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In This Issue 

This issue of Survey Methodology contains papers on a variety of topics. The first paper, by 
Davis and Scott, discusses the impact that interviewer effects may have on comparisons between 
domain means. Using a components of variance model, it is shown theoretically that the impact 
depends on the distribution of each interviewer's case load between the domains and on the domain-
interviewer interaction. The model is applied to data from a health survey to estimate the magnitude 
of interviewer effects for comparisons between sexes and between ethnic groups. It was found that 
in some cases the domain-specific interviewer effects have a large impact on the accuracy of between 
domain comparisons. 

Rivest and Hurtubise examine the usefulness of the Winsorized mean as an estimator of the 
mean of a population that has a distribution skewed to the right. A Winsorized mean is obtained 
by replacing all observations greater than a given threshold value R by this same value R, before 
the mean is calculated. The authors suggest a simple algorithm for calculating R that minimizes 
the squared error of the estimator. They apply this method to several sample sizes and various 
sample designs, including stratified sampHng and sampling with probabilities proportional to size. 
They derive direct approximations of the effectiveness of the Winsorized mean. They conclude 
their article with a Monte Carlo simulation to compare various estimators that reduce the impact 
of extreme values. 

Kish, Frankel and Verma examine the possible incidence and the importance of the design 
effect (deft) on a set of interrelated statistics. On the basis of 14 surveys conducted in six countries, 
the authors present an empirical approach relating the design effect of analytical statistics, 
deft {Pi - pj), to the design effects of separate statistics, deft(/j,) and deh{pj), for two of the 
many categories of the same variable. The proposed approximation must be checked constantly. 
However, it appears to be widely applicable to the data studied, and it is clearly preferable to the 
hypotheses put forward thus far on deft(/7, — Pj). 

Dupont discusses the estimation of a total from a two-stage sample where auxiliary information 
is present. First three regression estimators are presented, each making different use of the auxiliary 
information. Then four calibration estimators are proposed, each corresponding to a specific 
strategy for using auxiliary information. Dupont then shows that the caUbration strategies can be 
association with regression modelling. This article also discusses variance estimation for the seven 
estimators presented, the choice of the estimator where there is nonresponse, and the a priori or 
a posteriori use of auxiliary information. 

Spisak discusses the use of statistical process control to assure the quality of a frame constructed 
by a continuous process and used for a survey repeated periodically. The frame sizes constitute 
a time series for which the appropriate model must be identified in order to estimate the process 
variance needed for construction of the control charts. The author uses the data from the United 
States Unemployment Insurance Benefits Quality Control program to illustrate the method. 

Binder and Kovacevic show how the estimating equations approach may be used to construct 
variance estimation procedures that are appropriate when the data come from a survey with a 
complex design. The approach is most useful when the quantity to be estimated is a complicated 
non-linear function of the survey population values, as is the case with many common measures 
of income inequality. Details of the proposed approach are worked out for a number of complex 
income distribution statistics including the Gini Coefficient, the Lorenz Curve Ordinate, the 
Quantile Share, and the Low Income Measure. A numerical example is given using data from the 
Canadian Survey of Consumer Finance. 
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Ernst and Ikeda present a reduced-size algorithm for maximizing the retention of selected primary 
sampling units when a new sample {i.e., with a new stratification and allocation) is selected for 
a repeated survey. First, the transportation procedure developed by Causey, Cox and Ernst (1985) 
is described. It provides optimal retention of PSU's but the resulting transportation problem may 
be too large to solve in practice. The authors then expose their algorithm which is an approximation 
of the previous method but has the advantage of being of smaller size and thus possible to use in 
many practical situations. Finally, an application of the algorithm to the Survey of Income and 
Program Participation is presented. 

Shrestha and Preston evaluate the consistency of the Census data with the Vital Registration 
data for the older Americans. First, the data used in the study and their sources of errors are 
described. Then the authors present the methodology used to evaluate the quality of the old-age 
statistics and explain how one should interpret the results of the application of that methodology. 
Finally, results from the application of the methodology to data from 1970 to 1990 are presented. 

Dillman, Clark and Sinclair compare different mailout and follow-up strategies with respect 
to their impact on the response rates for the U.S. Census. The comparison of the strategies includes 
the use of a factorial design and a sample of 50,000 housing units. The results are analyzed through 
multiple pairwise comparisons of treatment means and logistic regression. 

Forster and Snow evaluate the use of hand-held computers to conduct demographic surveys 
in developing countries. A data collection test was conducted for comparing the use of paper and 
computerized questionnaires with the Adult Mortality Survey of people living on the Kenyan coast. 
The results show that the use of hand-held computers can reduce the data processing time, improve 
the quality of the data as well as reduce survey costs on the long term. 

The Editor 
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The Effect of Interviewer Variance on Domain Comparisons 
PETER DAVIS and AL AST AIR SCOTT' 

ABSTRACT 

In this paper we explore the effect of interviewer variability on the precision of estimated contrasts between domain 
means. In the first part we develop a correlated components of variance model to identify the factors that determine 
the size of the effect. This has implications for sample design and for interviewer training. In the second part we 
report on an empirical study using data from a large multi-stage survey on dental health. Gender of respondent 
and ethnic affiliation are used to establish two sets of domains for the comparisons. Overall interviewer and cluster 
effects make little difference to the variance of male/female comparisons, but there is noticeable increase in the 
variance of some contrasts between the two ethnic groupings used in this study. Indeed, the impact of interviewer 
effects for the ethnic comparision is two or three times higher than it is for gender contrasts. These findings have 
particular relevance for health surveys where it is common to use a small cadre of highly-trained interviewers. 

KEY WORDS: Interviewer variance; Domain comparisons; Design effect. 

1. INTRODUCTION 

Surveys requiring a high degree of specialist training for 
interviewers, such as many health studies, are often forced 
to use a small number of highly-trained interviewers. 
There has been a substantial amount of work done on 
estimating the impact of interviewer variability on simple 
statistics such as means and proportions, and it is well-
known that the use of a small number of interviewers, each 
having a high case load, can lead to a relatively large con­
tribution to the total error. Comprehensive summaries of 
the literature are given in Groves (1989, chap. 8) and Lessler 
and Kalsbeek (1992, §11.3). However, most medical and 
social surveys are primarily interested in more complex 
questions such as comparisons between sub-groups or 
estimating the effect of a factor on disease outcome. There 
is a widespread belief that the effect of interviewer vari­
ability is much smaller here, and that the effect of a small 
number of interviewers is relatively harmless. Following 
the pioneering work of Kish and Frankel (1974), there has 
been a great deal of theoretical and empirical work on the 
effects of clustering on fitting multiple regression models 
or log-linear models for categorical data. Good accounts 
of the literature are given in Skinner et al. (1989) and Rao 
and Thomas (1988). There has been some empirical work 
on the conceptually simpler, yet practically important, 
problem of comparing sub-group means (see Kish 1987 
and Skinner 1989 for example) but relatively little theo­
retical development. 

In this paper we concentrate on comparisons between 
subgroups (or domains). We first look at theoretical 
aspects via a straightforward components of variance 
model. The theory suggests that the impact of interviewer 

variability depends on two things, the distribution of each 
interviewer's case load between the domains and the 
domain-interviewer interaction. Then we apply the theory 
to data from a reasonably typical health survey, using two 
sets of domains defined by the sex and ethnic background 
of the respondent. Unfortunately the study was not 
designed a priori to estimate interviewer effects (most 
importantly, interviewers were not deployed at random) 
so the results should be regarded as suggestive rather than 
definitive. However, they are sufficiently disturbing to 
indicate that the problem warrants further study. The 
results from the ethnic comparisons, in particular, suggest 
that there are cases when we should be concerned about 
using a small number of interviewers even when compar­
isons, rather than simple means or proportions, are the 
main concern of the analysis. 

2. THEORY 

For simplicity we start with the special case of a two-
stage self-weighting design. This is sufficiently complex to 
illustrate the central ideas, but simple enough to avoid 
being swamped with extraneous detail. Following Collins 
and Butcher (1982), we want to address the problems of 
interviewer variance and clustering together. A simple 
correlated response model appropriate for observations 
drawn according to such a design is 

Y = ^ -h Uj + bp -I- e, ipr. (1) 

where / denotes the interviewer, p the primary sampling 
unit (PSU) and r the individual respondent. Here the 

' Peter Davis, Department of Community Health, University of Auckland, Private Bag 92019, Auckland, New Zealand; and Professor Alastair Scott, 
Department of Mathematics and Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand. 
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mean, /i, is fixed constant and the remaining components, 
a,, bp and Cjpr, are assumed to be independent random 
variables with variances a}, ale and a^ respectively. Such 
models have been used widely in theoretical studies of 
response variance. See Prasad and Rao (1990) for a recent 
example. For references to earlier work, see the compre­
hensive treatment in §11.3 of Lessler and Kalsbeek (1992). 

Since the design is self-weighting the sample mean, Y, 
is the natural estimator of the population mean. Its 
variance under the correlated response model (1) is 

V{Y) = {n,aj -h « c 4 + a^)/n 

with hj = Y,inf/n, where «, is the number of respondents 
handled by the/-th interviewer and n = J^,«, is the total 
sample size, and he = Y^pm^/n where Wp denotes the 
number of respondents in the/j-th PSU. Note that Rj is 
always larger than the simple arithmetic average of the 
«,'s and can be considerably larger if the «,'s vary widely. 

Now consider what the corresponding expected vari­
ance, VQ{ Y) say, would be if the n observations had been 
generated independently {e.g. if we had drawn a simple 
random sample from a very large population of PSUs 
using a large pool of interviewers). It follows from (1) that 

for observations from the d-t\i domain. Here the means, 
/i*''', may be different for the two domains but the inter­
viewer and cluster effects are assumed to be the same. 

Let /?/''* = « / ' " /« ' ' " , where /?/'" is the number of 
respondents from domain d contacted by the /-th inter­
viewer and n''" is the total number of respondents from 
domain d. Similarly, let q^^^ = m^''^/n '•^\ where wj ' " is 
the number of respondents from domain d lying in the/7-th 
PSU. Then, under model (4), the expected variance of 
F*"' - F<*', the difference between the sample means 
for the two domains, is 

p/(7('') _ yC")) = 

(w/ff/ -I- tfico}: + a^) („(«) + „(''))' (5) 

where 

%=i:(A'--A<^')y(;^ + ;^,) (6) 

and 

Ko - -̂ ^ otot/n (2) 
'«c = i;(.r-^r)y(„-]^ + „4-,)- (̂ ) 

where 

OtOt - <^I + Cc + a . 

The inflation in the expected variance due to the com­
bined effects of interviewer variability and intra-cluster 
correlation is given by the ratio 

Do = V{Y)/Vo 

! - ! - ( « / - l)p, -I- {nc - l)Pc (3) 

where p/ = aj/ajoi and pc = alc/a]o,. We shall refer to 
this ratio as the "design effect" although it differs slightly 
from the usual definition which is in terms of actual, rather 
than expected, variances. It is clear from expression (3) 
that interviewer variability can have a substantial effect 
on the variance of a sample mean if the average interviewer 
case-load, flj, is large even if the intra-interviewer correla­
tion, pi, is relatively small. 

Next suppose that we are interested in the difference 
between two domain means rather than a single mean. We 
might, for example, be interested in gender differences or 
in differences between two ethnic groups. In the simplest 
extension of the correlated response model (1) we might 
postulate a model of the form 

^ ipr = M'"* + a,- + bn + e, id) (4) 

If the observations had been generated independently 
the corresponding expected variance would be 

V, = „2 
y„ia) + „(b)) 

SO that the inflation due to interviewer variability and 
intra-cluster correlation is now 

Di = Var(F<'" - F<''>)/K, 

= 1 + (m/ - l)p, -h {trie - l)Pc- (8) 

The size of the effect depends on the way the inter­
viewers' case-loads and the PSUs cut across the domains. 
At one extreme, when each interviewer contacts the same 
proportion of people from both domains, {i.e. when 
p/") = p/*)), m, is zero and the interviewer effect essen­
tially cancels out. At the other extreme, when each inter­
viewer sees only cases from a single domain, W/ is similar 
in size to n, and the interviewer effect for differences is 
comparable to that for a single mean. Typically inter­
viewers contact people from both domains and ifij is 
rather small, giving some justification to the belief that 
interviewer variability has a small impact on estimated 
differences between domains. Similar comments apply to 
the effect of clustering. 
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All this depends on the assumption that the interviewer 
and cluster effects, a, and bp, are the same for both 
domains. It is easy to imagine situations where such an 
assumption would not be at all reasonable. Some inter­
viewers, for example, might interact very differently with 
males and females, or with members of different ethnic 
groups. A model which allows for the possibility of such 
interactions is 

' ipr t*"' + a/"' + b^^ + e, (d) 
ipr , (9) 

where a/"' and a/*' (respectively ftj"' and 6^*') are now 
assumed to be correlated random variables with correla­
tion r,{rc). The naive model (4) corresponds to the special 
case in which the variances of the effects are equal and /•/ 
and re are both equal to one. On the other hand, if there 
are substantial differences between the interviewer (cluster) 
effects for the two domains, r,{rc) will be small (or even 
negative in extreme cases). In the rest of this section we 
suppose for simplicity that the variances of a/"' and a/*' 
(respectively ftj"' and 6j*') are equal. This may or may 
not be reasonable in practice but the simplification enables 
us to concentrate on the essential ideas. The basic form 
is similar in the more general case but the terms are some­
what messier. Under model (9), the expected variance of 
F*"' - F"" is 

y^yi") - yO)) = (v,ff2 +v,al-{-
"'^ („-T^ + „-T )̂) 

(10) 
where 

with a similar definition for v^in terms of q^"^ and q^''K 

The variance inflation factor under this model is 

£>2 = 1 + (v/ - l)p, -\- {vc - l)Pc- (11) 

This is a decreasing function of r/, the correlation 
between the interviewer effects for the two domains; the 
smaller the correlation, the larger the variance inflation. 
When r, = 1, V/ reduces to /W/ and the interviewer effect 
is negligible provided all interviewers see a reasonable 
balance of people from both domains. However, if /•; is 
small (indicating a strong interaction between the inter­
viewers and domains), v, is the same order of magnitude 
as hi and the effect of interviewer variability on the vari­
ance of domain differences can be substantial. 

In practice, the effects will fall between the two extremes 
and their likely impact is a matter for empirical enquiry. 
In the next section, therefore, we make a start on building 
up practical knowledge about the impact using data for 

a variety of questions drawn from a single health survey 
that is typical of the genre of research investigation for 
which domain comparisons are important (although not 
ideally designed for our purposes!). 

3. EXAMPLE 

The example is based on data drawn from a survey of 
the oral health, attitudes and practices of adult New 
Zealanders. The details of the survey are reported in full 
elsewhere (Cutress et al. 1979). The important features of 
the study for the purposes of the current investigation are 
the sample design and the deployment of interviewers. 

The sample design was a stratified multi-stage sampling 
scheme. The country was divided into 256 Territorial 
Local Authorities (TLAs) and a geographically stratified 
sample of 68 TLAs was drawn from the 256 with selection 
probabilities proportional to size (PPS) at the first stage, 
where size was the estimated number of persons aged 
15 and over. Each sampled TLA was split into secondary 
sampling units (SSUs) comprising existing census mesh-
blocks, aggregated where necessary in order to achieve a 
minimum size of 50. Two SSUs were then selected with 
PPS from each sampled TLA at the second stage. Finally, 
a systematic sample of 28 adults was drawn from each 
sampled SSU. This equalised the final probability of 
selection for all adults so that the sample design is (approx­
imately) self-weighting. 

The key point of the design was the deployment of the 
interviewers. Thirteen interviewers were employed in the 
study, with at least three interviewers used within each 
SSU, and all interviewers carried out at least 10% of their 
total work-load in one region (Auckland). Ideally the 
assignment of interviewers would be part of the overall 
sample design as in Fellegi (1974) or Biemer and Stokes 
(1985). Unfortunately the study was not designed to estimate 
interviewer variance, and the assignment of respondents 
to interviewers was done in a haphazard way, rather than 
using a formal randomization procedure. 

This is fairly typical of large studies. The following 
quote from Hox (1994) gives a good summary of the situa­
tion: "Ideally, in interviewer studies, respondents should 
be assigned to interviewers at random. In large-scale 
studies, this is seldom done because it is expensive and 
complicated to organize. This makes it difficult to use such 
studies for methodological research because, as a result, 
interviewer and respondent characteristics might be con­
founded. Muld-level analysis, as outlined above, offers 
some remedies for this situation. If the relevant respondent 
variables are known they can be put in the regression 
model to equalize interviewers by statistical means.. . The 
limitation of this approach is that it relies on statistical 
control instead of experimental control. It depends on the 
assumption that all relevant covariates have been included 
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and have been correctly modeled. Without randomization, 
it is impossible to conclude that the influence of all confound­
ing variables has been eliminated." In our case, the deploy­
ment is such that all the components of variance are formally 
identifiable, provided that we believe the model and are 
willing to accept that the assignment of interviewers is inde­
pendent of the cluster effects. However, because of the lack 
of formal randomization there always remains the possibility 
that variations in patterns of response between interviewers 
could be a function of workload allocation rather than inter­
viewing style. Clearly the empirical results can only be 
regarded as tentative, pointing out possibilities that will 
need to be explored further in properly designed studies. 

Even if we ignore the lack of randomization in the inter­
viewer deployment, the study design is considerably more 
complicated than the one assumed for the development of 
the theory in the previous section, since it involves three 
stages of sampling and regional stratification of the first 
stage units. In the full analysis, we fitted a more complex 
model including fixed effects terms for the stratification, 
a hierarchical random effects model for the three stages 
of sampling, and all second-order interaction terms. How­
ever it turned out that the TLAs used as the first stage units 
were so diffuse that the differences between strata and the 
between-TLA component of variance were negligible for 
all the variables used in the following analysis. Thus the 
between-SSU component is dominant and, for all prac­
tical purposes, we can treat the design as if it were a two-
stage sample with the meshblocks (aggregated where 
appropriate) as PSUs. We have ignored the other com­
ponents in the results reported in the next section. 

4. RESULTS 

We look first at interviewer and cluster effects on a 
selection of means and propordons. We have used Model 
(9) for both types of variable. It is now well-known that 
this leads to an under-estimate of the variance components 
for binary data (see Anderson and Aitken 1985 and 
Pannekock 1988 for example), so our estimated design 
effects for proportions should be regarded as lower 
bounds. The models are fitted using PROC GLM in SAS. 
The impact of clustering has been well documented in the 
literature (Kish 1965; Kish and Frankel 1970; 1974). In 
general terms, the magnitude of the effects of clustering 
depends on the type and number of units chosen and is 
likely to vary with different kinds of social and demo­
graphic characteristics. In the current investigation clus­
tering effects were expected to be reasonably high because 
the census meshblocks used as sampHng units are Hkely to 
show a fair degree of internal homogeneity. In keeping 
with this concentration of population characteristics, it 
was assumed that demographic and related items would 
show the largest values of pc- Values of pi were expected 

to be lower because of the intense interviewer training. The 
literature suggests that these effects are also likely to vary 
according to the type of questionnaire item, with attitude 
quesdons, questions requiring probing, fixed-alternative 
and forced-choice items, together with poorly-worded and 
ambiguous questions, being particularly susceptible to 
interviewer variability (Feather 1973, Groves 1989). 

Estimated measures of intra-interviewer and intra-
cluster correlation coefficients for a selection of question­
naire items falling under four separate headings (socio-
demographic, atdtudinal, reports of recent behaviour, and 
recall of distant behaviour) are outlined in the first two 
columns of Table I. These categories were identified as 
providing natural groupings with the potendal to display 
a wide range of interviewer effects. Within each grouping 
the items are listed in order of the size of their intra-
interviewer correlations. A full description of all question­
naire items (apart from the self-evident socio-demographic 
category) is provided in the Appendix. 

As expected, the socio-demographic variables (except 
for gender) show the highest values of intra-cluster corre­
lation. The average pc is .07 (.08 if gender is omitted). 
The average values of pc for the other three categories of 
item are .02 and less. A few items that might be expected 
to be closely related to social background - like dental 
visidng, payment for visits, toothbrushing and certain 
attitude statements - have higher than average pc values. 
In general, though, these values fall within the range 
reported by others. (See, for example, Kish 1965, p. 581 
for a series of consumer surveys, Bebbington and Smith 
1977 and Verma et al. 1984 for the country studies in the 
World Fertility Survey.) 

The corresponding estimated p/ values are listed in the 
first column of Table 1. In general these values are very 
much smaller than those recorded for cluster effects, being 
usually less than half, and in some cases a tenth, the size 
of the Pc values for the corresponding items. As expected, 
some attitude items show higher than average pi values, 
as do certain reports of behaviour that might be susceptible 
to a high "social desirability" bias, like toothbrushing and 
buying sweets and chocolates. Ethnic group and employ­
ment status also record relatively high values. The pattern 
is similar to that found in previous studies, although the 
values recorded lie at the lower end of the range of typical 
values reported elsewhere (Feather 1973; Kish 1962; 
O'Muircheartaigh 1977; O'Muircheartaigh and Wiggins 
1981). A comprehensive survey is given in Chapter 8 of 
Groves (1989). This may pardy reflect the intensive training 
and monitoring of the interviewers that were integral to 
the field work stage of the study. It may also be influenced 
by the rigorous post-field work "cleaning" (editing and 
checking) of the data that was carried out prior to analysis. 
However it may also simply be due to the attenuation 
resuldng from using Model (1) for proportions that we 
noted above. 
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Table 1 
Cluster and Interviewer Effects for Means 

and Proportions 

Item Description 

Attitudinal: 
Dentists 1 
Visiting 
Natural Teeth 
Health of Teeth 
Dentures 
Dendsts 2 
Health of Gums 
Fluoridation 

Average 

Socio-demographic: 
Employment Status 
Race 
Age 
Household Income 
Marital Status 
Sex of Respondent 

Average 

Recent Behaviour: 
Brushed Teeth 
Sweets/Chocolates 
Fluoride Toothpaste 
Toothpick 
Rinse Mouth 
Dental Floss 
Disclosing Tablet 
Mouthwash 

Average 

Distant Behaviour: 
Age First Paid 
Visited Dentist 
Cost Last Year 
Year Last Visit 

Average 

PI 

.014 

.008 

.008 

.007 

.005 

.004 

.003 

.001 

.006 

.010 

.009 

.004 

.002 

.000 

.000 

.004 

.019 

.011 

.008 

.006 

.004 

.001 

.000 

.000 

.006 

.004 

.004 

.002 

.000 

.003 

PC 

.014 

.028 

.027 

.015 

.015 

.033 

.010 

.016 

.020 

.055 

.172 

.042 

.092 

.058 

.005 

.071 

.025 

.003 

.000 

.006 

.024 

.018 

.027 

.018 

.012 

.029 

.029 

.000 

.014 

.018 

^0 

4.61 
3.42 
3.52 
2.97 
2.67 
2.77 
1.96 
1.66 
2.95 

4.20 
6.87 
5.98 
3.29 
2.34 
LI2 
3.47 

6.16 
3.75 
3.04 
2.66 
2.43 
1.60 
1.49 
1.42 
2.82 

2.34 
2.51 
1.19 
1.15 
1.80 

Volnt 

91 
74 
76 
84 
80 
57 
77 
49 
73 

65 
33 
52 
15 
0 
0 

28 

8 
98 

100 
92 
62 
43 

0 
0 

60 

57 
57 

100 
0 

54 

Perhaps more significant than the pattern and values 
of PI is the impact of interviewer variability on the overall 
design effect, incorporating both interviewer and clustering 
effects. This is shown in the third column of Table 1 
(£»o), with the final column (% Int) representing the pro­
portionate contribution of interviewer variability to the 
overall value of £>o. Design effects are substantial, being 
above two in all but a minority of cases. This is due to the 
clustering and to the impact of the large interviewer work­
loads characteristic of the study since, from equation (3), 
the variance is increased by a factor of 1 -I- ( « / - l)p/, 
where «/ is a weighted average of the interviewer work­
loads. There is a disdnct pattern in the contribution to the 
design effect produced by interviewer variability. For socio-
demographic variables it averages just under one half of 
the contribution from clustering, while for atdtudinal 

items the interviewer contribution to the design effect rises 
to three times that from clustering. The other two cate­
gories of items range in between these two extremes. 

What the results outlined in Table 1 confirm is the 
impact that interviewer workload has on the variance of 
sample estimates, because of the multiplier effect. In 
essence, an interviewer component with a very small intra-
class correlation can be translated into a major effect if 
the interviewer workload is high. In the study under 
review, the logistics of deployment and the requirements 
of on-going quality control seemed to argue for small 
interview teams, a practice that appears to be typical of 
much field work in the health area (for example, Choi and 
Comstock 1975). This meant that interview workloads 
averaged over 250. The cost of this strategy is immediately 
apparent from the results in Table 1; very small differences 
between interviewers are translated into major reductions 
in the precision of sample estimates. 

Now we turn to the main object of our analysis, viz. the 
impact of interviewer variability on contrasts between 
domain means or proportions. In the current analysis, this 
was assessed for two sets of comparisons, the first set by 
gender (male/female) and the second set by ethnic group 
(European/non-European). As we have seen in the discussion 
following equation (11), the contribution, 1 -I- (v, - l)p,, 
to DQ from interviewer differences depends on the extent 
to which the interviewer effect is constant across the two 
domains and on the way the domains cut across individual 
case-loads. Assuming that the domains cut evenly across 
interviewer case-loads, then V/ is zero if the interviewer 
effect is identical in the two domains, in which case the 
common interviewer effect cancels out completely in the 
comparison. On the other hand, if the effects in the two 
domains are weakly correlated then the value of v, tends 
to be much higher and in extreme cases may equal the 
average case-load. In the current study values of v, fell 
between 0 and 50 for both gender and ethnic group. Thus 
the effect of domain-specific interviewer effects on the 
design effect can be quite substantial. Similar comments 
apply to the impact of clustering on the comparison; if the 
effect is the same on both domains then it largely cancels 
out and the net impact is small, but the impact can be 
substantial if the clustering effect is domain specific. 

Table 2 shows values of pi and pc for comparisons by 
gender and by ethnic group, together with the overall design 
effect Di and the proportion of this effect due to the 
impact of interviewer variabiHty. Note that the item on the 
use of disclosing tablets has been omitted from Table 2. 
This is because so few respondents either used or knew 
what this item was that the effective sample size in this case 
is tiny, thus rendering the results almost meaningless. 

The impact of both interviewer and clustering on compar­
isons by gender is small with design effects little above unity, 
in spite of the fact that the estimated values of p, and pc 
are slightly increased when adjusted for this variable. 
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Table 2 
Interviewer and Cluster Effects for 

Item Description 

Alliludinal: 
Dentists 2 
visiting 
Natural Teeth 
Fluoridation 
Dentures 
Health of Teeth 
Dentists 1 
Health of Gums 

Average 

Socio-demographic: 
Race 
Household Income 
Marital Status 
Employment Status 
Age 
Sex of Respondent 

Average 

Recent Behaviour: 
Brushed Teeth 
Rinse Mouth 
Mouthwash 
Dental Floss 
Toothpick 
Sweets/Chocolates 
Fluoride Toothpaste 

Average 

Distant Behaviour: 
Age First Paid 
Visited Dentist 
Year Last Visit 
Cost Last Year 

Average 

Domain Differences 

PI 

.004 

.009 

.010 

.001 

.007 

.012 

.001 

.006 

.006 

.008 

.004 

.000 

.014 

.007 

-
.007 

.025 

.007 

.000 

.003 

.006 

.012 

.010 

.009 

.003 

.005 

.004 

.007 

.005 

By Sex 

Pc 

.043 

.028 

.032 

.019 

.018 

.022 

.018 

.022 

.025 

.183 

.095 

.059 

.067 

.052 

-
.091 

.060 

.029 

.057 

.021 

.010 

.009 

.007 

.028 

.033 

.035 

.012 

.021 

.025 

Dj %Int 

1.05 
1.08 
1.06 
1.12 
1.04 
1.52 
1.05 
1.07 
1.12 

1.11 
1.37 
1.17 
1.42 
1.06 

-
1.23 

1.62 
1.28 
1.20 
1.06 
1.03 
1.02 
1.11 
1.19 

I.IO 
1.04 
1.20 
I.OI 
1.09 

0 
0 
0 

42 
0 

85 
0 
0 

16 

0 
24 
0 

71 
0 

19 

65 
64 
0 
0 
0 
0 

100 
33 

0 
0 

75 
0 

19 

PI 

.010 

.072 

.010 

.021 

.011 

.010 

.015 

.003 

.019 

-
.004 
.011 
.022 
.006 
.006 
.010 

.019 

.004 

.027 

.015 

.006 

.013 

.007 

.013 

.029 

.020 

.016 

.076 

.035 

By Race 

Pc 

.027 

.133 

.037 

.031 

.035 

.045 

.020 

.104 

.054 

-
.099 
.060 
.116 
.093 
.011 
.076 

.019 

.023 

.105 

.036 

.046 

.022 

.000 

.036 

.141 

.018 

.003 

.117 

.070 

O2 

1.28 
5.19 
1.26 
2.13 
1.21 
1.40 
1.53 
1.46 
1.93 

-
1.95 
1.69 
2.09 
1.87 
1.09 
1.74 

1.68 
1.20 
2.69 
1.37 
1.48 
1.31 
1.02 
1.36 

2.92 
1.26 
1.83 
2.09 
2.03 

%Int 

46 
78 
42 
88 
33 
20 
74 
9 

49 

40 
38 
25 
24 
44 
34 

88 
45 
75 
32 
63 
48 

100 
64 

71 
50 
12 
42 
44 

A significant gender-specific effect was apparent for only 
three items, health of teeth and tooth-brushing - for which 
there may be a unique social acceptability bias - and 
employment status - which holds quite different connota­
tions for men and women. Note that the interviewer effect 
is the dominant one in all three of these comparisons. 

The impact on comparisions by ethnic group is much 
higher, with design effects averaging about 1.7. This 
suggests that there are significant, non-cancelling inter­
viewer and clustering effects associated with the ethnic 
identity of respondents. There are large ethnic-specific inter­
viewer effects for two hypothetical attitudinal questions 
(visidng and fluoridation), for one item of recent behaviour, 
and for age of first payment for dental services. The result 
is plausible; all the interviewers were European and may 
have varied systematically in their interactions with re­
spondents of different ethnic backgrounds. Again clus­
tering effects are most marked for the socio-demographic 
variables. Not only are the design effects on average higher 
than those recorded for the gender comparisons, but the 
interviewer component is in general two or three times 
higher for the ethnic group contrasts. 

A referee rightly points out that because of the way the 
interviewers are deployed (they worked primarily in teams 
assigned to different parts of New Zealand), there is a real 
possibility that the interviewer effects might be inflated 
because of confounding with area effects. The fact that 
differences between the TLAs were so small gives us some 
reason to believe that this inflation will be small, but the 
possibility can never be discounted with this design. 

5. DISCUSSION 

This paper has applied empirical data from a not un­
typical health survey to assess the impact of interviewer 
variability under the assumptions of both simple and 
extended versions of the correlated response model for the 
error variance of a multi-stage sample design. 

In the first case the simple model analyses the reladve 
impact of cluster and interviewer effects on the estimation 
of means and proportions. The results of this analysis 
confirm a number of findings that are well established in 
the literature: the intra-class correlations for interviewers 
are generally lower than those for clusters; the intra-class 
correlations for clusters vary in the expected direction by 
question type; the overall design effects for these question 
types vary between 2 and 3.5; a substantial component of 
this infladon is contributed by interviewer variabihty and 
can probably be attributed to the multiplier effect of large 
interviewer caseloads; finally, the impact of this inter­
viewer component is shown to vary in the expected direcdon 
by question type. 

In the second case the extended model addresses the 
analysis of cluster and interviewer effects for the estimation 
of domain contrasts between means and proportions for 
two sets of comparisons defined by gender and ethnic 
group. The effect on contrasts between domain means was 
smaller but it was still significant for a number of items, 
particularly for the ethnic comparisons, suggesting that the 
interviewer effect was different for the two domains. The 
size of the effect for these items was certainly large enough 
to suggest that we should be concerned about it in designing 
similar studies. In general, the impact of interviewer 
effects was two or three times as great for the ethnic 
contrasts as it was for the gender comparisons. 

The basic deficiencies in the design mean that these 
results must be regarded as suggesdve rather than defini­
tive. They do indicate, however, that there is considerable 
potential for damage in the use of a small group of inter­
viewers even when interest is centered on domain differ­
ences rather than simple means or proportions. This is 
certainly counter to standard folklore in some fields such 
as health surveys, and suggests that considerable further 
empirical work is justified. 

On the assumptions of the simple correlated response 
model a reduction in the impact of interviewer variance 
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can be achieved by raising the number of interviewers and 
thus reducing individual interviewer workloads. Of course, 
this brings with it a potential reduction in the quality of 
interviewing if training and monitoring procedures have 
to be tempered. In this instance close attention to question 
wording and interviewer instruction is clearly crucial. In 
the case of the extended version of the correlated response 
model, however, such a strategy is unlikely to be a suffi­
cient one on its own. If comparisions between groups are 
a major objective of the study, then it is important also 
to ensure that the interviewers treat the two groups in as 
similar a way as possible. It is also important to design the 
study so that each interviewer contacts respondents drawn 
from both groups. This is likely to be a critical considera­
tion in investigations such as case-control studies in which 
health outcomes are related to contrasting exposures and 
in which the control of potential confounder variables may 
have a significant influence on the magnitude of measures 
such as the odds ratio. 
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Attitudinal 

Dentists 1: 

Dentists 2: 

Dentures: 

Fluoridation: 

Visidng: 

Health of Teeth: 

Health of Gums: 

APPENDIX 
Questionnaire Items 

"Dentists are more interested in their 
patients than making money." 

"Dentists recommend a lot more things 
to be done than really need to be done.'' 

"Dentures are just as good (or better) 
than your own teeth." 

"What is your opinion on fluoridating 
public water supplies?" 

"Do you think a person should go to the 
dentist only when they have dental prob­
lems or should they go sometimes also 
when they have no obvious problems?" 

"If you went to the dentist tomorrow, 
do you think he would find anything 
wrong with your teeth?" 

"If you went to the dentist tomorrow 
do you think he would find anything 
wrong with your gums?" 

Recent Behaviour 

"Yesterday did you - use a dislosing tablet/mouth wash/ 
dental floss/toothpick? 

- rinse after eating? 
- brush your teeth?" 

"Did you buy sweets or chocolates any time last week?" 

Distant Behaviour 

Age First Paid: 

Visited Dentist: 

Year Last Visit: 

Cost Last Year: 

"About how old were you when you 
first went to a dendst for routine 
treatment for which you or your 
family had to pay?" 

"Did you visit a dentist in the last 
12 months?" 

"In what year did you last visit a 
dendst?" 

"About how much did you pay 
for dental treatment in the last 
12 months?" 
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On Searls' Winsorized Mean for Skewed Populations 
LOUIS-PAUL RIVEST and DANIEL HURTUBISE' 

ABSTRACT 

This paper considers the winsorized mean as an estimator of the mean of a positive skewed population. A winsorized 
mean is obtained by replacing all the observations larger than some cut-off value R by R before averaging. The 
optimal cut-off value, as defined by Searis (1966), minimizes the mean square error of the winsorized estimator. 
Techniques are proposed for the evaluation of this optimal cut-off in several sampling designs including simple 
random sampling, stratified sampling and sampling with probability proportional to size. For most skewed distribu­
tions, the optimal winsorization strategy is shown, on average, to modify the value of about one data point in the 
sample. Closed form approximations to the efficiency of Searls' winsorized mean are derived using the theory of 
extreme order statistics. Various estimators reducing the impact of large data values are compared in a Monte Carlo 
experiment. 

KEY WORDS: Outliers; Max domain of attraction; Mean square error; Simple random sampling; Stratified 
sampling. 

1. INTRODUCTION 

Samples drawn from positively skewed populations 
often contain outliers with values that are much larger than 
most sampled values. One usually tries to accomodate 
these large values when designing the survey (Glasser 1962; 
Hidiroglou 1987). However, given the multipurpose nature 
of most surveys, statisticians are often faced with outliers 
at the estimation stage. These data points make classical 
survey estimators, such as the sample mean, unstable. It 
is therefore of interest to study alternative estimators that 
lower the impact of large data values. Winsorization 
(Searls 1966) consists in replacing the data values larger 
than a cut-off value R hy R before averaging. Searls 
suggested to select the value of R which minimizes the 
mean square error of the winsorized mean. One can also 
take R equal to the second largest data value in the sample 
(Rivest 1994). Searls' estimator was best among all the 
methods to adjust large data values studied by Ernst 
(1980). Hicks and Fetter (1993) implement Searls' winsor­
ization strategy in an agriculture survey. Other strategies 
have been proposed for dealing with large observations in 
survey sampling. Chambers and Kokic (1993) review esti­
mators derived from the theory of "Robust Statistics" 
(Huber 1981). Fuller(1991,1993) proposes a preliminary 
test to detect the presence of extreme values in the sample; 
the impact of these values is lowered only in samples for 
which this test is significant. Lee (1994) provides a good 
review of this expanding literature. 

The key to the implementation of Searls' winsorization 
method is the selection of the cut-off/?. A simple algorithm 
for calculating the optimal cut-off for a known population 

in simple random sampling and in pps sample is proposed 
in Section 2. Repeated calculations of the optimal cut-off 
for several populations and several sample sizes reveal 
that, in most cases, the optimal scheme winsorizes one data 
point on average, regardless of the sample size. Section 3 
extends the result of Section 2 to stratified sampling. A 
simple algorithm for the calculation of cut-off values in 
each stratum is proposed. The rule of winsorizing an 
average of one data point per sample regardless of sample 
size is shown to hold also in stratified samples. The effi­
ciencies, with respect to the sample mean, of various 
winsorized estimators are calculated in Sections 4 and 5. 
Section 4 derives analytic large sample approximations to 
the efficiency of Searls' estimator using the theory of 
extreme order statistics while Section 5 compares, in a 
Monte Carlo study, estimators for reducing the impact of 
large data values. 

2. SAMPLING PROPERTIES OF THE 
WINSORIZED MEAN 

This section studies winsorized means for data drawn 
from either a continuous or a discrete distribution. Several 
families of continuous distributions are available to model 
positive skewed data. One has the Weibull family, F„(A-) = 
1 - exp( - {x/0)''") for A- > 0, the log-normal family, 
F,{x) = ^(log{x/0)/v)foTX > 0, and the Pareto family, 
Fy{x) = 1 - (1 -h x/0) -^ for X > 0, where ^ is a 
positive scale parameter and a, v, and y are positive shape 
parameters. Discrete skewed distributions arise in survey 
samping. Let {yi, ..., y^,,] represent the values of the 
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variable of interest for the A'̂  units of a population to be 
sampled. If a simple random sample with replacement is 
drawn, then one can take F(x) = 'ZUyi < x)/Nastlie 
underlying distribution where / ( • ) represents the indicator 
function. In pps sampling, i.e., sampling with replacement 
and with probabiHties given by (;?,, / = 1, ..., N], one 
would take F(x) = lPiI{yi/{Npi) < x) . The standard 
estimator of y under pps sampling. 

£'[max(A', - R,0)X\] = 

^̂  = ;D NPi 

can then be regarded as the mean of a random sample of 
size n drawn from distribution F. Fuller (1991) provides 
examples of survey data having skewed distributions. 

Let A',, ^^2. •-,^n denote a sample drawn from F{x). 
In pps sampling, one would have A', = yi/{Npi) where/?, 
and yi are the selection probability and the value of the 
j'-variable for the /-th unit selected in the sample. The 
population mean fx is to be estimated by a winsorized mean. 

1 " _ 1 " 
X,, = - y min{Xi,R) =X-- V max(X, - ;?,0), 

' '= ' (2.1) 

where X is the mean of the A','s. The expectation of X/^ 
is equal to 

E{X„) {X - R)dF{x) = M - I \ dydF{x) 
R JR JR 

Changing the order of integration in the above integral 
proves that E{XR) = n + B{XR) where 

B{XR)^ - \ [1 - F{x) ] dx (2.2) 

is the bias of the winsorized mean. 

By (2.1), an expression for the variance of Xj^ is 

nyav{XR) = a^ - 2cov[A',,max(A'| - R,0)] 

-l-Var[max(A', - R.O)] 

where X^ is the first random variable in the sample and 
a^ is the variance of F(x) . Manipulations similar to those 
yielding (2.2) show that 

E[max{Xx - R,0)'^] = 2 P (x - R)[l - F{x)]dx, 

2 {X - R)[l - F{x)]dx - RB{XR). 

Thus 

Var(X/j) = 

- p - 2 r ( x - M ) [ 1 - F{x)]dx - BHXR)\, 

I 

and 

MSE 
0-̂  2 f" 

{XR) =- ( x - A t ) [ l - F{x)] 
n n ]R 

dx 

+ "- ^-B\XR). (2.3) 
n 

Searls (1966) showed that the mean square error of .Y^ 
has a unique minimum which can be obtained by equating 
the derivative, with respect to R, of MSE (XR) to 0. This 
yields the following equation for the optimal winsorization 
constant R{F,n), 

^ - [°°[1 - F{x)]dx = 0. 
n - I J R 

(2.4) 

This is equivalent to equation (14) in Searls (1966). In the 
remainder of this work, XR denotes the optimal winsorized 
mean obtained with the winsorization constant R{F,n) 
which solves (2.4). Observe that the optimal cut-off point 
R{F,n) is location and scaleequivariant, i.e.,ifG{x) = 
F[{x - b)/a], then R{G,n) - aR{F,n) + b. 

A general algorithm for solving (2.4) is easily con­
structed. First observe that as a function ofR, the left hand 
side of equation (2.4) is increasing and concave in R since 
its derivative, l/{n - 1) -I- I - F(/?) , is positive and 
decreasing. Therefore, the Newton-Raphson algorithm 
(Thisted 1988, 164-167) given by 

^j+1 - ^j~ 

{Rj-ti) - {n- l)\ [1 -F{x)] 
JRJ 

dx 

1 -f (« - 1)[1 - F{Rj)] 
(2.5) 

with RQ = 2/i as starting value converges smoothly to the 
solution of (2.4). For discrete distributions the computa­
tions are easily implemented by noting that 

[ " [ 1 - F{x)]dx = E[max{X - R,0)]. 
and 
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Exact calculations of the optimal cut-off points R{F,n) 
were carried out for the Weibull, the log-normal, and the 
Pareto families for samples of size s ranging between 5 and 
200. Three distributions, corresponding to coefficients of 
variation (CV) of 1, 2, and 4, were considered in each 
family except for the Pareto family where only coefficients 
of variation of 2 and 4 were considered. The CV measures 
the skewness of a distribution, with large CVs corresponding 
to heavy skewness. The corresponding parameter values 
are given in Table 1. 

Table 1 
Parameter values of the distributions for which optimal 

cut-off values R{F,n) were evaluated 

CV Weibull(a) Log-normaKc) Pareto (7) 

1 
1.84 
2.87 

0.83 
1.27 
1.68 

2.67 
2.13 

For each distribution and each sample size, the optimal 
cut-off point was calculated using algorithm (2.5). Figure 1 
presents the expected number of winsorized observations, 
m{F,n) = n{l - F[ /? (F ,«) ] ) as a function of/? while 

the corresponding efficiencies are reported in Figure 2. The 
efficiency of ^ ^ is defined as VaT{X)/MSE{X,^). 

In Figure 1 the expected number of winsorized data values 
under the optimal scheme is, for most skewed distributions, 
close to 1 even for large sample sizes. Approximating this 
number by a Poisson distribution with parameter m{F,n) 
shows there is a non-negligible probability that, under the 
optimal winsorization scheme, none of the data points is 
winsorized. This probability increases with the skewness 
of the distribution since m{F,n) decreases with the CV. 
Thus, in samples from a highly skewed distribution, it is 
not always appropriate to winsorize the largest values. 
Such values should be winsorized only when they are large. 
As expected, in Figure 2, the largest gains in efficiency are 
obtained when the skewness is heavy. Therefore moni­
toring the two or three largest data values in a sample and 
curtailing their impact when these values are large is the 
key to a good winsorization strategy. 

Figure 1 shows that the expected number of winsorized 
data values m{F,n) decreases with the skewness of the dis­
tribution. This observation can be turned into a rigorous 
mathematical result. To this end, random variable Yis said 
to be more skewed than random variable Xif Y has the 
same distribution as \I/{X) where i/'(x) is a convex function 

100 

Sample size 

Figure 1. Expected number of winsorized observations for simple and stratified random sampling. 
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Figure 2. Efficiency of Searls winsorized mean. 

of X. Under this definition X^ is, as should be expected, 
more skewed than X. This notion of skewness corresponds 
to the convex partial ordering of van Zwet (Barlow and 
Proschan 1981). With this definition of skewness, one has 
the following proposition which is proved in the Appendix 
together with Propositions 2 and 3. 

Proposition 1 If 7 is more skewed than X then m {Fx, n) > 
m {FY,n) where Fx and Fy are the distributions of X and 
Y respectively. 

The results of this section also apply to simple random 
sampling without replacement. For this design the mean 
square error of XR is given by formula (2.3) with n 
replaced by «/ (1 - / ) where/is the sampHng fraction. 
Algorithm (2.5), with n divided by (1 - / ) , can be used 
for calculating optimal cut-off values for without replace­
ment simple random sampling. 

3. WINSORIZATION IN STRATIFIED 
SAMPLING 

There are many ways to generalize Searls' winsorization 
strategy to stratified sampling. In this section each stratum 
has its own cut-off value. Let R^ be the cut-off value in 

stratum h. The optimal values of/?i, /?2. • • •. ^L, where 
L is the number of strata, are the ones that minimize the 
mean square error of X/; = S W^Xm,, where X^^ — 
Y,min{Xhi,Rh)/nh, ^h = ^h/N and N^ is the size of 
stratum h and Â  = I,Nf,. An algorithm for determining 
these optimal cut-off values is proposed in this section. 

Let F,,{x), for h - 1, ...,L be the distribution of X 
in stratum h, and /x/, and al be the mean and the variance 
of F,,. The derivation of the mean square error of XR, 
under with replacement stratified random sampling, 
follows that presented in Section 2, it gives 

MSE(̂ )̂ = T,— 
ti "" 

(:'' -' L7 {X - ,IH)[^ - FH{x)]dx - B^XR,) 
) 

\ fc=r 
-^ ( >: W,B{XR,)\ (3.1) 

h=l ' 

where B{XRI,) is the bias of XRI, as an estimator of /x/, 
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B{XRh) = 
- - \ 

[I -Ff,{x)]dx. 
Rh 

Taking the partial derivatives with respect to Rf,,h = I, 
.. .,L yields the following equations for the optimal values: 

[Rh l^h B{XR,)] = - I ; W,B{XR,), (3.2) 

h=l 

for h — 1, ..., L. 

There is no simple way to solve (3.2). An approximate 
solution can be obtained by noting t\iatB{XR,,)/nh is. for 
all values of h, usually small as compared to the other 
terms. Dropping these terms leads to 

{R„ - / , ; , ) = - ^ Wf,B{XR,), (3.3) 
h = l 

for /i = 1, ..., L. The solutions to (3.3) overestimate 
slightly the optimal values satisfying (3.2) since at these 
solutions the partial derivatives of (3.1) are all positive and 
since these partial derivatives are increasing functions of 
Rh,foxh = 1, ...,L. Thus by solving (3.3) to estimate 
the cut-off values one does not run the risk of winsorizing 
too many data values. Equations (3.3) imply that R,, -
fif, -I- n/,R/{nW,,) where R is some positive constant. A 
simple equation for R is obtained by changing variable 
y - nWh{x - tJ.h)/nh in the integrals for B(XRh), 
h = 1, ..., L where n = X!«A• This gives 

R 
V W,B{XR,) = -

[I -F{y)]dy = -B{XR), (3.4) 

where op is the variance of F. The last term of (3.5) 
is easily shown to be negative or null; it is null when 
B{XR) = nWhB{XRh)/n^ for /z = 1,_..., L. The variance 
of the stratified mean, X - Y. ^hX/,, is equal to ap/n. 
Thus a conservative approximation to the efficiency of 
XR with respect to .Yin stratified sampling is equal to the 
corresponding efficiency for a random sample of size n 
drawn from F. Note also that n[l - F{R)] represents 
the expectation of the total number of winsorized data 
points in the L strata. 

The optimal winsorization scheme obtained by solving 
(3.3) has a simple form for many allocation rules. Under 
proportional allocation,/'.e., «;, = nW,, for h = I, ..., 
L, one gets R^ = iih + R- Under Neyman optimal alloca­
tion, with nh = n W^a^/ ( E W'/,'̂ /.) where a^ is stratum h's 
standard deviation, one gets/?^ = ^A t ahR/{Y, W^a^). 
If in addition, the distributions of A'within the strata are 
equal up to a change in location and scale, i.e.,F/, = FQ 
[ (x - Hf,)/a/,] for some distribution FQ, then F{x) = 
Fo[x/ {Y. ^hah)] - In this case the characteristics of optimal 
winsorized means in stratified sampling and in simple 
random sampling are the same. Thus Figure 1 presents 
the expected total number of winsorized data points in 
the L strata as a function of the total sample size n, 
under Neyman allocation, when FQ is one of the distri­
butions of Table 1. Figure 2 gives the corresponding 
efficiencies. 

The results of this section are easily generalized to 
without replacement stratified sampling by replacing n/, 
by rtft / (1 - //,) throughout the calculations. The deriva­
tion of optimal cut-off values for stratified pps sampling 
is easily carried out by taking FA(X) = YPhiHyhi/ 
{^hPhi) ^ x) where/?;,, denotes the selection probability 
for unit the /-th unit of stratum h. 

whereF(;;) = In^Fhl/Xh -^ nhy/{nWi,)]/n. Equation 
(3.4) is easily solved using algorithm (2.5) proposed in 
Section 2 for the single sample case. Therefore simple 
approximations for Searls' optimal cut-off values in 
stratified sampling are easily calculated. 

Since the distribution F defined above has a zero expec­
tation, the mean square error of the stratified winsorized 
mean obtained by solving (3.3) is equal to: 

MSE(A'/j) = -
n 

(°'-^i: y[l -F{y)]dy-B{Xi 
«•') 

+ B{XR)' 

il + (-B{XR)^-J: 
h = l 

WIBHXR,)\ 

rih ) 
(3.5) 

4. LARGE SAMPLE APPROXIMATIONS TO 
THE EFFICIENCY OF THE 

WINSORIZED MEAN 

For most distributions, equation (2.3) defining the 
optimal cut-off does not have an explicit solution. This 
section derives closed form approximations to this solution 
using the theory of extreme order statistics. This will permit 
the derivation of explicit approximations to the efficiency 
of the optimal winsorized mean. Searls' optimal winsor­
ization strategy will then be compared to a simple non 
parametric winsorization scheme where the largest order 
statistic is replaced by the second largest (Rivest 1994). 

The form of the approximation to R{F,n) depends on 
the limiting distribution, as the sample size n goes to 
infinity, of the largest order statistic suitably normalized. 
For distributions whose support is the positive axis, there 
are only two possible limiting distributions which are given 
by Galambos (1987, p. 53-54) 



112 Rivest and Hurtubise: On Searls' Winsorized Mean for Skewed Populations 

/ / , „(x) = e x p ( - x - " ) for x > 0 and a > 0 

and 

//3_o(x) = e x p [ - e x p ( - x ) ] for x in R. 

For many distributions used for the statistical analysis of 
positive random variables, for example the Weibull and 
the log-normal families, the sample maximum suitably 
normalized converges to Hi_o{x). Distributions whose 
sample maxima converge to H^ ^{x) for some CK > 0 
have heavy tails. For such distributions I - F{x) goes to 
0 at a rate of 0 ( x " " ) . The Pareto and the Fdistributions 
are in this class. 

Distributions whose sample maxima converge to 
Hio{x) are considered first.The following characterization 
is due to von Mises (1964): the sample maximum of a twice 
differentiable distribution F{x) converges to Hi_o{x) if, 
as X goes to oo, 

Now consider distributions whose sample maxima con­
verge to / / i ,„(x). This class of distributions has been 
characterized by Gnedenko (1962): the sample maximum 
of F converges to //i,a(x) if one can write 

1 - F{x) = L(x) /x" (4.2) 

where as x goes to oo, L{x)/L{kx) converges to 1, for 
any constant k. Note that for F to have a finite second 
moment, one needs a > 2 in (4.2). The Pareto distribu­
tion satisfies (4.2) with o; = y. 

Proposition 3 If Ẑ' satisfies (4.2) with parameter a 
where a > 2, then as n goes to infinity, R{F,n) = 
F-^n -{a- l)/n][l -\-o{l)],i.e.,m{F,n) « a - I. 
Furthermore, 

MSE(X«) « — - . 2 
aR{F,n)' 

n\ot - 2) 

V S'{x) „ (4.1) 

where/(x) is the density of F,g(x) = / ( x ) / [ l - F{x)] 
is the failure rate of F, and g' is the derivative of g. An 
approximation to winsorization constant R (F,n) for this 
class of distributions is presented next. 

Proposition 2 If F{x) is such that (4.1) holds and if, 
for large values of x, it satisfies: 

i) xg{x) increases; 
ii) xg' {x)/g{x) is less than some positive constant c; 

then the optimal winsorization constant R{F,n) satisfies 

R{F,n) = 

' ( -

g[F-\l-l/n)]F- - ' ( l - l / « ) [ l + o ( l ) ] \ 

and m{F,n) = g ( F ~ ' ( l - l / / i ) ) F - ' ( l - l/n) 
[1 -I- 0 ( 1 ) ] . Furthermore, the mean squared error of 
Searls' winsorized mean is approximately equal to 

MSE(A';;) = 
R{F,n)' 

In the Weibull family, F " ' (1 - 0 = [ - log (01" , 
g(x) = x^'" ~ Va. The hypotheses of Proposition 2 are met 
and m (F„, n) , the expected number of winsorized obser­
vations in a large Weibull sample, is log («) [ I -\- o{l)]/a 
which goes to oo as «increases. Figure 1 suggests that the 
convergence is very slow, especially for large coefficients 
of variation. 

For distributions satisfying (4.2) a finite number of data 
points are on average winsorized as the sample size goes 
to 00. To some extent, this can be seen in Figure 1 where 
the curves of m{Fy,n) for the Pareto distribution have 
m{F2,23,n) = 1.33, and m{F2,6i,n) = 1.67 as asymptotes. 

Propositions 2 and 3 shed some light on the estimation 
of the optimal cut-off value. When F is unknown, a 
possible estimator for R{F,n) is the value that minimizes 
an estimator of the mean square error of XR . This leads to 

R — X 1 " 
= - V max(^, - R,Q) 

n - I n ^ 
1=1 

(4.3) 

as an estimating function for R. This procedure is ques­
tionable when the underlying distribution is highly skewed, 
i.e., when Fsatisfies the assumption of Proposition 3. On 
average, there will only be o; - 1 non-null terms in the 
right hand side of equation (3). Thus R will, on average 
be determined by the a - 1 largest data values and the 
sample maximum will have the largest influence on R. This 
will make R highly unstable and, considering the findings 
of Figure 1, the second largest sample order statistic should 
be a better estimator of R{F,n) than the solution of (3.3). 
This is exemplified in the Monte Carlo simulations of 
Section 5. 

Table 2 compares approximations to the bias and to the 
mean square error of Searls' winsorized mean XR to those 
of the once winsorized mean Xi obtained by taking the 
cut-off value R equal to the second largest observation. 
Rivest (1994) shows this choice of cut-off value yields the 
optimal non-parametric winsorized mean. He also derives 
the large sample approximations for the bias and the mean 
square error of ^ i appearing in Table 2. The corresponding 
expressions for XR are taken in Propositions 2 and 3. 
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Table 2 
Approximations to the bias and to the mean square error of the once winsorized mean X^ 

and of Searls' optimal winsorized mean, XR, for the Weibull and for the 
Pareto distribution (r'( •) stands for the gamma function) 

WEIBULL PARETO 

XP 
a (log n) 

MSE — ^ 

2a 

(7 - 2 ) ( 7 - \)^hnl-2h 

Xi 

bias 

MSE 

(log//)" 

o^ 

n 

n 

2a (a — l ) ( l o g « ) 2 " - 2 

n^ 

(7 - l ) ' / T « ' - ' / T 

â  2 r ( l - 2/7) 

n 7 ( 7 - l)/!^~^^^ 

bias 
a(logrt) a-l r ( i - 1/7) 

yn 
1-1/7 

In Table 2 the mean square error of XR is much smaller 
than that of .?] . Indeed, for the Weibull distribution the 
large sample efficiency of XR with respect to X, is equal 
to that of XR with respect to X. Thus non-parametric 
winsorization reduces the mean square error of estimators 
of the mean of a skewed population however further 
reductions in mean square error can be obtained if infor­
mation concerning the underlying distribution is available. 
This is illustrated in the Monte Carlo comparisons presented 
in the next section. 

The results of this section apply to stratified sampling. 
For this design, the large sample solution to equation 
(3.4) is determined by the stratum with the most skewed 
distribution. If F, is the most skewed distribution then 
nW\R{F\,nx)/ni is an approximate solution to (3.4) where 
an approximation to /? (Fj, /i,) is found in Proposition 2 
or in Proposition 3 depending on the tail of F , . In this 
case only data points in stratum 1 are winsorized in large 
stratified samples. Searls' winsorized mean is then equal 
to W] times the optimal winsorized mean for stratum one 
plus a weighted sum of the sample means in the other strata. 

5. MONTE CARLO COMPARISONS 
OF ESTIMATORS OF THE 

MEAN OF A SKEWED DISTRIBUTION 

This section presents Monte Carlo comparisons of the 
mean square error and of the biases of five estimators of 
the mean of population CHICKEN of Fuller (1991). This 
population has 2000 units; its coefficient of variation is 

4.46. Further numerical comparisons of the five estimators 
considered in this section for other distributions, either 
finite or infinite, are presented in Rivest (1993a and b). 

The five estimators under consideration are: 
_ i 

• Searls' winsorized estimator, XR, calculated as if the 
the underlying distribution was known; 

• A winsorized estimator where the cut-off value is set 
equal to the second largest data value of an auxiliary 
sample of size 2n; this is an instance where limited 
auxiliary information concerning the underlying distri­
bution F is available (in the Monte Carlo simulations 
each simulated sample had its own auxiliary sample); 

• The once winsorized mean, X\, introduced in Section 4; 

• A winsorized estimator where R is estimated from the 
sample by solving equation (4.3); 

• Fuller preliminary test estimator withy = 3 {i.e., the 
numerator of the preliminary test involves the three 
largest observations), r(the total number of data points 
involved in the preliminary test) equal to [4«'''' - 10] 
and Kl, the cut-off value equal to 3.5. A detailed 
description of this estimator appears in Fuller (1991) and 
in Rivest (1993a and b). This estimator curtails the 
largest data values only when a test statistic for detecting 
extreme data values is significant. 

The biases and the efficiencies of XR were calculated 
exactly. For the other estimators, the biases and the effi­
ciencies presented in Figures 1 and 2 were obtained in 
Monte Carlo simulations based on 100,000 repetitions. 
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Figure 3. Relative bias of five estimators for the mean of CHICKEN. 

Figure 3 indicates that the biases of winsorized esti­
mators are important, even in large samples. Several 
interesting conclusions can be drawn from Figure 4. First, 
as expected from Table 2 Searls' estimator is much more 
efficient than the once winsorized mean. Estimating the 
optimal cut-off value using limited auxiliary information 
is highly efficient. This holds true as long as the study 
variable can be modeled by a superpopulation distribution 
having a finite variance, see Rivest (1993a) for further 
discussions. In a sampling context, the auxiliary samples 
could be data from previous surveys standardized to 
account for possible changes over time in the distribution 
of the variable under study. 

Among the three estimators of Figure 4 that do not rely 
on auxiliary information. Fuller estimator is the best. This 
is in agreement with the simulation results of Fuller (1991). 
Estimating the cut-off value by minimizing an estimate of 
the mean square error does poorly especially in small 
samples. Thus, as shown in Section 4, the resulting esti­
mator is highly sensitive to the wild data values that 
sometimes appear in small samples. This estimator is not 
recommended. 

6. CONCLUSIONS 

Many strategies can be used to accomodate the large 
values that sometimes arise in surveys. If auxiliary infor­
mation, such as census data, is available then one can use 
Searls' estimator in either simple random sampling, 
stratified sampling, or pps sampling. Since the cut-off 
values are fixed constant mean square error estimators can 
be derived from formulae (2.3) and (3.1). 

When extra information is not available, the once 
winsorized mean and Fuller preliminary test estimator can 
be used. Research is now under way to generalize these 
estimators to stratified designs. An estimator for the mean 
square error of the once winsorized mean is proposed in 
Rivest (1994), 

v{X,) =-S^ -^{X„-l- X„_, - 2X0 
n « 

{X„ - 3X„_ , -H 2J>r„_2) 

where S^ denotes the variance of the A'-sample and X„ > 
X„_i > X„_2 denote the three largest data values in 
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Figure 4. Efficiency of five estimators for the mean of CHICKEN. 

that sample. This estimator has a small bias in infinite 
populations. However the coverage of the standard con­
fidence interval X, ± Zi-a/ijH^ is often well below 
the nominal 100(1 - a )% level especially when the under­
lying distribution is skewed. Further research is needed to 
obtain reliable confidence intervals for estimators of the 
mean of skewed populations. 

iP{R) - E{Y) 

n - 1 
[1 - FY{x)\dx. (A.l) 

U(R) 

By Jensen's inequality, F( r ) = E[^{X)\ > il/[E{X)\. 
Thus using (2.3), the left hand side of (A.I) is less than or 
equal to 
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R - E{X) iP{R) - iP[E{X)] ^R-E{X) , , ^ „ ^ 

n - l R- E{X) n-l 

[1 - Fx{y)]dy - r{R) 

APPENDIX 1 

Proof of Proposition 1 The assumption that y is more 
skewed than A'implies that there exists a convex function 
\p such that ip{X) and F have the same distribution. Let 
R denote R{Fx,n). To prove the result, it suffices to 
show that ip{R) < R{FY,n). This is equivalent to 

where 4/' is the derivative of 0. Since ^ ' is increasing, the 
left hand side of the above inequality is less than or equal to: 

\y {y)[l - Fx{y)]dy = \ [I - Fy{x)]dx. 
•HR) 

This shows that (A.l) holds. 
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Proof of Proposition 2 The following result obtained by 
applying Theorems 2.7.5 and 2.7. II of Galambos (1987) 
to the distribution F(z''''"') is used extensively. If the 
sample maxima of distribution F (x ) converges to 
//3 o(x), then all the moments of Fexist and 

(•" Pr, T7t Mw [1 -F{x)]xP 
I y'^[l - F{y)]dy — (A.2) 
]x S{x) 

whereg(x) ~ /i(x) means that g(x)// i(x) converges to 
1 as Xgoes to infinity. Using (A.2), R{F.n) is obtained 
by solving 

R - fi _ I - F{R) 

n - I ~ g{R) 
(1 + o ( l ) ) . 

Let R = F ~ ' ( l - a/n), then, up to (1 + o ( l ) ) , the 
above equation becomes 

Letflo = ^ [ ^ " ' ( 1 - 1 /« ) ]F - ' (1 - l /«)andf l , = g 
[F~' ( I - ao/n)]F~\l - ao/")-Since for large values 
of x,xg(x) is increasing, OQ > fli and the solution to 
(A.3) belongs to the interval (a | ,ao)- In order to prove 
the result, one has to show that O] /OQ converges to 1 as 
n goes to 00. 

Since f(x) = / ( x ) / [ l - F ( x ) ] , one can write 

flo = exp [\: 
( l - l / n ) 

g{t)dt 
( l -f lQ/n) 

] = 

flo - fli - I tg'{t)dt\, 
J F-hi-"0/1) J 

where the second expression is obtained by integrating 
by parts. Since tg' {t)/g{t) is less then c, one has OQ > 
exp(flo - cii)aQ'^. If UI/UQ does not converge to 1, say 
Oi/flo < 1 — € < 1 for an infinite sequence of sample 
sizes, the previous inequality implies thatao"'"'^> exp(flo€). 
This is a contradiction since UQ tends to <» as /? becomes 
large. The approximation for MSE(^/;) is obtained by 
using (A.2) with p = 2. 

Proof of Proposition 3 If the sample maxima of distri­
bution F(x) converges to /fi_„(x) then F satisfies the 
following properties (Feller 1971, p. 281): 

for any p such that a - p - 1 > 0: By (A.4), R{F,n) 
is obtained by solving F{R) = I - [a - I -\- o{l)]/n. 
This leads to the approximation for R{F,n). To derive the 
approximation for MSE {XR), one applies (A.4) with p-l. 
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Design Effects for Correlated (/̂  - P,) 
LESLIE KISH, MARTIN R. FRANKEL, VIJAY VERMA and NIKO KACIROTI" 

ABSTRACT 

We present empirical evidence from 14 surveys in six countries concerning the existence and magnitude of design 
effects (defts) for five designs of two major types. The first type concerns deft(p, — Pj), the difference of two 
proportions from a polytomous variable of three or more categories. The second type uses Chi-square tests for 
differences from two samples. We find that for all variables in all designs deft (p/-py) = [deft(p,) -I- deft(py)]/2 
are good approximations. These are empirical results, and exceptions disprove the existence of mere analytical 
inequalities. These results hold despite great variations of defts between variables and also between categories of 
the same variables. They also show the need for sample survey treatment of survey data even for analytical statistics. 
Furthermore they permit useful approximations of deft(p, - pj) from more accessible deft(p,) values. 

KEY WORDS: Design effects; Survey sampling; Sampling errors. 

1. DESIGN EFFECTS FOR ANALYTICAL 
STATISTICS 

We explore the existence and the magnitudes of design 
effects for some special analytical statistics based on data 
from survey samples. The investigation is both method­
ological and empirical, with data from several different 
surveys with different variables and from contrasting 
populations, hence subject to the risks of inconsistent 
empirical results. We often hear and read that probability 
sampling, while necessary for descriptive surveys, is not 
necessary for analytical surveys. In "Four Obstacles to 
Representation in Analytic Studies" one of us wrote that 
"In addition to those four real obstacles, we also encounter 
another, which is more artificial, in the denials of the need 
for representation" (Kish 1987, Section 2.7). Sampling 
investigations show that complex probability selections, 
especially clustered sampling, have no appreciable influence 
on descriptive statistics (like means and regression coef­
ficients), but can have drastic effects on inferential sta­
tistics, like confidence intervals, tests of significance (Kish 
and Frankel 1974). 

Design effects are defined as deft^ = actual variance/ 
simple random variance of same n, both estimated. And 
values of deft > 1 have been shown for sampling errors 
not only of means, but also for analytical statistics like 
differences of means (and Chi square tests), regression 
coefficients etc. It is true that considerable reductions and 
differences of deft values have been found for some ana­
lytical statistics. The differing deft values are not mere 
necessary mathematical consequences of the sample 
design, which may be deduced once for all. They have 

empirical content and therefore they need to be replicated 
with empirical investigations (Kish and Frankel 1974; 
Kish 1987, 7.1; Kish 1965, 14.1-14.2; Rao and Wu 1985; 
Scott and Hok 1982; Skinner, Holt, and Smith 1989). In 
this paper we investigate the possible effects and the 
magnitudes of design effects for a set of related statistics 
that have not been investigated before. On the contrary, 
in several statistical papers the absence of design effects 
was merely assumed by the authors (all justly famous), and 
apparently passed on by the journal referees, without 
warning the readers. We shall see if deft is reduced or 
eliminated for this set of analytical statistics (Cochran 
1950; Mosteller 1952; Scott and Seber 1983; Seber and 
Wild 1993). 

Furthermore, we also propose explicitly, as has been 
implied before, that the existence of considerable values 
of deft is strong evidence for the need for probability 
selections. It would be difficult to assume a model of 
a population distribution where the selection design 
was unimportant (or uninformative) but produced 
considerable design effects. The reverse does not hold: 
absence of design effects is necessary but not sufficient 
evidence for license to neglect probability selection. This 
proposition gives added importance to our study, which 
relates deft(/7, - pj) for analytical statistics to deft(p,) 
and deft{pj) for two of several categories of the same 
variable. 

Section 2 describes the five related problems (designs) 
for which sampling errors are described in Section 3. 
Section 4 discusses the empirical evidence in the tables. 
Section 5 places our findings in the context of earlier work 
on defts for subclasses and their differences. 

' Leslie Kish, ISR, University of Michigan, Ann Arbor MI 48106, U.S.A.; Martin R. Frankel, NORC and City University of New York; Vijay Verma, 
University of Essex, Colchester, C04 3SQ, U.K.; Niko Kaciroti, Institute of Statistics, Tirana, Albania. 
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2. SIMILAR STATISTICS FOR 
FIVE DESIGNS 

It has been shown that five designs (problems), of two 
distinct types, can be treated with the same simple statistics 
(Kish 1965, Section 12.10). For our empirical and simple 
presentation we use symbols for sample values (like deft. 
Pi and n,), even when occasionally capitals for population 
values would be more appropriate. 

The difference of proportions/J2 - Po = "2/" - "o/" 
expresses the desired estimate, where /j = /IQ + «i + 
n2 + ... ni^is the sample size, with n units selected and 
weighted equally. Furthermore, under simple random 
sampling assumptions, the variance of {P2 - Po) is 
(1 -f)[P2 + Po- {P2 - Po)^]/{n - 1) . 

Type A Comparisons 

1. The difference between two categories (rt2 - «o)/ 
n = {p2—po)ofa polytomy can represent preference 
between two parties among several {k) in voting 
surveys, or between two brands of automobiles in 
market research, or two of several attitudes, opinions, 
behaviors on one variable, etc. The other {k - 2) 
choices are summed into pt and disregarded in the 
difference. (Also treated by Scott and Seber 1983.) 

2. Rank values of - 1 , 0, -1-1 (or 0, 1, 2 or c, c -I- 1, 
c -I- 2) can be assigned to an ordered trichotomous 
variable without a metric, and viewed as a simple form 
of the difference of two categories. This form is partic­
ularly useful for computations of sampling errors, 
because all the five designs can use - 1 , 0 , -I-1 for 
instance as a transformed computing variable. 

3. The difference of proportions from two different vari­
ables {xandy) may be treated as in (1) and (2). Define 
as positive in x (or success) only those elements that are 
positive in x but not in y, so that n^o = n{xi, yg). 
Similarly define as positive y the WQI = "(-^o. >'i)-
Then (/j,o - «oi)/" = (Px - Py) is the net difference 
in the proportion of positives in x and y. Those that are 
positives or negatives in both x and y do not count in 
the differences. Thus we have a case of three categories 
as in (1) and (2). An example is the difference between 
the proportions who would "stop all nuclear testing," 
and those who "want complete nuclear disarmament"; 
or who would "force Iraq to leave Kuwait" and who 
would "remove Saddam from power," (Wild and Seber 
1993). However, the two categories may also come from 
two different surveys of the same n cases, as in a quality 
check, or from dual frame observations, or from two 
waves of a sample. These situations resemble those of 
(4) and (5). 

Type B Comparisons 

4. Test-retest and before-after are terms for designs in 
which the same subjects undergo two observations. 
Then dichotomous answers «2 = «io denote the number 
of negative changes; /JQ = «oi the number of positive 
changes; and /Jn + "oo the sum of the unchanged 
positives and negatives. Positive and negative answers 
are respectively denoted here as 1 and 0, and the first 
and second wave by the order of the subscript. The 
difference (/Jio + «ii) ~ ("01 + ''11) = "10 - "01 = 
/22 - "o nieasures the change between positives for 
the two observations; and P2 - Po = "2/" - " 0 / " 
measures the change in proportions. (McNemar 1949; 
Cochran 1950; Mosteller 1952). 

5. Matched pairs of n pairs of subjects can also be treated 
as a generalization of the test-retest design (Mosteller 
1952). For example n pairs of randomized subjects may 
represent experimental versus control treatments; or n 
pairs of boys versus girls matched on control variables. 
The statistical treatment {pio - Poi) of the n pairs of 
matched subjects is the same as for the n pairs of 
treatments on the same n subjects (4). 

The similarity of statistical treatment for these five 
designs of two distinct types is convenient, and we present 
empirical results for both types. "It also has heuristic value 
that has been overlooked in recent publications (Scott and 
Seber 1983 and Wild and Seber 1993). The Chi-square test 
for types 4 and 5 was published early (McNemar 1949; 
Cochran 1950; Mosteller 1952), and the similarity to the 
categorical cases 1, 2, 3 was shown" (Kish 1965, 12.10). 
(Kish was wrong in denoting "trichotomies and matched 
dichotomies," as "Trinomials and Matched Binomials," 
which terms refer to IID samples only.) 

All of these deal with differences of proportions /?, 
based on count variables n,. Extensions to correlated 
differences (y, - yj) for other variables are possible, but 
not within the scope of our study. Practical examples 
would include the difference in dollar shares (not only 
numbers «,) between two automobile makes from a total 
of Y,yi sales. 

3. SAMPLING ERRORS AND DESIGN 
EFFECTS 

For simple random samples of size n it can be easily 
shown (Kish 1965, 12.10) that 

var(p2 - .Po) 

\'^—^][p2+Po- {P2-Po)']/n. 
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Most of the examples found and shown come from large 
survey samples, where the (1 - / ) can be disregarded. It 
is worth noting that for the element variance 

P2 + Po - {P2 - Po)^ = P2Q2 + PoQo + '2-P2P0, 

where the last term cov {p2,Po) = -P2P0 represents the 
covariance arising because/72 andpo are competitive parts 
of the same sample, rather than proportions from inde­
pendent samples. The difference of proportions squared 
{P2 - Po)^ will usually be a small correction term, 
and without it we have the equivalent of the variance 
{P2 + Po)/n of two independent Poisson samples. Fur­
thermore, note that (Kish 1965, 12.10): 

The Chi-square test has been applied to some of these 
problems, treated separately (Cochran 1950; Mosteller 
1952; McNemar 1962, p. 225). This is essentially 
("2 - "o)^/(«2 + «o) the square of the difference 
divided by its variance, under the null hypothesis 
«2 = no. It applies the exact theories available for 
tests of null hypotheses in small samples, including 
the "Yates correction," all based on the assumption 
of simple random sampling. However, there are great 
advantages in treating these problems in large samples 
as estimated means with proper standard errors. First, 
instead of being confined to testing null hypotheses, 
we can make inferences with the probability intervals 
{P2 - Po) ± IpSe {P2 - Po)- Second, the formulas 
for standard errors of complex samples can be applied 
directly to the mean {p2 - Po). Third, the logical 
structure of this statistic {p2 - Po) can be seen more 
clearly in its application to several distinct problems. 

Correlated proportions originate usually in data from 
complex surveys, and the computations of variance should 
be appropriate to the sample design. The variance formulas 
for stratified complex samples can be adopted, but the 
direct formula has eight terms (Kish 1965, 12.10.3). 
Instead, it is convenient to translate the problem into a 
trichotomous variable, with values of - 1, 0, -1-1 as in 
design 2 of Section 2; and the computations of Section 4 
used that translation. 

Then comparisons between variables and between 
samples can be facilitated by recourse to the design effects: 

deft2(/72 - Po) = 
computed variance of {p2 — Po) 

IP2 + Po - {P2 - Po)^]/n 

A few words are needed about limitations on the use 
of deft as a tool for robust approximations. They serve 
well for clustered and muhi-stage samples using ultimate 
clusters (primary selections) for computing sampling 
errors. However, we avoided the problem of weighted 
samples, because their treatment would be too specific and 
perhaps too complex. Weighting for nonresponse would 

not be important for the ratio of deft (/?, - pj) to deft (/?,). 
However weights for gross inequalities of selection proba­
bilities need specific treatments. Nevertheless, inference 
and experience indicate that deft values are less affected 
by weights than are the variances and means themselves. 
Furthermore we conjecture that the relations we found 
between the values of deft(/j, - pj) and deft(/7,) will 
hold also for weighted data, if these are not extreme or 
pathological. 

An approximate but dependable relation of deft (p, -pj) 
to deft{Pi) and deft{pj) would be useful to allow infer­
ences from the latter, which are routinely and easily 
computed, to the former that are not. Several alternative 
conjectures may seem reasonable, and none can be math­
ematically derived, nor excluded. 

1. Deft{Pi - Pj) = 1 of no design effect was assumed 
implicitly in the five publications referenced in Section 1. 

2. Deft(;7,) > deft(/7, - pj) > 1 denotes persisting but 
lower effects than for the deft(p,) for proportions. 
This happens for "crossclasses" and their comparisons 
(Kish 1987, 7.1). This also seemed reasonable to several 
experienced statisticians we polled. 

3. Deft(A - pj) = [deft{pi) -I- deft{pj)]/2 is what 
we actually found to be a good approximation for all 
of our data, from different populations and designs. 
This conjecture seems reasonable, because design effects 
due to clustering for individual Pi can apply similarly 
to the variable created from the difference (/?, - pj) 
of two of them. 

4. Inconsistent results would have been possible, but 
annoying by preventing inference. 

4. EMPIRICAL RESULTS FOR Deft(f; - Pj) 

Without strong theoretical or mathematical basis 
for favoring any of the four alternative conjectures, 
empirical results about deft(/j, - Pj) become essential, 
linking these to the computed values for deft (/?,). These 
resemble our more familiar conjectures about deft (/?,) = 
Jl •\- roh[b- 1]; their value depends on several factors 
that affect roh, the coefficient of intraclass correlation, 
in addition to the average cluster size b (Kish 1965, 5.4, 
8.2). The values of deft{pi) vary greatly between surveys, 
also between variables for the same survey (Kish, Groves 
and Krotki 1976; Verma, Scott and O'Muircheartaigh 
1980; Verma and Le 1995). However, survey statisticians 
gain knowledge from empirical investigations of sampling 
errors from diverse surveys, which also permit relating the 
deft values of complex statistics to the simpler deft(/7,) 
(Kish L. 1995; Rao and Wu 1985; Rao and Scott 1987). 
Similarly, to learn about the relation of deft{Pi — pj) 
to deft{Pi) we have here empirical results from many 
variables and from many surveys. 
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In this first essay into this field we present data from 
fourteen surveys, which represent a great variety of situa­
tions. Eleven surveys presented as 5 sets of results (Figures 1 
and 2 and Tables 1-3) deal with paired differences of 
categories from single surveys (Type A). Three sets of 
results (Tables 1-3) come from social surveys, followed by 
two sets (Figures 1 and 2) from the Demographic and 
Health Surveys on population data. Finally three other sets, 
each dealing with two waves of data, each based on two 
reinterviews with the same respondents (Tables 4,5 and 6), 
represent type B designs of comparisons. 

Tables: 

1. The National Election Study of 1986 of the Institute 
for Social Research of the University of Michigan, 
n = 2,135. 

2. The National Education Longitudinal Study (NELS) 
of 1988, the National Opinion Research Center of the 
University of Chicago, n = 24,355. 

3. The National Longitudinal Study of Labor Market 
Experience of Youth, conducted by the National Opinion 
Research Center ofthe University of Chicago, rt = 5,857. 

4. National Election Studies Panels 1990 and 1992, Survey 
Research Center, Institute for Social Research, Ann 
Arbor, MI 48106. 

5. Panel Study of Income Dynamics 1983 and 1987, 
Survey Research Center. 

6. Americans' Changing Lives 1986 and 1989, Survey 
Research Center. 

Figures: 

1. Demographic and Health Surveys of Morocco, Niger, 

and Colombia, MACRO International. 

2. Population Census of Indonesia, Rural Java strata 

(unpublished data). 

We note the following important, useful, EMPIRICAL 
results. 

1) First and foremost: The design effects deft(/j, - pj) for 
the differences are usually NO LESS than the deft (;?,) 
for the proportions themselves, and deft(p, — Pj) = 0.5 
[deft{Pi) -H deft{pj)] approximately in all cases. They 
vary together, along with the considerable variation for 
deft values between variables, and also with the lesser 
variation between pairs of categories for the same 
variables. Researchers who neglect deft commit the usual 
under-statement of sampling errors for statistics from 
clustered surveys. This observation is not only interesting 
but also a useful model for inference, because the other 
three sources of variation - across variables, categories 
within variables, and sampling errors of individual 
statistics - are all greater. 

2) We can find these results in all the 14 sets of survey data 
in the tables and graphs, and we can illustrate them now 

with Table 1. Note that defts vary from essentially 1.00 
for variable D (problems in country) to as high as 2.32 
in variable A (religion) which implies deft^ = 2.32^ = 
5.38. That our empirical rule (1) holds over the range 
is reassuring. Such variation between variables in the 
same sample are common and should force us to 
abandon the practice of using a common average for 
all defts of a sample (Verma and Le 1995; Kish 1995). 

Furthermore, we emphasize here the great variation in 
deft values for the five categories of the same variable 
from 1.21 to 2.32 (No. 3 for "fundamental" protes-
tants). It follows that deft(/?, - pj) is large only when 
/ ory is category 3 for this variable. These variations 
among the defts for categories of the same variable 
mean that they should be computed for all categories 
rather than for only a single "representative" category. 
These large possible variations between categories of 
the same variable are an important new finding in our 
results, that seems to have escaped notice before. 

3) There are also sampling errors in the computed values 
of the defts. Only statisticians who have computed 
many sampling errors and design effects seem to get the 
"feel" for how great these can be. They may be mostly 
responsible for the few cases where deft {Pi - Pj) 
fails to fall between deft(p,) and deft{pj) and either 
deft (A) < deft (A- - Pj) > deft{pj) or deft ( A ) > 
deft ( A - PJ) < deft{pj). Incidentally, these cases 
also show that our results are not mathematical conse­
quences, but empirically based. 

The empirical results presented in Figures I and 2 
further confirm the findings already presented in Tables 1, 
2, and 3. Here also we see that: 1) deft ( A - Pj) = 
[deft(A) + deft(A)]/2 approximately, along the 45° 
line; that 2) those equalities hold along a wide range of 
designs effects; and that 3) the variation between variables 
is large indeed. This large variation is particularly evident 
for rural Indonesia, with deft values over 4, hence deft^ 
values over 16. These large clustering effects are due to the 
large cluster sizes: with b - 133 and 137, the values of 
roh = 0.12 are enough for large defts. Note that these 
empirical results come both from very diverse populations 
and diverse variables; different from each other and from 
the data of Tables 1, 2, and 3. Figure 1 has data from 
3 countries (Morocco, Niger and Colombia) hence 6 pop­
ulations, because the urban and rural defts are quite 
different. Figure 2 shows results for males and females 
who are quite distinct populations for the occupational 
variables, though less so for the educational classes. 

The empirical data in the tables of studies 4, 5, and 6 
were awaited with doubt and anxiety. True that the pre­
ceding five sets resulted in similar conclusions, although 
they dealt with eleven different populations and scores and 
variables. But studies 1 to 5 all dealt with pairs of categories 
from polytomies, designs 1 and 2 of Type A. But now we 
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Figure 1. Comparison of deft (p, — pj) to the average of 
deft(/?,),deft(p^) for categories by current use of 
contraception*. Illustration of six populations from 
Demographic and Health Surveys. 

* 1 = not using any method of contraception 
2 = using only traditional method 
3 = using a modern 'reversible' method 
4 = sterilised. 

Figure 2. Comparison of deft (p, — Pj) to the average of 
deft(/7,),deft(/?y) for categories by occupadon and 
level of education by sex. Illustration from a population 
census. 

Table 1 
The Nadonal Election Study of 1986 of the I.S.R. of the Univershy of Michigan (n = 2,135) 

Categories 

' - J 

1-2 
1-3 
1-4 
1-5 
2-3 
2-4 
2-5 
3-4 
3-5 
4-5 
Mean 

1-2 
1-3 
1-4 
2-3 
2-4 
3-4 
Mean 

OveraU mean 

Pi 

1.21 
1.21 
1.21 
1.21 
1.42 
1.42 
1.42 
2.32 
2.32 
1.50 
I.S6 

C. 

1.32 
1.32 
1.32 
1.10 
1.10 
.86 

1.17 

1.23 

Pj 

Defts for 

Average 

A. Religion 

1.42 
2.32 
1.50 
1.18 
2.32 
1.50 
1.18 
1.50 
1.18 
1.18 
7.55 

1.32 
1.77 
1.36 
1.19 
1.87 
1.46 
1.30 
1.91 
1.75 
1.34 
1.54 

Support Reagan 

1.10 
.86 

1.48 
.86 

1.48 
1.48 
I.2I 

1.24 

1.21 
1.09 
1.40 
.98 

1.29 
1.17 
1.19 

1.23 

(Pi - Pj) 

1.10 
2.02 
1.18 
1.17 
1.93 
1.57 
1.27 
2.03 
2.04 
1.19 
7.55 

1.07 
1.26 
1.50 
.96 

1.38 
1.09 
7.27 

1.24 

Categories 

'• - J 

1-2 
1-3 
1-4 
2-3 
2-4 
3-4 
Mean 

1-2 
1-3 
1-4 
2-3 
2-4 
3-4 
Mean 

Pi 

B. 

1.27 
1.27 
1.27 
.97 
.97 

1.28 
7.77 

Defts for 

Pj Average 

Abortions Beliefs 

.97 
1.28 
1.31 
1.28 
1.31 
1.31 
1.24 

D. Problems 

1.07 
1.07 
1.07 
.94 
.94 

1.04 
1.02 

.94 
1.04 
.93 

1.04 
.93 
.93 
.97 

1.12 
1.28 
1.29 
1.12 
1.14 
1.30 
1.21 

in Country 

1.00 
1.05 
1.00 
.99 
.93 
.98 
.99 

iP - Pj) 

.97 
1.32 
1.36 
1.08 
1.16 
1.32 
7.20 

.98 
1.09 
1.12 
1.01 
.85 
.82 
.98 
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Table 2 
The National Education Longitudinal Study (NELS) of 1988, the National Opinion Research Center 

of the University of Chicago, (n = 24,355) 

Categories 

'• -J 

1-2 
1-3 
1-4 
1-5 
2-3 
2-4 
2-5 
3-4 
3-5 
4-5 
Mean 

1-2 
1-3 
2-3 
Mean 

1-2 

Overall mean 

P 
A. 

1.38 
1.38 
1.38 
1.38 
1.22 
1.22 
1.22 
1.14 
1.14 
1.19 
1.27 

2.48 
2.48 
2.83 
2.60 

Pj 

Defts for 

Average 

Education Status 
1.22 
1.14 
1.19 
1.42 
1.14 
1.19 
1.42 
1.19 
1.42 
1.42 
1.28 

1.30 
1.26 
1.29 
1.40 
1.18 
1.21 
1.32 
1.17 
1.28 
1.31 
7.27 

E. Religion 
2.83 2.65 
2.02 2.25 
2.02 2.42 
2.29 2.44 

I. Feel good 
1.42 1.28 

about self 
1.35 

(P - Pj) 

1.11 
1.16 
1.30 
1.54 
1.11 
1.24 
1.45 
1.18 
1.37 
1.20 
7.25 

2.74 
2.09 
2.59 
2.47 

1.37 

Categories 

'• - j 

1-2 
1-3 
2-3 
Mean 

1-2 
1-3 
2-3 
Mean 

1-2 
1-3 
2-3 
Mean 

1-2 
1-3 
2-3 
Mean 

P 
B. 

.99 

.99 
1.11 
1.03 

Pj 

Defts for 

Average 

Classes are boring 
1.11 
1.12 
1.12 
7.72 

1.05 
1.06 
1.12 
1.08 

C. Freedom to pursue interest 
1.28 1.10 1.19 
1.28 1.08 1.18 
1.10 1.08 1.09 
7.22 1.09 1.15 

D. School offers good jobs 
1.24 
1.24 
1.07 
1.18 

F 
1.61 
1.61 
1.76 
1.65 

1.48 

1.07 
1.11 
1.11 
7.70 

1.16 
1.18 
1.09 
1.14 

'. Dad education 
1.76 1.69 
1.68 1.65 
1.68 1.72 
7.77 

7.-̂ 7 

1.69 

1.45 

(P - Pj) 

1.04 
1.07 
1.13 
1.08 

1.21 
1.28 
.97 

7.75 

1.17 
1.24 
1.01 
1.14 

1.83 
1.65 
2.48 
1.99 

1.49 

Table 3 
The National Longitudinal of Labor Market Experience of Youth, Conducted by the National Opinion Research Center 

of the University of Chicago, (n = 5,857) 

Categories 

'• - J 

A. 
1-2 
1-3 
1-4 
2-3 
2-4 
3-4 
Mean 

1-2 
1-3 
2-3 
Mean 

1-2 
1-3 
2-3 
Mean 

1-2 
1-3 
2-3 
Mean 

Overall mean 

P 
Chance 
1.26 
1.26 
1.26 
1.20 
1.20 
1.18 
1.23 

Pj 

Defts for 

Average 

is important in my life 
1.20 
1.18 
1.16 
1.18 
1.16 
1.16 
7.77 

1.23 
1.22 
1.21 
1.19 
1.18 
1.17 
7.20 

C. Have control of my life 
1.13 
1.13 
1.06 
7.77 

1.06 
1.10 
1.10 
1.09 

1.10 
1.12 
1.08 
I.IO 

E. Plans hardly worlt out 
1.19 
1.19 
1.07 
7.75 

I. 
1.49 
1.49 
1.36 
7.-̂ 5 

7.20 

1.01 
1.13 
1.13 
1.11 

Mother' 
1.36 
1.52 
1.52 
1.47 

1.17 

1.13 
1.16 
1.10 
1.13 

s worl4 
1.43 
1.51 
1.44 
1.46 

1.18 

(P - Pj) 

1.06 
1.30 
1.28 
1.22 
1.25 
1.05 
7.7P 

1.09 
1.13 
1.07 
7.70 

1.12 
1.20 
1.08 
7.73 

1.41 
1.53 
1.44 
1.47 

1.19 

Categories 

' - j 

1-2 
1-3 
1-4 
2-3 
2-4 
3-4 
Mean 

1-2 
1-3 
2-3 
Mean 

1-2 
1-3 
2-3 
Mean 

Pi 

B. 
1.07 
1.07 
1.07 
1.22 
1.22 
1.12 
1.13 

D. I i 
1.17 
1.17 
1.13 
7.76 

1.19 
1.19 
1.12 
1.17 

Pj 

Defts for 

Average 

Something stops me 
1.22 
1.12 
1.09 
1.12 
1.09 
1.09 
7.72 

1.14 
1.10 
1.08 
1.17 
1.16 
1.11 
7.75 

am as worthy as others 
1.13 
1.07 
1.07 
7.0P 

1.15 
1.12 
1.10 
1.12 

F. I am satisfied 
1.12 
1.13 
1.13 
7.75 

1.16 
1.16 
1.13 
1.15 

(P - Pj) 

1.04 
1.14 
1.09 
1.28 
1.14 
1.07 
1.13 

1.16 
1.16 
1.08 
7.75 

1.16 
1.20 
1.09 
7.75 
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Table 4 
Nadonal Election Studies Panels 1990 and 1992, 

Survey Research Center, Institute for Social Research, 
Ann Arbor 

Categories 
before/after (90/92) 

Strongly approve Bush 
Approve Bush foreign 

policy 
Strongly disapprove Bush 

foreign policy 
Approve Bush economy 
Strongly approve Bush 

economy 
Approve Bush 
Strongly disapprove Bush 
Watch campaign on TV 

Mean 

P 

1.14 

.92 

1.23 
.97 

1.14 
1.00 
1.16 
.89 

1.06 

Pj 

.93 

1.05 

1.24 
.94 

1.04 
1.00 
1.10 
1.55 

7.77 

Defts for 

Average 

1.04 

.99 

1.24 
.96 

1.09 
1.00 
1.13 
1.22 

1.08 

(P - Pj) 

1.02 

1.00 

1.32 
.96 

1.10 
1.00 
1.12 
1.40 

I.II 

Table 5 
Panel Study of Income Dynamics, 1983 and 1987, 

Survey Research Center, Ann Arbor 

Categories* 
before/after (83/87) 

Live in South 
Age of head of family 
Family size 
Number of children 

in family 
Work hours of head 
Age of youngest child 

Mean 

P 

1.22 
1.28 
1.29 

1.23 
1.12 
.93 

1.18 

Pj 

1.23 
1.33 
1.43 

1.43 
.84 
.91 

7.20 

Defts for 

Average 

1.23 
1.31 
1.36 

1.33 
.98 
.92 

1.19 

(P - Pj) 

1.11 
1.37 
1.47 

1.49 
1.03 
.87 

7.22 

• All variables are categorized in two categories. 

sought data for Type B comparisons from panel surveys, 
so that we could investigate the conjectures for the test/ 
retest and before/after experimental designs. Mathemat­
ically these can be easily shown to resemble polytomies 
{i.e., tetratomies), but from that to the empirical values 
of design effects leads through a ' 'black box.'' Hence these 
empirical values are so much more valuable and remark­
able. Here we found considerable design effects for Chi 
square tests for analytical comparisons. 

5. PRESENT FINDINGS IN THE CONTEXT 
OF RELATED RESEARCH 

A great deal of empirical information is available from 
previous work by the authors and by others on design 
effects for the total sample, for subclasses, and for differ­
ences, for diverse variables and designs. It would be useful 
to put the present findings in the context of that work. 

It has been found that nature of the survey variables 
being estimated is a major (often the main) determinant 
of the magnitude of the design effects: vastly differing 
defts can occur for different types of variables even with 
the same samples or with similar designs. For this reason 
we have always recommended that defts be computed for 
many different variables, while it is generally less important 
to compute them for many different subclasses, especially 
for different categories of subclasses defined in terms of 
the same characteristic. 

The present findings illustrate that defts can differ 
greatly also among different categories of the same survey 
variable, estimated with the total sample as the common 
base. Therefore each individual category and each differ­
ence between pairs of categories, even when defined in 

Table 6 
Americans' Changing Lives, 1986 and 1989, Survey Research Center, Ann Arbor 

Categories 
before/after 

Once a week 
2-3 a month 
Mean 

Very satisfy 
Not satisfy 
Mean 

Often 
Rarely 
Never 
Mean 

Overall mean 

Defts for 

Pi Pj Average 

A. Get together with friends 
1.30 1.26 1.28 
.88 1.00 .94 

7.0P 7.75 7.77 

C. How Satisfy Are You 
1.28 1.21 1.25 
1.04 1.16 1.10 
1.16 1.19 1.18 

E. How often work in garden 
1.40 1.16 1.28 
.91 1.11 1.01 

1.66 1.17 1.42 
7.52 7.75 7.2-̂  

7.25 1.26 1.26 

iP - Pj) 

1.28 
1.02 
7.75 

1.33 
1.00 
1.17 

1.19 
1.18 
1.26 
1.21 

1.18 

Categories 
before/after 

Often 
Never 
Mean 

Very much 
Not much 
Mean 

Agree 
Disagree 
Mean 

Defts for 

Pi Pj Average 

B. How often do you exercise 
1.51 1.67 1.59 
1.62 1.97 1.80 
1.56 1.82 1.70 

D. How do you lilie your home 
1.24 .90 1.07 
1.33 .98 1.16 
1.29 .94 1.12 

F. I have a positive attitude 
1.10 1.33 1.22 
1.05 1.28 1.17 
1.08 1.31 1.20 

iP - Pj) 

1.26 
1.41 
1.34 

.91 
1.12 
1.02 

1.19 
1.21 
7.20 
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terms of the same survey variable, needs to be regarded, 
in a sense, as a separate variable in its own right for the 
purpose of computing and analyzing design effects. 

As to the relationship between defts for subclasses and 
subclass differences, previous research has mostly dealt 
with the following situation. With the total sample n parti­
tioned into subclasses / of size n, = /?,.«, deft(r,) values 
for statistics r, (such as a proportion m,//j,-, mean £>>,/«,, 
ratio E>',71 x,), estimated over subclass elements /J,- as the 
base, are related to deft (r) for the same variable estimated 
with the total sample as the base. Similarly, deft(r, - r,) 
for subclass differences are related to deft(r,),deft(r^) 
based on individual subclasses and to deft(r) based on the 
total sample. Numerous computations confirm these rela­
tionships to be in accord with our conjecture (2) of section 3: 

deft{r) > deft(r,); and deft(r,) > deft(/-, - r,) > 1. 

These effects of covariances on design effects of clus­
tered samples are essentially empirical (even sociological 
in a broad sense); and they must be so verified. 

Similarly with our newly discovered relationship for 
{Pi - Pj) for two categories, which are so different from 
the above. The relations deft(/7, - Pj) = [deft(A) + 
deft {pj) ] /2 are also empirical and approximate and they 
must be verified over and over again. But they seem to be 
widely applicable in our data, and clearly better than the 
other assumptions, such as deft(p,- - Pj) - 1 that have 
been often assumed until now. 
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Alternative Adjustments Where There Are Several Levels 
of Auxiliary Information 

F. DUPONT' 

ABSTRACT 

Regression estimation and its generalization, calibration estimation, introduced by Deville and Sarndal in 1993, 
serves to reduce a posteriori the variance of the estimators through the use of auxiliary information. In sample surveys, 
there is often useable supplementary information that is distributed according to a complex schema, especially where 
the sampling is realized in several phases. An adaptation of regression estimation was proposed along with its variants 
in the framework of two-phase sampling by Sarndal and Swensson in 1987. This article seeks to examine alternative 
estimation strategies according to two alternative configurations for auxiliary information. It will do so by linking 
the two possible approaches to the problem: use of a regression model and calibration estimation. 

KEY WORDS: Auxiliary information; Regression estimator; Calibration estimator; Two-phase sampling. 

1. INTRODUCTION 

Using the regression estimator studied by Fuller (1975), 
Cassel, Sarndal and Wretman (1976), Sarndal (1980), 
Gourieroux (1981), Isaki and Fuller (1982), and Wright 
(1983), it is possible to improve a posteriori - that is, after 
the sampling has been completed - the estimate of a total 
of a variable of interest on the basis of auxiliary variables 
JCi, .. .,XkfoT which additional information is available. 
The variance in relation to the Horwitz-Thompson esti­
mator is reduced by using the regression estimator, provided 
that one knows the true value of the target population 
totals of the auxiliary variables, which will constitute the 
additional information referred to as auxiliary informa­
tion. Deville and Sarndal in 1992 proposed a class of esti­
mators derived from a reweighting approach that addresses 
the same issue of variance reduction: calibration esti­
mators. By calibrating sampling weights it is possible to 
incorporate a posteriori auxiliary information of the type 
totals A'l, .. .,Xii0f k variablesXi, .. .,Xicinto the esti­
mate made on the basis of the new weightings and thus to 
improve the estimate. This approach generalizes regression 
estimation, which is one of the elements of the class. 

However, in surveys based on sampling, there is often 
usable additional information that is distributed according 
to a more complex schema than what has been described 
above, especially when the sampling is carried out in 
several phases. This article looks at different strategies for 
using this complex auxiliary information in the framework 
of two-phase sampling, with the possibility of generalizing 
to more than two phases. 

When the sampling plan entails two phases, the aux­
iliary information consists of information known for the 
entire population, but also of information known for the 

sample resulting from the first sampling phase. These two 
bodies of information may concern different variables. 

In their 1987 article, Sarndal and Swensson propose an 
estimator that uses all the auxiliary information available 
for a two-phase sampling, with different auxiliary infor­
mation for the total population and the population obtained 
from the first-phase sampling. This is an estimator adapting 
the principle of the regression estimator when the infor­
mation known for the individuals obtained from the first-
phase sampling is considered to be substitutable for the 
aggregated information and to be of better quality than 
the information available for the target population as a 
whole, for purposes of estimating the variable of interest. 
However, in practice it often happens that these two bodies 
of information are complementary rather than 
substitutable. We have thus sought in this study to develop 
the regression estimate in a context in which the bodies of 
auxiliary information are complementary. 

Furthermore, insofar as calibration estimation gener­
alizes regression estimation when the auxiliary information 
is at only one level, we have sought to adapt calibration 
estimation to this context. We review the various cali­
bration strategies in order to propose the most suitable 
ones, seeking to relate them to generalizations of regression 
estimation that are possible in this context. 

We show (Section 2) that the joint use of two different 
bodies of auxiliary information leads to two regression 
models and three associated decompositions of the variable 
of interest. The regression model assisted approach (RMAA) 
thus enables us to derive 3 alternative estimators. 

In turn, the calibration approach (CA) (Section 3) 
enables us to derive 4 estimators. Each of these estimators 
may be related to (associated with) the three estimators 
derived from the regression model approach. 

F. Dupont, Unite Methodes Statistiques, Institut National de la Statistique et des Etudes Economiques, (INSEE), 18 Blvd. Adolphe Pinard. 
75675 Paris Cedex. 
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Thus (Section 4), the two approaches may be linked 
together and result in three classes of estimators, each 
associated with a decomposition of the variable of interest. 
The estimators of a given class have the same asymptotic 
variance. 

When strategies are evaluated on the basis of the 
sampling plan alone, our choice is directed toward the 
third class of estimators, which is superior to the other two 
from the standpoint of variance. 

When strategies are evaluated on the basis of a modelling 
of the variable of interest, the preferable class of esti­
mators is the one associated with the modelling adopted. 

In a situation in which we wish to adjust a survey, and 
in which we wish simultaneously to correct the biases that 
would result from the use of gross weightings and to 
reduce the variance, the findings must be adapted: the 
changes introduced in the weightings to correct the biases 
are greater than the corrections for variance reduction. 
Hence the variables will be incorporated into the calibration 
once it appears that they are affecting the probability of 
selection and thus participating in the creation of the bias. 

When the auxiliary variables are qualitative, the choice 
between a priori and a posteriori use of the auxihary infor­
mation - that is, between its use at the sampling stage and 
at the adjustment stage - still rests on the distinction 
between the two modellings of the variable of interest. 

These findings may be extended to samplings of more 
than two phases. 

2. NOTATIONS 

The framework is that of a two-phase sampling. Assume 
that auxiliary information is available at two different 
levels: the target population and the population obtained 
from the first-phase sampling. The situation may be 
diagrammed as follows: 

Size 

N 

Vector of available auxiliary 
variables 

xi 

Xl X2 

Xl X2 

where U represents the target population for which the 
values of the vector of variable x^ are known or, failing 
that, the total Xi = YiUuXn. Sa represents an interme­
diate level of sampling for which the values of the vectors 
of ^1 variables x^ and k2 variables X2 are known for all 
individuals. We denote as 7r,a the probability of selection 

from the sample associated with the first phase of the 
sampling, s represents the final sample for which are 
available the values of the variable y, the total of which 
we are trying to estimate, as well as the values of the 
vectors of the auxiliary variables Xi and X2. This is denoted 
as x, = P{i I Sa). 

We hope to make optimum use of all this auxiliary 
information in order to improve the estimates that will be 
made on the basis of the data gathered from the sample 
that results from the second sampling phase 5. 

An obvious first idea is to try to generalize the regression 
estimator in this context. 

3. REGRESSION ESTIMATION APPROACH 

3.1 The Information Contained in Xi is Considered to 
be Substitutable for the Information Contained in 
Xl for Estimating y and to be of Lesser Quality 

In their work, Sarndal, Swensson and Wretman propose 
the following regression estimator for estimating the total 
of ^: 

(i:^irti-E^) 

where the second term is the correction for poor estimation 
on Sa and the third is the correction for poor estimation 
on 5. 

The estimation can also be written: 

.̂ = D ^̂  *. + D ^̂ ^̂ -̂ ^̂ ^̂ ^̂  + 
iiU iis„ 

{yi - xabi) 

TtlTTa 

where the second term is the correction for poor approx­
imation of;', by Xi'i hi and the third is the correction for 
poor approximation of j , by x/2 ^2; 

w- ^.=(E^)-(i:^ 
lis, 

^ lis ' " ' / \ ies ' <"/ 
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The underlying idea is that we have two concurrent 
models for y, namely: 

(1) yi = xlibi -\- «,-, with £•(«,,) = 0 and K(M,-,) = af 

and 

(2) yi = xl2b2 + «,2 with £'(«,2) = 0 and K(M,-2) = a | 

the second of which we believe is a priori better for pre­
dicting the value of;',. Thus in this model-based perspec­
tive, Xx functions as a proxy of A:2. A situation of this type 
corresponds, for example, to a case in which X2 represents 
the update - that is, the update to the date of the survey -
of the variable retrieved from the jc, sampling frame. In 
other words, if X2 were available at the level of the entire 
population, the estimator used would be 

iiU lis 

{yi - Xi'2 62) 

Let us now imagine the case of a two-phase sampling 
survey of households. Assume that the sampling frame is 
made up of dwellings for which we have information 
consisting of dwelling size, denoted as AT,, which is therefore 
known for all individuals in the target population. If all 
the individuals obtained from the first sampling phase are 
questioned on the composition of the household, denoted 
as X2, in particular on the number of children in the 
household, the two bodies of information appear to be 
complementary rather than substitutable for purposes of 
studying the household budget. This is further reinforced 
if instead of household composition, the information 
collected is the age or occupation of the head of household. 

In a model-based perspective, the alternative situation, 
in which the information contained in x, is considered 
complementary to that contained in X2 for estimating ;', 
thus naturally suggests itself. 

3.2 The Information Contained in jc, is Considered 
to be Complementary to the Information 
Contained in Xi for Estimating y 

3.2.1 Decomposition;', = jc,',a, -I- XjiOi -I- «, 

The underlying model is then: 

;', = A:/,a, -I- jr;^a2 -I- w, with £•(«,) = 0 and K(M,) = af. 

The estimator to be used is then: 

2̂ = 1; Xi\d, + 2 : ^ ^ + x; 
iiU 

{yi-Xi\di -x'i2d2) 

•Kj-Ka 

V-1 Xi\ Xi\ „ Xi\Xi2 

Tn/TT; T/T/TT, 

Xi2Xi\ r - , Xi2Xl2 

Tfl/TT; 
lis 

The variable here is broken down into three components 
;', = j:/|fl, -I- x,2a2 + «/• The total of;' is thus broken 
down into three components, each of which is estimated 
at the highest level, that is, with the greatest precision 
possible: 

- U for x/i fl], 

- Sa for Xj2a2, and 
- s for w,-. 

3.2.2 Decomposition;', = jr/,c, -\- M^^{Xi2)'c2 -\- M, 

If we wish to make maximum use of the information 
contained in Xx available on U, it is natural to introduce 
another formulation of the same model ;», = AT/J UX -f 
Xi2a2 + w, which isolates everything which in y can be 
taken into account through JC, . It is written as follows: 

yi = x-xCx + M^^(Xi2)'c2 -I- «, with 

E{Ui) = 0 and F(M,) = a}, 

where M^^ represents the orthogonal projection, in the 
metric associated with the weights 1 /TTO,, on the orthogonal 
of the vector space generated in Sa (similar to 9?") by the 
group of variables X\. 

^xx{Xi2) is defined by: 

M.,(X,2) =X!2-(Y, ^ ( E ^ " ' ^M. 

The associated natural estimator is then: 

iiU iiSa 

with: 

{yj - xjxcx - M,,Xi2£2) 

where c = (^j) is the regression coefficient j = x'c\ + 
{MxxX2)'c2 + " estimated over 5 with weights I/TTO/IT, 

(which differs slightly from (^ ' ) ) . 

3.3 The Three Estimators Derived from the Model-
based Approach 

The modelling approach has enabled us to construct 
3 estimators that can be rewritten synthetically by introducing 
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new notations. Throughout what follows, for a vector of 
a given variable z, the following notation will be used: 

^=1; 

"T Tai 

With these notations, the three estimators are rewritten 
as follows: 

f, = \X{bx\ -t- \X{b2 -X'xbx\ + \Y -X{b2\ 

associated with the models: 

(1) J, = x'ixbx -I- «,i 

(2) ;',• = xl2b2 + W,2 
and 

Y2 = \X'xax\ -I- \Xid2\ + \Y -X'xdx - X{a2\ 

associated with the model 

yi = X-xOx -I- X'i2a2 + W; 

fj = {X{cx] + [M^,^2'C2] + [Y - X{cx - M,^Xic2] 

associated with the model 

;', = x(xCx + M^^{Xi2)'C2 + w,. 

In the same manner as the regression estimator is gener­
alized by calibration estimators, the problem of the use of 
auxiliary information at several levels may be dealt with 
through calibration theory, be attempting to construct 
calibration strategies adapted to the auxiliary information 
configuration examined in this article. 

4. CALIBRATION APPROACH 

4.1 Different Strategies Possible 

When we try to generalize the calibration estimate 
proposed in a context in which auxiliary information is 
present at a single level - that of the entire population -
several strategies naturally suggest themselves: 

Strategy 1 

a) calibrate the structure of the Ist-phase sample Sa on 
that of the total population U in terms of variable Xx, 
then, 

b) calibrate the structure of the 2nd-phase sample s on 
that of the 1st phase sample Sa in terms of variable X2. 

Note: For the latter operation, it is better to take account 
of the preceding calibration in terms of Xi in order 
to determine the reference value in the calibration 
in terms of A:2 on 5^. If the preceding calibration is 
not taken into account, only the estimates made at 
the level of Sa will benefit from the improvement 
made by stage a. A good way to convince oneself 
of this is to consider the specific extreme case where 

Xx = X2. 

This strategy corresponds to the following calibration 
equations: 

Stage a: 

^^MM;,,., = ^ ;,,.,= X, 
iis„ iiV 

which determines ^x, then 

Stage b: 

iis "' ' liSa 

which determines ^2, 

where Fdesignates, as throughout this article, the function 
which is used in the calibration and which may be linear, 
exponential, truncated linear or logit (see Deville, Sarndal 
1993). 

Strategy 2 

Calibrate the structure of the 2nd-phase sample 5 simul­
taneously in terms of variables Xx and X2, that is, 

- on the structure of the total population Uas regards Xx 
- on the structure of Sa for X2. 

This second strategy leads us to the following calibration 
equations: 

^ F{Xixax^+JCi2a2) ^^^ ^ ^ ^_ ^ ^_^ ^^^ 

T„;7r,- iiU 

^ F{x-xax + X;2a2) _ v-. -̂ z: 
> ^.2 _ 2^ — = X2, 

iis 

which determines ai and a2-

The first strategy offers the advantage of correcting the 
1st phase weightings, that is, of incorporating the auxiliary 
information at the highest level. The second strategy, for 
its part, makes it possible to correct the weightings that 
will actually be used in the estimation, and in particular 
to obtain a perfect estimate of the total of Xx. 
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A third strategy may be proposed; it combines the 
advantages of the above two strategies and would there­
fore seem preferable to them: 

Strategy 3 

a) calibrate the structure of the 1st phase sample Sa on that 
of the total population Uin terms of variable Xx, then 

b) calibrate the structure of the 2nd phase sample s simul­
taneously in terms of variables Xx and X2, that is, 

- on the structure of the total population U as 
regards Xi 

- on the structure of Sa modified by taking account of 
the preceding calibration for X2. 

This strategy leads to the following calibration equations: 

Stage a: 

iiSa ^''' iiU 

which determines |8|, then 

Stage b: 

V-. F{x[ai + xl2y2) \^ V A V Xix = > Xix = Xl, and 
^ • ^ i r .ir. " ^ 7r„,Tr; 

iiU 

^ F{x,'xyi +xi2y2) _ v^ F{xix^x) v>, 
TJ Xi2 - Tj Xi2 - A.2 , 
lis "' ' iiSa "' 

which determines 71 and 72-

Lastly, a fourth strategy may be proposed; it may be 
seen as a variant of the preceding strategy: 

Strategy 4 

a) calibrate the structure of the 1st phase sample Sa on that 
of the total population U in terms of variable X|, then 

b) calibrate the structure of the 2nd phase sample s simul­
taneously in terms of variables Xx and X2, on the basis 
of the weights modified by the preceding calibration, 
that is, 

- on the structure of the total population Uas regards 

- on the structure of ^̂  modified taking account of the 
preceding calibration for X2. 

which determines fix, then 

Stage b: 

^ F{Xi'ifii)F{Xi'idi -l-Xi'282) v^ V ^ 
V Xii = > Xii = Xl, and 
* ^ nr .nr. ^^ 

lis IiU 

^ F{Xiifii)F{Xi'i8i -I- Xi282) 
2^ Xi2 -

2 ^ w ^ , , , = XU 
iiSa 

which determines 6| and 62-

When the calibration function is exponential, it is clear 
that strategies 3 and 4 coincide. 

In this calibration-based approach, the viewpoint 
adopted is that of reduction of variance based on the 
characteristics of the sampling plan, without consideration 
of the model. Two questions then naturally arise: 

- Can each of these four strategies be linked to a model-
based approach? 

- Can these four strategies be compared in terms of 
variance? 

We will first examine the link between the three strategies 
defined by a calibration approach and the strategies 
defined by a model-based or regression approach, after 
which we will focus on calculating the variances of the 
estimators associated with each of the strategies. 

4.2 Linic Between the Different Possible Strategies 
and the Regression Approach 

WhenFis linear, each of the estimators associated with 
the four strategies may be rewritten simply. 

Notations 

Throughout the rest of this article we will use the 
following notations for a vector of any variable z: 

^, ^ F{x'ixfii) - ^ F{x;ifii) 

ITmT; 
iiSa 

We will also omit the / indexes in order to lighten the 
presentation when there is no ambiguity. 

This strategy leads to the following calibration equations: 

Stage a: 

iis„ iiU 

Strategy 1 

The weightings are of the form 

^f = E^^^hhlF(x!2fi2), 
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the associated estimator Y4 may be rewritten by translating 
the effect of the second calibration on X2: 

Y,^Y*-\- [X^ -XWB2 with 

then by translating the effect of the first calibration on Xi: 

Y^ = f + [Xl - Xl]' Bi + \X\ - X*2\' B2, 

or: 

^4 - [X{Bi] + [XrB2 -X{Bi] -H [Y-Xi'Bi], 

Now, Yi is rewritten: 

Yi= [X{bi] + [x^bi-xibi] + [y- i '2* '^2] . 

We thus obtain an estimator similar to the estimator 
f 1 that is obtained from the model-based approach in 
cases where the information contained in Xi is considered 
to be substitutable for the information contained in X2 for 
estimating ;' and also to be of lesser quality. The differ­
ences between Kj and Y4 concern the following points: 

1. ^2 is estimated by incorporating the changes from the 
calibration on Xi, unlike 62-

2. The estimate A=(Efr(Et^)-.. 
is made in part on Sg, unlike bi. 

3. Lastly, we use the adjusted weights F{Xifii)/TraTr in 
the sums in X2 on s and on Sg in Y4 in unlike what was 
done for Yi: the estimation on X2 is improved by the 
knowledge of x,. 

Thus the underlying modelling here is indeed: (1) j , -
x-ibi -I- M,i and (2) J, = Xi2b2 + «/2, the second of which 
we think is a priori better for predicting the value of j , . 

Strategy 2 

We obtain weights 

w, 
5 _ F{xliOii + XI2OL2) 

T^niTti 

the associated estimator is rewritten as follows: 

fj - [X{ ai] + {Xia2\ + [f - k{ a, - Xi 02]. 

We thus obtain exactly the estimator Y2 proposed in 
the regression model approach in the case in which the 
information contained in Xi is considered complementary 
to the information contained in X2 for estimating j . The 
underlying model here is indeed J, = X/iOi -I- Xi2a2 + Ui. 

Strategy 3 

We obtain weights 

wf = F(x,'i7i + ^/272) 

T„/7r; 

the associated estimator is rewritten as: 

Ye=Y+[Xi- Xl]' fl, -H [X^ - X2]' 02 

thus: 

Ye= [X{ai] -t- [;e2*'a2] + &-X{ai -ha2\-

Now, 

*a a 0 

From this it can be deduced by replacing in Y^ that: 

Y^= [X{Ci] + [M^.Xia2] -I- [ f - i . ' a , -Xia2], 

with 

A-..(E^)-'(E^-?)^=-
We thus obtain an estimator that is close to the esti­

mator Y^ proposed in the regression model approach in 
the case in which the information contained in Xi is con­
sidered complementary to the information contained in 
X2 for estimating y. The underlying model here is j , = 
x,'iCi -f Mx^{Xi2)'c2 + M/. The differences between Y^ 
and fg concern the estimated coefficients: (f^') differs 
slightly from (|j) and [Y-Xloi -Xid2] differs slightly 
from [Y-X{ci - M^,XiC2]. On the other hand, these 
quantities are asymptotically equivalent. 

Strategy 4 

We obtain weights 

7 F{Xi'i0i)F{xli6i -^ Xi'282) 
wl = "ItnlT^i 
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the associated estimator is rewritten as follows: 

f7 = ^ + [^1 - I f ] 'af + [X^ - X^] 'al 

By changing the initial weights in rf, = F(jf,, /S,) /7ra,ir, 
we obtain in the same manner: 

Y^ = [x(at] + [xrm + [Y* -xfdt -h'm-

By replacing X2 by its expression found above, we 
obtain: 

Y,= [A-i'Cf] -I- [M^^Xiai] + [h -X{*a*i -M'S^], 

with 

Finally, fy and Y^ are asymptotically equivalent. 

^Say that w = y - x{at - xia^. Then Y-,^= fg + 
[W* - W]. Now, asymptotically [W* - W] is an 
infinitely small negligible before Y^: 

[*"-*'1 = ( E , ^ ) ( E ' - ^ ) " ' [ - ^ . - * ) . 

and 

( E - ) tends toward r .^r 
zero and ' -fe)-• X x ^ 

Ultimately we obtain 7 7 = Y^. 

In conclusion, when the calibration function is expo­
nential, the estimator Y^ coincides exactly with the pre­
ceding. When Fis linear, Y-, is close to the preceding and 
thus still corresponds to the regression model approach in 
the case in which the information contained in Xi is con­
sidered complementary to the information contained 
in Ar2 for estimating y and in which the decomposition 
yi = x-iCi -I- M^,(A:,-2) 'C2 -I- Uj is used. 

Conclusion: The Three Classes of Estimators 

We have just seen that the four strategies derived from 
a calibration approach could be associated with regression 
modelling. We thus obtain three classes of estimators: 

Y4 = Yi associated with the models 

and 

(1) yi = Xi'ibi -\- Uii, 

(2) yi = Xi'2b2 + «,2 

^5 = Y2 associated with the model 

yi = x/i Ul + xf2a2 -H Ui 

Y(, = Y^ and Y-^ = Y^ associated with the model 

yi = Xi'iCi -I- M^,(X,-2)'C2 -h w,. 

The approximation = , which indicates that the esti­
mators are attached to the same regression model, takes 
on its full meaning when we are interested in calculating 
the variance of these different estimators, since the esti­
mators that are attached to the same regression model have 
the same asymptotic variance. 

5. ESTIMATION OF VARIANCES 

Let us consider the variances of the different estimators 
f ] , . . . , Y-j defined above. AY designates the asymptotic 
variance of an estimator that is obtained when Â , n and 
m tend toward infinity in a constant relationship. 

5.1 Estimator F] and F4: model 
yi = Xi\bt -I- «,-, and (2);;,- = jc/262 + «/2. 

• Estimator F, 

The variance of this estimator and its estimate are given 
in the work of Sarndal, Swensson and Wretman (1991). 
The variance breaks down into two terms that measure the 
amounts of variance due respectively to the first and the 
second phase of the sampling. 

AV( ' . )=(S/«";^)^(^' .E4,-^). 
^ijiU ' J ' ^ jj^g i^iT'ainjTfaj/ 

with: A?- = x,y - 7r,-7ry, 

"1/ = yi - xfibi, 

"2, = yi - Xi'2b2, 

^ iiU ' ^ iiU ' 

^ iiV ^ ^ iiV ' 

Thus the variance estimator also breaks down into two 
terms that estimate the amounts of variance relating to 
each of the sampling phases. We find that by construction 
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of F], Xl serves to reduce the variance brought about by 
the first phase and X2 serves to reduce the variance brought 
about by the second phase. 

V{Yi) = 

( y y ^'J " " " ' A +( y ^ "2,"2y \ ^ 
\jf, jts '^U'^"'! '^''"J / ^ ifis '^"'J '^i'^oi'^J'^oJ/ 

1st phase 2nd phase 

w i t h : Ml, = yi - x-i 6 , , 

"2/ = yi - Xi2b2-

Such a decomposition is based on the expression 
V{Yi) = V{E[Yi I s j ) -I- E{V{Yi \ 5 j ) , which will 
apply for all the other estimators. 

• Estimator F4 

The terms of the development to the first order in 
l/Vm of F, and Ft coincide exactly. We can therefore give 
a more precise meaning to the expression F4 = Fj . We 
deduce from this that AV( F,) = AV( F4). Thus: 

V{Y^) = 

( y y - ^ " " " ' A ^{ y ^ "2/M2y \ ^ 

^Uis jts '^'J'^<''J '^I'^J ^ ^ Uis '^"'•J '^>'^<'i'^J'^<'J/ 

with: " 1 / = yi - x'iiBi, 

"2, = yi - Xi2B2. 

5.2 Estimators F2 = F5: model 
yt = xlxOi -I- j:/2a2 + Ui 

It is easy to show (see Dupont 1994) that: 

AV(F2)=AV(F5) = 

with: 

- f e ) 

V, = yi - xiioi, 

Ui = yi - Xi'i Ul - x'i2a2 

E ^nxii E Xiix'iX / E ^iiyi 
iiU iiU I I iiU 

E ^i-^^i^ E '̂2 '̂2 / \ E •̂ '2-̂ ' 

From this we deduce that: 

V{Y2) = V{Yi) = 

/ ^ _A}j_ ViVj\ ^ / y , 4 i "/"y \ ^ 

^uts '^'J'^'^'J '^''^J^ ^uis •^aiJ-^i-^ai-^J-^aj) 

with: v/ = yi - Xi'iUi, 

iii = yi - -^/i«i - ^/2«2-

.iiU IiU .iiU 

In this formulation we find that by construction of 
F2 - F5, Xl reduces the variance brought about by the 
first phase and Xi and X2 are used simultaneously to reduce 
the variance brought about by the second phase. 

5.3 Estimators Fj, F( and F7: model 
yi = Xi\Ci -I- Af,,(j:,-2)'C2 + Ui 

We show that AV(F6) = AV(F7) = AV( F3). Thus, 

AV(F3)=AV(F6) = AV(F7) s 

" 1 / = yi - Xi'iCi = yi - x-ibi, 

Ui = yi - Xj'iCi - Mx^Xi2C2 = ; ' , - XliUi - X;^fl2-

From this we deduce the three variance estimators, 
which differ owing to different estimated coefficients: 

V{Y^) = 

( y _ ^ "•/"•A ^( y ^l "-"J \ , 
\ [jis '^U'^aij T^i-^J ) Kff^, •^aij-^i-^aiT'jT^aj)' 

" 1 / = yi - X'iiCi, 

Ui = yi - XfiCi - M^^Xi2C2, 

V{Ye) = 

/ y A|/ UuQijX ^ / y 4 . __MJ_\ ^ 
\ifis '^'j'^o'j '^''^J ^ \ijis '^aiJ-^i'^ai'^jT^aj/' 

" 1 / = yi - X'ii C , , 

U, = ; ' , - X-iOi - X,'2fl2, 

file:///ifis
file:///ijis
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K(F7) = 

( y ^u Mv\ +( y M__M^_\ 
\ ijis '^'J'^aij T^iT^j ) \ ij^^ TTaiJ •^iT^ai'^j-^ajJ' 

dii = yi - x'iiC*i, 

"/ = yi - xfiSt - jr,'2a|, 

< .̂-r.(Ef)-(E'f)̂ .-. 
We find that by construction of F3, Fg and F7, AT, is 

used to achieve maximum reduction of the variance 
brought about by the first phase and X2 serves to reduce 
the variance brought about by the second phase. 

6. CHOICE OF ESTIMATORS WHERE THERE 
IS SELECTION BIAS 

In practice, when a survey is adjusted, it is not unusual 
to want not only to improve the estimation, but also and 
more especially to correct the biases introduced by un­
controlled selections of individuals, such as nonresponse. 

We shall examine the case of a two-phase sampling 
in which the second phase is equivalent to total non-
response. The weights x, of the second-phase sampling 
are thus unknown. The calibration of 5 will enable us to 
estimate these probabilities, while reducing the variance 
{cf Deville and Dupont 1993). However, asymptotically, 
the corrections of bias to be made to the weights are greater 
than the changes to be made in order to improve the 
estimators. It is therefore the implicit response model that 
will guide the choice between the different estimators: 

The implicit response model for the first class of estimators 
isp, = l/F{Xi'2B2). 

The implicit response model for the second and third 
classes of estimators isp, = l/F{Xj'2A2 -\- xfiAi). 

• Whatever the response model, an evaluation of the three 
classes of estimators on the basis of the sampling plan 
alone still indicates that the third is preferable, since it 
is appropriate for all the response models. 

• If the strategies are evaluated on the basis of regression 
modelling, we will use the first class of estimators only 
if the response mechanism is well explained by X2, that is. 
Pi = 1 /F{Xi'2B2). Now, we have seen that the modelling 
associated with the first class of estimators takes on its 
meaning when the variables Xi and X2 are highly corre­
lated. It is therefore fairly probable that in this context, 
the variable X2 will be sufficient to explain the response 
mechanism. Should this not be the case, it will be neces­
sary to turn to the third class of estimators. 

The comparison between the three strategies may thus 
be adapted in a context in which we wish to correct the 
biases introduced by uncontrolled selections. The conclu­
sions remain largely the same. 

According to the same principle, it is of course possible 
to make comparisons between alternative adjustment 
strategies in the context of samplings that entail more than 
two phases and one or more uncontrolled selections. 

7. A PRIORI AND A POSTERIORI USE OF 
AUXILIARY INFORMATION 

The calibration estimator enables us to improve the 
estimate a posteriori, by reducing the variance and cor­
recting the bias, as noted above. However, we may want 
to incorporate the auxiliary information a priori, at the 
sampling stage rather than a posteriori at the estimation 
stage. We then encounter, in a more complex context, the 
classical opposition between stratification and 
poststratification, well known in the case of single-phase 
sampling, when all the auxiliary variables are qualitative. 

It is possible to transpose the terms of the choice 
between using the information a priori and a posteriori, 
in the sampling and auxiliary information configuration 
studied, when the auxiliary variables are qualitative. When 
the auxiliary variables are qualitative, a calibration corre­
sponds exactly to poststratification. 

We saw earlier that in order to determine the proper 
adjustment procedure, it was necessary to distinguish two 
possible modellings of the variable of interest, depending 
on whether the information in Xi and the information in 
X2 were considered substitutable or complementary. Each 
of these two modellings then led to one or more different 
adjustment procedures. Similarly, these two modellings 
arise when it is a matter of identifying the best sampling 
strategy for incorporating the auxiliary information: 

• When the information in Xi and the information in X2 
are substitutable, the modelling of the variable of interest 
is as follows: 

(I);',- = Xiibi -I- M,, and 

(2) ;', = Xi2b2 + M,2 where the second model is better 
for predicting the value of j , . 

We have seen that the use of the auxiliary information 
a posteriori leads to calibration strategy No. 1, that is, 
to the first class of estimators. If we wish to take account 
of the auxiliary information at the sampling stage, it is 
natural to propose a sampling stratified on Xi for the 
first phase and a sampling stratified on X2 for the 
second phase. 

However, the parallel between the adjustment procedure 
and the sampling procedure is not complete: in a cali­
bration, only the marginal information in Xi can be used. 



134 Dupont: Alternative Adjustments Where There Are Several Levels of Auxiliary Information 

This results in incomplete poststratification (Sarndal and 
Deville 1992). On the other hand, in the sampling proce­
dure proposed as an a priori alternative, we are obliged 
to use all the cross-tabulations of the Xi variables. The 
a priori equivalent of a calibration would accordingly 
be a sampling balanced on the margins of the vector of 
variables x, . 

• When the information contained in jc, and the informa­
tion contained in X2 are complementary, the modelling 
of the variable of interest is;'is;', = Xnbi -I- x,262 + "c 
We have seen that in this case the use of a posteriori 
auxiliary information led to calibration strategies 2, 3 
and 4 in estimator classes 2 and 3. If we wish to take 
account of the auxiliary information at the sampling 
stage, it is natural to propose a sampling stratified on 
X1 for the first phase and a sampling stratified on Xi 
and X2 for the second phase. 

As before, there is no exact parallel between the a priori 
and a posteriori procedures, since the use of the infor­
mation a priori mobilizes all the cross-tabulations 
between the variables Xi and X2. 

Thus it is possible to make a choice between incor­
porating the information either a priori or a posteriori, 
and indeed to optimize the sampling plan, when the aux­
iliary variables are qualitative. The terms of the choice are 
the same as in a single-phase sampling with a single level 
of information. An additional consideration is the multi­
plicity of strata created by the cross-tabulations of Xi and 
X2 in the case in which the modelling used is ;', = Xn bi -V 
Xj2b2 + M,, which reinforces the advantages of using the 
information a posteriori. 

When the auxiliary variables are quantitative, the choice 
depends on their conversion into qualitative variables, it 
not being possible to generalize correctly except by using 
the parallel between calibration and balanced sampling 
{cf Deville 1992). 

8. CONCLUSION 

three classes of estimators. Several conceivable calibration 
strategies were eliminated at the outset as irrelevant. 

We have shown that the estimators of a given class, that 
is, the estimators attached to a given model, are asymp­
totically equivalent; we gave the form of the variances 
derived in the case of a linear calibration function, but with 
asymptotic equivalences, these results remain valid for any 
calibration function. 

For purposes of evaluating strategies, the form of the 
variances indicates, as intuition would suggest, that one 
of the classes of estimators (estimators 3, 6 and 7 (calibra­
tion strategies 3 and 4)) is preferable to the other from the 
standpoint of variance when the evaluation is based on the 
sampling plan alone. When it is based on a modelling of 
the variable of interest, it suggests that the preferable class 
of estimators is the one associated with the modelling 
adopted. 

In a situation in which the goal is to adjust a survey and 
to simultaneously correct the biases that would arise from 
the use of gross weightings and reduce the variance, the 
conclusions must be adapted. The changes introduced in 
the weighting to correct the biases are greater than the 
corrections to reduce variance. Hence the variables will be 
incorporated into the calibration once it appears that they 
affect the probability of selection and thus participate in 
the creation of bias. 

When the auxiliary variables are qualitative, the choice 
between a priori and a posteriori use of auxiliary infor­
mation, that is, between using it at the sampling stage or at 
the adjustment stage, still rests on the distinction between 
the two modellings of the variable of interest. 

These results may easily be generalized to the case of 
sampling involving more than two phases. 
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In a two-phase sampling, when two different sets of 
information are available for the total population on the 
one hand and the sample resulting from the first phase on 
the other hand, several strategies are possible when one 
wishes to use the auxiliary information to improve the 
estimation of totals. 

Two different natural approaches have been used to 
derive estimators: a regression model assisted approach, 
which seeks to adapt the idea of the regression estimator; 
and a calibration approach, which attempts to adapt the 
idea of calibration. The estimators obtained by the two 
approaches may be linked together. We generated three 
alternative underlying modellings to which the various 
estimators obtained may be attached. Thus we obtained 

REFERENCES 

CASSEL, CM., SARNDAL, C.-E., and WRETMAN, J.H. 
(1976). Some results on generalized difference estimation 
and generalized regression estimation for finite population. 
Biometrica, 63, 615-620. 

DEVILLE, J.-C. (1992). Constrained samples, conditional 
inference, weighting: three aspects of the utilisation of 
auxiliary information. Proceedings of the Workshop on Uses 
of Auxiliary Information in Surveys, October 1992, Orebro. 

DEVILLE, J.-C, and SARNDAL, C.-E. (1992). Calibration 
estimators and generalized raking techniques in survey 
sampling. Journal of the American Statistical Association, 
87, 376-382. 



Survey Methodology, December 1995 1 3 5 

DEVILLE, J . -C , SARNDAL, C.-E., and SAUTORY, O. 
(1993). Generalized raking procedures in survey sampling. 
Journal of the American Statistical Association, 88, 
1013-1020. 

DEVILLE, J.-C, and DUPONT, F. (1993). Calageet redressement 
de la non-r6ponse totale. Journees de Methodologie. 

DUPONT, F. (1994). Redressements alternatifs en presence de 
plusieurs niveaux d'information auxiliaire. Working paper 
of Direction des Statistiques Demographiques et Sociales, 
F9409. 

FULLER, W.A. (1975). Regression analysis for sample survey. 
Sankhya C, 37, 117-132. 

GOURIEROUX, C (1981). Theorie des sondages. Edition 
Economica Paris. 

ISAKI, C T . , and FULLER, W.A. (1982). Survey design under 
the regression superpopulation model. Journal of the American 
Statistical Association, 11, 89-96. 

SARNDAL, C.-E. (1980). On ir inverse weighting versus best 
linear unbiased weighting in probability sampling. Biometrika, 
67, 639-650. 

SARNDAL, C.-E., and SWENSSON, B. (1987). A general view 
of estimation for two phases of selection with applications 
to two-phases sampling and nonresponse. International 
Statistical Review, 55, 279-294. 

SARNDAL, C.-E., SWENSSON, B., and WRETMAN, J. (1991). 
Model Assisted Survey Sampling. New York: Springer-Verlag. 

WRIGHT, R.L. (1983). Finite population sampling with multi­
variate auxiliary information. Journal of the American 
Statistical Association, 78, 879-884. 





Survey Methodology, December 1995 
Vol. 21 , No. 2, pp. 137-145 
Statistics Canada 

137 

Estimating Some Measures of Income Inequality from Survey Data: 
An Application of the Estimating Equations Approach 

DAVID A. BINDER and MILORAD S. KOVACEVIC 

ABSTRACT 

We summarize some salient aspects of the theory of estimation functions for finite populations. In particular, we 
discuss the problem of estimation of means and totals and extend this theory to estimating functions. We then apply 
this estimating functions framework to the problem of estimating measures of income inequality. The resulting 
statistics are nonlinear functions of the observations. Some of them depend on the order of observations or quantiles. 
Consequently, the mean squared errors of these estimates are inexpressible by simple formulae and cannot be 
estimated by conventional variance estimation methods. We show that within the estimating function framework 
this problem can be resolved using the Taylor linearization method. Finally, we illustrate the proposed methodology 
using income data from Canadian Survey of Consumer Finance and comparing it to the 'delete-one-cluster' 
jackknifing method. 

KEY WORDS: Complex survey design; Gini family coefficient; Lorenz curve ordinate; Low income measure; 
Quantile share. 

1. INTRODUCTION 

The measurement and analysis of economic inequality 
are well covered in econometrics literature from both, 
theoretical and applied aspects, although the theoretical 
issues prevail. Estimation of inequality measures and the 
impact of the design of sample surveys have gotten less 
attention. Variance estimation, unavoidable in statistical 
inference based on these measures, is seldom an issue in 
the relevant econometric literature. It is usually addressed 
under very strong assumptions and under unsustainable 
simplifications of the design or the formulae for the 
approximate variance. In this paper we present a method 
that can handle with ease both the estimation of the 
measures of income inequality and the variance estimation 
of the resulting non-linear statistics. This method is appli­
cable under a variety of sampling designs. 

In general, a population distribution can be described by 
its cumulative distribution function, F(;') = P r ( F < ; ' ) , 
where Fis the random variable corresponding to selecting 
one population unit at random. Throughout this paper, 
we assume that Fis non-negative. If Frepresents income 
then we are interested in the properties of an income 
distribution, such as income concentration, income shares 
for different population shares, low income proportions, 
etc. We are also interested in the quantile function 
HP) = F-'{p) = i n f ( ; ' | F ( ; ' ) > / j ) . 

The Lorenz curve, for example, depicts the cumulative 
income against the population share. The formal defini­
tion of the ordinate of the Lorenz curve corresponding to 
the 100/j-th percentile of the population is 

'ip 

L{p) = 

ydF{y) 

My 

where 

J: dF{y) = p, and I ydF{y) = /xy, i: 

(1.1) 

The finite population form of the expression (1.1), 
more familiar to survey statisticians, is given by 

L{p) = "^ YillYi^ ^ P I / E ^ " 
u I u 

where U represents a finite population and / ( . ) is an 
indicator function. 

The income (quantile) share is defined as the percentage 
of total income shared by the population allocated to the 
certain income quantile interval [^p,, l^^], Pi ^ P2- It is 
equal to the difference of Lorenz curve ordinates 

Q{Pi,P2) = L{p2) - L(pi). 

In Figure 1 we give a graph of the Lorenz curve for the 
Weibull distribution with shape parameter Q; = 1.6, along 
with the 45° axis. For example, one can read from the 
graph that not more than 25% of the total income is 
allocated to the poor half of population, or that the richest 
10% of the population earn 20% of the total available 
income. 

' David A. Binder, Director, Business Survey Methods Division, and Milorad S. Kovacevic, Senior Methodologist, Household Survey Methods 
Division, Statistics Canada, R.H. Coats Building, Tunney's Pasture, Ottawa, Ontario, Canada, KIA 0T6. 
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Figure 1. Lorenz Curve for the Weibull Distribution with Shape 
Parameter a = 1.6. 

The Gini coefficient measures the degree of the ine­
quality in income distribution. One definition of the Gini 
coefficient is a linear function of the area between the 
Lorenz curve and the 45° axis, normalized to lie between 
0 and 1. The Gini coefficient in Figure I is 0.35. The formal 
definition of the Gini coefficient (Nygdrd and Sandstrom 
1981) is 

G = 1 - 2[L{p)dp = - \[2F{y) - l]ydF{y). 
Jo M Jo 

A more general family of Gini coefficients, given in 
NygSrd and Sandstrom (1981) is 

Gj = — \J[F{y)]ydF{y), 
My Jo 

(1.2) 

where 7 is a bounded and continuous function. For the 
usual Gini coefficient, J{p) = 2p — 1. 

Another measure of income inequality used by some 
economists is the Low Income Measure. This is defined 
as the proportion of the population units whose income 
is less than half the median income for the population. 
Formally, this is 

•M/2 
e = \ dF{y), 

0 

(1.3a) 

where M is the median defined by 

'M 
dF{y) 

For all these measures, we can express the parameter 
of interest, 0 , as the solution to the equation 

\u{y,Q)dF{y) = 0 , 

where t^(j,0) is the kernel of the estimating equation. This 
estimating equation formulation will be discussed in 
Section 2. In Sections 3, 4, and 5 we give the estimating 
equations for the above measures along with the approx­
imation of their mean squared error estimates. In Section 6 
we present estimators of these measures based on the 
complex sample design. Section 7 contains an illustration 
based on the Canadian Survey of Consumer Finance data. 

2. USE OF ESTIMATING EQUATIONS FOR 
FINITE POPULATIONS 

The theory for estimating means and totals from finite 
populations is now well established in the statistical litera­
ture. A formulation which encompasses most estimators 
used in practice is given in Sarndal, Swensson, and 
Wretman (1992). In this section, we briefly review this 
theory and show how it can be applied to more complex 
statistics through the use of estimating equations, as 
described by Binder (1991) and Binder and Patak (1994). 

We begin the exposition of the main idea by reviewing 
the estimation of the population total Ty and the finite 
population distribution function F{y). The estimation of 
the population total is the core of the estimation equations 
approach of Binder (1991) and Binder and Patak (1994). 
Let the population total of the variable F, be defined as 

Ty = N[ydF{y). 

Note here that F{y) is a step function corresponding to 
the distribution function for the finite population. We 
consider estimators of the form: 

fY=Yi **'/(*)>''•= E » '̂(^)^" (2.1) 
/ = i 

where Wi{s) is zero whenever the /-th unit is not in the 
sample. Expression (2.1) gives, for example, the Horvitz-
Thompson (HT) unbiased estimator if 

w,{s) 
^ri /TT, , /€5, 

I 0, iis. 

(1.3b) or the generalized regression estimator if 

w,(s) [•• 
+ {Tx- fx)Xi/Tx2]/Tti, i€s. 

0, iis. 
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where 7> is the population total of X, and f̂  and tx2 
are the HT estimates of the totals of X and A'̂  variables, 
respectively. 

Similarly, an estimator for the distribution function is 
given by 

NF{y) = E ^i{s)nyi^y]. 

where 

i{yi ^y] = 
O if yi 

l o if ;',. 
^ y, 

> y-

We note that F{y) is uniformly and asymptotically design 
consistent for F{y), but it is not necessarily a true distri­
bution function, unless 

E Wi{s) = N. 
iis 

In general, and under certain regularity conditions for 
complex designs (Francisco and Fuller 1991), 

F{y) - F{y) - ^ 0, for any ;'. 

That is, the finite population distribution function, F{y), 
allows a consistent estimator, F{y). This property of the 
F{y) will be used later in proving the consistency of the 
linearized variance estimators for different income statistics. 

Now, we review the application of the estimating equa­
tions theory to the estimation of any finite population 
parameter 0^ that can be expressed as the solution to 

^u{y,eo)dF{y) = 0. 

We define the estimating equation estimate for 0,, as that 
value of 0 for which 

1 ii{y,e)dF{y) = 0, (2.2) 

where «(; ' ,0) is an estimate of u{y,Q). 

We can rewrite (2.2) as 

0 = [u{y,e)dF{y) 

= \ ["(^,0) - u{y,eo)]dF{y) + f M( ; ' , 0„ 

(2.3) 

)dF{y)-i-R, 

R = \lu{y. 0) - u{y,eo)][dF{y) - dF{y)]. 

The decomposition in (2.3) is the basic starting point 
for all the derivations of variance in the paper. For each 
parameter considered we will prove that the remainder 
term, R, is asymptotically negligible. 

Binder (1983) considered the case where u{y,Q) = 
u{y,Q) and where, for large samples. 

[u{y,e)-u{y,eo)]dF{y) 

dE{u{y,e)] 
= (6 - 0J 

de 
+ Op{\e - Ooi). 

Q = % 

Note that the remainder term R from the decomposition 
(2.3) should be of order Op{\e - 0 J ) to be considered 
as asymptotically negligible. 

For most applications w (;', 0 ) does not need to be esti­
mated by ii{y,Q). However, for some applications such 
as the Gini coefficient, the function «(; ' ,0) is estimated 
so that formula (2.2) allows for these cases in general. 

Using these approximations, we have 

0 - 0o = -
dE{u{y,e)] 

de e=e„ 

X \u{y,eo)dF{y) = \u*{y)dF{y), (2.4) 

where 

u*{y) = -
dE[u{y,e)] 

de e=e„ 

- 1 

u{y,eo). 

Once we have obtained the expression for u*{y), the 
derivation of the variance of 0 becomes straightforward. 
Since we have approximated 0 - 0o as an estimator of 
a population total of «*(;', ) 's, we can use the mean 
squared error calculations for the estimate of total to 
obtain the variance estimate of 0 . 

For example, for 0,, equal to the ratio, Ty/Tx, we have 

u = y - eox. 

where 
W = 

MA-
{y - 00.^). 
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The remainder term in this case is 

,= J . -R = \[y - ex - {y - eox)][dF{y) - dF{y)] 

Therefore, 

R 

0 - 0 , 
= [F{y) - F{y)]x~pO, 

for any ;' and any finite x. 

Similarly, for population quantiles, we have 

M = I{y < 0ol - P, 

1 
(2.5) 

w* = -
/(Oo) 

[ / [ ; ' < 0o) - p], 

where/(0o) is the value of the density function at 0o. 
The second expression in (2.5) is an extension of the 
Bahadur representation for sample quantiles, as described 
by Francisco and Fuller (1991). Result (2.5) will be used 
for the ordinates of the Lorenz curve and for the Low 
Income Measure, which are discussed in Sections 4 and 5. 

The remainder term R in this case reduces to R = 
F ( 0 ) - F(0o) - F ( 0 ) -I- F(0o) . In the case of the 
simple random sample design. Randies (1982) showed that 
R = Op{n~'^^). For the complex design situation, under 
some regularity conditions, Shao and Rao (1994) estab­
lished a similar asymptotic result: first they showed that 
0 - 0o = Op{n-'^'), then that R = Op{n-'^'), and 
therefore^ = Op( |0 - 0o I). 

3. GINI FAMILY COEFFICIENT 

For the Gini family coefficient, given by (1.2), we 
can use 

u{y,Gj) = J[F{y)]y - Gjy. 

Binder's (1983) approach cannot handle the variance 
estimation of the Gini coefficient. For the Gini coefficient, 
rather than deriving the variances by breaking the problem 
into two parts - one for the ratio estimator and the other 
for the variance of the numerator - we use the estimating 
equations approach to solve the problem in one step. 

Ignoring the remainder term in (2.3), we have the 
following approximation: 

» ( ( / [F( .v ) ] - J[F{y)]\ydF{y) 

- {Gj- Gj) [ydF{y) + [{JlF{y)]y - Gjy\dF{y). 

Letting 

f ( / [ F ( ; ' ) ] - J[F{y)]\ydF{y) 

« [[F{y) - F{y)]J'[F{y)]ydF{y), 

and 

[F{y)J'[F{y)]ydF{y) 

-M J'[F{y)]ydF{x)dF{y) 

lF{x)]xdF{x) \dF{y), = [ [°°J'[F{x)]xdF{x)^ 

we have that 

GJ- Gj^ [u* {y)dF{y), 

where 

My \_JF{y) 
J'{p)F-Hp)dp 

+ J[F{y)]y - Gjy - E[F{y)J'[F{y)]y] j . (3.1) 

For the case of independent and identically distributed 
observations, this yields the same variance result as de­
scribed by Glasser (1962) and Sendler (1979). To estimate 
the variance, it is necessary to use estimates for tiy, F(y), 
and GJ in the expression for «*. 

We investigate the asymptotic behaviour of the re­
mainder term R for the usual Gini coefficient G. The 
remainder is 

' - \ 
\2y[F{y) - F{y)] - y{G - G)\ 

X [dF{y) - dF{y)]. 

0 = \\J[F{y)]y - Gjy]dF{y) 
Denoting the difference F{y) - F{y) by D{y), the 

remainder can be expressed as a sum of two integrals 
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R ^YyD{y)dD{y) " ( ( ^ - G)ydD{y). ( ^ - ^p)^pf{^p) = - Up[I{y < ^^) - p]dF{y). 

The first integral is reduced to zero by the integration 
by parts, so that the remainder is approximated by 

/? « - ((5 - G){iJ,y - fly) 

- - (G - G)Op{n-'^'+^), 0 < 8 < Vi. 

Therefore, we can say that R - Op{\ 6 - G \). 

4. LORENZ CURVE ORDINATE AND 
QUANTILE SHARE 

The ordinate of the Lorenz curve was defined in (1.1). 
In terms of estimating equations, the following two equa­
tions are required: 

Ui{y,L(p)) = I[y < ^p}y - L{p)y, 

U2{y) = ny ^ kp\ - P-

The second equation defines the 100/7-th percentile of the 
distribution; whereas the first equation defines the ordinate 
of the Lorenz curve in terms of the 100/j-th percentile. 
Ignoring the remainder term in (2.3), we have the following 
approximation: 

0 = [ [ / ( ; ' < ip] - L{p)]ydF{y) 

ydF{y) - [L{p) - L{p)] \ydF{y) 

+ \iny ^ ^p] - L{p)]ydF{y). 

The first term of this expression can be further approx­
imated as 

t ydF{y) = {^p - kp)^pf{kp). 

and from (2.5) we see that 

~^'^~\mi 
iny ^ip] - p]dF(y), (4.1) 

Therefore, to estimate the variance of the ordinate of 
the Lorenz curve, the appropriate linearization is given 
by using 

u*{y) = — [{y- ^p)I[y < ^^1 + p>^p -yL{p)]. 

This yields the same result as described by Beach and 
Davidson (1983) for variances and covariances of ordinates 
of the Lorenz curve in the case of independent and identi­
cally distributed random variables. To estimate the variance 
it is necessary to use ^p and L{p) in the expression for 
u*{y). 

To estimate the quantile share Q{Pi,P2) we need three 
equations 

ui{y,Q{Pi,P2)) = n^pi < y ^ ^P2\y - Q{Pi,P2)y, 

U2{y) = i{y ^ lp , l - Px, 

uAy) = i{y ^ ip2} - P2-

Using the same arguments as before, we arrive at 

u*{y) ^ - [ { y - ^P2)lly^ ^P2\ 

- (y- ^px)Uy^^px] 

+ P2^P2 -Pi^px -yQ{Pi,P2)]-

5. LOW INCOME MEASURE 

The Low Income Measure was defined in (1.3). In terms 
of estimating equations, the following two equations are 
required: 

ux{y,e) = I [.-<f]-e, 

SO that 

U2{y) = i{y < M ) -

where M denotes the median of the distribution defined 
by the second equation, whereas the first equation defines 
the Low Income Measure in terms of the median. Ignoring 
the remainder term in (2.3), we have the following approx­
imation: 
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( 0 - 0 ) 

0 - f (^/f;'<^l - e\dF{y) 

1 - / M \ 
_ ( M - M ) / ( - ) -

+ UlU^^} - e\dF{y). 

Using resuh (4.1) to substitute for M - M, and solving 

for 0 - 0 , we obtain 

0 - 0 '1-{y)dF{y), 

where 

2f{M) 
{i[y ^ M) - i ) 

(5.1) 

The problem with applying this result to estimate the 

variance of the estimated Low Income Measure is that it 

is necessary to estimate f{M) and / ( M / 2 ) . To accomplish 

this, we could use 

/ (^ ) 
<-0-<-D 

for some suitably small h. Alternatively, we could perform 
the following calculations, as suggested by Francisco and 
Fuller (1991) for another problem. For a given value of 
^, we estimate the corresponding percentile, 100/7. We 
then construct the Woodruff interval for that percentile. 
This is determined by first solving for hi and /12 in 

inf 
hi 

[I[y<^-hi] -p]dF{y) 

_H[i [ / | j < S l -p]dF{y) w • Z l - a / 2 

inf 
''2 

\ 
[ / ( ; ' < ^ + /i2) -p]dF{y) 

.hli [I[y<^] -p]dF{y) ]T 
>Zl_„ /2 

where z, _„/2 is the 100( 1 - a / 2 ) - t h percentile from the 

standard normal distribution. Then we compute 

2Zi-l-a/2 

/(O -

[mse[J [ / ( ; ' < ? ) -p]dF{y) w 
hi -h h2 

(5.2) 

This calculation uses the asymptotic equivalence of | - ^ 
and the estimated sum of the u* {y)'s given by (2.5). 

We see that the estimated variance for the Low Income 
Measure may be somewhat complex to compute. The 
estimating functions framework has however provided us 
with the appropriate formulae. 

The discussion about the remainder term in the decom­
position (2.3) of the low income measure is analogous to 
that made for the case of the quantile estimation (2.5). 

6. ESTIMATION WITH A COMPLEX SURVEY 

Let us assume a stratified muhistage design with a large 
number of strata, H, with a few primary sampling units 
(clusters), « ; , ( > 2 ) , sampled from each s t ra tum. For 
example, in the Canadian Survey of Consumer Finance 
(SCF) which uses the Labour Force Survey (LFS) vehicle, 
the number of strata is several hundreds and the number 
of clusters per stratum is on average less than six. Let w^d 

be the normalized weight attached to the /-th ultimate unit 
in the c-th cluster of the h-th stratum such that the appro­
priate estimator of mean and the consistent estimator of 
its mean squared error are 

A = E ^hciyhci 

nh *\2 
mse(A) = E - ^ E *<< - "̂ *) 

^ nh - I ^ 
(6.1) 

where u^c = H, Whci{yhci - A) and u^ = I//I/, Y.c"hc-
We use Y,s = E A I C D / to denote summation over all 
ultimate units in the sample incorporating all stages 
of sampling. We assume that PSU's are selected with 
replacement. 

This paper is not concerned with the efficiency of the 
estimators but rather the properties of commonly used 
estimators. An analysis of more complex estimators found 
in the econometric literature is beyond the scope of our 
study. 

An estimator of the finite population distribution 

function is 

F{y) = E Whcinyhci ^y)-
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A consistent estimator of the approximation of the mean 
squared error of the distribution function estimated in;' takes 
the form (6.1) where «;;, = E/wU/fAd ^ y) -F{y)]. 

The usual estimate of the finite population quantile is 
the sample quantile 

Ip = inf(;-/,„65:/(;'A„) > p] 

which is the solution of the estimating equation 

E ^hciiUyfici ^ ^p] - P] = 0. 
s 

Accordingly, using result (2.5), the estimator of the 
mean squared error of the p-th quantile has the form 
(6.1) with 

"he = 
1 

[f{^p)] 
E ^hciUiyhci ^ Ip) - p]-

If the expression (5.2) is used for the estimation of the 
density function/(O. the MSE estimate of the quantile 
^p becomes 

mseMp) = f ^ ^ y (6.2) 
\ Z l - a / 2 / 

where DJ^p) = {hi + h2)/2 = {^y - ^,^)/2 is the 
half length of the 100(1 - a ) % confidence interval for 
ip.lna complex sample design, A, and /12 are obtained as 
solutions of 

L = ip - hi = 

inf [yhd€s:F{y„,i) > p - z,_„/2 Jnise[F(?'p)]] 

^u = Ip + /l2 = 

inf[yhci^s:F{y,„i) > /? -t- z,_„/2 Jmse[F( |p) ] ] . 

The estimator (6.2) was also used by Francisco and 
Fuller (1991). Generally speaking the motivation for (5.2) 
and consequently for (6.2) comes from Woodruff's (1952) 
confidence interval for individual quantiles. Francisco and 
Fuller (1986) and Rao and Wu (1987) used these intervals 
to derive variance estimators. Although the estimator 
depends on the confidence coefficient, they showed that 
it is asymptotically consistent for any significance level a. 
Rao and Wu (1987) studied the standard errors of quantiles 
for the cluster samples estimated in this manner. Their 
Monte Carlo results suggest that 95% confidence interval 
works well as a basis for extracting the standard error. 
Binder and Patak (1994) obtained a similar form of the 

variance estimator by using the estimating equations 
approach. 

The estimate of the usual Gini coefficient is the solution 
of the following estimating equation 

E ^hci{[2F{yf,d) - l]yhci - (Synci) = 0 

and takes the form 

<5 = 7 E ^hci P{yhci)yhci - 1 

where A = IsWHciyha-

The estimate of the MSE of the Gini coefficient can be 
computed using expression (6.1) by replacing «̂ <,, origi­
nally defined by (3.1), with its complex survey form. After 
some algebraic manipulation we obtain the following 
expression: 

"h Ac = 7 E ^' 'c/U(>'/,a); '/,« + B{yha) - ^ ((5 + 1)1 

where 

and 

A{y) ^ F{y) -
(5-h 1 

B{y) = E Whciyhciilyhci ^ y\-
s 

The Lorenz curve ordinates could be obtained by 
solving a system of estimating equations 

E ^hciUiyhci ^ ^p]yhci - L{p)yhci] = 0 

E ^hciU{yhci ^ Ipl - p] = 0. 

The resulting estimate is 

^(P) = 7 E ^hciyhci Hyhci ^ 4 ) . 
" s 

To estimate the mean squared error of the Lorenz curve 
ordinates we simply use the values of «̂ c defined by (6.3) 
in (6.1) 

"Ac = 7 E ^''ci[{yhci - ip)i{yhci ^ ^p] 

+ plp-yHciL{p)]. (6.3) 
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Similarly, the mse of the quantile share 

Q{Pl,P2) = 7 E ^hciyhciJiipx < yhci ^ ^P2^ 
>" s 

is approximated by (6.1) using 

"Ac = 7 E ^hc{{yhci - ip2)J^yhci ^ ?*P21 
" i 

- {yhci - lpi)/(>'Ac/ ^ ?"p,l 

+ P2^P2 - Pl^Pi - yhci Q{Pl,P2)]-

The Low Income Measure defined by (1.3) is estimated 

as 

0 = F(M/2) = ^ w„,il{y„,i < M/2]. 

The mean squared error of the low income measure can 
be estimated approximately by the expression (6.1), where, 
(from the equation (5.1)): 

"Ac = - ^ ! ^ E ^"-[^f-*'''" ^ ^ ) - 1/2] 
2f{M) 

+ E w,,i[I{y,a ^ M/2} - 0 ] , 

7. ILLUSTRATION 

The methodology above is illustrated with an applica­
tion to the family income data collected in the Canadian 
Survey of Consumer Finance (SCF). We use the file on the 
Disposable Income of Economic Families obtained for the 
province of Ontario in 1988. Disposable income is defined 
as total income after tax reported in the survey. The SCF 
uses the framework of the Canadian Labour Force Survey 
which is based on a stratified, multistage design. For more 
details on the sample design see Singh et al. (1990). 

We estimated the median M, the Gini coefficient G, 
the Low Income Measure 0 , Lorenz Curve Ordinates 
and quintile shares (2(0,.2),Q(.2,.4),(2(.4,.6),Q(.6,.8), 
Q(.8,.1.0). Their standard errors are obtained using the 
proposed methodology and the jackknife 'delete-one-
cluster' method. 

We present a brief description of the jackknife 'delete-
one-cluster' method used for this illustration. First, we 
assume that the estimate of the unknown parameter 0 can 
be expressed as 0 = £ ( F ) , where F is the estimated 
distribution function. The estimate of the distribution 
function F^hj) obtained from the sample after removing 

they-th sampled cluster of the h-th stratum {j = I, ..., 
nh,h = I, ...,H) is 

F(gJ)(y) = E ^hci{g,J)'^hciI[yhci ^ y\ 

where A,,ci{E,J) - ng- I 

I, h 7^ g; 

h ^ g, c 7^ J; 

0, h = g, c = j . 

Then 0(^y) = £(F(gy)) and the resulting 'delete-one-
cluster' jackknife estimator of the variance of 0 == £ ( / ) 

is 

H 

vary(0) = E E (9(«» - 6)' 
j=i 

It is known that the jackknife variance estimator 
performs poorly for quantiles due to its inconsistency 
(Kovar et al. 1988). There are some recent results (Shao 
and Wu 1989, Rao, Wu and Yue 1992) that suggest that 
the 'delete d' jackknife and 'delete-one-cluster', under 
certain conditions, may have desirable asymptotic prop­
erties for the variance estimation of non-smooth statistics 
like quantiles or the low income measure. On the other 
hand, for statistics like the Gini coefficient the jack-
knife estimator of the asymptotic variance is consistent 
(Shao 1993). 

Unlike jackknifing, the estimating equations approach 
is not computationally intensive. It is simple, explicit and 
incorporates the sample design. It provides formulae for 
the asymptotic variance that are easy to program despite 
their complicated form. 

Realizing the limitations imposed by using a single 
sample to make an objective comparison between different 
methods, the purpose of this example is to point out 
differences in the standard errors obtained by the esti­
mating equations approach and a computationally intensive 
method like the jackknifing. Results are summarized in 
the table below. The direction of the difference in the 
estimated standard errors confirms the overall conser-
vativeness of the jackknifing method. The difference can 
be attributed to the upward bias of the jackknifing method 
in the case of the median, although the 'delete-one-cluster' 
jackknife is preferable to the 'delete-l' jackknife. For the 
quantile shares it can be partly explained by the fact that 
upper quantile shares may not cut over all primary sampling 
units but rather perform as separated classes which may 
affect the jackknifing more than the estimating equations 
method. 
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Table 1 
Measures of Income Inequality and Their Standard Errors 

Measure 

Median 

Gini 

Low Income 
Measure 

Lorenz Curve 
Ordinates 

L(0.2) 
L(0.4) 
L(0.6) 
L(0.8) 

Quintile Shares 

Q(0, 0.2) 
Q(0.2, 0.4) 
Q(0.4, 0.6) 
Q(0.6, 0.8) 
Q(0.8, 1.0) 

Estimate 

31705 

0.3482 

0.1980 

0.0561 
0.1745 
0.3522 
0.5982 

0.0561 
0.1186 
0.1775 
0.2461 
0.4017 

Standard Error 

Estimating 
Equations 
Approach 

303.3 

0.005 

0.00586 

0.00137 
0.00166 
0.00246 
0.00317 

0.00137 
0.00159 
0.00157 
0.00158 
0.00395 

Jackknifing 
'Delete-One-

Cluster' 

569.8 

0.005 

0.00613 

0.00175 
0.00194 
0.00285 
0.00393 

0.00167 
0.00221 
0.00282 
0.00337 
0.00451 

8. SUMMARY 

The problem of estimating the variance of complex 
statistics, such as measures of income inequality, have 
eluded statisticians for years. Replication methods such 
as the jackknife are often suggested for estimation. The 
advantage of the linearization approach is that it can be 
used under a wide class of sampling designs and does not 
suffer from the need for intensive computations which 
methods such as the bootstrap entail. Through the method 
of estimating functions and the decomposition given in 
(2.3), we find that some difficult problems can be solved 
more easily. A discussion about the order of the remainder 
term for some of these measures is given as well. A more 
rigorous proof for a complex sample design can be estab­
lished along the lines given in Shao and Rao (1994). 
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A Reduced-Size Transportation Algorithm for Maximizing 
the Overlap Between Surveys 

LAWRENCE R. ERNST and MICHAEL M. IKEDA' 

ABSTRACT 

When redesigning a sample with a stratified multi-stage design, it is sometimes considered desirable to maximize 
the number of primary sampling units retained in the new sample without altering unconditional selection 
probabilities. For this problem, an optimal solution which uses transportation theory exists for a very general class 
of designs. However, this procedure has never been used in the redesign of any survey (that the authors are aware 
of), in part because even for moderately-sized strata, the resulting transportation problem may be too large to solve 
in practice. In this paper, a modified reduced-size transportation algorithm is presented for maximizing the overlap, 
which substantially reduces the size of the problem. This reduced-size overlap procedure was used in the recent redesign 
of the Survey of Income and Program Participation (SIPP). The performance of the reduced-size algorithm is 
summarized, both for the actual production SIPP overlap and for earlier, artificial simulations of the SIPP overlap. 
Although the procedure is not optimal and theoretically can produce only negligible improvements in expected overlap 
compared to independent selection, in practice it gave substantial improvements in overlap over independent selection 
for SIPP, and generally provided an overlap that is close to optimal. 

KEY WORDS: Linear programming; Sample redesign; Survey of Income and Program Participation. 

1. INTRODUCTION 

The problem of maximizing the expected number of 
primary sampling units (PSUs) retained in sample when 
redesigning a survey with a stratified design for which the 
PSUs are selected with probability proportional to size was 
introduced to the literature by Keyfitz (1951). Typically, 
the motivation for maximizing the overlap of PSUs is to 
reduce additional costs, such as the training of a new inter­
viewer for a household survey, incurred with each change 
of sample PSU. Procedures for maximizing overlap do not 
alter the unconditional probability of selection for a set 
of PSUs in a new stratum, but conditions its probability 
of selection in such a manner that the probability of a PSU 
being selected in the new sample is generally greater than 
its unconditional probability when the PSU was in the 
initial sample and less otherwise. 

Overlap procedures are applicable when the redesign 
results in either a restratification of the PSUs or a change 
in their selection probabilities. Keyfitz (1951) presented an 
optimal procedure, but only for one-PSU-per-stratum 
designs in the special case when the initial and new strata 
are identical, with only the selection probabilities changing. 
Causey, Cox and Ernst (1985) obtained an optimal solution 
to the overlap problem under very general conditions by 
formulating it as a transportation problem, which is a 
special form of linear programming problem. This proce­
dure imposes no restrictions on changes in strata defini­
tions or number of PSUs per stratum. (A similar result had 

been independently obtained by Arthanari and Dodge 
(1981), although they did not discuss the issue of changes 
in strata definitions. Both sets of authors obtained their 
results by generalizing work of Raj (1968).) However, 
there are at least two other difficulties with the procedure 
of Causey, Cox and Ernst which can make it unusable in 
practice, one which is the focus of Ernst (1986), and the 
other the focus of the current paper. 

The first difficulty is that, if the initial sample of PSUs 
was not selected independently from stratum to stratum, 
the information necessary to compute all the joint proba­
bilities required by this method may not be available in 
practice. An alternative linear programming procedure, 
for use in such cases, was developed by Ernst (1986). The 
Bureau of the Census has used linear programming to 
overlap its demographic surveys on five occasions. On 
four of these occasions (the selection of the 1980s and 
1990s Current Population Survey (CPS) designs, and the 
1980s and 1990s National Crime Victimization Survey 
(NCVS) designs) the procedure in Ernst (1986) was used 
because the initial design was not selected independently 
from stratum to stratum. In particular, as explained in 
Ernst (1986), if the initial sample was itself selected by 
overlapping with a still earlier design then this independ­
ence assumption generally does not hold, which was the 
key reason why it did not hold for these four redesigns. 

The second difficulty with the optimal procedure is 
that the transportation problem may be too large to solve 
in practice. The Bureau of the Census also used linear 

' Lawrence R. Ernst, Chief, Research Group, Office of Compensation and Working Conditions, Bureau of Labor Statistics, Washington, DC 20212, 
U.S.A.; Michael M. Ikeda, Mathematical Statistician, Statistical Research Division, Bureau of the Census, Washington, DC 20233, U.S.A. 
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programming to overlap the 1990s Survey of Income and 
Program Participation (SIPP) design with the 1980s SIPP 
design, both two-PSUs-per-stratum designs. The initial 
sample for SIPP was selected independently from stratum 
to stratum. However, the transportation problem for the 
optimal procedure would have been too large to practically 
solve for many strata. This is because for each new stratum 
to be overlapped consisting of n PSUs, the number of 
variables in the transportation problem for the optimal 
procedure can be as large as 2" x (2). The largest value 
of n for which a transportation problem with that many 
variables can be solved with the computer facilities that 
we have used is approximately n = 15. 

This paper presents a reduced-size formulation of the 
overlap procedure as a transportation problem which 
decreases the numbers of variables in the SIPP problem 
to ((2) -I- rt -I- 1) X (2), a striking reduction for mod­
erate to large values ofn. The procedure assumes that the 
initial sample was selected independently from stratum to 
stratum, and hence could not have been used instead of 
the procedure of Ernst (1986) to overlap the CPS and 
NCVS designs. This reduced-size procedure has been 
successfully run for strata with as many as 68 PSUs. In 
contrast, for n = 68, the 2*̂  x ( 2 ) possible number of 
variables for the unreduced formulation is far beyond the 
size of problem that can be solved by any current computer. 
Furthermore, though the reduced-size procedure sacrifices 
optimality in exchange for its size reduction, it does appear 
in practice to yield results fairly close to optimal, as we will 
show. The reduced-size procedure is the procedure that 
was used to overlap SIPP. 

In Section 2 the procedure of Causey, Cox and Ernst 
(1985) is reviewed, to provide background for the presen­
tation of the reduced-size procedure. 

The reduced-size procedure is presented in Section 3. 
Although the approach has general applicability, for ease 
of presentation it is only described in detail for the case 
when both the initial and new designs are two-PSUs-per-
stratum without replacement. A small, artificial example 
of the reduced-size procedure is also presented in Section 3. 
This example serves to illustrate the procedure and to 
demonstrate that the ordering of the pairs of PSUs in a 
new design stratum, a key step in the algorithm, affects 
the expected overlap. We also outline in this section some 
analytical results on the comparison between the reduced-
size procedure and the optimal procedure. Upper bounds 
on the loss in expected overlap from using the reduced-size 
procedure instead of the optimal procedure are stated. It 
is also explained that in certain situations this loss can 
approach two PSUs for two-PSUs-per-stratum designs, 
the worst possible situation. Further details and proofs of 
the resuhs in this section as well as some results in other 
sections are presented in Ernst and Ikeda 1994. 

In Section 4 the performance of the reduced-size pro­
cedure is presented, both for the actual SIPP production 

overlap and for earlier, artificial simulations of the SIPP 
overlap. The expected overlap for this procedure is compared 
to that for independent selection of the new sample PSUs 
and to an upper bound on the optimal expected overlap. 
The results show that for this application, in contrast with 
some of the theoretical results described in Section 3, the 
expected overlap with the reduced-size procedure is much 
larger than if independent selection had been used to select 
the new sample PSUs, and nearly as large as the optimal 
expected overlap. Also presented are computer running times 
for the reduced-size procedure as a function of stratum size. 

Finally, our conclusions are stated in Section 5. 

2. REVIEW OF THE OVERLAP PROCEDURE OF 
CAUSEY, COX AND ERNST (1985) 

The overlap procedure of Causey, Cox and Ernst (1985), 
like all overlap procedures, conditions the selection of 
sample PSUs in each new stratum in some way on which 
PSUs in the stratum were in the initial sample. This partic­
ular overlap procedure attains true optimality by making 
complete use of this information and formulating the 
procedure as a transportation problem. We proceed to 
present this procedure. 

First, however, we introduce some notation that will be 
used throughout the paper. Let S denote a stratum in the 
new design. Each such stratum corresponds to a separate 
overlap problem. Let n denote the number of PSUs in S 
and let A I, ..., A„ denote the PSUs in S. Let / denote 
the random subset of (1, . . . , « ) such that A: € / if and 
only if A/f. was in the initial sample, and let Â  denote the 
corresponding set with respect to the new sample. For 
example, if ̂ 42 and /I3 were the PSUs in S that were in the 
initial sample and Ai and Aj are the PSUs in the new 
sample, then / = (2,3) and N = {1,3). Let w*, n* 
denote the number of possible values for /and N, respec­
tively. Let Ji,i = 1, . . . , m*, denote the possible values 
for / and let S,, j = 1, . . . , « * , denote the possible 
values for N. The goal of all overlap procedures is to 
maximize the expected number of PSUs in TV fl /, while 
preserving the values of the P{Sj)'s. 

To illustrate some of these concepts further, consider 
an example for which n — 3. Then n* = 3 if the new 
design is either 1 or 2 PSUs per stratum with the values 
for N, that is the S/'s, consisting of (1), {2), (3) in the 1 
PSU per stratum case and {1,2), {1,3), (2,3) in the two 
PSUs per stratum case. Suppose PSUs A, and A2 were in 
one initial stratum and PSU A^ was in another initial 
stratum and there were three PSUs in each of these initial 
strata. If the initial design was 1 PSU per stratum, then 
m* = 6, with the values of /, that is the / , 's , consisting 
o f 0 , (1),( 2), (3), [1,3), (2,3); if the initial design was 
2 PSUs per stratum then m* = 6, with the /,'s consisting 
of (1),(2),(1,2),[1,3),(2,3),(1,2,3). 
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We now present the transportation problem for the 
overlap procedure of Causey, Cox and Ernst (1985). 
Abbreviate by P ( / , ) the probability that / = / , and by 
P{Sj) the probability that Â  = Sy. In addition, let Xij be 
the variable denoting the joint probability of these two 
events, and let Cy denote the number of elements in 
Ji n Sj. TheP{Ji)'s, P{Sj)'s and Cy's are known values, 
while theXij's are variables for which the optimal values 
are to be determined. Then the transportation problem to 
solve is to determine Xij > 0 which maximize 

namely the pairs S, = (1,2), S 2 = (1,3), S3 = (2,3), 
and hence P(Si) = .30, P(S2) = .20, ^(Sj) = .50. 

Furthermore, the values of c,y are then as given in 
Table 2. Upon maximizing (2.1) subject to (2.2) and (2.3) 
with the given P{Ji)'s, P(S,) 's and c^'s, an optimal set of 
Xij's, presented in Table 2, is obtained. Finally, by dividing 
each of the Xij entries in row / of Table 2 by P ( / , ) , an 
optimal set of conditional probabilities P{Sj \ Ji), is 
obtained. For example, sinceA:i2 = .025andP(yi) = .315, 
it follows that P(S2 \ Ji) = 5/63. 

/ = i j=i 

(2.1) 

subject to 

n' 

^ Xij = P{Ji), i = 1, m*. 
7=1 

l^Xij = P{Sj), j ^ I, ...,n*. 

(2.2) 

(2.3) 

Note that in this transportation problem, the objective 
function (2.1) is the expected number of PSUs in S that 
are inN O I. Also note that the constraints (2.2) and (2.3) 
are required by the definitions of the P(y,) 's , P{Sj)'s 
and the x^'s. 

Once the optimal Xij's have been obtained, the condi­
tional probability that A'̂  = Sj given that / = 7, is then 
Xij/P{Ji) for all/,y. 

We present an example to illustrate the use of the for­
mulation (2. l)-(2.3) in the case where both the initial and 
new designs are two-PSUs-per-stratum without replace­
ment. In this example, and throughout the paper, /?,, x, 
denote the predetermined probability that / € /and / e N, 
respectively. 

Consider a final stratum S with n = 3. All of the PSUs 
were in different initial strata. Let pi - .6, P2 = .75, 
PJ = .1, Xl = .5, TTz = .8, X3 = .7. Since the PSUs 
were all in different initial strata, there are 8 different 
possibilities for /, with probabilities given in Table 1. 

Table 1 
Probabilities for Possible Sets of Initial Sample PSUs 

1 8 

Ji (1,2,3) 11,2) (1,3) (2,3) (1) (2) (3) 0 

P(Ji) .315 .135 .105 .21 .045 .09 .07 .03 

Since the new design is two-PSUs-per-stratum without 
replacement, there are 3 different possibilities for Â , 

Table 2 
Values of c,y and Values of Xjj that Maximize Overlap 

for Optimal Procedure 

/ 

1 
2 
3 
4 
5 
6 
7 
8 

1 

2 
2 
1 
1 
1 
1 
0 
0 

'̂7 

j 

2 

2 
1 
2 
1 
1 
0 
1 
0 

3 

2 
1 
1 
2 
0 
1 
1 
0 

1 

.000 

.135 

.000 

.000 

.045 

.090 

.000 

.030 

Xij 

j 

2 

.025 

.000 

.105 

.000 

.000 

.000 

.070 

.000 

3 

.290 

.000 

.000 

.210 

.000 

.000 

.000 

.000 

For this example, as can be computed from (2.1) and 
Table 2, the expected overlap under the optimal procedure 
is 1.735 PSUs. In comparison, the expected overlap if the 
initial and final designs are selected independently is 
PiTTi -I- P2-K2 + JE73X3 = 1.39 PSUs. 

For two-PSU-per-stratum wdthout replacement problems, 
the possible values for Â  are always the (2) subsets of 
(1, ..., n]of size 2, that isn* = (2 ) . However m* can 
vary widely, m* = (2) when the PSUs in S comprise a 
single initial stratum. The upper bound of 2" on m* is 
attained when all the PSUs in S were in different initial 
strata, as illustrated by the previous example, and in some 
other situations. A general, exact expression for m* is 
presented in Ernst and Ikeda (1994). 

For the two-PSUs-per-stratum without replacement 
overlap problem, the number of variables in the transpor­
tation problem for the optimal procedure is m*n* which 
can be as large as 2"(2). For « = 15, 2"(2) = 3,440,640, 
which is about as large a transportation problem as can 
be solved with the computer facilities that we used. How­
ever, n > 15 for nearly half the nonselfrepresenting strata 
(that is strata consisting of noncertainty PSUs) in our SIPP 
application, and consequently it was necessary to develop 
a procedure, described in the next section, which reduces 
the size of the transportation problem, while still producing 
nearly maximal expected overlap in practice. 
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3. THE ALGORITHM FOR THE REDUCED-SIZE 
PROCEDURE 

Previous work on reducing the size of the transportation 
problem (2. l)-(2.3) has focused on accomplishing the size 
reduction while retaining optimality. For example, the 
approach of Aragon and Pathak (1990) retains optimality 
and reduces the size of the problem by 75 percent when 
m* = n*. Unfortunately, when m* is much larger than 
n*, which is when size reduction is most needed, their 
method produces negligible size reduction in relative 
terms. A generalization of this approach is presented in 
Pathak and Fahimi (1992), but there is no indication that 
their procedure always yields a size reduction that is 
substantial in relative terms. 

In this section a reduced-size procedure is presented 
which takes a different approach. We sacrifice optimality, 
at least in theory, in return for an assured size reduction 
down to a manageable size transportation problem. This 
size reduction is accomplished, in the case when the initial 
and new designs are both two PSUs per stratum for 
example, by ordering all pairs of PSUs in a new stratum 
and then conditioning the new selection probabilities for 
any initial set of sample PSUs of size greater than 2 on the 
first pair of PSUs in the ordering contained in the initial 
set, rather than conditioning on the entire initial set. That 
is, each possible initial set of sample PSUs which consists 
of more than 2 PSUs is combined with a set of size 2. As 
illustrated in Section 4, this procedure may yield a near 
optimal overlap in practice; particularly with an appro­
priate ordering of the pairs of PSUs, as described in 
Section 3.1.2. 

The reduced-size procedure is applicable whenever 
PSUs in the initial and new designs are selected without 
replacement. However, the procedure will be described in 
detail, in Section 3.1, only for the case when both the initial 
and new designs are two-PSUs-per-stratum. Then, in 
Section 3.2, the changes necessary to apply this procedure 
for other initial and new designs will be sketched. Finally, 
in Section 3.3, some analytical results are outlined on the 
relationships among the expected overlap for the reduced-
size procedure, the optimal procedure and independent 
selection. It is assumed throughout this section that PSUs 
in the initial sample were selected independently from 
stratum to stratum. 

3.1 Reduced-Size Procedure When Both Designs Are 
TwG-PSUs-Per-Stratum 

The reduced-size procedure to be described includes the 
following key aspects: the specific ordering of the pairs of 
PSUs; the reformulation of the transportation problem 
(2.1)-(2.3) for the reduced size procedure; the computation 
of the probabilities for the initial outcomes for this formu­
lation; and the computation of the cost coefficients (the 

Cij's) in the objective function. In Section 3.1.1 we present 
a detailed outline of the reduced-size procedure, including 
the reformulated transportation problem. The ordering of 
the pairs is described in Section 3.1.2. Finally, the compu­
tation of the probabilities for the initial outcomes and the 
cost coefficients are given in Section 3.1.3. 

3.1.1 General Outline of the Procedure 

The general outline of the procedure is as follows. First, 
the (2) subsets of (1, . . . , « ) of size 2 are ordered in a 
manner to be described later. (For now, we simply note 
that any ordering can be used to reduce the size of the 
transportation problem. The specific one used is for the 
purpose of accomplishing the size reduction while also 
attempting to give up as little as possible of the gains in 
overlap that the optimal procedure yields.) We let /,, 
/ = 1, . . . , (2) , denote the /-th element in the ordering; 
let / / n \ + 1 , . . . , / / n \ +„ be the « singleton subsets; and set 
I("\+n+1 - 0 - Thus, the /, 's constitute all subsets of 
(1 ,^.. . , n) of 2 or fewer elements. For each possibility for 
/, a unique set/* is associated among these (2) -I- n -1- 1 
subsets and the new selection probabilities conditioned on 
the associated /*, rather than on /itself. Therefore, the 
new selection probabilities are conditioned on (2) -I- n -)- 1 
events instead of a possible 2" events, which is the reason 
for the size reduction. The associated /* is the first /, for 
which /, C /. That is, if/consists of at least two integers, 
the associated /* is the first pair in the ordering contained 
in /, while if / is a singleton set or empty then /* = /. 

The reduced-size transportation problem attempts to 
retain the PSUs corresponding to elements in the asso­
ciated set /* in the new sample, but does not use infor­
mation on elements in / - /*. The form of this reduced-
sized transportation problem based on the set of /, 's is as 
follows. Let A* be the probability that /* = / , , / = 1, 
. . . , (2) + n + 1, and abbreviate x* = P{Sj), 

j - I, ..., (2) . For each/,y', the variable x,y is the joint 
probability that /* = /, and that N - Sj, while c,y is the 
expected number of elements in / D Sj given /* = /,. 
The problem to solve is to determine Xij > 0 that maximize 

( 2 ) - ^ ' (2) 

2^ ZJ ^ij^ij. (3.1) 
<=i 7=1 

subject to 

(2 ) 

X; Xij = pr, / = 1,.. . , Q + « + 1. 

( 2 ) +/I+1 

j = 1, 
• ( " ) 

(3.2) 

(3.3) 
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Once the optimal A-,y's have been obtained, then the con­
ditional new selection probabilities for S;,y = 1, . . . , (2), 
given /* = /,, are Xij/pf. Note that the number of variables, 
Xij, in the formulation (3.1)-(3.3) is ((2) + « + l) ^ (2) ' 
in comparison with a maximum of 2" x (2) in the formu­
lation (2. l)-(2.3). 

It remains to explain the general method for obtaining 
the ordering of the (2) pairs and the procedures for com­
puting the/?,* 's and c,y's. Before doing this, we present an 
example of the reduced-size procedure, namely the two-
PSUs-per-stratum example used in Section 2 to illustrate 
the transportation problem formulation for the optimal 
procedure. 

The ordering of the pairs for this example, as will be 
shown later, is (2,3), (1,2), (1,3). Consequently, the 
/ , ' s , are as given in Table 3. Note that if / = (1,2,3) or 
I - (2,3), then the associated set is/[ = (2,3). For the 
other six possibilities for / the associated set is / itself. 

Consequently, from Table 1 we obtain that 

p\ = P{I = (1.2,3)) -I- P ( / = (2,3)) = .525, (3.4) 

pf = P{Ji), i = 2,3, and A* = / ' ( / /+1), / = 4, . . . , 7, 
yielding the values in Table 3. Since x/ = P{Sj), we 
have xf = .30, x | = .20, irf = .50. 

Table 3 

Probabilities of Associated Sets: Reduced-Size Procedure 

Ii 

Pt 

1 

(2,3) 

.525 

2 

(1,21 

.135 

3 

(1,31 

.105 

/ 

4 

m 
.045 

5 

(2) 

.09 

6 

(3) 

.07 

7 

0 
.03 

The Cij values for this example are given in Table 4. 
In order to obtain these values, we simplified the compu­
tation by letting 

bi, ^ P{tei\P = Ii), 

/ = ! , . . . , ^ 2 ) + n + I, t = I, ..., n, 

and noting that if Sj = {s,t} then 

Cij = bis + bi, 

(3.5) 

(3.6) 

That is, the expected number of elements in / D Sj 
given /* = /, is simply the sum of the probabilities that 
each of the two elements in S, was in/given/* - /,. Also 
observe that while the transportation problem for the 
optimal procedure knows the exact value for / and hence 
knows with certainty whether each element in Sj was in /, 

this is not the case for the reduced-size procedure, since 
only the associated set /, is known. To illustrate, consider 
thefirstrowof Table4. Since/, = (2,3), we know that 
2 € / and 3 € /, and hence bi2 — b^ = I. However, we 
do not with certainty whether 1 € / since /j is the asso­
ciated set for both / = (1,2,3) and / = (2,3). In fact, 
from Table 1, 

bu = 
P{I= (1.2,3)) 

= .6. 
P ( / = (1,2,3)) -t- P ( / = (2.3)) 

Then c,, = bu -t- bi2 = 1.6, with c,2, C13 computed 
similarly. For the remaining six rows in Table 4, /, = / 
and hence it is known with certainty which integers were 
in / . Consequently, the c,y's for these six rows are easily 
computed. 

Finally, we maximize the expected overlap (3.1) subject 
to (3.2) and (3.3), obtaining theXij values in Table 4. The 
conditional probabilities P(A'̂  = S, | /* = /,) in Table 5 
are then obtained by dividing each of the Xij entries in the 
/-th row of Table 4 by p*. 

Table 4 
Values of Cij and Values of Xij that Maximize Overlap 

for the Reduced-Size Procedure 

1 

2 

3 

4 

5 

6 

7 

(2,3) 

11,2) 

(1,3) 

(1) 

(2) 

(3) 

0 

1.6 

2.0 

1.0 

1.0 

1.0 

0.0 

0.0 

1.6 

1.0 

2.0 

1.0 

0.0 

1.0 

0.0 

2.0 

1.0 

1.0 

0.0 

1.0 

1.0 

0.0 

0.000 

0.135 

0.000 

0.045 

0.090 

0.000 

0.030 

0.025 

0.000 

0.105 

0.000 

0.000 

0.070 

0.000 

0.500 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Table 5 

Conditional Probabilities for the Reduced-Size Procedure 

; 

1 

2 

3 

4 

5 

6 

7 

Ii 

(2,3) 

(1,2) 

(1,3) 

HI 
(2) 

(3) 

0 

1 

0 

1 

0 

1 

1 

0 

1 

J 

2 

1/21 

0 

1 

0 

0 

1 

0 

3 

20/21 

0 

0 

0 

0 

0 

0 
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The expected overlap for the reduced-size procedtu^e is .01 
less than optimal, that is 1.725 PSUs. The deviation from 
optimality arises solely because the expected overlap is 1.6 
for the joint event that/* = (2,3)andA^= (1,3). Since 
the probability of this joint event is .025, and the optimal 
procedure for this example always produces an overlap of 
2 when at least 2 of the PSUs were in the initial sample, 
the deviation from optimality is .025(2 - 1.6) = .01. 

The reason that the reduced-size procedure is not able 
to obtain optimality is that the pair (2,3) has a smaller 
probability of selection in the new sample than in the initial 
sample. As a result, both the optimal procedure and the 
reduced-size procedure must sometimes select another pair 
(always (1,3) for both procedures in this example) when 
(2,3) was in the initial sample. The distinction between 
the two procedures is that the optimal procedure only 
selects (1,3) when 1 6 /. The reduced-size procedure is 
unable to use the information about whether 1 € / . As a 
result, when (2,3) C /, 1 € A'^independently of whether 
1 € /.This results in a deviation from the optimal overlap. 

3.1.2 The Ordering of the Pairs 

We now proceed to show in general how the ordering 
of the pairs is obtained. We use the additional notation 
here that Ps,, -KS,, S, t - 1, . . . , « , s 5̂  /, is the joint 
probability that s, t (L I and s, t i N, respectively. 

The motivation for the ordering of the pairs is as 
follows. If the /-th pair in the ordering is (5, ̂ ) then it would 
be possible for the transportation problem to retain this 
pair in the new sample when /* = /,• with conditional 
probability min{ I,its,/pf]- (The conditional retention 
probability cannot be any higher than this, since a higher 
value would result in an unconditional selection proba­
bility for the pair in the new design exceeding Xj,.) There­
fore, roughly the goal in the ordering is to make these 
conditional probabilities as large as possible on average 
over all pairs. 

To illustrate how the ordering of the pairs affects the 
expected overlap we consider the example of Table 3. Our 
ordering procedure, as will be shown later, produces the 
indicated ordering and yields an expected overlap of 1.725 
PSUs. Next consider the following alternative ordering for 
this example. Let the first pair in the ordering be (1,3), the 
second pair be (1,2) and the last pair be (2,3). With this 
ahernative ordering, /* = (1,3) whenever either / = 
(1,2,3) or / = (1,3). Therefore, for this ordering pf is 
the probability that/* = (1,3), which is now .42. Further­
more, for this alternative ordering, p? = P{I* = (2,3)) = 
P ( / = (2,3)) = .21, while the other 5 columns in Table 3 
remain unchanged. The alternative ordering results in a 
table of conditional probabilities similar to Table 5, except 
that in row 1 the /,, J = 2 andj = 3 columns now become 
(1,3), 10/21 and 11/21, respectively, and in row 3 the 
corresponding columns are now (2,3), 0 and 1, respectively. 

It can be calculated, using the same approach used for 
the original ordering that the expected overlap for the 
alternative ordering is 0.055 less than optimal, that is 1.68 
PSUs. The reason that this alternative ordering results in 
a lower expected overlap is as follows. In general a later 
placement of a pair in the ordering, results in a lower value 
for the corresponding jt7,*, and hence a higher conditional 
retention probability when /* = /,. That is, with (1,3) 
first in the ordering, x^/pf = 10/21, which is the condi­
tional retention probability for this pair when/* = (1,3); 
while when (1,3) is third in the ordering, x,3/pj > 1 
and this pair is retained with certainty. Now the conditional 
retention probability for the pair (2,3) when/* = (2,3) 
also increases to 1 when (2,3) is moved from first to third 
in the ordering, but the increase is only from 20/21, and 
hence the original ordering in Table 3 produces a higher 
expected overlap than the alternative ordering. 

Thus, as this example illustrates, the goal of the ordering 
is to place pairs earlier in the ordering that have a relatively 
high conditional retention probability even with an early 
placement. To obtain the desired ordering of the pairs of 
integers, an order ing/ ( l ) , . . . , / ( « ) of { 1 , . . . , «) will 
first be obtained by recursion. Then corresponding to each 
k = I, ..., n - I, an ordering g^(l) , ...,gk{n - k) 
of {! , . . . ,«) ~ ( / ( I ) , . . . , / (A: ) ) will be constructed 
by recursion. A linear ordering of the distinct pairs in 
( ! , . . . , « ) would then be determined as follows. Each 
such pair can be represented uniquely as an ordered 
pair {f{k), gk{e)) for some k € ( 1 , . . . , « - 1) , 
f€ ( 1 , . . . , « - A:).A second pair representable in the 
form {f{k'), gA^')) precedes {f{k), g^(f)) if and only 
if either k' <k,or k' = A: and f' < f. To illustrate, for 
the example just considered it will be shown later that 
/ ( I ) = 2 , / ( 2 ) = 3 , / ( 3 ) = l , g , ( l ) = 3 , g,(2) = 1, 
^2(1) = 1, and hence the ordering of the pairs is (2,3), 
(2,1), (3,1). Both the/ordering and the g^ ordering will 
be constructed to meet the goal stated at the beginning of 
this paragraph. 

To obtain the order ing / ( I ) , ...,f{n), recursively 
define/(A:), k = 1, ..., n,hy choosing/(Ar) € T,, 
satisfying 

^f(k)/p}1l) = max [iri/pl'^:ii T,], 

where 

r , = (1, ...,n], T, = T,_i ~ {f{k - D ) , 

k^2,...,n, pl''^^P{i(iI and I C T/,), 

k = I, ...,n, / € T„. (3.7) 

Since/?,''* = /?,, the ordering just defined corresponds 
to placing first a PSU with the greatest value of x,/A*-
For all k, p}(^) is the probability that/(A:) was in / and 
none of the ^ - 1 elements preceeding f{k) in the / 
ordering were in /, and hence/j/f^') is the probability that 



Survey Methodology, December 1995 153 

an attempt is made to retain Af^k:) in the new sample 
either as the first member of an ordered pair of initial 
sample PSUs or as the only initial sample PSU in S. Gener­
ally, the larger x/(^) //?/f<,') is, the greater the probability 
that this attempt would be successful. Thus, the moti­
vation for the / ordering of the individual PSUs is the 
analog of the motivation for the ordering of the pairs of 
PSUs that we previously discussed. 

It remains to explain how to compute/?,'*' for A- > 2. 
To this end, let r denote the number of initial strata with 
PSUs in common with Sand letF„, a = 1, .. .,r, denote 
a partition of ( 1 , . . . , « ) such that / andy are in the same 
P„ if and only if ̂ , and Aj were in the same initial stratum. 
Then let 

p;,{T) = P{I n F^ C T), a = I, ...,r, 

TC ( 1 , . . . , « ) , (3.8) 

Pio,{T)^P{iiI and in F^CT), a^l,...,r, 

TC ll,...,n], / € P „ n T, (3.9) 

and observe that 

Pa{T) = I - ^ A + X; Pij, (3.10) 
/6F„-r i.JiF„~T 

i<J 

Pi'AT) = Pi- YI PiJ^ 
JiF„~T 

(3.11) 

and finally, as established in Ernst and Ikeda (1994), 

r 

Pi^'^ = Pi'Un) Ylpi{T,), k = l,...,n. 
1=1 

HF^nri,. (3.12) 

Next, for each A: = 1, . . . , « - 1, the ordering g^(f), 
f = 1, . . . , n - A:, is recursively defined by choosing 
gk{0 € 7\f satisfying 

'^f(k).gk(t)'P%).gk(l) = ^^^[•^f(k),j/P%),j--j (i Ti,(], 

where 

T,i = ( 1 , . . . , « ) ~ {f{l),...,f{k)], 

Tkt = T-Mf-i) ~ {Sk{(- D ) , (=2, ...,n - k, 

m = T,i U {f{k)\, i=l, ...,n - k, 

Pflli.j = P(f{k), 7 € / and / C 7?f), 

i^ I, ...,n - k, jiT„i. (3.13) 

Note that/?/(',(.),y is thus the joint probability that/(A:) 
is the first integer in the/ordering in /, that none of the 
first e - 1 integers in the g^ ordering are in /, and that 
j € / . Consequently, Pflk),g,^(() is the probability that 
/* = (/(A:),gt(f)). Furthermore, if/, = {f{k),g„{l)] 
then/7,* - Pf}k),gi^(,i), and hence the choice of g<.(f) results 
in the largest value of -'''/{k),g).(i)/pT among the elements 
in Tifi in accordance with the previously stated goal for the 
ordering of the pairs of PSUs. 

To compute pj^/i^j, it is established in Ernst and Ikeda 
(1994) that iff{k) € F^,j € F^, then 

P%)J = Pf(k)j n ^ ' ' ^ ^ - ^ ' ) if a = ^, 
t=i 
l7ia 

(3.14) 

= Pf\k).c{Th)Pj'&{Tti) n P!(Ttt) if « ?̂  iS. 
1=1 

tl^a.ff 

We illustrate the computations used in obtaining the 
ordering for the example that we have been considering. 
First note t h a t / ( 1) = 2 since the largest value of x,/p, 
occurs for / - 2. Next we find g i ( l ) which, since 
/ ( I ) = 2, is they 6 (1,3) with the maximum value of 
•^2j/piP- To find t h i s / first let P„ = \a], a = 1,2,3, 
and note that 7^, = {1,2,3). From (3.14) with a = 2, 
i8 = 1, it then follows that 

/7i," =/?i'2( 1,2,3)/?,",(1.2.3)/73'( 1.2.3) =p2Pi • 1 = .45, 

and similarly it can be obtained that/j^i' = .525. Hence 
gi{l) = 3, since .5/.525 > .3/.45. Therefore, the first 
pair in the ordering is ( / ( I ) , ^ , (1)) = (2,3). Then 
gi (2) = 1, since 1 is the only integer remaining to be used 
in the gi ordering, and consequently the second pair in 
the ordering is {/(I) , g,(2)) = (2,1). It is not really 
necessary to determine/(2) , since (1,3) is the only 
remaining pair, and hence the last pair, but to further 
illustrate the computations, observe that T2 = (1,3), 
/7,<2' =/7,",{l,3)/72'(l,3)/;3'{l,3) =pi{l -P2) • 1 = .15 
by (3.12), and similarly/73<2' =/?3(l - P2) • I = -175. 
Hence/(2) = 3, since .7/ . 175 > .5 / . 15. Consequently, 
^2(1) = l , / ( 3 ) = 1. 

3.1.3 Computation oi pf and c,y 

Next we explain the computation of the pf's. If /, 
consists of the pair of integers /, = [f{k), g^{()) then, 
as previously noted, p* = p}lk),g^{t)- Consequently, pf 
can be computed from (3.14) withy = gyt(0-

If /, is a singleton set (/) for some / € P„, then, as 
established in Ernst and Ikeda (1994), 
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Pf ^P,a{{n) n ^"(0)- (3.15) 

« = i 

Finally, if /, = 0 , then 

r 

Pf = n ^"(0̂ -
u = l 

It remains only to explain how to compute the c,y's 
which, by (3.5) and (3.6), reduces to computing bu, 
i = 1, . . . , (2) + « + 1, ^ = 1, . . . , « . 

To compute 6,-,, observe that 

bi, = 0 if /,• = 0 , 

= 1 if /, = (v) and / = v, 

= 0 if /, = (v) and t 9^ v, 

while if/, = (/(AT), g„{e)] andf{k) € P„, gt(f) € Z^̂ , 
/ 6 F..y, then 

fe,v = 1 if / =f{k) or / = gM, (3.16) 

= 0 if / «? Tiff, (3.17) 

= 0 if t ^Tki ~ {gk{n] 

and 7 = a = (3, (3.18) 

-^;toL^^ if , g r « ~ (5,(0) 

and 7 = a ?£ j3, (3.19) 

3.2 Modifications of Reduced-Sized Procedure for 
Other Designs 

In general, consider any w '-PSUs-per-stratum without 
replacement initial design and any w-PSUs-per-stratum 
without replacement final design, where m', maxe any 
positive integers. Although the reduced-size procedure in 
Section 3.1 was only presented for the casern = m' -2, 
it is actually applicable for any m,m' .'We will sketch the 
modifications necessary when m 9^ 2 or m' ^2. 

A different value of m' only requires modification of 
some of the computations. For example, if m = 2, but 
m' jt 2, then the computations for/?/*', pflk),j and c,y 
would be different but their definitions would not change. 

If m = 3, then, regardless of the value of m ' , the set 
of all distinct triples, instead of pairs, of integers in 
(1, . . . , n ) , is ordered. If / consists of at least three 
integers, then the new selection probabilities are conditioned 
only on the first listed triple in the ordering contained in 
/. Otherwise, the new selection probabilities are conditioned 
on /itself. Thus the new selection probabiHties are condi­
tioned on (3) -I- (2) + « + 1 events. 

To obtain the desired ordering of the triples of inte­
gers, first the order ings/( l ) , . . . , / ( « ) andg4^(l), . . . , 
gk{n — A:) are constructed exactly as in the case w = 2. 
Then, corresponding to each A:= 1 , . . . , « - 2, f = l , 
. . . , n - A: - 1, an ordering /j;tf(l), . . . , / ? « ( / ? - A: - f) 
of ( 1 , . . . , « ) ~ {/(I), . . . , / (A : ) , g* ( l ) , . . . ,g*(f ) ) i s 
constructed in a manner similar to the construction of 

g*(l) , -••,gk{" - A:). For example, in defining/!,tf(v) 
for V > 2,/7//^)jin the definition ofgyt(0 is replaced by 

P{f{k),gk(i),J^I and I C {Ttt V) gk{i)) ~ 

( M D , ...,h,i{v - 1))) . 

^ f''^,,, if t^n,- {gk{n] 
Pgk(t).e(Fkt) 

and y = p 9^ a, (3.20) 

Pt'Unt) : _ t^ty 

p;{m 
if / € / - „ - \gk{i)] 

and Y ?£ a, 7 ?f ^. (3.21) 

In Ernst and Ikeda (1994) it is demonstrated how 
(3.16)-(3.21) were obtained. 

In the actual implementation for the SIPP application, 
modifications of the reduced-size procedure were needed 
to overlap the 1990s SIPP design with the 1980s SIPP 
design. The modifications were necessary because the PSU 
definitions in the 1980s and 1990s designs were not iden­
tical. As a result, some PSUs in the 1990s design could 
intersect more than one 1980s design PSU. These modifi­
cations are detailed in Ernst and Ikeda (1994). 

A linear ordering of the distinct triples in {1, . . . , « ) 
is then determined by representing each triple uniquely as 
an ordered triple of the form {f{k), gk{(), /J«(v)). A 
second triple {f{k'), gki^'), hk'i'{v')) precedes the first 
if and only if either A:' < A:, or A:' = A: and f < f, or 
k' — A:andr = f a n d v ' < v. 

For m > 4, ordered /w-tuples would be defined in a 
similar manner and the new selection probabilities condi­
tioned on ( ^ ) -H ( ^ " 1) . . . -f « + 1 events. 

For m — 1, the new selection probabilities are conditioned 
on the first member of the ordering / ( I ) , . . . , / ( / ? ) in 
liflpi 0 , o ron 0 i f / = 0 . 

Note that if w > w ' , it is possible that at least some 
ordered m-tuples cannot be subsets of /, in which case 
all such subsets should be excluded from the ordering 
and the set of events on which the new selection proba­
bilities are conditioned. If no w-tuple can be a subset of 
/, then the new selection probabilities are conditioned on 
/ itself. 
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It is not necessary to limit the initial events used in the 
transportation problem to subsets of/of size m or less. For 
example, if w = 2and(3) + (2) + « + 1 is sufficiently 
small, then a procedure conditioned on subsets of three 
or less can be used, resulting in a generally higher expected 
overlap. Conversely, if (^ ) + ( ^ !!. j ) . . . -I- « -I- 1 is 
too large, the new selection probabilities can be condi­
tioned on subsets of /of size m" or less, where w" < m, 
although with a generally smaller expected overlap. 

3.3 Relationship Between Expected Overlap for the 
Reduced-Size Procedure, the Optimal Procedure 
and Independent Selection 

Let Q/, QR, QQ denote the expected overlap for the 
independent selection, the reduced-size procedure, and the 
optimal procedure, respectively. In Ernst and Ikeda (1994) 
the relationship between these quantities is explored. We 
briefly summarize here some of the results. 

It is established that Q/ < Q/j < fig for any m, m' 
where w, m' are as in Section 3.2. In addition, for the 
case that we have been focusing on, /n = m' — 2, lower 
bounds are established on Q/? and upper bounds are 
established on QQ and Qo ~ ^R-

For example, let H2 denote the probabiUty that there 
are at least two elements in / , ^, denote the probability 
that / is a singleton set, and 

X - min[min (x, / / ? , : / = 1 , . . . , /J ), 

min[-Kij/Pij\ i,j = I, ..., n, i 9<^ j], l]. 

Then QQ ^ 2^2 + l^i, ^R ^ H2l^2 + Ati/2), and 
fio - fi;? ^ 2(1 - \),ji2 + (1 - X/2)^i. 

Unfortunately these bounds are not always very tight. 
However, in certain circumstances they are useful. For 
example, if x,y > /?,y for all i,j and the probability is 1 
that there is at least two elements in /, then it follows from 
these bounds that ^R = QQ = 2. 

Finally, an example is presented to illustrate a worst 
case situation for QR in relation to QQ for the case m, 
m' == 2. It shows that fio may equal 2, while fi/? is arbi­
trarily close to 0. Thus, at least in theory, the reduced-size 
procedure can be ineffective. However, in practice, as will 
be shown in the next section, QR is much closer to Qo than 
to fi/, at least for the SIPP application. 

4. APPLICATION OF REDUCED-SIZE 
PROCEDURE TO SIPP 

Results from simulations of the SIPP overlap, done 
prior to production for research and testing purposes, are 
presented, as well as results from the actual SIPP produc­
tion overlap. Further details are given in Ernst and Ikeda 
(1992b, 1994). 

In the implementation of the reduced-size overlap 
procedure, minimum cost flow (MCF) optimization soft­
ware, written by Darwin Kingman and John Mote at the 
University of Texas at Austin, was used to solve the 
required transportation problem. A FORTRAN program 
was written to produce input to and process output from 
the MCF software. 

To test the software prior to production, the program 
was used to overlap two stratifications, based on 1970 
census data, of the SIPP Midwest region with the actual 
1980s design stratification for the SIPP Midwest region. 
(At the time of this test, 1990 census data was not yet 
available.) The 1970-based stratifications were produced 
by stratifying the 1980s SIPP noncertainty PSUs in the 
Midwest region using 1970 data. Both of the 1970-based 
stratifications partitioned the noncertainty PSUs into 
31 strata, using different sets of stratification variables. 
The stratifications based on 1980 and 1970 data were 
treated as "initial" and "final" stratifications for the 
purposes of the overlap algorithm. 

In the actual implementation, as noted in Section 3.1 
and detailed in Ernst and Ikeda (1994), a modification of 
the reduced-size procedure was used to overlap the 1990s 
SIPP design with the 1980s SIPP design, because the PSU 
definitions in the 1980s and 1990s designs were not iden­
tical. The modified reduced-size procedure was used to 
overlap 103 final (1990s design) nonselfrepresenting strata 
in SIPP. 

The expected overlap was calculated for the reduced-
size maximum overlap algorithm, for independent selection 
of final PSUs, and for an upper bound to the expected 
overlap for the optimal procedure. An upper bound was 
calculated instead of the actual optimal overlap, since the 
optimal overlap cannot be calculated for the larger strata. 
For the simulation, the upper bound used is the one stated 
in Section 3.3, ^2 + 2/ii, while for the production SIPP, 
a different upper bound, described in Ernst and Ikeda 
(1994), was required because the PSU definitions in the 
1980s and 1990s were not identical. 

The results from the two final stratifications in the 
simulation were generally similar to each other. Combining 
the results from both stratifications, the mean expected 
overlap for this set of 62 strata was 1.552,1.569 and 0.480 
PSUs/stratum for the reduced-size procedure, the upper 
bound to the optimal overlap and independent selection 
respectively. For the actual SIPP implementation, the 
corresponding number was 1.523,1.647 and 0.582, respec­
tively, while the corresponding expected number of PSUs 
overlapped for the 103 strata was 156.9, 169.6 and 59.9, 
respectively. Thus, in both the simulations and the pro­
duction SIPP, the reduced-size procedure yielded results 
reasonably close to the upper bound for the optimal 
procedure. 

The reduced-size algorithm took a fairly short time to 
run on most strata. The CPU times in the simulation for 
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final strata with different numbers of PSUs are given 
below. The reduced-size program was run on a Solbourne 
5/605 computer. The median number of PSUs in a 
stratum, for the entire group of 62 strata, was 17 PSUs. 
The 68 PSUs stratum was the largest stratum. 

Table 6 
CPU Times for Reduced-Size Procedure 

Number of PSUs 
CPU Time 

(hrs:min:sec) 

18 

37 

49 

68 

0:36 

5:44 

24:05 

2:23:43 

We also calculated for the actual SIPP implementation, 
that of the 103 final strata overlapped by the modified 
reduced-size procedure, 41 would not have run under the 
optimal procedure. This calculation was based on our 
estimate that the maximum size transportation problem, 
in terms of number of variables, that could have run in 
production was 4 x 10*. The number of variables for the 
optimal procedure was less than 4 x 1 0 * for all 56 strata 
for which « < 14, but exceeded this limit for all but 6 of 
the 47 strata with « > 15, including two with « = 15. The 
maximal size of the transportation for the optimal proce­
dure among the 103 strata occurred for a stratum with 
n - 46, for which there were 3.61 x lO'^ variables. In 
contrast, there were 1.03 x 10* variables for the modified 
reduced-size procedure for this stratum. 

Another question of interest is the overlap effectiveness 
of the reduced-size procedure in comparison with the 
overlap procedure of Ernst (1986). In general it is believed 
that the reduced-size procedure should produce a higher 
overlap in situations when both are usable, since the 
reduced-size procedure makes use of the stratum-to-
stratum independence in the initial design. However, 
although the procedure in Ernst (1986) is applicable to 
two-PSU-per-stratum designs, no computer program has 
ever been written at the Census Bureau (or anywhere else 
that the authors are aware of) to implement this procedure 
for such designs, since there has not yet been a production 
application for this program. Consequently, we cannot 
make a direct comparison of these two methods on the 
same data. However, a crude comparison can be made 
from the results of the reduced-size overlap procedure for 
SIPP data and the results of the overlap using the proce­
dure in Ernst (1986) for the overlap of 1990s CPS and 
NCVS designs with their respective 1980s designs. (Both 
the 1980s and 1990s designs for CPS and NCVS are one-
PSU-per-stratum designs.) 

For CPS, the overlap procedure resulted in an average 
increase in expected overlap, in comparison with indepen­
dent selection, of .26 PSUs/stratum, and for NCVS the 
overlap procedure resulted in an average increase in 
expected overlap of .30 PSUs/stratum. This compares 
with an increase of .94 PSUs/stratum for the reduced-size 
procedure over independent selection for SIPP. If the two 
overlap procedures are equally effective, then one might 
expect that the increase in overlap per stratum for SIPP 
would be roughly twice as large as for CPS and NCVS, 
since SIPP has a two-PSUs-per-stratum design. By this 
standard, the reduced-size procedure program performs 
better than the procedure in Ernst (1986). However, since 
the stratifications were quite different for these three 
surveys, the validity of this comparison is open to question. 

For the example considered in Sections 2 and 3, a valid 
comparison of the different overlap procedures can be 
made, since the expected overlap values for the procedure 
in Ernst (1986)), 1.625, was easily calculated by hand. For 
the reduced-size procedure the corresponding overlap 
value is 1.725, and for the optimal procedure it is 1.735. 

CONCLUSIONS 

The reduced-size overlap procedure presented in this 
paper meets its two key objectives in practice. It reduces 
the size of the transportation problems to a usable size, 
as evidenced both by the size of the transportation problem 
in the formulation (3.1)-(3.3), and the fact that it has 
actually been implemented in the redesign of a major 
survey. In addition, the procedure accomplishes the size 
reduction while yielding nearly optimal overlap, at least 
for the SIPP application. It can only be used when the 
PSUs in the initial design are selected independently from 
stratum to stratum, but when this condition is met we 
believe it is the overlap procedure of choice for large strata. 
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How Prenotice Letters, Stamped Return Envelopes 
and Reminder Postcards Affect Mailback Response Rates 

for Census Questionnaires 
DON A. DILLMAN, JON R. CLARK and MICHAEL D. SINCLAIR' 

ABSTRACT 

In a 1992 National Test Census the mailing sequence of a prenotice letter, census form, reminder postcard, and 
replacement census form resulted in an overall mailback response of 63.4 percent. The response was substantially 
higher than the 49.2 percent response rate obtained in the 1986 National Content Test Census, which also utilized 
a replacement form mailing. Much of this difference appeared to be the result of the prenotice - census form -
reminder sequence, but the extent to which each main effect and interactions contributed to overall response was 
not known. This paper reports results from the 1992 Census Implementation Test, a test of the individual and 
combined effectiveness of a prenotice letter, a stamped return envelope and a reminder postcard, on response rates. 
This was a national sample of households (n = 50,000) conducted in the fall of 1992. A factorial design was 
used to test all eight possible combinations of the main effects and interactions. Logistic regression and multiple 
comparisons were employed to analyze test results. 

KEY WORDS: Mail survey; Response rates; Multiple comparisons; Logistic regression. 

1. INTRODUCTION 

A decline of 10 percentage points from 75 to 65 in the 
mailback response rates for the 1990 U.S. Decennial 
Census has stimulated the conduct of research aimed at 
finding ways to improve response. Each percentage point 
gain in response has the potential for saving approximately 
$16 million in personal visit enumeration costs (Miskura 
1992). From an earlier experiment it was learned that 
respondent-friendly construction and asking somewhat 
fewer questions than posed in the 1990 Census short ques­
tionnaire improved mailback response rates by 8.0 per­
centage points (Dillman, Clark and Sinclair 1993). An 
experimental census form with these features was returned 
by 71.4 percent of households, compared to 63.4 percent 
of those which had received the 1990 Census short form 
as a control. Response rates for both of these forms were 
substantially higher than had previously been obtained in 
similar non-census year tests. For example, in the 1986 
National Content Test which utilized a questionnaire 
equivalent to the 1990 Census short form, a 49.2 response 
rate was obtained. It was hypothesized that part of the high 
response observed in the recent experiment was due to a 
multiple contact implementation strategy which consisted 
of a prenotice letter, a reminder postcard and a replace­
ment questionnaire. 

The purpose of this paper is to report resuhs of the 1992 
Implementation Test (IT), a test designed to determine the 
relative and combined contribution to mailback response 
of the prenotice letter and reminder postcard used in the 

previously reported experiment (Dillman et al. 1993). Also 
included in the test is the effect of including a stamped return 
envelope {vs. business reply) with the mailed census form. 

The 1990 U.S. Decennial Census required surveying 
over 100,000,000 households. Cost considerations alone 
suggest the importance of learning the extent to which each 
of these three response-inducing techniques might be 
employed in improving household response. Although 
past research has suggested that each of the three elements 
can be important to improving response, little information 
is available on potential interactions among them. The 
study was designed in such a way as to explore the extent to 
which their combined uses are additive and/or interactive. 

1.1 Past Research 

Numerous studies have confirmed that the most impor­
tant determinant of overall response to mail surveys is the 
number of contacts {e.g., Scott 1961 and Heberlein and 
Baumgartner 1978). Both prenotices and reminders have 
been demonstrated as being effective promoters of response 
{e.g., Kanuk and Berenson 1975, Linsky 1975 and Fox et al. 
1988). However, past research has provided minimal insight 
into their relative importance as inducers of response. 

Past research is generally consistent in suggesting that 
inclusion of a stamped return envelope {vs. a business reply 
envelope) improves response (Scott 1961, Kanuk and 
Berenson 1975, Duncan 1979, Harvey 1987 and Fox et al. 
1988). A noteworthy exception is a regression analysis of 
previous studies by Heberlein and Baumgartner, which 
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found no significant effect for the inclusion of stamped 
return envelopes (1979). A review study by Armstrong 
and Luske reported 20 studies in which alternatives to 
business reply envelopes had been tested (1987). In each 
of these comparisons the absolute level of response to the 
alternative was significantiy higher in 15 of the 20 cases, 
by an average of 9.2 percentage points. Six studies of 
metered marks vs. envelopes with real stamps were 
reported. On average they showed a 3.4 percentage point 
advantage for stamps. Finally, four studies in which a 
constellation of response inducing factors was used to 
insure high overall response rates showed a 2-4 percentage 
point advantage for stamped over business reply envelopes 
(Dillman 1978). 

The three response stimuli to be tested here are among 
the top eight techniques reported consistently in the research 
literature as factors which improve mailback response 
rates. Others include financial incentives, special postage, 
choice of sponsor, personalization and interest (or salience) 
(Dillman 1991). 

Two of these eight factors, financial incentives and 
special postage {e.g., certified or two day priority mail) 
were judged impractical for use in a census of more than 
100,000,000 households. A third factor, sponsorship by 
the U.S. Bureau of the Census, was considered desirable 
from the standpoint of encouraging response. A fourth 
factor, respondent interest, or question salience could not 
be manipulated in the sense that the survey questions are 
specified by federal laws. The fifth factor, personalization 
of correspondence was limited by the fact that Census 
forms cannot be addressed to individuals and are neces­
sarily sent to only household addresses. By examining the 
individual and combined response effects of the prenotice, 
stamped return envelope and reminder, we hoped to learn 
whether the use of one or more of these elements would 
substitute for another, therefore making it possible to 
improve response at less cost. 

1.2 Design and Integration of Treatment Elements 

Certain features of the census form mailout packet 
suggest that it may be overlooked or ignored by those to 
whom it is sent. By necessity it is sent only to household 
addresses; names cannot be used to address any of the 
letters. Accurate processing of returned questionnaires 
requires identification of the household address on the 
questionnaire itself. Separately addressing an outside 
envelope, letter and questionnaire and being sure that the 
correct components are inserted into the appropriate 
envelope presents a serious quality control problem in a 
large census. Therefore it is considered important to print 
addresses only on one of the pieces that has to be merged 
together for the mailout package. Consequently, a win­
dowed envelope through which the address on the ques­
tionnaire can be seen is used to deliver it. 

The combined effect of the inabiUty to use resident 
names plus size and outward appearance of the windowed 
envelope suggest that it contains unimportant material or 
perhaps, "junk mail." Also, research on nonresponse to 
the 1990 Census revealed that some people did not recall 
receiving their census questionnaire in the mail, or saw it, 
but did not open it, both of which might have resulted 
from a mass mailing appearance (Kulka et al. 1991). 

In this experimental test the prenotice letter and re­
minder postcard were designed to bring attention to the 
envelope containing the census form. This was accom­
plished in five ways. First, the prenotice was developed as 
a letter, and the reminder as a postcard. It was reasoned 
that people were more likely to look at two pieces of mail 
which appeared different from one another. The letter 
format was chosen for the prenotice in order to save the 
more convenient postcard format for the reminder. 

Second, the prenotice letter consisted of a letter from 
the Director of the Census Bureau with the notation "To 
the residents a t" and the address imaged onto stationery 
in the normal inside address position. Our goal was to 
communicate that the census questionnaire which would 
soon arrive was specifically for people at that address. This 
address also doubled as an outside address, being visible 
through a windowed envelope, thereby avoiding the 
quality control concern noted for the census form mailing 
of merging separately addressed components. 

Third, the prenotice was scheduled to be delivered a few 
days before the envelope containing the census form itself, 
and the reminder was scheduled to arrive just a few days 
afterwards. The mailout dates were September 21st, 24th, 
and 29th, respectively. It was reasoned that to be effective, 
a reminder (without a replacement questionnaire) should 
arrive within a few days of the questionnaire, before 
normal household cleaning would have resulted in un­
opened mail being thrown out. 

Fourth, the wording of the prenotice, "Within the next 
few days you should receive. . ." and the reminder, "A 
few days ago you should have received..." were designed 
to encourage recipients to look for the census form. Fifth, 
the use of the Director's letterhead stationary and white 
postcard stock which showed the seal of the Department 
of Commerce above the reminder message, were aimed at 
communicating that the census questionnaire was from the 
government and not from some other group attempting 
to emulate a governmental appearance, as is sometimes 
done by noting, e.g., "this is your official notice." 

The stamped return envelope's positive influence, if 
any, on response may result from encouraging trust that 
the request is legitimate and important (otherwise why 
would the sender "waste" a stamp, which could be torn 
off and used for another purpose and/or a recipient's 
reluctance to throw away something of value, i.e., an 
uncanceled stamp). The prenotice, and to some extent the 
reminder, could enhance the stamp's effect by getting the 
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envelope containing the census form opened. Also, once 
opened, the awareness of an uncancelled stamp could 
discourage throwing away the contents so that the effect 
of the reminder is enhanced. 

In order for the prenotice, stamped return and reminder 
to mutually support one another, it was deemed important 
that first class mail be used. Had bulk rate been used, and 
the mailings been closely spaced, it was likely that in some 
households a later mailing would have arrived before an 
earlier one. 

In sum, this test involved more than simply juxtaposing 
three separate test elements from the literature. The 
elements were operationalized in ways that improved the 
likelihood that each would augment effects of the others, 
and be feasible for use in large scale mailings. Practically, 
we hoped to learn whether one or more of the elements 
might be eliminated without a significant loss of response, 
thus showing how to save costs for a census mailing. 

2. EXPERIMENTAL DESIGN 

A factorial design, consisting of all eight of the possible 
combinations of the three main effects, was used for the 
experiment. The treatments were as follows: 

1. None (control), 
2. Prenotice letter only, 
3. Stamped return envelope only, 
4. Reminder postcard only, 
5. Letter plus stamped return, 
6. Stamped return plus reminder, 
7. Letter plus reminder, and 
8. Letter plus stamped return plus reminder. 

2.1 Sample Design 

The sampling universe consisted of all housing units in 
the questionnaire mailback areas identified by Census 
Bureau address files. The 449 district office (DO) areas for 

the 1990 Census were selected as the geographic units for 
defining the strata for the test. Two strata were defined. 
Due to the high correlation between the minority rate 
(minority is defined as including all Black and Hispanic 
classifications) and the 1990 Census mail response rate, 
the stratification objectives were met by ranking the DOs 
by their percent minority. DOs with a combination of high 
minority (Black and/or Hispanic origin) population and 
low 1990 questionnaire mail response rates were defined 
as "low response areas" (LRA) and made up the first 
stratum. The remaining DOs were classified as "high 
response areas" (HRA) and constituted the second stratum. 

The first stratum, consisting of 67 DOs, had a combined 
minority population of about 64 percent and encompassed 
about 11 percent of all housing units in the census mailback 
areas. The second stratum of 382 DOs had a combined 
minority population of about 15 percent. The HRA stratum 
had a cumulative mail response rate in the 1990 Census of 
approximately 10 percentage points higher than the LRA 
stratum. 

A sample of 50,000 housing units was selected with 
25,000 units in each stratum. The LRA stratum was over-
sampled to concurrently study factors related to differential 
undercount, which falls outside the scope of this paper. 
Each stratum was divided into eight equally sized panels 
to test the eight different treatments. A systematic sample 
of 3,125 housing units was selected from each panel/ 
stratum combination. Once a housing unit was selected, 
the seven subsequent units were also selected. The resulting 
households in each of the eight unit clusters were randomly 
allocated to a panel. Hence, all eight neighbors got differ­
ent treatments. The sample was clustered to reduce the 
sampling variance in the panel-to-panel comparison. 

The sample size selected for this study was developed 
by extensive data simulations which indicated that the 
50,000 unit sample would be sufficient for detecting a 
minimum of a 3 percent difference in all pairwise treatment 
comparisons. 

Table 1 
Implementation Test Final Rates National and Stratum Level Estimates 

Treatment 

1. Control 
2. Prenotice Letter Only 
3. Stamped Return Envelope Only 
4. Reminder Card Only 
5. Letter and Stamp 
6. Stamp and Reminder 
7.-Letter and Reminder 
8. Letter, Stamp and Reminder 

Estimate 

50.0 
56.4 
52.6 
58.0 
59.8 
59.5 
62.7 
64.3 

Response 

National 

Standard Error 

0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

Rate {%) Estimates and Standard Errors {%) 

1990 High Response Areas 

Estimate Standard Error 

51.9 
58.6 
54.5 
60.2 
62.1 
61.8 
65.0 
66.5 

0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 

1990 Low 

Estimate 

36.3 
40.5 
37.9 
42.0 
43.0 
42.6 
45.4 
47.8 

Response Areas 

Standard Error 

0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
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3. FINDINGS 

The major results from this study are presented through 
two analytical methods, first through multiple pairwise 
comparisons of treatment means and secondly through 
logistic regression. See Appendix for estimation proce­
dures. Both methods provide consistent results. The overall 
response rates and standard errors for each of the treat­
ments at the national and stratum levels are presented in 
Table 1. They range from 50.0 percent for the control 
group to 64.3 percent when all three main effects are 
applied together. 

3.1 Multiple Comparisons of Mail Response Rates 

Twenty eight comparisons are presented in Table 2 
corresponding to all possible pairwise comparisons of the 
8 treatments. Given the space restrictions in the table, the 

following abbreviations were used: C = control, L = pre­
notice letter, S = stamped return envelope, R = reminder 
postcard. 

The first three comparisons in Table 2 illustrate the 
improvements in response that main effect components 
added to response individually above and beyond the 
control treatment. The estimated improvement in response 
due to the prenotice letter was 4.2 percent in the LRA 
stratum, 6.7 percent in the HRA stratum and 6.4 percent 
at the national level. The estimated improvement due to 
the reminder card was 5.7 percent in the LRA stratum, 
8.3 percent in the HRA stratum and 8.0 percent at the 
national level. All of these improvements are significant. 
Thus, the principal finding of this study is that both the 
prenotice letter and the reminder card increased mail 
response at the national and stratum level. No significant 
improvements were noted for the stamped return envelope 
at the national or stratum level. 

Table 2 

Differences in Response Rates - Each Component in the Presence of Another Component 

Experimental 
Comparisons 

1. L - C 
2. S - C 
3. R - C 
4. LS - C 
5. SR - C 
6. LR - C 
7. LSR - C 
8. L - S 
9. R - L 

10. R - S 
11. L S - L 
12. SR - L 
13. L R - L 
14. LS - S 
15. S R - S 
16. LR - S 
17. LS - R 
18. S R - R 
19. LR - R 
20. LSR - L 
21. LSR- S 
22. LSR - R 
23. LSR - LS 
24. LSR - SR 
25. LSR - LR 
26. SR - LS 
27. LR - LS 
28. LR - SR 

Difference 

6.4 
2.5 
8.0 
9.8 
9.5 

12.7 
14.2 
3.8 
1.6 
5.5 
3.4 
3.1 
6.3 
7.3 
6.9 

10.1 
1.8 
1.5 
4.7 
7.9 

11.7 
6.2 
4.4 
4.8 
1.6 

- 0 . 3 
2.9 
3.2 

Response Rate Differences {"Io) and 90% Confidence Intervals (C.I 

National 

90% C.I. 

3.3 to 9.5* 
- 0 . 5 to 5.6 
4.9 to 11.1* 
6.7 to 12.9* 
6.4 to 12.5* 
9.6 to 15.7* 

11.2 to 17.2* 
0.8 to 6.9* 

- 1 . 5 to 4.8 
2.4 to 8.5* 
0.3 to 6.5* 

0.03 to 6.2* 
3.2 to 9.3* 

4.2 to 10.3* 
3.8 to 10.1* 
7.1 to 13.2* 

- 1 . 3 to 4.9 
- 1 . 6 to 4.5 

1.6 to 7.7* 
4.8 to 10.9* 
8.7 to 14.7* 
3.2 to 9.3* 
1.4 to 7.5* 
1.7 to 7.8* 

- 1 . 4 to 4.5 
- 3 . 3 to 2.7 
- 0 . 2 to 6.0 

0.2 to 6.2* 

1990 Low Response Areas 

Difference 

4.2 
1.7 
5.7 
6.8 
6.4 
9.2 

11.5 
2.5 
1.5 
4.1 
2.6 
2.2 
5.0 
5.1 
4.7 
7.5 
l.I 
0.7 
3.5 
7.3 
9.8 
5.8 
4.7 
5.1 
2.3 

- 0 . 4 
2.4 
2.8 

(LRA) 

90% C.I. 

0.9 to 7.5* 
- 1 . 7 to 5.0 

2.4 to 9.1* 
3.4 to lO.l* 
3.0 to 9.7* 

5.8 to 12.5* 
8.2 to 14.8* 

- 0 . 9 to 5.9 
- 1 . 9 to 5.0 

0.7 to 7.5* 
- 0 . 9 to 6.0 
- 1 . 3 to 5.6 

1.5 to 8.4* 
1.7 to 8.5* 
1.2 to 8.2* 

4.1 to 11.0* 
- 2 . 4 to 4.5 
- 2 . 8 to 4.1 

-0 .02 to 6.9 
3.9 to 10.7* 
6.4 to 13.3* 
2.3 to 9.3* 
1.2 to 8.2* 
1.7 to 8.6* 

- I . l to 5.8 
- 3 . 8 to 3.1 
- 1 . 1 to 5.9 
- 0 . 6 to 6.2 

.) 

1990 High Response Areas 

Difference 

6.7 
2.7 
8.3 

10.2 
9.9 

13.2 
14.6 
4.1 
1.6 
5.6 
3.5 
3.2 
6.4 
7.6 
7.2 

10.5 
1.9 
1.6 
4.9 
7.9 

12.0 
6.3 
4.4 
4.7 
1.5 

- 0 . 3 
2.9 
3.3 

(HRA) 

90% C.I. 

3.2 to 10.2* 
- 0 . 8 to 6.1 
4.9 to 11.7* 
6.7 to 13.7* 
6.5 to 13.3* 
9.7 to 16.6* 

11.3 to 18.0* 
0.6 to 7.5* 

-1 .96 to 5.10 
2.2 to 9.0* 

0.03 to 7.0* 
- 0 . 3 to 6.6 

3.0 to 9.9* 
4.1 to 11.0* 
3.8 to 10.7* 
7.0 to 13.9* 

- 1 . 6 to 5.4 
- 1 . 8 to 5.0 

1.5 to 8.3* 
4.5 to 11.4* 
8.6 to 15.4* 
2.9 to 9.7* 
1.0 to 7.8* 
1.3 to 8.2* 

- 1 . 8 to 4.8 
- 3 . 7 to 3.1 
- 0 . 6 to 6.4 
- 0 . 1 to 6.6 

A C.I. marked with an * indicates the difference was statistically significant at a = .10 (9-in-10 chance that the C.I.s will include the actual differences). 
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3.2 Logistic Regression Analysis 

A model including components for the stratum, pre­
notice letter, stamp and reminder card including all of the 
interaction terms was evaluated. Modeling was also per­
formed at the stratum level using only parameters for the 
component effects and their interactions. 

The results of the full model analysis indicate that only 
the main effects of the letter and the reminder card along 
with the intercept and stratum term are statistically signifi­
cant in the model. Given these results, additional modeling 
at the national level was accomplished with a reduced 
model including only the stratum main effect, the indi­
vidual components and the component interactions. The 
results of this modeling are presented in Table 3 below. 

Table 3 

Analysis of Weighted Least Squares Logistic Regression 
Modeling Reduced Model, no Stratum by 

Component Interactions 

Model Parameters 

Intercept, JSQ 
Stratum, /Sj 
Letter, 1S2 
Stamp, 183 
Reminder, 184 
Letter/Stamp, ^^ 
Letter/Reminder, /Sg 
Reminder/Stamp, 0-j 
Let/Reminder/Stmp, j3g 

Estimated Parameters and 90% 
Bonferroni Confidence 

Intervals (C.I.) 

Estimate 

- . 6 1 
.738 
.227 
.090 
.291 
.036 

- .054 
- .043 
- .003 

90% C.I. 

- .686 to - .545* 
.689 to .789* 
.130 to .324* 

- .006 to .186 
.194 to .387* 

- .101 to .173 
- .192 to .083 
- .179 to .093 
- .197 to .191 

A C.I. marked by an * indicates the difference was statistically significant 
ata = .10. 

The results of both modelings show that significant 
improvements were realized from the prenotice letter and 
reminder post card, but not from the stamped return 
envelope for the national and within stratum models. 
These results correspond to those presented by the multiple 
comparisons above. None of the interaction terms were 
statistically significant, indicating the effect of the compo­
nents are basically additive in nature. 

4. DISCUSSION AND CONCLUSIONS 

The prenotice letter, stamp and reminder postcard 
individually improved response rates by 6.4, 2.5 and 8.0 
percentage points, respectively. The increase of 2.5 was 
not statistically significant. The effects of the elements 
were also found to be mostly additive, and did not interact 
with one another. In comparison to the control group, the 

combination of letter-stamp improved response 9.8 per­
centage points, the stamp and reminder, 9.5 percent, and 
the letter and reminder, 12.7 percent. All three elements 
together improved response by 14.3 percent. Each use of 
the letter and reminder added significantly to response, but 
the stamp only added significantly when used with a pre­
notice and no reminder. The most important conclusion 
from this experiment was that both the prenotice letter and 
reminder postcard are important to achieving a high 
response and that neither eliminates the effect of the other. 

Although the individual effect (2.5 percent overall) of 
the stamped return envelope is slightly smaller than needed 
for significance, it is of similar magnitude to what has been 
found significant in past research (Armstrong and Luske 
1987; Dillman 1978, 1991). In light of the preponderance 
of past research showing its effectiveness, this technique 
should probably not be completely dismissed as being inef­
fective. It also appears that the stamped return envelope 
relates differently to the prenotice and reminder. When 
used alone with the prenotice, the effect of the stamped 
return is significant (3.4 percentage points), but it is clearly 
insignificant (1.6 percentage points) when a reminder is 
included in the mailout procedures. The reminder compen­
sates for the lack of a stamped return envelope, whereas 
the prenotice appears to amplify its effect. It may be that 
a prenotice alerts people to notice and open the census 
form mailout package, and once opened, people are then 
encouraged to respond by the presence of the stamped 
return envelope. This differential connection to the 
mailings that precede and those that follow, appears not 
to have been examined in past research. A practical impli­
cation for the Census is that if a prenotice letter and no 
reminder is used, a stamped return envelope might add 
significantly to response, but be of less importance if a 
reminder postcard is used, as was done in the last census. 

There are at least two significant barriers to the direct 
application of this research to conduct of the 2000 Census. 
First, it is important to recognize that these tests are being 
done in non-census years. In the past the Census Bureau 
has obtained much lower response rates in non-census 
years than in census years. For example, the 1986 National 
Content Test, obtained only a 49.2 percent response 
employing a replacement questionnaire, while the 1990 
Census without employing a replacement questionnaire, 
achieved a 65 percent response rate. The usual explanation 
for this difference is "census climate," a succinct explana­
tion of the combination of media attention, advertising, 
and cultural sense of participation that seems to build each 
decade during the census year. 

The response rates obtained in our tests with the use of 
the five elements found to increase response are much 
higher than normally obtained in non-census years, but 
are close to the same, or perhaps a little lower, than those 
obtained during the last decennial census when none of 
these elements were used. We do not know whether the 
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existence of a "census climate" will substitute for the 
effects of these elements or add to the response likely to 
be obtained in a census year. Certainly a 30 percentage 
point increase will not be realized in the 2000 Census since 
that would suggest a response of nearly 100 percent. 
Therefore, considerable uncertainty remains with respect 
to the exact implications of the present findings for the 
2000 Census. 

APPENDIX 
Estimation Procedures 

Analytical results are derived from two separate 
methods, multiple comparisons among the mail response 
rates by treatment group, and logistic regression analysis. 
Each method has advantages over the other in terms of 
ease of interpretation and ease of statistical inference; 
hence a combined approach was utilized to bring forth the 
best of both methods for presentation. 

The national mail response rate estimates for a given 
panel as presented in this study is computed by dividing 
the weighted total of the number of questionnaires returned 
by the weighted total number of forms mailed out less 
weighted postmaster returns (mostly vacant units). 

Mukiple comparisons of the 8 treatment mail response 
rates were reviewed to determine the level of increase in 
the mail response to each of the treatments. These com­
parisons involved a pairwise assessment of each of the 
treatments with the control panel and with each other. 

The logistic regression procedures provide a quick and 
effective means for evaluating whether or not observed 
increases from each of the components, especially inter­
actions, are the result of sampling variation or imply a true 
increase, and if these increases are influenced by the 
presence of other components. However, parameter esti­
mates cannot be easily equated to the mail response rates. 
A detailed overview of the logistic regression methodology 
is provided in Thompson 1993. 

Response rates were calculated for each of the treatment 
groups within stratum and at the national level (stratum 1 
and stratum 2 combined). Standard errors for the national 
estimates were computed using the stratified jackknife 
variance procedure (Wolter 1985). The estimates were pro­
duced by the VPLX statistical software package. Standard 
errors for the within stratum estimates were computed 
using the formula for the simple random sampling jack-
knife variance procedure. 

The primary analysis involved pairwise comparisons of 
the differences between response rates for eight treatments, 
both overall at the national level and for the two strata, 
LRA and HRA. 

Because of the various hypotheses being tested, all 
possible pairwise comparisons (28 total) between the eight 
treatments are analyzed in the experiment. In the logistic 

regression framework 8 or more model parameters are 
tested for significance. The more comparisons that are 
made, the greater the potential that some of these compar­
isons will be incorrectly declared significant. In this case, 
additional statistical measures are employed to control the 
overall error of the decision process. 

The analysis has been carried out so that statements 
about the entire "family" of 28 pairwise comparisons or 
the logistic regression parameters are made while main­
taining the 90 percent (a Census Bureau standard) con­
fidence level simultaneously for all comparisons. All 
90 percent confidence intervals for the pairwise compar­
isons were adjusted using Dunnett's C-procedure for 
comparing pairwise contrasts of the test panel estimates 
(Hochberg and Tamhane 1987). Bonferroni simuhaneous 
inference procedures were used to evaluate the statistical 
significance of the logistic regression parameters. 
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Consistency of Census and Vital Registration Data 
on Older Americans: 1970-1990 

LAURA B. SHRESTHA and SAMUEL H. PRESTON" 

ABSTRACT 

Major uncertainties about the quality of elderly population and death enumerations in the United States result from 
coverage and content errors in the censuses and the death registration system. This study evaluates the consistency 
of reported data between the two sources for the white and the African-American populations. The focus is on the 
older population (aged 60 and above), where mortality trends have the greatest impact on social programs and where 
data are most problematic. Using intercensal cohort analysis, age-specific inconsistencies between the sources are 
identified for two periods: 1970-1980 and 1980-1990. The U.S. data inconsistencies are examined in light of evidence 
in the literature regarding the nature of coverage and content errors in the data sources. Data for African-Americans 
are highly inconsistent in the 1970-1990 period, likely the result of age overstatement in censuses relative to death 
registration. Inconsistencies also exist for whites in the 1970-1980 intercensal period. We argue that the primary 
source of this error is an undercount in the 1970 census relative to both the 1980 census and the death registration. 
In contrast, the 1980-1990 data for whites, and particulariy for white females, are highly consistent, far better than 
in most European countries. 

KEY WORDS: Age misreporting; Coverage; Mortality; Census evaluation; Death registration; Data quality; 
Mortality crossover. United States. 

1. INTRODUCTION 

Conventional methods of estimating levels of mortality 
in more developed countries use data from two different 
sources. The numerators of death rates are normally 
counts of deaths derived from vital statistics. The denomi­
nators are usually derived from census counts of persons 
alive. The accuracy of calculated rates depends on the 
quality of data from both sources. 

This paper reports the results from a test of data quality 
applied to United States data for two intercensal periods: 
1970-1980 and 1980-1990. In particular, we examine the 
consistency of reported changes in the size of a cohort 
between two censuses and the recorded number of inter­
censal deaths for that cohort, with allowance for inter­
censal cohort migration. All data refer to the population 
in single years of age and separate tests are conducted for 
the black and white populations. 

Our focus is on the older population (aged 60 and 
above), where mortality trends have the greatest impact 
on social programs (Preston 1993) and where data quality 
is most problematic. The white population of the United 
States appears to have lower death rates above age 80 than 
any other industrialized country (Vaupel 1993). If valid, 
this comparison would have important implications for 
evaluating the relative quality of medical systems. But the 
African-American population of the United States has 
even lower rates than the white population above age 80, 

reflecting the well-known crossing over of the age patterns 
of mortality between the races somewhere between ages 
75 and 85. Whether either set of mortality rates can be 
accepted at face value depends, of course, on the quality 
of the data. Data on blacks has elicited considerable skep­
ticism (e.^., Zelnik 1969; Coale and Kisker 1990), although 
most observers appear to accept the validity of the cross­
over (Manton et al. 1986; McCord and Freeman 1990). 

In the process of constructing new model mortality 
patterns for low mortality countries, Condran, Himes, 
and Preston (1991) report similar data quality tests for 
68 intercensal periods in 18 industrialized countries. In 
general, consistency was very good for cohorts aged 65 at 
the second census (66 of 68 data sets passed the consistency 
check). Consistency deteriorated with age; only about half 
of the data sets showed consistency at age 85 and fewer 
than 15% did so at age 95 (Condran et al. 1991: Table 7). 
The United States was not among the countries included 
in these tests because it lacked published data on deaths 
by single year of age. We are now able to fill in this impor­
tant gap because we have processed data tapes on each 
individual death registered in the United States from 1970 
through 1988. (The single year death distribution for 1989 
(full year) and 1990, January to March only, is estimated 
using published group data from the National Center for 
Health Statistics and the 1988 single-year death distribu­
tion. Details are provided in Appendix A.) These tapes are 
produced by the National Center for Health Statistics 
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(NCHS) and are distributed by the Inter-University Con­
sortium for Political and Social Research. For the years we 
have included, they contain approxunately 50 million deaths. 

2. STUDY POPULATION AND DATA 

2.1 Background 

Three major sources of data are utilized: (1) national-
level census enumerations from the U.S. Bureau of the 
Census for the years 1970,1980 and 1990; (2) annual death 
registration data produced by NCHS; and (3) unpublished 
estimates of net immigration obtained from the U.S. 
Bureau of the Census. While the data sources are described 
in more detail in Appendix A, a brief description of the 
data and significant adjustments is warranted. 

2.2 The Census Enumerations 

We utilize census tabulations which are classified by 
race (black/white), sex, and single years of age (open-
ended at age 100). The tabulations refer to the resident 
population of the 50 states and the District of Columbia. 
Included in the enumerations are: the institutionalized 
population, Americans travelling abroad temporarily, and 
foreign citizens having their usual residence (legally or 
illegally) in the United States (except foreign military and 
diplomatic personnel). Specifically excluded are: Americans 
overseas for an extended period and foreign citizens tem­
porarily visiting the U.S. The official statistics do not 
adjust for census undercount, e.g., the failure to find and 
enumerate legal residents and undocumented resident 
immigrants. 

The term "resident population" implies that both 
the legal population and undocumented immigrants are 
included in the census tabulations. While undocumented 
persons were residing in the U.S. at the time of the 1970 
census, it appears that only a negligible number were 
counted. Hence, the legal resident population approx­
imated the total resident population in the 1970 census. 
In the 1980 count, however, the U.S. Bureau of the Census 
estimates that, for the first time ever, a significant number 
of undocumented persons were enumerated. Estimates 
indicate that the count equalled 2.06 million undocumented 
persons. Of this number, in the age group 60 and above, 
10 thousand white males were enumerated; 19 thousand 
white females, 3 thousand black males, and 6 thousand 
black females (U.S. Bureau of the Census 1988). 

The official 1970 census tabulations are known to 
contain errors, the most conspicuous of which is the gross 
overstatement of the number of persons aged 100 years or 
more. Although the census enumerated 106,000 persons 
in this age group, indirect demographic estimates indicated 
that the correct centenarian count should have been in the 
range of 3,000 to 8,000 with a preferred estimate of 4,800 

(Siegel 1974; Siegel and Passel 1976; U.S. Bureau of the 
Census 1974). We utilize unpubHshed U.S. Census Bureau 
tabulations of the 1970 census, which correct for the 
centenarian overcount. Use of the corrected estimates is 
justified by two conditions: first, without adjustment, the 
excess is large enough to bias results at the oldest ages. 
Second, it appears that the overcount was not due to 
systematic misreporting of age into the centenarian popu­
lation. Rather, it was the result of misunderstanding of the 
census form wherein individuals confused the columns 
intended for month of birth and year of birth (Siegel and 
Passel 1976). 

In both the 1980 and 1990 censuses, a large number of 
individuals enumerated chose to write in a response to the 
race question as opposed to selecting one of the specified 
all-inclusive race categories. For the total population, 
6.8 million individuals, largely of Spanish-origin, were 
affected in 1980, whereas the number increased to 9.3 million 
in the 1990 census. The official census tabulations are not 
directly comparable with other data sources since only the 
census enumerations contain a residual race category. To 
allow comparison with other data systems, the Census 
Bureau modified the 1980 and the 1990 enumerations to 
conform to historical categories of the racial groupings. 
The 1990 modification at the Census Bureau also involved 
"correction" for an age-related problem (for details, see 
Word and Spencer 1991). The decision was made to use 
the race-modified statistics for 1980 and 1990 from the 
Census Bureau for this research. The choice is justified by 
the sheer magnitude of individuals that would be excluded 
by use of the unmodified data, particularly for the white 
population. 

2.3 Death Registration Data 

The U.S. death registration data represent every death 
registered in the 50 states and the District of Columbia, 
classified by race, sex and age (single years of age to 
125-t-). To insure comparability with the census data, 
deaths of nonresidents of the United States (nonresident 
foreign nationals and U.S. nationals residing abroad) have 
been excluded. 

Adjustment is made for neither under-registration of 
deaths nor for misreporting of characteristics on the death 
certificates. Two problems were identified that affected 
the utilization of our intended intercensal methodology. 
The intercensal period covers the interval from April 1 to 
March 31, whereas the death registration data refer to 
calendar years. And both the death registration and the 
U.S. censuses' data are reported by age at last birthday 
rather than by year of birth. We manage both problems 
by assigning deaths to triangles of time-age that correspond 
to "census years" beginning on April 1. For example, 
deaths reported in the one year interval between census 
date April 1,1970 and April 1, 1971 to those aged 60 (last 
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birthday) at the time of the census can be classified into 
four categories: (1) deaths to those aged 60 in calendar year 
1970; (2) deaths to those aged 60 in calendar year 1971; 
(3) deaths to those aged 61 in calendar year 1970; and 
(4) deaths to those aged 61 in calendar year 1971. Using 
data on the date of death from the NCHS tapes, we 
assigned deaths to triangles of time-age that corresponded 
to the census year beginning on April 1, 1970. In doing so, 
we assume that deaths within each triangle are evenly 
distributed. This assumption is necessitated by the lack of 
reliable birth data for most of the cohorts considered in the 
paper, data that could be used to apportion deaths more 
accurately among adjacent birth cohorts. For a more detailed 
description of the methodology, see Shrestha 1993. 

2.4 Net Immigration Statistics 

We utilize unpublished net immigration statistics 
obtained from the U.S. Bureau of the Census. While the 
quality of net immigration statistics in the U.S. is widely 
acknowledged to be suspect (Hill 1985), the estimation of 
population size at the older ages is quite robust to variations 
in estimates of intercensal migration. This robustness 
results both from the smaller flow of net migrants at the 
older ages relative to younger ages and from the greater 
magnitude of deaths as a source of decrement in the older 
age groups relative to changes as a result of net migration. 
For instance, the net immigration data list an inflow of 
64 black males for the cohort aged 75 and above (in 1970) 
during the 1970 to 1980 decade. For comparison, over 
141 thousand deaths were recorded for the same cohort. 

Estimates of the flow of undocumented residents are 
not included in the constructed net immigration series, but 
will be considered in the interpretation of results. Their 
exclusion was precipitated by a number of factors. Esti­
mates of the size and age-sex distributions of the illegal 
alien population vary widely due to insufficient data 
collection instruments in the U.S. But even the most 
exaggerated estimates of the number of undocumented 
migrants are minuscule relative to deaths at the older ages. 

We have described a number of adjustments that we 
have made to the basic data: use of unpublished 1970 
census tabulations because of a gross overcount of the 
centenarian population in the official statistics, use of race-
modified tabulations of the 1980 and 1990 census, and 
exclusion of estimates of the undocumented alien popula­
tion. In order to judge the effect of these adjustments on 
our results, we carried out numerous sensitivity analyses 
using uncorrected data. While only modest differences 
were observed between the results using official statistics 
and those with corrected tabulations (except at ages 100 
and above), the intercensal cohort analyses using uncor­
rected data generally produced greater deviations in our 
final results, implying the overall appropriateness of these 
corrections. 

3. SOURCES OF ERROR IN CENSUSES 
AND DEATH DATA 

Errors in demographic data have been classified into 
coverage errors and content errors. Coverage refers to 
the completeness with which persons or events that fall 
within the defined universe of a particular data system are 
recorded. Content refers to the quality of information 
about the persons or events that are in fact recorded. 
Either type of error in any data source can create incon­
sistencies between intercensal change in cohort size and 
intercensal deaths. However, if both censuses and death 
registration suffer from the same net omission rate, then 
the sources will be consistent with one another; but under 
these circumstances, recorded death rates will also be 
accurate. 

Identical patterns of age misreporting in censuses and 
death registration will not, in general, produce consistency 
between changes in cohort size between the censuses and 
recorded numbers of intercensal deaths. The reason is 
that, because death rates rise with age, the age distribution 
of deaths at older ages is older than the age distribution 
of population. For example, if 10% of both persons and 
deaths at true ages 75-79 are misreported into the age 
interval 80-84, then the proportionate impact on population 
counts will be greater than the proportionate impact on 
death counts. Such a pattern of age misreporting would 
distort death rates, and would also be visible in the con­
sistency tests that we apply. 

The Census Bureau has used demographic and statis­
tical procedures to estimate the completeness of census 
coverage. Demographic procedures compare estimates of 
the true numbers of births minus estimated cohort deaths 
and migrations to census counts (see the summary in 
Robinson et al. 1993 and Himes and Clogg 1992). Statis­
tical procedures match a group of individuals identified 
in an ahernative data source (such as the Current Popula­
tion Survey) to individual-level records from the Census. 
A third approach is to compare the Census count of older 
persons to the count of individuals in Medicare files. 

A number of general conclusions for the old-age popu­
lation were reached in the evaluation studies of the 1970 
census undertaken by the U.S. Bureau of the Census 
(1973, 1974, 1975). First, the magnitude of net error 
(combination of coverage and content errors) in the old-
age statistics is greater than for the younger population. 
Second, females exhibited higher net error rates than 
males, largely the result of higher levels of age misreporting. 
But, gross omission rates (which are only one component 
of net error) were higher for males. Third, levels of net 
error, of gross omission, and of misreporting of demo­
graphic characteristics are considerably higher for the U.S. 
black population than for the white. Fourth, the evidence 
suggests that considerable age misreporting exists in the 
official statistics. For example, it is interesting to note that. 
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for all four race-sex groups at ages 65-69 years in 1970, 
the estimates derived by demographic analysis suggest net 
census overcounts, whereas the Medicare linkage study 
found gross census omissions in the magnitude of 2.1 % 
(for white females) to 12.6% (for males of the black and 
other races category). This comparison implies that, while 
these groups have gross omissions in the number of 
persons enumerated at ages 65-69, other larger errors 
(presumably, especially age overstatement among persons 
below age 65) are operating in the other direction to inflate 
the net overcount estimates at these ages. One implication 
is that the characteristics of a substantial part of the 
population reported as 65 and over in the Census relate 
to persons who are in fact under age 65 (U.S. Bureau of 
the Census 1976). 

Relative to the 1970 census, the net error rates in 1980 
in most of the age-race-sex groups were significantly 
lower. As noted by the Bureau of the Census (1988), 
however, resuhs from the Post Enumeration Program 
(PEP) and from the 1980 Housing Unit Enumeration 
Duplication study affirm that a considerable proportion 
of the total census count, likely in excess of 1.1 %, repre­
sented duplicate enumerations of individuals already in 
the census. Evidence implies much lower levels of duplica­
tion in earlier censuses. Thus, "regrettably, duplication 
receives dubious credit for part of the improvement in 
1980 in net census coverage' '(U.S. Bureau of the Census 
1988:10). 

The Census Bureau plans exhaustive evaluations of the 
quality of the 1990 Census, but the release of such analyses 
has been fragmentary to date. It does appear that the gross 
undercount was lower in 1980 than in 1990 (Robinson 
et al. 1993), but this may be the result of a higher degree 
of duplications in the 1980 census. A number of general­
izations can be made regarding the pattern of net under­
count in the 1990 census for the aged population. First, 
following its historical trend, the net error estimates for 
African-Americans surpass those of whites by a wide 
margin. The largest differential is noted for males aged 
60-64. The net undercount rate for black males equals 
10.3 percent, surpassing the white male estimate of 
2.6 percent by 7.7 percentage points. Second, whereas 
undercounts are observed for all of the male aged cate­
gories, overcounts are noted in many of the female groups. 
Finally, as noted by Robinson et al. {ibid), the net coverage 
patterns are generally consistent across the last three 
censuses for each race-sex group. 

Official death statistics produced by the National 
Center for Health Statistics are the basic source of annual 
mortality data in the United States. The figures are gen­
erally utilized without adjustment for underregistration or 
for misreporting of characteristics on the death certificate. 
It is generally assumed, however, that the death registration 
system is practically complete (Wilkin 1981; U. S. Bureau 
of the Census 1984a; National Center for Health Statistics 

1968) although no national test of its comprehensiveness 
has been conducted since the completion of the Death 
Registration Area in 1933. This assumption is based on the 
strict legal requirements for registration as well as on the 
needs of survivors for proof of death in connection with 
burial, settling estates and collecting insurance benefits 
(U.S. Bureau of the Census 1984a; Wilkin 1981). Calcula­
tions by Coale and Kisker (1990), however, suggest that 
underregistration of deaths exists, particularly at the older 
ages. For the nonwhite population, for instance, registered 
deaths were 7% fewer than Medicare deaths for the male 
population aged over 80 in 1980, whereas registered female 
deaths were 10% fewer. These numbers, however, may be 
reflective of differential age reporting between the two 
sources, rather than of underenumeration. 

The best evidence regarding the consistency of age 
reporting between censuses and death registration - un­
doubtedly the most important source of content error 
affecting our consistency test - matched a sample of death 
certificates from May to August 1960 with the 1960 census 
records (NCHS 1968; Hambright 1969). Although the data 
were collected before the time frame considered for this 
project, the study's findings provide insight into what may 
be a continuing pattern of biases present in the census and 
death statistics. The authors found: (1) for whites, there 
was fairly high agreement between the sources even with 
increasing age - for nonwhites, however, there was less 
agreement; (2) in the event of disagreement, age discrep­
ancies for the white population between the sources were 
generally within one year - for nonwhites, however, the 
typical difference was more than one year, particularly at 
ages 45 and above; and (3) for whites of all ages and non-
whites aged less than 45 years, the age reported on the 
death certificate was typically older than that reported on 
the census - for nonwhites aged 45 and above, however, 
age reported on the death certificate was, on average, 
younger than on the census. 

This study was unable to ascertain which data source, 
if either, provides the "true" age. To this end, Rosenwaike 
and Logue (1983) attempted to verify age reporting on the 
death certificate for the population aged 85 and over in 
the 1968 to 1972 period. The authors selected a sample of 
death records from those filed for decedents of extreme 
age in Pennsylvania and New Jersey. They then linked the 
individual who died to the 1900 manuscript census of 
population. A total of 1429 decedents were linked of 
whom 960 were white and 496 were non-white. 

They found that age agreement of matched census 
records with death certificates decreased as age increased 
for both racial groups. Striking differences were noted 
between racial groups. Agreement levels for whites were 
high, except at ages 100 and over. For nonwhites, however, 
significantly lower agreement was found. The authors 
further note that, within race, there was little difference 
by sex in agreement on age. 
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4. AN INTERCENSAL METHODOLOGY TO 
EVALUATE THE QUALITY OF 

OLD-AGE STATISTICS 

This analysis examines the extent of inconsistency in 
old-age U.S. data sources using an intercensal cohort 
methodology. The expected size of an open-ended age 
cohort in the second census can be estimated from its size 
at the first census and the intercensal deaths occurring to 
that cohort, after adjustment for migration (Condran, 
Himes and Preston 1991). Use of an open-ended category 
allows observation of the ratio trend while dampening 
error-induced extreme values at particular ages. It is insen­
sitive to any errors of age reporting in deaths or population 
that occur within the population above the age that begins 
the open-ended age interval. 

Using census enumerations and death and migration 
statistics for an intercensal period, intercensal cohort 
analysis allows us to estimate the expected size of each 
open-ended age cohort in the subsequent census. The 
previously mentioned statistics, classified by single years 
of age, by sex, and by two races (white, black), were 
utilized to calculate the following equation for the expected 
population at the time of the second census: 

^..(2) = N^-io{l) - D^_io{l) -I- M^_,o(l) (1) 

where 

Nx{'^) = the predicted population aged X and above 
at the second census, taken 10 years after 
the first. 

^ . r- io(l) = the enumerated population aged .x - 10 
and above at time 1, the first census. 

£>;f_io( 1) = the intercensal deaths which had occurred 
to the cohort aged A: - 10 and above (at the 
first census). 

^A^-io(l) = intercensal net legal immigration into the 
cohort aged jr - 10 and above (at the first 
census). 

Similarly, the expected population at a given age (as 
opposed to at age x and above) can be calculated in an 
analogous manner. In either circumstance, the ratio of 
the observed population, enumerated in the subsequent 
census, to the expected population, can then be calculated 
(after simplifying the notation and assuming net migration 
to be zero) as: 

Rr = 
NA2) 

N^ 10 (1) - D 
(2) 

The change in the size of the cohort as measured at two 
successive censuses can be produced only by death or 
migration. A ratio of 1.00 would indicate complete con­
sistency among the data sources. (Note that a ratio of 1.00, 

while highlighting consistency, does not assure accuracy. 
On an individual level, for instance, if a person's age was 
consistently overstated by n years, the method would fail 
to capture the misreporting.) In fact, however, the reported 
count will also be affected by: (1) coverage errors in either 
or both censuses; (2) under- (or over-) enumeration in the 
death registration data and/or the immigration statistics; 
and (3) misreporting of characteristics (age, race, etc.) in 
any or all of the data sources (Ewbank 1981; Shryock and 
Siegel 1976; Condran et al. 1991). The ratio of observed 
to expected population is a useful diagnostic tool if patterns 
of deviation from 1.00 can be interpreted in terms of these 
underlying data errors. It is not a highly precise tool 
because different forms of error can produce the same 
pattern of ratios. Nevertheless, it can help discriminate 
among competing alternatives. 

5. HOW PATTERNS OF ERROR WILL AFFECT 
OBSERVED/EXPECTED RATIOS 

Effects of certain types of error are visible directly in 
the formula for the ratio itself (and have been confirmed 
by simulations that we have performed). To simplify the 
exposition, define /?^ in equation (2) as the ratio of ob­
served to expected population for age A: -I- at the second 
census. The following major possibilities for coverage 
error, and their implications for the age-paUern of ratios, 
can be distinguished: 

1) If A^^_io(l) and D are equally complete and ^^(2) 
has a relative completeness level of C(2), then the age 
pattern of ratios will be constant with age and its level 
wi l lbeC(2) . 

2) If NA2) and D are equally complete and Nj,_io{l) 
has a relative completeness level of C( 1), then the age 
pattern of ratios will be: 

a) Above 1.00 and rising with age if C( 1) < 1.00 

b) Below 1.00 and falling with age if C( 1) > 1.00. 

The reason why an age trend in R^ results from this 
pattern of error is that a particular proportionate error in 
I^x- io( 1) creates increasingly larger proportionate errors 
in the denominator as the two offsetting terms (one 
positive and one negative) in the denominator grow more 
equal in absolute value. This equalization occurs because 
a higher fraction of each cohort dies during the intercensal 
period as age advances. 

3) If Af^_,o(l) and Ar^(2) are equally complete and D 
has a relative completeness level of C{D), then the age 
pattern of ratios will be: 

a) Above 1.00 and rising with age if C{D) > 1.00 
{i.e., if completeness of death registration exceeds 
the completeness of enumeration in both censuses). 

b) Below 1.00 and falling with age if C{D) < 1.00. 



172 Shrestha and Preston: Consistency of Census and Vital Registration Data on Older Americans: 1970-1990 

Once again, an age trend is introduced because an equal 
proportionate error in D will create larger proportionate 
errors in the denominator as its two components become 
more equal in absolute value. 

Some of the effects of age misreporting patterns can 
also be understood by examining the components of this 
formula. Shrestha (1993) and Condran et al. (1991) intro­
duce various errors into simulated errorless data sets 
typical of the current demographic conditions of the 
United States and the Netherlands respectively. They show 
that a pattern of net overstatement of age that is confined 
to the two censuses will produce a pattern of ratios that 
hovers around 1.00 until advanced ages, whereupon it falls 
to very low values. The reason why the ratio decUnes below 
1.00 is, once again, that an error in one component of the 
denominator (in this case, inflation of iV^_io(l) by age 
overstatement) introduces disproportionate effects in the 
denominator. Even though the rapid tapering off in the 
age distribution can result in N<.(2) being more inflated 
than iV _̂ 10 (1), eventually the inflation of the denominator 
exceeds that of the numerator and the ratios fall. (For an 
illustration, see Figure 1 of Condran et al. 1991). 

Age overstatement that is confined to deaths will create 
a pattern of ratios that is above 1.00 and rises with age; 
the denominator is too low (its negative component is too 
large) and the proportionate deficit grows with age. 

Introducing the same pattern of age overstatement into 
deaths and population figures also creates ratios that even­
tually rise with age. This important result is robust to the 
extent of error introduced (Condran et al. 1991). It reflects 
the fact that age distributions taper off more and more 
rapidly as age advances, so that the same percentage of 
persons who overstate their true age will introduce larger 
percentage errors in the reported age distributions at the 
very advanced ages. That is, Nx{2) has a larger inflation 
factor than A/^_io(l)- In this case, some inflation in 
Nx- io( 1) is offset in its effects on the denominator by an 
inflation in D. 

6. RESULTS 

2.0-|-| 1 

1.8 -

1.6 

1.4 -

S-1.2-
CO 

j i . o t 
io.8-
^ 0 . 6 -

0.4-

0.2 -

0.0 -̂  . . 1 1 

1 
1 

Males 

1 . ' 1 1 1 1 ! 1 1 I < 1 1 1 1 1 1 1 I 

j\ 

' 

/-s 
f" 
' 

A l 
T-.\f\ 

VI 
y 

55 65 70 75 
Age X (in 1980) 

80 90 

Figure lA. Intercensal Ratios of Observed to Expected 
Population: Whites, 1970-1980. 
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Figure 2A. Intercensal Ratios of Observed to Expected 
Population: Blacks, 1970-1980. 

Intercensal cohort analysis was carried out for the four 
sex-race groups in the United States in the 1970-1980 and 
1980-1990 periods. Figures 1 and 2 present the calculated 
ratios of the observed to expected population at selected 
ages by race, sex, and intercensal period. 

In all race-period combinations, the age pattern of ratios 
is virtually the same for females and males. In all cases, 
the degree of inconsistency increases with age, although 
any systematic and significant departure from 1.00 is post­
poned until age 95 and beyond for whites in 1980-1990. 
There is clearly a discontinuity in many of these series at 
age 100, reflecting the idiosyncrasies of age reporting and 
Census Bureau adjustment procedures among centenarians. 

70 75 80 
Age X (in 1990) 

Figure 2B. Intercensal Ratios of Observed to Expected 
Population: Blacks, 1980-1990. 
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6.1 Results for Whites 

6.1.1 Intercensal Period: 1970-1980 

As shown in Figure 1 A, the white pattern in 1970-1980 
is generally above unity and rising with age (up to age 100). 
This pattern is consistent with several forms of data error, 
the two most plausible patterns of which are: 

1) Undercount in the 1970 census, relative to both the 
1980 census and the death registration. 

2) Roughly equal probabilities of age overstatement in 
deaths and in both censuses. 

We believe that the former explanation is more likely 
to be correct. If the pattern of ratios resulted from similar 
tendencies for age misstatement in deaths and censuses, 
one would expect that pattern to continue into the 1980-1990 
decade, particularly since the 1980 census is involved in 
both comparisons. And one would not expect cultural 
predispositions to misstate age to disappear suddenly. But 
the 1980-1990 pattern of ratios for whites (Figure IB) 
shows remarkable consistency, far better than that in most 
European countries and equivalent to the pattern of ratios 
found in Sweden and the Netherlands, countries with 
highly efficient population registers (Condran et al. 1991). 
The consistency during 1980-1990 is also much greater 
than that in other EngUsh-speaking countries: England 
and Wales, Canada, Australia and New Zealand. 

A second reason for accepting the first explanation is 
that the Census Bureau has concluded that the 1980 census 
is more complete than the 1970 census (U.S. Bureau of the 
Census 1988; Robinson et al. 1993). This conclusion is 
partially based on demographic analysis and hence is not 
entirely independent of the kind of evidence that we are 
reviewing. However, their demographic analysis is weighted 
heavily towards ages that are younger than those consid­
ered here. Furthermore, the conclusion that census cover­
age improved is also supported by their post-enumeration 
program in which individuals in the census are matched 
against other data systems. 

6.1.2 Intercensal Period: 1980-1990 

As noted earlier, the 1980-1990 pattern of ratios for 
whites (and particularly for white females) is highly con­
sistent, far better than in most European countries. Our 
investigation seemingly lends support to Vaupel's (1993) 
contention that the white population of the United States 
may have lower death rates above age 80 than any other 
industrialized country. But caution is in order. While our 
methods clearly highlight the consistency between the 
censuses and the death registration in 1980-1990, consis­
tency is not equivalent to accuracy. Condran et cr/. (1991) 
demonstrate one situation in which a pattern of age mis­
reporting can result in a ratio series at exactly 1.00 at all 
ages. Furthermore, the intercensal methodology fails to 

capture deliberate misreporting of age by individuals that 
is consistent over time. As noted by Horiuchi (1993), an 
initial overstatement of age - e.g., to allow entrance into 
school or the labor force at a younger age, to avoid being 
drafted near the upper limit of drafting age, or to receive 
Social Security, Medicare, or pension payments earlier -
may be followed by consistent, intentional overstatement 
of age. The possibility of such overstatement of age cannot 
be discounted although we are unable to measm ê it directiy. 

6.2 Results for Blacks 

In contrast, the pattern of ratios for African-Americans 
is far more regular over time (see Figure 2A and 2B). The 
ratios begin falling around age 70 for both sexes in both 
periods and continue falling through higher ages (until age 
100 in 1970-1980). Before age 70, ratios are typically well 
above unity in 1970-1980, and slightly above 1.00 for 
African-American males during 1980-1990. 

The fact that ratios are generally higher for African-
Americans at a particular age in 1970-1980 than in 1980-1990 
is consistent with a relative undercount in the 1970 census. 
As we noted earlier, such an undercount is also likely to 
have occurred among whites. The undercount, however, 
is insufficient to explain the persistent pattern of falling 
ratios above age 70 in both periods. The declining ratio 
series for African-Americans is consistent with two prin­
cipal explanations: 

1) Deaths are underregistered for the African-American 
population relative to completeness of census coverage. 

2) Age overstatement is greater in censuses than in death 
registration. 

Coale and Kisker (1990) lean toward the former expla­
nation. They note that populations reconstructed from 
deaths using variable-/- procedures (Preston and Coale 
1982) are too small relative to census counts in 1980 above 
age 65, suggesting relative underregistration of deaths. 
They also note that fewer African-American deaths are 
recorded at advanced ages in vital registration than in 
Medicare records. 

However, both observations are also consistent with 
ages being overstated in censuses (and Medicare) relative 
to death registration. That such a pattern exists is strongly 
supported by a direct match of death certificates in 1960 
to records for the same individuals in the 1960 census of 
population (NCHS 1968; Hambright 1969). For either 
males or females, the total number of deaths above age 50 
when deaths are classified according to census age are 
within 1 % of the total number of deaths when classified 
according to death certificate age. However, at ages 65 +, 
"census age" deaths are 15.4% greater than "death 
certificate age" deaths for females and 7.1% greater for 
males. At age 75 -I-, the disparities are 23.3% and 17.8%, 
respectively, and at age 85-I-, 39.2% and 17.6%. 
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These large discrepancies in age reporting between 
censuses and deaths are capable of accounting for the 
declining pattern of ratios above age 70 that is demonstrated 
in Figure 2. Elo and Preston (1994) calculate the R^ values 
for African-Americans between 1950-1960 and 1960-1970, 
periods that bound the 1960 census-death certificate 
match. They show that, if ages at death are "corrected" 
to make them consistent with the age reporting in the 
censuses, the pattern of declining ratios is eliminated. 

Reasons why African-American ages are overstated in 
censuses relative to deaths are not obvious. The pattern 
does not appear until the 1940 census, the first census after 
Social Security legislation was passed. At that census, a 
large surplus of African-American persons aged 65-69 and 
70-74 appears, and a deficit of persons aged 50-64 (Elo 
and Preston 1994). As noted by Wolfenden (1954:56), 
"the disturbances were so marked in the data for Negroes 
that special preliminary redistributions of those populations 
(and deaths) between 55 and 69 were made in the prepara­
tion of the [U.S.] life tables." This surplus also appears, 
although in increasingly attenuated form, in more recent 
censuses (as shown in Figure 2). Whatever its source, we 
believe that the principal explanation of the large incon­
sistencies between censuses and death registration for the 
African-American population is a pattern of age over­
statement in censuses relative to death registration. Such 
a pattern implies that recorded death rates above age 65 
for African-Americans are likely to be seriously under­
estimated. A cross-over between black and white death 
rates may indeed occur at advanced ages, but basing such 
a conclusion on U.S. census and vital registration data is 
treacherous. These data are simply too inconsistent with 
one another to allow death rates at advanced ages to be 
estimated with any confidence. 

7. CONCLUSION 

Major uncertainties about the quality of elderly popula­
tion and death enumerations in the United States result 
from coverage and content errors in the censuses and the 
death registration system. This study evaluates the consis­
tency of reported data between the two sources for the 
white and the African-American populations. The focus 
is on the older population (aged 60 and above), where 
mortality trends have the greatest impact on social pro­
grams and where data are most problematic. Using inter­
censal cohort analysis, age-specific inconsistencies between 
the sources are identified for two periods, 1970-1980 and 
1980-1990. 

In order to evaluate what combinations of coverage 
completeness and age misreporting patterns would produce 
the empirical results, a series of simulations were carried 
out. The U.S. data inconsistencies are examined in light 
of both the simulation results and evidence in the literature 

regarding the nature of coverage and content errors in the 
data sources. 

Data for whites in the 1980-1990 intercensal period were 
found to be remarkably consistent. Data quality up to age 
95 approaches that of Sweden and the Netherlands, coun­
tries which maintain highly efficient population registers. 
Less consistency was observed for whites during the 
1970-1980 decade. The most likely explanation for this 
pattern of inconsistencies is the relative net undercount in 
the 1970 census combined with more complete death 
statistics. Consequently, mortality estimates at older ages 
that combine numerators from the death registration with 
denominators from the 1970 census are likely to overstate 
mortality. 

A different pattern is observed in the African-American 
data. Above age 70, the enumerated population falls 
increasingly below the expected population in both 1980 
and 1990. It appears that the major reason for this pattern 
is that ages are overstated in censuses relative to death 
registration. Such a pattern implies that recorded death 
rates at older ages for African-Americans are likely to be 
seriously underestimated. A mortality crossover between 
black and white death rates may occur at advanced ages, 
but basing such a conclusion on census and vital regis­
tration data is hazardous. 
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APPENDIX A 
Source: Shrestha (1993) 

Three major sources of data were utilized in this 
research: (1) census enumerations for 1970, 1980, and 
1990; (2) official death registration data; and (3) net 
immigration statistics. Sources of the data and adjust­
ments made will be described. 

l .A The 1970 Census 

Official tabulations of the 1970 population by basic 
demographic characteristics are presented in Series B -
U.S. Summary of the 1970 Census (U.S. Bureau of the 
Census 1972). The official enumerations are known to 
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contain a number of major inaccuracies which could bias 
our investigation of the enumerated old-age population in 
the United States. The first is a conspicuous overcount of 
the centenarian population. Whereas 106,000 persons were 
enumerated in the open-ended category, indirect demo­
graphic analysis estimates the correct count to be in the 
range of 3,000 to 8,000 (Siegel 1974; Siegel and Passel 
1976). The overcount appears to have been the result of 
misunderstanding of the census form rather than systematic 
age misreporting into the centenarian population. The 
second problem is the result of misclassification of the 
population by race in the complete-count tabulations, 
affecting 21,000 individuals aged 65 and above. And 
finally, the official count omitted over 23,000 individuals 
(of all ages) whose records were discovered after the initial 
tabulations were published. 

Because of the inherent errors in the official tabula­
tions, we utilize unpublished adjusted tabulations obtained 
from the U.S. Bureau of the Census. The modified 
statistics include corrections for the three previously men­
tioned problems. The data are presented by race (white, 
black), sex, and age (single years of age 0-94 and grouped 
data 95-99, 100-l-). To distribute the grouped data from 
age group 95-99 to single years of age, we used the sex-and 
race-specific average age distribution from the 1960 and 
1980 censuses for whites, and from the 1950 and 1980 
censuses for blacks (data by single years of age is not 
available in this age range for blacks in the 1960 census). 

l.B The 1980 Census 

Originally published census tabulations for 1980 were 
presented in Series B - U.S. Summary of the 1980 Census 
(U.S. Bureau of the Census 1983). In the 1980 census, 
however, a large number (about 6.8 million) of persons 
enumerated chose to write-in a response to the race question 
as opposed to selecting one of the specified all-inclusive 
race categories. Since only the 1980 census contained a 
residual race category, the official enumeration was not 
directly comparable with other data sources (vital registra­
tion, earlier censuses, etc.). The Census Bureau produced 
a modified file which conforms to the historical categories 
of the racial groupings (U.S. Bureau of the Census 1984b). 
The modification procedure involved macro-level reassign­
ment of race based on detailed cross-tabulation of race and 
Hispanic-origin from the sample and complete-count 
census data. The specifics of the Census Bureau modifi­
cation follow. 

For the 219.8 million individuals who chose one of the 
14 specified categories, no adjustment was made. Two cat­
egories of individuals, totalling 6.7 million, with write-in 
responses were identified: persons of Hispanic-origin 
(5.8 million) and persons not of Hispanic-origin (0.9 million). 
Separate adjustment procedures for the two groups were 
developed. 

Those of Hispanic-origin were distributed only to the 
white or black categories (and not to American Indian or 
Asian/Pacific Islander categories). All persons of Mexican 
origin were reassigned as white. Persons of Puerto Rican, 
Cuban, and other Spanish origin were assigned to both 
white and black modified race groups on the basis of the 
distribution of the same Hispanic-origin individuals who 
originally specified either a white or black race on the 
census returns. The calculations were carried out within 
age-sex-county cells. 

Those not of Hispanic-origin were reassigned to all 
three modified race groups (white, black, other) on the 
basis of state-specific proportions which are applied to all 
age-sex-county cells within the state. The proportions are 
based on sample data from the 1980 census. For a more 
detailed discussion of the modifications, see U.S. Bureau 
of the Census 1984b. 

The modified tabulations are presented by race, sex, 
and single years of age (0-99; 100 -i-). We utilize the race-
modified statistics in this research, justified by the sheer 
magnitude of persons transferred from the residual race 
category to the white or black categories. 

l.C The 1990 Census 

Published tabulations of the 1990 Census continue 
to be released by the U.S. Bureau of the Census. The 
published statistics, however, contain a number of problems 
that make comparability with earlier censuses and other 
sources of data difficult. Three problems are apparent: 
racial classification of 9.3 million individuals in a residual 
non-specified racial category, inconsistencies in the 
reporting of age, and a change in allocation procedures 
for the 1990 census in assigning age to persons with missing 
data on the characteristic. 

A modified 1990 census file, referred to as the MARS 
(Modified Age and Race Statistics) was produced at the 
Census Bureau to adjust for the first two problems (Word 
and Spencer 1991). Modification of the 1990 census was 
conducted at the micro-level. Hot-deck imputation proce­
dures were utilized to assign a specific race to persons who 
reported themselves in the "other, not specified" racial 
category. The method is executed on the individual records 
of the 100% edited detail file from the 1990 census 
(Robinson, Word and Spencer 1991). 

We again utilize the modified statistics, which are 
tabulated by race, sex, and single years of age, in this 
research. The decision to use the modified statistics in both 
1980 and 1990 was not clear-cut. See Shrestha 1993 for a 
more detailed discussion. 

2. The Death Registration System 

National-level annual death statistics from the National 
Center for Health Statistics (NCHS) are utilized in this 
research. The data for 1970 through 1988 are extracted 
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from NCHS data tapes obtained from ICPSR (NCHS 
1970-1988). The data are provided by race (black, white), 
sex, and single years of age (0-124; 125 -I-). Since the data 
tapes for calendar year 1989 and for the first three months 
of 1990 had yet to be released, we developed a procedure 
to estimate the distribution. Final mortality statistics for 
1989 by race and sex were released in published form by 
NCHS (1992). The grouped age data was distributed to 
single years of age based on the 1988 death distribution 
within the grouped age category. Distribution to month 
of death was based on monthly vital statistics reports 
(NCHS 1989). Estimates of the death distribution in 1990 
are based on monthly advance reports of mortality from 
NCHS (1990). The preliminary numbers were distributed 
to single years of age again using the 1988 distribution 
within the grouped age category. 

As noted in the text, we adjusted the available data to 
correct for two problems. First, the intercensal period 
covers the interval from April 1 to March 31, whereas the 
death registration data refer to calendar years. Second, 
both sets of data are reported by age at last birthday rather 
than by year of birth. Because the census is on April 1, the 
latter is preferred because it identifies the birth cohort for 
use in cohort analysis. To adjust for these two problems, 
we assume that the three dimensional surface of the 
number of deaths in age and time is level over the interval. 
We do not adjust for underregistration nor for misreporting 
of characteristics in the death statistics. 

3. Net Immigration Statistics 

We utilize unpublished net immigration statistics 
obtained from the U.S. Bureau of the Census. The tabula­
tions are categorized in the form of "components of 
change" for each of the two decades. 

Age-, race-, and sex-specific net immigration was calcu­
lated on a cohort basis by use of the following equation: 

Net immigration = Legal Alien Immigration -I- Refugees 
and Parolees -l- Net Civilian Citizens Immigration 
+ Net Puerto Rican Immigration + Net Foreign 
Students Immigration -i- Net Movement of U.S. 

Armed Forces Overseas - Legal Emigration. 

Given the lack of sufficient detail in the raw data provided 
by the U.S. Census Bureau, a number of adjustments were 
required. First, the data had been provided with an early 
terminal age group (age 75 and above at the beginning of 
the decade). To distribute to five-year age groups (75-79, 
. . . , 95-99, 100-h), we assumed that the age-, race-, and 
sex-specific net immigration rate for ages 75 -I- remained 
constant in the open-ended interval beginning at age 75. 
This admittedly crude estimate is adequate because of 
small numbers of net immigrants in this age group. 
Second, to convert the five-year data into single years of 
age, we used Sprague multipliers or oscillatory interpolation 
(Sprague 1880-81). 
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An Assessment of the Use of Hand-Held Computers During 
Demographic Surveys in Developing Countries 

D. FORSTER and R.W. SNOW' 

ABSTRACT 

Although large scale surveys conducted in developing countries can provide an invaluable snapshot of the health 
situation in a community, results produced rarely reflect the current reality as they are often released several months 
or years after data collection. The time lag can be partially attributed to delays in entering, coding and cleaning 
data after it is collected in the field. Recent advances in computer technology have provided a means of directly 
recording data onto a hand-held computer. Errors are reduced because in-built checks triggered as the questionnaire 
is administered reject illogical or inconsistent entries. This paper reports the use of one such computer-assisted 
interviewing tool in the collection of demographic data in Kenya. Although initial costs of establishing computer-
assisted interviewing are high, the benefits are clear: errors that can creep into data collected by experienced field 
staff can be reduced to negligible levels. In situations where speed is essential, a large number of staff are involved, 
or a pre-coded questionnaire is used to collect data routinely over a long period, computer-assisted interviewing 
could prove a means of saving costs in the long term, as well as producing a dramatic improvement in data quality 
in the immediate term. 

KEY WORDS: Hand-held computers; Demographic surveys; Psion. 

1. INTRODUCTION 

Large scale surveys involving tens of thousands of 
respondents, such as national censuses, demographic or 
health surveys, are routinely conducted in developing 
countries. Their intention is to provide rapid, up-to-date 
information on population and health issues for evalua­
tion and planning purposes. Their wide scope necessitates 
numerous personnel comprising trainers, interviewers, 

, supervisors, data entry staff and data managers. Examples 
of such questionnaire-based surveys include the World 
Fertility Survey (WFS 1986) and national Demographic 
and Heahh Surveys (DHS Kenya 1989). Published dates 
for the commencement of the WFS surveys in 12 African 
countries and the dates the first country reports were 
produced (Table 1) illustrate the time required before data 
was available for planners to act upon (WFS 1986). On 
average it took 45.6 months before the final report was 
released. Survey logistics in developing countries undoubt­
edly contribute to delays in provision of completed data; 
so do the mechanics of data processing. The recent Demo­
graphic and Health Survey conducted in Kenya required 
five data entry clerks, two data entry supervisors and a 
control clerk to process 8,343 household interviews; data 
collection began in February 1989 and the first draft of the 
final report was ready for circulation seven months later 
(DHS Kenya 1989). 

Table 1 
Summary of Chronology of 12 African WFS Surveys 

(Source: WFS 1986) 

Country 

Benin 

Cameroon 

Ghana 

Ivory Coast 

Kenya 

Lesotho 

Mauritania 

Morocco 

Nigeria 

Senegal 

Sudan (North) 

Tunisia 

Number 
of 

Inter­
views 

4,018 

8,219 

6,125 

6,270 

8,100 

3,603 

3,500 

5,800 

9,727 

3,985 

3,115 

4,123 

Date 
Survey 
Started 

12/1981 

01/1978 

02/1979 

08/1980 

08/1977 

08/1977 

01/1981 

04/1980 

10/1981 

05/1978 

12/1978 

05/1978 

Date of 
First 

Report 

06/1984 

04/1983 

06/1983 

12/1984 

06/1980 

12/1981 

06/1984 

05/1984 

09/1984 

07/1981 

04/1982 

06/1983 

Number 
of 

Months 
from 

Survey 
Start Till 
Report 
Date 

30 

63 

52 

52 

34 

52 

41 

49 

35 

38 

40 

61 

' D. Forster, Department of Tropical Medicine, University of Oxford, John Radcliffe Hospital, Headington OX3 9DU, England; R.W. Snow, 
CRC - Research Unit, Kenyan Medical Research Institute, P.O. Box 230, Kilifi, Kenya. 
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Surveys of this size involve multiple levels of checking 
and coding of data collected in the field providing another 
source of delay. As speed underpins rapid health evaluation 
(Anker 1991; Vlassoff and Tanner 1992), reducing the time 
at this check and code stage is a major advantage to the 
survey process. Advances in computer hardware have led 
to the development of microcomputers suitable for use in 
field situations. Together with improved software designed 
for questionnaire specification and administration, 
computer-assisted interviewing is now a viable option. 
National statistics offices in industrialised countries have 
evaluated the use of this technique, and some now use 
them on a regular basis (Nicholls and Groves 1986; Lyberg 
1985; Denteneer et al. 1987; Bench et al. 1994). The 
advantages of these systems are that it reduces recording 
errors by simplifying skip modules and refusing inappro­
priate, illogical or inconsistent entries. Furthermore, large 
numbers of interviews can be stored and simply down­
loaded to a central computer at the end of every interview 
session, circumventing the need for data entry clerks. 

There is surprising reluctance to adopt this technology 
in developing countries despite its apparent advantages. 
There are several possible reasons for this. Firstly, the 
initial costs may seem daunting and the application deemed 
inappropriate in countries with scarce resources. Secondly, 
there have been few attempts to validate their use under 
field conditions providing little quantifiable evidence 
of their limitations or advantages over traditional data 
collection techniques (Reitmaier 1985; Ferry and Cantrelle 
1988; Forster et al. 1991). This paper presents the results 
of a comparative study of two methods of field data 
collection and processing conducted during a demographic 
survey on the Kenyan Coast. 

2. THE ADULT MORTALITY SURVEY 

The study was carried out as part of ongoing demo­
graphic and epidemiological studies of 60,000 people living 
on the Kenyan coast. The study population and survey 
methods employed to monitor demographic events has 
been described elsewhere (Snow et al. 1994). In brief, 
following an initial census of the population all vital events 
are monitored by means of 6-weekly house-to-house visits 
and bi-annual re-censuses of the entire population. During 
a re-enumeration of the population in November 1993, a 
survey was undertaken to estimate adult mortality using 
indirect demographic methods (Timaeus 1991). All women 
aged between 25 and 44 years were interviewed using the 
structured questionnaire as shown in Figure 1. The format 
used preceded closed questions, with logical skips and a 
consistency check. 

Twenty-four field staff, all secondary school leavers, 
were involved in the survey. All were familiar with survey 
and census procedures, having had previous formal training 

in field survey techniques and between 1 and 5 years of 
field experience. Two days was spent on additional training 
on the administration of the adult mortality questionnaire. 
During the survey field staff were divided into two teams, 
each supervised by a senior field worker. Questionnaires 
completed at the end of each day were checked by field 
supervisors then passed to the computer staff for data entry. 
This was done using a screen design reflecting the structure 
of the paper questionnaire in FoxPro (version 2.0). The 
same data was independently entered by two data entry 
clerks and the two completed files compared to identify 
entry errors, which were subsequently corrected. The com­
pleted file was then subjected to logical, range and consis­
tency checks; these included for example, the identification 
of missing data, incorrect coding {i.e., not using "Y" or 
"N"), dates inconsistent with the ages of the women and 
the date of the survey (questions 5 and 6 in Figure 1) and 
checks that the sums of questions 7, 9, 11 and 13 are 
consistent with question 15 as shown in Figure 1. 

3. COMPUTER DATA COLLECTION TEST 

3.1 Computer Hardware and Software 

An earlier version of questionnaire-based software was 
developed for the Psion Organiser II (Forster et al. 1991). 
This model had a limited screen size, 16 characters by 
2 lines, but had a fully operational keyboard. The Psion 
Series 3, used during the present study, offers new possi­
bilities: the screen is much larger, with 40 characters by 
8 lines, and integrated graphical capabilities. The machine 
remains small (165mm by 85mm by 22mm), and weighs 
265g including 2 A A sized batteries. The storage devices 
can store up to 1 megabyte. The keyboard is a 58 key, 
QWERTY layout. Communications between the Psion 
Series 3 and a PC entails a simple copy operation between 
the two storage media. 

The software was developed using Psion's in-built 
programming language, OPL. The paper questionnaire is 
represented in a structured format in a text file, according 
to a prescribed format. The questionnaire definition 
includes a mixture of questions and commands such as 
skips and range checks. The internal range checks included 
those developed for the inconsistency checks for the data 
entered using FoxPro described above. Data entered on 
the Psion is stored in a separate file, one line for each 
interview. 

To specify a question correctly it must include a ques­
tion number, the question text and the answer type, which 
can be a list option, a character input or a number. The 
definition should also indicate what position in the line the 
corresponding data entry should be stored and how long 
the entry is. Numeric answers can also include a prespecified 
number of decimal points. A range of acceptable inputs 
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Figure 1. The Adult Mortality Questionnaire 

Questionnaire on the survival of relatives 
(For all women aged 25-44 years) 

Names 
Date IDl J l - l \ \ l - l L 

Yes 
1 
1 

No 
2 
2 

D/K 
9 
9 

I would like to ask you some questions about your natural parents and about your brothers and sisters who have 
the same mother as you. 

1. Is your mother alive? (1 = yes, 2 = no) 

2. Is your father alive? (1 = yes, 2 = no) 

INTERVIEWER: If both parents alive (Q1 and Q2 = 1), go to Q7. 

3. Have you ever given birth? (1 = yes, 2 = no) 

INTERVIEWER: If she has never given birth (Q3 = 2), go to Q6. 

4. Was (MENTION ALL PARENTS NOT ALIVE NOW) alive 
at the time that you gave birth to your first child? 

Woman's mother 

Woman's father 

5. In what year was your first child born? 

6. In what year (MENTION ALL PARENTS NOT ALIVE NOW) die? 

Woman's mother 

Woman's father 

7. How many living sisters, born to your mother, 
do you have? (ALIVE NOW) 
INTERVIEWER: If no living sisters (Q7 = 0), go to 0 9 . 

8. How many of these living sisters are less than 15 years old? 

9. How many of your sisters, born to your mother, have died? 

INTERVIEWER: If no dead sisters (Q9 = 0), go to Q11. 

10. How many of these dead sisters died before age 15 years? 

1 1 . How many living brothers, born to your mother, 

do you have? (ALIVE NOW) 

INTERVIEWER: If no living brothers (Q11 = 0), go toQ13. 

12. How many of these living brothers are less than 15 years old? 

13. How many of your brothers born to your mother, have died? 

INTERVIEWER: If no dead brothers (Q13 = 0), go toQ15. 

14. How many of these dead brothers died before age 15 years? 

INTERVIEWER: Sum Q7, 9, 11 and 13: 0 7 

0 9 

Oil 
013 

15. I want to make sure that I have this tight. Apart from you, your mother had 
children altogether? Is that correct? 

INTERVIEWER: In the case of any inconsistency, probe and correct Q7 to Q14 if necessary. 

INTERVIEWER: Please thank the woman for her co-operation. 

Fieldworker code 
I \ I 
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is an optional specification for numeric or character 
answers and will include a minimum, a maximum or both. 
List options can be used to specify codes and their values. 

Command actions can be embedded in question texts, 
so that they are evaluated at the time of questionnaire 
administration. For example, the final cross-check question 
in Figure 1 requires an addition. The syntax allows this 
instruction to be included within the main body of the 
question text. Other commands can contain instructions 
on skipping a question, conducting a cross-check between 
answers or for moving to a different question. 

Thus the software uses a flexible way of defining a 
questionnaire, which is generally applicable. It incorporates 
manipulation of entered information, integrating arithmetic 
functions into questions or command lines. The next step 
forward would be to design an interface for questionnaire 
specification which removes the burden of constructing a 
syntactically correct questionnaire definition. The soft­
ware is available from the authors. 

Table 2 
Comparison Between Paper Questionnaire and Psion 

Series 3 Data Collection Methods 

Paper 

Computer 

Minimum 
Overall 

1 

1 

Length of Interview in 

Maximum 
Overall 

16 

18 

Average 
Overall 

5.1 (215)* 

5.0 (363) 

Minutes 

Average 
Leader A 

5.2 (128) 

5.5 (190) 

Average 
Leader B 

4.9 (87) 

4.5(173) 

' Number of timed interviews stated in brackets. 

entry clerk; double entry required 7 hours 20 minutes 
(Table 3). Verification required an additional 2 hours 
23 minutes for the same number of questionnaires. The 
completed files were edited twice to reflect corrected 
errors and then verified; this took on average two hours 
30 minutes for 500 records. 

3.2 Test Design 

An additional day's training on the use of the Psion was 
provided for the two team leaders. This involved an expla­
nation of the hardware and software, as well as practice 
sessions in the field. Both supervisors had had no previous 
computing experience. Both conducted interviews using 
either the Psion or paper questionnaires on alternate days, 
and these formed the basis of the comparison between the 
methods. 

Errors made by all the 22 fieldworkers using the paper 
questionnaire were counted and tabulated to estimate the 
background error rate using this method of data collection. 
Times taken to check the forms once they had been brought 
back from the field, and for the data to be entered, verified 
and corrected following range and consistency checks were 
recorded throughout the survey. Similar timing assessments 
were made for the Psion data collection procedures. 

4. TEST RESULTS 

4.1 Time 

The average length of interviews conducted on paper 
was 5.1 minutes, and for those on computer 5.0 minutes, 
demonstrating no difference between the two methods 
(Table 2; note only 215/234 interviews were timed). The 
length of interviews varied considerably from 1 to 18 
minutes and increased time related not simply to the 
number of skips made on each interview, but whether the 
respondent gave clear, non-contradictory answers. 

Team supervisors required between 2-3 hours per day 
to check each teams questionnaires. The average time 
taken to enter 500 records (approximate number of inter­
views completed per week) was 3 hours 40 minutes per data 

Table 3 
Times for Data Processing 

500 Questionnaires 

Activity Average time 

Data checking 

First data entry 

Second data entry 

Verification 

Editing 

Total time 

4 hours 8 minutes 

3 hours 40 minutes 

3 hours 40 minutes 

2 hours 23 minutes 

2 hours 33 minutes 

18 hours 24 minutes 

4.2 Errors 

The errors made were divided into two periods, to 
assess the effect of familiarity over time. Excluding the 
two team leaders, the remaining 22 fieldworkers made 
1,704 errors on 1,427 questionnaires in the first period, 
and 1,049 errors on 1,158 questionnaires in the second 
period. Thus the average error rate per questionnaire in 
the first two weeks was 1.19 and in the third and fourth 
weeks was 0.90. In addition, over the entire period 37 ques­
tionnaires (1.2% of all interviews) had to be sent back to 
the field to be redone, as the errors found were not recon­
cilable in the office. These questionnaires had between 1 
and 6 errors to be corrected, with a total of 61 errors. 
The highest number of errors were made on question 5 
(17 errors) and question 6b (15 errors). Error rates per 
question are shown in Table 4. Fourteen out of the 
22 fieldworkers redid at least one questionnaire. One 
fieldworker was required to redo 8 questionnaires. 
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Table 4 
Type of Errors Made by 22 Fieldworkers 

Using Paper Questionnaires 
(for question specification see Figure 1) 

Period 1 
(first fortnight) 

Period 2 
(second fortnight) 

Identification 163 
Question 1 6 
Question 2 8 
Question 3 125 
Question 4a 201 
Question 4b 151 
Question 5 105 
Question 6a 94 
Question 6b 65 
Question 7 14 
Question 8 109 
Question 9 51 

Question 10 178 
Question 11 13 

Question 12 108 
Question 13 53 
Question 14 204 

Question 15 19 
Fieldworker code 37 

Total errors 1,704 

Total questionnaires 1,427 

48 
1 
2 

92 
138 
93 
61 
57 
41 
0 

63 
10 

134 
I 

71 

3 

149 
76 
9 

1,049 

1,158 

Errors were detected either manually by final checking 
by one of the investigators (Forster) or through the range 
and consistency checks performed in FoxPro on the entered 
data. Field team leader A made 8 errors on 144 question­
naires (0.06 errors per questionnaire), and team leader B 
made 18 errors on 90 questionnaires (0.20 errors per ques­
tionnaire). Most of these errors occurred in question 10 
(4 errors) and question 15 (5 errors). The only errors found 
from the computer data were errors of respondent iden­
tification. There were 7 of these, 2 by leader A and 5 by 
leader B, giving errors of 0.01 and 0.03 per questionnaire 
respectively. Such errors could have been circumvented by 
pre-loading the Psion with a call list of respondents to 
interview. 

4.3 Cost 

The differential costs of a survey of this size using 
Psion-based and paper-based methods are given in Table 5. 
The Psion prices quoted are the recommended retail prices. 
Intense competition between retailers means that purchase 
prices could be up to 20% lower than those quoted here. 

Prices of hardware products are also decreasing. Current 
prices indicate that the one off cost of a Psion-based 
system can be recouped after 12-15 similar paper-based 
surveys of approximately 7,000 respondents. 

Table 5 
A Comparative Study of Computer-based and Paper-based 

Survey Methods (UK £ Sterling) 

Equipment required Cost 

Computed-
based 
survey 

20 Psion Series 3 
20 1 MB storage devices 
1 serial communications link 
80 rechargeable batteries 
1 battery recharger 
Total cost 

2,539.00 
2,039.00 

59.45 
146.20 
15.95 

4,799.59 

Paper-
based 
survey 

14 reams of paper for 7,000 interviews 
Duplicating costs for 7,000 ques­

tionnaires (double-sided) 
20 pens, erasers and correcting fluid 
20 clipboards 
2 data entry clerks (two weeks) 
2 supervisors'* (one month plus 

overtime) 
Total cost 

42.00 

70.00 
27.40 

100.00 
70.00 

85.00 

394.40 

* Necessary for the manual checking of forms as they come in from 
the field each day. 

5. DISCUSSION 

The lowest error rates using a traditional paper ques­
tionnaire by senior field workers with five years of data 
collection experience was on average 0.11 errors per ques­
tionnaire with 17 fields. This was reduced to negligible 
levels using the questionnaire software developed for a 
Psion Series 3 hand-held computer. This technique elimi­
nated most of the errors made by fieldworkers in the 
routing of the questionnaire (Table 4) by using pre-defined 
skip modules, thus reducing the error rate by at least 90%. 
With the additional implementation of a call list in the 
software, the rate of respondent identification errors 
would be even lower. 

The field supervisors were keen to use the computer, 
mastering the unfamiliar QWERTY keyboard, and learnt 
operating procedures quickly enough to take to the field 
without supervision after two days. Although no formal 
investigations were under taken to gauge and quantify 
interviewees' reactions to the Psion there were surprisingly 
few comments about the computer and no interview 
refusals. 

Data processing involved two data entry clerks using 
two IBM machines full time for 92 hours to complete the 
data entry process for the entire survey. A data manager 
was on hand to offer assistance where necessary and design 
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the data entry format. The setting of the present study was 
such that both data entry clerks were familiar with data 
entry procedures and the available hardware and software. 
In situations where this is not the case, closer supervision 
and involvement by a data manager would be necessary, 
thus incurring an additional cost. A Psion data collection 
system would require much less of a data manager's time 
to down-load each day's data, thereby reducing this com­
ponent of staff costs. Never-the-less, the initial cost of the 
Psion Series 3 may be prohibitively expensive when com­
pared to the costs of paper and duplication of question­
naires if it was not envisaged that they form part of future 
data collection activities. 

QUESTOR (Ferry and Cantrelle 1988) offers a suitable 
software environment for computer-assisted interviewing. 
However, the hardware required is a portable PC, several 
times the costs of a hand-held Psion. Our experience 
demonstrates that it will be worth pursuing the develop­
ment of an appropriate package using this compact PC 
compatible technology as a more practical alternative in 
the field, being easier to handle, more robust and with 
reduced power consumption. 

There is a trade off between error rates, time and cost 
of a survey. The use of computer-assisted interviewing 
software can reduce both the error rates and the length of 
time for data preparation considerably. Such a collection 
system should reduce the unacceptable delays in first 
presentation of data experienced during surveys such as 
the World Fertility Survey (Table 1). The context of the 
present comparative study differs from many large scale 
demographic surveys where recruited fieldstaff are un­
familiar with questionnaire procedures. We feel that the 
results presented here therefore represent a minimum 
improvement that could be expected in data quality. The 
initial cost of setting up such a survey mechanism may be 
daunting, but will be proportionally less for repeated 
surveys, or in institutions conducting a variety of different 
surveys over time. 
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Statistical Process Control of Sampling Frames 
A.W. SPISAK 

ABSTRACT 

Statistical process control can be used as a quality tool to assure the accuracy of sampling frames that are constructed 
periodically. Sampling frame sizes are plotted in a control chart to detect special causes of variation. Procedures 
to identify the appropriate time series (ARIMA) model for serially correlated observations are described. Applications 
of time series analysis to the construction of control charts are discussed. Data from the United States Department 
of Labor's Unemployment Insurance Benefits Quality Control Program is used to illustrate the technique. 

KEY WORDS: Autocorrelation; ARIMA models; Control charts; Quality assurance. 

1. INTRODUCTION 

The integrity of the sampling frame is of paramount 
importance in survey research. Frame imperfections include 
missing elements (incomplete frame), element clusters 
(more than one element in a single listing), blank or foreign 
elements, and duplicate listings. These imperfections can 
cause several difficulties by contributing to nonsampling 
error, reducing the number of sample cases from sub­
classes of the population, and requiring the use of complex 
weights to estimate population characteristics. Techniques 
to minimize frame problems or reduce their impact on the 
survey are discussed in detail in most textbooks on statis­
tical surveys. 

This article focuses on the statistical process control of 
sampling frames which are constructed periodically (daily, 
weekly, or monthly, for example) and which consist of 
elements that are generated by a continuous process. 
Because of the variation inherent to any dynamic process, 
the sizes of the sampling frames will vary. How do we 
know that the changes in the sizes of the sampling frames 
reflect the random variation of the process and not errors 
in the construction of the frames? Statistical process 
control allows survey managers to distinguish between the 
variation inherent in the process (common causes) and 
variation which signals a possible problem with frame 
construction (special causes). 

2. PROCESS VARIATION AND STATISTICAL 
PROCESS CONTROL 

Over the last several years managers in the manufac­
turing, service, and public sectors of the economy increas­
ingly have adopted the quality philosophies developed by 
W. Edwards Deming, J.M. Juran, Philip B. Crosby, Kaoru 
Ishikawa, and others. Quality management comprises an 

array of tools and techniques, including the use of con­
trol charts to determine if a process is in statistical control. 
According to Deming (1982), statistical control is achieved 
by eliminating special causes of variation, leaving only the 
random variation of a stable process. The behavior of a 
process that is in statistical control is predictable. 

The distinction between common and special causes of 
variation is a key principle of statistical process control. 
Deming (1982) credits Dr. Walter A. Shewhart, who devel­
oped many of the principles of statistical process control 
in the 1920s and 1930s, with originating the concept of 
special or assignable causes. Special causes are usually 
attributable to one part of the process, such as a worker, 
machine, or office. They will reoccur unless they are iden­
tified and eliminated. Special causes are signaled by data 
points that fall outside of the control limits, by consecutive 
points that fall above or below the process average, or by 
runs of increasing or decreasing points. 

Common causes of variation are inherent to the process; 
they are present at all times and effect the entire process. 
Common causes are reduced or eliminated through man­
agement actions that change the process. 

3. STATISTICAL PROCESS CONTROL 
APPLICATION TO THE 

CONSTRUCTION OF SAMPLING FRAMES 
FOR PERIODIC SURVEYS 

3.1 United States Unemployment Insurance Benefits 
Quality Control 

The use of statistical process control as a quahty man­
agement tool for sampling frames is illustrated by an 
example from the United States Department of Labor's 
Unemployment Insiu-ance Benefits Quality Control program. 
Since 1987, the 50 states, the District of Columbia, and 
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Puerto Rico have conducted the Benefits Quality Control 
program in cooperation with the United States Depart­
ment of Labor. The goal of the program is to reduce the 
overpayment and underpayment of Unemployment Insur­
ance benefits by identifying the causes of payment errors 
and initiating measures to improve the benefit payment 
process. 

When an individual files a claim for Unemployment 
Insurance benefits. Unemployment Insurance staff deter­
mine whether the claimant has met all of the eligibility 
requirements - for example, the claimant earned sufficient 
wages in his or her previous employment to qualify for 
benefits; the claimant is involuntarily unemployed; and the 
claimant is able and available to work and is actively 
seeking employment. If all of the eligibility requirements 
are satisfied, the state Unemployment Insurance agency 
issues a benefits check for the week of unemployment 
claimed. 

3.2 Benefits Quality Control Sampling Procedures 
and Sources of Error 

Each state selects weekly random samples of Unem­
ployment Insurance payments that are examined to deter­
mine if the correct amount was paid to the claimant. If the 
amount paid was incorrect, the investigator identifies the 
types and causes of the errors so that program managers 
can initiate corrective measures. The sampling frames 
are constructed each week from the universe of Unem­
ployment Insurance payments that were issued between 
12:00 am Sunday and 11:59 pm the following Saturday. 
A computer program edits the state's database to insure 
that only payments that meet the program's operational 
definition of the target population are included in the 
frame. For example, payments for some temporary or 
small Unemployment Insurance programs are excluded 
from the frame. 

The volume of Unemployment Insurance checks issued 
each week (and therefore the size of the sampling frames) 
varies in response to the number of individuals who claim 
and receive benefits during that week. However, there are 
several sources of potential errors which can affect the 
integrity of the frame. Some of the most serious of these 
errors are: 

• The payments made from some of the local Unemploy­
ment Insurance offices might not be picked up for 
inclusion in the state's central database, due to tele­
communication or ADP problems. 

• If the state builds a separate file for each day's transac­
tions, the transactions for one or more days might be 
erroneously omitted from the final cumulative file. 

• Incorrect coding of transactions could result in either 
foreign elements being included in the frame or the 
editing out of transactions that should be included. 

4. DATA ANALYSIS AND MODEL 
DEVELOPMENT 

Figure 1 is a time series plot of sampling frame sizes for 
a 52 week period. Each week's sampling frame consists of 
the previous week's Unemployment Insurance benefit 
recipients who continue to receive benefits, minus the 
previous week's Unemployment Insurance recipients who 
have returned to work, exhausted their benefits, or failed 
to file a claim, plus newly eligible claimants and eligible 
claimants who did not file a claim or were not compensated 
for a claim the previous week. 
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Figure 1. Number of UI payments per week. 

Control charts for individual observations assume that 
the data are independent and identically distributed (i.i.d.). 
However, if the data are serially correlated, the estimates 
of the process variance (and therefore the control limits) 
could be seriously in error. So, before control charts for 
the Unemployment Insurance sampling frame data can be 
constructed, we have to determine if the observations are 
serially correlated. 

The plot of the time series in Figure 1 provides visual 
evidence that the observations are not independent. The 
sampling frame data display distinct trends of increasing 
values during the first 13-week quarter, decreasing values 
over the next two quarters, and increasing values during 
the final 13-week quarter. The serial correlation suggested 
by the plot of the data in Figure 1 can be tested using methods 
developed to analyze time series. Although a detailed 
discussion of the analysis of time series data is beyond the 
scope of this article, the concepts of stationarity and auto­
correlation will be examined, in order to explain the proce­
dures used to identify the appropriate model. Readers who 
are unfamiliar with the basic principles of time series analysis 
should consult one of the many texts on the subject, in 
particular Box and Jenkins (1976). 
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4.1 Stationarity 

We can think of the individual observations that consti­
tute a time series as a collection of jointiy distributed 
random variables - p{zi, .. .,Zn) - where/? is a proba­
bility density function and z,, ..., z„aie random variables. 
If the joint distribution of the random variables does not 
vary with respect to time, that is, p{z,, ..., z,+„) = 
P{z,+m, ..., z,+„+m), the process is said to be strictly 
stationary. In practice strict stationarity is difficult to 
establish. In this application, the time series is assumed to 
be weakly stationary. This is also referred to as second-
order stationarity, because the first and second moments of 
the process are invariant with respect to time -E{z,) -
E{z,+,„),VAR{z,) = VAR{z,+,„), and COV{z„z,+k) = 
COW {z,+,„,Z,+k-I-m)-

Throughout the rest of this article, the terms stationary 
or stationarity refer to a process that satisfies the condi­
tions of weak stationarity. 

4.2 Autocorrelation 

In a stationary time series the covariance between any 
two observations depends only on the number of time 
periods (lags) that separate them - COV{z,,z,+k) = 
COV{z,+„,z,+k+m)-T^^ correlation of z, and z,+k equals 
COV{z,,z,+k)/'VAR{z,) and is denoted p;t, where A:is the 
number of periods between observations. For example, pi 
is the correlation of observations in the time series sepa­
rated by one period and equals COV(z,,z,+ i)/VAR(z,). 
A correlation for period k is referred to as an autocorrela­
tion, because it is the correlation for observations which 
constitute a time series. The autocorrelations for the 
various lags can de displayed in a graph called a corre-
logram, which is useful in identifying the appropriate 
model for a time series. 

4.3 Time Series Model Identification 

Figure 2 is the correlogram for the 52 week time series 
of the number of Unemployment Insurance payments in 
the sample frames. The autocorrelations decrease or "die 
out" very slowly, which is characteristic of a nonstationary 
process. (Again, the reader is referred to Box (1976) and 
other texts on time series for a complete discussion of 
model identification.) 

One method to transform a nonstationary series to a 
stationary series is differencing. The symbol B is the 
backshift operator, which when applied to z, shifts the 
subscript back one period. Thus, the first difference of z, 
is (1 - B)z, = z, - z,-i. 

Figure 3 is the time series of the differences z, - Zi-i of 
the Unemployment Insurance sampling frame data. This 
series appears stationary around a mean of zero. (The esti­
mated sample mean of the differences is 150.8, with a stan­
dard error of 2064.0. The test statistic / = (150.8 - 0)/ 
2064 equals .07, and the hypothesis that/i = 0 cannot be 

rejected). First differences might not be sufficient to achieve 
stationarity for other time series, and transformations such 
as second differences - (1 - B)h, = {z, - z,-i) -
{z,-i - z,-2), seasonal differences, or logarithmic or 
other variance stabilizing procedures may be required. 
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Figure 2. Autocorrelations for Ul weeks paid time series. 
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Figure 3. First differences of UI payments. 

The autocorrelations of the first differences of the time 
series, which are displayed in Figure 4, are consistent with 
a stationary process. The autocorrelations decrease rapidly, 
while the partial autocorrelations (not displayed) die off 
after lag 1. This suggests that the data can be modelled 
with a first-order integrated autoregressive process, ARI 
(1,1). The AR term indicates that a single autoregressive 
parameter will be estimated, and the integration term (I) 
shows that the original time series has been transformed 
using first differences. 
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Figure 4. Autocorrelations for first differences of UI weeks paid. Figure 5. Autocorrelations for time series model residuals. 

4.4 Model Estimation 

The model was estimated using the ARIMA procedure 
of the SPSS Trends software (release 4.0), which is based 
on the work of Box and Jenkins. 

The tentative model is: 

z, = {I + 0i)2,-i - <t>iZ,-2 + e„ or 

z, - Zt-x = </>i(2/-i - Zt-2) + e„ 

where </>! is the first-order autoregressive parameter, and 
e is the error term, which is assumed to be normally 
distributed with a mean of 0 and variance a^. The 
estimated autoregressive parameter, (/>( is - .4045, and 
the estimated residual variance, a^', is 184,275,853 (with 
50 degrees of freedom). The negative sign on the AR 
parameter is consistent with the alternating signs of the 
autocorrelations in Figure 4. The model does not include 
a constant term, because the estimated process mean was 
not significantly different than zero. 

4.5 Model Diagnostics 

The adequacy of the estimated model for the observed 
data can be assessed by examining the model residuals. If 
the model adequately fits the data, the residuals (e,) 
should be "white noise", that is, uncorrelated. Figure 5 
displays the autocorrelations of the model residuals. 
Although the autocorrelation at lag 13 in Figure 5 is signifi­
cant, the Box-Ljung Q statistic through lag 13 is not 
significant. (The Q statistic tests the significance of 
autocorrelations for lags 1 through k. For a detailed 
discussion, see Box and Pierce (1970)). In addition, none 
of the partial autocorrelations (not displayed) are signifi­
cant. These results indicate that the residuals are not 
serially correlated. 

To test the assumption that the model residuals are 
normally distributed, N{0,a^), a Kolmogorov-Smirnov 
(K-S) goodness of fit test was conducted. For the esti­
mated variance of 184,275,853, the K-S test statistic equals 
.591 {p = .876), and the hypothesis that the differences 
are normally distributed cannot be rejected. 

For a stationary AR (1) process, the absolute value of 
the autoregressive parameter must be less than one. To test 
the hypothesis that | (/>, | > 1 for the model, we compute: 
/ = (I <̂ ,' I - 1)/S£'(<^i'), where | <̂ i' | is the absolute 
value of the estimated autoregressive parameter, and 
SE{<t>i) is the standard error of <t>i. The model statistics 
resulting = (.4045 - l)/.1295or/ = -4 .6 . The chance 
of observing an absolute value of (t>{ as small as .4045 if 
the true absolute value of <Ai S: 1 is very small (< .00001). 
The hypothesis that | (̂ , | > 1 is rejected, and we can 
conclude that the series of first differences is stationary. 

5. USE OF THE ARIMA MODEL IN 
A CONTROL CHART 

5.1 Control Charts for Individual Observations 

The control limits for a chart of individual observations 
are set at Jf ± 3a', where x is the average of observation 
values and a' is the estimated standard deviation of the 
process. Ryan (1989) discusses alternative procedures to 
estimate the process standard deviation either by computing 
the average of the moving ranges (the mean of the absolute 
differences of successive observations) or using the stan­
dard deviation {s) of the sample observations, a' = s/c, 
where c is an adjustment constant which depends on the 
sample size. 

When data are serially correlated, the use of either the 
sample standard deviation or the average moving range 
can result in poor estimates of a. The control limits 
constructed from these estimates can produce seriously 



Survey Methodology, December 1995 189 

misleading results by either generating false signals that 
the process is out of control or failing to detect special 
causes of process variation. The moving range can under­
estimate a, because the differences of successive values will 
tend to be small if the successive observations are highly 
correlated. The underestimation of a will result in control 
limits that are too narrow and an increase in the number 
of signals of special causes. Ryan notes that using the 
sample standard deviation to estimate the process standard 
deviation will result in a better estimate of a than the aver­
age moving range when the data are correlated, provided 
the sample consists of at least 50 observations. However, 
the sample standard deviation is an unbiased estimator of 
a only when the observations are independent. 

Vasilopoulos and Stamboulis (1978) analyzed the effect 
of serially correlated data on the control limits of x and 

5 (standard deviation) charts and developed equations for 
factors that can be used to adjust the control limits for data 
generated by an autoregressive process. Alternatively, a 
time series model can be identified for the correlated data, 
and a control chart can be constructed using the model 
residuals to monitor the process. This approach is described 
by Berthouex, Hunter, and Pallesen (1978) for subgroups 
of measurements of environmental data collected at water 
treatment plants. Alwan and Roberts (1988) use the resid­
uals of exponentially weighted moving average (EWMA) 
models for both stationary and nonstationary time series. 
Montgomery and Mastrangelo (1991) use the residuals of 
an autoregressive model in an EWMA chart and contend 
that EWMA charts can be used to approximate many 
autocorrelated models, particularly if the observations are 
positively correlated and the mean does not drift too 
quickly. The reader is also referred to Maragah and 
Woodall (1992) and Woodall and Faltin (1993) for addi­
tional discussion of the effects of autocorrelation on 
statistical process control procedures. 
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Figure 6. Control chart for model residuals (baseline data -t-
next quarter). 

sizes can be constructed. The original observations must 
be transformed to achieve stationarity, if necessary. The 
estimated parameters of the time series model are used to 
construct the mean and control Umits of the chart. The 
variance of an AR(1) process is ff^ = 0^/(1 - 0?). For 
the time series model of first differences, </>,' is - .4045, 
and the estimated residual variance, &; ,̂ is 184,275,853. 
The estimated process variance is 184,275,853/(1 - .1636) 
or 220,325,579.4, and the process standard deviation is 
14,843.4. The upper and lower control limits are set at 
±3a' from the estimated mean difference of zero: 
± 44,530.2. The control chart is shown in Figure 7 and 
signals a special cause for observation 56, like the control 
chart for the residuals in Figure 6. 

Differences in Thousands 

5.2 Control Charts for the Unemployment Insurance 
Data 

Figure 6 is a control chart of the residuals {e, = z, - z,') 
of the ARI (1,1) model identified for the Unemployment 
Insurance sampling frame data. Since the model diagnostics 
support the conclusion that the residuals are independent 
and identically distributed (i.i.d.) N{0,a^), the residuals 
are standardized, so that the chart's center line is 0 and 
the control limits are set at ± 3. The chart includes model 
residuals for the sampling frame sizes in the 52 week 
baseline period and subsequent calendar quarter. The 
difference between the size of the sampling frame for week 
56 and the value predicted by the model falls outside the 
upper control limit, signaling a special cause. 

As an alternative to charting the model residuals, control 
charts for the Unemployment Insurance sampling frame 
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Figure 7. Control chart for UI payments (first differences -
baseline + next quarter). 
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6. CONCLUSIONS 

Statistical process control is a useful quality assurance 
tool for surveys in which samples are selected from frames 
that are constructed for specified periods from a contin­
uous process. Because the frame sizes constitute a time 
series, the data may be serially correlated and may have 
to be transformed in order to achieve stationarity. If the 
observations are correlated, the appropriate time series 
(ARIMA) model must be identified in order to estimate 
the process variance used in setting the control limits. The 
time series in the preceding example was fitted by a first-
order autoregressive integrated (differenced) model - ARI 
(1,1). More generally, time series may be described by 
other ARIMA {p.d.q) models, wherep is the number of 
autoregressive terms in the model, d is the degree of 
differencing to achieve stationarity, and q is the number 
of moving average terms in the model. Seasonal time series 
models include additional AR, MA, and differencing 
parameters for the appropriate lag(s). 

Once the model has been identified from baseline data, 
observations from subsequent periods can be plotted in 
the control chart. In the control charts in Figures 6 and 7, 
one calendar quarter (13 weeks) of observations are plotted 
following the observations from the 52 week baseline. The 
time series model should be checked periodically, depending 
on the data collection interval, to determine if the model 
parameters have changed. 

If the statistical process control procedures signal a 
special cause of variation, survey managers must use other 
quality management tools to determine the root causes of 
the frame problems and then implement corrective actions 
to improve survey procedures. Survey managers can move 
from troubleshooting and error correction to continuous 
improvement of the survey process by systematically 
removing the assignable causes of variation identified 
through statistical process control. 

In the case of the Unemployment Insurance sampUng 
frame data, the special cause was not preventable: the 
volume of Unemployment Insurance payments spiked 
during a week which followed a short work week due to 
a holiday and which coincided with a layoff at a large 
establishment. The large sampling frame was not the result 
of a technical problem with the construction of the frame. 
In other states, at different time periods, statistical process 
control has detected errors as diverse as data entry mistakes 
(a frame of 558,432 reported instead of 5,558,432), 
omission of the Unemployment Insurance transactions for 
one of five work days, resulting in an approximate 
20 percent decrease in the frame size, and the failure to 

update edits in the sample selection software, which caused 
"oreign elements to enter the frame. 

The procedure described in this article is applicable to 
other areas of survey and information management in 
addition to the integrity of sampling frames. The proce­
dure can be used to reduce nonsampling error attributable 
to data recording or data entry for surveys conducted 
daily, monthly, etc. More generally, statistical process 
control can be used to assure the integrity of databases or 
management information systems whenever information 
is collected or reported in subgroups, such as data collected 
at multiple sites or by several researchers or auditors. 
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