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In This Issue 

This issue of Survey Methodology opens with a special section on Establishment Survey Methods. 
The four papers in this special section deal wUh important issues in the context of establishment 
surveys such as quesdonnaire design, sample design and estimadon. These papers were initially 
presented at the International Conference on Establishment Surveys, Buffalo, New York, June 1993. 

The paper by Armstrong and St-Jean presents an application of the general framework of 
regression estimation in two-phase sampling. Using data from a two-phase sample of tax records, 
three particular cases of the generalized regression esdmator - two regression estimators and a 
poststratified estimator - are empirically compared to the Horvitz-Thompson estimator. The 
empirical study shows that the poststratified estimator is more efficient than the Horvitz-Thompson 
estimator and as efficient as the two regression esdmators. 

Gallego, DeUnce and Carfagna describe the Monitoring Agriculture with Remote Sensing (MARS) 
project of the European Community. As the project is not capable of producing good estimates of 
crop areas and yields, they describe a method of sampling farms by points to obtain reliable estimates. 
Results of applying this approach in two regions, EmiUa Romagna in Italy and the Czech Republic, 
are described. 

Pollock, Turner and Brown discuss the use of capture-recapture sampling to estimate the popula-
don size and population totals when only incomplete Ust frames exist. A discussion of the properties 
of the resulting model based esdmators and an example where the establishments are fishing boats 
are presented. 

In the last paper of this special section, Gower gives an overview of important considerations that 
should be taken into account when developing and designing questionnaires for business surveys. 
Examples of applications of focus groups and cognitive research to test quesdonnaires for business 
surveys are presented. 

Rancourt, Lee and Sarndal present simple correction factors to reduce the bias of the standard 
estimator of the population mean in the case of ratio imputation for confounded nonresponse. The 
effecdveness of these factors is studied by Monte Carlo simuladons. The factors are found to be 
effective especially when the model underlying ratio imputation holds. 

The use of the capture-recapture approach for coverage evaluadon of the U.S. census is discussed 
by Ding and Fienberg. They give methods for estimating population total and census undercount 
when the assumption of a perfect match between individuals in the census and in the sample is relaxed. 
They propose models to describe two types of matching errors, mismatches and erroneous non-
matches. The methods are illustrated using data from 1986 Los Angeles test census and 1990 
Decennial Census. 

Kott discusses testing a hypothesis about linear regression coefficients using data from a sample 
survey. He suggests an adjustment of the design-based linearization variance esdmator to reduce 
its model bias and a formula to estimate its effective degrees of freedom. Two examples of the method 
are presented. 

Cox develops a framework, called matrix masking, for microdata disclosure limUation methods 
that should improve understanding of these methods and of their effect on data use. Within this 
framework, based on ordinary matrix arithmetic, statistical agencies can develop, evaluate and use 
reliable software for disclosure limUation of microdata. The author presents explicit matrix mask 
formulations for the principal microdata masking methods in current use. 

Falorsi, Falorsi and Russo conduct an empirical comparison of some small area estimation methods 
in the context.of the Italian Labour Force Survey using data from the 1981 Italian Census. The 
estimators included in their study are a poststratified direct estimator, a synthetic estimator, an optimal 
linear combination of the two, and a sample size dependent estimator. They conclude that, for their 
application, the sample size dependent estimator offers the best balance of variance and bias. 



96 In This Issue 

The paper by Niyonsenga presents a comparison of two nonparametric methods of estimation 
of response probabilides in sampling theory via a Monte Carlo simulation. It is shown that, in the 
context of simple random sampling without replacement, the nonparametric variant based on the 
ranks of the values of the auxUiary variable performs better, with respect to. both bias and mean 
square error, than the method based on the values of the auxiUary variable, for both the expansion 
and regression estimators. 

Schabenberger and Gregoire compare alternative exact and approximate Ttps strategies in the 
context of sampling in forestry. Two sequendal sampling schemes due to Sunter combined with the 
Horvitz-Thompson estimator are compared to the random group strategy of Rao, Hartley and 
Cochran (RHC) as well as a ratio of means estimator used with simple random sampling. If the size 
variable is highly correlated with the variable of interest then xps strategies are considerably more 
efficient. When the correlation is very high the exact xps strategy is most efficient; however, the 
RHC strategy has the advantage of simpUcity. If the correladon is low then the xps strategies can 
be very inefficient. 

The Editor 
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Generalized Regression Estimation for a Two-Phase 
Sample of Tax Records 

JOHN ARMSTRONG and HELENE ST-JEAN 

ABSTRACT 

A generalized regression estimator for domains and an approximate estimator of its variance are derived under 
two-phase sampling for stratificadon with Poisson selecdon at each phase. The derivadons represent an application 
of the general framework for regression estimation for two-phase sampUng developed by Sarndal and Swensson 
(1987) and Sarndal, Swensson and Wretman (1992). The empirical efficiency of the generalized regression estimator 
is examined using data from Statistics Canada's annual two-phase sample of tax records. Three particular cases 
of the generalized regression estimator - two regression estimators and a poststratified estimator - are compared 
to the Horvitz-Thompson estimator. 

KEY WORDS: Model assisted estimation; Domain estimation; Poisson sampling. 

1. INTRODUCTION 

In this paper the problem of domain estimation under 
two-phase sampUng for stradfication is examined in a case 
in which Poisson sampling is used at both phases of selec­
tion. Consider a population of N units and suppose that 
it is necessary to estimate the total of a characteristic of 
interest, y, for L disjoint domains. Domain membership 
can be well, but not exactly, predicted using an auxiliary 
variable, 9 , that is not observed before sampling. The cost 
of obtaining information on 6 is lower than the cost of 
obtaining information on y and lower than the cost of 
obtaining exact domain membership data. At the first 
phase of sampling, a Poisson sample is drawn from the 
population and the value of 0 is observed for each sampled 
unit. The units in the first-phase sample are stratified using 
9-values. This stradfication is an approximation to strati­
fication by domain. At the second phase of sampling, a 
Poisson sample is drawn from each stratum. The value of 
y, as well as exact domain membership data, is observed 
for each unit in the second-phase sample. 

The Horvitz-Thompson estimator of the total ofy for 
domain d is fn-Ad) = Iiis2Pi(d)/(PuP2i), where 
yj(d) takes the value of;', if unk / falls in domain d and 
otherwise takes the value zero, 52 denotes the second-
phase sample and Pu andp2j are first- and second-phase 
selection probabilities, respectively, for unit /. Since the 
sample sizes obtained using Poisson sampling are random 
variables, this estimator may be inefficient. (See Sunter 
1986 or Sarndal, Swensson and Wretman 1992, p. 63.) 
Generalized regression estimation is an alternative to the 
HorvUz-Thompson estimator that can be employed when 
auxiliary information is available. A generalized regression 

estimator for two-phase Poisson sampling and an approx­
imate estimator of its variance are derived in this paper. 

Section 2 contains the derivadon of the generalized regres­
sion estimator and approximate variance estimator. Secdon 3 
includes a description of the application that motivated 
the estimation problem - Statistics Canada's annual two-
phase sample of tax records. The results of an empirical 
study comparing the Horvitz-Thompson estimator with 
three particular cases of the generalized regression estimator 
- the poststradfied estimator currently used in producdon 
and two regression estimators - are described in Section 4. 

2. GENERALIZED REGRESSION ESTIMATION 

Generalized regression estimation is not a new technique. 
A generaUzed regression estimator for a one-phase sample 
design is described by Deming and Stephan (1940). Recent 
applications of generalized regression estimation at Statisdcs 
Canada include the work of Lemaitre and Dufour (1987) 
and Bankier, Rathwell and Majkowski (1992). Hidiroglou, 
Sarndal and Binder (1993) provide an extensive discussion 
of the use of generalized regression estimators for business 
surveys. 

Derivation of generalized regression estimators can be 
approached from the perspective of model assisted survey 
sampling (Sarndal, Swensson and Wretman 1992) or from 
the perspective of calibration (Deville and Sarndal 1992). 
LetU = [u] and V - \v} denote sets of first-phase post-
strata and second-phase poststrata, respectively. During 
generaUzed regression weighting of the first-phase sample, 
the design weights l/Pu are adjusted to yield weights 
Wi/ = gii/Pu that respect the calibration equations 

' John Armstrong, Social and Economic Studies Division, 24 - R.H. Coats BIdg., and Helene St-Jean, Business Survey Methods Division, 
II - R.H. Coats BIdg., Statistics Canada, Tunney's Pasture, Ottawa, Ontario, KIA 0T6. 
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Y WliXi = ^ „ , 
iisirw 

for each first-phase poststratum M, where jc, is an Li x 1 
vector of auxUiary variables known for all units in the 
population and X„ is the vector of auxiliary variable totals 
for poststratum u. The adjusted weights minimize the 
distance measure E/eji (gu - 1) ^/Pi,- The same weights 
can be obtained from a model assisted perspective using 

E^Pi) = Xi0u, iiu 

v^yi) a\ 

where yj is the value of the variable of interest for unit /, 
and E^-) and V^-) denote expectation and variance, 
respectively, with respect to the model. 

For the generalized regression estimators of interest, 
weighting of the second-phase sample involves a calibration 
procedure that is conditional on the results of first-phase 
weighting. The initial weights, Wij/p2i, are adjusted to 
give final weights, w, = giiWu/p2i, that sadsfy the cali­
bration equations 

Y *̂'̂' = Z„ 
/€52 n V 

for each second-phase poststratum v, where z, is an L2 x 1 
vector of auxiliary variables known for all units in the 
first-phase sample and Z^ = Y^nsicw^xiZiisanesHmate 
of the vector of auxiliary variable totals for post-stratum v, 
computed using the adjusted first-phase weights w,,. 
Note that these calibration equations differ in an impor­
tant way from the examples given by Sarndal and Swensson 
(1987, pp. 284-288) and Sarndal, Swensson and Wretman 
(1992, pp. 359-366) because they involve adjusted first-
phase weights rather than first-phase design weights. 
The final weights minimize the distance measure Ii^s2 
"^vAgri — 1) '^IP2i • The model needed to obtain the same 
weights from a model assisted perspective is 

EA^uyi) = WijZi'0y, /€ V 

VA^liPi) = ^li'^^-

Use of adjusted first-phase weights rather than first-
phase design weights in the second-phase calibration equa­
tions has two important advantages. First, the generalized 
regression estimator for domain d can be written as 

fcREG(d) = ^ J,(C?)^l,g2//Pl,/'2/, 
iis2 

using first-phase and second-phase ^-weights. Second, 
suppose that some auxiliary variables are used for calibra­
tion at both phases of weighting. Estimates of population 
totals for such variables that are equal to actual totals can 
be constructed using final weights. 

Let ^ „ = Y,iis\nuXi/Pu denote the Li x 1 vector of 
Horvitz-Thompson estimates of auxiUary variable totals 
for first-phase poststratum u. The first-phase ^-weight is 

^1/ = 1 + KXi, 

where X,; = {X, - X„)'M-' and M " ' = (E ,« ,n„ 
XiXi'/Pu) " ' . For second-phase poststratum v, denote the 
estimate of Z^, based on initial second-phase weights by 
Zy = E/652nvWi/^///'2i-The second-phase ^-weight is 

g2i = 1 + KZi, 

where X; = (Z^ - Z^,)'M~^ and M~' = (E/€i2nv 
WuZiZ//P2i)~'. 

The approximate variance of yGREG('̂ ) is given by 

V(fGREG(d)) - Y 
, 1 

E. 

-Pi 

Pu 

[i: 

-Qi 

1 -

+ 

P2i 

P2i 
(WuQ2i)^'\, 

where £•] (•) denotes expectation with respect to the first 
phaseof sampUng, Ql, = yi(d) - x,'Bu foreach unk in 
first-phase poststratum u, and B„, the vector of estimated 
coefficients from the regression of y(d) on x that would 
be obtained if y(d) was available for all units in first-phase 
poststratum u, is given by 

B , ^ ( Y Xjx;\ ' ( Y Xjyi{d)) . 
\ iiu / \ iiu / 

Similarly, Q2( = yi(d) — z/B^ for each unit in second-
phase poststratum v and B^,, the vector of esdmated coef­
ficients from the regression of y{d) on z that would be 
obtained, conditional on the first-phase calibration, if 
y{d) was available for all units in the component of the 
first-phase sample falling in second-phase poststratum v, 
is given by 

Pv = ( Y wijZiZi) ( Y wuZiyi{d)y 
\iis\nv / \iis\nv / 

An estimator of the approximate variance of fGREc(d) 
is 

I^(i'GREG(^)) = Y ^—T^^(Sudu)' + 
j PuP2i 

X-\ ^ ~ P2i , ,2 
Y ~. -2(gug2iQ2i) • 

: (PuP2i) 

file:///iis/nv
file:///iis/nv


Survey Methodology, December 1994 99 

Since y(d) is available only for units in ^2, esdmates 
of fi„ and 5v are 

Bu = I Ti WiXiXl) ( Y WiXiyi{d)y 
\iis2r\u / \iis2nu / 

4 = ( E WjZiZi') ( Y WiZiyi{d)\. 
\iis2nv / \iis2nv / 

The sample residuals needed to compute the variance esti­
mator are (7,, = yi(d) - Xj'Bu and q2j - yi(d) - zfB^,. 
More details of the derivation of the approximate variance 
of >GREG('^) 3nd the estimator of the approximate variance 
are given in Appendix A. 

Ify is strongly correlated with x and z, the variance of 
the generalized regression esdmator of the populadon total 
of y will be relatively small. However, it is important to 
note that strong correlations between y and x and z will 
not necessarily lead to a relatively small variance for the 
estimate of the total of y for a particular domain, since 
y{d) may be poorly correlated with x and z wkhin post-
strata that include at least one sampled unit falling in 
domain d. 

The correlation between y(d) and x and z wkhin a 
poststratum that includes at least one sampled unit falling 
in domain d may be low if some sampled units in the 
poststratum do not fall in domain d. This situation may 
arise often if domain totals of auxiliary variables and/or 
exact domain membership information for units in the 
first-phase sample are unavailable. In the context of two-
phase sampling for stratification, there is no domain 
membership information available before selection of the 
first-phase sample. If each first-phase poststratum is 
formed by combining one or more first-phase sampling 
strata, for example, most first-phase poststrata will include 
more than one domain. The variable 9 used to predict 
domain membership during stratification of the first-phase 
sample is not an exact predictor. If second-phase post-
strata are formed by combining second-phase sampling 
strata, each domain may be divided between a number of 
second-phase poststrata. 

Depending on the type of auxiliary information used, 
the g-weights associated with the generalized regression 
estimator and, consequently, generalized regression esti­
mates, may be negative. 

3. APPLICATION: TWO-PHASE SAMPLING 
OF TAX RECORDS 

The two-phase tax sample is part of a general strategy 
at Statistics Canada for production of annual estimates 
of Canadian economic activity. Annual economic data for 

large businesses are collected through mail-out sample 
surveys. Data for small businesses are obtained from the 
tax sample. Estimates of financial variables for the busi­
ness population are obtained by combining tax and survey 
estimates. Tax data rather than survey data are used to 
obtain small business estimates in order to reduce costs and 
response burden. 

The two-phase sample design was introduced in response 
to a requirement for estimates for domains defined using 
the four-digit Standard Industrial Classification (SIC) 
code (Statistics Canada 1980). The first two digits of SIC 
(SIC2) provides a classification of businesses activity into 
76 groups. Within each group, four-digit SIC (SIC4) codes 
provide classification into finer categories. For example, 
the SIC2 code of a business might classify it in the trans­
portation industry while the SIC4 code describes the 
activity of the business as bulk liquids trucking. 

There are two types of taxfilers - Tls and T2s. A Tl 
taxfiler is an individual, who may own all or part of one 
or more unincorporated businesses, while a T2 taxfiler is 
an incorporated business. Administrative files that contain 
limited information for all taxfilers that are associated 
with businesses are provided to Statistics Canada by 
Revenue Canada, the Canadian government department 
responsible for tax collection. These files are used to 
construct a sampling frame. Information concerning 
numbers of businesses owned by Tl taxfilers and owner­
ship shares is not available on the sampling frame. Frame 
data does include geographical information, as well as 
gross business income and net profit for both Tl and T2 
taxfilers. A few other major financial variables, including 
salary and inventory data, are generally available for T2 
taxfilers. Estimates are required for about 35 financial 
variables that can be obtained from tax returns and asso­
ciated financial statements but are not available on admin­
istrative files supplied by Revenue Canada. 

Taxfilers that are associated with businesses are classi­
fied by Revenue Canada using the SIC system. In most 
cases, descriptions of business activity reported on tax 
returns are sufficient to accurately determine SIC2 codes. 
Revenue Canada assigns additional digits of SIC to most 
taxfilers. However, not all taxfilers are classified to the 
four-digit level and the third and fourth digits of SIC4 
codes assigned by Revenue Canada are relatively inac­
curate. A two-phase approach to sampling of tax records 
was adopted to facilitate accurate estimation of economic 
production at the SIC4 level. 

Section 3.1 includes a brief description of the two-phase 
sampling design. More information about the two-phase 
design is provided in Armstrong, Block and Srinath 
(1993). Secdons 3.2 and 3.3 contain informadon concer­
ning estimation for the two-phase design. The Horvitz-
Thompson esdmator is described in Section 3.2 and a 
poststradfied estimator is discussed in Secdon 3.3. 

file:///iis2r/u
file:///iis2nu
file:///iis2nv
file:///iis2nv


100 Armstrong and St-Jean: Generalized Regression EsUmaUon for a Two-Phase Sample of Tax Records 

3.1 Sampling Design 

The administrative information used to construct the 
sampling frame for a particular tax year is accumulated 
by Revenue Canada over a period of two calendar years 
as tax returns are received and processed. The use of 
Poisson sampling offers substantial operational advantages 
because sampling operations can begin before a complete 
sampling frame is available. 

The target (in-scope) population for tax sampling is the 
population of businesses with gross income over $25,000, 
excluding large businesses covered by mail-out sample 
surveys. The first-phase sample is a longitudinal sample 
of taxfilers. Strata are defined by SIC2, province and size 
(gross business income). All taxfilers that are included in 
the first-phase sample for tax year Tand are still in-scope 
for tax sampling in tax year T -h 1 remain in the first-
phase sample for tax year 7 -f 1. Taxfilers may be added 
to the first-phase sample each year to improve the precision 
of certain estimates and to replace taxfilers sampled in 
previous years that are no longer in-scope. 

To implement Poisson sampling for first-phase sample 
selection, each taxfiler is assigned a pseudo-random 
number (hash number) in the interval (0,1) generated by 
a hashing function that uses the unique taxfiler identifier 
as input. The hash number for each taxfiler is compared 
to the sampUng interval for the corresponding stratum. If 
the hash number for a particular taxfiler falls in the 
corresponding sampling interval and the taxfiler is not 
already in the first-phase sample, then the taxfiler is added 
to the first-phase sample. Since taxfiler identifiers do not 
change over time, Poisson sampling facilitates selection 
of a longitudinal first-phase sample. 

First-phase selection probabiUties for taxfilers that are 
already included in the first-phase sample are updated each 
year. Longitudinal updating is necessary because: (i) a tax-
filer may fall in different first-phase sampling strata in 
consecutive tax years; and (ii) first-phase sampUng fractions 
for a given stratum may vary from one year to the next. 

Copies of tax returns and associated financial statements 
for taxfilers in the first-phase sample are sent to Statistics 
Canada from Revenue Canada. In order to select the second-
phase sample, statistical entities are created using infor­
mation about businesses corresponding to taxfilers in the 
first-phase sample. Let J = [j] denote the population of 
businesses that is the target population for tax sampling. 
A statistical entity, denoted by {i,j), is created for every 
taxfiler-business combination in the first-phase sample. For 
each Tl taxfiler in the first-phase sample, data for all busi­
nesses wholly or partially owned by the taxfiler (including 
ownership shares) that are needed to create statistical entities 
are available from tax returns and associated financial 
statements. Since there is a one-to-one correspondence 
between businesses and T2 taxfilers, a single statistical entity 
is created for each T2 taxfiler in the first-phase sample. 

For each tax year, statistical entities that have not 
appeared in previous tax samples are assigned SIC4 codes 
by Statistics Canada. These codes are determined using 
information supplementary to business activity descriptions 
reported on tax returns and are more accurate in digits 
three and four than codes assigned by Revenue Canada. 
For statistical entities that have appeared in previous tax 
samples, the SIC4 assigned earlier is carried forward. 

Conceptually, the second-phase sample is a sample 
of businesses. Operationally, it is a sample of taxfilers 
selected using statistical entities. Statistical entities are 
stradfied using SIC4 codes assigned by Statistics Canada, 
as well as province and size. The total revenue of business 
j is used as the size variable for stadstical endty (i,j). If 
one statistical entity corresponding to a Tl taxfiler is 
selected for the second-phase sample, then all statistical 
entities corresponding to the taxfiler are selected. Conse­
quently, the second-phase selection probability for statis­
tical entity {i,j) depends only on /. 

Second-phase sample selection is done by the Poisson 
sampling method using hash numbers generated from 
taxfiler identifiers. The hashing function used for second-
phase sample selection is independent of the first-phase 
hashing function. 

Data for about 35 financial variables are transcribed 
from tax returns and associated financial statements for 
taxfilers selected in the second-phase sample. SIC4 codes 
assigned by Statistics Canada are updated, if necessary, 
to ensure that all SIC4 codes used during tabulation of 
estimates correspond to the current tax year. 

3.2 Horvitz-Thompson Estimator 

The second-phase sample is a sample of businesses 
selected using statistical entities. Since some businesses are 
partnerships, more than one statistical entity may corres­
pond to the same business. To construct esdmates for the 
population of businesses, an adjustment for the effects of 
partnerships is required. If businessy is a partnership, it 
will be included in the second-phase sample if any of the 
corresponding taxfilers are selected. The usual Horvitz-
Thompson esdmator must be adjusted for partnerships to 
avoid over-estimation. Let 8ij denote the proportion of 
business y owned by taxfiler / and suppose that statistical 
entity (i,j) is selected for the second-phase sample. The 
data for business J is adjusted by multiplying it by 6,y so 
that only the component of income and expense items 
corresponding to taxfiler / is included in estimates. Rao 
(1968a) describes a similar adjustment in a slightly different 
context. 

Let yj denote the value of the variable y for business y. 
The Horvitz-Thompson estimate of the total of y over 
domain d, incorporating adjustment for partnerships, is 
given by 
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fH-T(d) =X) D^^-^^-(^)/(^"^2,). 
iis2 jiJi 

where /,- is a set containing the indices of the businesses 
wholly or partially owned by taxfiler /. Since selection 
probabiUties depend only on the taxfiler index /, ffi_j{d) 
can be written as 

fH-T(d) =X)^/ (^) / (^ l /^2 , ) , 
iis2 

where 

yi(d) =Y^ijyj(d). 
jiJi 

fn- r(d) is an unbiased estimator of the population total 
of y for businesses in domain d. Refer to Rao (1968a). 

The second-phase sample is obtained by Poisson sub-
sampling of the first-phase Poisson sample. Consequendy, 
the second-phase sample is also a Poisson sample and the 
variance of ffj_r(d) is 

V(fH-T(d)) - Y [ ( ' - PuP2i)/(PuP2i)]yi(d)^. 
i 

An unbaised estimator of this variance is 

V(fH-T(d)) = Y [(1 -PuP2i)/(PuP2i)%(d)'. 
iis2 

3.3 Poststratified Horvitz-Thompson Estimator 

Adjustment of the Horvitz-Thompson estimator to 
account for differences between actual and expected 
sample sizes under Poisson sampUng was suggested by 
Brewer, Early and Joyce (1972). The methodology currently 
used to produce estimates based on the two-phase tax 
sample incorporates such adjustments. 

Ratio adjustments are applied within poststrata during 
weighting of both the first- and second-phase samples. 
Choudhry, Lavallee and Hidiroglou (1989) provide a 
general discussion of weighting for a two-phase Poisson 
sample using poststratified ratio adjustments. Suppose 
that first-phase poststratum u contains 7V„ taxfilers. An 
estimate of the number of taxfilers in the population that 
fall in first-phase poststratum u, based on the first-phase 
sample, is 

Nu= Y ('/^")-
iisirui 

The poststratified first-phase weight for taxfiler /', / € w is 

wu = (l/Pu)(NJNu)-

An estimate of the number of taxfilers in second-phase 
poststratum v, based on the first-phase sample, is 

N,= Y '̂ "•-
/€sinv 

An alternative estimate, using only units in the second-
phase sample, is 

Nv = Y ^l ' /^2'-
iis2r\v 

The poststratified second-phase weight for statistical entity 
{i,j) in poststratum v is 

W2i = (l/P2i)(N,/K) 

and the final weight is 

Wj — WuW2i. 

The poststratified estimate of the total ofy over domain 
G^is 

f(d) = Y Wiyi(d). 
iis2 

Choudhry, Lavallee and Hidiroglou (1989) note that the 
variance of f(d) is approximately given by 

Pu \ Nu / 
u iiu fu \ u / 

where Y,i(d) and Y^,(d) are populadon totals for the 
variable J over the portions of the domain d belonging to 
poststrata u and v respectively. 

This variance is estimated by 

f^„r,., PuP2i V K J 
iis2nunv 

-\-^mm 
iis2nunv 

(± 
(P iP2i) \ N, J 

where the estimates 7V„ and N^ are calculated using final 
weights. 
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The inclusion of the factor (Nu/Nu)^ (N^/N^,) ^ can be 
motivated by an improvement in the conditional properties 
of the estimator (Royall and Eberhardt 1975). A variance 
estimator for the ratio estimator for a one-phase sample 
design including an analogous adjustment factor has also 
been studied by Wu (1982). Empirical work reported by 
Wu and Deng (1983) indicates that the coverage properties 
of confidence intervals based on the normal approxima­
tion are improved using the adjustment factor. 

f(d) is a pardcular case of JGREG(<^) that can be 
obtained if a single auxiliary variable with value one for 
all taxfilers is employed during both first-and second-
phase weighting. In this case, we have gu — N^/Nu for 
all taxfilers in first-phase poststratum u and §2/ = N^, /N^, 
for all taxfilers in second-phase poststratum v. Note that 
negative g-weights are precluded by this choice of auxiliary 
variables. The variance esdmator V( f{d)) differs in a 
minor way from the estimator K(i'GREG(^)) for th's 
particular case of fcREG(d)• The second-phaseg-weight 
appears in the leading term of V{f{d)) but does not 
appear in K(fGREG(^))-

4. EMPIRICAL STUDY 

In order to compare the performance of f^-Hd), 
f(d) and fGREG(d), an empirical study was conducted 
using data from the province of Quebec for tax year 1989. 
Since the estimator f(d) is a special case of JGREG('^)> 

it wiU be caUed iGREG-TPH(^) in subsequent discussion. 
(TPH is an abbreviation for two-phase Hajek.) Two other 
generalized regression estimators were considered. In both 
cases, X and z contains a variable with value one for all tax-
filers. One generalized regression estimator involves cali­
bration on taxfiler revenue during second-phase weighting. 
(Taxfiler revenue is included as a second auxiliary variable 
in z.) The second estimator involves calibration on taxfiler 
revenue at both phases of weighting. (Taxfiler revenue is 
included as a second auxiliary variable in both x and z.) 
Estimates of domain totals computed using these two esti­
mators are denoted by }GREG-R2(C^) and fGREG-RiR2(< )̂, 
respectively, in subsequent discussion. 

Estimates were produced for two variables of interest -
transcribed revenue and total expenses. There are some 
conceptual differences between transcribed revenue and 
taxfiler revenue. For example, capital gains and extraor­
dinary items are included in taxfiler revenue in many 
industries while they are excluded from transcribed rev­
enue. In addition, taxfiler revenue contains more data 
capture errors than transcribed revenue since it is not 
subject to the same level of quality control. 

The population used for the study included about 
140,000 T2 taxfilers who reported over $25,000 in revenue 
for tax year 1989. The first- and second-phase selection 
probabiUties used during sampUng for production for tax 

year 1989 were employed. The first-phase sample included 
approximately 31,000 taxfilers and there were about 
23,000 businesses in the second-phase sample. The correla­
tion between taxfiler revenue and transcribed revenue for 
businesses in the second-phase sample was 0.969, while the 
correlation between taxfiler revenue and total expenses 
was 0.960. 

Large proportions of units in the first- and second-
phase samples were selected with certainty. All units with 
first-phase selection probability one were excluded from 
first-phase weighting and the corresponding g-weights 
were set to one. Units with second-phase selection pro­
bability one were treated analogously during second-phase 
weighting. There were 9,884 units in the first-phase sample 
with first-phase selection probabilities different from one 
and 910 units in the second-phase sample with second-
phase selection probabilities different from one. Each 
first-phase poststratum consisted of one or more of the 
first-phase sampUng strata used during sampling for 1989 
production. These strata were defined using five revenue 
classes. All the sampling strata included in any particular 
first-phase poststratum corresponded to the same revenue 
class. Each first-phase poststratum contained a minimum 
of twenty sampled units. The use of a minimum sample size 
was motivated by concerns about the bias in V{ i^REc (^)) 
when the number of sampled units used for estimation of 
regression coefficients is very small (Rao 1968b). If a first-
phase sampling stratum included fewer than twenty 
sampled units, it was combined with sampling strata for 
similar SIC2 codes and the same revenue class until a 
poststratum containing at least twenty sampled units was 
obtained. Application of this procedure led to 166 first-
phase poststrata. Second-phase poststrata were formed 
analogously, combining sampling strata for similar SIC4 
codes to obtain a minimum sample size of twenty for each 
poststrata. There were 30 second-phase poststrata. 

First and second-phase weights for 5^GREG-TPH(O'). 

>GREG-R2(c') and ?GREG-RiR2(c') wcrc Calculated using a 
modified version of the SAS macro CALMAR (Sautory 
1991). The set of first-phase sampling weights calculated 
for the GREG-R1R2 estimator included twelve negative 
weights. There were no negative second-phase weights 
calculated for dther GREG-R2 or GREG-R1R2. (Negative 
weights are not possible for the GREG-TPH estimator.) 
Estimates of transcribed revenue and total expenses were 
produced for 77 SIC2 domains, 256 SIC3 domains and 
587 SIC4 domains using the three GREG estimators, as 
well as yH-T('^)- Since GREG-R1R2 did not produce any 
negative estimates, no measures were taken to modify the 
negative weights associated with the estimator. 

Results of comparisons of the GREG-TPH and H-T 
estimators are presented in Table 1 and Table 2. The mean 
gains and mean losses reported in the tables are averages 
of ratios of coefficients of variation. The GREG-TPH 
estimator performs better than the H-T estimator for the 
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Table 1 
Comparison of GREG-TPH and H-T Estimators 

for Transcribed Revenue, Estimated Coefficients of Variation 

Type of Domain 

S1C2 

S1C3 

S1C4 

Gains Using 
GREG-TPH 

Number 

57 

175 

359 

Mean 

0.768 

0.909 

0.945 

Losses Using 
GREG-TPH 

Number Mean 

20 1.113 

81 1.082 

228 1.079 

GREG-TPH use the same auxiliary variables during first-
phase weighting, the marginal differences between GREG-R2 
and GREG-TPH are not surprising. Estimated CVs for 
GREG-R1R2 are generally smaller than estimated CVs for 
GREG-TPH and the relative performance of GREG-R1R2 
improves as domain size increases. Nevertheless, 
GREG-R1R2 is superior to GREG-TPH for only 64% of 
SIC4 domains, and the average increase in estimated CVs 
for those domains in which GREG-R1R2 did worse than 
GREG-TPH is larger than the average decrease in estimated 
CVs for domains in which GREG-R1R2 performed better. 

Table 2 
Comparison of GREG-TPH and H-T Estimators 

for Total Expenses, Estimated Coefficients of Variation 

Table 3 
Comparison of GREG-R2 and GREG-TPH Estimators for 

Total Expenses, Estimated Coefficients of Variation 

Type of Domain 

SIC2 

S1C3 

S1C4 

Gains Using 
GREG-TPH 

Number 

57 

175 

355 

Mean 

0.773 

0.910 

0.945 

Losses Using 
GREG-TPH 

Number 

20 

81 

232 

Mean 

1.100 

1.082 

1.079 

Type of 
Domain 

S1C2 

S1C3 

S1C4 

Gains Using 
GREG-R2 

Number 

38 

58 

88 

Mean 

0.993 

0.991 

0.988 

No 
Difference 

Number 

26 

158 

439 

Losses Using 
GREG-R2 

Number Mean 

13 1.001 

40 1.002 

60 1.009 

majority of domains. The gains obtained using GREG-TPH 
are particularly large for SIC2 domains. At the SIC4 
level, the estimated coefficient of variation (CV) for the 
GREG-TPH estimate of total expenses is lower than the 
estimated CV for the H-T estimate for 60.5% of domains. 
In cases in which the estimated CV for GREG-TPH is 
lower it is 5.5% smaller, on average, than the estimated 
CV for H-T. When the estimated CV for GREG-TPH is 
higher it is 7.9% larger than the estimated CV for H-T, on 
average. In addition to the information in Tables 1 and 2, 
there is another reason to prefer GREG-TPH to H-T. 
Each year, tax return information for some sampled 
taxfilers is not received by Statistics Canada or is unusable 
because it does not include the necessary financial state­
ments. Assuming that such cases of nonresponse are 
ignorable, the GREG-TPH estimator provides an auto­
matic nonresponse adjustment. 

The results in Tables 1 and 2 indicate that the relative 
performance of the GREG-TPH and H-T estimators are 
very similar for both variables of interest. The results of 
the other comparisons of estimators done as part of this 
empirical study did not depend on the variable of interest 
in any important way. Consequendy, only results for total 
expenses are reported in subsequent tables. 

The GREG-TPH estimator is compared to GREG-R2 
and GREG-R1R2 in Tables 3 and 4. Based on esdmated 
coefficients of variation, GREG-R2 performs slightly 
better than GREG-TPH. Since a large propordon of 
units in the second-phase tax sample have second-phase 
selection probability one and both GREG-R2 and 

Table 4 
Comparison of GREG-R1R2 and GREG-TPH Estimators for 

Total Expenses, Estimated Coefficients of Variation 

Type of Domain 

S1C2 

SIC3 

S1C4 

Gains Using 
GREG-R1R2 

Number 

51 

160 

377 

Mean 

0.867 

0.934 

0.954 

Losses Using 
GREG-R1R2 

Number Mean 

26 1.170 

96 1.093 

210 1.074 

The results in Tables 3 and 4 indicate that, although the 
GREG-R1R2 esdmator shows some promise, it would be 
inappropriate to completely replace the GREG-TPH esti­
mator currently used in production by GREG-R1R2. The 
improvements obtained using GREG-Rl R2 are relatively 
marginal, given the strong correlation between taxfiler 
revenue and total expenses. Larger improvements could 
be obtained if: (i) SIC codes used for first-and second-
phase stratification were always consistent with SIC codes 
used to determine the domain membership of sampled 
units; and (ii) formation of first-and second-phase 
poststrata did not require combination of sampling strata 
to obtain a minimum sample size in each poststratum. 

The results reported in Table 5 were obtained after SIC 
codes assigned to taxfilers by Revenue Canada and SIC 
codes used for stratification of the second-phase sample 
were changed for sampled units, where necessary, to 
eliminate inconsistencies between these codes and those 
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Table 5 
Comparison of GREG-RlR2 and GREG-TPH Estimators for 

Total Expenses, Estimated Coefficients of Variation, 
No Misclassification 

Type of Domain 

SIC2 

SIC3 

S1C4 

Gains Using 
GREG-R1R2 

Number 

66 

184 

402 

Mean 

0.778 

0.916 

0.944 

Losses Using 
GREG-Rl R2 

Number Mean 

11 1.057 

72 1.047 

185 1.034 

used to determine domain membership. A comparison of 
Tables 4 and 5 indicates that the relative performance of 
GREG-RlR2 is considerably better when there are no 
classificadon errors. GREG-R1R2 reduces estimated CVs 
by over 22% (on average) for over 85% of SIC2 domains. 

Throughout the empirical resuUs reported here, perfor­
mance improvements obtained through the use of addi­
tional auxiliary information increase as domain size 
increases. This result is consistent with the observations 
in Section 2 concerning the conditions under which corre­
lations between y{d) and the vectors of auxiliary variables, 
X and z, will be high. Provided that the variable of interest 
and the auxiliary variables are highly correlated, correla-
dons involving y(d) will be strong if each poststratum 
containing at least one sampled unit falling in domain d 
also contains relatively few sampled units that do not fall 
in domain d. 

5. CONCLUSIONS 

Generalized regression estimation provides a conve­
nient framework for the use of auxiliary information. A 
generalized regression estimator for a two-phase sample 
design with Poisson sampling at both phases of selection 
is derived in this paper. The efficiency of the estimator is 
investigated through application to the two-phase tax 
sample selected by Statistics Canada to obtain annual 
estimates of the economic activity of small businesses. The 
estimation method currently used in production for this 
survey incorporates poststratified ratio adjustments during 
both first-and second-phase weighting to compensate for 
differences between actual and expected sample sizes. This 
poststratified estimator is a particular case of the gener­
alized regression estimator. 

In an empirical study, the generalized regression esti­
mator currently used in production (GREG-TPH) performs 
much better then the Horvitz-Thompson estimator. Two 
other generalized regression estimators are also compared 
to GREG-TPH. The alternative estimators produce improv­
ements for large domains. However, their performance for 
the smaller domains that are of particular interest to users 

of estimates based on the two-phase tax sample does not 
justify complete replacement of the current production 
methodology. 
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APPENDIX A: 
DERIVATION OF VARIANCE 

OF YcREcfd) AND VARIANCE ESTIMATOR 

The variance 
identity 

of fGREG(d) can be derived using the 

y(fGREG(d)) = EiV2(fGREc(d)) + K,£'2 ( FGREG (^) ) • 

First, consider the variance of the estimator with respect 
to the second phase of sampling, conditional on the resuUs 
of first-phase calibration. If the vector of auxiliary vari­
ables for second-phase weighting, z, includes a variable 
with value one for all taxfilers (or a linear combination of 
auxiliary variables that is equal to one for all taxfilers can 
be constructed), the generalized regression estimator can 
be written as 

fGREa(d) = Y ^uW2iyi(d) 
iis2 

- E L ^i'(^'(^) - ZiB.)/P2i + Dz . f i , . 
V iis2 n V 

Ignoring the variability due to the esdmation of regres­
sion coefficients during second-phase weighting, we have 

EiV2{fcREG) " EIV2(Y M'„Q2,//'2,) 
\ iis2 / 

= E, (Y'-^^^^^lQl). 
\ iis\ P2i / 

The esdmator of £'iF2( yGREG(^)) based on the vari­
ance estimator for calibration estimators advocated by 
Deville and Sarndal (1992, p. 380) is 

E ( 1 - P2i) , ,2 

^^ ^ 2̂ (gugnQii) • iisl 
(PuP2i)' 
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Ignoring variability due to the estimation of regression 
coefficients during first-phase weighting, the second term 
in the variance expression can be written as 

ViE2{fGREG(d)) = Vi(Y wuyi(d)) 
\ iisl / 

Pu 

An estimator of this term is 

e V (1 - Pu), ,; 
S2= LI —-2 (guQii) 

iis2 PuP2i 
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Two-Stage Area Frame Sampling on Square Segments 
for Farm Surveys 

F.J. GALLEGO, J. DELINCE and E. CARFAGNA' 

ABSTRACT 

In the MARS Project (Monitoring Agriculture with Remote Sensing) of the E.G. (European Community), area frames 
based on a square grid are used for area estimation through ground surveys and high resolution satellite images. 
These satellite images are useful, though expensive, for area estimation: their use for yield estimation is not yet 
operational. To fill this gap the sample elements (segments) of the area survey are used as well for sampling farms 
with a template of points overlaid on the segment. Most often we use a fixed number of points per segment. Farmers 
are asked to provide global data for the farm, and estimates are computed with a Horvitz-Thompson approach. 
Major problems include locating farmers and checking for misunderstanding of instructions. Good results are 
obtained for area and for production of the main crops. Area frames need to be complemented with list frames 
(multiple frames) to give reliable estimates for livestock. 

KEY WORDS: Area frame; Point sampUng; Segment sampling; Farm sampling. 

1. INTRODUCTION 

The main purpose of this paper is to present the method 
used to sample farms in an area frame by the MARS 
(Monitoring Agriculture with Remote Sensing) Project of 
the European Community (EC). Sampling farms is not a 
central activity in this project, but rather a way of bypassing 
the limitations of the actual capacity of satellite images, 
especially for yield estimation. We shall present a brief 
overview of the MARS Project to make up for the few 
existing references in statistical journals (Ambrosio 1993, 
Gallego 1992). Other presentations can be found in confer­
ence papers (Meyer Roux 1990, DeUnce 1990, Sharman 
et al. 1992, Carfagna e? al. 1994) or remote sensing journals 
(Gonzalez et al. 1991, Gallego et al. 1993). 

2. THE MARS PROJECT OF THE EUROPEAN 
COMMUNITY 

The MARS Project was launched in 1988 to assess and 
to develop operational applications of Remote Sensing to 
Agricultural Statistics. It is carried out by the Institute of 
Remote Sensing Applications (IRSA) of the Joint Research 
Centre (JRC) of the EC. Most of the activities of the period 
1988-1993 were divided into 4 main parts, named "actions": 

(1) Regional Crop Inventories. 
(2) Monitoring Vegetation. 
(3) Agrometeorological Models. 
(4) Rapid Estimates at the EC level. 

Some work is made as well in other related fields, such 
as area frame sampling. We shaU focus here on a sampling 

method used in the frame of action 1 "Regional Inventories", 
but we shall first say a word about the other actions. 

2.1 Monitoring Vegetation 

This action deals with low resolution satellite images 
from NOAA-AVHRR (Advanced Very High Resolution 
Radiometer). In these images each pixel has about 1 km^ 
in the vertical of the satellite orbit. The main objectives 
are the development of friendly software for the pre-
treatment of these images, and building a data bank with 
time series vegetation indexes and other indicators for 
about 3,000 monitoring units in the EC. These monitoring 
units have not yet been definitely defined. They should be 
geographic areas roughly between 500 km^ and 1,000 km^ 
with a more or less homogeneous vegetation or greenness 
index (Houston 1984, Goward 1991). 

2.2 Agrometeorological Models 

General and crop specific models are being currently 
developed on the basis of data from a network of about 
650 Meteorological Observatories in Europe and surroun­
ding areas. This model CGMS (Crop Growth Monitoring 
System), developed in collaboration with the WOFOST 
(World Food Studies Centre, in Wageningen, Netherlands), 
also uses other data, such as soil and elevation data, 
together with information on the physiology of plants 
(van Diepen 1989, van Lanen 1992). Remote sensing (low 
resolution images) will come into the picture later for the 
spatial interpolation of ground observed meteorological 
data. Parameters of the model are currently computed for 
each ceU of a 50 km x 50 km grid. 

' F.J. Gallego, Joint Research Centre of the European Communities, tp. 440, 21020 Ispra, Varese, Italy; J. Delince, Commission of the E.C. DC VI, 
Loi 120, 4-23, 1049 Brussels, Belgium; E. Carfagna, Department of Statistics, University of Bologna, V. Belle Art! 41, 40126 Bologna, Italy. 



108 Gallego, Delince and Carfagna: Two-Stage Area Frame Sampling on Square Segments for Farm Surveys 

2.3 Rapid Estimates at the E.C. Level 

The main goal is giving rapid esdmates of area and yield 
change of annual crops compared with the previous year 
based on a two-stage sampling scheme: 53 sites (Figure 1) 
of 40 km X 40 km with a sample of 16 squared segments 
of 700 m X 700 m (Figure 2) in each of the sites. Individual 
data are acquired by photo-interpretation of SPOT-XS or 
Landsat-TM images. An average of three images is ana­
lysed for each site with a minimum of ground information, 
namely a general knowledge of the dominant crops in each 
area. A ground survey is made for an a posteriori valida­
tion of the photo-interpretation. A monthly report (from 
March to November) is produced with an update of the 
estimates. Each report should use all the images acquired 
more than 15 days before. 

fee:* 

Figure 1. Sample of 53 sites for rapid crop esdmates in the E.C. 

2.4 Regional Crop Inventories by Segment Sampling 
and Remote Sensing 

The objective of the acdon was to implement, to adapt 
and to assess estimation methods for crop area and pro­
duction based on area frame sampling and satellite images. 
When this acdon was implemented by the IRSA in 1988 
on five pilot regions of approximately 20,000 km^ each; 
an absolute priority was given to annual crops: soft and 
durum wheat, barley, rapeseed, dried pulses, sunflower, 
maize, cotton, tobacco, sugar beet, potatoes, rice and 
soya, as well as fallow. Attendon is being shared more and 
more by permanent crops, pastures, and non-agricultural 
land uses. 

Since 1990 the IRSA has progressively transferred the 
inidative to regional or national administradons that wish 
to use area frame surveys based on segments. In general, 
the activities have been shifted to the southern countries 
of the EC and the former communist countries in central 
Europe, that have shown much interest in the method 
(Figure 3). In some cases, like in Italy, there is just an 
exchange of points of view between the national project 
and the IRSA. 

Degree of JRC involvement 

• High 

Technical 
support 

L I Collaboratit 

e < 3 3 

Figure 2. Segments in one site (rapid estimates in the E.C.) 

Figure 3. European regions with segment surveys in 1992. 

2.4.1 Sampling Segments on a Square Grid 

There are two main approaches to building an area 
frame based on segments: the segments can be drawn on 
topographic or cadastral maps following roads, rivers, or 
limits of fields (sometimes called cadastral segments). The 
sample is usually drawn with a two-stage procedure with 
intermediate primary sample units to reduce the burden 
to build the frame (Cotter 1987), which remains in any case 
a heavy operation. 
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We generally use frames based on a square grid (Gallego 
and DeUnce 1994), which is much faster to define. Satellite 
images are generally (but not necessarily) used for strati­
fication prior to sampUng. 

Figure 4 illustrates a smaU example of this kind of 
sample with a very simple stratification and segments of 
25 ha (hectares). SampUng is systematic, repeating a pat­
tern in square blocks. In this case the blocks have a size 
of 10 km X 10 km, and the pattern has 4 replicas in the 
most agricultural stratum (plain), 2 replicas in the hills, 
and one in the mountains. 

/ 
/ 

= z r z = i -

~-^^^^=--I=ZIIZ 

Figure 4. Example of area frame sample with squared segments 
and squared blocks. 

The main drawback of this approach is the management 
of segments that fall on the boundary between two strata 
(Figure 5). Three alternatives are being tested for this 
problem: (1) adapting the stratificadon to the sampling 
grid, (2) splitting border segments into pieces that belong 
to different strata, and (3) keeping only the largest one 
among these pieces. 

The most frequent non-sampling errors - shifts in loca­
tion and inaccuracy in shape or size of the segment - are 
not strongly correlated with land use. No major influence 
has been found on the area estimates or their precision. 

The sample pattern to be repeated in each block is 
drawn at random with a restriction on the distance between 
segments in order to avoid segments that are too close to 

stratum 2 

' stratum 1 

Figure 5. A segment can be split by a stratum boundary. 

each other. Cluster estimators can be used in this case 
rather than standard formulae for random sampling 
(Fuentes 1994, Ambrosio 1993). Systematic sampling has 
a risk of bias if there is a cyclic effect in the landscape with 
a period that coincides with the block size (10 km in the 
example), but this is very unlikely. The distance threshold 
between segments can induce an overestimation of standard 
errors if the spadal correlation is significantly positive for 
distances less than the threshold. 

The size of the segments varies from region to region 
depending on the agricultural landscape, especially on the 
size of fields. In the Czech Republic, the segment size 
was 400 ha. For the area survey, enumerators locate the 
segments, draw fields on a transparent sheet placed over 
an aerial photograph, and write down their land use. 
About 5% to 10% of the segments are visited again by 
supervisors to check for possible errors on the ground 
work. Satellite images are not used either for the survey 
itself or for the farm survey, but they can be optionally 
used to improve the precision of the area estimates as 
described in the next section. 
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2.4.2 Improving Area Estimates with Satellite Images 

High resolution satellite images from Landsat-TM or 
SPOT-XS sensors have been assessed and are still being used 
at moderate scale to improve the estimates obtained from 
the ground survey on a sample of segments. The most com­
monly used approach is the regression estimator on classified 
images. An alternadve esdmator based on confusion matrices 
has been tested with results that are very close to those of 
the regression estimator (Hay 1988, Gallego 1994). 

The conclusions of this assessment are similar to those 
of the US Department of AgricuUure (Allen 1990). The 
use of satellite images for area estimation is operational, 
but still too expensive for the efficiency obtained. The 
economic threshold can be reached by improving image 
processing automation, since the cost of image processing 
in the European market for this purpose is much higher 
than the cost of the images themselves. This threshold has 
nearly been reached with Landsat-TM images in Greece. 
Different conclusions on cost analysis are presented by 
Giovacchini (1992). 

3. SAMPLING FARMS BY POINTS 

For agricultural surveys in the European Community, 
farms are traditionally sampled from a list frame (Eurostat 
1991). The Ust is a census of farms that exceed a certain 
size threshold. In many countries an agricultural census 
is made every 10 years and is seldom updated (if ever). 
Hence there may be a substantial difference between the 
sampling frame and the actual population at the date of 
the survey. The situation is worse in the central European 
countries of the former Eastern Block (the area between 
Poland and Rumania-Bulgaria), where the change of land 
property structure is so rapid that the census may not exist 
for private farms and becomes obsolete for co-operatives. 

Area frames on square segments can be easily defined 
when the geographic borders of the region are known. A 
subsample of these segments is used as well for sampling 
farms in several countries with the help of a template of 
points overlaid on the segment. This has been experimen­
tally tested in Germany, Portugal, Italy (Carfagna 1991) 
and Spain, and is now being regularly used in Greece, 
Rumania and the Czech Republic. 

The template is the same for all the segments in a 
stratum, and usually symmetric to reduce the risk of bias 
due to a particular geographic location. Data are obtained 
only for farms corresponding to points falling on Utilized 
Agricultural Area (UAA). 

The definidon of UAA used in the field work is adapted 
to each national system. Farm buildings and rough pastures 
are included in some countries and excluded in other 
countries. The crucial point is that the definition used must 
be consistent with the definition of the column UAA used 
for computation (Table 1). 

Table 1 
Observadons Generated by Points Sampled 

in the Segment of Figure 6 

Segment 

2 

Point 

1 

2 
3 
4 

5 

UAA 

19 
0 
0 

35 
35 

Perma­
nent 

Crops 

4 

0 
0 
0 
0 

Wheat 

Area 

12 
0 
0 

24 
24 

Produc­
tion 

64 
0 
0 

131 
131 

Barley 

Area 

0 
0 
0 
3 
3 

Produc­
tion 

0 
0 
0 

12 
12 

In the example of figure 6, point 3 feU on woodland and 
point 2 on a built area. They will generate two zero-valued 
records in the farm file. The enumerator will have to locate 
the farmers for the other three points. The farm correspon­
ding to point 1 has other fields in the segment, that will 
be impUcitly included in the survey, but the enumerator 
will not need to find out if these fields exist. Points 4 and 5 
belong to the same farm, and it will appear twice in the 
farm file (Table 1). 

Figure 6. Segment with a pattern of 5 points for farm sampUng. 

Farmers are located and asked to provide global data 
for the farm, including total area and production of each 
target crop. No question is asked about the production of 
each field or the set of fields inside the segment. This is 
not necessary because in the final formulae to compute the 
estimates (formulae 2 and 3 in section 4.1) the crop area 
or the production in the tract is not used. 
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The ground survey instructions are usually transferred 
from the JRC to National Administrations. They explain 
the instructions to Regional co-ordinators, who give the 
information to the enumerators. Instructions may be 
modified in some of these steps. Checking that the instruc­
tions have not been misunderstood is sometimes difficuU, 
in part because linguistic limitations are a serious barrier 
to direct contact with enumerators. In some countries 
{e.g., Spain) farmers Uve mainly in rather large urban 
nuclei and are difficult to locate; this can lead to a signifi­
cant amount of missing data. 

4. ESTIMATES BASED ON FARMS 
SAMPLED BY POINTS 

We assume that the population 0 of segments is divided 
into strata Q,,,h = 1, . . . , / / , the total population size is 
N segments (N,, for stratum 0;,) and the sample size is n 
segments (n,,). The size of our sample of points in each 
segment will be A",, previously fixed; in general we have 
Ki = K, constant across all strata, out of which F, corre­
spond to the farms on which these points fall. Each 
segment / has a total UAA surface U,. 

We have a two-staged sampling scheme. In the first 
stagethesegment/is selected with probabiUty/?, = l/Nj, 
in each of the n/, trials. In the second stage the unit is not 
the farm but the tract (UAA in a segment, that belongs 
to the same farm). The tract k of segment / has an area 
Tjk. The total UAA of the farm is Ajk over all segments. 
Uj is the sum of the tracts Tjk in segment /. 

The method presented below is closely related to the so 
called "weighted segment estimator" approach used in the 
U.S. and in Canada (Nealon 1984). 

4.1 Estimates Based on Farms and Non-Farm Points 

There will be A' - F, observations (fictitious farms) 
with value 0 corresponding to points outside the UAA. 

Sampling through points means that tracts are selected 
with replacement and with a probability p/yt proportional 
to the area Tjk/Di, (the knowledge of 7;̂ . is not necessary), 
where Z), is the size of the segment determined by the 
frame design. We are impUcitly assuming that the surveyed 
region is flat. A slight bias might be introduced by the fact 
that annual crops are usually on more or less flat land and 
pastures or non-UAA are often on land with a steeper 
slope. 

The sampling is done with replacement: a farm can be 
selected more than once, which gives easier formulae for 
variance estimation. Strictly speaking the joint selection 
probability that farms k and k' are in the sample Pikk- ^ 
Pikk X Pikk ^s would be the case if the different points of 
the template were drawn independently, since there is 
usually a relatively large distance between them. We will 
disregard this fact in this paper. 

Wjk will be an additive quantity for a farm, most often 
the producdon or the area of a particular crop. It is 
obvious that yield is not an additive variable. 

Since we have no information about how Wik is distrib­
uted inside the farm, we create a fictitious variable A'that 
is uniformly distributed, and that has, by definidon, the 
same total as W for each farm: 

Xik = ^ Wjk. 
Aik 

(1) 

Estimating the totals of X and W are equivalent 
problems. 

The two-stage version of the Horvitz-Thompson esti­
mator for the total of X in the stratum %, gives: 

1 ^ fCj N„ ;^ 1 Xih 

' n„ t Pi "h k Ki ^, Pik 
(=1 (=1 

KT "h n ^i 

"^"YTI. 
Wik 

«" ,r, '̂ ", ̂ '̂  
(2) 

This means that, even if the second stage sampling unit 
is the tract, we do not need to know its area nor Xik, but 
just the global information about the farm. 

The estimator is a linear function of the estimates on 
the selected segments. Its variance in stratum Q/, can be 
esdmated as (Cochran 1977, section 11.6): 

NfJ n,,\ ^ 
v{x„) ^^(i -•^) Y 

n„\ N,J f^ 
Nj, 

nil 

"I, 

Y 
I 

"^ (X, XHY 

+ nil 

Ki(Ki - 1) 
/ = i - - ' ^ - - ' - ' k=i 

The estimates for the total are: 

s(^-^f-
H 

=̂i; v(X) = Y '̂ (-̂ ")- (4) 
it=i ii = i 

Crop areas are currently estimated from the segment 
survey with more objective ground data (direct observation 
of the enumerator on the filed), although some bias can 
appear due to the imperfect location of the segments on 
the ground. Farm surveys provide both area and produc­
tion estimates, but they can have more significant bias due 
to non response and to a subjective tendency of the farmer 
that can depend on whether he is more concerned about 
taxes or about subsidies at the time of the survey. Com­
paring both area estimates, from segment survey and farm 
survey, can be useful to check for possible bias on the 
production estimate based on the farm survey. 
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The estimates are also possible for cattle, but the results 
will be presumably bad if there are a substantial number 
of farms without any UAA, which will not be sampled: 
the coverage of the area frame will not be complete in this 
case. On the other hand it may happen that the number 
of livestock does not correlate to the UAA and hence to 
the probability of selection. This results in inefficient 
estimates. 

A program in C for Personal Computers has been 
written (Dicorato 1993) to compute estimates using this 
method. The main part of the program was first written 
to compute estimates on a segment survey. 

4.2 Estimation Based Only on Farm Points 

We shall mention another option that consists of using 
only points that fall in the UAA. In this case, we first fix 
Fi, the number of points that fall in UAA (often F, = F,,, 
constant in each stratum). In segment / we observe as many 
points as necessary to have F, points in the UAA. If the 
segment / has no UAA, one observation (fictitious farm) 
is added with 0 values. This is actually an implicit second-
stage stratification or stratification of the first-stage units 
(segments) into two strata; UAA and non-UAA. The non-
UAA stratum is not sampled. In this case (2) and (3) are 
to be adapted substituting K, by F, and D, by U,. Some 
inconsistency may arise in hilly areas because Ajk comes 
from the farmer's declaration and t/, from segments 
drawn on the ground over aerial photographs. 

Xu = 
ni, 

HL X N, "'' 1 '^i W-, 

, ^ Pi n„ , ^ , Fi ^^ 
i=\ k=l 

A: 
(5) 

V(X„) ^Yl_^^g 
n,i V N„) ^^ 

N, "'' 
"E 

ni, - 1 

'fVikUj 

-\-

nil - ^ ( ^ - 1 ) k.i 

^ /^ik^i ' \ ^ 
(6) 

the second term of (6) is null for segments with no UAA. 
This term cannot be computed if Fj — 1 because of non-
response. A value 0 can be attributed, though this wUl lead 
to an underestimation of the within-segment variance, 
which is relatively small according to calculations made 
on available data (Carfagna 1992). 

This approach has only been used once to resolve a 
misunderstanding of instructions for ground work that 
should have been performed following the method in 
section 4.1. However advantages and drawbacks of both 
approaches are not clear, and no systematic comparison 
has been made so far on the same region and same year. 
Using only farm points can increase the cost of the survey 
if the number of points per segment is to be kept constant, 

but the non-UAA points removed correspond to null 
values of Wjk, and their removal can result in a reduction 
of the variance. 

4.3 Farms with Fields in Different Strata 

At first sight, the estimator (2) seems to assume that a 
farm k that has been selected through a point in stratum 
fl/, is completely included in this stratum. It is obvious 
that a farm can have fields in different strata, and the 
question arises as to whether this fact disturbs the reli­
ability of the resuUs. 

We stress again that the variable used is not really Wjk, 
but Xik defined for each individual tract. The total of W 
does not coincide wkh the total of .Yin each stratum, but 
it does in the whole region as long as 

n ik (7) 

Notice that Ak is identical to what we have called pre­
viously Ajk, where the subindex / is used only to indicate 
that farm k has been selected in the sample through 
segment /. 

This identity holds on the population, regardless of the 
sampling procedure, if the farms are entirely inside the 
region and if the geometry of the ground survey document 
(aerial photograph) is correct. 

The perturbation due to farms with fields in different 
regions is expected to be small because of the low propor­
tion (generally under 1-2%) and because there is a com­
pensation between the bias due to fields inside the region 
belonging to farms with the headquarters outside the 
region and vice versa. We are assuming that the total of 
Wis calculated on the farms that have their headquarters 
inside the surveyed region. 

4.4 Nonresponse 

We refer here to the estimators based on farm and non-
farm points (section 4.1). If a farmer does not co-operate 
or cannot be found, the corresponding row or rows of the 
input table (Table 1) are substituted with the average 
values of responding farms in the segment, if there are any; 
otherwise they are substituted with the average of respon­
ding farms for all the segments in the current stratum. 

If in the second stage (sampling farms inside the segment) 
we consider farm and non-farm points, and give value 0 
to the points that fall in non agricultural land, it is obvious 
that the exclusion of nonrespondents would produce a 
serious bias, because the zero values corresponding to non-
UAA are never missing. These points are not used to 
compute the "average farm" values used to fiU missing 
values. There is still a risk of bias if farmers who cannot 
be located or refuse to co-operate have a peculiar behaviour, 
e.g., if they are on the average smaller or less efficient farms. 
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We could have considered a different way of over­
coming this problem: eliminating both missing values and 
a proportional number of 0 values corresponding to non-
UAA points. Both give the same estimate for the total, but 
the second solution is more uncomfortable because the 
sample size in the second stage is not an integer any more. 

The introduction of "average farm" values will lead to 
a negative bias on the variance. To compensate it, the farm 
is not included in the sample size K, for the computation 
of variances. 

5. RESULTS: TWO EXAMPLES 

We discuss below some resuUs from two regions: Emilia 
Romagna (Italy) and the Czech Republic. In the Czech 
Republic, the method presented in sections 2.4, 3 and 4.1 
was used; there were no missing data at all. In Emilia 
Romagna the general design of the survey did not follow 
exactly the procedure outlined above. Missing data were 
treated as stated in section 4.4. 

5.1 Emilia Romagna 1990 

In Emilia Romagna an area of 19,500 km^ was divided 
into 4 strata, excluding mountainous areas. A sample of 
313 "cadastral" segments (with physical boundaries) was 
drawn based on a two-staged procedure with primary 
sampUng units (psu) of about 10 km^. Segment size was 
approximately 50 hectares or 100 hectares, depending on 
the strata. 5 points per segment were drawn at random 
from a grid with a 50 metre step. 

Out of the 1,565 points sampled: 326 were non-UAA, 
the farmer's address could not be found for 206 UAA 
points, 38 farmers were not located and 32 refused to 
co-operate. 963 UAA points from 285 segments had valid 
data, corresponding to 617 farms, some of which appear 
more than once in the sample. 

When we think only of area estimation, the segment 
survey can be seen as more objective and complete, since 
there are no missing data and observations do not rely on 
farmers' answers. If we accept this principle we can have 
an idea of a possible bias in the farm survey by comparing 
with the area estimates of the segment survey. Estimates 
can be compared in Table 2 for the main crops in the 
region. Figures match well for cereals, excepting durum 
wheat, and permanent crops, but some problems appear 
for sugar beet and soya, that might be related to misunder­
standings on how to declare second crops in the same year 
and the same field, or with a bias due to missing values. 
Official statistics are produced taking into account a 
variety of information. Durum wheat is reported sepa­
rately because of the special meaning of this crop due to 
the significant subsidy granted by the EC to each hectare 
of crop. 

Table 2 

Results of the Segment Survey and the Farm Survey 
for Main Crops in Emilia Romagna (1990) 

Emilia 
Romagna 

Soft wheat 
Durum wheat 
Barley 
Rice 
Sugar beet 
Soybeans 
Vineyards 
Orchards 

Segment 
Survey 

Area X 
1,000 ha 

Esti­
mation 

212 
46 
43 
-

I l l 
76 
78 
91 

CV 
% 

5.7 
14.9 
11.2 

-
7.1* 
6.0* 

13.3* 
13.1* 

Area 

Farm Survey 

X 
1,000 ha 

Esti­
mation 

208 
48 
50 
4 

96 
55 
76 
96 

CV 
% 

6.9 
15.2 
17.7 
59.0 
9.6 

11.6 
18.7 
19.7 

Prod. X 
1,000 tm 

Esti­
mation 

1,177 
260 
184 
23 

5,474 
321 

CV 

% 

8 
14 
17 
61 
28 
39 

ISTAT 

Area 

212 
72 
38 
6 

119 
47 
75 
85 

* Estimate corrected by regression on classified satellite image. 
ISTAT: Official statistics. No precision provided. 

The coefficients of variation in the farm survey have 
a reasonable behaviour for cereals, but become more 
difficult to understand for sugar beet and soybeans. The 
high CV (Coefficient of variation) for the production can 
be due to higher yields in larger, more specialized farms. 

A correction of the production estimate can be made 
using the difference of area estimates between the segment 
survey and the farm survey. A regression estimator 
approach might be a good solution. 

Livestock is seriously underestimated (Table 3) since 
many livestock owners do not have agricultural land. A 
mixed approach was used for cattle and pigs with an 
exhaustive survey using a list frame for the 50 largest farms 
and point sampling for the rest. The procedure works for 
pigs, but CVs are not yet satisfactory. 

Table 3 

Results of the Farm Survey on Area Frame and Mixed 
Frame for Livestock in Emilia Romagna (1990) 

X 1,000 Units 

Cattle 
Pigs 

Sheep 

Census 

869 
1,876 

90 

Area Frame 

Estimate 

829 
1,312 

38 

cv% 
14 
37 
74 

Mixed Frame 

Estimate 

894 

1,818 

cv% 
13 
27 

5.2 Czech Republic 1992 

Area frames seem especially useful in the former com­
munist countries in Europe because of the rapid change 
of property structure. Agricultural statistics are mainly 
produced with no sampling error by adding the data 
reported by each state farm or co-operative. This proce­
dure will collapse in the coming years. It will be extremely 
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difficult to have an idea of the number of existing farms, 
and an agricultural census will be out of date before 
the data are elaborated. Area frames might be the best 
alternative. 

The territory of the Czech Republic (about 80,000 km^) 
has been stratified into 6 strata by photo-interpretation of 
Landsat-TM images. The stratificadon needed 15 working 
days for one person. In 1992, a survey was made with a 
sample of 417 square segments of 400 ha drawn by repe­
tition of a fixed pattern on blocks of 40 km x 40 km. 
Segments were visited and area estimates obtained as 
explained in section 2.4.1. 

Farms have been sampled using a fixed grid of 5 points 
in each segment. The shape of the 5-point grid was in " x " 
like in figure 6. This procedure gave 2,085 points: 858 non-
agricultural, and the other 1,227 from 458 farms. No 
missing data were recorded: all the farms were identified 
and none refused to co-operate. This happened mainly 
because the old structure of large farms was still nearly 
intact. 

Table 4 compares the results of the segment survey 
(direct observations on the field), the farm survey (farms 
sampled by points), and official statistics for the main 
crops in the country. Official statistics are obtained by 
adding figures reported by all the state farms or co­
operatives. There is a moderate disagreement on area 
estimates for wheat, maize, and potatoes. We should not 
exclude a bias in farmers' answers that has to do with self-
consumption of agricultural products. 

6. CONCLUSIONS AND RECOMMENDATIONS 

Area frames based on square grids are a pragmatic 
alternative to area frames based on ground dements 
delimited by physical features. They are much cheaper to 
build and they do not seem to have major drawbacks 
regarding the final results. However some theoretical work 
is still needed to determine under which conditions the 
location errors due to non-physical limits have a negUgible 
effect on the estimates. 

SampUng points inside area segments provides a feasible 
way to build frames for farm sampling. They are extremely 
useful if list frames (census) are poorly updated or do not 
exist. Sampling a few points per segment can be much 
cheaper than surveying all the farms with fields in the 
segment. Five points per segment seems to be a reasonable 
choice. 

Area frames alone give poor results for livestock when 
the number of units is not strongly correlated with Utilized 
Agricultural Area of the farm. 
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Table 4 
Results of the Segment Survey and the Farm Survey 

in the Czech Republic (1992) 

X 1,000 ha 

Wheat 
Barley 
Rapeseed 
Sugar beet 
Maize 
Potatoes 

Segment 
Survey 

Area 

824 
655 
140 
119 
361 
109 

CV% 

5.4 
5.1 

11.6 
11.5 
7.5 

13.6 

Area 

757 
630 
137 
127 
326 
92 

Farm Survey 

CV% 

3.7 
3.8 
6.8 
8.1 
4.8 
7.9 

Prod. 

3,412 
2,521 

310 
4,172 
8,884 
1,706 

CV% 

4.9 
4.3 
7.5 

11.0 
4.3 
8.7 

CSO 

Area 

780 
640 
136 
125 
361 
111 

Prod. 

3,413 
2,512 

296 
3,874 
8,904 
1,969 

CSO: Czech Statistical Office. 

The coefficients of variation (CV) of the area estimates 
are lower in the farm survey than in the segment survey. 
This is not surprising since the farm survey gives informa­
tion about fields outside the segments. The 458 selected 
farms represent more than 15% of the total UAA in the 
country. The CVs for production estimates are slightly 
higher than for area estimates (even lower in the case of 
maize). This seems to indicate that the variability of yields 
contributes less than the variability of areas to the vari­
ability of production. 
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Use of Capture-Recapture Techniques to Estimate 
Population Size and Population Totals when 

a Complete Frame is Unavailable 
K.H. POLLOCK, S.C. TURNER and C.A. BROWN' 

ABSTRACT 

We present a formal model based sampling solution to the problem of estimating list frame size based on capture-
recapture sampling which has been widely used for animal populations and for adjusting the US census. For two 
incomplete lists it is easy to estimate total frame size using the Lincoln-Petersen estimator. This estimator is model 
based with a key assumption being independence of the two lists. Once an estimator of the population (frame) size 
has been obtained it is possible to obtain an estimator of a population total for some characteristic if a sample of 
units has that characteristic measured. A discussion of the properties of this esdmator will be presented. An example 
where the establishments are fishing boats taking part in an ocean fishery off the Atlantic Coast of the United States 
is presented. Estimation of frame size and then population totals using a capture-recapture model is likely to have 
broad application in establishment surveys due to practicality and cost savings but possible biases due to assumption 
violations need to be considered. 

KEY WORDS: Incomplete frames; Capture-recapture sampHng; Angler surveys; Telephone surveys; Access surveys. 

1. INTRODUCTION 

In classical sampUng theory U is assumed that a complete 
frame exists. There is, at least conceptually, a complete 
list of population units. It is then possible to draw a prob­
ability sample from the population. Estimators of popula­
tion parameters such as mean or total then have known 
properties and are easily studied theoretically or numer-
icaUy. Books on sampUng theory such as Cochran (1978) 
concentrate on this situation and give properties of esti­
mators for common sampling designs such as simple 
random sampling, stratified random sampling and multi­
stage (cluster) sampling. 

In practice in surveys of establishments or businesses 
a complete frame may not exist. Lists of establishments 
kept by professional associations or government agencies 
are often incomplete. One approach to tackUng this 
problem is to use the multi-frame approach originally 
developed by Hartley (1962, 1974). Examples of this 
approach are the National Agricultural Statistics Service 
(USDA) farm surveys (Vogd and Kott 1993). These 
surveys use an incomplete list frame of farms plus an area 
frame where all farms within a sample unit are enumerated. 
Therefore the list frame is incomplete while the area frame 
is conceptually complete. (There is a list of all area units 
and within each area unit theoretically all farms could be 
enumerated.) 

There are some situations, however, where it may not 
be possible to use an area frame for practical reasons. All 
that the researcher may have available may be several 

incomplete list frames of establishments. The usual 
approach in this situation is to merge all the incomplete 
lists and ignore any remaining incompleteness. Depending 
on the degree of incompleteness remaining there could be 
serious negative bias on estimates of population size and 
population total. 

Later we present a formal model based sampling solution 
to this problem based on capture-recapture sampling. 
Capture-recapture sampling models are widely used in 
sampling animal populations (Seber 1982) and also for 
adjusting the U.S. census for undercoverage (Feinberg 
1992). In the simplest case of two incomplete lists we 
consider "marked" units to be those which occur on both 
Usts and unmarked units to be those which do not occur 
on both lists. It is easy to estimate total frame size using 
the Lincoln-Petersen estimator (Seber 1982, p. 59). This 
estimator is model based with a key assumption being 
independence of the two Usts. Once an esdmator of the 
population size has been obtained it is possible to obtain 
an estimator of population total for some characteristic 
if a sample of units has that characteristic measured. 

The usual estimator of a population total for simple 
random sampling without replacement is 

Y = Np, (1.1) 

where N is known and p is the mean of the sample, see 
for example Cochran (1978, p. 21). The variance of fis 
given by 

Var(y) = N^Mar(y), (1.2) 

K.H. Pollock, North Carolina State University, Raleigh, NC 27695; S.C. Turner and C.A. Brown, National Marine Fisheries Service, Miami, 
FL 33149, U.S.A. 
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where 

Var(;') 
- -Ŝ  (N - n\ 
- n \ N ) ' 

S^ is the population variance and (N — n/N) is called 
the finite population correcdon factor. The estimator (1.1) 
is also an unbiased estimator of the population total. 

Here our estimator is 

Y = Np, (1.3) 

where TV is obtained from the capture-recapture method. 

This means the properties of the estimator (1.3) are more 
difficult to evaluate because both TV and p are random 
variables unUke in estimator (1.1) where TV is a known 
quantity. The estimated variance of 7 here is given by 

Var( f ) = (TV)̂  Var(;') + (p)^ Var(TV) + 

Var{p)Var(N), (1.4) 

assuming that j ' and TV are independent and using an exact 
result due to Goodman (1960). The estimator (1.3) is only 
an unbiased estimator if TV and j ' are unbiased estimators 
of the population size and population mean respectively 
which is not usually the case in practice. We discuss the 
estimator (1.3) in the large pelagic fishery survey example 
in Section 3. 

The remainder of the paper is structured as follows. In 
Section 2 we review the capture-recapture literature to give 
an overview of the types of models available. In Section 3 
we present an example of a sample survey of fishing boats. 
(We consider a boat analogous to a business establish­
ment). While this example has some unique features we 
believe it has many features common to other establishment 
surveys. In the final discussion section we summarize the 
strengths and weaknesses of using the capture-recapture 
approach to estimating frame size in establishment 
surveys. Many of our ideas will require further research. 

2. A BRIEF REVIEW OF CAPTURE-
RECAPTURE MODELS 

It is obviously beyond the scope of this manuscript to 
review the extensive capture-recapture literature. For more 
information we recommend Seber (1982), White et al. 
(1982), Pollock et al. (1990) and Pollock (1991). PoUock 
(1991) is a review paper and a good lead into the literature 
and our treatment in this section follows it very closely. 
The other references are books and monographs for the 
serious reader with more time. 

Here we briefly discuss the Lincoln-Petersen model for 
two samples, more general closed population and open 

population models for more than two samples, and finally 
a method which combines closed and open population 
models in one sampling design. Pollock et al. (1990, p. 9) 
presents a flow chart which shows an overview of the 
models and how they relate to each other. 

2.1 The Lincoln-Petersen Model 

This is the oldest, simplest and best known capture-
recapture model dating back to Laplace, who used it to 
estimate the population size of France. It was first used 
in fisheries by Petersen around the turn of the century. An 
excellent detailed discussion of this model is given by Seber 
(1982, Chapter 3). 

In the original fisheries setting the method can be 
described as follows. A sample of M fish is caught, 
marked, and released. Later a second sample of n fish is 
captured, of which m are marked. An intuitive derivation 
of the estimator follows from equadng the proportions 
marked in the sample and the population, 

which gives 

m/n — M/N, 

TV = Mn/m. 

(2.1) 

(2.2) 

A modified estimator with less bias in small samples is 
due to Chapman (1951) and is given by 

TV̂  = [{M'+ l)(n + 1)1 (m -h 1)] - 1. (2.3) 

An estimate of the variance of TV,, is given by 

Yar(Ng) = 
(M -h l)(n -F 1)(TV^ - m){n - m) 

(m + l)^{m -I- 2) 
(2.4) 

See for example Seber (1982, p. 60). 

The crucial assumptions of this model are: 

(a) The population is completely closed to additions and 
deletions, 

(b) all the fish are equally likely to be captured in each 
sample, and 

(c) marks are not lost or overlooked. 

The assumption about closure can be weakened, but 
even for a completely open population, where this esti­
mator does not apply, a modification of the Lincoln-
Petersen estimator is used. The assumption of equal 
catchability causes problems in most applications. There 
may just be inherent variability (heterogeneity) in capture 
probabiUties of individual animals due to age, sex or other 
factors. There may also be a response to initial capture 
(trap response). In the next section, we consider closed 
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population models with more than two samples that allow 
for time variadon as well as heterogeneity and trap responses 
in the animals' capture probabiUties. The loss or overiooking 
of marks can be serious. One way to estimate mark loss 
is to use two marks (Seber 1982, p. 94). 

2.2 Closed Population Models 

Closed population models require the assumption that 
no births, deaths, or migradon in or out of the population 
occur between sampling periods. Therefore, these models 
are generally used for studies covering relatively short 
periods of time (e.g., trapping every day for 5 consecutive 
days). Capture histories for every animal caught are the 
data needed for obtaining estimates under these models. 
Important early references are Schnabel (1938) and 
Darroch (1958), who considered models that assumed 
equal catchability of animals in each sample. 

A set of models that allow capture probabilides to vary 
due to heterogeneity, (h), trap response (b), time variation 
(t), (i.e., capture probabiUty for time / differs from that 
for timey) and all possible two- and three-way combina­
tions of these factors is now available. The eight models 
[M(o), M(h), M(b), M(bh), M(t), M(th), M{tb), 
M{thb) ] were first considered as a set by Pollock (1974) 
and were more fully developed by Otis et al. (1978), White 
et al. (1982), and PoUock and Otto (1983). Otis et al. 
(1978) provided a detailed computer program, CAPTURE, 
for use with their monograph. An updated version provides 
estimates for seven of the eight models and a modd 
selection procedure that aids the biologist in choosing a 
model. The model selection procedure is based on a variety 
of goodness-of-fits tests. Recendy, Menkins and Anderson 
(1988) have emphasized that the model selection procedure 
is poor for small populations, unless the capture prob­
abilities are unrealistically high. 

2.3 Open Population Models 

In many capture-recapture studies, it is not possible to 
assume the population is closed to additions and permanent 
deletions. The basic open population model suitable for 
this situation is the JoUy-Seber model (Jolly 1965; Seber 
1965; Seber 1982, p. 196). The JoUy-Seber modd aUows 
esdmation of population size at each sampUng time as well 
as estimadon of survival rates and birth numbers between 
sampling times. Migration cannot be separated from the 
birth and death processes without addkional information. 

The JoUy-Seber model requires the foUovring assumptions: 

(a) Every animal present in the population at a particular 
sampling time has the same probability of capture, 

(b) every marked animal present in the population imme­
diately after a particular sampling time has the same 
probability of survival until the next sampling time. 

(c) marks are not lost or overlooked, 

(d) all emigration is permanent, and 

(e) all samples are instantaneous, and each release is made 
immediately after the sample. 

Assumptions (a), (c), and (e) were required under the basic 
Lincoln-Petersen model described in Section 2.1. Only 
marked animals are used to esdmate survival rates so that, 
strictly, we do not need to assume equality of marked and 
unmarked survival rates. In pracdce however, the biologist 
will want to use the survival rate esdmates to refer to the 
whole population. The JoUy-Seber model allows for some 
animals to be lost on capture and hence not returned to 
the population. The JoUy-Seber model also requires that 
aU emigration is permanent. If animals emigrate and then 
return to the population this causes so called temporary 
emigration which is a serious assumption violation and 
causes major bias in population size estimates. 

2.4 Combination of Closed and Open Models 

Pollock (1982), PoUock et al. (1990) and KendaU (1992) 
discuss sampUng methods which allow the use of closed 
and open models in one design. One advantage of these 
methods is that it is possible to allow for unequal catch­
ability whereas in the traditional JoUy-Seber model it is 
not possible to allow for unequal catchability. They also 
have the advantage of allowing for temporary emigration 
of animals. 

2.5 Applications of Capture-Recapture Models 

Capture-recapture models have obviously been widely 
applied to wildlife and fishery populations. A variety of 
novel nonbiological applications of capture-recapture 
methods have also now appeared. Many authors have 
applied capture-recapture to estimating the census under­
count. (See Feinberg (1992) for a complete bibliography). 
Cowan, Breakey, and Fischer (1986) used U to estimate the 
number of homeless people in a city. Greene (1983) has 
used the method to estimate demographic parameters on 
criminal populadons. Wittes (1974) and Wittes, Colton, 
and Sidel (1974) have used capture-recapture to estimate 
numbers of people with illnesses from hospital and other 
Usts. The sampUng of elusive human populations using cluster 
sampUng, network sampUng, and capture-recapture sampling 
was discussed by Sudman, Sirken and Cowan (1988). 

3. USE OF CAPTURE-RECAPTURE MODELS 
IN THE LARGE PELAGIC SURVEY 

The Large Pelagic survey is an angler survey conducted 
by the National Marine Fisheries Service using a telephone-
access survey design. A sample of fishing boat owners on 
a list are telephoned to obtain fishing effort {i.e., number 
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of fishing trips in a period) information. Catch per unit 
effort (i.e., catch per trip) information is obtained from 
a second sample of boat owners at access points at com­
pletion of their fishing trips. The information from the two 
surveys is combined to estimate total effort and total catch 
of important species such as Bluefin Tuna. 

A serious problem with this survey is that the list of boat 
owners used in the telephone survey is very incomplete. 
Therefore, classical sampling theory which assumes a 
complete frame of known size (TV) is inadequate and has 
to be modified. The current method of estimating the size 
of the fishing boat list frame involves combining two lists, 
(a telephone list with a dockside list) and using the Lincoln-
Petersen model. There are questions about whether this 
is the best approach. For example, it might be possible 
to combine more than two Usts and if so then we could 
use the closed or open population models reviewed in 
Sections 2.2 and 2.3. However, we defer those questions 
and begin by reviewing and evaluating the current method 
as an example to illustrate the potential usefulness of the 
approach to other establishment surveys. 

3.1 The Lincoln-Petersen Model 

3.1.1 Estimation of Frame Size (N) 

Under the current method the "marked" boats (M) are 
those on the master list wUich is primarily derived from 
previous telephone interviews. The recapture sample is 
carried out dockside at gas pumps and the total number 
of boats intercepted (n) is checked to see which ones are • 
"marked" (m) {i.e., on the original master Ust). Equa­
tion 2.3 can then be used to provide an estimator of the 
frame size (TV). Let us now consider the assumptions of 
this model and what effect violations might have on the 
bias of the estimator of TV. 

Closure 

This assumption is likely to be violated. Fishing boats 
may be on the master list and then no longer take part in 
the fishery (losses). New fishing boats may join the fishery 
while it is in progress (gains). Ideally a separate estimate 
of frame size should be obtained for each two week time 
period. The advantage of using the Lincoln-Petersen 
closed model estimator is its simplicity and practicality. 
Biases in the estimator due to lack of closure could be 
either positive or negative. 

Currently it is not known how the fishing fleet size is 
likely to change during the fishing season. A multiple 
capture-recapture sampling design would allow use of the 
JoUy-Seber model to estimate the fleet size during each 
period. Examination of these estimators and the survival 
rate and recruitment number estimators will enable us to 
evaluate the validity of the closure assumption. At the 
moment we can only make conjectures. 

Equal Catchability 

Violation of the assumption of equal catchability may 
be due to either inherent heterogeneity of capture prob­
abiUties between individuals or "trap response" where 
individuals that are marked have higher or lower capture 
probabilities than unmarked individuals. In either situation 
when the individuals on the lists are fishing boats we 
believe there is a potential for heterogeneity of capture 
probabilities among fishing boats. If heterogeneity is 
operating across both samples, individuals "caught" on 
the first list will tend to be those with high capture prob­
abiUties and therefore they will more likely to be "caught" 
again on the second list. This means that the proportion 
marked in the second sample (list) will be too high and the 
estimator of TVwiU be negatively biased. Note that this 
intuitive argument makes dear it is not heterogeneity per 
se which is the problem but the positive correlation of 
capture probabilities between the two samples. Another 
way of stating the equal catchability assumption is that 
capture probabilities in the two samples are independent. 
One method of attempting to achieve independence of the 
capture probabilities in the two samples is to use totally 
different sampling schemes for the two samples. This is 
why we recommended earlier that one sample list be based 
on the telephone interviews and the other on dockside 
interviews. However, we do suspect that there is still 
another heterogeneity and lack of independence in capture 
probabilities. We believe that fishing boats which take a 
very active part in the fishery are more likely to be on any 
lists gathered (telephone or dockside). This heterogeneity 
will cause a negative bias on the estimate of frame size but 
we have no idea of the degree of this negative bias. A more 
complete discussion of heterogeneity and independence of 
samples is given by Seber (1982, p. 86). 

Marks Lost or Overlooked 

The situation here is a little confusing. At first one 
might think that in this application there is not a way that 
a mark could be lost or overlooked. However, this assumes 
that all boats have distinct names or that if boats do have 
the same name there is additional information like captain's 
name which makes all individuals on the lists unique. If 
there is any problem with lack of uniqueness it may not 
be clear whether a marked boat has been recaptured or 
not. Another related point is that agents may make errors 
in the records which make U hard to match up a recapture 
with the original record. A standard operating procedure 
is being developed and documented to minimize these 
kinds of errors in the future. 

3.1.2 Estimation of Total Effort and Total Catch 

Total Effort (E) {i.e., the total number of fishing trips 
taken in a defined period) is estimated by 

Ne, (3.1) 
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where TV is the frame size (Fleet Size) estimate and e is the 
mean fishing effort {i.e., average number of fishing trips 
taken) obtained from the telephone sample. The evaluation 
of the properties of this estimator is more difficult than 
when TV is known because both TV and e are random 
variables. We suspect that e is biased high because fishing 
boats that do not fish much are less likely to be on the Ust. 
Unfortunately we cannot say that TV will always be biased 
high or low. All three of the assumption violations dis­
cussed in 3.1.1 could be important (closure, heterogeneity, 
and mark loss) and it is not clear what direction the overall 
bias on TV would take. The only possible approach is to 
use simulation with a variety of different scenarios for 
assumption violations. Using equation (1.4) the estimated 
variance of E is given by 

yar(E) = {N)^Nar{e) + {e)^Var(N) + 

Var(e) Var(TV). (3.2) 

Total catch (C) is estimated by C — £c where £ is the 
estimated total fishing effort and c is the average catch 
per unit effort calculated from the dockside interviews. 
Properties of this equation are likely to be subject to 
simUar concerns as equation (3.1) and again simulation 
could be very useful. 

3.1.3 Illustration of the Method 

In this section we present the frame size estimates and 
total effort estimates for the Virginia Bluefin tuna fishery 
in part of 1992. These estimates are a part of a larger 
survey which covered the east coast of the U.S. from North 
Carolina to Massachusetts. The estimates are separate for 
charter boats and private boats. 

Frame Size Estimates 

Lists of unique private boats and charter boats were 
compiled mainly by telephone interviews from previous 
seasons. During the current 1992 season "marked" and 
"unmarked" boats were captured at gas pumps before or 
after fishing trips. 

For private boats the Ust size was TVf = 335 boats before 
the season. A sample ofn — 374 boats were contacted at 
gas pumps and of those m = 49 were marked. The 
Chapman estimator is TV̂  = 2,519, SE{Ng) = 303.08 
and relative SE = 0.12. 

For charter boats the list size was TV/ = 47 before the 
season. A sample of n — 31 boats were contacted at gas 
pumps and of those m = 13 were marked. The Chapman 
estimator is TVc = 109 with SE(Ng) = 17.88 and rela­
tive SE = 0.16. 

Total Effort Estimates 

Total effort and total catch were estimated in weekly 
waves. Here we just illustrate the calculations for the week 
of the 8th to the 14th of June 1992 for total effort. 

Total Effort - Private Boats 
TV̂  = 2,519 boats, ^^(TVJ = 91,856.4706, e =_0.15108 

trips per interview, Var(e) = 0.001242 and SE(e) = 
0.0352. Using these estimates we obtain 

E ^ Ng X e = 2,519 x 0.15108 = 380.57 trips, 

Var(£') =Var(e)(Nf) -t- yar{Ng)(e)^ -H 

Var(TVc)Var(e) = 10,091.6633, and 

SE(E) = 100.45. 

It is useful to also calculate the variance of total effort 
assuming that the frame size were known. In this case it 
is Yar(E) = 7,780.9384 with SE(E) = 88.77 and this 
shows that 89% of the standard error of the Total Effort 
estimate is due to variation in average effort and only 11 % 
is due to estimation of frame size. 

Total Effort - Charter Boats 
For charter boats E = 59.95 trips with 'Var(E) = 

512.5100 and SE(E) = 22.64. 
The variance of the Total Effort esdmate assuming the 

frame size is known is Var(E) = 404.8926 with SE{E) = 
20.12. Again 89% of the standard error of the Total Effort 
esdmate is due to variadon in average effort and only 11 % 
is due to estimation of frame size. 

3.2 More Than Two Lists 

In Section 2 we indicated that there are a lot more 
modeling possibilities if one has multiple (greater than 2) 
lists. Here we consider closed and open population models 
for the more general case. We foresee the sampling scheme 
as follows. Before the start of the fishing season there 
would be a preliminary sample to establish a list (either 
telephone or dockside). During each dme period (say two 
weeks) there would be an additional list compiled using 
a telephone or dockside survey. Now each individual boat 
would have a capture history which would indicate which 
lists it appeared on. (Suppose we have five time periods 
then a capture history of 1 1 1 0 1 would indicate a boat 
appeared on the lists in all except the fourth time period). 

The structure of the sample and the population would 
therefore be as in Table 1 .The first question that has to be 
addressed is whether we need to use closed or open popula­
tion models. The obvious way to proceed is to fit the JoUy-
Seber open population modd first and use it to evaluate 
the closure assumption. 

Table 1 
Structure of the Population Under an Open Population Model* 

Period 

Marked Population Sizes 

Total Population Sizes 

Pre­
season 

List 

0 

Mo 
No 

I 

Ml 

Ni 

(e.g. 

2 

M2 

N2 

Seasor 
, every 

3 

Ml, 

Ni 

1 Lists 
two weeks) 

k 

Mk 

Nk 

* Marked and Total Population Sizes are shown for the whole study. 
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3.2.1 Open Population Models 

Under the JoUy-Seber modd previously discussed in 
Section 2.3 the following parameters are identifiable 
(Table 2). Notice that it is possible to estimate the number 
of fishing boats in the fleet at each time in the season 
except the last {i.e., Nk cannot be estimated). One advan­
tage of applying the model in this fashion with a preseason 
Ust is that any concerns with the preseason Ust due to it 
being out of date are taken care of by the model allowing 
for additions and deletions before the season begins. One 
disadvantage of the JoUy-Seber Model is increased com­
plexity. Now each time period has its own frame size and 
there are also survival and recruitment parameters to 
estimate. Sometimes these parameter estimates have poor 
precision unless sample sizes are large. Another disadvan­
tage of the JoUy-Seber model is that it does require the 
assumption of equal catchability. 

Table 2 
Structure of the JoUy-Seber Open Population Model* 

Period 

Marked Population 

Total Population 

Survival Rate 

Recruitment No. 

Preseason 

0 

(Mo = 0) 

-

PO 

1 

Ml 

Ni 

Pi 

Si 

2 

M2 

N2 

P2 

h 

3 

M3 

/V3 

Season 

k-l 

Mk-i 

Nk-l 

• Pk-2 

• Bk-2 

k 

-

-

-

' Identifiable parameter estimators are shown for Marked Population Sizes, 
Total Population Size, Survival Rate and Recruitment Number. 

Another important question about the use of the JoUy-
Seber model is what is called "temporary emigration." A 
fishing boat might leave the fishery for some periods and 
then return. The JoUy-Seber model makes the assumption 
that fishing boats which leave do not return. This issue 
needs further investigation. Use of the robust design {i.e., 
combination closed and open models) allows for temporary 
emigration. This would necesskate having two lists obtained 
close together in each period. 

3.2.2 Closed Population Models 

If the JoUy-Seber modd estimates of "survival" and 
"recruitment" suggest population closure {i.e., TV constant) 
then the general closed population models reviewed in 
Section 2.2 could be applied. The advantages are increased 
precision of TV due to the use of more lists and increased 
robustness of TV to unequal catchability. The disadvantage 
is primarily an increase in complexity. 

4. DISCUSSION 

4.1 Methods of Dealing with Incomplete List Frames 

(i) Complete the List Frame 

The advantage is that the survey researcher has a com­
plete frame and does not have to generalize results for an 
esdmated frame size. The disadvantage is the cost and 
possible impracticality of completing the list frame. 

(ii) Use an Area Frame 

The advantage is that one only has to enumerate the 
establishments in the areas to be sampled. The disadvan­
tage is possible inefficiency if businesses are sparse in each 
large area. 

(ui) Using List and Area Frame (Multi-Frame Approach) 

The advantages are obviously increased precision and 
having all establishments covered. The disadvantage could 
be expense and impracticality. 

(iv) Use of Capture-Recapture to Estimate List Frame Size 

The advantage is having a practical method of lower 
expense than the first three approaches listed above. The 
disadvantages are potential bias if the assumptions of the 
capture-recapture method are violated and having to 
include variation due to frame size estimation in variance 
estimates of population total estimates. 

4.2 Capture-Recapture Estimation of Frame Size 

In this section we consider model assumptions, precision 
of estimates, estimation of population totals and the 
special problems in more complex sampling designs when 
the capture-recapture approach to frame size estimation 
is used. 

Model Assumptions 

(i) Closure 

Can the frame size be considered constant so that the 
closed population models be used? This will depend on 
whether the survey is just a snapshot at a single time point 
or whether a series of surveys over time are required. It 
will also depend on how quickly establishments go out of 
business and how quickly new ones arise. We suspect there 
will be the need for use of closed and open population 
models depending on the establishments being studied. 

There is also the question of temporary emigration 
where estabUshments go out of the frame and then come 
back in again. This was considered a potential problem in 
the fishing boat example because boats could go inactive 
and then become active again. This may also be a problem 
in some other establishment surveys if establishments go 
in and out of business frequently and keep the same name 
when they come back into business. 
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(ii) "Unequal Catchability" and Independence of Lists 

As we discussed earlier ideally the lists used should 
be independent so that the estimates of frame size are 
unbiased. In practice it may not be easy to find two or 
more independent lists. 

(lii) Mark Loss-Unique Identification of Establishment 

Establishment names need to be unique and unmis­
takable or matches on different lists may be missed or 
mistaken. This was a problem in the fishing boat example 
in earlier years. We suspect this will not be such a big 
problem in most establishment surveys. 

Precision of Estimates 

The lists used need to be of sufficient size that the 
precision of the frame size estimate (TV) is adequate. Seber 
(1982, p. 96) discusses the Lincoln-Petersen esdmate in 
detail and presents graphics of sample sizes required for 
various levels of precision. Pollock et al. (1990) presents 
sample size information for the open population models. 

Estimation of Population Totals 

Once the estimate of frame size is obtained then that 
estimate will often be combined with a sample mean to 
obtain an estimate of a population total ( f = Np). The 
estimate of population total is subject to possible bias and 
additional variance because TV is estimated. The estimate 
may also be biased because p is not based on a random 
sample of the complete frame. 

More Complex Sampling Designs 

In this paper we have emphasized estimation of frame 
size in simple random sampling using the capture-recapture 
method. Further questions arise if more complex sampling 
designs are used. For example in stratified designs the 
question would arise of whether to estimate frame size 
in each stratum separately or to estimate the total frame 
size and then apportion it to the strata assuming equal 
probabilities of different strata on the incomplete lists. 
There is also the more complex question of how to esti­
mate frame size in multi-stage sampling designs. This is 
obviously an area that needs future research. 
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Questionnaire Design for Business Surveys 
A.R. GOWER 

ABSTRACT 

This paper provides an overview of important considerations that should be taken into account when developing 
and designing questionnaires for business surveys. These considerations include the determination of objectives 
and data requirements, consultation with data users and respondents, and methods for testing quesdonnaires. In 
developing and designing business survey questionnaires, focus groups and cognitive research methods help the 
researcher to identify potential sources of measurement error and to understand the response process that respondents 
go through in completing the questionnaires. Examples of focus groups and cognitive research undertaken by Statistics 
Canada are provided. 

KEY WORDS: Questionnaire testing; Focus groups; Cognitive research. 

1. INTRODUCTION 

There are many types of business survey questionnaires. 
Typically, a business survey questionnaire collects infor­
mation about a company's employees, its inventories, 
inputs, products, sales, and finances. It may also involve 
the collection of information related to market research 
or client satisfaction. 

Business surveys are conducted by mail or administered 
by an interviewer in person or over the telephone. Follow-
ups to mail surveys are often conducted by telephone. 
New data collection technologies for business surveys 
involve computer-assisted interviewing, fax machines, 
touchtone self-response, and the electronic transmission 
of data. 

As in other types of surveys, questionnaires play a 
central role in the data collection process in a business 
survey. They have a major impact on data quality and 
on the image that a survey organization projects to its 
respondents. 

The purpose of this paper is to provide an overview of 
questionnaire design for business surveys. The paper 
discusses important considerations such as the determina­
tion of objectives and data requirements, consultation 
with data users and respondents, the nature and concerns 
of business survey respondents, and methods for testing 
questionnaires. 

In developing and designing business survey quesdon­
naires, it is especially important to understand the response 
process that respondents go through in completing the 
questionnaires. Therefore, this paper emphasizes the 
effectiveness of using focus groups and cognitive research 
techniques to develop and test business survey question­
naires. Examples of focus groups and cognitive research 
that have been carried out by the Questionnaire Design 
Resource Centre of Statistics Canada are provided. 

2. BUSINESS SURVEY QUESTIONNAIRES 

A well-designed questionnaire in a business survey should 
collect data efficiently, with a minimum number of errors. 
Moreover, questionnaires should facilitate the coding and 
capture of data. They should minimize the amount of editing 
and imputation that is required. They should also lead to 
an overall reduction in the cost and time associated with 
data collection and processing (Statistics Canada 1994). 

There are many considerations that apply to the devel­
opment and design of business survey quesdonnaires. One 
key consideration is the nature of the respondent popula­
tion. Business survey respondents answer in their role as 
employers or employees of a business. How a question­
naire is completed depends on the position and level of 
responsibility that the respondent holds in the business 
organization or company. Therefore, it is critical to identify 
the most appropriate person to provide the information 
in a business survey. 

Response burden is a very real concern for business 
survey respondents. It depends on the number of questions 
that are asked, the time required to complete the question­
naire, and the effort that respondents put into searching 
or manipulating other data sources to provide the infor­
mation in the format requested. 

Businesses vary in size. Large businesses may have 
employees whose responsibilities include completing govern­
ment and survey forms. In small businesses, respondents 
are often the owners or office managers who may not have 
as much time or flexibility in their schedules to complete 
the questionnaire. 

Information provided by respondents in business 
surveys typically involves the use of records or other infor­
mation systems. Quesdonnaires often contain technical or 
professional terminology associated with providing finan­
cial or administrative data. 

A.R. Gower, Questionnaire Design Resource Centre, Statistics Canada, Ottawa, Ontario, KIA 0T6. 
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Another consideradon is the confidentiality and sensi­
tivity of the information that the questionnaire is collecting. 
In many cases, businesses are concerned about providing 
confidential financial information that they do not want 
to reveal to competitors, governments or any other party. 
Therefore, assurances of confidentiality should be pro­
vided. All necessary arrangements should be made for the 
proper handling and custody of data in order that the 
confidentiality of information is ensured. 

3. THE RESPONSE PROCESS IN BUSINESS 
SURVEYS 

The model of the response process is well-known for 
household surveys. Answering these types of questions 
involves comprehension, retrieval, thinking/judging, and 
responding (Tourangeau 1984). Respondents must first 
understand the question. They then search their memories 
to retrieve the requested information. After retrieving the 
information, they think about what the correct answer to 
the question might be and how much of that answer they 
are willing to reveal. Only then do they give an answer to 
the question. 

A corresponding response model for business surveys 
has also been developed (Edwards and Cantor 1991). 
Although the business survey model is similar to the 
household survey modd, there are differences. The major 
difference is that business survey respondents must nor­
mally access one or more external sources of information 
such as financial or administrative records. 

The ability of respondents to retrieve the requested 
information depends upon their familiarity with and 
understanding of the external source of informadon. They 
must also understand the relationship between the survey 
questions and the external data source. Multiple sources 
of information may add to the difficulty or complexity of 
this task. Further complexities may be introduced if the 
respondent has to consult another individual who can 
provide the requested information and who, in turn, 
may have to use one or more data sources (Gower and 
Nargundkar 1991). 

4. DEVELOPMENT AND TESTING OF BUSINESS 
SURVEY QUESTIONNAIRES 

There are several basic steps that are involved in devel­
oping and testing business survey questionnaires. These 
steps are discussed below. 

4.1 Determination of the Objectives and Data 
Requirements 

A document should be prepared that provides a clear 
and comprehensive statement of the survey objectives, 

data requirements, and the data analysis plan. This docu­
ment is a necessary step that leads to the determination of 
the variables to be measured, the survey questions, and the 
response alternatives. 

When designing the questionnaire, it is important to 
determine and understand the radonale for each question, 
how the information will be used, and whether the ques­
tions will be good measures of what is required. 

4.2 Consultation with Clients, Data Users, Subject 
Matter Experts, and Respondents 

In formulating objectives and data requirements, 
consultation should take place with clients and data users 
to fully understand their requirements and expectations. 
Subject matter experts should be contacted for advice and 
guidance. 

If possible, the survey researcher should consult members 
of the survey population. This will help identify issues and 
concerns that are important to respondents, and may 
affect decisions regarding the content of the questionnaire. 
In addidon, consultadon with respondents will idendfy the 
language and terminology that respondents themselves use 
and will help clarify terminology, concepts and definitions. 

4.3 Previous Questionnaires 

Examining questions that were used in other surveys on 
the same or a similar topic provides a useful starring point 
in formulating the questions and response categories. In 
some situations {e.g., for comparing data over time), the 
same questions may be used. The researcher should ensure 
that the questions are phrased so as to provide valid, con­
sistent, and effective measures of the variables of interest. 

4.4 The Use of Focus Groups in Developing 
Questionnaires 

A focus group is an informal discussion of a selected 
topic involving participants who are chosen from the 
survey population. It provides insights into the attitudes, 
opinions, concerns, and experiences of the participants. 
A focus group is led by a moderator who is knowledgeable 
about group interviewing techniques and the purpose of 
the discussion. 

Focus groups provide the opportunity to consult re­
spondents, data users, and interviewers. In the early stages 
of developing a questionnaire, focus groups are used to 
develop the survey objectives and data requirements, to 
identify salient research issues, and to clarify definitions 
and concepts. 

Focus groups are also useful in testing and evaluating 
questionnaires (see 4.6 below). They are used to evaluate 
respondents' understanding of the language and wording 
used in questions and instructions, and to evaluate alter­
native question wordings and formats. 
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Recruiting participants from businesses poses unique 
challenges for focus groups. Monetary incendves or hono­
raria that are usually offered to focus group participants 
(currently in the order of $30 to $50 each) may not be 
appropriate for business people. Assurances of confiden­
tiality and emphasis on the importance of the survey and 
their participation in the study are more meaningful. 
Another type of incentive that may be offered is a donation 
to a non-profit organization of the participant's choice. 
Statistics Canada often gives focus group participants a 
copy of a publication that is of interest to them. 

Focus groups vary in size from 6 to 12 persons. The 
optimum size is 7 or 8 persons for business participants, 
although smaller groups with 4 or 5 people (called mini 
focus groups or mini groups) are sometimes held. Because 
of difficulties in finding participants from businesses, 
focus groups should be conducted at a time that is conve­
nient to the participants. For business people, focus groups 
are often held during working hours. Focus groups are 
audio-recorded, and are viewed by observers in an 
adjoining room behind a one-way mirror. Participants are 
fully informed that audio-recording is taking place and 
that they are being observed. 

4.5 Considerations in Drafting the Questions 

Many considerations go into writing the quesdons and 
developing the response categories. It is important to keep 
in mind the objectives and data requirements as well as 
how the information will be collected and processed. The 
quesdons must relate to the information needs. They must 
be addressed to the right people in the organization or 
company. 

The method of data collection will determine how the 
quesdons and response categories will be formulated. The 
question wording must be clear, and they must be ordered 
in a logical sequence. The questions must be designed to 
be easily understood and accurately answered by respon­
dents. Response categories and time reference periods 
should be compatible with the business's record-keeping 
practices; however, this is often difficult to achieve. 

The layout of the questionnaire should be attractive. 
The questionnaire should be respondent-friendly and, if 
administered by an interviewer over the telephone or in 
person, it should be interviewer-friendly. 

The questionnaire should appear professional and 
"business-Uke". When designing the quesrionnaire, k 
should be kept in mind that businesses are asked to com­
plete many forms and questionnaires. Completing them 
is not a priority. Research conducted by Statistics Canada's 
Questionnaire Design Resource Centre has shown that 
typical reactions from businesses to questionnaires are: 

• "I complete the shortest form first." 
• "Is complerion mandatory?" 
• "Is there a return deadUne?" 

In one Statistics Canada study (Gower and Zylstra 
1990), a respondent commented that if the answer to these 
last two questions is " n o , " then "I put [the question­
naire] in my maybe I'll get to it someday basket!" 

Respondents frequently question the value of informa­
tion to themselves and to other users. Some like to receive 
feedback about the survey. Therefore: 

• Explain why it is important to complete the ques­
tionnaire. 

• Ensure that the value of providing information is made 
clear to respondents. 

• Explain how the survey data will be used. 
• Explain how respondents can access the data. 

The instructions that go with the questionnaire also 
require attention. Research carried out by the Question­
naire Design Resource Centre has repeatedly shown that 
respondents read only what they think is necessary to read. 
They read the boldface print first, and then decide whether 
they should read further. Respondents rarely read the 
instructions, and usually proceed direcdy to the quesdons. 
They refer to the instructions only when they think they 
need help. As a resuU, respondents may miss important 
instructions and definitions. Errors in reporting are often 
due to a lack of clear instructions and due to respondents 
not reading them or not understanding them {e.g., what 
to include or exclude). Therefore: 

• Ensure that instructions are short and clear. 
• Tell the respondent where to find the instructions. 
• Provide definidons at the beginning of the quesdonnaire 

or in specific questions as required. 
• Use boldface print or underlining to emphasize important 

items such as the reference or reporting period. 
• Specify "include" or "exclude" in the questions and 

items themselves (not in separate instructions). 

Other consideradons that should be taken into account 
in designing business survey questionnaires include: 

• Consistency of terminology, questions and response 
categories with standard concepts and definitions. 

• Nature of the respondent population such as record­
keeping practices and language ability. 

• Availability of the data. 
• Response burden. 
• Complexity of the data to be collected. 
• Comparability of results with other surveys. 
• Data reliability. 
• Nonresponse. 

The design of the questionnaire should also take into 
account any administrative requirements of the survey 
organization. For example. Statistics Canada's policy on 
informing survey respondents (Statistics Canada 1986) 
requires that key information be explained to respondents. 
They must be informed about the main purpose(s) of the 
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survey, the major intended uses of the data, the require­
ment to respond (compulsory or voluntary), confiden­
tiality protection, and any joint collection or data sharing 
agreements. At Statistics Canada there are also other 
administrative or legal requirements. For example, the 
Official Languages Act of Canada requires that question­
naires be made available to respondents in both official 
languages (i.e., English and French). 

4.6 The Use of Cognitive Methods in Testing 
Questionnaires 

Questionnaire testing is essential to developing effective 
questionnaires that collect useful and accurate data. Cogni­
tive research methods, sometimes referred to as qualitative 
tesdng, are especially useful in testing questionnaires. 

Cognitive methods provide the means to examine 
respondents' thought processes as they answer the survey 
questions. They are used to ascertain whether or not 
respondents understand what questions mean and thus 
help assess the validity of questions and identify potential 
sources of measurement error. Cognitive methods also 
provide the opportunity to evaluate the questionnaire from 
the respondent's point of view. They focus on issues such 
as comprehension and reactions to the form. This brings 
the respondent's perspective directly into the questionnaire 
design process. The use of cognitive methods leads to the 
design of respondent-friendly questionnaires that can be 
completed easily and accurately. 

In business surveys, cognitive methods are used to 
investigate the reladonship between the respondent and the 
external information source. They are also used to study 
the influence that this data source has on the response 
process. These methods provide the means to assess the 
compatibility of quesdon wording, dme reference periods, 
and response categories with the business's record-keeping 
practices. 

Cognitive testing methods (Gower 1993) include: 

• In-depth interviews: The technique involves one-on-one 
interviews (sometimes called retrospective think-aloud 
interviews). For a mail questionnaire, respondents first 
complete the questionnaire as they normally would. An 
interviewer observes the process, noting the sequence in 
which the questions are answered, reference made to 
instructions, and the types of records or other persons 
consulted. The interviewer also notes the time required 
to complete sections, and corrections or changes made 
to responses. 

The interviewer then conducts the in-depth interview and 
obtains information about the respondent's experiences 
and impressions in completing the form. The follow-up 
discussion typically involves a question-by-question 
review of the questionnaire with the respondent to 
discuss any problems or difficulties that were encountered 

while completing the form. The interviewer probes to 
see how the terms and concepts were interpreted by the 
respondents, how and why they chose the responses, and 
how information was recalled. 

For an interviewer-administered questionnaire, the ques­
tions are first asked by an interviewer either in person 
or by telephone. The in-depth follow-up discussion takes 
place following this first Interview. 

» Concurrent think-aloud interviews: These are also con­
ducted one-on-one. The respondent is asked to "think 
aloud" while answering the quesdons, commendng on 
each question and explaining how the final response was 
chosen. The observer may probe the responses to get 
more information about a particular statement or to 
clarify the process through which a response was chosen. 

The success of the concurrent think-aloud interview 
technique depends on the respondent's ability and will­
ingness to articulate and express thoughts aloud. The 
observer may sometimes have to help the respondent in 
this task by gentle prompts such as: "what question are 
you answering now?", "what are you thinking now?", 
"please explain how you chose the answer", or other 
probes to clarify the respondent's thoughts. When a 
respondent is reluctant to verbalize thoughts, the 
observer may decide that the better approach is to 
handle the interview as an in-depth interview and proceed 
accordingly. 

Think-aloud interviews are very useful in obtaining 
respondents' reactions to quesdonnaires. They are 
especially helpful in identifying areas of the quesdon­
naire where respondents have difficulty. They also help 
the researcher understand the process through which the 
questionnaire is completed. 

Focus groups: As described in 4.4, focus groups are used 
to evaluate respondents' understanding of the language 
and wording used in questions and instructions. The 
questionnaire is usually administered before the focus 
group session, in person, over the telephone or on a 
self-completion basis. 

During the focus group session, the moderator reviews 
the questionnaire with the participants and discusses any 
problems or difficuldes that they may have encountered 
when completing the form. Focus groups stimulate and 
encourage thoughtful analysis of the quesrionnaire 
during group discussions of individual participants' 
comments. They are especially useful in providing 
suggestions and recommendations for improvements. 

Paraphrasing: Paraphrasing is used in one-on-one inter­
views and focus groups. Respondents are asked to repeat 
the question in their own words, or to explain the 
meaning of terms and concepts that are used in the 
survey questions and instructions. 
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Paraphrasing helps determine whether respondents read 
and understand the instructions and questions correctly. 
Paraphrasing is especially helpful in identifying question 
wording that is too complex or confusing. It also iden­
tifies situations where respondents do not comprehend 
all the important components of the question (e.g., the 
reference period). 

4.7 Pretesting 

Pretesting is a fundamental step in developing a ques­
tionnaire. It usually involves a small number of field 
interviews that are carried out to identify problems with 
a questionnaire. The entire questionnaire or only a portion 
of it may be tested. 

Pretests are useful for discovering poor question wording 
or ordering, errors in questionnaire layout or instructions, 
and problems caused by the respondent's inability or un­
willingness to answer the questions. Pretests are also used 
to suggest additional response categories that can be pre-
coded on the quesdonnaire. Pretests provide a preUminary 
indication of the interview length and refusal problems. 

The pretest sample can range in size from 20 to 100 or 
more respondents. If the main purpose of the pretest is to 
discover wording or sequencing problems, only a small 
number of interviews may be required. More interviews 
(50 to 100) are necessary to determine pre-coded answer 
categories for open-ended responses. Respondents for 
pretests are usually selected purposively rather than 
randomly. 

The questionnaire for a pretest should be administered 
in the same way as planned for the main survey {e.g., 
interviewer-administered in person or by telephone). A 
pretest of a mail questionnaire is more effective if inter­
viewers are used. Interviewers can be used to deliver the 
questionnaire and, later, to discuss any problems. The 
questionnaire designers should observe as many pretest 
interviews as possible. 

Pretesting is not as effective as cognitive methods in 
evaluating respondents' understanding and the difficulty 
of the response task. Pretesting only indicates whether 
there is a problem. Without further investigation, it does 
not identify why there is a problem nor how it can be 
corrected. 

Debriefing sessions with interviewers often occur in 
conjunction with a pretest. Interviewers involved in a pretest 
can identify important problem areas where the question­
naire can be improved. When existing questionnaires are 
redesigned, it is useful to consult interviewers to get their 
input into the redesign process. Interviewers have excellent 
insights into the logistics of administering the question­
naire and how it affects respondent cooperation. 

Behavioral coding also can be conducted at the time of 
pretesting. The interview is audio-recorded, following 
which the interviewer and respondent behaviours during 

the interviewer-respondent interaction are coded and 
analyzed. Behavioral coding provides a systematic and 
objective means of examining the effectiveness of the 
questionnaire. It also helps to identify problem areas such 
as an interviewer failing to read the question as worded 
or a respondent asking for clarification of the question or 
response task. 

4.8 Formal Testing Methods 

Formal testing methods are quantitative in nature. 
They are designed to provide a statistical evaluation of 
how the questionnaire performs. Pilot studies and split 
sample testing are two commonly used types of formal 
tesdng methods. These methods are more suitable for large 
scale and continuing surveys because of the significant 
cost involved in implementing them and analyzing the 
results. 

A pilot study is conducted to observe how all the survey 
operations, including the administration of the question­
naire, work together in practice. A pilot study is a "dress 
rehearsal". It duplicates the final survey design on a small 
scale from beginning to end, including data processing and 
analysis. It allows the survey researcher to see how well 
the questionnaire performs in relation to all other parts 
of the survey. There are some problems that can only be 
identified when aU phases of the survey are tested together. 
For example, typographical errors and problems with 
question wording or concepts that need further clarification 
may be identified during interviewer training. The data 
processing phase may reveal keying problems with the 
preceded item numbers and/or answer categories 
(DeMaio 1983). 

Normally, the questionnaire should be thoroughly pre­
tested before a pilot study takes place. A pilot study is 
usually not the time to try out new questions or approaches. 
If previous testing has been carried out, it is unlikely that 
the pilot study will result in major changes to the quesdon­
naire. The pilot study, however, does provide the oppor­
tunity to fine-tune the questionnaire before its use in the 
main survey (DeMaio 1983). 

Split sample testing is conducted to determine the 
"best" of two or more alternative versions of the ques­
tionnaire. Split sample testing is also referred to as a "split 
ballot" or "split panel" experiment. It involves an exper­
imental design that is incorporated into the data collection 
process. A split sample test can be designed to investigate 
issues such as question wording, question sequencing, the 
location of sensitive items, and data coUecdon procedures. 
In a simple split sample design, half of the sample is 
selected at random and might receive one experimental 
treatment and half, the other. In a test that involves two 
experimental treatments, a 2 x 2 factorial design might 
be used with each of the two treatments in each experiment 
being tested on half of the sample (DeMaio 1983). 
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A split sample design can also be used in continuing 
surveys that assess trends over time and compare resuUs 
across surveys. In these types of surveys, there often is a 
concern that any change in the questionnaire or procedures 
may affect other data items besides the items being added 
or revised. In these cases, a split sample design may be used 
with a random sample of the respondents receiving the 
"old" questionnaire and the rest, the "new" question­
naire. Comparisons with earlier data can still be made by 
using the old questionnaire for most or part of the sample 
(DeMaio 1983). 

4.9 Review and Revision of the Questionnaire 

The questionnaire should be reviewed by someone 
outside the project team. Reviewers could include subject 
matter experts or persons who have experience in designing 
questionnaires. A review can take place at any or aU stages 
of the questionnaire development process, causing revisions 
in the questions and response categories. 

Questionnaire design is an iterative process. Throughout 
the whole process of questionnaire development, revision 
and testing, changes will be made continually to improve 
the questionnaire. Objectives and information requi­
rements are stated, evaluated and decided upon, data users 
and respondents are consulted, proposed questions are 
drafted and tested, questions are reviewed and revised, 
until a final questionnaire is developed. 

5. APPLICATION OF FOCUS GROUPS AND 
COGNITIVE RESEARCH METHODS 

TO TEST BUSINESS SURVEY 
QUESTIONNAIRES 

Statistics Canada has found that focus groups and 
cognitive research methods are very useful in developing 
and testing business survey questionnaires. These methods 
provide the opportunity to understand the cognitive 
processes involved in formulating responses to survey 
quesdons. They bring the respondent's perspective directly 
into the questionnaire design process and lead to the design 
of respondent-friendly questionnaires (Gower and 
Nargundkar 1991). 

Statistics Canada's applications of focus groups and 
cognitive research methods for business surveys include 
the developing and testing of questionnaires for the 
following surveys: 

• Survey of Employment, Payrolls and Hours (Bureau 
1991; Goss, Gilroy and Associates Ltd. 1989; Goss, 
Gilroy and Associates Ltd. 1990). 

• Census of the Construction Industry (Gower and Zylstra 
1990; Price Waterhouse Management Consultants 
1990). 

• Wholesale and Retail Trades Survey (Noonan 1992). 

• National Training Survey (Kennedy and de Groh Consul­
tants 1992; D.R. Harley ConsuUants Limited 1993). 

These studies involved the application of one or more 
of the following methods: focus groups, in-depth inter­
views, concurrent think-aloud interviews, and paraphrasing. 
All studies were carried out under the coordination and 
general direction of Statistics Canada's Questionnaire 
Design Resource Centre (Gower 1991). 

Each of the studies has demonstrated the importance 
of and benefits to be gained from consulting with members 
of the target population before developing and finalizing 
the questionnaire. The studies have provided valuable 
insights into the response process and have identified 
various factors that contribute to measurement errors in 
business surveys. These factors include the respondents' 
perceived value of the information, their perception of 
response burden, the compatibiUty of questions with their 
record-keeping practices, the placement and use of instruc­
tions, the availability of data, and the complexity of the 
response task (Gower and Zylstra 1990). 

Highlights from two of the studies, the Census of the 
Construction Industry and the National Training Survey, 
are discussed below. 

5.1 Census of the Construction Industry 

The annual Census of the Construction Industry was 
designed to provide comprehensive statistics on the con­
struction industry in Canada. The target population 
consisted of establishments whose main revenue was 
derived from construction activity. There were two separate 
questionnaires for (a) General Contractors and Developers 
and (b) Trade Contractors and Sub-Contractors. The 
questionnaires, which were mailed to respondents, collected 
data on revenues and costs, labour data, and output 
distributions. 

The questionnaires used in 1988 for the Census of the 
Construction Industry were redesigned for the 1989 survey. 
The main objectives of the revision were to reduce the 
content and response burden and to respond to the need 
for major improvements to the existing questionnaires. 

A pretest of the revised questionnaires took place to 
obtain the reactions of contractors (Statistics Canada 
1989). The pretest indicated that the revised forms were 
well received and understood by respondents. Some areas 
for further improvement such as changes to question 
wording and the clarification of certain instructions were 
identified. 

To learn more about how respondents would view the 
revised questionnaires and to ensure that response rates 
and data quality would be maximized, further testing of 
the questionnaires using focus groups and cognitive 
methods was carried out in early 1990. This phase of 
testing was designed to obtain in-depth information on the 
following issues: 
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• How respondents felt about the questionnaires. 
• The process that respondents went through to provide 

the information. 
• The layout, presentation, and readability of the ques­

tionnaires. 
• The extent to which respondents read and understood 

instructions and questions. 
• Problems encountered by respondents while completing 

the questionnaires. 
• Whether instructions and definitions were necessary, 

understandable, and useful. 
• The accuracy of information provided by respondents. 
• The use of estimates by respondents and their accuracy. 
• The types of records from which information was 

obtained. 
• The compatibility of the questions and response cate­

gories with respondents' record-keeping practices. 
• Response burden in terms of time and effort. 

The scope of the research included both the General 
Contractors and Developers questionnaire and the Trade 
Contractors and Sub-contractors questionnaire. Approx­
imately 50 construction firms participated in the study. 
They were chosen to represent the types of respondents 
who completed the Census of the Construction Industry 
questionnaires. Twenty-five in-depth interviews, 16 con­
current think-aloud interviews, and 2 focus groups were 
conducted in Ottawa, Montreal and Toronto. AU one-on-
one interviews took place at the respondent's place of 
business. 

A very interesting finding from the study was that there 
were two distinct groups of respondents. The first group 
of respondents included the president or vice-president of 
a company, who often had to consult other individuals to 
complete certain quesdons. It took these participants 35 to 
45 minutes to complete the questionnaire. They were more 
likely to make estimates based on their famiUarity with the 
company and were less concerned about accounting for 
differences between the questionnaire and the source of 
information used to complete the form. 

On the other hand, respondents such as office managers, 
accountants and comptrollers took 75 to 90 minutes to 
complete the questionnaire. These respondents were much 
more concerned with detail and providing accurate 
answers. They were more likely to use multiple sources of 
information and to make calculations in answering the 
survey questions (Gower and Zylstra 1990; Gower and 
Nargundkar 1991). 

Many respondents indicated that completing the ques­
tionnaire was not a priority. They viewed the survey as 
only one of the many forms and questionnaires that they 
had to complete each year. Many participants indicated 
that they often waited for the follow-up telephone call, and 
some even preferred, to answer the questionnaire over the 
telephone. They said that, over the telephone, they could 

make estimates "off the tops of their heads" instead of 
carefully completing the form, and this required much less 
time and effort on their part. 

The response burden was more perceived than real. 
Upon completing the questionnaire, many respondents 
remarked that it took surprisingly less time and was easier 
to complete than they had anticipated. 

A common theme that emerged during the interviews 
and focus groups was the perceived value of the informa­
tion being collected. Respondents wanted to know the 
purpose of completing the quesdonnaire and often ques­
tioned the value of the information to themselves and to 
other users of the informadon. Therefore, a major finding 
of the research was that the value of providing the infor­
mation must be made clear to respondents. They wanted 
to know how the survey results were going to be used. 
They were also interested in learning how they could 
access the data. 

Overall, the questionnaires were very well received by 
respondents. They appreciated the "business-Uke" appear­
ance and approach of the questionnaires. Many were 
familiar with completing previous questionnaires for the 
Census of the Construction Industry. They felt that the 
redesigned forms were an improvement over the previous 
versions because they seemed shorter and less complicated. 
This was positive feedback and reassurance for the survey 
managers who designed the new questionnaires (Gower 
and Zylstra 1990; Price Waterhouse Management 
Consultants 1990). 

The study identified many specific findings about how 
the questionnaires could be improved and made more 
"respondent-friendly". While the pretest provided valuable 
feedback about response rates and the completeness of 
reporting, the focus groups and cognitive research added 
significantly to these findings by providing in-depth, first­
hand information about how and why respondents reacted 
to the questions as well as about how and why responses 
were chosen. 

Figures 1 and 2 illustrate a few of the specific findings 
and how the questionnaire was improved based on these 
findings (Gower 1993). Figure 1 shows parts of Sections 2 
and 4 of the 1988 version of the questionnaire for General 
Contractors and Developers, before testing. Figure 2 
shows the corresponding parts of the final version of this 
questionnaire, after testing. 

Section 2 - Statement of Income 

On the final version of the questionnaire (Figure 2): 

• A statement is provided at the beginning of Section 2, 
telling respondents that they could include their com­
pany's Financial Statements. On the version of the form 
(Figure 1) that was tested, many respondents missed this 
instruction because it appeared on a separate page of 
instructions. 
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Figure 1 (before testing): 1988 Census of the Construction Industry (General Contractors and Developers), Statisdcs Canada 

SECTION 2. STATEMENT OF INCOME 

REVENUE 

2.1 Revenue from construction contracts 

2.2 Other operating revenue 

Type 

102 

104 

106 

108 

please specify: 

Value 

103 

105 

107 

109 

Total 

2.3 Total gross operating 

2.4 Accounting method is: 

revenue (sum of items 2.1 and 2.2) 

$ 

1 1 completed contract 

1 1 percentage of completion 
DIRECT COST 

2.5 Work in progress, opening (add, if required for direct cost calculation) 

If direct cost detail is not available, please report percentages 
of total (item 2.15, sum should equal 100). 

2.6 Sub-contracts 

2.7 Materials and supplies used (adjusted for change in inventory) 

2.8 Wages paid to hourly-rated employees (gross, before deductions for income tax, 
pension plans, insurance, etc.) 

2.9 Direct salaries paid to site supervisors, etc. (gross, before deductions for income tax, 
pension plans, insurance, etc.) 

2.10 Employee benefits (employer contributions not included in 2.8 and 2.9, such as 
pension plans, insurance, etc.) 

2.11 Land 

1 1 undeveloped land 

Cost includes (please check): ^ | | services, carrying charges, etc. 

1 1 serviced lots 

2.12 Repair and maintenance of machinery and equipment 

2.13 Equipment rental (without operator) 

2.14 Other c 

2.15 Tota 

iirect cost 

direct cost (sum of items 2.6 to 2.14) 

2.16 Work in progress, closing (deduct if required for direct cost calculation 

2.17 Total direct cost charged to contracts (item 2.5 plus 2.15 minus 

Percentage 

100 

or 

2.16) 

Dollars 
(Omit cents) 

101 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

SECTION 4. LABOUR FORCE 

4.1 For wages paid to your hourly paid labour force, reported in item 2.8, please report hours worked: 

4.2 

4.3 

201 

N.B.: Reported figure she 

For direct salaries paid, r< 

203 

For overhead salaries pal 

204 

hrs. or average hourly rate: $ 

uld be hours worked, i.e. one hour overtime [ 

202 

laid at time and a half sh 

/ hour 

ould be counted as one hour. 

sported in item 2.9 please provide average annual number of employees: 

employees 

i, reported in item 2.19 please provide average annual number of employees: 

employees 
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Figure 2 (after testing): 1989 Survey of the Construction Industry (General Contractors and Developers), Statistics Canada 

201 SECTION 2. STATEMENT OF INCOME 

Instead of completing this section, you may include your company's Financial Statements, together with your otherwise completed 
questionnaire. If financial statements are included, go directly to Section 3. 

REVENUE 

2.1 Revenue from construction contracts 

2.2 Other operating revenue, such as sales of materials, land sales, project or construction management, rentals of 
• -equipment and buildings, snow removal, consulting engineering fees. Please specify: 

Description 

Dollars 
(Omit cents) 

202 

203 207 

204 208 

205 209 

206 210 

2.3 Total gross operating revenue (sum of Hems 202 and 207-210) 

2.4 Please check accounting method used: I I complete contract 

211 

212 
percentage of completion 

DIRECT COSTS 
2.5 Work in progress, opening (add, if required for direct cost calculation). Work in progress is defined as inventory of 

uncompleted and unbilled construction work done 
213 

Only if direct costs detail is not available, please estimate percentages 
of total direct costs (item 234, sum stiould equal 100) 

2.6 Sub-contracts (include equipment rental witti operator). 

2.7 Equipment rental without operator 

2.8 Materials and supplies used (adjusted for change in inventory) 

2.9 Wages paid to any hourly-rated employees (gross, before deductions for income tax, 
pension plans, insurance, etc.) 

2.10 Direct salaries charged to contract and paid to permanent staff, such as foremen, 
site supervisors, etc. (gross, before deductions for income tax, pension plans, 
insurance, etc.) 

2.11 Employer portion of employee benefits, such as pension plans and insurance. (Report 
only if employee benefits are not included In wages and direct salaries above) . . . . 

2.12 Cost of land included in sales 

2.13 Repair and maintenance of machinery and equipment. 

2.14 Depreciation charged to contracts 

2.15 Other direct costs (any ottier direct costs not separately reported above, such as 
pre-constuction costs, site costs, fees, advertising, fuel, etc.) 

Percentage 

214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

100 

or 
224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

2.16 Total direct cost (sum of items 224 to 233) 

2.17 Work in progress, closing (deduct If required for direct cost calculation) For definition of work In progress see 
question 2.5 above 

234 

235 

2.18 Total direct costs charged to contract (item 213 plus 234 minus 235) 
236 

SECTION 4. LABOUR FORCE 
4.1 Please report hours worked by your hourly paid labour force (whose wages were 

reported in item 227): 

N.B.: Reported figure should be hours worked, i.e. one hour overtime paid at time 
and a half should be counted as one hour. Figures for hours worked may 
be obtained from payroll records or Workers Compensation Board reports. 

hours 401 

Only if hours worked are not available, 
please report average (straight-time) hourly rate: 

I hour 402 $ 

4.2 Please report the average annual number of direct salaried employees 
(whose salaries viere reported in item 228): 

403 employees 
Exclude owners and partners of 
unincorporated businesses 

4.3 Please report the average annual number of overhead salaried employees 
(whose salaries were reported In item 237): 

404 employees 
Exclude owners and partners of 
unincorporated businesses 

4.4 Number of professional engineers included in item 404: 

405 engineers 
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• Reference is made to line numbers (e.g., 202 and 207-210) 
instead of item numbers (e.g., 2.1 and 2.2). Although 
the line numbers are actually data code numbers, respon­
dents viewed them as line numbers because they appeared 
simUar to the common and weU-known use of Une numbers 
on the Canadian Income Tax forms. 

• Important information such as definitions and what to 
include are provided in the items themselves instead of 
on the Instructions page. 

• Respondents are only required to report estimated 
percentages if detail about direct costs is not available. 
This choice has been made clearer by printing "o r " in 
large and bold print. 

Note that, in completing Section 2, respondents con-
suUed the following types of records: financial statements, 
on-line accounting systems, progress or work-on-hand 
billings, project reports, general ledgers, working papers, 
and audit statements. 

Section 4 - Labour Force 

On the final version of the questionnaire (Figure 2): 

• Question 4.1 includes information that "hours worked" 
may be obtained from "payroll records or Workers' 
Compensation Board reports". During the think-aloud 
interviews, respondents noted that they consulted these 
types of records for the information. 

• Clarification is provided that "average hourly rate" is 
to be reported "only if hours worked are not available". 

• Important information and instructions are included in 
the question items. For example, during testing, most 
respondents did not exclude owners and partners in 
reporting the numbers of employees in items 4.2 and 4.3 
(even though this was specified on the Instructions page). 

5.2 National Training Survey (NTS) 

Two separate research studies, each involving the appli­
cation of focus groups and cognitive research methods, 
have been used during the development and testing of the 
questionnaire for the National Training Survey (NTS). 

The purpose of the NTS is to collect information on 
employee training and development in the private business 
sector. Respondents are asked to provide data on the type 
and volume of training, the number of trainees and their 
occupational groupings, the characteristics of the busi­
nesses providing training to their employees, and the 
amount of money being spent on this activity. In large 
businesses, respondents are the persons involved in the 
human resource planning and training areas of their 
company, while in smaller businesses they are typically the 
owner or chief executive officer. 

At an early stage in developing the questionnaire, focus 
groups and in-depth interviews were held with represen­
tatives from small, medium and large companies. These 
methods were used because Statistics Canada felt it was 

important to consult representatives of the business 
community to ensure that their interests and concerns 
about training were considered in the design of the NTS 
questionnaire. 

The focus groups and interviews evaluated the clarity 
and appropriateness of terminology and concepts associated 
wkh the training of employees within a business establish­
ment. The study invesdgated respondents' understanding 
of terms such as "formal training" and "informal training" 
as well as their abiUty to use these terms to categorize their 
training activities. 

Findings from this early phase of testing illustrated the 
importance of consulting with respondents before finalizing 
the terminology and concepts used in questionnaires. The 
findings from the study provided the survey project team 
with important information and insights into how the 
survey questions should be worded and how response 
options should be categorized. 

For example, a significant finding from the focus 
groups and in-depth interviews was that many companies 
did not use the terms "formal" or "informal" to describe 
training activities and did not see the advantage or need 
to differentiate between the two terms. Many also perceived 
that there was no clear distinction between the terms 
"formal" and "informal" that would enable easy cate­
gorization of training activities. 

The study helped the survey designers understand how 
respondents interpret terms and concepts. Participants 
provided suggestions on the appropriate terminology for 
them. For example, although they had difficuUies with the 
terms "formal" and "informal," participants were able 
to provide characteristics to define these terms. They 
described formal training as having "a formal structured 
curriculum or course outline with a beginning, middle and 
an end; that it has known objectives or clearly defined 
goals; that it has an evaluation component; . . . . [and] that 
[it] has a doUar cost." On the other hand, most parrici-
pants perceived "informal training" to be on-the-job 
training having no structure, often involving learning by 
observing. "Lack of evaluation" was another characteristic 
often suggested to define informal training. 

Another interesting finding was that many participants 
made a distinction between "training" and "developmental 
or educational activities". The term "training" was not 
seen to cover all the activities that employers provide to 
support employee development. Some participants viewed 
"training" as job-specific and related to job productivity, 
and "development" as related to increasing the knowledge 
base of the individual (Kennedy and de Groh 1992). 

After the draft NTS questionnaire was developed, it 
was tested using focus groups and concurrent think-aloud 
interviews. Representatives of a variety of businesses as 
well as a mixture of small, medium and large firms par­
ticipated in the study. The study examined the following 
issues: 
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• The most appropriate person within a business to respond 
to the survey. 

• How best to reach respondents. 
• The process that respondents went through to provide 

the information. 
• The way in which respondents understood the questions 

and instructions. 
• Respondents' reaction to vocabulary and the groupings 

and classifications of occupations in the survey. 
• Whether the information sought in the survey was readily 

avaUable. 
• The types of records from which information was 

obtained. 
• The compatibility of the questions and response cate­

gories with respondents' record-keeping practices. 
• Whether the reference periods requested in the survey 

corresponded to the record-keeping practices of re­
spondents. 

• Response burden in terms of time and effort. 

Seven focus groups and 26 interviews were conducted 
in Ottawa, Toronto, Montreal, and Vancouver. In the 
final report (D.R. Harley Consultants Limited 1993), the 
Contractor reported many findings and made several 
recommendations to improve the questionnaire. 

As in other studies of business surveys, a major finding 
was that many participants quesdoned the purpose behind 
the survey. They wanted to know why the information was 
being collected and how the survey results were going to 
be used. A strong theme that emerged throughout the 
focus groups and interviews was that respondents wanted 
to know "What's in this for me?" 

Some participants suggested that the data be aggregated 
nationally, provincially and by sector so that they could 
compare themselves to other companies in their areas of 
business and in their part of the country. As one respondent 
said, "I would want the data to be specific to our industry 
with the volume and type of training that's being provided 
. . . . It should allow us to compare ourselves to others in 
our sector - number of employees being trained and the 
percentage of payroll being spent on employee training." 

Many small and medium-sized business respondents 
found the questionnaire too broad and the level of detail 
too complicated for them to answer. In their opinion, the 
questionnaire was designed for larger organizations. For 
example, many small businesses felt that they could not 
fit themselves into the categories provided by the quesdon­
naire. They felt that much of their training fell into the 
"unstructured" category, and that the questionnaire was 
not capturing this aspect of training. However, at the same 
time, there were other respondents from small and medium-
size businesses who commented that the questionnaire was 
thorough and complete. 

The larger businesses also had difficulty with the level 
of detail being requested by the survey. The major problem 

was that they keep training records by type of training that 
employees receive rather than by the occupational category 
of the people being trained. 

Overall, a variety of record-keeping practices were 
observed. Some businesses keep excellent records on 
training, while others do not. Pardcipants, who did not 
keep good records or whose records did not contain the 
requested information, found the questionnaire difficult 
to answer. Others, who had sophisticated records, could 
manipulate their data to fit the questionnaire. The one 
exception was the questions on training expenditure for 
which they found it difficult to provide detailed informa­
tion. Global figures were more easily available, they said. 
Many businesses indicated that their training records were 
not centralized, thus making the quesdonnaire more 
difficult and requiring longer time to complete. They said 
that they would complete what they could, and then coor­
dinate the completion of the rest of the questionnaire by 
forwarding it to many parts of their organization. 

Although many participants were initially overwhelmed 
by the size and apparent complexity of the questionnaire, 
they found it easier to complete than expected. Many 
found that the thoroughness of the questionnaire actually 
made them remember many training activities that they 
would not ordinarily have reported on. 

Most participants felt that the questionnaire should be 
shorter. But they also suggested adding a few more open-
ended questions about future training. In terms of response 
burden, respondents (especially in medium-sized and 
large-size companies) found that the questions about 
training expenses, training hours, and the numbers of 
employees trained by occupational categories would 
require hours of work to compile. 

Differences were found in the time it took respondents 
to complete the questionnaire. Small businesses took 
between 10 minutes and 1 hour to complete the question­
naire. Large businesses, on the other hand, estimated that 
it would take about 2 hours to complete the questionnaire 
(D.R. Harley Consultants Limited 1993). 

6. CONCLUDING REMARKS 

This paper has provided an overview of questionnaire 
design for business surveys. As the paper has pointed out, 
many considerations go into designing business survey 
questionnaires. They include the survey's objectives and 
data requirements as well as consultation with data users 
and respondents on the nature and concerns of the respon­
dent population. Other considerations are response 
burden, the method of data collection, the availability of 
data, and the use of records, as well as the need for testing 
the questionnaires. 

Specific design issues that should be taken into account 
include the instructions, the clarity and readability of the 
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quesdons, the logical sequencing of the questions, the 
compatibiUty of response categories and reference periods 
with respondents' record-keeping practices, and data 
processing requirements. The questionnaire should be 
respondent-friendly and interviewer-friendly. 

To ensure the collection of accurate and useful data in 
business surveys, it is important to understand the response 
process that respondents go through in completing a 
questionnaire. Focus groups and cognitive research 
methods are very effective ways to study this response 
process and to test questionnaires. They provide the 
opportunity to consult directly with respondents and, 
thereby, to bring their ideas, concerns, and suggestions 
into the questionnaire design process. 

Looking towards the future, research and experience 
should lead to improvements in the methods and approaches 
that are currently used to develop and test business survey 
questionnaires. An important area that requires more 
research and development is the relationship among the 
questionnaire, the respondent, and the external informa­
tion source as well as the influence that this relationship 
has on the response process and the accuracy of reporting. 
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Bias Corrections for Survey Estimates from Data with Ratio 
Imputed Values for Confounded Nonresponse 

E. RANCOURT, H. LEE and C.-E, SARNDAL' 

ABSTRACT 

Most surveys suffer from the problem of missing data caused by nonresponse. To deal with this problem, imputation 
is often used to create a "completed data set", that is, a data set composed of actual observations (for the respondents) 
and imputadons (for the nonrespondents). UsuaUy, imputation is carried out under the assumption of unconfounded 
response mechanism. When this assumption does not hold, a bias is introduced in the standard estimator of the 
population mean calculated from the completed data set. In this paper, we pursue the idea of using simple correction 
factors for the bias problem in the case that ratio imputadon is used. The effectiveness of the correction factors 
is studied by Monte Carlo simulation using ardficially generated data sets representing various super-populations, 
nonresponse rates, nonresponse mechanisms, and correladons between the variable of interest and the auxiliary 
variable. These correction factors are found to be effective especially when the population follows the model 
underlying ratio imputation. An option for estimating the variance of the corrected point estimates is also discussed. 

KEY WORDS: Conditional bias; Monte Carlo simulation; Restoring estimator; Variance esdmadon. 

1. INTRODUCTION 

Occurrence of nonresponse is rather a norm than an 
exception in surveys. Missing data caused by nonresponse 
are often imputed to obtain a completed data set and the 
standard estimator is applied to the completed data set 
assuming that the underlying response mechanism is 
unconfounded. However, a point estimate obtained in 
such a way is biased when the response mechanism is 
confounded. The bias in this case could be very severe as 
pointed out in Lee, Rancourt and Sarndal (1994). A 
response mechanism is unconfounded, according to Rubin 
(1987, p. 39), if it does not depend on the variable under 
study, otherwise it is confounded. (A formal definition 
suitable for this paper will be given in Section 2.) 

In a Bayesian framework, a concept similar to that of 
an unconfounded response mechanism is termed ignorable. 
For bias caused by a nonignorable response mechanism, 
Rubin (1977, 1987) and Litde and Rubin (1987) considered 
a method to correct the respondent mean using auxiliary 
variables. In this approach, a linear regression is assumed 
between the variable of interest y and a vector of auxiliary 
variables x. The regression coefficient vector for the 
nonrespondents is assumed to have a normal prior with 
mean equal to the regression coefficient vector for the 
respondents. 

Assuming a logisdc model for the response probability, 
Greenless, Reece and Zieschang (1982) proposed a method 
to deal with nonignorable nonresponse using maximum 
likelihood estimation. Further, a Unear regression model 
is assumed for the relationship between y and x, a vector 

of auxiUary variables. The logistic modd of the response 
probability includes y and z, a vector of other auxiliary 
variables. Assuming also that the error term of the regres­
sion is normally distributed, they obtain maximum likeli­
hood estimates of the unknown parameters of the regression 
model and the logistic modd. Finally, for a nonrespondent, 
an imputed value is calculated as the mean of the distri­
bution of y conditional on the values of A: and z for the 
nonrespondents, and the estimated parameters. Such a 
method may give good resuUs when aU the model assump­
tions are satisfied but is likely to be highly sensitive to the 
specifications of the two models. The adequacy of the 
response probability model is usually untestable. If data 
are available from an external source, however, then it 
may be possible to test the response probability modd as 
Greenless et al. did in their application to the Current 
Population Survey data. This method is highly computer-
intensive. 

In the case of categorical data, a few methods have also 
been proposed to deal with the problem of nonignorable 
nonresponse. For instance, Baker and Laird (1988) try 
to model the response mechanism with the help of log-
linear models. As well, causal modeUng is discussed in Fay 
(1986, 1989). 

Ratio imputation is often used at Statistics Canada, 
especially in repeated surveys. For instance, in the Monthly 
Survey of Manufacturing, a missing value of the current 
shipment is imputed by ratio imputation using previous 
month shipment as the auxiliary variable value. This 
simple method is very appealing to subject matter 
speciaUsts because it reflects month-to-month movement. 

' E. Rancourt and H. Lee, Business Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, KIA 0T6; C.-E. Sarndal, Departement 
de mathematiques et de statistique, Universite de Montreal, C.P. 6128, succursale A, Montreal (Quebec), Canada, H3C 3J7. 
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In this paper, we investigate the possibiUty of improving 
the estimator applied to data containing ratio imputation 
with the aid of simple correction factors. Therefore, we 
assume that imputadon has already been performed, and 
try to correct the estimator. We focus our attention on the 
estimation of the mean. The use of simple correction 
factors would be very appealing to the user provided it 
works reasonably weU. Such a procedure is also easy to 
implement without resorting to excessive computational 
efforts and it enables us to avoid explicit modeling of the 
nonresponse mechanism. However, our approach differs 
from Rubin's in that we use sample dependent correction 
factors rather than an a priori chosen constant. 

In Section 2, we define several simple correction factors 
that meet our requirements. In Section 3, we propose a 
variance estimator that may be used in conjunction with 
the corrected point estimators. The properties of the 
corrected point esdmators were examined by a Monte 
Carlo simulation reported in Sections 4 and 5. Section 6 
presents some concluding remarks. 

2. SIMPLE BIAS CORRECTION FACTORS 

Let t/ = \l, .. .,k, .. .,N\ denote the index set of a 
finite population and let the population mean of the 
variable of interest y be denoted by pu — (l/N) Y^uPk-
We assume that yk > 0 for all k € U. From U, a simple 
random sample s of size n is drawn without replacement 
(SRSWOR). The unbiased estimator that would be used 
with 100% response is the sample mean 

ys= (Vn) Yyk- (2.1) 

Let r and o be the sets of the responding and non-
responding units, respectively, so that 5 = /• U o. We denote 
the SRSWOR sampUng plan hyp(-) and the response mech­
anism given 5 by q'(• I 5). Thatis,/?(5) is theprobabUity 
that the SRSWOR sample5 is drawn, and ^ ( r | s) is the 
probability that the set r responds given the sample s. Let 
also m and / be the sizes of r and o, respectively. For 
simplicity, we assume that the probability of w = 0 is 
negligible. We assume that imputation is carried out with 
the aid of an auxiliary variable, x, whose value, Xk, is 
known and positive for all /: 6 5. If A: € o, the missing value 
Pk is imputed hy pk. The completed data set is denoted as 
[y.k'.k € s] where^'.^ = ykifk € randy.k = Pkif k ^ o. 

In this paper, we examine ratio imputation. This often-
used imputation method is based on a simple model. That 
is, if the value yk is missing, it is imputed by B^Xk, where 
Br = {I,ryk)/(I,rXk)- The modcl denoted ^, is stating 
that, for k € s. 

yk = &Xk + €<:, E^{^k\Xk) ^'^, Vi(^k\ Xk) = a^Xk, 

Under this model, B^Xk is the best linear unbiased predic­
tor of the missing value yk, based on the respondent data 
{{yk,Xk) :k d r]. The completed data set is then composed 
of the values 

y-k 
( yk, if 
l^BrXk, if 

k i r 

k i 0. 
(2.3) 

The customary procedure is to apply the estimator 
formula used for 100% response to the completed data set. 
This gives 

y-s 
1 

Yy-' 
yr 

^rai mp> (2.4) 

where^5= {l/n)Y,sXk,Pr- (1/w) Xirĵ ^andXr = (l/m) 
Y,rXk- Note that raimp stands for ratio imputed. 

It now becomes necessary to address the question 
whether the imputation can restore the full response esti­
mator, ps, in the sense that the imputation estimator j ' . ^ 
is equal to ps in expectation given s. Unless this can be 
achieved, the ratio imputation will have introduced bias. 
To examine this question, we must consider the response 
mechanism. A response mechanism 9( • | 5) is said to be 
unconfounded for the purpose of this paper if it is of the 
form q{r \ s) — q{r \ x^), whereXj = [Xk:k ^ s] and 
the response probabiUties satisfy P( / : e r | s) > 0 for all 
k ^s. That is, it may depend on 5 and on the associated 
x-values. If it depends also on the j'-values, so that 
q(r I s) = q(r \ Xs,ys), then is is called confounded. In 
these definitions, the response mechanism is conditional 
on the realized sample s. Slightly different definitions of 
"confounded" and "unconfounded" are given in Rubin 
(1987, p. 39) where they are uncondidonal. 

An example of an unconfounded response mechanism is 

Q(r\s) =Y{(^ -Qk)Yl ©*' kir kis-r 

E^(ik^i I Xk,xi) = 0, k ^ I. (2.2) 

where 9^. = 1 - P{k €. r \ s) = I - e~'''''< for some 
positive constant y, is the nonresponse probability of unit 
k. By contrast, if 9̂ ^ = 1 — e~'^^'', then q{r \ s) is a 
confounded mechanism. 

A particularly simple unconfounded mechanism is the 
uniform response mechanism defined hy q{r \ s) = 
(1 — 9)'"9""™. Here, units respond according to inde­
pendent and identical Bernoulli ( 1 — 0 ) trials, where 0 
is the nonresponse probability common to all units. 

Whether an imputation estimator p^ of py, including 
j'raimp givcu by (2.4), is considered good depends in part 
on the assumptions made by the analyst about the response 
mechanism and in part on the relation between y and x. 
Several possible assumptions are discussed later in this 
section. For any given s, the goal is that, under specified 
realistic assumptions, the expectation of the difference 
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yu ~ ys should be close to zero. That is, under the given 
assumptions, the conditional bias of pu, C-hias{pu) = 
E(yu - Js I •s'). should be small. We call py a restoring 
estimator of Pu if C-hias(p u) = Oor ~ 0, that is, if^y 
is (approximately) equal to j ' ^ in conditional expectation. 
It follows that if the C-bias is (approximately) zero for any 
5, then the unconditional bias over all sample realizations 
s is also (approximately) zero. 

Different analysts make different assumptions. Let us 
consider some typical assumptions and ask the question: 
What restoring estimators do these assumptions allow? 

Assumption I: The response mechanism is uniform. 

Under Assumption I, Jraimp is a restoring estimator. To 
see this, note that 

C-bias (ĵ raimp) = ^'^(Aaimp I 5) - J j « 0, 

because, given s, '̂raimp is the classical ratio estimator of 
Ps. Assumption I is unrealistic in most surveys. The 
response propensity is known to vary with observable 
characteristics such as size and industry (for business 
establishments), family size and type (for households), 
age, sex and income (for individuals). Under this unrealistic 
assumpdon, even a naive estimator such as the respondent 
mean, p^ = (l/m) Y^rPk, is a restoring estimator: 

C-bias (jr) = EAyr \ s) - y^ 0. 

However, if Assumption I holds, j'raimp 's preferred topr 
because the ratio estimator feature leads to a smaller 
variance if the model | holds. 

The analyst clearly needs to consider more realistic 
assumptions which allow the response probabilities to vary 
with background variables. The following assumption, 
composed of two parts, is of this kind. 

Assumption II: (II-l): the response mechanism is uncon­
founded but otherwise arbitrary; 

(II-2): the ratio model (2.2) holds. 

Here (II-l) is a weaker and more realistic requirement 
on the response mechanism than the uniformity requirement 
in Assumption I. Under (II-l), the response mechanism 
can be of any form as long as it is unconfounded. How­
ever, Assumptions I and II are not directly comparable 
since II contains a model component, (II-2), which is 
lacking in I. Under Assumption II, ĵ raimp is a restoring 
estimator because 

C-bias (Jraimp) = £"1 !£•<,(Aaimp) " j j ^1 

- EqE^ m Ei(Ps) 

Note that changing the order of the expectations, E^E^ to 
EqE^, is allowed under Assumption II, because the 
response mechanism is then of the form q(r | x^), that is, 
it does not depend on the j'-values. By contrast, the 
respondent mean p^ is not a restoring estimator because 

C-bias(J',) ^E^{Eq(Pr) -ys\s\ =^\Eq(Xr\s) - x j , 

which is generally nonzero under Assumption II. We can, 
however, transform p^ into a restoring estimator by the 
use of a multiplicative correction factor. This leads to 

4-('-")(t-)]' (2.5) 

= Eq(fiXs) - ^Xs = 0. 

which is just another way of writing J'raimp. as can easily 
be verified. In an example using the Bayesian approach, 
LUtle and Rubin (1987, p. 233) arrive at an estimator iden­
tical to the estimator (2.5). 

Let us now consider confounded response mechanisms. 
They cause more difficult problems for finding a restoring 
estimator. 

Assumption III: (III-l): the response mechanism is con­
founded but otherwise arbitrary; 

(III-2): the rado modd (2.2) holds. 

It is usually difficuU, if not impossible, for the analyst 
to decide whether Assumption II or Assumption III is 
more appropriate. Examining the data will not be of much 
help if the only data available relate to the present point 
in time, as would typicaUy be the case in a one-dme survey. 
The assumption made (whether II or III) is then unveri-
fiable. By contrast, if the analyst has experience with a 
regularly repeated survey, he or she may have legitimate 
reasons to believe, for example, that the nonresponse is 
a function of the variable of interest. 

In some situations, the assumption of a confounded 
mechanism may be made on the following grounds. Sup­
pose in a survey of personal finances that^, the variable 
under study is "savings" and thatx, the auxiliary variable 
is "income", with values Xk known for the individuals 
k € s. The nonresponse probability of respondent k is 
likely to be correlated with the savings figure Pk that he 
or she is asked to reveal as well as with the income figure 
Xk known from other sources. But since savings, not 
income, is the variable with which the respondent is 
directly confronted in the survey, the assumption that the 
nonresponse probabiUty is a function of Pk may be more 
realistic than the assumption that it is a function of x^. 
Hence a confounded mechanism may be more realistic to 
assume than an unconfounded mechanism. 

Under Assumption III, neither jĴ  nor J'raimp are restoring 
estimators. The C-bias of j'raimp can be expressed as 
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C-bias (j'raimp) = x.E^Eq 

where dk is defined by the model (2.2). This C-bias is 
generally nonzero and can be quite large when the non-
response rate is high and the correlation is not so strong. 
However, the C-bias is hard to evaluate, since the exact 
form of the response mechanism is left unspecified. Note 
that changing the order of the expectations E^ and E^ is 
not permitted under Assumption III since 9 (/• | 5) depends 
on the j-values. For example, a negative C-bias is likely 
to occur if the respondent residual total, Y^r^k tends to be 
negative. 

A confounded response mechanism (as in Assumption 
III), introduces bias in the slope estimator B^ = (YrPk)/ 
(YrXk)- Consequently, B^Xk is a biased imputation for a 
missing value j ' ^ . To improve the situation, suppose that 
a missing value j ' ^ is imputed by CB^Xk instead of B^Xk, 
where C is a quantity to be specified. Then the data after 
imputation are given by 

y-k 
yk, 

CBrXk, 

if 

if 

k € r 

k € o 
(2.6) 

and denoting the sample mean of these data as Pg.s = 
(l/n) Y.sy'^-k, we get the estimator 

''-4^('-^)(^|-') (2.7) 

A simple correction of the type used in (2.6) was mentioned 
in Rubin (1986; 1987, p. 203) in the context of muUiple 
imputation. Rubin views Cas a fixed constant chosen by 
the user according to his or her prior knowledge. If such 
a choice happens to be well founded, the bias of (2.7) may 
be small. 

Here, we shall examine choices of C that are adaptive, 
that is, they reflect the realized sample s and the realized 
response set r. Ideally, C should be such that the imputa­
tion wiU exactly restore the estimator p^ = ( l / « ) EsJ'* 
that would be used with 100% response. This C-value is 
determined by the equation 

s s ^ r o ' 

A simple calculation shows that the optimal C-value is 

C = ^ « 
' - 'opt wc > 

where Bg = Yoyk/ Eo-̂ /t is the slope estimate if the model 
(2.2) could be fitted to nonrespondents. The imputed 
values would then be pk = BgXk for k i. o. Obviously, 
Copt and Bo cannot be computed since they depend on 
missing j^.-values. For an unconfounded mechanism (as in 
Assumption II), we can expect Copt = 1> given s, because 

£^£,(Copt U ) =EqE^(^\^ « 1. 

But for a confounded mechanism (as in Assumption III), 
Copt can be distinctly away from unity. Suppose that 
Copt > 1- Note that Copt > 1 if and only if Yr^ks < 0 
withe^^ = yk - 4 % . where 4 = (E5J'/t)/(E5.^*) isthe 
unknown slope estimate with 100% response. That is, 
Copt > 1 implies that respondents' residuals Cks are 
negative on the average. An illustration of this is shown 
in figure 1, where « — 10,1 = n — m = 5, and aU five 
respondents' residuals Cks are negative. 

Figure 1. Example of data plot (yk,Xk) for a confounded 
response mechanism. 

Assuming that Copt > 1. one approach for the analyst 
working under Assumption III is to choose a computable 
C likely to satisfy C > 1 and then use this C to construct 
the estimator (2.7). Factors C that will sometimes work 
in this manner are 

C| = C2 = C3 
w^ 
Wr 

W^ 
Q (2.8) 

Br 

They are based on the logic that if the response mechanism 
is confounded in such a way that the nonresponse proba­
bility is a function of y (for example, Qk = 1 — e~'^^i< 
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with 7 > 0), then both Copt > l.andXo > Jc^areUkdy 
to occur, as Figure 1 illustrates. Conversely, if nonresponse 
is a decreasing function of yk, then both Copt < 1. and 
Xg < Xr are likely to occur. 

One important feature of such correction factors is that 
they can, but need not, be calculated during the imputation 
phase. For instance, if the usual ratio imputation B^Xk 
was carried out at the imputation phase, it is then possible 
to calculate a suitable correction factor at the estimation 
phase without changing the originally imputed values. 

Note that C2 implies a somewhat milder correction than 
Ci:ifci > 1, we have 1 < C2 < Ci. The choices C = C3 
and C = C4 are calculated on the ranks of the x-values, 
rather than on the x-values themselves, to dampen the 
effect of extreme x-values. More specifically, letting w^ 
be the rank of x^ in the data set {x .̂: A: 6 5), the w-means 
in C3 and C4 are ŵ  = ( l /« ) ES^A:> *̂ r = (l//w) Er^^/tand 
Wg = (l/l)Y.o'^k- The four estimators obtained by 
letting C = Cj in (2.7) according to (2.8) will be denoted 
as pg..s, i — 1, . . . , 4. In particular, we have 

Pel- -[-('-")[(!)'-]]• -

holds, the variance estimator for the point estimator 
j'raimp i" (2-4) obtained by this method is given by 

V{P, raimpv \n N) 

(p-k -y-s)' 

n - 1 

-I- \n NJ \m nj 

''̂ ord "I" ' dif "I" Mmp i 

where 

A^ = 
« - 1, 

Al = 
X^Xn 

and 

E^*-^ 

(3.1) 

Xk Xj LJ Xk 

— + — ^ -
Y^" Y""" 

and 

yc2-s VrU +(l 
n){xrXs J J ' 

(2.10) 

The correction factors given in (2.8) are not ideal when 
the correlation between x and y is close to 1. In this case, 
we have Br ~ B^ ~ Bg, provided that the model (2.2) 
holds. Therefore, the correction factor C should be close 
to 1. However, the correction factors given in (2.8) could 
be very different from 1 and using them would bring bias. 
For this reason, it may be preferable to work with a 
correction factor Cin (2.7) that takes the correlation into 
account. Correction factors of this kind are 

A:,- = 1 - {{c} - l){Rly I): (2.11) 

where c,, / = 1, . . . , 4, are the four correction factors 
given in (2.8), and R^y is the estimated correlation coef­
ficient based on the respondent data. In our Monte Carlo 
simulation we also included the estimator (2.7) corre­
sponding to the four choices C = ki, i — I, .. ., 4. 
These estimators wiU be denoted as j ' ^ . . ^ , /' = 1, . . . , 4. 

3. VARIANCE ESTIMATION 

Since we are interested in variance estimators based on 
single value imputation, the variance estimation method 
proposed in Sarndal (1990, 1992) is of interest. Assuming 
unconfounded nonresponse and that the model ^ in (2.3) 

a' = 
U el/{m - 1) 

r 

x,{l - (cv„)'^/m\ 

where 

(3.2) 

Y {Xk-Xr)^/{m- 1) 
Sk = yk - BrXk, CV^, = -Il '-

Xr 

The variance of jraimp has two components, namely, 
the sampUng variance and the variance due to imputadon. 
The first term in (3.1) (denoted by Ford) is an estimate of 
the sampling variance calculated using the ordinary 
variance formula assuming that imputed data are as good 
as real observations. Since this assumption does not hold, 
Î rd underestimates the true sampling variance. To correct 
this underestimadon, the second term V^K in (3.1) is added. 
The last term V^^p in (3.1) is an estimate of the variance 
due to imputation. 

If we compute the mean of the j'-values from the com­
pleted data set ly'ik'.k e s] given in (2.6), we get the 
estimator (2.7). Its variance estimator should take the 
correction factor C into account. If we can assume that 
the expectation E^EpEg is equal to EpE^E^ (this is true 
under unconfounded nonresponse), we can use Sarndal's 
(1990, 1992) method to obtain a variance estimator which 
takes Cinto account. However, we are mainly interested 
in confounded cases. We are therefore proposing a variance 
estimator based on the following heuristic argument. 
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The esdmator d^ in (3.2) uses the respondent data only. 
It will certainly be biased for confounded mechanisms and 
some correction is needed in order to use formula (3.1) for 
the corrected estimator (2.7). We suggest to replace (p- in 
(3.1) by C^cP', to obtain the following variance estimator 
for the estimator pg.^ in (2.7): 

V(Pg.s) = VlrA + C^(Kiif + I^mp), (3.3) 

where Kord is computed using the data after imputation 
with the bias correction factor C. Replacing C^ by c] or 
k], we obtain the variance estimators corresponding to 
pgi.s or pkj.s- The resulting variance estimators work quite 
well in many of the cases covered in the simulation reported 
in Section 5. 

Table 1 

Characteristics of the Populations 

POP 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

TYPE 

RATIO 
RATIO 
RATIO 

CONCAVE 
CONCAVE 
CONCAVE 
CONVEX 
CONVEX 
CONVEX 

NON-RATIO 
NON-RATIO 
NON-RATIO 

a 

0 
0 
0 
0 
0 
0 
0 
0 
0 

20 
20 
20 

b 

1.5 
1.5 
1.5 
3 
3 
3 
0.25 
0.25 
0.25 
1.5 
1.5 
1.5 

c 

0 
0 
0 

-0.01 
-0.01 
-0.01 

0.01 
0.01 
0.01 

0 
0 
0 

d 

6.12 
4.50 
2.91 
6.78 
4.83 
2.80 
5.98 
4.22 
2.35 
6.12 
4.50 
2.91 

^xy 

0.69 
0.81 
0.90 
0.71 
0.81 
0.90 
0.71 
0.81 
0.90 
0.71 
0.81 
0.90 

MEAN 
of y 

70.95 
69.92 
12.ei 

117.27 
114.57 
112.11 
35.89 
37.06 
43.92 
95.25 
94.46 
93.32 

4. SIMULATION STUDY 

We are considering eight corrected estimators corre­
sponding to the eight correction factors given in (2.8) and 
(2.11). A simuladon study was conducted to determine 
whether the corrected estimators succeed in restoring j ' ^ 
under different response mechanisms, in particular, con­
founded mechanisms. For comparison, we also included 
the uncorrected esdmators j ' ; . and j'raimp = x^Pr/Xr given 
by (2.2). Our primary objective was to examine the cor­
rected estimators when the finite population follows the 
ratio model J given by (2.3). However, we also wanted to 
see how the corrected estimators behave under relationships 
other than linear regression through the origin. 

We also studied the coverage rates associated with the 
different estimators when the confidence intervals are 
computed with the aid of the variance estimators proposed 
in Section 3. 

For the simulation, we generated 12 different finite 
populations, each of size N = 100, by specifying in differ­
ent ways the constants a, b, c, and d in the regression 
model: 

For each of the 12 specifications, we generated 100 
populadon values {yk,Xk), k = I, ..., 100, by a two 
step process. We used the F-distribution with parameters 
a and jS. Its density is 

1 i - i 

V(a)&" 
e x p ( - x/jS) for x > 0. (4.2) 

First, we generated 100 values x^, A: == 1, . . . , 100, 
according to the F-distribution with parameters a = 3, 
i3 = 16, implying that the mean is ai3 = 48 and the 
variance a/S^ = 768. Then, for each fixed Xk, k = 1, 
. . . , 100, we generated one value Pk according to the 
F-distribution with parameters 

(4.3) 
{ M ( X ) 1 ' 

aHx) 

a^(x) 

= 
(a • \ - bx -\- cx^)^ 

dh 

d^x 

/X(X) a -\- bx + cx^ 
(4.4) 

'3.:pk = a + bXk + cxl + ik, £'H(€A:) = 0, 

KH(€, ) = dhk, (4.1) 

where the dk are assumed to be independent. Four differ­
ent regression types were created by four different speci­
fications of (a, b, c). These types are called RATIO 
(a = c — 0,b > 0, thus conforming to the ratio model 
^ in (2.3)), CONCAVE (a = 0,b > 0,c < 0), CONVEX 
(a = 0,b > 0,c> 0) and NONRATIO (a ?i 0, 6 > 0, 
c = 0). For each regression type, three different levels of 
the model correlation p^y, 0.7, 0.8 and 0.9, were obtained 
by a suitable choice of ĉ . This resulted in 12 specifications 
of (a, b, c, d) as shown in Table 1. 

where x - Xk and (a, b, c, d) is one of the 12 vectors 
fixed in advance. This implies that £'H(j';t I Xk) = a/S = 
a -I- bXk + cxl and Kr(j'^ | Xk) = a0^ - d^Xk, as 
required under the model (4.1). The same x-values were 
used for all 12 populations. For the populations generated 
by this process. Table 1 shows the values of the population 
correlation R^y and the population mean of j ' . Note that 
the values of a, b, c, and d were chosen so as to obtain 
realistic types of populations that can be encountered in 
practice. 

To simulate nonresponse, we used five different 
nonresponse mechanisms, each defined by independent 
Bernoulli (Qk) trials, where the probability of non-
response 9^. for unit k was specified as follows: 
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(Ml) 9^ is constant and independent for all k i. U. This 
is the uniform response mechanism, therefore un­
confounded. 

(M2) 9y(. is a decreasing function ofx<. specified as 9;t = 
exp ( - yXk). This is an unconfounded mechanism. 

(M3) 9 .̂15 an increasing function of x̂ . specified as 9^ = 
1 — exp( —7X^.). This is also an unconfounded 
mechanism. 

(M4) Qk is a decreasing function of yk specified as 9^ = 
exp( - 7j'^:). This is a confounded mechanism. 

(M5) 9̂ ^ is an increasing function of yk specified as 
9̂ ^ = 1 - exp (— 7j';(.)-This is also a confounded 
mechanism. 

Note that since we assume x and y to be positively 
correlated, both (M2) and (M4) are mechanisms such that 
large units respond more often than small units. The 
smaller units will be underrepresented in the response set r. 
Conversely, (M3) and (M5) are mechanisms such that 
small units respond more often than large units. The larger 
units will be underrepresented in the response set r. 

The first mechanism corresponds to the naive Assump­
tion I discussed in Section 2. (M2) and (M3) correspond 
to Assumption II while (M4) and (M5) represent fairly 
simple examples of the confounded mechanisms discussed 
in connection with Assumption III. For (M2), (M3), (M4) 
and (M5), the constant y was determined in such a way 
that the average nonresponse probabiUty 9 = (1/A'̂ ) 
Yu^k, is equal to one of the values 10%, 20%, 30% 
and 40%. Therefore, for each population, there were 
5 X 4 = 20 different combinations of nonresponse 
mechanism and nonresponse rate. 

For each of the 12 populations, 1,000 samples of size 
n = 30 were drawn. Then for each realized sample, 
50 response sets were generated using independent 
Bernoulli (9yt) trials according to one of the 20 combina­
tions of nonresponse mechanism and nonresponse rate. 
Thus 50,000 response sets were realized for each of the 
12 X 20 = 240 combinations resulting from cross-
classifying the 12 populations with the 20 combinations 
of nonresponse mechanism and nonresponse rate. 

5. RESULTS 

We studied the two uncorrected estimators pr Gustified 
under Assumption I) and j'raimp = x^Pr/x^ Gustified under 
Assumption II) and the 8 corrected estimators pgj.s and 
Pki-s,' — 1. • • •. 4 (justified under Assumption III). (We 
call both Pr and j'raimp uncorrected even though (2.5) shows 
that we can view j'raimp as a corrected version of the naive 
estimator j 'r. Recall that our principal aim is to correct 
the bias of j'raimp when the mechanism is confounded.) 

The performance of the 10 estimators is judged by the 
magnitudes of the relative bias (RB), the relative root mean 
square error (RRMSE), and the coverage rate (CVR). The 
RB and the RRMSE of a point estimator py for py are 
defined respectively as, 

RB(j') = 100 X 
EpEqCPu) - Pu 

Pu 

RRMSE (j;) = 100 x 
^EpEq(yu -yy)' 

yu 

The expectations EpEg{py) and EpEq(pu — Pu) were 
estimated by Monte Carlo simulation using the 50,000 
realized response sets for each of 240 combinations. With 
this number of replicates, the Monte-Carlo error was less 
than 0.1%, assuming that the distribution of the l y 's is 
approximately normal. We will use the abbreviadon ARB 
to denote the absolute relative bias, | RB(j') |. 

We will also discuss the coverage rate (CVR) of the 95% 
confidence interval constructed as 

Pu ± l.96]V{Pu), (5.1) 

where py is one of the 10 estimators and V(pij) the corre­
sponding variance estimator. For j'raimp and the 8 corrected 
estimators, we used the variance estimators described in 
Section 3. For j^^., we used the variance estimator 

V(Pr) \m N) \ (Pk -Pr)'l(m - 1) . 

The CVR is calculated as 100 times the proportion of the 
50,000 response sets such that the interval computed in the 
manner of (5.1) includes the true mean j 'y. 

For the following discussion, we group the corrected 
estimators into two groups: 5-corrected estimators, which 
are based on correction factors involving Xj or w^, that is, 
C2> Q. ^2 and kti, and r-corrected estimators, which are 
based on correction factors involving x^ or w^, that is, C|, 
C3, k\ and k-^. 

The nonresponse mechanism is the key to the perfor­
mance of the various estimators. Therefore, Tables 2 and 3 
show the behavior of the estimators separately for each 
of the five mechanisms. We noted that the correlation level 
and the nonresponse rate do not have a very pronounced 
effect on the ranking of the estimators. Thus the perfor­
mance measures ARB, RRMSE and CVR were averaged 
over 12 cases (three correlation levels x four nonresponse 
rates). These averages are shown in Table 2 for the RATIO 
type regression and in Table 3 for the CONCAVE, 
CONVEX and NONRATIO regression types. 
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Table 2 

Average ARB, RRMSE (RM) and CVR of Ten Different Estimators for the RATIO Type Populations 

For each mechanism, 12 cases were averaged (four nonresponse rates X three correlation levels) 

yr 
^raimp 

yc2-s 
PcA-s 
yk2-s 

PkA-s 

ycl-s 

yc}-s 

Pkl-s 

yk3-s 

1 

Av. 
ARB 

0.2 
0.2 

1.0 
0.9 
1.1 
1.0 

1.7 
1.6 
2.0 
1.7 

Ml 
(uniform) 

Av. 
RM 

13.9 
12.3 

13.3 
13.2 
13.2 
13.1 

14.7 
14.4 
14.7 
14.3 

Av. 
CVR 

92.5 
92.7 

92.4 
92.3 
92.8 
92.7 

91.4 
91.4 
92.3 
92.3 

M2 
(decreasing 

Av. Av. 
ARB 

12.9 
0.6 

4.4 
4.7 
2.4 
2.6 

5.9 
6.2 
3.1 
3.2 

RM 

19.1 
11.8 

12.6 
12.6 
12.0 
12.0 

13.4 
13.5 
12.3 
12.4 

-X) 

Av. 
CVR 

86.0 
93.0 

88.9 
88.6 
90.9 
90.8 

86.4 
86.1 
90.0 
89.8 

M3 
(increasing 

Av. 
ARB 

9.5 
0.4 

8.9 
8.4 
8.0 
7.3 

15.7 
14.9 
15.9 
14.6 

Av. 
RM 

16.5 
12.9 

18.3 
17.7 
18.5 
17.7 

26.2 
25.1 
29.6 
27.6 

-X) 

Av. 
CVR 

81.1 
92.4 

93.0 
93.0 
93.5 
93.5 

87.6 
87.8 
88.9 
89.3 

M4 
(decreasing-/) 

Av. Av. Av. 
ARB 

19.1 
5.3 

1.8 
1.7 
1.7 
1.6 

1.9 
2.1 
1.1 
1.0 

RM 

23.6 
13.0 

11.8 
11.7 
11.7 
11.7 

12.2 
12.2 
11.7 
11.7 

CVR 

72.3 
92.5 

92.4 
92.3 
93.3 
93.2 

90.9 
90.7 
92.8 
92.7 

M5 
(increasing-/) 

Av. 
ARB 

14.9 
6.0 

3.6 
3.4 
2.2 
1.8 

8.9 
8.3 
8.3 
7.1 

Av. 
RM 

19.9 
13.9 

15.3 
14.9 
15.3 
14.7 

21.3 
20.4 
23.8 
21.9 

Av. 
CVR 

68.2 
85.6 

92.2 
92.2 
92.0 
91.9 

89.8 
90.0 
90.7 
91.0 

Table 3 

Average ARB, RRMSE (RM) and CVR of Six Different Estimators for CONCAVE, CONVEX, 
and NONRATIO Populations 

(For each mechanism, 12 cases are averaged as in Table 2) 

yr 

J'raimp 

yc2-s 

yc4-s 

yk2-s 

yk4-s 

yr 

3^raimp 

yc2-s 

yc4-s 

yk2-s 

PkA-s 

Pr 
j'raimp 

yc2-s 

PcA-s 

yk2-s 

PkA-s 

Av. 
ARB 

0.2 
0.2 

1.1 
1.0 
1.0 
0.9 

0.9 
0.6 

1.2 
1.2 
1.6 
1.4 

0.1 
0.2 

1.1 
1.0 
1.3 
1.1 

Ml 

Av. 
RM 

10.4 
9.4 

11.4 
11.1 
10.7 
10.5 

23.7 
21.4 

21.1 
21.3 
21.2 
21.3 

10.7 
9.6 

11.4 
11.3 
11.2 
10.9 

Av. 
CVR 

92.9 
94.5 

92.4 
92.8 
93.7 
93.8 

90.9 
90.6 

91.8 
91.5 
91.9 
91.6 

92.9 
94.5 

92.5 
92.4 
93.4 
93.4 

Av. 
ARB 

10.5 
1.4 

6.3 
6.6 
4.5 
4.6 

19.0 
5.8 

0.4 
0.3 
3.0 
2.9 

9.7 
2.1 

7.0 
7.3 
5.0 
5.2 

M2 

Av. 
RM 

14.8 
9.1 

11.4 
11.5 
10.1 
10.1 

31.6 
21.7 

19.8 
19.9 
21.0 
21.0 

14.6 
9.5 

11.9 
12.1 
10.9 
11.1 

Av. 
CVR 

82.3 
93.4 

84.7 
84.3 
89,1 
89.0 

92.3 
92.8 

91.8 
91.5 
92.0 
91.8 

86.5 
92.4 

83.5 
82.8 
86.9 
86.5 

Av. 
ARB 

M3 

Av. 
RM 

Av. 
CVR 

CONCAVE 

7.3 
2.6 

11.8 
11.4 
9.5 
9.0 

12.7 
10.5 

18.8 
18.0 
16.8 
16.0 

82.3 
94.9 

88.4 
88.8 
91.6 
91.8 

CONVEX 

15.0 
7.0 

2.0 
1.8 
3.0 
2.6 

26.5 
22.1 

22.2 
22.3 
22.2 
22.0 

76.1 
85.6 

92.4 
92.4 
92.6 
92.3 

NON-RATIO 

7.3 
2.6 

11.9 
11.5 
11.3 
10.6 

12.6 
10.5 

18.8 
18.1 
19.0 
17.8 

81.3 
95.3 

89.2 
89.4 
90.7 
91.1 

Av. 
ARB 

12.3 
1.9 

3.2 
3.6 
1.7 
1.8 

33.2 
14.0 

7.3 
6.7 
9.8 
9.5 

11.9 
2.1 

2.6 
2.7 
1.3 
1.3 

M4 

Av. 
RM 

16.0 
9.2 

10.2 
10.3 
9.3 
9.3 

41.7 
25.0 

20.8 
20.6 
22.7 
22.7 

16.1 
9.6 

10.0 
10.1 
9.6 
9.7 

Av. 
CVR 

78.3 
94.9 

90.0 
89.8 
93.0 
92.8 

76.4 
90.0 

93.4 
93.4 
91.7 
91.7 

80.8 
94.4 

90.9 
90.6 
92.8 
92.6 

Av. 
ARB 

8.7 
2.1 

5.5 
5.5 
3.7 
3.5 

37.1 
27.6 

17.8 
18.5 
16.2 
17.6 

8.8 
1.6 

5.3 
4.9 
4.7 
4.1 

M5 

Av. 
RM 

13.4 
9.7 

14.2 
13.7 
12.8 
12.3 

41.4 
33.5 

28.2 
28.5 
27.6 
27.7 

13.5 
9.9 

14.5 
13.8 
14.3 
13.4 

Av. 
CVR 

78.8 
92.9 

92.3 
92.7 
93.7 
93.9 

37.5 
52.0 

71.7 
70.5 
74.0 
72.6 

77.8 
93.3 

92.5 
92.7 
93.5 
93.8 
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We now comment on the tables. A conclusion of general 
character is that the respondent mean pr has, as expected, 
a large bias and a very poor CVR for all of the nonuniform 
mechanisms. Its performance is satisfactory only for the 
uniform mechanism (Ml). Thus we can focus on the 
comparisons between the uncorrected j'raimp on the one 
hand and the eight corrected estimators on the other. For 
both of the criteria ARB and RRMSE, we noted that the 
5-corrected estimators generally gave better results than 
the /--corrected ones. This is clearly seen in Table 2, where 
5-corrected and /--corrected estimators are displayed in 
two separate groups. Given this better behavior of the 
5-corrected group, we deleted the r-corrected group in 
Table 3. 

5.1 RATIO Type Regression 

From Table 2, we draw the following conclusions. 

(I) The mechanism (Ml) (uniform nonresponse). 

When the mechanism (Ml) holds, the uncorrected 
estimator /raimp is essentially bias free, and there is no 
need to correct. However, if the analyst, suspecting a 
confounded mechanism, has nevertheless chosen one of 
the corrected estimators, the penalty is not severe. The 
eight corrected estimators show only a small increase in 
ARB and in RRMSE compared to /raimp-

(ii) The mechanisms (M2) and (M3) (unconfounded, 
nonuniform and x-value dependent). 

For these mechanisms, the ARB is seen to be very small 
for the uncorrected estimator j'raimp. as theory would lead 
us to expect. Our interest is instead focused on the 
behavior of the eight corrected estimators, since it is 
important to know if a penalty is associated with an incor­
rect decision to use one of these estimators. Such a decision 
would be brought about by an incorrect assumption that 
the response mechanism is confounded (when in fact it is 
unconfounded but nonuniform). Table 2 shows that there 
is indeed some penalty in the form of both increased ARB 
and increased RRMSE. The penalty is less severe for the 
i'-corrected group. For both groups, the penalty is less 
severe for the mechanism (M2) than for the mechanism 
(M3). 

(ill) The mechanism (M4) (confounded and /-value 
dependent). 

For this mechanism, a striking feature of Table 2 is that 
all eight corrected estimators give a substantial bias reduc­
tion compared to the uncorrected estimator/raij„p (and a 
very large reduction relative to the naive estimator j '^ ) . 
The corrected estimators also show some improvement in 
RRMSE compared to j'raimp • The 5-corrected estimators 
perform better than the /--corrected ones. Within the 
5-corrected group of estimators, the differences are minor, 
as is the case within the /--corrected group. 

(iv) The mechanism (M5) (confounded and /-value 
dependent). 

Table 2 shows that the 5-corrected estimators have a 
smaller ARB than the uncorrected j'raimp; tlieir RRMSE is 
slightly higher. By contrast, the /--corrected estimators 
"overcorrect" so that both the ARB and the RRMSE 
exceed the levels observed for j'raimp- The /--corrected 
group does not perform well for tUis mechanism. 

In summary. Table 2 shows that if the ratio model (2.2) 
holds and the assumption of a confounded mechanism is 
correctly made, the decision to use one of the corrected 
estimators may lead to a reduced bias. The main difficuUy 
facing the analyst is to accurately predict the nature of the 
response mechanism causing nonresponse. In particular, 
it may be difficult for the analyst to separate a confounded 
mechanism {e.g., one with 9^ = e~i'-*'*) from a similar 
nonuniform unconfounded mechanism (e.g., one with 
9̂ ^ = e''^"'^). Yet this subtle difference has a marked 
effect on the bias of j'raimp and on the decision whether or 
not to use a corrected estimator. When the nonuniform 
unconfounded type applies, we have seen that there is 
a penalty associated with the corrected estimators, in 
particular with the r-corrected group. 

5.2 Other Regression Types 

Table 3 shows the performance of six estimators 
(the two uncorrected and the four 5-corrected) for the 
CONCAVE, CONVEX, and NONRATIO regression 
types. As in Table 2, there is little to choose between the 
estimators when the uniform mechanism (Ml) holds. For 
the two confounded mechanisms, the results in Table 3 do 
not send a clear message that 5-corrected estimation should 
be attempted even if the assumption of a confounded 
mechanism is correctly made. Compared to the uncorrected 
j'raimp. thc 5-corrected estimators show a clearly improved 
performance (in terms of smaller ARB and smaller 
RRMSE) only for the CONVEX population type. Even 
in this case, a substantial bias remains after the attempt 
at correction. For the two unconfounded nonuniform 
mechanisms (M2) and (M3), it is a priori clear that one 
would not expect improved performance on the part of the 
5-corrected estimators when compared to j'raimp- Oddly 
enough however, we find that the 5-corrected estimators 
work very well for the CONVEX population. These 
conclusions leave the analyst with a difficult choice if a 
RATIO type population cannot be assumed. Then it is 
difficult on the basis of our findings to recommend the use 
of one of the corrected estimators. 

5.3 Coverage Rates 

Tables 2 and 3 also show that the variance estimation 
procedure suggested in Section 3 generally works well. 
Indeed the coverage rates for the corrected estimators are 
uniformly good whenever the ARB is small. In particular. 
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Table 4 
Average ARB, RRMSE (RM) and CVR of the Two Uncorrected Estimators and the 

C4 - and k4 - Corrected Estimators 
(Averaged Over All Population Types) 

yr 
.y raimp 

PcA-s 
PkA-s 

Av. 
ARB 

0.3 
0.3 

1.0 
1.1 

Ml 

Av. 
RM 

14.7 
13.2 

14.2 
14.0 

Av. 
CVR 

92.3 
93.1 

92.3 
92.9 

Av. 
ARB 

13.0 
2.5 

4.7 
3.8 

M2 

Av. 
RM 

20.0 
13.0 

14.0 
13.6 

Av. 
CVR 

86.8 
92.9 

86.8 
89.5 

Av. 
ARB 

9.8 
3.1 

8.3 
7.4 

M3 

Av. 
RM 

17.1 
14.0 

19.0 
18.4 

Av. 
CVR 

80.2 
92.0 

90.8 
92.2 

Av. 
ARB 

19.1 
5.8 

3.7 
3.6 

M4 

Av. 
RM 

24.4 
14.2 

13.2 
13.3 

Av. 
CVR 

77.0 
93.0 

91.5 
92.6 

Av. 
ARB 

17.4 
9.3 

8.1 
6.7 

M5 

Av. 
RM 

22.1 
16.7 

17.7 
17.0 

Av. 
CVR 

65.6 
81.0 

87.0 
88.0 

Overall 

Av. Av. 
ARB RM 

11.9 19.6 
4.2 14.2 

5.2 15.6 
4.5 15.2 

1 

Av. 
CVR 

80.4 
90.4 

89.7 
91.0 

for the unconfounded mechanisms (M2) and (M3), the 
coverage rates for the corrected estimators are about equal 
to or better than those for the uncorrected estimators. 

5.4 Overall Comments 

From the summary Table 4, we note that, as expected, 
Pr and j'raimp show thc best performance for the uniform 
response mechanism (Ml). The uncorrected estimator 
j'raimp is the bcst One for the unconfounded mechanisms 
(M2) and (M3), while the corrected estimators are the best 
ones for the confounded mechanism (M4) and (M5). 

Finally, on the average over all 240 cases included in 
our study, we note from the overall column of Table 4 that 
j'raimp and pk4.5 perform similarly with the former having 
a sUghtly smaller bias and the latter having slightly better 
coverage rate. 

6. CONCLUSIONS 

It has long been recognized that nonresponse causes 
bias in survey estimates, except in rare cases. Imputation 
is a widely used practice to handle nonresponse, because 
it is convenient to work with a complete data set. There 
are many imputation rules as well as some softwares that 
can be used in large scale surveys. Imputation is sometimes 
applied wUhout critical quesdoning, and, aUhough widely 
used, imputation does not solve the critical problem of bias 
caused by nonresponse. 

In this paper, we have examined ratio imputation. The 
ordinary ratio imputation BrXk is justified (that is, it 
produces no bias) if two conditions hold: (a) the regression 
model behind the ratio imputation rule holds (that is, a 
linear regression through the origin); (b) the response 
mechanism is unconfounded. 

The results of our simulation give some idea of the 
magnitude of the bias of the usual ratio imputation esti­
mator j'raimp whcu One Or both of the two conditions 
break down. We considered several nonuniform response 
mechanisms, confounded as well as unconfounded mech­
anisms. We also considered breakdown of the regression 
model behind ratio imputation. 

We argued that a confounded mechanism can sometimes 
be realistically assumed in a survey. We showed that if an 
assumption of confounded response mechanism is correctly 
made, and if the model behind the ratio imputation is 
valid, one can make some progress toward bias reduction 
using the 5-corrected estimators in this paper. They have 
substantially less bias than the uncorrected estimator 
j'raimp- The 5-corrected estimators are generally more effec­
tive than the /--corrected estimators for reducing the bias. 

Suppose the analyst is working under the assumption 
that the ratio model (2.2) holds. Our simulation study then 
leads to suggested estimators according to the following 
Table 5, depending on the assumed nature of the response 
mechanism and on the nonresponse rate. The entry "any" 
means any of the 10 estimators in Table 2. 

Table 5 
Suggested Estimators for Each Nonresponse Mechanism 

Nonresponse 
Rate 

( < io<yo) 

( > 10%) 

Uniform 

any 

any' 

Suggested Estimator 

Response Mechanism 

Unconfounded 

any but /^ 

J'raimp 

Confounded 

any but /^ 

5-corrected 

Note 1: /raimp ^̂  ^ slight advantage over the others. 

If the regression model behind ratio imputation fails, 
the situation is less clear. Unless the naive assumption of 
a uniform response mechanism holds (which is unlikely), 
the uncorrected ratio imputation estimator j'raimp can 
have considerable bias. We found that j'raimp is partic­
ularly prone to bias for the CONVEX type population 
where the 5-corrected group of estimators usually have 
smaller bias than /raimp- Cn the other hand, for the 
CONCAVE and the NONRATIO type populations, /raimp 
is generally more resistant to bias than the 5-corrected 
esdmators. 
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Dual System Estimation of Census Undercount in the Presence 
of Matching Error 

YE DING and STEPHEN E. FIENBERG 

ABSTRACT 

Dual system estimation (DSE) has been used since 1950 by the U.S. Bureau of Census for coverage evaluation of 
the decennial census. In the DSE approach, data from a sample is combined with data from the census to esdmate 
census undercount and overcount. DSE relies upon the assumption that individuals in both the census and the sample 
can be matched perfectly. The unavoidable mismatches and erroneous nonmatches reduce the accuracy of the DSE. 
This paper reconsiders the DSE approach by relaxing the perfect matching assumption and proposes models to 
describe two types of matching errors, false matches of nonmatching cases and false nonmatches of matching cases. 
Methods for estimating population total and census undercount are presented and illustrated using data from 1986 
Los Angeles test census and 1990 Decennial Census. 

KEY WORDS: Capture-recapture; Matching bias; ModeUing matching error; Multinomial likelihood. 

1. INTRODUCTION 

The problem of undercount in the U.S. census has been 
of special concern since the first census of 1790 (Jefferson 
1986). The DSE (or capture-recapture) approach has been 
used in conjunction with the census to evaluate population 
coverage as part of what is called the post-enumeration 
survey (PES) program. Ericksen and Kadane (1985) and 
WoUer (1986) describe the use of the DSE approach in the 
context of the 1980 decennial census. A new design for the 
PES was planned for the 1990 decennial census and 
refinements in methodology were examined in connection 
with a 1986 test census in central Los Angeles County, 
referred to as the Test of Adjustment Related Operations 
(TARO). Diffeudal (1988) discusses methodology, opera­
tions, and the resuUs of TARO, and Hogan and Wolter 
(1988) and Schenker (1988) provide evaluadon of the oper­
ations and assumptions underlying the DSE approach. 

The PES approach to dual-system estimation uses two 
samples, called the P-sample and the E-sample. The P-sample 
which is drawn separately from the census, helps to measure 
census omissions; the E-sample drawn from the census 
enumerations, helps to measure census erroneous enumer­
ations. For the 1986 TARO, the dual-system estimator for 
the population size, TV, which combines the information 
from the P-sample and the E-sample takes the form: 

TV (CEN - EE - SUB) - TV„/M, 

where CEN is the unadjusted census count; EE is the esti­
mated number of erroneous enumerations and unmatchable 

persons included in the census; SUB is the number of 
whole-person substitutions in the census; TV̂  is the number 
of people in the P-sample; M is the estimate of the number 
of people in both census and the P-sample. For details see 
Diffendal (1988) or Wolter (1986). For the variadon on 
this formula as used in conjunction with the 1990 census, 
see Hogan (1992, 1993). 

DSE and the matching problem gained considerable 
attention in the 1970's due to its use in estimating births 
and deaths in developing countries, and it is thought by 
some that perhaps the greatest problem with the dual-
system estimation approach used in 1980 census was the 
rate of matching error (Fienberg 1989). Jaro (1989) 
describes the technological innovations for matching 
introduced by the Bureau of the Census for 1990 and the 
test of the related matching methodology in a 1985 pre­
test. Biemer (1988) considers models for evaluating the 
impact of matching error on estimates of census coverage 
error without attempting to correct for the matching bias 
in the usual dual-system estimate. The actual procedure 
used in the 1990 census included not only a computer mat­
ching algorithm and various clerical follow-ups but also 
logistic regression models for unresolved cases in both the 
P-sample and E-sample (see Belin et al. 1993). 

Matching is used to determine the census enumeration 
status of the people enumerated in the P-sample. Specifi-
cally, those people in the P-sample who are matched to the 
census are considered to have been enumerated. People 
in the P-sample who do not match are, for the most part, 
considered to have been missed by the census. Matching 
errors can occur for two general reasons: 

' Ye Ding is Research Scientist, Bureau of Biometrics, New York State Health Department, Concourse, Room C-144, Empire State Plaza, Albany, 
New York 12237, U.S.A.; Stephen E. Fienberg is Maurice Falk Professor of Statistics and Social Science, Department of Statistics, Carnegie Mellon 
University, Pittsburgh, Pennsylvania 15213, U.S.A. 
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1. The information reported by the respondents/inter­
viewers was incorrect. 

2. Correct information was reported, but it was not cor­
rectly used. 

Moreover, two types of errors can occur: false matches of 
nonmatching cases and false nonmatches of matching cases. 
False matches of nonmatching cases may be divided into 

(a) instances in which a P-sample case was erroneously 
matched to the enumeration of another person, but a 
match to that actual E-sample case should have been 
made, and 

(b) instances in which no match should have been made. 

The former case is not "serious" for the purposes of 
estimating TV, since such false matches would have been, 
in fact, correctly classified as a match to the census. In the 
second case, however, the number of nonmatches becomes 
understated. False nonmatches to the census, on the other 
hand, have the effect of overestimating the nonmatch rate. 
Fay, Passel, Robinson and Cowan (1988) note that false 
nonmatches probably represent a greater concern than 
false matches. False matches are less common than false 
nonmatches because matches can be reviewed easily. 

In Section 2, we propose models for matching errors 
and then, in Section 3 and 4, we present a systematic 
procedure for the estimation of the population total and 
thus the census undercount. In Section 5, we analyze the 
data from 1986 Los Angeles test census and 1990 Decen­
nial Census to show how our method accounts for mat­
ching errors in the undercount estimates. 

2. MODELING MATCHING ERRORS 

For simplicity, we assume that the matching mechanism 
is constrained, in the sense that no individual in one sample 
can be matched with more than one individual in another 
sample. Moreover, we implicitly assume a version of 
simple random sampling, within strata, and this yields a 
standard multinomial sampling model for dual system 
estimation. This simpUfication allows us to focus on the 
impact of matching and its mechanisms. In what follows, 
we provide a way to view the recapture data, for the 
purpose of setting up models for matching. 

Let Z/vx 1 be the characteristic vector for the whole 
population, such that the /-th component of Z/vx i contains 
the characteristics for the/-th individual, where 1 < / < TV. 
Not all the components in Z;vx i can be observed in any 
one sample. The object is to estimate TV, the size of the 
population, from information from two samples. One 
could view drawing a sample from the population as 
drawing some components in Zyvx i at random to form a 
new vector Y. Then, missing or misreporting of certain 
characteristics in those components drawn may cause 
matching errors. Henceforth we will refer to the first 

sample as 7, and the second sample as Y2, and in the 
following discussion they will be the two capture-recapture 
samples for dual system estimation. 

Two types of matching errors can occur: false non-
matches of matching cases, and false matches of non-
matching cases. We will refer to the former as a type 1 error 
and the latter as a type 2 error. We can focus on modeling 
one or both types of error. Under perfect matching, each 
component in F, or ¥2 contains the same information as 
in Z/vx 1. and the number of matches will be the number 
of elements common to V"] and Y2. When faced with uncer­
tain matching, we consider the following simple model: 

Model (A): 

(i) Assume that those matched pairs of components under 
perfect matching will still be matched, each with 
common probabiUty a, 0 < a < 1. 

(ii) AU those unmatched will remain unmatched, i.e., 
no false matches. 

Model (A) characterizes a mechanism for type 1 matching 
error with error probability 1 — a, assuming that type 2 
matching error is negligible. 

To develop a modd for both types of matching error, 
we need to consider carefully all the possibilities that lead 
to false matches. When there is no matching error, one can 
write F, = (TV/,, TV,) and Y2 = (TV/2. ^2 ) . so that sets 
TV/| and TV/2 have the same size and every individual in TV/) 
is correctly matched with one individual in TV/2 and vice 
versa, TV, is the set of those in sample Y^ who are not 
matched with any one in sample Y2, and TV2 is the set of 
those in sample Y2 who are not matched with any one 
in sample Fj. When matching errors are present, false 
matches can occur in the following ways: 

(a) A person in M, is matched incorrectly with a person 
in M2. 

(b) A false match occurs between TV/, and TV2. 
(c) A false match occurs between TV/2 and TV,. 
(d) A false match occurs between TV, and TV2. 

We note that each of (a), (b), (c) happens only when at 
least 2 errors are made, that is, the correct match is not 
made and an incorrect match is made. Since such errors 
occur wUh small probabiUty, we assume for simplicity that 
cases (a), (b), (c) have negligible probability of occurrence 
in the next model. 

Model (B): 

(i) Assume, as in model (A), that matching pairs between 
TV/| and A/2 will stUl be matched, but with probability 
a, 0 < a < 1. 

(ii) Assume that false matches of types (a), (b), (c) are 
negligible, 

(iii) Assume that each person in TV, will be matched 
with someone in TV2 with a common probability 0, 
0 < (3 < 1. 
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Even though, in theory, both a and |8 can vary from 0 to 1, 
in the census context we expect that a = 1, and jS = 0. 

We can also consider instances in which the matching 
error probabilities and capture probabiUties potentially 
vary over identifiable population subgroups. In other 
words, the population can be divided into strata, by demo­
graphic (e.g., age, race, sex) and geographic variables, 
within which the matching error probabilities and capture 
probabilities could be assumed to be more homogeneous 
than in the whole population. Suppose the whole popula­
tion consists of / strata. Let ZJv,xi be the characteristic 
vector for the populadon of the /-th stratum wUh unknown 
size TV,, and let F,,, y,2 be two samples taken from the /-th 
stratum which are used to get an estimate TV,. Then we 
can form an estimate of the overall population size by 
setting TV = £ •=, TV,. We can refine models (A) and (B) 
as follows: 

Model (A'): 

Assume model (A) holds within each stratum, and let 
a, be the probability of a match for matching components 
in stratum /, 0 < a, < 1,1 < / < /. 

Model (B'): 

Assume model (B) holds within each stratum, and let 
the two probability parameters for /-th stratum be a,, /S,-, 
1 < / < /. 

For 1990 PES, the P-sample matching was conducted 
using the sample blocks plus a ring of surrounding blocks 
(Hogan 1993). Geocoding errors may lead to false matches 
across geographically defined post-strata, and false matches 
are possible for demographically defined post-strata. 
Models (B') implicUly assumes that there are no false 
matches across post-strata. Further, all of the models 
represent a simplification of the underlying sample design 
of the PES. 

One can arrange the capture-recapture data in a 2 x 2 
contingency table with one missing cell: 

Sample Y2 

present absent 

Sample ^i 
present 

absent 

• ^ 1 1 

• ^ 2 1 

Xl2 

-

where we use symbol " - " to indicate the missing cell, and 
standard notadon for marginal totals: X|+ = x^ + X12, 
x+i = Xu -\- X21. There is a corresponding 2 X 2 table of 
probabilities, p,y = Pr[any individual falls into (/,7)ceU], 

Sample Y2 

present absent 

Sample Yi 
present 

absent 

Pl\ 

P21 

Pl2 

P22 

with the usual Unear constraint 

Y E A. = 1. 

Let n be the number of observed different individuals 
in the two samples, i.e., « = x,] + X|2 + X2\. If we 
assume that the samples are randomly selected with homo­
geneous selection probabilities, then the numbers of indi­
viduals in the four cells have a multinomial distribution 

{X\\,Xn,X2i,N - n) ~ Uult{N,pu,P\2,P2i,P22)-

We use the conditional Ukdihood approach developed 
by Sanathanan (1972). For fixed n, (x,i,x,2, Ar2i) has a 
multinomial distribution with likelihood function 

3. ESTIMATE THE POPULATION TOTAL 

In this section, we consider esdmation of the population 
total under the various matching models, (A), (A'), (B), 
and (B'), assuming the vaUdity of usual assumpdons of 
independence of the two samples and homogeneous prob­
abiUties of inclusion in the samples. For models involving 
heterogeneous catchability and/or dependence, see the 
three-sample approach in Darroch et al. (1993) and the 
approach in Alho et al. (1993). 

Let TV be the number of individuals in the population 
under consideration, x, + the number of individuals in F,, 
A:+ , the number of individuals in Y2, and x, 1 the number 
of individuals in both samples. The number of individuals 
observed in Y2 but not Fj is X2\ = x+\ - x^ and the 
number observed in F, but not F2 is X\2 = x^^ - x^\. 

Lx(Pu,P\2,P2\) = 
nl Pii P12 P21 

Xu\xn^.X2\\ (Pu + P\2 + P21)" 
(1) 

Then n is viewed as being binomially distributed with 
sample size TV and probability Pi I -I- P]2 + P21, and the 
corresponding likelihood is 

L2(TV) 
TV! 

.(T l̂l + P\2 + P2\)" 
n\(N - n)l 

[I - (Pii +P12+P21)]''-"- (2) 

In the condUional approach we derive maximum likelihood 
estimates for the cell probabilities based on the likeUhood 
(1), then find the value of TV which maximizes (2), given 
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the values of the cell probabilides. Sanathanan (1972) has 
shown that under suitable regularity conditions both 
conditional and unconditional likelihood estimates of 
TV are consistent and have the same asymptotic multi­
variate normal distribution. The conditional approach 
is particularly suitable for a large sample problem like 
ours. 

Under tUe equal catchability assumption, we let p^ be 
the probability that any individual in the population is 
included in F,, and similarly we \etp2 be the probability 
of inclusion in F2. The probabilities Pi andyC2 are usually 
referred to as capture probabilities and they do not depend 
on how the matching mechanism operates. Then the prob­
ability that an individual is in both samples is p\P2, and 
the probability of being in set TV, is jt7| (1 - P2). Since 
model (A) is a special case of model (B) with /S = 0, 
we focus on formulating the problem under model (B). 
To do this, we first need to work out the parametric 
specification of the cell probabiUties. An individual will 
fall into the (1,1) ceU in the 2 x 2 table only in two cases, 
i.e., the individual is actually in both samples and a match 
is made, or, using the notation in the last section, an indi­
vidual who is actually in TV, is incorrectly matched with 
some one in TV2. Here the matching direction from TV, to 
TV2 is implicitly assumed in (iii) of model (B). The probabil­
ity that the former case occurs is ap\P2, and the probability 
that the latter case occurs is /SjO, (1 - P2). Furthermore, 
the two cases are mutually exclusive. Thus, we have 
Pu = 0iPiP2 + 0P\(l - P2), and, Pi2 = P\ - Pu = 
Pi - 01P1P2 - fiPi(l - P2), P21 ^ P2 - Pu = P2 -
oiPiP2 - iSpi(l - P2)- Rao (1957) studied regularity 
conditions under which there exist unique maximum 
likeUhood esdmates of parameters in a muUinomial distri­
bution. His conditions are satisfied by the parameterization 
of [pij] here. 

For a = 1, /3 = 0, this setup reduces to the usual two 
sample problem and there exist well known solutions in 
closed form for resulting likelihood equations for the 
conditional Ukdihood (1) {cf. Bishop et al. 1975, chap. 6, 
p. 232), leading to the usual dual-system estimator, 
^DSE = X\ +X+1 /x,,. Otherwise, the maximum Ukdihood 
estimates cannot be written in closed form. Once we have 
p, andp2, however, the conditional maximum likelihood 
estimates for p^ and P2, the conditional maximum like­
lihood estimate for TV can be written as 

Â  = 
Pi + P2 - (a - l3)PiP2 - &Px 

(3) 

(cf Chapman 1951). Under modd (A') or (B'), for the 
/-th stratum, one can use the estimates of the parameters 
computed under modd (A) or (B) for the data of that 
stratum, and then sum over strata for an estimate of the 
population total. 

4. ESTIMATE MATCHING ERROR RATES BY 
REMATCH STUDY DATA 

In what follows, we give estimates of the matching error 
rate parameters a and fi using the data from the Matching 
Error Study (rematch study), one of the operations 
conducted by the Census Bureau in the 1986 Los Angeles 
test census to evaluate the PES. Briefly, the rematch 
typically operates for a sample of cases, using more exten­
sive procedures, highly qualified personnel and reinterviews 
to obtain estimates of the bias associated with the previous 
matching process. For further details, see Childers, 
Diffendal, Hogan and Mulry (1989). In their discussion 
of the Matching Error Study in Los Angeles TARO, 
Hogan and WoUer (1988) state that "The rematch was 
done independently of the original match, and the discrep­
ancies between the match and the rematch results are 
adjudicated. Because of this intensive approach to the 
rematch, we believe the rematch results represent true 
match status, while differences between the match and 
rematch results represent the bias in the original match 
results." 

The data collected in a rematch study can be displayed 
as in the following table 

Rematch Study Data 

Rematch 
Classification 

Not 
Matched Matched 

Original 
Classification 

Matched 

Not 
Matched 

Pu 

y2i 

yi2 

y22 

To estimate a and (3, we assume that in the original 
matching process, errors are made according to model (B) 
and that errors in the rematch process can be disregarded, 
i.e., the rematch is assumed to be perfect. It then follows 
that j ' l , -H y2\ is the true number of matches, and thus is 
fixed, while j , , is a random variable having a binomial 
distriburion,/.e.,;>,, ~ (B(7,, -I-3^2i.a)-Thus the max­
imum Ukdihood estimate of a is a - yn/(y\i + J'21). 
and the maximum Ukdihood estimate of the false nonmatch 
rate 7 is 7 = I — a - y2i/{yii -I-j'21). By the same argu­
ment, yi2 ~ (B (j,2 + .̂ 22.13), and the maximum Ukdihood 
estimate of the false match rate is j3 = yi2/(y\2 + .̂ 22)-

We can use the estimates of the matching error rates 
derived here to analyze the data from the rematch study 
from the Los Angeles test census. Very often, in addition 
to estimating the size of a population, it is of interest to 
estimate the size of a subpopulation such as black, white, 
or a subpopulation at a certain geographical location. In 
such case, it is more appropriate to allow for heterogeneity 

file:///etp2
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of matching error rates across various population strata 
by using estimates of matching error rates for each stratum 
of interest. Such esdmates can be obtained by conducting 
a rematch study within each stratum and then using the 
derived estimates. Data for applying model (B') are 
available from 1990 Census and are analyzed here. 

5. APPLICATIONS 

5.1 Application of One Stratum Model to 1986 TARO 

Hogan and Wolter (1988) present the rematch data 
from the 1986 Los Angeles TARO. The rematch results 
for the P-sample are given in Table 1 in the form of a cross-
tabulation of match statuses as assigned from the original 
TARO match and the rematch. Table 2 presents the two 
way table of data for the 1986 TARO, with no post-
stradfication. The estimate of the number missed by both 
systems, 5,870 is approximately the same order of magni­
tude as census substitutions 5,259 and erroneous enumera­
tions 6,426 (Hogan and WoUer 1988). Rematch resuUs for 
the E-sample are presented in Table 3. Let CP, EP be the 
total correct enumeration and erroneous enumeration by 
production classification, and let CR, ER be the total 
correct enumeration and erroneous enumeration by 
rematch classification, then based on the data in Table 3, 
Hogan and Wolter (1988) conclude that the original rate 
of erroneous enumerations (EE), EP/(CP -I- EP) = 
325/(325 -I- 19,269) = .016 should be increased to about 
ER/(CR -f ER) = 411/(411 -I- 19,334) = .021. 

Table 1 

Results of 1986 Los Angeles Test Census Rematch Study: 
F-Sample. Source: Hogan and Wolter (1988) 

Original 
Match 
Classification 

Rematch Classification 

Matched 
Not 

Matched 
Un­

resolved Total 

Matched 
Not matched 
Unresolved 
Total 

16,623 
88 
17 

16,728 

18 
2,164 

0 
2,182 

55 
56 

132 
243 

16,696 
2,308 

149 
19,153 

Table 2 
Data and Dual-System Estimate for 1986 Los Angeles Test 

Census. Source: Hogan and WoUer (1988) 

PES 

Counted Missed Total 

Counted 298,204 45,463 343,667 
Missed 38,503 5,870 44,373 
Total 336,707 51,333 388,040 

Correct Census 
Enumerations* 

* Correct Enumerations = Total Census Enumerations - Substitutions 
Erroneous Enumerations. 

Table 3 
Results of 1986 Los Angeles Test Census Rematch Study: 

E-Sample. Source: Hogan and WoUer (1988) 

Original 
Match 
Classification 

Correct 
enumeration 

Erroneous 
enumeration 

Unresolved 

Total 

Correct 
Enumer­

ation 

19,153 

41 

140 

19,334 

Rematch Classification 

Erroneous 
Enumer­

ation 

28 

283 

100 

411 

Unresolved 

88 

1 

223 

312 

Total 

19,269 

325 

463 

20,057 

We now reanalyze the data in Table 2 using model (B), 
but ignoring the unresolved cases in Table 1 because their 
classification status are unavailable to us. From the data in 
Table 1 we estimate 7 = 1 - d = 88/(16,623 -h 88) = .53%, 
and i3 = 18/(18 + 2,164) = .82%. In Table 4, we present 
the estimates and associated standard deviations under 
model (B) and those from the traditional DSE. The standard 
deviations are computed using asymptotic normality, 
for details, see Ding (1990, 1993a, 1993b). The esd­
mated undercount is then defined to be undercount = 
(TV - CEN)/TV x 100%, and CEN is the total census 
enumerations,/.e., CEN = Correct Census Enumeration -1-
Substitutions -I- EE = 343,667 + 5,259 + 6,426 = 
355,352. The estimates on the last row of Table 4 indicates 
that the undercount estimate provided by the DSE should 
be reduced by 8.42% - 8.05% = .37%. We recaU that 
Hogan and Wolter (1988) argue that the original rate of 
EE should be increased by 2.1% - 1.6% = .5% as a 
resuU of information in the rematch study. This then gives 
an additional adjustment to the estimated undercount of 
about . 5%. Overall, we estimate that the undercount 
estimate was biased upward by about .9% (assuming the 
overlapping is negligible, even though two components are 
not strictly additive). 

Table 4 
Comparison of Estimates for 1986 Los Angeles Test Census 

Parameter DSE (SD) 
MLE from 

Model (B) (SD) 

p, .8856(5.48x10"^) .8892(5.51x10"^) 

P2 .8677 (5.78 x 10"") .8712 (5.86 x lO"") 

N 388,040 (87) 386,470 (79) 

Undercount (Vo) 8.42% 8.05»7o 
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Table 5 
13 Evaluation Post-strata (EPS) for 1990 PES 

1 Northeast, Central City, Minority 
2 Northeast, Central City, Nonminority 
3 U.S., Noncentral City, Minority 
4 Northeast, Noncentral City, Nonminority 
5 South, Central City, Minority 
6 South, Central City, Nonminority 
7 South, Noncentral City, Nonminority 
8 Midwest, Central City, Minority 
9 Midwest, Central City, Nonminority 

10 Midwest, Noncentral City, Nonminority 
11 West, Central City, Minority 
12 West, Central City, Nonminority 
13 West, Noncentral City, Nonminority -i- Indian 

Table 6 
Dual System Data for 13 EPS of 1990 PES 

Table 8 
Results of Rematch Study for 13 EPS of 1990 PES: E-Sample 

EPS 

1* 
2 
3* 
4 
5* 
6 
7 
8* 
9 

10 
11* 
12 
13 

x, + (Census) 

5,966,529 
9,235,705 

24,255,611 
31,173,378 
9,985,055 

13,977,529 
47,548,548 
4,060,286 

11,826,352 
39,343,787 
7,283,885 

11,073,872 
26,415,232 

x+\ (P-sample) 

4,656,305.09 
8,685,235.79 

22,628,349.88 
30,150,266.34 
8,809,620.02 

13,582,482.34 
44,059,397.93 

3,714,168.27 
10,058,288.52 
38,358,735.32 
5,743,998.39 

10,512,339.59 
26,721,116.28 

* Corresponds to minority post-stratum. 

•^11 

4,284,132.78 
8,626,362.34 

21,068,045.55 
29,966,142.62 

8,249,407.92 
13,278,614.01 
42,987,517.59 

3,520,314.04 
9,854,052.95 

38,031,852.01 
5,365,961.67 

10,222,147.69 
26,025,370.25 

Table 7 
Results of Rematch Study for 13 EPS of 1990 PES: P-Sample 

EPS 

1* 
2 
3* 
4 
5* 
6 
7 
8* 
9 

10 
11* 
12 
13 

yu 

14,301 
15,051 
28,784 
32,753 
28,674 
21,757 
48,061 
14,800 
16,527 
43,721 
12,522 
15,122 
43,356 

y2u 

124 
36 

293 
703 
189 
69 
47 
58 
39 

120 
133 
59 

232 

Pn 

31 
16 
49 
27 
18 
36 
20 
21 
20 

107 
11 
8 

108 

.V22 

2,773 
1,136 
4,166 
2,058 
3,738 
1,156 
3,278 
2,527 

874 
1,664 
2,097 
1,078 
4,583 

EPS CP EP CR ER 

1* 
2 
3* 
4 
5* 
6 
7 
8* 
9 

10 
11* 
12 
13 

17,027 
15,821 
32,420 
33,369 
32,412 
24,392 
51,107 
17,174 
18,279 
44,450 
13,644 
15,647 
49,647 

1,415 
879 

2,430 
1,242 
1,880 
1,225 
2,908 
1,518 

648 
1,604 

985 
522 

2,062 

17,106 
15,631 
32,322 
32,922 
33,030 
24,336 
50,929 
17,133 
18,228 
44,584 
13,693 
15,590 
49,545 

1,645 
932 

2,446 
1,665 
2,044 
1,284 
3,047 
1,526 

656 
1,631 

909 
583 

2,334 

5.2 Application of Multiple Strata Model to 1990 Census 

We now analyze stratified data from the evaluation of 
the PES carried out as part of 1990 decennial census. 
Hogan (1993) describes operations and resuUs for the 1990 
PES, Mulry and Spencer (1991, 1993) present total error 
analysis, and Davis et al. (1991) report on the PES 
Matching Error Study (MES). The MES was conducted 
for each of 13 Evaluadon Post-strata (EPS) by geographic 
region and ethnic group. Of the 13 EPS UstedinTable5, 
five correspond to substantial minority populations 
(Blacks and Hispanics), i.e., EPS 1, 3, 5, 8 and 11. In 
Table 6, we present the dual system data for each of the 
13 EPS, and we give, in Table 7 and Table 8, relevant 
rematch data for the P-sample and E-sample. These data 
are drawn from the final reports on PES evaluation 
projects P7 and PIO by the Census Bureau (Davis and 
Biemer 1991a, 1991b). The P-sample for the 1990 PES 
consisted of about 172,000 housing units (Hogan 1992). 
The P-sample data are weighted to get estimates of x+, 
(P-sample total) and x,, (total matches) in the usual 
analysis of the dual system data and the analysis presented 
here. Nevertheless, the actual unweighted P-sample data 
can be used to make inference, see Appendix for compar­
ison between estimates from actual P-sample data and 
estimates from weighted P-sample data. 

In Table 9, we give the usual dual system estimates and 
standard deviations of the capture probabilities (i.e., cov­
erage rate by Census or P-sample) for each of the 13 EPS. 
Estimates in Table 10 indicate that there is significant 
variation in matching error rates across the EPS. Among 
three EPS with 7 larger than .01 %, EPS 3 and EPS 11 are 
minority post-strata. This suggests that the nonmatch rate 
may be higher for minority post-strata than for the 
remainder. On the other hand, there is no clear evidence 
from the estimates of /3 that the false match rate is higher 
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Table 9 

Usual Dual System Estimates and Standard Deviations 

EPS 

!• 
2 

3* 

4 

5* 

6 

7 

8* 

9 

10 

11* 

12 

13 

for 13 EPS of 1990 PES 

Pi (SD) 

0.92007 (12.57 x 

0.99322 (2.78 x 

0.93105 (5.33 X 

0.99389 (1.42 X 

0.93641 (8.22 x 

0.97763 (4.01 x 

0.97567 (2.32 X 

0.94781 (11.54 X 

0.97969 (4.45 X 

0.99148 (1.48 X 

0.93419(10.35 X 

0.97240 (5.05 X 

0.97396 (3.08 X 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 
10-5) 

10-5) 

P2 (SD) 

0.71803 (18.42 x 

0.93402 (8.17 x 

0.86858 (6.86 X 

0.96127 (3.46 x 

0.82618(11.99 X 

0.95000 (5.83 X 

0.90408 (4.27 X 

0.86701 (16.85 X 

0.83322(10.84 X 

0.96665 (2.86 X 

0.73669(16.32 x 

0.92309 (8.01 X 

0.98524 (2.35 X 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 

10-5) 
10-5) 

10-5) 

iV(SD) 

6,484,855 (470) 

9,298,737 (67) 

26,051,987(540) 

31,364,919 (88) 

10,663,134(390) 

14,297,391 (131) 

48,734,156(359) 

4,283,875 (190) 

12,071,466(224) 

39,681,946(108) 

7,797,041 (443) 

11,388,243 (164) 

27,121,400(104) 

EPS 

1* 

2 

3* 

4 

5* 

6 

7 

8* 

9 

10 

11* 

12 

13 

Table 12 

Undercount Percentage and Bias Estimates 

UC(DSE) 

6.40 

-0 .69 

5.59 

-0.11 

5.03 

1.22 

1.77 

3.52 

1.05 

0.41 

5.26 

1.89 

1.79 

for 13 EPS of 1990 PES 

UC(P) 

5.99 

-0 .83 

4.79 

-2 .17 

4.49 

1.06 

1.73 

3.26 

1.26 

0.34 

4.43 

1.56 

1.29 

UC(E) 

5.30 

-1.05 

5.53 

-1 .33 

4.68 

0.99 

1.50 

3.46 

1.00 

0.36 

5.77 

1.51 

1.28 

UC(T) 

4.89 

-1 .20 

4.72 

-3 .39 

4.15 

0.83 

1.47 

3.20 

1.21 

0.29 

4.94 

1.19 

0.78 

Bias(P) 

0.41 

0.14 

0.80 

2.06 

0.53 

0.16 

0.03 

0.26 

-0 .22 

0.07 

0.83 

0.32 

0.50 

Bias(E) 

1.10 

0.36 

0.06 

1.23 

0.35 

0.23 

0.26 

0.06 

0.05 

0.05 

-0.51 

0.38 

0.51 

Bias(T) 

1.51 

0.51 

0.87 

3.29 

0.88 

0.39 

0.29 

0.32 

-0.17 

0.12 

0.32 

0.70 

1.01 

Table 10 
Estimates of Matching Error Rates 

for 13 EPS of 1990 PES 

EPS 7(%) /3(%) 

1* 

2 

3* 

4 

5* 

6 

7 

8* 

9 

10 

11* 

12 

13 

0.009 

0.002 

0.010 

0.021 

0.007 

0.003 

0.001 

0.004 

0.002 

0.003 

0.011 

0.004 

0.005 

Table 11 

0.011 

0.014 

0.012 

0.013 

0.005 

0.030 

0.006 

0.008 

0.022 

0.060 

0.005 

0.007 

0.023 

MLEs from Model (B') and Standard Deviations 
for 13 EPS of 1990 PES 

EPS Pi (SD) P2 (SD) TV(SD) 

1* 

2 

3* 

4 

5* 

6 

7 

8* 

9 

10 

11* 

12 

13 

0.92406(12.68 

0.99464 (2.79 

0.93896 (5.38 

0.99999 (2.65 

0.94166 (8.28 

0.97922 (4.03 

0.97600 (2.32 

0.95034(11.59 

0.97756 (4.47 

0.99217 (1.50 

0.94239 (10.46 

0.97561 (5.07 

0.97895 (3.10 

X 

X 

X 

X 

X 

x 

X 

X 

X 

X 

X 

X 

X 

10-

10-

10-

10-

10-

10-

10-

10-

10-

10-

10-

10-

10-

-5) 

-5) 

-5) 

-5) 

- = ) 
-5) 

-5) 

-5) 

-5) 

-5) 

-5) 

-5) 

-5) 

0.72114(18.79 

0.93536 (8.30 

0.87597 (7.01 

0.98070 (3.64 

0.83080(12.13 

0.95154 (6.03 

0.90438 (4.30 

0.86933 (17.06 

0.83141 (11.12 

0.96733 (3.06 

0.74316(16.58 

0.92614 (8.10 

0.99029 (2.42 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

10-

10-

10-

10-

10-

10-

10-

10-

10-

10-

10-

10-

10-

-5) 

-5) 

-5) 

-5) 

-5) 

-5) 

-5) 

-5) 

-5) 

-5) 

-5) 

-5) 

-5) 

6,456,833 (446) 

9,285,474 (92) 

25,832,352 (279) 

30,731,889(781) 

10,603,717(306) 

14,274,182 (64) 

48,717,792(338) 

4,272,459(159) 

12,097,806(285) 

39,654,306 (90) 

7,729,158(359) 

11,350,674(101) 

26,983,168(355) 

for minority post-strata, or the other way around. In Table 11, 
we give maximum likelihood estimates and standard devia­
tions under model (B'). Heterogeneity in the capture prob­
abiUties is significant. This heterogeneity together wUh the 
variation in the matching error rates suggests that model 
(B') is more appropriate than model (B). The asymptotic 
standard deviations in Table 9 and 11 appear unusually 
small comparing to the sample size of TV. Ding (1993b) 
shows that this is a typical feature of the dual system 
problem when the capture probabilities are very high, as 
it is the case in census application. Despite very narrow 
confidence intervals, simulation studies in Ding (1993b) 
show that the asymptotic normal approximation being 
used is highly accurate in terms of coverage probabiUty. 

Table 12 provides estimates of matching bias of various 
sources in the undercount estimate by the usual DSE. 
UC(DSE) is the undercount estimate from the DSE defined 
in the same way as for the 1986 TARO estimate; UC(P) 
is the undercount estimate computed by MLE from 
matching error model to adjust for matching bias in 
P-sample, and Bias(P) = UC(DSE) - UC(P). Again, 
following Hogan and Wolter (1988), we define the bias in 
E-sample operation by Bias(E) = ER/(CR -I- ER) -
EP/(CP -h EP), and the undercount estimate correcting 
for E-sample error by UC(E) = UC(DSE) - Bias(E). 
Finally the total matching bias by both P-sample and 
E-sample is Bias(T) = Bias(P) -I- Bias(E), and the under­
count estimate correcting for both sources of error is 
UC(T) = UC(DSE) - Bias(T). Note that it is possible, 
as observed for EPS 2 and 4 in Table 12, that undercount 
estimate is negative, thus indicating an overcount instead. 
This happens when the DSE (or MLE) is less than CEN, 
the total census enumeration. The dual system data 
represents "corrected" census counts with erroneous and 
other incorrect enumerations excluded from CEN. 
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For each of Bias(P), Bias(E) and Bias(T), a positive 
estimate indicates a upward bias in the undercount esti­
mate from the DSE by ignoring the corresponding source 
of error, that is, UC(DSE) should be reduced by the 
estimated bias to account for that source of error. For each 
of UC(DSE), UC(P), UC(E) and UC(T), we get signifi­
cantly higher undercount figures for each of the five 
minority post-strata, /.e., EPS 1,3,5,8 and 11. For both 
Bias(P) and Bias(E), all the bias estimates are positive 
except for Bias(P) for post-stratum 9 and Bias(E) for post-
stratum 11. This supports the common belief that there 
is usually an upward bias attributable to matching errors 
in the undercount estimate by the DSE, except for some 
non-minority geographical areas where in fact there is 
disproportionately large share of erroneous enumerations. 

The effects of the two types of matching errors are well 
understood. False nonmatches results in upward bias and 
false matches produce downward bias. The nature of the 
overall matching bias is then dependent upon which type 
of matching error dominates. By computing undercount 
estimates for 1980 Census data with selective pair of 7 and 
(3, Ding (1990) concludes that due to high capture prob­
abilities in the census application of the capture-recapture 
technique, the matching bias is dominated by the false 
nonmatch rate when the false nonmatch rate (7) and the 
false match rate (/3) are about the same magnitude. This 
point can be easily confirmed here. EPS 4 has the largest 
estimate of 7, 7 = .021% and results in the largest 
Bias(P) = 2.06%. EPS 3 and EPS 4 have about the 
same estimate of/3, /S, .012% and .013%, respectively, 
but EPS 3 has much smaller Bias(P) = .80%, due to 
smaller estimate of 7, 7 = .010%. About a .01% dif­
ference in 7 gives dramatic difference in Bias(P). For 
matches and nonmatches with complete data, Fay et al. 
(1988, p. 53) state "Because of sometimes difficult nature 
of the matching work, false nonmatches probably repre­
sent a greater concern than false matches". The data 
analyzed by our methods include both complete data and 
data produced as a result of the Bureau's imputation 
procedure. The sensitivity of our estimates to 7 lends 
some support to the statement by Fay et al. when both 
matching for complete data and matching for imputed 
data are considered together. On the other hand, a down­
ward bias can be observed when /3 is much larger than 7-
For EPS 9, |S = .022%, about 10 times as large as 
7 = .002%. Thus false matches dominate false non-
matches for this stratum, and we see the only negative 
(downward) bias, Bias(P) = - . 2 2 % . 

For a specific matching procedure there is an inevitable 
trade-off between matching errors and unresolved cases. 
Depending on the extent of unresolved cases and the 
imputation algorithm used, the resolution process might 
yield a significant number of false matches. The empirical 
evidence accumulated by the Bureau of the Census, as we 
note above, lends some support for the "unbiasedness" 

of the missing data mechanism used in the imputation 
process in our example, but further evidence on the issue 
is desirable. 

6. SUMMARY 

In this article, we have presented models and methods 
for the estimation of population total and census under­
count that corrects for matching bias of the usual dual-
system estimate in the presence of matching errors. Two 
sources of information are combined in the estimation 
procedure, the dual-system or capture-recapture census 
data, and the data from a matching error study (rematch 
study). The accuracy of our estimates relies on the assump­
tion that the rematch is error free. Matching error rates 
are likely not to be homogeneous over different population 
strata. Model (B') allows for heterogeneity of matching 
error rates across various population strata but requires 
stratified rematch data to estimate the error parameters 
within strata. The methods presented here generalize the 
standard theoretical framework for the use of maximum 
likelihood estimation to accommodate matching errors. 

We can adjust for erroneous enumerations in the esti­
mate of EE by the use of rematch data for the E-sample. 
We obtain an overall matching bias in the DSE by adding 
two bias components from the P-sample and the E-sample. 
Our analysis of the 1986 Los Angeles test census data 
indicates that the upward bias of the DSE in the estimate 
of the census undercount is just under 1 %, thereby lending 
support to the 1 % value used by Hogan and Wolter (1988) 
in their evaluation study. For the analysis on 1990 Census 
data, the computational results not only agree with under­
stood aspects of matching bias, but also offer findings that 
were not previously known. 

For simplicity, we have assumed that the PES is (allowing 
for stratification) based on simple random sampUng. The 
models still need to be adapted to account for the complex 
sampling design actually used (see Hogan 1992, 1993). 

It has been known that the perfect matching assumption 
does not hold in the application of dual system estimation 
in the U.S. census. The matching problem in the use of 
the DSE has two components. The first component involves 
the missing P-sample enumeration status. The second 
involves errors in classifying P-sample people as enu­
merated or not. The present paper provides a method to 
address both components using dual system data adjusted 
for imputed enumeration probabilities, and can be of 
possible value in future censuses provided that the models 
are adapted to handle the complex survey design of the 
PES. Ding (1993c) develops estimates to directly address 
the first component by modifying the usual DSE method 
and describes the relationship between the proposed esti­
mates and those that result from the application of the 
Census Bureau's imputation scheme for missing P-sample 
enumeration status (Schenker 1988, Belin et al. 1993). 



Survey Methodology, December 1994 157 

ACKNOWLEDGMENTS 

Fienberg's work was partially supported by a grant 
from the Natural Sciences and Engineering Research 
Council of Canada to York University, Toronto, Canada. 
The authors are grateful to Mary Mulry for furnishing 
data on 1990 Decennial Census, to Joe Sedransk for 
suggestions, and to Jay Kadane, Larry Wasserman and 
Mike Meyer for commenting on an earlier version of this 
work. An Associate EdUor and two referees provided 
comments that have led to a sharpening of the discussion. 
The basic models in this manuscript were first developed 
as part of the first author's Ph.D. thesis at Carnegie 
Mellon University. 

APPENDIX 

Comparison of Estimates from Weighted and Unweighted 
P-Sample Data 

For simplicity, we assume a weight ^ > 1 for the 
P-sample and consider the usual dual system estimation 
problem. Let (x,y) be the cell counts in the 2 x 2 table 
for weighted P-sample data and census enumerations, 
i, j = 1,2 and ij 7^ 22.- One could make inference with 
unweighted P-sample data and census enumerations 
deflated by a factor of kto get cell counts [yjj],i,j — 1, 
2 and ij 7^ 22. Thenx^ = kyij,ij ?̂  22, andx,+ = / : j , + , 
x+i = ky+i. Let the usual dual system estimates derived 
from [Xij] bej5i,j52 and TV,,,, and estimates from {yjj} be 
^,, ^2 and TV„. The estimates are (Bishop et al. 1975, 
chap. 6)j5, = Xu/x+i = yn/y+i = q^h = J^ii/^i+ ^ 
yu/yi-i- = Q2,N„ = Xi+x+i/Xu = kyt+y+i/yu = kN^. 
Thus if one considers the unweighted P-sample data and 
uses TV. = /:TV„ to estimate the population total, then ^,, 
^2 and TV» give the same point estimates aspi,p2 and TV,,, 
from weighted P-sample data. From the asymptotic 
normal distribution of the estimates (Ding 1993b), we 
have Var(TV„) =: A:Var(TV„), Var(^,) = A:Var(^,), 
Var(^2) = kyar{p2). Then Var(TV.) = kVar(NJ, 
and <?,, ^2 arid TV» have larger variance than p , , P2 and 
TV,,,, respectively. To compute estimates with unweighted 
P-sample data, one needs to know k and {yjj j . We empha­
size that the trivial case of a constant sampling weight for 
all cases in the same post-stratum is assumed here for 
simplicity of discussion. However, the real situation can 
be complex. For example, Blacks may be sampled at a low 
probability in a White stratum and are then combined with 
other Blacks sampled with much higher probabilities. 
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A Hypothesis Test of Linear Regression Coefficients 
with Survey Data 

PHILLIP S. KOTT 

ABSTRACT 

This paper discusses testing a single hypothesis about linear regression coefficients based on sample survey data. 
It suggests that when the design-based linearization variance estimator for a regression coefficient is used it should 
be adjusted to reduce its sUght model bias and that a Satterthwaite-Uke estimation of its effective degrees of freedom 
be made. A very important special case of this analysis is its application to domain means. 

KEY WORDS: Design-based; Domain mean; Effective degrees of freedom; Model-dependent; Probability order. 

1. INTRODUCTION 

Most of statistical theory is analytical in nature. One 
begins with a set of data and a fairly general stochastic 
model believed to have generated that data. Statistical 
theory is then invoked to estimate the parameters of the 
model and to determine the accuracy of those estimates. 
Ultimately, the original model may be pared down as the 
result of a series of statistical tests which often take the 
form of investigations into whether particular parameter 
values may be reasonably inferred to be zero. 

The bulk of survey sampUng theory, by contrast, is not 
analytical but descriptive. There is a finite population of 
interest. Information about this population can, in prin­
ciple, be summarized by means of one or more descriptive 
statistics (for example, the populadon mean and median). 
The survey statistician is constrained by time or budgetary 
considerations to estimate such statistics using only a 
sample of population units. He (she) often faces a two-fold 
problem: first a method of sample selection needs to be 
chosen, then the population statistic(s) needs to be estimated 
from the sample. Although it is possible to construct a 
model-dependent statistical theory for these purposes (see, 
for example, Royall 1970), most survey statisticians invoke 
a model-free approach known as design-based sampUng 
theory. In this theory, it is not the sample data values that 
are stochastic (as they are in model-dependent theory) but 
the sample selection process. Rao and Bdlhouse (1989) 
provides a useful summary of both design-based and 
model-dependent theory and of attempts to synthesize the 
two approaches. 

The main concern here will be in the testing of a single 
hypothesis about linear regression parameters. We will 
assume that the model is correct and that model errors are 
normally distributed with a possibly complex covariance 
structure. Unlike Wu et al. (1988), we wiU not explicitly 
model the error structure (except, perhaps, at a latter 

stage). Rather, we will focus our attention on a /-statistic 
calculated using the linearization variance estimator. That 
this variance esdmator has desirable robustness properties 
from a model-dependent point of view has been demon­
strated by Skinner (1989) and Kott (1991). 

This paper will provide methods for reducing the model 
bias of the linearization variance estimator and for deter­
mining its effective degrees of freedom. A very important 
special case of this analysis is its application to the estimated 
variance of domain means and the difference of such 
means. Since the analysis in this paper is strictly model-
dependent, the terms "bias" and "variance" wiU refer to 
model bias and model variance unless otherwise specified. 

2. THE MODEL 

Suppose we have a population of TVf elements that can 
be fit by the linear model: 

PM = ^M^ + € iw. (1) 

where y;^ isanM x 1 vector of population values for the 
designated dependent variable; 

XM is anM X K matrix of population values for 
the K designated independent variables; 

/3 is a AT x 1 vector of regression coefficients; and 
€M is a normally distributed random vector with 

mean 0^ and variance E,v/-
A random sample, S, of m distinct elements is drawn 

from the population. To allow a certain amount of gener-
aUty in the sampUng design, we assume that the population 
is divided into L strata. From each stratum h, /?/, distinct 
clusters of elements are randomly sampled and denoted 
M/,,, M/,2, . . . , «/,„̂ ,. A random sample of mi,j dements is 
selected from each cluster hj. The clusters are also referred 
to as primary sampling units. There are « = £ A?/, primary 
sampling units in the sample. 
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Each sampled element has a designation hji, where h 
is its stratum, hj its primary sampling unit within h, and / 
the element itself within hj. Let piyi be the probabiUty that 
element hji is in the sample, and let W/î , = m/ {Mp,,ji) be 
the sampling weight of the element. Observe that the 
sampling weights have been normalized so that if piy, 
equals the sampling fraction, m/M, then W/yi would be 
unity. 

The linear model in (1) also applies to the dements in 
sample S: 

ys = Xsff + is, 

where ys, for example, is the AT? x 1 vector of sampled 
values for the dependent variable. Let €i,j - (€/,y,, €i,j2, 
- - -, ^iijmi,) be the error vector for the elements in primary 
sampling unit hj. Now, €5 can be arranged so that the 
6;,y are stacked one on top of the other. Let Var(€/,y) = 
E(ii,j€i,j') be denoted by the mi,j x mi,j matrix E/,y, 
which need not be diagonal. We assume that the 6/,̂  are 
uncorrdated across primary sampling units, so that E5 is 
block diagonal. 

The design-based estimator for /S is the weighted least 
squares estimator: 

b^= (X^WXs)-'X^Wys, 

where ff is the m x m diagonal matrix of sampling 
weights. The ^-th diagonal value of JV is the sampling 
weight associated with the ^-th element of the sample. 
Clearly, ft ̂ ^ is an unbiased estimator of/3 under the modd 
in( l ) . 

One can simplify the notation for bfy by letting C be 
the A: X m matrix (Xg WXs) ~ 'A'S W, so that b^, = Cpg. 
Let Di,j he a m X m diagonal matrix with I's corre­
sponding to the sampled defnents of hj and O's elsewhere. 
Furthermore, let C/,y = CD,,j. Finally, let rs - Ps - Xsb^ 
he the vector of residuals. 

The Taylor series or linearization estimator for the 
mean squared error of b^, (Shah et al. 1977) is 

L ni, 

mse = Y (niJlni, - U ) ^ A,,j rsr^A;,j, (2) 
/ i = i 

where Ai,j — Ci,j — nj^ Y, Qg. ^nd the summation is 
over all the primary sampling units in stratum h. The terms 
"Taylor series" and "linearization" refer to the derivation 
of mse using design-based sampling theory. Kott (1991) 
shows that mse is a nearly unbiased estimator of the model 
variance of 6p^ under reasonable conditions. 

It should be noted that in their derivation of mse, Shah 
et al. assumed that the primary sampling units were chosen 
with replacement. Here, as in Kott (1991), we are assuming 
that the primary sampling units are distinct which suggests 
that they were selected without replacement. The reason 

for this discrepancy is that the assurance of independence 
among the selected primary sampling units within a stratum 
in design-based theory and model-dependent theory has 
almost opposite requirements. The discrepancy goes away, 
however, if we assume that the primary sampling units 
were chosen without replacement but that the goal of 
design-based regression theory is not to estimate a finite 
population regression parameter but the limit of that 
parameter as the population (and the number of primary 
sampling units per stratum) grows arbitrarily large. See 
Fuller (1975). 

If the model in equation (1) holds and L > I, then 
there is an alternative to mse that is also nearly unbiased. 
It has the same form as equation (2) except that all n 
sampled primary sampling units are treated as if they came 
from a single stratum (Z, = 1). Since the alternative can 
be expressed using equation (2), there is no need to treat 
it separately in the analysis that follows. 

3. A CONVENTIONAL DESIGN-BASED 
^STATISTIC 

The estimator b^,is a A'-vector. In this section we will 
be interested in the ^statistic used to test the univariate 
hypothesis that ^/3 = OQ for some A'dement row vector 
Q = (Q\, Q2, • • -, QK)- The most common example of 
such an hypothesis addresses whether a particular element 
of /3 = (|8,, . . . , (3/c), say ^k, is zero. In this example, all 
of the q, would be zero except qk which would be 1; GQ 
would also be zero. 

If the model in (1) and the nuU hypothesis that /̂3 = GQ 
are true, then 

G = (qbw- %)/\q\ar(byy)q'V'' 

would be normally distributed with mean 0 and variance 1. 
If \aT(bw) were known, the nuU hypothesis could be 
tested by comparing the statistic 9 to a standard normal 
table. Unfortunately, Var(6n/) must be estimated from 
the sample. Conventional design-based practice is to 
compare the statistic 

(qbw - eo)/{qmseq') (3) 

to a Student's/distribution with « — Lor (n - L — K) 
degrees of freedom (see Shah et al. 1977). 

The primary goal of this paper is to investigate and 
then modify the rather ad hoc practice described above 
using the model in equation (1) and our assumptions that 
£5 is block-diagonal. This will be done by investigating 
s^ = qmseq' as an estimator for v^ = q\ar(b^,)q'. 
First, 5^ will be adjusted to reduce its bias; then, a better 
determination of the adjusted estimator's effective degrees 
of freedom will be established. 
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4. THE MODEL BIAS OF s^ 

The analysis to be conducted is asymptotic. Many of 
the results rely on the assumption that n, the number of 
primary sampling units in the sample, is large. (Formally, 
we should assume that there are infinite sequences of 
statistics taking on values as n grows arbitrarily large.) If 
n is large, then so too must be TVf and m, the number of 
elements in the population and the sample, respectively. 
We wiU assume that max(w/,y) is bounded by a finite 
value, say ITIQ. Thus, m is bounded by WQ" arid the number 
of nonzero dements in the block-diagonal matrix II5 is 
bounded by rFiQn. 

The number of columns of Xs, K, is assumed to be 
fixed, but we have some flexibility concerning the number 
of strata, L. Either L can stay fixed as n grows arbitrarily 
large with the «/,/« ratios converging to fixed positive 
limits, or L/n can converge to a fixed positive limit with 
max(«;,) bounded. 

Our concern here is with providing sufficient condi­
tions for the subsequent analysis in the text to hold. The 
random variable <̂  (formally, the infinite random sequence 
[(f)„}) will be said to be of probability order n~^, i.e., 
(j) = Op(«-^), when | E((j>^) \ < fi/zj^^ for some finite 5 . 
Similarly, the random matrix * will be said to equal 
Op(/j~^) when each element (̂ ,y i n * satisfies \E(4i}j) \ < 
B/n^^. When ^ is not random, the P subscript on O is not 
needed. The same is true for O. 

The following assumptions are reasonable given the 
structure that has been laid out: 

(1) C = {X'WX)-^X'Wey:istsandisO(l/n),and 

(2) E(t„j) = J:„J + 0 ( l / « ) , where 2;,,- = r„jr;,j. 

Assumption 1 assures us that Var(6n/) = CE5C' = 
0(l/n) since there are m dements in the rows of C and 
no more than rhon non-zero elements in E5. 

The variance of qbfy can be rewritten as v^ = 
E I v,,//7^ where v,,j = n'^giy'^sgi,], Sixj = qCD,,j, and 
Diy is a diagonal matrix with I's corresponding to the 
sampled elements of primary sampling unit hj and O's 
elsewhere. Similarly, s^ = qmseq' can be rewritten as 

L n,, 

^^ ^ Y (" ' ' / [" ' ' - ^]) D ^Si,j - gh)rsrs(ghj - gi,)' 
it=i T=i 

(4) 
= X; («/,/[«/, - 1 ] ) X; [gi,jtsg;,j 

- ^gh^Sgl'u + gi,^sgi,], 

wheregi, = £^/,^/«/,, the summation is across they in/z, 
and ts = llDi,jrsr^D„j. 

Both gi,j andgi,areO(l/n) because C = 0(l/n) and 
Djy has a bounded number of non-zero values. Thus, 

E(ghjtsgl,j) = ghj-^sghj + 0{n-^), E(g„tsgHj) = 
gi,i:sg;,j + 0(n-^), andE(gi,tsg;,) ^gn'^sgi, + 0{n-^). 
Consequendy, £'(5^ - v^) = 0(n~^). 

Since rs = (/„, - XC)€s and £(^5^5) = ^s, 
E(rsr^) = Ls - XCJls - i:sC'X' + XCl,sC'X'. 
From equation (4), we can see that £'(5^) = v^ — ^ , 
wherei? = I (n„/[n„ - 1]) E {gi,j - gi,)Z(gi,j - gt,)' 
and Z = 2XCJ:S - XCEsC'X'. Now Z = 0(l/n), 
becauseC = 0 ( l / « ) ,A 'ha s a fixed number of columns, 
and the number of non-zero terms in any column of E^ is 
bounded. This implies/? = 0(«~^) .Thus , -R/v^,the 
relative bias of 5^, is 0 ( 1 / A 7 ) . 

An alternative estimator for v̂  with a reduced relative 
bias is 

r2 -= 5V(1 . - 2 R), (5) 

where 

(nn/ln/, 
ii=i T=i 

gi,)Z(g, hj - g h ) " ] . 

and 

Z = 2A'CEs - XCHsCX'. 

In equation (5), R/s^ is used to estimate R/v^. The 
variance estimator si has been proposed here rather than 
the more obvious s^ -\- Ras ad hoc compensation for the 
slight relative bias of R as an estimator of R. 

5. THE RELATIVE VARIANCE OF THE 
VARIANCE ESTIMATOR 

Lete/,y = w^/i^e^sothat Var(e;,^) = v^y, andrecaU that 
v^ = E E ^ A ; / ' ' ^ - If ^iij = ngiijrs, then the random 
variable 5^ can be re-written as 

" / I 
;5 \2 

ll = \ j=l 

. = n-^l{n„/[n„ - l]){l(e„j - e,y 

- (gl,j - gl,)A(gHj - gl,)'], 

where/I = 2XCeses - A'Cese^C A". It is now possible 
to show that 

sl = n-^ Y («"/["" - 1]) U (̂ "T - ^/')' 
h=l T = l 

-h Op(n-'"^). 
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Consider a random variable with a x^ distribution wUh 
F degrees of freedom. Its relative variance is 2/F. This 
suggests a Satterthwaite-Uke determination of the effective 
degrees of freedom of 5̂  (see Satterthwaite 1946); namely. 

(nvY 

L (• "It ~\ 
, (6) 

i=\ ^ j=\ j ^ j 

which is approximately 2 divided by the relative variance of 
5.^(since5^ « «"^E/, fEy^y + I,j'^jet,je,,j./{n,, - 1))). 

What is being recommended here is that one tests 
whether q^ = GQ by assuming under the null hypothesis 
that 

/* = (qbiv - Qo)/s*, (7) 

has a Student's / distribution with f degrees of freedom, 
where F is determined using equation (6) and making 
some assumptions about the Vi,j. Let us call this test the 
adjusted t-test. 

Continuing the example: If one were to calculate a 
/-statistic using conventional design-based practice, he 
(she) would not only use a biased variance estimator but 
would also assume that the statistic has 97 or 99 degrees 
of freedom (100 sampUng units minus one strata minus 
two regressors, were this last subtraction is not always 
performed). Under ideal conditions (homoscedastic errors 
within set A), however, the /-statistic calculated using 
VE has a Student's / distribution with only 9 degrees of 
freedom. 

Applying equation (5) to the linearization variance 
estimator, v^, produces a variance estimator virtually 
identical to V£(sincei? = [v£/«,[l - « , /«] ] ,5* differs 
from Vfby only 0.1%). Assuming identically distributed 
errors within sets A and ^4, calculating the effective degrees 
of freedom, F, with equation (6) yields 9.99. This is almost 
exactly one degree too many but clearly better than 97 
or 99. 

A natural hypthesis to test is whether the domain 
means, |8, and &2, in equation (8) are equal. In other 
words is j3, - i32 = GQ = 0? Assuming that all units 
have the same variance, the adjusted / statistic is 

6. A SIMPLE EXAMPLE 

Consider a simple random sample of n units, «, of 
which are in a subset of the sample denoted by A and ^2 
in the complement denoted A. Let yi he the observed 
value for unit /. Suppose the foUowing linear model holds: 

yi = d/,i3, + (1 - di)&2 + €,. (8) 

where rf, = 1 is unit / is in set A, and 0 if / is in /4; and the 
€, are independent normally distributed random variables. 

Assuming homoscedastic errors, both the model-
dependent and design-based regression esdmator for j3, is 
the simple domain mean, j ^ = E/€/i3'i/"i-The lineariza­
tion estimator for the variance of this estimator is simply 
VL = (n/[n - l])li,A(yi - yA)^/nl (It should be 
noted that when a domain mean is viewed as an analytic 
parameter, its variance requires no finite population 
correction; see FuUer 1975). 

This linearization estimator, v^, differs from model-
dependent variance estimator: VM = [I,iiA(yi — yA)^ + 
E;M(.V/ - yA)^]/[n\{n - 2 ) ] . The advantage of Vi. is 
that, unlike Vŷ ,, it is asymptotically unbiased under the 
model even when the €, are heteroscedastic. This point 
was noted by Skinner (1989) and KoU (1991). Unfortu­
nately, there still may be considerable bias for finite n. For 
example, when n = 100 and «, = 10, the relative bias of 
Vi is approximately 10%. We can see this by noting that 
V£ = i:iiA(yi - J ^ ) V ( « | [ « , - I]) = ([n - l]/n) 
(/3i/[«, — Ij )Vî  is exactly unbiased. 

Y yi'ni - Y yiln2 
HA HA 

(1 - s-^py^'s 

where 

s^ = {n/{n - 1 ) ] [ E / M ( . 1 ' / -yA)'^ln\ 

+ liiA(yi-yA)"ini\, 

and 

R = [n/(n - 1 ) ] [ ( E / M ( J / - > ' / I ) V « ? ) ( 1 - «,/«) 

+ (liiA(yi-yA)^/nb(^ - «2/«)]-

To calculate the effective degrees of freedom for 
ns^/(n - 1) - and thus /* - using equation (6), note that 
L = I, and v, oc 1 /n\ for / € A while v, oc ] /nl for id A. 
As a result. 

F = 

( l / « , + l/n2)' 

(l/n} + l/nl -f- [(1//2, -I- l/«2) - l/«i - l/«2])/« 

which is 12.3 when «, = 10 and /72 = 90. The actual 
degrees of ns^/(n - I) (i.e., 2 divided by its relative 
variance) is reasonably close, 11.1 (the relative variance 
of ns'^/{n - 1) is 2[(/?, - l)/n\ -f (/72 - l)/n\\ 
divided by [(/?, - l)/n\ -I- («2 - l) /«2]^). 
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What this synthetic example principally shows is how 
misleading conventional design-based practice can be even 
with an apparently large sample size. The adjusted f-test 
is clearly a giant step in the right direction. 

It is tempting to try to avoid making an assumption 
about the vi,j and to estimate F with 

/ = 

L ni, 

(nso)' -Y I )H/3 
i- c "I, ;) 

Y i ;4/3 + E44'/(«;,-1)^ 
/ = i ^ T = i J'^J 

(9) 

where sjj = n^(g,,j rs)^. Although / is a consistent 
estimator of F, its use can produce misleading results as 
we shall see. 

Repeated application of equation (9) on 10,000 simulated 
data sets constructed under the assumption that the e, 
in equation (8) are normal, independent, and identically 
distributed yielded an average/value for the variance of 
PA of approximately 11.2 with a standard deviation of 
about 3.5. In addition to Us variabiUty, the average/value 
is greater than F. This is due to the denominator of equa­
tion (9) itself being a random variable. It happens that the 
value of l / / i s roughly 0.100 (= 1/9.99), as expected. 
Thus, even though the use o f / in equation (9) may seem 
appealing, it is not recommended. 

7. ANOTHER EXAMPLE OF A 
DOMAIN MEAN 

Faced with the simple example of the last section, most 
design-based statisticians would simply treat the units 
sampled from set A as an independent simple random 
sample. The linearization and model-dependent variance 
estimator would then coincide. In pracdce, however, 
samples often involve clustering, stratification, and unequal 
probabilities of selection. When the domain of interest is 
not a design stratum, it usually becomes impossible to 
separate out the domain's sampled elements (which need 
not be primary sampling units) and treat them as an 
independent random sample. 

An example of such a complex sample is the 1985 
Continuing Survey of Intakes by Individuals (CSFII). This 
was a stratified, multistage survey of the dietary intakes 
of women from 19 to 50 years of age and children from 
1 to 5. There were roughly 140 women in the sample who 
described themselves as black and 1,150 who described 
themselves as white. 

Assuming that a dietary intake value for each individual 
was independent and identically distributed, values of the 
relative variance of the linearization variance estimator 
(R/s^ from equation (5)) and its effective degrees of 
freedom (Ffrom equation (6)) were calculated for the two 

race domains. The relative bias for white women was .003, 
while the effective degrees of freedom were 48.1. For black 
women, the relative bias was 0.026, and the effective 
degrees of freedom 10.1. Thus, even with a fairly large 
sample size, the effective number of degrees of freedom 
for black women was relatively small. The conventional 
determination of degrees of freedom was around 60 
(120 PSU's minus 60 design strata). 

8. DISCUSSION 

As pointed out earlier, the use of design-based tech­
niques can often provide protection when the model in 
equation (1) fails. Unfortunately, this protection can not 
be addressed in the strictly model-dependent framework 
adopted here. It would be unrealistic, however, to expect 
a conventional design-based /-statistic to behave any better 
when the modd in equation (1) fails than when it holds. 

One potential problem of the modified design-based test 
stadsdc suggested here occurs when the model in equation 
(1) does not fail: it may not be very powerful. Power can 
be lost by estimating regression coefficients with sampling 
weights and by not modelling the error structure directly. 

This loss of power is due to the original design-based 
formulation and not to our modification of it. In fact, 
5* is a design consistent esdmator of the design mean 
squared error of b^ whenever s^ is. This is because R/s^ 
in equation (5) is also Op{l/n) from a design-based point 
of view assuming that the first stage of sampling is con­
ducted wdh replacement. 

Returning to the simple example of Section 6 can illus­
trate the issue of power forcefully. The model-dependent 
and design-based estimates are the same. If all the €, are 
assumed to be identically distributed, then the model-
dependent variance estimator, v^, which depends on the 
assumption of homoscedasticity, is unbiased and has 
98 degrees of freedom. The adjusted design based vari­
ance estimator is also virtually unbiased, but it has only 
9 degrees of freedom. 

Often in practice, it will be prudent to sacrifice power 
for robustness. When that is the case, equation (6) provides 
an attractive method of measuring how much power may 
be lost using a modified design-based /-test (equation (7)) 
when the assumptions of the model are, in fact, correct. 
Furthermore, the equation lends itself to sensitivity 
analyses in which the effects of alternative assumptions 
about the V;,j can be evaluated. 
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Matrix Masking Methods for Disclosure 
Limitation in Microdata 

LAWRENCE H. COX 

ABSTRACT 

The statistical literature contains many methods for disclosure limitation in microdata. However, their use by 
statistical agencies and understanding of their properties and effects has been limited. For purposes of furthering 
research and use of these methods, and facilitating their evaluation and quality assurance, it would be desirable 
to formulate them within a single framework. A framework called matrix masking - based on ordinary matrix 
arithmetic - is presented, and explicit matrix mask formulations are given for the principal microdata disclosure 
limitation methods in current use. This enables improved understanding and implementation of these methods by 
statistical agencies and other practitioners. 

KEY WORDS: Statistical confidentiality; Survey data processing; Mathematical methods. 

1. INTRODUCTION 

In this Information Age critical activities of society are 
fuelled by data. Users of statistical data rely especially 
upon government statistical agencies to collect reliable 
data and disseminate it in a timely and broadly useful way. 
Prior to the 1950s, data were released only in printed, 
tabulated form. Beginning in the 1960s, data at the indi­
vidual respondent level - statistical microdata - began to 
be released by the U.S. Government. 

At present, use of microdata outside statistical agencies 
for research and policy analysis is often curtailed because 
appropriate data are not released to users due to confiden­
tiality concerns. For three decades statistical agencies have 
wrestled with policy and technical issues in microdata 
release, many of which remain unresolved (Federal 
Committee on Statistical Methodology 1994). The purpose 
of this article is to present a class of matrix transforma­
tions of microdata intended to help deal with this issue. 

Duncan (1990) and Duncan and Pearson (1991) charac­
terized several disclosure limUation methods for microdata 
- microdata masks - by means of matrix addition and 
muUiplication, and named such characterizations "matrix 
masks." Cox (1991) generaUzed the concept of matrix 
masks, and extended the characterization to other micro-
data masks. The characterization of microdata masks as 
matrix masks offers conceptual and statistical advantages. 
Matrix masking provides a simple language to represent, 
compare and evaluate microdata masking methods. Matrix 
masking expresses complicated, diverse methods in a 
form presentable to a wide audience including statisticians 
and data users, and offers a standard format to develop 
and optimize the efficiency of transportable microdata 
masking software. 

In this paper, the concept of matrix masks is developed 
in a mathematically rigorous way. Explicit matrix mask 
formulations are provided for the principal microdata 
masking methods in current use, extending those presented 
in Duncan and Pearson (1991) and Cox (1991). This enables 
straightforward implementation of these methods in soft­
ware, and facilitates closer examination and use of microdata 
masks by statistical agencies. This should lead to improved 
understanding of the properties of microdata masks and 
much needed understanding of their effects on data use. 

2. MATRIX MASKS 

2.1 Definitions 

A microdata file containing j5 attribute values for each 
of n (respondent-level) data records can be represented as 
ann X p matrix A'whose entries are denoted Xjj. Unless 
stated otherwise, A'contains no missing values. A matrix 
mask (A, B, C) is a transformation of X of the form: 
X = AXB + C, with A, B 7^ Q, involving ordinary 
matrix addition and multiplication. As A operates across 
the rows of X, A is called a record transforming mask. B 
is an attribute transforming mask, and C is a displacing 
mask (Duncan and Pearson 1991). 

An elementary matrix mask of A" is a matrix mask of 
the form AX, XB, or X -I- C. Iterations of (elementary) 
matrix masks of A'are also matrix masks of X Therefore, 
a matrix mask of A" has the form A = AXB -I- C, where 
either A = Aor A has been obtained from A by applica­
tion of a sequence of elementary matrix masks. An impor­
tant advantage of this definition is to enable different 
statistical disclosure limitation methods to be applied selec­
tively to arbitrary subsets of the records and attributes 
of X (Section 4). 

Lawrence H. Cox, Senior Statistician, U.S. Environmental Protection Agency, AREAL (MD-75), Research Triangle Park, NC 27711, U.S.A. 
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The matrices A, B, C are not necessarily fixed. For 
example, a common mask for numeric attributes involves 
addidon of random noise (Tendick 1991), so that C is a 
random matrix. The matrices /4, fi, C may depend upon 
X. For example, to displace X by additive random noise 
proportional to size, draw the Cjj randomly from a normal 
distribution with mean zero and standard deviation a multiple 
of I, and set A = A -I- C. Or, with /4 = A ' , 
M = /4Ais sufficient for ordinary least squares regression 
(Duncan and Pearson 1991). 

2.2 Notation 

/denotes the identUy matrix. Zdenotes the matrix all 
of whose entries are zero, and / t h e matrix of all ones. f/,y 
denotes the matrix all of whose entries equal zero, except 
Uij = I. lis always a square matrix; Z, / a n d C/,y need not 
be. The t/,y matrix, when used as a pre-(post-)multiplier 
retains the values of only one row (column) of the matrix 
it multiplies. The dimensions of submatrices may vary 
between or within individual formulations and will be 
specified for clarity. 

3. REPRESENTATIONS OF DATA MASKS AS 
ELEMENTARY MATRIX MASKS 

3.1 Removing and Selecting Microdata 

The most intuitively obvious method for limiting dis­
closure is to withhold certain microdata from release to 
data users. Typically, these data are associated with the 
highest disclosure risk and may require suppressing attri­
butes (columns) or suppressing records (rows) of A prior 
to release. 

Attribute suppression of the k-th attribute can be 
represented as an attribute transforming mask X = XB, 
where Bisthepx{p-l) block matrix: 

Supp(A:) = 
/ z 

Z 
Z / 

whose upper/-matrix is of dimension (A: - 1) x (A: - 1), 
whose lower /-matrbc is of dimension (p — k) x (p — k), 
and whose central Z-matrix is of dimension 1 x (p - 1). 
An alternative formulation is Supp(A:) = Y,j<k^ij + 
llj>kUj,j-\ . 

Suppression of several attributes can be represented as 
a product of fi-matrices of this form. For example, 
Supp(A)Supp(/) first suppresses the A--th attribute of A, 
and then suppresses the j-th attribute of the resulting 
n X (p — 1) dimensional matrix ASupp(/:). The dimen­
sions of Supp(A;> and Supp(/) are p x (p - I) and 
(p - \) X (p - 2). 

It is sometimes necessary to delete individual records 
from X. For example, a respondent may have high iden­
tification risk, or a record may be out of scope or spurious. 
Record deletion of the h-th record can be represented as 
a record transforming mask X = AX, where A is an 
(« — 1) x « dimensional block matrix identical in struc­
ture to Supp(7j>, except: the central Z-matrix of A is of 
dimension (rt - 1) x 1 and the dimensions of the upper 
and lower/-matrices of y4 are (h - I) x {h - l ) a n d 
(n - h) X (n - / ;) . This y4-matrix is denoted Del(A). 
An alternative formulation is De\(h) = ZiKht^n + 

E/>/it^--i,(-
Deletion of more than one record is represented as a 

product of ^-matrices Del(h). For example, to delete the 
h-th and /-th records of X, with i > h, use Del(/ - 1) 
Del(/j). For i < h, use Del(/)Del(/2). The dimensions of 
Deir/ - 1) and T>el(h) are (n - 2) x (n - I) and 
(n - I) X n. 

The A -matrix that systematically deletes every h-th record 
(for n — rh;r an integer) is a block matrix comprising r 
vertical blocks Del(ft>, each of dimension (/! - 1) x «. 
This generalizes to nonsystematic deletion. 

The complement of record deletion is record sampling. 
The ̂ -matrix that systematically samples every h-th record 
of A, for n = rh, isanr X n matrix whose ^-th row is 
the 1 X n dimensional fZ-matrix f/j,,/,. More generally, 
to draw a sample of size 5 comprising the records of X 
indexed by the set 5 = (5^: v = 1, . . . , 5) , use the 
yl-matrix Sam(A, S) of dimension s x n, each row of 
which is a [/-matrix (/j,^^ of dimension 1 x n. 

3.2 Aggregating and Grouping Microdata 

The risk of a respondent being identified and confiden­
tial data disclosed tends to decrease as data are more highly 
aggregated. Attribute aggregation and other microdata 
masks are based on this principle. 

The aggregation mask that replaces the first of two 
attributes (they-th attribute) by the sum of the two attri­
butes, and deletes the second attribute (the k-th attribute) 
from X, for j < k, can be represented as an attribute 
transformation X - XB, where Bisthepx{p — \) 
dimensional block matrix: 

Agg(/,Ar) = 
/ Z 

Uij 

Z I 

The upper /-matrix of \gg(j,k) is of dimension (k - 1) X 
(k — 1), the lower/-matrix is of dimension (p - k) X 
(p — k), and the central [/-matrix Uy is of dimension 
I X (p — 1). Alternative formulations are 

AggO'.A:; = Supp(/tj + Ukj, for j < k, and 

^gg(j,k) = SUPP^A; -I- Ukj-i, for j > k. 
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Aggregation-deletion over more than two attributes can 
be represented as a product of fi-matrices of this form. 
Construct B^ as above to aggregate the first two attributes 
to a subtotal, replace the first attribute by the subtotal, and 
delete the second attribute. Proceed iteratively forming 
fi2, . . . , f ic-i until all summand attributes have been 
incorporated into the total and deleted. Then B = Bi • •• 

Bg-i-
An alternative formulation for aggregation of they'-th 

and A:-th attributes, replacement of they-th attribute, and 
deletion of the k-th attribute, is given by the fi-matrix 
product Add{j,k)Supp{k). Aggregation and replacement 
of they-th attribute without deleting the k-th attribute can 
be accompUshed using the jO x p dimensional fi-matrix: 
Add{j,k) - I + [/̂ y. This generalizes to more summands 
V by adding more U^j. To create a new totals attribute 
(attribute p -I- 1) from they'-th and/r-th attributes without 
replacing either attribute, form thep x (p + 1) dimen­
sional fi-matrix [/ | [/yi -I- Uk\], whose /-matrix is of 
dimension p x p , and whose right-hand submatrix is of 
dimension p x 1. Aggregating another attribute v amounts 
to adding additional [/„, to the right-hand submatrix. 

Grouping categorical data, sometimes referred to as 
collapsing categories, is representable as attribute aggrega­
tion. Represent each of the c mutually exclusive categories 
of a categorical variable by a column of A. The absence 
(presence) of the corresponding trait is represented in each 
column by 0 (1). Grouping the c attribute categories to 
form one combined category is simply aggregation across 
the c attributes, replacing one attribute by the aggregate 
and deleting the remaining attributes, using fi-matrices in 
the manner described above. 

It is sometimes desirable to aggregate attribute values 
across microrecords. For example, if microrecords can be 
grouped according to some notion of "similarity" (e.g., 
age or profession, or total value of shipments or size of 
work force for businesses in a particular industry), then 
an alternative to releasing high risk microrecords is to 
release a microdata file whose records are microaggregates 
or microaverages of subsets of the original records. 

Record aggregation can be performed in several ways. 
A typical case is to replace all summands by the correspon­
ding totals. Assume that the records to be microaggregated 
are arranged consecutively, and denote the respective 
sizes of the record groups by A?,, rt2, • • •, «i, where 
n = n^ -\- n2 +•••.+ n^. Microaggregadon can be 
accomplished using a diagonal block /4-matrix of dimen­
sion n X n. The main diagonal of A is comprised of an 
ordered block of square /-matrices of dimension n^ x n^, 
V = 1, , 5; the remaining entries of A are zero. Under 
microaggregation (microaveraging), original values are 
replaced by microaggregates (microaverages) in each 
record of the aggregation group. Alternatively, in each 
group one record may be replaced by the microaggregated 
record while the other records are deleted. This may be 

accomplished using /-matrices of dimension 1 x «„, in 
which case the dimension of .4 is 5 x «. To construct 
microaverages in lieu of microaggregates, each /-matrix 
is replaced by its corresponding (1/«,,)/. 

3.3 Scrambling Record Order 

A microdata file X being prepared for public use is 
typically derived from a larger data file {e.g., by sampling) 
or from a more detailed file (e.g., by removal of directly 
identifying information such as name, address, and social 
security number). The larger file is often maintained in a 
prescribed sort order, such as by geography or social 
security number, and A is apt to inherit this ordering. To 
reduce disclosure risk, the order of the microrecords of A 
must be scrambled. Record scrambling can be accom­
plished using a stochastic ^-matrix. Given a reordering of 
the rows (records) of A (i.e., a permutation P of the row 
numbers (1, . . . , « ) ) , then for P(/) = /;, set the/-throw 
of A equal to the [/-matrix U^^ of dimension 1 x n. ^ is 
denoted Reo(P). An alternative formulation is Reo(/*) = 
E 1= 1 Ui,p(i). 

3.4 Rounding and Perturbing Microdata 

Data rounding is used by statistical agencies for several 
purposes, including disclosure Umitation. Integer variables 
such as age or years worked, or number of children, 
presented exactly, could be used in combination with other 
information to identify respondents (Bethlehem, Keller 
andPannekoek 1990). Conventional rounding (e.g., base 
5, remainders 0, 1, 2 are rounded down; remainders of 3, 
4 are rounded up), does not preserve additivity to totals, 
and controlled rounding, designed to preserve additivity 
to totals in one and two way tabulations, may be preferred 
(Cox and Ernst 1982). Methods are also available for 
unbiased controlled rounding in one- or two-way tables 
(Cox 1987). 

Data perturbation limits disclosure by introducing 
slight changes to microdata values. Additive perturbation 
amounts to adding appropriate perturbation values to 
original values. Additive perturbation values are often 
drawn randomly from a distribution with mean zero and 
variance small relative to that of the data. Nonrandom 
perturbation is also used. 

Rounding and additive perturbation can be represented 
as displacing masks. For each value jc,y, the displacement 
Cij to Xij is computed according to the rounding or pertur­
bation algorithm, with c,y = 0 for those values not subject 
to change. Then, A = A -I- C is the matrix of rounded 
(perturbed) values. 

3.5 Attribute Topcoding 

Attribute topcoding is a method by which, given a 
predetermined (large) value /} of the j-th attribute, all 
values A:,y > TJ are replaced by 7). Given A:,y =fijTj -\- rij. 
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for fij the integer quodent, and rjj the remainder, 0 < 
rjj < Tj, compute /,y = (Max{/-,y, {Tj -f D ^ ' - 1)) 
moA{Tj -\- 1). To topcode A, use the displacing mask 
T c o ( A ) = (tij - Xij). 

4. REPRESENTATIONS OF DATA MASKS 
AS MATRIX MASKS 

4.1 Selecting and Modifying Attribute-Record 
Combinations 

The formulations of the preceding section, based on ele­
mentary matrix masks, are applied to the entire microdata 
file X, and do not enable selective masking of arbitrary 
subsets of records (rows) and/or attributes (columns) of 
A. The ability to selectively manipulate microdata values 
wkhin subsets of A(/.e., to apply data masks selectively 
to submatrices of A) is important for disclosure limitation 
purposes. This can be accomplished by combining elemen­
tary matrix masks that enable subset selection along rows 
and columns, or both, in A with elementary matrix masks 
as presented previously. This is accomplished in three 
stages. 

At the first stage, apply the ignoring mask lgn{Q, R) = 
^Afi, where ̂  is the n x « dimensional matrix ^ =I.iiQ 
Uii, and Bis the p x p dimensional matrix fi - Eyeff^y-
A leaves the values in the selected rows Q of Aunchanged, 
and replaces all other values by zeroes; B has similar effect 
on the columns R. At the second stage, apply the appro­
priate mask or combination of masks M of Section 3 to 
lgn(Q,R) to effect the desired changes, yielding A = 
M{lgn{Q, /?)). As /Wis designed to change only the selected 
values, then all ignored values - which lgn(Q,R) replaced 
by zero - remain zero after applying M. To preserve the 
dimensions of A, deletion operations are modified to 
replace values to be deleted by zero. Finally, restore the 
ignored original values of A by means of 

A = M{lgn{Q,R)) + A - Ign(e,^)-

4.2 Blurring 

When the operation/Vf is microaveraging, the formula­
tion of Section 4.1 provides a matrix mask for the data 
mask blurring of Strudler, Oh and Scheuren (1986). 

4.3 Data Swapping 

Data swapping is a method whereby selected data 
values are exchanged between selected sets of records, in 
a manner that ensures that certain one, two and higher-
way tabulations remain unchanged (Dalenius and Reiss 
1982). Setting M - Reo{P), where the swapping rule 
is given by a permutation P of the affected records. 
Section 4.1 yields a matrix mask for data swapping. 

5. CONCLUDING COMMENTS 

A formulation based on matrix algebra for representing 
the principal statistical disclosure limitation methods for 
microdata has been developed. Computational issues, 
such as for large files, are not addressed. However, the 
partitioning methods of Section 4.1 could be used to 
reduce effective computational size when working with 
extremely large files. 

Matrix masks offer a comprehensive framework in 
which statistical agencies can develop, evaluate and use 
reliable microdata disclosure limitation software. Such 
software could be shared among agencies. Exploration 
of the uses of matrix masks by U.S. statistical agencies 
has been encouraged by an expert panel (Federal Com­
mittee on Statisdcal Methodology 1994, p. 82). The poten­
tial effect of the widespread use of matrix masks would 
be to standardize the microdata disclosure limitation 
methods available for use by agencies, while expanding 
each agency's options to evaluate and apply these 
methods. 

ACKNOWLEDGEMENTS 

The author is indebted to Professor George T. Duncan, 
Carnegie Mellon University, for introducing the concept 
of matrix masks and for collaborations leading to an 
earlier version of this paper, and to Sumitra Mukherjee, 
Duncan's doctoral student, for his critical reading and for 
developing some of the alternative formulations presented 
here. Preliminary research on this topic was supported in 
part by National Science Foundation Grant SES 91-10512. 
The views expressed are those of the author and are not 
intended to represent the policies or practices of the U.S. 
Environmental Protection Agency. 

REFERENCES 

BETHLEHEM, J.G., KELLER, W.J., and PANNEKOEK, J. 
(1990). Disclosure control of microdata. Journal of the 
American Statistical Association, 85, 38-45. 

COX, L. (1987). A constructive procedure for unbiased controlled 
rounding. Journal of the American Statistical Association, 
82, 398, 520-524. 

COX, L. (1991). Comment (on Duncan, G.T. and R.W. Pearson 
1991, below), Statistical Science, 6, 232-234. 

COX, L., and ERNST, L. (1982). Controlled rounding. INFOR, 
20, 423-432. 

DALENIUS, T., and REISS, S. (1982). Data swapping: A 
technique for disclosure control. Journal of Statistical 
Planning and Inference, 6, 73-85. 



Survey Methodology, December 1994 169 

DUNCAN, G.T. (1990). Inferential disclosure-limited microdata 
dissemination. Proceedings of the Survey Research Section, 
American Statistical Association, 440-445. 

DUNCAN, G.T., and LAMBERT, D. (1989). The risk of 
disclosure for microdata. Journal of Business and Economic 
Statistics, 7, 207-217. 

DUNCAN, G.T., and PEARSON, R.W. (1991). Enhancing 
access to microdata while protecting confidentiality: Prospects 
for the future. Statistical Science, 6, 219-239. 

FEDERAL COMMITTEE ON STATISTICAL METHODOLOGY 
(1994). Report on disclosure limitation methodology. 
Statistical Policy Working Paper 22, Office of Management 
and Budget, Washington, DC. 

STRUDLER, M., OH, L., and SCHEUREN, F. (1986). 
Protection of taxpayer confidentiaUty with respect to the tax 
model. Proceedings of the Section on Survey Research 
Methods, American Statistical Association, 375-381. 

TENDICK, P. (1991). Optimal noise addition for preserving 
confidentiality in multivariate data. Journal of Statistical 
Planning and Inference, 27, 341-353. 





Survey Methodology, December 1994 
Vol. 20, No. 2, pp. 171-176 
Statistics Canada 

171 

Empirical Comparison of Small Area Estimation Methods 
for the Italian Labour Force Survey 

P.D. FALORSI, S. FALORSI and A. RUSSO' 

ABSTRACT 

The study was undertaken to evaluate some alternative small areas estimators to produce level estimates for unplanned 
domains from the Italian Labour Force Sample Survey. In our study, the small areas are the Health Service Areas, 
which are unplanned sub-regional territorial domains and were not isolated at the time of sample design and thus 
cut across boundaries of the design strata. We consider the following estimators; post-stratified ratio, synthetic, 
composite expressed as linear combination of synthetic and of post-stratified ratio, and sample size dependent. For 
all the estimators considered in this study, the average percent relative biases and the average relative mean square 
errors were obtained in a Monte Carlo study in which the sample design was simulated using data from the 1981 
Italian Census. 

KEY WORDS: Small area estimators; Unplanned domains; Bias; Mean Square Error; Simulation study. 

1. INTRODUCTION 

In Italy, as in many other countries, there is a growing 
need for current and reliable data on small areas. This 
information need concerns most sample surveys realised 
by the Italian National Statistical InstUute (ISTAT), espe­
cially the Labour Force Survey (LPS), which has been 
studied to warrant accuracy in regional estimates. 

In the past, ISTAT's solution to this problem was to 
broaden the sample without changing the estimation 
method (Fabbris et al. 1988). In the last few years, however, 
in order to find a solution to the negative aspects of over­
sized samples, research has been launched to identify 
estimation methods to improve the accuracy of small areas 
estimates (Falorsi and Russo 1987, 1989, 1990 and 1991). 

In our study, the small areas are the Health Service 
Areas (HSA), which are unplanned sub-regional territorial 
domains and were not isolated at the time of sample design 
and thus cut-across the boundaries of the design strata. 
The sizes of these territorial domains are such that the 
reliability of regular estimates would have been satisfactory 
had these domains been designed with separate fixed 
sample sizes from individual domains. 

The study was undertaken to evaluate some of the 
alternative small areas estimators to produce HSA level 
estimates from the LPS. 

We consider the following estimators: post-stratified 
ratio, synthetic, composite (expressed as linear combination 
of the synthetic and of the post-stratified ratio), and 
sample size dependent. 

For all the estimators considered in this study, the 
average percent relative biases and the average relative 
mean square errors were obtained in a Monte Carlo study 

in which the LPS design was simulated using data from 
the 1981 Italian Census. 

2. BRIEF DESCRIPTION OF THE LFS 
SAMPLE STRATEGY 

2.1 Design 

The LFS is based on a two stage sample design stratified 
for the primary sampling units (PSU). The PSUs are the 
municipalities, while the secondary sampling units (SSU) 
are the households. In the framework of each geographical 
region the PSUs are divided according to the provinces. 
In each province the PSUs are divided into two main area 
types: the self-representing area consisting of the larger 
PSUs, and the non self-representing area consisting of the 
smaller PSUs. 

All PSUs in the self-representing area are sampled, 
while the selection of PSUs in the non self-representing 
area is carried out within the strata that have approxi­
mately equal measures of size. Two sample PSUs are 
selected from each stratum without replacement and with 
probability proportional to size (total number of persons). 
The SSUs are selected without replacement and with equal 
probabilities from the selected PSUs independently. All 
members of each sample household are enumerated. 

2.2 Estimator of Total 

With reference to the generic geographical region, we 
introduce the following subscripts: h, for stratum (h — I, 
. . . , / / ) ; / , for primary sampUng unit; y, for secondary 
sampling units; g, for age-sex groups (g = 1, . . . , G). 

' P.D. Falorsi, Senior Researcher, National Statistical Institute, Rome, Italy; S. Falorsi, Researcher, National Statistical Institute, Rome, Italy; 
Aldo Russo, Associate Professor, University of Molise, Campobasso, Italy. 
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In the present study we consider the following age classes 
14-19, 20-29, 30-59, 60-64, and over 65. 

A quantity referring to stratum h, primary sampling 
unit /, and secondary sampling unity will be briefly referred 
to as the quantity in hij; and a quantity referring to stratum 
h and primary sampling unit / will be referred to as the 
quantity in hi. 

The foUowing notations are also used: N,,, for number 
of PSUs in h; P,,, for total number of persons in h; n,,, for 
number of sample PSUs selected in h; M,,i for number of 
SSUs in hi; Pi,i, for total number of persons in hi; mf,i, 
for number of sample SSUs selected in hi; Pgitij, for 
number of persons in group g belonging to hij; P/,ij, for 
number of persons in hij. 

Further let 

G H Nh M,,i 

^ - L D E E ^̂ "'v 
g=\ / , = ! (=1 y = i 

be the total of the characteristic j ' for regional population, 
where Ygf,ij denotes total of the characteristic of interest 
y for the Pgi,ij persons. Actually, the estimate of Y is 
obtained by a post-stratified estimator. This estimator is 
given by: 

c 

^ = E 

where 

2i 
Po 

H ni, mi,i H ni, nm 

^S = Y E Y ^'•'J^Shij'^g^Y E Y ^'•'J^ShiJ 
i,= i i=\ y = i i, = i (=1 y = i 

represent unbiased estimates of 

H /V/, Mf,i H N,, M,,i 

^g^Y E E ^shij', ^g = Y Y Y ^sMj-
/, = ! ,= 1 y = l /, = ! ,= 1 y = l 

In the above formulas, the symbol K/,jj, that denotes the 
basic weight, is expressed by: 

^hij — 
Pi, M„i 

ni^Pixi m,,i 

3. SMALL AREA ESTIMATORS 

With reference to the generic geographical region, we 
suppose that the population P is divided into D non-
overlapping small areas 1, ..., d, ..., D for which esti­
mates are required. Each area is obtained by an aggrega­
tion of municipalities. The problem considered is the 
estimation the total of a j'-variable for all units belonging 

to the small area d. In practice, the small area d will have 
a non-null intersection with only a certain number of 
design strata which we denote as H = {h\ ^P/, > 0) , 
where ^P;, represents the part of P/, belonging to the small 
area d. 

Denoting by /̂V/, the number of PSUs belonging to 
small area d in stratum h, we seek to estimate the small 
area total 

G H dNi, Mhi 

rf^ = E E E E ^Shij-
g = l li = l = 1 j=l 

The development of a particular estimation method for 
small areas basically depends on available information. In 
Italy the accessible information at small area level is very 
poor. At present the accessible territorial information is 
total population by sex for each municipality collected 
through register statistics. In a future context (at end of 
1994), the population counts by age-sex group will be 
available for each municipality. For this reason, in the 
present study we consider only those small area estimators 
that utilize, as auxiliary information, the population total 
by age-sex group. 

3.1 Post-stratified Ratio Estimator 

A post-stratified ratio estimator (POS) of ^l^is given by: 

(1) 

where 

H n/, miji 

d^s ̂  Y E Y ^'''j^g'''j^'''' 
ll=l i=l j=l 

fi nf, mf,i 

dPg = Y Y E ^hijPgljij^lii, 

dPg = Y dPgh ̂  Y i-d Y ^g'"J' 
lt=l li=l i=\ 7=1 

in which ^Pg,, denotes the total population for the age/sex 
group g in small area d intersected by stratum h, 8i,i is a 
binary variate that equals 1 if the PSU hi belongs to the 
small area d and equals 0 otherwise. For a better explana­
tion of formula (1), we observe that PSU is a subset of 
small area and then does not intersect it. 

The post-stratified ratio estimator is unbiased except 
for the effect of ratio estimation bias which is usually 
negligible. The estimator is defined to be zero when there 
is no sample within the domain. This estimator is not 
reliable for small sample sizes. 
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3.2 Synthetic Estimator 

For computing a synthetic estimator, it is assumed that 
the small area population means for given population sub­
groups are approximately equal to the larger area popula­
tions means of the same sub-groups. This estimator is 
obtained by means of a two steps procedure: (i) with 
respect to an aggregated territorial level, estimates of the 
investigated features are determined for population sub­
groups; (ii) estimates for the aggregated territorial level 
area are then scaled in proportion to the sub-group inci­
dence within the small domain of interest. 

The synthetic estimator has a low variance since it is 
based on a larger sample, but it suffers from bias depending 
on the distance from the assumption of homogeneity, for 
each subgroup, between the small area and the larger area 
with reference to the characteristic of interest, y. The 
problems associated with synthetic estimators have been 
documented by Purcell and Linacre (1976), Gonzalez and 
Hoza (1978), Ghangurde and Singh (1978), Schaible (1979) 
and Levy (1979) among others. 

In this study we consider the following form of synthetic 
estimator (SYN): 

rf^SYN - Y 'S' d^g' 
„=1 ^g 

(2) 

where 

H ni, mi,i ^ H ni, mi,i 

^g~Y Y Y ^'''j^s'''j''^g~Y Y Y ^'^'j^s'^'j' 
l,= \ i=\ y=i /,= ! , = 1 y=i 

Furthermore, when neglecting the covariance term in 
(4), under the assumption that this term will be small 
relative to MSE((/ysYN) and MSE(rfypos), the optimal 
weight a can be approximated by 

V * 
*opt 

MSE(rffsYN) 

MSE(rfysYN) + MSE(rfrpos) 
(5) 

This is the approach to define weights followed by Schaible 
(1978). 

In our work the optimal values of a have been obtained 
from Census data using formula (5). When considering a 
real sample survey only an estimated value of optimum a 
may be used, thus resulting in a decrease in efficiency. 

3.4 Sample Size Dependent Estimator 

The sample size dependent estimator is a particular case 
of the composite estimator. The linear combination of 
synthetic and of the less biased estimator is made for each 
sub-group and depends on the outcome of the given 
sample. We consider the following form of sample size 
dependent estimator (SD) which take into account the 
realized sample size in the small area. It is defined as 
(Drew, Singh and Choudhry 1982): 

.î sD - Y [^^{^/^) + '̂ - «.) f ^^.]. (6) 

where 

3.3 Composite Estimator 

The composite estimator (COM) considered here is 
obtained as a linear combination of the estimators SYN 
(biased with low sample variance) and POS (less biased 
with high sample variance): 

rf^COM = ttrf^POS + (1 - Ol)aY^ SYN> (3) 

where a is a constant (0 < a < 1). This esdmator mini­
mizes the chances of extreme situations (both in terms of 
bias and sample variance). Therefore, in a given concrete 
situation such estimator may turn out to be more advan­
tageous than its two components considered separately. 

The optimum value for a that minimizes the MSE of 
the COM estimator is given by 

*opl 

MSE(^ySYN) - • £ ' ( r f ^ S Y N - r f ^ ) ( r f l p O S - ^ ) 

MSE(rfysYN) +MSE(„rpos) -2E(,Yi SYN ~d^)(rf^POS ~ ^d) 

(4) 

(^/(dRi F) l/^Rg < F, 

otherwise 
(7) 

with ^Rg = dPg/dPg-

The constant Pis chosen to control the contribution of the 
synthetic component. The reUance on the synthetic portion 
decreases as the value of Pincreases. The choice of the value 
forPwould depend upon several factors. In our study the 
efficiency of sample dependent esdmator has been inves­
tigated for P = 1. This value proved to be efficient while 
affording protection against the bias of synthetic estimator. 

The logic behind the SD estimator is that when the 
sample size within domain d and group g is small, then the 
direct estimate for domain d and group g would be unstable 
and a synthetic estimate may be superior. However, if the 
sample in domain d and group g is larger than expected 
this is not a problem, since the performance of the post­
stratified direct part would improve as the sample size 
improves. In conclusion, we observe that SD estimator 
may be considered as a particular form of sample size 
dependent regression estimator given in Sarndal and 
Hidiroglou (1989), that has good conditional properties. 
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4. DESCRIPTION OF THE EMPIRICAL STUDY 

4.1 Simulation of the LFS Sample Design 

In our study, we have considered the 14 HSAs of the 
Friuli region as small areas. The variable of interest, y, is 
the number of unemployed. 

Evaluation of the performance of the various estimators, 
discussed in Secdon 3, was done by referring to a sample 
design (two stages with stratification of the PSUs) identical 
to that adopted for the LFS in Friuli. This design is based 
on the sdection of 39 PSUs and 2,290 SSUs from a popula­
don of 219 PSUs and 465,000 SSUs. 

We have selected independently 400 Monte Carlo 
sample replicates each of identical size (in terms of PSUs 
and of SSUs) of the LPS' sample. All the informadon 
utilized in the simulation is taken from the 1981 General 
Population Census, so ^y is known. 

4.2 Evaluation of Small Area Estimators 

We denote by ^7(mr) the estimate of the total ^K for 
the small area d from the rth Monte Carlo replicate when 
using the estimator m. The percent relative bias of esti­
mator m for the small area d is given by 

(/ARB„, K5'T-0-
where R is the number of samples (R = 400). 

The average of the percent absolute relative bias of esti­
mator m over the whole set of small areas is: 

ARB,,, = ^- Y \d^R^n, \, 
d=l 

where D is the number of small areas under observation 
(D = 14). 

The percent root mean square error of estimator m for 
small area d is 

JrfMSE„ 
rfRMSE,,, = ^ 100, 

where the mean square error of estimator m for the small 
area d is expressed by 

1 R 

rfMSE,„ = - Y ^dY(mr) - ,Y)\ 
r=l 

The average percent root mean square error of esti­
mator m over all areas is 

1 D 

4.3 Analysis of Results 

A. Overall Performance Measures 

The average percent absolute biases and the average 
percent root mean square errors of the small area esti­
mators for the LFS characteristic "number of unemployed 
persons'' are presented in Table 1. Looking at this table, 
the following conclusions emerge: 

(i) As expected, POS presents the smallest bias. The bias 
of SYN is larger than the bias of the other estimators. 
The bias of COM is roughly 30% lower than the bias 
of SYN estimator. The bias of SD estimator is only 
slightly lower than that of POS estimator. 

(ii) SYN and COM have the smallest average percent root 
mean square errors, but these estimators are affected 
by a very high bias. POS, wUh low bias, is, conversely, 
the less efficient estimator. The average percent root 
mean square error of SD is approximately 30% higher 
than those of SYN and COM estimators. 

Table 1 

Average Percent Absolute Relative Bias ARB 
and Average Percent Root Mean Square Error RMSE 

for Unemployed by Estimator 

Estimator 

POS 
SYN 
COM 

SD 

ARB RMSE 

1.75 42.08 
8.97 23.80 
6.00 23.57 
2.39 31.08 

RMSE,,, = - D dRMSE,,,. 
rf=i 

B. Performance Measures by Small Area 

Tables 2 and 3 present the Percent Relative Bias (^ARB) 
and the Percent Root Mean Square Error (,^RMSE) of the 
estimators for each of fourteen Health Service Areas in 
Friuli. Furthermore, Table 2 gives the percent ratio between 
the population of the HSA and the population of the set 
H of strata including the HSA (pi); Table 3 shows the 
percent ratio between the population of the HSA and the 
population of the region Friuli (̂ 2̂) and the percent ratio 
between the populadon of the set H of strata including the 
HSA and the population of the region Friuli (p^). Looking 
at these Tables, the following conclusions emerge: 

(i) SYN and COM are badly biased in some small areas, 
namely, in those small areas where the model under­
lying SYN fits poorly. Generally the small areas with 
low values of the ratio pi are affected by large bias 
(e.g., HSAs 1, 2, 3, 4 and 6). Conversely, large values 
of the ratio pi are associated with low values of the 
bias (e.^., HSAs 5, 9, 10 and 13). However, SYN and 
COM consistently have an attractively low RMSE 
compared to other alternatives. In three of the fourteen 
areas {viz, areas 3, 4 and 8) COM is consistently the 
most efficient esdmator. In two areas (10 and 12) 
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SYN is evidently more efficient and in the remaining 
areas the two estimators are roughly similar from the 
point of view of efficiency. Furthermore, we observe 
that the lowest values of RMSE for SYN generally are 
associated with the highest values of the ratio p-^ 
(e.g., HSAs 1, 2, 5, 6, 9 and 13). HSAs 3 and 4, while 
having an high value of the ratio p^, present a high 
value of RMSE. This is due to the large bias. 

(ii) POS shows negligible bias values in almost all small 
areas. The RMSE values of POS are much higher 
than those of the other estimators in all the small 
areas. We observe that the RMSE of the POS esd­
mator is negatively correlated with the ratio P2- This 
is caused by the fact that the expected sample size 
increases as the ratio/?2 increases. Consequently, the 
variance (which is the main component of MSE of 
POS) decreases. 

(iii) The estimator SD presents a negligible bias in seven 
(5, 7, 9 10, 11, 12 and 13)of the fourteen smaU areas. 
In the other areas the bias is quite low. Furthemore, 
in nine areas (2, 3, 4, 5, 9, 10, 11, 12 and 13) SD has 
a bias similar to that of POS. The estimator SD is 
better, from the MSE point of view, in comparison 
with POS. In four areas (7, 8, 9, and 13) RMSE is 
similar to those of SYN and COM. 

(iv) Finally, we notice that in the largest areas with the 
highest values of the ratio/72 (^-S-, HSAs 9 and 5) aU 
the estimators considered give similar results in terms 
of bias and MSE. For the remaining areas, where the 
estimators have different performances, there is a 
problem in the choice of the best estimator. 

Table 2 
Percent Relative Bias (̂ /ARB) of Each of Fourteen Health 

Service Areas (HSA) in Friuli for Unemployed by Estimator 

Table 3 
Percent Root Mean Square Error (^RMSE) of Each of 

Fourteen Health Service Areas (HSA) in Friuli 
for Unemployed by Estimator 

HSA 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Pi 

19.1 
16.1 
15.3 
16.3 
47.1 
24.6 
81.8 
70.7 
92.2 
71.2 
21.7 
40.6 
56.3 
21.8 

POS 

-1.57 
-5.61 
-5.21 
-2 .50 
-0 .46 
-1 .37 

0.05 
0.81 
0.47 
0.36 

-1 .01 
-1 .52 
-0.95 
-2.51 

Estimator 

SYN 

-10.92 
-9 .21 
28.82 
20.92 

1.61 
-12.24 

-6.25 
11.80 
0.76 

-1 .34 
-5 .64 
-6 .66 
-3 .12 
-6 .21 

COM 

-7 .68 
-6 .97 
17.98 
15.02 
0.98 

-9 .06 
-3 .40 

6.63 
0.68 
0.51 

-5 .00 
-6 .05 
-1.11 
-3 .03 

SD 

-3.01 
-4 .79 

5.79 
2.99 

-0 .28 
-3 .28 
-1 .66 

2.17 
0.78 

-1 .02 
-1 .62 
-1 .19 
-1 .28 
-3 .53 

HSA 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

P2 

3.8 

3.1 

3.6 

3.8 

20.2 

8.5 

6.9 

4.8 

21.2 

1.8 

3.2 

4.3 

12.6 

2.3 

Pi 

19.9 

19.2 

23.2 

23.2 

42.9 

34.8 

8.4 

6.8 

22.9 

2.5 

14.6 

10.7 

22.4 

10.1 

POS 

52.23 

63.36 

57.44 

58.19 

18.81 

28.09 

23.83 

28.75 

17.29 

67.00 

49.82 

46.40 

20.13 

57.80 

Estimator 

SYN 

20.41 

19.45 

36.57 

30.09 

13.38 

17.49 

21.47 

28.54 

16.15 

50.12 

18.35 

22.10 

15.53 

23.58 

COM 

21.12 

20.81 

30.71 

27.02 

14.01 

17.00 

21.67 

26.35 

16.40 

53.31 

19.20 

24.04 

15.40 

22.94 

SD 

32.39 

38.30 

42.46 

36.88 

17.87 

22.69 

22.67 

27.40 

16.89 

59.27 

30.42 

33.18 

17.88 

36.81 

P2 — percent ratio between the population of the HSA and the 
population of the region Friuli. 

/73 = percentratiobetweenthepopulationof the set .^ of strata 
including the HSA and the populadon of the region FriuH. 

P\ = percent ratio between the population of the HSA and the 
population of the set H of strata including the HSA. 

5. CONCLUSIONS 

From the point of view of bias, the post-stradfied ratio 
estimator (POS) is essentially unbiased in almost all the 
small areas. Furthermore the sample size dependent esti­
mator (SD) has negligible values of the bias in almost all 
small areas. Synthetic (SYN) and composite (COM) esti­
mators present bias values much higher than those of the 
other estimators. 

From the point of view of efficiency, SYN and COM 
consistently have significantly lower RMSE compared to 
other alternatives. The estimator SD is much more efficient 
than POS and furthermore in four of the fourteen areas 
U shows RMSE values close to those of SYN and COM. 
Further, when considering the estimator COM there is the 
problem of the computation of optimum a. In practice 
only an estimated value of a may be used, resulting in a 
decrease in efficiency of this estimator. Thus considering 
both, bias and efficiency, the SD estimator would seem 
to be preferable to other estimators examined in the 
context of LFS in Friuli. The sampling rates in Friuli are 
relatively high and the magnitudes of relative biases and 
efficiencies of these estimators may be different in other 
regions where the sampling rates are low, e.g., Piemonte 
and Lombardia. 
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Nonparametric Estimation of Response Probabilities 
in Sampling Theory 
THEOPHILE NIYONSENGA 

ABSTRACT 

We deal with the nonresponse problem by drawing on the model of selection in phases that was proposed by Sarndal 
and Swenson (1987). To estimate response probabilities, we use the nonparametric approach first advanced by 
Giommi (1987). We define estimators according to the nonparametric estimation (NPE) model, and we study their 
general properties empirically. Inference is based on the concept of quasi-randomization (Oh and Scheuren 1983). 
The emphasis is on estimating the variance and constructing confidence intervals. We find, by way of a Monte Carlo 
study, that it is possible to improve the quality of the estimators considered by using a variant of the NPE approach. 
The latter also serves to confirm the performance of regression estimators in terms of variance estimadon. 

KEY WORDS: Weighting by phases; Regression estimator; Variance estimators. 

1. INTRODUCTION 

To counter the effect of nonresponse on the estimation 
of parameters of a finite population, we consider the 
phenomenon of nonresponse as a unit selection process 
in three phases. We therefore use weighting by phases. 
This adjustment procedure assigns to each unit observed 
a weight that is inversely proportional to the probability 
of appearing in the sample, to the unit response probabiUty 
given the sample, and to the item response probability 
given the sample and the set of respondents per unit. 

In practice, only the probabilities of inclusion in the 
sample are known. The problem facing us is to estimate 
individual response probabilities before incorporating 
tUem in formulas for the estimators of interest. The non­
parametric estimation approach is one of the response 
probability estimation procedures. It is motivated by the 
use of auxiliary variables which are linked with unit and 
item response mechanisms (Giommi 1985, 1987), and 
which may be correlated with the variables of interest. This 
avoids assuming that nonresponse is independent of the 
variables being studied (Oh and Scheuren 1983). This 
approach also enables us to avoid postulating one or more 
parametric models governing response, such as the Logit 
and Tobit models (Grosbras 1987b; Chicoineau, Payen 
and Thelot 1985) or models of uniform response within 
subpopulations (Oh and Scheuren 1983; Sarndal and 
Swenson 1985, 1987). 

In the Monte Carlo study illustrating certain estimators 
according to the nonparametric approach, we consider the 
quite specific case in which the two response mechanisms 
are governed by the same auxiliary variables. The differ­
ence between items will reside in the degree of correlation 
between each item and the auxiliary variables. 

2. NONRESPONSE: A THREE-PHASE 
SELECTION PROCESS 

Consider a finite population U = (1,2, ..., k, ..., N], 
of size TV. Let 5 be a sample of fixed size n drawn from U 
according to a plan (P(s) known and characterized by 
inclusion probabilities Hk > 0,^ k and iTki > O'i k T^^ t 
We want to observe the units /: € 5 in relation to a set of 
Qitemsy\, • • •,yg, • • •,yQ (Q ^ 1), then estimate the 
total per item ?, = T. u Pqk, ^or every q{q = l,...,Q). 
We assume that conditional on s, each unit k has a prob­
ability (fk > Oof participating in the survey and that the 
probability that two units k and (participate is (pkt > 0 
with (Pkk = fk- We denote the set of units that agree to 
participate in the survey by r and the mechanism by which 
the set r was obtained hy(P(r \ s). We further assume that 
conditional on 5 and r, each unit k € r responds to item 
yq with probability \pqk > 0 and that the probability that 
two units k and C 6 /• respond to item yq is \pqk( > 0 with 
^qkk = ^qk- Wc dcuote by rq the set of units that, having 
agreed to participate in the survey, respond to item j ' ^ and 
by <y(rq I s,r) the mechanism by which the set rq is 
obtained for aU ^ ( ^ = 1, ..., Q). 

The sets s, r and rq are obtained from three sdection 
phases for which only the probabilities of inclusion in 5 
are known. The composition of the unit selecdon mecha­
nisms gives rise to probability outputs that we denote 
by TTk Qqk where 0,,̂ . = ^k^gk and Qqkt = 'Pkt^qkt with 
^qkk — ^qk, which do uot corrcspoud to inclusion prob­
abilities. Nor does the quantity 9,,̂ . correspond to an 
inclusion probability for the two response phases condi­
tional on s. If we define the probabilities of inclusion in 
I'q by T^qk = ^(k € rq)and the probabilities of inclusion 
in A-,, given5by e|,(, = P(/c€ r,̂  | 5), then (i) ir*,(. ^-KkQqk 

' Theophile Niyonsenga, Ph.D., Researcher, Centre de Recherche Clinique, Centre Hospitaller Universitaire de Sherbrooke, Sherbrooke, QC, Canada, 
JIH 5N4. 
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and (ii) Tr,;.©!* "^ Tr̂ Ĝ,,̂ .̂ Furthermore, (iii) 9|,t = ^qkif 
probabilities ^qk are independent of r, and (iv) •w*k = 
TTkOqk if the <Pk do not depend on 5 and if the ipqk do not 
depend on either r or 5. 

3. A FEW SPECIAL ESTIMATORS 

Assume that there is an auxiliary variable Xq (for the 
^-th item) strongly correlated with the variable yq and 
such that Xqk is known V / : € 5 o r V A : 6 U. We take the 
specific case in which Xqk — Xk, ^ q(q = I, • •., Q), 
and we assume the foUowing linear model ^ 

^i(Pqk I Xk) = &qXk 

^Cov^(y k,Pqt\Xk,Xi) = r ' * 
CO Ot 

k = i, 

otherwise 

(3.1) 

in which ^q and Oq are unknown parameters. The foUow­
ing results are extensions of the findings of Sarndal and 
Swenson (1987). 

Result 1. If Xk is known, \l k e s, then the regression 
estimator, denoted by ?Reg and defined by: 

'Reg = (L -^IY -^)Y-' (3.2) 
\'^'-q TT^e^^ / '-^rq -Ki^Ogk/ ^ TTk 

is approximately unbiased for tq. Its approximate variance 
is a sum of three components K,, K2 and F3 representing 
the respective portions of the variance due to the selection 
phases, that is: 

^' " E D(y ^^kt ^Pqk/T^k) (Pql/T^l), 

^ ^ ^ ^ \ Y I Y , ^fkt (Eqk/-^k<Pk) (Eqf/TTtiPt) , 

K3 = E E r ^ ] D ^ ^^^k< (Eqk/l^kQqk) (Eqd^i ^qd I ^l , 

where the Eqk are theoretical residuals of model (3.1). An 
estimator of V(i^^^ is given by K(/Reg) = F̂ i + V2 
(where V^ = V2 ^ V^) with: 

K, = SI;, 
' n 

'^Arf 

<? T^ki Qqkl a(t)' (3.3) 

and 

>^=YYr^(^(^, (3.4) 

where Â^̂ tf = %f - T^k f̂. \k( = '^« ~ '̂t'Tf, A^^^^ = 
"Pqkt - ^Pqk^qtand Aê f̂ = e^« - G^^G^p, the e,^ being 
the observed residuals obtained from model (3.1). 

Result 2. If Xk is known, ^ k € U, then the regression 
estimator, denoted by /Regi and defined by: 

^Regl — NXi 
V^' -? T^kQqk I 'q T^k^qk/ 

is approximately unbiased for tq. Its approximate 
variance is also a sum of three components K,, V2 and F3. 
The expression of V\(i^^^{) differs from that of V\(i^^^ 
by the use of the theoretical residuals Eqk in place of the 
raw values Pqk, whereas the expressions of F2 and K3 are 
identical to those defined above for /Reg. An estimator of 
f^(/Regi)isgivenby K(?Regi) = ^̂ i + ^2 where: 

In 

•^kt 

T^kt ^qkl ( ^ ) ( ^ ) ' 
(3.6) 

and where F2* = 1^2+^3 is obtained by the formula (3.4). 

Comment 1. If x̂ t = 1, V A: € [/, the formula (3.5) defines 
an estimator, denoted by t^^p where: 

'Exp Â ^ Pgk 

T^k^qk £,. 
1 ^ N y Pqk 

q TTkOqk N rq TTkQqk 
(3.7) 

The estimator i^^^ is called an "expansion estimator". 
An estimator of approximately unbiased variance for 
K(fExp) is derived from formulas (3.4) and (3.6). 

Comment 2. IfwetakeG^^t = G,(0 < G^ < l),^kiU, 
in formula (3.7), we obtain an estimator, denoted by 
'Naive. Called a "naive estimator". Its expression is given 
by: 

'Naive = TV £„ 
yqk 

'q T^k 'qT^k 
(3.8) 

If the TTk ^re constant, the expression (3.8) becomes iden­
tical to formula (3.5) in which t is assumed that Ĝ ^̂  = 
G^(0 < G, < 1), V A: € t/, and x̂ t = 1, V A: € f/. 

Comment 3. For the four estimators defined above, the 
underlying models are derived from model (3.1) and are the 
following:;;,^ = ^qXk + eqk,^{eqk) = Oand V{eqk) = 
^9 -a^Xk for the first two, y^k = 0q + ^qk, ^{'^qk) = 0 and 
^(^qk) — <^q and A'̂  is known for the last two. For the 
naive estimator, it is necessary to add the uniform unit and 
item response model. 
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4. ESTIMATORS WITH ESTIMATED RESPONSE 
PROBABILITIES 

In practice, the response probabilities ^Pk and ^qk as well 
as the probability outputs Qqk = 'Pk^qk(l^ ^ ^, Q = 1' 
..., Q) are actually parameters to be estimated. We 
estimate them by ipk, ^qk and G,^ = !pk^qk respectively. 
We define estimators having the same form as the pro­
totype estimators fexp. 4eg and fRegi seen in section 3, 
taking care to replace the unknown parameters by their 
respective estimates. We denote these estimators by 
'"EXP«P. ''Reg«;7 and tl^^\„p respectively. The variance esti­
mators are obtained from the expressions (3.3), (3.4) and 
(3.6), in which the unknown parameters are replaced with 
their estimates. 

4.1 Estimation of Response Probabilities 

In theory, the probabilities tpk and ^qk are functions of 
the auxiliary variables, that is, functions of the form 
<Pk = / i (v,Zk) and iPqk = f2(l^q,Xqk) in which the quantities 
V and ij.q(q = 1, . . . , Q) are unknown parameters and 
where the pair of vectors (z,Xq), that is, [ (Z\,Xq\), ..., 
(Zk,Xqk), . . . , ZN,XqN)]', coutaln thc auxiUary infor­
mation available for each item yq. The nonparametric 
estimation approach uses only the information contained 
in {z,Xq) to estimate the (Pk and ij/qk. We are considering 
here the specific case in which the Zk = Xqk - Xk,^ q 
(q = I, ..., Q ) , a n d v A : € 5 . 

Let Xs = [Xk:k € s], all the auxiliary information 
relating to the sample. We specify TJ = {T^.;/: 6 5), aset 
of functions such that T<.:]R" — IR', for aU k in s. We 
denote by ^̂ r = 'rk(Xs), V A: € s, the value of the A:-th 
function evaluated in x^. We subdivide 5 in n groups Sk 
not necessarily disjoint, the respective sizes of which are 
given by: 

nk = Y^^Sk - gj), (k^s), 

mk = X ) ^ ( ^ * ~ ^J^' (^^'•)5 

J is 

(I if 
D{gk - gj) = ^ 

Co ot 

gk - 8j\ ^ hk, 

otherwise, 

for a given constant hk which may depend on all the values 
gk(kis). The set Sk= U-gj^ [gk ± hk]], V/ : € 5, 
contains y units, whose values gj vary little from one to 
another. This group is called the group whose unit k is the 
kernel, or simply the k-th group. In other words, Sk is a 
subset of 5 for which the values of x fall within the vicinity 
of X = Xk in the sense of the Euclidian distance that 
specifies d{k,j) = \ Tk(Xs) - TJ(XS) \ < hk ^ h(gk), 
meaning that Sk = [j:d(k,j) < hk]. l^et rk = SkC\r 
and rqk = 5^.0/-^. The respective absolute frequencies of 
these sets are mk and m^^ where: 

Jir 

'"qk == Y ^ ( ^ - ^ ~ ^J^' ( ^ ^ ' •9 '^ = 1' • • • ' Q)-
jirq 

Comment 4. In the general case in which nonresponse is 
governed by the pair of vectors {z,Xq) with z 7^ Xq, the 
Tk functions would be defined in terms of z in order to 
estimate the umt response probabUUies ipk and in terms of 
Xq to estimate the item response probabilities -^qk. Note 
that this kernel approach can be generalized to more than 
one auxiUary variable governing response. For two variables 
X\ and X2 governing nonresponse, we would specify the set 
Sk = I (Ji,J2)-gji € [gki ± hk^] and gj^ € [̂ ^̂ 2 ± ^k^]]. 

Response probabilities (Pk and \l/qk are estimated respec­
tively by the rates: 

<Pk = '—,^ k i r ; ^qk = ' ^ , ' i k€ rq, (4.1) rnk 

nk' mk 

whereas the output G,*: - <Pk^qk is estimated by the rate: 

Qqk = ¥>ki>qk ^ mqk/nk, (^ i rq, q = 1, ...,Q), (4.2) 

which is nothing other than the response rate in the A--th 
group. This simplification of the estimated output Ĝ ^̂  -
!(>k^qk is, however, possible only when the two response 
mechanisms are governed by the same auxiliary variables. 

Two approaches are considered here: the one based on 
the values of the variable x (npx) and the one based on the 
ranks of the values of the variable x (npr). The NPE 
(npx), proposed by Giommi (1987), is obtained by taking 
gk = Tk{Xs) = Xk (k i s). To offset the possible effect 
of excessively large and excessively small values of x^, we 
introduce a variant that consists in using the ranks of x^, 
that is, NPE(npr). We consider the function u such that 
u(z) = 1 if z > OandM(z) = Oif z < 0. For any umt 
k in s, let Uk = 'Ls"(Xk - Xj) = the number of com­
ponents of Xj that are less than or equal to x^ = the rank 
of Xk in s. The NPE(npr) is then equivalent to letting 
gk = Tk{Xs) = Uk{k € 5). 

4.2 Selection of Interval Limits 

The main problem in the NPE approach is the optimum 
choice of the hk constants that determine the limits of the 
intervals [gk - hk; gk + hk],"^ k € s, that is, a choice 
of hk = hk(gs) that reduces the bias and mean square 
error of any estimator using the estimated outputs Qqk 
specified in formula (4.2). 

According to Giommi (1985, 1987), the terms nk, mk 
and mqk that are used to estimate the response probabilities 
are, apart from the standardization factors, estimators by 
the kernel method of the densUy function according to the 
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approach of Rosenblatt (1956) for the various series of 
values of ^. As an example, it is easy to demonstrate that: 

nk= Y ^'^Sk - gj) = 2nh(n)f„(gk), 
jiS 

where h(n) - h(gk, k d s) is a positive constant that 
converges toward zero at a quite appropriate rate. The 
theoretical optimum constant, according to the least 
mean square error criterion, is given hy h(n) — Kfn~^'^ 
where Kj, such as defined by Rosenblatt (1956) and 
Wegman (1972a and b), is obtained by the expression 
Kf= [9/(x)/2 | / " ( x ) | 2 ] ' / 5 . 

In practice, h(n) can be obtained only by simulation, 
since it depends on the density function to be estimated. 
Giommi (1985) used/z(rt) = 2Efn-^'^ where Efisthe 
interquartile range in the sample. Kraft, Lepage and 
van Eeden (1983) chose;;(«) = C(n)Ef where C(n) = 
(Kf/EIs)n~^'^. As our choice, we shall adopt h(n) = 
C(n)Sgs,v^hereC(n) = (A/-/S^^)«-'/^ and where Ŝ ^ is 
the corrected standard deviation of the values gk{k (. s). 
Basing ourselves on the study of Kraft, Lepage and 
van Eeden (1983), we will empirically determine a value 
C„ of C that is optimal according to the criterion of least 
bias and least mean square error of the estimator /"EXPAP 

and compare the two versions of the NPE approach. 

4.3 Expansion and Regression Estimators 

Calculation of the approximate bias and variance of the 
estimators ^xp. R̂eg and ?Regi is simplified by the fact that 
the probabilities (Pk and i/-̂ ^ are assumed to be known. For 
estimators /lxp«p. 'Regnp^and /leginp. these probabilities 
are estimated by <Pk and \l/qk. These probability estimators 
do not respond to any probability model that would enable 
us to calculate the bias and the variance conditional on 
this model. In other words, the sets rq are generated by 
unknown response mechanisms for which we estimate the 
response probabilities by an approach that does not allow 
for inference conditional on any model underlying the 
estimation of probabilities. 

We would be tempted to resort to Taylor's serial 
development of the function 1 /Qgk to justify the approx­
imation of I/Qqk by 1/G^ .̂ In this case, the bias and the 
variance of Êxpn/?. ̂ Regnp and /Reginp would be approached 
by the approximate bias and variance of 4xprtp. 'Regnp and 
iRtginp- However, for sample sizes that are not sufficiently 
large, we are in danger of having 1 /Qqk S 1 /Qqk for the 
majority of the k € rq, and consequently: 

ntkpnp) * y(tE,p), V(t\^„p) * K(fReg), and 

y(t*R,^lr,p) * l^('"Regl)-

However, to construct confidence intervals based on 
lExpnp, 'Regnp and /Regup, it is ncccssary to define esti­
mators for their respective variances. Not having explicit 

expressions for these variances, it is difficult to define 
variance estimators and study their properties analytically. 
The choice of a given esdmator is qmte difficult to justify. 
The most natural way of obtaining variance estimators for 
the variances of t^^p„p, R̂egnp and /Reginp is to do a simple 
substitution of Qqk{ = <Pk^qk), by 9,^( = ^k^k), yk€rq, 
and of Qqkt by Qqk(, '\/ k 7^ U rq (G<,« = ipki i'qkt), in 
all the formulas for variance estimators specified for the 
respective variance estimators of estimators t^^pnp, 4egnp 
and R̂eginp-

5. MONTE CARLO STUDY: COMPARISON 
OF ESTIMATORS 

For simulation purposes, we assume that Bernoulli 
trials govern each of the response mechanisms (total or 
partial) and that a simple random sampUng without re­
placement is the sample design used. We consider a vector 
(yi, y2, J3 ) ' of three items (Q = 3) and a variable x 
containing the auxiliary information. We first generate the 
Xk{k € U) hy a gamma distribution with parameters a, 
and ^2- The generation of items J i , ^2, y^ is based on the 
Unear model (3.1) and the gamma distribution. More 
specifically, we generate the ;',;(.(^ € L^and^ - 1, 2, 3) 
according to a gamma distribution with parameters aiq(x^) 
and a2q(Xk) defined by: 

aiq{Xk) = 
_ fe 

d2q(Xk) = J-, 
Pa 

Oq = 0^a2 
^Pxyq J 

q = 1 ,2,3. 

The choice of the gamma distribution is based on its gen­
eral form, which gives rise to a great variety of distribu­
tions, and on the fact that it can represent the distribution 
of various types of populations (Johnson and Kotz 1970, 
p. 172). We establish a priori the parameters a,, ^2, ^q 
andp;^^^ (q = 1,2,3), namely: 

a, = 2 , ^ 2 = 1 0 , ( ^ i f t f t ) ' = (0.75 0.65 0.60)' , 

{p:,ytPxy2Pxy3)' = (0.90 0.85 0.70) ' . 

To generate the unit and item response probabilities, 
we consider the following exponential forms: 

(Pk = exp{ - (X,Xi -I- X2I;A:)1 and 

iPqk = exp( - (Xi^x^ -f X2<,v)i' 

where the Vk and the Vqk result from a uniform distribution 
(0; 1). The constants Xj, X2, Xî  and X2̂  are such that: 
X, = 0 .15/%, Xi, = 0.l5/l3qXa and X2 = Xĵ  = 0.45 
(q - 1,2,3). Such a parameterization makes it possible to 
have an average response rate (total or partial) of approx­
imately 70%. We could have varied these constants or used 
other continuous functions. 
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Figure 5.1 Absolute bias and MSE: the estimator tExptxpx for 
n = 60 
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Figure 5.2 Absolute bias and MSE: the estimator /Expnpr for 
n = 200 

The results of this empirical study are illustrated by the 
diagrams of lB(f|xpnp) d MSE(/"Expnp) as a function of 
the constant C. From this brief study we observe, firstly, 
that the value C„ of the optimal constant C is in the inter­
val [0; 1 ] , depends on the size of the sample and decreases 
as the sample size increases (Figures 5.1 and 5.2). 

We also observe that the estimator fExpnpr 'S still better 
in terms of less bias and mean square error than the esti­
mator t^xpnpx in the interval [0;1] as illustrated as an 
example in Figure 5.3 for item 3, the item the least corre­
lated with the auxiliary variable. A very important fact to 
be noted is that for the estimator tExpnpr we more quickly 
reach the values of the bias and the mean square error of 
the estimator/Naive in [0;1] at C = 0.05 and outside this 
interval at C = 4. Unlike with the estimator Êxpnpr, the 
values of the bias and the mean square error of the esti­
mator t^xpripx first reach maximum values at C = 0.05 
before taking on the values of the bias and mean-square 
error of fNaive at C = 0. We also note that for a fairly 
large size n and for any value of C in the interval [0; 1 ] , 
the variation is hardly perceptible (Figure 5.3). For this 
reason, we suggest that a compromise value be used: 
C = 0.5 (that is, /! = 0.5Sg^). 

\ '.. MSE. npx 

. / 

MSE. npr 

0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0 4.0 

Constant c 

Figure 5.3 Absolute bias and MSE: the estimators /EXP/JPA: 

and tExpnpr for item 3 

5.1 Comparison of the Two Variants of the NPE Approach 

We consider a population of size TV = 100 and draw 
a sample 5 of size n = 60, which we subject to the response 
mechanisms. We repeat the sampling IK times and 
calculate the bias IB(tExpnp) and the mean-square error 
MSE(/'|xp„p), for different values of C(C > 0). Next we 
repeat this experiment with N - 1,000 and n = 200. 

5.2 Overall Comparison of Estimators 

The complete operation of the simulation consists in 
(i) first, drawing the sample 5 of size « = 200 of the popu­
lation of size A'̂  = 1,000, (ii) then applying the unit and 
item response mechanisms to obtain sets r̂ (<7 = 1,2,3), 
and (iii) lastly, calculating, for each estimator, the values 
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of f and V( t). We repeat this operation K times. Once the 
experiment is completed, we calculate, as performance 
measurements, (i) the bias IB(f) = IE(0 - tq, (ii) the 
mean square error M S E ( 0 = ]E(f - tq)^, (iii) the 
expectation of the variance estimator 1E( F ( 0 ) and (iv) 
the theoretical recovery rate Po(t) = ¥{\ t — tq \ < 
Zg,,2[^(0]'''']- We can also calculate, for each given 
estimator, (v) the relative error RE (f) [ = B (f) /?] , (vi) the 
variance V(t) [ = MSE(f) - (lB(f) )^], (vii) the relative 
bias RB(0 [ = I lB(f) I /{V(t'))'^'] as weU as (viii) the 
relative error of the variance estimator RE(K(f ) ) 
[ = IB ( K( 0 ) / K( f) ] in order to examine the sensitivity 
of the variance estimators to nonresponse. 

5.3 Interpretation of the Results of the Global Simulation 

I. The Prototype Estimators 

The simulation results confirm the theory. For these 
estimators, we make the foUowing observations, based on 
Tables 5.1 to 5.4: 

(i) ?Exp, 'Reg and iR^gi are approximately unbiased; 

(ii) MSE(fRegl) < MSE(fReg) < MSE (/Exp); 

(Ui) K(fRegi) < K(fReg) < K(fExp)and 
E [ V(/Regl)] < IE [ K( /Reg)] < IE [ F(/EXP)]. 

For these estimators, we also expected that: 

(i) IEK(/EXP) = K(/E,p),EK(fReg) = K(/Reg) and 
IEK(/Regi) - K(/Regl); 

(ii) Negligible relative bias [RB(f) < 0.10]; the recovery 
rates are close to the theoretical rates. The relative 
errors RE(f) and RE( V(t)) are negUgible, and are 
in part due to the simulation (errors due to the limited 
number of repetitions of the experiment). 

Table 5.1 
The Values of IB (/"), MSE (t) 

yi y2 y^ 

'Exp 

'Reg 

'Regl 

'Naive 

r* 
'Expnpjr 

-* 
' Expnpr 
-+ 

' Regnpr 

-* 
' Reg 1 npr 

-0.036 1.690 

-0.020 0.735 

-0.012 0.319 

-2.037 5.069 

-0.690 1.345 

-0.601 1.175 

-0.293 0.785 

-0.285 0.376 

-0.052 1.525 

-0.019 0.744 

-0.012 0.431 

-1.937 4.535 

-0.777 1.407 

-0.709 1.249 

-0.414 0.830 

-0.407 0.520 

-0.056 2.299 

-0.030 1.446 

-0.021 1.202 

-2.220 5.911 

-1.228 2.604 

-1.140 2.345 

-0.895 1.834 

-0.886 1.621 

Table 5.2 
TheValuesof F(/"),IE[F(/")] and lQO*]E[Vi{f)]/E[V(t)] 

y\ y2 yi 

Exp 1.689 1.683 29.8 

Reg 0.734 0.697 72.2 

Regl 

Naive 

0.319 0.293 34.0 

0.918 0.911 43.3 

1.525 1.485 29.1 

0.744 0.702 61.5 

0.431 0.402 32.7 

0.784 0.766 43.5 

2.296 2.235 26.9 

1.445 1.391 42.6 

1.201 1.130 29.3 

0.983 0.958 44.2 

Expnpx 0.869 1.403 32.0 0.804 1.173 32.3 1.097 1.322 35.4 

Expnpr O.&H 1.291 35.1 0.746 1.089 35.2 1.046 1.285 37.1 

Regnpr 0-™0 0.627 73.9 0.658 0.588 66.6 1.033 0.955 50.5 

Reglnpr ".294 0.259 36.7 0.355 0.315 37.6 0.836 0.751 37.1 

'Exp 

'Reg 

'Regl 

'Naive 

-* 
'Expnpx -* 
'Expnpr 

-* 
'Regnpr 
'Regl npr 

Table 5.3 

The Values of RE(t) and RE(V(t)) 

yi 

-0.0024 

-0.0014 

-0.0008 

-0.1377 

-0.0466 

-0.0406 

-0.0198 

-0.0193 

-0.0015 

-0.0510 

-0.0812 

-0.0083 

0.6141 

0.5860 

-0.1038 

-0.1191 

J'2 

-0.0040 -

-0.0015 -

-0.0009 -

-0.1474 -

-0.0591 

-0.0540 

-0.0315 -

-0.0310 -

-0.0242 

-0.0556 

-0.0684 

-0.0230 

0.4582 

0.4591 

-0.1077 

-0.1124 

y^ 

- 0.0045 -

-0.0024 

-0.0017 • 

-0.1787 -

-0.0988 

-0.0917 

-0.0720 -

-0.0713 -

-0.0267 

-0.0373 

-0.0596 

-0.0260 

0.2046 

0.2282 

-0.0752 

-0.1015 

Table 5.4 
The Levels Po(f) at 90%, 95% and the RB(f) 

yi y2 73 

Exp 

Reg 

Regl 

0.873 0.922 0.027 

0.881 0.929 0.024 

0.866 0.926 0.021 

Naive 0-322 0.427 2.126 

~Expnpx 0.851 0.906 0.740 

\xpnpr 0.872 0.925 0.666 

Regnpr 0-839 0.908 0.350 

Reglnpr 0.804 0.871 0.526 

0.870 0.914 0.042 

0.876 0.929 0.022 

0.873 0.923 0.018 

0.298 0.405 2.187 

0.800 0.874 0.866 

0.830 0.893 0.820 

0.806 0.878 0.510 

0.767 0.844 0.683 

0.852 0.904 0.037 

0.870 0.917 0.025 

0.860 0.914 0.019 

0.287 0.389 2.239 

0.667 0.758 1.172 

0.700 0.789 1.114 

0.712 0.789 0.880 

0.678 0.763 0.969 

II. The Naive Estimator 

The naive estimator registers absolute values of B (i) 
and RE(f) that are very high in relation to the other 
estimators (Tables 5.1 and 5.3). The same is true for the 
values of MSE (/•) (Table 5.1). The values of the observed 
recovery rates Po{i) as well as those of the relative bias 
RB(f) are hardly surprising, considering the size of the 
point estimate bias (Table 5.4). 

file:///xpnpr
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The behaviour, in terms of variance and variance esti­
mator (Table 5.2) of /"Naive, is due to the fact that U consti­
tutes a particular case of /EXP> assuming uniform response 
mechanisms. In a sense, this amounts to assuming that the 
data are missing randomly. 

III. The Adjusted Estimators 

The reduction of the bias and the mean square error 
resulting from the use of the adjusted estimators (Table 5.1) 
is quite significant, in comparison wkh the naive estimator, 
especially for the regression estimators (the estimators 
t'hsnp and /"Reginp). In terms of variance (Table 5.2), we 
have the following inequalities: 

^(tReglnpr) < l^(tRegnpr) < l^(tExpnpr) < l^(tExpnpx), 

which are analytically difficuU to demonstrate. Little 
variation [in terms of V(f) and IE(K(/"))] is observed 
between items y^ and y2 in light of the little variation 
between the correlations (0.05). On the other hand, the 
effect of the correlation with the auxiliary variable on V( t) 
and of'E(V(t)) may be observed by comparing items;'] 
and j3 , then ^2 and yy. the variations between the corre­
lations are greater in these two cases (0.20 and 0.15 
respectively). 

In terms of variance estimators (Table 5.2), we observe 
that: 

V(t Reg 1npI ) < V(t*R,„„p) < V{t^^pnp), 

as such is the case for the estimators /Reg, /Regi and /EXP-
What is surprising, and is of course due to the effect of 
the auxiliary variables on the variance components relative 
to the response mechanisms, is the fact that the estimators 
tExpnp overestimate the variance with very large absolute 
values of RE{V(f)), while the regression estimators 
l^Regnp and ^Regup underestimate the variance with absolute 
values of RE ( V( t)) that are smaller in relation to those 
of tExpnp (Table 5.3). For the estimators /"EXP«P, not only 
is the total variance high in relation to that of the regres­
sion estimators, but also the relative contribution of the 
sampUng variance is low (Table 5.2). 

In terms of recovery rate (Table 5.4), the esdmators 
lExpnp yield observed rates that are closer to theoretical 
rates than the estimators /̂ Reg„p and f^sginp- However, 
the values of the relative bias RB (f) are higher for t\p„p 
than for /"Reg„p and /Regup, which makes the confidence 
intervals less reliable. 

IN CONCLUSION 

(i) If the goal of the estimation is to reduce bias and 
mean square error, all the estimators adjusted for non-
response perform well in relation to the uniform response 

mechanism (which basically amounts to doing nothing 
about nonresponse). The rate of reduction of the bias of 
each estimator in relation to the naive estimator is at least 
66%. The regression estimators /̂ Regnp and fR^ginp are the 
most promising of the various estimators considered 
(Table 5.1). 

(ii) If the goal is to construct confidence intervals, we 
need a pair of estimators [t,V(t)] that simuUaneously 
minimize the absolute biases | B(/") | and | B(K(/")) |. 
Tables 5.1 and 5.2 clearly show that the estimators fReg„p 

are the best. These estimators are less sensitive and t Reglnp 

to nonresponse if we consider the values of R E ( 0 and 
RE(V(t)) (Table 5.3). Nevertheless the criterion of reli­
ability of the confidence intervals (RB (/") < 0.10) is never 
met (Table 5.4). 

(iii) The behaviour of the estimators adjusted (i) for 
item j ' l , which is the item the most highly correlated with 
the auxiliary variable, compared to item y^, then (ii) for 
item 72 compared to item y^ (y^ being the item that is 
least correlated with the auxiliary variable), shows that 
with very strong explanatory variables (for yq and for 
Qqk), better results can be achieved not only in terms of 
less bias | B(f) | and | B( K(f)) | but also in terms of 
less mean square error (a gain in precision in relation to 
the naive estimator) and a better recovery rate for the 
confidence intervals (Tables 5.1 to 5.4). 

(iv) The behaviour of the estimators fRegnp and t^^gnp, 
in terms of bias, variance and variance estimation, is 
consistent with the studies conducted by Sarndal and Hui 
(1981), Sarndal and Swenson (1985, 1987), Bethlehem 
(1988) and Kott (1987) on the usefulness of regression 
estimators in nonresponse situations and the importance 
of having good predictor variables for the items of interest 
and the response mechanisms. 
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Competitors to Genuine Trps Sample Designs: 
A Comparison 

OLIVER SCHABENBERGER and TIMOTHY G. GREGOIRE' 

ABSTRACT 

Without-replacement list sampling with probability proportional to some measure of element size has not enjoyed 
much application in forestry because of the difficulty of implementing such sample strategies, that have been termed 
Ttps designs to distinguish without-replacement sampling from the weU-known with-replacement pps designs. In 
this contribution, an exact Trps strategy (Sunter's variant 2), an approximate Trps design (Sunter's variant 1) and 
the Rao-Hartley-Cochran random group method are examined and the variances of the respective estimators for 
total bole volume are computed for four tree populations. The results indicate that compared to the Rao-Hardey-
Cochran design Sunter's variant 1 in general leads to higher precision if the relationship between auxiliary infor­
mation Xk and target characteristic yk is loose but is sensitive to the ordering of the sampling frame, whereas the 
Rao-Hartley-Cochran design does not require the sampling frame to be ordered at aU and appears to be superior 
if strong linear relationships between Xk and yk are present. 

KEY WORDS: Probability proportional to size sampling; Fixed sample size; Approximate Trps designs; Empirical 
comparison. 

1. INTRODUCTION 

Rao (1978) classifies methods for unequal probability 
sampling without replacement in two broad categories, 
(i) sampling schemes, where the inclusion probabilities 
•Kk are proportional to the characteristic of interest, yk, 
and the Horvitz-Thompson TT estimator t^ is utilized; 
(ii) schemes that entertain statistics other than the Horvitz-
Thompson estimator. Strategies in (i) are termed IPPS 
(inclusion probabiUty proportional to size) and members 
of (ii) non-IPPS designs. In recent literature, e.g., Sarndal 
et al. (1992), selection probabilities when sampUng with-
replacement are denoted p, whereas their counterparts 
when sampling without replacement are denoted TT. We 
therefore call sampUng designs in (i) genuine Trps strategies 
in this paper. Both, IPPS and non-IPPS designs have in 
common, that under exact proportionality, i.e. ,-Kk'^yk 
and n{s) = n [constant), U is implied that Var(/") = 0 
where tis the respective estimator used. For this reason, 
it seems appealing to draw a sample without replacement 
where TT̂ .̂ OC J;^ and to keep the sample size fixed at the 
same time. Our interest in these methods concerns their 
utility to sampling needs in forestry. 

Several exact Trps designs are available, Rao (1978) 
gives an in depth account and discussion. Their implemen­
tation however is often a non-trivial task and numerically 
cumbersome for sample sizes usually encountered in 
forestry practice. Many of these exact Trps strategies 
require enumeration of all possible samples or use algo­
rithms that become increasingly prohibitive as n increases. 

A simple design, which is feasible for n < 10 is described 
by Sampford (1967). 

In forestry, however, the number of samples to be 
drawn at any stage of a survey is oftentimes much larger, 
even after stratification. Consequently, one either approx­
imates the Trps selection process in a manner that allows 
the inclusion probabilities to be computed exactly, or 
approximates second-order inclusion probabilities iTki in 
a design that ensures an exact Trps selection. Rao, Hartley 
and Cochran (1962) described a non-IPPS design, also 
known as the random group method, that has gained con­
siderable attention (see also Rao 1966, 1978). It is not a 
Trps design, since it utilizes an estimator other than /^ to 
ensure zero variance when the TT̂  are proportional to yk, 
but is of remarkable simpUcity. An approximate Trps 
design of the first kind is Sunter's method (Sunter 1977a, 
1977b). These two designs are referred to in what follows 
as RHC and SUNl. Sunter (1986,1989) described an exact 
Trps strategy that can be applied if certain stipulated 
conditions about the ordering of the sampling frame are 
met and the possible samples can be enumerated to obtain 
TTki for some pairs of elements. To avoid enumeration we 
use an approximation to these TT̂ /. This scheme will be 
called variant 2 or SUN2 in what follows. 

Sarndal et al. (1992) describe the SUNl and RHC 
strategies as entailing some loss of efficiency compared to 
corresponding 7rps designs, but no assessment of their 
comparative efficiency is provided. To our knowledge, none 
is extant; yet in light of the practical advantages offered 
by these designs, a comparative assessment would be helpful. 

' Oliver Schabenberger and Timothy G. Gregoire, Department of Forestry, Section Forest Biometrics, College of Forestry and Wildlife Resources, 
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0324, U.S.A. 



186 Schabenberger and Gregoire: Competitors to Genuine Trps Sample Designs 

The purpose of this study is to compare the perfor­
mance of the three strategies empirically, using data from 
forestry field studies and sampling intensities up to 10% 
which involve reasonably large samples. 

The designs SUNl, SUN2, and RHC are appropriate 
if one has access to a list of population dements from 
which the sample can be drawn. A complete enumeration 
of the target characteristic yk is not anticipated, but the 
probabilities of inclusion may be made proportional to an 
auxiliary variable Xk. That is, having complete knowledge 
about Xk prior to sampling, where it is surmised that Xk is 
roughly proportional to yk, we try to achieve TT̂  OC X^ 
while n = constant. 

In forestry such auxiliary information oftentimes is an 
easily obtainable characteristic of tree size such as height 
h, diameter at breast height d, or a combination thereof, 
which can be used to sample efficiently for bole volume 
or biomass, y. For example, the geometry of tree stems 
suggests relationships between d, h, and the volume 
contained in the tree bole that can be exploited in sampling. 
In the present investigation, the target parameter is the 
total bole volume per unit area or in an entire forest stand. 
In practice, some form of multistage sampling would be 
used, but for sake of exposition the present comparison 
includes single stage sampling only. 

For the RHC and SUN designs, the auxiliary variables 
d, d^, d^h and the tree sequence number were used. The 
sequence number was chosen as an auxiliary variable since 
in tUe absence of ordering by size it is clearly unrelated to 
the target characteristic. It should indicate the sensitivity 
of competing strategies to uninformative auxiliary infor­
mation (cf. Rao 1966). 

All designs were investigated with samples of intensity 
1%, 2%, 5%, and 10%. The performance of the different 
sampling designs was gauged in terms of the variance of 
each estimator of / = Y,^= lyk- Ratio-of-means estimadon 
following simple random sampling was used as a bench­
mark, since it utilizes the same auxiliary information. The 
variances of the sample designs described in the foUowing 
section were compared to the mean square error of the 
ratio-of-means estimator (ROM), evaluated using the 
second order delta method approximation in Sukhatme 
et al. (1984). 

2. SAMPLE DESIGNS 

2.1 Sunter's Design, Variant 1 

Sunter initially proposed two different approximate xps 
designs: one relaxes the requirement of proportionality of 
inclusion probabilities TT̂  for a subset of the population, 
the other allows for some variation in sample size (Sunter 
1977a, 1977b; Schreuder et al. 1990). In order that preci­
sion not be unduly sacrificed, it is assumed in the latter 
case that the variance of n(s) is small, while in the first 

case that aUering some Xk is not too serious. In this study 
only the first method was used since the RHC design 
operates with fixed sample size, too, and it is the com­
parative feasibility of the Sunter and RHC designs that 
prompted this study. Sarndal et al. (1992) describe the 
allocation of the sample and the computation of the inclu­
sion probabilities in detail. For part of the population, 
T^k '^ Xk where Xk is the auxiUary information available 
for the A:-th subject (or record). Let k* denote an element 
in the ordered population. Then for all elements where 
k < k* selection is carried out proportional to Xk. The 
process ends if a total sample of size n is allocated or if 
k = k* = m in (min |k : nxk/tk > I], N - n -\- I] 
where 4 = Y^j^kXj. In the latter case, the remaining 
samples are selected according to the list-sequential scheme 
of Bebbington (1975) among those elements for which 
k > k*.As Sunter points out, this sampling scheme has the 
advantage that only one pass through the sampUng frame 
is necessary. Moreover, the first and second order inclusion 
probabilities can be computed during this pass through 
the file. Since the design ensures that x̂ ./ > 0 V k, I; 
•KkiTi — -Kki > O'i k, I and n is fixed, the non-negative 
Yates-Grundy estimator of variance can be readily com­
puted. The first order inclusion probabiUties are obtained 
as -Kk = nXk/T^if k < k* and x<. = nXk/T/^if k > k* 
where T^ = i;^=, Xk and x^. = tk*/(N - k* -\- I). 
Expressions for the second order inclusion probabilities 
are given in Sarndal et al. (1992). 

Consequently, the ordering of the population affects 
the performance of the SUNl design, since the inclusion 
probabilities and therefore the variance depend on k* 
(see (2) below). For large sample sizes the condition 
k* = min (min {A:: nXk/tk ^ 11, Â  - « -I- 1) may be 
resolved in favor of ^* = rriin[k: nXk/tk ^ 1), which in 
turn may lead to a premature switch from xps to SRS 
sampling owing to the ordering of the sampling frame. 
Note that Xk/tk < Xk-/tk- for k' > k need not be true 
since if X;t > Xk^.\ and tk > ?^+i U may weU be thatx^//^ 
is greater or smaller than Xk+i/tk-^-i. It thus can happen 
that nXk > tk and nxk' < tk', for some k, k' where 
k' > A:. In this case, that may occur rather frequently, it 
is unclear if the switch from xps to SRS should take place 
the first time nXk ^ tk or not. Sometimes it may happen 
that for the first two or three elements of the population 
nXk ^ tk but falls below tk for the main portion of the 
sampling frame. This is especially the case when n is large 
and a few very big Xk appear on top of the population Ust. 
To stick to Sunter's rule in such a case would in essence 
be equivalent to drawing a simple random sample. 

The X estimator for the population total can be com­
puted as 

N 
yk 

^TTSUNI — / , Ik, 

1^1 '"' 
(1) 



Survey Methodology, December 1994 187 

where Ik is the sample inclusion indicator function. The 
variance is obtained as 

N N 1 / \ 2 
Var(/;suNi) = - r D D Cov(4,/ , ) ( ^ - ^ ' ) , (2) 

which is the Yates-Grundy form with Cov(Ik, f) = 
T^ki — Âr'T/ (Sarndal et al. 1992). We use the notation 
VARsuNi for (2) subsequently. 

2.2 Sunter's Variant 2 

In Sunter (1986, 1989) an exact xps design is described 
for samples of size n > 2. To fix ideas let Zk = Xk/T/^ 
and order the population such that 

nzk < Zk,k :^ I, ...,N - (n -\- I) 

(n - k)z, < Zk,l > k > N - n, 

where Zk = Y.'i'=k z,. Let /n^ denote the number of samples 
out of n still to be drawn when arriving at the k-th popula­
tion element Uk. Given that the two conditions are met, 
the following algorithm selects an exact xps sample. For 
Uk,P(Uk I mk) = nZk/Zkuntilmk = Oor mk = N — k; 
in the latter case discard one of the remaining units with 
probability 1 - (mkZi/Zk) and retain the others. 

It is not always possible to order the population such 
that the above conditions are met. Sunter (1986) describes 
an algorithm that checks, whether the ordering is possible. 
The inclusion probabilities are 

(3) 
TTk = nzk 

T^ki = n{n - l)ZkZiykk < N - n - I, I > k, 

where 

k ^ 2, ...,N - (« + 1). 

The remaining second-order inclusion probabilities, 
namely x̂ ./ for I > k > N - n have to be obtained from 
enumeration of possible samples which is likely to be 
infeasible. Sunter argues that (3) gives a good approxima­
tion for those pairs of dements, and this approximation 
has been used here. With these'inclusion probabilities, 
/̂ suN2 is indicated by the right-hand-side (rhs) of (1). An 
approximation to Var(/^suN2) is given by (2), wherein (3) 
is used to obtain iTki for I > k > N - n. 

The differences between SUNl and SUN2 are note­
worthy. With SUNl the joint inclusion probabUities are 
computed exactly for all pairs, but the selection is not 

genuine xps because of the introduction of SRS in part. 
In Sunter's variant 2 the sdection is exactly xps, but 
Var(/^suN2) can only be approximated. We use VARSUN2 

to denote this approximation. 

2.3 RHC Design 

A description of the RHC design is straightforward; 
properties of the RHC estimator are well documented in 
Rao, Hartley and Cochran (1962), and Rao (1966, 1978). 
After fixing the sample size n, the universe of size N is 
randomly divided into n groups of size A', where N = Y,iNi 
(i = 1, . . . , n). Let Xik denote auxiliary informadon 
for element «^ in group i, k - 1, . . . , A ,̂, and put A, = 
LkL\ Xjk. From each group one element is selected with 
selection probability p,vt = A„(./A, . The esdmator for the 
total in group / is given as 

t - V" ^ / 
'iV — TJ 'ik, 

^ l P'" 

where fk is the sample inclusion indicator function for 
element Uk in group /. The population total is then 
estimated by 

'gr ~ Zj ''" 
1=1 

(4) 

with variance 

Var(/,,) = 
N{N 

( Y T^^yl/Xk - t'\. 
^ k=\ / 

(5) 

Note that (5) depends on the group sizes and is mini­
mized when all are equal. In our appUcation, we determined 
Â , such that some groups were of size Â ,- = [N/n]gif 
where gif denotes the greatest integer function and the 
remainder of size TV, = [N/n]gjf -f 1. The number of 
groups of each size is chosen so that the sum of the group 
sizes is N. If N/n is an integer, all groups are of course of 
equal size. We denote (5) by VARRHC in the sequel. 

The RHC design is not an exact xps design, since the 
subdivision of the population introduces a source of 
randomness unrelated to the size of the auxiliary variable 
and (4) is not a Horvitz-Thompson estimator. The inclu­
sion probability depends jointly on the size of A,;̂  and on 
the probability of an dement being assigned to group /. 
Ordering of the population has no effect on VARRHC-
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3. TREE POPULATIONS 

Table 1 shows the tree populations under consideration 
and Figure 1 displays the relationship between the various 
choices for Xk and the target characteristic for the yellow 
poplar population. We notice almost perfect proportion­
ality between d^h and volume, the relationship between 
d and volume is clearly curvilinear, and the relationship 

between d^ and volume is intermediate. No noticeable 
trend between sequence number and volume is apparent 
in the unordered sampUng frame. For the remaining three 
populations similar patterns hold. 

For the four populations and the various combinations 
of auxiUary variable and sampling intensity, there were no 
observations for which nXk 
measured with certainty. 

> T/v, thus no records were 
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Figure 1. Relation of bole volume to bole dimensions in yellow poplar: (a) diameter at breast height; (b) diameter squared; (c) squared 
diameter times height; (d) tree sequence number. 
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Table 1 
Tree Populations Examined in an Empirical Comparison of SUNl, SUN2, and RHC 
The Last Four Columns Contain Pearson Correlation Coefficients Between Xk and yk 

Species 

Ponderosa pine Pinus ponderosa 
Yellow poplar Liriodendron tulipifera 
Loblolly pine Pinus taeda 
Red pine Pinus resinosa 

/V( i ) 

140 
336 
437 

91 

,(y,3)(2) 

9,366.6 
18,255.5 
1,835.8 
4,075.7 

d 

0.99 
0.96 
0.96 
0.96 

d^ 

0.99 
0.96 
0.96 
0.96 

P(y;x) 

dh 

0.99 
0.99 
0.99 
0.97 

No 

0.31 
-0 .07 
-0 .32 
-0 .05 

(1) NK the number of trees in the population. 
(2) t is total volume. 

4. RESULTS 

4.1 Comparison of Variances 

The variance of the esdmators of / corresponding to the 
SUNl, SUN2, and RHC design, expressed as a proportion 
of the MSE under the ROM strategy are compared in 
Table 2 for the yellow poplar population for each of the 
sampling intensities investigated and Table 3 depicts 
pertinent results for tUe remaining populations. For the 
SUNl strategy, the populations were ordered by decreasing 
size of A, as recommended by Sunter (1977a, 1977b). We 
focus initially on the results for the yellow poplar popula­
tion in Table 2. 

Table 2 
Relative Performances of SUNl, SUN2 and RHC Design 

for the Yellow Poplar Population where 
Ratio-of-means Estimation (ROM) Serves as a Benchmark 

n/NVo 

1 
1 
1 
1 

2 
2 
2 
2 

5 
5 
5 
5 

10 
10 
10 
10 

X 

No 
d 
d' 

d^h 

No 
d 
d' 

d^h 

No 
d 
d' 

d^h 

No 
d 
d' 

d^h 

n 

4 
4 
4 
4 

7 
7 
7 
7 

17 
17 
17 
17 

34 
34 
34 
34 

VARsuN2 

MSEROM 

4.8120 
0.6735 
0.4605 
0.3361 

5.1327 
0.7090 
0.5731 
0.4263 

5.4938 
0.7305 
0.6541 
0.4603 

5.8326 
0.7385 
0.6712 
0.4298 

VARsuNi 

MSEROM 

3.3136 
0.6684 
0.4596 
0.3378 

2.6346 
0.6982 
0.5694 
0.4542 

1.6643 
0.7808 
0.6992 
1.2638 

1.0985 
0.7083 
0.9687 
3.0140 

V A R R H C 

MSEROM 

4.7767 
0.6731 
0.4613 
0.3402 

5.0568 
0.7081 
0.5751 
0.4369 

5.2793 
0.7283 
0.6608 
0.4935 

5.3594 
0.7339 
0.6864 
0.5037 

A:*' 

332 
333 
330 

325 
318 
316 

309 
291 
285 

247 
260 
250 

k* is the observation in the ordered sampling frame at which the SUNl 
design switches from irps to SRS sampling. 

For a given sampling intensity the precision of all 
designs relative to ROM increases in the order X = No, 
d,d^,d^h; i.e., with increasing proportionality between 
auxiliary variable and tree bole volume. Given that the 
approximation of the variance of SUN2 performs well, 
VARSUN2 can be regarded as measuring the closeness of 
the RHC and SUNl designs to matching the efficiency of 
a genuine xps selection. At low sampling intensities and 
with meaningful auxiliary information the two designs do 
not deviate much from SUN2. The performance of both 
RHC and SUNl appears to deteriorate at higher sampling 
intensities relative to SUN2 depending on the choice of 
size measure. For A = d^h, in which case p^y.^) = 0.99 
(see Table 1), RHC is still .85 (.4298/.5037) as efficient as 
SUN2 but SUNl is only .14 (.4298/3.014) as efficient, 
whenn/A^% = 10. The performance of RHC and SUNl 
relative to SUN2 improves for other choices of X which 
are less well correlated with Y. Indeed, when X = No, 
SUNl is much more efficient than SUN2. 

A puzzling aspect of these results is the indication that 
SUN2 is less efficient than either RHC or SUNl for some 
choices of auxiliary variable and sampling intensity. We 
speculate that it may be an artifact of the approximation 
of some second-order inclusion probabilities incorporated 
into VARsuN2. It also may depend on the particular 
ordering used in SUNl or the group sizes used in RHC 
sampUng, respectively. It is feasible to calculate the exact 
Var(4suN2) for n — 2. We did so for the ponderosa 
pine and the red pine populations. The results indicate 
that VARSUN2 approximates the precision of the SUN2 
design very well, but is slightly conservative. The ratios 
Var (/^suN2)/VARsuN2 took on values between 0.975 and 
0.999. For larger sample sizes there is no feasible way to 
determine how well the approximation VARJUN: performs. 

We focus now on the comparison of RHC to SUNl, 
again with reference to Table 2. At low sampling inten­
sities, VARsuNi and VARRHC ^re essendally equivalent 
when X = d^h. But using this auxiliary variable at higher 
intensities led to a substantially better performance of tgr 
in some cases. The most noteworthy case is n/N'^a = 10 
where tgr is nearly 6 times more precise than /^SUNI-
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We surmise from these results that the better Xk « yk 
holds, the better is the precision of tgr relative to /^SUN 
owing chiefly to the effect of k* on VARSUN • Small values 
of k* indicate an early switch to a SRS selection and 
coincide with small values of VARSUN2/VARSUNI • Large 
values of k* on the other hand correspond to variance 
ratios close to 1. For yellow poplar, n/N% = 10 and 
X = d^h the SUNl design selects only three-fourths of 
the population according to a xps design; we conjecture 
that the early transition to SRS serves also as an explana­
tion for its poor performance compared to the RHC 
design. When A = tree sequence number, SUNl is much 
more precise than RHC, and its relative precision increases 
as n increases. 

The sharp improvement in efficiency when using an 
auxiliary variable other than tree sequence number provides 
an indication of the effectiveness of the strategies discussed 
here when X is positively correlated to Y, and to the 
liability of sampling with probability proportional to an 
auxiliary variable when it is unrelated to Y. 

The pattern evident in the results for yellow poplar are 
generally seen, also, in the results for the other species. 
Some of them are summarized in Table 3. For ponderosa 
pine SUNl relative to RHC is always less precise when 
X = d^h regardless of the sampling intensity and SUN2 
performs always best when this variable is used. For all 
species the combination/2/N% = 10, A = c?̂ /j leads to 
low precision of SUNl compared to the other designs and 
with the exception of the loblolly pine population, SUNl 
performs poorer than ratio-of-means estimation. For all 
populations, the order of magnitude better precision of 
ROM over the genuine xps, non-IPPS or approximate xps 
design when X — tree sequence number is remarkable. 

From Figure 1 it can be seen that the ordering of volume 
by tree numbers is haphazard, i.e., the sequence number 
carries no information about bole volume. And, there is 
a price to pay if one uses this uninformative auxiliary 
information to determine inclusion probabilities. The 
inefficiency of unequal probability sampling in presence 
of uninformative auxiliary information is an important 
limitation for the simultaneous estimation of multiple 
population attributes, where some may be closely related 
to the auxiliary design variable but others might be uncor-
related with it. Rao (1966) discusses this point in detail and 
he proposes alternative estimators based on the unbiased 
estimators in equal probabiUty sampling and the estimator 
tgr(aii) = NY^jyil,, where I, ^ £^/7,*r in the RHC design. 
Applying this estimator in the case of unequal probabiUty 
sampUng leads to bias, but to better mean-square error 
performance. For the RHC design with X = tree sequence 
number, the aUernative estimator proposed by Rao (1966) 
improved the ratio MSERHC(a/r)/MSEROM remarkably. For 
the yellow poplar population for example, these ratios were 
between 1.34 (n = 4)and2.58 (n = 34),corresponding 

to a mean square error of the alternative estimator of only 
28%to48% (n = 34) of the RHC estimator (5). Similar 
patterns hold for the other tree species. 

Since the alternative estimator is inconsistent, its bias 
does not depend on n, the larger ratios within the range 
for each species appear for larger sample sizes. It thus 
seems reasonable to limit the use of this estimator to 
smaller sample sizes. When n gets larger, another alter­
native is to use a ratio estimator, e.g., Hajek's estimator 
N{{Y,yj/Trj)/{ Y, 1 /T,) 1 under a genuine xps design. 

Table 3 
Pertinent Results About the Relative Performances of 

SUNl, SUN2 and RHC Design for the Remaining 
Populations where Ratio-of-means Estimation (ROM) 

Serves as a Benchmark 

n/N«Io X n 
VARSUN2 

MSEROM 

VARsuNi 

MSEROM 

V A R R H C 

MSEROM 
k* 

Ponderosa Pine 

1 
1 

2 
2 

5 
5 

10 
10 

No 
d^h 

No 
d^h 

No 
d^h 

No 
d^h 

2 
2 

3 
3 

7 
7 

14 
14 

1.9608 
0.1050 

2.2976 
0.1768 

2.8717 
0.3113 

3.2528 
0.2928 

1.9794 
0.1096 

1.9264 
0.1919 

2.0681 
0.3890 

2.2745 
1.3724 

1.9507 
0.1077 

2.2275 
0.1859 

2.7819 
0.3670 

3.0294 
0.4488 

137 

135 

129 

97 

Red Pine' 

2 
2 

5 
5 

10 
10 

No 
d'h 

No 
d^h 

No 
d^h 

2 
2 

5 
5 

9 
9 

2.0210 
0.9076 

2.9295 
0.8874 

3.5548 
0.8699 

1.9485 
0.9026 

2.3141 
1.3456 

2.0124 
1.3192 

2.0029 
0.9104 

2.8236 
0.8991 

3.2958 
0.8942 

90 

87 

81 

Loblolly Pine 

1 
1 

2 
2 

5 
5 

10 
10 

No 
d^h 

No 
d^h 

No 
dh 

No 
d^h 

5 
5 

9 
9 

22 
22 

44 
44 

4.8011 
0.4043 

5.5940 
0.5129 

6.5290 
0.5035 

7.7977 
0.3854 

3.7104 
0.4161 

3.7441 
0.5510 

3.3082 
0.6385 

2.6635 
0.7214 

4.7625 
0.4174 

5.5044 
0.5476 

6.5253 
0.6085 

6.5708 
0.6146 

431 

419 

406 

375 

' The sampling intensity 1% was omitted since it would have resulted 
m n = 1. 
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4.2 The Effect of Ordering on The Precision of Sunter's 
Variant 1 

Sunter and others have noted that the precision of the 
SUNl design depends on the ordering of the population. 
The recommendation to sort the sampling frame by de­
creasing size of Xyt's is rooted in the assumption that 
larger Xk are more likely to be proportional to yk than 
smaller ones. The goal is to apply the xps part of the SUN 1 
design not only to as big a portion of the population as 
possible but also to those elements for which Xk « yk 
holds best. Under this assumption it was thus advised to 
put the elements with large Xk values at the top of the 
frame. However, it is clear that this is only a rough rule 
of thumb, since the assumption of greater proportionaUty 
with increasing size may not hold. 

To investigate the effect of ordering the ponderosa pine 
and red pine populations were first sorted by increasing 
Xk and then grouped into 10 groups of approximately 
equal size. The Pearson correlation coefficient between 
Xk and yk was computed within each group and the popu­
lations were then sorted by 

(a) groups of decreasing correlation and increasing size of 
Xk within each group, 

(b) groups of decreasing correlation and decreasing size 
of Xk in each group 

and SUNl sampling was repeated for the combinations 
of x^'s and sampling intensity 10%. Table 4 shows the 
resuUs. 

Table 4 

VarjuNi/MSEROM for Ponderosa Pine and Red Pine 
and Different Ways of Ordering the Population 

Ponderosa Pine Ordered by Red Pine Ordered by 

decr.p decr.p decr.p decr.p 
X decr.x^ incr.x^ Aecr.Xk decr.jc^ mcr.Xk Aecx.Xk 

d 0.5614 0.6165 0.6043 1.0307 1.0236 0.6454 

cp- 0.3478 0.6562 0.5869 1.2077 0.9373 0.6948 

d^h 1.3724 60.861 0.4459 1.3192 0.8674 0.7461 

The results are rather surprising. For red pine the order 
by decreasing correlation improved all measures of preci­
sion. Sorting by increasing Xk within each group now made 
VARsuNi very close to VARRHC, and with x = d^h, 
VARsuNi < VARRHC- Sorting by decreasing Xk within 
each group achieved an even greater improvement. In con­
trast to these results, sorting the ponderosa pine popula­
tion by decreasing p and increasing Xk made things worse. 
The very high value of 60.861 is caused by a premature 

switch to SRS, since in this setting k* is only 28, corres­
ponding to only 20% of the population being sampled xps. 
Moreover, using order of decreasing p and decreasing Xk 
improved VARgu^i only for x = d^h. 

These resuUs indicate that there may exist an order that 
minimizes VARSUNI and may yield higher precision than 
a simple ordering by decreasing value of A. But this order 
will usually differ depending upon the auxiliary informa­
tion, and even an ordering that is reasonable on intuitive 
grounds may give unanticipated results. It is not known 
if any ordering is optimal in the sense of minimizing 
Var(4suNi) for the approximate xps design used in this 
study. According to our present knowledge no optimal 
strategy has been described. 

5. DISCUSSION AND CONCLUSION 

Employing some meaningful auxiliary information leads 
to a considerable gain in precision in the unequal proba­
biUty designs compared to a ratio-of-means estimation. 

A choice between the two Sunter designs can be made 
on grounds of the relationship between size measure and 
target characteristic. When A oc 7 is strong, SUN2 offers 
advantage over SUNl, and SUNl appears preferable when 
the relationship is weak. Based on our resuUs, the approx­
imate xps strategy, SUNl and the non-IPPS design RHC 
appear to come fairly close to the efficiency offered by 
genuine xps selection. With increasing sampling intensity, 
however, the highest precision is obtained with the SUN2 
design. But the quaUty of the approximation VARSUN2 in 
this case is unclear. 

If one's aim is to use an approximate xps or a non-IPPS 
strategy then the RHC design with estimator tgr appears 
to offer advantages over the Sunter design with /^SUN, at 
least for the tree populations studied here with the objec­
tive of estimating total bole volume. At reasonably low 
sampling intensities, both estimators appear to be equally 
precise. 

An advantage of the RHC design is its simpUcity. An 
operational advantage is that it can be applied to every 
population because it is impervious to its ordering and 
provides an unbiased estimation within each group. While 
the first criterion is also met by Sunter's variant 1, the 
ordering there dearly affects the precision of the estimator 
4suNi- Variant 2 can only be used if some ordering of the 
population meets the conditions given in Section 2.2. 
Otherwise the selection algorithm does not produce a 
sample of exactly size n. 

The precision of the RHC method, however, depends 
on the group sizes employed. The algorithm given in 
Section 2.3 is optimal. 

While a particular ordering may improve the precision 
of /^suNi, it is unclear at present how to discern an optimal 
ordering and a fixed sample size. Moreover an optimal 
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ordering of one choice of auxiliary variable or attribute 
of interest may be deleterious when implemented with a 
different auxiliary variable or attribute. 

All strategies can be disastrous with uninformative 
auxiliary information. 

Finally and to the extent that computational burden is 
a meaningful criterion, RHC is arguably less burdensome 
than variant 1 of Sunter's design. 
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