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In This Issue 

This issue of Survey Methodology contains articles dealing with a variety of subjects. In the 
first article. Steel, Holt and Tranmer examine the problem of using aggregated data in studies on 
relationships at the individual or household level. They propose a simple general model that seeks 
to take account of the geographical effects of aggregation. They then describe how this model 
effects both the estimation of population means and covariance matrices and analysis at the regional 
level. In addition, by introducing auxiliary variables for which certain external sources provide 
an estimate of the covariance matrix at the unit level, the authors propose methods that provide 
an unbiased estimate of the parameters at the individual level, so as to avoid the effect of 
geographical aggregation. 

Binder gives a "cookbook" approach for deriving Taylor series approximations to the variances 
of a wide class of estimators from complex surveys. Several useful examples are presented, as well 
as new results on the application of this general technique to two-phase sampling. A justification 
of this method is given, showing the procedure to be consistent with the formulation given in earlier 
work by Binder and Patak. 

Yung and Rao suggest a linear approximation to the jackknife variance estimator. This linearized 
jackknife inherits the good statistical properties of the usual jackknife variance estimator but is 
computationally much less intensive. The specific form of the proposed variance estimator is 
developed for the generalized regression estimator of a total and for the ratio of two generalized 
regression estimators. In a simulation study using data from the U.S. Current Population Survey, 
they found that the jackknife, the linearized jackknife, and the usual linearization variance 
estimators worked quite well for poststratified estimates of a total, while an incorrect form of the 
jackknife was badly biased. 

Chaubey, Nebebe and Chen consider use of an Inverse Gaussian model for positively skewed 
data and develop a corresponding model assisted estimators for domain totals, which consist of 
Inverse Gaussian regression predictors together with an expansion estimators of the regression bias. 
A modified version of the estimator which gives reduced weight to the bias correction term, 
analogous to a modified regression estimator proposed by Samd2il and Hidiroglou, is also proposed. 
In a simulation study using synthetic income data based on Statistics Canada's Survey of Household 
Income, Facilities and Finance the proposed estimators are found to work reasonably well. 

Rizzo, Kalton and Brick investigate the use of auxiliary information in compensating for panel 
nonresponse through weight adjustment techniques. Using data from the Survey of Income and 
Program Participation (SIPP) to illustrate, they address two important issues, namely, the choice 
of auxiliary variables to be used in a nonresponse weight adjustment technique, and the choice 
of technique itself. A screening procedure in conjunction with logistic regression modelling are the 
means by which appropriate auxiliary variables are chosen. The nonresponse weighting adjustment 
methods considered are based on logistic regression models, categorical search algorithms and 
generalized raking. An empirical comparison of the various methods is discussed in detail. 

Ding and Fienberg develop models of matching error which can be used in estimation of total 
population from a probabilistic match of two or more samples. They develop their models for the 
particular application of a multiple sample census, that is, a census supplemented by auxiliary 
samples. They illustrate the usefulness of their methods by applying them in an analysis of the 1988 
St. Louis Dress Rehearsal Census data for which three samples were matched: the Census itself, 
the Post Enumeration Survey sample, and the Administrative List Supplement. 

In a paper on optimal stratification, Slanta and Krenzke talk about the use of the Lavall6e-
Hidiroglou method. This iterative method minimizes the sample size while fixing the coefficient 
of variation. In a practical illustration, the authors present the difficulties with the Lavall6e-
Hidiroglou method and show how they were resolved. 



In This Issue 

Dagum proposes a new method for estimating underlying trends from seasonally adjusted data. 
The approach consists of two steps. The seasonally adjusted data are first extrapolated based on 
an ARIMA model. A 13-term Henderson filter is then applied to the extended series, using strict 
sigma limits for the identification and replacement of extreme values. The new method is compared 
to the standard method using data from several economic time series. It is found that the new 
method produces fewer unwanted ripples in the estimated trend, while identifying turning points 
as just quickly and requiring smaller revisions on average. 

Tille proposes an algorithm that generalizes the selection-rejection method used for constructing 
a simple random sample without replacement. A specific case of this algorithm, which is called 
the "mobile stratification algorithm", is discussed. It serves to obtain a smoothed stratification 
effect by using as a stratification variable the serial number of the units of observation. This 
algorithm gets around the thorny problem of a continuous variable in strata. 

De Waal and Willenborg review recent research on statistical disclosure control for microdata 
files from the perspective of Statistics Netherlands. Models are developed for the probability that 
a particular record could be re-identified and for the probability that some record in a microdata 
file could be re-identified. Global recoding and local suppression are considered as methods to 
reduce disclosure risk. They conclude that there is still much need for further methodological 
research and development of efficient software. 

Finally, it is with sadness that I note the recent passing away of Maria Gonzalez, who died of 
cardiac arrest while vacationing in Puerto Rico this past February. Among her many contributions 
to the statistical community, for the past several years Maria has been an Associate Editor for the 
Survey Methodology journal. Her contribution in this capacity to the quality and breadth of this 
journal was very much appreciated, and she will be sorely missed. An obituary, written by Elizabeth 
and Fritz Scheuren, appeared in the April issue of Amstat News. 

The Editor 
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Making Unit-Level Inferences From Aggregated Data 
D.G. STEEL, D. HOLT and M. TRANMERi 

ABSTRACT 

Data are often available only as a set of group or area means. However, it is well known that statistical analysis 
based on such data will often produce results very different from those obtained from analysing the corresponding 
individual or household data. If the results of area level analyses are thought to apply to the individual level then 
we risk committing the ecological fallacy. Aggregation or ecological effects arise in part because geographic areas 
are not comprised of random groupings of people or households but exhibit strong socio-economic differences 
between areas. The population structure must be incorporated into the statistical model underpinning the analysis 
if aggregation effects are to be understood. A simple general model is proposed to achieve this and the consequences 
of the model and its implications for the estimation of population means and covariance matrices are obtained. 
Furthermore, methods are suggested which can provide unbiased estimates of individual level parameters from 
aggregated data and so avoid the ecological fallacy. These methods rely on identifying the "grouping variables" 
that characterise the process that led to the population structure, or at least characterise the area differences. An 
estimate of the unit level covariance matrix of the grouping variables is required from some source. Data from the 
1991 Census of the United Kingdom have been analysed to identify the important grouping variables and evaluate 
the effectiveness of the proposed adjustment methods for the estimation of covariance matrices and correlation 
coefficients. These results lead to a suggested strategy for the analysis of aggregated data. 

KEY WORDS: Aggregation; Ecological fallacy; Grouping; Selection; Variance components. 

1. INTRODUCTION 

Researchers are often faced with the problem of wishing 
to investigate individual level relationships but having to 
make use of aggregated data, such as the means or totals 
for geographic areas. Ideally unit level data collected in 
a sample survey or census would be used, but may not be 
accessible because of confidentiality restrictions, or because 
the variables have not been collected in a recent survey or 
census. Administrative systems provide information on a 
range of variables, for example on unemployment, health, 
morbidity, but because of confidentiality requirements 
these data are usually made available for aggregates, such 
as geographic areas. The census also provides data for 
geographic areas. For these reasons, analysis of group level 
data is still an option used widely in social and epidem­
iological research. 

Consider a population in which each individual has 
associated a vector of variables of interest, whose distri­
bution has mean ^ly and covariance matrix Lyy. We are 
interested in relationships among the variables of interest 
as reflected by correlations, regression coefficients and 
principal components, which may all be derived from the 
covariance matrix, Lyy, which is our basic target of 
inference. For example, the variables of interest might 
include a set of attainment tests in an educational study; 
the incidence of a particular disease and a set of explan­
atory variables in an epidemiological study; or a set of 

deprivation measures in a sociological study. We suppose 
that individual level data are unavailable. However, the 
region may be subdivided into a set of small areas such as 
Census Enumeration Districts (EDs), and for each small 
area, g, or for a sample of areas, we observe the vector of 
average values yg for the variables of interest together 
with the sample size ng on which this is based. 

The objective of the analysis, Eyy, is a covariance 
matrix which spans the small areas. The target of inference 
is not conditional on small area membership but refers to 
the marginal distribution across small areas. This contrasts 
with situations, such as small area estimation, in which the 
target of inference is in the conditional distribution given 
the small area. This is a separate, legitimate objective with 
which we are not concerned. The same models may be 
applicable, but the targets of inference are different. 
However, our formulation does allow for group specific 
variables to be included as variables of interest if required. 
For example, if we associate with each individual a set of 
ED means for the area in which the individual is located, 
then these can be included within the vector, y, of interest. 
In particular, regression analyses which include small area 
means as explanatory variables in the regression model can 
be encompassed by the approach. 

The literature associated with the analysis of aggregated 
data dates back to Gehlke and Biehl (1934) and includes 
significant contributions by Yule and Kendall (1950) and 
Robinson (1950), Blalock (1964), Openshaw and Taylor 

' D.G. Steel, Department of Applied Statistics, University of Wollongong, NSW 2522, Australia; D. Holt and M. Tranmer, Department of Social 
Statistics, University of Southampton, S017 IBJ, United Kingdom. 
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(1979) and more recently Arbia (1989). There are also 
problems associated with the fact that the areal units used 
often have no special significance, being constructed for 
reasons of cost, operational or administrative convenience. 
Moreover, the results of the group level analysis will 
depend on the scale of the units, that is their average size 
and the particular set of boundaries chosen. Several empir­
ical studies have demonstrated these effects, including 
Clark and Avery (1976), Perle (1977), Openshaw (1984), 
and Fotheringham and Wong (1991). However, these 
studies have not provided any generally appUcable theory 
or practical methods of modifying the results of group 
level analyses to provide reliable unit level inferences. 

Aggregation effects arise because geographic units are 
not comprised of random groupings of people. Individuals 
in the same area generally tend to be more alike because 
they choose to live in areas in a non-random way, or 
because they are subjected to common influences, or 
because they interact with one another. Thus there are 
socio-economic differences between areas which are 
confounded with the individual effects in any statistical 
analysis performed using aggregated data for the areas. 
A simple general model is proposed which seeks to incor­
porate these effects. The consequences of this model and 
its implications for area level analysis are obtained. 
Furthermore, methods are suggested which provide, under 
certain circumstances, unbiased estimates of individual 
level parameters from aggregated level data and so avoid 
the ecological fallacy. These methods involve auxiliary 
variables for which a unit level sample covariance matrix 
is available from some source. This approach has been 
applied to data from the 1991 Census of the United 
Kingdom and a strategy developed for the analysis of 
aggregated data . 

2. MODELS FOR AREA EFFECTS 

We consider a population of N^ individuals each having 
a vector J' of characteristics of interest. The population is 
comprised of M groups and the random variable c, indi­
cates the area to which the i-th population unit belongs. 
The number of individuals in the ^-th area is A'g. 

We consider fXy and Lyy to be superpopulation para­
meters and the following statistical theory is obtained in 
this framework. However, we consider some survey design 
issues at the end of section 2. 

We assume that there exists a sample data set s of size 
n and that these individual data have been aggregated to 
provide a set of m area means which are available for anal­
ysis. The following area level statistics can be calculated: 

the overall sample mean: 

the g-th area mean: 

no .'^ 
(2.1) 

y = l,Tt"^ys = l, DJ' / 
n n 

(2.2) 
giS lis 

the area level sample covariance matrix: 

1 

1 
giS 

Jyy = ^ ; ^ - j - D ng{yg-y){yg-y)'. (2.3) 

Analogous unit level statistics may be defined but 
will be unavailable to the analyst. For example Syy = 

l/{n — l)Y.iis{yi - y){yi - y)' is the unit level sample 
covariance matrix. 

2.1 Random Grouping 

While geographic groups are rarely formed randomly, 
such a situation is a useful starting point in considering 
ecological analysis. If groups are randomly formed then 
many group level analyses are valid, albeit with a reduced 
efficiency. Steel and Holt (1995) consider the properties 
of statistics such as means, variances, regression and 
correlation coefficients in this situation. When the groups 
are randomly formed i.e., y ± c then 

E[yg I s,c] = Hy 

V{yg I s,c) = — E lyy , 

(2.4) 

(2.5) 

The basic properties of the unit and group level statistics 
then follow readily 

Cov{yg,yh I s,c) = Q g yi h 

E[y I s,c] = fly 

E[Syy I S,C] = 'Hyy 

E[Syy I S,C] = E ,yy. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

These properties apply if the samphng is ignorable given 
the group indicatives, which means the sample design can 
depend on the groups but not on y or any variable which 
is related to y conditional on c. For example a census or 
a simple random sample of groups and units within groups 
may be used. 

Unweighted group level statistics may be used by setting 
ng = I in equations (2.2) and (2.3). This leads to ineffi­
cient estimators. The degree of inefficiency will depend on 
the distribution of the group sample sizes. Weighting by 
the group sample sizes is important and when this is done 
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inference can proceed as usual with appropriate adjust­
ments to the degrees of freedom. Variabihty is determined 
by the number of areas rather than the number of indi­
vidual observations and confidence intervals and tests are 
adjusted accordingly. 

2.2 A Variance Component Model 

A simple way to represent the positive intra-group 
correlation that is usually observed in grouped populations 
is through a variance components model, which in the 
multivariate case corresponds to 

y, = ny + Vg -I- €,• / € g 

where Vg and 6, are independent random components at 
the group and individual level respectively, both with zero 
expectation, K(e, | c) = E^̂  and V{vg \ c) = Ayy. 

E[Syy I S,C] = Zyy -|- (Ŵ  " 1)A 

Mode! A: 

FVy-, \c\ = ny 

V{y, I c) = E,j -(- Ayy = E_ 
-yy 

Co\{yi,yj I c) = Ayy if c, = Cj i jt j 

— 0 otherwise. 

(2.10) 

(2.11) 

(2.12) 

The notation V{- \c) implies the covariance matrix 
conditional on the group labels c and hence determines 
common group membership. It is, however, taken to be 
unconditional over the group level random effects. Thus 
V{yi I c) contains the total variance from both the within 
group covariance matrix E ĵ and the group level covariance 
matrix Ayy. 

The properties of the sample group level means follow 
readily from Model A, if the sampling is ignorable given c. 

E[yg I s,c] = fly (2.13) 

V{yg I s,c) = — (E^^ -h {ng - I)Ayy) (2.14) 

Cow{yg,yh I s,c) = 0 g i^ h. (2.15) 

The properties of the unit level and group level statistics 

are 

E{y I s,c\ = liy 

n° - 1 
E[Syy I S,C] = E_ yy n - 1 •^yy 

(2.16) 

(2.17) 

•'yy (2.18) 

where« = n/m,n^ = l/n Y.gisn\ = " ( I + C^),«* = 
«(1 - Cl/{m - l ) ) a n d C ^ = 1/m Eg«(«g - «)V/!^ 
is the square of the coefficient of variation of the group 
sample sizes in the sample. We note that the coefficient 
of Ayy is 0(/77-') in (2.17) but is 0(«) in (2.18). This 
illustrates how a small bias in the unit level analysis can 
be magnified into a much larger bias in the aggregate level 
analysis. We will discuss these results further in section 2.4. 

2.3 Grouping Models 

In the discussion of ecological analysis, models have been 
proposed which take into account the group formation 
process. In this approach it is assumed that there is a grouping 
process which allocates individual units to groups according 
to a vector of grouping variables, z,, either stochastically 
or deterministically. This approach is implicit in Blalock's 
(1964) analysis and used expUcitly by Hannan and Burstein 
(1974), Litchman (1974), Langbein and Litchman (1978), 
Smith (1977) and Blalock (1979, 1985). Steel (1985) refers 
to these models as grouping models since it is assumed that 
groups are formed by some process involving the variables 
in the relationships under study. The grouping is seen as 
a distorting effect and the relationships of interest are defined 
before the grouping has occurred. It is often noted in the 
discussion of contextual models that apparent contextual 
effects may in fact be due to such factors. The multivariate 
version of this model is: 

Model B: 

E\yi I z,c\ = iiy,:, -I- jSyjZ/ 

V{y, I z,c) -•yy.z 

Cov(j;,,j;y I z,c) = 0 i ^ j . 

(2.19) 

(2.20) 

(2.21) 

In this model the conditional expectation of j ' , depends 
only on the value of the auxiliary variables for the /-th unit 
and is independent of the group to which the unit belongs 
or the values of the auxiliary variables of other units in the 
population. The conditional covariance between any two 
units is zero. This model covers grouping models in which 
the group formation process is characterised by the auxil­
iary variables z,. The auxiliary variables can be thought 
of as those variables that determine to which group a unit 
belongs. More generally, the auxiliary variables can be 
regarded as the main individual level variables whose distribu­
tions are not random across groups because of the choice 
or migration processes to which the population has been 
subjected. Contextual variables can also be included in this 
model as auxiliary variables which take the same value for 
each unit in the group. 
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If the vector of auxiliary variables has a marginal dis­
tribution with mean /x̂  and covariance matrix E^, then 
the marginal mean and covariance matrix of y are given 
by ily = lly.:^ -\- Py^ fl^ aUd Lyy - E_ŷ .j -|- ^y^ Ejj. ^y^ 
respectively. The properties of the sample group level 
means follow readily from Model B: 

E[yg I s,z,c] ^ tiy + fiy^{Zg - ixz) (2.31) 

and 

V{yg I s,z,c) = — (E„„, + {ng - I)Ay.,) (2.32) 

E[yg I s,z,c] =fi.y + ^,{Zg - Mz) (2.22) 

V{yg I s,z,c) = — Lyy., (2.23) 
n„ 

Cov{yg,yh I s,z,c) = 0 g ^ h. (2.24) 

The group level statistics then have the following 
properties 

E[y I s,z,c] = fly -i- 0;AZ - tiz) (2.25) 

E[Syy I S,Z,C] = Lyy "K ^^ ( 5 ^ " E ^ ) ^ , (2.26) 

E[Syy I S,Z,C] = Lyy + 0'y,{S^ " E ^ ) /̂ ^ (2.27) 

where S,, and S,, are defined analogously to Syy and Syy 
as given in equation (2.3) and the sentence that follows it. 

2.4 A Combined Model 

The two models considered so far can be thought of as 
competing explanations of the group effects, but they can 
be combined into a more realistic model which contains 
both grouping effects and residual variance components: 

Model C: 

E[yi I z,c] = fly., -I- /Sp'̂ z; 

V{yi I z,c) •"yy.z 

Cov(j;„^y \z,c) = Ayy., if c, = Cj i ?̂  j 

— 0 otherwise. 

(2.28) 

(2.29) 

(2.30) 

This model allows for group formation processes which 
are characterised by the auxiliary variables z,. It also 
includes residual within group correlations which reflect 
random effects which are interpreted as due to unobserved 
random group level variables after allowing for the 
grouping variables. 

The properties of the sample group level means follow, 
if the sampling is ignorable given {z,c) from Model C, 

Cov{yg,yh I s,z,c) = 0 g 7^ h 

E[y I s,z,c] = fly -I- Py,{z - fi,) 

h[Syy I S,Z,C] = Lyy -\- Py,{j„ — L „) (iy, 

n° - 1 
— i 

n - 1 

(2.33) 

(2.34) 

•'yy.z (2.35) 

E[Syy I S,Z,C] = Lyy + P'y,{S„ " L„)l3y, 

+ (n* - I) Ayy.,. (2.36) 

Equations (2.17) and (2.18) showed how the effect of 
aggregation in the variance components model. A, ampli­
fies the contribution of the random group level effects. In 
equation (2.17) the coefficient of A^̂  is 0 (m ~') whereas 
in (2.18) it is 0 («). For the combined model, C, equations 
(2.35) and (2.36) show how inclusion of the grouping 
variables permit the partition of the bias into two additive 
terms: the first related to the grouping variables, their rela­
tionship to the variables of interest and their aggregation 
effect and the second term involving Ayy.,, the residual 
components of variance after controlling for the grouping 
variables. Note that the coefficients of Ayy., in equations 
(2.35) and (2.36) are still 0(AW~') and 0{h) respectively 
as they were in equations (2.17) and (2.18) but the residual 
components of variance should in general be smaller. The 
basic assumption in (2.29) is that the residual variance is 
constant across c. 

The assumption that the sampling is ignorable given 
{z,c) means that the sample design can depend on the aux­
iliary variables and the group indicatives. This allows, for 
example, the use of stratification based on the values of 
z and cluster or multi-stage sampling based on the groups. 

The weighted group level matrix Syy is intended to 
estimate Lyy. The first bias term in (2.36) is due to the 
effect of the grouping variables and will be zero if 0y, = 0 
or approximately so if S,, = L„. The condition 0y, = 0 
is a strong condition and implies that the variables of 
interest are unrelated to the grouping variables. The effect 
of aggregation on the sample covariance of any two 
variables will depend on the relationships of the variables 
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with the grouping variables z, and we would expect the 
aggregation effects to be greater for variables more closely 
related to the grouping variables. The condition S„ ^ L„ 
implies that there are no selection or aggregation effects 
for the z variables. These conditions are unhkely to apply 
in practice and hence bias will result for many variables. 
The bias due to the samphng and grouping involving the 
auxiliary variables is determined by S„ — L„ for the unit 
level estimator and by S„ — L„ for the group level esti­
mator. The term S„ — L„ reflects the net effect of the 
sampling and aggregation on the auxiliary variables. 

The second bias term in (2.36) will be zero if Ayy, — 0 
which implies that, conditional on the grouping variables, 
there is no residual intra-group correlation among the y 
variables. This is unlikely to occur in practice but it is 
desirable to identify grouping variables that account for 
as much of the aggregation effects as possible by making 
this residual term as small as possible. 

The effects due to the grouping and sampling depending 
on z and the effect due to the residual within group corre­
lation are additive; this will be the case for more complex 
forms of within group correlations provided the linearity 
of the model holds. I f z follows a simple variance compo­
nent model, like Model A then 

E[S„ \s,c] =L„-\- {n* - 1)A^ 

E[Syy I S,C] = Lyy-l- {fi* " l)^'A„0y, -^ A •'yy.z 

(2.37) 

and the intra-group covariances of the variables of interest 
are composed of a component due to the intra-group 
covariances of the auxiliary variables and the residual 
components. The right hand side of (2.37) represents a 
partition of (2.18) since if z follows a variance components 
model then so does y unconditionally. The motivation 
behind the basic model is to find auxiliary variables so that 
the residual or conditional within group covariances Ayy., 
are small or, ideally, disappear. 

dependent variable and unit level variances are available 
for both the dependent and all the independent variables 
in the regression model. However, none of these approaches 
provide a general approach to the problem. 

Examining the bias for Syy, given in (2.36) shows that 
if we add &y,{L„ — S„)0y, to Syy, the bias term due to 
the grouping variables would be removed. Now (2.31) 
impUes that 

E[By, I s,z,c] = /3 
yz 

(2.38) 

where fi^j = S„^ S,y. 

If the covariance matrix of z, S,,sn' from a unit level 
sample SQ drawn from /MQ groups was available then the 
adjusted estimator 

Lyy{Z) — Syy -f By,{S,; Szz)^y (2.39) 

should remove the aggregation bias due to the grouping 
variables z, provided S,,so is close to E^ .̂ The source for 
S,^^ may be quite independent of the data used in Syy 
and By,. Steel (1985) shows that the adjusted estimator 
(2.39) can be obtained as the MLE of Lyy (with the usual 
replacement of m — 1 by m etc.). If normality of the 
distribution of {y,z) applies, So is a simple random sample 
from the population and Ayy., = 0. The adjusted esti­
mator corresponds to the Pearson (1903) adjustment 
considered by Holt, Smith and Winter (1980) in the case 
of regression analysis and Smith and Holmes (1989) in the 
case of muhivariate analysis. In these cases the adjustment 
is applied to statistics calculated from unit level data 
obtained from a sample whose design depends on the 
auxihary variables. In oiir case the adjustment is applied 
to statistics calculated from area means and the auxiliary 
variables used in the adjustment include grouping variables 
as well as any design variables. The adjusted estimator 
of fly is 

f^y{z) = y + B;,{ZSO - ^) (2.40) 

2.5 Adjusting for Aggregation Effects 

Few useful proposals have been made on how to adjust 
the area level analyses to produce reasonable estimates of 
the unit level relationship. Duncan and Davis (1953) 
considered the possible range of the correlation coefficient 
calculated from a 2 by 2 table with known margins. The 
resulting bounds are often too wide to be of practical use. 
Goodman (1959) identified specific conditions for a regres­
sion model under which ecological analysis could validly 
be used to draw inferences regarding relationships at the 
individual level. Langbein and Litchman (1978) consider 
some methods that can be applied when grouping is by the 

where ẑ „ is the mean calculated from SQ. 

From (2.34) and (2.38) we see that 

E[fl,y{z) I S,Z,So,C] = fly -I- Pyz{Zso - Mz). (2.41) 

Moreover, Steel (1985) shows that (2.36) and (2.38) 
imply 

E[Lyy{Z) I S,Z,SO,C] = Lyy + /3;, (5jJ,„ " E„)|8^, 

-I- {h* - I)Ayy., -I- 0 ( m - ' ) (2.42) 
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provided t r (5 - ' 5,^,„)_and / i t r ( (5 - ' 5^„ - 7 )5^ ' 5<|') 
are bounded, where 5 ^ ' is defined similarly to S,^ with 
Hg replaced by nl/n. 

Comparing (2.42) with (2.35) we see that the component 
of bias due to the grouping variables has been adjusted 
to that associated with the use of Syys^, if it had been 
available. The estimator adjusts for the aggregation effects 
that have acted through z. It also adjusts the effect of the 
sampling design from that associated with s to that asso­
ciated with S(j. 

Suppose that the sampling design used to generate SQ 
and the values of the auxihary variables are generated from 
a superpopulation such that 

E[Zs,, I %c] = fi, + 0{mo ') 

E[S„so I So,c] = E^ + 0(Wo-') 

(2.43) 

(2.44) 

where mo is the number of groups in SQ. 

In such cases 

E[fiy{z) I s,So,c] =fiy-l- 0(mo-') (2.45) 

£[E^^(Z) I S,S0,C] = Lyy -I- («* - I) Ayy., -|- 0 (/K " ' ) 

(2.46) 
where 

m = min {m,mo). 

Conditions (2.43) and (2.44) would apply if the popu­
lation z values across groups arose from a variance com­
ponent model similar to model A and the sampling design 
for 50 depended only on the grouping but not any auxiliary 
variables. Sampling designs such as simple random sampling 
or equal probability cluster or multi stage sampling fulfil 
this condition. Use of census data, so that SQ is the entire 
finite population is also applicable. 

It is thus possible to adjust for the bias due to the 
grouping variables provided some unit level sample co-
variance matrix for z is available. The motivation for the 
approach is a situation where the predominant group 
effects can be attributed to selectivity or grouping effects 
acting through the grouping variables. The adjustment for 
the auxiliary variables removes the effect of the apparent 
intra-group correlation due to these variables. The adjusted 
estimator still has a component of bias due to Ayy., and if 
z is not effective in significantly reducing the intra-group 
correlations then this term can still be important. This 
approach therefore relies on choice of appropriate aux­
iliary variables to reduce the intra-group correlations. 

If the sampling design for SQ and the superpopulation 
model for z are such that (2.43) and (2.44) do not apply 
then Zso and S,,so c^n be replaced by estimators ti,so ^^'^ 
E^„ in the calculation of the adjusted estimators fiy{z) 

and Lyy{z). The resulting expectations of the adjusted 
estimators are given by (2.41) and (2.42) with Zs^ replaced 
by ii,so ^"^ ^zzso replaced by E^^^. There are a number of 
choices available for the estimators fi,^„ and L„so calcu­
lated from the sample SQ. Smith and Holmes (1989) con­
sider a range of model based and design based estimators 
that can be used. For example suppose the sample design 
used to obtain SQ involved stratification according to the 
values of the vector of size variables x. Denote the sample 
inclusion probability for population unit / as 11, and the 
associated probability based weight is w, = (11,)"' . 
The probability weighted estimator of fi, is z ĵ = T,iiso w, 
Zi, and of L„ is S,„„= I/̂ ^o W/Z/Z,' - Wo"' z^ z/j where 

Wo = liiso w;-
The Pearson based adjusted estimators of fi, and L„ 

are Zĵ  + B^„ {x„ - xj and S„so + B^o (^xxu - S^xs^) 
B^cso respectively. Here x„ and S^xu are the mean vector 
and covariance matrix of the design variables in x in the 
finite population and B,xso — ̂ xxsf' ^xzso -

Pobability weighted Pearson based adjusted estimates 
may also be considered, i.e., z|„ -I- B^„ (*„ - *!») ^^'^ 

^zzso "'" "zxso {^xxu — ^xxso) "zxso-

Here jc|„ and Sixso are defined analogously to zj„ and 
S'„s„ respectively and B',^^ = S^^ Si,so- The approach 
taken so far is strongly model based and so model based 
estimators of fiy and L„ would be preferred. However, in 
practice the data available for use in the adjustment may 
comprise published /?-weighted estimators of means and 
covariances obtained from the sample ^o, which is inde­
pendent of s. Thus 

Epg I EjJSO Z,c] = S,, 

where Zu and S„u are the mean vector and covariance 
matrix of the auxiliary variables in the finite population 
and Epg represents the expectation with respect to repeated 
sampling using the sampling design employed to obtain 
So, i.e., the randomization distribution. Thus from (2.41) 
and (2.42) 

E[fLy{z) I s,z,c] = fly -^- Pyz'{Zu - Mz) 

£'[E^^(Z) I S,Z,C] = Lyy -\- Py,'{S„U - L„)0y, 

-t- {h* - l)Ayy., -I- 0 ( W - ' ) . 

These expectations are taken over the statistical model 
generating the j ' values and the randomization distribution 
associated with SQ. In practice z„ and S„u will be very 
close to fi, and L„ respectively. 
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3. IDENTIFYING GROUPING VARIABLES 

In the previous section we introduced a set of auxihary 
variables, z, which characterised the area differences and 
which were used to adjust the aggregated analysis to reduce 
the aggregation bias. If the auxiliary variables were totally 
successful then Ayy., would be reduced to zero and the 
adjustment method would remove the aggregation bias 
completely. In practice the auxiliary variables for which 
Ayy., = 0 are unknown. Also we will be restricted to sets 
of variables for which area level means are available as part 
of the data set under analysis and for which an estimate 
E^ of the unit level covariance matrix is available. Basic 
demographic information and housing variables conunonly 
available from the Census may be used. However these 
variables may not fully characterise the grouping process 
and so they may not explain as much of the between area 
difference as we might wish. 

3.1 An Analysis Strategy 

In practice the grouping variables will not be known. 
We need a strategy for identifying adjustment variables 
for which an estimate of the unit level covariance matrix 
is available and which account for group effects. One 
strategy involves the following steps: 

1) Identify a set of variables that cover the same subject 
area as the variables of interest, but for which both area 
level and unit level data are available for some period 
in the past. Previous Census data may be suitable. 

2) Add to this set, variables (such as demographic and 
housing variables) which are candidate z variables since 
they are known to be strongly associated with area 
differences. Estimates of both the area level and unit 
level covariance matrices must also be available for the 
same period in the past. 

3) Carry out an analysis of these data to identify the 
variables which account most strongly for the area level 
effects among the variables of interest. This analysis, 
which we term a CGV analysis, will be described below. 

4) Identify from (3) a set of adjustment variables which 
are available within the current data set and for which 
the current unit level covariance matrix is available 
from some source. 

5) For some variables of interest it may be possible to 
obtain estimates of unit level variances or covariances, 
from pubhshed tables for example. From these calculate 
aggregation effects Qaa = s„„/Saa or Q î - Sab/Sab-

6) Use the variables identified in (4) to adjust the aggregate 
analysis for the variables of interest and check the 
adjusted aggregation effects corresponding to (5) to 
monitor the success of the adjustment. 

3.2 The Ideal Grouping Variables 

We first consider the ideal set of grouping variables that 
could be used for adjustment so as to identify the appro­
priate (CGV) analysis that could be followed for the 
analysis of aggregated data using the strategy outlined 
above. 

Let us suppose that for the complete set of variables of 
interest we have the area level variance-covariance matrix 
Syy and the unit level variance-covariance matrix Syys^ 
based on a sample s,. Of course if this occurred in practice 
the aggregation problem would disappear since we could 
discard Syy and simply use Syys^, as an estimate of Lyy. 
However there are three reasons for considering this 
situation. Firstly it helps to throw light on the grouping 
structure which determines the relationship between Syy 
and Syys^. Secondly it may be that Syy and Syys^ are avail­
able at some point in time such as census day but that 
further analysis of a new version of Syy is to be based on 
inter-censal data when Syy^^ is unavailable. If the grouping 
structure persists over time, as we might expect, then the 
analysis of the census day versions of Syy and Syys^ might 
help the subsequent inter-censal analysis by identifying the 
key variables that explain a large proportion of the aggre­
gation effects. These possibilities underpin the strategy 
outlined in section 3.1 above. Thirdly if the variables in 
y cover a large range of socio-economic and demographic 
variables, as occurs in the census, then the key variables 
that account for the grouping effects for the variables may 
also explain much of the grouping effects of other socio­
economic and demographic variables. Note that the two 
samples s and Sj may be identical but in general do not 
need to be. For example s may correspond to an adminis­
trative source which is effectively a census that provides 
aggregate data for geographic areas, and Si is a sample 
survey from which individual level data are made available 
without any geographic identifiers. 

To help identify the important variables associated with 
the grouping Steel (1985) suggests that di, ..., dp,tlie 
eigenvalues of S^y\^ Syy, be calculated as well as the 
matrix Dy = [di, ..., dp] such that 

D^SyyDy - dlag («'<.) and D^Syys.Dy = I. 

The variables defined by the transformation 

Ui = D; yi 

successively have maximum ratio of between group to 
sample total variance and have zero sample correlation at 
the unit and group level and unit level sample variance of 1. 
These variables are called the sample Canonical Grouping 
Variables (CGVs). The sample CGVs have the maximum 
intra-group correlation. Note that tr(5j^J, Syy) = E/t *̂ 
can be defined as the multivariate aggregation effect. 
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Note that the matrix Dy will exist even if î ^̂ ,̂ and Syy 
are based on different samples so long as the former is 
positive definite and the latter is positive semi-definite. 
Furthermore the variances of the CGVs will be non-
negative. However, when s and Sj are distinct it is possible 
that the maximum variance of a CGV could exceed 
{N — 1) / (M — 1) which is the maximum possible aggre­
gation effect. In this case the CGV has an implied negative 
within group variance component. For our purposes this 
may not matter since we are interested in identifying 
important grouping variables but in principle the offending 
variance of the CGV could be set to its theoretical maxi­
mum. The sample CGVs are obtained from the eigene-
vectors of Ayy = S^l Syy. If s and Si axe the same sample 
then Ayy is the sample regression coefficient for the 
regression of the group level means on the unit level values 
calculated over the unit level sample. In this case the 
sample CGVs are in fact the sample canonical variates 
relating the unit level and group level data and d/c are the 
sample canonical correlations. 

Having calculated the CGVs the difference between the 
sample group level and unit level covariance matrix can 
be expressed as 

Syy - Syys, = ^ ^ ( ̂ it " ^)4>k4>k 

where i/^ is the vector of sample covariances between the 
A:-th CGV and the original variables. Hence the difference 
between the group level and unit level covariance matrix 
can be partitioned into k orthogonal elements, one for 
each CGV. 

For the covariance between yi„ and yib, the difference 
between the sample group level covariance, s^b and unit 
level covariance Sab (where s^b and s^b elements of Syy and 
Syys^, respectively) is 

Sab = Sab + {SaaSbbV^" ^ {h - l)PakPblc 

k 

where Pak = iak/s'al is the sample correlation between 
the a-th variable and the A:-th sample CGV. 

If the first q sample CGVs are used to calculate an 
adjusted group level variance matrix, i.e., Ug, = Dg y, 
where Dg = [di, ..., dg], are used as the auxiliary 
variables 

^yy {Ug) = Syy + Byu^ {SugUgSO ~ SugUg)ByUg 

then the first q terms of the decomposition are removed 
i.e., 

p ^ 

^yy{Ug) = Syys, 4" ^ (^*: " l)4>k4>k 

* = <7+l 

and tr(5'^^j| tyy{Ug)) - I^=^+i Â̂ . . In fact use of the 
first q CGVs provides the matrix of rank q that minimizes 
115, •yys, £vv("o) II. Hence by examining the quantities 

^ 9, and 1 + ^ {0, - DP 

*=9+ l k=q+l 

x2 
ak 

for ^ = 0, . . . , ; ? - 1 

it is possible to examine how the proportion of the overall 
aggregation effect and the aggregation effect for each 
variable can be explained by the first q sample CGVs. 

The preceding analysis will suggest how many dimen­
sions are required to effectively explain and hence remove 
a specified amount of the aggregation effects. Moreover 
by looking at the loadings of the original variables in the 
CGVs, it should be possible to identify which variables 
play the major role in "explaining" the aggregation effects 
of the other variables. It is these variables that researchers 
should concentrate on obtaining unit level data for, to use 
in the adjusted estimator. 

These results have some important implications for the 
use of group level data supplemented by limited unit level 
data, since they open the way to combining sample survey 
data and group level data from one or more sources and 
suggest a strategy for the analysis of group effects and 
group level data. 

4. SOME EMPIRICAL RESULTS 

We illustrate the ideas of the previous sections with an 
analysis of the 1991 UK population census data for the 
Local Authority District (LAD) of Reigate, Banstead and 
Tandridge. The LAD population is 188,700 people con­
tained in 371 EDs giving an average number of people per 
ED of n = 508.6. Group level data are available on a 
complete count basis for each ED in the LAD from the 
Small Area Statistics (SAS) data file. Corresponding unit 
level data for the LAD are obtained from a 2 per cent 
Sample of Anonymized Records of individuals (SAR). The 
records in the SAR cannot be identified with any specific 
ED within the LAD thus in this situation we have Syy 
based upon complete data for each ED from the SAS and 
we have an estimate of Syys^ based on a 2 percent sample 
from the SAR. The following analysis is based upon 
16 census variables for each person. 

For each variable the group level data and the unit 
level data were used to calculate the aggregation effect, 
Qa = Saa/Saas- The parameter 5̂ ^ = Aa^/L^g, defined 
on the appropriate diagonal elements of Ayy and Lyy is 
the intra-group correlation for the cr-th variable. An esti­
mate Saa of the intra-group correlation can be obtained 
from (2.18) since Qa = I -\- {h* - I) S^a- The results 
for the variables are given in Table 1. The intra-group 
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Table 1 
Aggregation Effects and Intra-class Correlations for 

Census Variables in Reigate LAD 

Persons aged 18-29 
Persons aged 30-44 
Persons aged 45-59* 
Persons aged 60 and over* 
Female 
Non-white* 
Married 
Limiting long term illness 
Persons employed full time 
Persons unemployed 
Other employment status 
Head of h'hold born UK 
Head of h'hold born New 
Commonwealth 

Migrant head of household 
< 1.5 persons per room: density 
Persons in 0 car households 

Aggregation 
Effect 

9.20 
4.56 
5.97 

17.17 
1.08 
8.29 
6.24 
7.24 
8.55 
2.27 

11.19 
4.48 

3.59 
9.04 

27.96 
32.98 

Intra-class 
Correlation 

.016 

.007 

.010 

.032 

.000 

.014 

.010 

.012 

.015 

.003 

.020 

.007 

.005 

.016 

.053 

.063 

<0 
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• Selected for adjustment variables. 
Source: Reigate and Banstead; Tandridge LAD 1991 census data. 

correlations are generally small but the number of obser­
vations in each ED implies that the aggregation effects can 
be high (see the comment following equation (2.18)). 

Figure la shows a plot of the group level correlation, 
Fgi,, against the individual level correlation, rab, for every 
pair of variables. Note the strong aggregation effects 
which are revealed through the characteristic S-shaped 
plot. Small correlations at the unit level are generally 
magnified so that for most cases | r^b \ is much larger 
than \ r^bl. 
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Figure Ic. 

Since in this case we have Syy and Syys^ we may carry 
out a canonical grouping variable analysis so as to under­
stand the more important features of the grouping struc­
ture. Table 2 shows the loadings on the 16 variables for 
the first five canonical grouping variables which together 
account for 89% of the multivariate aggregation effect. 

The first CGV has high loadings on high density occu­
pation and car {i.e., auto) access and might be interpreted 
as a socio-economic factor. The second CGV has high 
loadings the variables indicating people in the two oldest 
age groups. It is noticeable, also, that the proportion of 


