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In This Issue 

This issue of the Survey Methodology journal contains a special memorial section in honour of 
Stanley L. Warner, which includes an introduction by C.-E. Sarndal, a bibliography of Warner's 
principal publications and papers, organized by topic, and three papers dealing with areas in which 
Warner was a pioneer. The first paper, by Fienberg and Jazairi, summarizes Warner's work in the 
area of statistically balanced information technology, in which the goal is to develop statistical 
procedures to ensure that different positions regarding a poUcy or an issue are fairly and adequately 
represented in a debate or decision. The other two papers, by Bellhouse, and by Mangat, et al., are 
in the area of randomized response. The paper by Bellhouse begins with an overview of Warner's 
contributions to randomized response and then discusses the problem of estimation of a correlation 
coefficient using data from a randomized response survey. Three randomized response setups are 
considered: unrelated question, additive constant, and muUipUcative constant. The paper by Mangat 
et al. compares the efficiencies of with and without replacement sampUng in the context of randomized 
response. The papers by Fienberg and Jazairi and by Bellhouse are based on presentations given 
at a special session in memory of Warner at the meetings of the Statistical Society of Canada in 
Banff in 1994. 

The next two papers, by Lavall^e and by Kalton and Brick, discuss weighting schemes for cross-
sectional estimation in panel surveys. 

Lavall^e presents the Weight Share Method, used in cross-sectional estimation for longitudinal 
surveys, in a more general context. He demonstrates the unbiasedness of the method and obtains 
a general expression for the variance of the estimator of a total. Then the author Ulustrates the method 
by applying it in the context of the Survey of Labour and Income Dynamics of Statistics Canada. 
The estimation of variance is also discussed. 

Kalton and Brick describe weighting schemes for cross-sectional analysis of later waves of a 
household panel survey using data for all households for whom data are collected. These weighting 
schemes can accommodate new entrants to the population who move in to live with members 
of the original population, but not other new entrants. The authors discusses cases where the 
schemes are optimal as well as further weighting adjustments to compensate for nonresponse and 
noncoverage. 

Small area techniques for estimation of net undercoverage of persons in population censuses 
are discussed by Dick in the Canadian context and by Kim, Zaslavsky and Blodgett in the U.S. 
context. 

The paper by Dick describes modelling that was done in order to produce estimates of census 
net undercoverage of persons within age-sex-province categories for the 1991 Canadian Census 
using data from the Reverse Record Check and the Overcoverage Study. An Empirical Bayes model 
for direct estimates of adjustment factors is formulated and used to obtain smoothed estimates of 
those adjustment factors. The smoothed estimates of net missed persons are then raked to match 
the direct estimates of national age-sex group and provincial totals, which are considered to be of 
good quality. 

Kim, Zaslavsky and Blodgett describe the two analyses performed to test the "synthetic assumption" 
of homogeneity of undercount rates between parts of different states falling in the same poststratum 
for the 1990 U.S. Census. In the first analysis, the distributions of five "surrogate variables" that, 
like undercount, were related to the census-taking process, were investigated using a large extract 
from the census. In the second analysis, the distribution of undercount was analyzed using the Post 
Enumeration Survey data. 

Breidt presents Markov chain designs for one-per-stratum sampling which includes systematic 
sampling, stratified simple random sampling and balanced systematic sampling as special cases. 
He introduces new designs that are shown to be competitive, in terms of the efficiency of the 
Horvitz-Thompson estimator of a total, with standard one-per-stratum designs under a variety of 
superpopulation models. Theoretical and numerical comparisons are provided. 



In This Issue 

Meeden considers the problem of estimation of the median when an auxiliary variable is available. 
He uses a non-informative Bayesian approach based on a Polya posterior for the ratios of the 
variable of interest to the covariate. The resulting estimator is empirically compared to a number 
of alternatives in terms of bias and average absolute error for a variety of real and synthetic 
populations. The Polya posterior is also to be used to generate interval estimates which are evaluated 
empirically. Robustness of the procedure to moderate departures from the assumptions is also 
considered. 

HulUger develops design-based M-estimators for samples with unequal inclusion probabilities. 
He expresses the Horvitz-Thompson (HT) estimator as a least square functional and then makes 
it robust against outliers through M-estimators, analogous to the robustification of least square 
estimators in linear models for infinite populations. He also provides an approximation to the 
sampUng variance of this robustified HT-estimator and Us estimate. The resuUs of the Monte-Carlo 
study confirm that the robustified HT-estimators outperform the HT-estimator in many outlier 
situations. 

lachan and Kemp describe the sampUng designs for two visitor sample surveys of recreational 
users of parks, a survey of National Park Service area users over a one year period, and a survey 
of users of three river basin in the Pittsburgh area. The potential problems associated wUh sampling 
in both time and space are described, and the ways in which the designs of these two surveys meet 
these challenges are compared and contrasted. 

The Editor 
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Stanley L. Warner 

1928-1992 

Born and educated in the United States, Stanley Warner 
received a Ph.D. in Economics from Northwestern 
University in 1961. In 1971, he moved to Canada, where 
he was to pursue the rest of his academic career as professor 
at York University in the Department of Economics and 
the Faculty of Administrative Studies. He died suddenly 
in August 1992 at the age of 63. 

Stan was a highly original thinker. His statistical 
research was guided by relevance and common sense. In 
his memory, a session was organized at the Statistical 
Society of Canada meetings at Banff in 1994. Two of the 
papers which follow were presented at that occasion, 
namely, David Bellhouse: "Estimation of Correlation in 
Randomized Response" and Stephen E. Fienberg and Nuri 
Jazairi: "Stanley Warner's Contributions to Statistically 
Balanced Information Technology." They deal with two 
areas where Stan made pathbreaking contributions. 

Stan Warner is known to many, especially to survey 
statisticians, as the man who invented randomized response. 
This technique is used in surveys with sensitive questions 
as in a survey concerning drug usage among high school 
students. The objective is to eliminate two embarrassing 
nonsampling errors: measurement error and nonresponse. 
Bias caused by such errors is a problem that has haunted 
statisticians since the beginnings of survey taking. Standard 
methods exist to "adjust for" such bias. They may reduce 
but do not eliminate the bias. Stan, disregarding the 
conventional wisdom, tackled the problem in a completely 
unorthodox way and came up with an unbiased solution 
useful at least for some surveys. His seminal article, 
"Randomized Response: A Survey Technique for Elimi­
nating Evasive Answer Bias", appeared in the Journal of 
the American Statistical Association in 1965. 

Randomized response, if carried out according to the 
intentions, guarantees the anonymity of the respondent: 
a "yes" answer will not identify the respondent since his 
or her question is selected at random. Unbiased estimation 
of the "yes" proportion in the population is nevertheless 
possible (usually at the price of some increase in variance) 
because the survey taker knows the number of "yes" 
responses as well as the probability with which the random 
choice device selects the sensitive question (rather than its 
opposite or a completely unrelated question). 

The idea struck the imagination of many statisticians. 
Numerous modifications, refinements and extensions were 
given, as evidenced through the 1988 bibliography of 
contributions to randomized response put together by 
Chaudhuri and Mukerjee. Why this stream of papers? 

That nonresponse bias was always an important practical 
problem without a satisfactory solution is not the whole 
explanation. There is also the fact that it seemed like 
magic, even to experienced statisticians, that valid answers 
could be obtained without knowing what question had 
been asked of the respondent. Of course now that the idea 
exists, it is not hard to explain; in fact it has become a 
favorite classroom example, useful even in an elementary 
statistics course, to show students the powers of statistical 
reasoning. 

Implementing randomized response in practice requires 
some special arrangements, including a choice device that 
randomly selects a question. As time went by, Stan realized 
that the technique had to be adapted to modern low cost 
data gathering. As late as 1989 at the International Statis­
tical Institute meetings in Paris, he presented a "quick 
randomized response" version suitable for telephone siu^eys 
and touch tone entry, thereby reducing time and cost. 

The paper by David Bellhouse traces the development 
of randomized response in more detail. 

Later, Stan's interest focused on statistical procedures 
for balanced information, which occupied him from about 
1975 and on. In the last few years of his life he was working 
on a book on the topic; the manuscript is now being 
prepared for publication. 

The goal of balanced information technology is to give 
statistical procedures to ensure that different positions 
regarding a policy or an issue can be fairly and adequately 
represented. Stan's first paper on this topic, entitled 
"Advocate Scoring for Unbiased Information", appeared 
in the Journal of the American Statistical Association in 
1975. It deals with the situation in which advocates are 
each to give pro and con information regarding an issue 
to a number of individuals who, after exposure to the 
information, are to express opinions for or against the 
issue. Each advocate is charged with using the given data 
to prepare separate pro and con cases. 

Decisions are frequently made on information provided 
by advocates; this occurs in government, education, law, 
etc. One can imagine that Stan was concerned with the 
incomplete and sometimes arbitrary way in which quanti­
tative information is used in decision making of the utmost 
importance, including poUtical summits, where prestige, 
mistrust and political consideration would often prevent 
the parties from meeting on even ground. 

The paper by Stephen E. Fienberg and Nuri Jazairi 
presents the main ideas of this work, which is probably less 
familiar to statisticians. 



Stanley L. Warner 

Another example of Stan's creative spirit is the fact that 
he developed, with his wife, a musician, a system for music 
notation which is in wide use. 

I did not know Stan Warner at the time of his original 
work on randomized response but keep vivid memories of 
conversations with him later in his career. These occasions 
were not that numerous; however, each left a strong 
impression on me. The warmth, modesty and unassuming 

manner of this highly original man could not fail to make 
an impression. Stan was a real scholar, not a run-of-the-
mill researcher: he did not hesitate to follow the sometimes 
lonely route laid out to him by belief in ideas that were 
truly his own. 

C.-E. Sarndal 
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Stanley Warner's Contributions to Statistically Balanced 
Information Technology 

STEPHEN E, FIENBERG and NURI JAZAIRI 

ABSTRACT 

Stanley Warner was widely known for the creation of the randomized response technique for asking sensitive questions 
in surveys. Over almost two decades he also formulated and developed statistical methodology for another problem, 
that of deriving balanced information in advocacy settings so that both positions regarding a policy issue can be 
fairly and adequately represented. We review this work, including two survey applications implemented by Warner 
in which he applied the methodology, and we set the ideas into the context of current methodological thinking. 

KEY WORDS: Advocate scoring; Bayes' Theorem; Embedded experiment; Logistic regression; Survey analysis. 

1. INTRODUCTION 

Consider some recent controversial pubUc or professional 
issues such as: 

1. Should Canada endorse the North American Free 
Trade Agreement? 

2. Should Quebec secede from the Canadian Federation? 

3. Should the American Statistical Association adopt a 
program to certify statisticians? 

4. Should smoking be banned in all restaurants in Ottawa? 

The discussions and debates surrounding such issues 
often reflect highly polarized positions and "p ro" and 
"con" arguments can strongly influence the opinions of 
individuals in the relevant populations of interest {e.g., 
Canadian residents, ASA members, those who frequent 
restaurants in Ottawa). How to think about the presentation 
of such advocacy information in a balanced fashion is the 
topic of this paper. 

It has often been said that only a small fraction of scien­
tists make a truly novel research contribution once in their 
lifetime. Far fewer are responsible for multiple innovations. 
Stanley Warner is well-known for his creation and 
development of the randomized response model for surveys 
and that contribution has been widely hailed as a major 
development in statistics. What is less well known is his 
truly novel approach to the problem of balanced informa­
tion in advocacy settings, on which he worked over a 
period of almost 20 years. As York University colleagues 
of Warner's at the time of his death in 1992, we know how 
seriously he took the obligation of statistics and statisticians 
to deal with such complex problems, and this work is one 
example of how he attempted to fulfill the obligation. 

Our goal in this paper is to reintroduce Warner's ideas 
on the topic of balanced information in advocacy settings 

to the profession and to demonstrate how they fit into 
current survey practice and methodological thinking. In 
Section 2, we present his basic approach to the advocacy 
problem and we describe the statistical model he chose to 
focus upon (Warner 1975). In Sections 3 and 4, we discuss 
embelUshments of the basic approach which he presented 
in subsequent papers (e.g., see Warner 1981, 1984, 1985, 
1987a), and we end by describing how Warner continued 
to pursue this research program up until the time of his 
death. In the process, we also stress the importance Warner 
attached to the application of his ideas. 

2. THE BASIC PROBLEM 

In a thoughtful, well-argued, yet provocative 1975 
paper in the Journal of the American Statistical Association, 
Stanley Warner first presented the issue of measuring the 
impact of advocacy and balance on public opinion in 
connection with controversial issues. He did so by asking 
(and then answering) a pair of interrelated questions: 

1. How can we estimate what the population would 
conclude on issue were each of the members 
provided with balanced information on the topic? 

Warner's idea for answering this question was to use 
advocates to present summaries of arguments, both "pro" 
and "con," and to implement this in a factorial experi­
mental design to different samples, and in the process 
achieve information about a balanced presentation. This 
then leads rather naturally to the second question: 

2. How can we rate or score advocates in such settings? 

He developed his formulation to answer the two questions 
simultaneously and, in doing so, he used both economical 
and statistical arguments. In this paper, we focus on the 
statistical portion of his arguments and refer the interested 
reader to Warner's paper for the economic details. 

' Stephen E. Fienberg, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.; Nuri Jazairi, Department of Economics, 
York University, North York, Ontario, Canada, M3J 1P3. 



Fienberg and Jazairi: Stanley Warner's ContribuUons to StatisUcally Balanced InformaUon Technology 

Consider a pair of advocates or advocate teams whose 
role it is to brief individuals on the arguments associated 
with a controversial issue, H. Let P{H) and P{H) denote 
the proportion of the number of subjects in a given 
population "for" and "against" issue H. Let F, and Aj 
denote "pro" and "con" presentations of advocates /and 

j , respectively for /, j = 1,2. Let P{H \ F,, Aj) and 
P{H I Fi,Aj) denote the number of subjects " for" and 
"against" issue//after hearing "pro" case from advocate 
/and "con" case from advocatey. 

Warner defined the "net information" associated with 
Fi and Aj as 

I{Fi,Aj) = ln[P{H I Fi,Aj)/P{H \ Fi,Aj)] 

- ln[P{H)/P{H)]. (1) 

Formula (1) is, of course, the logarithm of the Bayes 
factor, or what Good (1950) called the weight of evidence. 
While Warner recognized the evocative nature of the use 
of Bayes' Theorem here, his approach towards its use was 
purely frequentist. 

Similarly, Warner defined the net information associated 
with " p r o " and "con" cases of F, and Aj, separately: 

I{Fi) - ln[P{H\Fi)/P{H\Fi)] - ln[P{H)/P{H)], 

(2) 

ln[P{H)/P{H)]. 

(3) 

I{Aj) ^ln[P{H\Aj)/P{H\Aj)] 

The simplest assumption we can make relating the joint 
and marginal information quantities is that of independence 
of the "p ro" and "con" cases, 

I{Fi,Aj) = I{Fi) - I{Aj), (4) 

for i — 1,2, and 7 = 1,2. This assumption allows for 
some direct comparisons and, as we shall see, can be 
checked empirically. 

In order to ensure that the advocates fairly treat both 
"p ro" and "con" positions, Warner proposed to reward 
them on the basis of the sum of the net information they 
provided, i.e. 

I{Fi) + I(Aj). (5) 

Economic theory, Warner argued, suggests that rewarding 
advocates in this fashion will lead them to at least strive 
to approximate the "unbiased information" associated 
with maximization under resource constraints. Thus we 
need to estimate the quantity in expression (5) along with 
the posterior odds implied by unbiased information: 

"Balance" in design for data collection was the key to 
Warner's plan for estimation. 

Warner's "estimation plan was linked to his application. 
The controversial issue was the completion of the north-
south Spadina Expressway in Toronto (Warner's home 
city). The original first section of the expressway was con­
structed in 1966 and, after much debate, the remainder of 
the project was canceled in 1971. Two years later, in 1973, 
Warner conducted a survey to learn what proportions of 
the population of registered voters of Metropolitan Toronto 
were for or against the original expressway plan. He took 
a random sample of 1,360 registered voters (1% of the 
corresponding population) divided into 8 equal subsamples 
of size 170. Two advocate teams prepared written positions, 
both " p r o " and "con" the expressway, and one of each 
was included in the mailing. The order of presentation of 
the two written positions was also varied producing a 
2 x 2 x 2 experimental design with the first variable 
corresponding to who prepared the "pro" brief, the second 
to who prepared the "con" brief, and the third to the order 
of presentation ("pro" first or "con" first). Advocates 
were paid a basic fee and a larger amount was set aside to 
be paid to the team with the "best combined score.'' This 
is an excellent example of a factorial experiment embedded 
within a survey, and fits well with the spirit of embedding 
described in Fienberg and Tanur (1988). 

Table 1 

Sample Preferences for Spadina Expressway After 
Information by Advocates 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

(' 

1 

1 

1 

1 

2 

2 

2 

2 

j 

1 

1 

2 

2 

1 

1 

2 

2 

A: 

1 

2 

1 

2 

1 

2 

1 

2 

For 

22 

18 

26 

21 

28 

14 

19 

19 

Against 

4 

9 

8 

11 

10 

11 

16 

17 

Undecided 

1 

2 

0 

1 

1 

1 

1 

2 

Total 

27 

29 

34 

33 

39 

26 

36 

38 

Pijk 

.846 

.666 

.764 

.656 

.736 

.560 

.542 

.527 

"ijk 

26 

27 

34 

32 

38 

25 

35 

36 

P{H\F',A') \P{H\F',A'). (6) 

Source: Warner (1975). 

In the cover letter, Warner asked respondents to return 
prepaid postcards indicating theU preferences after reviewing 
the briefs. At the cut off date, 262 cards had been returned 
for a response rate of about 20%. The resulting data, in 
Table 1, are reproduced from Warner (1975). 

Let Pijk be the true proportion of the population "for" 
the expressway, in group (/, j,k). Then, with an additive 
term for order of presentation, the model of expression 
(1) becomes 

ln[Pijk/{l -Pijk)] = ln[P{H)/P{H)] 

-H I{Fi) - KAj) -\- Dk. (7) 
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We now recognize expression (7) as a linear logit model, 
and the sampling scheme as product-binomial (ignoring 
the correction for the 0.2% sampling fraction). Of course 
when Warner did this work it preceded the existence of a 
monograph by Bishop, Fienberg, and Holland (1975), and 
was virtually concurrent with Nelder and Wedderburn's 
(1972) paper on generaUzed linear models. Thus his paper 
made no reference to the now extensive literature on logit 
and loglinear models. 

To estimate the parameters in expression (7), Warner 
used weighted least squares, which yields both estimated 
coefficients and standard errors. Instead of dealing directly 
with the parameters in expression (7), he redefined them, 
in part to simplify computation and in part to aid in their 
interpretation: 

^1 
, P{H) KFi) - I(Ai) I{F2) - I{A2) 
In —I 1 P{H) 

D, -\- D-> 

&2 = I{F^) - I(F2), 

^3 = I{A,) - I{A2), 

^4 = £>] - £>2-

(8) 

(9) 

(10) 

(11) 

The coefficient /3i is an "intercept" or normalizing para­
meter, while (32,183, and 02 +183 measure the performance of 
the advocate teams, and ^4 measures the order effect. The 
net information provided by team 1 is/3i -I- .5(/32 — 183), 
and that provided by team 2 is jSi - .5(/32 - ft). The 
difference in net influence is thus 02 ~ ^i-

Table 2 

Weighted Least Squares Estimates of Theoretical 
Parameters 

Parameter Estimate 
Approx. 

Std. Error 

/3i 

^2 

03 
04 
02 + 03 
01 + .502 -
01 - .5/32 + 

02 - 03 

.503 

.503 

.712 

.648 
- .383 

.528 

.264 
1.228 
.196 

1.032 

.139 

.277 

.275 

.274 

.386 

.266 

.215 

.395 

Source: Warner (1975). 

We reproduce Warner's estimation results in Table 2. 
We have double-checked the estimated values in Table 2 
using the generalized model routines in S-H, which utilize 
a version of iteratively weighted least squares (maximum 

likeUhood in this case). Our logit model computations agree 
with Warner's to two decimal places. The residual deviance 
for this model equals 1.95 with 4 d.f., indicative of a 
remarkably good fit and offering strong support for the 
reasonableness of the independence assumption of expression 
(4). 

In interpreting the results in Table 2, Warner noted that 
his economic analysis leads to the conclusion that the overall 
proportion of the population in favour of//when presented 
with unbiased information lies between the "pure" estimates 
for the 2 advocate teams, or in the present instances (.55, 
.77). These bounds correspond to the estimates in the 2nd 
and 3rd last lines of the table. As was clear from Table 1, 
no matter how we combine "p ro" and "con" arguments, 
the majority in each subgroup favored completion of the 
expressway. Warner observed that we might be tempted 
to use jS) to produce a "best estimate" of the value of/J 
corresponding to unbiased information, but he argued for 
a higher value, since Team 1 is superior to Team 2 in terms 
of total information,/.e., ft — ft > 0. (The superiority 
of Team 1 is quite evident from a quick examination of 
Table 1 and does not require the full analysis.) 

Warner ended his 1975 paper by pointing out all of the 
shortcomings of his small experiment, and his initial 
modelling efforts. What we can observe in retrospect is the 
way in which he was able to attack a very complicated public 
policy and survey problem using a simple but ingenuous 
model, as well as a rigorous estimation scheme built on the 
solid framework of a factorial experiment embedded in 
a sample survey, and then actually applying the method­
ology to produce an answer for a real problem. 

It is worth noting that the first version of this paper was 
submitted for publication to J ASA in June 1972, before 
Warner had actually carried out the empirical study on the 
Spadina Expressway controversy. Over two years passed 
before he resubmitted a revised version of the paper with 
the detailed example. Even well-known authors with inno­
vative ideas often struggle to have their work published 
in major statistical journals, and a compelling empirical 
application is always of help. 

3. EXTENSIONS AND A SECOND APPLICATION 

Warner extended his balanced information approach 
in a second paper (Warner 1981), focusing on yet another 
application. This paper also signals a substantial change 
in Warner's thinking about statistics and probability, towards 
a subjective Bayesian approach and away from the classical 
approaches that he stressed in his early career. While the 
reported analyses are still frequentist in nature, Warner 
used, at least informally, the assessments of prior pro­
babilities in a manner that fits rather naturally with the Baye­
sian formulation of expression (1) above. 
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In March 1972, the Canadian Federal Government 
announced a plan to build a second Toronto International 
Airport to the east of the city in Pickering, Ontario. This 
led to considerable controversy. In 1974, the government 
appointed a 3-person commission of inquiry. Warner 
carried out a concurrent but independent survey experiment. 
The question he posed was whether or not the Pickering 
Airport should be built before the year 2000. The general 
structure of the experiment was similar to the previous one 
on the Spadina Expressway controversy, but with some 
differences: 

(i) This time his study population was economists. 

(ii) He incorporated 2 "neutral" control sub-samples, 
which received neither "p ro" nor "con" statements. 

(iii) Respondents in the 8 experimental subsamples gave 
probability assessments (instead of 0-1 values) after 
assessing the advocacy positions. Those in the control 
groups also gave their probability assessment. 

The test population was limited to those economists 
who belonged to the Canadian Economic Association or 
who could be identified as professors or lecturers in an 
economics department in a Canadian university. The 
survey was done via mail in two stages - the first identified 
those willing to read detailed briefs and "report opinions 
regarding an undisclosed federal project," and the second 
mailing divided those willing to participate into 10 sub-
samples, corresponding to the 2 x 2 x 2 design of 
Section 2 plus the 2 control samples consistent of those 
who were asked for their opinions without briefs. A total 
of 726 economists participated in the experiment. In 
Table 3, we provide Warner's summary of the data for the 
8 experimental subsamples in which he aggregated the 
posterior judgments into three groups according to whether 
they were substantially greater, nearly equal, or substan­
tially less than 0.5. The data have been further aggregated 
across the 8 experiment groups. The results have been post-
stratified according to whether the economists were 
professors, graduate students, or others. The data on 
"prior beliefs" come from a combination of the two 
control groups. 

Table 3 

Test Population Opinions on Pickering Airport 

For 

Against 

Undecided 

Totals 

Professors 

Before 
Briefs 

9 
(.143) 

32 
(.508) 

22 
(.349) 

63 
(l.CXX)) 

After 
Briefs 

58 
(.266) 

155 
(.711) 

5 
(.023) 

218 
(1.000) 

Students 

Before 
Briefs 

9 
(.257) 

12 
(.343) 

14 
(.400) 

35 
(1.000) 

After 
Briefs 

32 
(.288) 

72 
(.648) 

7 
(.063) 

111 
(1.000) 

Others 

Before 
Briefs 

11 
(.180) 

36 
(.590) 

14 
(.230) 

61 
(1.000) 

After 
Briefs 

71 
(.298) 

160 
(.672) 

7 
(.029) 

238 
(1.000) 

Totals 

Before 
Briefs 

29 
(.182) 

80 
(.503) 

50 
(.315) 

159 
(1.000) 

After 
Briefs 

161 
(.284) 

387 
(.683) 

19 
(.033) 

567 
(1.000) 

Source: Warner (1981). 

Note that all three groups had substantial negative 
opinions about the proposed airport, a posteriori, and 
that the differences in proportions of undecided between 
the experimental and control subsamples provide evi­
dence that the advocacy briefs affected public opinion 
on the issue. Warner's formal statistical analysis of the 
data focused solely on the 8 experimental subsamples 
and utilized three variants of the formal model in expres­
sion (9) and the reparameterization of expressions (10) 
through (13): 

(i) A logit structure similar to that in Warner (1975) 
based on the aggregation in Table 3, with "undecideds" 
in effect imputed as belonging in either the " p r o " or 
"con" categories with probability 0.5. He called this 
a Simple Aggregate Influence model. 

(ii) A more direct approach, which averaged the posterior 
assessments to get "aggregate proportions" in favor, 
and then treated these observed proportions as if they 
were binomial. He called this a Weighted Aggregate 
Influence model. 

(iii) A two-stage model, which first used individual-level 
assessments breaking up the range of 0 to 1 into 17 
levels, and then a "variable coefficient" regression 
model analysis. He referred to this as an Average 
Disaggregate Influence model. 

Each analysis involved the use of a different form of 
weighted least squares to estimate the coefficients of 
interest. 

In Table 4, we provide Warner's estimated coefficients 
under all three models and analyses. The results are similar 
across models and we can summarize the findings as 
follows: 

(a) Team 2 clearly presented the strongest case (ft and ft 
are both positive and similar for all three columns). 

(b) The estimated aggregate influence for Team 2 is 
[ft -I- .5(ft - ft)] = -0.688 corresponding to an 
estimated proportion in favor of the airport project of 
p = 0.355. 

(c) The disaggregate influence for Team 2 corresponds to 
an estimated proportion in favor of the airport project 
ofp = 0.355. 

(d) The effect of order of presentation (ft) suggests that 
the brief appearing first in the enclosures had greater 
impact, and is consistent with the hypothesis that the 
"previous information favoring one position serves to 
discount new information against that position." 

It turns out that the advisor for Team 1 felt that construc­
tion of the airport could not be defended and this seriously 
handicapped the " p r o " efforts of Team 1 (something 
reflected in the estimates of ft). 
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Table 4 

Estimated Case Influence for Pickering Airport 
Experiment 

/, = mSi - m/N[p,/(l - Pi)\ + 6, (14) 

Parameters 

01 

02 

03 

04 

N 

Simple 
Aggregate 
Influence 

- .857 
(.093) 

.485 
(.188) 

.147 
(.188) 

.313 
(.186) 

8 

Weighted 
Aggregate 
Influence 

- .529 
(.047) 

.337 
(.097) 

.146 
(.097) 

.209 
(.095) 

8 

Average 
Disaggregate 

Influence 

- .736 
(.065) 

.462 
(.132) 

.187 
(.132) 

.307 
(.129) 

567 

Source: Warner (1981). 

4. OVERLAPPING INFORMATION 

Warner worried that the information used in the 
Pickering Airport survey experiment involved an overlap 
between the "p ro" and "con" cases, and there was also 
an overlap between the prior information available to the 
respondents and that presented by the advocates. He turned 
to this question several years later in Warner (1984, 1985), 
using a formal argument drawn from sampling theory. 

Warner's idea was to consider A^pieces of independent 
information being used to influence the proposition in 
question. Let Xy be the information content seen by the 
/-th person in they-th piece of information. Then the prior 
odds for the /-th individual is 

ln[pi/(l -Pi)] = Y ^U' 

yM(/) 

(12) 

where yl (/) is the collection of information seen by the /-th 
person prior to the presentation of the advocacy argu­
ments. If A (/) is empty, the initial log-odds for individual 
/ should be 0 and thus p, = 0.5. 

The presented " p r o " and "con" summaries draw on 
a subset, S, of w out of the Â  units. Suppose that partici­
pants act "rationally" and are not further influenced by 
data which has been seen before. The added information 
is then 

JiS 

Yu 'ij- (13) 

jiAHins 

If the m units of information are randomly selected 
without replacement from the total A', then this implies 
that we can treat the uruts in y4 (/) fl S as having been selected 
at random without replacement. We can treat the informa­
tion from these overlapping units as following a hyper-
geometric distribution, and then we rewrite expression (1) as 

where /, is the net information in the summary for the /-th 
individual, S, is the average of the Yij 's for those data 
units j(.S, and the error term € has zero conditional 
expectation, i.e.. 

E{€ I [Pi/{1 -Pi)]] = 0. (15) 

If we group subjects in an advocacy experiment exposed 
to the same "p ro" and "con" briefs according to the 
values of Pi, then differences in net information should 
be related to [p,/(1 - pi) ] according to equation (14). 
Warner (1984) did this with additional simplifying assump­
tions and then analyzed the data from the Pickering experi­
ment using assessments, the control groups and the Team 2 
"pro" and "con" group, aggregated according to whether 
the respondent was a professor, a student, or other. The 
problem with using the data from the Pickering experiment 
is that we are in effect matching the individuals in the 
control group and the experimental group. What we really 
want is both the prior and the posterior assessments from 
the same individual (Warner 1987b). 

Warner (1985, 1987a) returned to this theme of over­
lapping information, and he extended the model of expres­
sion (14) to take the form: 

/, = mSi + A'• , (2, - Ui), (16) 

where we have in effect replaced the coefficient —m/N 
in expression (14) by D, r,, where Di > — 1 is a discount 
factor and £•(/•,) = m/N. He then showed how to estimate 
the coefficients in this "random coefficients" regression 
model using generalized least squares, under various 
assumptions about the correlations among the quantities 
in (16). 

He then applied the approach to a new set of data 
collected for a telephone survey of Carleton University 
students on the question of whether an elected Canadian 
Senate would be preferable to the existing appointed 
Senate. The interviewees were asked for their opinion on 
the issue expressed as a probability. They were then 
presented with a 6-sentence summary of a television debate 
on the topic, and asked to reconsider their probability 
assessments. Of the 417 participants ,316 gave prior prob­
abilities different from 0 and 1. Of this group, 163 actually 
changed their assessment, and overall the average log-odds 
after the summary was virtually the same as it was before, 
but with a slightly smaller variance. Warner actually fit 
the model to the data, and the fitted equations were con­
sistent with the notion of partial discounting of the infor­
mation that they had already seen. 

This was essentially Warner's last published contribution 
to the topic of balanced information assessment. At the 
time of his death, Warner was hard at work on a book-length 
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manuscript whose title, Statistically Balanced Information 
Technology, suggests that he was attempting to synthesize 
and extend his ideas on the topic. Unfortunately, we 
have only been able to locate the early chapters of this 
book and these include just the introductory ideas on 
probability and regression that he expected to utilize in the 
later chapters. 

5. FURTHER OBSERVATIONS 

Warner's balanced information technology addresses 
the common problem of adversarial policy advocacy which 
may give rise to confusion andincorrect decisions because 
of imbalance in the presentation of the relevant facts. 
Examples of how the adversarial approach to dispute 
resolution in a legal setting could have distorting effects 
on questions of scientific fact are discussed in Fienberg 
(1989; see especially Appendix H by Vidmar). Among the 
responses to this situation have been repeated proposals 
to establish a science court to ensure balance in organizing 
the information relevant to a factual dispute and reaching 
decisions. In these proposals, the science court itself is an 
adversarial system, but based on well-defined procedures 
for the selection of issues, advocates, and judges designed 
to ensure impartiaUty and minimize the effects of personal 
bias. Warner's approach outlined here is a formal way to 
achieve precisely this kind of impartial result. 

Warner's progression through the various stages of the 
work on balanced information was paralleled by a shift 
in his outlook on the foundations of statistics. He was 
trained as an economist and a classical statistician and his 
early statistical contributions, including the work on 
randomized response models, were all set in a frequentist 
statistical framework. The 1975 paper on advocate scoring 
represented his first step towards a subjectivist perspective 
and, with each successive paper, he added further elements 
of the Bayesian approach. In Warner (1979), Stan articu­
lated this shift in thinking and it is especially apparent in 
the early chapters of his unpublished book. At the May 
1992 annual meeting of the Statistical Society of Canada 
in Edmonton, his last public lecture, Stan described devices 
for the solicitation of probabilities that he had been 
developing for the book. 

We can only speculate about how Stan's subjectivist 
synthesis of balanced information technology would have 
looked had he been able to complete the book. But given 
the depth of his commitment to the Bayesian approach and 
its recent methodological innovations, we expect that it 
would have included a hierarchical generaUzed linear 
model approach and utilized the latest developments in 
Markov Chain Monte Carlo simulation techniques. 

Stanley Warner was constantly using the ideas from his 
research in the classroom and in reflecting back upon the 
work described here, he noted: 

" . . . almost all of the basic elements of an elemen­
tary statistics course are to some degree represented 
in these procedures, and the problems in modeUng 
and design that are suggested could be considered 
at quite an advanced level", (Warner 1987b). 

The statistics profession has lost a true innovator and 
a great educator. We count ourselves amongst Stanley 
Warner's students and we continue to learn from his work. 
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Estimation of Correlation in Randomized Response 
D.R. BELLHOUSE 

ABSTRACT 

Stanley Warner's contributions to randomized response are reviewed. Following this review, a linear model, based 
on random permutation models, is developed to include many known randomized response designs as special cases. 
Under this model optimal estimators for finite population variances and covariances are obtained within a general 
class of quadratic design-unbiased estimators. From these results an estimator of the finite population correlation 
is obtained. Three randomized response designs are examined in particular: (i) the unrelated questions model of 
Greenberg et al. (1969); (ii) the additive constants model of Pollock and Bek (1976); and (ui) the multiplicative 
constants model of Pollock and Bek (1976). Simple models for response bias are presented to illustrate the effect 
of this bias on estimation of the correlation. 

KEY WORDS: Additive constants model; Linear models; MuUipUcative constants model; Response bias; Unrelated 
question model; Variance estimation. 

1. A BRIEF OVERVIEW OF WARNER'S 
CONTRIBUTIONS TO 

RANDOMIZED RESPONSE 

Randomized response is a technique used to elicit 
responses to sensitive questions. It was developed thirty 
years ago by Stanley Warner (Warner 1965) to estimate 
a proportion under a simple random sampUng design with 
replacement. The development was a substantial intellec­
tual achievement requiring much originality of thought. 
How does one get truthful responses to sensitive questions? 
Warner's solution was to get the response without the 
interviewer knowing whether the sensitive question had 
actually been asked. He devised the probabilistic structure 
to the questioning so that an estimate of the required 
proportion could be obtained. In Warner's original for­
mulation the population is divided into two mutually 
exclusive and exhaustive groups, A and B. It is of interest 
to estimate the proportion ir of the population belonging 
to group A. To do this, a spinner is constructed with a face 
marked with the letters A and B. The construction is such 
that the spinner points to the letter A with probability p 
and to B with probability I — p. The interviewee spins the 
spinner and is required only to say yes or no according to 
whether or not the spinner points to the interviewee's 
correct membership group. The with replacement design 
allows estimation of TT by maximum Ukelihood. 

This very original idea has received substantial attention 
over the past thirty years. Since Warner's original work, 
several randomized response techruques have been suggested 
for the estimation of a proportion or set of proportions 
as in polytomous data, or for the estimation of a popula­
tion mean with continuous data. A variation on Warner's 
original theme is asking the sensitive question or an 

unrelated question with probabilities/? and 1 — p respec­
tively. This was originally due to Greenberg et al. (1969). 
Other variations with continuous data include adding a 
random variable to the response to the sensitive question 
or multiplying the response by a random variable. The 
underlying theme to any of these techniques is the masking 
of the original response in such a way that the sensitive 
information cannot be attributed to any single respondent 
but that information on the sensitive attribute can be 
extracted from the whole sample. A substantial literature, 
including a monograph by Chaudhuri and Mukerjee (1988), 
has grown up around these techniques. Nathan (1988) has 
provided a fairly comprehensive bibliography of this 
literature. Umesh and Peterson (1991) have given several 
detailed examples from very diverse areas of the applica­
tion and appUcabUity of the techniques of randomized 
response. 

With several different randomized response techniques, 
the question arises as to how to compare the different 
methods. Minimization of variance cannot be the sole 
criterion. Each method is designed to protect the privacy 
of the respondent. A gain in efficiency, in terms of 
variance, by the choice of different values of the proba­
bilities in the randomizing device, or by the choice of one 
randomized response method over another, could lead to 
jeopardizing the privacy of the respondents. In response 
to this, Leysieffer and Warner (1976) and Warner (1976) 
formulated natural measures of respondent jeopardy. 
These measures are related to the probability of the inter­
viewer being able to infer the interviewee's response to the 
sensitive attribute. The theory of respondent jeopardy is 
reviewed in Chaudhuri and Mukerjee (1988) and some 
practical considerations regarding respondent jeopardy 
are reviewed in Umesh and Peterson (1991). 

D.R. Bellhouse, Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario, N6A 5B7. 
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Stanley Warner made two other contributions to the 
literature of randomized response. The first contribution 
is directly related to the results obtained here. With the 
explosion of new ideas and new techniques in randomized 
response, Warner (1971) formulated a linear model which 
unified the theory. Most of the randomized response 
techniques at that time could be put in his linear model 
framework. The second contribution was in response to 
the growing use of telephone interviewing. Stem and 
Steinhorst (1984) described randomized response methods 
applicable to telephone interviewing and to mail question­
naires. Warner (1986) suggested practical natural random­
izing devices, such as the serial numbers on paper money, 
for use in telephone interviewing. 

The major topics in randomized response methodology 
are: the development of randomized response techniques, 
the comparison of these techniques through the concept 
of respondent jeopardy, the construction of reasonable 
randomizing devices, the development of a unified theory 
of randomized response, and the vaUdation of randomized 
response techiuques through field studies. Stanley Warner's 
contributions to randomized response touch on most of 
these major developments in the subject. Moreover, most 
of these contributions were substantial and influential. He 
is the originator of the technique. His original setup of a 
dichotomous population was quickly generaUzed to a 
polytomous one and to populations with continuous 
measurement. New randomized response techniques 
continue to be developed. Warner was at the forefront of 
evaluating randomized response designs through the 
modeling of respondent jeopardy. His work in the devel­
opment of a unified linear model for randomized response 
designs was the foundation on which a unified theory of 
randomized response has been built. 

2. INTRODUCTION TO ESTIMATION 
OF CORRELATION 

Consider a finite population of size N with two mea­
surements of interest Xj and yj forj = 1, . . . , M It is of 
interest to estimate the finite population correlation 

P = 

by their respective estimators, unbiased or biased, optimal 
in some sense or otherwise. 

To illustrate the general results obtained here for esti­
mation of the finite population correlation coefficient, 
three particular randomized response techniques will be 
considered: 

(i) The unrelated questions model due to Greenberg et al. 
(1969). The sensitive question is asked with proba­
bility/7 and an unrelated question which is not sensi­
tive is asked with probability 1 — p. For estimation 
of the mean it is assumed that the finite population 
mean ^ of the unrelated question is known. For esti­
mation of variance it is also assumed that ffj is known, 

(ii) The additive constants model due to Pollock and Bek 
(1976). The outcome of a random variable from a 
known probability distribution is added to the value 
of the response to the sensitive question, 

(iii) The multiplicative constants model due to Pollock 
and Bek (1976). The value of the response to the sensi­
tive question is multiplied by the outcome of a random 
variable from a known probability distribution. 

Edgell et al. (1986) have provided estimators for p under 
the unrelated questions model and the additive constants 
model. 

Most randomized response designs that have been con­
sidered have assumed that the sampling design is simple 
random sampling either with or without replacement. 
Since the results obtained here are under a fixed size 
design, the simple random sampling design assumed here 
is without replacement. 

Assume that both x and y are sensitive variables. Conse­
quently, a randomized response technique is used to obtain 
information on both these variables. Let Wj and Zj, for 
y € 5 be the sampled measurements that are obtained. Let 
Uj and Vj forj = 1, . . . , A'̂ be the nonsensitive measure­
ments associated with Xj and yj respectively. Under the 
unrelated question model (randomized response model (i)) 
Uj and Vj are the responses to the unrelated questions for 
they-th individual. Under the additive constants model or 
the multiplicative constants model (randomized response 
models (ii) or (Hi)) Uj and Vj are the y-th outcomes of 
random variables from two, possibly different, known 
probability distributions. 

where a^y = Y, (Xj — X) (yj — Y) /N is the finite popu­
lation covariance between the variables x andy and where 
Ox and Oy are the finite population variances of the vari­
ables X andy respectively. To estimate p a sample of fixed 
size n is chosen with probability P{s) from the finite 
population where s denotes the set of finite population 
units chosen for the sample. The expectation operator with 
respect to the sampling design P{s) is denoted by Ep. 
Estimators for p are obtained by replacing a^, aj and a^y 

3. RANDOM PERMUTATION MODELS 

Several models for the finite population measurements 
have been put forward in the survey sampling literature. 
Here attention is focused on the random permutation 
models of Rao (1975) and Rao and Bellhouse (1978). 
One compelUng reason for using these models is that the 
model parameters have a direct interpretation in the finite 
population of interest since model parameters in random 
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permutation models are also finite population parameters. 
In the simplest context for random permutation models 
it is assumed that the /V-dimensional vector of finite 
population measurements is a random permutation of an 
N-dimensional vector of fixed numbers. Rao (1975) has 
shown how this assumption leads to a linear model. 
Bellhouse (1980) extended this model to randomized 
response designs under unequal probability sampUng. 

The model and associated designs applicable to unequal 
probability sampling are not easily applicable to estimation 
of variances and covariances either with or without a ran­
domized response. Consequently, a special case of the 
model in Bellhouse (1980) is given here. In the model which 
follows there are two different expectation operators at 
work which together yield a composite expectation E^. 
These expectation operators are: E^, the expectation 
operator with respect to the randomizing device, and E^p, 
the expectation operator with respect to the random per­
mutation model. The composite expectations £'m = ErpEr 
and E = E^Ep. For the random permutation model we 
assume that the pairs (Xj, yj), j = 1, ..., N are a 
random permutation of a set of Affixed pairs of numbers, 
say (Pj,qj),j — 1 Â . This is a special case of model 
(4.1) in Rao and BeUhouse (1978); the more general model 
in Rao and Bellhouse (1978) was used in double sampling 
and sampling on two occasions. The unrelated questions 
randomized response model (randomized response model 
(i)) requires an additional assumption that the quadruples 
(Xj, yj, Uj,Vj),j = I, ..., Nare a random permutation 
of a set of Nfixed quadruples of numbers, say (pj, qj, rj, 
tj),j = I, ...,N. 

Assume that the randomizing device coupled with the 
random permutation model leads to the following linear 
model: 

Wj = at -\- 0iX -\- e,y 

Zj = a2 -I- ftF -I- e2j. 
(1) 

fory = 1, . . .,A^ where X and Kare the finite population 
means of the x and y measurements respectively and where 
fory = \, ...,N 

Em(eij) = E„{e2j) = 0, 

E,„(e]j) = <i>^al -I- lAo, + ^ , 1 ^ + ^/'2l^^ 

Em(elj) = <i>2aj + io2 + ii2Y -I- feF^ 

Em{eijeik) = 6iaj + \i, E„(e2j e2k) = haj + X2. 

for j 9i k, 

Eni{eije2j) = <A3ffxy + '/'3. and 

Em(e\je2k) = h^xy + h, for y ?f k. (2) 

and all other higher moments are independent ofy. In the 
model given by (1) and (2), the a ' s , X's, 0's, ip's and 6's 
are all known constants. The finite populations variances 
and covariances of the sensitive questions, Ox, Oy and Oxy 
are all unknown. 

For the unrelated questions model (randomized response 
model (i)) assume that the randomizing schemes on the two 
sensitive questions are independent and that sensitive 
question /, / = 1, 2, is asked with probability/?, and the 
associated nonsensitive questions with probability I — /?,. 
Assume further that the sensitive questions are unrelated 
to the nonsensitive questions so that Oxu = Oyy = Oxv = 
Oyu = 0. This assumption is unnecessary under simple 
random sampling with replacement. When, in addition, 
a random permutation model is assumed on the quadruple 
(Xj, yj, Uj, Vj) then in the model given by (1) and (2): 

"I = (1 -Pi)U,0i = pi,a2 ^ (1 -P2)V,02 = P2, 

<t>i = Pi, V'oi = (1 - Pi)ai -\- /? , ( I - / J l ) t7^ 

iku == - 2 / 7 i ( l - Pl)U,lP2l = Pi(l -Pi), 

4>2 = P2, '/'02 = (1 - P2)Ov + / '2(1 - P2)y^, 

\̂ 12 = -2/>2(l - P2)y, \̂ 22 = P2(l - P2), 

6, = -pf/(N- 1 ) ,X, = - ( 1 - p,)^al/(N - 1), 

62 = -P2'(N - I), \2 = - d - P2)^al/{N - 1) , 

03 = PlP2,^i = -<t>3/{N - I ) , 

h = (1 - Pl)(l - P2)Ouv, 

and \3 = -\Pi/{N - 1) . (3) 

Note that the model assumptions require that the finite 
population variance-covariance matrix of the nonsensitive 
questions is known as well as the finite population means. 

For the additive constants model (randomized response 
model (ii)) assume that the random variables u and v that 
are added to the value of the responses to the two sensitive 
questions are independent with means ;i„ and n^ and 
variances a^ and a J respectively. When the random per­
mutation model is assumed on the pair (Xj, yj) then in the 
model given by (I) and (2): 

" I = M«. /3l - l,0t2 = IJ.V, 02 = 1 . 

01 = 02 = 03 = 1. V'Ol = au, l/'02 - OTv, 

6, = 62 = 63 = - 1 / ( A ^ - 1) , 

^11 = hi = '/'12 = '/'22 = -̂3 = X, = X2 = X3 = 0. 

(4) 
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In the multiplicative constants model, two independent 
random variables, u and v with means /i„ and Hy and 
variances a^ and al respectively, are muUipUed respectively 
by the value of the response on the j:-variable and the 
^-variable. When the random permutation model is 
assumed on the pair (Xj, yj) then in the model given by 
(1) and (2): 

0(1 = 0(2 = 0, /3i = Hu, 02 = l^v. 

4)1 = Hl -\- al, 02 = MV + Ol, 03 = tiy fly. 

hi - ol, i/'22 = al, 

6, = -til/{N - 1) , 62 = -ixl/{N - 1) , 

53 = -iXutJLv/{N - 1), and 

^01 = lAii = ^2 = ^12 = iZ-a = Xi = X2 = X3 = 0. 

(5) 

4. ESTIMATION OF VARIANCE 
AND COVARIANCE 

Consider estimation of aj so that the appropriate data 
are Zj for units y € s. The general class of quadratic esti­
mators of aj is of the form: 

ebs = bs.. + Y ^^J- ^J + Y ^'JJ ^^-+1)1) ^^'J ̂ -^J' (̂ ) 
JiS JiS i^Jis 

where the coefficients of the z's are defined for all s, all 
y € 5 and all pairs (/, y) € s. 

In the context of randomized response, an estimator Cf, 
in the class defined by (6) is design-unbiased for aj if 
EpEr{ei,) = ff^andis/7m-unbiasedif£'(e6) = ffj. Con­
ditions under which an estimator Cf, is /jm-unbiased are 
obtained upon taking the expectation E of (6) under (1) 
and (2). On equating coefficients in ?^, f , F^ and aj 
four equations in four unknowns are obtained. The solution 
to these four equations yields the following conditions 
under which estimators in the class defined by (6) are 
pm-biased for aj: 

(Y'^J) = 
^ jis ' 

/3| 
01(02 - 62) - 62'/'22 

= A 2, (7) 

K + ^̂ 22 

^2(02 - ^2) - 52l/'22 

^ jis ' 

{20L2h2 - ff2'/'l2) 

0\{<^2 - h) - h'1'22 
C2, (9) 

and 

Ep(bs..) = 
X2(|82 + •A22) - («2V22 - Q-2/32'/'l2 + i32\̂ 02) 

182(02 - ^2) - ^ 2 ^ 

= £>2- (10) 

In order to obtain the optimal estimator we need to define 
an associated class of quadratic estimators of 0. This is 
given by 

^cs = '"i.. + 2 ^ ^sj. Zj + 2 ^ ^sjj Zj + 2 ^ 2 ^ *̂ ŝ /• ZiZj . 

jis jis i^jis 

The conditions for an estimator ê  in this class to be 
pm-hiased for 0 are 

Ep{CsJ =Ep(Y ^->) =^p(l!, ^^ ) = 
jis JiS 

^ i^jis ' 

= 0. (11) 

- ( ^ 2 + ^2), (8) 

Derivation of the minimum variance quadratic design-
unbiased estimator of aj follows along the same lines as 
that used for the finite population mean by Rao and 
Bellhouse (1978) for cases without randomized response 
and by Bellhouse (1980) for cases with randomized 
response. The covariance E{ei,ec) under the composite 
expectation is determined under the model such that only 
expectations of the form Ep remain to be determined. 
From this expression the coefficients b are set to make 
E{ei,ec) = 0 under the condUions in (11). The values of 
the coefficients b are then determined from the conditions 
in (7) through (10). From a theorem on minimum variance 
unbiased estimation of Rao (1952), the resulting estimator 
is the optimal/7/«-unbiased estimator of aj. If there exists 
a design such that this estimator is also design-unbiased for 
aj, then by arguments similar to those given in Theorem 
(2.4) of Rao and BeUhouse (1978), the estimator is also the 
optimal design-unbiased estimator of aj. We present 
results for/?m-unbiased estimators first (Theorems 1 and 2) 
and then present results for design-unbiased estimators 
under the three randomized response schemes. 

Theorem 1. Under the model defined by (1) and (2) and 
for any design of fixed size n, the pw-variance of e ,̂ 
Erp[EpEr{et, - aj)'^] = E{ei, - aj)^, is minimized for 
the estimator given by 

{A2 + B2)sl - B2-Y zj + C2Z-\- D2, (12) 
Jis 
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where z is the sample mean of the data and 

I 
sl = = ^Y'^^-^' 

jis 

is the sample variance of the data obtained through ran­
domized response where ^42, B2, C2 and D2 are defined in 
(7) through (10) respectively. 

Proof. Under the model given by (1) and (2) the covariance 
E{ei,ec) is algebraically quite lengthy but may be expressed 
in the following form: 

b^Gc + H, 

where b^ is the vector 

(13) 

\Ep{b,„),Ep{ Y f>sj),Ep( Y *«/) ' 
*- ^ jis ' ^ jdS ' 

^^(ED*^*/)]' 
^ i^jis ^ -I 

(14) 

and c'̂ îs the same as (14) with the Vs replaced by c's. The 
4 X 4 matrix Gin (13)contains functions ofthe first order 
moments of Zj and the second order moments of 62/ in (1). 
The expression H in (13) is a sum of terms of the form 

«Y *̂ y f^ski. (15) 

where the summation symbol is up to a quadruple sum, 
where the subscripts of b could be replaced by a dot (.) and 
where /c is a function of second through fourth order 
moments of e2j in (I). Note that these moments are all 
independent ofy. In (15) the sum is a single sum overy e s 
when, for example, the subscripts / = j = k = /or when 
/ = k andy and / are replaced by dots. The sum is a double 
sum over/ ^ k (: 5 when, for example, / 7^ A: andy and / 
are replaced by dots. This process continues to the qua­
druple sum in which i ^ j j^ k j^ I. From (11) E{ei,ec) 
reduces to 0 if bg, = h\, bgj = /J2. bgjj = h^, and bsij — h^, 
where the /i, are constants. From (7) through (10) and the 
fact that the design is of fixed size we obtain 

bs„ - D2, by. = C2//1, b, sij 

A2 + B2 

'n{n-l)' 
, bsjj = A2/n, 

so that the estimator in (12) minimizes the variance in the 
/7m-unbiased class of quadratic estimators of CT^. Q . E . D . 

By the same arguments 

(At -I- BOsl - 5, - y ; H-/ -I- C, vv -I- D „ (16) 
n *^ 

Jis 

is the optimal /j/n-unbiased estimator for aj where 

A, = 
/3? 

/3?(0, - 61) - 6,̂ 21 

^ ' = . 2 

01 + hi 
0i{<t>i - 5,) - 61̂ 21 

(2ai\^2i - ^2011) 
0?(0, - 6,) - 6,V'2i' 

and 

D, = 
Xi(i8i + 1̂ 21) - (ai\^2i - ail3i'^ii + I3ihi) 

l8?(0, - 6,) - 6,^21 

The same technique can be used to estimate the co-
variance Oxy. The general class of quadratic estimators of 
Oxy is of the form 

eos^ ds-i-Y (^\sjZj + Y ^^J^J + E L ^sijWiZj, 
jis jis i^jiS 

where the coefficients of the w's and z's are defined for 
all 5, aUy € 5 and aU pairs (/, j) € s. The result on the 
covariance is stated without proof in 

Theorem 2. Under the model defined by (1) and (2) 
and for any design of fixed size n, the /7m-variance of 
Cd, E,p[EpEr{ed - Oxy)^] = E{ed - ff^^)^ is minimized 
for the estimator given by 

Swz - (h - X3) 
03 - 63 

(17) 

where 

n - 1 
Y (Wj - w){Zj - z) 
jis 

is the sample covariance between w and z. 

An estimator for p is obtained from (12), (16) and (17). 
In the additive constants randomized response model 
(randomized response model (ii)) the estimator of p is 
given by 

Pac 
Ju <r^){st - <) 

(18) 

This is the same as the estimator obtained by Edgell et al. 
(1986). Under the multiplicative constants model (random­
ized response model (iii)) the estimator reduces to 
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Sw 
al/ixl 

1 + oi/yii n y„ 
Ew/ ^1-

al/ij.1 '-Ezj, 
1 -I- al/iil n jis 

(19) 

for flu 9^ 0 and fiy ^ 0. When /x„ = 0 the coefficient of 
Y, Wj is 1 /n and when Hy ^ 0 the coefficient of Y, zj is 
l/n. The estimator for p under the unrelated questions 
model (randomized response model (i)) is 

Puq 

(1 -Pi){l -P2) 

P1P2 
Suv 

•^Ox Oy 

(20) 

where Suy = Nauy/{N — 1) and where 

Sj = sl- (l -p,)-Y ŷ- + 2(1 - Pi)Uw -
jis 

(1 -Pi)U^- (1 -P04(PI + ^ 7 3 7 ) 

and 

Sj = s^ - (l -P2)-Y ^J + 2(1 - P2)Vz -

jis 

(1 - P2)V' - (1 - P2)al(p2 + J^-rf) • 

When/?! = P2 this may be compared to the estimator in 
Edgell et al. (1986). The resulting estimator for p„^ differs 
from the estimator in Edgell et al. (1986) who assume that 
Ouv = 0. They also use biased estimators of aj and aj. 
Edgell et al. 's estimator for aj is obtained by writing the 
design variance of z under simple random sampUng with 
replacement as 

Each ofthe estimators ofthe finite population variances 
and covariance, which are the components ofp in (18), (19) 
and (20), are design-unbiased under the appropriate ran­
domized response model for any design with joint inclusion 
probabiUty for units / andy given by 7r,y = n{n — 1)/ 
[N{N — 1) ] . Consequently, each estimator is the optimal 
design-unbiased estimator for its finite population para-
mater counterpart. To obtain the appropriate unbiased 
estimators in (18), multiply the numerator and denomi­
nator each by (N - l)/N. The resulting numerator is 
design-unbiased for Oxy and the expressions under the 
square root sign in the denominator of (18) are unbiased 
for aj and aj. In (19) it is necessary to multiply the 
numerator and denominator by (N — l)/[Nij,uHy] in 
order to obtain the correct form of the design-unbiased 
estimators. The correct estimators are obtained in (20) 
when the multiplier is (A^ — I)/{Np\P2). 

In any of the randomized response designs, the simplest 
estimate of the variance of p is the jackknife estimate of 
variance. Jackknife estimates of variance for p can be 
obtained from formulae (4.2.3) or (4.2.5) in Wolter (1985). 

5. EFFECT OF RESPONSE BIAS 

In the additive constants model, the respondent is asked 
to add a random variable « to jc and an independent 
random variable v to; ' . Instead, the respondent may add 
different independent random variables, say u' and v ' . 
The means and variances of u' and v' may differ from 
those of u and v. It is reasonable to assume, however, that 
ff^' > al and al,' > al. One example in which this situa­
tion might occur is the following. The respondent does not 
want to add on the outcome of a random variable near to 
the mean of the distribution of the random variable. In 
this case the distribution of response bias could be modelled 
by the original distribution with an interval around the 
mean in which any outcome from the original distribution 
which faUs in the chosen interval is set to one of the end 
points of the interval. On taking separately the expectations 
of the numerator and the expression under each of the 
square root signs in the denominator of (18) the expression 

j=i 
(21) 

The design variance of z under the randomizing device is 

[P2aj-\- (1 - P2)al-\-P2{1 -P2){Y- V)^]/n. (22) 

Expression (22) is found in Greenberg et al. (1971). The 
estimator for aj is found by equating (22) to the left hand 
side of (21), by substituting sample the estimator of a | 
and the randomized response estimator of F in the 
resulting equation, and then by solving for aj. 

'^xy 
Jox + Ou' — Ou -jOy -I-

(23) 

is obtained. From (23) it may be noted that the response 
bias leads to an estimate of correlation lower than the true 
value. 

The multiplicative constants model is the same as the 
additive constants model with the exception that the 
responses to the sensitive questions are multiplied by the 
random variables. As in the response bias model for 
additive constants, assume that u' and v' are used by the' 
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respondent instead of u and v. Then on taking separately 
the expectations of the numerator and the expressions 
under each of the square root signs in the denominator of 
(19) the expression 

^xy 

Y^l' J 2 2 2 2 
2 , 7 = 1 '^ut^u'-'^u'l^u at^ 

Np.1. 2 , 2 

2 2 
ffv'Mv 

Nij}y 
2 , 2 

ffv+A'v 

(24) 

is obtained. If/i„ = /i„', ^v = Mv'. ''\' ^ aland al' > al, 
as in the case of the additive constants model, then from 
(24) the response bias leads to an overestimate of the 
correlation. 

In the unrelated questions model a reasonable model 
for response bias is to assume that the sensitive questions 
are answered with probability/J/ < Pi and pi < P2- In 
general the effect of this response bias is dependent on the 
relative values ofthe various probabilities, the means and 
variances of the sensitive questions, and the means and 
variances of the nonsensitive questions. Under simple 
random sampUng without replacement and the response 
bias model, the design expectation ofthe numerator of (20) 
is given by 

Pi Pi Sxy + 
(l-p{){l-pi)-{l-Pi){l-P2) 

Pi Pi 
IV I > 

which is greater thanpip^Sxy. Likewise the design expec­
tation of Sj in (20) is 

Sl[p{^ + (N - l)p{{pi -p{)/N] 

+ (Pi -p{)Sl[p{ - {p{ + 2p, - 2)/N] 

+ Pi(Pi -P{){X- U)\ 

which is greater than p{^§j when TV is large. If S„v = 0, 
then the response bias leads to an underestimate of the 
correlation. 
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On Efficiency of Using Distinct Respondents 
in a Randomized Response Survey 

N.S. MANGAT, R. SINGH, S. SINGH, D.R. BELLHOUSE and H.B. KASHANI' 

ABSTRACT 

It is well known that the sample mean based on the distinct sample units in simple random sampling with replacement 
is more efficient than the sample mean based on all units selected including repetitions (Murthy 1967, pp. 65-66). 
Seth and Rao (1964) showed that the mean of the distinct units is less efficient than the sample mean in sampling 
without replacement under the same average sampling cost. Under Warner's (1965) method of randomized response 
we compare simple random sampling without replacement and sampling with replacement when only the distinct 
number of units in the sample are considered. 

KEY WORDS: Simple random sampling with and without replacement; Inferences with distinct units; Warner's 
technique. 

1. INTRODUCTION 

The randomized response (RR) technique to procure 
trustworthy data for estimating the proportion of the 
population belonging to a sensitive group was first intro­
duced by Warner (1965). Since then many developments 
have taken place in this area. Recently, among others, 
Franklin (1989), Kuk (1990), Mangat and Singh (1990, 
1991), Mangat, Singh and Singh (1992) and Mangat (1994) 
have suggested alternative RR procedures/estimators. 

In the usual simple random sampling (SRS) with 
replacement (WR) surveys, it is well known that the esti­
mator of population mean based on the distinct units is 
always more efficient than the mean based on all selections 
(Murthy 1967, pp. 65-66). Also, Seth and Rao (1964) 
showed that, under the same average cost to sample, 
sampling without replacement was more efficient than 
with replacement sampling using the mean of the distinct 
sample units. This motivated the authors to investigate 
whether the above observation also holds in the case of 
Warner's pioneer RR model which is widely used in practice 
for selecting the respondents in the case of a survey dealing 
with sensitive characters. To investigate the problem we 
shall consider the use of four sampUng strategies. 

1.1 Strategy I 

According to this (Warner's) procedure, each respondent 
included in the sample using the SRSWR method is pro­
vided with a suitable randomization device consisting of 
two statements of the form: (i) " I belong to sensitive 
group" and (ii) "I do not belong to sensitive group", 
represented with probabilities/? and (1 - p), respectively. 
The respondent answers "yes" or " n o " according to the 

randomly selected statement and to his actual status with 
respect to the attribute, without revealing the statement 
chosen. \fn' persons in the sample (including repetitions) 
answered "yes", Warner's estimator 

n'/n - I + p 
TT = - - ^ , p 9^ .5, 

2/7 - 1 

is unbiased for ir and its variance is given by 

K|(ir) = -I-

(1) 

n{2p - D' 
(2) 

The value of p should be chosen as close to 1 or 0 as 
possible without threatening the degree of co-operation by 
respondents. 

1,2 Strategy II 

A sample of n respondents is drawn from a finite popu­
lation of A/units using SRSWR but the information from 
the ̂ distinct units in the sample, 1 < d < / j , is used in the 
construction ofthe estimator. Let d' denote the respondents 
reporting a "yes" answer in the interview conducted with the 
RR device. We then consider the following estimator for x: 

^rf 
d'/d - I -t- p 

2/7 - 1 ' 
p 1^ .5. (3) 

Conditional on rf distinct units, the resulting sample is 
a simple random sample without replacement of size d 
from A/units. The estimator x^ is, therefore, unbiased for 
the population ir. 

' N.S. Mangat, R. Singh and S. Singh, Punjab Agricultural University, Ludhiana-141004 (India); D.R. Bellhouse, University of Western Ontario, 
London, Ontario, Canada, N6A 5B7; H.B. Kashani, West Oregon State College, Monmouth, OR 97361, U.S.A. 
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In order to study the performance of the proposed 
estimator TT^, we need its variance. We give here the 
expression for the conditional variance V2 {irf) for a given 
value of d. Thus 

1/ r - ^ ^ - ^ ^(1 - ^) ^ P(^ - P) ,.. 
f̂ 2(7rrf) = — 1̂ + — - - , . (4) 

1 

N - I d{2p - I)' 

If El and Fj are the expectation and variance over aU values 
of d, then we have Ii,(frrf) = £',K2(*d) -I- ^,£'2(*</)• 
On using (4) one gets 

(2/7 - 1)2 '\d 
(5) 

since the second term in Vii{ird) is zero as £'2(^rf) = ir. 

1.3 Strategy III 

The sample of n respondents is selected using SRSWOR 
(Kim and Flueck 1978). In this case the variance of the 
estimator f in (I) can be written by replacing d in (4) by 
n. Thus we have 

1/ t'\ N - n 7r(l - x) /7(1 - p) ,,. 
Vnd-^) = — 7 — — + -7:: —T (6) N - 1 n{2p - D' 

1.4 Strategy IV 

Here the estimator is based on a WOR simple random 
sample of size E{d). This yields the same expected cost 
for both in SRSWR and SRSWOR. For this scheme the 
estimator will be 

d'/E{d) - 1 + /7 
TtE = z : . p 9^ .5 

2/7 - I 

with variance 

N/E{d) - I 
yi\(TrE) = : T ( 1 - ir) 

N - I 

-I-
P{i - P) 

E(d){2p - 1) 
,. (7) 

2. EFFICIENCY COMPARISONS 

It has been shown by Korwar and Serfling (1970) that, 
for « > 3, 

120N 
<E -0 

where 

1 1 n -I 
Q = - + + T 

n 2N 12N^ 

Let us now examine the variance expression in (5). 
Using Q, it is easily verified that 

NEi{l/d) - 1 ]_ 

N - I ~ n 
(8) 

in the first term on the right of (5) but that £'i(l/rf) > l/n 
in the second term on the right of (5). Thus the relative effi­
ciency ofthe SRSWR estimator in (1) using repeated units 
with respect to the SRSWR estimator in (3) using the 
distinct number of units will depend on the relative sizes 
of IT and p. This is due to the fact that the repeated units 
can give rise to different responses because of the ran­
domizing device and hence can provide some additional 
information. A sufficient condition for the inequality 
11i(*(/) ~ f1(*) < 0 to hold is obtained by using 
Ei{d) = Q. Thus we get the condition as 

7r(l - 7r) > 
n{N- l){6N-\- n - I) p{l -p) 

N{6Nn - 12N- n{n - 1)) ( 2 / 7 - 1)^ 

(9) 

The above inequality is likely to hold for values ofp closer 
to 0 or 1, the situations in which respondent jeopardy would 
be of concern. For example, if N = 100, n = 10 and 
p = 0.9, the mequaUty (9) wiU hold for 0.236 < ir < 0.764. 

Similarly, Strategy II wUI be inferior to Strategy I if 
ViiCird) - ^l(^) > 0. Using£',(l/rf) = Q - 1/120N 
this inequality reduces to 

7r(l — TT) 

n(N- 1)[159N+ 60{n - 1)) />(! -p) 

N{36lNn - 120N - 60n{n - I )) {2p - 1) 2 • 

This inequality will hold for the example considered for 
inequality (9) whenever either TT < 0.234 or ir > 0.764. 

On using the Cauchy-Schwarz inequality, E{l/d) > 
l/E{d), as in Seth and Rao (1964) we find that ^1I(Trf) > 
Kiv ( TTE) • This impUes that Strategy IV is more efficient 
than Strategy II. 

It is trivial to note that Strategy III is more efficient than 
Strategy I. 
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We know that £•(!/£/) > 1/rt. This means K„(xrf) > 
F',|,(x), implying that Strategy III is more efficient than 
Strategy II. 

Since l/E{d) > 1 /n. Strategy III is more efficient than 
Strategy IV. 

The last pair to consider consists of Strategies I and IV. 
Since E{l/d) > I/E{d) for n > 1, on using (8) we have 

N/E{d) - 1 1_ 

N - 1 

implying that in (7) and (2) 

N - E{d) ir{l 

N - 1 E{d) 

IT) 7r( l — TT) 

for n > I. Also l/E{d) > l/n. This shows that the 
second term of (7) on the right hand side will be more than 
the corresponding term of (2). Thus the relative efficiencies 
of Strategies I and IV depend on relative values of ir and 
p. As a numerical illustration, if N = 100, « = 10 and 
p = 0.9 then Strategy IV will be more efficient than 
Strategy I for 0.18 < ir < 0.82. 
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Cross-sectional Weighting of Longitudinal Surveys of Individuals 
and Households Using the Weight Share Method 

PIERRE LAVALLEE' 

ABSTRACT 

Statistical agencies are conducting increasing numbers of longitudinal surveys. Although the main output of these 
surveys consists of longitudinal data, most of them are also expected to produce reliable cross-sectional estimates. 
In surveys of individuals and households, population dynamics significantly changes household composition over 
time. For this reason, methods of cross-sectional estimation must be adapted to the longitudinal aspect ofthe sample. 
This paper discusses in a general context the Weight Share method, of which one application is to assign a basic 
weight to each individual in a household. The variance estimator associated with the Weight Share method is also 
presented. The weighting of a longitudinal sample is then discussed when a supplementary sample is selected to 
improve the cross-sectional representativeness of the sample. The paper presents as an application the Survey of 
Labour and Income Dynamics (SLID) introduced by Statistics Canada in 1994. This longitudinal survey covers 
individuals' work experience, changes in income and changes in family composition. 

KEY WORDS: Weight share method; Longitudinal survey; Cross-sectional estimate; Supplementary sample. 

1, INTRODUCTION 

Longitudinal surveys, i.e. surveys that follow units over 
time, are steadily gaining importance within statistical 
agencies. Statistics Canada is currently developing three 
major longitudinal surveys of individuals: the National 
Population Health Survey, the National Longitudinal 
Survey of Children; and the Survey of Labour and Income 
Dynamics (SLID). 

The primary objective of these surveys is to obtain longi­
tudinal data. One of the uses of these data is to study the 
changes in variables over time {e.g., longitudinal data may 
be used to analyze the chronic aspect of poverty). A secon­
dary objective is the production of cross-sectional estimates, 
in other words estimates that represent the population at 
a given point in time. Although these estimates are far less 
important than the longitudinal data, to many users they 
are an essential aspect of the survey. Obtaining a represen­
tative cross-sectional view of the current population 
constitutes a means of measuring changing situations over 
time. The longitudinal aspect ofthe survey also improves 
the accuracy of the measurement of change. 

This paper presents an extension of the Weight Share 
method presented by Ernst (1989). Although the method 
has been developed in the context of longitudinal household 
surveys, it is shown that the Weight Share method can be 
generalized to situations where a population of interest is 
sampled through the use of a frame which refers to a 
different population, but linked somehow to the first one. 
In the context of longitudinal surveys, the frame can be 
associated to the initial population, while the population 
of interest can be the population a few years later. The 

paper also provides a new proof of the unbiasedness of the 
Weight Share method together with the variance formula 
and variance estimator to be used with the method. 

Using the Weight Share method, the question addressed 
in this paper is that of ensuring that the longitudinal 
sample can be used for cross-sectional estimation. The 
difficulty arises from the fact that, although the longitu­
dinal sample remains constant, distribution ofthe popula­
tion (individuals and households) changes over time. At 
the individual level, these changes are produced by such 
events as births and deaths, immigration and emigration, 
and moves within the country. Obviously, the birth or death 
of an individual also changes household composition; and 
such events as marriage, divorce, separation, departure of 
a child and cohabitation, are all factors that affect popula­
tion distribution within the household. If we are to obtain 
accurate, unbiased cross-sectional estimates based on a 
longitudinal sample, we need an estimation method that 
takes these changes into account. 

Our initial topic is the presentation ofthe Weight Share 
method in a general context. Secondly, we present the sample 
design for SLID. This is one ofthe major longitudinal surveys 
for which the production of cross-sectional estimates from 
a longitudinal sample is a significant problem. The survey 
itself is a typical longitudinal survey of individuals and 
households. Thirdly, we describe the use of a supplemen­
tary sample added to the initial longitudinal sample to 
improve the cross-sectional representativeness. Fourthly, 
we present the concept of basic weights, the equivalent, 
as it were, of sample weights. Finally, we describe the use 
of the Weight Share method to calculate basic weights for 
all individuals interviewed in SLID. 

' Pierre Lavall̂ e, Social Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, KIA 0T6. 
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2. THE WEIGHT SHARE 
METHOD IN A 

GENERAL CONTEXT 

The Weight Share method is described in Ernst (1989) 
in the context of longitudinal household surveys. In the 
same context, Kalton and Brick (1995) discuss different 
weighting schemes, including the Weight Share method. 
Various implications of using the Weight Share method 
for longitudinal household surveys have been described by 
Gailly and Lavallee (1993). 

We now present this method in a general context that 
can be applied to several sampling situations where the 
population of interest needs to be sampled through the use 
of a frame which refers to a different population, but is 
linked somehow to the first one. Note that this can be 
viewed as a form of Network Sampling (see Thompson 
1992). For example, one can imagine the need to sample 
young children where the only available frame is a list of 
names of parents. The population of interest is really the 
children but we need to select a sample of parents from 
the frame in order to obtain the sample of children. Note 
that the children of a particular family can be sampled 
through either the father or the mother. Another example 
is one of business surveys where an incomplete frame of 
establishments is available. For each selected establishment 
from the frame, we wish to sample the entire set of estab­
lishments belonging to the same enterprise. The missing 
establishments from the frame are expected to be sampled 
via the establishments present on the frame. 

Suppose that a sample s'^ of m^ units is selected from 
a population U'^ of M^ units using some sampling 
design. Let vf be the selection probability of unity. We 
assume ir/ > 0 for all j dU^. 

Let {/* be a population of M* units. This population 
is divided into N clusters where cluster / contains Mf 
units. For example, in the context of social surveys, the 
clusters can be households and the units can be the persons 
within the households. For business surveys, the clusters 
can be enterprises and the units can be the establishments 
within the enterprises. From population U^, we are inter­
ested in estimating the total Y = £ ^ , E A^ i /̂vt for 
some characteristic y. 

An important constraint that is imposed in the measure­
ment (or interviewing) process is to consider.all units 
within the same cluster. That is, if a unit is selected in the 
sample, then every unit ofthe cluster containing the selected 
unit wiU be interviewed. This constraint is one which often 
arises in surveys for two reasons: cost reductions and the 
need for producing estimates on clusters. Referring back 
to the example of social surveys, there is normally a small 
marginal cost for interviewing all persons within the 
household. On the other hand, household estimates are 
often of interest with respect to poverty measures, for 
example. 

We assume that there exists a link (or a correspondence) 
between each unit j of population C/'̂  and at least one 
unit k of population U^. Also, each cluster / of U^ has at 
least one Unk with a unity of U'^. The link is identified 
through an indicator variable Ijk where Ijk = 1 if there is 
a link between unit j € U'^ and unit k € U" and 0 other­
wise. All units of population U'^ have at least one link 
with population t/*, i.e., Lf = ZkiU^ Ijk ^ 1 for all 
j € U^. However, there can be zero, one or more links 
for a unit k of population U^, i.e., U is possible to have 
Ek = I,jiU^ Ijk = 0 or Lf = lygt/X Ijk > 1 for some 
k € U^. This is illustrated in Figure 1. 

U^ 

1 ' 
Cij 

(zjCT 

C^j~^— 

C''/—-—^ 

u^ 
k 

-C^/ 

^fsj 

M 
V V 

0 

Figure 1. Links between units of populations U and U 

The estimation process presented now uses the sample 
s^ together with the links existing between (/"̂  and U^ to 
obtain an estimation of the total K belonging to population 
f/*. The links are in fact utilized as a bridge to go from 
population U^ to population U^, and vice versa. Note 
that in practice, it might not be physically possible to 
directly select a sample s^ from U^, as it has been described 
in the introductory examples. 

To estimate the total Y, one can use the estimator 

n Mf 

Y = Y "El '̂* •̂ '*' (1) 

where n is the number of interviewed clusters and Wik 
is the weight attached to unit k of cluster /. To obtain 
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unbiased estimates, a possible set of weights could be the 
inverse of the selection probabilities of the units entering 
into the estimator Y. For each unit k of cluster / having 
a link Ijjk — 1 with a unity in U'^, this is possible since 
we have irf = ir/. However, not all units of U^ neces­
sarily have a link to U'^. Moreover, even if a link exists, 
it is not guaranteed that the selection probability irf is 
known when j i s'^; the sample design used to select s'^ 
could be, for example, a multistage sample design where 
the ultimate selection probabiUty of each unit y is only 
known at the end of the selection process. To assign a 
nonzero weight w„t to each unit k of cluster / entering into 
Y, the Weight Share method can be used. 

In general, the Weight Share method allocates to each 
sampled unit a basic weight established from an average 
of weights calculated within each cluster / entering into Y. 
An initial weight that corresponds to the inverse of the 
selection probability is first obtained for unit k of cluster 
/ of y having a link Ijjk = 1 with a unity € s'^. An initial 
weight of zero is assigned to units not having a link. The 
basic weight is obtained by calculating the mean of the 
initial weights for the cluster. This weight is finally assigned 
to all units within the cluster. Note that the fact of allo­
cating the same basic weight to all units has the consid­
erable advantage of ensuring consistency of estimates for 
units and clusters. 

Formally, each unit k of cluster / entering into Y is 
assigned an initial weight w-k as follows: 

M^ 

^ik = Y •̂''•'* 
J7_ 
, ^ ' 

(2) 
7=1 

where tj = 1 if y € s^ and 0 otherwise. Note that a unit k 
having no link with any unity of U^ automatically has an 
initial weight of zero. 

The basic weight w, is given by 

Mf 
W, Ik 

Wi = 
Mf 

k=l 

(3) 

where Lik = T,j=i Ij.ik- The quantity Z,,̂ . represents the 
number of links between the units of U'^ and the unit k 

D 

of cluster / of population U^. The quantity L, —Y.'ki\Efk 
then corresponds to the total number of links present in 
cluster /. 

Finally, we assign ŵ ^ — w,- for all k 6 /. 

2.1 Unbiasedness of the Weight Share Method 

We now show that the estimator Y with the Weight 
Share method is unbiased for Y. Starting with Y = 

E ?= 1W/ H k=iyik = E ?= 1 W;y,, we replace the definition of 
Wi in Y to get 

î  = D >-/ 
(=1 

Mf 

Y ̂ '̂  
Mf 

k=l 

n Y '^ 

= i: f ^ --
/ • = 1 ' y t = l 

Letting Zik — ^i lEi for all k € /, we then have 

n Mf 

Y=YY '̂ ''*̂ '*-
/=1 k=l 

(4) 

Let a single index k be used to identify the m* units entering 
into Y{m^ = Y, f=i Aff). By replacing w^ by its definition 
(2), we obtain 

n,B 

Y^ Y *̂*̂* 
k=l 

A/" 

'JI'IA 
7=1 

Zk-

Now since tj ^ 0 only for the units k entering into Y, we 
can extend the first summation to all units k in (/*. That is, 

* = i 

M^ 

'j/'lA 
7=1 

Zk-

Rearranging Y, we finally obtain 

M^ f M^ 

Y=Yf.i:'j^^^ 
; = i ^J k=i 

M" 

= ^6i^^- (5) 

Now, taking the expectation gives 

M^ 

E{Y) = Y^-fZj 

M^ 

Y^j = ̂  
7=1 

since E{tj) = irf. 



28 Lavallee: Cross-sectional Weighting Using the Weight Share Method 

It suffices now to show that Z = Y. First, we have 3. APPLICATION TO SLID 

M^ M^ M^ M^ M^ 

z = Y ^j-Ii D 'jkZk = Y'^T, hk-
j=l 7=1 k=l k=l j=l 

By rearranging these summations in terms of the N clusters 
of population U^, we then obtain 

N Mf M'^ N I^ 

^ = Y YJ ^"'Jj '•'•''* ^ Yi YJ '̂'* '̂* 
/=1 k=l j=l i=l k=l 

In January 1994, SLID was launched by Statistics 
Canada. Its aim is to observe individual activity in the 
labour market over time, and changes in individual income 
and family circumstances. To repeat, the primary aim of 
SLID is to provide longitudinal data. However, cross-
sectional estimates will also be produced. The target 
population of SLID is all persons, with no distinction as 
to age, who live in the provinces of Canada. For opera­
tional reasons, the Territories, institutions, Indian reserves 
and military camps are excluded (see Lavallee 1993). 

N Mf Y ^ 

i=l k=l ' ; = l 

The unbiasedness of the Weight Share method can also be 
proved using an approach similar to the one presented by 
Ernst (1989). 

2.2 Variance Estimation 

To obtain a variance formula for Y, we start with 
equation (5). Since K turns out to be nothing more than 
a Horvitz-Thompson estimator of Z (see Horvitz and 
Thompson 1952), the variance of y is then directly given by 

Var(y) = 1) X; 
7=1 7' = 1 

(TTjj' - TTj Try-) 

TTj TTj' 
ZjZj. (6) 

where irĵ - is the joint probability of selecting unitsy and 
y ' (see Sarndal, Swensson and Wretman 1992 for the 
calculation of irfj' under various sampling designs). 

In practice, equation (6) is simple to use. Initially, it 
suffices to calculate Zk — Yi/Li for each unit k € /. Then, 
we compute Zj = E jfl i Ijk Zk • All that remains is to plug 
each Zj into the variance equation of the Horvitz-
Thompson estimator. 

The variance Var(y) may be unbiasedly estimated 
from the following equation: 

m^ m^ 

Var{Y) = Y Y 
(irfj. - i r / i r / ) 

,A,^A 
ZjZj. (7) 

7=1 7' = 1 

Another unbiased estimator ofthe variance Var( Y) may 
be developed in the form of Yates and Grundy (1953). 
Other variance estimators are available in the literature, 
such as jackknife variance estimators. A jackknife variance 
estimator in the context of the SLID sample design is 
discussed in Section 3.2.3. For further details, see Wolter 
(1985) and Sarndal, Swensson and Wretman (1992). 

3.1 Sample Design 

3.1.1 Initial Sample 

The SLID longitudinal sample was drawn in January 
1993 from two groups rotating out of the Canadian Labour 
Force Survey (LFS), making the sample a sub-sample of 
the LFS. The longitudinal sample for SLID is made up of 
close to 15,000 households. A household is defined as any 
person or group of persons living in a dwelling. It may 
consist of one person living alone, a group of people who 
are not related but who share the same dwelling, or U may 
be a family. 

LFS is a continuing survey designed to produce monthly 
estimates of employment, self-employment and unem­
ployment. This survey uses a stratified multi-stage design 
which uses an area frame in which dwellings are the final 
sampling units. All the individuals who are members of 
households that occupy the selected dwellings make up the 
LFS sample. In other words, LFS draws a sample of 
dweUings and all individuals in the households that live in 
the selected dwellings are interviewed. A six-group rotation 
plan is used to construct the sample: every month, one 
group that has been in the sample for six months is rotated 
out. Each rotation group contains approximately 10,000 
households, or approximately 20,000 individuals 16 years 
old or more. For further details on the LFS sample plan, 
see Singh et al. (1990). 

For SLID, the longitudinal sample will not be updated 
following its selection in January 1993. However, to give 
the sample some cross-sectional representativeness, initially-
absent individuals in the population {i.e., individuals who 
were not part ofthe population in the year the longitudinal 
sample was selected) will need to be considered in the 
sample in January 1994 and later. Initially-absent individ­
uals include newborns (births since January 1993) and in-
migrants. Note that this addition to the sample will be 
cross-sectional in that only the longitudinal individuals will 
be permanently included in the sample. 

Table 1 presents the terminology developed for SLID. 
After sample selection in January 93 (year 1), the popula­
tion contains longitudinal individuals and initially-present 
individuals. In January 94 (year 2), the population contains 
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longitudinal individuals, initially-present individuals and 
initially-absent individuals. Focusing on the households 
containing at least one longitudinal individual {i.e., 
longitudinal households), initially-present and initially-
absent individuals who join these households are referred 
to as cohabitants. 

Table 1 

SLID Terminology 

Individuals: 

Longitudinal individuals: Individuals selected at year 1 in the 
longitudinal sample. 

InUially-absent individuals: Individuals who were not part 
of the population in the year the longitudinal sample was 
selected (year 1). It includes in-migrants and newborns. 

Initially-present individuals: Individuals who were part of the 
population of year 1 but were not selected then. 

Cohabitants: Initially-absent and initially-present individuals 
who join a longitudinal household. 

In-migrants: Individuals who, in January of year 1, were 
outside the ten provinces of Canada and individuals in 
excluded areas (the Territories, institutions, Indian reserves 
and military barracks). 

Newborns: Births since January of year 1. 

Households: 

Longitudinal households: Households containing at least one 
longitudinal individual. 

SLID will follow individual and household charac­
teristics over time. At the time of each wave of interviews, 
all the members of a longitudinal household will be inter­
viewed. The composition ofthe longitudinal households 
will change over time, as the result of a birth or the arrival 
of an in-migrant in the household. A part ofthe selection 
of initially-absent individuals may be based on individuals 
who join longitudinal households. 

3.1.2 Supplementary Sample 

The restriction to initially-absent individuals who join 
longitudinal households will unfortunately exclude house­
holds made up of initially-absent individuals only {e.g., 
in-migrant families). To offset this shortcoming, one pos­
sibility is to draw a Supplementary Sample. This sample 
could be one of dwellings drawn directly from the ongoing 
LFS at each wave of interviews. Supplementary questions 
would then be added to the LFS questionnaire to detect 
households that contain at least one in-migrant; the house­
holds selected would then be interviewed. 

Recalling that the Supplementary Sample is used for the 
selection of households made up solely of initially-absent 
individuals {i.e., in-migrants and newborns), restricting this 
sample to in-migrants only would not cause any represen­
tativeness problem. This is because it is highly unlikely that 

households containing only newborns would be found: 
each household normally contains at least one adult. The 
newborns are then already represented in the sample by 
the longitudinal households. Now, if the Supplementary 
Sample were to include newborns in addition to in-migrants, 
sigiuficant costs woidd be added to the survey. This is because 
the Supplementary Sample would include a complete 
household for each newborn selected in the Supplementary 
Sample, producing excessive sample growth and uimecessary 
costs since the newborns are already represented in the 
sample. 

One other approach different from using the ongoing 
LFS could be to select the Supplementary Sample by 
revisiting the dwellings used for the selection of the initial 
sample. This method offers some practical advantages, one 
being the facility to go to known addresses. This approach 
however would bring the problem of new dwellings which 
were not there in January 1993. These dwellings would 
have a zero probability of being selected in the Supplemen­
tary Sample and a bias would therefore be introduced. 
This is one reason favouring the first approach, i.e., 
detecting households that contain at least one in-migrant 
via the questionnaire of the ongoing LFS. 

Figure 2. Selection of persons for SLID. 

Figure 2 summarizes the longitudinal and cross-sectional 
selection of individuals. In Figure 2, the letters and houses 
represent individuals and households, respectively. Individ­
uals A, D, E and F are longitudinal individuals whom we 
follow over time. Individual C is an initially-present indi­
vidual, i.e., an individual who was mcluded m the population 
in year 1 but was not selected then. Initially-absent and 
inUially-present individuals who join a longitudinal house­
hold are caUed cohabitants. In year 2, mdividual H represents 
an initially-absent individual who joins the sample as a 
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cohabitant. The fourth house in year 2 represents a house­
hold selected for the Supplementary Sample of year 2 and 
in which individuals I and J are initially-absent individuals 
(with one of the two being necessarily an in-migrant since 
the Supplementary Sample is restricted to them). Indi­
vidual G is an initially-present individual with the same 
status as C. In year 3, individuals C and H have left their 
longitudinal households and will therefore not be inter­
viewed. Individuals I and J who were selected in the Sup­
plementary Sample are now replaced with the individuals 
of the Supplementary Sample of year 3, i.e., individuals 
K and L. Individual M is an initially-absent individual 
joining a longitudinal household as a cohabUant. It may 
finally be noted that, for cross-sectional purposes, a 
selected household may contain one or more longitudinal 
individuals, initially-present individuals and iiutially-absent 
individuals (newborns and in-migrants). 

3.2 Basic Weighting 

3.2.1 General Considerations 
To produce cross-sectional estimates, the longitudinal 

sample augmented with initially-absent individuals and 
initially-present individuals must be weighted. The first 
step is to obtain a basic weight for each individual in each 
interviewed household. The basic weight is the weight 
prior to adjustment or post-stratification. It is, so to speak, 
the equivalent of the sample weight. Note that the basic 
weights are useful solely for cross-sectional estimation. 

The basic weights are obtained from the selection prob-
abiUties. As described above, in January 1993 (year 1), we 
select for SLID a samples''' of m' ' ' individuals from a 
population f/'"' of M ' " individuals. The sample is selected 
through dwellings which contain households. In other 
words, the m<'' individuals are obtained by selecting « ' ' ' 
households from A/*'', each household /being selected 
with probability xi'> > 0 , / = 1, . . . , N<". LetM/'> be 
the size of household/so that M ' " - £ , 1 ' , " M / ' > . Also 
let Try be the selection probability of individual y. This 
selection probability is retained throughout all waves of 
the survey. 

For a given subsequent wave (which may be defined as 
year 2), the population [/contains the A/'"' individuals 
present at year 1, plus someM*^' initiaUy-absent individ­
uals {i.e., initially absent from the population at year I). 
The population of initially-absent individuals is indicated 
by (/< '̂. Hence, the population C/ = [/<" U t/* '̂ contains 
M = M<" -I- M ' ^ ' individuals. Letting t/*'^' be the popu­
lation of M* '̂ ' in-migrants of year 2, we have U* *̂ ' c t/(2) 
and also M**̂ ' < M*^'. In our notation, the asterisk (*) 
is used to specify that the newborns have been excluded. 
The individuals of year 2 are contained in N households 
where household /is of size M,, / = 1, ..., N. 

For cross-sectional representativeness, some in-migrants 
are selected from the Supplementary Sample. At year 2, 

we then select a sample s* *̂ ' of w* *̂* individuals from the 
population t/*'̂ * of M*<̂ ' in-migrants. The Supplementary 
Sample is selected through households, i.e., the /w*<̂ ' 
individuals are obtained by selecting rt*'^' households. 
Let ir/* '̂ be the selection probability of the in-migranty. 
We assume ir/'^' > 0 fory = I, . . . , M*^^\ 

One implication of selecting in-migrants through house­
holds is that other individuals (such as newborns, initially-
present individuals or longitudinal individuals) can be 
brought in by the Supplementary Sample by living in the 
same household as the selected in-migrants. However, 
since the selection units of the Supplementary Sample are 
restricted to the in-migrants, these other individuals are 
not properly selected, say, in the Supplementary Sample, 
even if they will be interviewed. The selection probabilities 
of these individuals are in fact not well defined. 

The remaining in-migrants selected for cross-sectional 
representativeness are those individuals who join longitu­
dinal households, who are then considered as cohabitants. 
As with the newborns and initially-present individuals of 
the previous paragraph, the addition of cohabitants to 
longitudinal households brings individuals with non-well 
defined selection probabilities. 

The individuals with non-well defined selection proba-
biUties have entered the survey process in a "non-legitimate" 
way. They complicate the determination of the basic 
weights, as their selection probabiUty is not well defined. 
In order to override this difficulty, the Weight Share 
method is proposed. 

3.2.2 Basic Weight Calculation 

The Weight Share method described in Section 2 is now 
appUed to the SLID sample, including the Supplementary 
Sample. The population U"^ is here represented by the 
union ofthe two distinct populations C/*" and C/*'̂ ', i.e., 
U"^ = U* ̂  C/<" -I- C/*<̂ '. The sample5-^ of m = m<" -I-
AW**̂' individuals corresponds to the union of the two 
distinct samples 5 '" and s*^^\ The population U^ is repre­
sented by [/= [/<" + C/'^'. The population f/"̂  = U* 
excludes the newborns while the population U" = U 
includes them. The clusters of population U^ simply corre­
spond to the A/households of year 2, and hence Mf = Mi. 

One possible linkage between population f/̂  and U" 
can be established by the same individuals in populations 
t/-̂  and U". That is, Ijk = 1 if individualy in population 
U'^ corresponds to individual k in population U^, and 
Ijk = 0 otherwise. For each individual k not being a new­
born, we then have Ljk = Ej^i Ij.ik - 1- Oi^the other 
hand, for each newborn k, we have L,̂  = £y= i Ijjk = 0 
since they are excluded from U^. We now have L, = 
HifliEik = M* where M* is the size of household / 
excluding the newborns. 

Note that this last linkage is only one among several 
other possibUities. One other possible linkage would be to 
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extend the linkage of the previous paragraph to all other 
persons within the household. That is, assign ljk = 1 for 
all individuals k (of U^) belonging to the same household 
/ where individual y (of U'^) now belongs in U^, and 0 
otherwise. In other words, ljk = 1 if individuals y and k 
belongs to household /. For each individual k in household 
/, we theii have L,̂ . = Y,j=^i h.ik = Mf. We also get 
Ei = ll^diEik = l^Ii Mr ^'MfMf. One can show 
that this linkage produces the same basic weighting as the 
one from the previous paragraph. Because the first linkage 
corresponds to a more natural way to link the individuals 
(i.e., by linking only the same individuals between U'^ and 
U^), we will adopt the linkage proposed in the previous 
paragraph. 

By considering the definition (2) of the initial weight 
wlk of individual k in household /, we obtain 

Wik = (8) 

where /,4'' = 1 if individual k is part of 5 ' ' ' and 0 other­
wise,/*^'^' = 1 if individual A: is part of 5**^'and 0 other­
wise. This can be written more explicitly as 

Zk 
. (2) 

^=i:ik^i: Zk 

k=l •^i< k=l n 
(2) 

=z*<" + z*(2', (H) 

where zt = Yf for k € / with Yf = E *i i yik/Mf. Thus, 
estimator (11) is simply the sum of two Horvitz-Thompson 
estimators related to 5*" and s*'^'. As shown in Section 2, 
this estimator is unbiased for Y. 

3.2.3 Variance Estimation 

The variance formula for Yis provided by equation (6). 
However, assuming that the two samples 5 " ' and s* *̂ ' are 
selected independentiy, we have Var (Y) = Var (Z* *") -l-
Var(Z* <^'), where each term has the form of equation (6). 
For SLID, this assumption of independance holds if the 
selection of the Supplementary Sample is done through LFS. 

Considering Z**'\ we can re-index the individuals to 
reflect the fact that the m ' " individuals were selected at 
year 1 through /i<'' households. This gives 

l/ir/^> for A:€5<" 

wlk = i l/'rf/t'^' for A:€5*<2> 

0 otherwise. (9) 

Note that the first line of (9) corresponds to the longi­
tudinal individuals. The second line corresponds to the 
in-migrants selected through the Supplementary Sample. 
The third line represents altogether newborns, cohabitants 
(if the household is a longitudinal household not part 
of the Supplementary Sample) and/or initially-present 
individuals (if the household is part ofthe Supplementary 
Sample). 

The basic weight tv, of household / is obtained from 

„ ( i ) (') «.,!') n ' ' M, 

^•'"-L^-llH, 
k=l 

"'"z;"' 

,t','^i",tl ,ti w 

since, by selecting complete households TTĵ " = 7r/"for 
y € /. The variance Var (Z* ' ' *) is then directly obtained as 

y v ' " y v < " f^,(,l) _ Tr/')ir/. 'h 

Var(Z*(") = Y D \ i u % Zf^^^ZlS^K 
""'' (13) 1=1 i' = i 

W: =• 

Mi 

Y ^'-K 
k=l 1 „ 

Mi 

Mi Mf 
(10) 

D^M 
* = l 

k=l 

and finally Wik = w, for k € /. 

Using the basic weights obtained from the Weight Share 
method, one can estimate the total ^ = E / l i E*ii3'(* 
of the characteristic J' measured at year 2. The estimator 
used is the one given by equation (1). Using the definitions 
of the initial weights and the basic weights, Y can be 
rewritten as 

Considering Z**^', the individuals can also be re-indexed 
for consistency with Z*"', although this modification has 
no effect on the form of Z* *̂ '. Following the same steps 
used for Var(Z'<'>), Var(Z*'2') is obtained as 

^.(2)^.(2) 

Var(Z*'̂ ') = 2 ] Y (^fr ,<2)_ 7 r * (2 )^ , * (2 ) \ 

z* '̂ ' 
1=1 r = i 

. „ . * (2 )^* (2 ) zi^'\ 
(14) 

where A/** '̂ is the number of households of year 2 con-
taining at least one in-migrant and Z*'^* = Y^fJi z*j. 
The quantity M* ̂ '̂ represents the number of in-migrants 
present in household /. 
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Finally, Var ( Y) is simply given by 

'^"' ^*" ^̂ (.1.) _ ^P)^i.') 
Var(f) = D D ( ^ • - ' - W " x A " ) . , , n ^ n > 

').,ril) 
/=1 / ' = 1 

i r / " i r / 
Zr"ZJ-' 

f,j.(2)^.a) ^ _ ^ . ( 2 ) _ * ( 2 ) 

+ 1; D 
/=! / ' = 1 

(TTir IT I Ttr ) 2* (2)2*,(2) 

(15) 
. ^ * ( 2 ) _ » ( 2 ) 
IT/ IT/' 

The variance (15) may be unbiasedly estimated using 
the following equation: 

/= I r = 1 " ' ' 

« - ' 2 ) „ . < 2 ) , ^ , ( 2 ) _ ^ , ( 2 ) ^ * ( 2 ) ) 

/=! r = i 

dtp 
. ^ * ( 2 ) ^ * ( 2 ) . ^ * ( 2 ) 

z;(2)z?.(2). 

(16) 

As SLID is in fact a sub-sample from LFS, the jack-
knife variance estimator developed for LFS (see Singh 
et al. 1990) may also be used, with minor modifications. 
In general, the jackknife method works as follows: the 
sample first is divided into random groups (or replicates, 
according to the LFS terminology). Then, each random 
group r is removed in turn from the sample and a new 
estimate Y^^) of the total Y is computed. The different 
estimates Y^^) are finally compared to the original estimate 
Y to obtain an estimate of the variance Var (Y). For 
further details on the jackknife method in general, see 
Sarndal, Swensson and Wretman (1992). 

Recall that LFS is based on a stratified multi-stage 
design which uses an area frame. Within each first-stage 
stratum h, the random groups (or repUcates) correspond 
basically to the primary sampUng uiuts (PSUs). To compute 
the jackknife variance estimate for the estimation of the 
total Y, the following formula can be used: 

\ar j{Y) = Y (Rh - 1) 
RH Y (̂ Ĉ ) Y)\ (17) 

where /?/, is the number of replicates in stratum h and 
Y(i,r) is the estimate of Y obtained after replicate r in 
stratum h is removed. For LFS, both Y and Y(i,r) are 
poststratified based on the integrated approach of Lemaltre 

and Dufour (1987). The plan is to use the same post-
stratification approach for SLID but this discussion is out 
of the scope of the present paper. 
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Weighting Schemes for Household Panel Surveys 
GRAHAM KALTON and J. MICHAEL BRICK 

ABSTRACT 

Household panel surveys often start with a sample of households and then attempt to follow all the members of 
those households for the life of the panel. At subsequent waves data are collected for the original sample members 
and for all the persons who are living with the sample members at the time. It is desirable to include the data collected 
both for the original sample persons and for the persons living with them in making person-level cross-sectional 
estimates for a particular wave. Similarly, it is desirable to include data for all the households for which data are 
collected at a particular wave in making household-level cross-sectional estimates for that wave. This paper reviews 
weighting schemes that can be used for these purposes. These weighting schemes may also be used in other settings 
in which units have more than one way of being selected for the sample. 

KEY WORDS: Cross-sectional estimates; Fair share weighting; Multiplicity weighting; Panel surveys; Weight 
share method. 

1. INTRODUCTION 

National panel surveys of household economics have 
been mounted in many countries in recent years. The U.S. 
Panel Study of Income Dynamics (PSID), conducted by 
the Survey Research Center of the Univershy of Michigan, 
began in 1968 and has been collecting data on an annual 
basis since that time (Hill 1992), and the British Household 
Panel Survey began in 1990 (Buck et al. 1994). Similar 
household panel surveys are also in progress or are being 
planned in most other European countries. The U.S. 
Bureau of the Census started to conduct the Survey of 
Income and Program Participation (SIPP) in 1983 (Nelson 
et al. 1985; Kasprzyk 1988; Jabine et al. 1990; Citro and 
Kalton 1993), and Statistics Canada introduced the Survey 
of Labour and Income Dynamics (SLID) in 1994 (Lavallee 
et al. 1993). 

A common feature to most of these household panel 
surveys is that they start with a national sample of house­
holds, and then follow all the members of those households 
for the Ufe of the panel. Over the course of time, household 
compositions change in a variety of ways. Some members 
of original sampled households leave those households to 
set up on their own or to join other households, as, for 
example, when a daughter leaves her parental household 
to get married. New members may join original sampled 
households, as, for example, when an elderly parent moves 
in wkh the family of a child or when a child is born to a 
household member. In order to be able to describe the 
economic circumstances of sample members at different 
points of time, household panel surveys usually collect data 

not only for the sample members but also for the individuals 
living with the sample members at the particular point of 
time. Following LavaU6e (1995), these individuals are termed 
cohabUants in this paper. In other literature, they are often 
called associated persons or nonsample persons. 

As the panel duration increases, the proportion of 
cohabitants in the sample at a wave rises. For example, in 
the 1984 SIPP panel, cohabitants comprise about 8.6 per­
cent of the sample after one year and about 12.6 percent 
of the sample after two years (based on Table 1 in Kasprzyk 
and McMillen 1987). With a long-term household panel 
survey, the proportion of cohabitants becomes substantial 
after several years. The PSID, for example, defines sample 
members as all persons in the family units sampled in 1968 
who are still aUve, all the children born to these original 
sample members since the start of the panel, and the 
chUdren of such children. In addition, the PSID collects 
data on the cohabitants who are living with sample 
members at each individual wave of data collection. Of 
the 20,535 individuals in interviewed famUy units in 1992, 
41.2 percent were original sample members, 34.6 percent 
were the children of original sample members born since 
the start of the panel and children of such children, and 
24.2 percent were cohabitants (excluding the Latino sample 
that was added in 1990) (Hill 1995). 

This paper reviews methods of weighting the data 
collected from both sample persons and cohabitants in 
order to produce unbiased (or approximately unbiased) 
estimates of population parameters. In considering the 
analysis of a household panel survey, three different types 
of analysis may usefully be distinguished: 

' Graham Kalton and J. Michael Brick, Westat Inc., 1650 Research Blvd., Rockville, MD 20850, U.S.A. 
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• Cross-sectional analyses of households at a particular 
point in time; 

• Cross-sectional analyses of individuals at a particular 
point in time; 

• Longitudinal analyses of individuals over a period of time. 

Weighting schemes for these three types of analysis are 
discussed in later sections. Longitudinal analyses of house­
holds over a period of time are not treated here because 
of the problematic nature of this type of analysis caused 
by changes in household composition (see, for example, 
Duncan and Hill 1985). 

The weighting schemes used in household panel surveys 
need to account for the fact that households and individ­
uals included in the survey at a particular wave may have 
more than one route by which they can be selected. At a 
given wave a household and its members are included in 
the sample if any of the original households {i.e., house­
holds existing at the time of the initial selection) from 
which the current household has drawn members was 
selected. With the usual weighting approach, households 
are assigned weights inversely proportional to their joint 
selection probabilities, taking account of the different 
ways they can be selected. However, this approach cannot 
be applied with most household panel surveys because 
these joint selection probabilities cannot be determined. 
The alternative weighting approach reviewed here, termed 
by Lavallee (1995) the weight share method, avoids the 
need to know the joint selection probabilities of sample 
elements, but it introduces a random variation into the 
weights. Since this random variation results in a loss in 
precision of the survey estimates as compared with the 
inverse selection probability weighting scheme, this alter­
native approach should be considered only for situations 
where the joint selection probabUities cannot be ascer­
tained. This situation often appUes in household panel 
surveys and also in a number of other sample designs 
where elements can be selected by different routes. 

In order to prepare for the discussion of weighting 
schemes for household panel surveys, the next section 
elaborates on the household changes that can occur over 
time, and the types of individuals involved. Sections 3,4 
and 5 then discuss weighting schemes that may be used for 
the three different forms of analysis described above. 
These sections deal with weighting schemes for unequal 
selection probabilities, without the complications of 
adjustments for nonresponse and noncoverage. The 
discussion relies heavily on previous work by Ernst (1989), 
Gailly and Lavallee (1993), Huang (1984), Judkins et al. 
(1984), LavaUee and Hunter (1992), and Little (1989). 
Section 6 then briefly reviews the issues involved in making 
adjustments to the weights to compensate for missing data 
arising from nonresponse and noncoverage. Section 7 
presents some concluding remarks, and provides an illus­
tration of another application of the weight share method. 

2. CHANGES IN POPULATION 
AND HOUSEHOLD 

COMPOSITION OVER TIME 

In analyzing a panel survey, it needs to be recognized 
that survey populations change over time. With household 
panel surveys it is important to distinguish between changes 
in population composition and changes in household 
composition. 

The composition of a survey population changes over 
time because some individuals leave the population, some 
enter the population, and some may leave and join the 
population more than once. Individuals leave the popula­
tion through death, emigration, or entering an institution 
(for surveys of the noninstitutional population). They 
enter the population through birth (or reaching the specified 
minimum age), immigration, and leaving an institution. 

Households change composition over time for many 
different reasons, including deaths, births, marriages and 
divorces. For example, a household at time 1 may contain 
several individuals who end up in a number of different 
households at time 2. These individuals may set up new 
households on their own, they may join individuals who 
were in one or more households at time 1, or they may join 
individuals who were not in the population at time 1. One 
or more of the individuals may leave the population during 
the intervening period. 

Consider a simple sample design in which households 
are selected independently at time 1 with equal probability. 
At time 2, the sample of households comprises all the 
households that contain one or more individuals from the 
households sampled at time 1, and the sample of individ­
uals at time 2 comprises all the members of the sampled 
households at time 2. The samples of households and 
individuals at time 2 are selected with unequal probabil­
ities. For instance, the selection probability of a household 
at time 2 that contains individuals from three households 
at time 1 is three times greater than that of a household 
at time 2 that contains individuals from only one household 
at time 1. Similarly, the individuals in that household have 
three times the probability of selection. Thus weighting 
schemes that compensate for these unequal selection pro­
babilities are needed for the analysis ofthe resultant data. 

Changes in population composition occur when individ­
uals leave or enter the population. An individual sampled 
at time 1 who leaves the population before time 2 reduces 
the sample size for time 2 but does not otherwise affect 
cross-sectional estimates at time 2. In essence, the sampling 
frame for the time 2 population is the time 1 population, 
with the leavers in the intervening period being treated as 
blanks on the frame. Simply omitting the selected blanks 
from the time 2 sample causes no bias in the survey esti­
mates (see, for example, Kish 1965). The situation with 
regard to entrants is, however, less straightforward. The 
household panel survey enumeration rule described above 
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incorporates new entrants who join households that contain 
individuals who were eligible for the initial sample into the 
population for cross-sectional estimates for later time points. 
However, new entrants who set up their own households are 
not represented in person-level analyses at later waves of the 
panel. Equally, households composed of only new entrants 
are not represented in household-level analyses at later waves. 

The failure of household panel surveys to cover house­
holds composed of only new entrants presents a problem 
for cross-sectional analyses of later waves of the panel. If 
these households and their members constitute a negligible 
proportion of the population, the solution may be to 
simply ignore the problem. However, if the proportion is 
appreciable, as can occur in later waves of a long-term 
panel, alternative solutions may be called for. One possi­
bility is to add a supplementary sample of new entrants 
(e.g., immigrants) to the panel, as discussed by Lavallee 
(1995) for the SLID. This solution is, however, often 
impracticable. Another solution is to limit the population 
of inference to persons who were members of the popula­
tion at the start of the panel. New entrants found living 
with sample members are then excluded from the sample. 
This solution provides a clearcut definition of the popu­
lation of inference. Whether the solution is appropriate 
depends on whether that definition can adequately satisfy 
the survey objectives. 

Changes in population composition pose problems for 
longitudinal analyses of individuals. For many purposes, 
the population of inference is restricted to those who were 
present in the population throughout the time period of 
observation specified for the analysis. The inclusion of 
cohabitants in longitudinal analysis also creates problems. 
If the time period for the longitudinal analysis starts at the 
beginning of the panel, the analysis can be restricted 
straightforwardly to original sample members. If the time 
period starts later, it is tempting to include both original 
sample members and cohabitants joining the panel before 
the start of the analytic time period. However, the usual 
enumeration rules for household panel surveys specify that 
data are collected for cohabitants only while they continue 
to live with original sample members, that is, they are not 
followed if they cease to live with such persons. Unless the 
time period is short enough that the number of cohabitants 
who cease to live with sample persons in that period is 
negligible, this enumeration rule makes it problematic to 
include cohabitants in longitudinal analyses. This problem 
is discussed further in Section 5. 

3. CROSS-SECTIONAL ESTIMATES 
FOR HOUSEHOLDS 

This section considers weighting schemes that may be 
used to produce cross-sectional estimates for households 
for any wave of a household panel survey after the first. 

At the first wave a sample of households is selected and 
all the individuals in the sampled households become panel 
members to be followed throughout the life of the panel 
or until they leave the survey population. At a subsequent 
wave, wave /, the household sample comprises all the 
households in which panel members reside. Households 
that consist of new entrants only are not represented in the 
sample at later waves. Such households are ignored here. 
Complications of nonresponse are deferred until Section 6. 

Consider the estimation of the total Y for all H 
households in the population at time /: 

H 

Y=Y '̂-
/ = i 

(3.1) 

A general estimator for this total can be expressed as 

H 

Y^ Y '̂•̂ '•' 

where w, is a random variable that takes the value w, = 0 
if household / is not in the sample. The expectation of y is 

E{Y) = YE{Wi)Yi. (3.2) 
/ = i 

By comparing equations (3.1) and (3.2), U can be seen that 
Y is unbiased for Y for any weighting scheme for which 
E( Wi) = 1 for all /. 

There are many ways to satisfy the condition ^(w,) = 1. 
Three will be treated here. First, consider a standard inverse 
selection probability weighting scheme. The probability 
of a household being in the sample at time t is the proba­
bility of one or more of the households at time 1 from 
which it has drawn members being selected for the original 
sample. The probabiUty of household / / , being in the 
sample at time / is then 

P{Hi) = P{hjUhkDhiU...) 

= iPj - llPjk + lllPjkt - ---, (3.3) 

where P (/jy U /i^ U Af U . . . ) is the selection probability of 
the union of original households hj, hk, hg, etc. for the 
original sample, Pj is the selection probability of original 
household hj for the original sample, Pjk is the joint selec­
tion probability of original households hj and hk for the 
original sample, etc. and where households hj, hk, hg, 
etc. each contain at least one member who is currently in 
household / / , . The weight for each sampled household is 
then Wi — l/P{Hi). With this weighting scheme, 

E{Wi) = P{Hi)[l/P(Hi)] -t- [1 - P{Hi)]0 = I, 

satisfying the condition for an unbiased estimator of a 
population total. 
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In practice, the computation P(//,) wUI generaUy not 
be as complex as equation (3.3) might suggest because the 
number of original households represented in household 
Hi is usually small. With, say, two original households 
involved, /*(//,) reduces to 

P{Hi) = P{hi(Jh2) = Pi+ P2- Pl2- (3.4) 

A problem with the application of the inverse selection 
probability approach is that Pj may be known only for 
households selected for the original sample, and not for 
other households. Also the joint probabiUty may not be 
known. Even when the original sample was selected with 
equal probabilities, so that aU the pj are the same, the 
joint probability may depend on the sample design (for 
instance, whether the two households were in the same 
segment or not). The difficulty of obtaining /•(//,) is a 
major drawback with the inverse selection probability 
approach. 

An alternative strategy for developing the weights for 
time t is to base them only on the selection probabilities 
of households selected for the original sample, thus avoiding 
the difficulty in obtaining / '(// ,) noted above. One 
approach is to identify the set of households hj at time I 
that would result in household //, being in the sample at 
time t, and compute the weight for household //, as 

Wi = Y «.7 Wi (3.5) 

where w-j = 1 /pj if household hj, which has at least one 
member in household //,, was selected for the original 
sample and Wij = 0 if not, and where ay are any set of 
constants satisfying Y,j ciij — 1. 

With this approach. 

E{W;J) =Pj{l/Pj) + (l - Pj)0 ^ I, 

and hence 

E{Wi) = Y o^ij = 1-

Thus, the use of weights w, will yield unbiased estimators 
of totals for the household population for any choice of 
constants Oy, provided that Ey «/> = 1. As indicated 
above, the principal advantage of this type of scheme is 
that it requires information only on the initial selection 
probabilities of the original households that were sampled 
at time 1, which are known. It does not require information 
on the initial selection probabilities of the other original 
households that have members in the current household, 
which are often not known. 

A natural choice of a^ is to make them equal for all 
the original households that lead to the selection of house­
hold Hi at time t. Huang (1984) terms this scheme a 

multiplicity approach. Here the scheme will be called an 
equal household weighting scheme. With this scheme 

w, •/ = Y "^'I'^i' (3.6) 

where C, is the number of original households represented 
in household //, at time t. 

An alternative version of the above approach is one 
based on original sample persons rather than households. 
In this case, let fjk denote individual k from original 
household y in household /. Then 

Wi = 2]]^«,yt<*. 
7 * 

where w/jk = 1 /Pj if individual k in household hj was in 
the original sample and Wijk = 0 if not, and where the 
aijk are any set of constants satisfying EyE/t«//* = 1-
Since the probability of an individual being selected for 
the original sample is the same as that of that individual's 
household, 

E{wljk) =Pj{l/Pj) + (l - Pj)0 = I. 

In this case, the natural choice of the constants aijk is 
to make them equal for all members of the current house­
hold who were eUgible for selection for the original sample. 
This produces what has been termed the fair share 
weighting scheme (Huang 1984; Ernst 1989). This scheme 
is termed here an equal person weighting scheme. With this 
scheme 

1 
w, •'M,'^"' 

Wi 

where w-j = Wijk is constant for all individuals in house­
hold Hi emanating from the same sampled household at 
time 1, Mij is the number of individuals in household //, 
coming from household/ly, and M, = £,M(, is the number 
of individuals in household //, who were eligible for the 
sample at time 1. The equal person weighting scheme is 
appUed in the SIPP and is proposed for use in the SLID. 

Although developed here in terms of persons rather 
than households, it is readily apparent that the equal 
person weighting scheme could equally have been generated 
in terms of households. As shown above, the household 
weight w, = Y.jC'ijWij satisfies the condition E{Wi) = 1 
for any set of constants Oy such that Y,j cij = i •. The 
equal household weighting scheme chooses Oy = 1/C,, 
with Y,jOiij = 1. The choice Oy = Mj,/M,, with Y.j<^ij = 1. 
leads to the equal person weighting scheme. 

It is instructive to compare the inverse selection probab­
iUty weighting scheme wkh the equal household and equal 
person weighting schemes in a simple case. Following 
Little (1989), consider household //, selected at time / 
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with household members coming from two original house­
holds. Letpi andp2 denote the selection probabUities for 
the original households, and let Pi2 denote their joint 
selection probability. Under the inverse selection probab­
ility approach, the household weight is 

1 
W7 

as indicated above. 

Pi + P2 - Pl2 

Under the equal person weighting scheme the weight for 
household //, depends on which household or households 
were selected for the original sample: 

Wi = Pi /Pi if only household hi was selected; 

Wi = P2/P2 if only household /12 was selected; 

Wi = {P\/p\) + (P2//'2) if both/iI and/J2 were selected; 

where P] and P2 are the proportions of members of house­
hold Hi who came from households h\ and /i2, respectively 
(excluding any new entrants to the population). The probab­
iUty of only household /ij being selected is {p\ — P12), of 
only household /J2 being selected is (p2 — P12), and of 
both households being selected is/Ji2. The expected value 
of the weight conditional on household // , being in the 
sample is thus 

E{Wi I Hi in sample ) = 

{Pl-Pl2)(Pl/Pl) + (P2-Pl2)(P2/P2)+Pl2[(Pl/Pl) + (P2/P2)] 

Pi + P2- Pl2 

I.e., 

E{Wi I Hi in sample ) = = w7 
Pi + P2 - P12 

As this result demonstrates, the weight for household //, 
varies depending on which original households were 
selected, but in expectation the weight is the same as that 
obtained from the inverse selection probability approach. 

Results for the expectation of the weight of household 
Hi under the equal household weighting scheme can be 
readily obtained as a special case of the above derivation 
in which P] = P2 = '/2. In expectation, the weight is the 
same as that for the inverse selection probabiUty approach. 

Given that the weight w, = Xi; «y w-j satisfies the con­
dition £(M';) = 1 for any set of Oy such that Ey«// — 1. 
the question arises as to the optimal choice ofthe «/,. One 
approach is to choose the Oy to minimize the variance of 
the estimated total Y. 

The variance of Y may be expressed as 

where s denotes the set of households in the sample at 
time /. Now 

E{Y\ s) = E 
^ 1=1 ^ 

= YE{Wi\Hi)Yi = Y wrYi= Y*, 

where Y* is the standard inverse selection probability 
estimator. Thus 

VE{Y\ s) = V{Y*)-

The first term in equation (3.7) is thus the variance ofthe 
standard inverse selection probability estimator, and the 
second term is the additional variance resulting from the use 
of weighting schemes from the class (3.5), w, = Ey^yW//-
The Oy may then be chosen to minimize EV( Y \ s). 

Consider 

V(Y\s) = V(Y »̂ '̂ ' I ') 

Y Y YiYiCoy{Wi,Wi. \Hi,Hi.). 
i^i' 

Assuming Cov(w,,H',. | Hi,Hi) = 0, 

V{Y\s) =Y YlV{Wi\Hi) 

= Y YHE{wf \Hi) - w;2], 

since, as noted above, £'(M', | //,) = w*. Thus, assuming 
Cov(M',,w,' I Hi,Hi) — 0,V{Y \ s) is minimized when 
E{wl I Hi) is minimized. 

Consider the application of this approach to the simple 
case discussed above in which //, is composed of members 
from two original households and let w, = a/w/i + 
( I - ai)Wi'2. Then 

E{wl I Hi) 

, « r , X (l-oii)'^ / a , 1-Q!,V 
(P1-P12) -5+{P2-Pl2) 2 +^12 

Pi P2 

/«,.^i-.A^ 

V l P2 / 

Pi +P2-P12 

Minimizing E{wl \ Hi) is equivalent to minimizing 

A = (Pi - Pi2)phf + {P2 - Pi2)Pi{i - «/)^ 

V{Y) = VE{Y\s) + EV(Y\ s). (3.7) + Pl2[{P2 - Pl)0ti + Pi]' 
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Then 

doci 
= 2{pi - Pn)P20ii - 2{p2 - Pi2)Pi{i - oci) 

+ 2pi2{P2 - Pl)[{P2 - Pl)0ti + Pi]. 

Solving dA/doii = 0 for a, gives the optimum a, as 

«o,=fl+^-^^^^)"'. (3.8) 
\ Pi - Pl2/ 

If the original households are selected independently, i.e., 

Pi2 = P1P2, 

Oin 1 -I-
P2( l - Pi) 

/ ' l ( l - P2) r-[-'i\ (3.9) 

an unbiased estimate Y. The drawback to these schemes 
in such a case is only that the Oy are suboptimal in terms 
of minimizing the variance of Y. 

It should be noted that the equal household weighting 
scheme requires information on the number of original 
households hj contributing members to household // , at 
time t. That number may be difficult to determine in some 
cases. Consider, for example, a household at time t that 
contains two cohabitants. It may sometimes be difficult 
to determine whether these two persons were in a single 
household or in two separate households at the time ofthe 
initial sample selection. The equal person weighting scheme 
has the attractive feature of avoiding the need for Wave 1 
household information, except for persons in sampled 
households at Wave 1. This feature provides an important 
reason for preferring the equal person to the equal house­
hold weighting scheme. 

where ^pj - Pj/{1 — pj) is the odds of original household 
hj being selected. 

Irrespective of whether the households are sampled 
independently, in the special case of an equal probabUity 
(epsem) sample of households initially, with Px = P2, 

1 
ocoi = - . 

Thus, in the two-household case, the equal household 
weighting scheme minimizes the variance of the household 
weights around the inverse selection probability weight 
when the initial sample is an epsem one. 

The optimal choice of a,,, given by (3.8) requires knowl­
edge of Pi, P2 and Pi2, and that given by (3.9) requires 
independence and knowledge of Pi and/72- If these pro­
babilities were known, then the standard inverse selection 
probabiUty weight could be employed and would be 
preferable. In the case of an approximately epsem sample, 
the equal household weighting scheme should be close to 
the optimal, at least for the case where the members ofthe 
household at time t come from one or two households at 
the initial wave. This would apply, for instance, in the case 
of an epsem initial sample, with perhaps a few departures 
from epsem. With the equal household weighting scheme, 
when only one of the C, original households, hj, repre­
sented in Hi was selected for the original sample (as will 
generally be the case), then the weight for / / , is simply 
l/CiPj. 

In the case of a non-epsem initial sample, the choice of 
the fty would ideally depend on the original household 
selection probabilities. However, since these probabilities 
are unknown, that approach cannot be applied. By default, 
the equal household or equal person weighting schemes 
may therefore be employed in this case. The use of these 
schemes (or any scheme with constant Wy's satisfying 
£jQ!y = 1) with a non-epsem initial sample still results in 

4. CROSS-SECTIONAL ESTIMATES 
FOR INDIVIDUALS 

In producing cross-sectional estimates for individuals 
for any wave of a household panel survey after the first, 
it needs to be recognized that some new entrants will have 
joined the survey population since the start of the panel. 
New entrants who join households that contain one or 
more members of the original population can be repre­
sented in cross-sectional estimates for later waves, but new 
entrants living in households that do not contain any 
members of the original population are not covered (unless 
a special sample of them can be taken). The former type 
of new entrants is included in the weighting procedure 
described below, but the latter type is not. 

Let there be Â  individuals in the population at time t, 
with Ni individuals in household / / , (/ = 1, 2, . . . , / / ) 
and Y.Ni = N. The members of household // , come from 
households hj, hk, h(, etc., at time I. Let M,y denote the 
number of members of household // , at time / who were 
in household hj at the start of the panel. The sum M = 
E E Mij is less than the population size at time I because 
of leavers from the population in the period from time 1 
to time t, and M < N because of new entrants to the 
population who are in households containing members 
from the original population. 

Consider now the estimation of a total for the population 
of individuals at time t: 

H 

Y = 

/ •= ! k=l 

'ik- (4.1) 

where Yik is the value for individual k in household / / , . 
As in the household case discussed in the previous section, 
a general estimator for this total can be expressed as 
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H Ni 

Y=YY "̂t̂ '*' 
(=1 k=l 

(4.2) 

where w,̂ . is a random variable that takes the value W/̂. — 0 
if individual k in household // , is not in the sample. The 
estimator yis unbiased for yprovided that ^(Wivt) = 1 
for all / and k. 

As noted earlier, there are many ways to satisfy the 
condition £ ( w,̂ .) = 1. It is instructive to consider three 
of them. First, let w,vt = 0 for all individuals not in the 
original sample. In this case, the estimator Y discards 
cohabitants. Let Pik denote the probabiUty of a member 
of the original population, individual k residing in house­
hold Hi at time t, being selected for the initial sample, and 
let Wik — yPik- Then, for such an individual 

E{Wik) = Pikd/Pik) + (1 - Pik)0 = 1. 

With this scheme, aU new entrants to the population have 
Wik = 0 with certainty. Thus Y in (4.2) provides an 
unbiased estimator of the total for the original population 
that is still present at time t, but does not include a com­
ponent for the new entrants. 

Modifications to the above procedure can be made to 
cover certain types of new entrants. For instance, births 
to sampled mothers can be included by assigning them the 
weights of their mothers, or if, as in the SIPP, the survey 
population is taken to be adults aged 16 and over, those 
under 16 at the start of the panel can be treated as sampled 
persons with assigned probabilities, and they can be 
included in the analyses of later waves after they have 
attained the age of 16. Such modifications do not, how­
ever, handle all types of new entrants. Provided that the 
proportion of other types of new entrants is small, this 
deficiency may not be a serious concern. 

The weighting scheme that restricts the analysis to 
original sample persons, plus certain specified new entrants, 
is employed with the PSID. Its limitation is that k fails to 
make direct use of data collected for cohabitants. Such 
data may be used to provide information on the situation 
of sample persons, but the cohabitants are excluded from 
the sample for the analysis. 

In order to include cohabitants in cross-sectional 
analyses for time t they need to be assigned positive weights. 
Noting that the probability of an individual being selected 
for the sample is the same as that of his or her household, 
weighting schemes for cross-sectional analyses of indi­
viduals at wave / can be obtained directly from those for 
households given in Section 3. Here we will develop the 
general strategy of producing weights for cross-sectional 
analysis at time / based only on the selection probabilities 
of members of the original sample, thus avoiding the 
problems with the inverse selection probability approach 
noted in Section 3. 

Let fjk denote individual k from original household hj 
who is now in household / / , . Let w, denote the weight for 
every member of household //, for cross-sectional analyses 
at time /, and let 

Wi = YYi'^'j" w, ijk 

where Wijk — l/Pj if household hj was in the original 
sample and Wĵyt = Oif not. Then, as before, £'(H',yyt) = 1 
for members ofthe original population. New entrants, for 
whom Pj — 0, may be handled by setting aijk = 0. Then 

Ni Mi 

E{Wi) = YY^'iJ"^'^^'!''^ " E E " ijk = 1 

provided that EyE*"//*: = 1- Under this condition y i s 
unbiased for Y. 

A natural choice of Oy/t is to set aijk = I /Mi for all 
members ofthe original population. This is the equal person 
weighting scheme in which every member of household //, 
at time t (including new entrants) receives the weight 

Wi ^ E L ^ijk/^i-
j k 

Another choice of the Oyt is that used for the equal 
household weighting scheme. Let C, denote the number 
of original households that have members in household 
Hi at time /. Then EyE*ayA = 1 can be divided equally 
between households, with each member of original house­
hold hj being assigned a value of aijk — l/QA/y-. Then 
for original household hj 

Mij 

Y °^ijk = 1/^'-
k 

The derivation of the aijk to minimize the variance of 
the estimated total Y for the population of individuals 
follows directly from the corresponding derivation for the 
population of households given in Section 3. The estimated 
total for the population of individuals is 

s Ni s Ni 

Y-Y 11 '̂̂ '̂* = E I) '̂ '•̂ '•*' 
I k i k 

since the weights for every individual in sampled household 
Hi are the same. This estimated total can be expressed as 

y = = Y '̂ '•̂ '•' 

where y, = E*^/* is the household total for //,. Thus Y 
can be expressed as a household total, and the results of 
Section 3 can be applied directly. 



40 Kalton and Brick: Weighting Schemes for Household Panel Surveys 

Consider the example from Section 3 in which // , is 
composed of members from only two original households, 
perhaps together with one or more new entrants. In this 
case the person-level weight w, = EyE*"//*"',;̂ *: reduces to 

^ ' == ( E " ' l*j WA + ( E «/2ytj W!2 

= a/W/i -I- (1 - ai)w;2, 

where a, = E*«(U- As shown in equation (3.8), the 
optimum value of a, is 

/ , , P2 - Pl2\ 

\ Pi - Pl2/ 

- I 

The individual values ay^ are not needed for computing 
the w,; only the original household totals E*"//* are 
required. If individual values are needed for the aijk, they 
may be simply assigned as Y^kOtijkfMij. 

As in the household case, the optimum weighting «„, 
requires knowledge ofpi,P2 and/?i2. If these probabiUties 
are known, the standard inverse selection probability 
weight w* can be computed, and would be preferred. In 
the case of an approximately epsem sample, the equal 
household weighting scheme should fare well. However, 
the equal household weighting scheme requires informa­
tion on the number of original households contributing 
members to current household / / , , and this information 
may not always be available. As discussed in Section 3, 
for this reason the equal person weighting scheme may be 
preferred. 

5. LONGITUDINAL ANALYSES OF 
INDIVIDUALS 

A key analytic advantage of a panel survey is the abilky 
to conduct longitudinal analyses relating variables for the 
same sampled units measured at different time points. 
Since all persons in original sampled households are 
followed throughout the life of the panel or until they leave 
the survey population, the data they provide may be 
readily analyzed longitudinally for any time period within 
the panel's time span (although nonresponse adjustments 
may be needed for panel attrition). Thus, for example, in 
a ten-year panel, data for original sampled persons may 
be analyzed from year 1 to year 10, from year 5 to year 
9, or for any other period. New entrants {e.g., births) may 
be included in the analysis for periods beginning after the 
start of the panel provided that they are treated as panel 
members who are followed throughout the panel even 
when they leave the households of original sampled 
persons. 

Given the weighting schemes described in the previous 
section, cohabitants can be included in cross-sectional 
analyses of later waves. These weighting schemes provide 
a cross-sectional representation of the population at any 
wave of the panel (apart from new entrants not living 
with original population members). It is then possible to 
consider all the sample of original sample members and 
cohabitants at time t as the initial sample of a new panel 
that may be used for longitudinal analyses from time t to 
{t -\- k). This procedure is, for instance, used in the SIPP, 
where all original sample members and cohabitants present 
at the start of the second year of the panel are included 
in analyses relating to that year. 

The limitation to the inclusion of cohabitants in longi­
tudinal analysis is that the foUowing rules used in most 
household panel surveys specify that cohabitants are 
dropped from the panel if they cease living with original 
sample persons. Thus, cohabitants who live with original 
sample members at the start of the analysis period but who 
cease to live with them before the end of that period effec­
tively become nonrespondents. If the analysis period is 
relatively short, the number of such nonrespondents may 
be small and the risk of serious nonresponse bias may be 
negligible. If the analysis period is a long one, however, 
the number of not-followed cohabitants may be appre­
ciable, causing concerns about potential bias. The issue 
here is one of a trade-off between the reduced variance due 
to the increase in sample size from including cohabitants 
in the analysis versus the increased bias resulting from 
the additional nonresponse caused by faiUng to follow 
cohabitants leaving the households of original sample 
persons. 

The additional nonresponse bias can be avoided by 
changing the following rules to specify that cohabitants 
are to be followed from the time they join the panel for 
the rest of the Ufe of the panel, or until they leave the 
survey population, irrespective of whether they continue 
to live with original sample members. This change, how­
ever, leads to an expanding panel and the need for addi­
tional resources. Not only do data need to be collected for 
cohabitants at waves after they cease to live with sample 
persons, but data also need to be collected for any persons 
with whom the cohabitants live at later waves. 

6. ADJUSTMENTS TO COMPENSATE 
FOR NONRESPONSE AND 

NONCOVERAGE 

The discussion thus far has assumed that data are 
collected for all sampled persons and their cohabitants and 
that all the target population is covered by the sampling 
procedures. In practice both these assumptions are violated. 
Nonresponse is present in nearly all surveys and is of 
particular concern in household panel surveys, where some 
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sampled households fail to respond at the initial wave and 
others fail to respond at some of the subsequent waves. 
The sampling frames used in most surveys are subject to 
some degree of noncoverage, and in later waves of house­
hold panel surveys there is an additional source of non-
coverage associated with new entrants to the population 
who are not Uving wkh members ofthe original population. 

In a simple cross-sectional survey, missing data can be 
classified into item nonresponse, total nonresponse and 
noncoverage. Imputation procedures can then be used to 
assign values for item nonresponses, weighting adjustments 
can be appUed to compensate for total nonresponse, and 
poststratification adjustments can be appUed to compen­
sate for nonresponse and noncoverage. The situation is 
made far more complex in panel surveys by the occurrence 
of wave nonresponse, which arises when a sampled element 
responds for some but not all of the waves for which it was 
eligible. Not only do methods need to be devisedi'o com­
pensate for wave nonresponse, but also the preferred 
methods of compensation may depend on the type of 
analysis to be performed, in particular whether cross-
sectional or longitudinal analyses are to be conducted. 

From one perspective wave nonresponse can be viewed 
as a set of item nonresponses in the element's longitudinal 
record, suggesting that imputation may be used to fill in 
the missing values. AUernatively, it can be treated as total 
nonresponse, handled by weighting adjustments. The 
imputation approach is more natural for the creation of 
a panel file for longitudinal analysis, whereas the weighting 
approach is more natural for the creation of a cross-
sectional file for the analysis of the data collected at a 
single wave. 

The attraction of the imputation approach with a longi­
tudinal file is that it retains all the reported data, whereas 
the weighting approach discards the reported data for all 
the elements that fail to provide data for one or more 
waves for which they were eligible. However, the imputa­
tion approach may involve the fabrication of a large 
amount of data, especially when an element fails to respond 
at several waves. Thus, for panel files, a compromise solution 
may be preferred, imputing responses for elements with 
few missing waves and using weighting adjustments to 
compensate for those with several missing waves (including 
total nonrespondents). In the SIPP, for example, imputa­
tion is used to assign responses for sample persons with 
a single missing wave that is bounded on both sides by 
responding waves, and weighting adjustments are used for 
all other sample persons with missing waves (Singh et al. 
1990). Further discussion of methods of handling wave 
nonresponse in panel files is provided by Lepkowski 
(1989), Kalton (1986), and Lepkowski et al. (1993). 

Another complication of some household panel surveys 
is the occurrence of partial household nonresponse, which 
occurs when the survey data are collected for some but not 
all members of a sampled household at a particular wave. 

The lack of data for one individual in a household means 
that key household characteristics {e.g., household eartungs) 
cannot be computed. One solution is to drop the household 
and its responding members from the sample, and use a 
weighting adjustment. Another is to impute the responses 
for the nonresponding household members, as is done in 
SIPP (where they are termed Type z nonrespondents). With 
the latter solution, data are available for all members of 
responding households, and hence person-level adjustments 
are unnecessary within responding households. 

We now turn to consider the issues involved in dealing 
with missing data for cross-sectional analyses of a house­
hold panel survey. A separate cross-sectional file containing 
data for all responding households and their members 
(either deleting the households or imputing values for 
missing responses in the case of partial household non-
response) can be created for each wave. Adjustments are 
then needed to compensate for the nonresponding and 
noncovered households and persons in each file. 

Nonresponding households at wave t can be divided 
into total nonrespondents and wave nonrespondents. 
Total nonresponse occurs in a panel survey when a sampled 
element fails to provide data for any wave. Since it is 
common practice not to follow up sample households that 
fail to respond at the initial wave, these households and 
their members are generally the total nonrespondents. 
Compensation for total nonrespondents is relatively 
straightforward. The Wave 1 weights of the responding 
households at the initial wave can be adjusted using standard 
nonresponse adjustment methods and the adjusted weights 
can be used instead ofthe selection probabilities in devel­
oping the cross-sectional weights for later waves. Most 
nonresponse adjustment methods, such as weighting class 
adjustments (Kalton and Kasprzyk 1986) and adjustments 
based on response propensities (Little 1986), are based on 
the assumption that nonresponse is random within 
weighting classes or that the probabilities of responding 
within a class can estimated precisely. Under these condi­
tions, the response mechanism can be treated as an addi­
tional stage of sampUng. Thus, the selection probabilities, 
Pj, used to define the weights in equation (3.5) may be 
redefined as the product of the selection probabilities and 
the adjustment due to nonresponse. For example, if 
weighting class adjustments are used, the selection proba­
bility of original household hj multiplied by the weighted 
response rate for the weighting class in which hj falls is 
used instead of the original Pj. The previous results then 
follow for the weights adjusted for total nonresponse. 

The same approach can also be extended to cover 
weighting adjustments for households responding at the 
initial wave that lead to no responding households at wave 
/. In this case, the responding households at the initial 
wave can be divided into weighting classes based on 
responses given at that wave, and the weights of households 
leading to one or more responding households at wave t 
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can be further adjusted to compensate for those leading 
to no responding households at wave t. The revised w-j 
can then be employed in equation (3.5) and subsequently. 

Both the above nonresponse adjustments are applied 
in relation to the original households. A further type of 
household nonresponse cannot be handled in this way. 
This type of nonresponse involves the situation where an 
original household splits into two or more separate house­
holds at wave /, and where some but not all of those 
households respond at that wave. In this case the adjust­
ment for the nonresponding households needs to be made 
in relation to the wave / households, //,, rather than the 
original households, hj. If the number of original house­
holds having members in each wave t nonresponding 
household of this type were known, the weights w, for 
these households could be computed using the approach 
described above. Then weighting adjustments could be 
readily applied within weighting classes of the wave / 
households to compensate for the nonresponding house­
holds. In practice, however, the number of original house­
holds having members in a nonresponding household at 
wave / may often be unknown. One approach for handling 
this situation is to estimate this number by the average 
number for responding households at wave t that have 
similar characteristics to (e.g., they are also splits from 
original households), and are in the same weighting class 
as, the nonresponding household. Using such estimated 
numbers where necessary, the weights w, can be deter­
mined for all nonresponding households ofthe type being 
discussed. Standard weighting adjustments can then be 
applied to the responding households at wave t to com­
pensate for these nonresponding households. 

Incomplete coverage of the target population is another 
nonsampling problem that has been traditionally addressed 
in surveys by adjusting the sampling weights. For example, 
poststratification (see, for example, Holt and Smith 1979) 
and generalized raking procedures (Deville et al. 1993) are 
often used to adjust the weights so that they sum to counts 
from independent sources not subject to undercoverage. 
These adjustments may also reduce the sampling errors of 
the estimates, although bias reduction is often more critical. 

The control totals used in most household surveys are 
counts of the number of persons in classes defined by 
characteristics such as age, sex and race. This method of 
reducing undercoverage bias may be fully sufficient when 
estimates of persons are the only types of statistics to be 
produced from the survey. However, further steps are 
needed to calculate household-level weights for producing 
statistics of household characteristics. 

One approach to developing household-level weights 
when control totals are based on person-level counts is 
called the principal person method, as described by Alex­
ander (1987). In this method, poststratification adjustments 
are applied at the person level. One household member is 
then identified as the principal person and the fully adjusted 

weight for that person is assigned to be the household 
weight. Since the person weights are already adjusted to 
the control totals, the household weight does incorporate 
some adjustments to reduce coverage bias. For cross-
sectional estimation from a household panel survey, the 
principal person method can readily be used in conjunction 
with the equal household and person weighting schemes 
to produce household level weights. 

A disadvantage of the principal person method is that 
estimates of the number of persons calculated using the 
principal person weight will generally differ from control 
totals. The estimates may also differ significantiy depending 
on the criteria used to identify the principal person in the 
household. The method has also been criticized because 
the weights of the members of the same household differ, 
even though they were all selected at the same rate as the 
household. Estimation schemes proposed by Alexander 
(1987), Lemakre and Dufour (1987), and Zieschang (1990) 
address these objections by constraining the household 
weights so that they are consistent with the independent 
person-level totals while minimizing the distance between 
the original household weights and the adjusted weights. 
All three consider variants of a generalized least squares 
(GLS) algorithm to achieve this objective. Zieschang 
(1990) shows how GLS can be used to create weights that 
are consistent with the person controls and force all persons 
within a household to have the same weight. 

The application of GLS methods when the household 
weights are computed using the equal household and 
person weighting schemes is relatively straightforward. 
However, empirical evaluation of the consequences of 
using these methods is needed. The GLS methods have the 
unattractive feature that they can result in negative weights. 
Furthermore, the increase in the variation in the weights 
arising from the constraints imposed may result in less 
precise estimates. This concern may be especiaUy important 
when the variability in the household weights is increased 
due to their multiple routes for selection and the equal 
household or person weighting schemes are necessary. 

7. SUMMARY AND CONCLUDING REMARKS 

This paper has described weighting schemes for cross-
sectional analysis of later waves of a household panel 
survey using data for all households for which and all 
individuals for whom data are collected. These weighting 
schemes can accommodate new entrants to the population 
who move in to live with members of the original popula­
tion, but not other new entrants. 

The usual inverse selection probability weighting scheme 
requires information on the household selection probabil­
ities of all members of the households sampled at a later 
wave, as weU as the joint selection probabilities of the 
original households that contribute members to the later 
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wave households. The inverse selection probability weighting 
scheme can often not be applied because these probabiUties 
are unknown. To deal with this problem, an alternative 
approach that requires information on only the selection 
probabilities of sampled original households is described. 

This alternative approach produces a class of weighting 
schemes including the equal person (fair share) scheme 
used in SIPP and the equal household weighting scheme. 
All the schemes in this class produce weights that are in 
expectation equal to those produced by the usual inverse 
selection probability scheme. The variance in the weights 
around the inverse selection probability weights gives rise 
to an increase in the variance of the survey estimates. 
When the original households are selected with approx­
imately equal probability, the equal household weighting 
scheme is near optimal for both household and individual 
level analyses to control this increase in variance. 

The alternative class of weighting schemes produces 
unbiased estimates of population totals for any choice of 
constant Wy that satisfies the condition Y,j «y - 1 and for 
any initial sample design. The equal household and equal 
person weighting schemes are, however, suboptimal for 
non-epsem initial samples. One of them may nevertheless 
be the appropriate scheme for such designs, because the 
optimal choice of the Oy depends on the unknown initial 
selection probabilities, and hence cannot be determined. 
The equal household and equal person weighting schemes 
have different data requirements, in that the former 
requires knowledge ofthe number of Wave 1 households 
represented in the Wave t household whereas the latter 
does not. The fact that this information may not always 
be readily obtainable thus argues in favor of the equal 
person weighting scheme. 

The cross-sectional individual weights for a particular 
wave can be used as the starting weights for a longitudinal 
analysis that begins at that wave. This procedure includes 
cohabitants present at that wave in the longitudinal 
analysis. However, if cohabitants are not followed when 
they cease to live with sampled persons, those who leave 
sample persons before the end of the period of the longitu­
dinal analysis become nonrespondents. Before cohabitants 
are included in a longitudinal analysis, a check should 
therefore be made to ensure that their inclusion will not 
give rise to risks of serious nonresponse bias. 

The class of weighting schemes described has a broader 
range of application than that indicated here. It can in fact 
be usefully applied in any situation where an inverse selec­
tion probability weighting scheme would be appropriate, 
but where not all the inclusion probabilities and joint 
inclusion probabiUties are known. Consider, for instance, 
the modified version of the Mitofsky-Waksberg random 
digit dialing sampling procedure for telephone surveys 
described by Brick and Waksberg (1991). A sample of 
telephone numbers (primes) is selected at the first stage of 
this two-stage sample design. If a prime number is found 

to be a working residential number, that household is 
selected and a fixed number of additional telephone 
numbers in the same 100-bank is selected. The households 
found at these numbers are then all included in the sample. 
If a prime number is not a working number, the sampling 
process stops. With this procedure, the probability of a 
working residential number being selected depends on the 
number of working residential numbers in its 100-bank, 
and hence differs across 100-banks. This probability can 
be estimated from the sample of telephone numbers in the 
100-bank. A complication arises, however, when a sampled 
household has two or more telephone numbers. In this 
case, the selection probability of the sampled telephone 
number can be estimated, but those of the nonsampled 
numbers cannot. Thus, the standard inverse selection 
probability weighting scheme cannot be used. However, 
the alternative weighting scheme described here can be 
employed. 
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Modelling Net Undercoverage in the 1991 
Canadian Census 

PETER DICK 

ABSTRACT 

In 1991, Statistics Canada for the first time adjusted the Population Estimates Program for undercoverage in the 
1991 Census. The Census coverage studies provided reliable estimates of undercoverage at the provincial level and 
for national estimates of large age - sex domains. However, the population series required estimates of undercoverage 
for age - sex domains within each province and territory. Since the direct survey estimates for some of these small 
domains had large standard errors due to the small sample size in the domain, small area modelling techniques were 
needed. In order to incorporate the varying degrees of reliability of the direct survey estimates, a regression model 
utilizing an Empirical Bayes methodology was used to estimate the undercoverage in small domains. A raking ratio 
procedure was then applied to the undercoverage estimates to preserve consistency with the marginal direct survey 
estimates. The results of this modelling process are shown along with the estimated reduction in standard errors. 

KEY WORDS: Small area; Empirical Bayes; Undercoverage. 

1. INTRODUCTION AND BACKGROUND 

The Census of Canada is conducted every five years; 
one of its objectives is to provide the Population Estimates 
Program with accurate baseline counts of the number of 
persons by age and sex within each province and territory. 
Unfortunately, not all eligible persons are correctly enu­
merated by the Census. As part of the evaluation of the 
Census, Statistics Canada estimates, through two sample 
surveys, the net number of persons missed by the Census. 
The estimates are from the Reverse Record Check Study, 
which estimates the gross number of persons missed by the 
Census, and the Overcoverage Study, which estimates 
persons double counted or erroneously included in the 
final Census count. When combined the figures estimate 
the net number of people missed by the Census. 

These surveys were designed to produce reliable direct 
estimates for large areas, such as provinces, and for large 
domains, such as age - sex combinations at the national 
level. However, the Population Estimates Program requires 
estimates of missed persons for single year of age for both 
sexes for each province. However using the direct survey 
estimate would result in individual estimates having unac-
ceptably high standard errors due to insufficient sample 
in the small domain. One approach to reducing the variance 
of the small domain estimates would be to borrow strength 
from related domains. This approach leads to creating an 
explicit model for the small domain that can be used to 
predict the net missed persons in that domain. 

The result of modelUng the smaU domain estimates is 
to produce a series of estimates with a smaUer Mean Square 
Error than the direct estimate. However, as opposed to the 

direct survey estimate which is design unbiased, the 
modeUing approach wiU introduce a bias for each estimate. 
Thus modelling the small domain estimates implies that 
a trade off is required between reducing the variance of 
each estimate and the bias introduced through the modeUing 
process. One approach to ensuring that the more reliable 
direct survey estimates are utilized is to introduce an 
Empirical Bayes model. This procedure creates an estimate 
that is a combination of a model estimate and the direct 
survey estimate weighted by their respective variances. It 
is an Empirical Bayes estimate instead of a Bayes estimate 
because underlying parameters are first estimated, then 
these estimated parameters are considered known in later 
calculations. Note that since the individual sampling 
variances are used in the estimation, a more precise direct 
estimate would contribute much more to the final Empirical 
Bayes estimate than a similar estimate with low precision. 
This ensures that the model does not dominate estimates 
that are already considered reUable. It is also possible to 
approach this estimation problem through a Hierarchical 
Bayes methodology: details on this method can be found 
in Datta, et al. (1992). Ghosh and Rao (1994) give an 
appraisal of both the Hierarchical Bayes and Empirical 
Bayes approaches to small area estimation. 

Outside of Canada, two different approaches to 
smoothing the Census undercoverage have been described 
in the literature. In the United States, the net undercoverage 
in the 1990 American Census was evaluated by means of 
the Post Enumeration Survey (Hogan 1992). Initially, it 
was planned to multiply the US Census counts by adjust­
ment factors (the ratio of true population over the enu­
merated population) for 1,392 a priori defined post strata. 

' Peter Dick, Social Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, KIA 0T6. 
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These estimated adjustment factors would then be used 
to adjust the Census count for missed persons. Since some 
of these 1,392 estimated adjustment factors had high 
standard errors, it was proposed to smooth the direct 
estimates through an Empirical Bayes regression model, 
similar to one proposed by Ericksen and Kadane (1985), 
and then to rake the smoothed estimates to agree with direct 
estimates for large geographic regions. However, this 
approach was criticized by Freedman and Navidi (1992). 
Eventually, the United States Department of Commerce, 
the U.S. Census Bureau's parent agency, decided not to 
proceed with adjusting the Census counts for under-
enumeration in July 1991. Consideration was also given 
in the United States to adjusting the post Censal popu­
lation estimates for undercoverage in the Census, but the 
Department of Commerce also rejected this adjustment. 

The Australians use a different method than the 
Americans for estimating the domain totals. Choi, Steel 
and Skinner (1988) describe a methodology that incor­
porates the estimates of net undercoverage of the Census 
into the population estimates but leaves the actual Census 
counts as enumerated. The under enumeration is estimated 
through a Post Enumeration Survey (PES) and demo­
graphic analysis. The small domain estimates are produced 
by raking the Census age counts for each sex to the PES 
estimates for national age/sex totals and part of State/ 
Territory/sex totals. 

The procedure proposed for the 1991 Canadian Census 
combines some of the elements of both the American and 
AustraUan approaches. As in the American procedure, a 
model is postulated for the underlying true adjustment 
factors and another model is postulated for relating the 
direct survey estimates to the true underlying adjustment 
factors. Through Empirical Bayes estimation, a new 
smoothed adjustment factor is estimated that will have a 
lower MSE then the direct survey estimate. These smoothed 
adjustment factors are then converted into estimates of 
missed persons. The Australian method for constraining 
the resuUing estimates to known marginal totals is then 
adopted. These final raked estimates are used as the base 
for the small domain estimates of missed persons. In turn, 
these estimates are adjusted to account for known demo­
graphic principles (See Michalowski 1993). Details on the 
technical criteria for adjustment of the population esti­
mates can be found in Royce (1992). 

This paper is organized as follows. In Section 2, some 
background information on the two sample surveys is 
described and the basic Empirical Bayes model is presented. 
Assumptions and limitations of the model are also discussed 
and the estimation of the parameters is briefly discussed. 
In Section 3, the explanatory variables used in the regres­
sion model are presented and the model building process 
is described. The final model is presented and the results 
displayed. Section 4 presents a discussion on the rationale 
behind constraining the Empirical Bayes estimates to 

reliable marginal totals. The final adjusted estimates are 
then presented. Finally, Section 5 presents some conclusions 
and topics for further study. 

2. MODEL FOR THE ADJUSTMENT FACTORS 

2.1 Background and Notation 

The model for the adjustment factors requires iriput 
data. The actual data originates with two coverage studies: 
the Reverse Record Check (RRC) and the Overcoverage 
Study (OCS). The RRC is used to estimate the number of 
persons missed by the Census while the OCS is used to 
estimate the number of persons erroneously included in 
the Census count. These surveys are designed to give 
reliable estimates of net undercoverage for all provinces, 
some of the larger metropoUtan areas and for some large 
national domains, such as males aged 20 to 24. Since the 
surveys are independent, it can be assumed that the 
variance of net missed persons will be the sum of the two 
estimated variances from the RRC and the OCS. Further 
details on these studies can be found in Germain and Julien 
(1993) and the 1991 Census Technical Report - Coverage 
(Statistics Canada 1994). 

The domains of interest can be defined by partitioning 
the sample into/7 = 1,2,..., Pprovinces/territories and 
a = 1,2, .. .,A age - sex groups, hence a total ofAxP 
domains require estimates. Let C, be the number of 
persons in the /-th province - age domain enumerated in 
the Census and T, be the true population of the same 
domain. The net number of persons missed in the /-th cell 
isM, = Ti — C,. The adjustment factor, 0,, is the ratio 
ofthe true population in a domain over the Census count, 
while the undercoverage rate, C/,, the unit that is usually 
reported in the releases from the coverage studies, is the 
ratio of missed persons over the true population. 

The true adjustment factors, 9,, which are the variables 
that we wish to estimate, can be written as: 

e,= 
Ti Mi + Ci 

Ci Ci 

Undercoverage rates ({/,) which are usually reported 
in the releases from Statistics Canada, are related to the 
adjustment factors through the relationship 

Ui = Mi{Mi -I- C,) - ' = 1 - 0,- ' . 

In the modelling ofthe adjustment factors, the creation 
of ultimate domains is required. These domains are those 
at which the actual direct survey estimates of the adjust­
ment factors will be produced. There must be an estimate 
for each province (10) and territory (2), so immediately P 
is fixed at 12. The age groups were fixed at 4 to create 
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national estimates that have acceptably low standard 
errors. These age groups are defined for male and female 
as follows: 0 to 19 years of age; 20 to 29 years of age; 30 to 
44 years of age; and 45 years and older. In total there are 
12 X 8 = 96 direct survey estimates of adjustment factors 
that have to be fitted into the Empirical Bayes model. Each 
domain requires, besides the direct estimate ofthe adjustment 
factor, an associated estimate of the sampling variance. 

2.2 Model and Assumptions 

The basic model for the undercount is composed of two 
distinct parts. The first part describes how the direct survey 
estimates are related to the true underlying adjustment 
factors, while the second part models the relationship 
between the true adjustment factors and a set of explanatory 
variables. Since the parameters in the regression model are 
estimated by first estimating the parameters of an assumed 
underlying prior distribution and then assuming that these 
estimated parameters are known for any further calcula­
tion, this model is known as an Empirical Bayes model 
(Maritz and Lwin 1989). 

The first part ofthe model, the sampling model, relates 
the observed adjustment factors to the true adjustment 
factors. This relationship is assumed true within each 
domain, and can be expressed as: 

the observed adjustment factor = 

the true adjustment factor -I- a random error. 

The sampling model is written as follows: 

Fi = 0, -I- 6, : e, ~ Normal {0,af), 

/ = 1,2, ..., n = A X P, 

where 0, is the true adjustment factor and €, is a random 
error component with a variance of af. The assumptions 
underlying this model are: 

(a) the sampling errors, €,, have mean zero; 

(b) the sampling variances, af, are known in each of the 
n domains; 

(c) since the sample was selected independently within 
each domain, the covariance between the sampUng 
errors €, in domain / and €y in domain y is zero; and 

(d) the random errors €, are normally distributed in each 
domain. 

Further discussion on the assumption of the known 
sampling variance in each domain is given below. 

The second part of the model, the regression model, 
relates the true adjustment factors to a set of underlying 
explanatory variables. This model states that: 

the true adjustment factor = a linear combination 

of explanatory variables -I- a random error. 

The regression model can be written as: 

0, = Xi0 + 8i : 6, ~ Normal ( O . T ^ ) , 

i ^ 1,2, ..., n = A X P, 

where A', is the /-th row in X, a known (n x p) matrix of 
explanatory variables, 0isa{p x 1) vector of unknown 
regression parameters and 6, is (a different) random error 
with a model variance of T^. Underlying the system model 
are the following assumptions: 

(a) the model errors, 6,, have mean zero; 

(b) the model variance, T^, is constant over all n domains; 

(c) the model errors, 6,, are normally distributed; 

(d) the model errors, 6,, are independent of sampling 
errors, €,; 

(e) the covariance between different domains is zero 
{i.e.,Co\{8i,6j) = 0). 

The problem is to use both the sampling model and the 
regression model to estimate 0, , the true adjustment 
factors. The conditional expectation for 0, given 0, af, 
T^, Fi can be determined for the joint model. Using stan­
dard arguments (Rao 1973), it can be shown that the 
conditional expectation of 0, is: 

^ ( 0 , I 0,af,T\Fi) = (1 - c^i)Xi0 -I- oiiFi, (1) 

where co, = 7^ (r' + af) 

Equation (1) is the basis for all the estimates that follow, 
although a few modifications need to be made before 
applying it to the data. Note that it is basically a weighted 
average of the direct survey estimate and the regression 
model estimate of the adjustment factor. Each estimate 
is weighted according to the precision with which it was 
estimated. If the sampling error, af, is small compared to 
the model error, T^, implying that the direct survey esti­
mate is relatively precise, then the final smoothed estimate 
will be mainly composed of the direct survey estimate. 
However, if the direct survey estimate has a large sampling 
variance relative to the model variance then the final 
smoothed estimate will be mainly constituted from the best 
Unear unbiased predictor. The amount each estimate con­
tributes to the final smoothed estimate is controlled by the 
weighting coefficient, co,. 

Some limitations apply to interpretations that can be 
made about this model. First, it must be emphasized that 
this model is purely descriptive; it cannot be considered 
to be a causal model. Since the primary goal of this model 
is descriptive, the inferences on the regression parameters, 
0, while interesting are not of primary importance. Hence, 
the final regression model when it contains a term, say, 
on British Columbia renters and not Manitoba renters, 
is only saying that British Columbia renters explain a 
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significant portion ofthe variation in adjustment factors 
in British Columbia while Manitoba renters does not 
explain a significant portion of the variation in adjustment 
factors in Manitoba. 

As mentioned above, the sampling variances associated 
with the direct survey estimates of the adjustment factors 
are considered known in the Empirical Bayes model. 
However, experience has shown that the directly estimated 
variances are, in fact, somewhat unstable. In order to 
create some stability with the estimation of these variances 
it is proposed to model them. If we consider the design of 
the two sample surveys, then, under relatively mild assump­
tions, Dick (1993) has shown that within each domain the 
variance of the estimate of missed persons is proportional 
to a power of the Census count. If we add in appropriate 
normalizing parameters, then this relationship can be 
written as: 

afCf = V(Mi) = KCy, 

or, as in the form of a regression equation, 

Log(F(M,)) = a -h 7log(C,) -I- rj, with 

,,,• ~ N{0,^^). 
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Figure 1. Observed variance vs. census. 

This model for the sampling variance assumes that the 
product of the design effect and the undercoverage rate 
is constant within each domain. As discussed in Dick 
(1993), this assumption appears to be reasonable. Figure I 
shows the plot of the observed variance of missed persons 
calculated from the two coverage studies versus the Census 
count for the 96 domains. The least squares regression line 
was estimated as 

log(v(M,)) = - 6.133 -I- 1.715 logC, 

and is also plotted in Figure 1. A residual analysis (Dick 
1993) did not detect any apparent violations of the under­
lying model assumptions. Since, in addition, the coefficient 
of determination, the R^, is 0.943, this model was adopted 
for producing the sampling variances. The estimated survey 
variances were calculated for the adjustment factors through 

v{Fi) = v{Mi)/Cf. 

It will be assumed that these predicted values for the 
sampling variances are the actual 'known variances' 
required for the Empirical Bayes model. 

2.3 Parameter Estimation 

So far the model has been described in purely Bayesian 
terms: only the parameter 0, is considered unknown. 
Taking the usual Empirical Bayes approach (Maritz and 
Lwin 1989), we will assume that all the parameters except 
0, the regression parameter, are known. The conditional 
expectation of 0, with the regression parameter estimated 
can be written as 

Ff'"^ = E{ei\0,af,T\Fi). 

However, in practice, the model variance, r^, is also 
unknown and must be estimated. The conditional expec­
tation of 0, wiU now change to 

F/̂ "' = £(0,1 0,af,f\Fi), 

where the sampUng variance, af, is still considered known. 

To estimate the model variance and the regression coef­
ficients in the Empirical Bayes model, the marginal distri­
bution of the observed adjustment factors, w(F,) ~ N 
(Xi 0, T^ -i- af), can be used. Three possible methods were 
examined for estimating the variance parameter, T^, : 
Method of Moments (MM) as in Fay and Herriot (1979), 
Maximum LikeUhood (MLE) as in the PES in the United 
States (Hogan 1992) and Restricted Maximum Likelihood 
(REML). 

It is well known that MLE estimation of variance 
components is biased downwards (Harville 1977). Under­
estimation of the model variance in the Empirical Bayes 
model would result in more reliance being placed upon the 
regression model instead ofthe direct survey estimate. This 
is a result we wished to avoid. In Dick (1993), it is shown 
that there is little difference between the estimates of the 
model variance from REML or MM. Since the REML has 
a well understood asymptotic theory, it was adopted for 
the estimation of the model variance in the Empirical 
Bayes model. 

Harville gives a full account of REML estimation. The 
basic approach is to first estimate the regression parameter, 
and then to estimate the model variance from the resulting 
residuals instead of the actual data. If we let X* be a matrix 
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of (n - p) linear contrasts such that E[X*'F] = 0, 
then HarviUe shows that the resulting (log) Ukelihood 
function, Lremi. when maximized with respect to the 
unknown model variance will give the restricted maximum 
likelihood estimates. 

In the context of the Empirical Bayes model, Harville's 
approach can be described as follows. First, an initial esti­
mate, usually zero, of the model variance, f(0), is made 
and then the regression parameter, 0, is estimated through 
weighted least squares: 

^(,) = {X'i^o~'X)~'^'yo'E, (2) 

where VQ = diag(f (^ -t- af-.i = I, ..., n). Using this 
estimate of j3(i), a new REML estimate of the model 
variance, f ̂ i), can be made through 

*2 *2 
'•/(+I = '•« + ( ^ ) •'< ( r ^ ) ] - ' , K = 0,l, ..., (3) 

where, if we set P , = K f - V''X{X'V-'X)" XV'', 
we have 

,2 ^ ^ =-]-trace P,-i-]-{F-X0)'Vr'V-HE-X0) 
OT 2 2 

and 

i{T^) 
~ [d{dM 

= - t r ace {P[PJ. 

Note, upon convergence of T^ and 0, / (T^) ~' wiU be the 
asymptotic variance of f ̂ . 

By iterating between (2) and (3), new estimates of T^ 
wiU be used to update the estimate of 0, which in turn wiU 
be used to update the estimate of r^. The iterations then 
continue until a suitable convergence has been reached: 
in this case {(fl+i/ff) - 1) < 10~* was used. 

Once the estimates for 0, the regression parameters, and 
f ̂ , the model variance, have been determined, then the 
final smoothed estimates can be found. Maritz and Lwin 
(1989) show that the Empirical Bayes, or smoothed, 
estimate can be written as 

/;?" = (1 - Ci)Xi0 -I- cbiFi, 

where w, = f ̂  (f ^ -I- af)~K This is a combination of the 
original estimate and the regression estimate weighted by 
their respective variances. 

The objective of the smoothing model is to create a 
series of estimates with smaller MSE than the original 
estimates. Prasad and Rao (1990), through asymptotic 
arguments, have suggested using the foUowing estimator 
for the mean square error: 

MSE[/;!=''] = MSE[Pf''] -I- [ ( ^ j o}iE{f^ - r^)A. 

The mean square error for the Empirical Bayes estimate, 
using restricted maximum likelihood estimation, has been 
conjectured by Cressie (1992) to be: 

MSE[/;?''] = MSE(P/'') -I- 2gii{f^) = 

gii{r^) +82i(f^) + 2gy{f^), 

where 

g„ ( f2 ) = f 2 ( l - Cbi) 

g2i{T^) = (1 - ici)^Xl{X' V-'X)-% 

and 

g3,(f2) = (1 - cj,)2(f2 + a f ) - ' [ / ( r ^ ) ] - ' . 

The assumed normality of 6, and 6, is an important 
assumption in the derivation. Note the value for the 
sampling variance, af, is assumed known. 

Prasad and Rao give the following interpretation to 
each ofthe three components: gi,(T^) is the Bayes estimate 
ofthe variance, g2i{f^) is the contribution from estimating 
the regression parameters and i3,(f ^) is the contribution 
from estimating the model variance r^. An estimate of 
the component due to the estimation of the sampling 
variance is not available: the additional variance this 
would add is not known but its absence clearly implies that 
the MSE is underestimated. 

3. EMPIRICAL BAYES LINEAR MODEL 

3.1 Explanatory Variables 

The Empirical Bayes model described above was fitted 
to the 96 observed adjustment factors, with the sampling 
variances estimated using the method described in Section 2. 
The linear model that was fitted to this data included the 
following explanatory variables: 

(a) An indicator variable for each province/territory. 

(b) An indicator variable for each sex. 

(c) An indicator variable for each age group. 

(d) A variable indicating the percentage of people in the 
domain that are renters. 

(e) A variable indicating the percentage of people in the 
domain that do not speak either official language. 

(f) Various interaction variables including province by 
renters, province by non-official language, age and sex 
by renters. 

In total, 42 variables were used in the initial regression. 
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These variables were selected for the initial regression 
model based, in part, on the experiences of previous RRC 
studies (Burgess 1988), partly on the results of the 1991 
coverage studies (Germain and Julien 1993) and partly on 
the experiences of the PES in the United States as described 
in Hogan (1992) and Datta et al. (1992). The actual ratio­
nale for the variables to be included are as follows: 

(a) The province indicator was included as an indication 
of the difficulty of Census collection within each 
province. Prior to the 1991 Census, it was assumed that 
collection would be more difficult in British Columbia 
and Ontario, and the anecdotal field evidence during 
collection seemed to support this conjecture. 

(b) The age and sex variable were included because ofthe 
known differences in undercoverage rates between 
males and females. The undercoverage, in previous 
studies, has also shown a marked increase for indi­
viduals in their 20's. 

(c) Tenure, in effect the percent of renters in each domain, 
was included because of the experiences in the United 
States PES, results of previous RRC studies and as a 
suggestion from the Statistics Canada Statistical 
Methods Advisory Committee. 

(d) The use of non-official language was an attempt to 
locate the immigrant and minority groups that in the 
past have tended to have higher undercoverage rates. 

(e) The interaction terms were included to further refine 
the predictive power of the model. 

The mean encompasses all those variables that are not 
included in the model. Note that since indicator variables 
are used for province, sex and age-sex, one variable has 
to be excluded in order to avoid a singular design matrix. 
In effect, the missing variable, say the province indicator 
for Newfoundland, is included in the mean. 

An operational constraint was also placed on the model. 
The SASIML program written to estimate the parameters 
was limited to 4,095 numeric elements in the design matrix, 
hence with 96 domains, or observations, the model was 
limited to a maximum of 42 variables. 

3.2 Model Building Process 

After starting with the full regression model and 42 ex­
planatory variables, a procedure was needed to remove 
those variables that were not statistically significant. The 
procedure chosen was to eliminate the least significant 
variable after each completed estimation cycle. This 
implies that for the 42 variable model, the variable Female 
Renters aged 0 to 19 would be eliminated since it has a 
?-value of 0.05. The regression model was then re-run with 
the remaining 41 variables. The least significant variable 
was then eliminated from that model. This procedure is 
equivalent to the Backward Stepwise Regression described 
in Draper and Smith (1966, page 167). 

The Backward Stepwise Regression method was used 
to eliminate all variables until all remaining variables had 
a /-values greater than 2 (in absolute value). However when 
the final model was examined, it was noticed that a multi-
colUnearity problem existed between the indicator variables 
for certain provinces and the interaction terms for renters 
within the same provinces. The implication of this problem 
is that there are some explanatory variables which are highly 
correlated with each other. This in turn implies that not all 
parameters in the model can be estimated precisely. As a rule 
of thumb Judge et al. {1984, page 459) suggest that this can 
be a problem when the simple correlation between variables 
is greater than R^, the coefficient of determination. The 
final model had aR^ = 0.85 and the simple correlation 
between the variables in question were all greater than 0.90 
(in absolute value, since the correlations were negative). 

A solution to this problem was to delete the variables with 
the lower /-values which turned out to be the provincial indi­
cators. The final model is shovm in Table 1 with the estimated 
coefficients and their /-values. The effect of removing the 
provincial indicators was to lower the final R^ from 0.85 
to 0.844, thus little predictive power has been lost. 

Table 1 

Final Estimates of Variables Used in Regression 

Category 

Mean 

Age - Sex 
Combination 

Sex by Age by 
Non-Official 
Language 

Tenure by 
Province 

Variable 

Mean 

Male 20 to 29 
Male 30 to 44 
Female 20 to 29 

Female 
Language 
Oto 19 

British Columbia 
Renters 

Ontario Renters 
Quebec Renters 
New Brunswick 

Renters 
Yukon Renters 
Northwest Territories 
Renters 

Final 
Estimate 

(h 
1.0075 

0.0563 
0.0208 
0.0240 

0.0797 

0.0449 
0.0804 
0.0255 

0.1064 
0.0639 

0.0682 

r-Value 
(absolute 

value) 
(«0 : /3 = 0) 

575.72 

15.34 
5.81 
6.49 

2.75 

3.96 
7.35 
2.66 

5.61 
3.80 

6.22 

The final regression model then had various diagnostic 
tests performed on it. Since the regression is a weighted 
least squares with a random error term, Lange and Ryan 
(1989) have suggested using the following form to create 
standardized residuals: 

Zi 
F^'^^ - Xi 0 

+ f' 

The residuals were analyzed using both Q-Q plots and 
outlier detections methods: no major departures from the 
assumed distribution ofthe residuals were detected. More 
details on the residual analysis can be found in Dick (1993). 
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Table 2 
Direct, Smoothed and Raked Estimates of Adjustment Factors 

Sex Age 

Male 0-19 

20-29 

30-44 

45 + 

Female 0-19 

20-29 

30-44 

45 + 

Estimate 

Direct 
Smooth 
Raked 

Direct 
Smooth 
Raked 

Direct 
Smooth 
Raked 

Direct 
Smooth 
Raked 

Direct 
Smooth 
Raked 

Direct 
Smooth 
Raked 

Direct 
Smooth 
Raked 

Direct 
Smooth 
Raked 

B.C. 

1.017 
1.019 
1.020 

1.087 
1.086 
1.083 

1.031 
1.039 
1.038 

1.019 
1.017 
1.014 

1.034 
1.030 
1.032 

1.068 
1.058 
1.058 

1.013 
1.018 
1.017 

1.007 
1.014 
1.008 

Alta 

1.026 
1.013 
1.016 

1.036 
1.056 
1.061 

1.021 
1.026 
1.028 

1.018 
1.011 
1.010 

1.018 
1.015 
1.018 

1.047 
1.036 
1.041 

1.009 
1.008 
1.008 

1.003 
1.006 
1.004 

Sask. 

1.012 
1.009 
1.011 

1.068 
1.065 
1.073 

1.028 
1.028 
1.032 

1.002 
1.006 
1.006 

1.017 
1.013 
1.016 

1.028 
1.031 
1.036 

1.004 
1.007 
1.007 

1.018 
1.010 
1.007 

Man. 

1.029 
1.013 
1.015 

1.058 
1.062 
1.067 

1.034 
1.030 
1.032 

1.014 
1.009 
1.009 

1.012 
1.015 
1.017 

1.020 
1.029 
1.032 

1.006 
1.007 
1.007 

1.001 
1.006 
1.004 

Ont. 

1.028 
1.029 
1.031 

1.113 
1.104 
1.101 

1.054 
1.053 
1.051 

1.013 
1.019 
1.016 

1.037 
1.038 
1.040 

1.072 
1.070 
1.070 

1.027 
1.030 
1.028 

1.011 
1.021 
1.012 

Que. 

1.017 
1.016 
1.018 

1.071 
1.074 
1.079 

1.047 
1.041 
1.043 

1.011 
1.013 
1.012 

1.029 
1.023 
1.026 

1.043 
1.044 
1.048 

1.017 
1.017 
1.017 

1.011 
1.015 
1.009 

N.B. 

1.022 
1.027 
1.027 

1.122 
1.103 
1.096 

1.043 
1.046 
1.043 

1.014 
1.019 
1.015 

1.029 
1.030 
1.030 

1.070 
1.071 
1.068 

1.031 
1.029 
1.025 

1.000 
1.020 
1.011 

N.S. 

1.019 
1.010 
1.013 

1.063 
1.064 
1.073 

1.018 
1.026 
1.029 

1.016 
1.010 
1.010 

1.014 
1.010 
1.012 

1.030 
1.031 
1.037 

1.019 
1.010 
1.011 

1.002 
1.006 
1.004 

P.E.I. 

1.004 
1.007 
1.005 

1.060 
1.063 
1.041 

1.025 
1.028 
1.018 

1.018 
1.009 
1.005 

0.995 
1.006 
1.004 

1.004 
1.027 
1.018 

1.004 
1.007 
1.004 

0.993 
1.005 
1.002 

Nnd 

0.999 
1.006 
1.007 

1.057 
1.062 
1.074 

1.026 
1.028 
1.033 

1.016 
1.009 
1.010 

1.016 
1.010 
1.013 

1.041 
1.033 
1.041 

1.024 
1.011 
1.012 

1.013 
1.009 
1.006 

Yukon 

1.031 
1.026 
1.029 

1.098 
1.094 
1.096 

1.069 
1.052 
1.053 

0.992 
1.021 
1.019 

1.026 
1.028 
1.030 

1.068 
1.069 
1.072 

1.031 
1.028 
1.027 

1.024 
1.031 
1.019 

N.W.T. 

1.036 
1.027 
1.031 

1.127 
1.122 
1.127 

1.080 
1.059 
1.059 

1.076 
1.039 
1.035 

1.054 
1.061 
1.068 

1.072 
1.092 
1.099 

1.020 
1.026 
1.026 

1.007 
1.026 
1.016 

3.3 Estimates of Adjustment Factors 

Table 2 shows both the direct survey estimate and the 
smoothed Empirical Bayes estimate of the adjustment 
factors. An inspection of the table shows that these esti­
mates are relatively close, reflecting the Empirical Bayes 
methodology of combining the direct survey estimate with 
the model estimate. Note that all of the domains that were 
originally estimated to have overcoverage - shown by an 
estimated adjustment factors being less than one - have 
been changed, by the Empirical Bayes estimates to being 
an estimate of undercoverage. The difference between the 
two sets of estimated adjustment factors - in absolute 
terms - differ by under 1 % and in the larger provinces by 
less than 0.5%. However, for some ofthe smaller provinces 
and territories the difference between the two estimates can 
be substantially larger. In the Northwest Territories the 
change between the directly estimated adjustment factor 
and the Empirical Bayes estimate is about 2% for 3 age -
sex groups and over 3% for another. 

The objective of the Empirical Bayes model is to produce 
estimates with smaller MSE than the survey estimates. 
From Section 2.2 it can be shown that the variance for the 
direct survey estimates is calculated from 

logv(F,) = - 6.133 - 0.285 logC,, 

while the Prasad-Rao MSE, from Section 2.3, is calcu­
lated by 

MSE[Pf''] = MSE(Ff'') -f 2gii{f^) = 

gii(r^) + g2i(r^) + 2g3,(f'). 
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Figure 2. Ratio of root MSE, Prasad-Rao and survey. 
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Figure2plots, for each domain, R = ^MSE[Ff^]/v{Fi) 
the ratio of the root mean square errors for the Empirical 
Bayes model and the estimated survey variance (Note that 
within provinces the domains are ordered as Male aged 
0-19,20-29,30-44 and 45 and over and Female aged 0-19, 
20-29,30-44 and 45 and over). Clearly, the Empirical Bayes 
MSE is smaller in all domains. However, in the larger 
provinces, Ontario and Quebec, the ratio of the root MSEs 
is only between 0.7 and 0.8. This relatively small gain is 
a reflection of the large sample sizes in these domains which 
in turn give a reliable estimate of the variance. The large 
gains are made in the smaller provinces and terrkories. For 
instance, in Prince Edward Island, the ratio of the root 
MSEs are all smaller than 0.5 showing the large improve­
ment in the estimates. The one outlier is in the Northwest 
Territories (females aged 0 to 19): the Prasad-Rao MSE 
appears to have been overestimated in this domain. 

4. ADJUSTMENTS MADE TO EMPIRICAL 
BAYES ESTIMATES 

the Empirical Bayes model. If we let a plus sign ( + ) 
represent addition across the variable then the raking esti­
mate can be written for cycles K = 0, 1, . . . as; 

Mp<^^" = Mit'( Y ^ P a / i ; ^Pa"') 
V a=l I a=l ' 

and 

Mp'a'"-̂ '' = Mp'a^'^'Y i ; M%A Y Mp'a'" '̂̂ ) 
^ p = l / p=l ' 

This procedure will converge to a unique solution. Since 
this is basically a log-linear model, the underlying assump­
tion is that the relationship determined by the Empirical 
Bayes model for the interaction between province and 
age - sex group is valid and will be preserved. 

4.1 Rationale and Methodology 
The advantage of the Empirical Bayes method is 

apparent from the above discussion. However, the 
Empirical Bayes methodology does not preserve the higher 
level {i.e., the large domain) direct survey estimates that 
are reliable. By this it is meant that the provincial totals 
and the age - sex domain totals for the direct survey 
estimates and the Empirical Bayes estimates are not equal. 
Since the two surveys were designed to produce estimates 
at these levels, it is crucial that the Empirical Bayes be 
consistent with these reliable marginal totals. 

To achieve consistency of estimates of missed persons 
between the reliable provincial and age - sex totals from 
the direct survey estimates and the final Empirical Bayes 
estimates, a raking ratio procedure was used. This is basi-
caUy the method used in Australia to determine their small 
domain estimates (see Choi et al. 1988). This technique 
re-scales the individual Empirical Bayes estimates to 
conform to the known provincial and national age - sex 
totals. Once this procedure has converged, the final esti­
mates will be consistent with the direct survey totals. In 
terms of a log-linear model, we are using as the main 
effects (province and age-sex) estimates the results from 
the two coverage studies and the interaction terms (province 
by age-sex) estimates from the Empirical Bayes modeUing. 

Details of the procedure can be described as follows. 
Assume that we have a matrix of estimated missed persons 
that has P columns (corresponding to the provinces) and 
A rows (corresponding to the age-sex groups). First set 
Fpa = Fi, then let M^ = C^ {F^ - 1) be the direct survey 
estimate of the number of missed persons in province/? and 
age - sex group a and let M<f > = Mf} = Cpa(F^f > - I) 
be the Empirical Bayes estimate of missed persons from 
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Figure 3. Percent change in estimates of adjustment factors. 

Table 2 shows the final raked estimates of the adjust­
ment factors along with both the original survey estimates 
and the Empirical Bayes estimates. Generally, the impact 
of raking is to shrink the Empirical Bayes estimate back 
towards the survey estimate. This is shown in Figure 3. 
Here two different percent changes in the estimated adjust­
ment factors are plotted. The A'-axis shows the percent 
change between the direct survey estimate and the Empir­
ical Bayes estimate. The Y-axis shows the percent change 
between the Empirical Bayes estimate and final raked 
estimate. The plot shows that the two variables are nega­
tively correlated: hence the raking tends to move the 
Empirical Bayes estimates closer to the original survey 
estimates. 
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One draw back of this procedure is that the MSEs of 
the raked adjustment factors are now very difficult to 
estimate. Due to the non-linear nature ofthe raking ratio 
procedure, a direct calculation is impossible. It is possible 
to use a Taylor series expansion; however this assumes a 
large sample size in each domain when in fact we know 
some domains have very small sample sizes. A possible 
procedure is to adjust the estimated MSE from the Empir­
ical Bayes estimates and mukiply these by the squared ratio 
of the raked Empirical Bayes estimate over the Empirical 
Bayes estimate. While this procedure is only a crude 
approximation, it can at least give some guidance as to the 
reliability of the individual estimates. This method will 
ensure that the coefficient of variations calculated for the 
Empirical Bayes estimates will be retained for the corre­
sponding raked Empirical Bayes estimates. This is the 
procedure that was used to produce the final MSE esti­
mates for the raked Empirical Bayes estimates of missed 
persons. 

4.2 Detailed Domain Estimates 

The Population Estimates Program requires even finer 
detail than that produced by the various models discussed 
above. In fact the program needs estimates for single years 
of age for each sex for each Census Division within each 
province. Since the Empirical Bayes methodology is limited 
somewhat by the direct survey results - an estimate with 
a non-zero standard error is required for each domain -
synthetic methods must be used to generate the more 
detailed estimates. 

For the Population Estimates Program, estimates for 
each province and sex were produced for 9 age groups 
instead of the 4 age groups used in the Empirical Bayes 
model. A straight synthetic model, using the raked Empir­
ical Bayes estimates as initial values, was proposed for this 
stage of estimation. To produce these more detailed esti­
mates, the raked Empirical Bayes estimate was allocated 
proportionally by Census count across all sub-age groups 
within each province and sex. Let the final raked estimate 
in the p-province and the o-th age-sex group be Mpa"""̂  = 
Mp{. Also if the a-th age - sex group is composed of Q 
exclusive sub-age groups then the estimate of the missed 
persons in the p-th province and the ^-th sub-age group 
within the a-th age - sex group would be 

M pa. -''^ty 
where Cpâ  = Cpa = E ^=iCpa . This approach guarantees 
that the estimates from the earlier raked Empirical Bayes 
output are preserved for the original domain total. The 
further estimates that are required for the population 
estimates program use demographic methods. In fact, one 

of the objectives of the Empirical Bayes procedure is to 
provide initial estimates for the demographic methods. See 
Michalowski (1993) for further details. 

5. SUMMARY AND CONCLUSIONS 

The Empirical Bayes methodology was adopted because 
it preserves the more reliable estimates from the larger 
provinces and domains while permitting a model based 
estimate to dominate if the underlying direct estimate is 
unreUable. This is in accordance with standard survey 
methods of using the direct survey estimates as much as 
possible. The raking ratio procedure used for adjusting the 
estimates from the Empirical Bayes model was used to 
ensure consistency with the direct survey results that were 
known to be reliable. 

As for the explicit model used to describe the underlying 
true adjustment factors, it must be noted that this model 
is purely descriptive. Its primary function is to use explana­
tory variables to describe the variation in adjustment 
factors, taking into account the sampling error associated 
with each adjustment factor. It would not be prudent to 
make far-reaching conclusions on the nature of under­
coverage from the final set of parameters included in the 
model. 

The main weakness of this approach is with the two 
variances that are estimated. The assumption ofthe regres­
sion model errors being approximately normally distributed 
is difficult to assess. In the absence of any real knowledge 
about the true underlying distributions any assumption 
about the model variance will be essentially unverifiable. 
The proposed model variance seems reasonable and 
diagnostic checks have not revealed any major problems. 

The sampUng variance model is more problematic. All 
Empirical Bayes methods assume that this variance is 
known, when in fact it has to be estimated. Efforts to 
extend the Prasad-Rao MSE calculation to include the 
contribution from this estimated parameter have not 
yielded any new results. 

In the future, research will concentrate in working 
around the problem associated with estimating the sampling 
variances. Further work needs to be conducted on the 
Prasad-Rao MSE calculation. In addition, the possibility 
of using the micro level data from the coverage studies and 
estimating the undercoverage rates directly through logistic 
regressions as in Wong and Mason (1985) will be pursued. 

Another project would be to examine the implications 
of recasting the Empirical Bayes model into the standard 
state space framework (Robinson 1991). Pfeffermann and 
Burck (1990) have suggested a method for calculating the 
MSE for a time series placed in a state space model that 
has to conform to certain periodic benchmarks. The state 
space formulation would also be useful in explicitly incor­
porating the demographic methods. 
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Between-State Heterogeneity of Undercount Rates and Surrogate 
Variables in the 1990 U.S. Census 

JAY JONG-IK KIM, ALAN ZASLAVSKY and ROBERT BLODGETT' 

ABSTRACT 

As part ofthe decision on adjustment ofthe 1990 Decennial Census, the U.S. Census Bureau investigated possible 
heterogeneity of undercount rates between parts of different states falling in the same adjustment cell or poststratum. 
Five "surrogate variables" believed to be associated with undercount were analyzed using a large extract from the 
census and significant heterogeneity was found. Analysis of Post Enumeration Survey on undercount rates showed 
that more variance was explained by poststratification variables than by state, supporting the decision to use the 
poststratum as the adjustment cell. Significant interstate heterogeneity was found in 19 out of 99 poststratum groups 
(mainly in nonurban areas), but there was Uttle if any evidence that the poststratified estimator was biased against 
particular states after aggregating across poststrata. Nonetheless, this issue should be addressed in future coverage 
evaluation studies. 

KEY WORDS: Poststratification; Influence statistics; Linearization; Synthetic estimation. 

1. INTRODUCTION 

The Post Enumeration Survey (PES) of the 1990 
Decennial Census of the United States was designed to 
produce coverage estimates for 1,392 poststrata. The nation 
was first divided into 116 domains, called poststratum 
groups (PSGs) according to geography, race/Spanish 
origin and tenure (owner vs. renter). With only 4 excep­
tions, all PSGs are defined within a census division, one 
of nine contiguous geographic areas each composed of 
several states. Each PSG was further divided into 12 age-
by-sex groups, the poststrata. For example, roughly all 
Black renters in New York city constitute a PSG and all 
females, age 0-9, of this PSG make a poststratum (PS). 
Further details on the PES are in Hogan (1992,1993). 

Small area undercount rates were calculated by synthetic 
estimation; the same adjustment factor was applied to 
persons from a given PS in aU areas. This procedure is 
accurate under the "synthetic assumption" of homogeneity 
of undercount rate within a PS. The validity of the syn­
thetic assumption has been hotly debated (Section 2). This 
paper reports on research conducted as a part of a PES 
evaluation project (the "P12 project") which investigated 
heterogeneity within poststrata. In particular, this research 
focused on the following question: can differences in 
coverage be identified between parts of a poststratum that 
fall into different states? 

Under the homogeneity assumption, the rates are the 
same within a PS regardless of state. Thus, this assumption 
can be tested by comparing rates from state to state within 
a PS; this test focuses attention on the question of whether 
synthetic estimation is "unfair" to certain states. The unit 

of analysis is the intersection of a census block and a PS 
or PSG, called a block part (BP) for the analysis of the 
undercount rate data. A census block is a small area 
bounded by visible features such as streets, streams etc. 
and/or by political boundaries. In urban areas it roughly 
corresponds to a city block. In fact, most of our analyses 
are performed on PSGs, since the age-sex breakdown of 
the PSG did not vary much from state to state. Hence, the 
analysis focuses on whether BPs differ between states 
wkhin PSG. 

Two distinct analyses were performed. The distributions 
of five "surrogate variables" were investigated (Section 3), 
using a large (4.26%) extract from the census. The distri­
bution of undercount was investigated using the much 
smaller PES data set (Section 4). For more detailed tables 
and documentation of the project, see Kim (1991). 

2. LITERATURE REVIEW 

Two key questions have been addressed in the literature 
on heterogeneity: 

1. The empirical question: how much heterogeneity is 
there, and how can it be described? 

2. The theoretical and policy question: what are the impli­
cations of heterogeneity for the accuracy of synthetic 
adjustments and the validity of assessments of these 
adjustments? 

Heterogeneity may be identified and analyzed at many 
levels of aggregation. Perfect homogeneity of undercount 
rates for very small domains is numerically impossible, 

' Jay Jong-Ik Kim, Statistical Research Division, U.S. Bureau of the Census, Suitland, MD 20233, U.S.A.; Alan Zaslavsky, Department of Statistics, 
Harvard University, Cambridge, MD 02138, U.S.A.; and Robert BlodgeU, U.S. Food and Drug Administration, 200 C St., S.W., Washington, 
DC 20204, U.S.A. 
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because of discreteness of the true population and the 
census counts. Indeed, because census errors (omissions 
or erroneous enumerations) tend to be either independent 
of each other or positively associated (as when a household 
with several members is omitted, or when some local 
characteristic affects an entire block), we would anticipate 
at least binomial variability in observed undercount rates. 

Hengartner and Speed (1993) analyzed 1990 PES data 
from two sites by fitting models in which the explanatory 
variables were block and "demoid" (a unit defined by 
the non-geographic poststratification variables, such as 
race, sex, age, and tenure). They found that the amount 
of variance explained by block was slightly greater than 
the amount explained by demoid; the number of blocks 
was not much greater than the number of demoids in 
their data set. In response, Schafer (1993) argued that an 
estimation scheme involving block effects would not be 
practical because it would require collecting data from 
every block. 

Heterogeneity of undercount at any level may be 
defined as excess variability in observed undercount rates 
at that level over what would be expected as a consequence 
of variability at a lower level of aggregation. For example, 
confining our attention to a single poststratum, a set of 
blocks are heterogeneous if their undercount rates in that 
poststratum differ more than would be expected if house­
holds, including those counted, partiaUy counted, and 
omitted in the census, had been randomly distributed 
across the blocks. Similarly, a group of states are hetero­
geneous (similarly controlling for poststratum) if they 
differ more than would be expected if blocks, including 
those with higher and lower undercounts, had been 
randomly distributed across the states. Several studies 
have attempted to measure heterogeneity in undercount 
rates and other census variables. Wachter and Freedman 
(1992) analyzed a large sample of census data (similar to 
that considered in Section 3). They estimated the excess 
variability between "superblocks" over that predicted by 
a binomial model with uniform rates, for four "artificial 
population" variables (multi-unit housing rate, non-
mailback rate, allocations, and substitutions, described in 
Section 3). Compared to the greatest possible amount of 
heterogeneity (if each block were homogeneous), the 
"excess variability" ranged from around 20% (for muki-
unit housing) to 2% (for substitutions). Another study by 
Freedman and Wachter (1993) examined between-state 
heterogeneity using "artificial populations" based on the 
same variables and two others, and found substantial 
variabiUty. 

Alho, Mulry, Wurdeman and Kim (1993) used condi­
tional logistic regression models to describe heterogeneity 
associated with measured covariates that were not captured 
in the poststratification. Their concern was primarily with 
reducing the bias of dual system estimates of population, 
rather than with more accurate small-area estimates. 

A controversial topic in evaluation of the proposed 
adjustment of the 1990 census was the effect of hetero­
geneity on the accuracy of adjusted population counts 
obtained by synthetic estimation, and particularly on 
comparisons of the accuracy of adjusted and unadjusted 
counts. Wachter and Freedman (1992) argued that because 
the "synthetic assumption" of uniform coverage within 
poststrata is demonstrably false, aggregate measures of the 
accuracy of an adjusted census systematically under­
estimate error. Because nonuniformity of coverage affects 
the accuracy of an unadjusted census as well, however, the 
implications of this conclusion for the appropriateness of 
adjustment are not obvious. 

In one of the earUer "surrogate variables" studies, 
Isaki, Schultz, Diffendal and Huang (1988) simulated the 
behavior of synthetic estimators on "artificial populations" 
which were transformations of the substitution (unit 
imputation) rate. They found that a synthetic estimator 
generally did better than "unadjusted" counts. 

Schirm and Preston (1987) argued, using analytical 
calculations and suntUation, that synthetic estimation makes 
estimates for small areas more accurate under plausible 
conditions, even if the synthetic assumption does not hold. 
Wolter and Causey (1991) investigated the performance 
of synthetic estimators and of a single ratio adjustment 
when the undercount rates are estimated with error, using 
imdercount rates from the 1980 Post-Enumeration Program 
(PEP) and simulating various levels of sampling error; 
they estimated "break-even" coefficients of variation at 
which sampling error in the adjusted counts or proportions 
would make them less accurate than unadjusted counts or 
proportions. The conclusions of these articles were criticized 
by Freedman and Navidi (1992), who gave counterexamples 
of possible distributions of undercount for which adjust­
ment by synthetic estimation would make population 
distribution less accurate. 

Fay and Thompson (1993) simulated effects of hetero­
geneity on accuracy of synthetic estimates, using eight sur­
rogate variables (including the five used in this study) and 
the same data set as analyzed in Section 3. They performed 
a loss function analysis as in Mulry and Spencer (1993) to 
compare the accuracy of simulated unadjusted counts to 
that of synthetically adjusted counts. They found that the 
effect of ignoring heterogeneity was to underestimate the 
gain in accuracy due to synthetic adjustment for five of 
eight variables, and to overestimate it for one variable 
(unemployment rate), while there was little difference for 
two other variables (poverty and migration rates). 

3. ANALYSIS OF SURROGATE VARIABLES 

In the analysis of census data, we selected variables 
which were available for the entire census and which, 
like undercount, were descriptive of or related to the 
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census-taking process. The selected surrogates are the 
allocation rate, mail return rate, multiunit structure rate, 
mail universe rate (fraction of units receiving mail ques­
tionnaire) and substitution rate. The allocation rate is the 
fraction of households for which imputations were made 
for item nonresponse, and the substitution rate is the 
fraction of households which were imputed as a whole 
because it was determined that a unit was occupied but no 
interview could be obtained. 

Table 1 shows correlations between each of these variables 
and undercount rate by PSG. These "ecological" correla­
tions (Freedman, Pisani and Purvis 1978, pp. 141-142) of 
PSG averages differ from those which could be calculated 
from block-level data. The latter are smaller, possibly 
because of the noise introduced by random variability in 
the small populations in each block. 

Table 1 

Correlation Coefficients between the 
Surrogate Variable 

and Undercount Rate by PSG 

Variable 

Allocation Rate 
Mail Return Rate 
Multiunit Structure Rate 
Mail Universe Rate 
Substitution Rate 

Correlation 

.44 
-.57 

.39 

.08 

.47 

Applying a naive test which treats the PSGs as indepen­
dent, each correlation is significant except that for mail 
universe rate, but the magnitudes of the correlations are 
not large. To some extent, furthermore, these variables are 
descriptive of conditions which tend to lead to higher 
omission rates (allocations due to poor completion of 
questionnaires, substitutions due to difficuky in obtaining 
interviews) or to lower omission rates (high mail return 
rates). On the other hand, difficult census-taking condi­
tions can also lead to erroneous enumerations, so these 
effects on net undercount are not entirely clear-cut. We 
do not analyze these variables simply because we believe 
that they are distributed in exactly the same way as under­
count. Rather we hope that by obtaining results on the 
distributions of a range of different census variables, we 
may gain some insight into the distribution of undercount. 

For the analyses ofthe surrogate variables, a stratified 
cluster sample of 1990 Census data was extracted. This 
sample is composed of 204,394 blocks corresponding to 
125,000 block clusters. A block part containing less than 
ten persons was combined with successive block parts 
(in order by block number) until a minimum count of ten 
persons was obtained. This operation was performed to 
obtain relatively stable rates for the surrogate variables 
which allows us to analyze the rates themselves. 

Surrogate variables are analyzed by logistic regression. 
Two forms of logistic regression model were used. For the 
wkhin-PSG analysis, the model for PSG / is 

log[Pij/{l - Pij)] =A + Cj 

and for the within-division analysis, 

log[Pij/(l - Pij)] =A-^Bi-^ Cj, 

where P^ is the rate for a surrogate variable in the /-th 
PSG and y-th state, A is the intercept, B, is the /-th PSG 
effect and C, is the y-th state effect. The models used only 
the 99 PSGs astride two or more states. Models were built 
for surrogate variables in the 99 PSGs and in each of nine 
divisions. SAS PROC CATMOD estimated the parameters 
by maximum likelihood and provided Wald statistics for 
testing the significance of state effects. 

The data were collected with a cluster sample rather 
than a simple random sample so the test statistics must be 
divided by a design effect. We estimate a design effect, 

Y "iJk(Pijk - Pij)' 

E>ij = k = l 
KijPij{l - Pij) 

viliere Pijk is the rate for the /-th PSG, y-th state and k-th 
combined BP; nijk is the size of the combined BP; Kij is the 
sample number of combined BPs in the /-th PSG in the 
y-th state and Pij is the estimated rate for the /-th PSG and 
y-th state. The fraction is the ratio ofthe observed between-
block variance to that expected under binomial sampling. 

The estimated design effect Dij is a measure of within-
state within-PSG heterogeneity. The more within-state 
heterogeneity there is, the greater the sampling variance 
of the state-level rate and the harder it is to detect a signifi­
cant difference. The magnitude of the design effect thus 
affects the statistical power of the hypothesis tests. 

The calculated design effect only approximates the 
required correction. First, Dij sums over the combined 
BPs rather than individual BPs. Second, the sample is a 
stratified cluster sample, and most or all post-strata span 
several sampUng strata. The formula is only strictly correct 
for an unstratified sample. Third, the correct effect 
involves off-diagonal (covariance) as well as on-diagonal 
(variance) terms, and the off-diagonal terms are omitted. 
To account for the above, the calculated design effects 
were multiplied by the judgmentally chosen factor, 1.25. 

A design effect was calculated for each surrogate 
variable and PSG. It is small (around 2) in most PSGs for 
the allocation and substitution rate. The effect is slightly 
higher for mail return rate, but it tends to be large (as much 
as 20) for multiunit structure and mail universe rate, since 
these characteristics are usually fairly uniform within a 
block but vary greatly between blocks. 
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Table 2 summarizes the design-corrected tests for state 
effects within PSG. 

Table 2 

Number of PSGs with Significant (a = .05) 
State Effect (Logistic Regression) 

Div. No. 
Grp Alloc 

Mail 
Ret 

MuU 
Str 

Mail 
Unv Sub 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Sum 

5 
12 
16 
8 

10 
15 
9 
7 

17 
99 

5 
11 
15 
8 

10 
15 
8 
7 

15 
94 

5 
11 
16 
8 
9 

13 
9 
7 

14 
92 

5 
12 
16 
7 

10 
15 
9 
7 

14 
95 

1(1) 
7(10) 
3(3) 
5(6) 
4(4) 
5(7) 
4(4) 

2(3) 
5(5) 

36(43) 

3(4) 
12 
12(12) 
5(8) 
7(8) 

15 
8(8) 
6(6) 
6(12) 

74(84) 

The numbers in ( ) are the number of PSGs for which test statistics 
are available when they are less than the number of groups. 

Nationally, for each surrogate variable the state effect 
is significant for at least 84% of the PSGs. (The total 
number of PSGs varies because when a PSG falls entirely 
within one state or when only one state has non-zero obser­
vations for a particular variable, the corresponding model 
cannot be fit). The results are summarized at the division 
level. (Divisions 1 through 9 are New England, Mid-
Atiantic, South Atlantic, East South Central, West South 
Central, East North Central, West North Central, Mountain 
and Pacific Divisions.) 

Table 3 shows the magnitude of state effects, expressed 
as x^ values of test statistics adjusted for design effect, 
for three variables having relatively high correlation with 
the undercount rate. In the table, the x^ values have from 
1 to 8 degrees of freedom. 

Table 3 

Magnitude of State Effects with respect to 
Test Statistics 

Allocation 
Rate 

Mail Return 
Rate 

Substitution 
Rate 

Minimum 
25'yo-ile 
SO^-ile 
75%-ile 
Maximum 

4.3 
27.5 
68.9 

140.3 
945.2 

0.28 
102.83 
254.49 
644.05 

8,779.88 

5.46 
49.80 
97.35 

260.88 
1,815.12 

In division-level models with state and PSG effects, 
both the state and PSG effects were significant at the 1 % 
level in every division and for every variable (excluding 
mail universe rate in two divisions where a test statistic 
could not be calculated). 

4. ANALYSIS OF UNDERCOUNT RATE 

The results described above for surrogate variables were 
obtained early in the census process, but they have limited 
relevance to homogeneity of undercount itself. After PES 
data were processed, direct analysis ofthe distribution of 
undercount became possible. 

The data set for these analyses merged two data sets for 
the 12,124 PES sample blocks, one for the f'-sample 
(Census follow-up) and the other for theP-sample (PES). 
There were 12,124 collection blocks, some of which were 
split up for tabulation, giving 12,964 tabulation blocks. 
More importantly, because some of the smaller blocks 
were combined in the sampling, there were 5,293 block 
clusters sampled. Correct enumerations and ^-sample 
total counts are on the f-sample file. The P-sample file 
includes P-sample total counts and counts of matches 
(P-sample cases that were included in the Census). 

4.1 Variance Explained by State and PSG 

For each division, a two-way ANOVA was fitted to under-
coimt rates for state parts. Table 4 shows the ratio of the sum 
of squares due to PSGs to that due to states within a division. 

Table 4 
Variance of Undercount Rate Explained 

by State and PSG 

„. No. of No. of SS (Group) MS (Group) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Groups 

5 
12 
16 
8 

10 
15 
9 
7 

17 

States* 

6 
3 
9 
4 
4 
5 
7 
8 
5 

SS (State) 

4.51 
4.88 

12.69 
8.73 
8.17 
7.67 
2.78 
1.31 

40.28 

MS (State) 

5.64 
.89 

6.77 
3.74 
2.72 
2.19 
2.09 
1.53 

10.07 

* States include D.C. 

The ratio is always greater than one and in Division 9 
it is 40.28, showing much larger effects for PSG than for 
state. The mean square for group also exceeds the mean 
square for state in each division except Division 2. This 
supports the decision to use the PS rather than the state 
as the cell for undercount estimation and adjustment. 

4.2 Tests for State Effects on Undercount Rates 

Assuming the substitution rate (fraction of units 
imputed for nonresponse) is negligible, the adjustment 
factor (R) for a domain is 

R = 
WCE/WE 

WM/WP' 
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and the undercount rate is 

1 - l/R, 

where WE and WP are the estimated population sizes 
weighted up from the E and P-sample, respectively. WCE 
is the weighted number of correct enumerations and WM 
is the weighted number of matches in the PES. 

The statistic for the influence (see Appendix) of the /-th 
BP on the adjustment factor or undercount rate is 

' ~ V WCE WP WE WM) ' 

where WCEi, WPi, WEi and IFM, are contributions 
from the /-th BP to the totals above. 

A linear model was fitted to BP influence statistics to 
test for state effects. Under the null hypothesis, all the state 
parts in a PSG have the same undercount rate and the 
expected mean of the influence statistics for each state is 
0 within each PSG. The influence statistics can be analyzed 
with one way ANOVA within a single PSG or two way 
ANOVA for all PSGs within a division. 

Table 5 summarizes the tests for state effects on linear­
ized statistics within each PSG. 

Table 5 
Analysis of Linearized Undercount at the PSG Level 

groups show significant interstate heterogeneity at the 5% 
level. This suggests that the poststratification can be 
improved in those areas. 

Table 6 

Summary of Analysis of Linearized Undercount 
by Place Type 

Place Type 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Number of PSG 

It 
23 
12 
8 
0 
6 
6 

11 
11 
10 

Number of PSG with 
P < .05 

3 
1 
1 
1 
0 
2 
1 
3 
4 
3 

Table 7 shows the F-statistics and ;?-value for state 
effect for state x PSG models, once weighted by the size 
of domain and once without weights. 

Table 7 
State Effects by Division - Weighted 

and Unweighted Data 

Division 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Sum 

Number of PSG 

5 
12 
16 
8 

10 
15 
9 
7 

17 
99 

Number of PSG with 
P < .05 

0 
3 
4 
5 
2 
1 
0 
1 
3 

19 

Division 

1 
2 
3 
4 
5 
6 
7 
8 
9 

D.F. 

5 
2 
8 
3 
3 
4 
6 
7 
4 

Unweighted 
Models 

F 

.57 
4.64 

.43 

.64 

.66 

.60 

.39 

.62 

.77 

P 

.72 

.01 

.91 

.59 

.58 

.66 

.88 

.74 

.54 

Weight© 
Models 

F 

.40 
1.72 
.65 
.66 

1.37 
.24 
.22 
.76 
.48 

d 

P 

.85 

.18 

.74 

.58 

.25 

.92 

.97 

.62 

.75 

The tests reveal significant heterogeneity between states 
in 19 out of 99 groups at the 5% significance level. The 
magnitude of the estimated state effect ranges from a few 
percent up to 20%, but the standard errors of these esti­
mates are very large. 

Table 6 summarizes the results of these analysis by place 
type. Place types 0, 1, 2 and 3 are large central cities in a 
Primary Metropolitan Statistical Area (PMSA), place 
types 4, 5 and 6 are non-central cities in PMSA with large 
central cities and place types 7, 8 and 9 are other areas. 

The significant results are concentrated in PSGs for 
small areas (place types 7, 8 and 9). Ten out of 32 such 

The additive effect of state was significant in only one 
division (p = .01) in the unweighted state x PSG model; 
when data were weighted by size of domain, the smallest 
p-value for the state effect was . 18. In both cases, the most 
significant effect was observed in Division 2, in which New 
Jersey appeared to have higher undercount rate, controlling 
for PSG, than New York. Note that the most undercounted 
area in New York (New York City) had its own poststrata. 
In eight out of ten PSGs for which New Jersey and New 
York could be compared, including nonurban areas, the 
estimated undercount for New Jersey was larger than that 
for New York. Elsewhere, because the state effects in 
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different PSGs varied in magnitude and sometimes in sign, 
and because only within a minority of PSGs in any division 
were there significant state effects, there was not signifi­
cant evidence that in the aggregate the poststratification 
was biased against certain states. 

Table 8 shows point estimates of the state effects in Unear 
models for undercount rate by state part in each division, 
with effects for state and poststratum group. (Effects are 
centered at zero by division.) In effect, these are estimates 
of interstate differences after correcting for effects explained 
by the PSG composition of the different states. 

Table 8 
Estimated State Effects on Undercount within Division 

(as percent) 

Division 1 

CT - 2.42 
ME .74 
MA -0 .48 
NH -0 .14 
RI 1.43 
VT 0.90 

Division 2 

NJ 4.18 
NY -3.91 
PA -0 .26 

Division 3 

DE -0 .42 
DC 2.82 
FL -0 .88 
GA -1 .43 
MD -1.32 
NC 0.53 
SC 0.70 
VA -0.11 
WV 0.11 

Division 4 

AL -2 .90 
KY 1.89 
MS -0 .02 
TN 1.03 

Division 5 

AR 1.44 
LA -0 .71 
OK 1.58 
TX -2 .30 

Division 6 

IL 0.86 

IN 1.12 
MI -0 .73 
OH -0 .88 
WI -0 .38 

Division 7 

lA 
KS 
MN 
MO 
NE 
ND 
SD 

-1 .10 
-0 .50 
-0 .01 
-0 .66 

1.76 
-0 .07 

0.60 

Division 8 

AZ 
CO 
ID 
MT 
NV 
NM 
UT 
WY 

2.70 
0.68 

-2 .24 
-1 .61 
-0 .10 

3.35 
0.08 

-2 .84 

Division 9 

AK -0 .78 
CA 
HI 
OR 
WA 

1.02 
-0 .18 
-0 .26 

0.18 

The root mean square in the analysis of variance for 
state within division, averaged across all divisions, is 
1.72 percent. Recall that only in the unweighted Division 2 
analysis were the differences between states significant, it 
must be emphasized that the estimates in Table 8 do not 
represent well-measured interstate differences. The fact 
that the estimated effects are substantial in magnitude but 
are still not statistically significant tells us that the power 
of these tests to find interstate differences, given the 
sample sizes of the PES, is not as great as might be desired. 

Another approach to the power problem is to consider 
the effect of reducing the size of the census extract used 
in analysis of surrogate variables by a factor of 25, the 
ratio of the census extract to the PES sample sizes. If we 
divide by 25 each of the chi-square test statistics sum­
marized in Table 3, then in only 27 out of 99 PSGs would 

interstate differences have been significant for allocation 
rate (compared to 94 out of 99 PSGs with the full sample). 
Similarly, significant differences would have been found 
for 53 out of 99 PSGs for mail return rate (compared to 
92 out of 99 PSGs with the full sample), and for 14 out 
of 84 for substitution rate (compared to 74 out of 84). 
Substitution rates are comparable in magnitude to under­
count rates; after our hypothetical reduction of sample 
size, we obtain similar numbers of significant tests for 
substitution and undercount rates. It is plausible that with 
a much larger sample we would have found many more 
significant interstate differences, although one can only 
speculate on whether they would have been large enough 
to be of substantive concern. 

5. DISCUSSION 

This paper evaluates interstate heterogeneity in under­
count rate and other census variables in the 1990 Census. 

The evaluation used 1990 Census data and 1990 PES 
data. When this research was first embarked upon, the 
PES data were unavailable and were not expected to 
become available for analysis before the scheduled com­
pletion date. Surrogate variables from the 1990 Census 
were tested for significant heterogeneity among states 
within PSG. At the PSG level, state effect was significant 
(a = .05) for 84%-95% of ks PSGs for the various 
surrogate variables. 

ANOVA on linearized undercount based on the PES 
data at the PSG level showed significant (a = .05) state 
effects for 19 out of 99 PSGs. The significant results were 
concentrated in the PSGs in non-PMSA areas. Ten out of 
32 such PSGs had significant state effects. This suggests 
that the poststratification in the relatively nonurban areas 
was not as successful as in the more urbanized areas. 

How can we explain the different findings of the two 
studies? The two data sets had very different sample sizes, 
i.e., the Census data had 125,000 block clusters but the 
PES data had 5,293 block clusters. It is therefore not 
surprising that small differences between states on surrogate 
variables would be statistically significant although 
corresponding differences would not be demonstrable with 
respect to undercount rates. 

Furthermore, the correlations between the undercount 
rate and the surrogate variables are low as shown in 
Table 1. Therefore, any generalization from surrogate 
variables to undercount rates is somewhat conjectural. 
Given the modest correlation between undercount rates 
and surrogate variables, we prefer to give greater weight 
to the analysis of the PES data. 

We conclude from these data that there are no demon­
strable differences in average undercount rate between 
states within each division, after adjusting for PSG effects. 
While there is weak evidence for a difference between 
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New Jersey and New York within the Mid-Atlantic division, 
this result must be downweighted in the context of the 
number of divisions (nine) for which the test was performed. 
We conclude that if adjustment of population counts had 
been carried out based on the 1990 PES, no state would 
have been able to show that the poststratification was 
manifestly unfair in that it underadjusted that state relative 
to what direct state estimates showed that it deserved. 

As the review in Section 2 shows, there is no consensus 
on whether or not between-state heterogeneity in under­
count rates within PSG which is of substantial magnitude, 
although not large enough to be accurately measured by 
PES, would systematically affect the gain in accuracy 
obtained by synthetic adjustment. Nonetheless, the differ­
ences between states that were identified in analysis ofthe 
PES, together with the ancillary evidence ofthe surrogate 
variable analyses, make it appear likely that heterogeneity 
between states will again be an issue in coverage measure­
ment for the year 2000 census, especially for the larger states 
for which these coverage differences can be most accurately 
measured. Fay and Thompson (1993) argue that a coverage 
measurement sample for 2000 should be designed to 
support direct (rather than synthetic) estimates of under­
count for all states, although a CNSTAT panel (CNSTAT 
1994) warns that for some states this could impose a highly 
inefficient sample allocation. Research over the intervening 
years must address the development of a combination of 
sample design and estimation methods that wUI produce 
defensible estimates of population by state. 
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APPENDIX 

Testing for Interstate Differences Using 
Linearized Statistics 

A two-way ANOVA for adjustment factors in state 
parts yields an intuitively meaningful summary of the 
relative contributions of state and PSG effects to the 
variation in adjustment factors. Because the sampUng unit 
of the PES is the block cluster rather than the state part. 

these models do not yield valid statistical tests of the 
significance of the state effects. 

Consider a statistic whose sample estimate for a state 
or state part is a weighted mean of the sample estimates 
in each component block or BP. Significance of the state 
effects for this statistic within a PSG could be evaluated 
by one-way ANOVA with the included block parts as units 
(corresponding to PSUs), or aggregated across PSGs by 
two-way ANOVA for state and PSG effects. 

The sample adjustment factor estimate ( WCE/ WE) / 
(WM/ WP) is a nonlinear function of sample counts. In 
small primary sampling units (PSUs) such as block parts 
this nonUnearity may be very noticeable, especially when 
the number of matches in a PSU is very small or zero so 
that the sample estimate ofthe adjustment factor is large 
or infinite. In this situation, if PSU sample estimates are 
treated as data, the additive assumptions of ANOVA are 
violated. Useful tests may be recovered, however, by using 
a linearized version of the statistic of interest. 

Suppose that we are interested in a parameter Z = f{X) 
where A' is a vector of population proportions in certain 
cells. Let x, x, represent the corresponding sample pro­
portions in the entire sample and in PSU / respectively, so 
X = Y, NiXi / £ Ni is a size-weighted average of block cell 
proportions. Let/i (X) be the gradient o f / a t X. Then by 
Taylor Unearization f{x) - f{X) « / , (X)' (x - X) = 
Y,Nifi (X) 'Xi/Y,Ni - / i (X) 'X, i.e., we may treat the 
problem as one of inference regarding the quantities 
(pseudo-observations) z, = f {X) 'x,. Because the approx­
imate (linearized) influence of PSU / on the estimate f{X), 
that is, the difference between the estimate with and 
without PSU / included, is Nif (X)' (x, — Jc), we may 
describe this as a method based on influence statistics 
(Hampel et al. 1986) or the infinitesimal jackknife (Efron 
1982, Chapter 6). 

To derive a sensible variance model, suppose that we 
may regard PSU / as sample (not necessarily SRS) from 
a superpopulation with cell proportions Xi. A simple 
model is then, for some covariance matrices C/, and F,, 

superpopulation model: 

E{Xi) = X, Var{Xi) = K, 

and 

sampling model: 

E{Xi I Xi) = Xi, War{Xi \ Xi) = Ui. 

The sampUng covariance (/, will typically be propor­
tional to Ni~'. A plausible and mathematically conve­
nient specification for F, is F, a A',"' {i.e., smaller PSUs 
more variable than larger ones), so Varz, = a^/Ni for 
some constant a^. The corresponding linear model weight 
for PSU / is Ni so the model-based estimate of the mean 
agrees with the design-based estimate obtained by aggre­
gating the cell counts if AT, is a weighted size measure. 
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In the case of the adjustment factor/? = (WCE/WE)/ 
(WM/WP), the pseudo-observations are of the form 
Zi=fx{X)'{Xi-x) -

- /WCEi WPi WEi n WCE 
-I-

WP WE 

WMj 

WM i)-
where WCEi, WPj, WEi and PFM, are similar to the 
above for the /-th BP. We approximate the appropriate 
weight of a block part by N, = ( WEj -\- IFP,)/2. 

If the variance specifications of the model are inaccurate 
so there is some heteroscedasticity, or if the distribution 
is very long-tailed, then there will be a long-tailed distri­
bution of residuals, making the tests at least slightly 
liberal. Some care must be taken to note the presence of 
outliers signaling this heteroscedasticity, for example, 
outlying blocks due to large-scale geocoding errors. 

The assumption of approximately independent obser­
vations in ANOVA may be violated in two ways. First, the 
PSUs are not selected by SRS but rather by a geographical 
stratification somewhat finer than reflected in the post­
stratification scheme. To the extent that this geographical 
stratification reduces the sampling variance of the state 
effect estimates, inferences under the independence model 
will be somewhat conservative. Second, there wUl be 
correlations between adjustment factors for different 
block parts from the same block (in multi-PSG models). 
These will tend to make inferences assuming independence 
somewhat liberal. On the balance, we regard the tests 
performed here as useful. 
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Markov Chain Designs for One-Per-Stratum Sampling 
F. JAY BREIDT 

ABSTRACT 

Classical results in finite population sampling tell us that systematic sampling is the most efficient equal-probability 
one-per-stratum design for certain kinds of autocorrelated superpopulations, but stratified simple random sampling 
may be much better than systematic sampUng if the superpopulation is a trend with uncorrelated errors. What if 
the superpopulation consists of a trend plus autocorrelated errors? Intuitively, some sort of "compromise" between 
the two designs might be better than either. Such compromise designs are constructed in this paper and are shown 
to be examples of Markov chain designs, a wide class of methods for one-per-stratum selection from a finite 
population. These designs include as special cases systematic sampling, balanced systematic sampling and stratified 
simple random sampling with one sampling unU per stratum. First and second-order inclusion probabilities are 
derived for Markov chain designs, yielding the Horvitz-Thompson estimator and its variance. Efficiency of the 
Horvitz-Thompson estimator is evaluated using superpopulation models. Numerical examples show that new designs 
considered here can be more efficient than standard designs for superpopulations consisting of trend plus auto­
correlated errors. An example of the implementation of Markov chain designs for the 1992 National Resources 
Inventory in Alaska is given. 

KEY WORDS: Balanced systematic sampling; National Resources Inventory; Systematic sampling. 

1. INTRODUCTION 

A stratified sampUng design, in which a fiiute population 
is divided into non-overlapping strata and samples are 
drawn from each stratum, is a common and effective 
technique for reducing sampling error. In practice, strat­
ified sampUng designs with only one sampling unit per 
stratum are widely used. Examples include stratified 
simple random sampling and systematic sampUng with its 
variants (e.g., Murthy and Rao 1988). 

Systematic samples are susceptible to systematic errors. 
In large-scale spatial samples, for example, sources of 
systematic error could include roads, powerUnes, irrigation 
systems, and so forth. A favorite example is the system of 
"section roads" in areas ofthe United States covered by 
the public land survey. This grid-based system is built up 
from square tracts of land called sections, each one mile 
on a side, which are often bounded by roads in midwestern 
agricultural regions. A systematic sampler with a one-mile 
sampling interval and an unlucky random start might 
conclude that Iowa is covered by gravel roads! 

Systematic sampUng does have the advantage of effi­
ciency when the sampled population is positively auto­
correlated, as is often the case in temporal and spatial 
sampling problems, since it forces observations to be as 
distant and hence as uncorrelated as possible. 

Both autocorrelation and systematic error are of concern 
in the National Resources Inventory (NRI), an area sample 
of the nonfederal lands in the United States conducted 
every five years by the Soil Conservation Service of the 

United States Department of Agriculture. NRI data items, 
collected by a combination of remote sensing and ground 
observation, include soil characteristics, land use, agricul­
tural practices, erosion measures, and so on. 

The 1992 NRI sample design for the northwestern 
region of the state of Alaska is a controlled version of 
one-per-stratum sampling. The region was divided into 
twenty-minute bands of latitude. Each band was divided 
into 500,000-acre strata. Each stratum was divided into 
a 10 X 10 grid of cells indexed by latitude and longitude, 
and one cell per stratum was selected. Selection moved 
from east to west across the strata within a particular 
twenty-minute band. The random numbers which deter­
mined the longitude cells of the selected units and the 
random numbers which determined the latitude cells 
evolved as two independent Markov chains. (Basic results 
on Markov chains used in this paper can be found in an 
introductory text on stochastic processes such as Taylor and 
Karlin 1984). Details ofthe design are given in Section 2. 

How does this ad hoc design compare to more standard 
one-per-stratum designs? It tiuns out, as shown in Section 2, 
that simple Markov chain techniques can describe a broad 
class of equal-probability designs for one-per-stratum 
selection from a finite population. This class includes 
standard techniques such as stratified simple random 
sampling, systematic sampling and balanced systematic 
sampling, as well as the Alaska designs described above. 
It is also easy to generate new designs within this class. This 
unified treatment of one-per-stratum designs allows for 
comparisons of efficiency. 

F. Jay Breidt, Iowa State University, Department of Statistics, Ames, lA 50011-1210, U.S.A. 
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First and second-order inclusion probabilities for all of 
these designs are derived in Section 3, yielding the Horvitz-
Thompson estimator and its variance. As in much of the 
relevant literature (Madow and Madow 1944; Cochran 
1946; Sedransk 1969; Bellhouse and Rao 1975; Wolter 
1985; Bellhouse 1988; etc.) the average design variance of 
the Horvitz-Thompson estimator is evaluated under a 
variety of superpopulation models. Compact expressions 
for model-averaged design variances are obtained. Numer­
ical examples in Section 4 show that designs introduced 
in this paper can be more efficient than standard one-per-
stratum designs for superpopulations consisting of trend 
plus autocorrelated errors. Discussion follows in Section 5. 

Though our motivating example is two-dimensional, 
one-dimensional designs wUI be considered throughout. 
Most proofs and derivations are straightforward and are 
omitted for brevity. 

2. MARKOV CHAIN DESIGNS 

Consider the problem of sampling from a finite popula­
tion of N = na labeled units, denoted by 

U= ( 1 , . . . , A ^ ) 

= | 1 , . . . , fl, a -I- 1, . . . , 2a, . . . , 

(« - l)a -I- I, . . . , na]. 

The value of a study variable yk = j(,_))a+y = yij is 
associated with each label k; the notation yk or yij will be 
used for both random variables and realizations of 
random variables. 

Here n is the sample size and a is the sampling interval. 
The n subsets 

{(/ - l)a -I- ! , . . . , ( / - l)a -I- a] (/ = ! , . . . , « ) 

will be referred to as strata. The goal is to select one unit 
per stratum. Often, a stratified sampling design is defined 
to be one in which independent probability samples are 
selected in each stratum, but the restriction to independence 
is not used here. 

Given a doubly stochastic transition probabiUty matrix P, 
a Markov chain sample is given by 

s = [Ri,a -I- /?2. •••, {n - l)a -h R„], 

where Ri, . . . , /?„ is the Markov chain defined by P and 
R] ~ uniform (1, ..., a). Formally, then, a Markov 
chain design (MC) is a function p{ • ;P) such that 

p{s;P) = Pr{s = (r,,fl -I- rj, . . . , (n - l)fl -t- r J ) 

= Prl/?, = /•,,/?2 ^ r2, ...,R„ = r„} 

^r„-i,r„Pr„_2,r„_\ ' ' " ̂ q,/-!/''' 

for r,, . . . , r„ € (1, . . . , fl), 

^0, otherwise. 

MC designs as defined in this paper are related to the 
designs given in Chandra, Sampath and Balasubramani 
(1992), in which a I X Nvector of initial selection proba­
bilities and a N X N transition probability matrix of 
periodicity n determine a without-replacement sampling 
scheme. Chandra et al. focus on producing designs with 
strictly positive second-order inclusion probabilities. They 
do not expUcitly consider the one-per-stratum designs of 
this paper, which can be imbedded in their structure in a 
straightforward way by constructing the appropriate initial 
probabiUty vector and transition probability matrix. 

The foUowing result is usefiU in deriving the probabiUstic 
features of MC designs. 

Result 1 Consider a Markov chain for which the tran­
sition probability matrix Pis doubly stochastic {i.e., all 
row sums and all column sums equal one) and /?| has a 
discrete uniform distribution, with mass I/a on each of 
the states I, .. .,a. Then /?, has a discrete uniform distri­
bution on the states 1, . . . , a for all /. In particular, Ri has 
mean {a -I- 1)/2 and variance K(/?,) = (a^ - 1)/12. 

Some special cases of MC designs are of interest. 

Stratified simple random sampling. If the transition 
probability matrix is 

H = [l/fl],V = „ 

then 

Pr(/?,. =j'\Ri= j] = 1/fl = PrlRi, =j'] 

U,j' = 1, ...,a;i< / ' ) , 

which, together with the Markov property, implies that 
/?i, ..., R„ are probabilistically independent. In this 
case, the MC design is stratified simple random sampling 
with one unit per stratum (ST). 

Systematic sampling. If the transition probability 
matrix is /, the o X o identity matrix, then 

Pr{/?,. =j'\Ri=j] = P"^. "•^.'' 
L0,j9^j', 

so that /?!, . . . , /?„ are deterministically related. Thus, 

s = {Ri,a -I- i?,, . . . , (n - l)a -I- /?,), 

and so the MC design is systematic sampling (SY). 
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Compromise designs. Intuitively, ST and SY are at 
opposite "extremes" in some sense. If p € [0,1 ] , then 

G^ = pH + (I - p)I 

is doubly stochastic. If p = 0, the design is SY and if 
p = 1, the design is ST. Any other choice of p wiU yield 
a sequence consisting of "runs" of SY samples. Thus, the 
class Gp includes ST and SY, as weU as a continuum of 
"compromise" MC designs. 

Other convex combinations of doubly stochastic 
matrices could be considered. The class of doubly stochastic 
matrices is also closed under matrix multipUcation, trans­
position, and row and column permutation, so there are 
many ways to create MC designs. 

Balanced systematic sampling. Murthy (1967, §5.9d) 
describes a one-per-stratum selection method which he 
calls balanced systematic sampling (BA). This method 
gives samples 

s = [/?,, cr -I- (fl -I- 1 - /?i), . . . , (rt - 2)fl -I- /?i, 

(n - l)a -\- (a -\- I - i?,)) 

for n even and 

s = {/?,, a -I- (a -I- 1 - Rx), ..., (n - 2)a + 

{a -t- 1 - / ? , ) , (n - l)a + /?,) 

for n odd. An interesting feature of this design is that 
if n is even and the population is perfectly Unear (yij = 
00+ 0i[(i — l)o -I-y ]), then the sample mean equals 
the population mean for any sample. With the transition 
probability matrix, 

J = 

0 0 

0 0 

0 1 

1 0 

0 1 

1 0 

0 0 

0 0 a X a 

BA is a MC design. 

Alaska NRI design. As described in Section I, the 1992 
NRI sample design for the northwestern region of the state 
of Alaska used two independent Markov chains in the 
controUed selection of latitude and longitude ceUs. The tran­
sition probability matrix for longitude cells, /̂ ong. is given 
in Table I. This design, henceforth denoted AK, is a MC 
design since /̂ ong is doubly stochastic. Most of the tran­
sition probabUities are close to 0.10, so most "step sizes" 

are approximately equally likely. Note, however, that mass 
has been removed from on and near the back diagonal 
and placed in the upper left and lower right corners, so 
that flong discourages large east to west steps, such as 
from cell one to cell ten, and discourages small steps, such 
as from cell ten to cell one. On the other hand, f̂ ong 
encourages steps of around length ten, such as from cell 
two to ceU one, two or three. The realized sample of 
longitude cells is thus well-dispersed east to west, Uke a 
systematic sample would be, but its additional randomness 
guards against systematic error. Similarly, the Markov 
chain for latitude cells was set up to give good spatial 
dispersion north to south. 

Table 1 
Transition probability matrix for Markov chain sample 

of longitude ceUs,1992 National Resources Inventory, Alaska. 
Entries are the conditional probabilities of selecting 

ceUy' of stratum / -I- 1 given that celly of stratum / was selected. 

Cell; of 
stratum /' 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

0.05 

0.15 

0.15 

0.15 

0.15 

0.15 

0.10 

0.10 

0 

0 

2 

0.15 

0.15 

0.15 

0.10 

0.10 

0.10 

0.10 

0.10 

0.05 

0 

3 

0.15 

0.15 

0.10 

0.10 

0.10 

0.10 

0.05 

0.05 

0.10 

0.10 

Cell J 

4 

0.15 

0.10 

0.10 

0.10 

0.10 

0.10 

0.10 

0.05 

0.10 

0.10 

' of stratum 

5 

0.15 

0.10 

0.10 

0.10 

0.05 

0.05 

0.10 

0.10 

0.10 

0.15 

6 

0.15 

0.10 

0.10 

0.10 

0.05 

0.05 

0.10 

0.10 

0.10 

0.15 

+ 1 

7 

0.10 

0.10 

0.05 

0.10 

0.10 

0.10 

0.10 

0.10 

0.10 

0.15 

8 

0.10 

0.10 

0.05 

0.05 

0.10 

0.10 

0.10 

0.10 

0.15 

0.15 

9 

0 

0.05 

0.10 

0.10 

0.10 

0.10 

0.10 

0.15 

0.15 

0.15 

10 

0 

0 

0.10 

0.10 

0.15 

0.15 

0.15 

0.15 

0.15 

0.05 

3. HORVITZ-THOMPSON ESTIMATION 
UNDER MC 

Write the population total as 

n a n a 

t = YyK= Ti Tiyu-i)a+j = Y E•>'y• 
U i=l 7=1 /=1 7=1 

For all k, the first-order inclusion probabilities of a MC 
design are given by 

iTk = Pr\k € 5) = Pr{Ri = j] = l/a 

and for A: < /, the second-order inclusion probabilities are 
given by 

l/a, for / = i',J = j ' , 

TTki = S 0. for / = i',j 9i j ' , 

PJ/^~'^/a, for / < / ' . 
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The design-unbiased Horvitz-Thompson estimator 
(Horvitz and Thompson 1952) for the population total 
is then 

t.. = 

where 

yiRi 

Ty^'^^^Uxfa^"^ Ty^jhRi^j 
i=l i=l 7 = 1 

_ r 1, if Ri = j , 
' " ^ ' ^ - i 0, if Ri ^ j . 

The design covariances of the indicators I[R =ji are given 
by 

C'MC( '^ | / ? ,=7) ' ' ^ | / ? , '=7 ' | ) ^ EMc[JiRi=J]I{Ri.=j']] " 

EMC [II Ri =7 )]EMC [h Ri•=j'\] 

- ' '•(,-l)a+7,(/ '-l)o+7' -

^ ( ; - l ) a + 7 " • ( , ' _ 1)0+; ' , 

and so the design variance of 4 is 

''MC ('̂ ) = «^i: t(l-'-)yuyij 
i=l 7=1 ^ ^ 

-̂  E E E [o - ^yjyw 
,= 1 7=1 7-^7 L " J 

(1) 

-I-

+ 2a^ 
( = 1 / ' > / 7 = 1 •- -J 

Ei[Vuc(tJ] =fl 'FMcrf^/x,J 

(a-^)Y E - ^ - D E E^ .̂//' 
<=1 7 = 1 ' = 1 7 = 1 7'?=7' 

-I- 2a 
/•=i , '>/ >=i y' = i L " J 

for any MC design. Note that if /i,y is independent ofy, 
thenKMc[I?=i/i«,] = 0. 

The following proposition gives a sufficient condition 
under which no MC design has worse average design 
variance than SY. 

Proposition 2 Consider an uncorrelated additive model, 

? : yij = t^ij + Sij = a, -I- 0j -I- eij, 

whereE^[eij] = 0, V^{eij) = a? and Cj(ey, e,-;-) = 0. 
Then 

£ J [ F S Y ( 4 ) ] > £ J [ K M C ( / ; ) ] 

for all MC designs. 

Proof From Proposition I, the only term of interest is 
^Mc[i; "=i M,v?,]. which under SY is 

ŜYT Y ** J = ŜYT X; «, + n0j,} = n^V(0j,;), 

while under a general MC design. 

-I-2a' t It t T P~-?\y'jy''j- M̂cl" Y'^"^] = t t CMC(/3.,..̂ .,). 
1 = 1 i'>i 7 = 1 7'?:7 L J L ,= i J /=i ,' = i 

Since the design variance depends on all the values of 
the study variable in the finite population, (1) is not easily 
used for comparing designs. Following Cochran (1946), 
assume that the values of the study variable are generated 
from the superpopulation model 

? • yij My ' ^ij' 

where the /i,y are fixed and the e,y are random variables with 
E^[eij] = 0, Kj(e,y) = a?-and Cj(ey, e,-;-) = ff//,/';'. 
Then designs can be compared on the basis of model-
averaged design variance. 

Proposition 1 Under the superpopulation model ^, 
the average design variance of the Horvitz-Thompson 
estimator is 

Since CMC(/3R,./3R,,) ^ F^JSRJ), the proposition follows, D 

Some specific models are considered in the next five 
subsections. 

3.1 Random Permutation Model 

A model for a population in random order is a permuta­
tion model, in which a realization of the measurements 
j i , .. .,yi^ is given by one of the N\ equally likely permu­
tations of N fixed values. This model can be written as 

^i-yij = yu + eij, 

where yy = I, uyk/N. See Rao (1975) for more details. 
The following resuk is then a consequence of Theorem 2.1 
of Rao and BeUhouse (1978). 
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Result 2 Under the random permutation model, 

^{l [^1vic(^r)] = 

' ^ S T T E ^ / I =nV{R, 

(N^/n) (1 - n/N) Y (yk - Pu) V (N - 1) Under BA, for n even, 

for any MC design. 

Thus, the average variance over all permutations is 
exactly Fsi(fj, where SI denotes (unstratified) simple 
random sampUng without replacement. For SY, this result 
is originally due to Madow and Madow (1944). See also 
Sedransk (1969). 

3.2 Stratification Effects Model 

A model for a population with stratification effects is 

^2:>'/7 = «/ + ^17' 

where the a, are fixed constants and e^ are uncorrelated 
random variables with mean zero and variance a^. Note 
that if a, = fi, then 2̂ is an alternative to î as a model 
for a population in random order. 

Result 3 Under the stratification effects model, 

Ei2[VMc{t\)] =na{a - l)a^ 

for any MC design. 

3.3 Linear Trend Model 

A model for a population with a linear trend is 

?3: yij = 00 + 0i[(' - 1)0+ J] + eij, 

where 0Q and 0^ are fixed constants and e,y are uncor­
related (0,ff̂ ) random variables. 

Result 4 Under the linear trend model I3, 

Ei,[V^c{t.)] =0 '«'HV,C[E^,] -f-/jfl(fl - l)a^ (2) 

for any MC design. Since ̂ 3 is additive, no MC design has a 
larger expected variance under a Unear trend model than SY. 

The only design-dependent term in (2) is VMC[ E ?= 1̂ ;] • 
Under SY, E"=i/?, = «i?i, so that 

l ^ s y r f ; ^ / ! = n^V{RO, 

^^^\Y ^'1 = J^BAr^/^i + ^ (« +1 - ^ i ) l = 0. 

This implies that if the population is perfectly linear 
(a^ = 0), then 

Ei,[V^/,{tJ] =0, 

so that 4 = t for all samples, as noted by Murthy (1967, 
p. 165). 

Result 5 Under the linear trend model ^3, 

Ei,[VBA{t.)] < £ £ 3 [ K S T ( / ; ) ] 

^ E^^[VG^{t\)] 

< E^ [ KsY{t\)] = maxE^ [ FMC(fj ], 
MC (3) 

where the middle term is monotone increasing with 
decreasing p € [0,1 ] . If n is even, the left-hand side of (3) 
equals minMc£'{3 f ^Mc(4) ] • 

3.4 Periodic Population Model 

A simple model for a population showing a deter­
ministic periodicky with period p is the sine wave model 

^4-yij = as in j—[( / - l)a -I-y] | + en, 

where e^ are uncorrelated random variables with mean 
zero and variance a^. 

Result 6 Under the periodic population model ^4, 

Y sin-[{i-l)a-\-Ri]\ 
i=i ^ J 

+ na{a - l)a^ 

for any MC design. 

Denote the sine wave model I4 with p = a hy ^^a. 
Under $4 ,̂ 

while under ST, sin [ ^ [ ( / - l ) a + y ] ] = s i n ^ , 
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so that the model is additive and no MC design has larger 
expected design variance under 4̂̂  than SY, highlighting 
the fact that SY is inappropriate for a population containing 
a periodicity with period equal to the sampling interval 
(Madow and Madow 1944). This result generalizes as foUows. 

Result 7 If Hij = 0j in | , then ^ is a model for a popula­
tion showing a deterministic periodicity with period equal 
to the sampling interval, a. The model ^ is additive and 
so no MC design has larger expected design variance under 
? than SY. 

3.5 Autocorrelated Model 

Beginning with Cochran (1946), many authors have 
compared ST, SY and simple random sampling under an 
autocorrelated superpopulation model. See Bellhouse 
(1988, §4) for a review. 

Consider the following autocorrelation model due to 
Cochran (1946): 

?5 : yij = /̂  + eij 

where Oijj'j- = y[{i' - i)a -\- j ' - j] fori' > /. 

Result 8 Under the autocorrelated model ^5, 

0—1 

Ei^[VMc(t^)] =na{a-l)y{0) - 2n Y y{h){a-h) 
h = l 

Y E ET('"'+^'-y)("-^)fe''--) 
(,= 1 j=l y' = l V ' ' / 

-I-2a 

for any MC design. 

Result 9 If, for /i > 0, 7(/j) is non-negative, non-
increasing and convex, i.e., 

y{h) > 0,y{h) > y{h -t- 1) and 

y{h + 2) - 2y{h + \) + y{h) > 0, 

then E^^ [ KsY ( Q ] = miuMc^f 5 [ ^MC (4) 1 • 

This result is a coroUary of a theorem due to Hdjek 
(1959), given as Theorem 4.1 of BeUhouse (1988); BeUhouse 
clarified the conditions under which the theorem holds. 
Hdjek's theorem generalized an earlier result due to 
Cochran (1946), who compared SY, ST and simple 
random sampling. 

4. EFFICIENCY: SOME NUMERICAL 
EXAMPLES 

An important class of models for time series and spatial 
processes consists of a low-order polynomial trend plus 
an autocorrelated error sequence. A simple example is 

UM) '• yij = /3o + /3i [ (/ - 1 )a -I- y] -I- e,y, 

where the autocorrelation structure is that of a first-order 
autoregressive (AR) model, 

/̂7,,'7' = 7 [ ( ' ' - i)a+j' -j] = aV<'"-'"'+^"-^' 

for /' > / and | 0 | < I. The average design variance 
under this model is obtained from Results 4 and 8. For 
different choices of 0i and <̂ , the ratio of expected design 
variances. 

E^[VMc{tJ]lE^[Vsy{tJ] (4) 

is given in Table 2 for various MC designs. Also tabled is 
the optimal G^ design, obtained by minimizing (4) with 
respect to p. Use of this design is only feasible if super-
population parameters are known, so it is tabled merely 
as a benchmark and not as a competitor. 

When /3i ?̂  0 and <̂  = 0, the model is I3 and the 
tabled values agree with Result 5: SY is the worst MC 
design and BA is the best, with G,/,, Gy, and ST falUng 
between them. Though BA does extremely well for this 
model, any non-SY MC design would be a good choice. 

When /3i = 0 and <{> ^ 0, ^^p,^) is a special case of 
model ^5. For <̂  > 0, Result 9 and the table agree that SY 
is most efficient since it makes the sample as "spread out" 
as possible, but for weak autocorrelation, the other MC 
designs are competitive. BA is very poor for this model, 
because the design ensures that every other pair /?,, /?,+1 
win be no more than a units apart. (For the same reason, 
BA is good for a negatively autocorrelated population.) 
AK, Gi/j and Gy, outperform ST, because each of these 
designs encourages state transitions of around length a. 

Similar results are obtained for the superpopulation 
model 

y • îry , 
?(a,< )̂: yij = «sm — + Cij, 

a 

where <T,y,,7' is as above. Table 2 gives the ratio of expected 
design variances (4) under this model, obtained from 
Results 6 and 8. 

When a ?£ 0 and <̂  = 0, the model is 4̂̂  and SY per­
forms badly, as indicated by Result 7. Even for (̂  ?s 0, SY 
performs well only when the periodicity is swamped by 
highly-correlated noise. 

Note that no design dominates Table 2: each of SY, Gy„ 
Gy„ ST, BA and AK is the best at least once among those 
considered. For a moderate trend and high autocorrelation, 
AK, G1/3 and Gy, can beat standard MC designs. Overall, 
Table 2 suggests that some non-standard MC designs, such 
as Gy, and AK, do reasonably well for a variety of popula­
tions: retaining much of the efficiency of SY against an 
autocorrelated population, while still guarding against 
systematic effects in other kinds of populations. 
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Table 2 
Ratio of expected design variance under MC to expected 

design variance under SY for superpopulation consisting of trend 
(line with slope /3i or sine wave with period a and amplitude a) 

plus autoregressive (AR) errors (N = 1,000, a^ — 100, 
fl = 10). Here Gp' is the optimal compromise design, 
where p* is a function of superpopulation parameters. 

Ratio for the best realizable design in each row 
(if not SY) is italicized. 

Line 
01 = 

Line 
01 = 

Line 
01 = 

Model 

+ AR 
0.7 

+ AR 
0.4 

+ AR 
0.1 

Pure AR 

Sine 

oc ^ 

Sine 

a ^ 

Sine 

01 ^ 

+ AR 
0.1 

+ AR 
1.0 

+ AR 
10.0 

<t> 
- 0 . 5 

0.0 
0.1 
0.5 
0.9 

-0 .5 
0.0 
0.1 
0.5 
0.9 

- 0 . 5 
0.0 
0.1 
0.5 
0.9 

-0 .5 
0.0 
0.1 
0.5 
0.9 

- 0 . 5 
0.0 
0.1 
0.5 
0.9 

- 0 . 5 
0.0 
0.1 
0.5 
0.9 

- 0 . 5 
0.0 
0.1 
0.5 
0.9 

Gy, 

0.2322 
0.2220 
0.2187 
0.1922 
0.0980 

0.4504 
0.4344 
0.4291 
0.3853 
0.1876 

0.9233 
0.9201 
0.9191 
0.9160 
0.8621 

0.9978 
1.0000 
1.0009 
1.0179 
1.2517 

0.9929 
0.9947 
0.9955 
1.0110 
1.2178 

0.6747 
0.6603 
0.6554 
0.6149 
0.3570 

0.0668 
0.0656 
0.0652 
0.0622 
0.0529 

Gy, 

0.2085 
0.1983 
0.1950 
0.1702 
0.0778 

0.4328 
0.4172 
0.4121 
0.3727 
0.1835 

0.9190 
0.9177 
0.9175 
0.9289 
0.9787 

0.9956 
1.0000 
1.0019 
1.0357 
1.4380 

0.9906 
0.9946 
0.9963 
1.0285 
1.3980 

0.6634 
0.6499 
0.6455 
0.6133 
0.3832 

0.0384 
0.0372 
0.0368 
0.0339 
0.0247 

Markov Chain Design 

ST 

0.2001 
0.1903 
0.1871 
0.1645 
0.0742 

0.4262 
0.4114 
0.4065 
0.3724 
0.1914 

0.9163 
0.9169 
0.9175 
0.9439 
1.0725 

0.9935 
1.0000 
1.0028 
1.0536 
1.5814 

0.9884 
0.9945 
0.9972 
1.0462 
1.5371 

0.6586 
0.6464 
0.6425 
0.6196 
0.4126 

0.0287 
0.0275 
0.0271 
0.0245 
0.0154 

BA 

0.1666 
0.1821 
0.1825 
0.1754 
0.0768 

0.3647 
0.4054 
0.4085 
0.4116 
0.2170 

0.7941 
0.9160 
0.9349 
1.0606 
1.2710 

0.8617 
1.0000 
1.0228 
1.1852 
1.8798 

0.8578 
0.9950 
1.0175 
1.1775 
1.8294 

0.6008 
0.6770 
0.6863 
0.7320 
0.5527 

0.1101 
0.1115 
0.1115 
0.1106 
0.1016 

AK 

0.2056 
0.1957 
0.1921 
0.1659 
0.0762 

0.4304 
0.4153 
0.4094 
0.3667 
0.1848 

0.9175 
0.9174 
0.9156 
0.9185 
1.0017 

0.9942 
1.0000 
1.0001 
1.0245 
1.4734 

0.9892 
0.9946 
0.9945 
1.0173 
1.4322 

0.6604 
0.6477 
0.6421 
0.6041 
0.3877 

0.0323 
0.0311 
0.0307 
0.0277 
0.0187 

Gp. 

0.2001 
0.1903 
0.1871 
0.1645 
0.0742 

0.4262 
0.4114 
0.4065 
0.3719 
0.1821 

0.9163 
0.9169 
0.9174 
0.9135 
0.7888 

0.9935 
1.0000 
1.0000 
1.0000 
1.0000 

0.9884 
0.9945 
0.9954 
0.9977 
0.9999 

0.6586 
0.6464 
0.6425 
0.6121 
0.3560 

0.0287 
0.0275 
0.0271 
0.0245 
0.0154 

(/>•) 

(1.0000) 
(1.0000) 
(1.0000) 
(1.0000) 
(1.0000) 

(1.0000) 
(1.0000) 
(1.0000) 
(0.8320) 
(0.5223) 

(1.0000) 
(1.0000) 
(0.8156) 
(0.1997) 
(0.0981) 

(1.0000) 

(...) 
(0.0000) 
(0.0000) 
(0.0000) 

(1.0000) 
(1.0000) 
(0.1925) 
(0.0364) 
(0.0018) 

(1.0000) 
(1.0000) 
(1.0000) 
(0.5079) 
(0.2852) 

(1.0000) 
(1.0000) 
(1.0000) 
(1.0000) 
(1.0000) 

5. DISCUSSION 

The class of Markov chain designs has been defined and 
shown to include systematic sampUng, stratified simple 
random sampling and balanced systematic sampling as 
special cases. Some new designs have been introduced 
(Gp, AK) and shown to be competitive with standard 
one-per-stratum designs under a variety of superpopulation 
models. In particular, the new designs work weU in numer­
ical examples for trending superpopulations with auto­
correlated errors. This is the kind of population of concern 
in many area sampUng problems, such as the 1992 National 
Resources Inventory in Alaska. A two-dimensional MC 
design implemented for that survey shows that one-
dimensional MC designs might be usefully extended to a 
spatial sampling context, though further work on this 
extension is necessary. 

Further work on variance estimation for MC designs 
is also needed. Because these are one-per-stratum designs, 
design-unbiased estimation of the variance of the Horvitz-
Thompson estimator is not possible. The problem of 
variance estimation for one-per-stratum designs, partic­
ularly for SY, has received much attention. For example, 
Wolter (1985) discusses in detail eight different biased 
variance estimators for SY and evaluates their biases under 
superpopulation models. Work in this direction for the 
coUapsed strata variance estimator {e.g., Cochran 1977, 
p. 139) under general MC designs is in progress. 
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Median Estimation Using Auxiliary Information 

GLEN MEEDEN' 

ABSTRACT 

The problem of estimating the median of a finite population when an auxiUary variable is present is considered. 
Point and interval estimators based on a non-informative Bayesian approach are proposed. The point estimator 
is compared to other possible estimators and is seen to perform well in a variety of situations. 

KEY WORDS: Sample survey; Estimation; Median; Auxiliary variable; Quantile; Non-informative Bayes. 

1. INTRODUCTION 2, ESTIMATING THE MEDIAN 

The problem of estimating a population mean in the 
presence of an auxiliary variable has been widely discussed 
in the finite population sampling literature. The ratio 
estimator has often been used in such situations. For 
the problem of estimating a population median the situa­
tion is quite different. Only recently has this problem 
been discussed. Chambers and Dunstan (1986) proposed 
a method for estimating the population distribution 
function and the associated quantiles. They assumed that 
the value of the auxiliary variable was known for every 
unit in the population and their estimator came from a 
model-based approach. Rao et al. (1990) proposed ratio 
and difference estimators for the median using a design-
based approach. Kuk and Mak (1989) proposed two other 
estimators for the population median. To use the Kuk 
and Mak estimators one only needs to know the values 
of the auxiliary variable for the units in the sample and 
its median for the whole population. The efficiencies of 
these estimators depend directly on the probabiUty of 'con­
cordance' rather than on the validity of an assumption of 
linearity between the variable of interest and the auxiliary 
variable. 

Recently Meeden and Vardeman (1991) discussed a 
non-informative Bayesian approach to finite population 
sampling. This new approach uses the 'Polya posterior' 
as a predictive distribution for the unobserved members 
of the population once the sample has been observed. 
Often it yields point and interval estimates that are very 
similar to those of standard frequentist theory. Moreover 
it can be easy to implement in problems that are difficult 
for standard theory. In this note we show how this method 
can be used for the problem of estimating a population 
median when an auxiliary variable is present and compare 
it to some of the other proposed methods. 

Consider a finite population containing Nunits. For the 
unit with label / let y, denote the characteristic of interest 
and Xi the auxiliary variable. We assume that both ^, and 
Xi are real numbers and each is known for every unit in the 
population. Let s denote a typical sample of size n which 
was chosen by simple random sampUng without replace­
ment. We assume simple random sample for convenience, 
since in many problems of this type the sampling will often 
be more purposeful. Before considering the problem of 
estimating the median of the population we review some 
weU known facts about the problem of estimating the mean. 

Consider the super population model where it is 
assumed that for each /, y, = bXi -I- t<,e,. Here b is an 
unknown parameter while the M,'S are known constants 
and the e,'s are independent identically distributed 
random variables with zero expectations. Since the popu­
lation mean can be written as N ~ ' ( Y-nsyi + l.jisyj) we 
would expect N'^YiHsyi + ^Yijts^j) to be a sensible 
estimate of the mean whenever 5 is a sensible estimate of 
b. One particular choice of b is the weighted least squares 
estimator where the weights are determined by the M,'S. 
For example if for all /, t/, = Jxi, the resulting estimator 
is just the usual ratio estimator. While if for all /, M, = x,, 
then b = «~'E,es(.)',/JC,) and the resulting estimator is 
one that was discussed by Basu (1971). (See also Roy all 
(1970).) Using this super population setup it is easy to 
generate populations where the ratio estimator has smaller 
mean squared error than the Basu estimator and vice versa. 
A somewhat limited simulation study on a variety of 
populations found that the performance of the Basu 
estimator is quite similar to the performance of the ratio 
estimator although in the majority of the cases the ratio 
estimator performs better than the Basu estimator. This 
is not unexpected, given the wide use ofthe ratio estimator. 

Glen Meeden, School of Statistics, University of Minnesota, Minneapolis, MN 55455, U.S.A. 
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In Meeden and Vardeman (1991) a non-informative 
Bayesian approach to finite population sampling, based 
on the Polya posterior, was developed. For the simple 
problem where no auxiUary variable is present, given the 
observed values in the sample, it introduces a Polya urn 
distribution as a pseudo posterior distribution over the 
unobserved members of the population. This pseudo 
posterior distribution can be used to obtain point and 
interval estimates of a variety of population quantities. It 
is related to the Bayesian bootstrap of Rubin (1981) and 
the Dirichlet process prior of Ferguson (1973). When 
estimating the median it yields results similar to those of 
Binder (1982). A theoretical justification for it is a step­
wise Bayes argument which yields the admissibility of the 
resulting estimators. See for example Meeden and Ghosh 
(1983). There the admissibility of the Basu estimator was 
demonstrated. In that case the Basu estimator was shown 
to arise from a 'posterior' which treats the known and 
unknown ratios, r, = >',/x, as exchangeable. Note that 
this is very similar in spirit to the super population model 
justification for this estimator given above, where the 
ratios r, = yi/Xi were independent and identically distrib­
uted. We shall see that the stepwise Bayes logic underlying 
the Basu estimator for the mean carries over in a straight 
forward way to point and interval estimators for the 
median. Unfortunately this is not the case for some of the 
other estimators. One natural but perhaps naive estimator 
which mimics in some sense the ratio estimator of the mean 
is just the ratio of the median of the y values in the sample 
to the median of the x values in the sample multipUed by 
the median of the x values in the population. There is no 
known model based theory which underlies this estimator 
as is the case for the ratio estimator of the mean. 

In the Bayesian approach to finite population sampling 
one needs to specify a prior distribution. Then given a 
sample, inferences are based on the posterior distribution, 
which is the predictive distribution for the unseen members 
of the population given the units in the sample. In the 
stepwise Bayes approach, given the sample one always has 
a 'posterior' distribution but it does not arise from a single 
prior distribution. However this 'posterior' distribution 
can be used in the usual Bayesian manner to find point and 
interval estimators of parameters of interest. We now wiU 
show how the stepwise Bayes model which yields Basu's 
estimator for the mean can also be used when estimating 
the median. In this setup, given a sample, the predictive 
distribution for the unobserved ratios treats the observed 
and unobserved ratios as 'exchangeable'. 

For definiteness suppose our sample contains the first 
n units of the population. We construct an urn which 
contains n balls where ball / is given the value of the /-th 
observed ratio, say r,. We begin by selecting a baU at 
random from the urn and the observed value is assigned 
to the unobserved unit n -{- I. This ball and an additional 
ball with the same value is returned to the urn. Another 

ball is chosen from the urn and its value is assigned to the 
unobserved unit n + 2. This ball and another with the 
same value are returned to the urn. This process is con­
tinued until all of the unobserved units have been assigned 
a ratio. Once they have all been assigned a value we have 
observed one realization from our 'posterior' distribution 
for the unseen ratios given the sample of seen ratios. If in 
this process the unobserved unit j has been assigned the 
ratio with value r we then assign its yj value to be rXj. 
Hence using simple Polya sampUng we have created a 
predictive distribution for the unobserved units given the 
sample. We call this predictive distribution the 'Polya 
posterior'. It is easy to check that this predictive distribution 
gives the Basu estimator when estimating the population 
mean under squared error loss. 

Given the sample the 'Polya posterior' yields a predictive 
distribution for the unobserved members of the population 
and hence a predictive distribution for the median as well. 
From the decision theory point of view the usual loss 
function is absolute error when estimating a median. For 
this loss function the Bayes estimate is just the median of 
the posterior or predictive distribution for the population 
median. If one were using squared error loss for estimating 
the median then the Bayes estimate is just the mean of the 
predictive distribution for the population median. The 
admissibility of these estimators under the appropriate loss 
function follows from a stepwise Bayes argument in the 
same way as the proof of admissibility for the Basu esti­
mator ofthe population mean. In Meeden and Vardeman 
(1991) and Meeden (1993) the following soniewhat sur­
prising fact was noted. For many common distributions 
the mean of the predictive distribution for the population 
median performed better than the median ofthe predictive 
distribution for the population median under both loss 
functions. Similar results hold for this problem. Hence our 
estimator will be the mean of the predictive distribution 
for the population median even though we will follow 
standard practice and use absolute error as our loss 
function. We will denote this estimator by estpp. This 
estimator cannot be found explicitly. However we will find 
it approximately by simulating observations from the 
posterior or predictive distribution for the population 
median. Under the Polya sampling scheme for the ratios 
described above we can simulate a possible realization of 
the entire population. For this simulated copy we can then 
find its median. If we repeat this process R times then we 
have simulated the predictive distribution of the population 
median under the 'Polya posterior'. When R is large the 
mean of these R simulated population medians yields, 
approximately, the estimate estpp. 

In what follows we will compare the estimator estpp to 
several other estimators. Another estimator we consider 
is just the sample median of the yi's. This ignores the 
information contained in the auxiliary variable and is used 
as a bench mark. It wiU be denoted by estsm. Another 
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estimator is the natural analogue of the ratio estimator of 
the population mean. This is discussed in Kuk and Mak 
(1989) and denoted by estrm. It is just the ratio of the 
median of the y values to the median of the x values in the 
sample multiplied by the median of all the x values in the 
population. They proposed two other estimators for the 
median. We will consider just the first one and denote it 
by estkm. This estimator has a plausible intuitive justifi­
cation and can be found in their paper. Rao, Kovar and 
Mantel (1990) considered a designed based estimator for 
the median. We will denote this estimator by estrkm. 
Since this estimator can be time consuming to compute we 
will find it approximately using a method due to Mak and 
Kuk (1993). Finally we will consider the estimator pro­
posed in Chambers and Dunstan (1986) and denote it by 
estcd. Actually Chambers and Dunstan propose a whole 
family of estimators and we will only consider one special 
case which is appropriate when ty, = Jx, in the super 
population model described at the beginning of this section. 
We now briefly outline the argument that leads to their 
estimator of the median. Let F denote the cumulative 
distribution function associated with the y values of the 
population. That is F puts mass l/N on each ^, in the 
entire population. The first step is to get an estimator of 
F{ t) for an arbitrary real number /. If 5 denotes our sample 
of size n then given the sample we can write 

F{t) = N-
K. lis 

A{t yi) + Y Mt 
jis 

-..] 
where A(z) is the step function which is one when z > 0 
and zero elsewhere. Since the first sum in the above 
expression is known once we have observed the sample, 
to get an estimate of F{t) it suffices to find an estimate 
of the second sum. Now under our assumed super pop­
ulation model the population ratios (yi — bXi)/Jxi are 
independent and identically distributed random variables. 
Since after the sample s is observed a natural estimate of 
bis b = Y,iisyi/ I-iis^i ons could act as if the n known 
ratios (yi — ftjc,)/^,-for/€5areactual observations from 
this unknown distribution. Under this assumption, for a 
fixed / and a fixed unity not in the sample s an estimate of 
A(t — yj) is just the number of the n known ratios incor­
porating b less than or equal to (/ - bXj)/Jxj divided 
by n. Finally if we sum over all the unobserved unitsy these 
estimates of A(/ — yj) we then have an estimate for the 
second sum in the above expression for F{t) which then 
yields an estimate of F{t). Once we can estimate F(t) for 
any / by say F{t) then the estimate of the population 
median is inf( / :F(/) > 0.5]. 

3. THE POPULATIONS 

We will compare these estimators using several different 
populations. We begin with three actual populations. The 

first is a group of 125 American cities. The x variable is 
their 1960 populations, in millions, while their;' variable is 
the corresponding 1970 populations, again in millions. The 
second is a group of 304 American counties. The x variable 
is the number of families in the counties in 1960, while the 
y variable is the total 1960 population of the county. Both 
variables are given in thousands. The third population is 
331 large corporations. The x variable is their total sales 
in 1974 and the j variable their total sales in 1975. The sales 
are given in bilUons of dollars. We denote these three 
populations by ppcities, ppcounties and ppsales. For the 
three populations the correlations are .947, .998 and .997. 
These populations were discussed in Royall and Cumberland 
(1981). Our ppcounties is similar to their population 
CountiesbO except we have taken the x variable to be the 
number of famUies rather than the number of households. 

We have also considered sbc artificial populations. In each 
case the auxiliary variable x was chosen first and then the 
y variable was generated from it. In some cases we followed 
the super population model described at the beginning of 
the previous section for some choice of the i/,'s. In some 
other cases we violated the assumption that conditional 
on the valuer, the mean of j , is bXi. In all cases the errors, 
the Ci's, were independent and identically distributed 
normal random variables with mean zero and variance one. 

In the first population, ppgamma20, the x,'s were a 
random sample from a gamma distribution with shape 
parameter twenty and scale parameter one. Then given AT, 
the conditional distribution of;', was normal with mean 
l.2xi and variance jr,, i.e., «,• = Jxj. 
In the second population, ppgammaSa, theX/'s were ten 
plus a random sample from a gamma distribution with 
shape parameter five and scale parameter one. Then given 
Xi the conditional distribution of;', was normal with mean 
3xi and variance x,. 

In ppgammaSb the auxiliary variable was the same as 
in ppgammaSa. Then given Xi the conditional distribution 
of;', was normal with mean 3x, and variance xf. 

In ppstskew the auxiliary variable was strongly skewed 
to the right with mean 42.63, median 39.29 and variance 
204.59. Then given x, the conditional distribution of;', 
was normal with mean x, -I- 5 and variance 9Xi. 

In ppln the auxiliary variable was a random sample 
from a log-normal population with mean and standard 
deviation (of the log) 4.9 and .586 respectively. Then given 
Xi the conditional distribution of;', was normal with mean 
Xi -f 2 log A:, and variance x,^ 

In ppexp the auxiliary variable was fifty plus a random 
sample from the standard exponential distribution. Then 
given Xi the conditional distribution of;', was normal with 
mean 80 - x, and variance (.6 logx,)^. 

All the populations contain 500 units except ppstskew 
which has 1,000. The correlations between the two variables 
for these last six populations are .76, .87, .41, .61, .58 and 
- .28 respectively. 
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In most examples where ratio type estimators are used 
both the ;','s and x,'s are usually strictly positive. In 
population ppstskew 13 of the 1,000 units have a y value 
which is negative. In the original construction of popula­
tion/7/7/rt quite a few more of the ;< values were negative. 
The population was modified so that all the values are 
greater than zero. 

Note that these populations were constructed under 
various scenarios for the relationship between the x and 
;' variables. Ppgamma20 and ppgammaSa satisfy the 
assumptions of the super population model leading to 
estcd, while ppgammaSb is consistent wkh the assumptions 
underlying estpp. In ppstskew the condkional variance of 
;', given x, is consistent with estcd while for the unmodified 
ppln it was consistent with estpp. In both these cases the 
assumption for the conditional expectation is not satisfied. 
For the populations/J/7COMn//e5, ppgammaSa and ppln we 
have plotted y against x and y/x against x. The results are 
seen in Figures I through 3. 
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Figure 1. ForppcoM«</esthe plot of ;'versus AT and;'/x versus 
X where x is the number of families (thousands) living 
in a county and y is the total population (thousands) 
of the county for 304 counties. 

The estimator estpp is based on the assumption that 
given the sample 5 our beliefs about the observed ratios, 
i.e., the ratios ;',/x, for / € s and the unobserved ratios, 
i.e., the ratios ;'y/x, forj i s are roughly exchangeable. In 
particular this means that one's beliefs about a ratio yj/Xj 

o 
1^ 

o 
CD 

^ O 

O 

o 
CO 

• • . • / • 
•r '-

12 14 16 18 20 

x 

22 24 

in 
m 

c\i 

12 14 16 18 20 22 24 
x 

Figure 2. For ppgammaSa the plot of y versus x and of y/x 
versus x. 
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Figure 3. For ppln the plot of;' versus x and of y/x versus x. 
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should not depend on the size of Xj. In fact ppgammaSb 
was constructed so that this would indeed be true. On the 
other hand, under the super population model leading to 
the estimator estcd we would expect the variabiUty of the 
ratios to get smaller as the size of the x variable increases 
while the average value of the ratios in any thin vertical 
strip remains roughly constant as the strip moves to the 
right. This is seen clearly in the plot of the ratios for 
population/Tpgflw/waJfl. For the rest ofthe populations, 
except for ppgamma20 the values of the ratios do in fact 
depend on size of x. This is seen clearly in the plots for 
ppcounties and ppln. Hence they should make interesting 
test cases for the estimator estpp. Ppexp was included as 
a test case to see what would happen if the underlying 
assumptions of estpp and estcd were strongly violated. 

4. SOME SIMULATION RESULTS 

To compare the six estimators 500 simple random 
samples of various sizes were taken from the nine popula­
tions. For each sample the values ofthe six estimators were 
computed. For the estimator estpp this meant finding it 
approximately by simulating/? = 500 realizations of the 
predictive distribution for the population median induced 
by the 'Polya posterior'. In each case the average value and 
average absolute error of the estimator were computed. 
In Table 1 the average values of all the estimators except 
estsm are given. All the estimators are approximately 
unbiased except in one case, estcd for the population p/j/n. 
We did not include the results for estsm since it is well 
known that k is unbiased. In Table 2 the average absolute 
error for all six estimators are given. We see from Table 2 
that estcd and estpp are the clear winners. They both 
perform better than the other four estimators in every 
case but one. In ppexp they are both beaten by estsm, but 
this is one case where neither would be expected to do well. 
For the first seven populations their performances are 
nearly identical while for population ppln the estimator 
estpp is preferred and for population ppstskew the opposite 
is true. 

In practice one often desires interval estimates as well 
as point estimates for parameters of interest. Kuk and Mak 
(1989) and Chambers and Dunstan (1986) each suggested 
possible methods for finding interval estimates based on 
their estimator using asymptotic theory. But in each case 
they did not actually find any interval estimators. Meeden 
and Vardeman (1991) noted how approximate 95% credible 
regions based on the 'Polya posterior' can be found approx­
imately. If we let ^(.025) and <7(.975) be the .025 quantile 
and the .975 quantile of the collection of 500 simulated 
population medians under the 'Polya posterior' then 
(^(.025), ^(.975)) is an approximate 95% credible interval. 
(See Berger 1985 for the definition of such intervals.) 
Table 3 gives the average length and relative frequency of 

coverage for these intervals. We see that for these popula­
tions the intervals have reasonable frequentist properties. 
Perhaps this is not unexpected given the discussion in 
Meeden and Vardeman (1991). But on the other hand only 
one of the populations was constructed so that the ratios 
yi/Xi are exchangeable. These results suggest that point 
and interval estimators ofthe median based on the 'Polya 
posterior' for the ratios are fairly robust against the 
exchangeability assumption and should work well in a 
variety of situations. This will be discussed further in 
section 5. 

Table 1 
The Average Value of Five Estimators of the Median 

for 500 Simple Random Samples 

Population 
(median) 

ppcities 
(1.90) 

ppsales 
(1.24) 

ppcounties 
(18.33) 

ppexp 
(29.02) 

ppgammaSa 
(43.90) 

ppgammaSb 
(44.17) 

ppgamma20 
(23.15) 

ppln 
(170.25) 

ppstskew 
(46.12) 

Sample 
Size 

25 

30 

30 

30 

30 
50 

30 
50 

30 
50 

30 
50 

30 
50 

Average Value of the Estimator 

estrm 

.197 

1.21 

18.21 

29.03 

43.82 
43.90 

43.84 
44.28 

23.47 
23.34 

171.15 
169.15 

43.66 
44.04 

estkm 

.196 

1.25 

18.60 

29.05 

43.88 
43.91 

43.96 
44.37 

23.28 
23.18 

169.38 
167.54 

40.27 
40.70 

estrkm 

.193 

1.23 

18.66 

29.00 

43.91 
43.85 

44.19 
44.18 

23.14 
23.17 

168.12 
167.65 

45.88 
46.01 

estcd 

.195 

1.25 

18.26 

29.03 

43.99 
44.06 

44.15 
44.18 

23.46 
23.43 

185.01 
185.03 

45.50 
45.43 

estpp 

.195 

1.24 

18.39 

29.05 

43.89 
43.90 

43.61 
43.98 

2i.ll 
23.18 

170.61 
169.61 

45.11 
45.37 

Table 2 
The Average Absolute Error of Six Estimators of the Median 

for 500 Simple Random Samples 

Population 

ppcities 

ppsales 

ppcounties 

ppexp 

ppgammaSa 

ppgammaSb 

ppgamma20 

ppln 

ppstskew 

Sample 
Size 

25 

30 

30 

30 

30 
50 

30 
50 

30 
50 

30 
50 

30 
50 

Average Absolute Error of the Estimator 

estsm 

.0326 

.1797 

3.12 

.43 

1.36 
.95 

2.84 
2.08 

1.08 
.94 

25.9 
18.0 

3.86 
2.92 

estrm 

.0161 

.0770 

.586 

.49 

.96 

.74 

2.74 
2.04 

1.06 
.77 

25.8 
20.1 

4.26 
3.63 

estkm 

.0162 

.0797 

.964 

.48 

1.03 
.78 

2.71 
2.01 

1.05 
.78 

24.2 
17.9 

6.69 
5.82 

estrkm 

.0155 

.0870 

1.34 

.47 

.89 

.65 

2.58 
1.89 

.88 

.73 

21.62 
16.46 

3.21 
2.55 

estcd 

.0075 

.0244 

.215 

.48 

.54 

.44 

2.37 
1.80 

.67 

.51 

21.4 
17.7 

2.72 
2.20 

estpp 

.0072 

.0245 

.214 

.46 

.53 

.43 

2.38 
1.85 

.64 

.49 

17.0 
12.7 

3.14 
2.51 
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Table 3 
The Average Length and Relative Frequency of Coverage 
for a .95 Credible Interval for the Median Based on the 

'Polya Posterior' for 500 Simple Random Samples 

Population 
Sample 

Size 
Average 
Length 

Frequency 
of Coverage 

ppcities 

ppsales 

ppcounties 

ppexp 

ppgammaSa 

ppgammaSb 

ppgamma20 

ppln 

ppstskew 

25 

30 

30 

30 

30 
50 

30 
50 

30 
50 

30 
50 

30 
50 

.041 

.141 

1.44 

2.26 

2.70 
2.15 

11.67 
8.86 

3.24 
2.51 

84.8 
65.4 

15.52 
12.00 

.968 

.964 

.994 

.944 

.950 

.956 

.932 

.942 

.960 

.964 

.934 

.956 

.936 

.938 

5. DISCUSSION 

The motivation for the estimator estpp is based on the 
assumption that the population ratios j , /x , ' s are exchange­
able. This assumption can be described mathematicaUy in 
two separate but related ways. The first is the super popu­
lation model given earlier while the second comes from the 
'Polya posterior' which is based on a stepwise Bayes argu­
ment and gives a non-informative Bayesian interpretation 
for the estimator. This second approach can be used no 
matter what parameter is being estimated. When esti­
mating the mean it leads to Basu's estimator which 
performs very much like the ratio estimator although the 
ratio estimator usually does a bit better. When estimating 
the median it leads to the estimator discussed in this note. 
Here we have argued that the 'Polya posterior' for the 
ratios leads to good point and interval estimators for the 
median when an auxiUary variable is present and seems to 
be reasonably robust against the assumption that the ratios 
j , / x , ' s are exchangeable. 

RoyaU and Cumberland (1981) gave an empirical study 
of the ratio estimator and estimators of its variance. They 
argued that given a sample an estimate of variance based 
on the super population model, which leads to the ratio 
estimator, often made more sense than a design based 
estimate based on a probability sampling distribution. In 
Royall and Cumberland (1985), they demonstrated that, 
conditional on the sample mean of the auxiUary variable, 
the conditional coverage properties of the usual designed 
based confidence interval for the population mean were 
'hopelessly unreliable'. 

We now wish to address the question ofthe conditional 
behavior of the intervals for the median based on the Polya 
posterior which were developed in this note. In the simula­
tion studies given earUer simple random sampling was used 
for convenience. To get some idea of the conditional 
behavior of the 'Polya posterior' we considered five of 
our populations. In each case we ordered the population 
using the values of the auxiliary variable x. We then took 
500 random samples from the first or smallest half of 
the population, then 500 more random samples from 
the second or largest half of the population and finally 
500 more random samples from the middle third of the 
population. We then calculated the .95 credible interval 
for the median based on the 'Polya posterior' which 
assumes the exchangeability of the ratios ;',/jf,'s. In 
Table 4 we give the results for the 'Polya posterior' esti­
mators for the median. (We also computed the average 
value and average absolute error of estcd for these 
examples. We did not include these results since they match 
closely the results of the 'Polya posterior'.) We see that 
their conditional behavior, at least in these cases, is very 
much like their unconditional behavior. In short, interval 
estimates for the median based on the 'Polya posterior' 
should have reasonable frequentist properties, no matter 
how the sample was selected, as long the population approx­
imates our beliefs that the ratios are roughly exchangeable. 

Table 4 
The Average Value and Absolute Error for the Point 

Estimator and the Average Length and Relative 
Frequency of Coverage for a .95 Credible Interval 

for the Median Based on the 'Polya Posterior' 
for 500 Simple Random Samples from the whole 

Population, the 'Smallest' Half, the 'Largest' 
Half and the 'Middle' Third 

Population 

ppcities 

ppcounties 

ppsales 

ppgammaSa 

ppgammaSb 

Sample 
Size 

25 

30 

30 

30 

30 

Where 
Taken 

whole 
smallest '/i 
largest 'A 
middle '/j 

whole 
smallest '/: 
largest 'A 
middle '/) 

whole 
smallest 'A 
largest 'A 
middle 'A 

whole 
smallest 'A 
largest 'A 
middle Vi 

whole 
smallest 'A 
largest 'A 
middle 'A 

Average 
Value 

.195 

.192 

.196 

.201 

19.4 
18.6 
18.1 
18.5 

1.24 
1.24 
1.23 
1.23 

43.9 
43.8 
44.0 
43.9 

43.6 
42.2 
45.1 
45.2 

Average 
Error 

.0072 

.0047 

.0078 

.0114 

.220 

.305 

.283 

.252 

.0072 
.027 
.020 
.027 

.53 

.55 

.53 

.47 

2.38 
2.69 
2.25 
2.27 

Average 
Length 

.041 

.033 

.048 

.055 

1.46 
1.34 
1.59 
1.35 

.141 

.153 

.125 

.139 

2.70 
2.82 
2.55 
2.63 

11.7 
11.6 
11.2 
11.3 

Frequency 
of Coverage 

.968 

.994 

.988 

.922 

.990 

.942 

.954 

.964 

.964 

.966 

.982 

.944 

.950 

.948 

.940 

.974 

.932 

.890 

.950 

.936 
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As can be seen by looking at the plots of ;', /J:, versus 
Xi and our simulation results it does not seem to matter 
much if the variability in the ratios ;',7x,'s decreases as x, 
increases. What is crucial however is that the average value 
of the ratios in the narrow strip above a small interval of 
possible X values remains fairly constant as we move the 
small interval to the right. In Figure 2, the plot ofthe ratios 
for ppgammaSa is an example of such a plot. In fact this 
is how the population was constructed, since it satisfies the 
assumptions underlying estcd. In Figures I and 3 we see 
for ppcounties and ppln that the average value of the ratios 
in a narrow strip tends to decrease as we move to the right 
and helps to explain the relatively poorer performance of 
the 'Polya posterior' estimators in these cases. Overall 
however, the performance of procedures based on the 
'Polya posterior' seem to be reasonably robust against the 
exchangeability assumption. 

As another alternative we could consider a more balanced 
sampling plan which is based on stratifying the population 
on the auxiliary variable. For example consider again 
population ppgammaSb where it is ordered on the basis 
of its Xi values. We constructed ten strata where the first 
stratum consisted of the units with the fifty smallest A:, 
values, the second stratum ofthe units with the next fifty 
smallest x, values and so on. We then took 500 stratified 
random samples of size fifty where five units were chosen 
at random from each stratum. For these samples the 
average value of estpp was 43.94 and its average absolute 
error was 1.81. The average length of its corresponding 
interval estimator was 8.95 with .938 relative frequency 
of covering the true value. Note that these figures are very 
similar to those given Tables 1 and 2 when simple random 
sampling was used. 
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Outlier Robust Horvitz-Thompson Estimators 
BEAT HULLIGER 

ABSTRACT 

The Horvitz-Thompson estimator (HT-estimator) is not robust against outiiers. Outiiers in the population may 
increase its variance though it remains unbiased. The HT-estimator is expressed as a least squares functional to 
robustify it through M-estimators. An approximate variance of the robustified HT-estimator is derived using a kind 
of influence function for sampling and an estimator of this variance is developed. An adaptive method to choose 
an M-estimator leads to minimum estimated risk estimators. These estimators and robustified HT-estimators are 
often more efficient than the HT-estimator when outliers occur. 

KEY WORDS: Outiier; M-estimator; Adaption; Population mean; Sampling; SensUivity curve. 

1. INTRODUCTION 

The mean of a variable over a finite population is an 
important indicator. Examples are the mean salary of 
employees in a branch of the economy or the mean yield 
of corn of the farms in a region. Due to its connection to 
the sum the mean cannot be easily replaced by other indi­
cators. But the population mean is a sensitive characteristic 
because a single large observation may determine its value. 
The Horvitz-Thompson estimator (HT-estimator) is a natu­
ral estimator of the population mean if the sample design 
has unequal inclusion probabilities and is without replace­
ment. It is the sample mean in simple random sampling. 
It is always unbiased whatever the population distribution 
ofthe investigated variable is. But the HT-estimator is not 
robust against outliers because it is linear in the observed 
values like its estimand, the population mean. Large obser­
vations together with small inclusion probabilities have a 
particularly large influence on the HT-estimator. 

Suppose there is an outlier in a sample. The outlier may 
be a correct observation from the target population. 
Discarding such a correct outlier makes the HT-estimator 
biased. But keeping it with full weight makes the HT-esti­
mator highly variable because typically the outUer would 
show up only in a few of the possible samples. Thus there 
is a tradeoff between bias and variance in this case, which 
in particular includes asymmetric distributions with one 
heavy tail. 

The outlier may also be an Incorrect observation, e.g., 
due to a measurement or coding error or stemming from an 
element outside the target population. In that case keeping 
the outlier with full weight may entail a large bias of the 
HT-estimator in addition to high variability. Thus discard­
ing incorrect outliers reduces both bias and variance. 

Since it is often difficult to detect outliers and to decide 
whether it is correct or not one would like to have esti­
mators that perform well in terms of bias and variance 

irrespective of the nature and the detection of possible 
outliers. HT-estimators which are robustified through 
M-estimators are promising candidates for this difficult 
task. 

In the survey sampling literature the problem of outliers 
or aberrant values is often treated under the heading 
"skew populations". Kish (1965, sec. 11.4 B) describes the 
problem in economical surveys and surveys of individuals. 
He proposes the formation of separate strata for outliers 
if possible, truncation, transformation or modelling. The 
idea of forming a separate class for large units and com­
bining the class means is investigated for example in 
(Glasser 1962) and (Hidiroglou and Srinath 1981). 

The truncation idea is made more precise by the win-
sorized mean proposed by Searls (1966). Fuller (1991) 
proposed a preliminary-test-estimator which reduces the 
impact of the largest data values only when a test for 
extreme values is significant. Rivest (1993) studied the 
behavior of various winsorization schemes under simple 
random sampling. Shoemaker and Rosenberger (1983) 
derive exact formulae for the expected value and variance 
of the median and trimmed mean under simple random 
sampling without replacement. Oehlert (1985) proposes 
the random average mode estimator to estimate the mean 
of finite populations in an outlier robust way. Smith (1987) 
emphasises that it is as important to detect and treat 
influential observations if the inference is based on the 
randomisation provided by the sample design as if the 
observations are considered realisations of random 
variables. He proposes an influence measure for Unear 
estimators based on case deletion, which involves both the 
variable of interest and its weight. 

The prediction approach in sampling theory uses 
stochastic models for the population to predict the total 
ofthe present realisation. Linear models and (nonrobust) 
linear estimators are used. Aspects of the sensitivity and 
robustification against model misspecification are reviewed 
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in (lachan 1984). Chambers (1986) develops an outlier-
robustification of the prediction approach using M-esti­
mators. He distinguishes representative and nonrepresen-
tative outliers in a sample. Representative outliers must 
be included with full weight in an unbiased estimate ofthe 
population mean while nonrepresentative outliers should 
be downweighted or discarded. 

Little and Smith (1987) treat outliers and missing data 
in certain positive multivariate continuous data by a robus­
tified EM-algorithm. Gwet and Rivest (1992) investigate 
resistant ratio estimators under simple random sampling 
without replacement. 

M-estimators form a class of flexible and simple robust 
estimators. An M-estimator Tof location is defined implic-
itely by the estimating equation 

Y i(Xi - T) =0 
i=l 

for a predetermined function \p, e.g., ^Hub(-^.^) -
max( —k,min{kyX)), where A: is a tuning constant. An 
M-estimator may be written as a functional of the empir­
ical distribution function. The influence function of an 
estimator is a functional derivative of the estimator 
(Hampel 1974). It describes the reaction ofthe estimator 
to a small contamination in the data. An M-estimator with 
bounded i/'-function usually has a bounded influence 
function such that outliers cannot disturb the estimator 
too much. For the estimation of the mean of asymmetric 
finite populations M-estimators must be adapted. 

In this article we develop design-based M-estimators for 
samples with unequal inclusion probabiUties. The simple 
linear model which impUckely is the basis ofthe Horvitz-
Thompson strategy is made explicit and the HT-estimator 
is expressed as a functional of an empirical distribution 
function which accounts for the complex sample design. 
This establishes the Unk to classical robust statistics and 
allows a straightforward robustification ofthe HT-estimator 
(Section 2). We define an influence function for sampling 
which clarifies the outlier-sensitivity of the HT-estimator 
and leads to an approximation of the sampling variance 
of the robustified HT-estimator. An estimator of this 
variance is presented. In Section (3) we briefly comment on 
stratification, domains, robust designs and one-step esti­
mators. In Section (4) an adaptive robustification of the 
HT-estUnator is developed. The method chooses from a class 
of robustified HT-estimators the one which minimizes an 
estimate ofthe mean squared error. The resuUing estimator 
is caUed minimiun estunated risk estunator (MER-estimator). 
A Monte-Carlo simulation is presented in Section 5. 
Robustified HT-estimators and MER-estimators outper­
form the HT-estimator in many outUer situations. The 
premium to pay is a moderate loss of efficiency in situa­
tions where the HT-estimator is optimal. 

2. ROBUSTIFICATION OF HORVITZ-THOMPSON 
ESTIMATORS 

2.1 The HT-Estimator as a Least Squares Functional 

A finite population U = {l,...,N]ofO<N< oo 
distinct elements is sampled. We are interested in a variable 
;' which takes the values;', for / € U. The sample design 
p{S) on the space of samples S of fixed size n has inclusion 
probabilities 7r, = P[/ € S] = Y,SiiP(S)- These TT, are 
proportional to some known positive auxiliary variable 
x,(/ 6 U). Such sample designs are called IPPS designs 
(inclusion probabiUty proportional to size) because often 
Xi is some size measure. Denote by ir,y the joint inclusion 
probability P[/ € S,J € S] {i,j € U). The vector of aU 
y-values is denoted jCy: = (;'i, • • •, ;'N) ^ and x^j is defined 
in an analogous way. The vector of the ;'-values of a 
sample S is denoted ys: = (;',, , . . . , ; ' ,„) ^ (Z*̂  € S). The 
goal is to estimate the population mean of the variable 
y-Pu- = liiuyi/N. 

The HT-estimator for yy is TUT '- — E/€S>'/ / (Ni^i). The 
variance of Tf/r is estimated by the well known estimator 

VHT( THT) 

(1 - T^i) -2 
irf 

+ D (1 
i^jiS 

, \yi y^ 
7r,Try/ir,y) , 

TT,- Try J 

(1) 

which is due to Horvitz and Thompson or by the variance 
estimator due to Yates, Grundy and Sen (see Cochran 
1977, p. 261). 

The rationale behind the HT-estimator given in the 
survey sampling literature is that it has sampling variance 
zero if the inclusion probabilities TT, are exactly propor­
tional to yi. Then Tuj{ys) = yu for every sample S. The 
HT-estimator is bias-robust but not variance-robust with 
respect to deviations from proportionality between ;', and 
ir, (c/. Rao 1966). 

How can the HT-estimator be formulated in a way 
which allows the derivation of an influence function 
analogue and a variance estimator? The key idea is to 
express the HT-estimator as a least squares (LS) functional 
of an estimate of the population distribution function in 
such a way that the design is incorporated in the estimator 
ofthe population distribution function while the propor­
tionality of;', and x, is taken up by the LS-functional. 

The joint population distribution function of two 
variables (jr,,;',) is defined asF(/(r,/) = E/jt/lIx, < r] 
1(7, < t]/N, where \[yi < t] - I if;', -^ /and0else­
where. There are various possibilities to estimate Fy but 
the easiest and most generally appUcable estimator is the 
sample distribution function 



Survey Methodology, June 1995 81 

Es(r,t) = V - 1 (X, < r) 1 {yi ^ t] I Y-• 

The estimator Fc is a distribution function itself. 

(2) 

To derive a LS-functional the foUowing superpopulation 
model for the proportionality between ;', and AT, is used: 
We assume that yy is a vector of realisations of independent 
random variables Yi with expectation 0Xi and variance CT^X,. 

Definition 1. The LS-estimator 0LS(ES) of 0 in the above 
model with respect to the sampling distribution function 
Fjof {Xi,yi){i € S) minimizes j (;> - 0x)'^/xdFs{x,y) or 
equivalently solves 

^ 1 ( ^ _ L ^ ) ^ = 0. (3) 
^ 7r,- V Jx,- / .jXi 

The following statement is well known and its proof is 
easy. If S is a sample drawn according to an IPPS sample 
design with inclusion probabilities ir, = riXi/Y,iiuXi ( '€(/) 
then the HT-estimator is THT = Xa0is{Es), where 
0Ls(Es), the LS-estimator defined by (3):, is given by 

PLS{ES) = 
LiSXi/lTi 

Note that the expression THJ- = Xy0is{Fs) — Xy 
(I.iisyi/''^i)/(I,iisXi/iri) does not depend on the super-
population model. However the superpopulation model 
clarifies the role of the HT-estimator: The slope 0LS(ES) 

involved in the HT-estimator is a weighted least squares 
estimator that incorporates the information in the design 
through Fs as well as the information in the auxiUary 
variable through the regression. 

2.2 The Robustified HT-Estimator 

After the separation of design and auxiliary information 
and its expression as a LS-functional the robustification 
ofthe HT-estimator is analogous to the robustification of 
LS-estimators in linear models for infinite populations 
through M-estimators {cf. Hampel et al. 1986, Chapter 6): 
The estimating equation (3) now involves some function r; 
which depends on the standardized residuals (;', — 0Xi) / 
x}'^ and on x,. For ease of notation denote by a prime the 
division by x''2 and let r'(/3) = (y -0x)/x^'^. 

Definition 2. Let0{Fs,r]) be a solution of the equation 

Y —v(Xi',ri{0))Xi' = 0. 
^ ^ IT. 

(4) 
as ""• 

The robustified HT-estimator (RHT-estimator) is 

TRHAFS)- ^Xy0{Fs,v). 

0{Fs,ri) is called the slope of the RHT-estimator. 

In general useful choices of »j are of the form rj{x,r) = 
w{x)\l/{r • M(A:)), where M'(jc) and w(x) are two weighting 
functions and ^ is a defining function for a location 
M-estimator (c/! Hampel e/ al. 1986, p. 315). In the foUowing 
we use the so-called Mallows form, which sets t/(A:) = 1. 
Mallows-type regression downweights outlying x-values 
and outlying residuals independently. A well-known 
example, which also sets w{x) = I, is the Huber-function 
ri{x,r) = ^Hub(''.* )̂ = max(-A:, min(A:,r)) for some 
constant k. The RHT-estimator with defining function 
•q {x,r) = r V x is the HT-estimator. Thus by adjusting the 
tuiung constant k in the Huber-fimction a smooth transition 
of estimators from the HT-estimator to more and more 
robust estimators is possible. 

Scale estimates are needed in w{x) and 0(r) to make 
0{Fs,r]) scale equivariant. While for the weighting function 
w{Xi) preliminary scale estimators are available, e.g., 
the median of the x,', the scale of the residuals must be 
estimated simultaneously with the slope 0. The median of 
the absolute residuals may be used. In the following theo­
retical development (Sections 2.3 to 4) scale is assumed 
known to simplify the treatment. 

The RHT-estimator is a nonparametric estimator. The 
model Ey = 0x is merely used to motivate the expression 
ofthe HT-estimator as a least squares functional. Neither 
the HT-estimator nor the RHT-estimator need this model 
or symmetry of errors with variance proportional to x in 
order to be appUed. 

Other formulations of the HT-estimator as least squares 
functionals may be appropriate in certain conditions. 
Suppose that in spite of the IPPS-design j , is not correlated 
with IT,. Then one would probably choose the unweighted 
sample mean Ps - I, asyi /« as an estimator of the popu­
lation mean {cf Rao 1966). A robustification of ;'s could 
be a solution/i of i;,^s^(;', — /x) = 0. This is a location 
M-estimator. If the HT-estimator is in fact appropriate 
due to the correlation between ;', and ir, then this robus­
tification is not efficient. 

A third robustification would assume ;', proportional 
to Xi but with variance proportional to the square of A:, . 
This is in fact the situation where the HT-estimator is 
optimal. The corresponding robustification would be a 
solution 0 of Y.iiS'n(Xi,yi/Xi - 0) = 0. Obviously this 
robustification does not account for the IPPS-sample 
design. If the design is put back into the estimating equation 
by solving Y,iisV{Xi,yi/Xi - 0)/iri = 0 then we do not 
get back the HT-estimator when r; {x,r) = r. 

One may argue that in fact the HT-estimator is never 
used in its pure form for estimating population means. The 
usual estimator is (E,€sJ,/7r,)/( i;,js I/TT,), sometimes 
called the Hajek-estimator. The estimating equation of the 
Hajek-estimator, Y,iis(yi ~ 7')/ir, = 0, makes obvious 
that the Hajek estimator is not robust against outliers in ;'. 
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But the residual y, — T does not involve the auxiliary 
variable x,. Therefore the Hajek-estimator does not suffer 
from a possible combined effect of large ;', together with 
small Xi, which may be a leverage point for the regression 
model underlying the HT-estimator. 

2.3 A Sampling Sensitivity Curve 

The derivation of an approximate sampling variance of 
the RHT-estimator (see Section 2.4) uses a fiiute population 
analogue to the influence function for infinite populations 
(Hampel 1974). For finite population sampUng with design 
based inference it is appropriate to develop a sensitivity 
curve (SC) (cf Hampel et al. 1986, p. 93) for 0 {F,rj) at the 
population distribution function Fy. In other words, the 
slope of the RHT-functional is linearized around Fy. 
Denote by U-\- the population (/augmented by a unit with 
characteristic {x,y). Denote by \{0,Fy) the function 
HiiuV (Xi ,ri (0) )Xi /N, such that the defining equation 
for 0 {Fy, j ; ) , the M-estimator at the population distribu­
tion function, is \{0,Fy) = 0. Clearly 

{N-\-l)[\{0{Fy^,r,),Fy+) -M0{Fy,v),Fy)] = 0 . 

Using a linear approximation to r]{x, - ) and neglecting 
terms in 1 /N the sensitivity curve of 0{Fy,i)) can be iso­
lated from this equation: 

{N + l){0{Fy^,r,) - 0{Fy,r,)) « 

V(x',r')x' 
= :SC{x,y,Fy,r,), (5) 

liwV2{Xi',ri')Xi"/N 

where rj2{x,r) = dt] (x,r) /dr and both r' and r- are eval­
uated at 0{Fy,ri). This SC may be extended to the case 
of ap-dimensional explanatory variable {cf Hampel et al. 
1986, p. 316 and Hulliger 1991, p. 183). 

Since units usually are not independently included into 
an IPPS sample, the reaction ofthe RHT-slope to a partic­
ular observation must be investigated by conditioning on a 
particular sample. The deviation ofthe estimator /3(Fs,ij) 
at a particular sample S from 0{Fy,r)) may be approx­
imated by integrating the SC of 0{F,t]) with respect to 
the sampling distribution function F j {cf. Hampel et al. 
1986, p. 85): 

0{Fs,ri) - 0{Fy • " - i SC{x,y,Fy,-q)dFs. (6) 

The influence of unit / in sample S may then be defined 
as the contribution of the unit / to the deviation due to the 
sample S, i.e.. 

SC{{Xi,iti,yi) I S,Fy,ri) = 

ri{Xi,r'i)Xi/Tti 

{'LjiS^/T^j)'LjwV2(Xj ,rJ)xf/N 
(7) 

The SC may be studied theoretically to discuss the 
properties of the RHT-estimator and to choose a good 
r;-function. And it may be estimated by replacing the 
standardization factor N/ {E;€C/'?2 (xj ,rj )Xj ^) by an appro­
priate estimator. The estimated SC may be used as a tool 
for outlier detection. 

The influence of utut / in sample S on the HT-estimator is 

XySC{{Xi,iri,yi) | S,Fy,r] = r) = 

(yi - pLs{Eu)Xi)I(l + iti Y y^X 
I ^ JiS\i ' 

This SC is unbounded in ;', such that the HT-estimator 
is not robust against outlying ;',. The ;', influences the 
HT-estimator through the residual;>, - /3^S(/<'(/)A:,. This 
makes clear why a large ;', combined with a small x, (or 
small TT,) has a large influence. If TT, is directly propor­
tional to Xi, as the IPPS design in principle requires, then 
the SC of the HT-estimator is bounded in jc,. In other 
words the HT-estimator is robust against outlying x,. 
However the bound may be quantitatively too high to be 
efficient and further downweighting of outlying Xi may be 
necessary. 

2.4 Approximate Expectation and Variance 

Along the lines of the proof of proposition 2.1 in 
Gwet and Rivest (1992) k can be shown that 0{Fs,f\) is 
consistent for 0 {Fy ,ri) in the sense that for a growing 
and nested sequence of populations and IPPS samples 
limN^„_^P[\0{Fs,v) -0(Fy,v)\<€] = 1 V€ > 0. 

Due to the consistency of 0{Fs,r)) the sampUng expec­
tation Es0{Fs,r]) is approximately 0{Fy,r]). Of course 
Xy0{Fy ,r]) may be different from the population mean 
and then jCy0(Fs,r\) has a bias as an estimator ofpy. In 
particular if the population distribution is not symmetric 
then Xy0{Fs,r)) isin general a biased estimator for py but 
nevertheless consistent for Xy0{Fy,ri). The important 
question then is how large is the bias of Xy0{Fs,ri), in 
particular when compared with the variance. 

The SC (5) may be used to derive a variance approx­
imation. The derivation is analogous to the case of inde­
pendent identically distributed random variables with the 
influence function replaced by the sampUng SC. Taking 
the expectation of the square of (6) one gets after some 
approximations 

yars0{Fs,v) 

= Es[{0{Fs,v) - 0{Fy,v))^] 

_ Vars(£s7?(x/,/-/)x,77r,) 

(liiuV2{Xi',ri')xl^)^ 
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T.iiu( l)v{x,',r[)^Xi'^ -h li^jwi-^ - l)v(Xi,ri')Xi'r,{xJ,rJ)xJ 
\7r, / \7r,7ry / 

/ \ „ /2 . IiiuV2(Xi,ri')^xr + i:i^jiuV2(Xi',ri')Xi'^r,2{xJ,rJ)xJ 
(8) 

where r- is evaluated at 0{Fy,ri). Denote this approximate 
variance by V̂ . An important difference to the case of the 
asymptotic variance of an M-estimator with independent 
identically distributed random variables is that the cross-
product terms in the numerator of V^ do not vanish. If 
ri{x,r) = r then Vr yields the correct variance of the 
HT-estimator. 

2.5 Estimation of the Variance 

The numerator of Vr is the variance of E,£si7(Jc/,/•,') 
{0{Fy,r)))x[/iCi which is a HT-estimator apart from the 
unknown r- {0(Fy,i))). Therefore the variance estimator 
(1) for the HT-estimator may be used. After replacing 
0{Fy ,J?) by the estimator ;3(Fs,rj), the estimator of the 
variance of the RHT-estimator becomes 

Therefore different robustifications may be appropriate 
for estimating stratum means and overall means. 

This is a general problem for robust estimation in sub-
populations (domains) since the definition of an outlier 
depends on the reference population. An observation may be 
an outUer in a particular subpopulation but may be harmless 
in another one. Thus a robust estimator may be suited for 
one subpopidation but perform poorly in another subpopula­
tion. Often no robustification is needed or wanted for overaU 
means but subpopulation means need to be robustified 
because of outliers that turn up. Luckily the sample size is 
often considerably smaller in a subpopulation than in the 
whole population and then the bias component of the MSE 
of a robust estimator is often smaller than the variance 
component. Thus robust estimators may be more efficient 
than the HT-estimator when used in domain estimation. 

liiS — -n{Xi,r;)h!'^ + Y,i^jis — v(Xi ,ri')Xi'r,(xJ,rj)xj 
_2 ^< "^ij 

^rHT — —Xy — 

I.iiS — V2(Xi,ri')^Xi"^ -I- E,vyes — V^(Xi,ri' )x'i^ ^{xj ,rj )xj 
TT; Tr,-/ 

(9) 

The minus sign in (9) is in order. The (negative) cross-
product terms in the numerator usually dominate. Never­
theless VrHT niay become negative as can the HT-variance 
estimator (1) itself (c/. Cochran 1977, p. 261). The variance 
estimator v /̂zT-does not yield the variance estimator (1) if 
1) {x,r) = r. Of course the Yates-Grundy-Sen estimator may 
be used to estimate the numerator of I^. A third variance 
estimator may be derived by writing the RHT-estimator 
as a weighted least squares estimator whose weights depend 
on the estimate {cf Hulliger 1991, p. 166). Since the MER-
estimators {cf. Section 4) performed slightly better with 
v,//7-than with the other variance estimators the simulations 
of Section 5 were done with V^HT-

3. EXTENSIONS 

3.1 Stratification and Domains 

The stratified mean under stratified random sampling 
is a HT-estimator. The stratified mean may be written as 
the mean of predicted values under a one-way analysis of 
variance model. The corresponding robustification is 
straightforward. It amounts to the separate robustification 
of the stratum means (Hulliger 1991). However, if the 
stratum sample size is I or 2 no outlier can be down-
weighted without the help of further assumptions. Further­
more the biases of the robustified stratum means may add 
up to a large overall bias {cf. Rivest 1993, Section 4). 

3.2 Hansen-Hurwitz Strategy 

When sampling is done with replacement and with 
imequal drawing probabiUties the Hansen-Hurwitz estunator 
is used instead of the HT-estimator. The Hansen-Hurwitz 
estimator may be robustified analogously to the HT-
estimator (see HulUger 1991, section 4.4) since the underlying 
model is the same. The variance approximation for the 
robustified HH-estimator is simpler than for the RHT-
estimator because the crossproduct terms vanish due to the 
drawing with replacement of the Hansen-Hurwitz design. 

3.3 Robustified IPPS Design 

The ratios;',/7r, in the HT-estimator act like the sum-
mands of an arithmetic mean. Small ir, together wkh large 
;', inflate the HT-estimator. To robustify the design against 
very large and very small inclusion probabilities we may 
p u t t , = nXi/'ZyXi, where Xi = Xy + iHn\)(Xi - Xy,k). 

Thus the auxiliary variable jc, is "Huberised" from its 
mean to prevent too high and too low values. Now an 
IPPS sample is drawn with inclusion probabilities 5-,. The 
HT-estimator is stiU THT = (l/N) I s ; ' , / * , and k is still 
unbiased. Of course it is not robust against outliers in ;' 
and it may loose efficiency if the expectation of the y, is 
not proportional to TJ-,. The weighted LS-estimator under 
the superpopulation model for the HT-estimator (see 
Section 2.1) wkh inclusion probabilities f, and unmodified 
auxiliary variable x, is 
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0Ls{Es) = 
Is.)'//*/ 
Isx,/t, ' 

(10) 

with corresponding estimator for the population mean 
Xy0Ls(Es)- This 0is may be robustified against outliers 
in ;', like the HT-estimator. Ratio estimators in IPPS 
samples are of the same form with the original ir, instead 
of *,. Thus ratio estimators may be robustified anal­
ogously to HT-estimators, too {cf. Gwet and Rivest 1992). 

3.4 One-step Estimators 

It is not advisable to express robust estimators as weighted 
means with fixed weights attached to the observations 
because the notion and the effect of an outlier depend on 
the particular domain and variable to be analysed. How­
ever, so-called one-step estimators, which are expressed 
as weighted means, reduce the computational complexity 
of robust estimators. The one-step RHT-estimator is 

xu 
liiSWiy'iXl/TTj 

liiSWiXi'^/lTi ' 
(11) 

with weights w,- = r/(x/,;'/ - 0LsX'i)/{y'i - 0LSX!)- In 
fact this is the result of the first step of the iteratively 
reweighted least squares algorithm, which is often used to 
calculate M-estimators. The one-step RHT-estimator 
inherits much of the good properties of the fully iterated 
RHT-estimator and is simpler to implement and faster to 
compute. 

4. MINIMUM ESTIMATED RISK ESTIMATORS 

The RHT-estimator is in general biased. A convenient 
performance criterium is the sampling mean squared error 
(MSE) Es [ (% /3 (Fs, 1/) - J'f/) ^ ] . For small to moderate 
samples the gains of RHT-estimators over the HT-estimator 
are not very sensitive to the particular robustification 
chosen if there are outiiers in the sample {cf HulUger I99I, 
Chapter 3). But with well-behaved data or for moderate 
to large samples the losses in MSE of certain RHT-esti­
mators may be considerable. The question arises how to 
choose a good RHT-estimator. Minimum estimated risk 
estimators (MER-estimators), which adapt the tuning 
constant of a RHT-estimator to the sample, are a possibil­
ity. MER-estimators for the expectation of a univariate 
random variable are investigated in Hulliger (1991, 
Chapter 2). The idea is to take a simple M-estimator like 
a Huber M-estimator, to estimate its MSE for a set of 
tuning constants k, and to choose the tuning constant with 
least estimated MSE. 

Huber's (1964, p. 97) proposal 3 and Jaeckels (1971) 
adaptive trimmed mean aim at symmetric random variables 
and therefore use a variance estimate instead of an estimate 

ofthe MSE. MER-estimators are similar but their aim is 
to estimate the mean of asymmetric distributions. 

Here we introduce MER-estimators for IPPS designs. 
Consider a parametric set of functions [•qk(x,r) : k ^ K], 
where K c R^ is the set of parameters. Usually p - I 
or 2 to make minimization feasible and to keep the effi­
ciency loss due to the estimation ofthe nuisance parameter 
k low. We do not call k a parameter but a tuning constant 
to avoid any confusion with the concept of parameters in 
probabiUty distributions. A suitable set of i;-functions 
induces a se ts : = [0(Fs,rik) .kiiK], where 0{Fs,nk) 
is the slope of an RHT-estimator. To ensure consistency 
of the MER-estimator let lim^_coi?/t(Jf,/") = r^{x,r) 
such that the HT-estimator is an element of iB. The MSE 
of 0{Fs,rik) may be estimated by 

r{Fs,k)=max{Vr{Fs,k),0) + {0{Fs,k) - 0LS{FS))\ 

(12) 

where Vr{Fs,k) is the variance estimator (9) or some other 
estimator of the variance of 0 {Fs,'iik) • We use max (v .̂O) 
in r{Fs,k) because the variance estimator (9) may become 
negative. Typically the function r{Fs,k) with A: € R+ has 
a maximum at or close to A: = 0 which stems from a large 
bias. Then it drops to a minimum where bias and variance 
are both small. For large tuning constants r{Fs,k) 
approaches the variance of the HT-estimator, usually 
from below. 
Definition 3. Suppose r{Fs,.) has a global minimum at 
k„{Fs) € K. Then the MER-estimator of the population 
mean is M(Fs) = Xy0{Fs,rikJ. 

MER-estimators with suitable defining functions are 
scale equivariant and do not need a scale estimator. 
MER-estimators are in general consistent estimators of the 
population mean. A proof of the strong consistency of 
MER-estimators of the expectation of a random variable 
is in Hulliger (1991, Chapter 2). 

Problems with nonuniqueness of the minimum or when 
the minimum is not attained on K are easily resolved in 
practice by inspection of the function r{Fs,k). (If there 
are several global minima choose the one with smallest 
tuning constant to obtain more robustness.) The bias part 
of r(Fs,A:) involves the slope 0LS(FS) ofthe HT-estimator. 
By this term the sensitivity of the HT-estimator is trans­
ferred to MER-estimators and thus the robustness of 
RHT-estimators is lost again. But if the MER-estimator 
should be consistent for the population mean there is no 
way around a consistent and therefore noru-obust estimator 
in the bias part of the risk estimator. Nevertheless MER-
estimators are quantitatively less sensitive to outliers and 
more efficient than the HT-estimator if outliers occur (see 
Section 5). 

It is even possible to bound the influence of outliers on 
the MER-estimator for finite samples without loosing its 
(asymptotic) consistency. This is achieved by downweighting 
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the bias part in the estimated risk of the HT-estimator in 
an appropriate way (MER2-estimators, (Hulliger 1991, 
Paragraph 2.4.1)). 

MER-estimators may be more efficient than the HT-
estimator because their bias is more than compensated 
by the variance reduction due to the downweighting of 
outliers. How much can be gained quantitatively is explored 
in Section 5. 

5. A SMALL SIMULATION STUDY 

Simulations with populations of size N = 128 and with 
samples of size « = 16 are presented here. The sample 
design in Dey and Srivastava (1987) is used (Note that there 
is a factor 2 missing in their formula (2.3)). Dey and 
Srivastava propose to form m > rt/2 groups. The group 
totals Y.U Xi{j = I, ..., m) must fulfiU the inequality 
Y.UjXi/I,uXi > {n - 2)/{n{m - 1)). Thus the group 
totals are allowed only little variability and the groups are 
difficult to form in particular for larger samples (Hulliger 
1991, p. 179). 

The jc,(/ = 1, . . . , A'̂ ) are independent realisations 
according to a 5%-scale contaminated exponential distri­
bution wkh origin at 1,/.e., (Xi - 1) ~ 0.95Exp(l) -I-
0.05 Exp(3), where Exp (0) denotes the exponential distri­
bution function I - exp( —x/B). The shift -I-1 is intro­
duced to lower the probability of negative responses in the 
regression through the origin model with symmetric errors. 

The first response y\j\ with acronym GOD A, is a 
realization of independent normal variables distributed as 
Yi ~eN {I00xi,xf). This is the model under which the 
HT-estimator is optimal {cf. Godambe 1955). The response 
;'^^' (HTLS) is a realization of independent variables 
distributed as Yi ~ c/V (2x,,jf,/4). This is the ideal model 
that yields the HT-estimator as LS-estimator. A third 
response yi^'' (HTG) is created by the model Yi ~ 
0.95J^{2Xi,Xi/4) + 0.05JV{2Xi,9Xi/4). The residual 
outliers have 3 times larger scale. The response;'^"' (HTE) 
has asymmetric outliers which are not related to the 
AT-variable. The bulk of the data (120 observations) stems 
from the distribution Yi ~ JV (2Xi,Xi/4) of y^^'' but 
8 randomly chosen observations stem from Exp(2.5). The 
population y^j^^ (HMT) stems from a distribution with 
expectation 0.4 -I- 0.25x, and has a Gamma distribution 
with variance proportional to x^'^. Thus the variable ;' 
has the distribution proposed in Hansen, Madow and 
Tepping (1983, p . 781). Finally a population y^^^ 
(HMTE) is generated with 120 observations from the same 
distribution as j ^ ^ ' but with 8 randomly chosen observa­
tions from the distribution Exp(2). The six populations 
above are chosen to be realistic. They all use the same 
population of x-values (see Figure 1). 

The RHT estimator in the simulation uses 

n(Xi,r'i) = w{x! ,k^)yp^^^^{r! ,krmeds\r;\). 

Figure 1. Populations of the Monte-Carlo Study. 

with w{Xi ,kx) — min(l ,A:̂  medy \xl \^\ xf \) and kx = 
kr = 2. The weighting function w{Xi ,kx) corresponds to 
an asymmetric Huber-function ôHub = niin(jc/,A:^), 
which downweights large xf only. The scale meds | rf | is 
the median of the absolute residuals evaluated at the solu­
tion of the preceding iteration of the iteratively reweighted 
least squares algorithm. The MER-estimator uses the same 
rj with tuning constants kx,kr evaluated at 20 points which 
lie on the diagonal of the range of k^ and kr. S-PLUS 
functions for the calculation of the estimators may be 
obtained from the author. 

For each of the populations a set of 400 samples was 
drawn to evaluate the estimators. The obtained precision 
is sufficient to draw conclusions (see the standard errors 
of the efficiencies in Table 1). 

The results are presented in Table 1. The relative bias 
ofthe RHT-estimator is always larger than the relative bias 
of the MER-estimator. The biases of the two estimators 
have the same sign, except when they are very small. With 
the exception of populations HTE and HMTE the variance 
of the RHT-estimator is larger than the variance of the 
MER-estimator. While the RHT-estimator looses 9% effi­
ciency at population GODA, where the HT-estimator 
should be optimal, the MER-estimator looses little. With 
population HTLS, where the HT-estimator is the least 
squares estimator, the RHT-estimator looses about 12%. 
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Table 1 
Monte-Carlo simulations with RHT- and MER-estimator 

MC-mean of HT 

Rel. bias of RHT 

Rel. bias of MER 

Rel. SE of HT 

Rel. SE of RHT 

Rel. SE of MER 

Eff. of RHT 

Eff. of MER 

MC-SE of eff. RHT 

MC-SEofeff. MER 

GODA 

6.996 

-0.002 

0.000 

0.067 

0.070 

0.068 

0.911 

0.969 

0.020 

0.003 

HTLS 

4.531 

-0.001 

-0.001 

0.041 

0.044 

0.042 

0.876 

0.981 

0.017 

0.009 

Populal 

HTG 

4.483 

-0.009 

-0.007 

0.044 

0.040 

0.040 

1.110 

1.138 

0.073 

0.037 

tlons 

HTE 

2.271 

-0.009 

-0.008 

0.098 

0.087 

0.091 

1.310 

1.194 

0.009 

0.002 

HMT 

1.068 

0.006 

-0.002 

0.107 

0.117 

0.107 

0.827 

0.989 

0.018 

0.013 

HMTE 

0.991 

-0.052 

-0.035 

0.170 

0.144 

0.146 

1.234 

1.284 

0.001 

0.002 

NOTE: Relative bias and relative standard error (rel. SE) are biases and standard 
errors divided by the MC-mean of the HT-estiinator. Efficiencies (Eff.) 
are MSE of the HT-estimator divided by the MSE of the estimator. 
Estimated standard errors of these Monte-Carlo estimates of efficiency 
are given in the last two lines. 

The efficiency loss of the MER-estimator is once again 
small. Population HTG contains symmetric residual 
outliers. The RHT-estimator gains about 11 % (but see the 
error of 7.3%) and the MER-estimator about 16%. Under 
the asymmetric outliers of population HTE the gain ofthe 
RHT-estimator is 31% while the MER-estimator gains 
19%. If neither the regression through the origin, nor the 
symmetry of errors or the proportionality of their variance 
to the explanatory variable holds, i.e., for population 
HMT, then the RHT-estimator looses 17% compared with 
the HT-estimator while the MER-estimator looses practi­
cally nothing. If in such a population a few asymmetric 
outliers turn up like in population HMTE then both robust 
estimators gain considerably against the HT-estimator, 
namely 23% and 28% respectively. 

In conclusion from this limited simulation the MER-
estimator looses little in terms of MSE, compared wkh the 
HT-estimator, when there are no outliers in the population. 
It gains moderately in populations with symmetric outliers 
and considerably when the outliers are asymmetric. The 
RHT-estimator looses more under ideal skuations than the 
MER-estimator. The adaptivity of the MER-estimators 
pays off. 

Extensive simulations with infinite populations in 
HulUger (1991) confirm these conclusions and show that 
the gains of robust estimators may be very large for skew 
populations with outliers. However the possible efficiency 
gains with robust estimators vanish for large samples since 
then the bias dominates MSE. On the other hand if the 
outliers that turn up in a sample are not representative, 
e.g., if they are uncorrected coding errors, then the robust 
estimators are much more efficient than the HT-estimator 
for all sample sizes. 
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Visitor Sample Surveys 
RONALDO lACHAN and SUZANNE S. KEMP 

ABSTRACT 

This paper discusses the design of visitor surveys. To illustrate, two recent surveys are described. The first is a survey 
of visitors to National Park Service areas nationwide throughout the year (1992). The second is a survey of recreational 
users ofthe three-river basin around Pittsburgh, Pennsylvania, during a twelve-month period. Both surveys involved 
sampling in time with temporal as well as spatial stratification. Sampling units had the form of site-period pairs 
for the stage before the final, visitor sampling stage. Random assignment of sample sites to periods permits the 
computation of unbiased estimates for the temporal strata (e.g., monthly and seasonal estimates) as well as estimates 
for strata defined by region and by type of use. 

KEY WORDS: Recreational user; Sampling in time; Site-period. 

1. INTRODUCTION 

Surveys of visitors present unique challenges that are 
rarely discussed in the statistical literature. This paper 
attempts to fill this gap by describing the design and 
emphasizing the common features of two surveys recently 
conducted by the Research Triangle Institute (RTI). We 
hope that the lessons learned in these efforts will be bene­
ficial to researchers planning similar surveys. 

The first survey was a study of visitors to National Park 
Service (NPS) areas jointly conducted for the National 
Park Service by RTI and HBRS, Inc. This study involved 
a probability sample of park visitors that represented 
visitors to 323 NPS areas nationwide (except Alaska) 
throughout the year (1992). We will refer to NPS areas as 
parks for simplicity while pointing out that the NPS areas 
include locations of historical and cultural parks. The 
main objective of the NPS study was to assess the visitors' 
experiences and problems with particular attention to 
those related to aircraft overflights {e.g., noise and other 
possible annoyances). A variety of data were also collected 
in a mail survey for a subsample of selected visitors. 

The second survey was a study of recreational users ofthe 
Pittsburgh-area three-river basin along the Monongahela, 
Allegheny and Ohio Rivers in 1992 (or more precisely, 
between February 1992 and January 1993). This survey 
was jointly conducted for the Ohio River Valley Sanitation 
Commission by RTI and Terrestrial Environmental 
SpeciaUsts. The study area included a 40-mile segment of 
the Ohio River, a 24-mile segment of Monongahela River 
and a 7-mile segment of the Allegheny River. The primary 
objective of the Three-River Study was to construct a 
baseline profile of recreationists in the area and to model 
the economic value they assign to various activities. Three 
basic types of recreational activities were distinguished: 
boating, fishing and park use. 

The Three-River Study is the most comprehensive of 
a series of studies conducted by RTI to assess environmental 
impact in a number of states. These studies estimate possible 
reductions in economic or recreational value assigned by 
actual and potential recreational users to areas that have 
been or might be affected. While a wider survey of potential 
users of such areas may consider a telephone sample design, 
a visitor intercept siuvey design is found necessary to capture 
users at a point in time close to actual use. 

A discussion of design issues in visitor surveys such as 
these has been recently provided in Kalton (1991) including 
issues related to sampling in time and space that are crucial 
in our framework. In its simplest form, a prototype, 
two-stage sample design for a visitor survey considers site-
period pairs as primary sampling units (PSUs) from which 
visitors are selected in the second stage. Examples include 
exit poUs (see, for example. Levy 1983), shopping mall 
intercept surveys (see, for example Sudman 1980) and 
other transportation and traffic surveys (Gough and 
Ghangurde 1977; Kish, Lovejoy and Rackow 1961). 
Among the design issues salient in visitor surveys, the 
foUowing general problems may be singled out: 

- It is desirable to select with greater probabilities those 
site-periods with larger numbers of visitors; stratification 
and PPS selection are then effective design features. 

- Data collection arguments are key for the specification of 
the period length and of sampling rates within ske-periods; 
e.g., trade-offs occur between the potential for the field 
staff to be too busy (short periods, high sampUng rates) 
or not busy enough (long periods, low sampling rates). 

- Analytic objectives as well as efficiency suggest temporal 
stratification dimensions as season, month, weekend 
versus weekday, and even time-of-day; e.g., the need for 
seasonal estimates suggests the use of seasons or months 
as strata for the selection of periods. 

' Ronaldo lachan, Research Statistician and Suzanne S. Kemp, Statistician, Research Triangle Institute, 3040 Cornwallis Road, Research Triangle 
Park, NC 27709-2194, U.S.A. 
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The two surveys discussed in this paper share the primary 
objective of characterizing the visitor population in the 
area or the nation over an entire year. They differ, how­
ever, in the priority estimates that lead to the basic design 
features in each case. In the Three-River Study but not in 
the NPS study, reasonably precise monthly estimates 
needed to be computed. For the former study, then, the 
temporal sampling units - days - were stratified into 
months. Spatial stratification of the Three-River Study 
sites was geographic and by recreation type (boating, 
fishing or park sites). 

For the NPS study, primary stratification was by park 
type. Some park areas needed to be included with certainty 
into the sample to satisfy legislative requirements. In these 
and other selected parks, it was further desired to compute 
park-specific estimates. In these park areas, labelled inten­
sive parks, we then decided to select relatively more site-
periods. The initial design optimization problem was how 
to allocate the sample size to the sampling stages, i.e., to 
decide how many parks and how many site-periods per 
park should be selected. Section 3 discusses a solution for 
this problem which is a function of the intracluster corre­
lations within parks and within periods. The design opti­
mization for the NPS survey also applied to the temporal 
and spatial strata at the intermediate sampUng stages, 
between park areas at the first stage and site-periods at the 
penultimate stage (keeping in mind that visitors are selected 
at the final stage). 

These two surveys illustrate issues such as temporal 
stratification, the choice of appropriate sampling units, 
and random assignment of spatial units to temporal unks. 
Section 2 outlines the common aspects of the two studies 
as well as their basic differences. Sections 3 and 4 describe 
the design of the NPS Visitor Survey and of the Three-
River Study, respectively. Section 5 discusses the weighting 
procedures used for the surveys. A brief overview and 
some conclusions are presented in Section 6. 

2. OVERVIEW OF SAMPLE DESIGNS: 
PARALLELS 

AND CONTRASTS 

For both surveys, the ultimate visitor samples were 
selected via intercept sampling as visitors left the sample 
locations at the selected time periods. Exit interviews were 
necessary to reflect their attitudes immediately following 
their recreational experiences. Also, in both studies, 
visitors were selected from sample site-period pairs. The 
use of site-period pairs as sampUng units dates back to 
Kish, Lovejoy and Rackow (1961). This sampling unit 
definition permits the selection of visitors according to a 
data collection schedule that specifies which sites will be 
covered at which points in time. UnUke the Three-River 
Study, the selection of site periods was not the first stage 

for the NPS Study. The primary sampling units (PSUs) 
for this study were NPS areas, or parks. The NPS survey 
involved several stages of selection described in the next 
section. 

Additionally, both studies used temporal frames of days, 
and eligible data collection periods within days, to permit 
inferences about the entire year. The designs included the 
selection of time periods so that each eligible period has 
a known, positive probability of selection. Although both 
studies involved temporal frames, the structure of the 
frames and selection of days for each study were quite 
different. 

For example, the sample for the Three-River Study was 
selected as twelve independent monthly samples. Each 
monthly sample has essentially the same, stratified random 
sampling design but a different sample allocation and 
different sample sizes were used in different months. This 
design took into account seasonal variations in recreational 
patterns, and enabled estimation for each month and 
stratum {e.g., by type: boating, fishing or park). Both 
spatial and temporal frames were allowed to vary from 
month to month. The stratification and allocation for this 
sample are discussed in Section 4. 

In contrast, the temporal frame for the NPS visitor 
survey first considered two-month blocks for each sample 
park (PSU). The use of two-month periods as (second-
stage) sampling units in time efficiently met the survey 
objectives for two basic reasons. First, it allows the effec­
tive (geographic) concentration of staffing resources and 
staggered data collection throughout the year. Second, this 
choice of period permitted capturing seasonal fluctuations 
in park visitation across the park system, resulting from 
some parks having relatively higher visitation in the spring, 
others in the fall months, and so on. 

One two-month block was selected for each sample 
park so that data collection could be effectively concen­
trated in time. Then, at the next stage of temporal selection, 
days were selected from within the two-month block for 
each sample park. Like the parks themselves at the first 
stage, these two-month blocks were selected with proba­
bilities proportional to size (PPS), with the size measure 
being the aggregate visitation. 

The sample sizes and allocation to the several sampling 
stages were carefully balanced to minimize clustering 
effects associated to clusters in time and space. For the 
Three-River Study, this clustering occurs at the first stage 
of selection where sampUng units are sites and time periods. 
The allocation also considered the varying sample sizes 
used in successive, independent monthly samples. For the 
NPS survey, clusters in time were a result of the two-
month blocks and sample days periods selected at different 
stages. Spatial clusters resulted from the use of parks and 
park exits as sampling units for this survey. 

The next section describes in more detail the design of 
the NPS survey. 
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3. NPS SURVEY SAMPLE DESIGN 

The design of NPS visitor survey capitaUzed on auxiliary 
information of various kinds and sources: 

- Information obtained in previous studies (e.g., park 
rankings based on noise exposure and NPS staff 
classifications). 

- Information available in NPS data bases {e.g., park 
visitation data by month). 

- Information collected from NPS staff specifically for 
design purposes (e.g., an inventory of the park exits for 
each sample park and number of vehicles leaving each 
of the exits). 

The next subsections describe the various stages of 
selection for the visitor intercept survey. This survey com­
ponent will also be designated the frontcountry survey to 
distinguish it from a survey of backcountry users that was 
conducted in tandem in the sample parks. Subsection 3.5 
describes the backcountry survey as well as a mail survey 
administered to a subsample of frontcountry respondents 
and to sample backcountry users. 

The fourth-stage selection for the mail survey involved 
additional stages (and phases) of selection. For the visitor 
intercept survey, groups {i.e., vehicles) were selected as an 
ultimate cluster: all persons in a sample group were solicited 
for an interview. For the mail survey, groups were sub-
sampled, and one person was subsampled from each 
subsampled group. 

3.1 Frame Construction and First-Stage Sampling 

We constructed a sampling frame for the selection of 
parks by compiling NPS information on park visitation 
(monthly and annual) and on noise exposure, information 
that was used in the sample design in two distinct ways: 
for stratification and for assigning size measures. The 
latter information was based on two different sources: 
(a) a previous NPS study which ranked parks according 
to potential exposure, and (b) a classification of parks 
performed independently by NPS staff (park super­
intendents, regional staff etc.). 

In consultation with NPS, RTI combined these two classi­
fications for noise exposure to construct eleven strata. The 
stratification partitioned parks into categories - very high, 
high, low and very low. Strata were divided into two substrata 
using the rankings in the stratum. (Note that the "medium" 
stratum was not subdivided due to its small park count.) 

In addition to noise exposure, these strata incorporate 
three classes of parks that deserve separate treatment: 
(1) urban and suburban park areas, (2) parks with missing 
data on visitation (needed for PPS selection), and (3) parks 
whose elongated shapes present unique problems of access 
and reduce the meaning of prior exposure assessments. 
These classes were sampled at a much lower rate than the 

other strata; the lowest sampling rate is in the urban 
stratum (1 in 79). 

The certainty stratum included the seven parks that 
were mandated by legislation to be included in the study. 
In addition, it included those parks whose aggregate 
(annual) visitation rates were so large as to ensure selection 
into the first-stage sample. The 39 sample parks are listed 
in Exhibit 1; a 40th selected park (Grand Teton) was 
dropped from the sample for political reasons. 

Design optimization calculations led to a fust stage sample 
size of about 40 sample parks, yielding a total of 405 site-
periods (or exit-days in this case) selected across intensive 
and non-intensive parks. As described in Section 3.3,15 exit-
days were selected in each of the three intensive parks, and 
10 exit-days were selected in each of the 36 non-intensive 
parks in the sample. An accurate optimization would require 
variance components for the between-park and within-park 
variances. These variance components were approximated 
using data from a previous study as well as monthly visitation 
data available for all NPS areas. 

3.2 Selection of Two-Month Blocks 

While the selection of two-month blocks was with prob­
ability proportional to size (PPS), practical requirements 
were also taken into consideration. 

First, training local park staff immediately before data 
collection was desired. Geographic clusters of parks were 
formed so that trainers could visit parks in one cluster in 
one trip. Specifically, the 39 sample parks were grouped 
into 14 such clusters. This requirement led to the selection 
of a two-month period for each park cluster. Thus, fourteen 
two-month blocks were selected, one for each cluster. The 
size measure used for each selection was the aggregate 
visitation over the parks in the cluster. 

Exhibit 1 shows the sample parks in each cluster, and 
the sample two-month block selected for the cluster {i.e., 
for every park in the cluster). Three strata - groups of 
clusters and hence of parks - were formed for the selection 
of two-month blocks: 

(a) In the "very-high summer" stratum-1 (with 3 clusters), 
the frame of two-month blocks contained only the 
summer-peak period, July-August, which was then 
selected with certainty for these clusters; 

(b) In the "high-summer" stratum-2 (with 7 clusters), the 
frame of two-month blocks contained 11 overlapping 
two-month blocks; 

(c) In the "low-summer" stratum-3 (with 4 clusters), the 
frame of two-month blocks contained 5 non-overlapping 
two-month blocks. 

The rationale for this temporal stratification was two-fold: 
it ensured that the data collection was spread throughout 
the year, and it distinguished parks where a vast majority 
of the visitation occurs during the summer from those with 
a more uniform visitation pattern. 
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Exhibit 1 

Park Clusters, Second-stage Strata and Selected 
Two-month Blocks 

Selected Period 
Stratum 1: Very High Summer* 
Cluster 2: Mount Rainier, N. Cascades, July-August 

Olympic 
Cluster 4: Glacier, Yellowstone July-August 
Cluster 10: Sleeping Bear, Perry's Victory July-August 

August-September 

June-July 

Stratum 2: High Summer 

Cluster 3: Lassen, Vosemite, Kings 
Canyon/Sequoia 

Cluster 5: Dinosaur, Rocky Mtn., 
Mt. Rushmore 

Cluster 6: Glen Canyon, Grand Canyon, June-July 
Walnut Canyon 

Cluster 8: Bandelier, Lake Meredith May-June 
Cluster 11: Cape Cod, Delaware Gap, August-September 

Gettysburg 
Cluster 12: Shenandoah, Fredericksburg, June-July 

Assateague 
Cluster 13: Great Smoky, Cape Hatteras, June-July 

Fort Sumter 

Stratum 3: Low Summer 

Cluster 1: Haleakala, Hawaii Volcanoes March-April 
Cluster 7: Lake Mead, Saguaro, Casa Grande March-April 
Cluster 9: Hot Springs, Wilson's Creek, October-November 

Buffalo 
Cluster 14: Cumberland Isd., Canaveral, March-April 

Everglades, Gulf Island 

'Certainty selection of July-August for each cluster in this stratum. 

We selected two-month blocks with different procedures 
in the two strata as described below. 
(1) For park clusters in the former (high-summer) stratum, 

eleven overlapping periods were included in the tem­
poral frame; January-February, February-March, 
. . . , November-December. One such period was then 
selected with probability proportional to size (PPS). 
Note that for this stratum each month was included in 
two frame periods except for January and December. 
The probability of selection for these two winter 
months was thus reduced even further (beyond the 
already small probability assigned to the winter periods 
with the PPS procedure). 

(2) For park clusters in the latter (low-summer) stratum, 
five non-overlapping two-month periods constituted 
the temporal frame: January-February, March-April, 
May-June, September-October, November-December. 
Note that the two-month summer period, July-August, 
was excluded from the frame for these parks to ensure 
the selection of other, non-summer months. For each 
cluster in this stratum, one of these five two-month 
periods was selected with PPS. 

3.3 Third-stage Sampling 

Sampling units at the third stage were exit-day pairs. 
The third-stage sampling is easier to envisage as the combi­
nation of two independent selections: (a) selecting days 
from the temporal window (2-month block) drawn at the 
second stage for the park, and (b) selecting exits from a 
list of exits specified for the park. A final step consisted 
of the random assignment of sample days to sample exits. 

The sample of days was stratified by weekdays versus 
weekend days (including major holidays). Sample days 
were selected with equal probabiUties within each of these 
two strata. The sample of exits was selected with proba­
bilities proportional to size (PPS). The size measure 
assigned to each exit was the relative use of the exit among 
all the exits listed for the selected park. This usage measure 
was derived with the aid of local park staff. 

The third-stage sample design distinguished two groups 
of parks designated as intensive (3 parks: Grand Canyon 
and the two Hawaii parks) and non-intensive (36 remaining 
parks in the sample). Sample sizes in non-intensive parks 
were 10 exits and 10 days, and hence 10 exit-day pairs. In 
the three intensive parks, 15 exits and 15 days were selected. 
Equal allocation to weekend/weekday strata was used in 
non-intensive parks: 5 weekend days and 5 weekdays were 
independently selected in each of these (36) sample parks. 
The allocation was approximately equal in intensive parks 
with the selection of 7 weekend days and 8 weekdays. 

3.4 Fourth-stage Sampling 

At the fourth stage, park visitors were intercepted in 
the selected exit-days. A systematic random sample of 
visitors or (visitor groups) exiting the park was selected 
with a fixed sampling interval for each selected third-stage 
unit (exit-day). The interval was allowed to vary from day 
to day to capitalize on the experience of previous days and 
on the variabiUty in visitation across days and exits. Each 
visitor found in the selected eligible groups was screened 
for eligibility, and interviewed if eligible (adult visitor). 

3.5 Backcountry and Mail Surveys 

The same sample of parks (PSUs) was used for a mail 
survey of frontcountry and backcountry users in the two-
month period selected for the park. The sample for the 
backcountry survey was restricted to the subset of sample 
parks with some backcountry use. Within each such sample 
park, the (third-stage) sampUng frame for this survey 
component was based on backcountry permits issued 
during the data collection time window (two-month block) 
established for the park. The ultimate sample of back-
country users was then selected with equal probabilities 
from permit lists provided by park staff. A subsample of 
visitors selected in the intercept survey were also selected 
for the mail survey. 
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The mail survey sample was based on the same third-
stage sample of exit-days selected for the intercept survey. 
For each selected exit-day, a fixed number of groups was 
subsampled from groups responding to the intercept 
survey (this number was 15 in intensive parks and 10 in 
non-intensive parks). A further stage of subsampling was 
that of one person from within the respondents in each 
group subsampled. This subsampling of groups and 
persons was with stratified random sampling to control 
the demographic composition of the final sample. 

4. SAMPLE DESIGN FOR THREE-RIVER SURVEY 

4.1 Frame Construction and Stratification 

First, RTI and Terrestrial Environment Specialists 
(TES) constructed a sampling frame based on an inventory 
of all sites in the Three-River Study area. Then a stratified 
multistage sample was selected independently for each of 
the twelve months of the study. First-stage sampling units 
were site-periods, and second-stage units were individuals 
engaged in recreation in the selected site-periods. Temporal 
and spatial stratification were used for the first-stage 
sampling of time periods and sites. 

Primary stratification along the temporal dimension 
was by month, and primary stratification of sites was by 
use type: sites (access points) were classified as boating, 
fishing, or parks. Each primary stratum was divided into 
six geographic areas, or pools, defined as the river areas 
between locks. The fishing stratum was further substratified 
by the presumed use intensity as low or high use: high-use 
sites are those below locks and dams. 

Each monthly sample of site periods was selected with 
stratified random sampling. Advantages of selecting 
independent monthly samples included: monthly and 
seasonal estimates can be computed, and some design 
features may be changed from month to month. 

For example, this design permitted altering the spatial 
frame from one month to the next with the addition or 
deletion of sites. In particular, the boating stratum for the 
winter months (November through April) was restricted 
to boat ramps open that season. Further, several fishing 
sites included in the frame for the first few months were 
found inaccessible and deleted from the frame for the 
subsequent monthly samples. 

Other design features that changed in successive months 
include: the second-stage sampling rates for selecting 
eligible users, and the data collection windows used in the 
morning, afternoon and evening periods for sites of each 
type. Varying data collection windows were used in differ­
ent months of the study. These periods were defined using 
sunrise and sunset information as well as expected patterns 
of use of the various types. The winter months (November-
April) included two periods per day whUe the summer 
months (May-October) included three periods per day. 

The temporal (sub)stratification of each monthly sample 
was by weekend days versus weekdays. It is worth noting 
that the weekend stratum also included major holidays. 

4.2 Sample Selection 

As noted above, we selected an independent first-stage 
sample of site-periods for each of the 12 months of the 
study. Each monthly sample had two components: (a) a 
stratified random sample of "n" sites, and (b) a stratified 
random sample of "n" periods. 

Following selection of the sample periods for each 
month, the sample sites were randomly assigned to the 
selected periods. The assignment of sites to periods was 
entirely at random for the months of February through 
June but was modified in subsequent months. From July 
on, a sample of time periods was independently selected 
for each type stratum with the random assignment taking 
place within stratum. The allocation of the sample time 
periods {e.g., the number of morning periods and the 
number of evening periods included in the sample) varied 
from stratum to stratum. With this more flexible method, 
relatively more fishing sites could be assigned to morning 
period and more boating sites to afternoon periods, for 
example. Exhibit 2 shows the sample sizes - sites and 
periods - used in random assignment each month. 

Exhibit 2 
Sample Sizes Used in Random Assignment of Sites to Periods 

for each Monthly Sample of Three-River Study 

Month 

1 
2 

3 
4 
5 
6 
7 
8 

9 
10 
11 
12 

Overall* 

20 
28 
28 
36 
36 

Sample 

Boating 

8 

17 
10 
10 
10 
8 
8 

: Size 

Fishing 

12 

22 
22 
14 
12 
12 
12 

Parks 

4 

6 
6 
6 
4 
4 
4 

Marinas 

12 
6 
6 

Regattas 

Boating Marinas 

6+ 6 + 

* For these (5) months, the assignment took place for the entire collection of 
sample sites and periods (NOT blocked by site type). For the remaining months 
the assignment was within each type stratum, a process which involved the 
selection of independent samples of time periods for each type. 

+ In August, the assignment of regatta sites to periods was performed first, 
separately. Following the assignment, the sample site-periods associated with 
regattas were shifted either to the boating or to the marina strata depending on 
the site type. 

Second-Stage sampling rates were specified for each of 
the three primary strata prior to each month of data 
collection. These stratum-specific rates were determined 
based on the experience of the previous months, and were 
distributed to the field interviewers along with the month's 
data collection schedule. Individuals were selected with 
systematic random sampUng within each site-period. 
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4.3 Marina Survey and Special Events 

A marina survey was conducted in the months of June 
to September. A sampling frame of 48 marinas was based 
on the TES inventory that was updated in late May 1992. 

The sampling method for the phase-in month of June 
differed slightly from that used for the subsequent monthly 
samples for marina sites. The June sample was a supple­
ment of 12 marina sites coupled with a sample of 12 days. 
The marina samples for the months of July to September 
were selected considering the marina frame as a fourth 
stratum. The selection procedures were then similar to 
those in the other three type strata; specifically, (a) a 
sample of " « " marina sites was selected, (b) a sample of 
" « " time periods was selected, and (c) the sample sites 
were randomly assigned to the selected periods. 

It is worth pointing out that some of the marina sites 
were also included in the boating stratum. In such cases, 
two distinct frame units were created for the same site. This 
situation also arose for some sites used for both boating 
and fishing, and such sites were included in both strata. 

In addition to the marina survey, we identified special 
events taking place in the study area over the 12-month 
study period. Most of these events were handled in a way 
similar to weekends and hoUdays by assigning them to a 
stratum to be oversampled. A special category of interest 
was comprised of the regattas occurring in the summer 
months. For two monthly samples (July and August), we 
identified the regatta dates as well as the sites affected by 
each regatta. We then constructed a separate (fifth) stratum 
to include these site-periods. The first-stage sample alloca­
tion to the regatta stratum reflected the oversampling 
desired for this stratum. As shown in Exhibit 2, the 
sampling procedure used to select site-periods (first-stage 
units) from the regatta stratum also differed to that used 
in the other four strata. Sample site-periods were directly 
selected in one step from the subset of site-periods in the 
stratum, i.e., no random assignment was needed. 

5. SURVEY WEIGHTING 

5.1 NPS Survey Weighting 

Sampling weights were first computed for each of the 
first three stages of selection. The first-stage sampUng 
weight for each sample park was the reciprocal of the selec­
tion probability for the park. The second-stage sampling 
weight for each sample two-month block was similarly 
computed. The sum of the first-stage sampling weights 
overall (or in a stratum) was the number of parks in the 
frame (or in a stratum). 

Third-stage weights for sample exit-days were the product 
of two factors associated with the selection of days and 
exits. Note that for each selected park and two-month block, 
the sum of the former set of weights in a temporal stratum 

(weekend vs. weekdays) is the number of days in the stratum, 
and the sum of the latter set of weights is the number of 
exits listed in the park. These weights were adjusted for 
nonresponse which arose at the third stage because in a few 
parks, data collection did not take place in some selected 
exit-days. In a given park with this data collection short­
coming, the sum ofthe adjusted third-stage weights over 
the active exit-days was made equal to the sum of the 
sampling weights over all selected exit-days in the park. 

Fourth-stage weights were computed at a group-level 
and at a person-level. Group-level weights are assigned to 
all participating groups in a sample exit-day, and have the 
same value for the groups in the same exit-day. Similarly, 
person-level weights are assigned to all persons intercepted 
in a sample exit-day. The fourth-stage sampling weights 
were computed as the reciprocal of the sampling rate 
specified for the sample exit-day. These weights were then 
adjusted for group and person-level nonresponse. 

The mail survey sample was based on the same third-
stage sample of exit-days selected for the intercept survey. 
For each selected exit-day in non-intensive parks, 10 groups 
were first selected with equal probabilities from among the 
participating groups; then, one person was subsampled 
from all intercept survey respondents in each selected 
group. A similar procedure was used in intensive parks 
with the exception that the number of selected groups per 
exit-day was 15 rather than 10. 

The sampling weight for each mail survey record is the 
product of WTB = number of intercept respondents in 
the group, and WTA = number of participating 
groups/10 [non-intensive parks]. For intensive parks, the 
denominator of WTA is 15 rather than 10. 

These weights were adjusted for mail survey nonresponse 
using exit-days (within park) as weighting classes. Thus, the 
siun of the adjusted weights for aU respondents coming from 
the same exit-day is the same as the sum of the (unadjusted) 
weights for all persons intercepted in the exit-day. 

For the backcountry survey, the sampUng frame for each 
eligible park (in the subset of sample parks with backcountry 
use) was based on Usts of permits issued during the data 
collection period: eligible permits were associated with exit 
dates in this period. A sample of 5 groups per day was selected 
within each park from the set of permits linked to that day. 
One person was subsampled from each group. The weight 
computation parallels that for the mail survey with 

WTBACK = BACKA*BACKB, 

where for each day: 

BACKA = (number of groups linked to the day)/5 

BACKB = number of persons in group. 

Analysis weights for the backcountry survey resulted 
from noiu'csponse adjustments made using days as weighting 
classes. 
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5.2 Three-River Survey Weighting 

As each monthly sample of site-period units was 
selected, we computed sampling weights that reflected the 
selection probabilities for the site-period pairs. Initial 
weights were the product of two sets of weights computed 
for each monthly sample: (a) weights assigned to each site 
in the stratified random sample of sites of the given type 
(boating, fishing, marina and park), and (b) weights 
assigned to each period in the stratified random sample 
of periods. These weights were then inflated to take into 
account the random assignment of sample sites to periods 
(or vice-versa). Thus for each month, the sum of the site-
period weights was equal to the number of site-period 
combinations in the frame. 

The weight adjustment process started with the sampUng 
weights associated with the selected site-days. An initial 
adjustment was made to the first-stage weights to account 
for site-periods that were found ineligible or that had 
missing sampling forms {e.g., not sent by field staff). For 
this first-stage adjustment, we used the type-by-month 
strata as weighting classes. That is, the sum of the adjusted 
weights over the reduced set was made equal to the sum 
of the unadjusted weights over the entire sample within 
the type-by-month class. A final adjustment was made at 
the respondent-level to reflect (a) the systematic sampling 
interval used within site-periods, and (b) the survey non-
response at the individual level. 

As part ofthe weight check procedures, we computed 
the sum of the final analysis weights over the entire file, 
and also by month and by type of site. The weight sum 
should approximate the estimated total number of recrea­
tional users leaving the inventory sites during the data 
collection time window for each month and type of site. 

6. CONCLUSION 

This paper described the design of two surveys of 
recreational users that share a number of useful features. 
The sample designs include sampling in time as well as in 
space; site-periods are selected at the stage prior to sampling 
visitors. A spatial frame is then constructed side by side 
with a temporal frame. After sites are selected from the 
former and periods are selected from the latter frame, 
sample sites are randomly assigned to sample periods (or 
conversely). Sampling weights need to take into account 
this additional step of randomization. The findings ofthe 
NPS visitor survey are described in the study final report 
(National Park Service 1994). This analysis included a 
variety of regression models that investigate the impact of 
hearing and seeing aircraft flying over NPS areas. 

Temporally, both studies represent periods throughout 
the year, that is, a user will have a positive probability of 
selection for any time of the year. Both studies also include 

temporal stratification to reflect patterns of use and 
increase sampling efficiency. 

Spatially, while the sample for the National Park Service 
study was a national sample of visitors to NPS areas, the 
sample for the Three-River Study was more restricted in 
spatial scope. Both studies, however, distinguished users 
of different types. For the NPS study, backcountry and 
frontcountry users were selected in two separate (third-stage) 
strata at the point where the two components branch out 
with the selection of permits for the backcountry survey. 
For the Three-River Study, viskors were classified by primary 
fishing, boating, or park use, and sites were stratified in 
a similar way. This design permitted the computation of 
precise estimates by type and by season. 

The ultimate sampling unit for a survey of recreational 
users is the specific visit; thus, visitors may have multiple 
chances of inclusion in the sample to the extent that they 
use the target areas multiple times. It is worth noting that 
this structure is consistent with the objectives of such 
surveys. 

Sampling weights accounted for the selection of time 
and space units at each stage and also for the random 
assignment step. The samples were designed to minimize 
the effects of unequal weighting on survey variances. The 
potential for severe unequal weighting effects was consid­
ered in combining different survey components. Examples 
in the two surveys include combining: 

(a) Backcountry and frontcountry components of NPS 
mail survey, and 

(b) Fishing, boating and park users in the Three-River 
Study. 

Some disadvantages of this type of study design should 
also be pointed out. While sampling in time and random 
assignment introduce an element of statistical rigor and 
extend the range of valid statistical inferences, the method­
ology may be disrupted if field interviewers change the 
date assigned for a sample location because access may be 
difficult in the specified period or for other reasons. 
Noteworthy examples in the NPS study included hurri­
canes, park closed due to fugitives from justice, space 
shuttle launches, and severe snowstorms. While some of 
these occurrences may be minimized with the temporal 
stratification and allocation, others are clearly beyond the 
control of the statistician. However, the sampling statis­
tician should be involved in interviewer training to stress 
that modifications in the sample schedule should be avoided 
at all costs, and should monitor any changes that do occur. 
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self explanatory as possible, at the bottom for figures and at the top for tables. 

4.2 They should be put on separate pages with an indication of their appropriate placement in the text. (Normally 
they should appear near where they are first referred to). 

5. References 

5.1 . References in the text should'be cited with authors' names and the date of publication. If part of a reference 
is cited, indicate after the reference, e.g., Cochran (1977, p. 164). 

5.2 The list of references at the end of the manuscript should be arranged alphabetically and for the same author 
chronologically. Distinguish publications of the same author in the same year by attaching a, b, c to the year 
of publication. Journal titles should not be abbreviated. Follow the same format used in rel^ent issues. 




