terms of the separate census 
models across the provinces so that 

<l>a,b — Ca_a ' C a,b ^b.b^ 4> I < a,b < 4, (2.10) 

where Coo — E(v,aV,o). The four correlations maximizing 
the UkeUhood of the joint model were determined by a grid 
search procedure with the other model parameters held 
fixed at their previously estimated values. 

The assumption of equal correlations reduces the 
number of unknown parameters considerably. It can be 
justified also by the smaU number of areas considered for 
this study implying that no other.pre-imposed structure 
on these correlations can be safely detected. More sub­
stantively, a simple breakdown of the Labour Force by 
industry (Table 1 of Section 3) shows very similar relative 
frequencies in the four provinces suggesting a high degree 
of homogeneity in their economies. 

2.7 Modifications to Protect Against Model Failures 

The use of a model for the production of official 
statistics raises the question of how to protect against 
possible model failures. As discussed below, testing the 
model every time that new data becomes available is not 
feasible requiring instead the development of a built-in 
mechanism to ensure the robustness of the estimators 
when the model fails to hold. 

For modelling the Labour Force series in small areas 
we employed the modification proposed by Pfeffermann 
and Burck (1990). By this modification, the updated state 
vector estimates at any given time t, are constraint to 
satisfy the condition 

Y "^'"Y.a = Y "^'"y'" ^ = 1.2,..., (2.11) 
a=\ a=l 

where Y,a is the model based estimator of the population 
value Y,g in area a, y,a = 1/6 Ey=i >'M' is the corre­
sponding survey estimator and w,̂  = M,a /M, is the rela­
tive size of the Labour Force in that area so that M, = 
1,1=1 M,a and Efl=i m̂ = 1- Notice that E^=, w,aY,a 

and Efl=i ^taPi are correspondingly the model based 
estimator and the direct survey estimator of the aggregate 
population value in the group of areas considered. The 
condition 2.11 can be written alternatively as Eo^i w,̂  
e,a — 0 where e,a — E ;= i (̂̂ V6 is the mean survey error 
for state a. Pfeffermann and Burck (1990) show how to 
modify the Kalman filter equations so that it produces the 
constrained state vector estimator and its correct V-C 
matrix under the model (without the constraint), for every 
month t. 

The rationale behind the modification is simple. It 
assumes that the total sample size in all the areas is suffi­
ciently large and hence that the aggregate survey estimators 
can be trusted. This assumption in fact dictates the level 
of aggregation required, see below. By constraining the 
aggregate model based estimators to coincide with the 
aggregate survey estimators, the analyst ensures that any 
real change in the population values reflected in the survey 
estimators will be likewise reflected in the model based 
estimators. Notice that without constraining the 
estimators, sudden changes in the level of the series, for 
example, will be reflected in the model based estimators 
only after several months because these estimators depend 
not only on current data but also on past data. On the 
other hand, if no substantial changes occur, the model 
based estimators can be expected to satisfy approximately 
the constraints even without imposing them explicitly. 
Thus, the constrained estimators should perform almost 
as well as the unconstrainted estimators in regular time 
periods. 

The assumption that the total sample size in all the areas 
is large and hence that the aggregate survey estimator is 
sufficiently close to the corresponding population value 
is critical. It guarantees (in high probability) that the 
modification will only occur when there are real changes 
in the population values and not as a result of large 
sampling errors. Admittedly, and as noted by one of the 
referees, in the application of the method to the Atlantic 
provinces described in section 3, the aggregate estimator 
is based on only four provinces so that its standard error 
is about 50 percent of the standard errors of the province 
survey estimators, depending on the province sample sizes. 
(The province survey estimators are independent, condi­
tional on the corresponding population province values). 
Thus, if the constraints are to be used in practice, the 
aggregation should be carried out over a larger set of 
provinces or other smaU areas. 

The following two alternative approaches have been 
suggested for dealing with the robustness problem: 
(i) Perform a time series outlier detection as proposed for 

example in Chang, Tiao and Chen (1988). 
(ii) Model the time series of proportions (x,o = y,a/ 

1,^=1 y la >c - 1. •••> (^ ~ 1) ] if these time series 
exhibit smoother behavior than the series {y,a]. 
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The detection of outliers is an important aspect of any 
modelUng exercise but the question remaining is how to 
modify the population value estimates once observations 
(survey estimates) are detected as outUers. Notice in this 
respect that our main concern is with current estimates that 
is, the most recent available estimates. In Chang, Tiao and 
Chen (1988), the motivation for the outlier detections is 
to remove their effect from the observations so as to better 
understand the underlying structure of the series and 
improve the estimation of the model parameters. But if 
the cause of an outlier observation is a real shift in the level 
of the population values, this shift should not be removed 
but rather accounted for in the model based estimators. 
Harrison and Stevens (1976) propose to account for such 
changes by modifying the prior distribution of the state 
vectors, e.g. by increasing the variances of the state vector 
errors so as to allow for more rapid changes in the state 
vector estimators. See Morris and Pfeffermann (1984) for 
an example. Our approach of constraining the model 
based estimators to coincide with aggregate survey 
estimators provides a more automatic procedure that does 
not require timingly prior information. 

The second approach suggested for dealing with the 
robustness problem is appealing since abrupt changes in 
the population values can be expected to cancel out in the 
ratios x,^. The main disadvantage of the use of this 
approach is that the model holding for the 'true' ratios ir,a 
is naturally very different from the model holding for the 
population values i^as defined by (2.1) and in particular, 
it no longer provides estimates for the trend and the 
seasonal effects which, as mentioned in the introduction, 
is one of the major uses of our approach. It is also not clear 
how to extract the estimates for the population values Y, 
from the model holding for the ratios x,a, without some 
additional assumptions, Uke, for example, our assumption 
that the aggregate survey estimator is sufficiently close to 
the corresponding population value. 

The use of constraints of the form (2.11) was previously 
considered by Battese, Harter and Fuller (1988) and by 
Pfeffermann and Barnard (1991) for analyzing cross-
sectional surveys. Pfeffermann and Burck (1990) present 
empirical results illustrating the good performance of the 
modified estimators in abnormal time periods. See also 
section 3. 

3. FITTING THE MODEL TO THE ATLANTIC 
PROVINCES, EMPIRICAL RESULTS 

The model defined by (2.2), (2.5) (2.6) and (2.10) was 
fitted to the monthly panel estimators in the four Atlantic 
provinces in two stages. In the first stage the model defined 
by (2.2), (2.5) and (2.6) was fitted to each of the provinces 
separately. In the second stage, the correlations defining 
the matrix </> of (2.10) were estimated using a grid search 
procedure. (See section 2.6). The estimators obtained are, 
Diag(<A) = (0.5, 0.25, 0.80, 0.0). The data used for 
estimation of the model cover the years 1982-1988. Data 
for 1989 were used for model diagnostics by comparing 
the results within and outside the sample period. 

3.1 Preliminary Analysis 

Table 1 shows a breakdown of the Labour Force in the 
four provinces by industry. The figures in the table refer 
to March 1991. The (expected) sample sizes of the LFS are 
also shown. As can be seen, the percentage breakdowns 
in the four provinces are very similar justifying the 
assumption of equal correlations between the error terms 
of the census models across the provinces. The similarity 
of the percentage breakdowns suggests also possible 
improvements in the efficiency of the model based 
estimators derived from the joint model over estimators 
which ignore the cross-sectional correlations between the 
province population values. 

Table 1 
Labour Force by Industry in the Atlantic Provinces, March 1991 

Sample size 

Agriculture 
Other primary industry 
Manufacturing 
Construction 
Transp. and communication 
Trade and Commerce 
Finance 
Services 
Public Administration 
Unclassified 

Total 

Nova Scotia 

4,409 

Thousands % 

7 1.7 
18 4.4 
44 10.7 
24 5.9 
35 8.6 
81 19.8 
20 4.9 

143 35.0 
36 8.8 

1 0.2 

409 100.0 

New Brunswick 

3,843 

Thousands % 

7 2.3 
13 4.2 
37 11.9 
21 6.8 
30 9.6 
61 19.6 
12 3.9 

107 34.4 
22 7.0 

1 0.3 

311 100.0 

Newfoundland 

2,970 

Thousands % 

0.5 0.2 
18.0 7.7 
23.0 9.9 
18.0 7.7 
20.0 8.6 
41.0 17.6 

6.0 2.6 
83.0 35.6 
23.0 9.9 
0.5 0.2 

233.0 100.0 

Prince-Edward 
Island 

1,421 

Thousands % 

6.0 9.8 
4.0 6.6 
6.0 9.8 
4.0 6.6 
5.0 8.3 

10.0 16.4 
0.5 0.8 

19.0 31.1 
6.0 9.8 
0.5 0.8 

61.0 100.0 
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Two other prior considerations mentioned in section 
2.3 are that the model should account for possible rota­
tion group effects and for changes in the variances of the 
survey errors over time. In order to obtain initial estimates 
for the rotation group effects, we averaged the pseudo 
survey errors, e,^' = {y,^'' - y,),j = 1, . . . , 6overaU 
the months in the sample period. We then divided the 
averages by the conventional estimates of the standard 
errors. (The errors ejf^ are correlated over time but the 
correlations are small because except for lags 6, 12 etc. the 
data of any given panel refer to different PSU's in the 
urban areas and different enumeration areas in the rural 
areas. See section 2.1). Notice that in the absence of 
rotation group effects, E{eyj,) = 0 for all y and t 
irrespective of the model postulated for the population 
values. 

This preliminary (model free) analysis yields similar 
results to the results obtained under the full model, 
presented in Table 2 of section 3.3. 

Next consider the variances of the survey errors. 

Figure 1 plots the seasonal effects of the aggregate 
survey estimators in the four provinces along with the 
seasonal effects of the standard errors of these estimators 
(multiplied by 100). Denote as before by w,a the relative 
labour force size in province a at time t. The aggregate 
survey estimator is defined as j ^ = T.t=iW,a Pia (Equation 
2 . n ) . The standard error of;',* is (SD*), = [ E a=i ^ i 
{SD)Ja] ''''• The seasonal effects were estimated by 
application of the additive model of X-11 so as not to bind 
them to any particular model. We chose the additive model 
since we assume the additive decomposition for the survey 
estimators. (As revealed from Figure 4, the seasonal effects 
of the aggregate survey estimators produced by X-11 are 
very close to the seasonal effects obtained under the 
model). 

Figure 1 shows that the standard errors are influenced 
by seasonal variations with a seasonal pattern that follows 
closely the seasonal pattern of the survey estimators and 
hence of the corresponding population values. 

As discussed in section 2.3, rather than using the 
original estimates of the design standard errors in the 
models fitted to the panel survey errors we use smoothed 
values, thus reducing the effect of the sampling errors on 
the former estimators. Figure 2 plots the two sets of 
estimators for Prince Edward Island (P.E.I.) province 
which is the smallest province in the Atlantic region and 
hence has the smallest sample sizes. As can be seen, the 
effect of the smoothing is to trim the extreme raw estimates 
but otherwise the smoothed values behave similarly to the 
raw estimates. The plots for the other provinces show a 
similar pattern but the differences between the raw and the 
smoothed estimates are smaller because of the larger 
sample sizes in these provinces. 

We conclude this section by specifying the models 
postulated for the seasonal effects in the four provinces. 
Our initial model assumed fixed variances for the error 
terms7J5, = EJio'S(+;,? = 1, 2, . . . (seeequation2.1). 
The predicted errors %, = Ej io ^t+j obtained under 
that model were found to decrease in absolute value as a 
function of time in three out of the four provinces and 
increase in time in the remaining province. Notice that 
under the model defined by (2.1), with constant variances 
of the state error terms, the Kalman filter converages 
to a steady state by which the V-C matrices of the state 
vector estimators and hence of rĵ , are constant. Thus, 
we modified the initial model such that VAR(r/j,) -
aj X g{t) where for the provinces of Nova Scotia, 
Newfoundland and P.E.I. ^ ( 0 = /<~^^^' whereas for 
New Brunswick ^ ( 0 = t'^\ 

3.2 Results 

3.2.1 Rotation Group Biases 

Table 2 shows the rotation group Biases (RGB) and 
their estimated standard errors (SE) in the four provinces 
as obtained under the full model defined by (2.3), (2.5), 
(2.6) and (2.10). 

Table 2 
Rotation Group Biases and Standard Errors 

in the Four Provinces (X 100) 

Panels 

1 

2 

3 

4 

5 

6 

Nova 
Scotia 

RGB 

-0 .20 

0.18 

0.32 

0.06 

-0 .03 

-0 .34 

SE 

0.10 

0.09 

0.08 

0.07 

0.08 

0.08 

New 
Brunswick 

RGB 

-0 .02 

0.40 

0.24 

0.01 

-0.15 

-0 .50 

SE 

0.11 

0.10 

0.09 

0.09 

0.10 

0.11 

Newfound­
land 

RGB 

-0.47 

0.42 

0.47 

0.18 

-0 .10 

-0 .50 

SE 

0.13 

0.12 

0.12 

0.12 

0.13 

0.14 

Prince 
Edward 
Island 

RGB SE 

0.32 0.17 

0.18 0.15 

0.31 0.15 

0.03 0.15 

-0.25 0.16 

-0 .60 0.16 

The RGB behave fairly consistently across the provinces. 
Thus, the biases for the 3rd and 6th panel are all highly 
significant using the conventional /-statistic, having a 
positive sign for the 3rd panel and a negative sign for the 
6th panel. The biases for the 4th and 5th panels have again 
the same sign in all the provinces and they are all non­
significant. 

For the 2nd panel all the biases are positive but the bias 
in P.E.I, is not significant. (P.E.I, is the province with the 
smallest sample size). It is also in P.E.I, that the sign of 
the bias for the 1st panel is different from the signs in the 
other provinces. 
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As discussed in section 2.3, there is more than one 
possible reason for the existence of RGB but the results 
emerging from the Table provide a strong indication that 
whatever the reason is, the biases found for some of the 
panels are real and not just the outcome of sampUng 
errors. A drawback of the present analysis, however, is 
that the RGB are assumed to be fixed over time. Section 4 
proposes a more flexible model. 

3.2.2 Goodness of Fit 

A. TESTING FOR NORMALITY 

Let / / / ' = {y^' - y^1(^,-1)) define the innovation 
when predicting they-th panel estimator one month ahead 
and denote I,'a = (//„', . . . , ///*. The use of maximum 
likelihood estimation in this study assumes that the vectors 
I,a are normal deviates (see section 2.4). To test this 
assumption, we computed the empirical distribution of the 
standardized innovations { (S/),^' = [7,^VSZ)(///*)], 
t = (k -\- I), ..., N} and compared it to the standard 
normal distribution using the Kolmogorov-Smirnov test 
statistic. This test statistic was computed for each of the six 
panels in the four provinces yielding P-values larger than 
0.15 in 21 out of the 24 cases. (The tests were performed 
using PROC UNIVARIATE of the SAS package. By this 
procedure, if the sample size is greater than fifty as it is 
in our case, the data are tested against a normal distri­
bution with mean and variance equal to the sample mean 
and variance). Applying the same test procedure to 
the standardized innovations [ (S/),^ == [I,a/SD{I,„)], 
t ^ {k -i- l),...,N] where/,, = [ Ey=i /,VV6] yields 
P-values larger than 0.15 in all the four provinces. 

The estimators of the standard deviations of the innova­
tions used for the tests are those produced by the Kalman 
filter, without accounting for the variance component 
resulting from parameter estimation (see section 2.5). The 

latter component is negligible even in P.E.I, which has the 
smallest samples sizes among the four provinces. We come 
back to this finding in section 3.4. 

B. PREDICTION ERRORS WITH DIFFERENT 
PREDICTORS 

Table 3 contains summary statistics comparing the 
behaviour of the prediction errors (innovations) in the 
four provinces as obtained for three different sets of 
estimators of the state vectors: (1) The estimators obtained 
under the separate models (SM) defined by (2.2), (2.5) 
and 2.6; (2) the estimators obtained under the joint model 
(JM) defined by (2.2), (2.5), (2.6) and (2.10); (3) the 
estimators obtained by imposing the robustness con­
straints (2.11) on the joint model (ROB). Below we define 
the summary statistics using as before the notation 
•^/i' - (>'/a' - yiil(i-\)) for the prediction error when 
predicting they-th panel estimator one month ahead. 

MB,, -

MAB„ 

E^=^+i (Ev-=i / ,^V6)/(N - k)- mean bias 
in predicting the mean survey estimator 

y,a = Ey- = = lJ',VV6. 

Ey-=i I l^=k+i / /yV(N - k)\ /6- mean 
absolute bias in predicting the panel estimators. 

SQRE, = (Ef=*+, [l/6lUl}i^/y,a)]'/(N-k)]''' -
square root of mean square relative prediction 
error in predicting the mean survey estimator. 

The above summary statistics are shown separately for 
the sample period of July 1983 - December 1988 and for 
the postsample period of January 1989 - December 1989. 
In the latter case, the data were added one data point at 
a time so that for predicting the survey estimator of 
February 1989 for example we used the data observed until 
January 1989 and so forth. 

Table 3 
Prediction Errors in the Four Provinces, 

Summary Statistics (x 100) 

MB 

MAB 

SQRE 

MB 

MAB 

SQRE 

SM 

- . 1 1 

.12 

5.76 

.14 

.32 

6.39 

Nova Scotia 

JM 

- . 0 7 

.11 

5.62 

.11 

.32 

6.27 

ROB 

- . 0 6 

.10 

5.70 

.04 

.30 

6.82 

New Brunswick 

SM 

- . 1 2 

.14 

5.48 

.47 

.51 

6.25 

JM 

- . 0 9 

.12 

5.47 

.47 

.51 

6.25 

ROB 

7.83 -

- . 0 6 

.11 

5.47 

1.89-

.46 

.50 

6.32 

Newfoundland 

SM 

• 12.88 

- . 2 5 

.29 

7.03 

12.89 

.36 

.39 

5.92 

JM 

- . 1 8 

.24 

6.91 

.33 

.37 

5.90 

ROB 

- . 0 8 

.20 

6.96 

.17 

.29 

5.61 

Prince Edward Island 

SM 

.06 

.20 

9.34 

.84 

.84 

9.45 

JM 

.14 

.23 

9.13 

.85 

.85 

9.26 

ROB 

.15 

.23 

9.17 

.86 

.86 

9.30 
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The main conclusions from Table 3 are as follows: 

(1) The results obtained for the three sets of predictors are 
in general very similar, indicating that for the data 
analyzed the use of the joint model improves only 
slightly over the use of the separate models and that 
there are no abrupt changes in the level of the series 
in the years considered. 

(2) The errors when predicting the survey estimators are 
small both within and outside the sample period, 
suggesting a good fit of the model. Notice that except 
in P.E.L, the relative prediction errors as measured by 
the statistics SQRE„ are all less than 7%. 

(3) The biases of the prediction errors in the postsample 
period are larger than in the sample period with rela­
tively large differences in New Brunswick and P.E.I. 
This outcome by itself could suggest some model 
failure in the year 1989. Inspection of the monthly 
panel prediction errors in the four provinces for this 
year, (not shown in the Table), indicates however that 
although the errors are in general mostly positive, the 
relatively large biases are mainly the result of one or 
two extreme errors which, wUh only 12 data points, has 
a large effect on the average summary statistics. It 
should be noted also that the estimated unemployment 

rates in the four provinces in the year 1989 are between 
0.11 and 0.18 so that a prediction bias of .005 or even 
.009 as obtained for P.E.I, is not high. Clearly, the 
model can be modified to account for these biases if 
they persist with additional data. On the other hand, 
notice that the discussion above refers only to the bias 
of the prediction errors since the bias of the model 
based estimators of the concurrent population values 
is controlled by the robustness constraints (2.11). 

In view of the very similar results obtained for the three 
sets of predictors considered and in order to highlight the 
performance of the robustness constraints, we deliberately 
deflated the unemployment rates in the period March 1985 
to March 1987 by 33%, deflated the rates in the period 
April 1987 - November 1988 by 25% and inflated the 
rates in the period December 1988 - December 1989 by 
33%. The effect of these operations is to introduce sudden 
drifts in the data in the months / = 39, / = 64 and/ = 84. 
Figure 3 displays the aggregate, one step ahead prediction 
errors (APE),/," = Ea=i w,J E/=.(j',^' - J',^i\,-i))/6] 
as obtained for the joint model with and without the 
robustness constraints, and for the separate models. 

The clear conclusion from Figure 3 is that by imposing 
the constraints, the APE in the periods foUowing the three 
months with sudden drifts are smaller than the APE 

6 

2 -

-2 -

-4 -

J J 
1990 

With robustness constraints -o Without robustness constraints x K Separate models 

Figure 3. Aggregate One-Step Ahead Prediction Errors of the Three Sets of Predictors (x 100) for Contaminated Data 
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Figure 4. Weighted Averages of Seasonal Effects as Obtained by X-11 and Under the Model (x 100) 
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Figure 5. Weighted Averages of Trend Levels as Obtained by X-11 and Under the Model 
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obtained wkhout the constraints. Thus, in March 1985 for 
example, t — 39, the APE are very large in absolute value 
both with and without the constraints which is obvious 
since the predictors use only the data until February 1985. 
The APE corresponding to the robust predictors return 
however, to their normal level much faster than the APE 
of the nonrobust predictors. A similar behaviour is seen 
to hold in the other two periods. Another notable result 
featured in the graph is that in the periods following the 
months with the sudden drifts, the joint model performs 
better than the separate models even without imposing the 
robustness constraints. Thus, by borrowing information 
from one province to the other, the joint model adapts 
itself more rapidly to the new level of the series. For more 
illustrations of the performance of the robustness con­
straints see Pfeffermann and Burck (1990). 

C. COMPARISONS WITH ESTIMATORS 
PRODUCED BY X-11 

As a final assessment of the appropriateness of the 
model, we compare the estimates of the seasonal effects 
and the trend levels as obtained under the model, with the 
estimates produced by the X-11 procedure (Dagum 1980). 
The latter is known to be less dependent on specific model 
assumptions. This procedure is the commonly used 
method for seasonal adjustment throughout the world. 
Figure 4 displays the average seasonal effects for the four 
provinces as obtained by X-11 and under the model. 
Figure 5 displays the corresponding trend level estimates. 
The averages are computed using the weights (w,,) 
employed in previous analyses. The model based estimates 
shown in the two figures are the smoothed estimates 
which, like X-11, employ aU the data in the sample period. 

As can be seen, the seasonal effects produced by the two 
approaches are very close. The trend level estimates are 
also close but the X-11 trend curve is smoother than the 
model curve. Similar close correspondence between X-11 
and the model is obtained for each of the four provinces 
separately, including, in particular, P.E.I, with its 
relatively small sample sizes. 

the two sets of estimates is their performance in estimating 
year to year changes of the population values. Such com­
parisons are free of the obscuring effects of seasonality. 
Figure 6 displays the results obtained for P.E.L. The 
model dependent estimates are the smoothed values of the 
joint model which use all the data in all the months. As 
can be seen, the estimates produced by the model are much 
more stable and vary only mildly from one month to the 
other compared to the design based estimates. Figure 7 
displays the standard errors (S.E.) of the unemployment 
rates estimators in P.E.L as computed under the design, 
(smoothed values, see Figure 2), and under the joint 
model. Also shown are the S.E. when fitting the separate 
model defined by (2.2), (2.5) and (2.6) and the corre­
sponding S.E. after accounting for the use of parameter 
estimates instead of the unknown parameter values. See 
section 2.5 for details. (The latter have been computed 
only for the separate model to save in computing time). 

There are three notable features emerging from the 
graphs: 

(1) The S.E. of the model dependent estimators under the 
joint model are only mildly smaller than the S.E. 
obtained for the separate model but considerably 
smaller than the S.E. of the survey estimators. 

(2) The S.E. of the model dependent estimators behave 
similarly to the S.E. of the survey estimators, a direct 
consequence of accounting for the changes in the 
variances of the survey errors over time in the model. 
See section 2.3 for details. 

(3) Accounting for the use of estimated parameter values 
in the computation of the S.E. of the model dependent 
estimators has only a marginal effect on the computed 
S.E. RecaU that P.E.I, is the province with the smallest 
sample sizes. The effect of accounting for the use of 
parameter estimates in the other provinces is even 
smaller. 

4. SUMMARY 

3.3 Comparison of Design Based and Model Dependent 
Estimators 

We mention in the introduction that one of the major 
reasons for wishing to model the raw survey estimators is 
that the model produces estimates for the population 
values which, at least in small areas, are more accurate 
(when the model holds) than the survey estimators. We 
computed the two sets of estimates for the four provinces 
and found that as expected, the estimates produced by the 
two approaches behave very similar but the design based 
estimators are less stable, having in general higher peaks 
and lower troughs. An important aspect when comparing 

This article illustrates that data collected by a complex 
sampling design, consisting of several stages of selection 
with rotating panels, can be successfully modelled by a 
relatively simple model. The model consists of two parts: 
the census model holding for the population values and 
the survey errors model describing the time series relation­
ship between the survey errors. The use of the model yields 
more accurate estimators for the population values and 
their components like trend and seasonality and it permits 
estimating the S.E. of these estimators in a rather simple 
way. The model equations can be modified to secure the 
robustness of the model-dependent estimators against 
possible model failures. 
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Figure 6. Year to Year Changes in Design Based and Model Dependent Estimates of P.E.I. Unemployment Rates (x 100) 
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Figure 7. S.E. of Survey Estimators and of Model Dependent Estimators With and Without Accounting for Parameter Estimation 
(X 100) for P.E.I. Province 
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The model used in this article can be extended in various 
directions. Foremost, the model should be applied 
simultaneously to more provinces or other small areas to 
ensure that the aggregate sample estimators E a=i ̂ la Pta 
are sufficiently close to the corresponding population 
values. See the discussion in section 2.7. Incorporating in 
the model an outlier detection mechanism to further assess 
the performance and suitability of the model is another 
valuable addition. 

Two other extensions are to relax the assumption of 
constant variance for the error term €, in the census model 
and to let the rotation group biases to change over time. 
The first extension is suggested by the observation made 
in section 3.1 that the variances of the survey errors are 
subject to seasonal effects, with a seasonal pattern that is 
similar to the seasonal pattern of the raw estimates. Fitting 
the equations (2.4) in the four provinces indicates also the 
existence of a mild trend in the variances which again 
behaves similar to the trend of the raw survey estimates. 
Thus, the variances of the survey errors seem to depend 
on the magnitude of the survey estimators which suggests 
that the variances af — K( €,) change with the level of 
the population values. As a first approximation one could 
assume that af is proportional to the corresponding 
variance of the survey error. 

Letting the rotation group biases change over time is 
a natural extension of the model, considering that the 
population values means are time dependent. Modelling 
the evolution of the group biases can however be problem­
atic because of possible identifiability problems with the 
models holding for the trend and the seasonal effects. 
See the discussion in Pfeffermann (1991). 

The last two extensions are important and should be 
explored but based on our experience with the unemploy­
ment data, we expect that they will affect the model 
estimators very mildly. 
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Maximum Likelihood Estimation of Constant Multiplicative 
Bias Benchmarking Model with Application 

IJAZ U.H. MIAN and NORMAND LANIELl 

ABSTRACT 

The maximum likelihood estimation of a non-linear benchmarking model, proposed by Laniel and Fyfe (1989; 1990), 
is considered. This model takes into account the biases and sampling errors associated with the original series. Since 
the maximum Ukelihood estimators of the model parameters are not obtainable in closed forms, two iterative 
procedures to find the maximum likelihood estimates are discussed. The closed form expressions for the asymptotic 
variances and covariances of the benchmarked series, and of the fitted values are also provided. The methodology 
is illustrated using published Canadian retail trade data. 

KEY WORDS: Autocorrelations; Bias model; Generalized least squares; SampUng errors. 

1. INTRODUCTION 

Benchmarking methods are very commonly used for 
improving sub-annual survey estimates with the help of 
corresponding estimates, called benchmarks, from an 
annual survey. The improvement generally is in terms of 
reductions in the biases and variances of the sub-annual 
estimates. For example, the monthly retail trade estimates 
might be improved using estimates from annual retail trade 
surveys. The sub-annual estimates are often biased due to 
coverage deficiencies in the frame. Undercoverage is 
caused by delay in the inclusion of new businesses and non-
representation of non-employer businesses in the frame. 
Furthermore, the variances of the sub-annual estimates 
are often larger than those of the corresponding annual 
estimates, and the sampUng covariances exist between the 
estimates from different time periods due to overlap of the 
samples. On the other hand, the annual estimates can be 
assumed unbiased because, in practice, their frames do not 
suffer much from coverage deficiencies. Detailed discus­
sions on benchmarking can be found in Laniel and Fyfe 
(1989; 1990), Cholette (1987; 1988), and others. 

Several procedures for benchmarking time series are 
available in the literature. Based on a quadratic minimiza­
tion approach, Denton (1971) proposed several procedures 
to benchmark a single time series. Cholette (1984) proposed 
a modified version of Denton's order one proportional 
variant method where he removed the starting condition 
to avoid transient effects. The assumptions made by 
authors are very unlikely to be satisfied by most economic 
time series. More specifically, their models assume that the 
bias associated with sub-annual estimates follows a 
random walk and that both the sub-annual and annual 
data are observed without sampling errors. In general the 
estimates come from sample surveys and hence they are 
subject to sampling errors. 

Hillmer and Trabelsi (1987) proposed an alternate 
approach to benchmarking which is based on an ARIMA 
model (see e.g.. Box and Jenkins 1976). Although this 
approach takes into account the sampling covariances of 
the sub-annual and annual estimates, the approach does 
not accommodate biases in the sub-annual estimates. 
Cholette and Dagum (1989) modified the Hillmer and 
Trabelsi approach by replacing the ARIMA model by an 
"intervention" model. This approach allows the modelling 
of systematic effects in the time series but still possesses 
the same weaknesses as found in the HiUmer and Trabelsi 
model (Laniel and Fyfe 1990). 

In order to overcome the deficiencies mentioned above, 
Laniel and Fyfe (1989; 1990) proposed a non-linear bench­
marking model on levels. The authors provided a complex 
algorithm to find the generalized least squares (GLS) 
estimates (and their asymptotic covariances) of the model 
parameters. This model takes into account the sampling 
covariances of the sub-annual and annual estimates, and 
can be used when the benchmarks come either from cen­
suses or annual overlapping samples. This model also 
assumes a constant multiplicative (relative) bias associated 
with the sub-annual level estimates. Other constant multi­
plicative bias benchmarking models has been proposed by 
Cholette (1992) and Laniel and Mian (1991). Cholette 
assumes a model in which both the bias and errors are 
multiplicative. The author used the GLS theory to find the 
estimates of the model parameters after making a loga­
rithmic transformation on the model. Laniel and Mian 
(1991) have provided an algorithm to find the maximum 
UkeUhood estimates of a constant multiplicative bias 
benchmarking model with mixed (a mixture of binding 
and non-binding) benchmarks. The binding benchmark 
here is an estimate from a census {i.e., an estimate with 
zero variance) and the non-binding benchmark on the other 
hand is an estimate based on a sample. The assumption 
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of a constant multipUcative bias will be verified in practice 
if the rate of frame maintenance activities is relatively 
stable, that is, when the proportion of frame coverage defi­
ciencies is fairly constant over time. This assumption also 
implies that the covered and uncovered businesses in the 
frame possesses the same average period-to-period ratios 
with respect to the variable of interest. The nature of bias 
associated with sub-annual estimates may vary from one 
time series to another. Cholette and Dagum (1991) have 
proposed a benchmarking method which assumes a con­
stant additive bias associated with the sub-annual estimates. 

The purpose of this paper is to consider the maximum 
likelihood (ML) estimation of the parameters of Laniel 
and Fyfe's model and the results are based on the report 
of Mian and Laniel (1991). Their model is described in the 
next section. Two iterative processes to find the ML esti­
mates of the model parameters are discussed in Section 3. 
The closed form expressions for the asymptotic covariances 
of the estimators of model parameters and of the fitted 
values are provided in Section 4. The published Canadian 
retail trade data collected by Statistics Canada are used to 
illustrate the methodology. 

w = x^e + u 
= XQ0 -I- XDQ + u. 

(2.3) 

where 

X^={0I„:D')', ^ e = ( e ' : 0 ' ) ' , XD= {Q':D')', 

w= (y':z')', u= {a'.b')', D - (dj,), 

(2.4) 

/„ is an identity matrix of order /j , 0 is a zero vector or 
matrix of an appropriate order, and dj-t is an indicator 
function equal to 1 for ^eT and to 0 otherwise. It is 
assumed that the sampUng error vectors a and b follow multi­
variate normal distributions such that a ~ MN{0, Vaa) 
and b ~ MN{0, V,,i,). Also, in the general case, a and b 
are correlated, which means that Cov(fl,6) = V^i, = 
Vha ̂  0. It is shown in the next section that the ML and 
GLS estimators of the 9 and 0 are same for this model. 
Thus the assumption regarding the normality of a and b 
is required only to obtain the Fisher information matrix 
(and hence variances) of the ML estimators. 

2. CONSTANT MULTIPLICATIVE BIAS 
MODEL (CMBM) 

In order to meet the benchmarking requirements of the 
economic surveys, the following constant muhipUcative 
bias model (CMBM) has been proposed by Laniel and 
Fyfe (1989; 1990). The model assumes that the biased sub-
annual estimates y, follow the relationship given by 

y, = 06, + a,, t = 1,2 n (2.1) 

and the unbiased annual estimates ZT follow the rela­
tionship 

3. MAXIMUM LIKELIHOOD ESTIMATION 

The log-likelihood function under CMBM can be 
written as 

ln{L) = -^-^^^^^ln{2.)-'-\n\V 
2 2 -',Q. 

where 

Q = {w - Xse)'V-'(w - XgO) 

and 

^ (Vaa yab\ 

\Vl,a Vbb/ 

(3.1) 

(3.2) 

ZT= X; e, + 6r, r = 1,2, ., m. (2.2) 
tiT 

where the subscripts t and T denotes respectively the sub-
annual and annual time periods, 6, is the unknown fixed 
sub-annual parameter, 0 is an unknown constant bias 
parameter associated with y„ and a, and b, are sampling 
errors associated respectively with y, and ZT • The above 
model is a hybrid type (mixed) model in which bias is 
multiplicative but errors are additive. 

Before proceeding further, let us define the column 
vectors .y = {yi, y2, ...,y„)', z = {Zi, Z2, ...,Zm)', 

a = (fl,, 02. •••, "n)', b = {f>i, 62. • ••, b„)', and 
0 = {$1, $2 (?„)'. The CMBM model, given by 
(2.1) and (2.2), can be rewritten as 

The ML estimates of the model parameters G and 0 
can be obtained, assuming Fknown, by maximizing the 
log-likelihood function (3.1) or equivalently by minimizing 
the quadratic term Q (3.2). For this particular model, the 
ML and GLS estimators of the model parameters are the 
same and the distinction between them will be made only 
if the need arises. Taking the first order partial derivatives 
of ln(L) with respect to 9 and 0, respectively, and then 
equating them to zero, we have 

d\n{L) 

de 

dln{L) 

90 

X^V-^w - X^B) ^ 0, 

= x^ F-'ov - x^e) = 0. 

(3.3) 
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Since E(H' ) - X^Q under the model (2.3), the above 
equations are estimating equations in the sense of Godambe 
(1960) and they are information unbiased. It is interesting 
to note that X^V~^ and XQV~^ do not depend on w so 
that the equations (3.3) converge to zeros and hence have 
consistent roots as long as E(»v) = X^Q. That is, even 
when V in the above equations is replaced by some of its 
consistent estimate the equations will provide consistent 
estimates of the vector 9 and 0. Also note that the above 
equations are non-linear in the parameters to be estimated 
and it is not possible to obtain explicit expressions for the 
estimators of 9 and 0. Therefore some iterative procedure, 
such as the well-known Fisher-Newton-Raphson method 
(also called method of scores by Fisher), may be used to 
obtain the estimates. The elements of expected Fisher 
information matrix needed to implement the Fisher-
Newton-Raphson method are provided in Section 4. 

An alternate way to find the ML estimates of the model 
parameters is to solve the estimating equations (3.3) 
successively. By solving the first expression of (3.3), the 
estimate of 9 , as a function of 0, is given by 

9 = 9(/3) = {X^V-'X0)-'X^V-'w. (3.4) 

Similarly, by solving the second expression of (3.3), the 
estimator of |S, as a function of 9 , is given by 

0 ^ /3(9) = [td'V-},{y - K, V^ij(z - D9) ) ] / 

[ e ' K „ - i 9 ] , (3.5) 

where 

'aa.b ~ 'ao ~ 'ab 'bb 'ba-

The ML estimates of 9 and 0 can be obtained by success­
ively calculating equations (3.4) and (3.5) until conver­
gence. This procedure has an advantage over the Fisher-
Newton-Raphson method as it is easy to implement. 
However, for this kind of algorithm, the convergence is 
usually very slow. We will compare these two methods in 
Section 6 to check the speed of their convergence. 

Once the ML estimates of the model parameters are 
obtained, one can find the fitted sub-annual values j? = 0Q 
and the fitted annual values z = DO. 

Initial Guess for 9 and 0 

In order to obtain an initial guess for 0, say 0o, let us 
rewrite the model (2.3) as 

w* ^ X^0 -\- u", 

where vv* = {{Dy)':{z - DQ)')',X^ = ((£>9)':0') ' 
and u* = {{Da)':b')'. Thus the ML estimate of 0 is 
given by 

0=[X*Q{V*)-' W^X*^ ' ( r ) - ' X^], (3.6) 

where 

V* = Cov(u*) = 
DVaaD' DV,„ 

VbnD' V, bb 

Using the fact that E(z) = DQ, and replacing DQ by z 
in (3.6), an initial guess for 0 may be taken as 

*=[G)'^-'"'-]/[G)"-'"'(o)] 
(3.7) 

[z'(DV,a.bD')-' Dy]l[z'{DK,,„D')-' z]. 

The initial estimate of 9 can be obtained from (3.4) by 
replacing 0 by 00-

4. COVARIANCES OF THE ESTIMATORS 

In this section, we derive the expressions for the asymp­
totic covariances of the ML estimators of CMBM 
parameters by inverting the Fisher information matrix, 
say fi. The asymptotic covariances of the fitted sub-annual 
and annual values are provided by using the delta method. 
First, let us consider the derivation of the covariances of 
the ML estimators of 9 and 0. The elements of ft (/. e., the 
negative expectations of the second order partial 
derivatives of ln(L)) are given by 

[39 3 9 ' ] '^ ^ 

fi22 = .,pi-^].e..,,e 
and 

^12 — ^21 — L 39 3(3 J ^ 
V-'Xc, 

Therefore, the Fisher information matrix of order (n + 
1) X (« + 1) is given by 

(2 = P" "'^1 
1̂ 21 fi22j 

(4.1) 
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Inverting fi by using the algebra of partitioned matrices 
we have 

Cov(9) = nn.2, 

Var(^) = n^l'i, 

Cov(9,/3) = - On.2fii2n2'"2' 

= — "11 ^12^22.1 > 

where 

^11.2 — ^11 ~ Oi2fl22 ^21 > 

^22.1 — S'22 ~ ^21 ^11 ^12-

(4.2) 

(4.3) 

and 

0* ^0*{Q) = [e'v-'y]l[e'v-'e], 

respectively. These equations must be solved successively 
to obtain the required estimates. 

Similarly, the elements of the Fisher information matrix 
reduce to 

nfl =&^ya~a' + D'Vf.'D, 

02*2 = 9 ' K , - ' 9 , 

fif2 = fi2*i = / 3 ^ 7 . ' e . 

Once the covariance matrbc (] ~' is available, the asymp­
totic covariances of the sub-annual fitted values j5 can be 
obtained by using the delta method (see e.g., Rao 1973). 
Let A be the matrix of first order partial derivatives of y 
with respect to the elements of {O':0)'. Clearly, the 
n X (n -h 1) matrix is A = (i3/„: 9 ) . Now, by using the 
delta method, the asymptotic covariance matrix of y is 
given by 

Cov(J5) = Afl-'A' (4.4) 

Furthermore, the covariance matrix of the annual fitted 
values z, from the standard multivariate normal theory, 
is given by 

Cov(f) = Z)fin'2/>', (4.5) 

where D and fin 2 are as defined by (2.4) and (4.3), 
respectively. 

5. MAXIMUM LIKELIHOOD ESTIMATION 
WHEN V„i, = 0 

In this section we consider the ML estimation of the model 
parameters for the special case when the error vectors a 
and 6 are uncorrelated (/'.e.. Gov (a, 6) = f̂^ = K^ = 0). 
Usually this is the case in sample surveys when annual and 
sub-annual samples are drawn independently from each 
other. Reduction in the results of Sections 3 and 4 can be 
seen by substituting Vgi, = Vbo = ^ in the equations. As 
an example, for this special case, the ML estimators of 9 
and 0, given by (3.4) and (3.5), reduce to 

9* = Q*{0) - {0^y„-' + D'VhVD)-' 

{0V-'y +D'V,-,h) 

6. AN APPLICATION 

Here we present an example using published Canadian 
retail trade data which results from monthly and annual 
retail trade surveys conducted by Statistics Canada. The 
monthly retail trade estimates and their coefficients of varia­
tion (CV) are available from the Statistics Canada pubUcation 
"Retail Trade" (Catalogue No. 63-005 Monthly). There 
are two types of monthly retail trade estimates, namely 
preliminary and revised estimates. We use the revised but 
seasonally unadjusted (raw) estimates for this example. 
Since the CVs of the revised estimates are not available, 
the CVs of the preliminary estimates are used to approx­
imate the variances of the revised monthly estimates. The 
data for the period January 1985 to December 1988 are 
used in this example. Another difficulty was to find the 
autocorrelations for monthly retail trade estimates. Based 
on some monthly retaU trade data, Hidiroglou and Giroux 
(1986) provided the estimates of autocorrelations at lags 
1, 3, 6, 9 and 12 for three different kinds of stratum in 
several provinces of Canada. As an approximation to the 
autocorrelations of monthly retail trade estimates, the 
averages of their estimates of autocorrelations for the 
strata in the Province of Ontario and Standard Industrial 
Classification Code 60 (Foods, Beverages, and Drug 
industries) are used. The approximate (averaged) auto­
correlations, say p(A:), are given in Table 1. 

Table 1 
Approximate Autocorrelations p(k) for the Monthly 

Retail Trade Estimates 

Lag Â  

P(k) 

1 

0.970 

3 

0.940 

6 

0.918 

9 

0.914 

12 

0.962 
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The method of ordinary least squares and an algorithm 
of McLeod (1975) for the derivation of theoretical auto­
correlations for autoregressive moving-average time series 
was used to revise the observed autocorrelations. An 
ARMA (l,0)(l,0)i2 seasonal multiplicative model was 
fitted on the five observed autocorrelations by minimizing 
the sum of squared differences between the observed and 
theoretical autocorrelations. Then the estimated model 
parameters and the above mentioned algorithm of McLeod 
were used to calculate the autocorrelations for all other 
lags of interest. Given that the ARMA model is correct for 
theoretical autocorrelations, this approach provides a 
consistent estimate of the autocorrelation function. These 
final (revised) approximate autocorrelations for up to 
47 lags are given in Table 2 and were used to approximate 
the covariances for monthly retail trade estimates via 
multiplication with the standard deviations. 

Table 2 

Revised Approximate Autocorrelations p* (A:) for the Monthly 
Retail Trade Estimates for up to 47 Lags 

Lag Ar 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

P*(k) 

1.0000 

0.9758 

0.9555 

0.9391 

0.9266 

0.9177 

0.9126 

0.9113 

0.9136 

0.9196 

0.9293 

0.9429 

Lag A-

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

P'(k) 

0.9602 

0.9345 

0.9126 

0.8943 

0.8798 

0.8687 

0.8612 

0.8572 

0.8567 

0.8595 

0.8661 

0.8760 

Lag A: 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

P'(k) 

0.8896 

0.8647 

0.8433 

0.8253 

0.8107 

0.7994 

0.7913 

0.7864 

0.7843 

0.7862 

0.7909 

0.7989 

Lag k 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

P*(k) 

0.8100 

0.7869 

0.7669 

0.7501 

0.7363 

0.7254 

0.7176 

0.7126 

0.7106 

0.7114 

0.7151 

0.7217 

At the time this study was performed, the annual retail 
trade estimates were only available for years 1985 through 
1988. These estimates are available from Statistics Canada 
publication "Annual Retail Trade" (Catalogue No. 63-223 
Annual). The variances of annual retail trade estimates are 
not available from the literature and have been computed 
from the actual survey data. The covariances between 
monthly and annual estimates are zero because the samples 
of monthly and annual retail trade surveys were drawn 
independently from each other. The annual retail trade 
estimates are from dependent samples, thus their 
covariances are non-zero. But the estimates of covariances 
are not readily available via regular survey processing and 

a study would be required to obtain them. Consequently, 
for the purpose of this example, we assumed that the 
covariances between annual retail trade estimates are zero. 

An interesting question was raised by one of the ref­
erees. He asked what wiU happen when the variances and 
covariances of survey estimates are not known. This is a 
difficult problem and cannot be answered so easily. How­
ever the model presented assumes these variances and co-
variances are known. In general, the estimating equations 
used to find the maximum likelihood estimates need only 
the consistent estimates of variances and covariances. It 
is a common practice in benchmarking problems to 
estimate these variances and covariances from survey data 
since the theoretical values are never known (see, e.g., 
Hillmer and Trabelsi 1987). 

The computations required for this example are per­
formed by an algorithm written in the GAUSS program­
ming language for micro computers. The initial estimate 
of |S for the iterative process, obtained form (3.7), is given 
by |So = 0.9162. The initial estimate of the parameter 
vector 0 is obtained from (3.4), after replacing 0 by 00-
Both the Fisher-Newton-Raphson and successive iteration 
methods, as discussed in Section 3, are used to find the 
ML estimates of the model parameters. The final ML 
estimate of 0 is found to be very close to the initial estimate 
and is given by |8 = 0.9016 with CV = 0.0065. It is 
interesting to note that the Fisher-Newton-Raphson 
method converged very quickly to a final solution for this 
example. In fact it converged in only 6 iterations (about 
1 minute) for a ten digit precision whereas the successive 
calculations method converged, with the same precision, 
in over 500 iterations (over 45 minutes), on a 386DX-25Mhz 
personal computer. However, as they should, both methods 
converged to the same final solution. The covariance 
matrix of the estimated vector (9 ' : / 3 ) ' is obtained by 
inverting the Fisher information matrix fi, given by (4.1), 
after replacing parameters by their ML estimates. The 
original series of the monthly retail trade estimates and the 
benchmarked series of the ML estimates along with their 
CVs are given in Table 3. The fitted sub-annual series 
along with their CVs are also given in this table (last two 
columns). The original and benchmarked series are also 
plotted in Figure 1. The results show that the original 
behaviour of the series is not disturbed by benchmarking 
and a very large reduction in the CVs of sub-annual 
estimates is achieved. The original series of the annual 
retail trade estimates and fitted annual values along with 
their CVs are given in Table 4. The variances of the fitted 
values in Tables 3 and 4 are obtained by using expressions 
(4.4) and (4.5), respectively, after replacing parameters by 
their ML estimates. The results of fitted values also show 
a large reduction in the CVs of the original estimates. That 
is, the reUability of the monthly and annual series are 
increased by benchmarking. 



170 Mian and Laniel: Maximum Likelihood Estimation of a Benchmarking Model 

Table 3 
Monthly RetaU Trade Estimates, ML Estimates of the 9,'s and Fitted Values 

(aU in millions of dollars) Along with their CVs 

Year 

1985 

1986 

1987 

1988 

Month 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

y,* 

8,689.668 
8,390.380 
10,107.485 
10,541.145 
11,763.659 
11,067.487 
10,810.755 

11,289.656 
10,336.540 
11,213.751 

11,935.495 
13,300.288 

9,753.373 

9,249.279 

10,609.952 
11,637.936 
12,695.108 
11,826.254 
11,940.908 
11,866.547 
11,540.397 

12,208.845 
12,201.498 
14,479.170 

10,271.723 
9,951.105 
11,492.162 
12,867.443 

13,508.434 
13,608.274 

13,278.474 

12,728.196 
12,616.239 
13,760.829 
13,380.142 
16,269.757 

11,134.013 
10,959.374 

13,177.788 
13,666.311 
14,267.530 
14,432.944 
13,960.825 
13,691.315 
13,773.109 
13,900.743 

14,453.461 
17,772.990 

C V (;;,)* 

0.008 
0.008 
0.006 

0.008 
0.007 

0.008 
0.008 

0.009 
0.009 
0.010 

0.010 
0.008 

0.009 

0.009 

0.008 
0.008 
0.008 
0.008 
0.010 
0.010 

0.009 
0.010 
0.010 
0.009 

0.012 
0.010 
0.008 
0.009 
0.012 

0.011 

0.023 
0.008 
0.009 

0.008 
0.008 
0.007 

0.010 
0.010 
0.008 
0.009 
0.006 
0.009 
0.009 
0.008 
0.008 
0.009 

0.009 
0.009 

e. 

9,686.630 
9,350.078 
11,248.048 

11,741.785 

13,094.151 
12,321.326 
12,029.467 

12,554.808 
11,484.216 
12,447.696 
13,234.412 
14,734.891 

10,794.009 
10,227.777 

11,729.293 
12,860.626 
14,024.139 
13,059.556 
13,164.500 

13,070.205 
12,712.283 
13,430.932 

13,418.219 
15,933.951 

11,276.676 
10,945.319 
12,663.849 
14,172.605 
14,850.145 

14,973.985 

14,483.340 

14,028.998 
13,888.982 

15,156.409 
14,733.240 

17,928.148 

12,234.529 
12,042.761 
14,508.565 
15,035.737 
15,742.039 
15,884.130 
15,363.957 

15,073.691 
15,159.075 

15,279.950 
15,884.279 
19,529.791 

CV(e,) 

0.00210 
0.00210 
0.00233 

0.00200 
0.00198 
0.00189 
0.00184 

0.00206 
0.00205 
0.00256 

0.00258 
0.00188 

0.00221 
0.00224 

0.00207 
0.00206 
0.00205 
0.00202 
0.00233 
0.00232 
0.00202 

0.00235 
0.00240 
0.00215 

0.00357 
0.00261 
0.00230 
0.00235 

0.00343 
0.00287 

0.01066 
0.00227 
0.00233 

0.00227 
0.00227 

0.00241 

0.00274 
0.00276 
0.00233 
0.00243 
0.00379 
0.00240 
0.00240 
0.00233 
0.00235 

0.00255 
0.00260 
0.00267 

yt 

8,733.384 

8,429.951 
10,141.146 
10,586.294 

11,805.576 
11,108.803 
10,845.666 

11,319.309 
10,354.073 
11,222.737 

11,932.034 
13,284.853 

9,731.787 

9,221.277 

10,575.031 
11,595.032 
12,644.046 

11,774.385 
11,869.002 
11,783.987 
11,461.287 

12,109.215 
12,097.753 
14,365.916 

10,166.956 
9,868.208 
11,417.620 
12,777.901 
13,388.765 
13,500.418 

13,058.057 

12,648.426 
12,522.188 
13,664.890 
13,283.365 
16,163.867 

11,030.548 
10,857.651 
13,080.800 
13,556.094 
14,192.890 
14,320.997 
13,852.014 
13,590.312 
13,667.294 

13,776.282 
14,321.132 
17,607.895 

CV(3),) 

0.00667 

0.00665 
0.00496 
0.00656 

0.00570 
0.00647 
0.00643 

0.00726 
0.00728 
0.00809 
0.00808 
0.00643 

0.00716 
0.00709 

0.00622 
0.00614 
0.00605 

0.00598 
0.00740 
0.00743 

0.00670 
0.00747 
0.00747 
0.00670 

0.00891 
0.00737 
0.00584 
0.00652 

0.00862 
0.00786 

0.00165 
0.00577 

0.00659 
0.00592 
0.00597 

0.00525 

0.00753 
0.00754 
0.00602 
0.00676 
0.00448 
0.00673 
0.00673 
0.00606 
0.00613 
0.00696 

0.00700 
0.00702 

•Source: Statistics Canada publication "Retail Trade" (Catalogue No. 63-005 Monthly). 
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Figure L Original and Benchmarked Series of Monthly Retail Trade Estimates for All Stores in Canada 

Table 4 
Annual Retail Trade Estimates and Annual Fitted Values 

(in millions of dollars) Along with their CVs 

Year zf cy(zT) ZT Cy(zT) 

1985 143,965.400 

1986 154,377.100 

1987 169,944.600 

1988 181,594.000 

0.00033 143,927.507 0.00032 
0.00031 154,425.491 0.00030 
0.00193 169,101.697 0.00128 
0.00137 181,738.512 0.00127 

* Source: Statistics Canada publication "Annual Retail Trade" 
(Catalogue No. 63-223 Annual). 

7. CONCLUSIONS 

The non-linear model discussed here seems to be very 
appropriate for benchmarking an economic time series 
from large sample surveys. The proposed iterative proce­
dures to find the maximum likelihood estimates of the 
model parameters are very simple to implement in practice. 
However, the convergence of the successive calculation 
method is very slow in comparison to the Fisher-Newton-
Raphson method. The closed form expressions for the 
covariances of the ML estimators are provided. These 
estimates and their covariances may be used to make 
inferences regarding model parameters. Furthermore, 
expressions for the fitted sub-annual and annual values 
along with their asymptotic covariances are also provided. 
The methodology presented in this article seems to provide 
a good fit to the Canadian retail trade data. However, the 
goodness of fit tests for this and other benchmarking 
models need to be developed. 
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Optimum Two-Stage Sample Design for Ratio Estimators: 
Application to Quality Control -

1990 French Census 
JEAN-CLAUDE DEVILLE' 

ABSTRACT 

This study is based on the use of superpopulation models to anticipate, before data collection, the variance of a 
measure by ratio sampling. The method, based on models that are both simple and fairly realistic, produces expres­
sions of varying complexity and then optimizes them, in some cases rigorously, in others approximately. The solution 
to the final problem discussed points up a rarely considered factor in sample design optimization: the cost related 
to collecting individual information. 

KEY WORDS: Census quality control; Superpopulation model; Two-stage sample design optimization; Multiple 
objective survey. 

1. INTRODUCTION 

The survey method used for quality control of French 
census data pointed up a number of new and interesting 
problems, three of which are dealt with in this paper. After 
discussing them in general terms, we describe their specific 
application to the census. 

In all cases, the problem is one of optimizing a two-
stage survey in which the primary units are census collection 
districts. Units are selected using an index k that varies in 
a population U of districts and is, in concrete terms, a 
processing unit of the census forms collected. 

The first problem is that of estimating the frequency 
of a characteristic in the population of forms (the fact of 
containing an error). Keeping in mind the accuracy defined 
for this estimate, an attempt is made to minimize survey 
cost with a cost function in the form 

mCg + nCi, (1.1) 

where m is the number of primary units (districts) sampled, 
Co the cost of processing one PU, n the number of final 
units (forms) sampled and Ci the cost of processing one 
final unit. The problem is fairly common when a mean is 
to be estimated (see for example W. Cochran (1977)). Our 
solution is more complete as it takes into account the great 
variability in primary unit size. 

The second, more unique, problem is also more signifi­
cant. The final population {i.e. the forms) is made up of 
G separate groups (g = 1 to G). We are looking for an 
estimate of the frequency of occurrence of a characteristic 
in each group, with an accuracy defined for each one. The 
constraint resides in the fact that, because the primary 
units are common to all groups, sampling within one PU 
affects all groups. 

The objective is to minimize survey cost, which is 
expressed as 

c 
CT= mCo + Y "sCg. (1-2) 

g = i 

where ng is the total number of final units in group g and 
Cg the cost of processing one final unit in group g. In 
practice the groups are made up of the different types of 
census forms. 

The third problem is related to coding control. We do 
have an a priori measure of the difficulty of coding each 
form. Formally, therefore, we have, at the level of each 
individual / in the population, a quantitative variable A',, 
such that the probabiUty (within a meaning to be defined) 
of the individual having the characteristic to be measured 
is approximately proportional to A',. We are seeking to 
use this information to minimize the cost of control 
(measurement of the frequency of the "coding error" 
characteristic) subject to a defined survey accuracy. 

In each case, plausible and simple superpopulation 
models allow us to evaluate the anticipated variance of the 
survey. In a manner of speaking, this is an almost standard 
illustration of model assisted survey sampling as described 
in Sarndal, Swensson, Wretman (1992). 

2. OPTIMUM ESTIMATE OF THE PROPORTION 
OF RECORDS CONTAINING ERRORS 

TWO-STAGE SAMPLE DESIGN 

Each primary unit k (district) has a known number Â .̂ 
of individuals (forms). Of this number, D^ display the 
characteristic of interest {i.e. contain an error). The aim 
is to estimate: 

' Jean-Claude Deville, Chef de la Division des Methodes Statistiques et Sondages, Institut National de la Statistique et des Etudes Economiques, 
18, boul. Adolphe Pinard, 75675 Paris, CEDEX 14. 
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^=E^^h: N. 

The survey is done by drawing a sample 5 of primary 
units (PU), with TT̂ , the probability of inclusion in the 
first order and ir̂ f in the second order, to be determined. 
Subsequently, if primary unit k is drawn in s, n^ individuals 
drawn by simple random sampling without replacement 
are checked; rf^t denotes the number of forms containing 
errors that will be found. 

Estimator P^ of f̂  = Dy^/^/t is expressed P̂ ^ = rf^//iyt 
and Di( = Ni^Pk gives an unbiased estimate of £)^. The 
estimator of P is expressed 

P = 

L 
s 

i; 
s 

RL 
i > 

^ 
TAT 

(2.1) 

This is the ratio of the unbiased estimators of D and N, 
the total number of forms. Although this number is 
known, estimator (4.1) is obviously more accurate than 
l/Nl,Dk/ri,. 

We have 

Var(P) = £ V a r ( P | s) -^ Var E{P\ s). (2.2) 

Now 

Var (P | s) = N-^ y^ Nfi P,{1 - P,)N, 

s '"k 

where 

N,- 1 

N, 

\nk NJ 

N= Y^ 
s Tt 

Hence 

r.,, .rt , . ., 2\^ ^kPk(i-Pk)Nk/l l \ 
EVar{P\ s) - N'^ Li -^ — ^^— ( ). 

U T^k ^Ar - 1 \ « / t Ni,J 

(2.3) 

» 

£•(^1 s) = 

Y^ 
s '"'k 

Y^ 
s T^k 

The variance of this value is obtained by linearization 
following introduction of variable Z;^ = D/^ — PN/^ = 

mPk - p)-

We obtain 

V a r £ ' ( P | s) = N'^Vari 
\ s ^k/ 

Taking into account that Y,u ^k = 0-

VarE{P\ s ) = N - ' ( Y ^ +1:1: ^ ^ n ) -

\ k 'I* k^l lytXf / 
(2.4) 

The sum of (2.3) and (2.4) gives us the variance of 
estimator (2.1). 

2.1 Introduction of a Model 

Not only is the variance of P difficult to manipulate, 
it contains unknown parameters. The problem may be 
circumvented by formulating the hypotheses required to 
produce a superpopulation model. It is assumed below 
that the parameters of this model may be estimated from 
the results of a preliminary test covering a very small 
portion of the population. In the model, expectation is 
denoted by E^ (variance by Var^) and all the random 
variables are assumed independent of the sampling 
process. 

The model has the following specifications: 

(a) D/c has a binomial distribution (N^., /7^). In the model, 
P/c is thus an estimator of /J^ . 

(b) pyt is itself random; we assume/?^ to be independent 
and have the same distribution, with 

E^Pk = P, 

Var^Pk = a^ 

for any k, in particular whatever the value of N .̂. 

In the model, after conditioning With pi^, we obviously 
have 

Ei(D,,\pi,) ^ N,,pi„ 

Var^{Di,\ PI,) = N„pi,{l - p,,). 

The anticipated variance of P is E^ VarP, to which we 
now turn our attention. For its evaluation, we denote 

(a) E^{P, - P)2 = E^{E^{P, -p, + p , - P)2 I p,) 

P ( l - P ) 
NI, 

+ a\ 
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(b) E^ P,(\ - Pk) = E^{E^{{Pk - Pf) I Pk)) 

Nk- 1 
= E^p,,{l - Pk)-

N, 

7 ^k - ^ 

= (P ( l - P ) - a^) \ .. 
N, 

2.2 Search for an Optimum Sample Design 

The maximum variance of P is set by the criteria 
selected for quality control. As the survey is repeated for 
each processing unit, it is only natural to seek to minimize 
the expected survey cost given in (2.1.1), /.e. 

EY (Co + «*C,) = Y T^k(Co + n„Ci). (2.2.1) 

(c) £•{ Zjf Zf = 0, because of the independence of Z^ and 
Z(, clearing one extremely cumbersome term and 7r<.f. 

When we combine all the pieces of (2.3) and (2.4), a 
minor algebraic miracle occurs, producing the expression 

E^Var P = 

where 

= N-

T' = 

(by nature a 

^Y 
u 

P ( l 

T^k V 

- P) 

rik) 

- a ^ 

positive quantity) 

(2.1.1) 

Comment: 

The algebraic miracle is easily explained if we are not 
seeking the variance in the sole context of sample design. 
It is in fact the result of a model slightly more general than 
the one suggested. 

Suppose we wish to estimate the total NY = Y,uYi of a 
variable Y and suppose that, to this end, a two-stage 
sample is drawn: in the first stage, primary units k are 
drawn with x̂^ probability and, in the second, n^ final 
units are drawn by simple random sampling. 

We are assuming a model in which: 

Yi= Y + ai,+ €,-, 

with Q;̂ . a variable linked to the PU of index k. ai, is 
independent, subject to the same zero expectation and has 
a variance a^. €, is also independent, centred and has 
a variance T^. With irf = -Ki,ni,/Ni, (N^. = size of PU 
number k), the Horvitz-Thompson estimator of the total 
is Y = Y. Yi/ir*, the sum being extended to the sample. 
In the model, and conditionally in the sample, we have 

Var^(y|5) = D ^ f a ' + — ) • 

The problem of optimization is expressed as: 

To minimize 2^ T^tCQ + n^Ci) 

with the constraints 

U T^k \ "k/ 

and for any k, n,, < N^. 

Let us now apply a Lagrange multipUer X to the first 
constraint - which will obviously be saturated - and 
multipliers pk to the others. We obtain the solutions 

Nf 
Co + n,Ci = \-f 

T^k e ̂  3 (2.2.2) 

• — + f^k 
T^k "k 

(2.2.3) 

and, for any k: 

with 

Pk = 0 if n^ < Nj, and Pk > 0 if "yt = ^k-

For the use of Lagrange multipliers, see for example 
Luenberger (1973). 

For all primary units in which Pk = 0 (the largest), we 
obtain 

—:(t)"-- (2.2.4) 

Each primary unit receives the same allocation, which 
corresponds to the consistent accuracy principle. Going 
back to equation (2.2.3), we observe that, again for these 
primary units, the probability of inclusion TT̂^ must be 
proportional to size Ni,, i.e. 

For this expression, expectation is again expressed in 
the form of equation (2.1.1). 

T T A : x'^'cr'^'-^N,. 
n* 

(2.2.5) 
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This is the standard proof of a self-weighting one-stage 
survey in which the first stage is drawn with probabilities 
proportional to a measure of size. (See for example 
Cochran 1977). 

Since «^ is independent of Â ^̂ , it is impossible to have 
«* = N,, or PI, > 0 unless Nj, < n*. Equation (2.2.2) 
gives us the probabiUty of inclusion to within one factor: 

•^k 
\Co + CINJ \N,Ci + Co J 

(2.2.6) 

Relations (2.2.5), valid if Â ^ > n*, and (2.2.6) vaUd 
if A'̂ . < n*, establish that TT̂  is proportional to a known 
variable 7). = f(Ni,), for which the graph is given in 
Figure 1. 

To fuUy define the survey, the number m of primary 
units to be drawn must still be set. T = Y.u T^k is also a 
known quantity. 

If we restrict ourselves to fixed size sampling, we have 
Tti, - m Ti,/T. m may be determined by importing this 
value into the variance constraint, i.e. 

N^Km = TY—(a'-^ T' Ink). 
U ^ k 

If, as a first approximation, assuming Tj, = Nj,, we 
obtain the simplified form: 

mVg ^ a^ + T^/n*. 

We now have a full solution to the problem. 

3. OPTIMUM ESTIMATE FOR A TWO-STAGE 
SURVEY IN WHICH THE PRIMARY 

UNITS ARE STRATIFIED 

The harsh facts of the situation complicate the problem 
somewhat: because a number of types of forms must be 
controlled separately, a fairly general problem, described 
below, arises. 

For each primary unit (a district in a processing unit) 
we know the population Ni,g of secondary units belong­
ing to G groups. The "population" of PU number k is 
^k+ = Eg Ni,g; that of group g is A +̂g = Y,,, Ni,g. As 
described above, we are looking for the probabiUty of 
inclusion TTJ, with which to sample PU number k, the 
number of PUs to be drawn and the allocation ni,g of the 
sample among the various groups in PU k, knowing that 
these ni,g units are drawn by simple random sampling 
from among the Ni,g units available. 

3.1 Search for an Optimum Model Assisted Design 

In each group, we postulate a model identical to the one 
formulated in section (2.1) (or the more general form 
described in the comment on that section). 

For g = 1 to G, we have therefore: 

V, = E, War(Pg) = 7V;^ Y ^{oj + rj/n^g). 
U T^k 

(3.1.1) 

The cost function is expressed in the general forin (1.2). 
We are seeking to minimize the expected survey cost 

CT=11 T^kiCo + Y nkgCA, (3.1.2) 

under constraints Vg < Vg, where quantities Vg are exter­
nally fixed {e.g. quality of data to be obtained, tightness 
of control. 

In this form, the problem can prove fairly complex. We 
write a general form of a Lagrange multiplier: 

L = XCT + X,K,, 

The problem sets X = I, Kg being multipliers to be 
determined. In a simple variant, values are set for X :̂ 
we wish to minimize a given linear combination of vari­
ances under a cost constraint. In all the hypotheses, by 
differentiation with respect to n^g (considered a real 
variable), we obtain 

Figure 1. Graph of TTJ, as a function of Np. XirfCg = KN:;.jNl TJ/nlg. (3.1.3) 
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TTk being for the moment to be defined to within one 
factor, we may write 

to budget constraint Cj- < Cf, we find that 

•^k^k 

By summing over k, we deduce that 

\CgJ 'N,g-

En+g = Y TTj, nifg 

- ( ! ) • • 

(3.1.5) 

The total size of the sample in each group is thus directly 
linked to muUiplier Xg. 

Differentiation of the Lagrange multiplier with respect 
to Wk gives us new relations which, when combined with 
(3.1.4), are miraculously simplified to give 

Co = Y Cgf^y nig, (3.1.6) 

or, if we introduce the numbers 

we write 

(3.1.7) 

As may be seen in equation (2.2.4), n* is the number 
of secondary units to be drawn per PU if there is a single 
group; niig is always less than n*. 

From (2.1.4), (3.1.5) and (3.1.7) we obtain the relations: 

1̂ kr'<^y- (3.1.8) 

Thus, TTyt is proportional to 7\ such that Tf = Sg^g"^? 
Nlg/N+g, which appears to be a satisfactory measure of 
size. The relations (3.1.4) show that, if k is fixed, nkg is 
proportional to « | X/'CT^ Ni,g/N+g; taking into account 
(3.1.7), we obtain 

Â , 
"kg - "g Xg Og— Ik . 

IV+g 
(3.1.9) 

3.2 Explicit Solutions to Two Specific Cases 

(a) If Xg were known, i.e. if Y,g \ ^ g were minimized 
under a cost constraint, then (3.1.2) and (3.1.9) could 
be used to calculate 7^. By transfering 

T* = mT,,/T (T = Y 
\ u 

Tk,m number of primaryX 
units to be drawn J 

m cf/(c. + i:cg«g-^) 

If a single Xg is not equal to zero, it is fairly easy to 
check that the result is the one given at the end of section 
(2.2). 

(b) The initial problem (min Cj- under Vg < Vg) is re­
solved fairly easily in two specific cases. 

b 1 - Maximum dispersion of the groups. For any PU 
k, we have N^g - Ni,+ for a given k. The prob­
lem is broken down into G separate problems, 
each being of the type examined in section 2. 

b2 - Minimum dispersion. The distribution is the 
same in all the PUs; in other words, for any k and 
any g, we have 

Nkg = N,^ ^ with (N=Y N+g\ , 

Tj, is then proportional to Af^+, and n̂ tg is quantity n* Ug 
independent of k. 

With x<. = mNi,+/N, we obtain by writing Vg = Vgi 

^2 , ^2l„*, 

I.e. 

mV„ = al -\- Tljn*gUg 

J2- ...2 
a„ _ 1 T„ m - —^ -I- u„ 
'^g "IVg 

Thus we obtain G-1 Unear relations between the Wg"', 
in principle permitting full resolution of the problem, 
knowing that the sum of u\ is equal to 1. 

3.3 A Numerical Algorithm for Determining the 
Optimum Solution to the General Case 

An iterative numerical resolution of the problem may 
be achieved as follows. 

Step 1: An approximate sample allocation is set in each 
group («+g units in group g). The process may be 
facilitated by using the approximate solution 
based on the hypotheses in point (a) or point (b). 

Step 2: The value of Xg is determined from relations 
(3.1.5): 

\ = Cgn\g\r\. 
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Step 3: TT̂  is determined from relations (3.1.8). Specifi­
cally, the sum of x̂ . sets the number of PUs to be 
drawn. 

Step 4: n^g is determined from relations (3.1.4). Subse­
quent iteration is possible by returning to step 2, 
in the expectation that the algorithm will converge 
toward the optimization solution. 

Comment: The probability of drawing a type g unit is 

T^k^kg Nl,g iW Tg/N+g. 

Because it does not depend on primary unit k, it is the same 
for each unit in a given group g (equal probability survey). 
Size At+g, or at least its mathematical expectation, may be 
deduced from the sample in group g. In practice, sample 
size is sometimes set arbitrarily: this entails determining 
Xg or, implicitly, variances Vg. This is another fairly 
common result. 

4. OPTIMUM ESTIMATE ASSISTED BY A 
MEASURE OF THE DIFFICULTY 

OF CODING A RECORD 

The task is to estimate the proportion of forms con­
taining a coding error in universe U of all forms coded in 
a given week by one regional branch. The problem is 
identified by the following characteristic: because all IFs 
are preceded, it is possible, using information drawn from 
the trial census, to attribute to each one a positive 
numerical variable A', representing its "difficulty". This 
variable is calibrated in such a way that Y, (equal to 1 if 
there is an error and 0 if there is not) has an "expectation" 
proportional to X,. 

The same cost control considerations suggest a two-
stage survey. 

- In the first stage of the survey, we draw a sample Si of 
districts k (primary units), with TTI, unequal probabilities 
to be determined, x f̂ denotes the probability of inclu­
sion, double in value in this instance. 

- In the second stage of the survey, a sample Sj, of final 
units (forms) in primary unit sample k is drawn, TTJ^I, 

denotes the probability of inclusion of the unit in primary 
unit k, TTij^i, the probability of inclusion of the pair (i,j) 
in the primary unit; and s = C/jtĵ j Sj,, the sample of 
final units. 

^k — Hiik ̂ i denotes the total of Xj in primary unit 
k, X = YjkiU ^k = ILu ̂ i ^^^ similar notations are 
used for aU the variables. {Ug denotes the population of 
primary units - districts, Uthe population of final units -
forms). 

The aim is to estimate a quantity in the form R — 
HuYi/Yu^i where If^is a known variable for each form. 
This may be Ĥ  = \ or Wi = A',, whichever measure of 
the error rate seems the more satisfactory. 

4.1 Selection of Estimator and Variance 

(a) For primary unit k, the total Y^ of the Yi for i^k is 
commonly estimated by the ratio 

Yk = XJY Yi/irni\j{ Y Xi/^ni\ = X.a, 

where dk estimates Oj, = Yi,/Xi, with a slight biais. 

(b) To estimate ratio Y/X, we use 

% \^ ^ Xk 

a — 

Y^ 
si "A: 

si Tfr 

Y Ck 
si T'k 

51 T t 

(c) If we wish to estimate R, we note that 

R 
Y X 

X W' 

where A'and IF are known totals {e.g. total difficulty, total 
number of forms). As variable A', was selected for its 
good correlation with Yi, ana priori valuable estimator 
of P i s 

R 
W 

and the only real question concerns the estimate of 

fl = HkOk^k/X-

(d) we have 

Var(ff) = Var£ ' ( f l | 5,) -I- £'Var(fl| s,). 

For the first term, taking into account the fact that a^ 
is an approximate unbiased estimator of a^, we may write 

Var£ ' ( f l | 5|) = —, Var 
/ y^ (a/, - a)Xk\ 

\ SI T'k / 

-m (dk a)'xf 

4 

+ L E (ak - a) (flf - a) ^*^^^*^\ . (4.1.1) 
T'k Tf / k^l 
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For the second term, conditional on Si, we have 

Var 

Ok — 
T'k 

Xk 

T'k 

\ 5, T ^ / 5, 
Var ( 4 ) ^ * . 

Tk 

For this quantity, the expectation is approximately 

X-^ D E V a r ( f l , | 5 , ) - , 
* T^k 

(4.1.2) 

with 

Var(a^ I .Si) = Var - ^ ' - ^ - - . V a r E ' ^ " ' " - ^ ' 
Y^ Xj^ Xj, ^̂  x/n̂  
SI, TTHk 

Comment: 

Variable Xj, which has no actual concrete meaning, is 
defined to within one factor of scale. Conversely aXi and 
aXi, being probabilities, have an invariant physical inter­
pretation. In what foUows, one must always keep in mind 
that the results are invariant if Xj is multiplied by an 
arbitrary factor, on condition that a and a are divided by 
the same factor. Var (a) in particular has no concrete 
meaning; Var(aA') is an exception. 

As before, we examine anticipated variance, expecta­
tion under the model of the sum of (4.1.1) and (4.1.2). 

For the first term, the expectation of the cross products 
is of course zero. The expectation under the model for this 
term is thus: 

X-2.,2 a^Y^-
k "•*• 

For the second term, we find (in light of the definitions 
given in 4.2.a and 4.2.b) 

1(Y <̂ ' - ""^'^ 
Xk \ iik T/l/t 

+ 1:1; 
kpil 

(Yi - a.X, 'i)(Yj - ai,Xj)-Kiji^i\ 

T'i\k Trj\k ) 

k TTk Xj, i 7r,|jt 

1 y^ aXj - (a^ + a^)Xf 

*• Ttk T'i\k 

Therefore, overall 

As in the preceding sections, we arrive at formulae that 
are complex and, in the final analysis, unusable. A model 
will simplify things somewhat. 

4.2 Introduction of a Model 

The model has the same structure as those used 
previously: 

(a) Uj, is an independent random variable with the same 
expectation and the same variance: 

E^ai, = a Var^ Uj, - a^. 

The variance takes into account operator influence, 
which we make no attempt to isolate, and also such factors 
as dayofthe week,timeof day,day of the month e / c . . . 

(b) Conditional on Ui,, Y, in primary unit k is an indepen­
dent Bernoulli variable with E^{Yj\ k) = ai,Xi 

Var^ {Yi\k) = a„Xi-afXf. 

E^\ar{aX) = a^ Y — 

kWo T'k 

+ XJ — U "^' ~ ^"^ "̂  "̂ ^̂^ 
kiUo T'k iik T, | t 

No algebraic miracle occurs here. For simplification, 
we assume that (a^ -I- a^)Xf is negligible in the face of 
aXi. Numerically, we may expect aXi = 2 to 5 x 10~^ 
and (a^ -f a^)Xf = 3 to 30 x 10 "": whence the approx­
imation 

E, Yar{aX) ^ a' Y ^ + a Y - L ^ -
kiUo T'k kiUo T'k iik Ti\k 

4.3 Sample Design Optimization 

We use the following cost function: 

C= Y (Co + Cin,). 
^1 
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Here, ni, = Yak T'i\k is the size of the sample drawn in 
district k (supposedly set at fixed size s,). Its expectation 
is 

CT=Y T^k{Co + Cink). 
kiUo 

Let 

T'i\k = «A:P,(with Y Pi = Ij and Qi, = in. 

The problem of optimization is now 

Min: Co Y TTk -f- Ci Y Qk 

nk-

Xl 
under: a^Y — + aY — Y - ^'^o-

k Tk k Qk iik Pi 

In this form, we are pleased to observe that the terms 
in Y,iXi/Pi may be minimized independently of the other 
terms. In other words, «^ has no impact on this term. 
Leaving optimization of the second stage of the survey 
until later, Sk^ denotes the optimized value of YiXi/Pi. 

With a Lagrange multiplier X, by differentiation with 
respect to TTI, and Qi,, we obtain 

Let X„, be the sum of A', individuals / in household m. 
The problem is to minimize ^A'^/P^ under Y.nmPm = 1. 
with n^ the size of household m. We easily reach solution 

Pn, = Ti n„ •jXm, 

with X,„ = X,„/n„,, mean difficulty of forms IF in 
household m. From this we determine St = I,n„JX^. 

This solution enables us to determine the number n^ of 
final units to be drawn using (4.3.2). However, the number 
of clusters {households) has not been determined: this snag 
was predictable. In fact, the cost function does not imply 
this constraint. To obtain the number mi, of clusters to be 
drawn, we arrange matters so that the expectation of the 
number of final units is equal to «<.. Thus, 

mi. yjj "n D j^. 

whence 

mi, ^ ni,-

Y "" JX„ 

Aff —r 

T'k 
I.e. 

St^ 
*C| — \a ^, whence 

Qi 

TTi, proportional to Xi, 

"k \cj a Xl, 

(4.3.1) 

(4.3.2) 

Taking into account (4.3.2), we also have 

mi, 
CoV'a'^' E ^ -m 

and the probabUity a given household being drawn is thus 

Specifically, the primary units are drawn with pro­
babilities proportional to total difficulty, a standard 
resolution (see for example Sarndal, Swensson, Wretman, 
1992, Chapter 12). 

We now move on to sub-district sampling (second stage 
of survey). 

Beginning with a simple, straightforward case, forms 
are drawn one by one. Minimization produces P, propor­
tional to ^f^. A simple calculation shows that S | = 
Hiik Jx^• We can now calculate ni, using (4.3.2), and our 
problem is fully resolved. 

In practice, things are more complicated. For fairly 
obvious reasons, only forms for entire households are 
selected. In other words, the second stage of the survey is 
a cluster survey. The values of P, are the same {i.e. P„) 
for all the members of a given cluster (household) m. 

mkJX„. 

JX„ 

Following a number of algebraic manipulations, the 
value of the optimum variance is found to be: 

£•. Var (aA')opT = 
(aX)-

m 
( a a Vi o * 

X m-
This form respects the homogeneous character of the 

different factors. In particular, we have a~'^^S*/X — 
a ''̂ ' S* /aX: the denominator may be interpreted as total 
number of errors in a lot; the numerator is homogeneous 
for a given size. 
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We now have a full solution to the problem. 

Comment 1: 

In both cases discussed, S^ is multiplied by C'''' if A', is 
multiplied by C. The formula that gives /?̂  is thus invariant 
on the scale of measurement. 

Comment 2: 
The solution that entails drawing clusters favours small 
clusters made up of final units with a high index of difficulty. 

Comment 3: 
As in preceding sections, we determine the probability of 
single selection, but not the probability of dual selection. 
Therefore the algorithm for the draw, which sets the latter, 
has no influence. This is quite common, keeping in mind 
that the complementary data used to optimize the draw 
determines TTI, and x,|yt but have no influence on dual 
probabiUties. 

5. APPLICATIONS TO CONTROL BY SURVEY 
OF THE QUALITY OF THE 1990 

FRENCH CENSUS 

5.1 Problem of Data Capture Control 

The sampling techniques described in sections 2 and 3 
were designed to control data capture for the 1990 Census. 
A brief description of the operation would enhance 
understanding of the nature of the statistical problems 
involved. 

The basic collection unit is the district, which corre­
sponds, in a city, to a block of houses and, in the country, 
to a village or group of hamlets. It covers a population 
that ranges from zero inhabitants to approximately 2,000 
(the mean values are 150 dwellings and approximately 
350 inhabitants). 

When collection is completed and the results are 
audited, the various census forms (specifically individual 
forms (IF) and dwelUng forms (DF)) are meticulously 
counted for each district. The summary data for a district 
are computerized; the forms themselves, collated into 
district files, are forwarded to data capture. 

Groups of districts comprising approximately 100,000 
dwellings are constructed. The processing units (PU) are 
processed for INSEE by contractors. INSEE, the "client" 
in terms of control theory, monitors the quality of each 
contractor's work by sampling a specific number of forms 
in each PU. 

The aim of the survey described in paragraph 2 is to 
estimate, to an accuracy (standard deviation) of one point, 
the proportion of forms containing an error in each PU. 
The maximum proportion of forms containing an error 
cannot exceed 4%. A trial census covering approximately 
400 districts allows for an estimate of the values of the two 
model parameters. We find: 

ff2 = p2 ^ 14.10-" 

T^ == p == 4 . 1 0 - ^ 

Cost function (1.1) is assessed in terms of working 
time. Based on on-site control measures, 5 minutes is the 
estimate of the time required to process one district folder 
(from the time it is taken from the shelf to the time it is 
returned there) and 30 seconds the estimate of the time 
required to process one IF. With the numerical data, 
design optimization based on the hypotheses in section 1 
allows for control of 40 districts per processing lot and 
16 forms per district. 

After discussing the solution with the team responsible 
for the census, it emerged that two types of documents 
(individual forms (IF) and dwelling forms (DF)) were to 
be controlled. The first approximation had taken no 
account of the latter, which are less likely to contain errors 
and take only about half as long to code as IFs. However, 
some districts {e.g. a commune with a thriving tourist 
industry) contain a large majority of secondary dweUings, 
and so produce many DFs but very few IFs. Because the 
situation required in-depth study, the theory given in 
section 3 was developed. 

In the case of the census, the number of groups G is 
equal to 2 (g = 1 for the IFs and ^ = 2 for the DFs). 
The numerical data for the two groups are: 

. p , = 0,04 a, = P , rf = P, (1 - P,) 

• P2 = 0,01 02 

- a? = P, 

7| = P2 - Pi, 

V2 = (0,0150)1 

- 2Pf, 

Vi = (0,0075)2 

For the cost function, we selected CQ = 5 minutes, 
Ci — 0.5 minute and C2 = 0.25 minute. Optimization 
of the problem according to the hypotheses in section 3.2.b 
entailed examining 73 districts per processing unit. In 
practical terms, it meant processing 15 individual forms 
(and related DFs) for each district. For the districts that 
produce fewer than 15 IFs, all IFs were processed. For 
districts with zero IFs, 4 DFs were processed (if this number 
was less than the number of DFs in the district). 

Comment: 

The method described in part 2 seems to have a fairly broad 
field of application. One example: it was used to sample 
the 1992 French survey on migration of foreign nationals. 
For population centres with under 20,000 inhabitants, the 
sample was drawn in two stages. The first stage of the 
survey covered the 90 departments in which this type of 
population centre occurs. The foreign population (based 
on the census) was divided into 8 nationality groups, for 
which equally accurate indicators had to be found. 
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5.2 Problems Related to Coding 

The second step in data preparation is known as 
operation COLIBRI (Codification en Eigne des Bulletins 
du Recensement des Individus). The operators in the 
regional branches of INSEE receive forms classified by 
district and code them for the 25% survey. 

In practice, each operator works at a monitor that 
displays the identifier of the next dwelling to be included 
in the 25% sample, for which all IFs must be coded. 

Coding quaUty is also controlled by survey. The control 
unit is all the work done in one week in a regional branch. 
The entire operation takes a little over one year in the 
22 regional branches, and entails more than 1,000 surveys. 
The household is the unit to be controlled {i.e. all the 
IFs in a household drawn for inclusion in the control 
sample). The objective is to estimate the proportion of 
forms containing an error. This is done by automatic 
detection of forms in which there is a no match situation. 
The number of errors is determined by reconciUation. 
The control theory is discussed in section 4 of this paper. 
The index of difficulty of the forms was developed from 
the data captured for a study based on the previous census 
and by test. The procedure and resuUs related to these 
control measures are described in detail in G. Badeyan 
(1992). 

The practical and numerical application of the theory 
rests on hypotheses concerning the orders of magnitude 
of the different parameters (which requires linking them 
to a simple physical interpretation). In the census prepara­
tion phase, without accurate prior measurement, we used 
the values a/a = 0.5 and C|/Co = 0.1. 

Pursuant to a number of hypotheses concerning the 
other parameters, and after discussing the matter with 
experts, it was decided that the control would cover 
50 districts, with approximately 20 IFs controlled in each 
one (by region and by week). Since model parameters 
can be re-estimated at any stage in the process, the initial 
order of magnitude can obviously be adjusted as the 
survey proceeds. 

Final Comment: 

The problem produces somewhat surprising results that 
are worthy of consideration. 

In the first instance, as we assumed it would be possible 
to separate each form, the forms were drawn with a prob­
ability proportional to individual difficuUy. We assumed, 
to some extent, that the cost of using individual infor­
mation was zero. 

In the second instance, the actual control process, it was 
assumed that cost was infinite and the only information 

with negligible cost was the information related to an 
entire household. The solution shows that the probability 
of drawing an individual (IF) as a function of the mean 
difficulty of coding the forms for the entire household of 
which the individual is a member. 

The same phenomenon occurs in the district draw. If 
it is possible to separate the IFs, they are drawn with 
probabiUties proportional to total difficulty; within a 
district, the difficult IF has a greater probability of selec­
tion. Conversely, suppose we are unable to separate IFs 
within a district. This wiU be the case, for example, if the 
designation of IFs to be controlled cannot be implemented 
in real time because of inadequate processing facilities. 
Districts would then be selected in proportion to mean 
difficulty: within a district, it would be necessary to 
proceed by simple random sampling. 

In the first instance, the survey gives precedence to large 
districts, from which difficult IFs tend to be drawn. In the 
second instance, precedence is given to small difficult 
districts, from which forms are selected with equal prob­
ability. In both instances, we are seeking to increase the 
probabiUty of surveying difficult IFs. The difference 
resides simply in the possibiUty {i.e. the cost) of collecting 
information when we need it. 
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Conditional Properties of Post-Stratified Estimators 
Under Normal Theory 

ROBERT J. CASADY and RICHARD VALLIANT' 

ABSTRACT 

Post-stratification is a common technique for improving precision of estimators by using data items not available 
at the design stage of a survey. In large, complex samples, the vector of Horvitz-Thompson estimators of survey 
target variables and of post-stratum population sizes will, under appropriate conditions, be approximately multivariate 
normal. This large sample normality leads to a new post-stratified regression estimator, which is analogous to the 
linear regression estimator in simple random sampling. We derive the large sample design bias and mean squared 
errors of this new estimator, the standard post-stratified estimator, the Horvitz-Thompson estimator, and a ratio 
estimator. We use both real and artificial populations to study empirically the conditional and unconditional properties 
of the estimators in muUistage sampling. 

KEY WORDS: Asymptotic normality; Regression estimator; Defective frames; Ratio estimator; Horvitz-Thompson 
estimator. 

INTRODUCTION 

1.1 Background 

A major thrust in sampling theory in the last twenty 
years has been to devise ways of restricting the set of 
samples used for inference. In a purely design-based 
approach, as described in Hansen, Madow, and Tepping 
(1983), no such restrictions are imposed. Statistical pro­
perties are calculated by averaging over the set of all 
samples that might have been selected using a particular 
design. Although it is generally conceded that some type 
of design-based, conditional inference is desirable (Fuller 
1981, Rao 1985, Hidiroglou and Sarndal 1989), satisfac­
tory theory has yet to be developed except in relatively 
simple cases. Alternative approaches are prediction 
theory, developed by Royall (1971) and many others, and 
the Bayesian approach, found in Ericson (1969), which 
avoid averaging over repeated samples through the use of 
superpopulation models. A design-based approach to 
conditioning was introduced by Robinson (1987) for the 
particular case of ratio estimates in sample surveys. 
Robinson applied large sample theory and approximate 
normality of certain statistics to produce a conditional, 
design-based theory for the ratio estimator. 

In this paper, we extend that line of reasoning to the 
problem of post-stratification. Convincing arguments 
have been made in the past by Durbin (1969), Holt and 
Smith (1979) and Yates (1960) that post-stratified samples 
should be analyzed conditional on the sample distribution 
of units among the post-strata. However, as Rao (1985) 
has noted, the difficuUies in developing an exact, design-
based, finite sample theory for post-stratification in general 

sample designs may be intractable. Model-based, condi­
tional analyses of post-stratified samples are presented in 
Little (1991) and Valliant (1993). The alternative pursued 
here is design-based and uses large sample, approximate 
normality in a way similar to that of Robinson (1987) as 
a means studying conditional properties of estimators. 

1.2 Basic Definitions and Notation 

The target population is a well defined collection of 
elementary (or analytic) units. For many applications the 
elementary units are either persons or establishments. We 
assume the target population has been partitioned into first 
stage sampUng units (FSUs). For person based surveys the 
FSUs are commonly households, groups of households or 
even counties, while for establishment based surveys it is 
not uncommon that the individual establishment is an FSU. 
In any event, the collection of FSUs will be referred to as 
the first stage sampling frame (or just sampling frame). 
It is assumed that there are M FSUs in the sampUng frame 
and they are labeled 1,2, ..., M. We also assume that the 
population units can be partitioned into K "post-strata" 
which can be used for the purposes of estimation. 

We let y represent the value of the characteristic of interest 
{e.g. weekly income, number of hours worked last week, 
restricted activity days in last two weeks, etc.) for an ele­
mentary unit. Associated with the /"' FSU are 2K real 
numbers: 

yik = aggregate of the y values for the elementary units 
in the /'"̂  FSU which are in the k^^ post-stratum, 

Nil, = number of elementary units in the /"̂  FSU which 
are in the A:"' post-stratum. 

Robert J. Casady and Richard Valliant, U.S. Bureau of Labor Statistics, 2 MassachuseHs Ave. N.E., Washington D.C., 20212-0001. 
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For each post-stratum we then define 

Y-k = Hfii Pik = aggregate of the j values for aU ele­
mentary units in the k^^ post-stratum, 

N.k — E/^i Hk = total number of elementary units in 
the A:"' post-stratum. 

In what follows we assume that the N.i, are known 
fixed values. In some surveys, the N.i, may actually be 
estimates themselves but our analysis is conditional on the 
set of N.I, used in estimation. In the Current Population 
Survey in the United States, for example, each N.i^ is a 
population count projected from the previous decennial 
census using demographic methods. The population aggre­
gate of the y values is given by F.. = Yk=i Y.k and the 
total population size by M . = X f̂̂ iA'̂ /̂f In sections 1-3, 
we assume that the sampling frame provides "coverage" 
of the entire target population. In section 4, we consider the 
problem of a defective frame, i.e. one in which the coverage 
of the frame differs from that of the target population. 

1.3 Sample Design and Basic Estimation 

Suppose that the first stage sampling frame is parti­
tioned into L strata and that a multi-stage, stratified design 
is used with a total sample of m FSUs. In the following, 
the subscript representing design strata is suppressed in 
order to simplify the notation. For the subsequent theory, 
it is unnecessary to explicitly define sampling and estima­
tion procedures for second and higher levels of the design. 
However, for every sample FSU, we require estimators 
Pik and Nil, so that E2+ [pik] = yik and E2+ [Njk] = Nn, 
where the notation E2+ indicates the design-expectation 
over stages 2 and higher. Letting TT, be the probabiUty that 
the /'*' FSU is included in the sample and w, = l/7r„ it 
follows that the estimator Yj, = Y,T=i ^iPik is unbiased for 
Y.I, and the estimator N.k — T,T=i ^t^ik is unbiased for A^̂ .. 

1.4 An Analogue to Robinson's Asymptotic Result 

Robinson (1987) studied the ratio estimator {X/Xs)ps 
under simple random sampling with y^ being the sample 
mean of a target variable y, x^ being the sample mean of 
an auxiliary variable x, and Â  the population mean of x. 
Under certain conditions (j^, x^) will be asymptotically, 
bivariate normal in large simple random samples. From 
Robinson's results it follows that the linear regression 
estimator y^ -\- 0{X — x^) is asymptotically design-
unbiased conditional on x^. ResuUs in this section extend 
that result to complex samples. 

Following Krewski and Rao (1981), we can establish 
our asymptotic results asL-~ao within the framework of 
a sequence of finite populations [ 11 )̂ with L strata in 11^. 
It should be understood that we implicitly assume (without 
formal statement) the sample design and regiUarity conditions 
as specified in Krewski and Rao and more fully developed 
in Rao and Wu (1985). Details of proofs add little to those 
in the literature and are omitted. 

Converting to matrix notation, we let Y = 
[Yi ... Yi,]',N^ [Nl ...N.i,]',Y^}Yi ... Y,]', 
N = [Nl . . . N.I,] '^ and V = var{ [ Y N]' }^ where 
F = {I/N..)Y and N ^ {l/N..)N. Note that Y, which 
uses A .̂. in the denominator, is a notational convenience 
and does not estimate means in the post-strata. Analogous 
to conditions C4 and C5 of Krewski and Rao (1981), we 
assume that 

Urn — = PI,, for k = I, 2, ..., K, (1) 
t - " Nl, 

N L-
lim —^ =z 0 .̂ > 0 for A: = 1, 2, . . . , AT, and (2) 
L-00 J Y 

lim mV = Y, = \ (positive definite), (3) 
^-•^ 11:21 I22J 

where Y, is partitioned in the obvious manner. Note that 
we have again suppressed the subscript representing design 
strata. Assumptions (l)-(3) simply require that certain key 
quantities stabilize in large populations. Condition (2), in 
particular, assures that no post-stratum is empty as the 
population size increases. We now state the following. 

Result: Assume the sample design and regularity conditions 
specified in Krewski and Rao and that J ] 22 exists; then, 
given N, the condkional distribution of F is asymptotically 

^(Mi -i- YnYn (N -M2), m-'K),where K = Eu -
E I 2 E 2 2 ' E 2 I . ^ 1 =,lim Y = [(1)1 Pi . . . (j)K P/cY and 
M2 = lim Â  

L-oo 

L-oo 
[</>! . . . (J)K]' . 

Proof. This result is analogous to the result for K — 1 
given by Robinson (1987) and follows directly from the 
fact that the random vector 

m 
Ml - YnYn (N - M2) 

A - M2 

tends in distribution to 

Â  ( W ' k 222])-
Strictly, as in Robinson, we consider the conditional dis­
tribution of Ffor TV in a ceU of size em~'^' for small e. 
Note that in some sample designs I'N = N.. (such as 
those in which a fixed number of elementary units are 
selected with equal probabilities) in which case ^£2' does 
not exist; in such cases only the first K — 1 post-strata are 
considered for the purpose of conditioning. 

In the next section, the asymptotic mean of Fis used 
to motivate a linear regression estimator of the population 
mean of the ^' 's. 
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2. CONDITIONAL PROPERTIES OF ESTIMATORS 
FOR THE POPULATION MEAN 

2.1 Estimators for the Population Mean 

The population mean is, by definition. 

p = l im(F../N..) = l i m ( l ' F / l ' A ' ) = V (t>k 
L—00 Z.—00 L^ 

MAr 

< r = l 

where 1' is a row vector of K ones. Note that the mean 
p is not a finite population parameter but rather a Umiting 
value. In large populations (L^co) ^ and the actual finite 
population mean will be arbitrarily close. Four estimators 
of the population mean will be considered. The first three 
are standard estimators found in the literature while the 
fourth is a new estimator iriotivated by the asymptotic, 
joint normality of Y and TV: 

(1) Horvitz-Thompson estimator 

?HT = VY/VN = VY. 

(2) Ratio estimator 

fp = VY/VN = I'Y/l'N. 

(3) Post-stratified estimator 

where 

r' = [N.i/N.i, ...,N.^/N.„]. 

(4) Linear regression estimator 

YLR= [r{Y- Yi2Yi2'(N- M2))]. 

The linear regression estimator is motivated by the form 
of the large sample mean of the conditional random 
variable F | JV listed at the end of section 1.4 and is very 
similar to the generalized regression estimator discussed 
by Sarndal, Swensson and Wretman (1992). The linear 
regression estimator (4) was also discussed in the context 
of calibration estimation by Rao (1992). It should be noted 
that the ratio estimator does not require that Ni, or their 
sum N.. be known. The Horvitz-Thompson estimator 
only requires that N.. be known, whereas the post-
stratified and linear regression estimators require that 
[N.kl k = I, . . . , / T j be known. In practice, the linear 
regression estimator has the additional complication that 
the covariance matrices E12 and E22 are unknown and 
must be estimated from the sample. In implementing Y^p 
in section 3, the known finite population quantities 
(1 /N.. )A'̂  will be used in place of the Umiting vector Af2. 

2.2 Conditional Expectations and Variances of the 
Estimators 

Using the asymptotic setup given earlier, the expecta­
tions and variances of the four estimators can be computed 
conditional on N. For the case of post-stratification, condi­
tioning on i^in a complex design is a natural extension of 
conditioning on the achieved post-stratum sample sizes in 
a simple random sample. In other situations, however, the 
question of what to condition on is a difficult one that may 
not have a unique answer {e.g., see Kiefer 1977). First, 
define the following three matrices: 

ff = E12E22 > 

R ^ H - D(p), and 

P = H - D{pi,), 

where D{p) = diag(/i, . . ., p) and D(pi,) — 
diag(^i, . . . , PI,) are A" x A"diagonal matrices. Below, 
we state the mean and variance of the four estimators 
without providing any details of the calculations. When 
the sample of first-stage units is large, each of the esti­
mators has essentially the same conditional variance. The 
Horvitz-Thompson, ratio, and post-stratified estimators 
are, however, conditionally biased, whereas the linear 
regression estimator is not. Thus, the linear regression 
estimator has the smallest asymptotic mean square error 
among the four estimators considered here. Rao (1992) 
also noted the optimality of the regression estimator within 
a certain class of difference estimators and its negligible 
large sample bias. 

(1) Horvitz-Thompson estimator: 

E[YHT\m ^ p-^[VH{N-M2)] 

var[fHr\ N] = ' " - ' [ l ' ( E i i - E12I2-2'E2i)l] 

= /77- ' [ l 'K,l] = V„r(c)-

(2) Ratio estimator: 

E[?p\M = ^ + r ^ ^ [VR{N - M2)] 

= M + [l'R(N - M2)] -f- o ( w - ' ) 

var[F^ I TV] = {N../N..)^VHTM 

= VHTM + o(m-(3/2))_ 
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(3) Post-stratified estimator: 

E[FpsiyV] =M + [r'P{N-M2)] 

= p-\- [VP{N - M2)] -I- o{m-') 

var[?ps\ I^] = m-'[r'V,r] 

= V„T(c) +o (m-<^ '2 ' ) . 

(4) Linear regression estimator: 

E[fLp\N] = p 

var [Pi;^ I TV] = V„ric)-

As noted in section 1, some minor modifications of the 
above formulas are necessary for designs, such as simple 
random sampling, in which 1 'TV.. = TV... The derivation 
of the requisite modifications is straightforward and is not 
detailed here. 

The large-sample biases of the first three estimators 
depend on TV — Af2. In other words, their biases are 
determined by how well the sample estimates the popula­
tion distribution among the post-strata. In some special 
cases each of the first three can be conditionally unbiased. 
The post-stratified estimator, for example, will be approx­
imately unbiased if 1 ' ( / / — D{pi,)) — C . This occurs 
in simple random sampUng and is possible, though certainly 
not generally true, in more complex designs. The matrix 
H can be interpreted as the slope in a multivariate regres­
sion of F on TV or of F on TV when the sample estimates 
are close to the population values. Thinking heuristically 
in superpopulation terms, if E^{yiic) = PkNn,, as in 
Valliant (1993), with E^ denoting an expectation with 
respect to the model, then E^ ( Yj,) = PkN.i,. The slope of 
the regression of Y.i, on TV.̂t is then pi, and, in the unusual 
case in which the F.̂ '̂s are independent, H is diagonal. 
In fact H = D{pi,), so the conditional design-bias of 
the post-stratified estimator would be zero. If, on the 
other hand, the model has an intercept, /.e. if Ej ( F^.) = 
ai, + ^jt^-AT. then the post-stratified estimator may have 
a substantial conditional design-bias. We will use this line 
of reasoning in the empirical study in section 3 to devise 
a population for which Yp^ is conditionally biased. 

Similar model-based thinking can be applied to the 
Horvitz-Thompson and ratio estimators to identify 
populations where the conditional design-biases will be 
predictably small for large samples. Suppose, as above, 
that the F.^'s are independent. If each post-stratum total 
is unrelated to the number of units in the post-stratum, i.e. 
a pecuUar situation in which E^{Y.i,) does not depend 
on TV.̂ ., then f^r is conditionally design-unbiased. If 
E^(Y.i,) = pNj,, implying that all elementary population 
units have the same mean regardless of post-stratum, then 
fp is conditionally design-unbiased. 

2.3 Unconditional Expectations and Variances of the 
Estimators 

Unconditionally, all estimators are approximately 
design-unbiased as noted below. The relative sizes of the 
variances depend on the values of E12. E22> M> and 
D{pi,). This is similar to the case of simple random 
sampling of a target y and an auxiliary x. In that case, 
whether the ratio estimator, ygX/Xg, or the regression 
estimator, j*^ -\- b{X — Jc^), has smaller design-variance 
also depends on the values of certain population parameters. 

(1) Horvitz-Thompson estimator: 

E[?„r] =M 

var[F„r] = m - ' [ l ' E i i l ] . 

(2) Ratio estimator: 

E[fR] = M + o(m-') 

var[fR] = m - ' [ l ' [ E n - 2pY2i + M ' E 2 2 ] 1 ] 

+ o(m-<3/2)). 

(3) Post-stratified estimator: 

E[Fps] = M + o(m-') 

var[Fps] = m - ' [ l ' [ E i i - 2/>(Mk)E2i 

+ D{pi,)Y22D{pid]l] + o(m-<3/2)) 

(4) Linear regression estimator: 

The unconditional expectation and variance are the 
same as the conditional expectation and variance. 

3. SIMULATION RESULTS 

The theory developed in the preceding sections was 
tested in a set of simulation studies using three separate 
populations. The population size and basic sample design 
parameters for the three studies are listed in Table 1. The 
first population consists of a subset of the persons included 
in the first quarter sample of the 1985 National Health 
Interview Survey (NHIS) and the second population consists 
of a subset of the persons included in the September 1988 
sample from the Current Population Survey (CPS). Both 
the NHIS and CPS are sample surveys conducted by the 
U.S. government. The variable of interest for the NHIS 
population is the number of restricted activity days in the 
two weeks prior to the interview and the variable of interest 
for the CPS population is weekly wages per person. 
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Table 1 
Population Size and Basic Sample Design Parameters 

for Three Simulation Studies 

Population 
Pop. 
Size 
TV 

No. of 
FSUs 

M 

No. of 
sample 
FSUs 

m 

HIS 

CPS 

Artificial 

2,934 

10,841 

22,001 

1,100 

2,826 

2,000 

115 

200 

200 

Post-strata in the NHIS and CPS populations were 
formed on the basis of demographic characteristics (as is 
typically done in household surveys) in order to create 
population sub-groups that were homogenous with respect 
to the variable of interest. For the NHIS population the 
variables age and sex were used to define 4 post-strata and 
for the CPS population the variables age, race, and sex 
were used to define 8 post-strata. 

The third population is artificial; it was created with the 
intention of producing a substantial conditional bias in 
the post-stratified estimator of the mean. As noted in 
section 2.2, Yps will be conditionally biased if the FSU 
post-stratum totals for the variable of interest, conditional 
on the number of units in each FSU/post-stratum, follow 
a model with a non zero intercept. With this in mind, we 
generated the population in such a way that 

E(yii,\Nii,) = ai, -^-0Nji, + yNJi,, (4) 

where Nn, is the number of units in the k^^ post-stratum 
for the /•'' FSU-and ai,, 0 and y are constants. Specifically, 
five post-strata were used with â . = lOOA: {k = I, ..., 5), 
0 = 10 and 7 = - .05. In total two thousand FSUs were 
generated with the total number of units in the /"' FSU, 
say TV,., being a Poisson random variable with mean 10. 
Then, conditional on TV,., the numbers of unUs in the five 
post-strata (/.e., TV,,, TV,2, . . . , TV,5) for the /'*• FSU were 
determined using a multinomial distribution with para­
meters TV,, andPi, = .20 for k = I, 2, ..., 5. 

For FSUs having TV, ̂ . > 1, the value of the variable of 
interest for they""' unit in the k^^ post-stratum for the /"' 
FSU was a realization of the random variable 

yjjk = oik/Nji, + 0 -\- yNji, -I- €,,- -I- e2ik + €3,7*̂ /̂-

(j - 1, ...,A^„t;TV,^> 1), 

where ei„ £2;* and e^ji, are three independent standar­
dized chi-square (6 d.f.) random variables. This structure 
implies that £(^',4. | TV,<.) is given by (4). Furthermore, the 
values of the variable of interest for units within an FSU 

are correlated and the correlation depends upon whether 
the units are in the same post-stratum or not. This same 
algorithm was used in each of the 100 design strata. Twenty 
FSUs were generated in each design stratum giving a total 
of 2,000 FSUs. 

A single-stage stratified design was used for the NHIS 
population with "households" being the FSUs. Ten design 
strata were used and an approximate 10% simple random 
sample of households was selected without replacement 
from each stratum. Each sample consisted of 115 house­
holds and each sample household was enumerated com­
pletely . A total of 5,000 such samples was selected for the 
simulation study. 

Two-stage stratified sample designs were used for both 
the CPS and artificial populations. For the CPS popula­
tion, geographic segments, employed in the original survey 
and composed of about four neighboring households, 
were used as FSUs and persons were the second-stage 
units. In both populations, 100 design strata were created 
with each stratum having approximately the same number 
of FSUs and a sample of w = 2 FSUs was selected with 
probability proportional to size from each stratum using 
the systematic sampUng method described by Hansen, 
Hurwitz and Madow (1953, p. 343). Thus, 200 FSUs were 
selected for both populations. Second stage selection was 
also similar for both populations. For the CPS population 
a simple random sample of 4 persons was selected wUhout 
replacement in each sample FSU having TV,. > 4 and all 
persons were selected in each sample FSU where TV,. < 4. 
For the artificial population the within FSU sample size 
was set at 15 rather than 4 which resulted in the complete 
enumeration of most sample FSUs. A total of 5,000 samples 
were selected from each of the populations for the simula­
tion study. 

In each sample, we computed Yf^-p, Yp, Yps and two 
versions of Y^p. For the first version of the regression 
estimator, denoted Yip{emp) in the tables, / /was estimated 
separately from each sample as would be required in prac­
tice. Each component of E12 and E22 was estimated 
using the ultimate cluster estimator of covariance, appro­
priate to the design, as defined in Hansen, et al. (1953, 
p.419). The second version, denoted fip{theo), used the 
same value of H in each sample, which was an estimate 
more nearly equal to the theoretical value of the H matrix. 
For the CPS and artificial populations, the theoretical / / 
matrix was estimated from empirical covariances derived 
from separate simulation runs of 5,000 samples. For the 
NHIS population the design was simple enough that a 
direct theoretical calculation of//was done. As the sample 
of FSUs becomes large, the performance of F^/j(emp) 
should approach that of Yip{theo). The performance of 
Yip{theo) is, consequently, a gauge of the best that can be 
expected from the empirical version of the regression 
estimator for a given sample size. 
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0.10 
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Figure 1. HIS simulation, m =115 
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12 
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12 

Theoretical bias factors 

PS • L(emp) o L(theo) 

Figure 2. CPS simulation, m = 200 
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Figure 3. Artificial population simulation, m = 200 

Table 2 lists unconditional results summarized over all 
5,000 samples from each population. Empirical root mean 
square errors (rmse's) were calculated as rmse(F) = 
[ Ef= 1 ( ̂ 5 - Y)^/S] '''' wUh S = 5,000 and F, being one 
of the estimates of the population mean from sample s. 
In the CPS and artificial populations, results for the 
Horvitz-Thompson and the ratio estimators were nearly 
identical so that only the former is shown. Across all 
samples, the bias of each of the estimators was negligible. 
As anticipated by the theory, fip{theo) was the most 
precise of the choices, although the largest gain compared 
to Yps was only 4.7% in the artificial population. The 
need to estimate / / destabilizes the regression estimator as 
shown in the results for ?ip{emp). For the NHIS and 
CPS populations, Yip{emp) has a larger root mse than 
both Yi^p{theo) and Yps. The most noticeable loss is for 
the NHIS population where the root mse of F/jj(emp) is 
about 15% larger than that of either fi^p{theo) or fps. 
This result is consistent with the smaller FSU sample 
size and hence less stable estimate of H for the NHIS 
population. 

Figures 1-3 present conditional simulation results. The 
5,000 samples were sorted by the theoretical bias factors 
presented in section 2.2. The sorting was done separately 
for each of the estimators of the population mean. In the 

cases of the two regression estimators, which are theoret­
ically unbiased in large samples, the bias factor for fps 
was used for sorting. The sorted samples were then put 
into 25 groups of 200 samples each and empirical biases 
and root mse's were computed within each group. The 
group results were then plotted versus theoretical bias 
factors in the figures. The upper sets of points in each 
figure are the empirical root mse's of the groups, while the 
lower sets are empirical biases. The two regression estima­
tors are conditionally unbiased as expected. The other esti­
mators, however, have substantial conditional biases that, 
in the most extreme sets of samples, are important parts 
of the mse's. For the CPS population, the range of the bias 
factors for F/̂ T- is so much larger ( - 10 to 10) than that of 
the other estimators that we have omitted F^T- from the 
plot for clarity. In the neighborhood of the balance point, 
TV = TV, all estimators perform about the same, but, 
because of a lack of data at the design stage, we have no 
control on how close to balance a particular sample may 
be. The safest choice for controlling conditional bias is, 
thus, Yi^p{emp). This finding is similar to that of Valliant 
(1990), who noted that, in one-stage, stratified random or 
systematic sampling, the separate linear regression 
estimator is a good choice for controlling bias, conditional 
on the sample mean of an auxiliary variable. 
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Table 2 
Simulation ResuUs for Three Populations. 

5,000 Samples were Selected from Each Population 

Estimator 
Rel-_. 

bias Y rmse( Y) 
(%) 

100' 
r rmse(F) _ 1 

Lrmse( Fps) J 

HIS population 

YHT 

h 
Yps 

?Lp(emp) 

F/p(theo) 

.12 

.10 

.11 

.19 

.08 

.141 

.141 

.141 

.162 

.140 

.05 

.02 

0 

14.71 

- . 9 6 

CPS population 

YHT 

Yps 

?Lp(emp) 

?LR(theo) 

- . 0 1 

0 

- . 0 3 

- . 0 1 

10.25 

8.85 

9.11 

8.79 

15.8 

0 

3.0 

- . 6 

Artificial population 

^HT 

Yps 

Fz./?(emp) 

Fz.R(theo) 

.02 

.12 

.04 

.02 

2.30 

2.37 

2.31 

2.26 

-2 .93 

0 

-2 .41 

-4 .70 

To formalize the discussion of this type of coverage 
problem, suppose that TV.̂ . now refers to the number of 
elementary units in the frame and that TV.̂ . is the actual 
number of population elements in the A:"' post-stratum. 
In the discussion below terms with a dot on the top are 
population values while terms with no dot are frame 
values. Letting Y.j, be the aggregate of the y values over 
all population elements in the A:"' post-stratum, then it 
follows that the true population mean is given by 

K 

LI •'' f^ i<! V '^ 

^ ^ lim J^ = Urn V^^^ V^k 
Z.-00 K 

Y^k 
k = \ 

TV.. T V . . 
k = l '^ k=\ 

l^k-

4. DEFECTIVE FRAMES 

Obviously, all four of the estimators of the mean given in 
section 2 are biased (both conditionally and uncondi­
tionally) for jx; the additional bias term being given by 
p — p. for all of the estimators. It should be noted that this 
bias term is o(l) so it will dominate the other bias terms 
Usted in section 2.2 as the number of FSUs increases. There 
is another even more basic problem; namely, in most cases 
the individual frame values TV.̂ . are not known so only the 
ratio estimator is well defined. For example, the Horvitz-
Thompson estimator of the mean as defined in section 2 
requires TV.,, the total number of units in the frame, but 
TV.. may be unknown. On the other hand, the N.j, (or least 
the proportions ^i,) may be known from independent 
sources and hence be available for the purposes of 
estimator construction. In household surveys, for instance, 
the N.I, may come from intercensal projections of popula­
tion counts. 

Before attempting to construct unbiased estimators for 
p it should be noted that 

The conditional biases discussed in the previous sections 
were of a technical, mathematical nature. A more serious, 
practical problem in many surveys, that can also lead to 
bias, is poor coverage of the target population; we address 
this situation in this section. 

4.1 The Basic Problem of Defective Frames 

In most real world applications not all of the elemen­
tary units in the population are included in the sampling 
frame. In household surveys, it is not unusual for some 
demographic subgroups, especially minorities, to be poorly 
covered by the sampling frame. Bailar (1989), for example, 
notes that in 1985 the sample estimate from the CPS of 
the total number of Black males, ages 22-24, was only 73% 
of an independent estimate of the total population of that 
group. Corresponding percentages for Black males, ages 
25-29 and 60-61, were 80% and 76%. 

P - P = Y ^'^k - '^k)(lJ-k - M 
k=\ 

K K 

+ 2^ (0* - ik)i^k + Y ^k(iJ-k - M-
k=\ k=\ 

So, if we assume that for each post-strata the mean of the 
units in the frame is equal to the true population mean, 
{i.e. PI, = PI, for every k) then the bias term reduces to 

M - A = 2] (0* - ik)i^k = 2^ (0*- - ^k)i^k-
k=\ k=l 

This is very strong (and also very expedient) assumption; 
however, addressing the problem of defective frame bias 
without such a condition is virtually impossible. 
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4.2 Alternative Estimators 

The basic strategy is to construct an estimator for the 
defective frame bias, p — p, and then subtract this esti­
mator from the estimators studied earlier. Two cases need 
to be considered: 

Case 1. The frame parameters \4>k, I < k < K] 
are unknown, and 

Case 2. The frame parameters {0,t. 1 < k < K] 
are known. 

Case 1. For this case only the ratio estimator is well defined 
and the only obvious candidate for an estimator of the 
bias is 

ti \N.. /Nl, .f, 
^k 

TV., 

Using the strategy given above, the resulting estimator for 

p is 

K 

f,= fp-Bi^Y ^k 
Yk 

k=\ N.I 

This is the "post-stratified" estimator usually found in 
practice. It is straightforward to verify the following pro­
perties of F,: 

E [F , I TV] = p -^ [p'P(N - Ml)] -h o(OT-') 

where 

[01 02 0^1 

01' 02* ' 0AfJ 

var[ F, I TV] = OT '[p'VcP]+o{m • ( 3 / 2 ) ^ 

E[F , ] = A + o(/77-') 

var[F,] = m - ' [ p ' [ E i i - 2 / ) ( M J E 2 I 

+ D{pi,)Y22D(Pk)]p] + o ( m - ' 3 ' ^ ' ) . 

The attempt to correct for the defective frame bias is 
successful in the sense that Fj is unconditionally unbiased 
for p. However, the conditional bias is still present. 

Case 2. For this case it can be verified that the estimator 

B2 = (1 - P > ' [ F - E . 2 E 2 - 2 ' ( ^ - M 2 ) ] , 

is approximately, conditionally unbiased forp — p and, 
as TIP is conditionally unbiased for p, it follows directly 
that the estimator 

Y2 - YLP - B2 - P'\^- YnY2V(^ - A/2^1 

is both condUionally and unconditionally, approximately 
unbiased for p. It can also be verified that 

var[F2|TV] =va r [F2 ] =m-^[p'Kp]. 

In addhion to the problems of the linear regression 
estimator cited earlier, this estimator is usually not even 
weU defined as the frame parameters {<j)i„ I < k <K] are 
rarely, if ever, known when the frame is defective. 

5. CONCLUSION 

This study has generalized the asymptotic techniques 
suggested by Robinson (1987) to study the problem of post-
stratification from a design-based, conditional point-of-
view. An important paper in the conditional study of post-
stratification was that of Holt and Smith (1979), one of 
whose basic premises was that fps is conditionally un­
biased. This will be true (at least asymptotically) only if 
l'(H — D(pi,)) — 0 ' ; so, in general, this premise is false. 
In fact, simple random sampUng of elementary units may be 
one of the few realistic cases where this basic premise is true. 

From a conditional point of view the linear regression 
estimator is preferable among the four studied here. Only 
the regression estimator is conditionally unbiased. The 
post-stratified estimator is no better (or worse) than either 
the Horvitz-Thompson or the ratio estimator; all have con­
ditional bias terms of order w ~ *''''*. All of the estimators 
have the same conditional variance to terms of order m " ' ; 
furthermore, the conditional variance does not depend on 
TV, the vector of estimated proportions in the post-strata. 
Consequently, because of its conditional unbiasedness, the 
regression estimator has the smallest conditional mean 
square error. 

The Horvitz-Thompson, ratio, and post-stratified esti­
mators are unconditionally unbiased. Although somewhat 
illogical, one might attempt to make a case for the esti­
mators by comparing their unconditional properties with 
the conditional properties of the linear regression estimator. 
But even from this mixed perspective, the Yi^p{theo) esti­
mator is clearly superior to the others. Not only is it condi­
tionally unbiased, but the conditional variance of the Unear 
regression estimator can be no larger than the unconditional 
variance of any of the other estimators. In large FSU samples, 
the empirical version of the regression estimator will inherit 
these good properties of Fi^(theo) and also perform weU. 



192 Casady and Valliant: Properties of Post-Stratified Estimators 

The problem of a defective frame introduces complica­
tions not found otherwise. Each of the estimators of the 
mean studied here is biased both conditionally and uncon­
ditionally. Bias adjustments are possible only under the 
restrictive assumption that the mean of units within each 
post-stratum is the same for all population units whether 
they are included or excluded from the frame. 

An area we have not addressed is variance estimation. 
A design-based variance estimator for the regression esti­
mator can be obtained using the methods of Sarndal, 
Swensson and Wretman (1989). 
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Sampling from Imperfect Frames with Unknown 
Amount of Duplication 

SHIBDAS BANDYOPADHYAY and A.K. ADHIKARI' 

ABSTRACT 

This study covers such imperfect frames in which no population unit has been excluded from the frame but an 
unspecified number of population units may have been included in the Ust an unspecified number of times each 
with a separate identification. When the availability of auxiUary information on any unit in the imperfect frame 
is not assumed, it is established that for estimation of a population ratio or a mean, the mean square errors of 
estimators based on the imperfect frame are less than those based on the perfect frame for simple random sampling 
when the sampUng fractions of perfect and imperfect frames are the same. For estimation of a population total, 
however, this is not always true. Also, there are situations in which estimators of a ratio, a mean or a total based 
on smaller sampling fraction from imperfect frame can have smaller mean square error than those based on a larger 
sampling fraction from the perfect frame. 

KEY WORDS: Imperfect frame; Efficiency. 

1. INTRODUCTION 

A frequent problem that arises while planning surveys 
is the non-availability of complete frames. The Interna­
tional Statistical Institute recognized the importance of 
studying the problem of sampling from imperfect frames 
and arranged discussions by experts on this topic during 
its 34th Session held in Ottawa, Canada where Hansen 
et al. (1963) and Szameitat and Schaffer (1963) presented 
invited papers. One may also refer to Singh (1977, 1983). 
Wright and Tsao (1983) have written a bibliography on 
frames to bring attention to problems which arise when 
sampling from imperfect frames. 

Recently two separate surveys were undertaken by the 
Indian Statistical Institute to evaluate the impact of 
government sponsored programmes for the uplift of eco­
nomic conditions of fishermen's community in West Bengal, 
India. In the first survey (1988), the households were 
selected using the membership registers of the Fishermen's 
Co-operative Societies (PCS). In the second and more recent 
survey, the list of beneficiary fishermen of the Fish 
Farmer's Development Agency (FFDA) was used. It was 
known that not all PCS members or FFDA beneficiaries 
would be from different households, but it was not 
possible to identify the PCS members or the FFDA 
beneficiaries belonging to the same household without 
contacting the households. Thus, when PCS membership 
registers or FFDA beneficiary lists were used for household 
selection, the frames contained an unknown number of 
duplication. Since the household information was collected 
by personal interview, it was possible to identify the dupli­
cation in the selected households only. The values of the 

variables associated with the households in the sample 
were divided by the respective number of duplications in 
the frame while retaining the duplicate households in the 
sample under separate identification. 

The set-up of imperfect frames discussed here is a 
special case of Rao (1968). One of the referees has pointed 
out that the situation discussed in the paper also occurs 
at Statistics Canada in certain frames for business surveys. 

Imperfect frames to be covered in this study are those 
in which no population unit has been excluded from the 
frame but any population unit may have been included in 
the frame an unspecified number of times with a separate 
identification each time. It is assumed that it would be 
possible to ascertain, at the data collection stage, the 
number of duplicates in the frame for each selected unit. 
The possibility of selecting two or more duplicates of a 
population unit in the sample is not excluded. The 
availability of auxiliary information on the units in the 
imperfect frame is not assumed and only simple random 
sampling without replacement (SRSWOR) schemes are 
discussed. 

Since the total number of population units will not be 
known from the imperfect frames to be covered here, 
problems of estimation of a mean of a population character 
and its total are not identical. 

Here is the main question discussed in this paper. Which 
is better: to up-date the imperfect frame and select a 
sample, or to use the imperfect frame? 

In the two surveys on fishermen's households, it was 
felt that most of the economic variables of interest would 
be highly related to the number of PCS members/FFDA 
beneficiaries in a household in the sense that the variability 
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of such an economic variable per FCS member/FFDA 
beneficiary would be less than the variability of the eco­
nomic variable per household. It was felt that one could 
effectively use an imperfect frame in such situations. 

It will be established that for situations such as above 
estimators of a ratio, a mean, or a total based on smaUer 
sampling fraction, imperfect frame can have smaller Mean 
Square Error (MSE) than those based on a larger sampling 
fraction from the perfect frame. 

Even when the variability is not related to the number 
of duplications as discussed above, it will be established 
that for estimating a ratio or a mean, using an imperfect 
frame will be preferable to using a perfect frame, from the 
MSE point of view, when the sampling fractions of the 
imperfect and the perfect frames are same. 

2. NOTATIONS AND RELATIONS 

Consider a finite population consisting of TV units C/i, 
t/2, . . . , Uf^. Let f/f, U^, ..., Ulibe the units listed in 
an imperfect frame. For k = \,2, ..., r,\et Aj, denote 
the sub-population of the original TV units consisting of 
TV̂  distinct population units. Each of the units in Aj, is 
listed in the imperfect frame exactly k number of times 
under separate identifications. Assume that 

(a) each C/, belongs to an Aj, for some k, {i.e., each Ui is 
included in the imperfect frame at least once) and 

(b) if Uj is selected in the sample using the imperfect 
frame, it will be possible to identify, at the data collec­
tion stage, the corresponding t/, and the associated 
value of k {i.e., the number of duplicates of Uj in the 
incomplete frame under separate identifications, one 
of which is the selected unit UJ) for which Uj belongs 

The following relations are valid. 

Nl + N2-\- . . . + N,^ N; 

TVi > 0, A: = 1 ,2 , . . . , / - , 

TV, -I- 2TV2 -F . . . -I- rTV, = M, 

where r, TV,, TV2, . . . , TV̂ , and TV are all unknown and 
only TV/is known with M > TV; M may be written as, for 
unknown a. 

M = N{1 -Ha) , a > 0. (2.1) 

Let A'and F values on the unit t/, be A', and Yi respec­
tively, (/ = 1,2, . . . , TV). Since each UJ, {j = 1,2, . . . , 
M), can be identified with a U, for some /, (/ = 1, 
2, . . . , TV), and since C/, belongs to Ai, for some k, 
(k - 1, 2, . . . , r),defineX, F and C values for the unit 
UJ as 

XJ = Xi/k, YJ = Yi/k, CJ = l/k. 

Because of assumptions (a) and (b), X*, Y*, and 
C* values are observable for the selected units from the 
imperfect frame. 

The following relations connect the measurements in 
the imperfect frame to those in the perfect frame. 

M N 

Y YJ = MY* = Y ^i = ^Y; 
; = i / = i 

M 

Y CJ = MC* = N; 
J=i 

M 

Y (YJ - F*)2 = Na\- S(2, Y) 

-I- (TVF)2(1/TV - \/M), 

where 

N 

Noi =Y (̂ ' - ^>' 

and 

S(a,Z) = Y (I - \/k)\ Y ^ ' • ] ; (2.2) 
k = 2 LiiUiiAj, J 

M 

Y (CJ - C*f = N{\ - N/M) - S(0, F); 
T=l 

Y (YJ - Y*)(CJ - C*) 

= TVF(1 - N/M) - S ( l , F ) . 

For the unit [/, let 

Di = Yi - Y;Wi = Yi - RXi, where R = Y/X. 

(2.3) 

Since no auxiliary information on the units is assumed, 
comparisons will be done on the basis of a SRSWOR 
sample. Let m be the size of the sample from the imperfect 
frame and n be the corresponding sample size had the 
frame been perfect. Define efficiency of a perfect frame 
compared to the corresponding imperfect frame, for any 
estimator, as 

MSE based on a sample of size m 
from the imperfect frame 

MSE based on a sample of size n 
had the frame been perfect 
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Also define/as the common sampling fraction when 
the sampling fractions are same, i.e., 

n = fN, m = fM = n{\ + a). (2.5) 

3. RESULTS 

Before we proceed to answer the main question raised 
in Section 1 on the choice of sampling from the perfect 
frame against sampling from the imperfect frame, we 
briefly look at the alternatives from cost considerations. 
If the total cost of up-dating the imperfect frame is 
expected to be more than the additional cost of data collec­
tion from the (m — n) extra units, it is economical to use 
the imperfect frame with a larger sample size than to up­
date the imperfect frame; this is so when 

bi fm - n\ 

'bo \ N ) 
^ I, (3.1) 

where 6, is the per-unit data collection cost and bo is the 
per-unit up-dating cost. It may be noted that one needs to 
visit effectively TV units to up-date the incomplete frame 
since the remaining (M — N) units are duplicates and can 
be identified because of assumption (b). It may also be 
noted that, even from a SRSWOR sample from the 
imperfect frame, the extra number of units to be canvassed 
is at most (m — «) since the sample may contain the same 
unit under separate identifications. These observations 
lead to (3.1) for preference of using an imperfect frame. 

As has been pointed out in Section 1, the total number 
of population units TV will not be known from the imperfect 
frame. Thus the problems of estimation of a mean and a 
total are not identical; the problem of estimation of a mean 
essentially is the problem of estimation of a ratio, but a 
total can be estimated directly and unbiasedly, based on 
a SRSWOR sample of size m from the imperfect frame. 
It is thus appropriate to estimate a population ratio 
(similar to domain estimation) with estimation of a mean 
as a special case, and then to treat estimation of a total 
separately. 

3.1 Estimation of a Ratio 

For estimation of a ratio R = ( Y/X), the usual ratio 
estimator is 

R = y*/x*, 

where the lower case letters represent the corresponding 
quantities based on a sample, y* is the mean of F* values 
based on a sample of size m from the imperfect frame etc. 
y* and Jc* are respectively unbiased estimators of (NY/M) 
and (NX/M). Using the deUa method the MSE of R, 
E{R — R)^, is given approximately by 

M —m M 

m{X*)\M - \)M Y *̂' = (3.2) 

using the relations of Section 2, (3.2) can be rewritten as 

MSE(/?) 
M{M - m) ,^^2 

m{NX)^{M - 1) 
[Na'iy- S(2,W)}, 

where Upvalues are defined in (2.3) and the W* values 
correspondingly obtained. It follows from (2.2) that 
S{2,W) > 0, and hence from (3.2) one has 

0 . 1 - ^-iMl) , ,. 
TVcr^ 

(3.3) 
w 

It now follows from (2.4) that efficiency p is 

nM{M - m) (TV - 1) 

mN{N - n){M - 1) 
fi _ ^(2, W)-) 

(3.4) 

When sampling fractions are equal, p can be written as 

P = 0 
(1 + 

+ a)(N - 1) r _ S{2,W)') 

a) {N - 1 ) -I- a I Na]y j ' 

(3.5) 

It, therefore, foUows from (3.3) that p given by (3.5) 
satisfies 

0 < p <1 (3.6) 

and thus it is advantageous to use imperfect frame for 
estimation of a ratio. 

It may be noted that S(2, W) is nondecreasing in a and 
for fixed o;, S(2, W) has a larger value when the units with 
larger IF values are replicated in the imperfect frame. Since 
a]Y is fixed for a given set of N W values, there may be 
situations in which p in (3.4) is less than 1 (as a matter of 
fact S{2, W)is equal to TVâ  when Upvalues are all equal 
and equal to 0) and consequently, there will be situations 
when sampling from imperfect frame will be preferable 
even with smaller sampling fraction to sampling from 
complete frame. 

3.2 Estimation of a Mean 

As seen in section 2.1, y* is an unbiased estimator of 
(TVF)/TVf where TVf is known but TV is unknown. Thus it 
is necessary to estimate TV to get an estimator for F. It may 
be noted that c* is an unbiased estimator of (N/M), and 
thus 

F - y*/c* 
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is a natural ratio-type estimator of F. On replacing x* in 
Section 3.1 by c*, the MSE of Fis given by 

MSE(F) = 
M{M - m) , 

- - ^ — ^ (TVâ  - S(2, £») 1, 
mN (M — I) 

where D values are defined in (2.3). Replacing W in 
Section 3.1 by D vie may conclude that (3.6) holds and 
imperfect frame is better when (2.5) is true. 

3.3 Estimation of a Total 

To estimate a total, say TVF, based on a SRSWOR 
sample of size m from the imperfect frame, the usual 
estimator is 

(TVF) = My*, 

which is unbiased for TVF, with variance 

MSE{My*) = Var (My*) 

M{M - m) 

m{M - 1) 

INal - S(2,F) -I- (NY)^ 

One may write p as 

_ nM{M - m){N - 1) 

^ ~ mN{N - n)(M - 1) 

\N MJ ) 

' j 5(2,F) - (A^F)^(1/A^- l/TW)-) 

4. AN ILLUSTRATION 

As pointed out earUer, in the fishermen's survey, 
ultimate sampling units of beneficiary-fishermen were 
selected from the list of beneficiaries available. Being a 
multidiscipUnary survey, many characteristics of the 
sampling units were observed from each of the sampling 
unit which either related to the household or to the fishing/ 
fishery enterprise to which the sampling unit belonged. 
Since only the number of beneficiaries (TV/) was known 
and the number of corresponding households/enterprises 
(TV) was not known, it was not possible to see the effect 
of using the imperfect frame for this survey. However for 
Ulustration in this paper, we take the samples drawn from 
one geographical area (a block within an administrative 
district in the West Bengal State) as our population and 
see the effect of resampling from it. In this area, there are 
27 beneficiaries (TV/) and 23 distinct enterprises (TV), 19 of 
the enterprises have single ownership (TV,) and 4 are of 
joint-ownership type (TV2). Our characteristics of interest 
are the cost of renovation of water areas (F) and the 
acreage of operated water areas (X). 

The summary statistics of F and A are as follows: 

Y Yi = 58,815, Y ^ ' = 23.36, 

TVff̂ . j 

^ = ( E ^ ' ) / ( D ^ ' ) =2,517.77, 

S(2,F) = 212,201,800, S{2,D) = 145,101,018, 

It is clear from the expression of Yar(My*) that 

[S(2 ,F) - ( T V F ) ^ ( l - - ^ ) ] / N 4 , (3.7) 
23(jj. = 442.702,791, 23a% = 13.6503 and 

S(2,W) = 104,505,327, 

is less than or equal to unity. However, a and Fvalues may 
be so chosen that expression in (3.7) is negative. In such 
a case, even when (2.5) is true, imperfect frame with larger 
sampUng fraction is inefficient. However, if the scatter of 
F* values are more homogeneous compared to Fvalues, 
i.e., if 

M 
V* \ 2 Y (Yi- F)2 > ^ ( F ; - F*) (3.8) 

1=1 7 = 1 

then the expression in (3.7) is always nonnegative. Now, 
one can draw similar conclusions as in Section 3.1, for 
example, (3.6) is valid when (2.5) is true. 

23(7^ = 394,790,716, 

where IF is defined in (2.3). 

To find the effect of sampling from the list of 27 bene­
ficiaries we find estimates of 

R = Renovation cost per acre of water area, 

X — Average water area per enterprise in acre and 

TVA = Total acreage of water areas operated by all 
23 enterprises. 

The table below gives the efficiencies for different 
choices of m and n. 
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Efficiency of sampling from perfect frame compared 
to sampling from imperfect frame (p) 

Sample sizes 

n m 

2 2 

4 4 

6 6 

8 8 

8 9 

10 10 

10 11 

Efficiency for estimators of 

R 

0.8695 

0.8841 

0.9022 

0.9225 

0.7791 

0.9551 

0.8172 

X 

0.6453 

0.6561 

0.6696 

0.6866 

0.5781 

0.7088 

0.6065 

NX 

0.9508 

0.9668 

0.9866 

I.0II7 

0.8519 

1.0444 

0.8937 

It can be seen that in most cases sampling from imperfect 
frame are more efficient. 
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An Alternative View of Forest Sampling 
FRANCIS A. ROESCH, JR., EDWIN J. GREEN and CHARLES T. SCOTT' 

ABSTRACT 

A generalized concept is presented for all of the commonly used methods of forest sampling. The concept views 
the forest as a two-dimensional picture which is cut up into pieces Uke a jigsaw puzzle, with the pieces defined by 
the individual selection probabilities of the trees in the forest. This concept results in a finite number of independently 
selected sample units, in contrast to every other generalized conceptuaUzation of forest sampling presented to date. 

KEY WORDS: Forest sampling; PPS sampling. 

1. INTRODUCTION 

The sampling of forests is often accomplished as a two 
part process: first a random point is located in the forest 
and then a cluster of trees in the vicinity of the point is 
selected for the sample by some rule. The two most 
common rules are known as (circular, fixed-area) plot 
sampling and (horizontal) point sampling. In the former, 
all trees for which the center of the cross-section of the bole 
at 4.5 feet above the ground is within a constant horizontal 
distance (d) of the random point are included in the 
sample. In the latter, tree / is selected for the sample if this 
center is within a horizontal distance ar, of the random 
point, where /•, is the radius of the cross-section and a is 
a constant, chosen appropriately to obtain a desired 
sampling intensity. Tree / would be selected with probabU­
ity proportional to ird^ in plot sampling (the probability 
is the same for all trees) and with probabiUty proportional 
to irrf (basal area of tree /) in point sampling (larger trees 
have a higher probability of selection). 

There has been much discussion in the forestry 
literature about what the sample unit actually is in the 
various methods of forest sampling. The tree is considered 
the sample unit from one point of view {e.g. Oderwald 
1981), while from other points of view, the cluster of trees 
associated with the point {e.g. Palley and Horwitz 1961; 
Schreuder 1970), the circular plot {e.g. Cunia 1965), and 
the point {e.g. Husch 1955) are considered the sample 
units. These various viewpoints are supported by different 
statistical tools. For example, treating the tree as the 
sample unit requires the use of finite population sampling 
theory, while considering the point as sample unk requires 
the use of the somewhat more advanced theory of infinite 
population sampling. In addition, plot sampling has tradi­
tionally been presented from the viewpoint of the plot as 
the sample unit, whereas point sampUng has usually been 

presented from the viewpoints of the tree or the point as 
the sample unit. Therefore, these very common and quite 
similar sampling mechanisms artificially appear disparate. 

We wUl show a conceptualization of the primary sample 
unit that is applicable to every type of forest sampUng 
scheme which selects trees based on the location of a 
random point. We will also show that this conceptualiza­
tion is simple and that it provides a finite number of 
mutually exclusive and independently selected sample 
units. This is in contrast to the view of the tree or the 
cluster of trees as the sample unit, because trees are not 
selected independently and clusters of trees are not 
mutually exclusive. It also differs from the views of the 
randomly placed point or the plot as the sample unit, 
because there are an infinite number of units in these cases. 
We will also suggest that this aUernative conceptualization 
is often more appropriate. 

2. THE JIGSAW PUZZLE VIEW 

Suppose that there are TV trees in the forest with labels 
1,2, . . . , TV. Associated with the TV trees are values of 
interest y = (j?,, J2. •••, PN), A'-circles K = [Ki, K2, 
..., Kj^], and selection areas of sizes A = {Ai,A2, . . . , 
Af^]. Grosenbaugh and Stover (1957) first defined the 
AT-circle in the context of point sampling. For our purposes 
the A'-circle of tree /, /f„ is an imaginary circle, centered 
at tree center, with radius d in plot sampling and radius 
arj in point sampling. The selection area for tree /, of size 
Aj (in acres), is the portion of tree i's A'-circle which is 
within the forest, and is the area from within which a 
random point will select the tree for the sample. 

When discussing point sampling, Palley and Horwitz 
(1961) contend that " . . . the primary sampling unit is a 
cluster of trees associated with a locus of origin. The locus 

' Francis A. Roesch, Jr., Mathematical Statistician, Institute for Quantitative Studies, Southern Forest Experiment Station, USDA Forest Service, 
701 Loyola Avenue, New Orleans, LA 70113; Edwin J. Green, Professor of Forestry, Cook College-Rutgers University, P.O. Box 231, New Brunswick, 
NJ 08903; and Charles T. Scott, Project Leader, Forest Ecosystem Modeling Unit, Northeastern Forest Experiment Station, USDA Forest Service, 
359 Main Road, Delaware, Ohio 43015. 
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of origin is a point in the case of point sampling . . . " . 
Actually the locus of origin is not a point because the 
cluster of trees is not selected only from that point but 
rather from an infinite set of points within a specific area. 

We offer the alternative view of the sample units being 
the mutually exclusive sections of ground resulting from 
the overlapping selection areas of the individual trees in 
the forest. 

The treatment of the ground broken up into primary 
sampUng units is clearly shown in Figure I, for example. 
The correspondence between the population, sampling 
frame and sample unit as given in say Cochran (1977, p. 6) 
is apparent: the population {or the puzzle picture) is divided 
up into mutuaUy exclusive, exhaustive sample units {the 
puzzle pieces) which together comprise the sample frame. 
Each ground segment has a definite probabUity of selection 
and the total of these probabilities over all segments is 1. 
We wiU call this the jigsaw puzzle view. 

Associated with each ground segment are attributes of 
interest, the measurement of which will result in identical 
values from any point in that segment of ground. The crux 
of the matter is that individual points are equivalent within 
any particular segment. The ground segments, of course, 
are selected with probability proportional to size. In the 
case of point sampling, the segment size is determined by 
the basal areas and spatial distribution of the trees and the 
constant a chosen. Once a is chosen, the sample frame 
at a particular point in time is fixed. In the case of plot 
sampling, the size of the segment is determined by d and 
the spatial distribution of the trees. Thus, regardless of the 

Figure 1. The Puzzle Pieces. Trees 1, 2 and 3 are centered at their 
respective numbers. The surrounding circles represent 
the selection areas of the trees. Each of the lettered 
segments represents a sample unit. 

method used to determine the sample trees (e.g., plot 
sampling or point sampling), all schemes can be thought 
of as cutting the puzzle up in some way, selecting the pieces 
with probability proportional to their size, and then turning 
each piece over to read the attributes associated with it. 

Returning to our proposition that this view is often 
more appropriate, we note that the purpose of most forest 
surveys is to describe the forest, not the individual trees. 
Our aggregations are usually made on a per acre or hectare 
basis, i.e. units of the forest land, not units of the tree. 
From the same place we may measure many other things 
besides the trees such as topographic and site character­
istics. It is therefore usually more appropriate to view 
pieces of the forest as the sample units rather than indi­
vidual trees in the forest. 

Although we will be working mostly in the context of 
forest sampling in general, our discussion is easily applied 
to any specific type of forest sampling which relies on the 
selection of trees by some function of randomly placed 
points. The only difference is the definition of the ground 
segments, or how we dissect the picture into puzzle pieces. 
For example, in plot sampling the ground is divided into 
pieces defined by overlapping circles of equal size, while 
in point sampling the definition is by overlapping circles 
of sizes proportional to each corresponding tree's basal 
area. 

To examine this further, suppose that we randomly 
drop a point on the surface of a forest and use any function 
to select sample trees. Suppose also that within our forest 
are three trees (1,2, and 3) whose selection areas overlap. 
In Figure 1, trees 1, 2 and 3 are centered at their respec­
tive numbers with their selection areas shown as circles. 
Each lettered segment represents a different sample unit. 
If the point falls in segment a, the empty cluster is chosen, 
in segment b, the cluster containing only tree 1, in segment 
d, the cluster of all three trees, etc. Tree 1 would therefore 
be selected from segments b, c, d or e. This results in a 
situation somewhat analogous to that described in Kish 
(1965, sec. 11.2), if we were to consider the tree to be the 
primary sample unit, in which a list to be sampled from 
contains duplicate listings of the same unit. In this case, 
the list would be one of clusters of trees, in which most 
trees are associated with more than one cluster. The 
clusters are selected with probability proportional to the 
size of the ground segment. The standard technique of 
weighting duplicate elements of a list, discussed by Kish, 
considers rather the selection of primary units with equal 
probability. 

The jigsaw puzzle view reduces the complexity of the 
sampling mechanism in one sense by first mapping the tree 
population into the ground segment population and 
thereby reducing the sample list from a list of clusters of 
trees in which trees belong to more than one cluster to a 
list of unique ground segments. Our claim below that 
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forest sampling simulations can be simplified by the jigsaw 
puzzle view is supported wholly by the tradeoff between 
the one time cost of this reduction in the complexUy of the 
sample Ust and the need to select from that Ust many times. 

To map the tree population into the segment popula­
tion, an observation for a segment would preferably be the 
sum of weighted tree values, the weight for each tree being 
proportional to its probability of being observed from that 
particular segment. The probabiUty that sampled tree / 
was selected from the particular ground segment 7 is: 

N 

• ' = ( ^ ) ' " ' 
PiJ 

where: 

Aj = the area of segment j in acres, and 

is part of the /:-circle of tree / _ r 1 if segment y" is 
U ~ i 

(̂  0 otherwise. 

The sum overj of Pij is 1. We can now write the observa­
tion for each segment as a sum of weighted tree values: 

yj = Y P'jPi- (1) 

Now suppose that we randomly drop m points on the 
surface of a forest with the same assumptions as above 
(our sampUng is with replacement). An unbiased estimator 
of the total value of interest for a sample selected with 
probability proportional to size is: 

(2) 
M 

= - E ^ ̂ . 

where: 
M 

AT — Y ^J' ^^^ ̂ °^^^ ^"^^^ °^ ^^^ forest in acres, 
y = i 

m = the number of sample points, 

M = the number of ground segments, and 

Wj = the number of times the yth unit appears in the 
sample. 

Note that Wj is an integer between 0 and m, inclusive. Aj 
and yj are fixed and Wj is random. In addition, we will 
define: 

F = Y yi' ^̂ ^ ̂ °^^ value of interest across all trees, and 
( = 1 

M 

Y* = Y J;; the total value of interest across all segments. 
7 = 1 

To show that Fis unbiased for F, we wUI first show Fto 
be unbiased for F* and then show that F* equals F. 
Following Cochran (1977, p. 252-255), we can show Fto 
be unbiased for F*: 

E[Y] ^EI^Y^W] 
7=1 

^yyiE[Wj 

(3) 

Wj is a multinomial random variable and its expected 
value is equal to m{Aj/AT). Therefore 

M 

E[Y] = Yyj= ^* 
7 = 1 

(4) 

We can now show that F is unbiased for F by showing that 
F* = F. Substituting the right hand side of equation (1) 
for yj in the definition of F*, we get: 

M N 

Y*-Y IiPuPi-
7 = 1 ' = 1 

(5) 

After substituting in the definition of p,y and rearranging 
the order of summation: 

(6) 

Because 

'^i - Y •'^J ^'J' 
7 = 1 

the term within the brackets on the right hand side of (6) 
equals I, and 

Y* = Y y^ ^ ^- Q-E-°- (7) 
/=1 

By definition, the variance of Fis 

-'• = U)s.rf-)- (8) 
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The sample estimate of the variance is then (Cochran 
1977): 

v(F) = 
m{m 

(9) 

The general development in equations (1) through (9) 
can be used for any specific type of forest sampling which 
follows the two part process of selecting trees from ran­
domly placed points. 

As a further example of the use of the jigsaw puzzle 
view, we will illustrate the sample frame when point 
samples are used to measure forest growth. For the greatest 
efficiency, measurements are taken at two points in time 
and the same random points are used both times. This type 
of sampling for forest growth is known as remeasured 
point sampling and has been discussed at length in the 
literature, most recently by Van Deusen et al. (1986) and 
Roesch et al. (1989, 1991, 1993). If a remeasured point 
sample had been taken, and Figure 1 represented time 1, 
the puzzle for the overall sample might be cut up into 
pieces like those in Figure 2. Trees 1, 2 and 3 are the 
same as those in Figure 1 and tree 4 is a tree which grew 
into the stand between times 1 and 2. The inner circles re­
present the trees' point sample areas of selection at time 1 

(say arn, including a subscript for time) and the outer 
circles represent the point sample areas of selection at 
time 2 (a/-,2 is larger due to an increase in basal area). 
Tree 4 only has an outer circle since it did not exist at 
time I and tree 2 only has an inner circle since it died prior 
to time 2. The dotted circle represents the selection area 
tree 2 would have had at time 2 if time 2 had occurred just 
prior to the tree's demise. Therefore, the dotted circle does 
not contribute to the definition of the segments. 

If the random point lands in segment a, trees 1 and 3 
would be measured at both times and tree 2 would be 
measured only at time 1; in segment b, tree 1 would be 
measured at both times and tree 3 would only be measured 
at time 2. This exemplifies the fact that even though 
another dimension was added to the sample (the time 
dimension), the forest sample concept remains the same, 
since the time dimension can be collapsed down onto 
the puzzle picture. So, in addition to the conditions 
mentioned above, the definition of the segments depends 
upon the exact times of each measurement. This concept 
of the sample unit is helpful in understanding the esti­
mators of the components of change from time 1 to time 2 
given in Van Deusen et al. (1986) and Roesch et al. 
(1989 and 1991). 

Figure 2. Puzzle pieces defined by location, size, and time. An 
example of sample units in a remeasured point sample. 
Trees 1 and 3 have grown and survived, tree 2 grew 
somewhat before dying and tree 4 is ingrowth. 

3. DISCUSSION 

Given the simplicity of the jigsaw puzzle concept, one 
might wonder why this view of forest sampling has not 
been proposed before. The most compelling reason is 
probably that the above estimators cannot be calculated 
when theAj's are unknown. Since a particular tree's area 
of selection might be divided between many of the puzzle 
pieces and the size of a particular puzzle piece may be 
limited by trees not sampled by that piece, the selection 
areas of both sample and non-sample trees must be known 
to calculate theAj's of the selected segments. For example, 
referring to Figure 1, if our point landed in section c, we 
would sample trees 1 and 2 and the area of c + d would 
be readily calculable. However, to calculate Fand v( F), 
we need the area of c alone, for which we do not have 
adequate sample information. We will show that this 
apparent deficiency is unimportant by showing that Fcan 
be reexpressed in terms which are calculable. This will, in 
fact, always be the case no matter which sampling method 
is described by the jigsaw puzzle view. 

The jigsaw puzzle view of point sampling is actually a 
mapping of the tree population into the associated ground 
segment population. We can reexpress F to show that it 
is equivalent to the usual point sampling estimator which 
is based upon the tree population. Expanding equation (2) 
to include the definition of yj and subsequent rearrange­
ment gives: 
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Because forest sampling simulations often start with a 
mapped forest, the ^^'s are readily obtainable. Once the 
puzzle is dissected, yj can be calculated for each piece. 
The simulator then simply selects these pieces from a list 
in proportion to their size. Contrast this with the simu­
lation resulting from the view of the point as the sample 
unit. In this latter simulation, a random point would be 
dropped and the tree list searched for all of the trees close 
enough to that point to be selected for the sample. Then 
the attributes of interest would be calculated. Since the 
probability of selecting a point from an infinite population 
twice is zero, this list search and calculation would have 
to be repeated for each random point, possibly resulting 
in repeated calculation of the attributes from the same 
cluster of trees. For simulation purposes, the optimal 
approach to programming will depend upon the length of 
the tree list to be searched, the degree of clustering in the 
tree population, and the number of random points. 

- E - v v , 

where w, equals the number of times tree / is selected for 
the sample. The final expression in (10) is the usual point 
sample estimator. 

The purpose of this paper, therefore, is not to introduce 
a new set of estimators for sampling systems which already 
have reasonably good estimators, but rather to show how 
sampling schemes of quite disparate justifications in the 
literature are related in general. This alternative avenue 
of understanding may be useful in many ways. For one, 
we believe that some abstract forest sampling systems may 
be easier to understand if put into the framework described 
above. Our experience is that students, for instance, 
readily grasp the idea of point sampling when taught as 
merely a method of dividing the forest up into non-
overlapping jigsaw puzzle pieces which are then sampled 
with probabiUty proportional to size. Researchers who are 
interested in developing new forest sampUng schemes or 
new estimators for existing schemes may benefit from this 
view because it provides another path for understanding 
new sampling schemes and for programming the forest 
sampling simulations used to test the new methods. The 
simulation discussed in Roesch (1993), for example, was 
simplified by using the jigsaw puzzle view rather than the 
other conceptualizations of the forest sampling frame 
which had been suggested up to that time. The simplifica­
tion stemmed from the fact that the bulk of the simula­
tion could be used for many different sampling schemes 
with only minor modifications to the subroutine which 
dissected the puzzle. 

4. CONCLUSION 

We've presented a generalized forest sampUng concept 
which utilizes a finite number of ground segments as the 
sample units existing within a land-area based sample 
frame. We have also given estimators based on this con­
cept. The jigsaw puzzle view should be of help in under­
standing the similarities and differences between different 
methods of forest sampling by putting all of the methods 
into the same framework. Although we would not nor­
mally utilize the associated estimators in their given form 
in an actual forest survey, we can always find an equivalent 
calculable form. The additional benefit of an alternative 
route for sampling simulations is not only one of academics 
but also economics. Given the amount of time and money 
it takes to acquire data in forestry studies, the ability to 
easily test the properties of different sampling methods 
before they are applied in the field is of paramount impor­
tance. We would not endeavor to undermine the impor­
tance of a thorough theoretical development of proposed 
forest sampling schemes as the crucial first step, but 
simulation of these schemes before implementation may 
help uncover overlooked problems. This alternative con­
ceptualization wiU, in general, facilitate comparisons 
within any group of forest sampling schemes. 
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Panel Surveys: Adding the Fourth Dimension 
GRAHAM KALTON and CONSTANCE F. CITRO 

ABSTRACT 

Surveys across time can serve many objectives. The first half of the paper reviews the abilities of alternative survey 
designs across time - repeated surveys, panel surveys, rotating panel surveys and split panel surveys - to meet these 
objectives. The second half concentrates on panel surveys. It discusses the decisions that need to be made in designing 
a panel survey, the problems of wave nonresponse, time-in-sample bias and the seam effect, and some methods 
for the longitudinal analysis of panel survey data. 

KEY WORDS: Panel surveys; Rotating panel surveys; Repeated surveys; Panel attrition; Time-in-sample bias; Seam 
effect; Longitudinal analysis. 

1. INTRODUCTION 

Survey populations are constantly changing over time, 
both in composition and in the characteristics of their 
members. Changes in composition occur when members 
enter the survey population through birth (or reaching 
adulthood), immigration, or leaving an institution (for a 
noninstitutional population) or leave through death, 
emigration, or entering an institution. Changes in 
characteristics include, for example, a change from married 
to divorced, or from a monthly income of $2,000 to one 
of $2,500. These population changes give rise to a range 
of objectives for the analysis of survey data across time. 
This paper reviews survey designs that produce the data 
needed to satisfy these various objectives. 

The paper is divided into two parts. The first part con­
tains a review of the general issues involved in conducting 
surveys across time, including the objectives of such 
surveys and the types of survey design that may be 
employed. This part is to be found in Section 2. The 
second, and main, part of the paper discusses one partic­
ular survey design, a panel survey that follows the same 
sample of units through time. The considerations involved 
in designing, conducting, and analyzing a panel survey are 
reviewed in Section 3. Section 4 provides some concluding 
remarks. 

2. SURVEYS ACROSS TIME 

This section presents an overview of analytic objectives 
across time, of designs for surveys across time, and of the 
extent to which different designs can satisfy the various 
objectives. The discussion relies heavily on Duncan and 
Kalton (1987), which contains a more detailed treatment 
of these issues. 

Changes in population characteristics and composition 
over time lead to a variety of objectives for surveys across 
time. These objectives include the following: 

(a) The estimation of population parameters {e.g., the 
proportion of the population in poverty) at distinct 
time points. 

(b) The estimation of average values of population 
parameters across time {e.g., the daily intake of iron 
averaged across a year). 

(c) The estimation of net changes, that is changes at the 
aggregate level {e.g., the change in the proportion of 
unemployed from one month to the next). 

(d) The estimation of gross changes and other components 
of individual change {e.g., the proportion of persons 
who were in poverty one year and were not in poverty 
in the following year). 

(e) The aggregation of data for individuals over time {e.g., 
the summation of twelve monthly incomes to give 
annual income). 

(f) The collection of data on events occurring in a 
specified time period {e.g., becoming unemployed), 
and on their characteristics {e.g., duration of spells of 
unemployment). 

(g) The cumulation of samples over time, especially 
samples of rare populations {e.g., women who become 
widowed). 

(h) The maintenance of a sample of members of a rare 
population that was identified at one point of time 
{e.g., scientists and engineers identified from a large-
scale survey at one point of time). 

' Graham Kalton, Westat, 1650 Research Blvd., Rockville, Maryland, U.S.A. 20850; Constance F. Citro, National Research Council, 2101 Constitution 
Ave. N.W., Washington, D.C., U.S.A., 20418. 
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A number of survey designs have been developed to 
provide the data needed to address these objectives. These 
designs are: 

• Repeated survey. A repeated survey is a series of sepa­
rate cross-sectional surveys conducted at different time 
points. No attempt is made to ensure that any of the 
same elements are sampled for the individual surveys. 
The elements are sampled from a population defined in 
the same manner for each individual survey {e.g., the 
same geographical boundaries and age-limits) and many 
of the same questions are asked in each survey. 

• Panel survey. A panel survey collects the survey data for 
the same sample elements at different points of time. 

• Repeated panel survey. A repeated panel survey is made 
up of a series of panel surveys each of a fixed duration. 
There may be no overlap in the time period covered by 
the individual panels, for instance one panel may start 
only as (or after) the previous one ends, or there may 
be an overlap, with two or more panels covering part of 
the same time period. 

• Rotating panel survey. Strictly, a rotating panel survey 
is equivalent to a repeated panel survey with overlap. 
Both limit the length of a panel, and have two or more 
panels in the field at the same time. However, it seems 
useful to distinguish between the two designs because 
they have different objectives. Rotating panel surveys 
are widely used to provide a series of cross-sectional 
estimates and estimates of net change {e.g., of unemploy­
ment rates and changes in such rates), whereas repeated 
panel surveys with overlaps also have a major focus on 
longitudinal measures {e.g., durations of spells of unem­
ployment). In consequence, repeated panel surveys tend 
to have longer durations and have fewer panels in 
operation at any given time than rotating panel surveys. 

• Overlapping survey. Like a repeated survey, an over­
lapping survey is a series of cross-sectional surveys 
conducted at different time points. However, whereas 
the repeated survey does not attempt to secure any 
sample overlap from the survey at one time point to the 
next, an overlapping survey is designed to provide such 
overlap. The aim may be to maximize the degree of 
sample overlap while taking into account both the 
changes desired in selection probabilities for sample 
elements that remain in the survey population and also 
changes in population composition over time. 

• Split panel survey. A split panel survey is a combination 
of a panel survey and a repeated survey or rotating panel 
survey. 

The choice of design in a particular case depends on the 
objectives to be satisfied. Some designs are better than 
others for some objectives but poorer for other objectives. 
Some designs cannot satisfy certain objectives at all. For 
a detailed discussion, see Duncan and Kalton (1987). 

The strength of a repeated survey is that it selects a new 
sample at each time point, so that each cross-sectional 
survey is based on a probability sample of the population 
existing at that time. A panel survey is based on a sample 
drawn from the population existing at the start of the 
panel. Although attempts are sometimes made to add 
samples of new entrants to a panel at later time points, 
such updating is generally difficult to do and is done 
imperfectly. Moreover, nonresponse losses from a panel 
as it ages heighten concerns about nonresponse bias when 
the panel sample is used to estimate cross-sectional para­
meters for later time points. For these reasons, repeated 
surveys are stronger than panel surveys for producing 
cross-sectional and average cross-sectional estimates 
(objectives (a) and (b)). With average cross-sectional 
estimates, another factor to be considered is the corre­
lation between the values of the survey variables for the 
same individual at different time points. When this corre­
lation is positive, as it generally is, it increases the standard 
errors of the average cross-sectional estimates from a panel 
survey. This factor thus also favours repeated surveys over 
panel surveys for average cross-sectional estimates. 

The superior representation of the samples for a repeated 
survey at later time points also argues in favour of a 
repeated survey over a panel survey for estimating net 
change (assuming that the interest in net change relates to 
changes in both population composition and character­
istics). However, in this case the positive correlations of 
the values of the survey variables for the same individuals 
across time decreases the standard errors of estimates of 
net change from a panel survey. Hence the presence of this 
correlation operates in favour of the panel design for 
measuring net change. 

The key advantages of the panel design are its abilities 
to measure gross change, and also to aggregate data for 
individuals over time (objectives (d) and (e)). Repeated 
surveys are incapable of satisfying these objectives. The 
great analytic potential provided by the measurement of 
individual changes is the major reason for using a panel 
design. 

Repeated surveys can collect data on events occurring 
in a specified period and on durations of events (e.g., spells 
of sickness) by retrospective questioning. However, retro­
spective questioning often introduces a serious problem 
of response error in recalling dates, and the risk of tele­
scoping bias. A panel survey that uses a reference period 
for the event that corresponds to the interval between 
waves of data coUection can eliminate the telescoping 
problem by using the previous interview to bound the 
recall {i.e., an illness reported at the current interview can 
be discarded if it had already been reported at the previous 
one). Similarly, a panel survey can determine the duration 
of an event from successive waves of data collection, 
limiting the length of recall to the interval between waves. 
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Repeated data collections over time can provide a 
vehicle for accumulating a sample of members of a rare 
population, such as persons with a rare chronic disease or 
persons who have recently experienced a bereavement. 
Repeated surveys can be used in this manner to generate 
a sample of any form of rare population. Panel surveys, 
however, can be used to accumulate only samples of new 
rare events (such as bereavements) not of stable rare char­
acteristics (such as having a chronic disease). If a sample 
of members with a rare stable characteristic {e.g., persons 
with doctoral degrees) has already been identified, a panel 
survey can be useful for maintaining the sample over time, 
with suitable supplementation for new entrants at later 
waves (for an example, see Citro and Kalton 1989). 

Rotating panel surveys are primarily concerned with 
estimating current levels and net change (objectives (a) and 
(c)). As such, elements are usually retained in the panel for 
only short periods. For instance, sample members remain 
in the monthly Canadian Labour Force Survey for only 
six months. The extent to which individual changes can 
be charted and aggregation over time can be performed 
is thus limited by the short panel duration. A special 
feature of rotating panel surveys is the potential to use 
composite estimation to improve the precision of both 
cross-sectional estimates and estimates of net change (see 
Binder and Hidiroglou 1988; Cantwell and Ernst 1993). 
See also Fuller et al. (1993) for an alternative method 
of using past information in forming estimates from a 
rotating panel design. 

Like rotating panel surveys, overlapping surveys are 
primarily concerned with estimating current levels and net 
change. They can also provide some limited information 
on gross change and aggregations over time. Overlapping 
survey designs are applicable in situations where some 
sample overlap is required and where the desired element 
selection probabiUties vary over time. This situation arises 
in particular in establishment surveys, where the desired 
selection probability for an establishment may vary from 
one cross-sectional survey to the next to reflect its change 
in size and type of activity. In such circumstances, a 
Keyfitz-type procedure can be applied to maximize the 
retention of elements from the previous survey while 
taking account of changes in selection probabiUties and 
population composition (see, for example, Keyfitz 1951; 
Kish and Scott 1971; Sunter 1986). The U.S. Internal Rev­
enue Service Statistics of Income Division's corporate 
sample provides an example of an overlapping survey 
design (Hinkins et al. 1988). 

By combining a panel survey with a repeated survey or 
a rotating panel survey, a split panel survey can provide 
the advantages of each. However, given a constraint on 
total resources, the sample size for each component is 
necessarily smaller than if only one component had been 
used. In particular, estimates of gross change and other 
measures of individual change from a split panel survey 

will be based on a smaller sample than would have been 
the case if all the resources had been devoted to the panel 
component. 

In comparing alternative designs for surveys across 
time, the costs of the designs need to be considered. For 
instance, panel surveys avoid the costs of repeated sample 
selections incurred with repeated surveys, but they face 
costs of tracking and tracing mobile sample members and 
sometimes costs of incentives to encourage panel members 
to continue to cooperate in the panel (see Section 3). If two 
designs can each satisfy the survey objectives, the relative 
costs for given levels of precision for the survey estimates 
need to be examined. 

3. PANEL SURVEYS 

The repeated measures over time on the same sampled 
elements that are obtained in panel surveys provide such 
surveys with a key analytic advantage over repeated 
surveys. The measurements of gross change and other 
components of individual change that are possible with 
panel survey data form the basis of a much greater under­
standing of social processes than can be obtained from a 
series of independent cross-sectional snapshots. The power 
of longitudinal data derived from panel surveys has long 
been recognized (see, for instance, Lazarsfeld and Fiske 
1938; Lazarsfeld 1948), and panel surveys have been 
carried out in many fields for many years. Subjects of 
panel surveys have included, for example, human growth 
and development, juvemle delinquency, drug use, victim­
izations from crime, voting behaviour, marketing studies 
of consumer expenditures, education and career choices, 
retirement, health, and medical care expenditures. (See 
Wall and Williams (1970) for a review of early panel studies 
on human growth and development, Boruch and Pearson 
(1988) for descriptions of some U.S. panel surveys, and 
the Subcommittee on Federal Longitudinal Surveys (1986) 
for descriptions of U.S. federal panel surveys.) In recent 
years, there has been a major upsurge in interest in panel 
surveys in many subject-matter areas, and especially in 
household economics. The ongoing U.S. Panel Study of 
Income Dynamics began in 1968 (see Hill 1992 for a 
description of the PSID) and similar long-term panel 
studies have been started in the past decade in many Euro­
pean countries. The U.S. Bureau of the Census started to 
conduct the Survey of Income and Program Participation 
(SIPP) in 1983 (Nelson et al. 1985; Kasprzyk 1988; Jabine 
et al. 1990), and Statistics Canada introduced the Survey 
of Labour and Income Dynamics (SLID) in 1993. The 
growth in interest in panel surveys has also given rise to 
an increase in literature about the methodology of such 
surveys, including such recent texts as Kasprzyk et al. 
(1989), Magnusson and Bergman (1990), and Van de Pol 
(1989). 
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This section reviews the major issues involved in the 
design and analysis of panel surveys. The treatment is 
geared towards repeated panel surveys of fixed duration 
Uke the SIPP and SLID, but most of the discussion appUes 
more generally to all forms of panel survey. 

3.1 Design Decisions for a Panel Survey 

The time dimension adds an extra dimension of com­
plexity to a panel survey as compared with a cross-
sectional survey. In addition to all the decisions that need 
to be made about the design features of a cross-sectional 
survey, a wide range of extra decisions needs to be reached 
for a panel survey. Major design decisions include: 

• Length of the panel. The longer the panel lasts, the 
greater is the weakh of data obtained for longitudinal 
analysis. For instance, the longer the panel, the greater 
the number of spells of unemployment starting during 
the life of the panel that will be completed before the end 
of the panel, and hence the greater the precision in 
estimating the survival function for such spells. On the 
other hand, the longer the panel, the greater the prob­
lems of maintaining a representative cross-sectional 
sample at later waves, because of both sample attrition 
and difficulties in updating the sample for new entrants 
to the population. 

It can sometimes be beneficial to vary the length of 
the panel between different types of panel members. 
Thus, for instance, when the analytic objectives call for 
it, panel members with certain characteristics {e.g., 
members of a minority population) or who experience 
certain events during the course of the regular panel 
{e.g., a divorce) can be retained in the panel for extended 
periods of observation. 

• Length of the reference period. The frequency of data 
collection depends on the ability of respondents to recall 
the information collected in the survey over time. Thus, 
the PSID, with annual waves of data collection, requires 
recall of events occurring in the previous calendar year, 
whereas SIPP, with four-monthly waves of data coUection, 
requires recall for the preceding four months. The longer 
the reference period, the greater the risk of recall error. 

• Number of waves. In most cases the number of waves 
of data collection is determined by a combination of the 
length of the panel and the length of the reference 
period. The greater the number of waves, the greater the 
risk of panel attrition and time-in-sample effects, and 
the greater the degree of respondent burden. 

• Overlapping or non-overlapping panels. With a repeated 
panel survey of fixed duration, a decision needs to be 
made as to whether the panels should overlap across 
time. Consider, for instance, the proposal of a National 
Research Council study panel that the SIPP should be 
a four-year panel (Citro and Kalton 1993). One possibiUty 

is to run each panel for four years, starting a new panel 
when the previous one finishes. Another possibility is 
run each panel for four years, but starting a new panel 
every two years. Yet another possibility is to run each 
panel for four years, starting a new panel every year. 

The design of nonoverlapping panels has the benefit of 
simplicity, since only one panel is in the field at any one 
time. It also produces a large sample for longitudinal 
analysis; for instance, the panels with the nonoverlap­
ping design can be roughly twice the size of those with 
the design that has two overlapping panels at any one 
time. However, this increase in sample size for non-
overlapping panels does not apply for cross-sectional 
estimates, since the data from the panels covering a given 
time point can be combined for cross-sectional estima­
tion. Also, the cross-sectional estimates for a time period 
near the end of a panel with the nonoverlapping design 
are at greater risk of bias from attrition, time-in-sample 
bias, and failure to update the sample fully for new 
population entrants than is the case with an overlapping 
design, in which one panel is of more recent origin. 
Moreover, the overlapping design permits the examina­
tion of such biases through a comparison of the results 
for the two panels for a given time period, whereas no 
such examination is possible with a nonoverlapping 
design. Another limitation of the nonoverlapping design 
is that it may not be well positioned to measure the effect 
of such events as a change in legislation. For instance, 
if legislation takes effect in the final year of a nonover­
lapping panel, there will be Uttle opportunity to evaluate 
its effect by comparing the situations of the same indi­
viduals before and for some period after the legislation 
is enacted. With overlapping panels, one of the panels 
will provide a wider window of observation. 

• Panel sample size. For a given amount of annual 
resources, the sample size for each panel is determined 
by the preceding factors. A larger panel for longitudinal 
analysis can be achieved by lengthening the reference 
period and by employing a nonoverlapping design. The 
sample size for cross-sectional estimates can be increased 
by lengthening the reference period, but not by using a 
nonoverlapping design. 

The above list determines the major parameters of a 
panel survey design, but there still remain a number of 
other factors that need to be considered: 

• Mode of data collection. As with any survey, a decision 
needs to be made as to whether the survey data are to be 
collected by face-to-face interviewing, by telephone, or 
by self-completion questionnaire, and whether computer 
assisted interviewing (CAPI or CATI) is to be used. With 
a panel survey, this decision needs to be made for each 
wave of data collection, with the possibility of different 
modes for different waves (for instance, face-to-face 
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interviewing at the first wave to make contact and estab­
lish rapport, with telephone interviewing or mail ques­
tionnaires at some of the later waves). When modes may 
be changed between waves, consideration needs to be 
given to the comparability of the data across waves. 
Sometimes a change in mode may involve a change in 
interviewer, as for instance would occur with a change 
from face-to-face interviewing to a centralized CATI 
operation. Then the effects of a change of interviewer 
between waves on the respondent's wiUingness to continue 
in the panel and on the comparability of responses across 
waves also need to be carefully considered. 
Dependent interviewing. With panel surveys there is the 
possibility of feeding back to respondents their responses 
at earUer waves of data collection. This dependent inter­
viewing procedure can secure more consistent responses 
across waves, but risks generating an undue level of con­
sistency. The ease of application of dependent inter­
viewing depends on the length of the interval between 
waves and the mode of data collection. Processing the 
responses from one wave to feed back in the next is easier 
to accomplish if the interval between waves is a long one 
and if computer assisted interviewing is employed. 
Edwards et al. (1993) describe the use of dependent inter­
viewing with CAPI in the Medical Care Beneficiary 
Survey, a survey which involves three interviews per year 
with each respondent. 

' Incentives. Monetary or other incentives {e.g., coffee 
mugs, calculators, lunch bags) may be offered to sampled 
persons to encourage their participation in a survey. 
With a panel survey, incentives may be used not only to 
secure initial participation but also to maintain coopera­
tion throughout the duration of the panel. There is an 
issue of when are the best times to provide incentives in 
a panel survey {e.g., at the first wave, at an intermediate 
wave, or at the last wave of the panel). Panel survey 
researchers often send respondents a survey newsletter, 
frequently giving some recent highlights from the survey 
findings, at regular intervals, both to generate goodwill 
for the survey and to maintain contact with respondents 
(see below). Birthday cards sent at the time of the 
respondents' birthdays are also often used for these 
purposes. 

• Respondent rules. Survey data are often collected from 
proxy informants when respondents are unavailable for 
interview. With a panel survey, this gives rise to the 
possibiUty that the data may be collected from different 
individuals at different waves, thus jeopardizing the com­
parability of the data across waves. The respondent rules 
for a panel survey need to take this factor into account. 

» Sample design. The longitudinal nature of a panel survey 
needs to be considered in constructing the sample design 
for the initial wave. Clustered samples are commonly 
employed for cross-sectional surveys with face-to-face 

interviewing in order to reduce fieldwork travel costs and 
to enable frame construction of housing unit listings to 
be performed only for selected segments. These benefits 
are bought at the price of the increase in the variance of 
survey estimates arising from the clustering. The optimum 
extent of clustering depends on the various cost factors 
involved and the homogeneity of the survey variables in 
the clusters (see, for instance, Kish 1965). With a panel 
survey, the use and extent of any clustering should be 
determined in relation to the overall panel with all its 
waves of data collection. In particular, the benefit of 
reduced fieldwork costs disappears for waves of data 
collection that are conducted by telephone interviewing 
or mail questionnaire. Also the migration of panel 
members to locations outside the original clusters reduces 
the benefit of the initial clustering for fieldwork costs 
at later waves. (However, some benefits of the initial 
clustering still operate for the large proportion of mobile 
persons who move within their own neighbourhoods.) 

Oversampling of certain population subgroups is widely 
used in cross-sectional surveys to provide sufficient 
numbers of subgroup members for separate analysis. 
Such subgroups may, for instance, comprise persons 
with low incomes, minority populations, persons in a 
specified age-group, or persons living in certain geo­
graphical areas. Such oversampling can also be useful 
in panel surveys, but caution is needed in its appUcation. 
With long-term panels, one reason for caution is that the 
objectives of the survey may change over time. Over-
sampUng to meet an objective identified at the start of 
a panel may prove harmful to objectives that emerge 
later. Another reason for caution is that many of the 
subgroups of interest are transient in nature (e.g., low 
income persons, persons living in a given geographical 
area). Oversampling persons in such subgroups at the 
outset of the panel may be of limited value for later 
waves: some of those oversampled will leave the 
subgroup while others not oversampled will join it. 
Thirdly, the definition of the desired subgroup for longi­
tudinal analysis needs to be considered. For instance, 
SIPP data are used to estimate durations of spells on 
various welfare programs. Since such estimates are 
usually based on new spells starting during the life of the 
panel, it may not be useful to oversample persons already 
enrolled on welfare programs. See Citro and Kalton 
(1993) for a discussion of oversampling for the SIPP. 

When oversampling of a certain subgroup of the popula­
tion {e.g., a minority population) is desired for a panel 
survey, the oversampling may require a large screening 
operation. The assessment of the cost of such screening 
should be made in the context of the full panel with all 
its waves of data collection. An expensive screening 
operation at the first wave may well be justifiable in this 
context. 
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• Updating the sample. When the sole objective of a panel 
survey is longitudinal analysis, it may be sufficient to 
adopt a cohort approach that simply follows the initial 
sample selected for the first wave. However, when cross-
sectional estimates are also of interest, it may be neces­
sary to update the sample at each wave to represent new 
entrants to the population. Updating for all types of new 
entrants is often difficult, but it is sometimes possible 
to develop fairly simple procedures to account for 
certain types of new entrants. For instance, in a panel 
of persons of all ages, babies born to women panel 
members after the start of the panel can be included as 
panel members. The SIPP population of inference 
comprises persons aged 15 and over. By identifying in 
initial sampled households persons who are under 
15 years old but who wiU attain that age before the end 
of the panel, by foUowing them during the panel, and 
by interviewing them after they reach 15 years of age, a 
SIPP panel can be updated for this class of new entrants 
(Kalton and Lepkowski 1985). 
Attention also needs to be paid to panel members who 
leave the survey population. For some the departure is 
clearly permanent {e.g., deaths), but for others it may 
be only temporary {e.g., going abroad or entering an 
institution). If efforts are made to keep track of tempo­
rary leavers, they can be readmitted to the panel if they 
return to the survey's population of inference. 
Panel surveys such as SIPP and PSID collect data not 
only for persons in original sampled households, but 
also for other persons - nonsampled persons - with 
whom they are living at later waves. The prime purpose 
of collecting survey data for nonsampled persons is to be 
able to describe the economic and social circumstances 
of sampled persons. The issue arises as to whether any or 
all nonsampled persons should remain in the panel after 
they stop living with sampled persons. For some kinds of 
analysis it is useful to follow them. However, to follow 
them would eat significantly into the survey's resources. 
When data are collected for nonsample members, these 
data may be used simply to describe the circumstances 
of sample members, in which case analyses are restricted 
to sample members, with nonsample members being 
assigned weights of zero. Alternatively, nonsample 
members can be included in cross-sectional analyses. In 
this case appropriate weights for sample and nonsample 
persons need to be developed to reflect the multiple ways 
in which individuals may appear in the dataset. Huang 
(1984), Ernst (1989) and Lavallee and Hunter (1993) 
describe the fair share weighting approach that may be 
used for this purpose. 

Tracking and tracing. Most panel surveys encounter the 
problem that some panel members have moved since the 
last wave and cannot be located. There are two ways to 
try to handle this problem. First, attempts can be made 

to avoid the problem by implementing procedures for 
tracking panel members between waves. One widely-
used procedure when there is a long interval between 
waves is to send mailings, such as birthday cards and 
survey newsletters, to respondents between waves, 
requesting the post office to provide notification of 
change of address if applicable. Another tracking device 
is to ask respondents for the names and addresses or 
telephone numbers of persons close to them {e.g., 
parents) who are unlikely to move and who will be able 
to provide locating information for them if they move. 

The second way to deal with lost panel members is to 
institute various tracing methods to try to locate them. 
With effort and ingenuity, high success rates can be 
achieved. Some methods of tracing may be specific for 
the particular population of interest {e.g., professional 
societies for persons with professional qualifications) 
while others may be more general, such as telephone 
directories, computerized telephone number look-ups, 
reverse telephone directories for telephone numbers of 
neighbours, mail forwarding, marriage licence registers, 
motor vehicle registrations, employers, and credit 
bureaus. It can be useful to search death records for lost 
panel members, particularly for long-term panel 
surveys. Panel members found to have died can then be 
correctly classified, rather than being viewed as non-
respondents. Methods of tracing are discussed by 
Burgess (1989), Clarridge et al. (1978), Crider et al. 
(1971) and Eckland (1968). 

3.2 Problems of Panel Surveys 

Panel surveys share with all surveys a wide range of 
sources of nonsampling error. This section does not review 
all these sources, but rather concentrates on three sources 
that are unique to panel surveys, namely wave nonresponse, 
time-in-sample bias and the seam effect. 

3.2.1 Wave nonresponse 

The nonresponse experienced by panel surveys at the 
first wave of data collection corresponds to that experienced 
by cross-sectional surveys. The distinctive feature of panel 
surveys is that they encounter further nonresponse at 
subsequent waves. Some panel members who become non-
respondents at a particular wave do not respond at any 
subsequent wave while others respond at some or all 
subsequent waves. The former are often termed attrition 
cases and the latter non-attrition cases. The overall wave 
nonresponse rates in panel surveys increase with later 
waves, but with well-managed surveys the rate of increase 
usually declines appreciably over time. For example, with 
the 1987 SIPP panel, the sample loss was 6.1% at wave 
1, 12.6% at wave 2, and it then increased slowly to 19.0% 
at wave 7 (Jabine et al. 1990). The tendency for the 
nonresponse rate to flatten off at later waves is comforting. 
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but nevertheless the accumulation of nonresponse over 
many waves produces high nonresponse rates at later 
waves of a long-term panel. For instance, in 1988, after 
21 annual rounds of data collection, the PSID non-
response rate for individuals who lived in 1968 sampled 
households had risen to 43.9% (HiU 1992). 

The choice between the two standard general-purpose 
methods for handling missing survey data - weighting 
adjustments and imputation - is not straightforward for 
wave nonresponse in panel surveys. For longitudinal 
analysis, the weighting approach drops all records with 
one or more missing waves from the data file and attempts 
to compensate for them by weighting adjustments appUed 
to the remaining records. This approach can lead to the 
loss of a substantial amount of data when the data file 
covers several waves. On the other hand, the imputation 
approach retains all the reported data, but requires con­
ducting wholesale imputations for missing waves. A com­
promise approach uses imputation for some patterns of 
wave nonresponse {e.g., those with only one missing wave, 
where data are available from both adjacent waves), and 
weighting for others (see, for example, Singh et al. 1990). 
For cross-sectional analysis, separate data files may be 
created for each wave. These files can comprise all the 
respondents for that wave, with either weighting adjust­
ments or imputations for the wave nonrespondents. 
Kalton (1986) and Lepkowski (1989) discuss general 
methods for handling wave nonresponse, Lepkowski et al. 
(1993) discuss imputations for wave nonresponse in the 
SIPP, and Michaud and Hunter (1993) describe plans for 
handling wave nonresponse in the SLID. 

With wave nonresponse there is the possibility of 
collecting some or all of the data for the missing wave at 
a subsequent interview. However, the quality of the retro­
spective data collected in this way needs to be carefully 
assessed. An experiment was conducted to examine the 
utility of this approach with the 1984 SIPP panel, using 
a missing wave form to collect responses for a skeleton set 
of core questions for the missing wave (Huggins 1987; 
Singh 1993). The analyses showed substantially fewer tran­
sitions in receipt of income, assets, and government 
assistance from the missing wave form than from bench­
mark data. In consequence the use of the missing wave 
form was discontinued. Administrative records may some­
times provide another possible source of skeletal data for 
missing waves. 

3.2.2 Time-in-sample bias 

Time-in-sample bias, or panel conditioning, refers to 
the effect that panel members' responses at a given wave 
of data collection are affected by their participation in 
previous waves. The effect may reflect simply a change in 
reporting behaviour. For example, a respondent may 
recognize from previous interviews that a "Yes" response 

to a question leads to foUow-up questions, whereas a 
"No" answer does not. The respondent may therefore give 
a " N o " answer to avoid the burden of the extra questions. 
Alternatively, a respondent may learn from previous inter­
views that detailed information on income is needed, and 
may therefore prepare for later interviews by collecting the 
necessary data. The time-in-sample effect may also reflect 
a change in actual behaviour. For example, a respondent 
may enroll in the food stamp program as a result of learning 
of its existence from the questions asked about it at earlier 
waves of data collection. 

A recent experimental study of panel conditioning in 
a four-year panel study of newlyweds found some evidence 
that participation in the study did affect marital well-
being (Veroff et al. 1992). However, that study used 
in-depth interviewing techniques that are more intrusive 
than those used in most surveys. A number of studies of 
panel conditioning that have been conducted in more 
standard survey settings have found that conditioning 
effects do sometimes occur, but they are not pervasive 
(Traugott and Katosh 1979; Ferber 1964; Mooney 1962; 
Waterton and Lievesley 1989). 

A benefit of rotating and overlapping panel surveys 
is that they enable estimates for the same time period 
obtained from different panels to be compared. Such 
comparisons have clearly identified the presence of what 
is termed "rotation group bias" in the U.S: and Canadian 
Labour Force Surveys {e.g. Bailar 1975, 1989, and U.S. 
Bureau of the Census 1978, for the U.S. Current Population 
Survey; Ghangurde 1982, for the Canadian Labour Force 
Survey). Rotation group bias may reflect nonresponse bias 
and conditioning effects. In analyses comparing the 
overlapping 1985,1986 and 1987 SIPP panels, Pennell and 
Lepkowski (1992) found few differences in the results 
from the different panels. 

3.2.3 Seam effect 

Many panel surveys collect data for subperiods within 
the reference period from the last wave of data collection. 
The SIPP, for instance, collects data on a monthly basis 
within the four-month reference period between waves. 
The seam effect refers to the common finding with this 
form of data collection that the levels of reported changes 
between adjacent subperiods (e.g., going on or off of a 
welfare program from one month to the next) are much 
greater when the data for the pair of subperiods are 
collected in different waves than when they are collected 
in the same wave. The seam effect has been found to be 
pervasive in SIPP, and to relate to both recipiency status 
and amounts received (see, for example, Jabine et al. 
1990; Kalton and Miller 1991). It has also been found.in 
PSID (HiU 1987). Murray e/ a/. (1991) describe approaches 
used to reduce the seam effect in the Canadian Labour 
Market Activity Survey. 
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3.3 Longitudinal Analysis 

There is a substantial and rapidly expanding literature 
on the analysis of longitudinal data, including a number 
of texts on the subject {e.g. Goldstein 1979; Hsiao 1986; 
Kessler and Greenberg 1981; Markus 1979). This treat­
ment cannot be comprehensive, but rather identifies a few 
general themes. 

• Measurement of gross change. As has already been 
noted, a key analytic advantage of a panel survey over 
a repeated survey is the ability to measure gross change, 
that is, change at the individual level. The basic approach 
to measuring gross change is the turnover table that 
tabulates responses at one wave against the responses to 
the same question at another wave. The severe limitation 
to this form of analysis is that changes in measurement 
errors across waves can lead to serious bias in the esti­
mation of the gross change (for further discussion, see 
Kalton et al. 1989; Rodgers 1989; Abowd and Zellner 
1985; Chua and Fuller 1987; Fuller 1990; and Skinner 
1993). 

• Relationship between variables across time. Panel surveys 
collect the data necessary to study the relationships between 
variables measured at different times. For instance, based 
on the data collected in the 1946 British birth cohort, the 
National Survey of Health and Development, Douglas 
(1975) found that children who were hospitalized for more 
than a week or who had repeated hospitalizations between 
the ages of 6 months and 2>Vi years exhibited more 
troublesome behaviour in school and lower reading scores 
at age 15. In principle, cross-section surveys may employ 
retrospective questions to coUect the data needed to 
perform this type of analysis. However, the responses 
to such questions are often subject to serious memory 
error, and potentially to systematic distortions that affect 
the relationships investigated. 

• Regression with change scores. Regression with change 
scores can be used to avoid a certain type of model 
misspecification. Suppose that the correct regression 
model for individual / at time t is 

Yi, = a -\- 0Xi, + yZi, + €/,, 

where x„ is an explanatory variable that changes value 
over time and z„ is an explanatory variable that is con­
stant over time {e.g., gender, race). Suppose further that 
Zi, is unobserved; it may well be unknown. Then 0 can 
still be estimated from the regression on the change 
scores: 

^•((+1) - ^ 0 = 0(Xi(,+ i) - Xj,) -t- €,( ,+ ,) - € / , , 

(Rodgers 1989; Duncan and Kalton 1987). 

• Estimation of spell durations. The data collected in 
panel surveys may be used to estimate the distribution 
of lengths of spells of such events as being on a welfare 
program. In panel surveys like the SIPP, some indi­
viduals have a spell in progress at the start of the panel 
(initial-censored spells), some start a spell during the 
panel, and some spells continue beyond the end of the 
panel (right-censored spells). Thus, not all spells are 
observed in their entirety. The distribution of spell dura­
tions may be estimated by applying survival analysis 
methods, such as the Kaplan-Meier product-limit 
estimation procedure to all new spells (including right-
censored new speUs) starting during the life of the panel 
{e.g. Ruggles and Williams 1989). 

• Structural equation models with measurement errors. 
The sequence of data coUection in a panel survey provides 
a clear ordering of the survey variables that fits well 
with the use of structural equation modelling for their 
analysis. This form of analysis can make allowance for 
measurement errors, and with several repeated measures 
can handle correlated error structures {e.g. Joreskog and 
Sorbom 1979). 

4. CONCLUDING REMARKS 

The data sets generated from panel surveys are usually 
extremely rich in analytic potential. They contain repeated 
measures for some variables that are collected on several 
occasions, and also measures for other variables that are 
asked on a single wave. Repeated interviewing of the same 
sample provides the opportunity to collect data on new 
variables at each wave, thus yielding data on an extensive 
range of variables over a number of waves. A panel data 
set may be analyzed both longitudinally and cross-
sectionally. Repeated measures may be used to examine 
individual response patterns over time, and they may also 
be related to other variables. Variables measured at a 
single wave may be analyzed both in relation to other 
variables measured at that wave and to variables measured 
at other waves. 

The richness of panel data is of value only to the extent 
that the data set is analyzed, and analyzed in a timely 
manner. Running a panel survey is like being on a tread­
mill: the operations of questionnaire design, data collection, 
processing and analysis have to be undertaken repeatedly 
for each successive wave. There is a real danger that the 
survey team will become overwhelmed by this process, 
with the result that the data are not fully analyzed. To 
avoid this danger, adequate staffing is needed and a well-
integrated organization needs to be established. 

In addition it is advisable to keep the panel survey 
design simple. The survey design should be developed to 
meet clearly-specified objectives. Adding complexities to 
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the design to enhance the richness of the panel data set for 
other uses should be critically assessed. Although persua­
sive arguments can often be made for such additions, they 
should be rejected if they threaten the orderly conduct of 
any stage of the survey process. 

As noted earlier, measurement errors have particularly 
harmful effects on the analysis of individual changes 
from panel survey data. The allocation of part of a panel 
survey's resources to measure the magnitude of such errors 
is therefore well warranted (Fuller 1989). Measurement 
errors may be investigated either by validity studies 
(comparing survey responses with " t rue" values from an 
external source) or by reliability studies {e.g., reinterview 
studies). The results of such studies may be then used in 
the survey estimation procedures to adjust for the effects 
of measurement errors. 
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