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In This Issue 

This issue of Survey Methodology opens with a special section on Small Area Estimation. The 
three papers in this special section consider the problem of domain estimation from a variety of 
perspectives. I would like to give special thanks to Jon Rao for coordinating the editorial work for 
this special section. One or two other papers on this topic, which were not yet ready for publication, 
may also appear in a later issue. 

The first paper in the special section, by Singh, Gambino and Mantel, considers the problem of 
small area statistics from the perspective of survey design. They discuss the role of sample design 
features such as stratification, clustering and sample allocation in the production of small area 
statistics for both planned and unplanned domains. A short overview of current approaches to small 
area estimation is also included. The paper is followed by insightful comments by Fuller and Kalton 
and a response from the authors. 

The paper by Holt and Holmes presents a model based approach to small area estimation that 
does not "borrow strength" from other domains, and which may be used when auxiliary totals and 
means are not available. Estimates of model parameters are combined with design based estimates 
of means or totals of covariates. Using an example from market research it is shown that the method 
can lead to significant gains in efficiency of estimates for small domains. 

The last paper in the special section, by Singh, Mantel and Thomas, presents an empirical 
comparison of several different small area estimators using simulated sampling from a population 
of farms. It is shown that, in the context of repeated surveys, estimators based on time series models 
can perform better, with respect to both bias and mean squared error, than those based on models 
for a single time point. 

Kovar and Chen present results of a simulation study in which they investigated statistical properties 
of the jackknife approach to variance estimation of imputed data sets. Under this approach, the 
variance due to imputation is incorporated in the variance estimator. Real data sets, four different 
imputation methods, simple random sampUng and a uniform nonresponse mechanism were used. 
Performance under a stratified multistage design and a non-uniform nonresponse mechanism was 
also studied. 

Tracy and Osahan propose ratio estimators associated with two sampUng strategies for estimation 
of a population mean in overlapping clusters with unknown population size. While much work by 
several researchers is available on non-overlapping clusters in the literature, there are many practical 
sampUng situations where one gets overlappmg clusters. The first sampUng strategy is an equal probabUity 
with replacement sampUng scheme while the second strategy is an unequal probabiUty sampUng scheme. 

Prasad and Graham extend the "Random Group Method" for sampUng with probabUity proportional 
to size (PPS) to sampling over two occasions. They use for this purpose the information on a study 
variate observed on the first occasion to select the matched portion of the sample on the second occasion. 

Sitter and Skinner show how linear programming may be used to find an optimal sample design 
in the context of a multi-way stratification. Their approach is compared to existing methods both 
by illustrating the sampling schemes generated for specific examples and by evaluating mean squared 
errors. Variance estimation is also considered. 

Fuller, Loughin and Baker consider regression weighting in the presence of non-response. They 
exhibit conditions under which the regression estimator remains consistent in the presence of 
non-response, and discuss implications for the choice of regressor variables. The ideas are iUustrated 
by application to the 1987-88 Nationwide Food Consumption Survey conducted by the Human 
Nutrition Information Service of the U.S. Department of Agricuhure. 

The paper by Stasny, Toomey and First gives a description of a survey conducted in 1990 to 
estimate the rate of rural homelessness in Ohio. The possible magnitude of the bias of the estimator 
is investigated by simulating sampling from a variety of synthetic populations. It is found that the 
bias is likely to be small compared to the standard deviation. 

The Editor 
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Issues and Strategies for Small Area Data 
M.P. SINGH, J. GAMBINO and H.J. MANTEL' 

ABSTRACT 

This paper identifies some technical issues in the provision of small area data derived from censuses, administrative 
records and surveys. Although the issues are of a general nature, they are discussed in the context of programs at 
Statistics Canada. For survey-based estimates, the need for developing an overall strategy is stressed and salient 
features of survey design that have an impact on small area data are highlighted in the context of redesigning a 
household survey. A brief review of estimation methods with their strengths and weaknesses is also presented. 

KEY WORDS: Sample design strategy; Design estimates; Model estimates. 

1. INTRODUCTION 

For decades, administrative records and censuses were 
the main sources of data used for policy and planning for 
both large and small areas. These are still the richest source 
of statistical data at small area levels in most countries. 
During the forties and fifties, however, as the reliance on 
sample surveys increased, survey based estimates comple­
mented the traditional sources because they provide more 
timely and cost efficient statistical data in a variety of 
subject matter fields. Although designed to provide reliable 
estimates primarily at larger area levels such as national 
and provincial, increasingly such surveys are being used 
to meet the growing demands for more timely estimates 
for various types and sizes of domains. No technical 
problem arises as long as these domains are large enough 
{e.g., age-sex groups, larger cities and sub-provincial 
regions) to yield estimates of acceptable reUabiUty. If data 
are needed for small domains, however, particularly if 
such domains cut across design strata, special estimation 
problems arise and several methods have recently been 
proposed to deal with such problems. 

The main message of this paper is to emphasize the need 
to look at the problem of small area data in its entirety. 
Small area needs should be recognized at the early stages 
of planning for large scale surveys. The sampUng design 
should include special features that enable production of 
reliable small area data using design or model estimators. 
The handling of this growing chaUenge to statistical agencies 
at the estimation stage should be viewed as a last resort. 

In section 2, we discuss data needs and the three main 
sources of socio-economic data in the Canadian context, 
namely, the census, administrative records and surveys. 
Section 3 identifies some technical issues regarding the 
three sources of data and highlights the problems of 
quality measures and their interpretation. Then a need for 

developing an overall strategy that includes the planning, 
designing and estimation stages in the survey process is 
highlighted in section 4. Two aspects of the design, namely, 
clustering in a multi-stage sample design and sample 
allocation are discussed. In section 5, we present some 
sample design options being incorporated during the current 
redesign of the Canadian Labour Force Survey, the largest 
monthly household survey conducted by Statistics Canada, 
with a view to enhancing the survey capacity to provide 
better quality small area data. The purpose of section 6 
is to review the many different approaches to estimation 
for small areas. We also suggest some new estimators and 
provide comments on the strengths and weaknesses of 
various domain estimators. A cautious approach towards 
the use of model estimators is stressed. 

2. INFORMATION NEEDS AND 
DATA SOURCES 

As the country's national statistical agency. Statistics 
Canada plays an integral role in the functioning of Cana­
dian society. While guaranteeing the confidentiality of 
individual respondents' data, the agency's information 
describes the economic and social conditions of the country 
and its people. Its economic, demographic, social and 
institutional statistics programs produce reliable data on 
many aspects of life at the national, provincial, and sub-
provincial levels for use by federal and provincial govern­
ments, private institutions, academics and the media. With 
increases in the planning, administration and monitoring 
of social and fiscal programs at local levels, there has been 
increasing demand for more and better-quality data at 
these levels. Three major sources of social, socio-economic 
and demographic data with emphasis on small area 
statistics are briefly discussed below. 

M.P. Singh, J. Gambino and H.J. Mantel, Statistics Canada, 16th Floor, R.H. Coats Building, Tunney's Pasture, Ottawa, Ontario, Canada 
K1A0T6. 



Singh, Gambino and Mantel: Issues and Strategies for Small Area Data 

Census of Population: The quinquennial census of 
population provides benchmark data and serves as the 
richest source of information, available every five years, 
for small areas and for various characteristics/domains/ 
target groups of poUcy interest such as ethnic minorities, 
disabled persons, youth and aboriginal peoples. 

Administrative Records: Administrative records are an 
increasingly important source of statistical data. These are 
extensively used in the demographic field by statistical 
agencies to produce local area estimates (Schmidt 1952, 
Verma and Basavarajappa 1987). In certain areas, such 
as vital statistics, administrative records are the only source 
of information for production of statistics at various levels 
of aggregation. In others, the relative merits of adminis­
trative records compared to censuses or surveys as data 
sources in terms of timeUness and quality of data deter­
mine the manner and the extent to which these data sources 
are used. In addition to direct tabulations, administrative 
records are used in a number of programs as a source of 
supplementary information for use in improving the 
quality of survey-based estimates. They are also being used 
in the construction of sampUng frames for conducting 
surveys. Examples at Statistics Canada include the Business 
Register and the Address Register of residential dwellings. 

Like the census of population, administrative records 
are very rich in geographical detail, making them a useful 
source of information for smaU area statistics. They are 
available more frequently and, due to recent technological 
advances, they are becoming a more cost-effective data 
source. However, administrative data are based on defi­
nitions made for programmatic rather than statistical 
purposes and their content is Umited. Details of a Statistics 
Canada program for integration and development of an 
administrative records system to produce statistical outputs 
are given by Brackstone (1987a, 1987b). Experiences in 
the use of administrative records in other countries are 
included in the conference proceedings edited by Coombs 
and Singh (1987). 

Household Surveys Program: Household surveys have 
long been an important source of economic and social 
statistics at Statistics Canada. Surveys under this program 
may be placed in three groups, namely, (i) the Labour 
Force Survey, (ii) Special Surveys and Supplementary 
Survey Programs and (iii) Longitudinal/Cyclical Surveys. 
These surveys are briefly introduced below indicating the 
scope for small area statistics in general. 

Starting as a quarterly survey in 1945, the Canadian 
Labour Force Survey (LFS) became a monthly survey in 
1952. The information provided by the survey has expanded 
considerably over the years and currently it provides a rich 
and detailed picture of the Canadian labour market. In 
addition to providing national and provincial estimates 
the survey regularly releases estimates for subprovincial 
areas. Regular estimates of standard labour market indi­
cators are also in great demand for small areas such as 

Federal Electoral Districts, Census Divisions and Canada 
Employment Centres. These estimates are used by both 
federal and provincial govermnents in monitoring programs 
and allocating funds and other resources among various 
poUtical and administrative jurisdictions. 

Because of cost considerations, the LFS is heavily used 
as a vehicle for conducting ad hoc and periodic surveys 
at the national and provincial levels in the form of supple­
mentary or special surveys. In the case of supplements, the 
LFS respondents themselves are asked additional questions, 
whereas for special surveys a different set of households 
is selected using the LFS frame. Both special and supple­
mentary surveys are usually sponsored by other govern­
ment departments and are conducted on a cost-recovery 
basis. For these surveys, the demands for small area 
statistics differ greatly from survey to survey, and generally 
the demands seem to be less pressing than those from the 
LFS itself. 

Statistics Canada conducts a General Social Survey 
(GSS) annually to serve, in a modest way, the growing data 
needs on topics of current social poUcy interest. The GSS 
program (Norris and Paton 1991) consists of five survey 
cycles, each covering a different core topic, repeated every 
five years. Because of the limited size of sample (10,000 
households nationally) the focus of the GSS is on estimates 
at the national level and on analytical statistics. 

Longitudinal/panel surveys are new m the Canadian con­
text. Statistics Canada has started two longitudinal surveys 
that will enrich the household survey program greatly, 
namely, the Survey on Labour and Income Dynamics and 
the National Population Health Survey. Both are large scale 
panel surveys and they are already creating expectations 
for data at sub-provincial and local area levels. 

3. ISSUES IN DOMAIN ESTIMATION 

There are numerous policy and technical issues that 
need to be addressed in the provision of small area 
statistics. The seriousness of these issues may vary from 
agency to agency and from one application to the next 
within the same agency depending on data quality and 
release policies. These issues are relevant for national and 
provincial estimates, but they assume higher significance 
in the context of small area statistics. As Brackstone 
(1987a) notes "on the issue of smaU area data evaluation, 
it is worth noting that error in small area estimates may 
be more apparent to users than error in national 
aggregates... at a local area level, there will be critics 
quick to point out deficiencies... it is true that for small 
areas, where estimation is more difficult, scrutiny of 
estimates is also more intensive". Several research and 
developmental studies on small area estimation are 
described in two volumes, one edited by Platek et al. 
(1987), and the other by Platek and Singh (1986). For a 
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recent overview of small area estimation techniques 
currently being used in United States federal statistical 
programs see U.S. Statistical Policy Office (1993). 

Use of Administrative Records: Federal and provincial 
government policies are the prime factors that influence 
the supply as well as the demand for small area data in 
most situations. On the supply side, government program 
driven administrative records contain a weaUh of statistical 
information that can be used to produce local area data. 
Examples of files being used in the Canadian context are: 
Family Allowance, Unemployment Insurance, Income 
Tax, Health, Education, Old Age Security. Income-related 
statistics are produced at the local area level on a regular 
basis. Any change in government policy and associated 
programs can have immediate impact, for better or worse, 
on the coverage, availabiUty, timeUness or quality of 
statistics derived from the corresponding administrative 
records. On the demand side, as noted earUer, govern­
ments need local area data for planning, implementing and 
monitoring their poUcies. 

Conceptual issues: Quite frequently, conceptual and 
definitional issues in a data series are confounded with 
sampling and estimation problems. For example, consider 
the Unemployment Insurance (UI) system in Canada. UI 
regulations stipulate different qualification and requalifi-
cation periods depending on the unemployment rate in a 
given region such that regions with higher unemployment 
rates require shorter qualifying periods of continuous 
employment. The estimates of regional unemployment 
rates derived from the LFS are used in determining the 
eligibility for an individual to receive benefits. These local 
area estimates are thus continually under close scrutiny by 
the public and the media. Such scrutiny however refers 
more often to conceptual issues rather than estimation 
issues per se; aspects such as the treatment in the survey 
questionnaire of discouraged workers, lay-offs and job 
search methods are questioned. 

Use of Models and Related Quality Measures: Domain 
estimates are produced for virtually aU large scale surveys, 
and as long as design estimators, i.e., approximately 
design-unbiased estimators are of acceptable quality, no 
problem arises. We consider two classes of design esti­
mators. Following Schaible (1992), direct estimators refer 
to estimators which use values of the study variable only 
for the time period of interest and only from units in the 
domain {e.g., the regression estimator with slope estimated 
using only data from the domain). Such estimators may, 
and often do, use information on one or more auxiliary 
variables from other domains or other time periods, and 
are design unbiased or approximately so. The second class 
of design estimators, modified direct estimators, may use 
information from other domains on both the auxiliary and 
the study variable but still retain the property of design 
unbiasedness or approximate unbiasedness (e.g., the 
regression estimator with slope estimated using the whole 

sample). There is a growing literature on indirect (or model) 
estimators, that is, estimators which use information on 
both the study and auxiUary variables from outside the 
domain and/or the time period of interest without any 
reference to their design unbiasedness properties. 

Most producers and users of survey data are accustomed 
to design estimators and the corresponding design-based 
inferences. They interpret the data in the context of repeated 
samples selected using a given probability sampling design, 
and use estimated design-based cvs (coefficients of variation-
square root of design variance divided by the design 
estimate) as the measures of data quality. For situations 
where either domains are too small or the sampling design 
did not foresee production of smaU area estimates, the 
design estimates may lead to large design cvs and model 
estimates may be the only choice if the survey-based 
estimates have to be provided for individual domains. 
A major challenge for statisticians is how to estimate, 
compare and explain to the users the relative precision of 
estimates from a survey that produces a large number of 
estimates at the national, subnational and large and small 
domain levels, most using design estimators but a few 
using model estimators. The model-based cvs (square root 
of design variance of model estimate divided by the model 
estimate) may convey a completely different message and 
may be several times lower than the corresponding design-
based cvs for the same small area and in many cases, lower 
than the design-based cvs for much larger areas. 

For model estimators, it is usually straightforward to 
derive expressions for the corresponding mean square 
errors {i.e., design variance -I- square of the design bias). 
Estimation of these expressions, with an adequate degree 
of reliability, is a different matter. If we follow the argu­
ment that the data {e.g., sample size) for such domains are 
inadequate for producing design estimates, it is unlikely 
that they would be adequate for producing design estimates 
of the corresponding variances and biases. As the estimation 
of bias is relatively more difficult, some authors seek 
design consistent model estimators, implying perhaps that 
bias can be ignored. However, if the sample size within the 
domain is sufficiently large to make the model estimator 
consistent, then the design estimator itself should give 
reliable estimates for the domain. For model estimators, 
suggestions have been made to use estimates of average 
mean square error computed over aU domains. As the need 
for estimates for different domains usually arises because 
these domains are thought to be different from each other, 
a challenging task is to explain why estimates from all such 
domains are given the same degree of reliability. Another 
possibility is to construct indirect model-based estimates 
of the variance and bias of the model estimators for indi­
vidual domains. Finding suitable methods of estimating 
mean square error for individual domains should be a 
research priority. Another serious concern for survey prac­
titioners is how to guard against model faUures. This 
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suggests a need for research into model validation for 
complex survey situations. Further, for model estimators 
that use data on study variables for periods other than the 
time period of interest, estimates of change over different 
time periods would be of questionable quality; see Schaible 
(1992). Also, model estimators that borrow strength from 
other domains in the larger area will suffer a similar 
drawback when comparing differences in the two domains 
within the large area. 

Issue of Privacy: In order to construct rich data bases 
for providing small area statistics, it is sometimes necessary 
to combine census, survey and/or administrative records. 
This necessitates Unkage of records obtained from different 
sources. However, given the public's concern about 
privacy, record linkages should be carried out only after 
careful examination of all their impUcations. Under the 
Statistics Act, Statistics Canada may have access to admin­
istrative records of other departments for statistical pur­
poses. But even for statistical purposes, as Fellegi (1987) 
notes, "we should have rigorous and auditable review 
procedures to ensure that we only carry out record linkage 
where the resulting privacy invasion is clearly outweighed 
by the public good from the new statistical information''. 

4. NEED FOR AN OVERALL STRATEGY 

Even though large scale surveys are designed primarily 
for national and provincial estimates, it is rare that the 
estimates from such surveys relate only to the national/ 
provincial populations as a whole. That is, invariably, such 
surveys are used to produce estimates for various cross-
classified domains and in some cases for area! domains 
(e.g., subprovincial) as weU. In many cases, no special 
attention is paid to achieving a desired level of precision 
at the domain level either at the design or the estimation 
stage as long as the reliability is (believed to be) within 
reasonable limits. Problems arise when the cross-classified 
domain refers to a rare subpopulation or when the areal 
domain refers to a small area in which case either no esti­
mates are possible/available or the estimates are of ques­
tionable quaUty. In a number of cases, this may happen 
simply because not enough attention was paid to these 
needs at the start of the survey planning process. If smaU 
area data needs are to be served using survey data then 
there is a need to develop an overall strategy that involves 
careful attention to meeting these needs at the planning, 
sample design and estimation stages of the survey process. 
For discussion of the design and estimation aspects, we will 
classify domains into the foUowing two types: 

Planned domains: In sampUng terms these are individual 
strata or groups of strata for which desired samples have 
been planned. In the Canadian context these are typically 
subprovincial regions, such as Economic Regions, Unem­
ployment Insiu-ance Regions, and Health Planning Regions. 

In other cases, such domains could be larger counties, 
districts or similar subprovincial regions. 

Unplanned domains: These are areas that were not iden­
tified at the time of design and thus may cut across design 
strata. Such domains can be of any size and they may 
create special estimation problems. 

Planning: As noted earlier, the data demands from 
continuing periodic surveys such as the LFS are relatively 
much higher than from ad hoc surveys. In the case of 
periodic surveys that are redesigned every five or ten years, 
a suitable strategy can be developed during survey rede­
signs, since, in such cases, statistical agencies are usually 
in a much better position to project future small area data 
needs based on past demands. For ad hoc surveys, 
designers should include the estabUshment of such needs 
as an integral part of objective setting for the survey. Thus, 
in both cases, survey designers should establish the desired 
degree of precision, not only for national and provincial 
level estimates, but also for the domains of interest. 

The first step of a strategy, in terms of the provision 
of small area data, will depend on the extent to which 
domains are identified in advance so that they can be treated 
as planned domains at the time of the design (or redesign) 
of the survey. If budgetary considerations do not permit 
reliable estimates for certain very small domains, then the 
option of either coUapsing domains, pooUng estimates over 
different surveys or not providing the estimates at all should 
be given serious consideration by survey designers in discus­
sions with the survey sponsors. Some domains cannot be 
determined in advance. These unplanned domains should 
be handled through special estimation methods. 

Sample design: In practice, it is rare that a design is 
optimal either for the national or provincial levels or for 
a single subject matter of interest. Usually varying degrees 
of compromise are introduced at different stages of 
sampUng and the data collection process to satisfy theo­
retical and operational constraints. Depending on the data 
needs, estimates for domains should also form an integral 
part of this compromise. We wiU discuss two ways of taking 
small area data needs into account at the design stage, 
namely, sample allocation and the degree of clustering of 
the sample. 

AUocation Strategy: In general, an optimum allocation 
strategy for national level estimates allocates samples to 
provinces approximately in proportion to their population. 
The reliability of estimates for smaller provinces in such 
cases suffers. Therefore a compromise allocation is usually 
preferred. There are different ways in which this compromise 
can be achieved depending on the emphasis placed on sub-
national estunates. SmaU reductions in sample sizes for larger 
provinces usually have little effect or the reliability of data 
for such provinces (or the national level data) but the 
corresponding sample increase in smaller provinces has 
significant impact on the reliability of their data. 
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The same principle holds for planned domains within 
the provinces. This is because optimum allocations in most 
situations are flat and the designers can exploit this feature 
by reallocating sample from the larger areas to planned 
domains that are smaller in size. 

Clustering: Large scale household surveys usually 
involve stratified multistage designs with relatively large 
primary sampling units in order to make the design cost-
efficient for national and provincial statistics. Such designs 
are thus highly clustered and, therefore, detrimental to the 
production of statistics for unplanned areal domains in the 
sense that, due to chance, some domains may be sample-
rich while others may have no sample at all. Given the 
importance of domain estimates, attempts should be made 
to minimize the clustering in the sample. The following 
factors are important in this context: choice of frame, 
choice of sampling units and their sizes, number and size 
of strata and stages of sampUng. The goal should be to 
make the design effects as low as possible given the oper­
ational constraints. 

Estimation: No matter how much attention is paid to 
domain estimates at the early stages of planning and 
designing a particular survey, there will always be some 
smaller domains for which special estimation methods will 
be required for producing adequate estimates. Recently, 
synthetic estimators, which borrow strength from domains 
that resemble the domain of interest, have attracted a good 
deal of attention. However, since synthetic estimators are 
very sensitive to the assumption that domains resemble 
each other, even a small departure from the assumption 
can make the design bias high and put their use in question. 
Probability samplers, conscious of design bias, have sug­
gested combinations of direct and synthetic estimators, 
with a view to addressing the design bias problem while 
trying to retain the strengths of the synthetic estimator. 
Empirical Bayes and similar techniques have been used to 
assign a weight to each component in the combined esti­
mators. A brief review of these developments is given in 
section 6 on estimation. 

5. SAMPLE DESIGN CONSIDERATIONS 

5.1 Introduction 

The small area problem is usually thought of as one to 
be dealt with via estimation. However, as was noted in the 
previous section, there are opportunities to be exploited 
at the survey design stage. This section uses the Canadian 
Labour Force Survey (LFS) to illustrate this. 

The current LFS design: The Canadian Labour Force 
Survey is a monthly survey of 59,000 households which 
are selected in several stages using various methods. The 
ultimate sampling unit, the household, remains in the 
sample for six months once it is selected and is then 

replaced. Higher stage units (primary sampling units 
(PSU), clusters) also rotate periodically. Each of Canada's 
ten provinces is divided into economic regions (ER) which 
the LFS further divides into self-representing areas 
(medium and large cities) and non-self-representing areas 
(the rest of the ER). Stratification and sample selection 
take place within these areas, and the number of stages of 
sampling as well as the units of sampling differ between 
these two types of area. For example, in areas outside 
cities, there are three stages of sampling, whereas there are 
only two in the cities. For a detailed description of the 
current LFS design, refer to Singh et al. (1990). 

5.2 Sampling Stages and Sampling Units 

Area frames are usually associated with clustered 
sampling, i.e., the first-stage units of selection are typically 
land areas containing a number of second-stage units. If 
a list of the second-stage units becomes available, then 
sampling directly from the list becomes possible, leading 
to a less clustered sample. This wiU result not only in 
improved estimates (due to lower design effects) but also 
in better small area estimates for unplanned domains. The 
latter holds since, by spreading the sample more evenly, 
it is more likely that an unplanned areal domain will 
contain some selected units. In contrast, in a clustered 
design we are often faced with a situation where one 
domain has sufficient sample because it happens to contain 
sampled clusters while a similar domain happens to have 
too few or no sampled clusters to produce good estimates. 

To reduce clustering in the LFS we investigated two 
options: (i) the possibility of replacing the area frame (with 
its two stage design) in the larger cities with a list frame 
using the Address Register and (ii) reducing the sampling 
stages in rural areas and smaUer urban centres. The Address 
Register, created to improve the coverage of the 1991 
Canadian census (Swain, Drew, Lafrance and Lance 1992), 
consists of a list of addresses, telephone numbers and 
geographical information for dwellings by census enumer­
ation area (EA). One option involved the selection of a 
stratified simple random sample of dweUings from the 
Address Register frame. This sample could then be sup­
plemented wUh a sample selected from a growth frame 
which comprises a set of dwellings that are not in the post-
censal address register. Handling of growth became the 
major stumbUng block in pursuing option (i) as no cost-
efficient method could be devised and tested in time for 
the current redesign. However, an updating strategy for 
the post-censal Address Register is still being investigated 
for future censuses and surveys. 

With regard to option (ii), in keeping with the idea that 
less clustering is better for small area estimates, changes 
in the units and reduction in the stages of sampUng were 
investigated for the areas outside the cities. Due to the 
changes that have taken place in data collection techniques, 
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namely, from face-to-face interviewing to telephone and 
computer assisted interviewing, the cost-variance analyses 
from the past are no longer relevant. More than 80 percent 
of LFS interviews are now conducted by telephone. With 
the increase in telephone interviewing and the resulting 
decrease in travel, it became feasible in almost all cases to 
eUminate the current PSU stage and to sample EAs directiy. 

5.3 Stratification 

One approach to stratification, similar in spirit to the 
above discussion on PSU size, is to replace large strata by 
many small ones. The hope is that a redefined domain or 
an unplanned domain will contain mostly complete strata. 
This will make the sample size in the domain more stable. 

There may be several overlapping areas for which esti­
mates are required. For example, each Canadian province 
is partitioned into both Economic Regions (ER) and 
Unemployment Insurance regions (UIR). One way to deal 
with this situation is to treat all the areas created by the 
intersections of the partitions as strata. In the Canadian 
case, for example, the 71 ERs and 61 UIRs yield 133 inter­
sections, a manageable number. In some cases, however, 
the number of intersections may be too large to handle 
effectively. In addition, some of the intersections may have 
very small populations, making them unusable as strata. 

By combining decreased clustering with smaller strata, 
we hope to have a design which is better able to meet small 
area needs. For example, the design should provide more 
flexibility in satisfying both ER and UIR requirements 
efficiently and in dealing with future changes in the defi­
nition of regions. 

5.4 Allocation 

If the definitions of small areas are known in advance, 
we may be able to treat them as planned domains and take 
them into account when designing the survey. The survey 
designer may endeavour to aUocate sufficient sample in 
each small area to make the production of reUable estimates 
feasible. For large surveys such as the Canadian Labour 
Force Survey, this approach can, at least in theory, make 
the production of a great many small area estimates fea­
sible. With a monthly sample of 59,000 households, and 
assuming that, say, 100 households per month are needed 
to produce reliable quarterly estimates, the country can 
be divided into about 600 non-overlapping areas, each 
guaranteed to have sufficient sample. Unions of such areas 
will also have enough sample to produce reliable monthly 
estimates. 

Various sample allocation strategies are possible. In a 
top-down approach, once a provincial sample size is deter­
mined, the sample is allocated among the sub-provincial 
regions. However, it may turn out that it is not possible to 
satisfy the requirements for the reliability of sub-provincial 

estimates for the given provincial sample size. In a bottom-
up strategy, the sample would be aUocated to sub-provincial 
regions first in such a way that reliability objectives for 
each region are satisfied. As a result, we would expect 
comparable sample sizes in each sub-provincial region. 
This approach may result in a provincial sample size that 
is bigger than the one specified in the top-down approach. 
Regardless of which of the two strategies is used, adjust­
ments to the initial allocations will usually be required. The 
resulting allocation will likely resemble a compromise 
between proportional aUocation and equal allocation. In 
practice, the survey designer must perform a complex 
juggling act among provincial reUability requirements, 
sub-provincial requirements for one or more sets of 
regions, total survey costs and in-the-field details. 

The approach taken in the current LFS redesign may 
be useful in other surveys as well. The sample was allocated 
in two steps: first, a core sample of 42,000 households was 
allocated to produce good estimates at the national and 
provincial levels; then the remaining sample was allocated 
to produce the best possible sub-provincial estimates. The 
resulting compromise allocation will produce reliable 
estimates for almost aU planned domains. The compromise 
resulted in only minor losses at the provincial level and 
substantial gains at the subprovincial level. For example, 
the expected CVs for 'unemployed' for Ontario and 
Quebec are 3.2 and 3.0 per cent, respectively, instead of 
2.8 and 2.6. The corresponding figures for Canada are 
1.51 and 1.36. Optimizing for the provincial level yields 
CVs as high as 17.7 per cent for UI regions. With the 
compromise aUocation, the worst case is 9.4 per cent. 

Sample redistribution: There is usually some scope for 
moving sample from one area to another. For example, 
reducing the sample size by 1,000 households in a large 
province and making a corresponding increase in a small 
province will cause a marginal deterioration in the quality 
of provincial estimates in the former but will improve the 
estimates in the latter significantly. Similar movements of 
sample can be attempted within province. 

5.5 Other Considerations 

Change in definitions of small areas: Survey designers 
are faced with the fact that the definitions of planned 
domains may change during the life of a design and they 
may then have to treat the new domains as unplanned 
domains. For example, it is quite possible that the defini­
tions of Unemployment Insurance Regions will change 
two or three years after the new LFS design is introduced 
in 1995. To deal with this at the design stage, the best that 
the survey designer can do is to choose as buUding blocks 
areas which are standard {e.g., census-defined areas whose 
definitions are fairly stable) and hope that the redefined 
regions are unions of these standard areas. This is the 
approach that was taken in the current LFS redesign. 
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An alternative is to adopt an update strategy. This 
entails a reselection of units, doing it in such a way that 
the overlap between the originally selected units and the 
newly selected ones is maximized. By taking this approach, 
the number of new umts that have to be Usted is minimized. 
This also minimizes other field disruptions such as the need 
to hire new interviewers. 

6. ESTIMATION 

The purpose of this section is to review some of the 
different approaches to estimation of totals for small 
areas. No attempt is made to provide an exhaustive review; 
the discussion indicates the trend of developments in small 
area estimation research. For a detailed review, see the 
recent paper by Ghosh and Rao (1993). To facilitate this 
review we will classify small area estimation methods into 
two types. This is just one of many possible classification 
schemes. The first class of estimators we call design esti­
mators, i.e., (approximately) design unbiased estimators, 
which includes direct and modified direct estimators. As 
noted earUer, design estimators are often unsatisfactory, 
having a large variance due to small sample sizes (or even 
no sample at all) in the smaU areas. The second class we 
call indirect (or model) estimators, and it includes synthetic 
and combined estimators. Some of these estimators are 
compared empirically in an earlier version of this paper 
by Singh, Gambino and Mantel (1992). 

6.1 Design Estimators 

Direct Estimators: Direct small area estimators are 
based on survey data from only the small area, perhaps 
making use of some auxiliary data from census or adminis­
trative sources in addition to the survey data. The simplest 
direct estimator of a total is the expansion estimator, 

Y = 
-' e,a 

Y ^iPi' (6.1) 

where 5̂  is the part of the sample in small area a and w, 
is the survey weight for unit /. This estimator is unbiased; 
however, it may have high variability due to the random 
sample size in area a. 

If the population size Â ^ is known then a post-
stratified estimator, 

Ypst,a = NaY ^iPij Y ^ ' = ^aYe,a/Ne,a = N « J . . a , 

iisa I i€s, ^g 2) 

may be used. This estimator is more stable than the expan­
sion estimator; however, there may be some ratio estUnation 
bias in complex surveys. 

If the sampling scheme is stratified and the Â ^ „ are 
known, where N/j^ is the population size in stratum h 
and small area a, an alternative post-stratified esti­
mator is_ f„,p„^„ = l,h(Nh,aliisi,^„Wiyj/liish,a^i) = 
lhNh,afh,e,a/Nh,e,a = I,hNi,,aPii,a-^^^ Strata may also 
be post-strata instead of design strata. 

Ratio estimation is similar to post-stratified estimation, 
the difference being that another auxiliary variable is used 
in place of the population counts N^ and N,,a. For 
example, if x is a covariate for which the small area totals, 
Xa, or the stratum small area totals, X,,^, are known then 
we may define the ratio estimators 

Yr,c ^a^a and Yst,r,a — Y •^h.a^h.a, (6-3) 

where R^ = fe,al^e,a is an estimate of the ratio Y^/Xa 
and i?/, a = fl,,e,a/^h,e,a-

A regression estimator attempts to account for dif­
ferences between small area subpopulation and subsample 
values of the covariates via an estimated regression rela­
tionship between the variate of interest, y, and the 
covariates, x. An advantage of regression type estimation 
is that it is easily extended to vector covariates. The 
estimator is given by 

•reg,a Ya + 0a(Xa ' K), (6.4) 

where fg may be an expansion or post-stratified estimator, 
Xa must be calculated in the same way as 7^, and 0a = 
liisa ^ r ' WiyiXl [ Zi^^ V - ' w,x,x,' 1 - ' where v,- are given 
weights for the regression. Note that 4 = /?„ when x is 
scalar and v, = jc,-. When f^ and X^, are expansion esti­
mators this estimator is also called the generalized regres­
sion estimator. Approximate design unbiasedness of this 
estimator follows from that of fa and Xa • 

As with the ratio type estimators, regression type 
estimation may also be appUed within design strata or 
post-strata. 

Modified Direct Estimators: Modified direct estimators 
may use survey data from outside the domain; however, 
they remain approximately design unbiased. By a modified 
direct estimator we mean a direct estimator with a syn­
thetic adjustment for model bias; since the adjustment 
would have approximately zero expectation with respect 
to the design, the modified estimator is approximately 
design unbiased if the direct estimator is. An example is 
obtained by replacing 4 in (6.4) by a synthetic estimator 
/3 = IteV~'iv, j ,x/ {E/65V-'iv,-;f,x,')-'; we wiU denote 
this estimator by fsreg,a- ^ would generally be more stable 
than 0a; the choice between them would depend on the 
size of the variance of 0a relative to the variation in the 
0a s over areas a. A compromise is to take a weighted 
average X<j 4 -I- (1 - Xa)jS where X̂  is suitably chosen; 
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options for the choice of X̂  are discussed under combined 
estimators in Section 6.2. A second example is obtained 
by replacing 4 in (6.4) by R = fg/X^; note that .R is a 
special case of 0 where x is scalar and v, = Xj. 

6.2 Indirect Estimators 

Synthetic Estimators: Synthetic estimation methods are 
based on an assumption that the small area is simUar in some 
sense to another area, often a larger area which contains 
it. Estimates for the other area would generally be more 
reliable than those for the small area. The resulting synthetic 
estimator would then have small variance, though it may 
be badly biased if the underlying assumption is violated. 

One of the simplest synthetic estimators arises from the 
assumption that the small area mean is equal to the overall 
mean. This leads to the mean synthetic estimator 

fsyn.n,,a = ^ . D '^/.V// Y ""' = ^ « - ^ - ^^"^^ 
lis I iis 

A more common synthetic estimator is based on stratifica­
tion or post-stratification. 

y 
^s}>n,sl,m,a - Y ^".o E ^iPi Y Wi^Y ^"''-y^'-

'' ii^h ' iisf, h 

As with direct estimators, ratio synthetic estimation 
may be based on other auxiliary data besides the popula­
tion counts Na or Ni,a. For example, the common ratio 
synthetic estimators based on a covariate x are defined as 

Ysyn,r,a ~ ^aYel^e ^rid jSyn,ir,r,a — 2 ^ ^A,a^Ti.e''^A.e> 

(6 .6) 

where fe = YjHs^iPt is the expansion estimator of the 
population total for >» and Yfte = 'Lif.sh^iPi-^e^'^^^h.e 
are similarly defined. These estimators have been studied 
by Gonzalez (1973), Gonzalez and Waksberg (1973) and 
Ghangurde and Singh (1977, 1978), among others. 

Singh and Tessier (1976) suggested an aUernative ratio 
synthetic estimator, using A'instead of ^g, defined as 

Y 
^syn,r,a 

XaYJX. (6.7) 

Both fsyn,r,a ^nd %y„^r,a h^vc the same synthetic bias 
and the ratio bias in fsyn,r,a wiU be negUgible for large 
samples. The choice between these two estimators depends 
on p, the correlation of f̂  and X^- It can be shown that 
for large samples V{ fsyn,r,a) ̂  Î ( Ysyn,r,a) if P ^ 
0.5c^/Cj,, where c^ and Cy are the coefficients of variation 
of fie and fe, respectively. In most cases, when p is high 
or the population is skewed, fsyn,r,a would be preferred; 
however, when ĉ^ is high and the correlation is only 
moderate, ?x̂ „,r,o may be the better choice. 

In some situations information on a second auxiliary 
variable (z) in addition to x may be available. Then a 
bivariate ratio synthetic estimator may be constructed: 

f^ylr,a = T A ^ / X + (l - 'ia)^afel^e, (6-8) 

where 7^ is suitably chosen. Extensions to a multivariate 
ratio synthetic estimator may be considered following 
Olkin (1958). 

Regression synthetic estimation is similar to ratio 
synthetic, 

^syn,reg,a P-^a t 

0 = Y^Vi^ WiyiXi ^ V; ' WiXjX; 

iis ^ iis •' 

- 1 

(6.9) 

Again, regression synthetic estimation may also be applied 
within design strata or post-strata. Royall (1979) suggested 
a slight variation, fsyn,Roy,a = ILi^SaPi -^0(^a- HiiSa^i), 

where the sum of >'-values for only units not included in 
the sample is estimated synthetically. 

Remark: The examples of modified direct estimators 
presented in Section 6.1 can also be considered to be 
ratio or regression synthetic estimators with a design-
based adjustment to correct for bias. For example, we 
m a y write Zreg,a = Zyn,reg,a + ( Y„ - /3^a) whcrC 

fa - 0Xa is an estimate of the bias of fsy„,reg,a- Simi­
larly, fsreg,a Can also be written as the Royall estimator, 
fsyn,Roy,a, with a dcsign-bascd adjustment for bias. 

PurceU and Kish (1980) discuss another type of synthetic 
estimation which they caU SPREE (structure preserving 
estimation) for small area estimation of frequency data. 
Detailed historical counts, perhaps from a census, are 
combined with less detailed current survey estimates to 
produce detailed estimates of current counts. The assump­
tion here is that certain relationships among the detailed 
counts are stable over time. 

Combined Estimators: By a combined estimator we 
mean a weighted average of a design estimator and a 
synthetic estimator. 

V — X y 
^com.a i^nt^n 

des.a + (1 - \a)fs syn.a. (6.10) 

where X̂  is suitably chosen. The aim here is to balance the 
potential bias of the synthetic estimator against the insta-
bUity of the design estimator. There are three broad 
approaches which may be used to define the weights X̂  in 
(6.10); they may be fixed in advance, sample size depen­
dent, or data dependent. 

The first and simplest approach to weighting is to fix 
the weights in advance, for example, to take a simple 
average. However, this does not make any allowance for 
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the actual observed reliability of the design estimator. For 
some realized samples the design estimator for smaU area 
a is more reliable than for other realized samples. The 
weight given to the design estimator should reflect this. 

The second general approach to weighting of the design 
and synthetic parts is called sample size dependent, in 
which the weights are functions of the ratio Ng.a/Na. 
Another possibility, not considered here, is to base the 
weights on the realized sample values of a covariate x; for 
example, the weight could be a function of X^es,a/-^a or 
of Sla/al^a where S^^ is the reaUzed variance of Xdes,a, 
conditional on N^a or some other relevant aspect of the 
realized sample, and al^a is the unconditional variance 
of X,jes,a • 

Some specific estimators in this class have been proposed 
earUer. Drew, Singh, and Choudhry (1982) proposed the 
sample size dependent estimator 

Yssd,r,a - ^fl^r.a + (1 " K)Ysy„^r,a, (6 .11a) 

where 

X, 
IN 

if Ne,a > 6Na 

Nga/^Na Otherwise 
(6 .11b) 

and 6 is subjectively chosen to control the contribution of 
the synthetic component. Sarndal (1984) suggested 

'ssd,reg,a ^a^sreg.a ' (^ ^a) ^syn,reg,a. (6.12) 

where X,, = Ne,a/Na. Rao (1986) suggested a modifica­
tion to this in which X̂  would be taken to be 1 whenever 
Ne^a ^ Na. SMmdal and Hidiroglou (1989) refined Rao's 
suggestion by taking X̂  = {Ne,a/Na)''~^ whenNe,a < Na, 
where h is chosen judgementally to control the contribu­
tion of the synthetic component. 

It is the bias of the synthetic component that is of 
concern when using these sample size dependent estimators 
in practice. The weight associated with the synthetic 
component should be such that the bias is kept within 
reasonable limits. For example, the sample size dependent 
estimator of Drew, Singh and Choudhry (1982), with 
generalized regression estimation replacing the ratio 
estimation and 6 = 2/3, is currently used in the Canadian 
Labour Force Survey to produce domain estimates. For 
a majority of domains the weight attached to the synthetic 
component is zero as the direct estimator itself provides 
the required degree of reliability. For other domains the 
weight attached to the synthetic component is about 10% 
on average and never exceeds 20%. Depending on the risk 
of bias that one is willing to take, 5 may Ue in the range 
[2/3,3/2] for most practical situations. 

The third approach to weighting we call data dependent. 
The optimal weights for combining two estimators generally 
depend on the mean squared errors of the estimators and 

their covariance. These quantities would generally be 
unknown but may be estimated from the data. For our 
combined estimators this would usually require some 
modelUng of the bias of the synthetic part. An early and 
weU known example of this approach is due to Fay and 
Herriot (1979). They model the biases of the synthetic 
estimators for the small areas as independent random 
effects with an unknown but fixed variance. To be more 
specific, if f(ies,a is the design estimator then they consider 
the model Ya = Xa0 -^ «„ and fdes,a = i'a + €„ where 
Ola ~ (O.CT̂ ). €a ~ (O.j'a), and Qia and €o are independent 
and uncorrelated over a, a^ is unknown and Va are assumed 
known (in practice they would need to be estimated). For 
a given value of cr̂  the optimal weights for combining 
fdes.a and Xa0 Can be calculated. An estimate of CT^ is 
obtained by the method of fitting constants and substituted 
into the optimal weights. Some protection against model 
mis-specification is obtained by truncating the resulting 
estimate if it deviates from the direct estimate by more than 
a specified multiple of c .̂ Schaible (1979) and Battese 
and Fuller (1981) also consider empirically estimated 
optimal weights X̂  in (6.12) based on similar random 
effects models for the small area totals. 

Prasad and Rao (1990) provide an estimator of the 
mean square error of the Fay-Herriot estimator which 
makes allowance for the estimation of the variance com­
ponents. Kott (1989) proposes a design consistent estimator 
of the mean square error, but finds it to be very unstable. 

Another alternative is to use historical data to calculate 
the weights; this has the advantage that the weights may 
be more stable than if they are estimated from current 
survey data; however, there is an underlying assumption 
that the optimal weights are stable over time. 

Remark: In sample size dependent estimation the 
weights are allowed to depend on the observed size of 
the subsample Sa, but not on the values of the variate 
of interest. This non-dependence of the weights on the 
variate of interest has advantages and disadvantages. 
An advantage is that the same weights would be used 
for estimation of totals for all variates of interest; they 
need to be calculated only once. More importantly, 
the estimate of the sum of two variables is the sum of 
the estimates of the two variables. A disadvantage is 
that the weights do not directly take account of either 
the reliability of the design estimator for the variate 
of interest or the likely magnitude of the bias of the 
synthetic estimator. 

Combining data over time: For repeated surveys pooling 
of data over survey occasions to increase the reliability of 
estimates is a common practice. Depending on the rotation 
pattern used for such surveys, significant gains in relia­
bility can be achieved. This pooling or averaging over time 
is thus of particular interest in the context of domain 
estimation where reliability is usually low. For domain 
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estimation in the Canadian Labour Force Survey it is 
normal practice to use a sample size dependent estimator 
based on three month average estimates of employed and 
unemployed. Due to the six month rotation scheme used, 
as noted earlier, averaging over three months increases the 
sample size by one third. If samples completely overlap 
between periods then averaging does not resuU in any gain 
in efficiency. For other rotation patterns the sample size 
for domain estimates could be more than doubled through 
this process. There is, however, a conceptual problem with 
pooled estimates, in that such estimates refer to an average 
of the parameter of interest {e.g., unemployment) over a 
period of, say, three months. 

In composite estimation the current design estimator 
is combined with the composite estimator for the previous 
period, updated by an estimate of change based on the 
common sample. This idea was used, though not in the 
context of small area estimation, by Jessen (1942), and 
Patterson (1950), among others. Binder and Hidiroglou 
(1988) provide a review. The weights for the combination 
are typically estimates of the optimal weights under the 
assumption that these weights are time stationary. These 
data dependent weights have the disadvantage that they 
lead to inconsistency of estimates for different charac­
teristics and their sums. 

A recent development in small area estimation tech­
niques is the use of time series methods for periodic 
surveys. The relationship between parameters of interest 
for different time periods is modeUed and this model is 
exploited to improve the efficiency of the estimates for the 
current occasion. In most cases some allowance must also 
be made, through modeUing or otherwise, for the non-
independence of samples for different survey occasions 
due to the sample rotation scheme. Some references for 
this time series approach are Choudhry and Rao (1989), 
Pfeffermann and Burck (1990), Singh, Mantel and Thomas 
(1994) and Singh and Mantel (1991). AU of these are 
generalizations of the Fay-Herriot model which allow the 
regression parameters, small area effects, and survey 
errors to evolve over time according to various time series 
models. The vector of small area estimates that results 
from this approach can be written as a weighted average 
of the vector of design estimates and a vector of synthetic 
estimates which are based on past data and the current 
values of covariates; however, the matrix of weights would 
not generally be diagonal so that the estimator for any 
single small area would generally depend also on the design 
estimates and synthetic estimates for other small areas. 

sponsors/program managers that some small area data 
needs cannot be met as a by-product of a system designed 
optimally for national/sub-national estimates. Significant 
gains, which may vary from survey to survey, can be 
achieved at the domain level at a marginal reduction in 
reUability at higher levels. There is a need to develop an 
overall strategy that incorporates desired reliability for the 
planned domains as well as for higher levels through 
compromise allocations, and reduced clustering to help 
improve estimates for unplanned domains. It should be 
noted that many of the planned domains at design time 
may become unplanned (revised) over time in the context 
of continuous surveys. 

The overall strategy should also include consideration 
of both design estimators for larger domains and model 
estimators for small domains. A model estimator should 
be preferred over a design estimator only if its mean square 
error (design variance -I- bias^) is estimable and it is suffi­
ciently smaUer than the corresponding variance of the 
design estimator. We should have estimates of mean 
square error for each of the individual domains. An option 
that statistical agencies can exercise is to pool similar 
domains or pool estimates over different time periods for 
the same domain. They may even suppress estimates for 
some domains on account of data reliabiUty or privacy 
concerns. 

The second chaUenging task for statisticians is to explain 
to users the different types of measures of reUability for 
different sets of estimates from the same survey. It is 
hoped that with more research on model validation and 
better estimates of mean square errors, designers will get 
more confidence in using model estimators for smaU 
domains. In the meantime model estimators should be 
used with caution even if they have significantly smaller 
coefficients of variation. 

Censuses, supplemented by data from administrative 
records, are likely to remain the primary source of small 
area socio-economic data, especially for countries having 
a quinquennial census of population and housing. Also, 
concerns about problems with conceptual issues in the 
context of data for administrative records are likely to 
continue until statistical agencies are given an opportunity 
to influence the development of the forms used to collect 
such data. Until then, this immensely rich data source 
cannot be fully exploited for statistical purposes and more 
so for domain estimation. 

7. CONCLUSION ACKNOWLEDGMENT 
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COMMENT 

W.A. FULLER" 

The authors are to be congratulated on an excellent 
description of the design and estimation considerations 
associated with domains. The authors discuss estimation 
for planned domains, particularly situations in which 
domain membership can be identified in the frame, and 
estimation for unplanned domains including domains for 
which the domain membership cannot be determined from 
the frame. This is a fine contribution to the growing 
literature on domain estimation. 

The authors give a particularly good description of the 
planning, data collection, and processing activities associ­
ated with surveys conducted by Statistics Canada. Included 
are the traditional design problems of balancing needs for 
domain estimation with desire for efficiency at higher 
levels, the importance of confidentiality in using adminis­
trative records in constructing domain estimates, and the 
importance of definitional compatibility in attempting to 
combine information from different sources. 

The importance of considering domain estimation at the 
design stage is very well taken and is a point often ignored 
by authors concentrating on small area estimation. As the 
authors emphasize, careful design can often enable one to 
construct estimates for domains in a direct and design con­
sistent marmer. I am sure that those actually designing surveys 
have considered the importance of clustering when designing 
surveys that will be used for domain estimation, but it is 
pleasant to see an explicit discussion. 

The authors describe several types of estimators for 
domains. Their classification emphasizes the number of 
alternatives available to the practitioner. It is possible to 
use the theoretical mean square errors to provide infor­
mation on the relative merits of the estimators. As an 
example of such a comparison, assume a simple random 
sample of size n selected from a population divided into 
A'domains. Assume that the domain sizes and the domain 
means of an auxiliary variable, X, are available. Consider 
the three regression estimators of the domain mean, 

il-(\)yi = Pi. + (MAT/ " Xj^bj, 

A(2)^/ = Pi. + (l^xi - Xi,)b, 

and 

where 

A(3)y/ = y.. + (Mjf, - x,}b,. 

(x..,P..) = Y N-'Nj(Xj,,yj,), 

(Xi.,Pi.) = «,- ' Y ^^U'Yij), 
J=i 

bi^ \Y (̂ ^ - '̂ )'] 
; = i 

"i 

X Y (^// - ^i.)(Y,j -Pi.), 
7 = 1 

L ,=1 y = | J 1=1 

k 

X Y^~ '̂ / «r' D (̂ // - /̂.) (>̂ - - Pi.)' 
/ = l y = i 

«, is the number of observations in domain /, A', is the 
population size of domain /, fi^j is the population mean of 
X for domain /, and /t̂  is the grand population mean of 
X. In the authors' terminology, the first estimator is a 
direct regression estimator, the second is a modified direct 
estimator, and the third is a synthetic estimator. We have 

MSE[A(, ̂ yi I «,] = « , - ' ( ! + n f ' ) y\ Yfj - 0t X^ \i=i\ 

+ 0(n-^), 

MSE{A(2)y/l ",] = " / " ' ( l + n-')V\ Y,j - 0X,j\(^i\ 

+ 0{n-^), 

MSE[A(3)^,|«,] = (1 + «-') 

k 

+ {iJixi-l^x.)Mb.] 

+ [yiyi - ixy, - 0(ti,i - /x;,.)]^ + 0{n-^), 

where V\b,] ^ E[ {b, - 0)^\, V[a(\ i = /) is the 
variance of the variable a for domain /, 

0i = [V\X,j\t=i\]-'C[Y,j,X,j\(=i] 

W.A. Fuller, Distinguished Professor, Statistical Laboratory and Department of Statistics, Iowa State University, Snedecor Hall, Ames, Iowa. 
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and 

,3 = r ^ Ar-'Af,K[.Yy|f=/)l 

k 

X Y^~'^iC\Yij,Xij\(^i]. 
(=1 

The estimator Acû -/ uses only information in the sample 
of «, observations. Hence, all properties of the estimator 
are functions of «, and of the domain parameters. The 
regression bias is order n~' and the variance is order n~'. 
The estimator A(2)// uses the domain means, but the entire 
sample to estimate the regression coefficient. Hence, the 
basic variance remains order n~' and wiU be larger than 
the basic variance of A (i )yi in those situations where 0i7^ 0. 
However, the second order contribution to the variance 
is order «,"' n~ ' for Acz)̂ / and is order n~^ for ACDJ-/-

Also, the regression bias for A(2)>'/ is order «~ ' . If the 
domains were strata, A(i)>'i might be called the separate 
regression estimator and A(2)>'/ might be called the com­
bined regression estimator. 

The estimator Acsjj-/ is a synthetic estimator and has a 
variance of order n ~' instead of the order n~' variance 
of the first two estimators. The cost of this reduction in 
variance is that the bias is order one. Only if the regression 
line is the same for the domain as for the entire population 
wiU the bias be zero. 

The average mean square error of the three estimators 
for any subset of small areas can be estimated. If the n, 
are small, the estimated variances will provide only limited 
information for discriminating among estimators. Like­
wise, there is only one degree of freedom for bias squared 
for one particular domain. However, a large domain 
deviation, relative to the standard error, will lead one to 
reconsider the synthetic estimator. 

In their discussion of models, the authors stress the 
importance of providing estimators of the reliabiUty for 
small area estimators. They allude to the fact that the prin­
cipal estimators of mean square error for model based 
procedures are estimators of an average mean square 
error. WhUe this is true, it seems worth mentioning that 
components-of-variance procedures do not assume the 
mean square errors to be the same in each domain. Also, 
for the typical survey situation, the estimators of mean 
square error need not be constant over domains. For 
example, one of the terms in the mean square error esti­
mator of the components of variance procedure is the esti­
mator of the variance of the direct estimator. The estimated 
variance of the direct estimator wiU be a function of the 
domain sample size and can also be a function of the direct 
estimated variance of the direct estimator for that domain. 
See Battese, Harter, and Fuller (1988), Harville (1976), 
Prasad and Rao (1990), and Ghosh and Rao (1993). 

In their discussion of designs, the authors explain that 
the variance function is often relatively flat in the vicinity 
of the optimum aUocation to strata. A slight reallocation 
of sample among strata can markedly increase the effi­
ciency of domain estimators for a relatively small decrease 
in the efficiency of the overaU estimates. The same is true 
with respect to the combination of direct and synthetic 
estimators. Thus, if one has a relatively good idea of the 
variance component associated with small areas, either 
from a previous study on the same population or from a 
study on a similar population, and if one is under pressure 
to produce estimates in a brief time span, then it is reason­
able to assign fixed weights to form the linear combina­
tion. The loss in efficiency is apt to be modest and the 
programming required for estimation construction consid­
erably reduced. One estimator in this class, and the one 
adopted by many practitioners, is the synthetic estimator. 

The authors briefly raise the question of internal con­
sistency associated with the construction of small area 
estimates. As they say, if one uses a data dependent pro­
cedure, such as variance components, for each dependent 
variable, then one produces estimates that are not inter­
nally consistent. One option is to use multivariate pro­
cedures. See, for example, Fuller and Harter (1987) and 
Fay (1987). Another procedure suggested by Fuller (1990) 
is to construct components of variance estimators for a 
limited subset of variables and then use these estimates as 
control variables in a regression procedure. The regression 
procedure produces weights for the individual observa­
tions. Once the weights are constructed, any number of 
output tables can be constructed and all estimates are inter­
nally consistent. 

It is my observation that the gains made in most prac­
tical domain estimation problems come primarily from the 
wise use of auxiliary information. Thus, effort directed 
towards obtaining quaUty auxiliary information is effort 
well spent. If we are able to find a variable x that is highly 
correlated with the variable >', then there is less variability 
remaining to be allocated between area to area variance 
and sampling variance. 
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COMMENT 

GRAHAM KALTON 1 

As Singh, Gambino and Mantel (SGM) indicate, there 
is a growing demand for surveys to provide domain esti­
mates for domains of various sizes and types. This demand 
is being experienced in many countries throughout the 
world. In part it may simply reflect a natural growth in 
the sophistication of survey analysts, who once were 
content with national estimates and estimates for a few 
major domains, but who now want to compare and con­
trast estimates for many different types of domain. In part 
it results from the needs of poUcy makers, who require 
domain information in order to examine how current 
policies affect different domains, to predict what effects 
changes in policies might have, and for policy implemen­
tation. Information on administrative area domains {e.g., 
provinces or states, counties, and school districts) is of 
particular interest for policy purposes {e.g., for identifying 
low income areas for government support). 

In some circumstances the need for domain estimates 
of adequate precision can be satisfied within the design-
based inference framework that is standardly used in the 
analysis of survey data. This holds for large domains for 
which the sample sizes are adequate to give the precision 
required. It can also hold for small domains provided that 
they are identified in advance, and the sample design is con­
structed in a way that provides adequate sample sizes. Thus, 
for example, in the United States, the National Health and 
Nutrition Examination Survey and the Continuing Survey 
of Food Intakes by Individuals use differential sampUng 
fractions by age, sex and race/ethnicity and by age/sex and 
low income status, respectively, in order to provide adequate 
samples for the domains created by the cross-classifications 
of these variables. The U.S. Current Population Survey 
employs differential sampling fractions across the states 
in order to be able to produce state-level employment 
estimates. The Umltation of this approach is evident when 
there is a large number of small domains, in which case 
the sum of the required sample sizes for each domain pro­
duces an extremely large overall sample size. This situation 
occurs often wUh small administrative districts, such as 
counties, school districts, and local employment exchanges. 
In such cases, it may be necessary to discard the standard 
design-based inference approach in favor of a model-
dependent approach that employs a statistical model in the 
estimation process to borrow strength from data other than 
that collected in the survey for the given small area. The 
model-dependent approach may also be required for 
unplanned smaU domains, where the need for oversampling 
had not been foreseen at the design stage. 

In response to the demand for small area estimates, a 
sizeable literature has developed on model-dependent 
small area estimation methods. Little has, however, been 
written on the broader issues of small area estimation 
discussed in the SGM paper, issues that need more atten­
tion. Like the authors, I believe that a cautious approach 
should be adopted to the use of model-dependent small 
area estimators. I therefore welcome their discussion of 
methods to make small area estimates within the design-
based framework. 

From my perspective, the first approach to making 
small area estimates is to see whether estimates can be 
produced with adequate precision within the design-based 
framework. If the domains have been identified in advance, 
consideration should be given to designing the sample to 
meet the needs for smaU area estimates. This may involve 
ensuring that the small areas do not overlap strata, and 
ensuring a sufficient sample size for each smaU area. 
Another approach suggested by SGM is to minimize the 
amount of clustering. The smaUer the amount of clustering, 
the less the sample size in each small area is subject to the 
vagaries of chance. In this regard I see the benefits of less 
clustering as mainly directed at providing the abiUty to 
produce estimates for small areas that were not identified 
at the design stage. When small areas for which estimates 
are planned are made into separate strata, the sample size 
in each small area should be under adequate control even 
with a clustered sample (provided that the measures of size 
used in the PPES sampling are reasonable). However, even 
with planned estimates, there will often be an issue of how 
to compute variance estimates for a small area from a 
clustered design, since the number of PSUs sampled in 
each small area is Ukely to be smaU. A variance estimate 
based on the PSUs within the small area will then be 
imprecise, with few degrees of freedom, and a generalized 
variance function approach may be preferred {e.g., 
assuming that the national design effect appUes for each 
small area). In other words, although the estimate itself 
may be a design-based estimate, the estimate of its variance 
may be an indirect one, borrowing strength from other 
areas. This consideration favors as unclustered a design 
as possible even for planned small area estimates. The need 
to model variances is, however, of lesser concern than the 
need to model the estimates themselves. 

An integral part of the design-based framework is a 
recognition that auxiUary information available for the 
population may be used at the design stage, at the analysis 
stage, or at both stages. When information on auxiUary 
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variables that are closely related to the survey variable is 
available, substantial gains in precision can accrue. The 
use of auxiliary information at the analysis stage, through 
such techniques as post-stratification and ratio, regression 
and difference estimation, has a special appeal for small 
area estimation. It should be emphasized that ratio and 
regression estimators may be motivated by assumptions 
about the model relating the survey variable ( Y) and the 
auxiliary variables (A'), but that the resultant estimators 
are design-consistent irrespective of the appropriateness 
of the model. The use of an appropriate model produces 
the greatest gains in precision, but the estimates are approx­
imately unbiased whatever model is chosen. This may be 
seen in a simple case where variables Xi, X2, .. .,Xpare 
known for every element in the population, and the linear 
combination f, = fio + ^i-Yi, + . . . -I- BpXpi is used to 
estimate K,, the value of the F-variable for population 
element /. Assume, for simplicity that the B's are deter­
mined from external data, not dependent on the sample. 
With Yi = fi -\- Cj, the domain total is Ya = E,5„f, -I-
Y,iia ^i = fa + Eg. Siucc fg is kuown, the estimation prob­
lem is one of estimating Ea. From a sample of elements 
in domain a, Ea may be estimated by Ea - Y.ja ^j IT^J, 
where -KJ is the selection probability for element j in the 
sample. The estimator Eg is unbiased, independent of the 
validity of the model employed. The estimation procedure 
in fact translates the estimation problem from one of esti­
mating Ya directiy to one of estimating Ea and adding on 
a known constant F„. To be effective, the procedure 
requires the domain variance of the e, to be smaller than 
that of the Y,. There is no requirement that Ea = 0. The 
general logic remains the same in the more usual situation 
where the B's are estimated from the sample. In this case, 
the estimate of Ya is design-consistent, irrespective of the 
model adopted (Sarndal 1984). Moreover, the B's may be 
estimated from the sample data only for the domain of 
interest, producing what SGM term a direct estimator, or 
from the total sample, producing a modified direct esti­
mator. A key consideration in the choice between the 
direct and modified direct estimators in this case is whether 
the overall B's also apply for the domain. If not, inter­
action terms between the X's and the domain indicators 
are called for in the total sample model. With a full set of 
these interaction terms, the modified direct estimator in 
effect then reduces to the direct estimator. 

The need for a model-dependent approach occurs when 
the design-based estimate lacks sufficient precision even 
after the auxiliary data available have been used in as 
effective a manner as possible. Indeed, in some cases the 
computation of a direct estimate may be impossible because 
there are no sample cases in the small area. In such situa­
tions, it becomes necessary to use a statistical model to 
borrow strength from other data, often data from other 
areas. Such models are built upon assumptions {e.g.. 
Eg = 0 in the above example), and the quality of the 

resultant small area estimates depends on the suitability 
of the assumptions made. The assumptions are inevitably 
incorrect to some degree, leading to biases in the small area 
estimates. Since indirect estimates are biased, the design-
based mean square error (MSE) is widely used as the 
measure of their quality, where MSE - V -\- B^ and 
V is the variance and B is the bias of the estimate. 

The common way to compare the quality of a direct and 
an indirect estimate is to compare the variance, V, of the 
former with the MSE of the latter. However, reading the 
paper caused me to question whether the MSE is the 
appropriate measure of quality of an indirect estimator. 
In a practical setting the variance Kof the direct estimate 
can be estimated whereas the design-based MSE of the 
indirect estimate cannot. In view of this situation, if 
V = MSE, then the direct estimator would be clearly 
preferred. In fact, the direct estimator may tend to be 
preferred if the direct estimator has adequate precision, 
irrespective of the likely relative magnitudes of V and 
MSE. In other cases, if B is the expected bias, then the 
direct estimator may be preferred to the indirect estimator 
unless V > V + kB^, where k is a multiplier greater 
than 1 that allows for the fact that the unknown bias may 
be larger than expected. 

The same argument can be applied to combined (or 
composite) estimators that employ a weighted average of 
a direct and an indirect estimator. Often the principle for 
choosing the weights is taken to be to minimize the mean 
square error of the combined estimator, leading to weights 
for the direct and indirect estimators that are inversely 
proportional to V and MSE, respectively. However, 
following the above argument, an alternative procedure 
would be to minimize the weight of the indirect estimator, 
subject to the condition that the combined estimator is 
sufficiently accurate. Alternatively, the weights could be 
determined on some maximum likely value of the MSE, 
rather than the expected MSE, to reduce the risk of serious 
bias in the combined estimator. 

I do not follow the rationale for the sample size depen­
dent estimators described by SGM in equation (6.11) and 
(6.12) in general, but under certain assumptions they may 
be seen to fit in to the logic given above. With an equal 
probability sample design and 6 = 1, these estimators 
reduce to the direct estimator when the achieved sample 
size is greater than, or equal to, the expected sample size. 
If one assumes that the expected sample size gives adequate 
precision for the small area, this outcome accords with the 
above reasoning. If the achieved sample size is smaUer than 
expected, the sample size dependent estimator takes a 
weighted average of a direct and an indirect estimator. If 
one assumes that the expected sample size is the minimum 
sample size to give the required precision, this outcome 
also accords with the above reasoning. If this indeed is the 
basis of the sample size dependent estimators, then it 
would seem useful to generalize them to situations where 
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the expected sample size is not the sample size that just 
gives the level of precision required. 

As has been noted, auxiliary information plays an 
important role in the production of accurate small area 
estimates. Such information may be used for improving 
the precision of design-based estimates or it may be used 
in the models employed with the model-dependent approach. 
Ideally auxiliary information that is highly related to the 
survey variables involved in the estimates is required. The 
regular compilation of up-to-date auxiliary data for small 
areas from administrative and other sources can provide 
a valuable resource for a small area statistics program. 

Although the paper mentions the more general problem 
of small domains, it focuses predominantly on small areas. 
This is in line with the general literature and the application 
of indirect estimation procedures. In part, this may be 
because the number of socio-economic and other small 
domains of interest {e.g., age/sex domains) is usually 
relatively small, compared with the numbers of small 
areas, so that socio-economic domains can be handled by 
designing the sample to provide direct estimates of adequate 
precision for each of them. In part, it may be because the 
definitions of socio-economic and demographic domains 
are often chosen in the light of the feasibility of producing 
design-based estimates of adequate precision for them 
{e.g., using wider age groupings for some domains); in the 
case of areal domains, however, the areas are predefined, 
and no collapsing of areas is acceptable. In part, it may 
be because there is a lack of auxiUary data to use in the 
statistical models for such domains. In part, it may also 
be because the analysis of socio-economic domains is often 
conducted to make comparisons between the domains. 
Such comparisons are distorted when the estimate for one 

domain borrows strength from other domains (see, for 
example, Schaible 1992). This issue brings out the general 
point that indirect estimates should not be uncritically used 
for all purposes. 

In conclusion, I should Uke to express my support for 
the general approach of this paper. Where possible, samples 
should be designed to produce direct small area estimates 
of adequate precision, and sample designs should be 
fashioned wUh this in mind. Auxiliary data should be used, 
where possible, to improve the precision of direct small 
area estimates. When indirect estimates are called for, a 
cautious approach should be used. Models should be 
developed carefully, estimators that are robust to failures 
in the model assumptions should be sought, and evaluation 
studies should be conducted to assess the adequacy of the 
indirect estimates. Lacking good measures of quality for 
individual indirect estimates, such estimates need to be 
clearly distinguished from design-based estimators. Since 
indirect estimates are not universally valid for all purposes, 
users need to carefully assess whether the given form of 
indirect estimate will satisfy their particular needs. 
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RESPONSE FROM THE AUTHORS 

We would like to thank Wayne Fuller and Graham 
Kalton for their stimulating comments, which we find to 
be quite complementary to the position developed in our 
paper. In many cases their comments make certain points 
clearer and strengthen the argiunents presented. Encouraged 
with this kind of endorsement we would like to carry some 
of the points about survey design further, while responding 
to the main points made by the discussants. 

There is no doubt that survey designers try to optimize 
the design under operational constraints to meet the stated 
objectives of a survey. There are usually several objectives 
to be met by major surveys and it is quite likely that 
designers have limited influence in the setting of priorities 
among the various competing objectives. Nevertheless, it 
is at this stage of priority setting that the case for small area 
needs should be made strongly, particularly for major 
continuing surveys. 

Diuing the sbrties and seventies emphasis m most countries 
was placed on sub-national (state/provincial) estimates and 
certain compromises were made to the earlier designs that 
optimized national estimates. For example, different 
sampling fractions were used to ensure a minimum sample 
size for smaUer states/provinces. With the demands for 
data at the sub-state/province level, such as, county, district 
and municipality, more compromises to the national 
optimum allocation become necessary, requiring differing 
sampling fractions among the administrative areas within 
states/provinces. For example, if the aim is to produce sub-
provincial estimates of comparable quaUty, then provinces 
will likely receive sample roughly proportional to the 
number of subprovincial regions they contain. Such an allo­
cation may not be the same as one using the relative popula­
tion sizes of the provinces. As we discussed in section 5.4, 
the allocation approach should put more emphasis on a 
bottom-up strategy. Losses at higher levels and gains at 
lower levels would differ from survey to survey but it is 
likely that in many cases a minor loss in CV at the national 
level will lead to appreciable gains at small area levels. 

Kalton stresses the importance of reduced clustering 
for variance estimation; it is advantageous to increase the 
degrees of freedom by having a large number of smaller 
clusters rather than a small number of larger clusters. We 
would like to emphasize that clustering has another draw­
back for estimation, and especially small area estimation, 
namely, a highly clustered design will lead to high design 
effects, even for planned small domains. The usual reason 
for resorting to clustered designs is to reduce survey costs. 
In light of the changes that continue to occur in the data 
collection process, such as decreased reliance on at-home 
interviews and increased use of computer assisted inter­
viewing, a periodic review of the cost-variance models that 
underlie clustering decisions is necessary. 

One other issue not addressed in our paper is the impact 
of sample rotation in continuous surveys. For a given time 
point, there may be insufficient sample in some small 
domains to produce reliable estimates. But, as units rotate 
out of the sample and are replaced, the accumulated or 
effective sample in the domains increases and may allow 
the computation of reliable, albeit time-biased, domain 
estimates. By judicious choice of rotation schemes, survey 
designers can maximize the cumulative sample size over 
some time period. For example, for quarterly estimates in 
a monthly survey, the optimal rotation pattern is [1(2)] *, 
i.e., repeat the sequence "one month in sample, two months 
out" k times. This thinking is in the same spirit as Leslie 
Kish's ideas on cumulation of samples over time. 

Kalton clarifies and elaborates the cautious approach to 
the use of indirect estimators by suggesting a weighted mean 
squared error, which attaches a weight greater than 1 to the 
bias term, to allow for the fact that the bias of the indirect 
estimator may be larger than expected. There are two 
distinct reasons why the bias may be larger than what is 
expected from the model for small area effects: random 
variation within the model, and model breakdown. It is 
worth recalling here the suggestion of Fay and Herriot 
(1979) to constrain a combined estimate to be within one 
standard error of a design estimate; this approach makes 
allowance for the possibility of large bias in the model 
estimator for whatever reason. Kalton also reiterates our 
position that if a direct estimator is of acceptable quality, 
then in practice, one may decide to use this direct estimator 
even though its estimated mean squared error exceeds that 
of model-based competitors. Because there is always the 
possibiUty of model failure lurking in the background, this 
"better safe than sorry" approach is desirable, at least until 
some experience with particular indirect estimators in 
specific situations has been gained. This does not contradict 
the view that there arise situations in which it is necessary 
to throw caution to the wind. 

In his remarks on the sample size dependent estimator, 
Kalton's comments imply that there is a risk in the strategy 
which gives the synthetic component zero weight if the 
observed sample size in the small domain exceeds the 
expected sample size there since the latter may be too small 
to yield adequate direct estimates. One option is to use a 
value «„,,„ which is the size that produces direct estimates 
that are just barely acceptable. Note, however, that /imin as 
defined here is characteristic-dependent. 

In his comments, Fuller briefly describes an approach 
to small area estimation that takes advantage of a variance 
components model and yet has fixed weights for internal 
consistency among estimators for different characteristics. 
Besides internal consistency of small area estimates for 
different characteristics, a second type of consistency that 
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is sometimes required is that estimates of totals for the set 
of small areas within a larger area should add up to the 
published direct estimate for the larger area. One way to 
achieve this is to benchmark the small area estimates to the 
direct estimate for the larger area using, for example, a 
simple ratio adjustment; however, if the ratio adjustment 
factors depend on the characteristic then this would destroy 
the first type of consistency. Both types of consistency 
could be achieved simultaneously if the direct estimators 
for the larger area are generalized regression estimators, 
fg-i- (X - Xe)0, and the modified direct (Section 6.1 in 
the paper) estimators fsreg.a - Z.a + (-^a - ^e,a) & are 
used for small areas. 

As Fuller notes, the average squared bias of an estimator 
for any subset of small areas can be estimated. Here we 
would like to stress again that the average bias over a set 
of small areas is not directly relevant for any particular 
small area. It is for this reason that we prefer to use, 
whenever possible, estimators that are approximately design 
unbiased. When use of a model estimator is unavoidable, 
serious attempts should be made to find appropriate 
covariates for which reliable auxiliary information is avail­
able in order to minimize the residual bias of the model 
estimator. 

Perhaps due to the obvious timeliness problems associated 
with census data, neither of the discussants commented on 
censuses as a source of data for smaller domains. In this 
context it is worth mentioning that some form of ongoing 
major post-censal survey replacing or supplementing the 

decennial census long-form may be considered. Such a 
strategy, called roUing samples, is described by Kish (1990); 
a similar approach, called continuous measurement, is 
described by Alexander (1994). This approach provides a 
number of options which are worth investigating as poten­
tially cost effective means of producing timely statistics for 
smaller domains. 

Lastly, we would like to stress that the emphasis we put 
on keeping domain estimation in mind at the design stage, 
particularly for medium size domains, in no way under­
mines the important role of models in estimating for very 
small domains. 

We hope that the general direction of the strategy pro­
posed in the paper, supplemented by the fine points brought 
out by the discussants, particularly the support and cautions 
summarized by Kalton in his concluding paragraph, will be 
helpful to survey designers and researchers in finding 
solutions appropriate to the particular problems they are 
dealing with. 
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Small Domain Estimation for Unequal Probability 
Survey Designs 

D. HOLT and D.J. HOLMES 

ABSTRACT 

The problem of estimating domain totals and means from sample survey data is common. When the domain is large, 
the observed sample is generally large enough that direct, design-based estimators are sufficiently accurate. But 
when the domain is small, the observed sample size is small and direct estimators are inadequate. Small area estimation 
is a particular case in point and alternative methods such as synthetic estimation or model-based estimators have 
been developed. The two usual facets of such methods are that information is 'borrowed' from other small domains 
(or areas) so as to obtain more precise estimators of certain parameters and these are then combined with auxiliary 
information, such as population means or totals, from each smaU area in turn to obtain a more precise estimate 
of the domain (or area) mean or total. This paper describes a case involving unequal probability sampling in which 
no auxiliary population means or totals are available and borrowing strength from other domains is not allowed 
and yet simple model-based estimators are developed which appear to offer substantial efficiency gains. The approach 
is motivated by an application to market research but the methods are more widely applicable. 

KEY WORDS: Synthetic estimation; Design-based estimation; SmaU area estimation; Model-based estimation; 
Market shares. 

1. INTRODUCTION 

This paper is concerned with the common problem of 
estimating domain totals and means from a disproportion­
ately allocated sample survey. Some domains may be large, 
in which case the achieved sample size may be large too 
and design-based (or direct) estimators will be satisfactory. 
Some domains may be small, in which case the achieved 
sample size may be small too and design-based (or direct) 
estimators wiU be too imprecise for practical use. The 
methods proposed will be motivated through the example 
of estimating sales, market shares and market penetrations 
for products in a market research survey. The domains are 
particular auto manufacturers or models. However, the 
general approach is applicable to other disproportionately 
allocated surveys of businesses or institutions. 

The problem is analogous to that of using synthetic 
estimation for small area estimation (Gonzales 1973; 
Gonzales and Hoza 1978; Platek et al. 1987). Synthetic 
estimation usually depends on two factors: (i) the use of 
auxiliary variables in conjunction with population means 
or totals for each small area (or domain) to improve 
estimates through poststratification or regression estima­
tion, and (ii) the improvement of estimates by pooling 
data across the small areas (or domains). In our situation 
no auxiliary population means or totals are available 
and, since the essential objective is to compare domains 
{i.e., manufacturers and particular products), the idea of 
borrowing strength between these is inadmissible. A class 

of synthetic estimators is proposed which uses neither of 
these two approaches and yet is preferred to the direct 
survey estimators. The proposed estimators have a simple 
structure, an interesting interpretation and can be justified 
under a set of model assumptions which are testable under 
the general assumption of non-informative survey design. 

2. THE MARKET RESEARCH EXAMPLE 

Market researchers often estimate the total volume of 
sales and market shares for each manufacturer of a partic­
ular product. We consider the case of autos purchased for 
company fleet use in a single year. Estimates of totals and 
market shares are required for each auto manufacturer and 
for specific models which are widely purchased for fleet use. 

The terms 'fleet' and 'company' are each interpreted 
widely. A fleet car is taken to mean any auto purchased 
on a commercial as opposed to a private basis, and used 
in conjunction with a business in the broadest sense. This 
includes autos purchased for sales representatives which 
may be purchased in large numbers. It also includes single 
purchases of luxury cars for company directors and other 
senior staff of large companies, as well as purchases by 
small 'companies' such as groups of doctors, or self-
employed people such as shop owners. Thus the population 
of purchasing companies - termed consumers - includes 
a large number of small companies that purchase only one 
or two autos every few years. 

' D. Holt and D.J. Holmes, Department of Social Statistics, University of Southampton, Highfield, Southampton, UK, S095NH. 
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In the reference period of one year we define y ,̂ to be 
the number of autos of product type k purchased by con­
sumer /. The product type k (the domain) may refer to a 
specific model of a particular manufacturer, or to all 
models produced by a manufacturer. Thus, Yj^ = Y,i Ykt 
is the total number of autos of type k purchased by all con­
sumers. Let Z; be the total number of autos of any kind 
purchased by consumer /, and Z = Ĵ ,Z,- be the total 
number of auto sales. The market share for product type 
k is defined as R^ = Yk/Z. 

We further define 

y^ = 1 if Y,i > 0 

= 0 if Yi,i = 0 

and 

Z/ = 1 if Z, > 0 

= 0 if Z, = 0. 

Thus, Ylfi and Z/ are indicator variables for consumers 
who purchase product type k and at least one auto of any 
kind, respectively, in the reference period. The number 
of consumers that purchase product k is thus given by 
Yj^ = Ĵ , y^ and the total ntunber of consiuners purchasing 
atleastoneautoof any kind is given by Z' = J],Z/.The 
market penetration for product k, in terms of the propor­
tion of consumers buying a car of any type in the reference 
period who buy type k, is given by R^ = Yj^/Z'. 

The four parameters Y/cR/i, Y^ and Rj^ are all legiti­
mate targets of inference in market research and are 
defined as finite population parameters; namely, domain 
totals or ratios of domain totals. 

3. THE SURVEY DESIGN AND DIRECT 
ESTIMATORS 

The survey design was based upon two mutually exclu­
sive frames and may be regarded as a simple stratified 
design with ten strata. The first frame was a register 
(Dun and Bradstreet) of 35,000 companies, stratified into 
eight strata on the basis of the number of employees and 
whether the company was classified as 'manufacturing' or 
'distributing'. The second frame was a large register of 
1.4 miUion British Telecom business subscribers, stratified 
into 'private' and 'commercial' numbers. Note that both 
private and commercial numbers were business subscribers 
but commercial numbers were allocated if separate com­
mercial premises were occupied. 

Using previous survey data the sample was optimally 
allocated using Neyman allocation to minimize the 
variance of the estimator of the total number of autos pur­
chased (Z). Data on auto purchases were collected 
immediately after the end of the reference year. The strata 

sizes [N,,] and sample allocations [«/,) for strata/z = 1, 
. . . , 10 are given in Table 1. 

Table 1 
Sampling Frame: Sample Size and Weight by Stratum 

Stratum (h) 

British Telecom: 

Private 
Commercial 

Dun and Bradstreet: 

Manufacturing 
50-99 employees 
100-499 
500-999 
1,000 + 

Distributing 
50-99 employees 
100-499 
500-999 
1,000 + 

Overall 

Stratum 
Size 
Nh 

389,445 
1,007,399 

6,646 
6,826 

992 
1,110 

8,703 
7,625 
1,133 
1,523 

1,431,402 

Sample 
Size 
"A 

1,150 
7,406 

235 
1,113 

520 
849 

472 
1,437 

484 
1,117 

14,783 

Weight 

•^h^ = N^/nn 

338.65 
136.02 

28.28 
6.13 
1.91 
1.31 

18.44 
5.31 
2.34 
1.36 

96.83 

The sample is a simple, disproportionately aUocated 
stratified design and the direct estimators and their vari­
ances are well known. The stratification results in large 
differences in sampUng weights (1.31 to 338.65) and is 
useful but far from ideal. Many consumers do not pur­
chase any autos at all in the reference year so that each 
stratum contains a mixture of zero and non-zero responses. 
For any particular product k the proportion of zero 
responses in each stratum is obviously larger. 

Table 2 contains the direct survey estimates, estimated 
standard errors (see Holt and Holmes (1993) for derivation), 
and coefficients of variation for a selection of products 
from different auto manufacturers. Products A and B 
represent all models for two major auto manufacturers. 
Product C is a single model with a substantial share of the 
fleet market from manufacturer A. The remaining products 
have small market shares. Products F and G cater for the 
executive part of the fleet market. The Ust is incomplete 
so that the market shares do not sum to one. Also note that 
the product categories are not mutually exclusive. In 
general the survey was judged to perform satisfactorily but 
it was observed over a period of years that estimates for 
manufacturers or models with small market shares were 
unstable. This is best seen in terms of the coefficient of 
variation which is greater than 0.1 for products with small 
market shares and can be greater than 0.15 or 0.2 in some 
cases. This instability also affects the estimates of variance 
as weU as the estimates of total sales or market shares of 
the products. 
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Table 2 
Direct Survey Estimates, Standard Errors and Coefficients 

of Variation for Selected Products 

e; = N,P, h ^k\h • (1) 

Product 
(k) 

A 

B 

C 

D 

E 

F 

G 

Row 1: 

Estimating Consumers 

Total Penetrat ion 

n R'k 

59,890 
(2,651) 
(.044) 

34,282 
(1,960) 
(.057) 

23,363 
(1,602) 

(.069) 

13,857 
(1,311) 
(.095) 

9,025 
(1,146) 
(.127) 

5,125 
(676) 

(.132) 

7,518 
(1.015) 
(.135) 

estimate 

.3843 
(.0144) 
(.037) 

.2200 
(.0117) 

(.053) 

.1499 
(.0098) 
(.065) 

.0889 
(.0081) 
(.091) 

.0579 
(.0072) 
(.124) 

.0329 
(.0043) 
(-131) 

.0482 
(.0064) 

(.133) 

Row 2: s.e. 

Estimating Autos 

Total Share 

Yk Rk 

270,051 
(35,704) 

(.132) 

153,518 
(8,653) 

(.056) 

81,381 
(17,559) 

(.216) 

25,312 
(2,906) 

(.115) 

24,370 
(7,336) 
(.301) 

13,724 
(2,369) 
(.173) 

11,031 
(1,456) 
(.132) 

.3781 
(.0315) 
(.083) 

.2149 
(.0131) 
(.061) 

.1139 
(.0194) 

(.170) 

.0354 
(.0039) 
(.110) 

.0341 
(.0101) 
(.296) 

.0192 
(.0030) 

(.156) 

.0154 
(.0022) 
(.143) 

Row 3: c.v. 

4. A MODEL-BASED APPROACH 

Given the sample design there is no prospect of im­
proving the efficiency of the direct survey estimators 
within the conventional sample survey framework. The 
usual approaches are through the use of auxiliary infor­
mation for poststratification, ratio or regression estimation 
but all of these require knowledge of population means 
or totals. No such information is available. We turn instead 
to a model-based approach to provide alternative esti­
mators for the whole range of products. 

4.1 Estimating F^: the Number of Consumers 
Purchasing Product Type k 

We consider, initially, the number of consumers who 
buy product type k. We extend the notation from y^ to 
Yi^f,i in the obvious way to define the indicator random 
variable of purchase for product k for consumer / in 
stratum h. We treat each consumer's decision as the out­
come of a BernoulU trial. Let P î̂  be the probability that 
a consumer in stratum h buys an auto of type k [P̂ tj/i = 
Prob (Yiiijj = 1) ] . We define the model-based equivalent 
of Yk, the total number of consumers of product k, as 

Assuming that each consumer's decision is independent 
the Ukelihood may be written as the usual product of bino­
mial terms. The maximum likelihood estimators are given 
^y Pk\h = «/t/,/i/„ and the maximum Ukelihood estimator 
of 0^ is the famiUar stratified sampling estimator 

(2) 

where ni^f, is the sample count of consumers in stratum h 
that buy product k, «/, is the stratum sample size and 
P'kh = «A:/I/''A is the sample mean for consumers in Stratum 
h {i.e., the sample proportion of consumers in stratum h 
who buy product k). This estimator is generally unsatis­
factory when the sample size for product k is too small. 

Suppose we introduce an additional conditioning factor 
such that every consumer may be categorized into one of 
its categories/, / = 1, ..., F, and further extend the 
definition of the indicator random variable to Y'i^i,fj. 
These categories/will cut across the strata h and the idea 
is to define / so that, within any particular category, 
whether a consumer buys product type k or not is indepen­
dent of the stratum membership h. In the case of fleet 
purchases we define a categorization based on the total 
number of autos owned and operated by each consumer 
{i.e., the fleet size). A more detailed discussion of the 
choice o f / i s given in Section 5. 

If Nfjf, the population counts of consumers in stratum 
h and fleet size category/, are known then (1) may be 
extended in the obvious way and the target parameter can 
now be expressed as 

0* = E D N,fP,\,j. 
h f 

(3) 

Equation (3) is the case of poststratification if [N,,f] 
are known, and in this case the additional information will 
lead to a gain in efficiency (HoU and Smith 1979). When 
[Nf,f] are unknown we may rewrite the model in terms of 
two sets of probabilities: 

Qf^h = Prob (consumer has fleet s ize/ | stratum h], 

Pk\hf = Prob [consumer buys product type k \ stratum 
h and fleet size / ) . 

The target parameter may now be expressed as 

h f 

(4) 
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To obtain an alternative model-based estimator we 
make further assumptions about the model parameters. 
Suppose now that 

^/tj/,/ ^k\f for all h. (5) 

This impUes that conditional on the categorization/(the 
size of the fleet operated by a consumer), the probability 
of buying product type k is independent of the original 
stratum membership h. Algebraically, the assumption is 
analogous to that used in synthetic estimation for small 
area estimation but in that case information is pooled 
across areas. That form of the assumption is inadmissible 
in our case. We choose instead pooling across strata within 
the domain of study. The idea is to choose a conditioning 
variable which accounts for the marginal association 
between choice of product and stratum membership. 

Using assumption (5) and with the obvious extension 
of the notation (w /̂ = E A « W ^̂ -̂) ^^ ^^^ ^^ shown that 

use of the sampling weights for Nj (where they are needed) 
but not for estimating Pj^^f (where they are uninformative 
given/and assumption (5)). 

Equation (5) is a strong set of assumptions, requiring 
Pi^\,,f to be exactly equal to a common value / \ | / for all 
h. In practice, random assumptions such as P/tj/i/ = 
Pk\f + ^k\hf may be introduced, where £'[€yt|A/] = 0 and 
V{ ê ti*/] - a\. These assumptions wiU lead to hierarchical 
Bayes or empirical Bayes analysis as described in Ghosh 
and Rao (1994) or Fay and Herriot (1979). These methods 
are not developed here since the simple form of the model-
based estimator would be lost, together with the insight 
that this provides. In a similar vein the approach of Sarndal 
and Hidiriglou (1989) or Drew, Singh and Choudhry 
(1982) may be appUed to yield sample size dependent 
estimators without violating the requirement that no infor­
mation is pooled across domains (products). 

We can compare the estimators in (2) and (6) when 
assumption (5) holds since it may be shown that 

Qf\h - — "*!/ 
nkf 

and the maximum likelihood estimator of 0;̂  becomes 

9̂ (2) = E E ^' 
nhj_nkj_ ^ CrIJsf N 

"f 

= Y ^fyv' (6) 

where Nj - I,h Nf, n,,f/n,,, and y^f - n/^f/nf is the 
unweighted sample mean for consumers in category/ 
{i.e. the sample proportion of consumers in category/ 
who buy product k). 

Thus (6) has the form of a stratified estimator based on 
the categorization/ but with the population sizes in each 
stratum [A^j unknown. Note that an estimator of this 
form, but with known [Nf], would arise naturally if a 
stratified sample based on/had been selected. In fact this 
is not so: the sample members of category / are not 
selected with equal probability. However, the parameter 
assumptions lead to treating the sample in each category / 
as if it was an equal probability sample since under assump­
tion (5) the sample weights are uninformative and simply 
lead to efficiency loss when estimating / \ | / . Hence, 
although the sampling fractions ni,/Ni, are used to estimate 
{Nf] they are not used expUcitly in P .̂|/ = ni^f/nf = py. 
Note that the estimator pools information across strata h, 
within domain k but not between domains {i.e. products). 

Note that if nii/N^ is constant, equation (6) reduces to 
the usual expansion estimator given by (2), and assump­
tion (5) has not yielded a new estimator. If the sample is 
disproportionately aUocated the assumption leads to the 

Nl 
V^{QL{\)) = Y ~Pk\h(^ -^^l") 

nh 

Nl 
= I ; E -e/1/.̂ A 

h f ni, 
k\f 

N} 
- D D E -e/i.e/-i./\i/^*i/-. (7) 

h I 1' r "A 

where the notation K̂  (•) is used to emphasize that the 
variance is evaluated with respect to the model-based 
distribution. 

It may also be shown that under assumption (5) 

^^(6^(2)) = YY^ —Pl\sQj\h (1 - Qs\h) 
h f nh 

Nl rn^ll -^Pk\fPk\rQf\HQf\H 
1^ f r ""^ 

+ Yi: 
h f 

Nl P . | / ( l -Pk\f)Qf\i, 

nh Y "" /̂l̂  

(1 - 2/1/,) + «AQ/|/. 

-f 
[1 -I- (2/2;, - 3)<2/|;, - 2{n,, - 1)Q)|/,]-

D"" 2/1" (8) 

and that V^{Q'k{l)) - Vi.{QI,{2)) > 0. 
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Thus under the additional model assumptions 0^(2) 
has smaller variance as would be expected. These expres­
sions are model-based variances and no finite population 
corrections arise. A predictive approach to the unobserved 
elements in each poststratum would give rise to finite 
population correction factors. 

The maximum likelihood estimator of the market 
penetration for product type k, R^, under assumption (5) 
is simply given by 

m2) = 
YNJ^ Y NfPkf 
f nj J 

YNS^ Ym 
J ^f f 

(9) 

where naj is the sample count of consumers in fleet cate­
g o r y / that buy an auto of any kind, and zj = naj/nj 
is the sample proportion of consumers in category/ who 
buy an auto of any kind. 

4.2 Efficiency of the Model-Based Estimator of F^ 

To investigate the gain in efficiency of Qk{2) over 
9^(1) we consider the efficiency of the model-based 
estimator, defined by 

V^(Qi{l)) 

for various population structures in which assumption (5) 
holds. 

We consider a population with strata \h\, stratum sizes 
\Ni,\ and sample allocations (/j^) as given in Table 1, 
and a conditioning factor with ten categories f (f — I, 
. . . , 10) of increasing fleet size. We compute the efficiency 
factor e[0^(2) ] for various combinations of parameter 
values of {Q/|;,l and {Pk\f\. 

We consider five different structures for (Q/|/,): 

(c) Q/|A = Band Matrix (0.05, 0.90, 0.05). 

(d) Qf\h = Band Matrix (0.05, 0.10, 0.70, 0.10, 0.05). 

(e) Qf\h = 0.1 for h = l, ..., 10 
and / = 1, . . . , 10. 

We consider four different structures for \Pk\j\'. 

(0 P.M = [ V 
/ = 1,2 

otherwise. 

(ii) Pk\j = 0.1 - 0.01 ( / - 1) for / = 1, . . . , 10. 

(iii) Pk\f = 0 .1 / for / = 1 , . . . ,10 . 

(iv) Pk\f - 0.5 for / = 1 , . . . ,10 . 

Structure (a) is one where the categorization/ coincides 
with the stratification. In structures (b), (c) and (d), in any 
particular stratum h the majority of consumers fall into 
one fleet category (f = h) with a few consumers in 
neighbouring categories (e.^., for (b) and ( c ) / = h - I, 
h -\- I). Finally, structure (e) impUes that, in any stratum 
h, consumers will be equally likely to faU into any one of 
the fleet categories/ = 1, . . . , 10. 

Structure (i) for P^|y implies a type of auto that is 
purchased with a small probability by consumers with 
small fleet sizes {i.e. that fall in categories / = 1 or 2), 
but not purchased by consumers with large (r) fleet sizes. 
Structure (ii) suggests a type of auto purchased with small 
probabUity which decreases as fleet size increases, whilst 
structure (iU) implies the reverse. In structure (iv) a popular 
model is bought with probability 0.5 regardless of the 
consumer's fleet size. 

Table 3 gives the efficiency factor defined in (10) for 
each combination of structures for Qj^,, and P̂ |ŷ  under the 
disproportionate allocation given in Table 1. Column (a) 
of the table is the special case where the stratification and 
the categorization / coincide, and the two estimators 
0/(1) and Qk(2) are the same. The table shows that large 
gains in efficiency {e.g., 70%) can be attained for certain 
parameter combinations: the weaker the association 

(a) Q/|A 

(b) Qf\h = 

I f = h 

0 f ^ h 
for h = I, ..., 10. 

0.95 f=h 
0.025 f=h-l 
0.025 / = / / + 1 
0.05 h = l,f = 

.0 otherwise 

for ;! = 1 , . . . ,10 
for h = 2, ...,10 
for h = l,...,9 
and h = l0,f=9 

= Band Matrix (0.025, 0.95, 0.025). 

Table 3 

Efficiency Factors, e[e / (2) ], for Various Combinations 
of Qfii, and P^i/ 

Structure 

for Pk\f 

(i) 

(ii) 

(iii) 

(iv) 

(a) 

0 

0 

0 

0 

Structure for Qfi/, 

(b) 

0.108 

0.116 

0.103 

0.115 

(c) (d) 

0.196 0.355 

0.206 0.391 

0.181 0.387 

0.203 0.391 

(e) 

0.648 

0.695 

0.695 

0.706 

file:///Pk/j/'
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between / and h the greater the efficiency gain. Even for 
structures (c) and (d) where the association between / and 
h is strong, substantial efficiency gains can be achieved. 
The structure Qf\h is much more important than P^.|/ in 
determining efficiency gain. 

In the special case (e) where Qf\h is a constant for aU 
/ and h it can be shown that the efficiency factor can be 
expressed as 

e [ 0 / ( 2 ) ] 

where 

= (• 
''.„<.-p.,/V2;vi/„. 

D ThNh/nh 

\— ,(11) 

% = 7,D^^i/ "̂'̂  52 = ^ D (^^1/-^*!/)' 
/=! / = 1 

are the mean and variance of [Pk\f] over the categories 
/ , and Th = I - nf,/n + 0 ( / j ~ ' ) . The term in paren­
theses in (11) lies between 0 and 1 and it's value depends 
on how the [Pk\f] vary over the categories/. In case (iv) 
P̂ .|y- is constant and so this term is unity. The second term 
of (11) depends solely on the design, and its value for the 
sample aUocation specified in Table 1 is 0.706. 

4.3 Estimating Y^. the Number of Autos Purchased 
of Product Type k 

The previous approach in Section 4.1 may be extended 
to the number of purchases. We introduce a further 
conditioning factor which represents the total number of 
autos purchased, m, regardless of product type, and we 
extend the notation in the obvious manner to Ykf,f^i, the 
random variable representing the number of autos of 
product type k purchased by consumer / in stratum h, fleet 
size/, and buying m autos of any kind. The idea is that 
the number of purchases of product k is Ukely to vary 
depending on the total number of autos purchased. Let 

S„\hf = Prob (consumer buys/w autos of any kind | h,f], 
m = 0, 1,2, ..., 

Tt\hfm = Prob {consumer buys f autos of type A: | h,f,m\, 
i = 0,\, ...,m. 

The model-based target parameter, equivalent to the 
total purchases of product k, ŷ ., is extended from (4) and 
may now be expressed as 

Q* = D D D D ^"2/1" -̂1"/ ̂ î"/- -̂ (̂ ^̂  
h f m I 

We consider two sets of additional assumptions, the first 
of which is 

U\hfm = T, t\fm foraU h. (13) 

These assumptions imply that conditional on fleet size 
category, / , and the total number of new autos purchased, 
m, the distribution of the number of autos purchased of 
product type k is independent of stratum h. 

The maximum UkeUhood estimator of 0yt under assump­
tions (13) is 

e*(2) = Y D /̂'"-*'*/'"' 
/ m 

(14) 

viherefffn, = 'ZhNhnh/m/nh, ^^^Pk/m = li^nf„,i/nf„, 
is the unweighted sample mean of the number of autos 
of product type k purchased by consumers of fleet size / 
that purchased a total of m autos of any kind. 

The selection probabilities are used here to provide a 
weighted estimator of Nf,„, the total number of con­
sumers of fleet size/that buy m cars of any kind. The form 
of the estimator is analogous to that in equation (6). Under 
the model assumption (13) it may be shown that 

Nl 
I^?(e , (2) ) = D D D — M/mG/mj/, (1 - Qfn,\h) 

h f m "" 

Nl 

h f m f m' 
(f,m)^{f',m') 

nh 

, y y y ^l °}n'Qfm\h 

h f m "'' ^«/.Q/-m|/. 
h 

(1 - Qfm\h) + nhQfm\h 

[1 + {2n„ - ^)Qfm\h - 2(n„ - l)Q}n,\h] 

[ 
-I-

D"" Qf rm\h 

(15) 

where Qfni\h - Qf\h Sm\hf, V-fm = E^[Yi^hfmi], and 
afm = ^^i Y/^fff^i]. 

In practice, pic/m will be based on very few observations 
if few customers in fleet size category/purchase exactly 
m cars. For more stability m may be defined as an ordinal 
variable by grouping the total number of autos purchased 
into a small number of categories. In this case assumption 
(13) implies that the distribution of purchases for product 
type k is the same within fleet size category / and total 
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purchase category m. Also, f may be treated as a con­
tinuous random variable and distributional assumptions 
made about f leading to ratio or regression estimators. 

A second and even stronger set of parameter assump­
tions is 

7f|/,/m = Tnj-„ for aU h, 

= S„,\f for aU h. ^m\hf — J m j / (16) 

These assumptions imply that conditional on fleet size 
category,/, the joint distribution of the number of autos 
purchased of type k and the total number of autos pur­
chased of any kind, m, is independent of the stratum h. 
In this case the maximum likelihood estimator of 0̂ ^ is 
given by 

e*(3) = D 
/ 

N 'fPkf, (17) 

where y^f = Ee f «/p /« / is the unweighted sample mean 
of the number of autos of product type k purchased by 
consumers in fleet size/regardless of how many autos the 
consumer bought in total, and Nf = Y,h N^ nf^f/n,, is a 
weighted estimator of the number of consumers of fleet 
size/overaU. It may be shown that under assumptions (16) 

^(6.(3)) -Y'L ~l'}Qf\'>(^ -2/1/,) 
h f " " 

N 
~TiYY -ri^fi'fQf\hQf'\h 

Nl ojQf^, 

h 

( d - Qf\h) + n,Qf\, 

+ F {2n, -3)0^1, - 2(n, - l)Q}\„ 

Y "I' Qfl" ]] 
(18) 

If assumptions (16) were plausible then ĵ ^y would be 
based on larger sample sizes than y,(f„, in (14) and hence 
0yt(3) would be more stable. 

The maximum UkeUhood estimator of the market share 
for product type k, R^, under assumption (16), is given by 

l^Nry, ^fPkf 
Uk{3) = (19) 

NfZf 

where z/, defined analogously to y^f, is the unweighted 
sample mean number of autos of any kind purchased by 
consumers in fleet category/ 

5. EMPIRICAL RESULTS 

5.1 Estimating Consumers 

In Section 4.2 the efficiency of 0/ (2) was investigated 
for various population structures when assumption (5) 
held. Readers may find this measure unconvincing since 
(5) will not hold in practice. We now use the actual survey 
data to compute 0/(2) for a particular categorization of 
the conditioning factor that is defined by a combination 
of the fleet size and whether or not the consumer pur­
chased any autos of any kind for fleet use (see Table 4). 
Empirical evaluations of synthetic estimators have been 
carried out by Schaible, Brock and Schnack (1977) and 
Drew, Singh and Choudhry (1982) in different contexts. 

For each of the products A-G Usted in Table 2 a x^ test 
was used to test the hypothesis that, conditional on the 
category of the conditioning factor ( / ) , whether or not 
a consumer purchases that product is independent of 
stratum (h). Note that for our example the design is 
stratified random sampling and standard multinomial 
assumptions apply. For multistage designs, the standard 
X̂  analysis would have to be adjusted by using Rao-Scott 
adjustments for example. In practice it is difficult to find 
a categorization / such that conditional independence 
assumptions (5) hold for every product type. However, for 
the categorization defined in Table 4 it was found that 

Table 4 
Definition of the Categories, / , of the 

Conditioning Factor 

Categories 
/ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Fleet Size 

Any 
1-4 
5-8 
9-15 

16-25 
26-50 
51-100 

101-200 
201-550 
> 550 

Definition of / 

Fleet Purchases 

0 
> 0 
> 0 
> 0 
> 0 
> 0 
> 0 
> 0 
> 0 
> 0 
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most of the variability in the probability of purchasing a 
particular product type was explained by the category/of 
the condkioning factor and very little of the residual varia­
tion was due to differences in strata. 

The model-based estimates for consumers, 0/(2) and 
fi/(2), obtained from (6) and (9) respectively, are given 
in Table 5. The model-based variances may give an opti­
mistic view of the precision of the estimators since they 
depend on the conditional independence assumptions in 
the model which may be untrue in practice. Alternatively 
the usual survey estimate of the jt7-based variance of the 
model-based estimator may be derived (see Holt and 
Holmes 1993). This requires no distributional or condi­
tional independence assumptions of any kind and might 
be considered a more objective measure. These estimates 
of standard errors are given in Table 5. Since the estimated 
standard errors are design-based, they include finite popu­
lation corrections. [We note here that the model-based 
standard errors for 0/(2) (not shown in Table 5) were 
consistently around 10% smaller than the/?-based standard 
errors]. 

Table 5 
Model-Based Estimates with p-Based Standard Errors 

for Selected Products 

Product 
(k) 

A 

B 

C 

D 

E 

F 

G 

Row 1: 

Estimating Consumers 

Total Penetration 
e / ( 2 ) 0 / ( 2 ) 

63,433 
(2,230) 

39,673 
(1,587) 

21,930 
(1,142) 

13,422 
(868) 

7,366 
(675) 

5,826 
(492) 

7,686 
(633) 

estimate 

.4070 
(.0105) 

.2546 
(.0086) 

.1407 
(.0066) 

.0861 
(.0052) 

.0473 
(.0041) 

.0374 
(.0031) 

.0493 
(.0039) 

Row 2: 

Estimating Autos 

Total Share 
% ( 3 ) n;t(3) 

263,511 
(13,007) 

177,067 
(9,530) 

65,357 
(3,836) 

22,146 
(1,351) 

15,798 
(1,223) 

14,398 
(1,113) 

11,207 
(813) 

p-based s.e. 

.3722 
(.0048) 

.2501 
(.0046) 

.0923 
(.0027) 

.0313 
(.0016) 

.0223 
(.0014) 

.0203 
(.0012) 

.0158 
(.0011) 

Comparing these results with the usual survey results 
given in Table 2 we find that the standard errors for esti­
mating totals are considerably smaller - around 30-40% 
smaller for all products except A and B (the major 
manufacturers) where the reduction is about 15-20%. This 
pattern is expected since the original survey design was 
optimal for the total sales of autos and therefore relatively 

efficient for products with a large market share. We expect 
the products with smaller market shares to benefit most 
from the model-based approach. 

For estimating market penetration the reduction in 
standard error is again about 30-40% with slightly smaUer 
reductions for products A and B. 

5.2 Estimating Autos 

Table 5 also contains model-based estimates for the 
total number of autos purchased of type k and the cor­
responding market share, ©^̂ (3) and 0 .̂(3) as defined by 
(17) and (19) respectively, for the same categorization/ 
of the conditioning factor as given in Table 4. P-based 
standard errors for these estimates are also presented in 
Table 5. 

Comparing with the standard survey estimates given in 
Table 2 large reductions in standard errors for estimating 
totals are obtained (40-80%) apart from product type B. 
Similarly, for estimating the market shares the reduction 
in standard error is again substantial. 

6. DISCUSSION 

The model-based estimators are derived using condi­
tional independence assumptions to partition the estima­
tion problem into two components. The first, an estimate 
of A//-(the number of consumers of fleet size/), makes use 
of the unequal selection probabiUties, whereas the second, 
an estimate of the proportion of consumers of fleet size 
/buying product type k (or the average number of autos 
of product type k purchased by consumers of fleet size/) 
does not. This can resuU in a substantial efficiency gain. 

If the conditional independence assumptions are invalid 
then in ordinary design-based terms the estimators will 
have a residual bias but this may be an acceptable risk to 
achieve stability of the estimators over the whole product 
range. For the numerical resuUs in previous sections, only 
the model-based estimates for product B are outside of 
the 95% confidence interval based on the direct survey 
estimator. The conditional independence assumptions will 
depend on the choice of the categories/, and can be tested 
using chi-square tests for contingency tables. 

Whilst the results in Table 5 show that the design-based 
standard errors for the model-based estimates are gener­
ally smaller than for the direct estimates shown in Table 2, 
it may be argued that the model-based estimators may be 
biased and hence provide no gain in terms of mean-
squared error (MSE). The bias will arise from the inappro-
priateness of the conditional independence assumptions 
{e.g., equation (5)). This is not testable, but a comparison 
of Tables 2 and 5 can give some insight into the size of bias 
that would be required to cause the MSE to be the same 
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for both the direct and the model-based estimators. Con­
sider the estimate of total consumers for product E which 
is strongly affected by the procedure and hence perhaps 
most susceptible to bias. The variance (and hence MSE) of 
the direct estimator is 1,146^ = 1,313,316 whereas for the 
model-based estimator the variance is 675^ = 455,625. 
Hence, the model-based estimate of 7,366 would need a 
bias of 926 in order for the MSEs to be the same. 
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Time Series EBLUPs for Small Areas Using Survey Data 
A.C. SINGH, H.J. MANTEL and B.W. THOMAS' 

ABSTRACT 

In estimation for small areas it is common to borrow strength from other small areas since the direct survey estimates 
often have large sampling variability. A class of methods called composite estimation addresses the problem by 
using a Unear combination of direct and synthetic estimators. The synthetic component is based on a model which 
connects small area means cross-sectionally (over areas) and/or over time. A cross-sectional empirical best linear 
unbiased predictor (EBLUP) is a composite estimator based on a linear regression model with small area effects. 
In this paper we consider three models to generalize the cross-sectional EBLUP to use data from more than one 
time point. In the first model, regression parameters are random and serially dependent but the small area effects 
are assumed to be independent over time. In the second model, regression parameters are nonrandom and may take 
common values over time but the smaU area effects are serially dependent. The third model is more general in that 
regression parameters and smaU area effects are assumed to be serially dependent. The resulting estimators, as well 
as some cross-sectional estimators, are evaluated using bi-annual data from Statistics Canada's National Farm Survey 
and January Farm Survey. 

KEY WORDS: Composite estimation; State space models; Kalman filter; Fay-Herriot estimator. 

1. INTRODUCTION 

There exists a considerable body of research on small 
area estimation using cross-sectional survey data in con­
junction with supplementary data obtained from census 
and administrative sources. A good collection of papers 
on this topic can be found in Platek, Rao, Sarndal and 
Singh (1987). Small area estimation techniques in use in 
U.S. federal statistical programs are reviewed by the 
Federal Committee on Statistical Methodology (1993). 
The basic idea underlying all small area methods is to 
borrow strength from other areas by assuming that differ­
ent areas are Unked via a model containing auxiUary 
variables from the supplementary data. It would also be 
important to borrow strength across time because many 
surveys are repeated over time. Recently time series 
methods have been employed to develop improved esti­
mators for small areas; see Pfeffermann and Burck (1990) 
and Rao and Yu (1992). It is interesting to note that after 
the initiative of Scott and Smith (1974) on the application 
of time series methods to survey data, there has only lately 
been a resurgence of interest in developing suitable estimates 
of aggregates from complex surveys repeated at regular 
time intervals; see e.g.. Bell and Hillmer (1987), Binder 
and Dick (1989), Pfeffermann (1991), and Tiller (1992). 

In this paper we consider some natural generalizations 
of the best linear unbiased predictor (BLUP) for small 
areas when a time series of direct small area estimates is 
available. An important example of the BLUP for small 
areas is the Fay-Herriot (FH) estimator, which entails 
smoothing of direct estimators by cross-sectional modelling 

of small area totals. The resulting estimators are composite 
estimators {i.e., convex combinations of direct and syn­
thetic estimators) and are called empirical BLUPs, or 
EBLUPs, whenever estimates of some variance compo­
nents are substituted in the BLUPs. The work of Fay and 
Herriot (1979) represents an important milestone in the 
field of small area estimation because it is probably the 
first example of a large scale application of small area 
estimation by government agencies for policy analysis. 
With the use of structural models, we derive time series 
EBLUPs which combine both cross-sectional and time 
series data. The models underlying the time series EBLUPs 
were chosen on the basis of general heuristic considera­
tions rather than formal model testing procedures. Formal 
testing of these types of models with survey data is very 
difficult and not very much is available. Instead, we begin 
with a regression model that is reasonable for the larger 
area, and then allow random small area effects to account 
for any local deviations from the global model. The regres­
sion parameters and random small area effects are allowed 
to evolve over time according to a state space model that 
was also formulated heuristically. We have not considered 
here the problem of mean squared error (MSE) estimation 
for our estimators. MSEs with respect to the motivating 
models could be defined and estimated for many of the 
estimators; however, the focus of this paper is on the 
performance of the estimators in a repeated sampling 
framework. MSE estimation is an important and difficult 
problem, and the availabiUty of reliable MSE estimators 
could be an important consideration in the choice of 
estimators. 

' A.C. Singh and H.J. Mantel, Social Survey Methods Division; B.W. Thomas, Business Survey Methods Division, Statistics Canada, Ottawa, 
Ontario, KIA 0T6. 
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The main purpose of this paper is to compare time series 
EBLUPs with cross-sectional estimators such as post-
stratified domain, synthetic, FH and sample size dependent 
estimators. In the time series modelUng of the direct smaU 
area estimates we assume that the survey errors are uncorre­
lated over time. When survey errors are correlated over time 
and can be modeUed reasonably {e.g., ARMA) the approach 
of Pfeffermann (1991) can be used to obtain time series 
EBLUPs via the Kalman filter. Rao and Yu (1992) obtain 
EBLUPs for a model, in which the Kalman filter cannot 
be applied, with survey errors having arbitrary correlation 
structure over time but being uncorrelated across areas. They 
also develop second order approximations to, and estimation 
of, the mean squared error under their model. When a model 
for the correlated survey errors is difficult to specify U may 
be possible, using a suitably modified Kalman fiUer, to get 
good sub-optimal estimators (Singh and Mantel 1991). 

In this paper we report on an empirical study of the effi­
ciency of time series EBLUPs. The study uses Monte Carlo 
simulations from real time series data obtained from 
Statistics Canada's biannual farm surveys. The main 
findings of the study are 

(i) There can be reasonable gains in efficiency with time 
series EBLUPs over cross-sectional estimators, 

(ii) Within the class of time series methods considered in 
this paper, introduction of serial dependence in the 
random small area effects is found to be beneficial. 

(Ui) Although any smoothed version of the direct small 
area estimator is expected to be biased, the time 
series EBLUPs exhibit less bias than cross-sectional 
smoothing methods. 

Section 2 contains a description of various cross-
sectional methods for small area estimation. Time series 
EBLUPs are described in Section 3 and the detaUs and 
results of the Monte Carlo comparative study are given in 
Section 4. Finally, Section 5 contains concluding remarks. 

2. METHODS BASED ON CROSS-
SECTIONAL DATA 

In this section we describe some well known small area 
estimation methods that use survey data from only the 
current time. Ghosh and Rao (1994) contains a good 
survey of various small area estimators. 

Let 0 denote the vector of small area population totals 
Qk, k = I, ..., K. In this section, which deals with 
methods based on cross-sectional data, we ignore the 
dependence of 0 on time t for simpUcity. 

2.1 Method 1 (Expansion Estimator for Domains) 

This estimator is given by 

gik = D djPj, 

where dj is the survey weight for sample unit j . For 
stratified simple random sampUng, which is used for our 
simulation study in Section 4, we have 

gik = D (Nh/nh) Y yxj' 
h JiShk 

(2.1) 

where yi,j is t h e / t h observation in the h-th stratum, Si,k 
denotes the set of nf,k sample units falling in the k-th small 
area in the h-th stratum and n^, Nf, denote respectively 
the sample and population sizes for the h-th stratum. This 
estimator is often unreliable because /t̂ .̂, the random 
sample size in the smaU area, may be small in expectation 
and could have high variabiUty. Conditional on the realized 
sample size /i;,^, gn^ is biased. However, unconditionally, 
it is unbiased for Q/^. 

2.2 Method 2 (Post-stratified Domain Estimator) 

We will also refer to this estimator as the direct small 
area estimator. If the population size N ^ is known for 
some post-strata indexed by /, then the efficiency of the 
estimator g^k could be improved by post-stratification. 
We define 

sik = Y ^"^ D W I. ^^^=1, ^"^y'x-
I jiSlIt- I jiSjl; I 

In our simulations our post-strata are the intersections of 
design strata with small areas which leads to 

g2k = Y ^^hk/nhk) Y y''j" D ^"'t-j'A/t-
h jiSj,k h 

(2.2) 

This estimator also may not be sufficientiy reliable because 
of the possibility of n,,k's being smaU in expectation. If 
n/j/c - 0, the above estimator is not defined. It is conven­
tional to replace y,,^ by 0 when n,,^ - 0. In the empirical 
study presented in this paper, we replaced j , , ^ . by the syn­
thetic estimate (X/,!, /X/, )ph, where ^ is a suitable co vari­
able, whenever nhk — 0-

The estimator g2k in (2.2) is conditionally (given 
n,,ii > 0) unbiased and approximately unconditionally 
unbiased. Appendix A. 1 gives details of estimation of the 
conditional mean squared error, v .̂, of gjk-

2.3 Method 3 (Synthetic Estimator) 

It is possible to define a more efficient estimator by 
assuming a model which allows for "borrowing strength" 
from other small areas. This gives rise to synthetic 
estimators, see e.g., Gonzalez (1973) and Ericksen (1974). 
Suppose different small area totals are connected via the 
auxiliary variable X^ by a Unear model as 

0^ = ^1 + 02Xk, k = I, K, (2.3a) 
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or in matrix notation 

0 = F0, (2.3b) 

whereF= (^ , ,^2, . . . , F ^ ) ' , F ^ = ( 1 , ^ ^ ) ' . Now con­
sider a model for the direct small area estimators g2k's as 

|2 = -F? + € , 

where |2 = (§21, •••,82K)',i = (Si , • •., ^K)', ^kSare 
uncorrelated survey errors with mean 0 and variance v^. 
Note that the ^2*8 are uncorrelated over areas since they 
are conditionally (given /t;,̂ .) unbiased and the samples in 
different small areas are conditionally independent. 

Denoting by |S the weighted least squares (WLS) esti­
mate of jS, we obtain the regression-synthetic estimator of 
0̂ ^ under the assumed model as 

Si = ^ ^ • 

The above estimator could be heavily biased unless the 
model (2.3) is satisfied reasonably well. The above model 
may not be realistic because no random fluctuation or 
random small area effect (%, say) is allowed. 

2.4 Method 4 (Fay-Herriot Estimator or EBLUP) 

Using the empirical Bayes approach of Fay and Herriot 
(1979) or the more general best Unear unbiased predictor 
approach (see e.g., Battese, Harter and Fuller 1988, and 
Pfeffermann and Barnard 1991), the bias of the synthetic 
estimator can be reduced considerably by using a composite 
estimator; for an early reference on composite estimation 
see Schaible (1978). The composite estimator is obtained 
as a convex combination of gj and a modified ^3. For this 
purpose, it is assumed that 

A = ( K - ' -f W-')-'V-' = WU-\ U =V + W, 

V = diag(vi, . . . , V;;:), W = diag(W|, . . . , w,(), 

and ^3 = F0*, 0* is the WLS estimate of jS under model 
(2.5). Here it is assumed that both the covariance matrices 
Fand W^are known in computing the BLUP. 

The expression (2.6) follows from the general results 
on linear models with random effects, see e.g., Rao 
(1973, p. 267) and HarvUle (1976). The BLUP or BLUE 
of f jS is |3* and the BLUP of a is A(|2 - g^). It may be 
of interest to note that the structure of the BLUP does not 
change regardless of whether or not 0 is known. However, 
its MSE does change as expected due to estimation of 0. 

When Kand IKare replaced by estimates, the estimator 
g4 is termed EBLUP. Note that the model (2.4) is more 
realistic than (2.3), and therefore, the performance of ^4 
is expected to be quite favourable. The estimator ^4 
approaches^2 when the v̂ ŝ get smaU, i.e., when the /i/,^s 
become large. However, it remains biased, in general, 
conditional on 0 , with bias tending to 0 as the v̂ ŝ get 
smaU. 

2.5 Method 5 (Sample Size Dependent Estimator) 

An alternative composite estimator is given by the 
sample size dependent estimator of Drew, Singh and 
Choudhry (1982). It is defined as 

§5 = A|2 + ( / - A ) | 3 , 

where A = diag(6,, . . . , 6^), 

if D dj > \Nk, 
Ji^k 

D di 
(2.7) 

e ^ F0 -\- a. (2.4) 
V"A: 

tj/XNif Otherwise 

where a^'s are uncorrelated random small area effects 
with mean 0 and variance W/^ known up to a constant. 
In our empirical study later we take w^ = w. Thus we 
model g2 as 

| 2 = ^ ^ + a + € . (2.5) 

Here a is also assumed to be uncorrelated with e. The 
BLUP of 0 under the model defined by (2.4) and (2.5) is 

| 4 = |3 + A( |2 - gi) 

= A^2 + ( / - A)^3*, 
(2.6) 

where 

and the parameter X is chosen subjectively as a way of 
controlling the contribution of the synthetic component. 
The above estimator takes account of the reaUzed sample 
size n,,k's and if these are deemed to be sufficiently large 
according to the condition in (2.7), then it does not rely 
on the synthetic estimator. This property is somewhat 
similar to that of g,^; however, unlike ^4, the above esti­
mator does not take account of the relative sizes of the 
within area and between area variation. Rao and Choudhry 
(1993) have demonstrated empirically how EBLUPs can 
sometimes outperform sample size dependent estimators, 
especially when the between area variation is not large 
relative to the within area variation. Sarndal and Hidiroglou 
(1989) also proposed estimators similar to the above 
sample size dependent estimator. 
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3. METHODS BASED ON POOLED 
CROSS-SECTIONAL 

AND TIME SERIES DATA 

Suppose information is available for several time points, 
t = 1, . . . , r , in the form of direct small area estimators 
g2„ where g2, is the vector of estimates g2k in (2.2) based 
on data from time t, and also the smaU area population 
totals for the auxiliary variable. We will now introduce 
some estimators which generalize the Fay-Herriot estimator 
g^j in different ways by taking account of the serial 
dependence of the direct estimates (^2/: ̂  = 1, • • • > T\. 
Recall that for the Fay-Herriot estimator, the model for 
©7- has two components, namely, the structural compo­
nent FY0jand the area component 07-. The estimator 4̂7-
borrows strength over areas for the current time Tand is 
given by the sum of two components, each being EBLUP 
(BLUE) for the corresponding random (fixed) effect, i.e., 

g4T — FY0T -^ Oj. (3.1) 

Methods based on time series data could, however, borrow 
strength over time as weU. Here we introduce three esti­
mators which are motivated from specific structural 
models for serial dependence. AU three of these estimators 
are optimal under different special cases of a structural 
time series model for the direct small area estimates 
[git'-t = I, • • •,T] specified by the following state space 
model. Let a, denote {01, a,')' and H, denote (F,, I). 
Then we have 

and 

where 

git = e , + €,, 

0, ^ F,0, -ha, ^ H, a, 

o^t = G, g ,_ , -I- f,, 

G, -

(3.2a) 

(3.2b) 

(3.2c) 

along with the usual assumptions about random errors, 
i.e., €,, f, are uncorrelated, f, is uncorrelated with g^ 
for s <}, and that €, ~ (O", V,), f, ~ (0 , r , ) where 
r, = block diag{B,,Q,]. The covariance matrices V,, B,, 
and Q, are generally diagonal. If G / " = / a n d C / ^ ' = / 
then 0, and a, evolve according to a random walk. 

This model is in the general class defined by Pfeffermann 
and Burck (1991) using structural time series models. The 
main purpose of their study was to show how accounting 
for cross-sectional correlations between neighbouring 
small areas (in addition to serial correlations) and inclusion 
of certain robustness modifications (to protect against 

model breakdowns) could improve the performance of 
time series model based estimators. They also used the 
maximum likelihood method under normality to estimate 
model parameters. The focus of this paper, on the other 
hand, is on the Monte Carlo evaluation of a special class 
of time series estimators (related to Fay-Herriot) chosen 
on the basis of heuristic considerations and not on the basis 
of model fitting. The methods considered could, therefore, 
be viewed as model assisted methods whose performance 
will be evaluated in a design based {i.e., repeated sampling) 
framework by Monte Carlo simulation. Moreover, it will 
be seen later that, for the types of serial dependence con­
sidered, the model parameters can be estimated relatively 
simply by the method of moments, without making any 
distributional assumptions such as normality. 

To find the optimal estimator (BLUP) of ©7- in (3.2) 
based on all the direct estimates up to time T, we first 
found the BLUP 67- of g7- from which the BLUP of 07-
is obtained as Hj-ar. It is possible, albeit cumbersome, 
to get 0:7-directly from the complete data using the theory 
of Unear models with random effects. However, since the 
gT-s are connected over time according to the transition 
equation (3.2b), it is more convenient to compute it recur­
sively using the Kalman filter (KF). Traditionally KF is 
viewed as a Bayesian technique in which at each time /, 
the posterior distribution of a, given data up to / — 1 is 
updated to get the posterior distribution of a, given data 
up to time t. Although it is instructive to view KF in this 
manner, it is not necessary under mixed linear models. 
Suppose aT\s denotes the BLUP of qr based on data up 
to time s,s < T. It is known (see Duncan and Horn 1972) 
that, for the special structure of serial dependence consid­
ered here, the BLUP §7- of gT- based on data up to time 
T is the same as the BLUP of g7- based on g7-|̂  and the 
last T — s observations. In other words, information in 
the previous data can be condensed into an appropriate 
BLUP before augmenting more current data points. A 
good description of the Kalman filter is given in chapter 3 
of Harvey (1989). 

3.1 Method 6 (Time Series EBLUP-I) 

For the first estimator, we let 0, evolve over time 
{e.g., according to a random walk), but assume that a, is 
serially independent. The equations for the state space 
model for this case are similar to (3.2) except that the serial 
independence of the a,s implies G / ^ ' = 0. This wUl give 
rise to a composite estimator 

ger — Ff0j -\- dr- (3.3) 

Note that ^7-in (3.3) would now be based on all the small 
area estimates up to time Tand therefore would be differ­
ent from 0J- of (3.1) which is based on only direct estimates 
at time T. The estimator q-r, as a result, would also be 
different from the corresponding component of of (3.1). 
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In the simulation study described later we take G/"' = /, 
B, = diag(7f, yl), corresponding to a random walk model, 
and Q, = r^I. Appendix A.2 illustrates the method of 
moments estimation of the parameters y}, 72, and T^. 
The KF may then be run, with initial values for gj and its 
MSE obtained from the F//estimator at ? = 1, to obtain 
the EBLUP of qj. Then Hrqris the time series EBLUP-I 
estimator g^r at time T. 

As pointed out by a referee, when the number of small 
areas is quite large, or when the variation in 0, over t is 
relatively large, there is little difference between ^^T- and 
^47". Indeed, there is little difference between the perfor­
mances of these two estimators in our simulation study 
described in Section 4. 

3.2 Method 7 (Time Series EBLUP-II) 

For the second estimator, we let 0, be fixed (it may or 
may not be common for different time points) and let the 
area effects a, be serially dependent according to, for 
example, a random walk. This time series generalization 
could be viewed as an analogue of the model proposed by 
Rao and Yu (1992). The resulting composite estimator will 
have the same form as (3.1), i.e.. 

giT — Ef0f -\- qj, (3.4) 

but the component estimates |87-and 07-would be different. 
We have two cases. 

3.2.1 Case 1: Suppose the ^,s are fixed and time-
invariant but the q,s are serially dependent. Then, in 
(3.2), G / " = landB, = 0. If Q, is taken as T^/, then the 
only unknown parameter T^ can be estimated by the 
method of moments; see Appendix A.2. We will denote 
by g77-the EBLUP obtained in this case when the parameter 
estimate is substituted. 

3.2.2 Case 2: Here we assume that ^,s are fixed but 
different for different time points. The area effects q, 
evolve over time as in Case 1. In (3.2) we have G,"' = 0 
and B, = ml where mis a large number. The expressions 
for g7-and its MSE obtained from the KF in this case give 
the correct formulas as /w -« 00 (see Sallas and Harville 
1981). The KF updating equations for a, in this case take 
the special form 

0, = {F;A,-'F,)-'FIA,-'{g2, - G P g , _ , ) ; 

a, = G^'^q,_, + P , | , - , / i r ' ( | 2 / - G P a , _ , - F, 0,); 

P, = P, | ,_, - P , | , _ , ^ r ' ( ^ , - F,{F!A,-'F,)-'F,') 

At-'Pt\,-i, 

where A, = P,|,_i -I- V,, P, is the MSE of a, about a,, 
andP, | ,_ , = G/2'P,_i(G/2*}' + Q, is the MSE of G/^' 
qi_ 1 as an estimator of a,. The time series EBLUP in this 
case will be denoted by g*r. 

3.3 Method 8 (Time Series EBLUP-III) 

For the third estimator, we let both 0, and a, evolve 
over time. This wiU have more complex serial dependence 
than either (3.3) or (3.4). Its form wiU be similar to (3.1) 
and can be represented as 

gsT — Ff0j + q-r. (3.5) 

As before, if B, = diag (7?, 72) and Q, = T^I, then the 
model parameters T^, yf, 72 can be estimated by the 
method of moments as in Appendix A.2. The resulting 
EBLUP of ©7-wUl be denoted by ^87-. 

It may be of interest to note that many of the estimators 
considered so far are optimal under special cases of the 
model underlying ggj-- As has been shown, the time series 
EBLUPs of methods 6 and 7 result from making restric­
tions on the matrices G, and F,. The cross-sectional Fay-
Herriot estimators of Section 2.4 result from restricting 
the data to a single time point. The synthetic estimators 
of section 2.3 are special cases of the Fay-Herriot esti­
mators with zero variance for the random small area 
effects, and the direct (post-stratified) estimator is obtained 
in the limit as the variance of the small area effects goes 
to infinity. 

A further generalization that could be useful is to allow 
correlations between neighbouring small area effects. This 
can be accomplished by allowing the matrix Q, in (3.2) to 
be non-diagonal; however, it is not clear what would be 
an appropriate correlation structure in Q,. 

4. MONTE CARLO STUDY 

The cross-sectional and time series methods were com­
pared empirically by means of a Monte Carlo simulation 
from a real time series obtained from Statistics Canada's 
biannual farm surveys, namely, the National Farm Survey 
(in June) and the January Farm Survey. Due to the redesign 
after the census of Agriculture in 1986, the survey data for 
the six time points starting with the summer of 1988 were 
employed to create a pseudo-population for simulation 
purposes. To this, data from the census year 1986 was also 
added. Thus information at one more time point was 
available although this resulted in a 3-point gap in the 
series. The missing data points, however, can be easily 
handled by time series methods. It may be noted that 
although the data series is short, it is nevertheless believed 
to be adequate for illustrative purposes. The parameter of 
interest was taken as the total number of cattle and calves 
for each crop district (defined as the small area) at each 
time point. For simplicity, independent stratified random 
samples were drawn for each occasion from the pseudo-
population, though the farm surveys use rotating panels 
over time. The dependence of direct small area estimates 
over time was modeUed by assuming that the underlying 
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small area population totals are connected according to 
some random process. The auxiliary variable used in the 
model was the ratio-adjusted census 1986 value of the total 
cattle and calves for each small area. This showed high 
correlations with the corresponding variable over time at 
the farm level. Specific details of the empirical study are 
described below. 

4.1 Design of the Simulation Experiment 

First we need to construct a pseudo-population from 
the survey data over six time points (June 1988, January 
1989, . . . , January 1991). The actual design involves two 
frames (list and area) with a one stage stratified sampUng 
from the list frame and a two stage stratified sampling 
from the area frame, for details see JuUen and Maranda 
(1990). We decided to use survey data from the list frame 
only because the list frame corresponds to farms existing 
at the time of Census 1986 and the chosen auxiliary variable 
for model building was based on Census 1986 information. 
Moreover, we chose to use the data from the province of 
Quebec because its area sample is only a minor component 
of the total sample and the estimated coefficient variation 
for the twelve crop-districts {i.e., small areas of interest) 
of this province showed a wide range for the livestock 
variables. It was decided to avoid variability due to changes 
in the underlying population over time by retaining only 
those farms which responded to all the six occasions. Also, 
farm units who belonged to a multiholding arrangement 
in any one of the seven time points (including the census) 
were excluded because of the problems in finding indi­
vidual farm's data from the multiholding summary record 
and changes in their reporting arrangement over time. 

The various exclusions described above were motivated 
from considerations of yielding a sharper comparison 
between small area estimators. The total count of farm 
units after exclusions was found to be 1,160 out of a total 
of over 40,000 farms on the Ust frame. For the pseudo-
population, we replicated the 1,160 farm units propor­
tional to their sampling weight so that the total size N of 
the pseudo-population was 10,362, which was manageable 
for micro-computer simulation. 

The pseudo-population was stratified into four take-
some and one take-all strata using Census 1986 count data 
on cattle and calves as the stratification variable. Although 
we did not consider alternative stratifications or sample 
sizes in our simulation study, there is no reason to think 
that our conclusions would alter significantly if we were 
to do so. The sigma-gap rule (Julien and Maranda 1990) 
was used for defining the take-all stratum. To apply the 
sigma-gap rule we look at the smallest population value 
greater than the population median where the distance to 
the next population value, in order of size, is at least one 
population standard deviation; all units above this point 
are placed into the take-all stratum. The algorithm of Sethi 

(1963) was used for determining optimal stratification 
boundaries for take-some strata. Neyman's optimum 
allocation was used for sample sizes for strata in order to 
optimize the precision of the provincial estimate of total 
count. This resulted in, from a total sample size of 207 
(2% sampUng rate), allocations of 51, 62,48 and 35 from 
takesome strata with 5,001, 3,188, 1,850 and 312 farms, 
respectively, and the size of the take aU stratum was 11. 
The expected number of sample farms in each small area 
varied from 4.6 in area 9 up to 27.5 in area 6, with an 
average of 17.3. The expected number of sample farms 
with some cattle and calves varied from 3.6 in area 9 to 
18.8 in area 3, and the average over the small areas was 
11.7. Atotalof 30,000 simulations were performed. For 
each simulation, samples were drawn independently for 
each time point using stratified simple random sampling 
without replacement. The 30,000 simulations were con­
ducted in 15,000 sets of 2 simulations where each set corre­
sponds to a different vector of realized sample sizes in the 
twelve smaU areas within each stratum. This was required 
to compute certain conditional evaluation measures as 
described in the next subsection, see also Sarndal and 
Hidiroglou (1989). 

4.2 Evaluation Measures 

Suppose m simulations are performed in which mi sets 
of different vectors of realized sample sizes in domains 
{h,k) are replicated /W2 times. The foUowing measures 
can be used for comparing performance of different esti­
mators at time T. Let / vary from I to m^ and J from 1 
to /7l2. 

(i) Absolute Relative Bias for area k: 

ARB^ ^\m-^YY (̂ ^̂ y* •" '̂•" '̂̂ ^^ '̂'"^* I • ^^-^^ 
'• J 

The average of ARB t̂ over areas k will be denoted by 
AARB. We take the absolute relative bias since our 
primary interest in this study is in an overall measure 
like AARB; however, in other contexts the actual 
biases for individual small areas may also be of con­
siderable interest. 

The following measure is motivated by a desire to eval­
uate the conditional performance of estimators, condi­
tional on the vectors of realized sample sizes in domains. 
It is conventional to measure performance conditional on 
fixed domain sample sizes; here we consider the standard 
deviation of the conditional bias, Bn^, as a simple sum­
mary measure. If this standard deviation is small then the 
method is robust to variations in the realized sample sizes. 
Note that the expected value of Bn^ is just the uncondi­
tional bias which is estimated by ARB^. Let BJ denote the 
unconditional expected value of BJ^. We define the 
following Monte Carlo measure: 
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(ii) Standard Deviation of Conditional Relative Bias for 
area k: 

SDCRB^ = f/wf' Y ^^^k - Cik) I true/, - A R B H '; 

Bik = '"2"' D estyA: - true^. (4.2) 

Cik = /rj2 ' ( ^ 2 - 1) (D^'t^*-(D ^'^uj r^X 

The correction term Cjk adjusts for bias in BJk, as an 
estimate of BJk, due to m2 being finite. BJk — C-ik is 
conditionally unbiased for B]k; it is also uncondi­
tionally unbiased for B\. The Monte Carlo average 
' ^ r ' E , ( ^ * - Cik) converges to B^ with probability 1 
as /W] — oo. B\k — Cik may be negative for some /, 
due to finite /7?2. For large m\ the average over / is 
usually very close to B\; whenever the average is less 
than ARBf we set SDCRB^ to 0. ASDCRB wiU denote 
the average of SDCRB^. over areas k. 

(iii) Mean Absolute Relative Error for area k: 

MARÊ  ^ m-^YY I ^̂ '̂J-̂  ~ '̂'"̂ * l/""̂ *̂  '̂̂ •̂ ^ 
' i 

and AMARE denotes the average of MARE^. over 
areas. 

(iv) Mean Squared Error for area k: 

MSE;, = m-'YY ^̂ *̂y* ~ ^™ *̂̂ ' (4.4) 
' J 

and AMSE as before denotes the average over areas, 

(v) Relative Root Mean Squared Error for area k: 

RRMSE^ = {MSEj'''Vtrue^. (4.5) 

Again, ARRMSE denotes the average over areas. 

The precision (i.e., the Monte Carlo standard error) 
of each measure depends on m\, /M2- For all measures 
except (U), the optimal choice of /«,, /W2 under the restric­
tion that/«2 > lis/Wi = m/2,m2 = 2, since this mini­
mizes the Monte Carlo standard error. To see this, let A 
be the average of an evaluation measure from m2 samples 
all with the same sample configuration (set of random 
sample sizes in domains) which we call C. Then the 
expected value of A conditional on C is a function of C, 

say E{C), and the conditional variance of 4̂ is propor­
tional to m2 ', say V{ C) /m2. The uncondkional variance 
of A is then V{E{C)] + E{V{C)\ //Wj, and the overaU 
Monte Carlo variance of an evaluation measure based 
on my sample configurations replicated m2 times is 
V{E{C)]/mx -I- E[V{C)]/mxm2 which is minimized, 
since m = mim2is fixed, by taking /n, as large as possible. 
For the second measure, the appropriate choice of /TJJ, /W2 
is less straightforward. In the simulation study, m was 
chosen as 30,000 and the corresponding values of mi, m2 
were set at 15,000 and 2. 

4.3 Estimators Used in the Comparative Study 

There were nine estimators included in the study, 
namely, g| to gg and g*, all calculated for time T - 10. 
We used a simple linear regression model for the synthetic 
component with the auxiliary variable defined as 

^kl — (9 / /0 l )0/H, (4.6) 

where 0^i, ©i respectively denote the population totals 
for smaU area k and the province at / = I, i.e., at Census 
1986. The estimator 0, denotes the post-stratified estimator 
of ©, from the farm survey at time t at the province level. 
Thus Xk, is simply a ratio-adjusted synthetic variable. 
The variances of error components in the regression model 
were assumed to be constant over areas. For time series 
models, it was assumed that the serial dependence was 
generated by a random walk. The above type of model 
assumptions have been successfully used in many applica­
tions and the main reason for our choice was simplicity. 
It was hoped, however, that the chosen models might be 
adequate for our purpose and might illustrate the differen­
tial gains with different types of model assisted smaU area 
estimators, i.e., both cross-sectional and time series 
smoothing methods. 

Since the Census 1986 data was included in the time 
series, the direct estimate g2\ corresponds to Census 1986 
and therefore the survey error 6i would be identically 0. 
Moreover, from the definition of Xk„ it follows that a 
reasonable choice of (0u, i32i) would be (0,1) which 
implies that Cj must be 0. Thus the covariance matrices 
B, and W,att= 1 are null and, therefore, the distribu­
tion of g, at ? = 1 would not require estimation. The 
above modification in the initial distribution of q, is 
natural in view of the extra information available from the 
census. Moreover, since the direct estimates g2, were not 
available for t = 2,3, 4, equations for estimating model 
variance components in Appendix A.2 were modified 
accordingly. 

For method 7 (case 1), ^, was assumed to have a 
common fixed value only for r > 2 because at t — 1, 
0, = (0,1)'. For the sample size dependent estimator ^5 
the parameter X was taken to be 1. 
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4.4 Empirical Results 

The main findings were listed in Section 1. Here we give 
some detailed comparisons and some possible explana­
tions. We do not show separate results for g* which 
performs slightly worse than, though overaU similarly to, 
g7. The estimators are summarized in Table 1. Figures 1 
to 3 and Tables 2 to 4 present some of the empirical results. 
We have not shown the Monte Carlo standard errors but 
they were all found to be quite negligible. 

Table 1 
Summary of Estimators 

1̂ - Expansion 

g2 - Post-stratified 

g3 - Synthetic 

g4 - Fay-Herriot 

g5 - Sample Size 
Dependent 

ge - Time Series EBLUP-I, 0s 
evolve over time, as inde­
pendent over time 

g^ - Time Series EBLUP-II, as 
evolve over time, fixed 
common 0 

gs ' Time Series EBLUP-111, 0% 
and as evolve over time 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

0 

X 

•V 

7 X : AARB •:•••• 

V : ASDCf^B 

• + : A M A R g •• 

X i A M S e : 
•DiARRMSE-

.X.. 
X 

J^ % 
S\ 82 §3 84 85 86 8i 8s 

Figure 1. Evaluation Measures Relative to Fay-Herriot 

Note: Relative ASDCRB for g, ( = 18.98) not shown. 

AARB 

ASDCRB 

AMARE 

ARRMSE 

AMSE 
(1,000's) 

Table 2 
Average Evaluation Measures 

8i 

.001 

.282 

.269 

.339 

72,979 

gl 

.007 

.016 

.147 

.192 

27,596 

gi 

.097 

.016 

.115 

.137 

13,382 

^4 

.065 

.015 

.108 

.137 

12,898 

^5 

.018 

.023 

.136 

.176 

g6 

.070 

.010 

.097 

.120 

22,760 10,603 

57 

.053 

.010 

.087 

.109 

8,610 

gs 

.053 

.010 

.088 

.111 

8,829 

Table 2 gives the five evaluation measures averaged 
over small areas. Figure 1 shows plots of the averaged 
evaluation measures relative to the Fay-Herriot (^4) 
value. There is a clear pattern in the behaviour of various 
measures across different estimators. The direct estimator 
g2 does very well with respect to the bias measure (AARB) 
but does somewhat poorly with respect to the other 
measures. The cross-sectional smoothing method ^3 
(synthetic) does quite poorly with respect to the bias 
measures. The Fay-Herriot method §4 performs somewhat 
better than post-stratified on average with respect to the 
MSE measure but is much worse in terms of bias. The 
sample size dependent method g^ is quite similar to g2> 
slightly worse with respect to the bias measures and slightly 
better with respect to the other measures. The time series 
methods g-j and g^ perform quite well overall, though 
they are somewhat worse than g2 with regard to bias. The 
performance of the time series estimator g^ is generally 
between that of Fay-Herriot and the time series estimators 
g-j and gs. For all of the estimators (including the synthetic 
g3) the standard deviation of the conditional relative bias 
(ASDCRB) is appreciable; however, it is smallest for the 
time series methods. As expected, the expansion estimator 
gl does well with respect to the unconditional bias measure, 
AARB, but its conditional performance (ASDCRB) is 
quite poor. 

Figure 2 plots averages of RRMSE^. for three size 
groups, namely small, medium and large small areas, 
based on the ranking of their true population totals at time 
T. They are divided up into these three groups because the 
relative errors of estimation would be expected to be larger 
for the smaller totals, and the plots do not contradict this 
expectation. Again, the time series methods ^7 and gg 
perform best. Note that the time series method ^6, which 
assumes the small area effects to be independent over time, 
does not do as well. The unaveraged values of RRMSE^t 
are given in Table 3. RRMSEg is relatively large because 
the total number of cattle and calves for area 9 is less than 
half that of any other small area. Areas 6 and 8 stand out 
within the medium size small areas as being most difficult 
to estimate by the smoothing methods. The reason for this 
is that, while there was an overall decline of about 16% 
in the total number of cattle and calves in the pseudo-
population from June 1986 to January 1991, the decreases 
for areas 6 and 8 were the furthest from the average at 33% 
and 1%, respectively, so the ratio adjusted covariate 
would be least appropriate for those areas. Nevertheless, 
the time series methods gj and gg performed significantly 
better than the post-stratified estimator for areas 6 and 8. 
This is because the random walk model for the small area 
effects is able to track small areas which, like areas 6 and 8, 
progressively deviate from the model. 
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Figure 2. Relative Root Mean Squared Errors: Averaged 
within Size Groups 
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Figure 3. Absolute Relative Biases: Averaged within 
Size Groups 

Table 3 
Relative Root Mean Squared Errors and True Total 

Cattle and Calves for Small Areas 

Small 
Size 

Medium 
Size 

Large 
Size 

Area 

9 
10 
11 
12 

Average 

1 
6 
7 
8 

Average 

2 
3 
4 
5 

Average 

True 
Values 

8,502 
18,990 
18,776 
19,819 

16,522 

27,595 
29,012 
23,600 
23,627 

25,959 

35,592 
40,582 
42,396 
35,996 

38,642 

8l 

.580 

.360 

.339 

.409 

.422 

.312 

.306 

.341 

.383 

.336 

.268 

.241 

.256 

.270 

.259 

^ 2 

.277 

.196 

.122 

.237 

.208 

.206 

.241 

.121 

.250 

.205 

.171 

.151 

.160 

.176 

.164 

8i 

.342 

.078 

.122 

.076 

.154 

.117 

.256 

.107 

.155 

.159 

.113 

.087 

.099 

.091 

.098 

^ 4 

.275 

.113 

.103 

.152 

.161 

.130 

.216 

.094 

.165 

.151 

.110 

.090 

.103 

.097 

.100 

85 

.277 

.175 

.112 

.212 

.194 

.185 

.224 

.110 

.219 

.185 

.156 

.137 

.144 

.160 

.149 

g6 

.199 

.097 

.096 

.123 

.129 

.120 

.224 

.088 

.155 

.147 

.096 

.070 

.080 

.088 

.083 

gl 

.160 

.103 

.086 

.117 

.116 

.100 

.168 

.092 

.146 

.126 

.089 

.072 

.088 

.085 

.083 

^ 8 

.174 

.104 

.087 

.117 

.120 

.102 

.172 

.092 

.144 

.127 

.088 

.073 

.089 

.088 

.084 

Table 4 

Absolute Relative Biases and True Total Cattle 
and Calves for Small Areas 

Small 
Size 

Medium 
Size 

Large 
Size 

Area 

9 
10 
11 
12 

Average 

1 
6 
7 
8 

Average 

2 
3 
4 
5 

Average 

True 
Values 

8,502 
18,990 
18,776 
19,819 

16,522 

27,595 
29,012 
23,600 
23,627 

25,959 

35,592 
40,582 
42,396 
35,996 

38,642 

8l 

.002 

.002 

.002 

.000 

.001 

.001 

.000 

.000 

.002 

.001 

.000 

.000 

.001 

.000 

.000 

g2 

.047 

.002 

.009 

.007 

.016 

.003 

.001 

.005 

.008 

.004 

.000 

.001 

.002 

.000 

.001 

^ 3 

.232 

.006 

.090 

.019 

.087 

.093 

.239 

.088 

.143 

.141 

.095 

.047 

.066 

.045 

.063 

g4 

.139 

.007 

.052 

.011 

.052 

.063 

.157 

.053 

.106 

.095 

.071 

.041 

.056 

.029 

.049 

^ 5 

.085 

.003 

.021 

.007 

.029 

.007 

.023 

.014 

.024 

.017 

.009 

.005 

.008 

.005 

.006 

^ 6 

.099 

.015 

.062 

.023 

.050 

.078 

.195 

.058 

.124 

.114 

.068 

.029 

.044 

.048 

.047 

gl 

.061 

.026 

.039 

.024 

.037 

.044 

.120 

.062 

.093 

.080 

.049 

.026 

.057 

.035 

.042 

^ 8 

.069 

.025 

.037 

.023 

.039 

.045 

.123 

.061 

.091 

.080 

.047 

.025 

.056 

.039 

.042 

Figure 3 and Table 4 are identical to Figure 2 and Table 3 
in format, but show relative biases instead of relative root 
mean squared errors. The biases for both the expansion 
estimator gi and the post-stratified g2 are negliglible. For 
the smoothing methods the average absolute relative biases 
for medium size small areas are relatively large, mainly 
because of areas 6 and 8 for which the covariate is least 
appropriate. Among smoothing methods, the sample size 
dependent ^5 has the least bias because it is usually very 
close to the direct §2; however, it also gains very little over 
g2 with respect to mean squared error. Of the remaining 
smoothing methods the time series estimators gj and g^, 
which had the smallest mean squared error, also have the 
smallest bias. Nevertheless, the relative bias of these 
methods can be quite large, as in areas 6 and 8. In practice 
it would not be possible to estimate these biases; however, 
the possible size of the bias could be assessed using simu­
lated sampling from a variety of plausible populations. 

5. CONCLUDING REMARKS 

It was seen by means of a simulation study that small 
area estimation methods obtained by combining both cross-
sectional and time series data can perform better than those 
based only on cross-sectional data, with respect to both 
bias and mean squared error. However, the cost in terms 
of bias could still be substantial. A question of obvious 
importance is whether it is possible in practical situations 
to judge if the gains from any type of smoothing would 
outweigh the costs, and how to make this judgement. 

The models for the simulation study were chosen on 
general considerations. However, in practice, suitable 
diagnostics similar to those employed in Pfeffermann and 
Barnard (1991) should be developed for survey data before 
any model-assisted method can be recommended. It should 
also be noted that the small area estimators could be 
modified to make them robust to mis-specification of the 
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underlying model as suggested by Pfeffermann and Burck 
(1990), see also Mantel, Singh and Bureau (1993). Finally, 
modification and further extension of the methods pre­
sented in this paper to the more realistic case of correlated 
sampUng errors should be investigated in the future. 
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APPENDIX 

A.l Variance Estimation for gikt 

Let Vk, denote the conditional (given nf,k,) variance of 
g2kt in (2.2). Then Vk, is given by (whenever /i;,̂ ., > 0 for 
aU h at time 0 , 

A.2 Estimation of Variance Components 

Using the notation of (3.2), we here iUustrate the method 
of moments for estimating variance components for the 
model of Section 3.1 in the special case when there is only 
one auxiliary variable X^,, Q, = T^I and 0j follows a 
random walk, i.e., G / " = /. LetF, = (F„,~. ..,FK,)', 

Fk, = {l,Xk,)',0, = (01,,02,)', andB, = diag(7?,72). 
The parameter T^ is estimated by the solution of 

Y Y (̂ 2/tr - FI„0,)'/{Vk, + r') = T{K - 2). 
1=1 * = i 

If there is no positive solution, we set f ̂  = 0. Here 0, 
denotes the WLS estimate of 0, based on only the cross-
sectional data at t. This is analogous to the method used 
in Fay and Herriot (1979) for cross-sectional data. An 
estimate of y} can be obtained by solving (for / = 1,2) 

Y ^kt- kt-i)'/(yi +4'^) = T- I, 
1 = 2 

where dfp is the (/,/)-th element of {F;_IU,Z\ F,_i) " ' -f 
{F,'U,-'F,)-\ 

Vkt = Y ^^f" f""'̂ ' ~ N,,k]jalk,, (A.l) 

where alkt is the population variance for the intersection 
of the h-th stratum with the k-th small area at time /. The 
variance alk, can be estimated by the usual estimator slk, 
for n,,k, > 2. Note that the estimate of the conditional 
variance Vk, also provides an estimate of the unconditional 
variance of g2kt • 

If "hki = 1, then we can use a synthetic value as an 
estimate of alkt which can be defined as Y, (nhkt - 1) 
s^kt/H (nhkt - 1), the summation being over aU k for 
which nhk, ^ 2 within each {h,t). If n^k, — 0, v;,, of 
(A. 1) is of course not defined. With the synthetic value of 
y^kt used in this case, we need a synthetic value of its 
mean squared error. For each (h,t), it can be defined as 

(Xhk, /Xy,,)' (/JA7 ' - A /̂,7' )4r + (bms) ^, 

where (bias) ^ will be taken as 

Y ((^hit l^ht )Pht - Phi,) ^/mht, 
ni,ii>0 

where m/,, is the number of small areas with sample in 
stratum h at time t. 
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Jackknife Variance Estimation of Imputed Survey Data 
JOHN G. KOVAR and EDWARD J. CHEN' 

ABSTRACT 

Imputation is a common technique employed by survey-taking organizations in order to address the problem of 
item nonresponse. While in most of the cases the resulting completed data sets provide good estimates of means 
and totals, the corresponding variances are often grossly underestimated. A number of methods to remedy this 
problem exists, but most of them depend on the sampling design and the imputation method. Recently, Rao (1992), 
and Rao and Shao (1992) have proposed a unified jackknife approach to variance estimation of imputed data sets. 
The present paper explores this technique empirically, using a real population of businesses, under a simple random 
sampling design and a uniform nonresponse mechanism. Extensions to stratified muUistage sample designs are 
considered, and the performance of the proposed variance estimator under non-uniform response mechanisms is 
briefly investigated. 

KEY WORDS: Item nonresponse; Hot deck imputation; Nearest neighbour imputation; Nonrandom nonresponse; 
Complex survey design. 

1. INTRODUCTION 

All sample surveys suffer from varying degrees of 
nonresponse. While total or unit nonresponse is often 
redressed by appropriate survey weight adjustment, most 
survey taking organizations resort to imputation in the 
case of item nonresponse. In this way, plausible values are 
inserted in place of missing or inconsistent entries, thus 
simplifying estimation of means and totals at all levels of 
aggregation. As early as the 1950's however, Hansen, 
Hurwitz and Madow (1953) recognized that treating the 
imputed values as observed values can lead to under­
estimation of variances of these estimators if standard 
formulae are used; underestimation which becomes more 
appreciable as the proportion of imputed items increases. 

A number of remedies to overcome this problem have 
been advanced. In particular, Rubin (1987) proposed 
muUiple imputation to estimate the variance due to impu­
tation by replicating the process a number of times and 
estimating the between replicate variation. More recently, 
Sarndal (1990) outUned a number of model assisted esti­
mators of variance, while Rao and Shao (1992) proposed 
a technique that adjusts the imputed values to correct 
the usual or naive jackknife variance estimator. The 
Sarndal, and Rao and Shao methods, are appeaUng in 
that only the imputed file (with the imputed fields flagged) 
is required for variance estimation. No auxiliary files 
are needed. Sarndal's model assisted approach yields 
unbiased variance estimators, provided the model holds 
(Lee, Rancourt and Sarndal 1991). The Rao and Shao 
adjusted jackknife method is design consistent as well as 
model unbiased (Rao 1992). But while the model assisted 

approach requires different variance estimators for each 
imputation method, the adjusted jackknife method pro­
vides a unified approach that requires the implementation 
of only one estimator, the jackknife estimator, provided 
the imputed values are adjusted appropriately during the 
variance estimation stage. 

In this paper we describe a simulation study that evalu­
ates the adjusted jackknife variance estimator of Rao and 
Shao (1992). In Section 2 we motivate the present empirical 
study by demonstrating the characteristics of the naive 
variance estimator under four imputation methods in the 
case of simple random sampling. In Section 3 we briefly 
outline the Rao and Shao adjustment procedure and 
present the empirical results. Extensions to more complex 
designs and experiments with nonrandom nonresponse 
mechanisms are elaborated in Section 4. Finally, in Section 5 
we offer some concluding remarks and recommendations, 
including areas for future study. 

2. BACKGROUND 

FoUowing the notation of Rao (1992), we suppose that 
in a sample s, of size n, m units respond to item y, while 
n - m units do not. Denote by yf the imputed value for 
unit /, iis-Sr, where s^ is the set of responding units. The 
usual estimator of the mean Y under simple random 
sampling, based on the imputed file is given by 

Pi = -(Ttyi+ Y yf). 
n \ iiSr iis-Sr / 

(1) 

' John G. Kovar, Business Survey Methods Division; Edward J. Chen, Social Survey Methods Division, Statistics Canada, R.H. Coats Building 
Tunney's Pasture, Ottawa, Ontario, Canada KIA 0T6. 
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2.1 Imputation Methods 

In the present simulation study we consider four simple 
methods of imputation, namely the mean of respondents, 
ratio, nearest neighbour and hot deck imputation methods. 
The reader is referred to Kalton and Kasprzyk (1986) for 
a thorough review of the topic of imputation. The simplest 
and most intuitive method of imputation, when the interest 
lies in estimating the mean of the item ;', is to impute all 
missing items with the mean of the observed responding 
units. The imputed value y*, for unit /, under the mean 
imputation method, is thus given by 

Pi = Pm ^ Y yj'"^- (2) 
jisr 

In this case, the estimator of the population mean Fin 
(1) reduces to the estimator j ' / = y„,. Due to the fact that 
this method has the undesirable property of distorting the 
distributions, it is used in practice usually only as a last 
resort. It is included here for illustrative purposes. 

Secondly, we consider a ratio imputation method based 
on the assumption that a correlated auxiliary variable x, 
is available, and that the ratio y/x is the same in the Sr 
and s — Sr sets, as would be the case if the nonresponse 
occurred at random, for example. Under the ratio imputa­
tion method, we impute the predicted value in place of the 
missing j , as follows: 

» Pm 
P* = — Xi, (3) 

where x„ is the mean of the x values of the respondent set 
Sr. The estimator of the population mean Fin (1) reduces 
to the double sampUng estimator yj - {y„,/x„,)x, by 
considering the respondents as the second phase sample. 

The third imputation technique we consider is the 
nearest neighbour (NN) method. Under this method, the 
missing value is filled in by an observed value of another 
unit from the set Sr, whose distance to the nonresponding 
unit is minimum. In practice the distance functions used 
are usually the fi, ^2, or foo Minkowski's norms based on 
the auxiliary x-variables, assumed observed for all units 
in s. Thus 

Pt =Pj,JiSr, such that II x, - Xj II is minimized, (4) 

where II • II is one of the above mentioned norms. 

The above three methods are often labeUed deter­
ministic, since, given the sample of respondents, the 
imputed values are determined uniquely. The fourth 
imputation method considered in this study, the hot deck 
method (HD), is non-deterministic, since the imputed 
values are chosen at random from the respondent set. 
While in practice imputation classes are often created and 

some sort of sequential procedure is usually implemented, 
we consider here the pure hot deck, whereby the donor unit 
(j) is chosen at random, with replacement, from the entire 
set Sr, that is. 

y* = Pi, JiSr. 

2.2 Variance Due to Imputation 

(5) 

Treating the imputed values as observed values, leads 
to the incorrect variance estimator 

= (1 -f)sj/n, (6) 

where sj is the sample variance of the complete sample of 
responding and imputed values, and (1 - / ) is the finite 
population correction factor ( / = n/N). It can be easily 
shown that the true variance of the estimator yj in (1), 
V{y,), can be written as (Sarndal 1990) 

V(Pi) = Kam + ' imp ~ (7) 

where Vsam is the sampling variance component, I^^p is 
the variance introduced by the imputation method in 
question and V„,ix is a covariance term between Vgam arid 
Vj„,p which in most cases is negligible or zero. An estimator 
of Vsam could be obtained by adding to v„ajve a term to 
correct for the fact that the standard formula understates 
the sampUng variance component when there are imputed 
values in the data set. To estimate V{y,), however, an 
additional component of variance due to the imputation 
mechanism, Î mp> must be estimated. This may be done 
expUcitly, as in Rubin's (1987) multiple imputation, or by 
modifying common variance formulae as in Sarndal (1990) 
and Rao and Shao (1992). Note that the interest lies in 
estimating the variance of the estimator at hand, that is, 
V{yj), not the variance of an estimator that would have 
been obtained had there been no nonresponse. 

2.3 Variance Underestimation 

To illustrate the seriousness of the underestimation of 
V{pi) by Vnaive, and the dependence of the degree of under­
estimation on the imputation method, we first describe the 
simulation study used for this purpose. We consider a data 
set of 5,620 units with two variables: An auxiliary variable 
X, the Gross Business Income, available for all units, that 
can be used as a measure of size, and a related purchase 
variable y. The correlation between x and y in this par­
ticular data set is of the order of 0.92. Simple random 
samples of size 200 were selected without replacement. A 
fixed proportion of units were identified at random as 
nonrespondents, having their j^-values deleted and imputed 
according to one of the four methods described above. 
Various rates of nonresponse were generated, though, for 
the most part, we confine our reporting to results based 
on 5 and 30% nonresponse rates. 
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To evaluate the performance of the proposed variance 
estimators, we calculate the percent relative bias of the 
variance estimator v., given by 

Rel.Bias(v.) = Y 
k=l 

(Vk- V(Pi))/K 

V(Pi) 
X 100, (8) 

where V{yi) is obtained through simulation, and v̂ . is the 
A:-th realization of the /T simulated variance estimates in 
question. Similarly, the percent relative stability of the 
variance estimators is given by 

Rel.Stab.(v.) = Y 
k = l 

H^k- V{Pi))yK 

V{yi) 
X 100. (9) 

All simulations were performed on an IBM PC, using 
Microsoft's Fortran 77, Version 5.0. In the case of simple 
random sampling, results are based on averages of 100,000 
replications (K = 100,000). With this number of repli­
cates, the reported relative bias values were observed not 
to vary by more than one percentage point. The results are 
summarized below in Table I for the case of 5 and 30% 
nonresponse rates. 

neighbour imputation methods, since Vi,„p decreases as 
the imputation procedure is better able to predict the true 
unobserved values (Sarndal 1990), as is the case in the 
present study due to the relatively high correlation between 
the X and y variables. Thirdly, as can be seen in Table 1, 
V{y[) increases while v„a,ve decreases as the nonresponse 
rate becomes more elevated. As such, the underestimation 
of V(yi), when the imputed values are treated as observed 
values, becomes more serious as the proportion of missing 
items increases. The problem is more pronounced in the 
case of the mean and hot deck imputation methods, which 
do not use auxiliary information. Note that underestimation 
of variance in the order of 50%, as was observed in this 
case, can lead to confidence intervals that are about 30% 
too short and to declaration of significance when none 
exists. Also of note is the similar behaviour of the ratio and 
nearest neighbour methods which will be exploited later. 

3. JACKKNIFE VARIANCE ESTIMATOR 

Let Pi{j) he the imputed estimator of F obtained 
when the7-th unit is deleted from the sample. Then, in 
the case of simple random sampling, a naive jackknife 
variance estimator of pj is given by 

Table 1 
Underestimation of Variance of yj by the Naive Estimator 

Under Four Imputation Methods, and 5 and 30Vo 
Nonresponse Rates 

Non-
response 

Rate 

5% 

30% 

Variance 
Estimator 

y(yi) 

^naive 

Rel.Bias(v„a,ve) 

y(yi) 

^naive 

Rel.Bias (v„aive) 

Mean 

9.9 

8.9 

-10 .7% 

13.5 

6.5 

-51 .4% 

Imputation Method 

HD 

10.3 

9.4 

- 9 . 4 % 

16.5 

9.4 

-43 .4% 

Ratio 

9.5 

9.2 

- 2 . 5 % 

10.1 

8.5 

- 1 5 . 3 % 

NN 

9.5 

9.3 

- 2 . 2 % 

10.3 

9.0 

- 12.8% 

First, we note in Table 1, that the naive estimator under­
estimates the true variance ofyjhy 10.7% in the case of 
mean imputation at a 5% level of nonresponse. About half 
of this underestimation is due to the fact that v„a,ve under­
estimates Vsam and the other half is due to the fact that 
Vna/ve ignorcs the component V̂ p̂- Sarndal (1990) obtains 
very similar results with respect to the partitioning of the 
underestimation in the case of mean imputation. Secondly, 
in the first row of Table 1, the true variance of J/ is larger 
in the case of the hot deck imputation as compared to the 
mean imputation, due to the procedure's inherent vari­
ability {i.e., the 1^^^ component is larger). By contrast, 
V{pj) is slightly lower in the case of the ratio and nearest 

. n 

V7= — Y ^yi'^j^ - yi^^' (10) 
n '•^ 

7 = 1 

which can be shown to reduce to vnaive (Rao 1992). 

3.1 Imputed Value Adjustment 

In order to produce the "correct" (Rao 1990) jackknife 
variance estimator, Rao (1992) proposed to adjust the 
imputed values as described below. Intuitively, the adjust­
ment is necessary whenever a responding unit is deleted 
from a jackknife repUcate, since in the case of most impu­
tation methods, all the imputed values depend directly or 
indirectly on the observed value that was deleted. This is 
clear in the case of mean imputation and ratio imputation, 
where all respondents contribute directly to the mean j ^ ^ , 
but is less evident in nearest neighbour and hot deck 
imputation methods where the deleted unit contributes to 
the imputation process only in the sense that it is not 
avaUable to be selected as a donor. Thus, whenever a 
responding unit is deleted, all imputed values in the sample 
must be adjusted before the "delete-one" imputed esti­
mator of the mean is computed. The adjustment must 
clearly be a function of the imputation method used. In 
the case of the mean and the hot deck imputation methods, 
it can be shown that the following adjustment is appro­
priate (Rao 1992; Rao and Shao 1992). Let z* {j) be the 
adjusted value of the /-th imputed unit j ^ * , when thev'-th 
unit has been deleted. Then z* (j) is given by 
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- - ^ [:;' 
[yn,(J) - Pm] if J^Sr 

if j€S-Sr. (11) 

In other words, no adjustment is necessary if the deleted 
unit (j), has itself been imputed; that is, unity is a non-
respondent. In the case of the mean imputation, for 
example, wheny€5r, the adjusted value reduces toy,„{j), 
the mean of the remaining m — I respondents, as desired. 

The jackknife variance estimator is evaluated by first 
computing the adjusted imputed estimator pfd), as 

pi(j) - YZi^jy^" -1)' (12) 
lis 

and then letting 

n - 1 
vAPi) = — Y ^yr'^j^ -•>'/]• (13) 

; = i 

It can be shown that the adjusted jackknife variance 
estimator reduces to the correct variance estimator in the 
case of the mean imputation (Rao 1990), and provides a 
consistent estimator in the case of the hot deck imputation 
(Rao and Shao 1992). 

In the case of the ratio imputation, the adjusted values 
are given by 

zr{j) 
'y^n^xi-y^x, 
Xm(J) X, ]•' if jiSr 

if j€S-Sr, (14) 

where JP̂  (J) is the mean of the m — \ sample values of 
X of the responding units when unity is deleted. The jack-
knife variance estimator Vj{yi) is then computed as in (13) 
above, yielding the correct variance estimator. Further­
more, Rao (1992) shows that not only is the adjusted jack-
knife variance estimator design consistent (/7-consistent) 
under uniform nonresponse irrespective of the model, but 
is also design-model unbiased (/)w-unbiased) under the 
model (15) and any nonresponse mechanism that does not 
depend on thej'-values. 

Em (Pi) = 0Xi, F„ (yj) = a^Xj, 

COV m(Pi,Pj) = 0 i9^J€S. (15) 

Since the naive variance estimator under the nearest 
neighbour imputation was observed to behave much like 
the naive variance estimator under the ratio imputation, 
the adjustment for the ratio imputation given in (14) was 
used in the case of the nearest neighbour imputation. As 
well, an alternate adjustment was considered, whereby 
unit / was re-imputed using the nearest neighbour method, 

whenever the deleted unit (j) was used to impute unit /. 
That is, adjustment takes place only if the deleted unit is 
a respondent (as above), but only those nonrespondents 
in they'-th jackknife replicate that were actually imputed 
using unity are re-imputed by one of them — 1 remaining 
donors. (This corresponds to imputing the second nearest 
neighbour for these units.) We note that no theoretical 
justification exists for either of these adjustments. Since 
the latter adjustment performed worse than the ratio 
adjustment in our examples, and since its eventual imple­
mentation in production would be cumbersome, we omitted 
it from further consideration, even though it was always 
observed to be conservative. 

We would Uke to stress here that for all imputation 
methods the adjustments are only performed for the 
purpose of variance estimation and can be made tempo­
rarily while the variance estimation program executes. No 
permanent adjustments are required on the imputed file 
used for the estimation of means and totals, though the 
imputed fields must be flagged appropriately. 

3.2 Empirical Results 

The jackknife variance estimator with adjustments cor­
responding to the four imputation methods described 
above, was computed in addition to v„a,ve in the simula­
tion study outlined in Section 2. Nonresponse rates of 5 
and 30% were considered and the relative biases were 
calculated. They are summarized in Table 2 below. 

Table 2 
Relative Biases of the Naive Variance Estimator and the 

Adjusted Jackknife Variance Estimator Under 
5 and 30% Nonresponse Rates 

Non-

Rate 

5% 

30% 

Variance 
Estimator 

^naive 

V/ 

^naive 

V/ 

Mean 

-10 .7 

2.7 

-51 .4 

3.3 

Imputation 

HD 

Method 

Ratio 

in percent 

- 9 . 4 

3.6 

-43 .4 

1.9 

- 2 . 5 

3.4 

-15 .3 

3.0 

NN 

- 2 . 2 

3.7 

-12 .8 

5.3 

Since the adjusted jackknife variance estimator is 
design consistent (p-consistent) (Rao 1992), it performs 
well in the case of the mean, hot deck and ratio imputa­
tion under uniform response mechanism, as expected. 
(Equally good performance was observed with other data 
sets which do not foUow the model (15) as well, but more 
work is needed on this front.) Of note is the relatively good 
performance under the nearest neighbour imputation. The 
proposed estimator tends to be somewhat conservative, 
due, in small part, to the fact that it does not incorporate 
the finite population correction. 
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4. EXTENSIONS 

WhUe the adjusted jackknife variance estimator has 
been shown to perform well in the case of simple random 
sampling under uniform nonresponse mechanism in one 
imputation class, we consider here extensions to more 
complex design, to more than one imputation class, and 
to nonrandom response mechanisms. 

4.1 Complex Designs 

In this section we describe a simulation study that 
evaluates the Rao and Shao (1992) adjusted jackknife 
variance estimator in comparison to the naive variance 
estimator, in the case of stratified multistage sampUng 
and hot deck imputation. In particular, data from the 
Canadian Survey of Consumer Finances (SCF) that follows 
the design of the Canadian Labour Force Survey will be 
used. The variable of interest, y, is the total household 
income. The SCF follows a complex stratified multistage 
design with the primary sampling units (psu's) in the strata 
used in this study selected with probability proportional 
to the number of dwellings. Generally speaking, the psu's 
are collections of dwellings, corresponding to city blocks 
in urban areas and to groups of Census Enumeration 
Areas (EA's) in rural regions. We used as a population a 
sample of 3,870 households in 30 strata and sampled two 
psu's in each stratum. As in the case of the simple random 
sampling study, 5 and 30% uniform nonresponse rates 
were generated at the household level. The missing values 
were then imputed using the hot deck imputation method 
described in Rao and Shao (1992). Briefly, the imputation 
method consists of selecting the donors from the respon­
dent set with replacement, with probability proportional 
to the survey weight of the donors. 

We first consider the case of a single imputation class. 
^^ty^jk be the observed value for the A:-th unit in the /-th 
psu and the h-th stratum (k - 1, . . . , «/,,, / = 1, . . . , /i;,, 
h = 1, ..., L, n - Y. Y^n^i), and let yf,ik be the corre­
sponding imputed value whenever the (hik) umt is a non-
respondent, that is, whenever {hik)€s-Sr. The imputed 
estimator of Y is then given by 

Yl = Y ^MkPhik + Y ^ hik P hik, 
(hik)iSr (.hik)is-Sr 

(16) 

where W/,;̂  is the survey weight corresponding to unit 
(hik). Under the above hot deck imputation scheme, f, 
is asymptotically unbiased (Rao and Shao 1992). 

The expectation of f, under the hot deck imputation 
procedure can be written as (Rao and Shao 1992): 

E.{f,) = \ Y ^hik phik I Y "''"*] 
\_(hik)(.Sr I {hik)iSr J 

= [S/t] X U, 

Y ^hik 
(hik)es 

thus defining the terms S, f and U. The jackknife "delete-
one" values are then given by 

S{gj) = Y ^hikyhik + 
(hik)esr 

liTig 

«„ - 1 
Y ^gikPgik, 

{gik)tSr 

(18) 

T{gj) = Y ''hik + n g 

(hik)iSr 
h^g 

n„ — I 
* (gik)iSr 

Y ^sik. 

whenever they-th psu in the ̂ -th stratum is deleted. The 
adjustment of the imputed values is performed whenever 
the (gy)-th psu is deleted, (/z/) j^ (gj), and (hik)is-Sr, 
by letting 

Zhi 
BJ) _ , , , \§(gj) 5 1 

(19) 

Then, analogous to (12) and (13), the jackknife variance 
estimator is evaluated by first computing the adjusted 
imputed estimator f" when the (^y)-th psu is deleted as 

fl(gj) = S{gj) + Y ^hik Zi,ik 
(hik)is-Sr 

-\-
n„ — 1 

* (hik)(.s-s, 

Y ''gikZ^gHK (20) 

and then setting 

vj{f,) - Y"^—^Y ^^'^sj) 
g = i " « j=i 

f,)'. (21) 

It can be shown that Vj as defined in (21), is a consistent 
estimator of the variance of f, (Rao and Shao 1992). 

We generated 10,000 samples of 60 psu's selected with 
probability proportional to size, and subjected the selected 
households to 5 and 30% uniform nonresponse. We then 
computed the naive variance estimator, and the adjusted 
jackknife variance estimator, v,, in (21). The relative 
bias (8) and the relative stability (9) were computed for 
both of the variance estimators, and are summarized in 
Table 3 below. 

Table 3 

Relative Bias and Relative Stability On Parentheses) 
of the Naive Variance Estimator and the Adjusted Jackknife 

Variance Estimator Under 5 and 30% Nonresponse, 
in the Case of Stratified Multistage Sampling 

(17) 

^naive 

Nonresponse Rate 

5% 30% 

in percent 
-10.3(88) -43.7 (84) 

-0 .9(97) 1.2(124) 
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As can be seen in Table 3, the naive variance estimator 
underestimates the true variance of Fat rates comparable 
to the simple random sampling case (Table 2), with the 
underestimation becoming more serious as the nonresponse 
rate increases. The adjusted jackknife variance estimator, 
on the other hand, performs well at both levels of non-
response, at a relatively modest cost of a slight decrease 
in the stability of the variance estimator, as compared 

t o V„aiye-

4.2 Imputation Classes 

Under the same sample design as in Section 4.1, we also 
considered the case of more than one imputation class as 
is the case in practice. The household size, known for all 
households in the sample, was used to form two imputa­
tion classes, namely one member households and more 
than one member households. This was done under the 
assumption that the propensity to respond is different 
between these two classes, while uniform response pro­
babUity was assumed within the imputation classes. Two 
nonresponse schemes were evaluated. The first assumes a 
5% uniform nonresponse in the single member household 
class and 10% uniform nonresponse in the mukiple member 
household class, while the second scheme assumes rates 
of 25 and 30% in each of the classes respectively. The 
hot deck imputation, the imputed value adjusttnents, and 
the adjusted total calculations in (20), f%(gj), were 
performed independently within each imputation class 
denoted by v. The terms f%(gj) were then summed over 
the two imputation classes, yielding f"{gj), which was 
used in (21) to provide the estimate Vj. The results are 
summarized in Table 4. 

Table 4 

Relative Bias and Relative Stability (in Parentheses) 
of the Naive Variance Estimator and the Adjusted Jackknife 

Variance Estimator Under Two Nonresponse Schemes, 
in the Case of Stratified Multistage Sampling 

and Two Imputation Classes 

Variance Estimator 
Nonresponse Rate 

5% and 10% 25% and 30% 

in percent 

vj 

16.7 (87) 

-1.0(103) 

-40.2 (84) 

1.1 (127) 

As can be seen in Table 4, the adjusted jackknife vari­
ance estimator Vj, performs weU under both nonresponse 
schemes. The results, along with those in Table 3, demon­
strate the consistency and the reasonably good stability of 
the adjusted jackknife variance estimator, even in cases 
of elevated nonresponse rates. 

4.3 Nonrandom Nonresponse 

As demonstrated above, the adjusted jackknife variance 
estimator performs well when the nonresponse is random 
wkhin imputation classes. To study Us robustness against 
the uniform response mechanism assumption, we use the 
data set described in Section 2, and generated nonresponse 
as outlined in Lee, Rancourt and Sarndal (1991). In 
particular, the probability of nonresponse is assumed to 
be related to the x-variable in two distinct ways: 

P i = 1 - e x p ( - CLX), 

P J = e x p ( - CSX), 

(22) 

(23) 

where the constants c^ and Cj are chosen such that an 
expected 30% nonresponse rate is achieved. In the model 
Pi given in (22) the nonresponse is positively correlated 
with the x-variable, implying that large (L) units are more 
likely not to respond. The opposite is true in the model Pg 
given in (23), under which smaller (S) units are more Ukely 
not to respond. Imputation methods which ignore the 
x-variable (mean and hot deck) are expected to yield esti­
mators of Fthat underestimate the true mean under non-
response model (22) and over estimate the true mean under 
the model (23). However, imputation methods that incor­
porate the auxiliary variable into the procedure (ratio and 
nearest neighbour), can be expected to produce better 
estimates of the mean. This has been confirmed by simu­
lation as shown in Table 5 below. As before, 100,000 
repUcates were used. 

Table 5 
Estimates of the Mean Y as Percent of the True Mean 

when the Nonresponse is not Random, and the Nonresponse 
Rate is an Expected 30% 

Nonresponse 
Model 

Imputation Method 

PL 

Ps 

Mean 

60.4 

132.7 

HD Ratio 

in percent 

60.4 94.7 

132.7 102.0 

NN 

93.5 

101.4 

Clearly, variance estimation is of no interest when the 
point estimators themselves are highly biased as is the case 
for the mean and hot deck methods. However, in the case 
of the ratio and nearest neighbour methods, under which 
the point estimators perform better, we investigated the 
performance of the adjusted jackknife variance estimator, 
as weU as an estimator proposed by Sarndal (1990), which 
can be written as (Rao 1992): 
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\x,„J m{m - 1) ;^^ V x„ / 

\x,r,Jn^{m - 1) ;̂ ^ \ W 

-H 

provided that the finite population correction factor is 
ignored, and that (« - l)/n = l a n d ( m - l)/m = 1. 
The results are summarized in Table 6. 

Table 6 
Relative Bias of the Naive Variance Estimator, the Adjusted 

Jackknife Variance Estimator and Sarndal's Variance 
Estimator Under 30% Nonrandom Nonresponse 

Nonresponse 
Model 

PL 

Ps 

Variance 
Estimator 

^naive 

Vj 

vs 

^naive 

Vj 

vs 

Imputation Method 

Ratio NN 

in 

-22.7 

3.9 

- 2 . 6 

- 4 . 0 

3.7 

2.8 

percent 

-54 .6 

-37 .5 

-36 .8 

- 0 . 7 

7.2 

4.5 

In the case of the ratio imputation, the naive variance 
estimator performs quite differently under the two non-
response models ( - 22.7 versus - 4.0%). This is due to the 
fact that while the reduction in effective sample size tends 
to decrease the variance in both cases, under the P^ model 
disproportionately more large units are missing which 
tends to accentuate this effect, whereas under the P j 
model, where disproportionately more small units are 
missing, this effect tends to be partly compensated for. 
Secondly, the adjusted jackknife variance estimator performs 
well in the case of ratio imputation, but relatively poorly 
in the case of nearest neighbour imputation. This is due 
to the fact that the present data set follows the usual linear 
model (15) fairly well and the adjusted jackknife variance 
estimator has been shown to be model unbiased (Rao 1992) 
in the case of the ratio imputation. On the other hand, the 
ratio adjustment does not work well in the case of nearest 
neighbour imputation when the nonresponse is not uni­
form. The alternate adjustment for the nearest neighbour 
imputation described in Section 3, performs equally poorly 
in absolute terms (not shown here), though the estimates 
are always conservative. Thirdly, the performance of 

Sarndal's estimator, v^, is roughly equivalent to that of 
the adjusted jackknife estimator under either the ratio 
or the nearest neighbour imputation methods, and non-
random nonresponse that depends only on x. 

In cases where the response mechanism is not random, 
and when the propensity to respond is related to the 
variable subject to nonresponse (y), the point estimators 
are themselves severely biased under all four imputation 
methods. As such, variance estimation is of little interest, 
as the real interest lies in estimating the mean squared 
error. That is, more attention needs to be concentrated on 
improving the point estimates and their bias. Some prelim­
inary results on this front have been put forth by Rancourt, 
Lee and Sarndal (1992). 

5. CONCLUDING REMARKS 

It is well known that the usual variance estimator under­
states the variance of the estimate of Fin the presence of 
imputed values if these values are treated as having been 
observed. In this study we again demonstrated the high 
degree of underestimation of the naive variance estimator 
in the presence of imputed data. Several imputation 
methods were considered in order to illuminate the depen­
dence of the degree of underestimation on the method of 
imputation. We evaluated a unified jackknife variance 
estimator proposed by Rao and Shao (1992), an estimator 
that incorporates the variance due to imputation compo­
nent. The study demonstrated some desirable properties 
of the proposed estimator in the case of both simple 
random sampling as well as complex survey designs. Our 
findings can be summarized as follows. 

(1) The extent of variance underestimation is highly 
dependent on both the imputation method's abiUty to 
predict the true values, and its ability to preserve the 
natural variation in the data. 

(2) The proposed adjusted jackknife variance estimator 
offers a unified approach to variance estimation of 
imputed data, that is easy to implement under a 
number of imputation methods and under designs of 
varying complexity. 

(3) Operationally, no modifications to the original imputed 
file are necessary and the estimation of means and totals 
is thus unaffected by the need to estimate variances. 

(4) The proposed method is easily extended to more 
complex designs, more than one imputation class and, 
with care, to the case of nonrandom nonresponse that 
depends only on available auxiliary variables. 

(5) The adjusted jackknife variance estimator performs 
well whenever the nonresponse is uniform or the usual 
linear model holds, demonstrating the fact that the 
estimatoj is both design consistent as well as design-
model unbiased. 
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(6) In the case of the P^ model, under which units with 
larger-values are more likely to not respond, aU three 
variance estimators perform extremely poorly. 

(7) In the case of ^'-dependent nonresponse, better impu­
tation techniques are needed and the bias of the point 
estimators needs to be studied further. Here the issue 
is primarily that of estimating the mean square error 
rather than the variance. 

Given the relatively high degree of imputation in today's 
surveys, at least within some imputation classes, it is clear 
that the effect of imputation on variance estimation 
cannot be ignored. An overestimation of precision can 
lead to confidence intervals that are too short and to 
spurious declaration of significance. If implementation of 
the above suggested methods is deemed too onerous in any 
particular circumstance, at the very least studies should 
be conducted to evaluate the impact of imputation in some 
representative cases. An ad hoc variance inflation factor 
could then be implemented. With the emergence of gener­
alized estimation software, however, there seems to remain 
little reason for not implementing variance estimators 
which correctly account for the effect of imputation. 

There clearly remain many unsolved, and perhaps 
unsolvable problems. To begin with, much more theo­
retical work is needed with respect to nearest neighbour 
imputation. The jackknife adjustments considered for this 
imputation method fail to perform as well as those applied 
to the other methods. Perhaps smoother alternatives to the 
nearest neighbour method need to be developed. Secondly, 
the robustness of the proposed estimator must be inves­
tigated. It is clear that satisfactory performance can be 
obtained if the model (15) holds, and when nonresponse 
is random. Limited failure of either one of these condi­
tions did not seem to detract from the good performance 
of the jackknife estimator in our limited experience, but 
further research along these lines is warranted. Departures 
from both of the conditions simultaneously are yet to be 
investigated. Cases of nonrandom nonresponse when the 
propensity of nonresponse is related to the^-variable are 
even less well understood, though the emphasis in this case 
must be placed on the estimation of the mean square error 
rather than the variance. Thirdly, comparisons to multiple 
imputation results should be considered. It must be recog­
nized, however, that proper imputation methods (Rubin 
1987) must first be established. We note that none of the 
imputation methods studied within are proper wUh respect 
to multiple imputation. 

Extensions to other imputation methods and other 
parameters of interest should be undertaken. This study 
was limited to four simple imputation methods. In practice, 
much more complicated methods are used, often in con­
junction with each other. The impact of more than one 
imputation method on the estimation of variance has 

been studied by Rancourt, Lee and Sarndal (1993); more 
work is needed. With respect to other, more complicated 
methods of imputation, the effect of adding theoretical 
residuals to imputed data can, for example, be considered. 
However, this technique only addresses the underestimation 
of Vsam by Vnaive and ignores the effect of Vi„,p. Finally, 
other parameters, such as the median for example, and the 
effect of imputation on their variance are yet to be eval­
uated. Multivariate extensions can likewise be considered: 
estimation of correlations, ratios and regression parameters 
in the presence of imputation would likely be of interest. 
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Estimation in Overlapping Clusters with Unknown 
Population Size 

D.S. TRACY and S.S. OSAHAN 

ABSTRACT 

Two sampling strategies for estimation of population mean in overlapping clusters with known population size 
have been proposed by Singh (1988). In this paper, ratio estimators under these two strategies are studied assuming 
the actual population size to be unknown, which is the more realistic situation in sample surveys. The sampling 
efficiencies of the two strategies are compared and a numerical illustration is provided. 

KEY WORDS: Overlapping clusters; Clustering before sampling; Mean square error; Relative efficiency. 

1. INTRODUCTION 

In cluster sampling, clusters are formed either before 
selecting the sample (CBS) or after selecting the sample 
(CAS). In both cases, clusters may be overlapping or non-
overlapping. For non-overlapping clusters, much work by 
several researchers is available in the literature. However, 
there are many practical sampling situations where one 
gets overlapping clusters. For example, overlapping 
clusters may exist in some regional epidemiological survey 
for a contagious disease like mycobacterim tuberculosis 
(T.B.), becoming very prevalent with the spread of AIDS 
(Gifford-Jones 1993). Clusters here may be formed around 
infected individuals or closely associated individuals who 
are more vulnerable to the same type of infection. A 
similar situation may exist in an ecological survey where 
clusters are formed around the factories burning coal and 
emitting polyaromatic hydrocarbons (PAH's) which are 
potent cancer causing compounds. Clusters are formed on 
the basis of the intensity of such gases, and surveys may 
be required in order to control air pollution which causes 
lung diseases Uke bronchitis. For overlapping clusters, one 
can refer to the limited work done by Goel and Singh 
(1977), Agarwal and Singh (1982) and Amdekar (1985). 
But the methodologies developed by them suffer from one 
limitation or the other. 

Recently, Singh (1988) has developed a very simple 
estimator for a population mean using two sampling 
strategies in the CBS system assuming known population 
size. In the first strategy, clusters are selected with equal 
probabilities, whereas in the second case selection proba­
bilities are taken proportional to cluster size. The elements 
within the clusters are selected with equal probability in 
both the cases. But it is unrealistic to assume that the actual 
population size is known. If it is the case, then all the 
duplicates in the population are known a priori, and one 

could easily remove them to increase the efficiency of the 
sampUng design. Hence, the estimators of the population 
mean studied by Singh (1988) need an improvement in 
order to be practicable, as they depend on the actual 
population size. This limitation in the methodology has 
motivated the present work. 

We propose two sampling strategies in the CBS system 
with simple ratio estimators for the population mean, 
which do not depend on the actual population size. As in 
Singh (1988), an equal probability with replacement 
sampling scheme is used for selecting the clusters in the 
first strategy, whereas in the second, an unequal probabil­
ity sampling scheme is used. The elements within the 
clusters are selected with an equal probability without 
replacement sampling scheme in both strategies. 

The population of Af units under consideration is expres­
sible in the form of K overlapping clusters with N, units 
in the /-th cluster and Y,f=\Nj = M > N, the unknown 
actual population size, (equality holds only for non-
overlapping clusters). A population unit may be included 
in more than one cluster. Let y be the characteristic of 
interest and let the population mean be F. 

Define 

^ij=Yjj/Fij, Wij^l/Fij; / - 1,2, . . . , / : , 

and y = 1, 2, . . . , A, 

where F/,- is the value of y for the y-th unit in the /-th 
cluster and Fjj its frequency of occurring in K clusters. 

When clusterwise data on units are available on the 
computer, the values of these frequencies for overlapping 
clusters may be easily available. As for the example con­
sidered earlier in epidemiology, suppose we have data 
available for households or individuals along with their 
identification labels like house numbers or social insurance 
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numbers/health card numbers on the computer. Then, by 
giving a simple command to the computer, a researcher 
can easily extract information about the repetition of a 
certain unit from its label in different clusters. Also, in case 
we have a map of the overlapping clusters and the criterion 
for forming clusters does not allow the eUmination of 
dupUcacy of units in the different clusters, the values of 
such frequencies may be known. 

The two strategies are discussed in section 2 and their 
efficiencies are compared in section 3. 

2. THE TWO STRATEGIES 

The two proposed strategies are discussed in Sections 
2.1 and 2.2. Their comparison is undertaken in Section 3. 

2.1 Strategy A 

This strategy consists of the following steps: 

(a) Select k clusters out of K by simple random sampUng 
with replacement (SRSWR). 

(b) From the /-th selected cluster of size A,(/ = 1, ..., K), 
select /I, elementary units by simple random sampling 
without replacement (SRSWOR). 

Theorem 1. The ratio estimator under SRS 

ZRS = YRS/NRS = ^ Y ^'^•ll D '̂•* '̂ (*> 
1=1 ' / = 1 

has relative bias, to the first order of approximation, 

T.m(- --\('^k-^-^\'\ (2) " i "'G, - A) (̂ ' - WJ 
where 

A 

ĉ tew = Y (^'^'- ~ Y/K){NiWi - N/K)/K 
i=l 

y = i 

w, 
Zi = Y ^u'N, and z, = Y ^ij'"i' 

j=l 7 = 1 

and a\„,S]„, Wi and w, are the expressions of at,^„, S,j„, 
Z, and Zi respectively, with z replaced by w and 7 replaced 
hyN. 

Proof. FoUowing a standard resuU, the relative bias of the 
estimator ZRS, to the first order of approximation, is 

RB{ZRS) = [V{NRS)/N^] - Cov{fj,s,Nj,s)/YN. (3) 

Let E2 and V2 denote the conditional expectation and 
variance for a given sample of clusters and Ei and Pi the 
expectation and variance over all such samples. Then, we 
have 

V{NRS) - VIE2{NRS) + EIV2{NRS) 

= Vi\-^ Y NiE2{Wi)^ 

^i[f,'DN?F,(,v,.)] + 
(=1 

k k f^^ V«, NiJ 

Similarly, we have 

K^ 
Cov {Yiis,NKs) = —Obzw 

k 

fK,-A)̂ '-''' -I-

By substituting (4) and (5) in (3), we obtain (2), which 
completes the proof of the theorem. 

Theorem 2. The mean square error (MSE) of the estimator 
ZRS, to the first order of approximation, is 

MSE(z^s) = 

K 

kN^ 
I ^2,. r̂ ,. , (i _ i)pf] (6) 

where DJ = SJ, - 2FS,-,„ -\- Y^SJ„, and S% = E / i ; 
(Zij - Zi)^/{Ni - 1). 
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Proof. To the first order of approximation, we have 

MSE(z;,s) = [V{fRs) - 2? Cov{ fRs,NRs) 

+ Y^V{N„s)]/N^- {^) 

The expression for V( fj^s) "i^Y be written, following 
(4), as 

"«>«»)=f"''n,K-4)' (8) 

where a | , = lf=i (NjZi - Y/K)^/K. 

By substituting (4), (5) and (8) in (7), we obtain upon 
simplification 

MSE(2;js) - —- (al^ - 2Fafe„ -f Y^al„) 
kN^ 

^^ ~J \ni Ni) 
-I-

Substitution of the expressions for a\.^, oi,^^ and a\^ 
into (9) and simplification yields (6). Now, we provide an 
estimator of MSE(z^5) below. 

Theorem 3. A consistent estimator ofMSE{zRs), to the 
first order of approximation, is given by 

K^ 1 
MSE(?;,S) = - ^ • Y ^hZi - ZRsWi) (10) 

Proof. We note that the first-stage sampling is done with 
SRSWR sampling scheme and the random variables N,z, 
and NiWi in the ratio estimator are independently and 
identically distributed. Hence, the mean square error of 
ZRS can be estimated using the well-known result that a 
variance estimator for a multi-stage design can consider 
the first stage only (see Sarndal, Swensson and Wretman, 
1992, ResuUs 2.9.1 and 4.5.1). 

From (9), an unbiased estimator of 

can be written as 
,̂2 1 * / * \ 2 

= 7—: D (̂ '̂ ' - D ^'^'/^) ' (11) 
" 1 ,=1 ^ ,=1 / 

Obzw + ^Hr^-
IS 

Sbzw = - ^ Y (^'^' - D ^'^'/^) 
/ = i ^ / = i ^ 

X (NiWi - YNiWi/k\. (12) 

Similarly, an independent estimator of 

'i'-ii'^ii-^yi 
is sl„, defined paraUel to (11). 

Using these results, one can easily show that a consistent 
estimator of MSE(z/;s) given in (6) is provided by 

K' 
MSE{ZRS) = — ^ ( • ^ t a - 2ZRsSbzw + ZRSSU), 

which can be written as (10). 

2.2 Strategy B 

This strategy consists of the foUowing steps: 

(a) Select k clusters out of K by probability proportional 
to size with replacement (PPSWR) sampling with selec­
tion probabilities P, = Ni/M, / = 1 K. 

(b) Same as for strategy A. 

Theorem 4. The ratio estimator under PPS sampling 

M * IM * 
ZRP = fRp/NRP = 7 D ^'71 D ^' (i3> 

( = 1 ' 1 = 1 

has relative bias, to the first order of approximation, 

RB{ZRP) 
A: L \ ^ ^ FA^y 

where 

(^bzw = Y (^' - Y/M){Wi - N/M){Ni/M) 
i=l 

and an unbiased estimator of 
and alw' is the expression of ai,zw' with z replaced by w 
and F replaced by A'̂ . 
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Proof. Using a standard result, the approximate relative 
bias, to the first order of approximation, is 

Theorem 6. A consistent estimator of MSE (z/jp), to the 
first order of approximation, is 

RB{ZRP) - [V{N„p)/N^] M' 1 * 

Cov {f„P,Nj,p)/YN. (15) 
MSE(z«p) = ^ • ^ : 7 7 ^ Y (^' - ^«P<^')'- (21) 

N 

We have 

V{N„p) = VIE2{NRP) + EIV2{NRP) 

= M4VI - Y E2{Wi) -t- EX Y V2{Wi)A 
L ,=1 / = i -I 

ip k(k-l) f^^ 

Proof. As the first-stage units are selected with PPSWR, 
the justification given in the proof of theorem 3 applies 
here, as well. 

From (20), using Results 2.9.1 and 4.5.1 of Sarndal, 
Swensson and Wretman (1992), an unbiased estimator of 

~. M\n, NJ 
1=1 

can be written as 

4K ?̂̂ a-A)̂ ]̂- - '-^("-t"} 
(22) 

Similarly, defining Si,zw' and sl„', one can show that 

Similarly, one can write 

M^ 

M^ ?2 ^2 

Cov {YKP,NRP) = ['̂ -̂ + DSG,-A) ' '4 
(17) 

MSE(zyjp) — ^—- {St,z' — '^ZRpSiizw' + ZRpSbw'), 
Nipk 

which can be written as (21). 

Substituting (16) and (17) in (15), we obtain (14). 

Theorem 5. The MSE of the estimator ZRP, to the first 
order of approximation, is 

M 
MSE(z-,p) ^ — , i : Ni 

kN' 
; = l 

Proof. We write, to the first order of approximation, 

MSE{ZRP) = [V(f„p) - 2Y Cov{ f,ip,N„p) 

+ f^V{N^p)]/N\ (19) 

Also, from Theorem 2.5 of Singh (1988), we have by 
analogy 

3. EFFICIENCY COMPARISON 

The efficiencies of the estimators are compared below 
under the two strategies. 

Remark. The estimator ZRP under strategy B is expected to 
be more efficient than the estimator ZRS under strategy A. 

We provide a justification. From (6) and (18), we obtain 

M '^ 
MSE{ZRS) - MSE(z^p) = —2 D Ni 

kN' 
; = 1 

M 
V(fRp) = - 4 ^ ' - + ^ k f^^ M\ni Ni) •" 

where ff^j- = Ef=i (Ni/M) (Zi - F/M) I On substituting 
(16), (17) and (20) in (19) and simpUfying, we obtain (18). 

['^---'-a-4H(f-') 
As the cluster size A', increases, the factor (KNj/M — 1) 

will also increase. The other factor of the term under 
summation is N,[(Z, - YWi)^ + (1/AJ, - 1/Af,)£>?], 
which represents the contribution due to variability in z 
and w present in the /-th cluster (without the constant 
M/kN^) towards MSE{ZRP) in (18). As cluster size Nj 
increases, the contribution of the /-th cluster towards 
MSE{ZRP) is also expected to increase. This makes the 
covariance between these two factors positive. Hence, the 
estimator ZRP is expected to have a smaller MSE than ZRS. 
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Table 1 
Comparison of the Two Strategies for Two 

Small Populations 

Nj 

'^ij 

IV.. 
"'ij 

F 

MSE(z„s) 

MSE(f„p) 

R.E. 

R.B.(?sp) 

3 

1 

3,5,6 

3,1,2 

1,5,3 

'/),l,'/2 

1.38 

4 

2 

1,3,4,7 

1,3,1,1 

1,1,4,7 

1,'/J,I,1 

10.16 

2.09 

1.83 

114.21 

-.0105 

-.0047 

5 

2 

2,3,6,8,9 

1,3,2,1,1 

2,1,3,8,9 

l , ' /3 , ' /2 , l , l 

18.12 

Population No. 2 

2 

1 

4,5 

2,2 

2,2.5 

Vi.'A 

.24 

4 

2 

4,4,5,6 

1,1,2,2 

4,4,2.5,3 

l,l,'/2,'/2 

.11 

6 

2 

2,3,3,4,5,6 

1,1,1,2,1,2 

2,3,3,2,5,3 

l,l,l,'/2,l,'/2 

2.94 

0.45 

0.33 

136.36 

.0348 

- .0037 

Numerical Illustration. Here the two proposed sampling 
strategies are applied to two small populations to shed light 
on the computations of Fjj, Zjj and Wij, and on their 
comparison. For both the populations A' = 3, Â  = 2, 
M = 12 and Â  = 9. A unit repeated in two or more 
clusters represents overlapping. The populations are 
described in Table 1. 

The analysis of the results in Table 1 supports the 
theoretical developments of the present paper. For both 
the populations, the factor F = Â , [(Z, - F l^ )^ -i-
( 1 / / ? , - \/Ni)Df] increases with Af„ resulting in 
MSE(j'^p) < MSE(j/js), as remarked above. 

CONCLUSION 

This paper removes the realistic limitation of known 
population size in the earlier work of Singh (1988) while 
considering overlapping clusters. Also comparison of the 
two strategies here is more direct, whereas in Singh (1988) 
the support of evidence given by Hansen and Hurwitz 
(1943) was needed. 
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PPS Sampling over Two Occasions 

N.G.N. PRASAD and J.E. GRAHAMl 

ABSTRACT 

The Random Group Method for sampUng with probabiUty proportional to size(PPS) is extended to sampling over 
two occasions. Information on a study variate observed on the first occasion is used to select the matched portion 
of the sample on the second occasion. Two real data sets are considered for numerical illustration and for comparsion 
with other existing methods. 

KEY WORDS: ComposUe estimator; Efficiency comparisons; Random group method; ProbabiUty proportional 
to size. 

1. INTRODUCTION 

The practice of using a partial replacement sampling 
scheme in repeated surveys is quite common due, in part, 
to an anticipated increase in the efficiency of estimation 
as well as a reduction in the burden of response. Essen­
tially, after each sampling occasion a fraction of the units 
observed on that occasion is rotated out of the sample and 
replaced by a fresh sub-sample from the population.This 
set of unmatched units is then observed on the next 
sampUng occasion along with the remaining set of matched 
units. The Uterature abounds with discussions of sampUng 
and estimation procedures for sampling with equal selection 
probabiUties on two occasions. A particularly important 
case is the situation where the units are chosen on a given 
occasion with unequal selection probabilities. In the liter­
ature to date,information collected on the previous occasion 
is used to improve upon the customary estimator of the 
total or mean for the current occasion by using a difference 
method of estimation. In this article we present a sampling 
and estimation procedure for sampUng on two occasions 
which incorporates information collected on the first 
(previous) occasion in selecting the sub-sample for obser­
vation on the second (current) occasion. For the sake of 
completeness and parsimony, we review only unequal 
probabiUty selection procedures for two occasions in this 
section. 

Consider a finite population of N units, labelled 
1,2, ..., N, and two sampling occasions: 1 (previous 
occasion) and 2 (current occasion). Let;'], andj'2, denote 
the values of a characteristic y for the /-th unit observed 
on the first and second occasions respectively. Let Yi and 
Y2 denote the respective population totals. Suppose a size 
measure x is known for each of the population units. 

1.1 The Des Raj Scheme 

Raj (1965) considered the following PPS (probability 
proportional to size) sampling scheme: On the first occa­
sion a sample s of size n is selected with probabilities />, 
proportional to thex,-values, / = 1,2, ..., N, and with 
replacement (wr). On the second occasion a simple random 
sample Si of m units is selected from 5 without replacement 
(wor) and an independent PPS sample S2of u = n - m 
units is selected wr from the entire population. Then F, 
and F2 are respectively unbiasedly estimated by: 

and 

where 

Fi = X)->'"/(«J"') 

f2 - eF2„ + (1 - Q)f2r„, 

f2u = Y P2i/("Pi)' 
iiS2 

(1.1) 

(1.2) 

(1.3) 

f2m = Y Pii/^"Pi) + Y (-̂ 2/ - Pii)/(mPi), (1.4) 
iis iisi 

and g is a weight, 0 < Q < 1. Assuming that 

f̂ i = D (Pii/Pi - Y^Pi = V2 

N 

= Y (-^2,/A - Y2)'pi = V, (1.5) 

( = 1 

1 = 1 

' N.G.N. Prasad, Associate Professor, Department of Statistics and Applied Probability, University of Alberta, Edmonton, Alberta, Canada T6G 2G1; 
J.E. Graham, Professor, Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada KIS 5B6. 
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the minimum variance of F2 was found to be 

^';„,«(F2) = V[l -K J2( l - d)/{2n)], 

where 6 is given by 

(1.6) 

V^= Y (->'"/^' ~ ^i)(->'2'/A - ^2)A- (1-7) 
/ = i 

1.2 The Ghangurde-Rao (G-R) Scheme 

Under the PPS WOR framework, Ghangurde and Rao 
(1969) extended the Rao-Hartley-Cochran (RHC) Method, 
also known as the Random Group Method (See: Rao, 
Hartley and Cochran 1962) to sampling on two occasions. 
Under the RHC Method, the population of A'̂ units is split 
at random into n groups of sizes A'̂ i, N2, • •., N„ such 
that Y"h=iNh = N, and a sample of one unit is drawn 
independentiy from each of the n groups with probabilities 
proportional to the initial selection probabilities, /?,•. 
Under the G-R Method, the population is first divided at 
random into n groups, each of size N/n (assumed to be 
an integer). On the first occasion, one unit is drawn from 
each random group (as described above), giving a sample 
s of n units. On the second occasion, a simple random 
wor sample5] of m = \n{o < \ < 1) matched units is 
selected from s and an independent sample S2ofu = n — m 
units is drawn from the whole population of N units by 
the same method that was used in obtaining s. Then, a 
composite estimator of F2 is given by 

F2' = Q'F2'„+ (1 - Q')Yir„, 

where 0 < g ' < 1, 

Yiu = Y 
iiS2 

P2iPf 

(1.8) 

(1.9) 

and 

F2'. - Y ' - ^ +"'""' D ^''^"''"^''' • (1-10) 
Pi 

iisi 
Pi 

with Pi and P* denoting the totals of the Pi values for the 
groups containing the /-th unit (/ = 1,2, . . . , A )̂ in the 
selection ofs and 52 respectively. Under assumption (1.5), 
the variance of F2' (with optimum values of Q' and X) is 
given by 

Vmin(f2) = 
NV 

2n(N - 1) 

X [1 - n/N -I- J2 ( l - 6)(1 + y)n/N], (1.11) 

where 

(1 - P')V' , 
7 = — 1, 

(1 - 8)V 

N N 

v = N-' Y (>'i'- - ^1)' = ^ " ' D (̂ 2/ - Y2y 
1 = 1 (=1 

and 

N 

>' =N-' Y (J'l' - Yi){y2i- Y2)/V'. 
1 = 1 

1.3 The Chotai Scheme 

Chotai (1974), under the additional assumption that 
n/m is an integer, modified the G-R sampling design on 
the second occasion. A sample 5 is selected as in the G-R 
scheme on the first occasion. On the second occasion, the 
n units in the sample5are split at random into m(= \n) 
groups each of size n/m. One unit is selected from each 
of the m groups independently with probabilities propor­
tional to the Pi's as defined in the G-R scheme. This selec­
tion yields the sample Si. The selection of 52 is the same 
as in the G-R scheme. Then a composite estimator of F2 
is given by 

rye _ rtCvC n = e'-FL + (1 Q'^)f2m, (1.12) 

where 0 < Q<̂  < 1, 

yC 
^2u 

P2iPr (1.13) 

i€52 

and 

^2m - IJ + 
PliPi (1.14) 

16^1 
Pi iis 

Here, Pi and P* are as defined in the G-R scheme, and 
P,"*" denotes the total of the P,-values for those random 
groups of 5 containing the/-th unit (/ = 1,2, .. .,N) in 
the selection of 5;. The minimum variance of Ff under 
assumption (1.5), obtained by using the optimum values 
of Q^ and X, is given by 

Vmi„(f^) = 
NV 

2n{N - 1) 
[1 - n/N -\- J2(l - 6)], 

(1.15) 
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Under this scheme, but without assumption (1.5), 
Chotai also considered an estimator of Y2 (similar to 
KuUdorff's estimator for simple random sampling: See 
KuUdorff 1963), given by 

vCM _ rtCMvC Q^^Y'2„+ (1 -Q^^)Y^/^, (1.16) 

where Ff„ is as defined in (1.13), Q^'^ (0 < Q'^'^ < 1) 
is an assigned weight to be determined and 

yCM ^ y (P2i - &Pii)P* + p y Pufi 

iiS] 

with 

0 = 6 

XJ A(J'2i/A- - F2) = 
1=1 

Y Pi^Pu/Pi - Yl)'' 

(1.17) 

= 6—, (1.18) 
Vi 

a SRSWOR sub-sample, a sub-sample Si of m units is 
selected from s using a PPSWR scheme wUh size measure 
Zi = yiilx,, where yu is the observed value for the y 
characteristic for unit / on the first occasion. A sample 52 
of size u — n — mis drawn, independent ofs, as in Raj 
(1965). A composite estimator of F2 is given by 

F2 - Qi'2«+ (1 - Q)F2^, 

where F2„ is as defined in (1.3) and 

V 1 \-< (PiilPd v-> / I ^ 
Y2m = — Y ,—7~; Y ^y^i'Pi)> 

nm ; ^ (yii/pi) ^ 

with Q being a weight, 0 < Q < 1. The minimum 
variance of F2, obtained by minimizing the variance of F2 
with respect to Q, is given by 

Vn,in{f2) = ViCi{n + Cim)-\ 

where C, = E/li (^21/^1, - F2)2p,,Kr', with/?,, = 
yij/Yi and Vi as defined in (1.5). 

and 6 as defined in (1.7). The minimum variance of Ff*', 
using optimum values of Q^^ and X, is given by 

V„,i„{f^'^) = 
N 

2n{N - 1) 
(1 -h J l - 52 - n/N) V2. 

(1.19) 

To actually use Ff'*̂  it is evidently necessary to first 
assess the value of jS, which is usually not possible in prac­
tice. An estimate of 0 based on the available sample can 
be used but this will induce a bias in the estimator Ff*̂ . 

2. ALTERNATIVE SCHEMES FOR SAMPLING 
PPS OVER TWO OCCASIONS 

We now present an alternative sampling and estimation 
procedure which does not require a known value of 0 as 
defined in (1.18). In this scheme information collected on 
the first occasion is used in selecting the sample on the 
second occasion. The approach is based upon a procedure 
developed by Prasad and Srivenkataramana (1980) and was 
used there in the context of double sampling where a second 
phase sub-sample is selected using information obtained 
from an initial sample. For simplicity, we first consider its 
implementation in Raj's (1965) scheme (described earUer). 

2.1 A Modification of Des Raj's Scheme 

On the first occasion a sample s of size n is selected with 
probabilities Pj proportional to the x,- values and with 
replacement. On the second occasion, instead of choosing 

2.2 A Modification to Chotai's Scheme 

As in Chotai (1974), assume thatN, n, and m{< n) 
are all positive integers such that N/n, N/u and n/m are 
also all integers. Then: 

1. For the first occasion select a sample s of size n in the 
same manner as that adopted in the G-R procedure. 
For this set of units, observations yu, i = 1, . . . , « , 
are made on a characteristic y. 

2. For the second occasion, (a) split the n units in s at 
random into m groups, each of size n/m and draw one 
unit with PPS,p* = (^i,/^)//?,, independently from 
each of the m groups, yielding a sub-sample Si, where 
Pi is as defined in the G-R scheme; (b) select ^2, a fresh 
sample of u = n — m units from the entire popula­
tion, and observe the second occasion j ' values, '̂21, for 
these u units in the same manner as in the G-R scheme. 

Note that the difference between the proposed proce­
dure and that of Chotai (1974) lies in the selection of ^ j : 
in the former, information collected on the first occasion 
is used in selecting 5] on the second occasion. 

We now consider an estimator of the second occasion 
total Y2 that exploits the proposed procedure. Let 

. 5 , = ^ . 

A composite estimator of F2 is given by 

F! = Q**fg + (1 - Q**)nm, (2.1) 
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where Ff„ is defined as in (1.13), 0 < Q** < 1 and 

lisi ^' 

Here Pi denotes the total of the p* values associated 
with those units that belong to the random group from 
which the /-th unit was selected in Si. Let Ei and E2 denote 
expectation and Kj and V2 denote variance over all 5 and 
for a given s, respectively. The unbiasedness of Fj^ and 
hence of Ff for F2 follows by noting that the expected 
value of f2,„ is 

E{n,„) =EiE2{f*2m) = E I ( Y ^ - ^ = Y2. (2.2) 

To obtain the variance of Ffm, consider 

m{n - \) ^ \pf ^ J 

^ n - m r ^ (.y2i/.vi/) p y yuPi 

which leads, after considerable algebraic simplication, to 

E,V2{nm) = "^^^^-^^-^ Ol 
mn{N - 1) 

where 

'i-iM-^)\ 
Noting that 

ViE2{Yi,„) 
N- n 

n{N - 1) 
02, 

2 N 

h = %,ai=V2 = Y ^PiilPi - Y2)^Pi and X = - . 
1=1 

m 

n 

Because F£ and Ff̂  are independent, the variance of Ff 
is given by 

V(f*2) = Q**^V(fg) + (1 - Q**)^V(nm), 

where 

c • ^ _ V(Y%) = 
N - u 

u{N - 1) 
02, 

and V{ y2*m) is given by (2.3). 

The minimum variance of V{ Ff) is obtained by using 
optimum values of Q** and X, respectively given by 

(1 - X) 
(1 -n/N) -\-- -h 

Q** = 
,.r. . ( 1 - ^ ) ,. . ( 1 - (l-'k)n/N) {I - n/N) -\- h -H -

(1 - X ) 

and 

X = 
yfh 

I -I- V^' 

Hence, the minimum variance of V{ Ff) is given by 

Nai 
Vmi„(Yl) = 

n{N - 1) 
[1 - n/N + yfh]. (2.4) 

Note that the quantity h reflects the efficiency of the 
estimator using the/),'s as initial selection probabilities 
over the estimator with initial selection probabilities 
J i , / F | . A "smaU" value of h leads to an increase in the 
efficiency of the proposed method over Chotai's. 

3. NUMERICAL EFFICIENCY COMPARISONS 

The composite estimators Ff defined in (1.12), Ff'^ 
defined in (1.16) and Ff defined in (2.1) are now compared 
at their respective optimum Q and X values. The efficiency 
of the scheme proposed in 2.2 relative to Chotai's (1974) 
procedure is examined through a comparison of the 
following two relative efficiencies: 

it follows that 

n{N - 1)L ^ J 
(2.3) 

where 

REl = 

and 

RE2 = 

Vmin(f2) 

V„,jn{n) 

Vmin(f^'') 

Vn,in(n) 

(1 - n/N) + J2 ( l - b) 

(1 - n/N) + -fh 

(1 - n/N) -1- JI - 6^ 

(1 - n/N) + yfh ' 
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evaluated respectively obtained using (1.15) and (2.4), and 
(1.19) and (2.4). It foUows that the proposed scheme is 
superior to that of Chotai using KuUdorff's estimator 
(which depends on the unknown constant 0) for those 
populations having h < (1 - 6^). In order to permk 
meaningful numerical comparisons, two data sets that 
have appeared elsewhere in the literature are used here. 

Data Set A: This data set relates to the area under wheat 
in 1964 (>'2), in 1963 (yi) and cultivated area in 1961 (x) 
for 34 villages in India (See Murthy 1967). The parameter 
values for this data set are 6 = 0.6404 and h = 0.1868. 

Data Set B: This data set relates to the area under wheat 
in 1937 (j'2) and in 1936 (ji) and cultivated area in 1930 
(x) for a sample of 34 villages in India (see: Sukhatme, P. V. 
andSukhatme, B.V. 1970). The corresponding parameter 
values for this data set are 6 = 0.7635 and h = 0.3811. 

Using these values for 8 and h the two relative effi­
ciencies values REl and RE2 (expressed as percentages) 
were computed for selected values of n/N and are given 
in Tables 1 and 2. 

Table 1 
RE1% - Values for Data Sets A and B 

n/N 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 

n/N 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 

Data Set A 

130.09 
131.22 
132.43 
133.75 
135.18 
136.73 

Table 2 

RE2% - Values for Data Sets A and B 

Data Set A 

104.49 
104.64 
104.80 
104.97 
105.15 
105.34 

Data Set B 

124.30 
125.21 
126.19 
127.25 
128.41 
129.66 

Data Set B 

101.82 
101.88 
101.94 
102.01 
102.08 
102.16 

An examination of Table 1 leads to the conclusion that 
the proposed scheme out performs that of Chotai (1974). 
The gain in the efficiency ranges from 30% to 37% for 
Data Set A and from 24% to 30% for Data Set B as the 
sampUng fraction varies from 0.05 to 0.30. Note that the 
increase in efficiency is greater for Data Set A than for 
Data Set B because of the difference in the value of the 

parameters h (0.1868 vs. 0.3811) and of 8 (0.6404 vs. 
0.7635). Recall that h measures the efficiency of Pj as a 
size measure for unit / compared to the use of ^1, as a size 
measure in estimating the total F2 for the current occa­
sion and 6 is the correlation between ji,//;, and ̂ 21/A as 
defined in (1.7). When h is relatively small, greater gains 
in efficiency are realized with the proposed scheme than 
when h is not small. In both cases, however, the efficiency 
gains using the proposed procedure are worthwhile. 

The efficiency gains using the proposed method com­
pared to the use of Chotai's scheme with KuUdorff's 
estimator (as reported in Table 2) are minimal, varying 
from 4.5% to 5.3% for Data Set A and from 1.8% to 
2.2% from Data Set B. But in order to use KuUdorff's 
estimator, the value of 0 must be available. In practice 
this is not the case. It follows that the proposed strategy 
performs well from the point of view of actual implemen­
tation and of efficiency gain. 

There are situations where the auxiliary information 
needed to compute the initial selection probabilities is not 
available. A simple random sampling scheme may then be 
used in place of the RHC procedure in selecting the sample 
for the first occasion enumeration; the RHC procedure 
can then be adopted in selecting Si by using the SRS infor­
mation on the study variable coUected on the first occasion. 
The theory for such a procedure follows directly as a 
specialcaseof that presented by taking p, = 1/Â , / = 1, 
..., N. One would anticipate that substantial gains in 
efficiency would then result in this situation. 
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Multi-way Stratification by Linear Programming 

R.R. SITTER and C.J. SKINNER^ 

ABSTRACT 

Rao and Nigam (1990, 1992) showed how a class of controlled sampling designs can be implemented using Unear 
programming. In this article their approach is applied to multi-way stratification. A comparison is made with 
existing methods both by illustrating the sampling schemes generated for specific examples and by evaluating mean 
squared errors. The proposed approach is relatively simple to use and appears to have reasonable mean squared 
error properties. The computations required can, however, increase rapidly as the number of ceUs in the muUi-way 
classification increase. Variance estimation is also considered. 

KEY WORDS: Controlled selection; Linear programming; MuUistage sampUng; Stratified sampling. 

1. INTRODUCTION 

There are often several stratifying variables available 
to the sample designer and it is natural in such cases for 
the designer to consider defining strata as the cells formed 
by cross-classifying categories of these variables. A problem 
with this approach, particularly common when selecting 
primary sampling units (psu's) in household surveys, is 
that the desired sample size may be less than the total 
number of cells and hence conventional methods of 
stratification may be inapplicable. 

An Ulustration, based on a hypothetical example of 
Bryant et al. (1960), is given in Table 1. Communities 
(psu's) are classified by two stratifying factors: type of 
community with three categories and region with five 
categories. The desired sample size of « = 10 is less than 
the total number of ceUs, 15. This example also Ulustrates 
a related problem. The entries in Table 1 are the expected 
counts under proportionate stratification, that is the 
population proportions multipUed by the sample size. 
Even if the sample size was doubled to exceed the number 
of cells, the expected sample counts would still not be 
integers. Whilst the effect of rounding such values to 
integers may not be practically significant for large 
expected counts, the choice of how to round with very 
small expected counts may be of greater concern. 

One reaction to the problem of many cells is simply to 
drop one or more of the stratifying variables or to group 
some of the categories. Alternatively, a number of proce­
dures have been proposed which attempt to retain some 
'control' for all the categories of all the stratifying variables 
by permitting different forms of random selection of cells. 

Goodman and Kish (1950) proposed one procedure 
under the title 'controlled selection'. Jessen (1970) suggests 
that 'this method is somewhat complicated and its use in 
appUed sampling appears limUed' (p. 778). Waterton (1983) 

Table 1 
Expected Sample CeU Counts Under Proportionate 

Stratification with « = 10 

Regions 

1 
2 
3 
4 
5 

Total 

Urban 

1.0 
0.2 
0.2 
0.6 
1.0 

3.0 

Type of Community 

Rural 

0.5 
0.3 
0.6 
1.8 
0.8 

4.0 

Metropolitan 

0.5 
0.5 
1.2 
0.6 
0.2 

3.0 

Total 

2.0 
1.0 
2.0 
3.0 
2.0 

10.0 

illustrates this complexity. Bryant et al. (1960) propose a 
much simpler method for two-way stratification. Their 
method has the property that the expected sample counts 
display independence between the rows and columns of 
the two-way table. If the rows and columns are also inde­
pendent in the population then there is no problem but if, 
as will often be the case, there is an appreciable lack of 
independence then some reweighting will usually be neces­
sary and this can be unattractive in practice and can inflate 
the variance as is shown in Section 5. Jessen (1970) points 
out that a further limitation of the method of Bryant et al. 
(1960) is that it is not possible to constrain specified cell 
sizes to be zero. He proposes two approaches for both 
two-way and three-way stratification but both approaches 
remain fairly complicated to implement and, as noted by 
Causey et al. (1985), do not always lead to a solution. 

All the above methods may be carried out by hand with 
varying degrees of laboriousness, but none take advantage 
of the power of modern computing. In this paper we shaU 
show how computational procedures of Unear programming 
can be appUed to the muUi-way stratification problem 
foUowing Rao and Nigam (1990, 1992). Our proposed 
approach may be viewed as complementing the Unear 

' R.R. Sitter, Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario KIS 5B6; C.J. Skinner, Department of Social 
Statistics, University of Southampton S09 5NH, U.K. 
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programming approach proposed by Causey et al. (1985). 
Which of the two approaches is preferable will depend on 
the nature of the stratification problem and on the soft­
ware available. The potential disadvantage of our approach 
is that it can be much more computationally intensive, 
since the number of unknowns in our linear programming 
problem may be as large as (*), when k is the number of 
cells in the table and n is the sample size, whereas the 
number of unknowns in the approach of Causey et al. 
(1985) is only k. A number of suggestions will be made, 
however, to reduce the computational demands of our 
approach. There are several potential advantages of our 
approach. First, the stratification problem corresponds 
directly to the linear programming problem and so the 
computer programming is straightforward, whereas the 
approach of Causey et al. is less direct, involving mimicking 
the behaviour of nonlinear functions by linear functions 
(p. 904) and nesting repeated Unear programming problems 
within a further recursive algorithm. Second, our proce­
dure always has a solution, whereas the procedure of 
Causey et al. need not, for example in cases of three-way 
stratification. Third, the objective function in our linear 
programming problem can be naturally modified to reflect 
the different objectives of the stratification problem, for 
example in a three-way problem where it is more important 
to 'balance' the sample with respect to the first two strat­
ifying variables than the third. Fourth, our procedure can 
be naturally modified to constrain the joint inclusion 
probabilities of cells to be positive in order to permit 
unbiased variance estimation. 

2. THE PROPOSED APPROACH 

2.1 Basic Ideas 

We begin with the simplest kind of two-way stratifica­
tion. Let a population of Nunits be classified into the RC 
cells of a two-way table formed by cross-classifying a row 
stratification factor with R categories and a column factor 
with C categories. Let Nij be the number of units in cell 
ij, that is the set of units in both row / and column y, and 
let Pij = Nij /N be the corresponding proportion. The 
parameter of interest is taken to be the population mean, 
F, of a variable F. 

Consider the foUowing two-stage sampling procedure. 
First, sample sizes «y are determined for each cell accord­
ing to a specified randomized procedure. Letting 5 denote 
the/? X Carray (/ly, / = 1, .. .,R,j = 1, . . . , C),this 
procedure assigns a probability/?(5) to each 5 in a set S 
of possible arrays. To emphasize the dependence of /jy on 
s we write njj(s). Second, a simple random sample of 
nij{s) units is selected from cell ij and the values of y are 
recorded for the sample units. 

We restrict attention to designs of fixed sample size 
« > 0, that is we restrict S to be the set S„ of all arrays 
such that 

R C 

Y D "'v(̂ ) = "• 
1=1 j=i 

We also restrict attention to proportionate stratification 
so that 

Y nij{s)p{s) = nPjj for / = 1, . . . , R, 

j=\,...,C. (2.1) 
siS, 

It follows from (2.1) that the simple unweighted sample 
meany{s) is an unbiased estimator of F. We propose to 
choose a (or the) sampling design p{s) which minimizes 
the expected lack of 'desirability' of the sample 5 by solving 
the problem: 

minimize Y] w{s)p{s), (2.2) 
5€S„ 

subject to the constraint (2.1), where w{s) is a loss func­
tion for the sample s to be specified and P is the class of 
possible sample designs on S„ obeying 

0 < p{s) < 1 for all 5€ S„ (2.3) 

Note that (2.1) impUes Y.siS„P(s) - L The key observa­
tion of Rao and Nigam (1990, 1992) is that the objective 
function in (2.2) and the equality and inequality constraints 
in (2.1) and (2.3) are aU Unear in p{s) and hence this 
problem may be solved directly by linear programming 
with the/)(5), 5 € S„, as unknowns. The main obstacle to 
this approach is that the number of elements in 5„ is often 
very large and even with modern computing power it 
becomes difficuU to carry out linear programming if the 
number of unknowns is large. 

It is therefore desirable to restrict attention to a subset 
of S„. One natural restriction is to consider only arrays 
5 for which /iy(5) is either equal to fj = [«Py], the 
greatest integer less than /jPy, or fj + 1. Letting /?y (s) = 
nij (s) - Ijj and /-y = «Py - /y the problem becomes 

minimize Y] w{s)p{s), (2.4) 

subject to 

Y nij{s)p{s) = rjj. (2.5) 
siSfi 

YP(S) = 1, 0 < p{s) < 1 foraU s i S„, (2.6) 
stSj, 
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where Sfj is the set of R x C arrays, where all elements 
are 0 or 1 and the sum of elements is n = n - Y,ij hj-
Note, of course, that if all the /y are zero, then this is just 
the same problem as before. The number of elements in 
Sfi, which determines the magnitude of the computational 
task for linear programming, is now {'^h). This number 
can still be very large, however, and some further reduction 
can be achieved by sensible choice of the loss function 
w{s) as discussed in the next section. 

For Table 1, this would amount to considering the 
situation represented by Table 2, while only allowing a 0 
or 1 ceU sample size, and then adding back 1 to cells (1,1), 
(3,3), (4,2) and (5,1) in the final solution. Thus n = 10, 
but n = 6. 

Table 2 

Table of r,. Values from Table 1 with h = 6 

In our approach, however, if we use a loss function 
such as 

Regions 

1 
2 
3 
4 
5 

Total 

Urban 

0.0 
0.2 
0.2 
0.6 
0.0 

1.0 

Type of Community 

Rural 

0.5 
0.3 
0.6 
0.8 
0.8 

3.0 

Metropolitan 

0.5 
0.5 
0.2 
0.6 
0.2 

2.0 

Total 

1.0 
1.0 
1.0 
2.0 
1.0 

6.0 

2.2 Choice of Loss Function w(s) 

The major flexibility of the proposed approach derives 
from the user's freedom to choose the function w{s) 
which enters the objective function in (2.2). The conven­
tional approach to two-way stratification {e.g., Jessen 
1970; Causey et al. 1985) is to require that the selected 
sample s obey the marginal constraints: 

I /?,.(5) - nPi.\ < 1 i = I, ...,R, (2.7) 

I n.j{s) - nP.j\ <l j = I, ..., C, (2.8) 

where 

ni.(s) = Y nij{s), n.j{s) = Y nu(s) 
J / 

Pi- = D ^ ' p-j-Y^u-

This requirement can be accommodated in our approach 
by setting w(s) as (effectively) infinite for samples 5 not 
satisfying (2.7) or (2.8) or more simply by excluding such 
samples from the set S„. The problem with this conven­
tional approach is that no solution to the constrained 
optimization-problem may exist. 

w (s) = Y ('''•(̂ ) - "-P'-)' + D ("v(^)" "^v)'' 
J=l (2.9) 

then an optimal solution will always exist within a large 
enough set S„. In practice, it may be advantageous com­
putationally to restrict the set S„ initially to only those 
samples obeying (2.7) and (2.8), or even a subset of these, 
and then to expand the set if necessary, say by changing 
1 to 2 in (2.7) and (2.8), until a solution is found. 

Let us now consider the more fundamental question of 
why constraints such as (2.7) and (2.8) are sensible 
anyway. From a non-statistical point of view, the balancing 
of a sample with respect to factors with a known population 
distribution may reassure users about the 'representa­
tiveness' of the sample. From a statistical point of view, 
given our unbiasedness constraint (2.1), it is natural to 
consider how the loss function might be chosen to improve 
efficiency. This question may be examined by taking w{s) 
as the mean squared error £"„ {y{s) - F) ̂  under a model 
m. Then the solution to the optimization problem (2.2) 
minimizes the design-expected model-mean squared error 
or equivalently, since we require design-unbiasedness, the 
model-expected design variance. 

Consider, for example, the main-effects analysis of 
variance model 

Pijk = Ii + oii •¥ 0j + dijk, 

vihereyijk is the A:th value of Fin cell ij, ^ is a fixed mean 
and a,, 0j and €y4̂  are independent zero-mean random 
effects with variances al, aj and a\, respectively. Then, 
ignoring finite population correction terms, 

Eni(P(s) - F)2 = alY (ni.(s)/n - Pi.)^ 
1 

+ 4Y («7(^)/" - Pj)^ + '̂ f/"- (2.10) 
J 

Hence, if CT^ = a} the expected design variance of j (5 ) 
under this model is minimized by taking the loss function 
in (2.9). Alternatively, if one had some prior information 
about the Ukely ratio of the between row variance relative 
to the between column variance then it may be sensible, 
on efficiency grounds, to modify the loss function in (2.9) 
by multiplying the first term on the right hand side of (2.9) 
by this estimated ratio. 

On the other hand if it is thought a priori that there is 
likely to be a strong interaction between the row and 
column factors in their effect on Fthen simply attempting 
to balance on the margins may be inappropriate. For 
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example, if one stratification factor is urban/rural and the 
other is an economic indicator X and it is known that F 
is positively related to X in urban areas and negatively 
related in rural areas then it is likely to be more efficient 
to stratify partially by Xseparately within rural and urban 
areas than to balance fully on both margins. See Bryant 
et al. (1960, section 9) for related comments on efficiency 
for two-way stratification. 

2.3 Higher-way Stratification 

The proposed approach extends naturally to 3 or more 
stratifying factors by letting 5 denote the corresponding 
/•-way array. The loss function will typically include further 
terms, for example for three-way stratification we might 
take 

(s) = Xi 2 ] (ni..(s) - nPi..)' 
1=1 

Ri 

+ X2 ^ {n.j.{s) - nP.j.)' 

J=\ 

/?3 

+ X3 ^ (n..k(s) - nP.k)' 
k=l 

in obvious notation, where X], X2 and X3 are included to 
represent the relative importance of balancing on the three 
factors and might consist of prior estimates of the 
variances of the y means between categories of the three 
stratifying factors, as in (2.10). 

2.4 Multistage Sampling 

One important practical application of multi-way 
stratification is to the selection of primary sampling units 
(psu's) in multistage sampling, where it is common for 
information of several stratifying factors to be available. 

In the approach of Section 2.1, the inclusion probabil­
ities of each population unit are £•(«/; (s)/Nij) = n/N. 
If it is desired to select psu's with equal probability then 
this approach extends immediately with the psu's con­
stituting the units and with the observed values of F 
replaced by unbiased estimators of the psu totals. Suppose 
instead that it is desired to select psu's with unequal pro­
babilities, say nzjjk for psu k in cell ij, where usually Zjjk 
will equal My^./ Y, ijk ̂ ijk, with Mjjk being some measure 
of size of psu k in cell ij. Then the procedure may be simply 
modified by setting Pjj equal to the sum of Zijk over psu's 
k in ceU ij. Then, if /ly (s) > 0, a sample of «y (s) psu's 
in ceU ij is selected by some probability proportional to 
Zjjk method. 

3. EXAMPLES 

Example 1: Bryant, Hartley and Jessen (1960) 

We wUl first demonstrate the method on the hypothet­
ical example of Bryant et al. (1960) given in Table 1. We 
first reduce the problem to the form of (2.4), (2.5) and 
(2.6), where the /-y's are given in Table 2. The weight 
function in (2.9) in this reduced Unear programming 
problem becomes 

w (s) = Y ("'-(̂ l - ' • / • ) ' + D ("v(̂ ') - r.j)'' 
1=1 7 = 1 

Applying a standard linear programming package in the 
NAG FORTRAN Ubrary, we obtain the solution given in 
Table 3. The /y values have been added to the solution so 
that«,y = /y -I- /Ty (5). It turns out for this solution that 
each 5, for which/?(5) > 0, has margins «,. (s) and n.j (s) 
which match the desired margins exactly, that is the 
solution makes (2.4) zero. 

Table 3 
Solution to Example 1 

\ 

1 1 
1 0 
0 1 
0 2 
1 0 

1 1 
0 0 
0 0 
1 2 
1 1 

1 0 
0 1 
0 1 
1 1 
1 1 

0 
0 
1 
1 
1 

0 
1 
2 
0 
0 

1 
0 
1 
1 
0 

P(s) 

0.2 

0.2 

0.1 

1 
0 
0 
1 
1 

1 
0 
1 
0 
1 

1 
0 
0 
1 
1 

s 

1 
0 
1 
1 
1 

0 
1 
0 
2 
1 

0 
0 
1 
2 
1 

0 
1 
1 
1 
0 

1 
0 
1 
1 
0 

1 
1 
1 
0 
0 

P(s) 

0.1 

0.2 

0.2 

Example 2: Jessen (1970) 

Jessen (1970) proposed two methods for two-way and 
three-way stratification. Both of these are quite compli­
cated and involve determining the set of samples which 
exactly match the margins. Neither method is guaranteed 
to yield a solution. Jessen (1970) applies both methods to 
a simple hypothetical example for which both yield a 
solution. This example is reproduced in Table 4. In this 
example, since all of the «Py < 1, the linear program­
ming problems defined by (2.1), (2.2) and (2.3) and by 
(2.4), (2.5) and (2.6), respectively, are identical. We 
applied our method to this problem, again using the iv(5) 
as defined in (2.9). By trying a number of different seeds 
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in the optimization routine, we were able to obtain three 
different solutions, all of which make (2.2) zero and satisfy 
the constraints. These are given in Table 5. The first two 
solutions are the same two as obtained by Jessen's method 2 
and method 3, respectively. 

Table 4 

Example 2: Jessen (1970) 
Expected Sample Cell Counts Under Proportionate 

Stratification with « = 6 

Rows 

1 
2 
3 

nPi 

1 

0.8 
0.7 
0.5 

Columns 

2 

0.5 
0.8 
0.7 

3 

0.7 
0.5 
0.8 

2.0 2.0 2.0 

nPi. 

2.0 
2.0 
2.0 

6.0 

If we apply our method in a similar manner to 
Examples 1 and 2 we obtain the solution given in Table 6. 
In this case, the objective function did not attain zero so 
that the margins are not exactly matched in each sample. 

Table 6 
Solution to Example 3 

P(s) 
i = 1 

1 0 
0 0 
0 0 
0 1 

/ = 2 

0 1 
0 0 
0 0 
1 0 

0.5 

0.5 

4. COMPARISON OF MSE 

1 
1 
0 

1 
0 
1 

0 
1 
1 

1 
1 
0 

1 
0 
1 

0 
1 
1 

0 
1 
1 

1 
1 
0 

1 
0 
1 

1 
0 
1 

0 
1 
1 

1 
1 
0 

1 
0 
1 

0 
1 
1 

1 
1 
0 

0 
1 
1 

1 
1 
0 

1 
0 
1 

Table 5 
Solution to Example 2 

Pi(s) P2(s) 

0.5 

0.3 

0.2 

0.0 

0.0 

0.0 

0.4 

0.2 

0.1 

0.1 

0.1 

0.1 

P3(s) 

0.3 

0.1 

0.0 

0.2 

0.2 

0.2 

Example 3: Causey, Cox and Ernst (1985) 

Causey et al. (1985) give an example of three-way 
stratification for which their method fails to yield a solu­
tion. They consider a population subject to a 2 x 2 x 2 
stratification from which a sample of size n — 2 is to be 
drawn, with the-expected sample size in the ijk-th cell, 
nijk, as follows: 

' ' i l l — n22l — «122 = ^̂ 212 = .5 

"121 = ''211 = "112 = "222 = 0. 

In this section the mean squared error (MSE) of the 
proposed design with estimator y wiU be compared with 
the MSE of the design of Bryant et al. (1960) with either 
of the two estimators they propose, namely y^ and yg, 
where the U and B subscripts indicate that the first 
estimator is unbiased and the second is not. Let the cells 
be denoted c (ij in the two-way case), let k (and where 
necessary /) denote a unit within a cell, and suppress the 
5 in «(.(5) for simplicity of notation. The inclusion proba­
bUity of any unit k in cell c is 

TTck = E[nc]/N, = E[n,]/{NP,) (4.1) 

and the joint inclusion probability of unit k in cell c and 
unit k' in ceU c' is 

Tcjtc'A-' — 

Eln,.(n,.-

Nci^c-

El"c"c'^ 

-1)1 
•1) 

NrNr 

if c = c' 

if C 9^ c' 

(4.2) 

For large Â  this is approximately 

EijicTic.) E{nc) 
T^ckc'k' 

N'P.P,. N'Pl '^=^'" 
(4.3) 

where 

nc=c'] 1̂ 0 if 
c = C 

c 9^ c'. 

The expectations will differ for our design compared to 
the Bryant et al. design and thus the itck and itckc'k' will 
differ. Keeping this in mind we can obtain the variance 
of p, Pu and yg in a generalized form in terms of the iCck 
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and TTckc'k' values and thus have some basis for compar­
ison. To do this, let us consider an estimator of the form 
z = ECEA ^cPck/n, where the w,. values are fixed known 
constants independent of k. If we restrict to the case where 
/?,. = nPi. and n.j — nP.j, that is, integer marginal 
requirements, then both of the estimators given in Bryant 
et al. as well as our estimator are of this form. We will 
assume this to be the case in the sequel. Replacing the 
subscript c with ij for two-way stratification, y^ and pg are 
of the same form as z with Wc = Wy = Gy = Pjj/(Pj.P.j) 
and Wc = Wjj = 1, respectively. The estimator j is also of 
the form z with w^ = Wy = 1. 

We can now obtain a general form for the variance of 
z keeping in mind that the Vck and Vckc-k' values will differ 
for the Bryant et al. design and our design: 

V(z) 
2^' 2J D D D (""c*'"''̂ '*' ~ T^ckc'k') 

c c' k k' 

(Wcyck - Wc'yc'k') • (4.4) 

Using (4.1) and (4.3) this becomes 

i//-^ ' \ ^ wlE{n,) ^-^ . -
^(^) = ^2 Y -j^^ Y Y (̂ *̂ - y^k') 

c '^ k k' 

The first term V| may be interpreted as the usual stratified 
variance for fixed sample sizes E{nc) within the two-way 
'strata' (of course in our case the E{nc) will generally not 
be integers). The second term V2 may be interpreted as the 
increase in variance arising from the variabUity of the ŵ  
and the correlation between them. We discuss this further 
at the end of this section. We now revert to the notation 
c = //and compare the variances for two-way stratification. 

First let us consider V] in (4.6). For the Bryant et al. 
method£'(«y) = nPi.P.j,yu = Y.illjlkGijyijk/n,Gij = 
P,j/{Pi.P.j) andyg = liljlkytjk/n. 
Thus 

vi(pu) = YY^u^^u^l/"' 
i j 

(this is the same as the first term of equation (12) in Bryant 
et al.) and 

VI(PB) = DD^'-^v^^^"-
'• J 

In the case of our approach E{njj) = nPjj and y = 
Ei- Ey IkPijk/n so that 

v.m = DD^^^/"-

J_ ^ ^ C o v ( « c , " c - ) v-i ^ 

2«2 -i^ 2^ Af^P^P,, - ^ ^ 
c c '• "• k k' 

Noting that 

(Wcyck - Wc^yc'k') • (4.5) 

Next let us consider V2. It is not difficult to show that 
for both the Bryant et al. method and our approach 
(see Appendix) 

Y Cov{njj,ni.j.) = Y Cov(nij,ni.j.) = 0. (4.7) 

and 

D D (Pck-Pcl)' = 2A^2p252 
k I 

^ ^ (Wcyck - w,.y,.k')^ = N^PcPc 
k k' 

[w^S^ -h wpSp -f {w,Yc - Wc'Yc.)^], 

where S^ refers to the population variance of cell c, (4.5) 
reduces to 

V(z) =^Y ^cE{n,)S^ 

Using this and replacing c and c ' by ij and i'j', respec­
tively, in V2 given in (4.6), it follows that V2 reduces to 

"^ = •^2 i;i;i;i;cov(/ty,«,;.)wyw,;,>^.}^..,.. 
I J i' j ' 

Replacing vfy with Gy we get V2 (Pu), and using simple 
algebra one can show that this is the same as term 2 of equa­
tion (12) in Bryant et al. Replacing Wy with 1 gives the form 
of y(pB) and of V{y), noting that the Cov(/7y ,/7,.y') wiU 
not be the same for both. So we see that V2 depends only 
on the cell means while Vj depends only on the within cell 
variances. 

Finally, we should note that 

2n' 
YY ^°^^"c,nc')[wlS^ + wl.Sl 

-H (tv,F, - tv,.F,.)'] 

= vi -I- V2, say. (4.6) 

bias(j5) = - YY'^Pu - Pi-Pj)Yij, (4.8) 
' J 

since to compare the three estimators the mean square error 
(MSE) wUl be the relevant measure, and this bias wiU con­
tribute to MSE (J^). 
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Combining the expressions for Vj, V2 and bias(>'a) 
above permits an analytical comparison of the MSE of the 
proposed approach with that of the approach of Bryant 
et al. (1960) using either j y and jg. It is difficult, however, 
to make general statements about the relative performance 
of the different strategies and so we now consider intro­
ducing some model assumptions in order to approximate 
the different components of the MSE expressions, in some 
specific settings. We first consider the additive model: 

Pijk = M + "i + I3j + ^ijk, 

where ̂ y .̂ is the k-th observation in the ij-th ceU, a, and 0j 
are fixed effects and €yyt are independent errors with zero 
mean and common variance a^. Then E,„{SJj) — o^ and 
E,„{YjjYi.j.) = (,i + a,- + 0j){i, -I- a,- -f /3;.). Thus the 
model-expected design-variance is given by replacing S]j 
by a^ and Yij by /x -I- a, -I- 0j in the formulas for Vj and 
V2 for the various estimators. In this case, V2(>'B) = 0. 
This point was realized by Bryant et al. when comparing 
yu and y^. The bias term wiU be zero in this case unless 
there was rounding on the margins, that is bias (ps) = 0 
provided «,. = nP,. and n.j = nP.j as is the case in their 
example. This easily follows from (4.8) and 

Y(Pu- Pi-Pj) = D ( ^ - P'-Pj^ 0. 

This was also shown by Bryant et al. p. 119 equation (47). 
Using (4.7), it is easily shown that V2{y) = 0 as well. 
This combined with the unbiasedness of j ' and the fact that 
VAPB) — Vi{y) = (7 /̂/2 in this case implies that for this 
situation MSE (jJg) = MSE (j'), that is the proposed pro­
cedure has the same MSE as the procedure of Bryant et al. 
using the biased estimator. We demonstrate in the sequel 
that even when this additive model is applicable (7 = 0 
below), V2{yu) may be large whUe Vi{yy) > Vi{y). 

To compare the estimators further, let us consider the 
situation of Example 1. The above derivations allow us 
to obtain the MSE's of the three estimators for this 
example provided we have the 5y's, the P^y's and can 
calculate the Cov(/2y .rtj-y) for the Bryant et al. method 
as well as for our approach. The covariances for the 

Bryant et al. method are given in their paper in terms of 
the Pjj's, while the covariances for our approach can be 
obtained from the solution in Table 3. We will consider 
non-additive departures from the above model, namely 

yjjk = /i + a,- + 0j + yaj0j + gy^, 

for various values of 7. For simplicity of presentation, let 
^ = 1, a, = / - 3, jS, = j - 2 (note in fact that the 
MSE of each strategy is invariant to the choice of fx). Thus 
the model-expected design-variance is given by replacing Sjj 
byland J^byl + ( / - 3 ) -f (y - 2) + 7 ( / - 3)(y - 2) 
in the formulas for v, and V2 for the various estimators. 
Table 7 gives the resulting Vj, V2, and MSE values for the 
three estimators (as well as the bias squared term for yg), 
for various values of 7. From Table 7, it can be seen that 
for an additive model, y = 0,yg and y perform equally 
weU, while j y is inferior. As the model becomes more 
non-additive, and | 7 | increases, the two estimators for 
the Bryant et al. strategy tend to perform similarly, both 
with MSE becoming increasingly greater than that of the 
proposed strategy. This pattern is primarily due to the V2 
component of the MSE of the three estimators. The bias 
term of yg is of lesser importance, although it may be 
more important for larger n. 

The greater increase in V2 as | 7 | increases for the 
Bryant et al. design appears to reflect the greater 
variability of each «,y for this design. It should be noted 
that it would have been possible to reduce this variabiUty 
somewhat by applying a variant of the Bryant et al. 
method instead to Table 2, as was done for the proposed 
method, though one would need to derive adjusted Gy 
weights for J u and it would be difficult to handle the 0.0 
ceU entries in Table 2. However, even if this were accom­
plished, the /fy for this design may still take values other 
than just 0 and 1; for example /I42 could take values 0, 1, 
or 2. This inflated «<- variability is inherent in the Bryant 
et al. method. For example, suppose «i. = n.i = 5. 
Then using the Bryant et al. method, nn can take values 
0, 1, 2, 3, 4, or 5, while with the proposed method it can 
take only values [nPn] or [nPn] -\- I. If nPu < l . the 
technique used to go from Table 1 to Table 2 will not 
improve matters. 

Table 7 
Comparison of MSE for Three Estimators 

7 

0 
±.5 
±1 
±2 
± 3 

Vl 

.125 

.125 

.125 

.125 

.125 

Pu 

V2 

.105 

.063 

.105 

.440 
1.111 

Bryant, 

MSE 

.230 

.188 

.230 

.565 
1.236 

Hartley, Jessen Design 

PB 

Vl V2 

.100 .000 

.100 .033 

.100 .131 

.100 .523 

.100 1.176 

Bias^ 

.000 

.002 

.008 

.032 

.073 

MSE 

.100 

.135 

.239 

.655 
1.349 

'̂1 

.100 

.100 

.100 

.100 

.100 

Proposed Design 

y 

V2 

.000 

.018 

.071 

.284 

.638 

MSE 

.100 

.118 

.171 

.384 
:738 
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5. VARIANCE ESTIMATION 

In this section, we will consider variance estimation for 
our proposed method. Using (4.1) and recalling constraint 
(2.1), it is clear that 

T^,k = E[nc{s)/N,] = n/N. 

The joint inclusion probability of two units k, k' in the 
same cell c is 

Trck,ck' = E[nAs)[nAs) - 1]/{NAK - 1 ) ) ] . 

Suppose nc(^) = 4 + '?c('S') when/^ is the fixed integer 
[nPc] and «(.(5) = 0 or 1. 

If nPc < I then I^ - 0 and ifck.ck' — 0. Hence a 
necessary condition for unbiased variance estimation to 
be possible is that nP^ > 1 for aU cells c. On the other 
hand if this condition holds then nc{s) > 1 for all c and 
hence the probability of inclusion of any pair of units in 
different cells is also always positive. Hence this condition 
is necessary and sufficient for unbiased variance estima­
tion to be possible. 

When this condition holds we obtain 

Trck.ck- = IcUc + 2/-, - l)/[N,{N, - 1)] ^ A„ 

say, where/"c = E[nc{s)] = nP^ — Ic-

The joint inclusion probability for pairs of units in 
different cells c and c ' are 

•^ck,ck' = E[nc{s)nc'{s)/(N,.N,..)] 

= [IJc' + fc'Ic + rJc' + l'cc']/{NcNc') = Bcc' , 

(5 .1) 

say where r^c' = £'[/?c(.s)/?c' (^) ] . 

Hence an unbiased estimator of V{y{s)) of Sen-Yates-
Grundy form may be constructed in the usual way. 

In practice, however, we wish to consider situations 
where nP^ < 1 for some c. In this case one assumption 
we might make following Bryant et al. (1960, Sect. 7) in 
order to derive a variance estimator is that the population 
variance of Fis constant within each ceU c, say 5^. 

Let us first obtain the variance of j '(5) in the general 
case 

Now providing B^c' > 0 V c, c ' we may estimate the 
second term unbiasedly by 

V{y(s)) = 
1 

2P D D D ( ^ 2 - ^ C ) ( . , 
c k^k' ^ ' 

2 7 2 D D D ( ^ 2 - 5 C C ' ) 

Pck')' 

I 

2n 

I n 
nc(5) ric' (s) I —. - R 

-2DDD D ( i V -
A k=l k' = l \ Bcc' 

(Pck - Pc'k')' 

where y4 = [c,c':nc{s) > l,n^'{s) > l , c ? ^ c ' ) . 

The first term can be written as 

);^ E i$. - -) »?̂ '-2« 

For any c s.t. nc{s) > 2 

' ric^s) ni.(s) , _ ,2 
g./ Y^ Y^ yPck Pck'I 

k=i k^=i '^n^(s)\n,,(s) - 1) 
kjtk' 

nc(s) = S - C2 

Thus provided at least one nc{s) is > 2 an unbiased 
estimator of the first term is 

[c:nc(s)3i2] ^ ' k = \ k'= 1 

(Pck - Pck')^ 

2nAs){n,{s) - I] 

where D — thenumber of cells, c, such that «<.(5) > 2. 

The above requires B^c- > 0. If 

Ic = Ic' = 0, 

by (5.1), we need 

rcc = Y nc{s)nc'{s)p{s) > 0, (5.2) 

which is linear inp{s). The constraint (5.2) can be handled 
in Unear programming if desired. There will be such a 
constraint for each pair c, c' s.t. 4 = Ic' = 0. 

6. CONCLUDING REMARKS 

c^c' k,k 

We have proposed a linear programming approach to 
multi-way stratification, applying ideas of Rao and Nigam 
(1990, 1992). The approach is simple in conception and 

(Pck —Pc'k' )^. is very flexible in allowing for a range of different objec­
tives via the loss function w{s), as well as in permitting 
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a variety of constraints such as that the joint inclusion 
probabilities of aU cells be positive. The main practical 
constraint on the procedure is that it may rapidly become 
computationally expensive if not impossible as the number 
of cells in the multi-way classification increases. Some 
ideas on how to reduce the amount of computation have 
been considered. Further research on this question would 
be useful. For cases where the computational demands are 
prohibitive, the method of Causey et al. (1985) remains 
an alternative. 

Assume that the solution to the linear optimization 
problem (2.2) equals zero, where w(s) is given in (2.9). In 
this case, 'Zjnij(s) = «,•. (5) = z?/ .̂ and (7.2) impUes 

Y^{njj{s)nj.j.{s)) = Yp(s)njr(s)nPj. 

= nPi. ^/?,7'(5)/j(5) 
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APPENDIX 

Proof of (4.7) for Proposed Method 

Note that 

Cov(/?y(5),/7,y.(5)) = E{njj{s)ni.j-{s)) 

- E(/Jy(5))E («,.,. (5)). 

Equation (2.1) states that E (Wy (s)) = nPy. By definition 

E(rty(5)/7,-y'(5)) = Y nij(s)ni>j,{s)p{s). 

s 
Thus 

Y E{nij(s))E{ni.j.{s)) = n^Pj.j, Y ^U = n^Pi'j'Pi- , 

j j (7.1) 

and 

Y E(«,y(5)/?,-y.(5)) = 2 ] D nij{s)ni.j.{s)p{s) 
J J s 

= Y P{s)ni'j'(s) Y nij(s). 

= nPj.E(nj.j.(s)) = nPj.nPj.j. . 

(7.3) 

Equations (7.1) and (7.3) together imply Y,j Cov(«,y(5), 
nj'j' (s)) = 0. It can be similarly shown that 

YCov{nij{s),nj.j.{s)) = ^^ Cov(«y(5),«,-y.(5)) 
1 1 ' 

- Y Cov(njj(s),nj.j.{s)) - 0. 

(7.2) 
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Regression Weighting in the Presence of Nonresponse 
with Application to the 1987-1988 Nationwide 

Food Consumption Survey 
WAYNE A. FULLER, MARIE M. LOUGHIN and HAROLD D. BAKER' 

ABSTRACT 

A regression weight generation procedure is appUed to the 1987-1988 Nationwide Food Consumption Survey of 
the U.S. Department of Agriculture. Regression estimation was used because of the large nonresponse in the 
survey. The regression weights are generalized least squares weights modified so that all weights are positive and 
so that large weights are smaller than the least squares weights. It is demonstrated that the regression estimator 
has the potential for large reductions in mean square error relative to the simple direct estimator in the presence 
of nonresponse. 

KEY WORDS: Non-negative weights; Consistency. 

1. INTRODUCTION 

In many sampling situations, the population means of 
auxiliary variables are known, but the particular values of 
the variables for individual elements are not used in the 
sample selection. Although the information is not used in 
the sampling design, it may be highly desirable to incor­
porate the information about population means into the 
estimation procedure. Common estimation procedures 
utilizing auxiliary information are ratio estimation, post­
stratification, regression estimation, and raking. Regression 
estimation is the most general procedure in that the regression 
method can handle multiple auxiUary variables, continuous 
auxiUary variables, and discrete auxiUary variables. Post­
stratification can be considered a special case of regression 
estimation in which the regression variables are indicator 
variables for the post strata. The raking procedure, also 
known as iterative proportional fitting, is restricted to 
auxiliary information in the form of discrete categories. 
Deming and Stephan (1940), Stephan (1942), El-Badry and 
Stephan (1955), Ireland and Kulblack (1968), Darroch and 
Ratcliff (1972), Brackstone and Rao (1979), and Oh and 
Scheuren (1987) are references on raking. 

Early applications of regression estimation are Watson 
(1937), Cochran (1942) and Jessen (1942). Cochran (1977, 
Ch. 7) contains the basic theory. Regression estimation 
for survey samples has been discussed by numerous 
authors, including Mickey (1959), Fuller (1975), RoyaU 
and Cumberland (1981), Isaki and Fuller (1982), Wright 
(1983), Luery (1986), Alexander (1987), Bethlehem and 
Keller (1987), Copeland, Pritzmeier, and Hoy (1987), 
Lemaitre and Dufour (1987), Sarndal, Swensson and 
Wretman (1989), Deville and Sarndal (1992), Zieschang 
(1990), and Rao (1992). 

In much of the cited literature, regression estimation 
is described as a procedure for reducing variance in prob­
ability samples. In practice, one of the motivations for 
regression estimation is the potential for reducing bias 
associated with selective nonresponse. See, for example. 
Little and Rubin (1987, p. 55) for the special case of 
adjustment ceUs, and Bethlehem (1988) for the generalized 
regression estimator. 

Nonresponse prompted the use of regression estimation 
in our appUcation and we discuss regression estimation in 
the response adjustment context in Section 3. The standard 
regression estimator and the modified procedure that 
produces positive weights are introduced in Section 2. 
Application of the regression weighting procedure to the 
Nationwide Food Consumption Survey is described in 
Section 4. 

2. REGRESSION ESTIMATOR 

To introduce the regression estimator used in our study, 
assume that a sample containing n units has been selected 
and that the probability of selecting unit / is x,. For our 
purposes, it is sufficient for x, to be proportional to the 
selection probabilities. The sample might be a two-stage 
stratified sample, and the unit can be either the primary 
sampling unit or the observation unit. In our application, 
the unit is the observation unit. Assume that a A:-dimensional 
vector of population means, denoted by .Y = (Xi, X2, 
..., Xk) is known, that the vector (j',, x,,, x,2, • • •, Xik) 
is observed for every unit in the sample and that an esti­
mator of the mean of;' is desired. We assume that the first 
element of x, is one for all /. Hence, the first element of X 
is also one. The vector x, = (x,,, x,2, ...,Xik) is sometimes 

' Wayne A. Fuller, Marie M. Loughin and Harold D. Baker, Iowa State University. 
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called the vector of control variables. A regression esti­
mator of the mean of y is 

Pr = M 

where 

3 = ( D '̂''̂ '"'̂ ij D ̂ '''''" 
^ 1 = 1 ^ 1=1 

Pi 

(2.1) 

(2.2) 

and we have assumed E xf ir,' 'x, to be nonsingular. This 
definition of the regression estimator foUows Mickey 
(1959) who suggested restricting the term regression 
estimator to estimators that are location and scale 
invariant. The estimator (2.1) can also be written as 

pr=Y ^'y" (2.3) 
1=1 

where 

IV,-

V ,=1 / 
(2.4) 

and the weights have the property, 

In the form (2.7), yr is the intercept in the regression of 
y on z. Thus, the theory given by Fuller (1975) for regres­
sion coefficients is appUcable to the regression estimator 
of the mean. If the population total of unUs is known and 
denoted by N, the estimated population total is Â ŷ -

By defining a sequence of populations and samples, it 
is possible to show that the estimator (2.1) is a consistent 
estimator of the mean ofy. See, for example. Fuller (1975). 
The estimator of the variance of the regression estimator 
is a function of the joint probabiUties. Consider a stratified 
two-stage sample and replace our single subscript / with 
the triple (jt. Then, omitting the finite correction term, a 
variance estimator is 

ViPr) = (n - k)-'nY (ni- l ) " '« f 
1=1 

"t 

Y (dij. - rff..)^ (2.8) 
7 = 1 

where 

m(j 

dtj. = Y ^'j' ^y^j' ~ ^>j'^^' 
1=1 

Y WiXi^X. 
1=1 

"t 

(2.5) 

The weights of expression (2.4) are relatively easy to 
compute, and once computed, can be used for the esti­
mation of any j-variable. If the vector x, is replaced by 
the vector 

{l,Zj) = (1,^02 - ^2,Xji -X^, •••, Xjk - Xk), (2 .6) 

the estimator can be written in the form 

Pr = p^+ (Z - zJ0z ^y^- z, 0, (2.7) 

where Z = 0 is the population mean of zy,z^ = x^^ — X, 

(p.,z.) = ( Y '̂ '"0 ' D '̂ y~'(>'"̂ ') 
^ 1 = 1 ^ ; = 1 

and 

Y (̂ 7 ~ z^)'Tri "(Z/ - z^) 

Y (Zj - Zx)'^,- ^yj. 
7=1 

dt.. = "f ' D dji 

«f is the number of sample primary sampling units in 
stratum f, m(j is the number of sample elements in primary 
sampUng unity of stratum i, 0 is the vector of coefficients 
defined in (2.2), n is the total number of elements in the 
sample, and W(j, is the weight for element t in primary 
samplingunityof stratum f. The factors - A: is used by 
analogy to the divisor for the unbiased estimator of the 
error variance in ordinary regression. When the vector of 
control variables is coded as in (2.6), the estimator (2.8) 
is the estimated variance of the first element of 0, the 
estimated intercept. The estimator (2.8) was suggested in 
Hidiroglou, Fuller and Hickman (1976) and the consistency 
of the estimator was established by FuUer (1975). Also see 
Sarndal, Swensson and Wretman (1989). 

The estimators, constructed with weights (2.4), have 
good large sample properties. However, they may have 
undesirable behavior in small samples. Because the weights 
are linear functions of x,, it is possible for some of the 
weights to be negative. Negative weights make it possible 
for estimates of positive parameters to be negative. Early 
research on methods of constructing nonnegative regres­
sion weights was conducted by Husain (1969). Huang 
(1978) designed a computer program to produce non-
negative regression weights. Huang and FuUer (1978) 
described the weight generation procedure and showed 
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that the large sample distribution of the modified estimator 
is the same as that of the ordinary regression estimator. 
Also see Goebel (1976). 

The computer algorithm of Huang (1978) is an iterative 
procedure based upon the ideas of generalized least 
squares. The goal of the Huang algorithm is a set of 
weights w„ / = I, 2, . . . , n, satisfying (2.5) that do not 
differ greatly from the initial weights, where difference is 
a function of the initial weight. The Huang algorithm 
attempts to compute weights w, satisfying 

(1 - M) max W/ir,"' < (1 -\- M) min w,7rf', 
l < i < n l £ i < n 

where the parameter M,0 < M < 1, is specified by the 
user and is generaUy chosen in the interval [0.8, 1.0]. If 
the first round regression weights defined by (2.4) do not 
satisfy the requirements, a second round of regression 
weights is computed. The second round weights are 
weighted regression weights in which a control factor is 
assigned to each observation. Small control factors are 
assigned to observations with large or small first round 
weights. Relatively large control factors are assigned to 
observations with first round weights close to 7r,~'. The 
second round regression weights are checked and if they 
fail to satisfy the criteria, the control factors are modified, 
and so on. The algorithm is given in the Appendix. 

The control weighting used in the Huang algorithm has 
much in common with bounded-influence and robust 
regression methods. That is, in the final estimator, the 
contribution to the estimation of the slope vector is reduced 
for observations that are far from the mean. See Hampel 
(1978), Krasker (1980), and Mallows (1983). Recent 
research on this type of estimator for survey samples is that 
of Deville and Sarndal (1992), Akkerboom, Sikkel, and 
van Herk (1991), HuUiger (1993) and Singh (1993). 

It is not always possible to construct weights meeting 
the criteria and also satisfying (2.5). For example, if all 
of the observations on x,2 exceed the mean, there is no set 
of positive weights summing to one that also satisfy 
E?=i x,2 w, = X2. Therefore, the weight generation 
program will terminate if weights meeting the specified 
criteria cannot be constructed after a specified number 
of iterations. 

In some situations it is desirable to restrict the weights 
to the nonnegative integers. This is true when estimates of 
totals are being constructed and the population contains 
well defined units, such as people. Nonnegative integer 
weights then provide more comfortable estimates, in that 
the estimates are physically attainable. Integer weights can 
be constructed so that no rounding is necessary when 
building tables. With such integer weights, all multiple way 
tables wiU automatically be internaUy consistent. 

The Huang program contains an option to round the 
real weights to integer weights in a manner that maintains 

the sum of the weights. After rounding, the equaUties (2.5) 
will generally no longer hold exactly. We have found that 
by iterating the Huang algorithm using the first-round integer 
weights as initial weights, integer weights can be constructed 
such that there is a very modest deviation from equality 
for expression (2.5). Cox (1987), Cox and Ernst (1982), 
and Fagan, Greenberg and Hemmig (1988) discuss rounding. 

3. REGRESSION ESTIMATION WITH 
NONRESPONSE 

The early theoretical developments for regression esti­
mation assumed the sample to be a probability sample 
from the population. However, it has long been recognized 
that regression estimation can be used to reduce the bias 
that arises from imperfections in the data collection pro­
cedure. The most obvious of these imperfections is 
nonresponse. In all large samples of human subjects, some 
of the subjects fail to provide information. If the non-
respondents differ from the respondents, direct estimates 
constructed from the respondents will be biased. Given 
auxiliary information, regression estimation provides a 
method or reducing the bias. The degree to which the bias 
is reduced depends upon the relationship between the 
control variables, the variables of interest, and the response 
probabilities. See Little and Rubin (1987) for a general 
discussion of these issues. 

Let TTj* denote the inclusion probability equal to the 
product of TT; and the conditional probability of observing 
the unit given that the unit is selected. Then 

E\ Y ^/^'"'^i- U/v] = f; Xi'ir.-'hxj (3.1) 
^ 1 = 1 - ' 1=1 

and 

E\ Y ^/'̂ '•"Vi I ?N] = f; Xi'iTj-'^jyi, (3.2) 
^ 1 = 1 ^ 1=1 

where the expectations are conditional on the given finite 
population ŷv> and n is the realized sample size. In the 
case of nonresponse, the ratio/?, = T, TT," ' is the response 
probability for individual /. Therefore, under conditions 
such as those used by Fuller (1975), 

plim(/3 - 7) = 0, 
n —00 

(3.3) 

where 0 is defined in (2.2) and 

. N ^ ^ . _ i N 

y = [Y xiTr,-^TiXi\ Y XiTr,-^T^iyi. (3.4) 
^ 1 = 1 ^ 1=1 
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Then 

Y = Xy -{- A, (3.5) 

where A = N~^ E/^i^i and a, = >», — x,-7. Thus, the 
regression estimator (2.1) wiU be a consistent estimator of 
Y if plim^v— 00 ^ = 0. The probability Umit of ^ will be 
zero if the finite population is a random sample from an 
infinite population in which the linear model 

yi = Xi0 -\- Ci, E[ei} = 0 

holds for all /. 

The mean A is zero when TT, = TT, for all / and an ele­
ment of X, is one for all / because then 

, N X - 1 N 

-0- [Y^/^') D̂ ''•̂ ' 
^ 1 = 1 ^ 1=1 

(3.6) 

and Y,h=i(Pi ~ Xi0) = 0. A sufficient condition for A 
to be zero is the existence of a row vector c such that 

ex = X; 'x,- ^ Pi 
- 1 (3.7) 

for / = 1,2, .. .,N. Thus, if the ratio of nominal prob­
abilities to true probabilities is a Unear function of the 
control variables, the regression estimator is a consistent 
estimator of the mean of j ' , where the limit is for sequences 
as defined in Fuller (1975). One way in which (3.7) can be 
satisfied is for the elements of x, to be dummy variables 
that define subgroups and for the response probabiUties 
to be constant in each subgroup. This situation is sometimes 
described by saying that elements are missing at random 
in each subgroup. We take the assumption that ^ = 0 as 
our working assumption in the empirical analysis. 

In any regression problem, it is impossible to use the 
sample to verify some of the assumptions. For example, in 
ordinary least squares regression, the residuals e, = >>, — x,|8 
are uncorrelated with x, and, hence, the residuals cannot 
be used to check the assumption that the true errors are 
uncorrelated with x. Thus, in a survey with nonresponse, 
one searches for control variables that are correlated with 
y and (or) that one believes are correlated with the response 
probabiUties. But one cannot guarantee that all bias has 
been removed by regression estimation based on a partic­
ular set of control variables. 

In practice, one can often identify x-variables that are 
correlated with the probability of response and (or) corre­
lated with the>»-variables. For example, in the 1987-1988 
Nationwide Food Consumption Survey, the response rate 
was low among high-income households. Therefore, use 
of variables for household income in a regression 
estimator is expected to reduce the bias in the estimated 
mean for characteristics that are correlated with income. 

The error in 0 as an estimator of y can be approximated 
by 

0-y = G-'T-' YXi^r'Oi, 
1 = 1 

where a, is defined in (3.5), 

1=1 

and 

G = T ^ Y Xi'-^i '^/^i-. 
1=1 

Under reasonable assumptions 

f-Y-r' 
1=1 

and 

G = f-'Y ^i^r'xj 
1=1 

are consistent estimators of Tand G. Thus, the variance 
of the regression estimator can be estimated by estimating 
the variance of Y,?=iXi'Jri~^ai. If we assume that the 
conditional probabilities of response in one primary 
sampUng unit are independent of those in all other primary 
sampling units and that at least one observation unit is 
observed in each selected primary sampling unit, then (2.8) 
remains an appropriate estimator of the variance of the 
regression estimated mean of y. 

The estimator of variance (2.8) also remains appropriate 
if the regression weights are constructed by a procedure 
other than (2.4). For example, let the weights be defined by 

w. = x\ Y ^•''^' '̂ '-̂ M ^•''^' gi 

where the g, are functions of the x,. Assume 

pl im4 - Tg. 

where 

Y ^I'^'SiXil Y ^''^' '̂ '••̂ '•• 
1 = 1 - I 1 = 1 

Also assume 

plimA^-' Y (.>''• - '̂-Vf) = 0-
Af-oo 

1 = 1 

Then expression (2.8) with vfg, replacing Wy, is a consis­
tent estimator of the variance of the estimator. The 
estimator (2.8) will be used in our empirical analyses. 
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Formula (2.8) identifies the two effects of regression 
estimation on the variance of an estimated mean. The 
correlation effect reduces the variance of the estimated 
mean while the increase in the sum of squares of the 
weights increases the variance of the estimated mean. To 
understand these effects, consider a simple random sample. 
If the3' variable is correlated with x, the correlation tends 
to reduce the variance of the regression estimator relative 
to that of the simple estimator because 

E[{yi-Xj0)^} ^E[[yj-E{yj)]^]. 

If the sample means of the control variables differ from 
the population means, then 

Y w? > « - ' , 
1=1 

where n ~' is the sum of squares of the simple weights for 
a simple random sample. 

When comparing the variance of the sample mean with 
the variance of the regression estimator, one should not 
forget that one of the reasons for using regression esti­
mation in samples with nonresponse is to produce an 
estimator with less bias than that of the direct estimator. 
Thus, in the next section we compare an estimator of the 
mean square error of the simple estimator to an estimator 
of the variance of the regression estimator. 

4. APPLICATION TO THE NATIONWIDE 
FOOD CONSUMPTION SURVEY 

The 1987-1988 Nationwide Food Consumption Survey 
was conducted by the Human Nutrition Information 
Service of the U.S. Department of Agriculture. The orig­
inal sample was a self-weighting stratified sample of area 
primary sampUng units within the 48 conterminous states. 
Primary sampUng units were divided into secondary units 
called area segments. Households within the sample 
segments were contacted by personal interview. The field 
operation was conducted during the period April 1987 
through August 1988 by a contractor under contract to the 
Human Nutrition Information Service. 

Approximately 37% of the housing units identified as 
occupied provided complete household food use informa­
tion. The realized household sample contains 4,495 house­
holds. Because of the low response rate, the Human 
Nutrition Information Service decided to use regression 
weighting in the estimation. Population totals for all 
characteristics except urbanization were estimated by the 
Human Nutrition Information Service from the March 
1987 Current Population Survey. See Bureau of the Census 
(1987). The population totals for urbanization classes 
were furnished by the contractor. In our analysis, we treat 
the estimated population totals as if they were known 
population totals. 

Table 1 
Sample and population characteristics of households 

Household Household 
Characteristic Category Sample 

Frequency 
Sample 
Percent 

Population 
Percent 

Season 

Region 

Urbanization 

Household Income 
as % of Poverty 

Household Food 
Stamps 

Ownership of 
Domicile 

Race of Household 
Head 

Age of Household 
Head 

Household Head 
Status 

Female Head 
Worked 

Exactly One Adult 
in Household 

Exactly Two Adults 
in Household 

Presence of Child 
< 7 Years Old 

Presence of Child 
7-17 Years Old 

Household Size 

Household Size, 
Squared 

Spring 
Summer 
Fall 
Winter 

Northeast 
Midwest 
South 
West 

Central Cities 
Suburban 
Nonmetro 

< 131% 
131-300% 
301-500% 
> 500% 

Yes 
No 

Yes 
No 

Black 
Nonblack 

< 25 
25-39 
40-59 
60-69 
10 + 

Both Male and 
Female 

Female Only 
Male Only 

Yes 
No 

Yes 
No 

Yes 
No 

Yes 
No 

Yes 
No 

(Mean) 

(Mean) 

1,828 
678 
717 

1,272 

905 
1,172 
1,567 

851 

1,064 
2,122 
1,309 

1,041 
1,564 
1,108 

782 

314 
4,181 

2,998 
1,497 

519 
3,976 

338 
1,588 
1,369 

660 
540 

3,057 

1,044 
394 

1,792 
2,703 

1,211 
3,284 

2,616 
1,879 

1,009 
3,486 

1,309 
3,186 

40.7 
15.1 
16.0 
28.3 

20.1 
26.1 
34.9 
18.9 

23.7 
47.2 
29.1 

23.2 
34.8 
24.6 
17.4 

7.0 
93.0 

66.7 
33.3 

11.5 
88.5 

7.5 
35.3 
30.5 
14.7 
12.0 

68.0 

23.2 
8.8 

39.9 
60.1 

26.9 
73.1 

58.2 
41.8 

22.4 
77.6 

29.1 
70.9 

2.731 

9.546 

25.0 
25.0 
25.0 
25.0 

21.2 
24.7 
34.4 
19.6 

31.2 
46.0 
22.9 

20.0 
32.2 
25.9 
21.8 

7.4 
92.6 

64.1 
35.9 

II.1 
88.9 

7.9 
36.1 
30.5 
13.0 
12.6 

60.8 

26.0 
13.2 

41.5 
58.5 

29.7 
70.3 

54.2 
45.8 

20.1 
79.9 

26.5 
_ 73.5 

2.642 

9.125 

Characteristics of the population and of the household 
sample are given in Table 1. The original sample was 
unbalanced with respect to time of interview with nearly 
41 % of the interviews in the spring quarter and about 16% 
of the interviews in each of the summer and fall quarters. 
Interviews for the spring and summer quarters were done 
in both 1987 and 1988. 

The sample was also unbalanced with respect to urban­
ization. There was a lower fraction of central city house­
holds in the sample than in the population (24% versus 
31%), and a higher fraction of nonmetropolitan households 
in the sample than in the population (29% versus 23%). 
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The fraction of high income households was smaller in 
the sample than in the population. The sample contained 
a higher fraction of households with both a male and 
female head than the population (68% versus 61%). A 
higher fraction of the sample than of the population 
consisted of households with children. The sample was 
only mildly unbalanced with respect to several other socio-
demographic characteristics. 

The characteristics listed in Table 1 are believed by the 
staff of the Human Nutrition Information Service to be 
related to food consumption behavior. Therefore, variables 
based on those characteristics were used in the regression 
weighting procedure. To implement the weight generation 
program, each of the categorical variables of Table 1 was 
converted to a set of indicator variables. For example, 
three variables were created for the characteristic, house­
hold income as a percent of poverty. These were 

Z,i = 1 if income < 131% for Mh household 
= 0 otherwise, 

Z,2 = 1 if income is 131-300% for Mh household 
= 0 otherwise, 

Z,3 = 1 if income is 301-500% for /-th household 
= 0 otherwise. 

Using this procedure, 25 indicator variables were created. 
In addition, household size and the square of household 
size were used as continuous variables. 

The twenty-seven variables were used to generate 
regression weights using Huang's program. The parameter 
Mof the weight generation program was set equal to 0.9 
in the computation. The weights were rounded to integers, 
where each integer weight is a weight in thousands. The 
sum of the weights is 88,942, which is the number of 
households in the population in thousands. The average 
weight is 19.787, the smallest weight is 6, and the largest 
weight is 47. Thus, the largest weight is 2.38 times the 
average weight. The sum of squares of the weights is 
2,317,930. The average weight squared and muUiplied by 
the sample size is 1,759,884. Thus, if a variable has zero 
multiple correlation with the 27 variables, the variance of 
an estimate computed with the weights will be about 1.32 
times the variance of the simple unweighted estimator. 

Figure 1 shows the regression weights computed by 
the Huang algorithm plotted against the ordinary least 
squares weights. Because there are 4,495 households, 
many points are hidden. Both weights are standardized by 
dividing by the average weight. Thus, the average for 
weights coded in this manner is one. Because there are 
27 control variables used in the construction, the Huang 
weights tend to form a swarm of points about an S-shaped 
function of the original weights. If there were only one 
control variable, the points would faU on an S-shaped 
curve. The original weights for observations to the left of 
zero were negative. 

Final 
3 -

Figure 1. Plot of final weights against the ordinary least squares 
weights, both expressed relative to the average weight. 

To compare estimates constructed with weights to 
unweighted estimates, we use the variables 

Yl = adjusted total number of meals away from home 
(meals away), 

Y2 - total money value of food used at home (home 
food), 

Yi — household size in 2I-meal-equivalent persons (meal 
persons), 

Y4 = indicator to identify housekeeping households 
(housekeeping). 

The household size in 21-meal-equivalent persons is the 
total adjusted meals eaten from household food supplies 
in the past 7 days divided by 21. "Meal persons" is the sum 
of two terms. The first term is the sum of the proportions 
of meals eaten at home in the interview week by each 
household member. The second term is the number of 
meals served to guests, boarders, and employees during 
the interview week, divided by 21. In other words: 

meal persons for = Y (^ij + ^ij)~^^ij + (21)~'6y, 
y-th household , 

where hjj — meals eaten at home by the /-th individual in 
they'-th household during the interview week, a,y — meals 
eaten away from home by the /-th individual in the y'-th 
household during the interview week, bj = number of 
meals eaten by nonhousehold members in they'-th house­
hold during the interview week. 

The adjusted total number of meals bought and eaten 
away from home is the sum of the proportions of meals 
eaten away from home in the interview week by household 
members, multiplied by 21. In the notation used to define 
meal persons, 



Survey Methodology, June 1994 81 

meals away for = 21 ^^ (/?,y -I- ajj)~^ajj. 
y-th household , 

The total value of food used at home is the expenditures 
for purchased food plus the money value of home-produced 
food and food received free-of-cost that was used during 
the survey week. Expenditures for purchased food were 
based on prices reported as paid regardless of the time of 
purchase. Sales tax was excluded. Purchased food wUh 
unreported prices, food produced at home, food received 
as a gift, and food received instead of pay were valued at 
the average price per pound paid for comparable food by 
survey households in the same region and season. 

A housekeeping household is a household with at least 
one person having ten or more adjusted meals from the 
household food supply during the seven days before the 
interview. Household food-use analyses generaUy consider 
only housekeeping households. 

Table 2 

Properties of alternative estimators 

Variable 

Meals away 
Housekeeping 

Nonhousekeeping 

All 

Home food 
Housekeeping 

Nonhousekeeping 

All 

Meal persons 
Housekeeping 

Nonhousekeeping 

All 

Housekeeping (%) 

Un­
weighted 

Mean 

7.75 
(0.22) 
18.31 
(1.14) 
8.27 

(0.22) 

61.10 
(1.14) 
25.99 
(1.25) 
59.37 
(1.12) 

2.42 
(0.03) 
0.51 

(0.03) 
2.33 

(0.03) 

95.06 
(0.40) 

Weighted 
Mean 

7.93 
(0.17) 
18.12 
(1.19) 
8.57 

(0.22) 

59.56 
(0.98) 
26.39 
(1.46) 
57.49 
(0.91) 

2.33 
(0.01) 
0.49 

(0.03) 
2.22 

(0.01) 

93.77 
(0.58) 

Differ­
ence 

-0 .18 
(0.09) 
0.19 

(0.68) 
-0 .30 
(0.12) 

1.54 
(0.41) 

-0 .40 
(1.00) 
1.88 

(0.39) 

0.09 
(0.01) 
0.02 

(0.02) 
O.ll 

(0.01) 

1.29 
(0.10) 

Relative 
Efficiency 

of 
Regression 

2.52 

0.92 

2.56 

3.65 

0.73 

5.60 

89.00 

1.00 

129.00 

5.30 

is the estimated mean for the entire population. The stan­
dard errors of the estimates are given in parentheses below 
the estimates. The estimates and standard errors for the 
unweighted estimates were computed in PC CARP. See 
Fuller et al. (1986). The computations accounted for the 
fact that the sample is an area stratified cluster sample. 

Because the sample is a two-stage sample, the estimated 
variances are larger than the variance of a simple random 
sample containing the same number of households. The 
ratio of the variance for a sample estimate to the variance 
of a simple random sample containing the same number 
of individuals is called the design effect. The estimated 
design effect is about 2.5 for meals away and meal persons, 
is about 4.1 for home food, and is about 1.5 for house­
keeping for the "al l" means for the unweighted sample. 

The column headed "Weighted mean" contains the esti­
mates computed with the regression weights. The standard 
errors were computed in PC CARP using formula (2.8) 
wUh the regression weights replacing the TT," '. The variance 
calculation requires computing a regression for every 
j'-variable. The estimated means for the subpopulations 
are ratios of regression estimators. The variances for the 
subpopulation means were computed by calculating the 
variances of the Taylor deviates for the ratio using formula 
(2.8). The standard errors for unweighted and weighted 
estimates are similar for meals away and home food. How­
ever, the standard errors for the regression estimate of the 
population mean of meal persons is about one third of the 
standard error of the unweighted estimate. The standard 
error of the regression estimator is smaller because meal 
persons is highly correlated with the household size vari­
ables used as controls in the regression procedure. 

The estimated squared multiple correlation between the 
variables of the table and the 27 control variables is 0.29, 
0.44, 0.82, and 0.12 for meals away, home food, meal 
persons, and housekeeping, respectively. If the sample 
means of the control variables were nearly equal to the popu­
lation means, the standard error of the regression estimate 
of meals away would be about (1 - 0.29)'''' = 0.84 times 
the standard error of the unweighted estimate. In fact, the 
estimated standard error of the regression is about 0.97 
times the standard error of the unweighted estimate. The 
difference is due to the fact that Y. 1= i w} is considerably 
bigger than «~ ' because the sample is unbalanced on a 
number of items. Note that 

0.97 = [(0.71)(1.32)]' ' ' \ 

The means of the variables computed using unweighted 
data are given in Table 2 in the column headed, "Un­
weighted mean". Three means are given for meals away, 
home food, and meal persons. Two means are computed 
for the two subpopulations defined by the housekeeping 
variables. The third mean, designated by "aU" in the table, 

where 0.71 = (1 — 0.29) is one minus the squared corre­
lation and 1.32 = nY,'i=\ wf. The situation for house­
keeping is more extreme. The correlation is not large, and, 
apparently, the large deviations from the regression line 
are associated with large weights. The estimated variance 
for the regression estimator is about twice the estimated 
variance of the unweighted estimator. 
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Table 2 also contains the estimated differences between 
the unweighted and weighted estimators. The difference 
between the unweighted and the weighted estimated total is 

Nn- 'pt - Y ^'•^' = D ( « " ' ^ - '^•)P>-
1=1 i=\ 

The difference between the estimated means is the differ­
ence between the totals divided by the population size. 
To compute the variance of the difference between the 
means, we note that the hypothesis of a zero difference is 
equivalent to the hypothesis that the correlation between 
w, and J', is zero. Therefore, we computed the unweighted 
regression of y, on w, and computed the variance of the 
regression coefficient under the design using PC CARP. 
The standard errors for the difference in Table 2 are such 
that the "/-statistic" for the hypothesis of zero difference 
is equal to the "/-statistic" for the coefficient of w, in the 
regression of y, on w,. 

For all four characteristics, the difference between the 
weighted and unweighted estimators of the population 
mean is significant at traditional levels. Thus, under the 
assumption that the regression estimators are unbiased, 
there are significant biases in the unweighted estimators. 

The bias picture is mixed for the estimates of the sub-
population means. The difference between the two esti­
mators is significant for the three means for the house­
keeping subpopulation, which is the population of interest. 
The difference is nonsignificant for the three means for 
the nonhousekeeping subpopulation. The sample contains 
only 222 nonhousekeeping households. Therefore, the 
variance of the difference between the weighted and un­
weighted estimates is much larger for the nonhousekeeping 
households than for the housekeeping households. 

The differences between the two estimates of the popu­
lation means are a function of the differences between the 
two estimates of the subpopulation means and the two 
estimates of the fraction of households in the two categories. 
This explains why the difference for "al l" can be larger 
than both the "housekeeping" and "nonhousekeeping" 
differences. 

The last column of Table 2 contains the ratio of the 
estimated mean square error of the unweighted estimator 
to the variance of the regression estimator. The estimated 
mean square errors for the unweighted estimators were 
computed as 

and with X(j, 0 replaced by pt,. • The second term of the 
estimated mean square error is the estimated squared bias. 
Under the assumption that the regression estimator is 
unbiased, the expected value of (Diff)^ is the squared bias 
plus the variance of the difference. Hence, under the 
assumption that the regression estimator is unbiased, the 
estimated mean square error of the unweighted estimator 
is a consistent estimator. The estimated mean square errors 
of the weighted estimators are the variances of the weighted 
estimators computed as the squares of the standard errors 
of Table 2. 

Of the four characteristics for which the population 
mean was estimated, the estimated relative efficiency of 
the regression estimator to the simple mean ranges from 
2.5 to 129. The regression estimator for meals away has 
the smallest estimated efficiency. The variances of the two 
estimators are similar, but because of the estimated bias, 
the regression estimate for meals away is estimated to have 
a mean square error that is about 40% of that of the un­
weighted estimate. The mean square error of the regression 
estimate for home food is less than 20% of that of the 
unweighted estimate, that for meal persons is about 1% 
of that of the unweighted estimate, and that for house­
keeping is about 20% that of the unweighted estimator. 
In all cases, the squared bias is a very important component 
of the estimated mean square error. 

Because the unweighted subpopulation estimates for 
the nonhousekeeping households showed little bias, the 
unweighted estimates are estimated to be somewhat more 
efficient than the regression estimates. The nonhouse­
keeping subpopulation is only about 6% of the population 
and the deviations from the subpopulation mean show 
little correlation with the control variables. On the other 
hand, the regression estimates for the housekeeping sub-
population are estimated to be much more efficient than 
the unweighted estimates. The relative efficiencies for the 
housekeeping subpopulation are close to those of the total 
population estimates. 

Even after allowing for the fact that the population totals 
from the Current Population Survey are not known popula­
tion totals, it is clear that large gains are associated with 
regression estimation for the population means. AUhough 
the regression estimator for the means of the small sub-
population is estimated to be less efficient than the un­
weighted estimators, the loss in efficiency is small relative to 
the large gains in efficiency estimated for the other variables. 

MSE,, V + maxlO, (DifO^ - (s.e. diff)^). 

where Kis the estimated variance of the unweighted esti­
mate, Diff is the difference between the two estimates from 
Table 2, and s.e. diff is the standard error of the difference 
from Table 2. The estimated variance Kfor the unweighted 
estimator is variance formula (2.8) with constant W(j,, 
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APPENDIX 

WEIGHT GENERATION PROGRAM 

In this appendix, we present the regression weight 
generation procedure of Huang and FuUer (1978). The 
procedure we describe contains the option of specifying 
maximum and minimum weights. This option was not part 
of the original program. For a discussion of related weight 
generation procedures, see Singh (1993). 

Suppose that the population means (.Y,, ^2 . • • •. ^k) 
of the k auxiliary variables (A',, ^^2, . . . , Xk) are known. 
Let a sample of n observations be available and let 

X = (A.l) 

where Xjj is the observation on variabley for individual /. 

In addition to the array of sample observations and the 
populations means, two initial factors v, and ^ / ° ' , / = 1, 
2, . . . , « , are required to initiate the computations. The 
V, are typically inversely proportional to the probabilities 
of selection. The default values for g,^"^ are g/"' = 1. For 
stratified samples or data with unequal variances, the user 
may choose other values for g/°' . (See Huang 1978 or 
Goebel 1976.) The program input includes the sample size 
n, the population size N, the parameter M, the maximum 
number of iterations LI, the upper bound of the ratios of 
weights to the average weight U B , and the lower bound 
of the ratios of weights to the average weight LB. It is 
required that 0 < LB < 1 < UB. In our description, we 
assume Y, ?=\ v, = n. The program normalizes the v, so 
that the sum is n. 

The program can be used to construct weights to 
estimate means or to estimate totals. The weights for totals 
are the weights for the means multiplied by N. For means, 
the program attempts to construct weights w, such that 

Y Wj(l,Xj) = (l,X), 

LB < nwj < U B , 

; = l 

(A.2) 

(A.3) 

(1 - M) max WjVj < (1 + M) min w,v,, (A.4) 
\<i<n l<(<rt 

for / = 1, 2, . . . , «. 

The program is iterative, where an iteration consists of 
computing the generalized least squares weights, where a 
control factor hj is applied to each observation. The hi is 
a product of v, and gj, where gj for iterations after the 

first is a "bell" shaped function of the distance (in a 
suitable metric) that the observation is from the population 
mean. At each iteration, the weights satisfy (A.2) but may 
fail (A.3) or (A.4). 

It will not always be possible to construct weights satis­
fying the specified restrictions in the specified number of 
iterations. If the sample is such that the restriction cannot 
be met, the program outputs the weights of the last itera­
tion. In the single x case, when the criterion cannot be 
satisfied, there will be two weights, one for those greater 
than the population mean, and one for those less than the 
population mean. 

To describe the algorithm, let 

Z|i Zi2 ... Z Ip 

z = 
^^n\ ^n2 

V = diag(v,, V2, . . . , v„), 

Jn = (1 ,1 , • . . , 1 ) ' , 

^(0) ^ 2 ' / / (0)2 , 

G«" =diag(g,'«', . . . , g r ) 

and 

H (0) VG^'^K 

The algorithm consists of iterating three steps. 

1. The initial calculation is for a - 0. At iteration a, the 
vector of regression weights, denoted by w'"*, is 

w*«' = [1 -I- /7M^°'] - ' K(/7-'7„ + w*"') 

- (w/"', . . . , w„<«')', (A.5) 

where 

„(«) = G<«'Z(/l(«>)t(X - je j = («<«), . . . , « i « ' ) ' , 

^- = [Y "') Y "'^'^ 

(A *''')t is a symmetric generalized inverse of A "", 

«M^"' = max|y;KM<«*,«-' - I ) , (A.6) 

and 

/1<«) = Z'H''"'>Z. 
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2. The weights of Step 1 are checked to see if they satisfy 
the criteria. 

(a) Is I «M/" ' I < M f o r a U / ? 

(b) Is 

LB < /iw/«' < UB 

foraU/? 

If either (a) or (b) fails for any / and LI iterations 
have not been completed, go to Step 3. If (a) and (b) 
are satisfied, or if LI iterations have been completed, 
the weights are output. 

3. The control factors h["\ i = 1,2, . . . , « , are modified. 
Set 

ffM = ff(a-l)QW 

where 

G<«» = diag(g/" ' ,gi" ' , •••,,?«'"'), 

g/") = 1 0 < rf/"' < 0.5 

= 1 - 0.8(rf/"> - 0.5)2 0.5 < rf/"> < 1 

= 0.8(c?/">)-' df"^ > 1, 

(//"' = 1.33[£>/"""] " ' « ! " / " " " I, 

£>/"-'> = min(M,C[?-" l if w / " - " < v,-

= minlM.C^"?-"] if w / " " " > v,-, 

C<«-" = max{| v - ' ( l +n/7<"-")LB - 1 | , 0 . 1 M ) , 

C < r " = max( | v - ' d -l-/iMi"-")UB - 1 | , 0 . 1 M ) . 

Go to Step 1 to compute new regression weights. 

The constant 1.33 in the definition of rf/"' and the con­
stant of 0.8 in the definition of g/"' were chosen to speed 
convergence. The control factors g/" ' are chosen to 
downweight observations on the basis of a distance from 
the population mean. 

The definition of w*"' in (A.5) is an alternative way of 
writing the vector of generaUzed least squares weights of 
(2.4) when TT,-' = /»/"'. 
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Estimating the Rate of Rural Homelessness: 
A Study of Nonurban Ohio 

ELIZABETH A. STASNY, BEVERLY G. TOOMEY and RICHARD J. FIRST' 

ABSTRACT 

Recently, much effort has been directed towards counting and characterizing the homeless. Most of this work, 
however, has focused on homeless persons in urban areas. In this paper, we describe efforts to estimate the rate 
of homelessness in nonurban counties in Ohio. The methods for locating homeless persons and even the definition 
of homelessness are different in rural areas where there are fewer institutions for sheltering and feeding the homeless. 
There may also be a problem with using standard survey sampling estimators, which typically require large population 
sizes, large sample sizes, and smaU sampUng fractions. We describe a survey of homeless persons in nonurban Ohio 
and present a simulation study to assess the usefulness of standard estimators for a population proportion from 
a stratified cluster sample. 

KEY WORDS: Biased estimator; Regression estimator; Small sample size; Stratified cluster sample; Simulation. 

1. INTRODUCTION 

When we think of the homeless, we often think of 
"street people" and "bag ladies". We picture people 
sleeping on park benches, on heating grates, and in home­
less sheUers. These stereotypes of the homeless originated 
in large cities, however, and do not necessarily provide an 
accurate picture of homeless persons in rural areas. 

Many of the studies of homeless persons have been 
carried out in larger cities. For example, the 1987 Urban 
Institute Study counted homeless persons in 20 major cities 
in the U.S. Another major study by Rossi was carried out 
in Chicago. (See Burt and Taeuber (1991) for an overview 
of survey methods for these and other studies that counted 
homeless populations.) 

During the 1990 United States Population Census, a 
special attempt was made to include homeless persons in 
the population count through the S-Night (Shelter and 
Street Night) count. For this effort, a special national 
list of shelters and locations in which homeless persons 
sleep was compiled. The highest elected official of over 
39,000 rural and urban local governments was asked to 
provide a list of shelters, street locations, and open public 
locations where the homeless stay at night. The homeless 
were counted by Census enumerators during a single night, 
March 20. Note that the main goal of S-Night was to 
include homeless persons in the Census count; relatively 
little information on characteristics of the homeless is 
available in the Census data. Details on the S-Night 
procedures are provided by Taeuber and Siegel (1990). 

In contrast tp surveys of homeless persons in urban 
areas and to the Census S-Night, the goal of the survey 
described here was to locate and count the nonurban 

homeless wherever they might be, and to collect informa­
tion to describe these homeless persons. In Section 2 of this 
paper, we describe the design of the 1990 survey of rural 
homeless persons in Ohio. We present our definition of 
rural homelessness and we describe the methods used to 
locate and survey the homeless. In Section 3 we present 
our estimates of the rates of rural homelessness obtained 
using the standard estimator of a proportion from a 
stratified cluster sample. Since these estimates are likely 
to be biased, we also present the results of a simulation 
study conducted to assess the likely size of the bias. In 
Section 4 we consider a regression estimator for the rate 
of homelessness and compare the regression estimator to 
the standard estimator of Section 3. In Section 5 we present 
our conclusions. 

2. THE SURVEY 

There are 88 counties in Ohio. Of these, 13 are urban 
counties with large cities and 75 are defined as rural or 
nonurban. These 75 counties of interest include counties 
that are completely rural, counties that are not adjacent 
to urban counties and that have moderately populated 
county seats, and suburban counties that border counties 
with large metropolitan areas. 

The design used in this 1990 survey was selected to 
facilitate comparisons with a 1984 study of Ohio rural 
homeless persons (Roth et al. 1985). In the earlier study, 
Ohio's counties were divided into five regions, northeast, 
northwest, central, southeast, and southwest, and a 
stratified random sample of 16 rural counties was selected. 
The 21 counties selected for the 1990 study included the 

' Elizabeth A. Stasny, Department of Statistics; Beverly G. Toomey and Richard J. First, College of Social Work, The Ohio State University, 
Columbus, Ohio 43210. 
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Note: Shaded counties are urban counties that were excluded from the study. An " S " indicates a county in the 
sample. The heavy boundaries divide the state into the five geographical strata: northeast, northwest, 
central, southeast, and southwest. 

Figure 1. County Map of Ohio 

16 counties from the original study and one additional 
county selected at random from within each region. (We 
should note that analysis of data from the present study 
suggests that stratification of Ohio into the five regions 
is not useful for improving the estimate of rural home­
lessness.) A map of Ohio showing the five regions, the 
urban counties, and the sampled counties is provided in 
Figure 1. 

The following is a brief description of the 1990 survey 
methodology. More detailed descriptions are given by First 
et al. (1994) and Toomey et al. (1993). 

2.1 Survey Personnel 

A census of all homeless persons within the 21 sampled 
counties was attempted. Because there are not typically 
homeless shelters or other gathering places for the homeless 
in nonurban areas, the survey was conducted over a six-
month period and made use of a network of advisors to 
locate the homeless. The survey period began with the first 
full week of February 1990. Homeless persons were iden­
tified and located by a referral network within each 
sampled county. Each network was supervised by a local 
county coordinator. The principal investigators supervised 
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the county coordinators and the central office staff. They 
monitored the data collection, through bi-weekly phone 
calls and field visits, to assure uniformity and to control 
quality. 

Advisors and interviewers, selected for their knowledge 
of the counties in which they worked, identified people 
who met the criteria for homelessness. Advisors included 
church leaders, hospital staff, civic club leaders, elected 
community officials, informal community leaders, bar­
tenders, hotel clerks, laundromat attendants, and profes­
sional service providers such as health department staff, 
librarians, agricultural extension agents, postal workers, 
ministers, park rangers, neighborhood action groups, 
human service case workers, mental health workers, and 
law enforcement officers. One hundred interviewers 
conducted the interviews with the homeless. Interviewers 
attended a four-hour training session and were provided 
with a training manual of field guideUnes. Interviews took 
place in offices, diners, motel rooms, cars, state parks, 
barns, laundromats, bars, and under railroad trestles. 
Interviewers were trained to know about available commu­
nity resources and to make referrals for respondents who 
wanted services. In addition, interviewers had access to 
funds to offer a meal or minor assistance if necessary 
(less than $600 was spent on such purchases). Assistance 
provided through interviewers was limited so that people 
would not have an incentive to falsely identify themselves 
as homeless. 

2.2 Definition of Rural Homeless 

Screening questions were used to identify homeless 
persons. The definition of homelessness used in this study 
was necessarily somewhat different from the definition 
used for studies in urban areas. In rural areas there are 
fewer public shelters and housing aUernatives specifically 
for the homeless. Respondents were counted as homeless 
if they did not have a permanent residence they considered 
home and if, on the previous night, they had slept in 
(1) UmUed or no shelter, (2) shelters or missions that serve 
homeless persons, (3) cheap hotels or motels when the 
actual stay or intent to stay was 45 days or less, or (4) other 
unique situations when the actual stay or intent to stay was 
45 days or less. Included in the fourth category were people 
who stayed in sheds, barns, old buses, and old trailers 
without water or power, provided the person did not own 
the property and was not paying rent to stay there. Also 
included as homeless were people who were temporarily 
staying with friends or relatives, had not been staying in 
that household more than 45 days, were not a part of the 
household, and were planning on moving out in 45 days 
or less. Persons who were staying in battered women's 
shelters, hospitals, prisons, migrant workers camps, etc. 
were not counted as homeless unless they were leaving the 
facility and had nowhere to go. 

Our definition of homelessness may be contrasted with 
that used in studies of homeless persons in urban areas. 
The common criteria of the definition of homelessness for 
such studies is based on the Stewart B. McKinney Homeless 
Assistance Act (1987). The Act defines a homeless person 
as "an individual who lacks a fixed, regular, and adequate 
nighttime residence and an individual who has a primary 
nighttime residence that is (a) a supervised publicly or 
privately operated shelter designed to provide temporary 
Uving accommodations (including welfare hotels, congre­
gate sheUers, and transitional housing for the mentally ill); 
(b) an instUution that provides a temporary residence for 
individuals intended to be institutionalized; or (c) a public 
or private place not designed for, or ordinarily used as, a 
regular sleeping accommodation for human beings." From 
this definition comes the notion of "Uterally homeless" 
as suggested by Rossi et al. (1987). These standard defini­
tions do not include, for example, those homeless persons 
who double up with family or friends. We did include such 
persons in our count of the rural homeless. Our analysis 
indicates that about a third of the persons counted in our 
census would not be counted under the urban definition 
of homelessness. It is not known how much counting those 
doubling up would increase estimates in urban areas. 

2.3 The Interview Period 

The use of a six-month survey period for counting the 
rural homeless is different from the typical one-day survey 
period used most often in surveys conducted in urban 
areas. In a review of seven studies of the homeless, Burt 
and Taeuber (1991) report that these studies used single 
nights, or one or two weeks as the interview period at a 
single location. Most of these studies relied on locating the 
homeless in shelters, soup kitchens, abandoned buildings, 
or similar locations. Since the homeless in rural areas are 
less likely to have shelters or soup kkchens available to 
them, they are harder to find and a longer survey period 
is recommended. 

To facilitate comparisons with single-day or single-
week surveys, homeless persons found in this study were 
asked how long they had been homeless. Using this infor­
mation we were able to determine the number of persons 
in the sampled counties who were homeless during the first 
week of the survey, the first full week of February 1990. 

In Section 3 we present estimates of the homeless rate 
for both the six-month period and the single week. The 
six-month rate includes anyone who met the definition of 
homelessness at any time during the six-month interview 
period. The one-week rate includes those interviewed 
throughout the six months who reported being homeless 
during the first full week of February. 

To avoid duplication of respondents over the six-month 
period, each subject was assigned a unique identification 
number which included the subject's birth date, gender, 
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and first three letters of the last name. Only a single 
duplicate interview was found in the data base; it was 
removed from the data base. (We do not have information 
on duplicates found in the field.) Because of this control 
for duplicate counting, we feel that any bias in our data 
coUection procedures would be in the direction of an 
undercount of the rural homeless. 

During the six-month interviewing period, 1,100 aduUs 
and 480 accompanying children were identified as homeless 
in the 21 sampled counties. 

2.4 The Survey Questionnaire 

If the responses to the screening questions indicated 
that a person was homeless, that subject was asked to 
respond to a questionnaire designed to obtain information 
about the person and his or her life experiences. Of the 
1,100 adults identified as homeless, 919 completed the full 
interview. Although the focus of this paper is on estimating 
the number of rural homeless, we will describe briefly the 
questionnaire used to collect information to characterize 
the homeless. 

The full questionnaire contained three sections. The 
first included questions on demographics and Ufe experi­
ences (for example, reasons for being homeless, use of 
mental health and other human services, employment 
history, drug and alcohol usage, family structure, and gen­
eral well-being). The second section contained ten scales 
(including, for example, depression-anxiety, disorientation-
memory impairment, and retardation-lack of emotion) 
from the Psychiatric Status Schedule developed by Spitzer, 
et al. (1970). The final section was an interview post­
mortem which was completed by the interviewer and 
included information on where the interview occurred, 
respondent characteristics (for example, gender and 
unusual behaviors), and an assessment of the accuracy of 
the respondent's answers. The findings from this portion 
of the study are summarized by First et al. (1994). 

3. THE ESTIMATES OF RATE OF 
HOMELESSNESS 

3.1 The Estimator 

The regional estimate of the rate of rural homelessness 
was obtained using the standard estimator for a propor­
tion from a stratified cluster sample with unequal cluster 
sizes. In this case, the cluster is the county, the cluster size 
is the population within the county, and the strata size is 
the population within a region. The estimator is as foUows: 

For the /-th region, the estimated rate of homelessness 
is r, where 

number of homeless in sampled rural counties 
in the /-th region 

/ • ; = — • 

total population in sampled rural counties 
in /-th region 

Then the estimated homeless rate for the state is 

_ ! / [ ' ' / X rural county population in /-th region], 

total rural county population in Ohio 

where the summation is over the five geographical regions 
shown in Figure 1. The population totals for the 75 non-
urban counties were obtained from 1990 Census data. 

The estimated one-week and sbc-month rates of homeless­
ness, given as number of homeless persons per 10,000 popula­
tion, are shown in Table 1. 

Because the above estimator involves the ratio of two 
random variables, the number of homeless and the popu­
lation size for sampled clusters, the estimator is biased 
(see, for example, Cochran 1977). The bias decreases as 
sample size (number of counties sampled in this case) 
increases. Since our sample size is small, we recognize that 
our estimates are likely to be biased. On the other hand, 
our sampling fraction is large because the number of rural 
counties is small. Hence, we wish to assess the likely 
amount of bias in our estimates. (Note that the small 
sample sizes could also make the standard errors given in 
Table 1 inaccurate.) 

Table 1 

Estimated Rates of Homelessness per 10,000 
in Rural Ohio 

One-Week Rate 
Area (February 4 -

February 10, 1990) 

Six-Month Rate 
(February - July 1990) 

State 5.68 (0.99) 14.00 (2.09) 

Northeast 
Northwest 
Central 
Southeast 
Southwest 

3.44 (0.79) 
5.21 (3.51) 
5.85 (1.86) 
6.89(1.93) 
7.25 (2.44) 

12.00(2.19) 
12.77 (5.18) 
12.11 (3.05) 
15.90(5.91) 
16.78 (5.32) 

Note: Standard errors are given in parentheses after each estimate. 

3.2 The Simulation Study 

We conducted a simulation study to help us assess the 
likely amount of bias in our estimates. We first generated 
five "populations" each with counts of the homeless for 
aU 75 nonurban counties in Ohio. For aU five simulated 
populations, the observed numbers of homeless persons 
for the 21 sampled counties were used as the counts in those 
counties. Counts for the remaining 54 counties were gener­
ated randomly as described below. Note that the simulated 
counts represent the six-month counts of the homeless. 
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The first simulated population was created by gener­
ating the natural log of the rate of homelessness from a 
single normal distribution. The log of the rate was used 
because the observed rates for the 21 sampled counties 
have a highly skewed histogram but the histogram for the 
log of the rates is approximately mound shaped. The mean 
of the observed log rates is 2.465 with a standard deviation 
of 0.7154. Thus, the generated log rates of homelessness 
were randomly sampled (using the statistical package S) 
from a normal distribution with this mean and standard 
deviation. After the log rates were generated for the 
54 nonsampled counties, they were used along wkh the 
population counts from the 1990 Census for each county 
to obtain the simulated numbers of homeless persons for 
those counties. 

The second simulated population was created in a 
manner similar to the first except that separate normal 
distributions were used within each of the five geographic 
regions of Ohio. The means and standard deviations of 
the log rates of homelessness for the sampled counties 
within each region were used as the parameters of the 
normal distributions from which the simulated values were 
generated. Again the simulated log rates were used to 
obtain the numbers of homeless persons for the 54 non-
sampled rural counties. 

The third simulated population was generated using the 
regression of rate of homelessness per 10,000 on the 
percent elderly in each sampled county. (This choice of 
predictor variable is based on the selection of a regression 
estimator as described in Section 4.) The fitted regression 
model is 

raTe = - 9.02 -l- 2.32%elderly, 

with R^ = 0.197, /MSE = 9.03, and p-value = 0.044 
for the overall F-test for the regression line. The simulated 
population was created by estimating the rate of homeless­
ness in each nonsampled county from the percent elderly 
in the county and then adding a random normal error 
term. Because a plot of the residuals from the regression 
line suggested that the variance in the residuals is larger 
for counties with higher percentages of elderly, the random 
error terms were generated from two different normal 
distributions depending on whether the percent elderly in 
the county was more or less than 10%. The standard devia­
tions used for the two normal distributions were the stan­
dard deviations in the residuals for the counties with 10% 
or more elderly and with less than 10% elderly. 

The fourth simulated population was generated using 
the regression of rate of homelessness per 10,000 on the 
percent elderly in each sampled county and on the indicators 
of the region of the state to which the county belongs. 
Using INE, INW. ^C, ^rid l^s to represent indicator 
variables for the northeast, northwest, central, and south­
east regions respectively, the fitted regression model is 

rate = - 10.40 -I- 3.23%elderly 

- 6.47INE - 8.55INW - 8.64Ic-14.25ISE, 

with R^ = .407 (/?2-adjusted = .210), /MSE = 8.73, 
and/?-value = 0.127 for the overaU F-test for the regression 
line. The simulated population was created by estimating 
the rate of homelessness in each nonsampled county from 
the regression equation and then adding a random normal 
error term. A residual plot again suggested that the vari­
ance in the residuals is larger for counties with higher 
percentages of elderly. Thus the random error terms were 
generated from two different normal distributions depend­
ing on whether the percent elderly in the county was more 
or less than 10%. Again, the standard deviations for the 
two normal distributions were the standard deviations of 
the appropriate subsets of residuals. 

The fifth simulated population was generated to be 
somewhat different from the other populations. It was 
generated using a regression model to predict number of 
homeless directly from the population size within each 
county. The fitted regression model is 

hoineless = 13.23 -I- 0.001154population, 

v/ithR^ = 0.386,/MSE = 54.29, and;o-value = 0.003 
for the overall F-test for the regression line. The simulated 
population was created by estimating the number of home­
less persons in each nonsampled county from the fitted 
regression equation and then adding a random normal 
error term. Because a plot of the residuals suggested that 
the variance in the residuals is larger for counties with 
larger populations, the random error terms were generated 
from two different normal distributions depending on 
whether the county population was more or less than 
30,000. The standard deviations for the two normal distri­
butions were the standard deviations of the appropriate 
subsets of residuals. 

After the five populations had been generated, they 
were each used to assess the amount of bias in the estimates 
of the rate of rural homelessness. Since we had created the 
entire "population", we could compute the " t rue" rate 
of homelessness within the entire state and the five geo­
graphical regions for each of the five populations. 

In the simulation, samples of 21 rural counties were 
selected using the stratified sampling scheme that was used 
for the actual study. That is, four counties were sampled 
at random without replacement from each of the northeast, 
northwest, central, and southwest regions; five were 
sampled from the southeast region. The estimated rates 
of homelessness were computed for the five regions and 
for the state using the formulas given in Section 3.1. These 
estimates were compared to the population rates of home­
lessness for the simulated population to determine the 
bias in the estimate. This process of selecting a sample, 
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computing estimates, and determining the bias was 
repeated 1 million times with replacement for each simu­
lated population. (The number of possible samples is more 
than 7.15 X lO''.) The same stream of random numbers 
was used to select the samples for each of the five popu­
lations. The results of the simulation are presented in 
Table 2. 

Finally, we assessed the shape of the sampling distri­
bution of our estimator by looking at histograms of the 
1,000,000 estimates from each of our five simulation 
studies. The histograms appeared symmetric, mound 
shaped, and remarkably like histograms of normal data. 
Thus, confidence intervals based on the normal approx­
imation are likely to be fairly accurate. 

Table 2 
Bias in the Estimate of the Homeless Rate per 10,000 

for Five Simulated Populations 
(Based on 1,000,000 simulated samples) 

STATE 

REGION 

NE 

NW 

C 

1 

0.0406 
(2.056) 

- 0 . 0 4 0 6 
(3.333) 

- 0 . 0 5 7 8 
(3.591) 

- 0 . 2 4 4 2 
(3.122) 

Population 

2 

0.1308 
(1.759) 

- 0 . 0 3 7 9 
(2.923) 

- 0 . 2 9 4 8 
(3.194) 

0.2700 
(3.762) 

3 

0.2618 
(2.144) 

0.1538 
(3.748) 

0.0529 
(3.474) 

0.3974 
(3.426) 

4 

0.2433 
(1.807) 

0.0317 
(4.034) 

0.0254 
(3.460) 

0.1362 
(2.260) 

5 

0.2547 
(1.605) 

0.0993 
(1.937) 

0.3234 
(4.249) 

0.1901 
(2.869) 

SE -0.1034 -0.0279 -0.1132 -0.1798 0.0427 
(6.512) (4.298) (6.600) (3.892) (3.973) 

SW 0.6184 0.8093 0.9196 1.277 0.6716 
(4.215) (4.990) (4.610) (5.173) (4.274) 

Note: The standard deviation of the simulated sampling distri­
bution of the estimator is given in parentheses below each 
value. 

From Table 2 we see that the size of the bias in the 
overall state estimate of homelessness is about 1/100th of 
the size of the estimate itself. (Recall that the actual esti­
mated six-month rate of homelessness for the state is about 
14 per 10,000 population. The simulated populations have 
state rates between about 13 and 15 per 10,000.) At the 
regional level, the size of the bias is also about 1 /100th of 
the size of the regional estimates even though the regional 
estimates are based on much smaller sample sizes. These 
results suggest that the size of the bias in our actual esti­
mate is likely to be relatively small. 

As would be expected from the small number of counties 
in the sample, the variance of the sampUng distribution 
of the estimator is fairly large. The standard deviation in 
the estimates from the simulation study was about 10 times 
the size of the bias. (The standard deviations of the 
1,000,000 estimates in each of the five simulations are of 
the same order of magnitude as the standard error of the 
actual estimate shown in Table 1.) This result suggests 
that the bias in the actual estimate is likely to be rather 
unimportant when compared to the standard error of the 
estimate. 

4. A REGRESSION ESTIMATOR 

There is a great deal of information available, for 
example from the Bureau of the Census, on the economic 
conditions in a county. We hoped to be able to use some 
of this information to improve our estimate for the rate 
of homelessness by using a regression estimator. To this 
end, we searched for a regression model relating either the 
number of homeless persons in a county or the rate of 
homelessness with a variety of predictor variables which 
we thought might be useful in explaining homelessness. 
These possible predictor variables included county popula­
tion, percentage change in population from 1980 to 1990, 
unemployment rate, percent elderly, public welfare expen­
ditures, average weekly earnings, percent of rental prop­
erty, median rent, poverty rate, percent female head of 
household, percentage of land in farming, average value 
of farms, average income per farm, ratio of manufacturing 
to farm jobs, indicator of Beale scores - a classification 
system for degree of ruralness (see Thomas 1977), and 
regional indicators. 

None of these possible predictors individually or in 
combination provided a good predictor of the number of 
homeless persons or rate of homelessness. The best single 
predictor was percent elderly, the model which was used 
in generating the third simulated population described in 
Section 3.2, but it explained less than 20% of the variability 
in the rate of homelessness. No other variable was useful 
in addition to percent elderly and we could not find another 
reasonable regression model. Thus we used percent elderly 
in a regression estimator for the state rate of rural home­
lessness. Note that percent elderly is a plausible predictor 
of the rate of homelessness because poor economic con­
ditions in a rural county appear to result in out-migration 
of the young; the elderly remain behind making up a 
greater proportion of the population. Therefore, it is 
possible that the percentage of elderly in a county is a 
proxy for poor economic conditions and out-migration. 
We cannot, however, rule out the possibility that percent 
elderly appears to be related to rate of homelessness in our 
data due to chance. We also realize that unavoidable errors 
in the county-based data collection procedures, such as 
interviewer effect, amount of services available, and geo­
graphic factors, may contribute to the lack of association 
between rate of homelessness and theoretically relevant 
variables. 
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We used the combined regression estimator (see, for 
example, Cochran 1977) to obtain the state estimate of 
14.85 rural homeless per 10,000 with a standard error of 
1.64. This compares with the original estimate of 14.00 
with a standard error of 2.09 as shown in Table 1. Because 
the regression estimator is also biased with the bias de­
creasing for larger sample sizes, we again used a simulation 
study to assess the bias in this regression estimator. 

The simulation study for the regression estimator was 
carried out using the third and fourth simulated popula­
tions described in Section 3.2 because those populations 
were generated using a regression model involving percent 
elderly. The simulation again computed the bias in the 
estimate for 1 million stratified cluster samples chosen with 
replacement from each population. The same stream of 
random numbers was used to generate the samples in both 
cases. A summary of the resuUs of the simulation study 
for both the original estimator and the regression estimator 
is given in Table 3. 

Table 3 
Comparison of Estimators of State Homeless Rate per 10,000 

(Summary for 1,000,000 repetitions from 
two simulated populations) 

Original 
Estimator 

Population 

Regression 
Estimator 

Population 

Average Bias 0.2618 0.2433 1.7115 0.8360 

Standard Deviation 2.144 1.807 1.820 1.246 

MSE 4.664 3.325 6.242 2.250 

5. CONCLUSIONS 

The most often quoted national figures on homelessness 
were published by Burt and Cohen (1989) who estimated 
rates of homelessness in urban areas at 37.4 per 10,000 popu­
lation in ckies of more than 100,000 and 9 per 10,000 out­
side of SMAs. This current study of homeless persons in 
nonurban Ohio gives a six-month rate of about 14 home­
less per 10,000 population and a one-week rate of 5.68 per 
10,000 population. 

The results of our simulation study suggest that the bias 
in the usual estimate of a rate based on our small cluster 
sample is not likely to be important, particularly in com­
parison to the size of the standard error of the estimate. 
The bias in the estimates for the five geographic regions 
in Ohio was found to be of a similar, relatively small size. 
The simulation study suggests that statistical biases and 
errors are not Ukely to discredit the substantive results of 
the survey of rural homeless. 

Our regression analysis of the numbers of homeless 
persons from sampled counties suggests that it is difficult 
to explain the numbers of homeless persons in nonurban 
counties using economic and demographic variables that 
might be thought to be related to homelessness. It may be 
that each county is so different from the others, because 
of its location relative to population centers and related 
economic characteristics, that it is impossible to find a 
suitable stratification of the nonurban counties within 
Ohio. The use of a geographically stratified sample in Ohio 
did not appear to reduce the variance of the estimate and 
no other stratification variable was suggested by our 
regression analysis. This may be the case for other states 
as well, although stratification by some variable may be 
possible over, say, the entire United States. 

Note that the average bias is larger for the regression 
estimator than for the standard estimator for a rate from 
a stratified cluster sample. The standard deviation of the 
sampling distribution for the regression estimator, how­
ever, appears to be slightly smaller than that of the original 
estimator for each of the two simulated populations. The 
mean squared errors for the regression estimator fell above 
and below those of the original estimator. Thus, the choice 
of which estimator to use was unclear from the summary 
information in Table 3. 

Because the regression estimator does not provide a 
clear improvement over the original estimator, the bias on 
average appears to be larger for the regression estimator, 
and the percent elderly variable may have been selected out 
of the many variables we tried due to chance, we chose to 
use the standard estimator of Section 3 for estimating the 
rate of rural homelessness. 
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