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In This Issue 

This issue of Survey Methodology contains articles dealing with a variety of subjects. In the 
first article. Steel, Holt and Tranmer examine the problem of using aggregated data in studies on 
relationships at the individual or household level. They propose a simple general model that seeks 
to take account of the geographical effects of aggregation. They then describe how this model 
effects both the estimation of population means and covariance matrices and analysis at the regional 
level. In addition, by introducing auxiliary variables for which certain external sources provide 
an estimate of the covariance matrix at the unit level, the authors propose methods that provide 
an unbiased estimate of the parameters at the individual level, so as to avoid the effect of 
geographical aggregation. 

Binder gives a "cookbook" approach for deriving Taylor series approximations to the variances 
of a wide class of estimators from complex surveys. Several useful examples are presented, as well 
as new results on the application of this general technique to two-phase sampling. A justification 
of this method is given, showing the procedure to be consistent with the formulation given in earlier 
work by Binder and Patak. 

Yung and Rao suggest a linear approximation to the jackknife variance estimator. This linearized 
jackknife inherits the good statistical properties of the usual jackknife variance estimator but is 
computationally much less intensive. The specific form of the proposed variance estimator is 
developed for the generalized regression estimator of a total and for the ratio of two generalized 
regression estimators. In a simulation study using data from the U.S. Current Population Survey, 
they found that the jackknife, the linearized jackknife, and the usual linearization variance 
estimators worked quite well for poststratified estimates of a total, while an incorrect form of the 
jackknife was badly biased. 

Chaubey, Nebebe and Chen consider use of an Inverse Gaussian model for positively skewed 
data and develop a corresponding model assisted estimators for domain totals, which consist of 
Inverse Gaussian regression predictors together with an expansion estimators of the regression bias. 
A modified version of the estimator which gives reduced weight to the bias correction term, 
analogous to a modified regression estimator proposed by Samd2il and Hidiroglou, is also proposed. 
In a simulation study using synthetic income data based on Statistics Canada's Survey of Household 
Income, Facilities and Finance the proposed estimators are found to work reasonably well. 

Rizzo, Kalton and Brick investigate the use of auxiliary information in compensating for panel 
nonresponse through weight adjustment techniques. Using data from the Survey of Income and 
Program Participation (SIPP) to illustrate, they address two important issues, namely, the choice 
of auxiliary variables to be used in a nonresponse weight adjustment technique, and the choice 
of technique itself. A screening procedure in conjunction with logistic regression modelling are the 
means by which appropriate auxiliary variables are chosen. The nonresponse weighting adjustment 
methods considered are based on logistic regression models, categorical search algorithms and 
generalized raking. An empirical comparison of the various methods is discussed in detail. 

Ding and Fienberg develop models of matching error which can be used in estimation of total 
population from a probabilistic match of two or more samples. They develop their models for the 
particular application of a multiple sample census, that is, a census supplemented by auxiliary 
samples. They illustrate the usefulness of their methods by applying them in an analysis of the 1988 
St. Louis Dress Rehearsal Census data for which three samples were matched: the Census itself, 
the Post Enumeration Survey sample, and the Administrative List Supplement. 

In a paper on optimal stratification, Slanta and Krenzke talk about the use of the Lavall6e-
Hidiroglou method. This iterative method minimizes the sample size while fixing the coefficient 
of variation. In a practical illustration, the authors present the difficulties with the Lavall6e-
Hidiroglou method and show how they were resolved. 



In This Issue 

Dagum proposes a new method for estimating underlying trends from seasonally adjusted data. 
The approach consists of two steps. The seasonally adjusted data are first extrapolated based on 
an ARIMA model. A 13-term Henderson filter is then applied to the extended series, using strict 
sigma limits for the identification and replacement of extreme values. The new method is compared 
to the standard method using data from several economic time series. It is found that the new 
method produces fewer unwanted ripples in the estimated trend, while identifying turning points 
as just quickly and requiring smaller revisions on average. 

Tille proposes an algorithm that generalizes the selection-rejection method used for constructing 
a simple random sample without replacement. A specific case of this algorithm, which is called 
the "mobile stratification algorithm", is discussed. It serves to obtain a smoothed stratification 
effect by using as a stratification variable the serial number of the units of observation. This 
algorithm gets around the thorny problem of a continuous variable in strata. 

De Waal and Willenborg review recent research on statistical disclosure control for microdata 
files from the perspective of Statistics Netherlands. Models are developed for the probability that 
a particular record could be re-identified and for the probability that some record in a microdata 
file could be re-identified. Global recoding and local suppression are considered as methods to 
reduce disclosure risk. They conclude that there is still much need for further methodological 
research and development of efficient software. 

Finally, it is with sadness that I note the recent passing away of Maria Gonzalez, who died of 
cardiac arrest while vacationing in Puerto Rico this past February. Among her many contributions 
to the statistical community, for the past several years Maria has been an Associate Editor for the 
Survey Methodology journal. Her contribution in this capacity to the quality and breadth of this 
journal was very much appreciated, and she will be sorely missed. An obituary, written by Elizabeth 
and Fritz Scheuren, appeared in the April issue of Amstat News. 

The Editor 
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Making Unit-Level Inferences From Aggregated Data 
D.G. STEEL, D. HOLT and M. TRANMERi 

ABSTRACT 

Data are often available only as a set of group or area means. However, it is well known that statistical analysis 
based on such data will often produce results very different from those obtained from analysing the corresponding 
individual or household data. If the results of area level analyses are thought to apply to the individual level then 
we risk committing the ecological fallacy. Aggregation or ecological effects arise in part because geographic areas 
are not comprised of random groupings of people or households but exhibit strong socio-economic differences 
between areas. The population structure must be incorporated into the statistical model underpinning the analysis 
if aggregation effects are to be understood. A simple general model is proposed to achieve this and the consequences 
of the model and its implications for the estimation of population means and covariance matrices are obtained. 
Furthermore, methods are suggested which can provide unbiased estimates of individual level parameters from 
aggregated data and so avoid the ecological fallacy. These methods rely on identifying the "grouping variables" 
that characterise the process that led to the population structure, or at least characterise the area differences. An 
estimate of the unit level covariance matrix of the grouping variables is required from some source. Data from the 
1991 Census of the United Kingdom have been analysed to identify the important grouping variables and evaluate 
the effectiveness of the proposed adjustment methods for the estimation of covariance matrices and correlation 
coefficients. These results lead to a suggested strategy for the analysis of aggregated data. 

KEY WORDS: Aggregation; Ecological fallacy; Grouping; Selection; Variance components. 

1. INTRODUCTION 

Researchers are often faced with the problem of wishing 
to investigate individual level relationships but having to 
make use of aggregated data, such as the means or totals 
for geographic areas. Ideally unit level data collected in 
a sample survey or census would be used, but may not be 
accessible because of confidentiality restrictions, or because 
the variables have not been collected in a recent survey or 
census. Administrative systems provide information on a 
range of variables, for example on unemployment, health, 
morbidity, but because of confidentiality requirements 
these data are usually made available for aggregates, such 
as geographic areas. The census also provides data for 
geographic areas. For these reasons, analysis of group level 
data is still an option used widely in social and epidem­
iological research. 

Consider a population in which each individual has 
associated a vector of variables of interest, whose distri­
bution has mean ^ly and covariance matrix Lyy. We are 
interested in relationships among the variables of interest 
as reflected by correlations, regression coefficients and 
principal components, which may all be derived from the 
covariance matrix, Lyy, which is our basic target of 
inference. For example, the variables of interest might 
include a set of attainment tests in an educational study; 
the incidence of a particular disease and a set of explan­
atory variables in an epidemiological study; or a set of 

deprivation measures in a sociological study. We suppose 
that individual level data are unavailable. However, the 
region may be subdivided into a set of small areas such as 
Census Enumeration Districts (EDs), and for each small 
area, g, or for a sample of areas, we observe the vector of 
average values yg for the variables of interest together 
with the sample size ng on which this is based. 

The objective of the analysis, Eyy, is a covariance 
matrix which spans the small areas. The target of inference 
is not conditional on small area membership but refers to 
the marginal distribution across small areas. This contrasts 
with situations, such as small area estimation, in which the 
target of inference is in the conditional distribution given 
the small area. This is a separate, legitimate objective with 
which we are not concerned. The same models may be 
applicable, but the targets of inference are different. 
However, our formulation does allow for group specific 
variables to be included as variables of interest if required. 
For example, if we associate with each individual a set of 
ED means for the area in which the individual is located, 
then these can be included within the vector, y, of interest. 
In particular, regression analyses which include small area 
means as explanatory variables in the regression model can 
be encompassed by the approach. 

The literature associated with the analysis of aggregated 
data dates back to Gehlke and Biehl (1934) and includes 
significant contributions by Yule and Kendall (1950) and 
Robinson (1950), Blalock (1964), Openshaw and Taylor 

' D.G. Steel, Department of Applied Statistics, University of Wollongong, NSW 2522, Australia; D. Holt and M. Tranmer, Department of Social 
Statistics, University of Southampton, S017 IBJ, United Kingdom. 
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(1979) and more recently Arbia (1989). There are also 
problems associated with the fact that the areal units used 
often have no special significance, being constructed for 
reasons of cost, operational or administrative convenience. 
Moreover, the results of the group level analysis will 
depend on the scale of the units, that is their average size 
and the particular set of boundaries chosen. Several empir­
ical studies have demonstrated these effects, including 
Clark and Avery (1976), Perle (1977), Openshaw (1984), 
and Fotheringham and Wong (1991). However, these 
studies have not provided any generally appUcable theory 
or practical methods of modifying the results of group 
level analyses to provide reliable unit level inferences. 

Aggregation effects arise because geographic units are 
not comprised of random groupings of people. Individuals 
in the same area generally tend to be more alike because 
they choose to live in areas in a non-random way, or 
because they are subjected to common influences, or 
because they interact with one another. Thus there are 
socio-economic differences between areas which are 
confounded with the individual effects in any statistical 
analysis performed using aggregated data for the areas. 
A simple general model is proposed which seeks to incor­
porate these effects. The consequences of this model and 
its implications for area level analysis are obtained. 
Furthermore, methods are suggested which provide, under 
certain circumstances, unbiased estimates of individual 
level parameters from aggregated level data and so avoid 
the ecological fallacy. These methods involve auxiliary 
variables for which a unit level sample covariance matrix 
is available from some source. This approach has been 
applied to data from the 1991 Census of the United 
Kingdom and a strategy developed for the analysis of 
aggregated data . 

2. MODELS FOR AREA EFFECTS 

We consider a population of N^ individuals each having 
a vector J' of characteristics of interest. The population is 
comprised of M groups and the random variable c, indi­
cates the area to which the i-th population unit belongs. 
The number of individuals in the ^-th area is A'g. 

We consider fXy and Lyy to be superpopulation para­
meters and the following statistical theory is obtained in 
this framework. However, we consider some survey design 
issues at the end of section 2. 

We assume that there exists a sample data set s of size 
n and that these individual data have been aggregated to 
provide a set of m area means which are available for anal­
ysis. The following area level statistics can be calculated: 

the overall sample mean: 

the g-th area mean: 

no .'^ 
(2.1) 

y = l,Tt"^ys = l, DJ' / 
n n 

(2.2) 
giS lis 

the area level sample covariance matrix: 

1 

1 
giS 

Jyy = ^ ; ^ - j - D ng{yg-y){yg-y)'. (2.3) 

Analogous unit level statistics may be defined but 
will be unavailable to the analyst. For example Syy = 

l/{n — l)Y.iis{yi - y){yi - y)' is the unit level sample 
covariance matrix. 

2.1 Random Grouping 

While geographic groups are rarely formed randomly, 
such a situation is a useful starting point in considering 
ecological analysis. If groups are randomly formed then 
many group level analyses are valid, albeit with a reduced 
efficiency. Steel and Holt (1995) consider the properties 
of statistics such as means, variances, regression and 
correlation coefficients in this situation. When the groups 
are randomly formed i.e., y ± c then 

E[yg I s,c] = Hy 

V{yg I s,c) = — E lyy , 

(2.4) 

(2.5) 

The basic properties of the unit and group level statistics 
then follow readily 

Cov{yg,yh I s,c) = Q g yi h 

E[y I s,c] = fly 

E[Syy I S,C] = 'Hyy 

E[Syy I S,C] = E ,yy. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

These properties apply if the samphng is ignorable given 
the group indicatives, which means the sample design can 
depend on the groups but not on y or any variable which 
is related to y conditional on c. For example a census or 
a simple random sample of groups and units within groups 
may be used. 

Unweighted group level statistics may be used by setting 
ng = I in equations (2.2) and (2.3). This leads to ineffi­
cient estimators. The degree of inefficiency will depend on 
the distribution of the group sample sizes. Weighting by 
the group sample sizes is important and when this is done 
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inference can proceed as usual with appropriate adjust­
ments to the degrees of freedom. Variabihty is determined 
by the number of areas rather than the number of indi­
vidual observations and confidence intervals and tests are 
adjusted accordingly. 

2.2 A Variance Component Model 

A simple way to represent the positive intra-group 
correlation that is usually observed in grouped populations 
is through a variance components model, which in the 
multivariate case corresponds to 

y, = ny + Vg -I- €,• / € g 

where Vg and 6, are independent random components at 
the group and individual level respectively, both with zero 
expectation, K(e, | c) = E^̂  and V{vg \ c) = Ayy. 

E[Syy I S,C] = Zyy -|- (Ŵ  " 1)A 

Mode! A: 

FVy-, \c\ = ny 

V{y, I c) = E,j -(- Ayy = E_ 
-yy 

Co\{yi,yj I c) = Ayy if c, = Cj i jt j 

— 0 otherwise. 

(2.10) 

(2.11) 

(2.12) 

The notation V{- \c) implies the covariance matrix 
conditional on the group labels c and hence determines 
common group membership. It is, however, taken to be 
unconditional over the group level random effects. Thus 
V{yi I c) contains the total variance from both the within 
group covariance matrix E ĵ and the group level covariance 
matrix Ayy. 

The properties of the sample group level means follow 
readily from Model A, if the sampling is ignorable given c. 

E[yg I s,c] = fly (2.13) 

V{yg I s,c) = — (E^^ -h {ng - I)Ayy) (2.14) 

Cow{yg,yh I s,c) = 0 g i^ h. (2.15) 

The properties of the unit level and group level statistics 

are 

E{y I s,c\ = liy 

n° - 1 
E[Syy I S,C] = E_ yy n - 1 •^yy 

(2.16) 

(2.17) 

•'yy (2.18) 

where« = n/m,n^ = l/n Y.gisn\ = " ( I + C^),«* = 
«(1 - Cl/{m - l ) ) a n d C ^ = 1/m Eg«(«g - «)V/!^ 
is the square of the coefficient of variation of the group 
sample sizes in the sample. We note that the coefficient 
of Ayy is 0(/77-') in (2.17) but is 0(«) in (2.18). This 
illustrates how a small bias in the unit level analysis can 
be magnified into a much larger bias in the aggregate level 
analysis. We will discuss these results further in section 2.4. 

2.3 Grouping Models 

In the discussion of ecological analysis, models have been 
proposed which take into account the group formation 
process. In this approach it is assumed that there is a grouping 
process which allocates individual units to groups according 
to a vector of grouping variables, z,, either stochastically 
or deterministically. This approach is implicit in Blalock's 
(1964) analysis and used expUcitly by Hannan and Burstein 
(1974), Litchman (1974), Langbein and Litchman (1978), 
Smith (1977) and Blalock (1979, 1985). Steel (1985) refers 
to these models as grouping models since it is assumed that 
groups are formed by some process involving the variables 
in the relationships under study. The grouping is seen as 
a distorting effect and the relationships of interest are defined 
before the grouping has occurred. It is often noted in the 
discussion of contextual models that apparent contextual 
effects may in fact be due to such factors. The multivariate 
version of this model is: 

Model B: 

E\yi I z,c\ = iiy,:, -I- jSyjZ/ 

V{y, I z,c) -•yy.z 

Cov(j;,,j;y I z,c) = 0 i ^ j . 

(2.19) 

(2.20) 

(2.21) 

In this model the conditional expectation of j ' , depends 
only on the value of the auxiliary variables for the /-th unit 
and is independent of the group to which the unit belongs 
or the values of the auxiliary variables of other units in the 
population. The conditional covariance between any two 
units is zero. This model covers grouping models in which 
the group formation process is characterised by the auxil­
iary variables z,. The auxiliary variables can be thought 
of as those variables that determine to which group a unit 
belongs. More generally, the auxiliary variables can be 
regarded as the main individual level variables whose distribu­
tions are not random across groups because of the choice 
or migration processes to which the population has been 
subjected. Contextual variables can also be included in this 
model as auxiliary variables which take the same value for 
each unit in the group. 
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If the vector of auxiliary variables has a marginal dis­
tribution with mean /x̂  and covariance matrix E^, then 
the marginal mean and covariance matrix of y are given 
by ily = lly.:^ -\- Py^ fl^ aUd Lyy - E_ŷ .j -|- ^y^ Ejj. ^y^ 
respectively. The properties of the sample group level 
means follow readily from Model B: 

E[yg I s,z,c] ^ tiy + fiy^{Zg - ixz) (2.31) 

and 

V{yg I s,z,c) = — (E„„, + {ng - I)Ay.,) (2.32) 

E[yg I s,z,c] =fi.y + ^,{Zg - Mz) (2.22) 

V{yg I s,z,c) = — Lyy., (2.23) 
n„ 

Cov{yg,yh I s,z,c) = 0 g ^ h. (2.24) 

The group level statistics then have the following 
properties 

E[y I s,z,c] = fly -i- 0;AZ - tiz) (2.25) 

E[Syy I S,Z,C] = Lyy "K ^^ ( 5 ^ " E ^ ) ^ , (2.26) 

E[Syy I S,Z,C] = Lyy + 0'y,{S^ " E ^ ) /̂ ^ (2.27) 

where S,, and S,, are defined analogously to Syy and Syy 
as given in equation (2.3) and the sentence that follows it. 

2.4 A Combined Model 

The two models considered so far can be thought of as 
competing explanations of the group effects, but they can 
be combined into a more realistic model which contains 
both grouping effects and residual variance components: 

Model C: 

E[yi I z,c] = fly., -I- /Sp'̂ z; 

V{yi I z,c) •"yy.z 

Cov(j;„^y \z,c) = Ayy., if c, = Cj i ?̂  j 

— 0 otherwise. 

(2.28) 

(2.29) 

(2.30) 

This model allows for group formation processes which 
are characterised by the auxiliary variables z,. It also 
includes residual within group correlations which reflect 
random effects which are interpreted as due to unobserved 
random group level variables after allowing for the 
grouping variables. 

The properties of the sample group level means follow, 
if the sampling is ignorable given {z,c) from Model C, 

Cov{yg,yh I s,z,c) = 0 g 7^ h 

E[y I s,z,c] = fly -I- Py,{z - fi,) 

h[Syy I S,Z,C] = Lyy -\- Py,{j„ — L „) (iy, 

n° - 1 
— i 

n - 1 

(2.33) 

(2.34) 

•'yy.z (2.35) 

E[Syy I S,Z,C] = Lyy + P'y,{S„ " L„)l3y, 

+ (n* - I) Ayy.,. (2.36) 

Equations (2.17) and (2.18) showed how the effect of 
aggregation in the variance components model. A, ampli­
fies the contribution of the random group level effects. In 
equation (2.17) the coefficient of A^̂  is 0 (m ~') whereas 
in (2.18) it is 0 («). For the combined model, C, equations 
(2.35) and (2.36) show how inclusion of the grouping 
variables permit the partition of the bias into two additive 
terms: the first related to the grouping variables, their rela­
tionship to the variables of interest and their aggregation 
effect and the second term involving Ayy.,, the residual 
components of variance after controlling for the grouping 
variables. Note that the coefficients of Ayy., in equations 
(2.35) and (2.36) are still 0(AW~') and 0{h) respectively 
as they were in equations (2.17) and (2.18) but the residual 
components of variance should in general be smaller. The 
basic assumption in (2.29) is that the residual variance is 
constant across c. 

The assumption that the sampling is ignorable given 
{z,c) means that the sample design can depend on the aux­
iliary variables and the group indicatives. This allows, for 
example, the use of stratification based on the values of 
z and cluster or multi-stage sampling based on the groups. 

The weighted group level matrix Syy is intended to 
estimate Lyy. The first bias term in (2.36) is due to the 
effect of the grouping variables and will be zero if 0y, = 0 
or approximately so if S,, = L„. The condition 0y, = 0 
is a strong condition and implies that the variables of 
interest are unrelated to the grouping variables. The effect 
of aggregation on the sample covariance of any two 
variables will depend on the relationships of the variables 
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with the grouping variables z, and we would expect the 
aggregation effects to be greater for variables more closely 
related to the grouping variables. The condition S„ ^ L„ 
implies that there are no selection or aggregation effects 
for the z variables. These conditions are unhkely to apply 
in practice and hence bias will result for many variables. 
The bias due to the samphng and grouping involving the 
auxiliary variables is determined by S„ — L„ for the unit 
level estimator and by S„ — L„ for the group level esti­
mator. The term S„ — L„ reflects the net effect of the 
sampling and aggregation on the auxiliary variables. 

The second bias term in (2.36) will be zero if Ayy, — 0 
which implies that, conditional on the grouping variables, 
there is no residual intra-group correlation among the y 
variables. This is unlikely to occur in practice but it is 
desirable to identify grouping variables that account for 
as much of the aggregation effects as possible by making 
this residual term as small as possible. 

The effects due to the grouping and sampling depending 
on z and the effect due to the residual within group corre­
lation are additive; this will be the case for more complex 
forms of within group correlations provided the linearity 
of the model holds. I f z follows a simple variance compo­
nent model, like Model A then 

E[S„ \s,c] =L„-\- {n* - 1)A^ 

E[Syy I S,C] = Lyy-l- {fi* " l)^'A„0y, -^ A •'yy.z 

(2.37) 

and the intra-group covariances of the variables of interest 
are composed of a component due to the intra-group 
covariances of the auxiliary variables and the residual 
components. The right hand side of (2.37) represents a 
partition of (2.18) since if z follows a variance components 
model then so does y unconditionally. The motivation 
behind the basic model is to find auxiliary variables so that 
the residual or conditional within group covariances Ayy., 
are small or, ideally, disappear. 

dependent variable and unit level variances are available 
for both the dependent and all the independent variables 
in the regression model. However, none of these approaches 
provide a general approach to the problem. 

Examining the bias for Syy, given in (2.36) shows that 
if we add &y,{L„ — S„)0y, to Syy, the bias term due to 
the grouping variables would be removed. Now (2.31) 
impUes that 

E[By, I s,z,c] = /3 
yz 

(2.38) 

where fi^j = S„^ S,y. 

If the covariance matrix of z, S,,sn' from a unit level 
sample SQ drawn from /MQ groups was available then the 
adjusted estimator 

Lyy{Z) — Syy -f By,{S,; Szz)^y (2.39) 

should remove the aggregation bias due to the grouping 
variables z, provided S,,so is close to E^ .̂ The source for 
S,^^ may be quite independent of the data used in Syy 
and By,. Steel (1985) shows that the adjusted estimator 
(2.39) can be obtained as the MLE of Lyy (with the usual 
replacement of m — 1 by m etc.). If normality of the 
distribution of {y,z) applies, So is a simple random sample 
from the population and Ayy., = 0. The adjusted esti­
mator corresponds to the Pearson (1903) adjustment 
considered by Holt, Smith and Winter (1980) in the case 
of regression analysis and Smith and Holmes (1989) in the 
case of muhivariate analysis. In these cases the adjustment 
is applied to statistics calculated from unit level data 
obtained from a sample whose design depends on the 
auxihary variables. In oiir case the adjustment is applied 
to statistics calculated from area means and the auxiliary 
variables used in the adjustment include grouping variables 
as well as any design variables. The adjusted estimator 
of fly is 

f^y{z) = y + B;,{ZSO - ^) (2.40) 

2.5 Adjusting for Aggregation Effects 

Few useful proposals have been made on how to adjust 
the area level analyses to produce reasonable estimates of 
the unit level relationship. Duncan and Davis (1953) 
considered the possible range of the correlation coefficient 
calculated from a 2 by 2 table with known margins. The 
resulting bounds are often too wide to be of practical use. 
Goodman (1959) identified specific conditions for a regres­
sion model under which ecological analysis could validly 
be used to draw inferences regarding relationships at the 
individual level. Langbein and Litchman (1978) consider 
some methods that can be applied when grouping is by the 

where ẑ „ is the mean calculated from SQ. 

From (2.34) and (2.38) we see that 

E[fl,y{z) I S,Z,So,C] = fly -I- Pyz{Zso - Mz). (2.41) 

Moreover, Steel (1985) shows that (2.36) and (2.38) 
imply 

E[Lyy{Z) I S,Z,SO,C] = Lyy + /3;, (5jJ,„ " E„)|8^, 

-I- {h* - I)Ayy., -I- 0 ( m - ' ) (2.42) 
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provided t r (5 - ' 5,^,„)_and / i t r ( (5 - ' 5^„ - 7 )5^ ' 5<|') 
are bounded, where 5 ^ ' is defined similarly to S,^ with 
Hg replaced by nl/n. 

Comparing (2.42) with (2.35) we see that the component 
of bias due to the grouping variables has been adjusted 
to that associated with the use of Syys^, if it had been 
available. The estimator adjusts for the aggregation effects 
that have acted through z. It also adjusts the effect of the 
sampling design from that associated with s to that asso­
ciated with S(j. 

Suppose that the sampling design used to generate SQ 
and the values of the auxihary variables are generated from 
a superpopulation such that 

E[Zs,, I %c] = fi, + 0{mo ') 

E[S„so I So,c] = E^ + 0(Wo-') 

(2.43) 

(2.44) 

where mo is the number of groups in SQ. 

In such cases 

E[fiy{z) I s,So,c] =fiy-l- 0(mo-') (2.45) 

£[E^^(Z) I S,S0,C] = Lyy -I- («* - I) Ayy., -|- 0 (/K " ' ) 

(2.46) 
where 

m = min {m,mo). 

Conditions (2.43) and (2.44) would apply if the popu­
lation z values across groups arose from a variance com­
ponent model similar to model A and the sampling design 
for 50 depended only on the grouping but not any auxiliary 
variables. Sampling designs such as simple random sampling 
or equal probability cluster or multi stage sampling fulfil 
this condition. Use of census data, so that SQ is the entire 
finite population is also applicable. 

It is thus possible to adjust for the bias due to the 
grouping variables provided some unit level sample co-
variance matrix for z is available. The motivation for the 
approach is a situation where the predominant group 
effects can be attributed to selectivity or grouping effects 
acting through the grouping variables. The adjustment for 
the auxiliary variables removes the effect of the apparent 
intra-group correlation due to these variables. The adjusted 
estimator still has a component of bias due to Ayy., and if 
z is not effective in significantly reducing the intra-group 
correlations then this term can still be important. This 
approach therefore relies on choice of appropriate aux­
iliary variables to reduce the intra-group correlations. 

If the sampling design for SQ and the superpopulation 
model for z are such that (2.43) and (2.44) do not apply 
then Zso and S,,so c^n be replaced by estimators ti,so ^^'^ 
E^„ in the calculation of the adjusted estimators fiy{z) 

and Lyy{z). The resulting expectations of the adjusted 
estimators are given by (2.41) and (2.42) with Zs^ replaced 
by ii,so ^"^ ^zzso replaced by E^^^. There are a number of 
choices available for the estimators fi,^„ and L„so calcu­
lated from the sample SQ. Smith and Holmes (1989) con­
sider a range of model based and design based estimators 
that can be used. For example suppose the sample design 
used to obtain SQ involved stratification according to the 
values of the vector of size variables x. Denote the sample 
inclusion probability for population unit / as 11, and the 
associated probability based weight is w, = (11,)"' . 
The probability weighted estimator of fi, is z ĵ = T,iiso w, 
Zi, and of L„ is S,„„= I/̂ ^o W/Z/Z,' - Wo"' z^ z/j where 

Wo = liiso w;-
The Pearson based adjusted estimators of fi, and L„ 

are Zĵ  + B^„ {x„ - xj and S„so + B^o (^xxu - S^xs^) 
B^cso respectively. Here x„ and S^xu are the mean vector 
and covariance matrix of the design variables in x in the 
finite population and B,xso — ̂ xxsf' ^xzso -

Pobability weighted Pearson based adjusted estimates 
may also be considered, i.e., z|„ -I- B^„ (*„ - *!») ^^'^ 

^zzso "'" "zxso {^xxu — ^xxso) "zxso-

Here jc|„ and Sixso are defined analogously to zj„ and 
S'„s„ respectively and B',^^ = S^^ Si,so- The approach 
taken so far is strongly model based and so model based 
estimators of fiy and L„ would be preferred. However, in 
practice the data available for use in the adjustment may 
comprise published /?-weighted estimators of means and 
covariances obtained from the sample ^o, which is inde­
pendent of s. Thus 

Epg I EjJSO Z,c] = S,, 

where Zu and S„u are the mean vector and covariance 
matrix of the auxiliary variables in the finite population 
and Epg represents the expectation with respect to repeated 
sampling using the sampling design employed to obtain 
So, i.e., the randomization distribution. Thus from (2.41) 
and (2.42) 

E[fLy{z) I s,z,c] = fly -^- Pyz'{Zu - Mz) 

£'[E^^(Z) I S,Z,C] = Lyy -\- Py,'{S„U - L„)0y, 

-t- {h* - l)Ayy., -I- 0 ( W - ' ) . 

These expectations are taken over the statistical model 
generating the j ' values and the randomization distribution 
associated with SQ. In practice z„ and S„u will be very 
close to fi, and L„ respectively. 
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3. IDENTIFYING GROUPING VARIABLES 

In the previous section we introduced a set of auxihary 
variables, z, which characterised the area differences and 
which were used to adjust the aggregated analysis to reduce 
the aggregation bias. If the auxiliary variables were totally 
successful then Ayy., would be reduced to zero and the 
adjustment method would remove the aggregation bias 
completely. In practice the auxiliary variables for which 
Ayy., = 0 are unknown. Also we will be restricted to sets 
of variables for which area level means are available as part 
of the data set under analysis and for which an estimate 
E^ of the unit level covariance matrix is available. Basic 
demographic information and housing variables conunonly 
available from the Census may be used. However these 
variables may not fully characterise the grouping process 
and so they may not explain as much of the between area 
difference as we might wish. 

3.1 An Analysis Strategy 

In practice the grouping variables will not be known. 
We need a strategy for identifying adjustment variables 
for which an estimate of the unit level covariance matrix 
is available and which account for group effects. One 
strategy involves the following steps: 

1) Identify a set of variables that cover the same subject 
area as the variables of interest, but for which both area 
level and unit level data are available for some period 
in the past. Previous Census data may be suitable. 

2) Add to this set, variables (such as demographic and 
housing variables) which are candidate z variables since 
they are known to be strongly associated with area 
differences. Estimates of both the area level and unit 
level covariance matrices must also be available for the 
same period in the past. 

3) Carry out an analysis of these data to identify the 
variables which account most strongly for the area level 
effects among the variables of interest. This analysis, 
which we term a CGV analysis, will be described below. 

4) Identify from (3) a set of adjustment variables which 
are available within the current data set and for which 
the current unit level covariance matrix is available 
from some source. 

5) For some variables of interest it may be possible to 
obtain estimates of unit level variances or covariances, 
from pubhshed tables for example. From these calculate 
aggregation effects Qaa = s„„/Saa or Q î - Sab/Sab-

6) Use the variables identified in (4) to adjust the aggregate 
analysis for the variables of interest and check the 
adjusted aggregation effects corresponding to (5) to 
monitor the success of the adjustment. 

3.2 The Ideal Grouping Variables 

We first consider the ideal set of grouping variables that 
could be used for adjustment so as to identify the appro­
priate (CGV) analysis that could be followed for the 
analysis of aggregated data using the strategy outlined 
above. 

Let us suppose that for the complete set of variables of 
interest we have the area level variance-covariance matrix 
Syy and the unit level variance-covariance matrix Syys^ 
based on a sample s,. Of course if this occurred in practice 
the aggregation problem would disappear since we could 
discard Syy and simply use Syys^, as an estimate of Lyy. 
However there are three reasons for considering this 
situation. Firstly it helps to throw light on the grouping 
structure which determines the relationship between Syy 
and Syys^. Secondly it may be that Syy and Syys^ are avail­
able at some point in time such as census day but that 
further analysis of a new version of Syy is to be based on 
inter-censal data when Syy^^ is unavailable. If the grouping 
structure persists over time, as we might expect, then the 
analysis of the census day versions of Syy and Syys^ might 
help the subsequent inter-censal analysis by identifying the 
key variables that explain a large proportion of the aggre­
gation effects. These possibilities underpin the strategy 
outlined in section 3.1 above. Thirdly if the variables in 
y cover a large range of socio-economic and demographic 
variables, as occurs in the census, then the key variables 
that account for the grouping effects for the variables may 
also explain much of the grouping effects of other socio­
economic and demographic variables. Note that the two 
samples s and Sj may be identical but in general do not 
need to be. For example s may correspond to an adminis­
trative source which is effectively a census that provides 
aggregate data for geographic areas, and Si is a sample 
survey from which individual level data are made available 
without any geographic identifiers. 

To help identify the important variables associated with 
the grouping Steel (1985) suggests that di, ..., dp,tlie 
eigenvalues of S^y\^ Syy, be calculated as well as the 
matrix Dy = [di, ..., dp] such that 

D^SyyDy - dlag («'<.) and D^Syys.Dy = I. 

The variables defined by the transformation 

Ui = D; yi 

successively have maximum ratio of between group to 
sample total variance and have zero sample correlation at 
the unit and group level and unit level sample variance of 1. 
These variables are called the sample Canonical Grouping 
Variables (CGVs). The sample CGVs have the maximum 
intra-group correlation. Note that tr(5j^J, Syy) = E/t *̂ 
can be defined as the multivariate aggregation effect. 
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Note that the matrix Dy will exist even if î ^̂ ,̂ and Syy 
are based on different samples so long as the former is 
positive definite and the latter is positive semi-definite. 
Furthermore the variances of the CGVs will be non-
negative. However, when s and Sj are distinct it is possible 
that the maximum variance of a CGV could exceed 
{N — 1) / (M — 1) which is the maximum possible aggre­
gation effect. In this case the CGV has an implied negative 
within group variance component. For our purposes this 
may not matter since we are interested in identifying 
important grouping variables but in principle the offending 
variance of the CGV could be set to its theoretical maxi­
mum. The sample CGVs are obtained from the eigene-
vectors of Ayy = S^l Syy. If s and Si axe the same sample 
then Ayy is the sample regression coefficient for the 
regression of the group level means on the unit level values 
calculated over the unit level sample. In this case the 
sample CGVs are in fact the sample canonical variates 
relating the unit level and group level data and d/c are the 
sample canonical correlations. 

Having calculated the CGVs the difference between the 
sample group level and unit level covariance matrix can 
be expressed as 

Syy - Syys, = ^ ^ ( ̂ it " ^)4>k4>k 

where i/^ is the vector of sample covariances between the 
A:-th CGV and the original variables. Hence the difference 
between the group level and unit level covariance matrix 
can be partitioned into k orthogonal elements, one for 
each CGV. 

For the covariance between yi„ and yib, the difference 
between the sample group level covariance, s^b and unit 
level covariance Sab (where s^b and s^b elements of Syy and 
Syys^, respectively) is 

Sab = Sab + {SaaSbbV^" ^ {h - l)PakPblc 

k 

where Pak = iak/s'al is the sample correlation between 
the a-th variable and the A:-th sample CGV. 

If the first q sample CGVs are used to calculate an 
adjusted group level variance matrix, i.e., Ug, = Dg y, 
where Dg = [di, ..., dg], are used as the auxiliary 
variables 

^yy {Ug) = Syy + Byu^ {SugUgSO ~ SugUg)ByUg 

then the first q terms of the decomposition are removed 
i.e., 

p ^ 

^yy{Ug) = Syys, 4" ^ (^*: " l)4>k4>k 

* = <7+l 

and tr(5'^^j| tyy{Ug)) - I^=^+i Â̂ . . In fact use of the 
first q CGVs provides the matrix of rank q that minimizes 
115, •yys, £vv("o) II. Hence by examining the quantities 

^ 9, and 1 + ^ {0, - DP 

*=9+ l k=q+l 

x2 
ak 

for ^ = 0, . . . , ; ? - 1 

it is possible to examine how the proportion of the overall 
aggregation effect and the aggregation effect for each 
variable can be explained by the first q sample CGVs. 

The preceding analysis will suggest how many dimen­
sions are required to effectively explain and hence remove 
a specified amount of the aggregation effects. Moreover 
by looking at the loadings of the original variables in the 
CGVs, it should be possible to identify which variables 
play the major role in "explaining" the aggregation effects 
of the other variables. It is these variables that researchers 
should concentrate on obtaining unit level data for, to use 
in the adjusted estimator. 

These results have some important implications for the 
use of group level data supplemented by limited unit level 
data, since they open the way to combining sample survey 
data and group level data from one or more sources and 
suggest a strategy for the analysis of group effects and 
group level data. 

4. SOME EMPIRICAL RESULTS 

We illustrate the ideas of the previous sections with an 
analysis of the 1991 UK population census data for the 
Local Authority District (LAD) of Reigate, Banstead and 
Tandridge. The LAD population is 188,700 people con­
tained in 371 EDs giving an average number of people per 
ED of n = 508.6. Group level data are available on a 
complete count basis for each ED in the LAD from the 
Small Area Statistics (SAS) data file. Corresponding unit 
level data for the LAD are obtained from a 2 per cent 
Sample of Anonymized Records of individuals (SAR). The 
records in the SAR cannot be identified with any specific 
ED within the LAD thus in this situation we have Syy 
based upon complete data for each ED from the SAS and 
we have an estimate of Syys^ based on a 2 percent sample 
from the SAR. The following analysis is based upon 
16 census variables for each person. 

For each variable the group level data and the unit 
level data were used to calculate the aggregation effect, 
Qa = Saa/Saas- The parameter 5̂ ^ = Aa^/L^g, defined 
on the appropriate diagonal elements of Ayy and Lyy is 
the intra-group correlation for the cr-th variable. An esti­
mate Saa of the intra-group correlation can be obtained 
from (2.18) since Qa = I -\- {h* - I) S^a- The results 
for the variables are given in Table 1. The intra-group 
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Table 1 
Aggregation Effects and Intra-class Correlations for 

Census Variables in Reigate LAD 

Persons aged 18-29 
Persons aged 30-44 
Persons aged 45-59* 
Persons aged 60 and over* 
Female 
Non-white* 
Married 
Limiting long term illness 
Persons employed full time 
Persons unemployed 
Other employment status 
Head of h'hold born UK 
Head of h'hold born New 
Commonwealth 

Migrant head of household 
< 1.5 persons per room: density 
Persons in 0 car households 

Aggregation 
Effect 

9.20 
4.56 
5.97 

17.17 
1.08 
8.29 
6.24 
7.24 
8.55 
2.27 

11.19 
4.48 

3.59 
9.04 

27.96 
32.98 

Intra-class 
Correlation 

.016 

.007 

.010 

.032 

.000 

.014 

.010 

.012 

.015 

.003 

.020 

.007 

.005 

.016 

.053 

.063 

<0 
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• Selected for adjustment variables. 
Source: Reigate and Banstead; Tandridge LAD 1991 census data. 

correlations are generally small but the number of obser­
vations in each ED implies that the aggregation effects can 
be high (see the comment following equation (2.18)). 

Figure la shows a plot of the group level correlation, 
Fgi,, against the individual level correlation, rab, for every 
pair of variables. Note the strong aggregation effects 
which are revealed through the characteristic S-shaped 
plot. Small correlations at the unit level are generally 
magnified so that for most cases | r^b \ is much larger 
than \ r^bl. 
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Unit Level Correlations 

Figure lb. 
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Unit Level Con'elatlons 

1.0 

Figure la. 

Figure Ic. 

Since in this case we have Syy and Syys^ we may carry 
out a canonical grouping variable analysis so as to under­
stand the more important features of the grouping struc­
ture. Table 2 shows the loadings on the 16 variables for 
the first five canonical grouping variables which together 
account for 89% of the multivariate aggregation effect. 

The first CGV has high loadings on high density occu­
pation and car {i.e., auto) access and might be interpreted 
as a socio-economic factor. The second CGV has high 
loadings the variables indicating people in the two oldest 
age groups. It is noticeable, also, that the proportion of 
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Table 2 

First Five CGVs for Variables in Table 1 

Persons aged 18-29 
Persons aged 30-44 
Persons aged 45-59* 
Persons aged 60 and over* 
Female 
Non-white* 
Married 
Limiting long term illness 
Persons employed full time 
Persons unemployed 
Other employment status 
Head of h'hold born UK 
Head of h'hold born New 
Commonwealth 

Migrant head of household 
s 0.5 persons per room 
Persons in 0 car households 

CGVl 

0.4 
0.1 

- 0 . 1 
0.3 
0.1 
0.5 

- 0 . 2 
0.3 
0.7 
0.7 
0.1 
0.5 

0.0 
0.2 

- 1 . 4 
2.2 

CGV2 

0.3 
0.5 
1.2 
2.2 
0.0 

- 0 . 4 
- 0 . 5 

0.1 
- 0 . 3 

0.0 
0.1 

- 0 . 1 

- 0 . 1 
0.1 
0.3 
0.6 

CGV3 

0.9 
0.36 

- 0 . 2 
- 0 . 5 

0.0 
1.4 

- 0 . 4 
- 0 . 2 

0.2 
- 0 . 1 

0.0 
- 1 . 0 

- 0 . 3 
1.4 
1.2 
0.8 

CGV4 

1.1 
1.0 
1.0 
2.6 
0.3 

- 1 . 1 
- 0 . 8 

0.2 
1.2 
0.0 

- 0 . 2 
0.4 

0.1 
0.6 

- 0 . 7 
- 1 . 9 

CGV5 

0.1 
0.2 
0.1 
0.9 
0.1 
5.2 

- 0 . 1 
0.3 
0.4 

- 0 . 4 
- 0 . 1 

0.2 

0.6 
- 1 . 3 
- 0 . 2 
- 0 . 7 

Table 3 
Aggregation Effects and Intra-class Correlations for 

Household Level Variables in Reigate LAD 

Variable 

Tenure: 

Stock: 

LA Rented 
Owner Occupier 

Det/semi/terrace 
Good Amenities 

Aggregation 
Effect 

133.43 
90.83 

90.03 
59.52 

Intra-class 
Correlation 

0.261 
0.177 

0.175 
0.113 

* Selected for adjustment variables. 
Source: Reigate and Banstead; Tandridge LAD 1991 census data. 

Source: Reigate and Banstead; Tandridge LAD 1991 census data. 

In what follows the group level covariance matrix for 
the original 16 variables will be adjusted by the unit level 
covariance matrix for 7 z-variables (three of the basic 

•demographic variables in the original set and four house­
hold variables). 

Two overall measures of the effectiveness of the adjust­
ment were calculated. The first is 

non-white heads of household contributes to the later 
CGVs. As might be expected, variables such as propor­
tion Female, that exhibit almost no intra-group correlation 
and hence no aggregation effect make virtually no con­
tribution to the CGVs. Such variables do not vary across 
areas and hence generally have no explanatory power. 

In usual practice a CGV analysis will not be possible 
since if Syy was available there would usually be no need 
to carry out an aggregate analysis. However the CGV 
analysis suggests variables that may be important since 
they load highly on the first few CGVs. 

It is well known in the UK context that housing tenure 
variables (which are not contained in the 16 variables of 
interest) have a powerful association with a wide variety 
of socio-economic, attitudinal and health variables. There 
are strong reasons for assuming that using these as aux­
iliary, z, variables for adjustment would account for a 
substantial proportion of the first socio-economic dimen­
sion and may act in place of the density of occupancy and 
car access variables that are seen to be important for the 
first CGV. The other reason for considering those variables 
is that if the present analysis is to act as an illustration of 
what might be achieved in other situations then basic 
tenure and housing variables are more likely to be available 
as adjustment variables than density of occupation and car 
access. In the light of the CGV analysis and in the spirit 
of identifying a small number of adjustment variables 
which could be expected to be available in many situations, 
we identify a set of seven potential adjustment variables. 
These are the three variables of interest identified in 
Table 1 identified by an asterisk (Age 45-59, Age 60 -I-, 
non-white) and the four housing variables Usted in Table 3 
together with their aggregation effects and intra-cluster 
correlations. 

1 -
tT{Syyl, Lyy {Z)) " 1 

triSyys, Syy) — 1 

which is the reduction in the multivariate aggregation 
effect and the second is 

Syys, Syy II - II S, yys, tyy{z) 11 

Syys, Syy 

which shows the reduction in the generalised distance 
between the unit level and group level covariance matrices 
before and after adjustment. 

Table 4 

% reduction in 

Z-variable 
Combination 

No. of 
Variables Multivariate 

Aggregation 
Effect 

Generalised 
Distance 

60-1-

45-59,60 + 
Tenure 
Stock 

45-59, 6 - + , NW 

45-59, 6 0 + , tenure 
45-59, 60 + , stock 

45-59, 60 + , tenure, 
45-59, 60 + , stock, 

45-59, 6 0 + , stock, 
tenure, NW 

, NW 
NW 

1 

2 
2 
2 

3 

4 
4 

5 
5 

7 

16 

38 
30 
31 

44 

57 
57 

63 
62 

68 

24 

53 
21 
19 

54 

71 
69 

72 
70 

75 
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Table 4 shows the effect of using various combinations 
of variables for adjustment of the aggregated analysis. The 
two age variables are clearly important (accounting for 
38% of the multivariate aggregation effect and 53% of the 
generalized distance) but the Tenure or Housing Stock 
variables are also important. When Tenure or Housing 
Stock are used in conjunction with age the percentage 
reduction in either measure is close to the sum of the effects 
of the variables separately showing that age and Tenure 
or Housing Stock are acting as distinct adjustment vari­
ables. Obviously the greatest success is achieved by 
including all 7 adjustment variables and accounts for 68% 
and 75% respectively of the two aggregation measures. 
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Figure 2a. 
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Figure 2b. 

These resuhs show that around 70% of the aggregation 
effects have been removed by the adjustment. Figures 2a 
and 2b show the effect of adjustment by these variables. 
In Figure 2a the vertical axis contains | Sgb - Sgbs, I, the 
absolute bias for the group level covariance for each pair of 
variables. The horizontal axis contains | Lai,{z) — Sgbs, I 
the absolute bias of the adjusted estimator. The hollow 
symbol is used for variances of the y variables, and the 
solid symbol is used for covariances. Almost all of the 
plotted values show that the biases after adjustment are 
smaller (often much smaller) than the original bias. In 
almost all cases the adjustment has had a substantial 
improvement. Figure 2b shows the corresponding plot for 
correlations rather than covariances. (Correlations of 
ya,ya have obviously been omitted from this plot.) Again 
there is a strong improvement with the residual bias after 
adjustment being much smaller than the original bias for 
the group level analysis. The results are not as successful 
as for the covariances, since in some cases small biases for 
the group level analysis have been made worse. In this case 
the adjustments are applied to the covariance and the two 
variances used in each correlation coefficient. There is 
more potential for the relative changes in each component 
to lead to a correlation which is worse than the original. 
However, almost all of the large biases at the group level 
have been improved. 

Figure lb shows the plot of the adjusted group level 
correlations, roi(z), obtained from Lyy^,) against the unit 
level correlations and can be compared with the original 
unadjusted plot in Figure la. The characteristic S-shaped 
curve shown in Figure la has been replaced by a plot of 
points which lie about the hne fai,{z) — r^i, as we would 
want if aggregation bias is removed. 

Figures lb, 2a and 2b show that a substantial reduction 
to the aggregation effect can be achieved by using 4 housing 
variables and 3 of the original y variables. This implies 
adjusting the original 120 variances and covariances in the 
1 6 x 1 6 matrix by 21 variances and covariances for the 
z variables. As an illustration of what might be achieved 
with minimal information we reduce the adjustment 
variables to the four involving age and Tenure. From 
Table 4 we see that these account for 57% and 71 % of the 
two measures of aggregation. Figures 3a and 3b show the 
corresponding plots to Figures 2a and 2b for this case. 
Figure Ic shows the plot of the adjusted correlations 
using 4 variables against the individual level correlations. 
Obviously the adjustment is not as successful but it is 
encouraging to see what can be achieved with so few 
adjustment variables. As a further measure of the effect 
of the adjustment the median absolute difference between 
fab and rab was 0.186. After adjusting by 4 variables this 
was reduced to 0.126 and after adjusting 7 variables to 
0.090. The corresponding median values for | Sgi, — Sgb I 
were 0.173, 0.039 and 0.017 respectively. 
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In many countries there are many group level data 
available at different levels of aggregation from the census 
and many other sources. The development of Geographic 
Information Systems will increase the availability of such 
data. It is important to analyse and decompose the group 
effects and the theory developed and the strategy proposed 
here provide a framework for achieving this. A proper 
understanding of which variables explain most of the 
group effects, and therefore should be used in adjusting 
ecological analyses, will open the way to making use of 
aggregated data. 
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5. CONCLUSIONS AND DISCUSSION 

A model for grouped populations has been proposed 
which leads to a decomposition of the bias observed in 
group level analysis based on covariance matrices into two 
components. The first component is due to the grouping 
variables and the second is due to the residual intra-group 
correlations between the y variables given the grouping 
variables z. This decomposition provides an understanding 
of the magnitude of aggregation effects. It also provides 
a way of removing the bias due to the grouping variables 
if additional information about the unit level covariance 
matrix of the grouping variables is available. 
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Linearization Methods for Single Phase and Two-Phase Samples: 
A Cookbook Approach 

DAVID A. BINDER 

ABSTRACT 

There are a number of asymptotically equivalent procedures for deriving the Taylor series approximation of variances 
for complex statistics. In Binder and Patak (1994) the theoretical justification for one class of methods was derived. 
However, many of these methods can be derived for practical examples using straightforward techniques that are 
not clearly described in Binder and Patak. In this paper we give a "cookbook" approach that can be used for many 
examples, and that has been shown to have good finite sample properties. Normally the method of choice becomes 
clear through arguments such as model-assisted methods or linearizing the jackknife; however, using our approach 
yields the desired results more directly. As well, we present new results on the application of these techniques to 
two-phase samples. 

KEY WORDS: Complex surveys; Variance estimation; Ratio estimator; Regression estimator; Wilcoxon rank sum 
test; Estimating equations. 

1. THE METHOD 

The derivation of the asymptotic variance for a wide 
class of estimators from complex survey samples is now 
well established in the literature, at least to a first order 
approximation. However, there are a number of competing 
estimators of the variance, all of which are asymptotically 
equivalent. In this paper, we discuss a simple derivation 
of one of the most favoured of these estimators in a gen­
eral setting. This simple derivation is useful for practi­
tioners, who may be baffled by the choices available, and 
need a quick solution to the problem. 

We start with a simple example of the approach using 
the ratio estimator of a population total. Here the esti­
mator is 

YR = RX, (1) 

for 

R = ?/JC, and Y = Y^ W/^y^, 
kis 

where, s is the set of indices corresponding to sampled 
units and Wf^ is the sampling weight, normalized so that 
Y,Wii: is an estimator of the population total; e.g., W/c = 
l/iTic, where ir̂ t is the first order inclusion probability. 
The definition of X is analogous to that of Y. Applying 
total differentials to both sides of (1), we obtain 

where 

(rf/J) = ^-^ - I {dfC) (2b) 

= \^[{dY) - &{dX)]. 

We note that, in general, the total differential for 
f = g{Yi, ..., y„) is given by 

iof) = E [ i f ' ] ««'')• 
Although we could have avoided using ^ in (1) by 

simply defining 

thus removing the need for explicitiy defining (rf/?) in (2b), 
we did so to make the more complex examples, to be given 
in Section 1.2, clearer. We also note that (2a) does not 
include the total differential of A", the population total of 
the X-variable, since Jf is assumed to be fixed and known. 

The next step is to replace all total differentials of 
estimated quantities by deviations from the their respective 
expected values. On the right hand side, we substitute for 
{dY) the expression (E^'tJ't ~ Y), and so on. For the 
quantity of interest, fn, we replace rffy? by f̂  - Y. 
From (2), performing this step, yields 

(rff«) = {d&)X, (2a) 
YR-Y^^]^w,y,-Y^ -R(^W,X,-XJ^. (3) 

David A. Binder, Director, Business Survey Methods Division, Statistics Canada, R.H. Coats Building, 11 "A", Ottawa, Ontario, Canada, KIA 0T6. 
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We see that this expression contains a number of 
weighted estimators - those that explicitly show their 
dependence on the vv̂ t's, {llw^yk and Y,WkXk) and those 
where the W/^'s are impHcit in the expression (>?and R). 

For the last step, we isolate Zk, defined by rewriting 
(3) as 

- Y=J^Wi,Zk + other terms not depending 
explicitly on w .̂ 

Here, we obtain 

X 
Rx,). (4) 

The justification for ignoring the terms not depending 
explicitly on w^ will be given in Section 4. Note that 
Y, W/fZk has the form of the estimate of the population 
total of the variable z. 

Now to obtain the variance of Yj^, we insert the new 
variable Zk into the A:-th sample record, and use a standard 
procedure for estimating the variance of a total, applied 
to this variable. It is assumed that a variance estimator 
with good properties is available for the sample design 
under consideration. 

A summary of the method in general is the following: 

1. We let the estimator of The fand take its total differ­
ential. We assume that f is asymptotically design 
consistent. 

2. We replace total differential of f, dt, by f - T. We 
replace all other total differentials of estimated quan­
tities by the deviation from their respective expected 
values, where we substitute for {dY) the expression 
(E'̂ /t-Vt - Y), and so on. 

3. The last step is to isolate Zk, when we rewrite the result 
of Step 2 as 

f _ Y ±: \^ w z -t- ^^^^'^ terms not depending 
^ explicitly on vv̂ t-

4. Finally, to obtain the estimated variance of f, we insert 
the new variable Zk into each sampled record, and use 
the standard procedure (known to have good properties) 
for estimating the variance of a total, applied to this 
variable. 

1.1 Simplest General Case 

For one-phase samples, a simple general case is where 
the estimator can be expressed as a differentiable function 
of the estimated totals for certain survey variables, some 
of which may be derived variables at the final sampling 
unit level. In this case our approach gives: 

f = g{Yi,...,YJ 

i^T) = ^\'-^]{dY^) 

= ^ V/kZk + • • •, 

(5) 

where 

Zk 
^ \dg{Y)'] \dg{m' 

In what way is this formulation different from standard 
Taylor methods? The main difference is how expression 
(5) is treated. In standard methods, the partial derivatives 
are evaluated at their expected values before Zk is derived. 
Then, for those components of Zk that are unknown, an 
estimator is substituted. For the ratio estimator, (1), this 
would result in X/X disappearing from Zk in (4), since 
when X is replaced by its expected value, X/X becomes 
unity. The R remains in the expression, as it is used to 
estimate /?, which is needed in the usual derivation of Zk-

Kott (1990) argues that the variance estimator for the 
ratio which we have derived has good conditional prop­
erties compared to the estimator which leaves out the 
factor X/X. A number of others have come to similar 
conclusions. Rao (1995) showed that the method agrees 
with that obtained from the linearized jackknife. Our 
conjecture is that since the partial derivatives in expression 
(5) are evaluated at Y rather than Y, the linearization is 
"closer" to the original statistic, t, so that the resulting 
variances have better properties. This is, of course, not a 
technical statement, but rather an intuitive justification of 
the method. 

We note that in expression (6) for Zk, all the terms are 
directly observed from the sample, so that no substitution 
of estimators for unknown quantities is needed. 

1.2 The Case with Extra Parameters 

For many examples, the estimator is most easily defined 
in terms that include the use of parameters that are only 
used to simplify the definition of the parameter of interest. 
For the ratio estimator, R is an example of such an extra 
parameter. In this case, an explicit equation for the esti­
mator of the extra parameter is available. The general method 
in the presence of extra parameters may be written as: 

f = f i ( f i , . . . , f„,X), where \ = g2{Yi, ..., f„), 

<^n=E['-^]<''?^)-E['-4p]«'v. 
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where 

«'v = i;['ifip](rff,), 

^--E^-4|^(E---^.) 

-I- E^-^E^-1^'(E—) 

= 5^ "^kZk + ---, 

where 

\dgi{Y,\)Y^^ \dgi{Y,\)-\'\dgAm 

For the case where the extra parameters are defined 
only implicitly through estimating equations, we have the 
following generalization: 

where 

f = g{Yi, ..., Y^,\), 

U{Yi, ..., Y^,\) =0. (8) 

<^^.^Er-#']<^''.)4^-^T'*' 
where by taking the total differential of (8) and isolating 
(c?X), we have 

= Yi ^*^* + • • •. 

where 

^^-m^-mmis\- -

We see, of course, that (10) is a generalization of the 
previous forms for Zk given in (6) and (7). 

2. OTHER EXAMPLES 

Expressions (6), (7) and (10) above are displayed only 
for the purpose of giving the specific formulae for the 
various cases. However, in practice, we recommend using 
the basic steps from first principles. To demonstrate this, 
we give two examples: one is the familiar Generalized 
Regression Estimator (GREG); the other gives some new 
results for the Wilcoxon Rank Sum Test statistic for data 
from complex surveys. 

2.1 Generalized Regression Estimator 

The usual GeneraUzed Regression Estimator, given, for 
example, in Sarndal, Swensson and Wretman (1989), may 
be written as 

YGREC=Y+^&'{X-X), (11) 

where the extra parameter ;3 is defined as the solution to 

Yi WkXk{yk - xi,^)/Ck = 0, 
k 

where ĉ t is the factor to allow for heteroscedastic variance 
in the regression model. This is equivalent to 

^xx^ ^xy — 0 , (12) 

with obvious definitions for S^^x and §xy- Taking total 
differentials in (12) we get 

{dS^)^ -I- §xx{dh - {dS^y) = 0, 

so that 

(rf/3) = §;;c'[{d§xy) - {d§^)^]-

Therefore, we have 

^ - /? - ^ M'^fe'U*(;'*: - Xl^m/Ck + -.- . 

Now, taking total differentials of (11), we have 

{dYoREc) = {dY) - $'{dX) -{- {dp)'{X - X) 

= {d?) - ^'{dX) -h 

[{dSiy) - ^'{d§^)]S-'{X-X). 

After some algebraic manipulation, we obtain 

YGREG - ^ = D ^kek[i + x'k S-' {X - X)/c,] + ..., 
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where Ci^ = yi^ — x^^. We, therefore, define 

Zk = edl + xk§Zc\X - ^)/c„]. 

Taking the variance of the estimated total of this 
z-variable is identical to the variance proposed in Sarndal, 
Swensson and Wretman (1989). There, it is argued on the 
basis of the validity of the regression model, that this 
variance is preferred to other Taylor expansion estimators 
for the variance. We see that the derivation of this 
z-variable is natural in our approach. 

2.2 Wilcoxon Rank Sum Statistic 

We now show how our method works in the case of a 
more difficult non-standard case. We assume that our 
sampled units belong to one of two subpopulations which 
we name Population 1 and Population 2. We define 

We consider the statistic 

Clifx-<y, f 1 if 
I[x<y] = and5;t = 

{0 otherwise, (̂ 0 ot 

k € Pop. 1 

otherwise. 

We let 

Ni{t) = Y ^khnxk ^ t\, 
kis 

which corresponds to the estimated number of Population 1 
units that have values less than or equal to t. We define 
7^2(0 analogously. We denoteNj = Nj{oo),the estimated 
number of units in Population^. Now a weighted version 
of the Wilcoxon Rank Sum Test statistic is 

w 
- \ : 

[Ni{t) -^ N2{t)]dNi{t). (13) 

This corresponds to the weighted sum of the ranks from 
Population 1 among the weighted ranks of the combined 
sample. To derive the asymptotic expected value of fyy in 
(13), we let Ni{t) = E[Ni{t) ] for / = 1,2, and substitute 
Ni{t) forNi{t) in (13). Wethen defineF,(0 = A^,(/)/iV,, 
where N, = E{Ni) and we give the null hypothesis as 
Fi{t) = F2{t) = F{t), say. This results in the asymp­
totic expectation being 

I {Ni -I- N2)F{t)NidF{t) = Ni{Ni -\- N2)/2. 

Note that in the case of independent samples of size Ni 
and A'2 from Population 1 and Population 2, respectively, 
where each population is assumed to have a continuous 
distribution function and the samples are taken using 
simple random sampling, the exact expected value for t^y 
in(13)isN,(Afi -I- ATj -I- l ) / 2 . 

Jo 2 

We use A rather than d to denote the total differential, 
since d is used under the integral. Therefore, we have 

(AT;^,) = r [ A / ^ , ( 0 -f AN2{t)]dNi{t) 

+ [°°[Ni{t) -I-N2{t)]dANi{t) 

_ {ANi){Ni -I- N2) + Ni{ANi -I- AN2) 

2 

Continuing with our usual approach, we have 

n^- T^= rfY'^kHXk ^ t]\dNi{t) 

+ Y'^kh[Ni{Xk) + N2{x,)] 

Y^ich{Ni-i-N2)+NiYwk 
+ ... , 

so that 

Zk= Y ^J^J^^^k ^ xj] -I- 5klNi{Xk) + N2{Xk)] 
J 

h{Ni + N2) + Ni 
(14) 

We are not aware of this result previously being docu­
mented. It can be shown that when the null hypothesis is 
true and we select independently from two populations 
using simple random sampling, where the populations 
have continuous distribution functions, the variance we 
obtain from the z-variables in (14) is asymptotically 
equivalent to the usual classical formula. 

3. TWO-PHASE SAMPLES 

The method described above extends quite easily to the 
case of two-phase samples. For example, consider the two-
phase ratio estimator of the population total, given by 

f«(2) = 4;e<" = Rx^'K (15) 



Survey Methodology, June 1996 21 

where X*' ' = Y,WkXk is the first phase estimate of X 
based on first phase weights [w/c], and Yand Xare the 
estimates of y and X, respectively, based the second phase 
sample units with weights [wicW2k], where W2k is the 
weight assigned to the selected second phase unit, condi­
tional on being in the first phase sample. In particular, 
letting 

U{\,Y) = 0, 

a* lo ot 
the A:-th unit is in the second phase sample, 

otherwise, 

we have 

Y = Y, WkW2kakyk, 
kis 

where 5 is the set of indices corresponding to units in the 
first phase sample. 

Taking total differentials of (15), we have 

(rff/j(2)) = (9 [{dY) - R{dX)] -I- i ? ( r f ^ ' " ) . 

We now replace the total differentials by weighted sums 
over first phase units: 

Yi,i2) -Y = 

kis 

SO that 

Y ^k akW2k(-^) {yk - Rxk) + Rxi, + ..., 

Zk = Ck^lk m {yk - Rxk) + Rx,,. (16) 

We see that the steps we have taken are essentially the 
same as in the one phase sample case. However, it is impor­
tant to note that now Zk contains the random variable, 0^, 
that is used to indicate whether or not the sample unit is 
in the second phase sample. This is needed to compute the 
two phase variance estimator. 

Variances obtained from the z-variable in (16) are iden­
tical to those given in Rao and Sitter (1995), who used a 
linearization of the jackknife to obtain their results. 

Extensions to other estimation problems in two phase 
samples are straightforward. Suppose, for example, that 
{Yi, ..., Y„) are estimates of (l^i, . . . , Y„) from the 
second phase samples, and that (^i*'', ..., X^^) are 
estimates of variables available only for first phase sample 
units. We suppose that a set of extra parameters, X, are 
defined only in terms of the units in the second phase, and 
that the variable of interest is defined in terms of these 
extra parameters and theXj^^'s. Formally, then, we have 

and 

f = g{X^'\\). 

Taking total differentials, we have as in (9), 

so that 

^-^'[,-^,]'(E-.'-^) 

Therefore, the general expression for Zk is 

^k = [ Jr , ] -k - [^^ ['^] ' \%y-2kyk-

It then becomes necessary to put the z-variable into the 
algorithm that estimates the variance of the estimator of 
a total from a two phase sample. 

4. JUSTIFICATION 

The technique we have described can be considered as 
a direct result of the formulation given in Binder and Patak 
(1994). We will summarize one of the main results in that 
paper. Suppose we are interested in parameter 6, defined 
as the solution to 

Oi{e,\e) = Y, WkUi{yk,e,\e) = 0, 
kis 

where X̂  is the estimate of an extra parameter, defined as 
the solution to 

02{e,\g) = Y, WkU2(yk,0,ie) = 0, 
kis 

for a given d. Through an argument based on removing 
extra parameters for problems of testing hypotheses on d. 
Binder and Patak recommend basing inferences about 0 
on the variable 

u* = ui{y,0,\e) - r ^ l r ^ ' l ' U2{y,0,\e)- (17) 
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In particular, two-sided confidence intervals for 6 are 
to be based on 

where W is the estimated variance of the estimator of a 
total when the variable being estimated is u*. 

We let Ml = g(Xi,X2) — ^. The kernel of the estimating 
equations for the ̂ -totals will be given by U21 = y — Xi 
and the kernel of the estimating equations for X2 is given 
byu22(X,,X2). Welet 

After some algebra, from (17) the variance of interest 
is the variance of the estimated total based on the variable 
«*, given by, 

\dg{\i,\2)]' 

L ax, J ^ 
_ r3g(Xi,X2)"| ' r3M22(Xl.X2)1 - ' r3M22(Xl,X2)1 

L ax2 J L 3X2 J L ax, J-^ 

-I- constant terms. 

This is equivalent to expression (10), thus showing that 
the methods here are consistent with those in Binder and 
Patak (1994). 
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Jackknife Linearization Variance Estimators Under Stratified 
Multi-Stage Sampling 

W. YUNG and J.N.K. RAO 

ABSTRACT 

Variance estimation for the poststratified estimator and the generalized regression estimator of a total under stratified 
multi-stage sampling is considered. By linearizing the jackknife variance estimator, a jackknife linearization variance 
estimator is obtained which is different from the standard linearization variance estimator. This variance estimator 
is computationally simpler than the jackknife variance estimator and yet leads to values close to the jackknife. 
Properties of the jackknife linearization variance estimator, the standard linearized variance estimator, and the 
jackknife variance estimator are studied through a simulation study. All of the variance estimators performed well 
both unconditionally and conditionally given a measure of how far away the estimated totals of auxiliary variables 
are from the known population totals. A jackknife variance estimator based on incorrect reweighting performed 
poorly, indicating the importance of correct reweighting when using the jackknife method. 

KEY WORDS: Generalized regression estimator; Jackknife variance estimator; Linearized variance estimator; 
Poststratified estimator. 

1. INTRODUCTION 

Large-scale sample surveys often use stratified multi­
stage designs with large numbers of strata, L, and 
relatively few primary sampling units (clusters), «/,(> 2), 
sampled within each stratum. Within each cluster, some 
elements (ultimate units) are sampled according to some 
sampling method. We do not specify the number of stages 
or the samphng methods used after the first-stage sampling, 
but we assume that subsampling within sampled clusters 
is performed to ensure unbiased estimation of cluster 
totals, Y^i, / = 1, . . . , « ; , ; /j = 1, . . . , L. 

From the specification of the survey design, basic 
weights Whik{ > 0), attached to the {hik)-t\i element, are 
obtained. Often these basic weights w^ik are subjected to 
poststratification adjustment to ensure consistency with 
known totals of poststratification variables. In the case of 
a single poststratifier, the weights are ratio-adjusted to the 
known population counts {e.g., age-sex counts). To handle 
two or more poststratifiers with known marginal popula­
tion counts, the weights w,,,!^ can be calibrated through 
generalized regression (see section 4), as in the Canadian 
Labour Force Survey(CLFS). 

The CLFS uses the jackknife method for estimating the 
variance of the generalized regression estimator. The jack-
knife method is computer intensive but it is readily applicable 
to general smooth statistics, luilike the linearization method. 
Moreover, it possesses good conditional properties. For 
example, in the context of simple random sampling and 
the ratio estimator, Royall and Cumberland (1981) showed 
that the jackknife variance estimator tracks the conditional 
variance given the sample mean of the auxiliary variables. 

The main purpose of this paper is to study variance 
estimation for the ratio-adjusted poststratified estimator 
and the generalized regression estimator under stratified 
sampling. By linearizing the jackknife variance estimator, 
a jackknife linearization variance estimator is obtained 
which is different from the standard linearization variance 
estimator. In the case of the poststratified estimator, this 
variance estimator is identical to Rao's (1985) variance 
estimator. The proposed variance estimator is computa­
tionally simpler than the jackknife variance estimator and 
yet leads to values close to the jackknife. 

Section 2 introduces the jackknife variance estimator 
for the basic expansion estimator of the total, K Section 3 
presents the jackknife and the jackknife linearization 
variance estimators for the poststratified estimator. These 
results are extended in section 4 to the generalized regres­
sion estimator in the context of multiple poststratification 
variables. Section 5 deals with variance estimation for a 
ratio of two totals, both of which are estimated using a 
generalized regression estimator. Results of a simulation 
study on the relative performances of the usual lineariza­
tion variance estimator, the jackknife and the jackknife 
linearization variance estimators are reported in section 6. 

2. BASIC ESTIMATOR 

Using the basic weights Wf,ik, an unbiased estimator of 
the population total Y is of the form 

^ = Yi ^hikyhik, 
(hik)is 

(2.1) 

' W. Yung, Statistics Canada, Household Survey Methods Division, R.H. Coats Building, Tunney's Pasture, Ottawa, Ontario, KIA 0T6; and 
J.N.K. Rao, Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, KIS 5B6. 
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where s denotes the sample of elements and y^ik is the 
value of the characteristic of interest associated with the 
sample element {hik)€s. For simplicity, we assume 
complete response in this paper. 

It is common practice to sample clusters without replace­
ment. However, at the stage of variance estimation, the 
calculations are greatly simplified by treating the sample 
as if the clusters are sampled with replacement. This 
approximation generally leads to overestimation of the 
variance of Y, but the relative bias is likely to be small if 
the first-stage sampling fractions are small. 

An estimator of the variance of Y is given by 

3. POSTSTRATIFIED ESTIMATOR 

Suppose the population is partitioned into Cpoststrata 
with known population counts ^M, c = 1, . . . , C. We 
will use the prescript c to denote poststrata. An estimator 
of cM is given by 

,M = Y, ^Mk, 
(hik)icS 

(3.1) 

where <..s is the sample of elements belonging to the c-th 
poststratum. Similarly, an estimator of the poststratum 
totally is 

^ 1 "h 

r^. nu{nu - 1 ) ^ , = , « " ( « ' ' - 1 ) , = , 

where '̂A/ = E*('»/,M'/„t)j'/.,*. and J^ = (!/«/,) I,.)'/./-
The operator notation v (;'/,/) denotes that v{Y) depends 
only on the ^/,,'s. 

To introduce the jackknife method, we need the esti­
mator f(gj) for each {gj) obtained from the sample 
after omitting the data from the 7-th sampled cluster in 
the g-th stratum (y = 1, ..., ng-, g = 1 L). It is 
simply obtained from (2.1) by letting Wgji^ = 0, changing 
Wgiic{i ^ j) to ngWgii^/{ng - 1) and retaining the original 
weights W/iii^ for h 7^ g, i.e.. 

if {hi) = {gj) 

^hik(gi) -
{ng - 1) 

Whik 

Wgik if h = g and / ^ j 

if h 7!^ g. 

These jackknife weights, Whik(gj), are calculated for each 
cluster {gj). The resulting estimator of Yis 

^(gj) = Y ^itik(gj)yhik-
(hik)is 

The jackknife variance estimator is then given by 

vj{f) = Y 
n.-1 :^ L^ (gj) Y)^. (2.3) 

e = I '*? j=l 

The variance estimator (2.3) is applicable to general 
smooth statistics, say ̂  = g{f), by simply replacing 
Y^gJ) and f with 0^gj^ = g{Y(g/)) and e respectively. In 
the linear case, 0 = Y, the jackknife variance estimator 
is identical to the customary variance estimator (2.2). 

cY = Y ^hikyiiik-
{hik)icS 

Using the estimators ̂ f and cM, we obtain a poststratified 
estimator of the total Y as 

rM 
(3.2) 

We can rewrite (3.2) as 

^ps — Y Y c^hikyhik 
c (hik)icS 

where cŴjvt = ^^/^(cM/cM) is the ratio-adjusted weight 
for {hik)^cS- If >'A/vt is the indicator variable for a post-
stratum, say c, then J^ = .̂M, thus ensuring consistency 
with known totals, <.M. 

The standard linearization variance estimator is given 
by (2.2) with y^i changed to 

Shi = Y Y i ^"t>Whik)cehik, 
C kicS 

where cSMk = yhik ~ cY/c^ for the A:-th element in the 
{hi)-th cluster belonging to cS, i.e.. 

VL{YPS) = v{ehi)- (3.3) 

Rao (1985) proposed an alternative linearization variance 
estimator using the ratio-adjusted weights c^^hik '• 

VR{YPS) = v{eti) (3.4) 

where 

eti = E E ^"hcWhik)cehik-
c kicS 

Turning to the jackknife method, we need to recalculate 
the poststratification weights c^hik each time a cluster 
{gj) is deleted. This is done by using the jackknife weights 
Whik(gi) in (3.1) to get c^(g/) and then using cWhik(gj) = 
{cM/cM(gj^)Whik(gj) to get 
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'^ps(gj) = E E c^hik(gi)yhik-
c (hik)icS 

The jackknife variance estimator is then obtained as 

y>j{Yps) = Y "g - i 
Y (̂ •5(«/) ~ ^•'^ • (3.5) 
y = i 

By linearizing (3.5), we obtain a jackknife linearization 
variance estimator, vji^{fps), which is identical to Rao's 
variance estimator (3.4); see also VaUiant (1993). In the 
important special case of n^ - 2 clusters per stratum, (3.4) 
and (3.5) are in fact asymptotically equal to higher order 
terms, as the number of strata L increases (Yung 1996). 

Rao (1985) justified (3.4) on heuristic grounds by noting 
that for simple random sampling it reduces to a condi­
tionally valid variance estimator given the poststrata 
sample sizes, unlike the standard linearization variance 
estimator (3.3). Sarndal, Swensson and Wretman (1989) 
obtained a variance estimator of the form (3.4) in the 
context of unistage sampling under a model-assisted 
framework. Since Vji{ J^) and Vy( 1^) are approximately 
equal, the foregoing results suggest that both variance 
estimators should be "robust" in the sense of possessing 
good conditional properties given the estimated poststrata 
counts. Valliant (1993) conducted a simulation study to 
demonstrate the "robustness" of Vj{ Yps) and vji{Yps). 

4. GENERALIZED REGRESSION 
ESTIMATOR 

In practice, it is common to form poststrata according 
to two or more auxihary variables. If the resulting cell level 
population counts are available, the ratio-adjusted post­
stratified estimator can be used to increase the efficiency 
of the estimates. However, these cell counts may not be 
known in practice. For instance, marginal counts may be 
known only for age groups and race groups but not cell 
counts for the individual age-race groups. This means that 
in terms of a two-way table, the marginal counts are 
known but not the cell level counts. To handle several 
poststratifiers with known marginal population counts, we 
can use a generalized regression estimator of Y by using 
indicator auxiliary variables to denote the categories of 
the poststratifiers (Huang and Fuller 1978; Deville and 
Sarndal 1992). 

Let Xhik be a vector of auxiliary variables with known 
population totals X. The generalized regression estimator 
of Y is then given by 

where 

?,= Y -\- {X - X)^B, 

^ — Y ^'>>k^f>iky 
(hik)is 

(4.1) 

and B is the vector of estimated regression coefficients 

B = A-^6, 

where 

and 

^ - Y ^hikXhikXhik^ 
(hik)is 

^ = Y '^hikXhikyhik-
(hik)is 

The poststratified estimator, J^j, is a special case of 
(4.1) by letting x^ik denote the vector of indicator variables 
for the poststrata. In this case, X = (,M, . . . , c^) ^, 
X = (,M, . . . , cA/) ̂  and B = (,i?, . . . , c^) '^ with 
cR = cY/c^i. Thus, 

Yr= Y-i- Y cR{cM - cM) = fps. 
c 

In the case of two or more poststratifiers, A" corresponds 
to the vector of marginal population counts. 

The generalized regression estimator may be rewritten 
as 

^ r = Y ^Mkyhik, 
{hik)is 

where 

Whik = ^hikChik (4.2) 

is the "final" or "caUbration" weight with 

cihik = 1 + xl,kA-\X - X). 

In the special case of 1^,, we have a^ik = c^/M for 
{hik)€cS. Writing Y^ in the operator notation as fr{yhik)> 
it is readily verified that the generalized regression 
estimator X^ = Yr{Xhik) = A', thus ensuring consistency 
with known totals X. 

Turning to variance estimation, the standard lineariza­
tion variance estimator is again given by (2.2) with yi,, 
changed to 

^M = Y ("ft* '̂"*)̂ '"*' 
k 

where 

^hik = yhik - Xhik" 

are the estimated residuals, i.e., 

Vi(f,) = v{ehi)-

(4.3) 

(4.4) 



26 Yung and Rao: Jackknife Lineanzation Variance Estimators Under Stratified Multi-Stage Sampling 

For the jackknife method we need to recalculate the 
calibration weights w*,^ each time a cluster {gj) is deleted. 
These weights are given by 

where 

and 

^hik(,gj) - Whik^g/)ahik(gi), 

('hik(gi) — 1 + XhikA^gj){X — X(gji), 

^(S/) " Y ^l'ik(gJ)XhikXhik> 
(hik)is 

•^(gi) - Y ^liik(g/)Xhik-
{hik)is 

Denote the resulting generalized regression estimator as 

Binder (1996) proposed a new linearization method which 
also leads to Vŷ  (J^). In this method, the partial derivatives 
are evaluated at the estimates Y,Xand B, rather than the 
population values 7, A and B as in the traditional lineariza­
tion method. Given that Vj and Vji are design-consistent 
(Yung 1996) and possess good conditional properties, our 
results provide theoretical justification for Binder's method 
which was proposed as a "cookbook approach". 

The computation of the jackknife variance estimator 
involves the inversion of the matrix A^gj) for each (gj). 
However, the jackknife variance estimator can be approx­
imated by retaining the inverse for the full sample, /f ~' , 
and then using modified weights 

^hik(gi) - ^hik(gj)Ohik(gi) 

with 

^r{gi) - Y ^*ik(gi)yhik 
(hik)is 

- ^(gJ) + ( ^ ~ ^ ( g / ) ) ^(.gj) 

where B^gj^ is the vector of estimated regression coeffi­
cients when the (gy)-th cluster is deleted: 

^igj) - ^(g/)*(fi/) 

with 

*(g/) - Y ^Mk{gi)Xhikyhik-
(hik)is 

The jackknife variance estimator of Y^ is then given by 

L 

vAYr) = Y 
"g - 1 

n 

"g 

'•(«/) Yr)' (4.5) 
g=i « >=, 

It is shown in the Appendix that by linearizing the 
jackknife variance estimator (4.5), one obtains 

with 

VjL{Yr) = v{el) 

^hi = Y ^"'>Whik)ehik 

(4.6) 

where Whik is defined in (4.2) and Chik is defined in (4.3). It 
is interesting to note that the jackknife linearization variance 
estimator (4.6) is similar to the model-assisted variance 
estimator proposed by Sarndal, Swensson and Wretman 
(1989) in the context of unistage samphng. Yung (1996) 
estabhshed the asymptotic equivalence of Vj{ Y^) and 
Vji {Yr) to higher order terms in the important special case 
of «;, = 2 clusters per stratum. Note that the above results 
are also applicable to general auxiliary variables, Xhik-

^Mk(gj) — 1 + {Whik/Whik(gi))Xhik^ {^ ~ ^ ( g / ) ) -

The resulting estimator of Y, when the {gj)-th. cluster is 
deleted, is given by 

^ngj) - Y ^Mk(gj)yhik 
(hik)is 

and the corresponding jackknife variance estimator is 

^>Jl{Yr) = Y "^^-^ E (̂ t̂o) - ^r)'- (4.7) 

It is readily seen that (4.7) is exactly equal to the standard 
linearization variance estimator (4.4). 

5. ESTIMATION OF A RATIO 

Often a ratio of two estimated totals is required. For 
example, in a family expenditure survey, one may be inter­
ested in the proportion of income spent on clothing. Let 

Y, ^ Y -i- {X - X)'^Bi 

he a generalized regression estimator of the total amount 
spent on clothing, Y. Similarly, let 

Zr = 2 -f- {X - X)^B2 

he a generalized regression estimator of the total income, 
Z. The proportion of interest is S = Y/Z, and can be 
estimated by 

0 = Yr/Zr. 
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The jackknife variance estimator is given by Table 2 

MB) = Y ^ Y (̂ *(̂ ) BY (5.1) 

where 

^(S/) - ^r(gj-)l'^r(gjy 

Linearizing the jackknife variance estimator, (5.1), we 
obtain a jackknife linearization variance estimator 

where 

with 

and 

^JL{B) = v{rJii*) 

1 

(5.2) 

'•A*/* = T " E ('^h<ik)ehik 

^' k 

^hik — ^hik ~ " ^ Â;X> 

^hik — yhik ~ XhikBi, Chik — Zhik — XhikB2-

Proof of (5.2) is omitted for simplicity. 

6. SIMULATION STUDY 

We performed a simulation study to investigate the un­
conditional and conditional finite sample properties of the 
variance estimators in the case of a single poststratifier as 
well as two poststratification variables. For this purpose, 
we used a fixed finite population, considered by Valliant 
(1993), consisting of 10,841 persons included in the 
September 1988 Current Population Survey (CPS) of the 
United States. The variable of interest, y, is the weekly wages 
for each person. The single poststratifier was defined on 
the basis of age, race and sex, while the two poststratifiers 
were based on the variables age, with five levels, and race, 
with two levels (see Tables 1 and 2 for details). 

Table 1 
Assignment of Age/Race/Sex Categories to Poststrata: 

Single Poststratifier 

Age 

19 and under 
20-24 
25-34 
35-64 
65 and over 

Nonblack 

Male 

1 
2 
5 
7 
2 

Female 

1 
3 
6 
8 
3 

Male 

1 
3 
4 
4 
3 

Black 

Female 

1 
3 
4 
4 
1 

Assignment of Age/Race Categories to Poststrata: 
Two Poststratifiers 

Age Nonblack Black 

19 and under (1,1) (1,2) 
20-24 (2,1) (2,2) 
25-34 (3,1) (3,2) 
35-64 (4,1) (4,2) 
65 and over (5,1) (5,2) 

PS2(1) PS2(2) 

PSl(l) 
PS1(2) 
PS 1(3) 
PS 1(4) 
PS1(5) 

Note: Number in margins are poststratum identification numbers. 
Cells (i,j) denote poststrata (/ = 1, . . . , 5;y = 1, 2). 

The study population contained 2,826 geographical 
segments, each composed of about four neighbouring 
households. One hundred design strata {L — 100) were 
created with each stratum having about the same total 
number of households. We used a stratified two-stage 
sampling design with segments as clusters and persons as 
the second-stage units. In each stratum «/, = 2 segments 
were selected with probabiUty proportional to the number 
of persons in each segment, and a simple random sample 
of mhi — 4 persons was selected without replacement if 
the sample segment contained more than four persons. In 
sample segments with four or fewer persons, all persons 
in the segment were selected. Using this design, we selected 
two sets of 10,000 independent samples, one set for the 
one-way poststratification case and the other set for the 
two-way poststratification case. 

From each sample, we computed the basic estimator, 
the relevant poststratified estimator, Yp^ or %, and four 
variance estimators: the standard linearization variance 
estimator V/,, the jackknife linearization variance estimator 
Vji, the jackknife Vy, and an incorrect jackknife variance 
estimator v*. In applying the jackknife procedure, it is 
questioned whether or not the "final" or "calibrated" 
weights need to be recalculated each time a cluster is 
deleted. The correct jackknife variance estimator does 
recalculate the "final" weight whenever a cluster is deleted 
while the incorrect jackknife variance estimator fails to do 
this. For the one-way poststratification case, v* (Yp̂ ) uses 
the full adjustment ,.M/^M instead of cM/cM(gj) when 
the {gj)-th cluster is deleted, i.e., Yps^gj) uses the weights 
{cM/cM)Whik(gj) instead of {cM/cM^gj^)Whikigj). Similarly, 
for the two-way poststratification case, v* ( Y^) uses the 
full adjustment Uhik instead of ahik(gj) when the {gj)-th 
cluster is deleted, i.e., Y^ uses the weights Whik(gj)ahik 
instead of Whik(gj)ahik(gj)- The linearized version of v* is 
the same as the variance estimator v^ (equation 3.4) with 
cChik replaced hy yhik in the case of Yp^, and Vjj^ (equation 
4.6) with Chik replaced hyyhik in the case of the generalized 
regression estimator Y^. That is, 

Note: Cell numbers (1-8) are poststratum identification numbers. vnts) = v{yhi) 
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with 

and 

with 

yhi ^ YTi ^"'' c^''ik)yhik 
C kirS 

Vj{Yr) =v{y*hi) 

yti = Y ^"'>Whik)yhik-
kis 

Since v* uses the3''s instead of the residuals e's, it is clear 
that V* should overestimate the true variance of the esti­
mator, although it is computationally simpler than Vy. 

(!) Unconditional Results 

To compare the unconditional performances of the 
variance estimators we computed the empirical relative 
bias (RB) for each variance estimator: RB of a variance 
estimator v is 

RB = 
MSE [10,000 ^ ^'J 

where v, is the value of v for the i-th simulated sample 
(/ = 1 10,000) and MSE is the empirical MSE of the 
estimator, say Y: 

MSE = — ^ V {Yi - Y)^ 
10,000 ^ 

where F, is the value of Yin the i-th simulated sample. 

Error rates for normal theory confidence intervals on 
the total Y were also calculated for each variance esti­
mator, using a nominal error rate of 5%: 

error rate = 

1 
1 -

10,000 
(number of samples with L, < Y < U,), 

where L, < Y < Ui is a confidence interval on Y for the 
i-th simulated sample. Lower and upper error rates were 
calculated as: 

lower error rate = 

1 

10,000 
(number of samples with Y < L,) 

upper error rate = 

1 

10,000 
(number of samples with Y > U,). 

We also calculated the average lengths of the confidence 
intervals as 

average length 
1 

10.000 Y (̂ ' - ^')-

Table 3 reports the unconditional results for the post­
stratified estimator Yp^ using the above performance 
measures. With respect to relative bias, Vji and Vy both 
perform well with RB < 1 % while the incorrect jackknife 
Vji severely overestimates the MSE (RB = 37%). We 
note that v^ is also estimating the MSE of Yp^ well un­
conditionally (RB < 1%), contrary to Valliant's (1993) 
claim. Valhant (1993) reported RB of 35% for v^ using 
the same data set. In view of the design-consistency of V/, 
supplemented by our simulation results on V/,, we conjec­
ture that Valliant's calculations on v^ might be incorrect. 

Table 3 
Unconditional Results for the Poststratified Estimator 

Performance 
Measure 

Relative bias (%) 
Error rate (%) 
Lower error rate (%) 
Upper error rate (%) 
Average length 

VL{^PS) 

-0 .44 
5.20 
2.41 
2.79 
3.81 

VjL{yps) 

0.12 
5.09 
2.35 
2.74 
3.82 

vAYp,) 

0.26 
5.06 
2.33 
2.73 
3.83 

yj{yps) 

37.16 
2.41 
0.99 
1.42 
4.48 

Turning to confidence interval performance. Table 3 
shows that the error rates associated with Vy, Vŷ  and v^ 
are close to the nominal 5% while the error rate for v* is 
considerably lower than 5% (about 2.5%). Performances 
with respect to lower and upper error rates are also similar. 
The variance estimators, Vy, Vŷ  and v^, perform similarly 
in terms of average length of confidence intervals while 
the average length associated with v* is significantly 
larger due to overestimation bias. Finally, we note that the 
performance measures for Vy and Vji are very close, 
supporting the asymptotic equivalence of Vy and Vji. 

Table 4 
Unconditional Results for the Generalized Regression 

Estimator 

Performance 
Measure Vi(>;) Vjt{Yr) Vj{Yr) V*j{Yr) 

Relative bias (%) 
Error rate (%) 
Lower error rate (%) 
Upper error rate (%) 
Average length 

-0 .96 
5.30 
2.24 
3.06 
3.94 

0.76 
5.27 
2.21 
3.06 
3.95 

0.57 
5.23 
2.19 
3.04 
3.95 

25.87 
3.07 
1.08 
1.99 
4.44 
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Unconditional results for the generalized regression 
estimator % are reported in Table 4. As in the case of 
Yps, the variance estimators Vy, Vŷ, and v̂ , perform well 
both in terms of relative bias and error rates of confidence 
intervals. On the other hand, the incorrect jackknife v* 
leads to severe overestimation which in turn is reflected 
in the lower than nominal error rates and larger average 
length of confidence intervals. 

(ii) Conditional Results 

We have also studied conditional properties of the 
variance estimators, following Valhant (1993). For the 
poststratified estimator, we divided the 10,000 simulated 
samples into 10 groups each containing 1,000 samples 
using the measure (Valhant 1993) 

Table 6 
Conditional Error Rates (%) for the Poststratified 

Estimator 

Group 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

y>L(Yps) 

5.5 
4.6 
3.7 
5.7 
4.9 
5.1 
5.2 
4.5 
5.8 
7.0 

yjL(Yps) 

5.9 
4.8 
3.8 
5.8 
4.8 
5.0 
4.8 
4.3 
5.4 
6.3 

vy(?p.) 

5.9 
4.8 
3.8 
5.8 
4.7 
4.8 
4.8 
4.3 
5.4 
6.3 

y*j(Yps) 

3.4 
2.9 
1.9 
2.9 
2.6 
2.2 
2.1 
1.3 
2.4 
2.4 

»-s(l-'> 
The measure Dps was calculated for each sample and the 
10,000 samples were sorted in ascending order according 
to the Dps-values and then divided into groups. We may 
interpret Dps as a measure of how "balanced" the sample 
is with respect to the distribution of the poststrata counts. 

For the generalized regression estimator, we used the 
following natural extension of Dps'. 

''^-L{i-')^L{i-^y 

The results for the poststratified estimator are given in 
Tables 5 and 6: conditional relative biases in Table 5 and 
conditional error rates (nominal 5%) in Table 6. These 
performance measures were computed in the same manner 
as the unconditional case but from each group separately. 
It is clear from Tables 5 and 6 that Vy, Vŷ, and v^ all 
perform well, although v̂  is somewhat worse in the 
extreme groups 1 and 10, while v* performed poorly as 
before. It is somewhat surprising to see v^ performing so 
well conditionally. A possible explanation is that with our 
particular samphng design we have M = £ ^hik)is ^hik = ^ 
so that 

Y c^ = M = M. 

where a and b index the levels of the two poststratification 
variables and (^M, gM) and (^M, ^M) are the corre­
sponding marginal counts. We may interpret D^ as a 
measure of how "balanced" the sample is with respect to 
the distribution of the marginal poststrata counts. 

Because of this, we do not obtain samples which are poorly 
balanced since if some poststrata counts c^ are gross 
overestimates, say, then the other counts correct for the 
overestimation in order to satisfy the above constraint. 
Thus, we see mostly well balanced samples in which case 
Vi is expected to perform well. 

Table 5 
Conditional Relative Biases (%) for the Poststratified 

Estimator 

Table 7 
Conditional Relative Biases (%) for the Generalized 

Regression Estimator 

Group 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

^LiYps) 

-5 .00 
0.55 
8.33 

-1 .10 
-0 .76 

2.50 
6.10 
6.60 

-4 .46 
-13.56 

VjLiYps) 

-8 .05 
-1 .18 

7.03 
-1 .56 
-0 .69 

3.39 
7.51 
8.82 

-1 .43 
-9 .17 

VjiYps) 

-7 .88 
-1 .01 

7.19 
-1 .42 
-0 .55 

3.53 
7.66 
8.96 

-1 .31 
-9 .07 

v*j(Yps) 

17.83 
28.06 
41.29 
31.82 
34.77 
41.69 
48.86 
53.54 
41.11 
36.63 

Group 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

VLiYr) 

9.25 
3.99 

-3 .24 
-2 .66 

7.90 
-3 .60 
-9 .24 

3.34 
-3 .75 
-8 .68 

yjL(Yr) 

4.95 
1.50 

-4 .76 
-3 .43 

7.61 
-3 .12 
-8 .27 

5.30 
-0 .85 
-4 .15 

yji Yr) 

5.13 
1.67 

-4 .59 
-3 .26 

7.80 
-2 .94 
-8 .08 

5.50 
-0 .62 
-3 .92 

v?(f.) 

26.51 
24.96 
17.53 
20.53 
35.46 
23.38 
17.41 
35.84 
30.84 
28.50 
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Table 8 

Conditional Error Rates {%) for the Generalized Regression 
Estimator 

Group 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Vi( i ; ) 

4.3 
4.9 
5.0 
5.7 
3.9 
5.7 
5.9 
5.8 
5.5 
6.3 

VjLiYr) 

4.5 
5.0 
5.1 
5.9 
4.0 
5.8 
5.8 
5.7 
5.1 
5.8 

vAYr) 

4.4 
5.0 
5.1 
5.9 
4.0 
5.7 
5.8 
5.7 
4.9 
5.8 

vjit) 

3.0 
3.3 
3.8 
3.3 
2.3 
3.0 
2.9 
2.8 
3.0 
3.3 

The results for the generalized regression estimator are 
given in Tables 7 and 8: conditional relative biases in 
Table 7 and conditional error rates (nominal 5%) in 
Table 8. The results are very similar to those for the one 
stratifier case. In both cases we again note that the perfor­
mance measures for Vy and Vŷ  are very close, supporting 
the asymptotic equivalence of Vy and Vŷ . 

In summary, the three variance estimators Vy, Vŷ  and 
V£ performed similarly. The incorrect jackknife v* per­
formed poorly indicating that reweighting must be done 
each time a cluster is deleted. 

7. CONCLUDING REMARKS 

Beebakhee (1995) applied the three variance estimators, 
Vy, Vji and v^, to a number of household surveys con­
ducted by Statistics Canada. Her empirical results showed 
that the jackknife hnearization variance estimator, Vji, 
consistently consumed less time and money for all study 
surveys than the jackknife variance estimator, Vy, and yet 
approximated Vy very well. These results are practically 
important because the users wanted a computationally 
simpler variance estimator which can approximate the 
currently used Vy very well. The standard linearization 
variance estimator v̂ , performed similar to Vŷ  in terms 
of cost and time, but it did not approximate Vy as well 
as Vyi. 

If the primary interest is the estimation of totals or 
ratios, then the jackknife linearization variance estimator, 
Vŷ , is attractive because it is computationally simpler 
than the jackknife variance estimator, Vy, and yet leads 
to values close to the jackknife. But for general smooth 
statistics Vy/, suffers from the same disadvantage as the 
standard linearization variance estimator, v^, in the sense 
that both require the derivation of a separate formula for 
each statistic, unlike Vy. In terms of statistical properties, 
our simulation study suggests that the three variance 

estimators, Vy, Vŷ , and v^, perform similarly. On the 
other hand, the incorrect jackknife v*, which uses the 
same adjustment whenever a cluster is deleted, performs 
poorly indicating that reweighting must be done each time 
a cluster is deleted. 

ACKNOWLEDGEMENT 

This work was supported by a grant from the Natural 
Sciences and Engineering Research Council of Canada. 

APPENDIX 

Proof of the Result Vj{Z) « Vji^{Z) 

To establish the desired result, we first approximate the 
differenceyl(" '̂) — A~^. Using the matrix identity, 

(/ + p g ) " ' = I - p{i + QP) " ' e 

we get 

A^gj) - A - ' =A-\l+{A,gj, A)A-']-' - A 

^ A - ' [ l - {A^gji -A) 

{I + A-'{A.gii-A))-'A-'] 

« - A-'{A^gj^ - A)A -I (A. l ) 

The approximation (A.l) follows by noting that (i) 
A(gj) - ^ is of lower order than A under the assumption 
that no cluster contribution is of disproportionate size as the 
number of strata L increases (see Yung (1996) for details 
on regularity conditions) and (ii) [/ +A~' (/J(g/) —A)] ~' = 
I-A-HA.gii -A). 

Using (A.l), we obtain 

fl(^-) -B= (^'(-J, -A-'+ A-'){b(gi) -b + b) 

-A-'b 

= (^"(-J) - A-')b + A-\b^gj) - b) 

= - A-'{A^gi) - A)B + A-Hb(gj) - b). 

(A.2) 

It now 

^'•(g/) • 

follows from (A.2) that 

- Yr ^ { Y(gj) -

1 

ng - 1 

- Y) 

{et • - e* 1 

-X)^B 

X) {B^gJl 

(A.3) 
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where 4 = E*(«gM'|,*:)eg/Vt and e* = (l/zi^) E y ^ ^ - W e 

used the following results in arriving at (A.3): 

1 
(K,^, - Y) - {X,gj, - X)'B = —— {eg - Cgj) 

"g - 1 

and 

{X - X)''{B,gj. - B) ^ 

{X - X)^A-'l-^^ {Qg - Ugj)], 

where eg/- = l,k{ngWgjk)egjk and Ugj = Y,k{ngWgjk)Xgikegik. 

It now follows from (A.3) that 

L . nh 

= V{eti) = VjL{Yr). 

REFERENCES 

BEEBAKHEE, R. (1995). A comparison of two variance 
estimation methods: The Jackknife and the linearized Jack-
knife. Methodology Branch Working Paper, HSMD-95-0O5E. 
Statistics Canada. 

BINDER, D.A. (1996). Linearization methods for single phase 
and two phase samples: A cookbook approach. Survey 
Methodology, 22, 17-22. 

CASADY, R.J., and VALLIANT, R. (1993). Conditional 
properties of poststratified estimators under normal theory. 
Survey Methodology, 19, 183-192. 

DEVILLE, J., and SARNDAL, C.E. (1992). Calibration 
estimators in survey sampling. Journal of the American 
Statistical Association, 87, 376-382. 

HUANG, E.T., and FULLER, W.A. (1978). Nonnegative 
regression estimation for sample survey data. Proceedings of 
the Social Statistics Section, American Statistical Association, 
300-305. 

RAO, J.N.K. (1985). Conditional inference in survey sampling. 
Survey Methodology, 11, 15-31. 

ROYALL, R.M., and CUMBERLAND, W.G. (1981). An 
empirical study of the ratio estimator and estimator of its 
variance. Journal of the American Statistical Association, 76, 
66-88. 

SARNDAL, C.E., SWENSSON, B., and WRETMAN, J. 
(1989). The weighted residual technique for estimating the 
variance of the general regression estimator of the finite 
population total. Biometrika, 76, 527-537. 

STATISTICS CANADA (1990). Methodology of the Canadian 
Labour Force Survey. Catalogue No. 71-526. 

VALLIANT, R. (1993). Poststratification and conditional 
variance estimation. Journal of the American Statistical 
Association, 88, 89-96. 

YUNG, W. (1996). Contributions to poststratification in 
stratified multi-stage samples. Unpublished Ph.D. thesis, 
Carleton University, Ottawa, Canada. 





Survey Methodology, June 1996 
Vol. 22, No. 1, pp. 33-41 
statistics Canada 

33 

Small Area Estimation Under an Inverse Gaussian Model 
Y.P. CHAUBEY, F. NEBEBE and P.S. CHEN' 

ABSTRACT 

In this paper, we consider analysis of variance methodology for inverse Gaussian distribution and adapt it for estimation 
of small area parameters in finite populations. It is demonstrated, through a Monte Carlo study, that these estimators 
offer a competitive choice for positively skewed survey data such as income or yield of a particular sector. 

KEY WORDS: Interactions; Inverse Gaussian; Monte Carlo; Regression estimates; Synthetic estimates; Sarndal-
Hidiroglou estimator; Unbalanced model. 

1. INTRODUCTION 

Recently, a large number of methods appeared in the 
literature for the problem of small area estimation; for 
example Prasad and Rao (1990), Sarndal and Hidiroglou 
(1989), Choudhry and Rao (1988), and Sarndal (1984) and 
the references cited there, especially Sarndal and RSback 
(1983), Fay and Herriot (1979), Schaible (1979), Hoh, 
Smith and Tomberhn (1979), and Gonzalez and Hoza 
(1978), to name a few. The need for small area estimates 
of several characteristics of a given population has gener­
ated various useful procedures that produced realistic and 
sufficiently accurate estimates for local areas and other 
special subgroups. Several of the techniques suggested by 
the authors mentioned above were impHcitly and/or 
explicitly model-based and utilized the standard normal 
theory. Others have tackled the provision of estimates for 
local areas from Bayesian and empirical Bayes perspectives 
by finding a compromise between the sample mean of an 
area (that is assumed to be normal) and an estimator based 
on regression on one or more covariates (see e.g., Stroud 
1987; MacGibbon and Tomberlin 1989). For an extensive 
review of recent developments in small area estimation, 
the reader may refer to Ghosh and Rao (1994). 

The standard normal theory analysis of factorial exper­
iments may be inappropriate to apply in situations where 
data are generated from markedly positively skewed 
distributions. While most of the inference procedures are 
analytically tractable, the accuracy and reliabiUty of the 
results may be questionable in many practical apphcations. 
Thus, such an analysis based on positively skewed distri­
butions is called for. 

The objective of this paper is to consider inference proce­
dures for unbalanced as well as balanced two-factor exper­
iments under inverse Gaussian model that may be used to 
produce estimates for small regions. Hidiroglou and Sarndal 
(1985) reported on a Monte Carlo study where a modified 

regression estimator is preferred as a compromise between 
the synthetic estimator and the generalized regression 
estimator. Sarndal and Hidiroglou (1989) also presented 
further comparisons of estimators on the basis of condi­
tional inference. The generalized regression estimator is 
basically derived from a super population regression 
model without any distributional assumptions. Chaubey 
(1991) considered super population models of Durbin 
(1959) with gamma auxiliary and inverse Gaussian auxil­
iary in which case the generalized regression estimator has 
the property of being the best linear unbiased predictor 
(see Prasad and Rao 1990). In fact, the best linear unbiased 
predictor for the population total does not depend on the 
form of the distribution of the characteristic variable, 
hence this technique is preferable given that maximum 
likelihood estimates (MLE) may be hard to obtain. As we 
have seen that the super population distributions (as 
transfused in the populations) may resemble closely to 
inverse Gaussian distributions for variety of populations 
we would like to exploit this aspect of the population. 

The use of inverse Gaussian distribution is not merely 
a superficial one but it has been used successfully in many 
situations (see Folks and Chhikara 1978) and resembles 
closely to gamma, log normal and Weibull populations 
which are common in modeling positively skewed non 
negative random variables. In this paper, we study the use 
of inverse Gaussian model in applying to the small area 
estimation. The approach of Fries and Bhattacharyya 
(1983) which discusses the analysis of two factor experi­
ments under an inverse Gaussian model is of major impor­
tance. The above paper gives estimation in balanced, 
no-interaction model. We have extended this approach to 
unbalanced case, which is essential for estimation of 
domain totals or means. In this respect the general multiple 
regression approach of Bhattacharyya and Fries (1986), 
and Whitmore (1983) may be adapted, but we have chosen 
to take the direct approach. In Section 2 we specify the 

' Y.P. Chaubey, Professor, Department of Mathematics and Statistics; F. Nebebe, Associate Professor, Department of Decision Sciences & M.l.S.; 
and P.S. Chen, Research Assistant, Department of Finance, Concordia University, Montreal, Canada. 
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model and present our proposed estimators under the 
inverse Gaussian model. In Section 3, a numerical study 
is carried out for evaluation of the performance of the 
proposed estimator through Monte Carlo simulation. 
Finally, Section 4 presents summary and conslusions. 

2. THE INVERSE GAUSSIAN REGRESSION 
MODEL FOR SMALL AREA 

ESTIMATION 

Suppose that a finite population 11 is divided into D 
non-overlapping domains U^., d = 1 (1)Z>, with N^. as 
the size of U^.. The population is further divided along a 
second dimension, into G non-overlapping groups Ug, 
g = 1(1)G, with the size of Ug denoted by Ng. The 
cross-classification of domains and groups give rise to DG 
population cells Udg,d = l{l)D,g = 1 (1)G, with A'̂ g 
as the size of U^g. The population size N can then be 
expressed as N ^ ldN^_ = I.g Ng = E^g N^g. Our 
interest lies in estimating domain totals t^ = Ec/^ >"*. 
where y represents the characteristic variable and yk is the 
observation on A:-th unit. A sample s of size n is selected 
from It by a simple random sampling. Denote by s^, s g 
and Sgjg the parts of s that happen to fall in t/^, Ug and 
Udg. The corresponding sample sizes are denoted by n^, 
n g and n^g, respectively. 

2.1 Regression Method for Inverse Gaussian Data 

We refer readers to two recent comprehensive reviews 
about the developments in the inverse Gaussian distri­
bution, namely, Chhikara and Folks (1989), and Iyengar 
and Patwardhan (1988). The probability density function 
of an inverse Gaussian variate with parameters {0, a), 
IG{0, a), is given by 

f{y;0,a) = {2ira)-''^y-''^ expl-{2ay)-'{y0-'-l)^]; 

(2.1) 

withj' > 0, ̂  > 0, ff > 0. The mean and variance of this 
distribution are 0 and 0^a, respectively. Bhattacharyya 
and Fries (1982) proposed a reciprocal linear model for 0. 
Specifically, they assume a model of the form 6^' = Xkri. 
An estimator of r/, similar to the estimator of the regression 
parameter in the usual linear model (see Sarndal 1984) in 
this situation is given by 

^=(E XkXkyk\ 

T^k ) 
E 

kiSd. 

Xk 

T^k 
(2.2) 

This is called pseudo Maximum Likelihood estimator, 
because it is obtained by unconditional maximization of 
the likehhood function and therefore x'kr\ > ^ may not 
be satisfied for all k. Then an estimator of the total t^ of 

the d-th domain in the spirit of Sarndal's (1984) modified 
regression estimator may be constructed as 

'd/G 

kiU^. kiSd. 

ek (2.3) 

v/hereyk = x^if and Ck = yk — yk- In what follows, we 
denote the mean of the {d,g) cell by 0dg, and consider the 
case of simple random sampling in which case ir̂ t's are con­
stant. We first discuss the prediction of observations for 
the use of (2.3) based on an additive effects model given by, 

ejg' = M + arf + ^g, E «" = E «̂ = ^' 2̂.4) 

where fi, a^'s and /Sg's represent the overall effect, the 
domain or row effects, and the group or column effects, 
respectively. For the inverse Gaussian distribution we must 
also have Ŝ g > 0 for all {d,g) and ff > 0. Thus the para­
meters/x, o; = (cKi, a2,. ..,Q!o),/3 = (|3,,/32, . . . , j3c), 
and ff lie in the set fi - {{ii,a,0,a): Ed«rf = 0, Eg/3g = 0; 
fi -I- ad + ^g > 0, ^{d,g); ff > 0). Under this setup 
estimation of parameters for prediction can be accom­
plished through unconditional meiximization of the like­
lihood function. Conditional on the population and the 
sample sizes n^g and referring to (2.1) and (2.3), the log-
likelihood function of the parameters is given by 

f = - i l o g f f ^ 2 ] n r f g 

d g 

-(2t^)"'EEE-'' ' '^*[-' ' ' '«*(' '+"' '+'^«)-i^'- (2-5) 
d g k 

We first note that the parameters are effectively given by 
{fi,ad,&g,d=l,2,...,D-l;g=l,2,...,G- 1). 
Thus, differentiating the above with respect to {fi, a^, fig, 
d = 1,2, . . . ,£) — l ; g = 1,2, . . . , G - 1 ) and equating 
the resulting partial derivatives to zero gives the following 
equations for the estimators {p,, a j , fig, d = 1, 2, . . . , 
D-l;g = 1,2. ...,G- 1), 

D-l G-l 

i>-y.. + E °^<'^y<'- ~ yo.) + E ^« -̂̂ « ~ -̂ ^̂  ^ "••• 
d = l g = l 

D-l 

Hya. - yo.) + "dj'd. + Y "j^^-
7 = 1 

G - l 

+ E ^g^^ydg -yog) - {ydG -yoo)] = "d. - " a . 
« = i 

D-l 

d=l 
G-l 

+ '^gy.g + E ^jy<^ = "•« ~ " G ' (2.6) 
y = i 
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where the totals and means are represented by the 
notations 

ydg = Y ydgk' yd. = E -*'"«' y-g = E -*'''«' ^̂ -"̂ ^̂  

rid. = Y "dg' ".g = Y "dg' ".. = Y Y "ds- (2-7b) 

The solutions (A, Wd, jSg), ^ = l{l)D,g= 1(1)G, 
provide the pseudo Maximum Likelihood estimator and 
may not yield nonnegative response estimates but will 
coincide with proper MLE as n^g — <» (see Fries and 
Bhattacharyya 1983) with probability one. Negative 
values of the response estimates may thus be truncated 
to zero. 

In the case of the IG{0, a) model with interaction, the 
usual parameterization of the interaction effects suggests 
the model 

'^dg ̂  - fi -{- aa + fig + Jdg, 

3. A NUMERICAL STUDY OF THE INVERSE 
GAUSSIAN REGRESSION 

ESTIMATOR 

In this section we provide the results of a simulation 
study which evaluates the performance of the estimators 
developed in the previous section. The modified regression 
estimator due to Sarndal and Hidiroglou (1989) given 
below will be used as the bench mark for the above 
purpose; 

t'ds-H = Y ^dgy.g + Y ^dNdg{ydg - y.g), (3.i) 
g g 

whereF^ = Na./Na. if ̂ d. ^ l^d.. otherwiseF^ = Na./^d. -
Here, TV̂  = n^.N/n . An alternative form of this esti­
mator which takes into account both group and domain 
effects can be obtained by replacing j'g by j? g -I- y^. - y.. 
but this has not been pursued here. It should be noted that 
the above estimators cannot be computed when n^g is 
zero. When this happens the estimators are simply taken 
to be the sample means of the respective domains. We also 
include the following modified version of frivol > 

Y''d^Y^g=L'Ydg=Y'^dg = 0, (2.8) tdwom = Y ^dgOdg + Y PdNdg{yag - 4 ) - (3-2) 

where now y^g is the interaction effect when domain is at 
the d-th level and group is at the ̂ -th level. The estimators 
of parameters may be obtained in this case following the 
method outlined above. However, noting that the max­
imum likelihood estimator (MLE) of O^g is ydg and there 
is one to one relation between the parameters in the repa-
rametrized model in terms of {fi, a^, fig, ydg) and the 
original parameters 0ag, explicit formulae for the MLE of 
different parameters are not needed. Corresponding to 
equation (2.3), therefore, for a two-factor model with 
interaction, our estimator is 

tdWI — Y ^dgPdg (2.9) 

which is the post stratified estimator and is not of further 
interest in small area estimation. For the model without 
interaction, the estimator is given as 

^dWOI NdgBdg + Y^dg{ydg- Odg), (2.10) 

where 0 dg^ = {>• -\- Orf + fig, the estimators being 
obtained from (2.6) and N^g = n^gN/n . 

In order to judge the effectiveness of this estimator a 
numerical study has been performed and is reported in the 
following section. 

for comparison. 

3.1 Design of the Simulation Study 

We consider Household Income data for Canadians in 
1986, obtained from Household Income, Facilities and 
Equipment microdata tape of Statistics Canada (1987), for 
generating the values of parameters to be used for simula­
tion. Using Household incomes, from these data, dividing 
them into 10 provinces and 6 educational groups, we first 
fit an inverse Gaussian model given by equation (2.4). The 
estimates of parameters are then used in forming the true 
parameters of the inverse Gaussian super population model 
which are summarized in appendix A. The values of D, 
G, A/flTg are chosen from this population (see appendix B), 
whereX) represents the number of provinces (/.e.,J5 =10) 
and G represents the number of education groups {i.e., 
G = 6). Further sets of values of 0ijg and a are obtained by 
considering various combinations of (ci,C2); q =0(1)4 
and C2 = 1, .25, .1, .01 where Ci is used to transform d^g 
to 10 ~'̂ '̂ rfg and C2 is used to transform a to C2ff. Note that 
Ci = 0 and C2 = 1 gives the parameter values for the 
original population. Also, the higher values of Cj indicate 
smaller values of the means and those of C2 indicate 
higher value of the dispersion parameter. 

For the simulation study, first we generate for a given 
set of 0(ig and a values an inverse Gaussian random 
sample using the algorithm in Michael et al. (1976) with 
number of observations according to the values given in 
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the appendix B. This random sample is then used as a finite 
population from which we select 1000 random samples for 
each of the sample fractions, 1%, and 5% with replace­
ment. We had actually selected several random samples 
and obtained similar results as reported here. From each 
sample we computed the estimators of totals for the 
10 domains using estimators i^s-H' Idwoi and idwoiM-
The criteria for evaluating the performance of the esti­
mators are the mean absolute relative error (MARE) and 
the absolute relative bias (ARB) defined as follows: 

1000 

MARE(/rf) = j ^ Y I ^* - ^d \IU (3.3) 

ARB(/rf) = 

1000 

1 
1000 

/ = i 

1000 

E ''di -
1=1 

\id (3.4) 

Here i^ denotes a typical estimator of t^ and t^i denotes 
the value of the /-th Monte Carlo sample (/ = 1, . . . , 
1000). 

Table 1 
Mean Absolute Relative Error (%) of Different Estimators 

Domain 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

SH 

13.27 

14.57 

25.27 

11.83 

10.57 

7.12 

11.78 

11.48 

7.43 

15.32 

3.34 

4.14 

2.44 

2.05 

1.08 

1.74 

1.90 

1.48 

1.41 

1.22 

2.99 

3.54 

1.81 

1.32 

0.27 

1.29 

1.22 

0.81 

0.69 

0.26 

1% Sample 

WOI 

13.05 

13.61 

27.86 

11.70 

11.72 

7.45 

13.91 

12.56 

7.92 

17.43 

2.18 

3.94 

1.67 

1.70 

1.17 

1.14 

1.57 

1.38 

1.30 

1.38 

1.48 

3.37 

0.45 

0.36 

0.13 

0.13 

0.31 

0.18 

0.14 

0.15 

WOIM 

ci = 0, 

13.19 

14.20 

26.88 

11.74 

11.68 

7.52 

14.23 

12.46 

7.99 

17.16 

C] = 2, 

2.15 

3.82 

1.65 

1.69 

1.16 

1.14 

1.56 

1.38 

1.29 

1.38 

c, = 4 , 

1.44 

3.27 

0.44 

0.35 

0.13 

0.13 

0.31 

0.18 

0.14 

0.15 

SH 

C 2 = 1 

6.60 

7.53 

19.07 

5.29 

6.80 

3.85 

7.39 

6.70 

3.61 

11.20 

C 2 = 1 

1.66 

2.14 

1.17 

0.98 

0.50 

0.78 

0.91 

0.70 

0.67 

0.56 

C2= 1 

1.47 

1.86 

0.87 

0.66 

0.11 

0.55 

0.56 

0.38 

0.30 

0.10 

5% Sample 

WOI 

6.48 

7.61 

20.74 

5.61 

7.10 

3.95 

8.01 

7.15 

3.74 

11.81 

0.79 

1.07 

0.71 

0.70 

0.51 

0.52 

0.72 

0.60 

0.59 

0.59 

0.08 

0.14 

0.07 

0.07 

0.05 

0.05 

0.07 

0.06 

0.06 

0.06 

WOIM 

6.47 

7.69 

20.80 

5.59 

7.11 

3.97 

8.05 

7.14 

3.75 

11.80 

0.78 

1.06 

0.70 

0.70 

0.51 

0.52 

0.72 

0.60 

0.58 

0.59 

0.08 

0.13 

0.07 

0.07 

0.05 

0.05 

0.07 

0.06 

0.06 

0.06 

SH 

3.72 

3.79 

2.52 

1.83 

0.92 

1.94 

1.22 

1.29 

3.47 

0.93 

2.99 

0.54 

1.81 

1.32 

0.27 

1.29 

1.22 

0.81 

0.69 

0.26 

2.99 

3.54 

1.80 

1.31 

0.24 

1.29 

1.20 

0.79 

0.68 

0.23 

1% Sample 

WOI 

2.46 

3.56 

1.51 

1.08 

0.90 

1.22 

1.13 

0.93 

2.99 

0.94 

1.48 

3.37 

0.45 

0.36 

0.13 

0.13 

0.31 

0.18 

0.14 

0.15 

1.45 

3.36 

0.38 

0.28 

0.06 

0.06 

0.24 

0.09 

0.06 

0.07 

WOIM 

c, = 0, 

2.45 

3.48 

1.52 

1.09 

0.91 

1.22 

1.14 

0.94 

2.96 

0.95 

ci = 2, 

1.44 

3.27 

0.44 

0.35 

0.13 

0.13 

0.31 

0.18 

0.14 

0.15 

c, = 4, 

1.41 

3.25 

0.37 

0.27 

0.06 

0.06 

0.24 

0.09 

0.06 

0.07 

5% Sample 

SH 

C2 = .01 

1.80 

2.10 

1.19 

0.93 

0.42 

0.93 

0.86 

0.76 

3.13 

0.52 

C2 = .01 

1.47 

1.86 

0.87 

0.66 

0.11 

0.55 

0.56 

0.38 

0.30 

0.10 

C2 = .01 

1.47 

1.87 

0.86 

0.66 

0.10 

0.54 

0.55 

0.37 

0.29 

0.09 

WOI 

0.89 

0.59 

0.77 

0.58 

0.40 

0.64 

0.64 

0.67 

2.97 

0.52 

0.08 

0.14 

0.07 

0.07 

0.05 

0.05 

0.07 

0.06 

0.06 

0.06 

0.01 

0.05 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

WOIM 

0.89 

0.60 

0.77 

0.58 

0.40 

0.64 

0.64 

0.68 

2.96 

0.53 

0.08 

0.13 

0.07 

0.07 

0.05 

0.05 

0.07 

0.06 

0.06 

0.06 

0.01 

0.05 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 
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Table 2 
Absolute Relative Bias (%) of Different Estimators 

Domain 

1 

2 
3 
4 
5 
6 
7 

8 
9 

10 

1 
2 

3 
4 
5 

6 
7 

8 
9 

10 

1 
2 

3 
4 

5 
6 
7 

8 
9 

10 

SH 

4.34 
8.88 
3.13 

1.57 
0.13 
1.09 
1.20 
0.40 
1.03 

1.05 

2.40 
3.00 

1.53 
1.00 

0.10 
1.16 
1.00 
0.48 
0.64 

0.01 

2.47 
3.06 
1.46 
1.01 
0.10 
1.15 
0.95 
0.57 
0.61 

0.06 

1% Sample 

WOI 

2.40 

3.46 
3.47 

0.51 
0.33 
0.14 
1.09 
0.04 
0.47 

2.27 

1.37 
3.28 

0.39 
0.25 
0.02 

0.01 
0.27 
0.04 
0.06 
0.02 

1.43 
3.34 

0.35 
0.23 
0.01 
0.01 
0.21 

0.04 
0.01 
0.01 

WOIM 

ci = 0, 

2.51 
4.39 
2.74 

0.53 
0.35 
0.04 
1.59 

0.12 
0.36 

2.03 

c, = 2 , 

1.33 
3.16 
0.38 
0.25 
0.03 

0.01 
0.27 
0.04 
0.05 
0.02 

c, = 4 , 

1.39 
3.24 

0.34 
0.23 
0.02 
0.00 
0.21 
0.04 
0.00 
0.01 

SH 

C2 = 1 

1.87 
2.18 
0.51 

0.50 
0.20 
0.02 
0.54 

0.20 
0.24 
0.04 

C2= 1 

1.13 
1.33 

0.70 
0.53 
0.04 

0.47 
0.42 
0.25 
0.27 
0.02 

. C 2 = 1 

1.15 
1.36 

0.65 
0.49 
0.04 
0.46 
0.41 

0.26 
0.26 

0.03 

5% Sample 

WOI 

0.26 

0.30 
1.12 

0.21 
0.16 
0.39 
0.28 

0.53 
0.04 
0.30 

0.01 
0.02 

0.04 
0.04 

0.00 
0.02 
0.00 
0.01 
0.02 
0.00 

0.01 
0.03 

0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

WOIM 

0.27 

0.23 
1.15 
0.22 
0.18 
0.42 
0.30 

0.54 
0.01 

0.29 

0.01 
0.01 
0.04 
0.04 
0.01 
0.02 

0.00 
0.01 
0.02 
0.00 

0.01 
0.03 
0.01 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 

0.00 

SH 

2.66 

3.15 
1.44 

1.11 
0.10 
1.09 
0.99 

0.55 
1.01 
0.08 

2.47 
3.06 

1.46 
1.01 
0.10 

1.15 
0.95 
0.57 
0.61 
0.06 

2.48 
3.07 

1.45 
1.01 

0.11 
1.15 
0.94 

0.58 
0.60 

0.06 

1 % Sample 

WOI 

1.58 
3.40 
0.31 
0.29 
0.03 
0.03 
0.22 

0.00 

0.35 
0.02 

1.43 
3.34 

0.35 
0.23 
0.01 
0.01 
0.21 
0.04 
0.01 

0.01 

1.43 
3.35 
0.34 
0.24 

0.01 
0.01 
0.20 

0.04 
0.00 
0.01 

WOIM 

c, = 0 , 

1.54 
3.31 
0.32 

0.30 
0.02 
0.03 
0.23 

0.01 
0.37 

0.01 

q = 2, 

1.39 
3.24 

0.34 
0.23 
0.02 
0.00 
0.21 
0.04 
0.00 
0.01 

c, = 4, 

1.39 
3.24 

0.34 
0.24 

0.02 
0.00 
0.20 

0.05 
0.00 
0.01 

5% Sample 

SH 

C2 = .01 

1.22 

1.38 
0.68 

0.53 
0.05 
0.43 
0.43 

0.28 
0.45 
0.06 

C2 = .01 

1.15 
1.36 

0.65 
0.49 
0.04 

0.46 
0.41 

0.26 
0.26 
0.03 

C2 = .01 

1.15 
1.36 
0.64 
0.49 
0.04 
0.46 
0.41 

0.26 
0.25 

0.03 

WOI 

0.03 
0.04 
0.01 
0.03 
0.01 
0.02 

0.01 
0.03 
0.14 

0.01 

0.01 
0.03 

0.01 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 
0.04 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 

0.00 

WOIM 

0.03 
0.04 
0.01 

0.03 
0.01 
0.01 
0.01 

0.03 
0.14 
0.01 

0.01 
0.03 

0.01 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.04 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

3.2 Analysis of Results 

The MARE values computed according to (3.3) and the 
ARB values from (3.4) for the three estimators and for 
different sample sizes are reported in Tables 1 and 2, 
respectively for a selection of pairs (ci, C2). The values 
of C] are chosen to represent, large means (as in the 
original population, Ci = 0), moderate means (cj = 2) 
and small means (ci = 4), whereas, the values chosen 
for C2 represent the original dispersion parameter 
(C2 = 1) and a further smaller value (C2 = .01). It may 

be interesting to note that increasing Ci by 1 while keeping 
C2 fixed reduces the coefficient of variation by a factor 
of 10. 

Some of the MARE and ARB values reported in 
Tables 1 and 2 are also plotted for visual inspection in 
Figures 1 and 2 for 1% samples, respectively. 

When comparing the MARE and ARB values, reduc­
tions in biases as well as in relative errors are observed in 
many cases for both 1 % and 5% samples. It is found that, 
the MARE and ARB values decrease with decreasing 
values of mean and dispersion parameter a. Reductions 
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Figure 1. Mean absolute relative errors for different estimators for 1% sample. 

+: WOIM (3.2) 

are substantial, especially in case of 5% sample and/or 
when means are small. Note also that the reductions in bias 
are generally larger than reductions in the errors. We may 
note from Johnson and Kotz (1970, p. 141) that for fixed 
value of the mean, the standardized inverse Gaussian 
distribution tends to unit normal as the coefficient of 
variation tends to zero. Since larger gains in MARE and 
ARB values are noted for small values of the coefficient 
of variation, we conclude that proper modeling of the 
mean is important when the coefficient of variation is 
small for model based estimation. 

We further find that ?^^o/and ^^o/j^^ have almost same 
MARE and ARB which indicates that the modification 

of the estimator in (2.10) is not necessary. It may be 
remarked that the estimator ids-H' in contrast, has been 
demonstrated (see Hidiroglou and Sarndal 1985) to be 
substantial improvement over the corresponding un­
modified estimator due to Sarndal (1984). 

Owing to the criticism of idwoi and tdwoiM as being 
model dependent, we want to defend these on the following 
grounds. The inverse Gaussian distribution offers a variety 
of shapes and may be able to approximate lognormal, 
gamma, Weibull and such other positively skewed shapes. 
If we suspect that the principal characteristic is positively 
skewed, then the methodology we discussed here is viable 
and useful. 
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Figure 2. Absolute relative biases for different estimators for 1% sample. 

f. c, = 4, C2 = 0.01 
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4. SUMMARY AND CONCLUSIONS 

The generalization of analysis of variance methodology 
for inverse Gaussian population for unbalanced design 
was considered. The models without interactions of 
factors were studied and applied to the problem of esti­
mation of small area parameters in finite populations. 
Using Canadian survey data, synthetic populations were 
generated in a Monte Carlo study. Through this we 
demonstrated that the proposed estimators perform well 
under a variety of conditions when the population can 
be regarded as a random sample from some inverse 

Gaussian distribution.This approach offers a competitive 
choice for estimation of parameters in positively skewed 
survey data. 
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APPENDIX A 
Yalues of the Parameters for Generation of the IG Population 

fi = 3.13241147 X 1 0 " ^ a = 2.5447984 x 10"^ 

d 

10* X ud 

1 

3.1902855 

2 

2.8235779 

3 

1.5676078 

4 

.8056079 

5 

- .95350458 

d 

10* X ad 

6 

-4.0661125 

7 

.49944356 

8 

.0061694263 

9 

-2.7414128 

10 

-1.1316622 

g 

lO' X /3g 

1 

1.0938451 

2 

.36781639 

3 

-.012707035 

4 

-.11561414 

5 

- .30936835 

6 

-1.023972 

ddg values: 

d/g 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

22,000.82 

22,179.76 

22,815.33 

23,219.00 

24,207.76 

26,180.44 

23,385.24 

23,658.15 

25,302.90 

24,312.62 

2 

26,183.11 

26,436.94 

27,344.90 

27,926.81 

29,369.63 

32,324.63 

28,167.65 

28,564.53 

30,997.31 

29,524.12 

3 

29,080.48 

29,393.94 

30,520.70 

31,247.41 

33,064.91 

36,858.30 

31,549.24 

32,047.98 

35,142.43 

33,260.85 

4 

29,977.59 

30,310.79 

31,510.37 

32,285.58 

34,229.61 

38,311.45 

32,607.90 

33,140.96 

36,461.01 

34,439.64 

5 

31,826.13 

32,201.96 

33,559.25 

34,439.96 

36,661.02 

41,383.33 

34,806.97 

35,415.03 

39,232.58 

36,902.04 

6 

41,195.19 

41,827.05 

44,146.20 

45,682.95 

49,674.90 

58,760.34 

46,330.96 

47,414.57 

54,516.76 

50,118.45 

APPENDIX B 
Values of the Cell Sizes Ndg 

d/g 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 

627 

285 

597 

729 

1,372 

1,177 

639 

850 

700 

456 

2 

360 

212 

483 

397 

761 

888 

432 

512 

699 

540 

3 

277 

198 

616 

568 

1,216 

1,795 

673 

888 

1,350 

1,083 

4 

84 

72 

148 

151 

202 

517 

165 

264 

385 

342 

5 

215 

68 

204 

239 

473 

707 

236 

349 

696 

393 

6 

110 

83 

231 

219 

511 

800 

222 

297 

572 

407 

Total 

1,673 

918 

2,279 

2,303 

4,535 

5,884 

2,367 

3,160 

4,401 

3,221 
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A Comparison of Some Weighting Adjustment Methods 
for Panel Nonresponse 

LOU RIZZO, GRAHAM KALTON and J. MICHAEL BRICK' 

ABSTRACT 

In some surveys, many auxiliary variables are available for respondents and nonrespondents for use in nonresponse 
adjustment. One decision that arises is how to select which of the auxiliary variables should be used for this purpose 
and another decision involves how the selected variables should be used. Several approaches to forming weighting 
adjustments for nonresponse are considered in this research. The methods include those based on logistic regression 
models, categorical search algorithms, and generalized raking. These methods are applied to adjust for panel 
nonresponse in the Survey of Income and Program Participation (SIPP). The estimates from the alternative 
adjustments are assessed by comparing them to one another and to benchmark estimates from other sources. 

KEY WORDS: Nonresponse bias; Panel surveys; Generalized raking; Benchmark estimates. 

1. INTRODUCTION 

Weights are commonly used in the analysis of survey 
data to compensate for unequal selection probabilities of 
the sampled elements, to compensate for unit noiu-esponse, 
and to make the weighted sample distributions for certain 
variables conform to known population distributions for 
those variables (thereby aiming to compensate for non-
coverage and to improve the precision of the survey 
estimates) (Kish 1992). Corresponding to these three objec­
tives, the weights are usually developed in three stages. 
First, a base weight is calculated for each sampled element 
as the inverse of the element's selection probability. 
Second, the base weights of responding sampling elements 
are multiplied by a nonresponse weight to compensate for 
the nonrespondents. Third, the adjusted weight is modified 
to make the weighted sample distributions for certain 
variables conform to external information on these 
distributions. 

This paper deals with the nonresponse adjustment 
weights that attempt to compensate for unit nonresponse. 
A commonly used procedure for obtaining these weights 
is to divide the total sample into a set of weighting classes 
based on information known for both respondents and 
nonrespondents, and then to increase the base weights for 
the respondents in a weighting class to represent the non-
respondents in that class (Oh and Scheuren 1983; Kalton 
1983). In many surveys little information is known about 
the nonrespondents, beyond the primary sampling units 
and strata from which they come. In this case, the choice 
of possible weighting classes is limited, and the procedure 
can be applied fairly straightforwardly. 

In some surveys, however, there is an extensive amount 
of information available for the nonrespondents. This 
information may be available from the sampling frame 

{e.g., when sampling employees from personnel files) or 
by matching sampled elements with administrative records. 
Also, in panel surveys and other surveys involving more 
than one stage of data collection, extensive information 
on nonrespondents at later stages is available from their 
responses at the early stages. 

The major focus of this research is on methods for 
developing weighting adjustments for nonresponse when 
a large number of characteristics of the nonrespondents 
are known. In this situation, decisions about methods of 
adjusting for nonresponse involve selecting which aux­
iliary variables will be used and how they will be used to 
make the adjustments. 

The main ideas are presented in this article by applying 
several different adjustment procedures in a specific panel 
survey, the Survey of Income and Program Participation 
(SIPP). The SIPP is an ongoing household panel survey 
conducted by the U.S. Bureau of the Census. The non-
respondents to a SIPP panel can be separated in two 
groups: those who fail to respond at the initial wave of 
data collection (initial wave nonrespondents), and those 
who respond at the initial wave but fail to respond at one 
or more of the subsequent waves of the panel for which 
they are eligible (panel nonrespondents). For the latter 
group, extensive information from the initial wave of data 
collection can be utilized in adjusting for panel non-
response. The weighting adjustments studied here relate 
to the panel nonrespondents only. These adjustments 
modify the weights of panel respondents {i.e., those who 
provide data for all waves for which they are eligible) to 
compensate for the panel nonrespondents. 

In the SIPP, a national probability sample of house­
holds is interviewed each year, and all the adults aged 15 
and over living in those households at the initial wave 
become panel members who are followed for the duration 
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of the panel. Until now SIPP panels have had a Hfetime 
of 2 % years, but this is being increased with the 1996 panel 
to 4 years. Interviews are conducted with panel members at 
four-month intervals to collect data about income amounts 
received, participation in income maintenance programs, 
and other factors that may affect their income and economic 
welfare. Data are also collected about children. See Nelson, 
McMillen and Kasprzyk (1985) and Jabine, King and Petroni 
(1990) for further information on the SIPP design. 

The investigation reported here was conducted with the 
1987 SIPP panel, using the panel's public use data file. 
That panel started with a sample of about 12,300 house­
holds and followed panel members for seven waves of data 
collection. The household nonresponse rate at the initial 
wave was 6.7 percent (Jabine et al. 1990). Including 
children, 30,841 individuals were living in the responding 
households at the initial wave. Of these individuals, 
20.8 percent failed to provide data for all waves for which 
they were ehgible, i.e., they were panel nonrespondents. 

In addition to selecting auxiliary variables and studying 
alternative methods of using those variables to form 
weighting adjustments for panel nom-esponse, this research 
includes a comparative evaluation of the procedures. The 
evaluation is performed by comparing a range of estimates 
produced with the alternative methodologies with one 
another and with benchmark estimates. The final section 
of this article summarizes the resuks and draws conclusions 
about the effectiveness ofthe alternative weighting schemes 
investigated. Further details are given by Rizzo, Kalton, 
and Brick (1994). 

2. PREDICTORS OF RESPONSE 
PROPENSITY 

The first step in developing panel nonresponse adjust­
ments is deciding which of the large number of items 
available from the first wave of data collection should be 
selected for use in the adjustment procedures. That selection 
is the focus of this section. The approach adopted is to 
choose items with responses that discriminate persons by 
their likelihood to respond at all later waves. Little (1986) 
calls this method a response propensity stratification 
method and shows that the large sample bias of estimates 
can be reduced by adjusting the base weight by the inverse 
of the probability that an element responds. 

In the 1987 SIPP panel, there were 58 items available 
from the initial wave of data collection (Wave 1) that could 
be used as potential explanatory variables for panel non-
response. All of the items used currently by the Bureau of 
the Census for the SIPP panel nonresponse adjustment 
were part of this set of 58, with the exception of the 
Metropolitan Statistical Area (MSA) status, which was 
suppressed from the public use data file because of disclo­
sure concerns. 

With panel response status (panel respondent vs. panel 
nonrespondent) as the dependent variable, logistic regres­
sion analysis was viewed as a natural method for selecting 
a model for panel nonresponse. However, before attempt­
ing this modeling, an initial screening ofthe variables was 
performed to reduce the large number of variables to a 
more manageable set. As a general guideline, items were 
retained for the logistic regression analysis if the difference 
in response rates between any two categories for the item 
was both statistically significant and at least four percent­
age points. For a variety of reasons, some items were 
retained even if they did not meet these requirements. For 
example, the difference in the panel response rates for 
males and females was less than 2 percent, but gender was 
nevertheless used in some subsequent analyses. 

The screening process reduced the number of items for 
the logistic regression analysis from 58 to 31. The items 
retained were: tenure, public housing, household type, 
Census region, household education, household size, 
household income, whether householder holds financial 
instruments (bonds), gender, race, Hispanic origin, rela­
tionship to reference person (RRP), age, marital status, 
family type, education, student status, whether laid off 
work, personal income, whether holds multiple jobs, 
working class, whether a recipient of Medicare benefits, 
Medicaid, Women, Infants, and Children (WIC), Aid to 
FamiUes with Dependent Children (AFDC), food stamps, 
general assistance, Social Security, other welfare, Veteran's 
status, and the number of imputed items at Wave 1. 

The last item, the number of imputed items, was 
included as an index of cooperation at Wave 1. Other 
studies have found that individuals who are less coopera­
tive at the initial wave of a panel survey are more likely 
to be nonrespondents at later waves (see, for example, 
Kalton, Lepkowski, Montanari and Maligalig 1990). As 
described below, this index turned out to be highly related 
to panel nonresponse. 

2.1 Logistic Regression Analysis 

Since all 31 items identified in the screening analysis 
were at least marginally correlated with panel nonresponse, 
they are all candidate variables for use in a weighting 
adjustment scheme to reduce the panel nonresponse bias 
in the survey estimates. However, the screening analysis 
was limited because it did not consider the interrelation­
ships between the items and it retained too many variables 
for practical use in making the panel nonresponse adjust­
ments. For example, two items that are highly associated 
with response status might also be highly correlated with 
each other, so that the use of one of the two might be 
sufficient in making the adjustments. To address this issue, 
the next step in selecting predictors of panel nonresponse 
was to investigate which combinations of the items could 
best predict panel response status. 
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Table 1 
Parameter Estimates for the Logistic Regression Model 

Predictors 

Intercept 

Age (x^ = 184.9, p-value < .0001). 
< 16 
16-24 
25-50 
51-71 
> 71 

Race (x^ = 214.0, p-value < .0001). 
White 
Black 
Other 

RRP (x^ = 69.0,p-value < .0001). 
Family member 
Nonfamily member 

Census region (x^ = 327.3, p-value < .0001). 
New England 
Mid Atlantic 
South Atlantic 
East South Central 
North Central 
Mountain/West South Central 
Pacific 

Tenure (x^ = 207.2, p-value < .0001). 
Home owner 
Renter 
Other 

Items imputed (x^ = 434.2, p-value < .0001). 
0 
1 
2 to 3 
> 3 

Bond status (x^ = 97.1, p-value < .0001). 
No bonds 
Some bonds 

Layoff (x^ = 33.4,p-value < .0001). 
Not laid off 
Laid off 

Food stamps (x^ = 39.3, p-value < .0001). 
Not recipient 
Recipient 

Class of work (x^ = 31.4, p-value < .0001). 
Business 
Other 
Government 

Education (x^ = 12.8, p-value = .0003). 
Last grade tenth or eleventh 
Other 

2 
Household income (x = 14.9, p-value = .0006). 

Less than $l,200/month 
$l,200-$8,000/month 
Greater than $8,000/month 

Gender (x^ = 10.3, p-value = .0013). 
Male 
Female 

RRP-Age < 16 Interaction (x^ = 10.1, p-value = 
Family member, child 
Other 

Parameter 
Estimate 

-0.465 

-0.179 
0.446 
0.187 

-0.056 
0.0 

-0.351 
0.255 
0.0 

-0.251 
0.0 

0.009 
0.167 
0.027 

-0.231 
-0.396 

0.425 
0.0 

-0.154 
0.331 
0.0 

-0.626 
-0.244 

0.296 
0.0 

0.168 
0.0 

-0.179 
0.0 

-0.191 
0.0 

0.100 
0.103 
0.0 

-0.075 
0.0 

0.117 
-0.088 

0.0 

0.047 
0.0 

.0015). 
0.096 
0.0 

A logistic regression approach was used to the examine 
the joint relationships of several items with panel response 
status. The regression models were fitted using the Wave 1 
survey weights that accounted for unequal selection prob­
abilities and initial wave nonresponse. After examining a 
number of possible models, a model with thirteen main-
effect variables and one interaction term was selected as 
a reasonable representation of the data. 

Table 1 presents the parameter estimates for each level 
of each predictor variable in this model, together with 
Wald (x^) statistics for each predictor variable. The 
parameter value of the last level of each predictor variable 
(the benchmark level) is set to zero. The parameter esti­
mates for the remaining levels of each predictor variable 
represent differences in response propensity from the 
benchmark level. As can be seen from the Wald statistics, 
all the predictor variables make highly significant contri­
butions to the model. 

A notable feature of this model is that it contains only 
one interaction term, the relationship to reference person/ 
age under 16 interaction. All other interactions investigated 
had smaller x^ values than this one. Even the relationship 
to reference person/age under 16 interaction has a rela­
tively low predictive power. In fact, this interaction and 
the last three predictor variables in Table 1 (education, 
household income, and gender) were not included in most 
of the weighting procedures discussed below because of 
their limited predictive power for panel response status. 
The weighting procedures are mostly based on a reduced 
main-effects model comprising the first ten predictor 
variables listed in Table 1. 

3. ALTERNATIVE WEIGHT 
ADJUSTMENTS 

The method used in the SIPP to adjust the weights for 
panel nonresponse is described by Chapman, Bailey, and 
Kasprzyk (1986). The method basically consists of forming 
nonresponse adjustment cells and then adjusting the 
weights by the inverses of the response rates in the cells. 
The cells are formed by the cross-classification of the 
responses from a set of Wave 1 variables thought to be 
correlated with panel response. Small cells are combined 
so that the resulting sample size in each collapsed cell is 
30 or more. The reciprocal of the observed (weighted) 
response rate in each collapsed cell is the panel non-
response adjustment for that cell. The panel nonresponse 
adjustment is then multiplied by the Wave 1 weight to 
create a nonresponse adjusted weight. The Wave 1 weight 
includes an adjustment for Wave 1 nonresponse, but it 
does not include the Wave 1 poststratification adjustment. 

This section examines alternative methods for performing 
the panel nonresponse adjustments. These methods can 
be categorized into three groups: 
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• Logistic regression methods. 
• CHAID methods. 
• Generalized raking methods. 

Each of the alternative approaches to nonresponse 
adjustment is discussed below. The procedures for 
developing the weighting adjustments are detailed along 
with important statistical properties of the adjustments. 

3.1 Adjustments Based on Logistic Models 

The first set of weighting adjustments we discuss is 
developed directly from the logistic regression model 
described in the previous section. This panel nonresponse 
weighting adjustment, called the predicted logistic adjust­
ment, was computed by taking the inverses of the response 
rates predicted from the reduced main-effects logistic 
regression model for each of the cells in the crossclassifica-
tion of the ten predictor variables in that model. 

Since the parameters for computing the predicted 
response rates are estimated with a main-effects model 
from the marginal responses for the variables, the small 
sample sizes in the cells of the crossclassification of all 
the variables are not a concern. However, this benefit is 
gained by relying completely on the validity of the main-
effects model, that is, by assuming that there are no inter­
actions between the variables that need to be taken into 
account. 

One approach to placing less reliance on the main-
effects model is to base the adjustments on the observed 
response rates in cells that have sample sizes large enough 
to ensure the stability of the observed response rates and 
to base the adjustments on the predicted response rates in 
other cells. The second member of the class of alternative 
adjustments based on logistic regression uses this mixed 
strategy. In cells containing 25 or more sample persons, 
the nonresponse adjustment is the inverse ofthe observed 
cell response rate. In cells containing less than 25 sample 
persons, the nonresponse adjustment is the inverse of the 
predicted response rate for the cell. This adjustment is 
called the mixed logistic adjustment. 

A third logistic nonresponse adjustment studied is 
similar to the current SIPP procedures. Initial cells were 
defined by the crossclassification of the ten independent 
variables used in the logistic regression. The cells were then 
collapsed until the sample size in each cell exceeded 30, and 
the inverse of the observed response rate within a collapsed 
cell was then used as the nonresponse adjustment. The 
strategy for collapsing cells was to group together cells with 
similar predicted response rates. This nonresponse adjust­
ment is called the collapsed logistic adjustment. Although 
this adjustment is similar to the current SIPP panel 
nonresponse adjustment, there are some differences in the 
variables used to define the cells and the methods used to 
combine small cells are different. 

For all three alternative weighting adjustments based 
on the logistic regression model, the observed and 
predicted response rates were computed from weighted 
counts of the number of cases rather than using the un­
weighted numbers, where the weights were the nonresponse 
adjusted Wave 1 weights. In practice, the weighted and 
unweighted adjustments were nearly the same. 

3.1.1 Adjustments Based on CHAID Models 

The second class of methods for adjusting for panel 
nonresponse involved using the CHAID categorical search 
algorithm to divide the data set into adjustment cells. The 
general approach was to define adjustment cells as combi­
nations of responses to the predictor variables that had the 
greatest discrimination with respect to panel response 
rates, subject to the restriction that each cell should have 
a minimum sample size of at least 25 persons. The panel 
nonresponse adjustment was the inverse of the observed 
response rate in the cell. 

The CHAID algorithm creates cells by splitting the 
data set progressively in a tree structure. The splitting 
along each newly created branch is performed by choosing 
the variable that maximizes a x^ criterion. When the 
split involves a polychotomous variable, the split may 
involve several branches. The x^ tests are modified using 
Bonferroni type adjustments to prevent variables from 
being chosen simply because they have more categories. 
CHAID is one version of the Automatic Interaction 
Detector (AID) developed for categorical variables. Kass 
(1980) presents the theory underlying the CHAID tech­
nique. Another version of the same methodology was used 
by Lepkowski, Kalton and Kasprzyk (1989) and Kalton, 
Lepkowski and Lin (1985) to model nonresponse in SIPP. 

For the current analysis, two CHAID models were 
examined by including different sets of predictor variables. 
The first model included the seven most important predic­
tors in the logistic regression model (age, relationship to 
reference person, race of householder, tenure. Census 
region, imputation flags, and bond-holding status), plus 
gender. This model resulted in 99 nonresponse adjustment 
cells. The nonresponse adjustment based on this model is 
called CHAID 1. The second CHAID model included the 
13 predictor variables from the logistic regression model 
presented in Table 1. This model resulted in 142 non-
response adjustment cells. The nonresponse adjustment 
for this model is called CHAID 2. 

3.1.2 Adjustments Based on Generalized Raking 

The third class of methods examined for adjusting for 
panel nonresponse was generalized raking. Unlike the 
other approaches, nonresponse adjustment cells were not 
developed by crossclassifying the predictor variables. 
Rather, raking was directly applied to force the panel 
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respondents' marginal distributions for each of the pre­
dictor variables (computed using the adjusted weights) to 
equal the corresponding distributions for respondents and 
nonrespondents combined (computed using the original 
Wave 1 weights). Kalton and Kasprzyk (1986) refer to this 
method as sample based raking. The ten predictor variables 
from the reduced logistic regression model were used to 
define the marginal distributions. Hence, the raking 
problem was ten dimensional, with one dimension for each 
predictor variable. 

Raking involves modifying the original weights in order 
to satisfy certain marginal constraints while minimizing 
the distance between the original and adjusted weights. 
Deville and Sarndal (1992) describe some distance functions 
that may be used and derive the corresponding raking 
methodologies. The raking algorithm of Deming and 
Stephan (1942), which implicitly employs a distance 
function that leads to a multiplicative solution, is one form 
of generalized raking. 

The CALMAR software described by Deville, Sarndal 
and Sautory (1993) was used to compute the adjustments. 
Three different distance functions were examined: the 
multiplicative method, the linear method, and the tnmcated 
multiplicative method. The adjustments for all three 
distance functions were found to be nearly identical. This 
empirical result is consistent with results given by Deville 
and Sarndal (1992) that show that the estimators using 
weights generated with different distance functions are 
asymptotically equivalent if the distance functions satisfy 
certain smoothness conditions. The three distance functions 
employed in this research satisfy those conditions. Since 
the adjustments were nearly identical for all three methods, 
only the weighting adjustment from the multiplicative 
method was retained for further evaluation. The resulting 
adjustment is called the raking adjustment. 

3.1.3 Distributions of Nonresponse Adjustments 

The adjustments for each of the six schemes described 
above were computed for the 1987 SIPP panel file. Table 2 
summarizes the distributions of the resulting nonresponse 
adjustments. The summary is for the adjustments only, 
not the weights that are the products of the adjustments 
and the Wave 1 weights. Table 2 is divided into two 
parts: the upper part shows the mean, median, and 
extreme values for each adjustment distribution, as well 
as (1 -I- CV^), where CV is the coefficient of variation 
for each adjustment. The statistic (1 -\- CV )̂ serves as 
an indicator of the increase in variance of the estimates 
introduced by having variable nonresponse adjustment 
factors (see Kish 1992). The second part of Table 2 shows 
the correlations among the alternative forms of adjustment. 

Since the overall weighted panel response rate is 0.794, 
the mean overall nonresponse adjustment would be 
1/(0.794) = 1.26 if the same adjustment were used for all 
persons. The mean weighting adjustments for the three 
weighting adjustments that use the inverses of cell response 
rates (collapsed logistic, CHAID 1 and CHAID 2) are 
necessarily equal to the overall nonresponse adjustment 
of 1.26. The mean weighting adjustments for the other 
schemes differ only minimally from the mean overall 
nonresponse adjustment. 

For all she schemes, the distributions are positively skewed, 
with a few cases with large weights. By their nature, the 
various logistic and CHAID schemes cannot have adjust­
ments less than 1.00, whereas the raking algorithm can, 
and does, do so. The median weights are similar among all 
schemes, but the maximum weights are not. The CHAID 2 
scheme has a cell with a response rate of only 7 percent, 
leading to the largest maximum weight of 13.93. The raking 
scheme has the smallest maximum weight of 2.51. 

Table 2 

Distribution of Panel Nonresponse Adjustments 

Mean Minimum Median Maximum 1 + CV^ 

Predicted logistic 
Mixed logistic 
Collapsed logistic 
CHAID 1 
CHAID 2 
Raking 

1.26 
1.26 
1.26 
1.26 
1.26 
1.26 

1.04 
1.00 
1.00 
1.02 
1.01 
0.91 

1.20 
1.20 
1.20 
1.22 
1.19 
1.23 

4.28 
4.28 
3.43 
3.49 

13.93 
2.51 

1.02 
1.03 
1.02 
1.03 
1.04 
1.02 

Correlations 

Predicted 
Logistic 

Mixed 
Logistic 

Collapsed 
Logistic CHAID 1 CHAID 2 Raking 

Predicted logistic 
Mixed logistic 
Collapsed logistic 
CHAID 1 
CHAID 2 
Raking 

1.00 0.96 
1.00 

0.73 
0.73 
1.00 

0.73 
0.72 
0.69 
1.00 

0.63 
0.63 
0.58 
0.81 
1.00 

0.95 
0.90 
0.75 
0.73 
0.63 
1.00 
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The values of (1 -I- CV )̂ are fairly consistent across 
the various adjustments. The CHAID 2 adjustment has 
the greatest value of (1 -I- CV^), primarily because of the 
presence of more outlying adjustments (such as the max­
imum value of 13.93). However, even for this method, the 
approximate increase in the variance of the siuvey estimates 
is only four percent. The raking adjustment has the smallest 
increase in variance (two percent), but this increase is not 
very different from that of the other methods. 

The pairwise correlations between the six alternative sets 
of weights range from 0.58 to 0.96. Not surprisingly, the 
predicted logistic and mixed logistic weights are highly corre­
lated. Given the similarity of the predicted main-effects 
logistic regression scheme to raking, it is also not surprising 
that their two sets of weights are highly correlated. The 
relatively high correlation between the raking weights and 
the CHAID 1 weight and the collapsed logistic weight is 
consistent with the earlier result showing no large interaction 
terms. The CHAID 2 weights have the lowest correlations 
with the other sets of weights, except for their correlation 
with the CHAID 1 weights. This finding is probably 
explained by the wide variability in the CHAID 2 weights 
resulting from the use of as many as 142 adjustment cells. 

3.2 Final Panel Weights 
The panel nonresponse adjustment weights discussed 

in the previous section represent the adjustments to the 
Wave 1 weights to compensate for panel nonresponse. The 
final panel weights that may be used in the analysis of the 
SIPP panel file are obtained by multiplying the panel 
nonresponse adjustment weights by the Wave 1 weights, 
and then applying poststratification to make weighted 
sample totals conform to totals derived primarily from the 
Current Population Survey (CPS). This procedure was 
applied for each of the six alternative panel nonresponse 
adjustment schemes. 

The poststratification procedure used was equivalent 
to the current SIPP procedure, except that the latter 
procedure poststratifies by rotation groups whereas for 
the alternative weighting schemes the poststratification 
was performed on all rotation groups combined. The 
difference should not have an appreciable effect. After 
poststratification, the six alternative sets of final weights 
and the SIPP panel weights sum to the same control 
totals. 

To compare the final panel weights for the six adjust­
ment schemes with one another and with the current SIPP 
panel weight, the correlations between the weights were 
computed, along with the measure of variability used 
previously, (1 -I- CV^). The results are presented in 
Table 3. The estimates of the variability due to the weight­
ing (1 + CV )̂ indicate similar increases of between 8 
and 10 percent in the variances of survey estimates for all 
of the weighting schemes. The correlations between the 
alternative sets of final panel weights are all 0.85 or higher. 
Comparing these correlations to those in Table 2, it is 
clear that the correlations between the final weights are 
appreciably higher than those between the panel non-
response adjustment weights. The correlations between the 
SIPP panel weight and the alternative final weights are 
consistently lower than any others, probably because the 
variables used in forming the nonresponse adjustments for 
this weight differed from those used for the alternative 
weights. The variables used in the alternative schemes that 
are not used in the SIPP panel weight are age, relationship 
to reference person, number of imputed items, class of 
work, and food stamp recipiency. Household size is the 
only variable other than MSA status (which was not 
available due to disclosure concerns) used in the SIPP 
panel weight but not used for the alternative schemes 
because it was not found to be significantly associated with 
response rates. 

Table 3 
Correlations Between Poststratified Weights with Variance Inflation Measures 

SIPP panel ^'^'^^l^^ ,^''^"? Collapsed ^ j ^ ^ j ^ j CHAID 2 Raking 
^ Logistic Logistic Logistic 

SIPP panel 
Predicted logistic 
Mixed logistic 
Collapsed logistic 
CHAID 1 
CHAID 2 
Raking 

1.00 0.75 

1.00 

0.74 

0.99 

1.00 

0.75 

0.91 

0.91 

1.00 

0.71 

0.90 

0.90 

0.89 

1.00 

0.68 

0.86 

0.86 

0.85 

0.94 

1.00 

0.77 

0.98 

0.97 

0.93 

0.91 

0.87 

1.00 

I + CV' 1.08 1.09 1.09 1.08 1.09 1.10 1.08 
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4. COMPARING ESTIMATES USING 
ALTERNATIVE WEIGHTS 

The previous section described the development of the 
alternative sets of final weights that may be used for the 
analysis of the SIPP panel file. All the final weighting 
schemes incorporate adjustments for unequal selection 
probabilities, nonresponse at the initial wave, panel non-
response, and poststratification to external control totals. 
This section compares survey estimates obtained using the 
alternative weighting schemes with one another and with 
the corresponding estimates obtained using the SIPP panel 
weights. In addition, where possible, the various survey 
estimates are also compared with external estimates from 
other sources. Some ofthe external estimates are bench­
mark estimates obtained from administrative records or 
the Current Population Survey. Other external estimates 
are obtained from Wave 1 of the 1989 SIPP panel. Data 
collected in Wave 7 of the 1987 SIPP panel relate to the 
same time period as data collected in Wave 1 of the 1989 
SIPP panel, and hence estimates obtained from these two 
data sources should be comparable. 

In making comparisons with benchmark estimates, it 
needs to be recognized any differences observed may be 
explained by a variety of factors of which panel non-
response is only one. For example, response errors and 
differences in definitions may explain differences between 
SIPP estimates and benchmark estimates. Thus the bench­
mark comparisons need to be treated with caution. Since 
the 1989 SIPP panel estimates are based on Wave 1 data, 
they are not subject to the panel nonresponse. Thus, 
differences between estimates obtained from the 1987 and 
1989 SIPP panels are perhaps the most likely to be caused 
by a failure of the panel nonresponse adjustments to fully 
compensate for panel nonresponse bias. However, even 
in this case, alternative explanations such as panel condi­
tioning could contribute to the differences (although 
Pennell and Lepkowski 1992, show that panel conditioning 
is not a major factor in most SIPP estimates). 

Table 4 presents a variety of estimates from the 1987 
SIPP panel file using the SIPP panel weight and the six 
alternative weighting schemes, and corresponding bench­
mark estimates and estimates from the 1989 SIPP panel 
where available. The estimates are percentages, except for 
the estimates of the mean number of months without 
health insurance, median household income, and annual 
wages. The estimates are for the total population, except 
for the employment estimates (percent employed, un­
employed and out of the labor force), which are for 
persons over the age of 15, and for annual wages, which 
are for persons over the age of 14. The estimates are for 
three different time periods: June 1987, January 1989, and 
the calendar year of 1987. For example, the first three 
estimates in Table 4 are the estimated percentages of 

persons participating in the AFDC (Aid for Families with 
Dependent Children) program in June 1987, in January 
1989, and at any time during the 1987 calendar year. A 
comparable estimate from the 1989 SIPP panel is available 
only for the January 1989 time period. 

The most notable finding from Table 4 is the similarity 
ofthe estimates computed with all the weighting schemes 
from the 1987 panel. The percentage estimates in Table 4 
are in fact given to two decimal places because the use of 
the conventional one decimal place would often show no 
difference between the alternative estimates. The largest 
difference occurs for the percentage employed in January 
1989, where the estimate using the SIPP panel weight is 
62.7 percent and the estimate using the mixed logistic 
regression weight is 62.3 percent. Even this largest of 
differences is relatively small, especially when considering 
that the estimated standard error for this estimate is 
0.3 percent. 

When the 1987 SIPP panel estimates are compared with 
the external estimates from the 1989 SIPP panel and from 
other sources, some of the differences are much larger 
and of substantive importance. To examine these differ­
ences in more detail, standardized differences between the 
alternative estimates and the benchmark estimates were 
computed and are shown in Table 5. A standardized 
difference is defined as the difference between the alter­
native estimate and the external estimate divided by the 
standard error of the difference. 

The upper part of Table 5 shows the standardized 
differences when the 1989 SIPP panel is used to produce 
the external estimate. The standardized differences for 
most of the estimates are less than 2.0 in absolute value, 
indicating that the differences may be accounted for by 
sampling error. However, the standardized differences for 
the percentage unemployed and for the poverty rate are 
greater than 2.0 and highly significant. Thus, the alter­
native weighting adjustments do not succeed in bringing 
the 1987 survey estimates in hne with the 1989 survey 
estimates for all characteristics. 

The lower part of Table 5 shows the standardized 
differences when other benchmark estimates are used. 
These standardized differences are generally large and in 
many cases very large. Only a few are less than 2.0 and 
many are greater than 10.0. Given the much smaller 
standardized differences found in the upper part of Table 5 
for similar statistics, it seems Ukely that factors other than 
panel nonresponse bias are largely responsible for the 
magnitude of these differences. The standardized differ-
eiices based on these largely administrative data sources 
may signal important issues related to the quality of the 
data (from either the SIPP, the benchmark data source, 
or both), but they do not provide much help in assessing 
the effectiveness of alternative nonresponse adjustments 
in reducing panel nonresponse bias. 
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Table 4 
Estimates for the Total Population from the 1987 SIPP Panel with Alternative Weighting Schemes 

and Estimates from Other Sources 

AFDC - June 1987 

AFDC - January 1989 

AFDC - Annual 1987 

Food stamps - June 1987 

Food stamps - January 1989 

Food stamps - Annual 1987 

Medicaid - January 1989 

Medicaid - Annual 1987 

SSI - June 1987 

SSI - January 1989 

SSI - Annual 1987 

Social security - January 1989 

Poverty rate - June 1987 

Poverty rate - January 1989 

Entering poverty 1987/1988 

Leaving poverty 1987/1988 

Mean months without health 
insurance - 1987 

Median household income -
January 1989 

Annual wages 1987 
(in trillions) 

Employed - January 1989 

Unemployed - January 1989 

Out of labor force -
January 1989 

Married in 1987 

Divorced in 1987 

Changed address in 1987 

SIPP 
Panel 

3.73 

3.10 

4.85 

7.43 

6.71 

10.30 

6.77 

9.21 

1.68 

1.65 

1.80 

14.92 

10.88 

12.91 

2.25 

2.69 

1.66 

2,601 

1.93 

62.74 

3.57 

33.69 

1.39 

0.51 

12.88 

Predicted 
Logistic 

3.70 

3.12 

4.78 

7.26 

6.63 

10.11 

6.78 

9.21 

1.70 

1.67 

1.82 

14.87 

10.75 

12.98 

2.31 

2.63 

1.69 

2,600 

1.94 

62.36 

3.64 

34.01 

1.41 

0.50 

13.32 

Mixed 
Logistic 

3.74 

3.14 

4.82 

7.30 

6.67 

10.16 

6.81 

9.24 

1.69 

1.66 

1.82 

14.87 

10.79 

13.02 

2.32 

2.64 

1.70 

2,597 

1.93 

62.34 

3.63 

34.03 

1.40 

0.50 

13.32 

Collapsed 
Logistic 

3.72 

3.12 

4.81 

7.34 

6.64 

10.18 

6.75 

9.21 

1.67 

1.64 

1.80 

14.89 

10.76 

12.97 

2.30 

2.60 

1.67 

2,607 

1.94 

62.43 

3.60 

33.96 

1.39 

0.49 

13.19 

CHAID I 

3.71 

3.14 

4.80 

7.38 

6.70 

10.24 

6.81 

9.25 

1.69 

1.66 

1.82 

14.88 

10.79 

12.99 

2.29 

2.62 

1.67 

2,607 

1.94 

62.42 

3.58 

34.01 

1.39 

0.50 

13.36 

CHAID 2 

3.60 

3.02 

4.69 

7.20 

6.59 

10.05 

6.68 

9.09 

1.65 

1.61 

1.78 

14.89 

10.69 

12.91 

2.32 

2.63 

1.69 

2,607 

1.94 

62.52 

3.60 

33.88 

1.39 

0.51 

13.37 

Raking 

3.69 

3.10 

4.78 

7.21 

6.58 

10.06 

6.76 

9.21 

1.69 

1.66 

1.82 

14.85 

10.74 

12.93 

2.31 

2.63 

1.69 

2,602 

1.94 

62.42 

3.63 

33.95 

1.41 

0.49 

13.33 

1989 
SIPP 
Panel 

3.56 

6.30 

6.97 

1.65 

15.14 

14.46 

2,550 

61.60 

4.52 

33.88 

Bench­
mark 

4.28' 

4.24^ 

7.35^ 

7.29"* 

1.68^ 

1.74^ 

2.22'' 

1.86^ 

0.90* 

17.99* 

' Social Security Bulletin, Volume 52, No. 3. 
^ Social Security Bulletin, Volume 51, No. 7. 
^ USDA Food and Nutrition Service, unpubUshed data. 
^ U.S. Bureau of the Census, Current Population Reports, Consumer Income, P-60, No. 174. 
^ National Center for Health Statistics: Vital Statistics of the U.S., 1987, Volume III, Marriage and Divorce, DHHS Pub. No. (PHS) 91-1103. 
° U.S. Bureau of the Census, Current Population Reports, Population Characteristics, P-20, No. 473. 
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Table 5 
Standardized Differences Between 1987 SIPP Panel Estimates and Benchmark Estimates 

1989 SIPP panel estimates 

AFDC 
Food stamps 
Medicaid 
SSI 
Social Security 
Poverty rate 
Median Income 
Employed 
Unemployed 
Out of labor force 

Other benchmark estimates 

AFDC - June 1987 
AFDC - January 1989 
Food stamps - June 1987 
Food stamps - January 1989 
SSI - June 1987 
SSI - January 1989 
Annual wages 1987 
Married in 1987 
Divorced in 1987 
Changed address in 1987 

Bench­
mark 

Estimate 

3.56 
6.30 
6.97 
1.65 

15.14 
14.46 
2,550 
61.60 
4.52 

33.88 

4.28 
4.24 
7.35 
7.29 
1.68 
1.74 
2.22 
1.86 
0.90 

17.99 

SIPP 
Panel 

-1 .58 
1.02 

-0 .50 
0.05 

-0 .38 
-2 .77 

2.05 
2.42 

-4 .93 
-0 .42 

-2 .55 
-5 .71 

0.27 
-2 .04 

0.00 
-0 .57 

-16.12 
- 5 . I I 
-7 .15 

-11.49 

Predicted 
Logistic 

-1 .52 
0.82 

-0 .47 
0.11 

-0 .46 
-2 .64 

2.01 
1.60 

-4 .59 
0.28 

-2 .66 
-5 .62 
-0 .31 
-2 .32 

0.13 
-0 .48 

-15.94 
-4 .93 
-7 .37 

-10.50 

Mixed 
Logistic 

-1 .43 
0.92 

-0 .40 
0.08 

-0 .46 
-2 .57 

1.89 
1.56 

-4 .59 
0.32 

-2 .49 
-5 .49 
-0 .16 
-2 .17 

0.08 
-0 .53 

-16.38 
-4 .98 
-7 .36 

-10.51 

Collapsed 
Logistic 

-1 .52 
0.86 

-0 .53 
-0 .03 
-0 .42 
-2 .67 

2.30 
1.76 

-4 .76 
0.18 

-2 .59 
-5 .63 
-0 .04 
-2 .26 
-0 .03 
-0 .67 

-15.66 
-5 .11 
-7 .40 

-10.80 

CHAID 1 

-1 .44 
l.OI 

-0 .39 
0.07 

-0 .44 
-2 .63 

2.30 
1.72 

-4 .90 
0.28 

-2 .65 
-5 .51 

0.11 
-2 .06 

0.08 
-0 .54 

-15.61 
-5 .10 
-7 .32 

-10.42 

CHAID 2 

-1 .84 
0.73 

-0 .70 
-0 .15 
-0 .42 
-2 .78 

2.29 
1.95 

-4 .78 
-0 .01 

-3 .14 
-6 .10 
-0 .50 
-2 .44 
-0 .20 
-0 .84 

-15.60 
-5 .07 
-7 .20 

-10.40 

Raking 

-1 .57 
0.69 

-0 .51 
0.09 

-0 .50 
-2 .74 

2.09 
1.73 

-4 .60 
0.15 

-2 .71 
-5 .70 
-0 .48 
-2 .50 

0.11 
-0 .50 

-15.78 
-4 .95 
-7 .40 

-10.49 

5. DISCUSSION 

Nonresponse weights are widely used to compensate for 
unit nonresponse in sample surveys. The basic requirement 
for this form of weighting is the availability of information 
on one or more auxiliary variables for both respondents 
and nonrespondents. In many surveys, this information 
is available for only a small number of auxiliary variables 
(such as the PSUs and strata from which the units were 
selected). In such surveys, the nonresponse weights can 
often be simply developed as weighting class adjustments 
for a set of classes based on the crosstabulation of the aux­
iliary variables. 

There are, however, surveys in which data are available 
for a large number of auxiliary variables for possible use 
in developing nonresponse weights. This situation often 
applies when an administrative record system is used as 
the survey's sampling frame, with all the information in 
the system then being available for use in making non-
response adjustments. It also applies when the survey data 
collection is conducted in two or more phases {e.g., an 
initial screening interview followed by a detailed interview 
or some other form of data collection at a later time point) 
and when nonresponse adjustments are needed for later 

phases; in this case, data from prior phases of data collec­
tion may be used in compensating for nonresponse at later 
phases. A similar situation apphes in panel surveys when 
adjustments are required for nonresponse at later waves 
of the panel, as discussed in this paper. 

When a large number of auxiliary variables is available 
for all sampled units, two main choices need to be made. 
First, there is the choice of auxiliary variables to use in the 
adjustment. Second, there is the choice of the adjustment 
method to be applied. 

The basic approach adopted in this study for choosing 
the auxiliary variables for use in the noru-esponse adjustment 
was to identify the set of variables that were good predictors 
of panel nonresponse. With so many auxiliary variables 
available, the first step was a screening procedure to eliminate 
variables that were found to have little association with 
the panel noiu'esponse rate. Then, logistic regression models 
using predictor variables remaining from the screening were 
examined to identify the set of variables to be retained for 
use in adjusting the weights. Whether the number of aux­
iliary variables is reduced to a manageable set by this or 
some other approach {e.g., by using the CHAID algorithm), 
this reduction is Ukely to be a necessary first step when there 
are many potential auxiliary variables available. 
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After selecting the subset of auxiliary variables, a wide 
variety of methods exists for creating the nonresponse 
adjustments. We examined panel noiu-esponse adjustments 
based on logistic regression models, categorical search 
models, and sample-based generaUzed raking. The final 
panel weights resulting from these adjustment schemes 
were highly correlated with one another and they yielded 
estimates that were very similar. None of the schemes 
produced estimates that were superior in terms of bias 
reduction. 

In part, the high correlation of the final panel weights 
generated by the different adjustment schemes may be 
explained by the similarity of many of the adjustment 
schemes. In part, it may be explained by the final post­
stratification weighting which raised the correlations 
between the weights. It may also be partly explained by 
the lack of large interaction effects between the auxiliary 
variables. If there were sizable interaction effects that were 
not included in the logistic modeling, then one might 
expect greater differences between the raking and predicted 
logistic weights on the one hand and the CHAID, mixed 
logistic, and collapsed logistic weights on the other hand. 
Thus, the similarity in weights produced by the alternative 
weighting schemes for the SIPP may not be as great in 
other circumstances. 

A common concern that arises when many auxiliary 
variables are used to adjust the weights is that the adjusted 
weights might be highly variable, thus causing a serious 
loss of precision in the survey estimates. This proved not 
to be the case in the methods we evaluated. The variability 
of the weights with all the weighting schemes turned out 
to be similar, provided reasonable precautions were taken 
in creating the adjustments. 

Although the empirical results do not show any appre­
ciable differences in the estimates produced using the alter­
native weighting schemes and those produced using the 
SIPP panel weights, the correlations of the alternative 
adjusted weights and the current SIPP panel weight were 
found to be lower than the correlations among the alter­
native weights. This finding suggests that the choice of 
auxiliary variables is an important one, and probably more 
important than the choice of the weighting methodology. 
Although the more systematic methods used in this research 
for choosing the auxiliary variables did not result in major 
improvements over the current SIPP procedures, an 
analytic based choice of auxiliary variables may be more 
productive in other studies. 

When a sizable number of auxiliary variables that are 
correlated to response propensity is available, it seems wise 
to use as many of them as possible in the nonresponse 
adjustment to serve as a safeguard in attempting to com­
pensate for nonresponse bias. This general strategy should, 
however, be tempered by a careful assessment of the 
variation of the resulting weights in order to avoid too 
great a loss of precision in the survey estimates. In addition. 

a practical consideration that should be taken into account 
is the ease of implementation of the weighting method­
ology. If, as in this study, alternative weighting method­
ologies yield very similar weights and estimates, a method 
that is simple to apply may be preferable. 
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Multiple Sample Estimation of Population and Census Undercount 
in the Presence of Matching Errors 

YE DING and STEPHEN E. FIENBERG' 

ABSTRACT 

The multiple capture-recapture census is reconsidered by relaxing the traditional perfect matching assumption. We 
propose matching error models to characterize error-prone matching mechanisms. The observed data take the form 
of an incomplete 2 contingency table with one missing cell and follow a multinomial distribution. We develop a 
procedure for the estimation of the population size. Our approach applies to both standard log-linear models for 
contingency tables and log-linear models for heterogeneity of catchability. We illustrate the method and estimation 
using a 1988 dress rehearsal study for the 1990 census conducted by the U.S. Bureau of the Census. 

KEY WORDS: Capture-recapture census; Estimates for total population size; Log-linear models; Matching errors; 
Multiple recapture census. 

1. INTRODUCTION 

The multiple recapture census technique has been used in 
many fields to estimate the size of a closed population. 
Cormack (1968) and Seber (1982) give excellent reviews of 
many techniques used. Here we consider a sequence of 
samples, Si, .. .,Sk, where the members of i-th sample are 
uniquely labeled, for example, by tagging or marking, and then 
returned to the population (Darroch 1958). Usual multiple 
recapture census methods make the following assumptions. 
(1) Perfect matching. Individuals in one list (information 

source, sample) can be matched with those in another 
list without error. In other words, there are no mis-
classification errors with respect to determining whether 
a particular individual has been recorded by both 
information sources or only one of them. 

(2) Independence. The lists are independent of one another, 
that is, the probability of an individual being included 
in one list does not depend on whether the individual 
was included in previous hsts. 

(3) Homogeneity (Equal Catchability). All individuals in 
the population under study have equal probabihties of 
being observed (captured) in any list (sample). 

(4) Closure. The population in question is "closed", so 
that there are no changes due to birth, death, emi­
gration, or immigration during the period when the 
samphng takes place. 

Darroch (1958) examined the multiple recapture census 
under these four assumptions. Fienberg (1972) adopted a 
log-linear model approach to allow for statistical dependence 
of specific types among samples, thereby dropping the 
independence assumption. Darroch, Fienberg, Glonek and 
Junker (1993) developed an extended log-hnear model 

approach that allows for individual-level heterogeneity as 
well as dependence, but it requires at least three samples, 
i.e.,k = 3. In the context of the two-sample census approach 
used by U.S. Bureau of Census for census coverage evalua­
tion, matching problems due to unavoidable mismatches 
and erroneous nonmatches have been explored by several 
authors. For example. Ding and Fienberg (1994) considered 
modeling matching errors in the two-sample census and 
developed systematic procedure for the estimation of popula­
tion totals. The inclusion of a third sample, e.g., drawn from 
the administrative records, in modeling and estimation of 
census coverage has been considered by the U.S. Bureau of 
Census in the past and remains an option to augment and 
evaluate the dual system approach. In this paper, we consider 
matching error models for the multiple sample census 
problem, allowing for both dependence and heterogeneity. 

Here we view the observations from a multiple recapture 
census data as falling into a 2* cross-classification, with 
absence or presence on the i-th sample defining the category 
for the i-th dimension. In this cross-classification, the cell 
corresponding to absence for all k samples is missing. The 
objective is to estimate the number of individuals in the 
population who are not observed, which corresponds to 
the missing cell in the 2* incomplete contingency table. In 
Section 2, we investigate the effects of matching errors on 
the observed 2* incomplete table. In Section 3, some 
models for matching errors are proposed to characterize an 
error-prone matching process. Based on these models and 
assumptions (3) and (4), we develop a procedure using log-
linear model formulation for the estimation ofthe population 
size. In Section 5, we use the proposed methods to analyze 
data from 1988 Dress Rehearsal Census conducted by the 
U.S. Bureau of Census. 

Ye Ding, Research Scientist, Bureau of Biometrics, New York State Health Department, Concourse, Room C-144, Empire State Plaza, Albany, 
New York 12237, U.S.A.; Stephen E. Fienberg, Maurice Falk Professor of Statistics and Social Science, Department of Statistics, Carnegie Mellon 
University, Pittsburgh, Pennsylvania 15213, U.S.A. 
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2. MATCHING ERRORS IN MULTIPLE 
SAMPLE CENSUS 

We begin by classifying matching errors into two broad 
categories, mismatches and erroneous nonmatches. To 
understand the nature of matching errors in multiple-
sample census, we review the case of a three-sample 
census. Suppose that there are no missing data or errors 
in recording the information for any individual in the 
population and one takes three samples from the popula­
tion, Si,S2, and s^. For instance, suppose that, in sample 
5], individuals 1,3,4 and 7 are seen, individuals 3,4, and 8 
are seen in ^2, and individuals 4,9, and 10 in .S3. In vector 
notation, we can represent this as Si = (1, 3, 4, 7), 
S2 = (3, 4, 8) and 53 = (4, 9, 10). Matching errors are 
not present provided that there is complete and correct 
information available. We thus have the following incom­
plete 2^ table corresponding to these three samples: 

Table 1 
Original Table without Matching Errors 

^3 

Present 
Absent 

*i 

Present 

S2 

Present Absent 

1 0 
1 2 

Absent 

^2 

Present Absent 

0 2 
1 

Suppose further that, because of missing data or 
incorrect information, we actually observe 

5, = (1, 3, 4, 7), 52 = (3*, 4*, 8), S3 = (4, 9, 10), 

where 3* and 4* are individuals 3 and 4 but with incorrect 
information leading to two erroneous nonmatches when 
the samples are matched. Assuming no erroneous matches, 
we then observe the incomplete 2^ table: 

Table 2 
Observed Table with Matching Errors 

S3 

Present 

Absent 

•̂ 1 

Present Absent 
S2 ^2 

Present Absent Present Absent 

0 1 0 2 

0 3 3 -

The effects of matching errors are obvious from a 
comparison of Table 1 and 2: 

(i) The mmiber of observations may increase for some cells 
while decreasing for the others, and as a consequence, 
the marginal totals and especially the total number 
of different individuals observed in the three samples 
may change, subject to the constraint that the total 
number of observations in each sample, Xi + + ,x+i + , 
and X+ + 1, remain the same. Changes in the total 
number of different individuals in all samples make 
our problem distinct from the usual misclassification 
problem in the analysis of categorical data, in which 
the possibility of making mistakes in classifying indi­
viduals into respective categories is considered, {e.g., 
see Chen 1979). 

(ii) In parallel, there may be changes in some cell proba­
bilities subject to the constraint that the probability of 
being captured in a sample, Pi + + ,/?+1 +, and Pi + + , 
is unchanged. 

Because of the complexity of matching errors in the 
three-sample case, we need some special terminology 
for descriptive convenience. We say that an individual is 
at state 1 with respect to sample Si if the individual is 
observed in S] and at state 0 if not. We use a triple {i,j,k), 
0 < i,j,k < 1, to denote an individual at state/,y, and 
k with respect to Si, S2 and s^, respectively. For instance, 
(1,0,0) is an individual observed only insi, and (1,1,1) is 
an individual captured in three samples. We define the 
level of an individual {i,j,k) as / -I- y + k, i.e., the 
number of samples in which the individual is included. 
There are four different levels, 0,1,2 and 3. An individual 
has level 0 if and only if he/she is not captured by any 
sample, and has level 3 if he/she is in three samples. For 
a (1,1,0) individual, if the correct match is not made 
according to the matching rule, this individual decomposes 
into "two different" individuals, a (1,0,0) and a (0,1,0), 
assuming no erroneous matches. On the other hand, a 
(1,0,0) individual matched incorrectly with a (0,1,0) will 
produce a single observed (1,1,0) individual. For conve­
nience, we call such a decomposition or combination a 
transition. Then transitions can only go from level 3 or 2 
to the same (if there is no matching error) or lower levels 
in the absence of erroneous matches. More specifically, a 
(1,1,1) person may make a transition into one of 5 possible 
sets of individuals 

{(1,1,1)1, {(1,0,0), (0,1,1)), {(0,1,0), (1,0,1)) 

{(0,0,1), (1,1,0)), {(1,0,0), (0,1,0), (0,0,1)). 

For level 2 individuals, (1,1,0) can decompose into 
{(1,0,0),(0,1,0)) or stay at {(1,1,0)), and similarly for 
{(0,1,1)) and {(1,0,1)). From above discussions, we 
summarize the effect of matching errors by the following 
diagram: 
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Table 1 {Matching Process) Table 2 
Let 

P= ( / ' l l l .P l l2 . / ' l21>/ '211 . / ' l22 . / '212 . / '22 l ) > 

where Table 1 is the original 2* incomplete table with no 
matching errors and Table 2 is the observed 2* incomplete 
table in the presence of matching errors. Henceforth, we 
denote the cell probabilities and expected cell counts 
associated with Table 1 by [rijk] and {/yvt) and those of 
Table 2 by {^7*). I'M//*:), for 1 < i,j,k < 2. 

3. SOME MODELS FOR MATCHING 
ERRORS 

We now propose models to describe the matching 
errors, each of which allows us to formulate the realloca­
tion of cell probabilities and expected cell counts associated 
with Table 1. 

Model (1). In addition to the homogeneity and closure 
assumptions in §1, we assume that: (i) There are no 
erroneous matches in the matching process; (ii) Any indi­
vidual will stay at his original state with probability 0, and 
transition to any of a possible set of individuals with 
probability (1 - 0)/{m - 1), where w is the number of 
all possible sets of individuals to which the individual may 
transition. For example, for a (1,1,1) person discussed late 
in last section, m = 5. 

Under this model, for the three-sample census, we can 
express the probabihties for the table with matching errors, 
\Pijk]' in terms of probabilities of the table with no 
matching errors, {r,y .̂): 

P i l l = ^''iii. 

^112 = 
1 -

r,,i -I- dr 112> 

1-0 
P121 = — : — 0 1 1 + ^'•121. 

4 

P211 = — : — ' ' i l l + ^''211. 
4 

and 

then 

' ^ = ( ' ' i l l . ''112. '•l21> '•211> '•l22> '"2121 ''221) > 

p = Ml X F. (1) 

Here Mj is a 7 by 7 matrix determined by the above 
seven equations derived under Model (l).It is straight­
forward to verify that the probability of catching any indi­
vidual in each sample is fixed,/.e.,Pi++ = ri + + = Pi, 
P+1+ = r+i+ =P2,p+ + i = r+ + i =/73. This must be 
the case because the sample capture probabilities do not 
depend on how the matching mechanism operates. 

We can easily generaUze this formulation to handle the 
)t-sample case; however, the algebra involved is quite 
messy for large k. We can simplify this model by requiring 
that the transitions can go downwards by at most one level, 
thus yielding Model (2): 

Model (2). In addition to the homogeneity and closure 
assumptions in §1, we assume that: (i) there are no 
erroneous matches in the matching process; (ii) a transi­
tions can only go downwards by at most one level; (iii) any 
individual will stay at his original state with probability 
0, and transhion to any of a possible set of individuals with 
probability (1 - 6)/{m' - 1), where w ' is the number 
of sets of individuals to which transitions are possible and 
allowed. 

We first consider the three-sample case. A (1,1,1) indi­
vidual can decompose into three individuals, /.e., (1,1,1) •-• 
{(1,0,0), (0,1,0), (0,0,1)) (we use " - " to denote for 
decomposition), if three presumed matches are not made. 
Assumption (ii) of Model (2) assumes that this triple error 
has negligible probability when compared with the tran­
sition in which only one of the matches is not made so that 
(1,1.1) - {(1,1,0),(0.0.1)), or (1,1,1) - {(1.0,1),(0,1,0)), 
or (1,1,1) - {(1.1,0),(0,0,1)). 

For three sample case, the parametric model for 
expressing {Pyvtl in terms of [rijk] is: 

P i l l = ^''iii. 

1 a 

P122 = — I — '•ill + (1 - ^)''112 + (1 - ^)''121 + '•122. 
1 - ^ 

^112 = 1 ' ' i l l + '''•112. 

1 -
^212 rill + (1 - 6)rii2 + (1 - ^)'-2ii + '•212. 

1-0 ^ 
P12I = ~—''ill + "''121. 

1 a 

P22I = ^ — 011 + (1 - ^)''211 + (1 - ^)''121 + '•221-
1-0 

P2II - ~ ''ill + '̂"211. 

file:///Pijk]'
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1 - 0 
Pi22 = ^ — '•ill + (1 - 6)rii2 + {I - 0)ri2i + r,22, 

1 - 0 
P212 = — I — '•ill + (1 - ^)'-112 + (1 - ^)'-211 + '-212. 

1 - e 
P221 = — T — ' • i l l + (1 -^ ) ' ^211 + (1 - ^ ) ' - 1 2 1 +'•221-

It is common for both cases that one presumed match is 
not made. They differ in that one has two sources of infor­
mation for that match while the other has only one. It is 
reasonable to assume different matching error probabilities 
for the two cases instead of a common one as proposed 
in Model (2). This leads to: 

Model (3). In addition to (i) and (iii) in Model (2), we 
assume 

Then 

p = M2 y. T, (2) 

where A/2 is a 7 by 7 matrix determined by the above seven 
equations derived under Model (2). Again, the capture 
probabilities are unchanged, i.e., /7i + + = /"I + H- = PI, 

P+1+ = '•+1+ = P2. ^+ + 1 = '•+ + 1 = Pi-
For the Ar-sample problem, letp^he the probability of 

being captured in all samples, i.e.,pi = Piii...i, and let 
P7,2{huh2) ^^ the cell probability corresponding to absence 
in the hi-th, and /i2-th sample and presence in the others, 
etc. Under Model (2), we have/77 = ^T- For i ^ k - 2, 
the probability of being missed by the /jpth, h2-th, ..., 
and hi-th sample and captured by the others is 

PT.2(huh2....,h,) = OriJ^ht.hi hi) + 

1 -e ' 
/^ _ j . I LI ''U2{[hiM.....h,\\hj)-

7 = 1 

For i = k — 1, the individual is included in only one 
sample. For example, the probability of being captured 
only by the first sample is 

Pi.2 = '•1.2 + (1 - e ) ^ fi.Hh).! + 

hiil 

(1 - 0) 
Y ''l.Hhuh2),2 + 

h,.h23:2 

k-l 

j=i huh2,...,hj^2 

(1 -0) 

(y + 1) 
I'l,l(huh2,...,hj),2' 

where '•i,i(/„,/,2,...,/,j),2 is the cell probability in the original 
table which corresponds to presence in the first, hi-th, 
h2-th, ..., hj-th sample and absence in the others. By 
symmetry, we can write down the expression for/>i(;,) j , 
the probability of being observed in the h-th sample only 
and missed in all others. 

We can refine Model (2) by assuming unequal matching 
rates. For example, we consider two decompositions: 
(1,1,1) - {(1,1,0),(0,0,1)) and (1,1,0) « {(0,1,0),(1,0,0)). 

(1.1,1)' 

(1,1,0) 

(1,0,1) 

(0,1,1) -

(1,1,1) with probabihty a 1 

{(1,1,0),(0,0,1)) with probability (1 - a,) /3 

{(0,1,1),(1,0,0)) with probability ( l - a , ) / 3 

{(1,0,1),(0,1,0)) with probability ( l - a i ) / 3 

(1,1,0) with probability a2 

{(0,1,0),(1,0,0)) with probability l - a 2 

(1,0,1) with probability 02 

{(1,0,0),(0,0,1)) with probability 1-^2 

(0,1,1) with probability 012 

[(0,1,0),(0,0,1)) with probability l - a j 

and (1,0,0), (0,1,0), (0,0,1) stay the same with probability 
one. 

Under this model, we can express the cell probability 
[Pijk\ in Table 2 in terms of a i , a2 and the cell proba­
bilities of Table 1, {rijk). To do this, we need to consider 
all possible transitions that produce an individual that falls 
into the {i,j,k) cell in Table 2. For example, we consider 
an observed (1,0,0) individual. This person falls into cell 
(1,2,2) of Table 2. Let F be the event that an observed 
individual has a (1,0,0) status. Let Eijk be the event that 
an individual falls into {i,j,k) cell in Table 1. Then 

F = U {EiikHF). 
lU.k] 

According to Model (3), there are only four possible 
transitions as follows that can make F happen: 

(1,1,1) - {(1,0,0),(0,1,1)), 

(1,1,0) - {(1,0,0),(0,1,0)), 

(1,0,1) - {(1,0,0),(0,0,1)), 

(1.0,0) - {(1,0,0)). 
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Therefore 

F = 

(̂ H1 n F) u (£„2 n F) u (£.2, n F) u (̂ ,22 n/^). 
By the definitions of cell probabilities of the two tables, 

p{F) = pi22, and p{Eijk) — rijk. By the assumptions 
inModel(3),/j(F|F,,i) = d - ai)/3,p{F\Eii2) = 
p{F\Ei2i) = a2,andp{F\Ei22) = I. 

SinceFiiiflF, £'ii2nF, £ ' i2inFand£'i22nFare four 
mutually exclusive possibilities that F can happen, thus 

^122 = p{EiiinF) +p{Eii2nF) 

-^ p{Ei2iriF) •^p{Ei22nF) 

^p{F\Eiii) - p{Eiii) +p{F\Eii2) •p{Eii2) 

•¥ p{F\Ei2i) • p{Ei2i) -I- p.{F\Ei22) • p{Ei22) 

1 -cti 
'•ill + (1 - a2)'"ii2 + (1 - a2)'"l21 + '•122-

In the same manner, we can derive the expressions of 
other cell probabilities of Table 2 to get 

Pill = "I'^Ul. 

For ai = 02 = 0, we get the same formulation as 
under Model (2). For the special case with aj = 012 — 1 > 
Pijk = '•/yAr, reducing to the traditional problem. Again, 
the capture probabilities remain the same, i.e. ,Pi + + = 

->P+i+ — '•+I + , P H = r. 

4. ESTIMATING THE SIZE OF THE 
POPULATION 

4.1 Log-linear Model Formulation 

For purposes of exposition, we confine our attention 
to the three-sample census case, although extensions to the 
A:-sample census for A: > 3 are straightforward. As before, 
let lijk and /Wŷ . be expected cell counts for Table 1 and 
Table 2 respectively. The relationship between the cell 
probabilities and the expected cell counts is lijk = rijkN, 
and AWyvt — Pijk^- Let 

m = (m,i,,/W,,2,/n,2i,m2ii,/Wi22.'W2i2,'W22l) , 

and 

I - (^lll,^112>^21./211./l22,'212,'22l) • 

Since for each of the models we have proposed in the 
last section, there is a matrix M with entries depending on 
the matching probability parameters in the chosen model 
such that p = M X F, multiplying through by N gives 

1 - a, 
P112 = — -—/•i l l + a2'^ii2, 

1 - a, 
P121 = —:;—' ' i l l + «2'^i2i, 

_ 1 - a, 
P211 — :; ''ill + «2'^2ii, 

1 - a , 
P122 = —r— '•ill + (1 - 0(2)/-ii2 + (1 - a2)'̂ i2i + '•122, 

1 - a , 
P212 = -^— ''ill + (1 - a2)'^ii2 + (1 - a2)'̂ 2ii + '•212, 

1 - a , 
P221 = —r— '•ill + (1 - a2)r2ii + (1 - a2)'̂ i2i + '•221-

m = M X I. (4) 

Then 

p = Mi X f. (3) 

where M3 is a 7 by 7 matrix determined by the above 
seven equations derived under Model (3). 

For any log-linear model specified for Table 1, it is 
straightforward to obtain the parameterization for mijk. 
For example, for any of the models suggested in Fienberg 
(1972), we can write the expected counts in terms of 
functions of «-term parameters: 

lijk = 

gijk{u,ui{i), U2{j), uAk),Ui2{ij), uii{ik), U23{jk)), (5) 

and then obtain the parameterization of [mijk, {ijk) ^ 
(222)) from (4). 

4.2 Estimating the Size of the Population 

We now consider the matching rates in our various 
models as known. To obtain the estimate of the population 
size, we proceed as follows. First, following Sanathanan 
(1972), we compute the maximum likelihood estimates of 
M-term parameters from l^, the conditional likelihood 
associated with Table 2 given n. 

L = n\ n {QijkV'J'' 

Xijk\ 
\ (ijk) ^{.222)\ 
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where n = T,[(ijk)^(222)\Xijk, and q/jk = m^k/n. Sanathanan 
(1972) shows that, under suitable regularity conditions, the 
conditional maximum likelihood estimates and the uncon­
ditional ones are both consistent and have the same asymp­
totic normal distribution. If we remove redundant M-term 
parameters using the constraints associated with the 
specified log-linear model for Table 1, then the problem 
is to find the maximum of 7̂ . subject to the following 
single constraint: 

Y "^Uk = "• 
|(y*)/(222)l 

Numerically, this is a nonlinearly constrained optimization 
problem. Rao (1957) studied regularity conditions under 
which there exist unique maximum Ukelihood estimates of 
the parameters in a multinomial distribution. His condi­
tions are satisfied by the parameterization of {Qijk). Once 
the conditional maximum likelihood estimates of the 
M-term parameters are obtained, we use the loglinear 
model specified for Table 1 to compute the conditional 
maximum likelihood estimates of {lijk), the expected cell 
counts of Table 1 including the expected count of the 
missing cell. Then our estimate of ATis 

^-Y 'u''-
lijk] 

In the case of no matching errors, with ai = 02 = 1 in 
Model (3), mijk = I ijk • Thus 

N = n -\- /fl222, 

i.e., we get back to the estimation method for the tradi­
tional multiple recapture census problem developed by 
Fienberg (1972) when the log-linear models in Fienberg 
(1972) are considered. 

As we have discussed earlier, a log-linear model is 
specified for Table 1 and the observations are viewed 
as falling into Table 2. whose parametric model of the 
expected cell counts is specified by the log-linear model 
and a chosen model for matching errors. To assess the 
appropriateness of a log-linear model specified for Table 1, 
we can apply the usual Pearson and likelihood ratio 
goodness-of-fit tests. X^ and G^, discussed in Fienberg 
(1972), to Table 2. Each statistic has an asymptotic x^ 
distribution under the null hypothesis that the model fits, 
with degrees of freedom equal to 2* - 1 - (number of 
independent parameters in the model). 

5. ANALYSIS OF 1988 ST. LOUIS DRESS 
REHEARSAL CENSUS DATA 

Dual System Estimation (DSE), based on the standard 
two-sample census, has been employed by U.S. Bureau of 
Census for census coverage evaluation since 1950. In 1988, 

the Census Bureau conducted a Dress Rehearsal Census 
for the 1990 decennial census at three sites: St. Louis, 
Missouri; Columbia. Missouri; and western Washington 
State. Zaslavsky and Wolfgang (1993) present data for a 
population subgroup from the Post Enumeration Survey 
(PES) in the dress rehearsal census in St. Louis which 
focuses on urban Black male adults who are believed to 
be underestimated by dual system methods. The resulting 
data consists of three sources: the C-sample is the census 
itself; the /"-sample was compiled from the PES; a third 
source of information was the Administrative List Supple­
ment (ALS). compiled from pre-census administrative 
records of state and federal government agencies, encom­
passing Employment Security, driver's license. Internal 
Revenue Service, Selective Service, and Veteran's Admin­
istrative records. The C-sample and P-sample provide data 
for the implementation of the usual DSE or capture 
recapture approach. The ALS data can be combined with 
the Census and the P-sample for analysis from a three-
sample perspective, though it was originally intended to 
improve the coverage of the P-sample. In Table 3. we 
present three-sample data for PES sampling stratum 11 
in St. Louis obtained by collapsing the original data in 
Table 1 of Zaslavsky and Wolfgang (1993) over four 
poststrata defined by owners/renters x age 20-29.30-44. 

Table 3 
Three-Sample Data for Stratum 11, St. Louis 

Census 

ALS 

Present 
Absent 

Present 
P-sample 

Absent 
P-sample 

Present Absent Present Absent 

300 
187 

51 
166 

53 
76 

180 

Such triple-system data can be analyzed with the 
matching error Model (2) and data from a separate 
Matching Error Study (MES, or rematch study) associated 
with the same sampling poststratum. The MES is one of 
the operations conducted by the Census Bureau to evaluate 
the PES, and typically operates for a sample of cases, using 
more extensive procedures, highly qualified personnel and 
reinterviews to obtain estimates of the bias associated with 
the previous matching process. In the discussion of the 
Matching Error Study done in a 1986 test census in Los 
Angeles, Hogan and Wolter (1988) state that "The rematch 
was done independently of the original match, and the 
discrepancies between the match and the rematch results 
are adjudicated. Because of this intensive approach to the 
rematch, we believe the rematch results represent true match 
status, while differences between the match and rematch 
results represent the bias in the original match results." 
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Table 4 
St. Louis Rematch Study: P-sample 

Source: Mulry, Dajani and Biemer (1989) 

Original 
Match 
Classification 

Rematch Classification 

Matched 
Not 

Matched 
Un­

resolved Total 

Matched 
Not matched 
Unresolved 
Total 

2,667 
9 
0 

2,676 

7 
427 

7 
441 

8 
30 
20 
58 

2,682 
466 
27 

3,175 

The data from the MES thus provides a basis for esti­
mating error rates in the original matching process. Mulry, 
Dajani and Biemer (1989) report the MES operation for 
the 1988 Dress Rehearsal and rematch data for all three 
test sites, and in Table 4, we reproduce those data relevant 
for our purposes. 

Let a be the matching rate between the C-sample and 
the P-sample, and 7 = 1 — abethenonmatcherrorrate. 
We assume no errors in the rematch. Then from the data 
in Table 4, we can estimate a by a = 2667/(2667 -I- 9) = 
99.6637%, and 7 by 7 = 1 - a = .3363%. The para­
meter 0 is a three-sample matching rate for the C-sample, 
P-sample and the ALS. It takes two matches, say, one 
between the C-sample and the P-sample. and the other one 
between the P-sample and the ALS, in order to reach a 
correct (1.1,1) three-sample classification. In the absence 
of evaluation of the match between the census and the 
ALS, we assume that these two matches are independent 
of each other and that the matching rate for the P-sample 
and ALS is the same for the C-sample and the P-sample. 
Thus we can use 0 = a^, and 0 = a^ = 99.3285%. 
Based on other qualitative information, this seems to be 
unreasonably high match rate, and the match error rate 
for the census and the ALS is probably higher than the 
match error rate between the census and the P-sample. In 
the absence of better quantitative information, however, 
we proceed to use it in the calculations that follow. 

Table S 

Estimates Under Various Models 

Log-linear 
Model 

(C] [P ] (A] 

[CP][A] 

[PA][C] 

[CA][P] 

[CP] [CAl 

[CP] [PA] 

[CA][PA1 

[CP1[CA)(PA] 

Usual MLE 

A^(S.E.) 

1091.48(11.24) 

1204.14(23.31) 

1108.34(13.77) 

1068.87 (10.47) 

1271.11 (52.55) 

1598.88(106.26) 

1080.47(13.38) 

2360.82 (363.25) 

Fit (d.f.) 

248.31(3) 

90.60 (2) 

247.93 (2) 

230.66 (2) 

87.16(1) 

17.55(1) 

230.43 (1) 

- (0 ) 

MLE Using Matching 
Error Model (2) 

/9(S.E.) 

1083.58 (10.93) 

1194.73(22.86) 

1100.03(13.40) 

1061.09(10.10) 

1256.77 (50.97) 

1585.03 (104.93) 

1072.19(12.88) 

2309.55 (352.36) 

Fit (d.f.) 

244.56 (3) 

87.30 (2) 

244.53 (2) 

226.42 (2) 

84.37 (1) 

15.88(1) 

226.44 (1) 

- (0 ) 

Table 5 gives the estimates of the population size for 
various log-linear models with estimates of standard errors 
and goodness-of-fit statistics. Standard errors are computed 
with the deka method as discussed in Fienberg (1972). The 
assumption of independence between the census and the 
P-sample has been questioned for the use of the DSE. The 
dual system method has limited capacity to test this assmnp-
tion and to adjust for potential dependency, while both 
can be handled through log-hnear models for three or more 
samples. There are foiir models listed in Table 5 that assimie 
independence between the census and the P-sample: the 
independence model [C] [P] [A] , [PA] [C] , [CA] [P] , 
and [CA] [PA]. All of them fit the data poorly. The three 
models with the interaction term for the census and the 
P-sample, [CP] [A] , [CP] [CAj.and [CP] [PA] fit the 
data much better. With the addition of an interaction term 
linking the census and the ALS. model [CP] [CA] fits only 
slightly better than [CP] [ A ] , indicating that the census 
and the P-sample are together nearly independent from 
the ALS. The model [CP] [PA] fits the data the best, 
suggesting that the usual independence assumption for the 
DSE is invalid and that there is dependence between the 
P-sample and the ALS. For all seven non-saturated log-
linear models, we obtain better fits under matching error 
Model (2), though only slightly so, due to the high match 
rate for the data from the 1988 U.S. Census Dress Rehearsal. 
For the [CP] [PA] model, there is a .8738% difference 
in the estimate of TV associated with the nonmatch rate of 
.3363%. If the nonmatch rate had been 10%, /.e., a90% 
match rate, and assuming that the difference in the estimate 
of Nis approximately Unear in the nonmatch rate, there 
would have been a 26% difference between the usual 
maximum hkelihood estimate of TV and our estimate. 

Table 6 
Dual-System Data for Stratum 11, St. Louis 

P-sample 

Present 
Absent 
Total 

Present 

487 
217 
704 

Census 

Absent 

129 
-

Total 

616 

Table 6 presents the usual dual system data for stratiun 11, 
St. Louis. The number of people in both the census and 
the P-sample is yn = 300, the number of those in the 
census only is j'i2 = 217, and number in the P-sample only 
isj/21 = 129. The total census count is j'i+ = yu + J'12 = 
704, the total P-sample count is 3'+1 = >'ii +^'21 = 616, 
the dual system estimate is DSE = yi+y+i/yn = 893 
(p. 232, Bishop, Fienberg and HoiUand 1975), and the esti­
mated variance of DSE is Var(DSE) =yi+y+iyi2y2i/y]i = 
105.4Jg. 233, Bishop et al. 1975). The standard error is 
SE(DSE) = 10.27. 
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The census undercount for the population estimate 
DSE is (DSE - yi + )/DSE x 100% = 21.17%. 
For our best fitting model, the census undercount is 
(N - 3'i + )//V = 55.97% for the estimate N = 1599 
assuming no matching error and 55.58% for N = 1585 
from matching error Model (2). Thus there is a 55.97% -
55.58% = 0.39% upward bias by ignoring matching 
errors. This is quite close to the figure of 0.37% computed 
in Ding and Fienberg (1994) for the 1986 Los Angeles test 
census data using a two-sample match rate of 99.4734%, 
as compared to 99.6637% here for the St. Louis data. Our 
estimates show that the urban Black male adults targeted 
in the St. Louis Dress Rehearsal were heavily undercounted 
by the census, and that the undercount is severely under­
estimated by the usual dual-system or capture-recapture 
estimator ofthe population size. A third and qualitatively 
different sample might work well for this demographic 
group. 

The homogeneity ofthe capture probabilities is one of 
the assumptions in the standard approach to the estimation 
of the size of a closed population. Darroch et al. (1993) 
developed a quasi-symmetry model and a partial quasi-
symmetry model to allow for varying catchability of 
individuals. The quasi-symmetry model assumes that the 
pattern of heterogeneity is the same for all three samples, 
the partial quasi-symmetry model assumes that the pattern 
of heterogeneity is the same for two samples but different 
for the third sample. This is a sensible model given that 
the third sample is qualitatively quite different from the 
census and the PES and this model is equivalent to a 
combination of dependence and heterogeneity. For the 
multinomial cell probabilities including the missing cell, 
^ = ('•ill, '•112, • • •, '•222), both are log-linear models of 
the form log R = Afi with an appropriately chosen design 
matrix A and a vector of parameters fi. The design matrices 
for both models are given in Darroch et al. (1993). 

Table 7 
Heterogeneous Catchability Models 

Log-Linear 
Model 

MLE from 
Darroch et al. (1993) 

MLE Using Matching 
Error Model (2) 

A^(S.E.) Fit (d.f.) TV (S.E.) Fit (d.f.) 

Full quasi-
symmetry 1923.63(216.84) 133.54(2) 1906.61(213.47) 133.50(2) 

Partial quasi-
symmetry 2576.54(413.28) 11.70(1) 2557.08(409.39) 11.72(1) 

Our proposed method can readily incorporate heter­
ogeneous catchability to estimate the population size by 
assuming a heterogeneity model for Table 1 and then 
adopting the conditional Ukelihood estimation (Sanathanan 
1972). Table 7 presents estimates from fitting the quasi-
symmetry model and the partial quasi-symmetry model for 

the data from stratum 11. Again, the effect of the matching 
errors in this analysis is not substantial due to the high 
matching rate. The partial quasi-symmetry model fits 
much better than the quasi-symmetry model, indicating 
there seems to be plausible heterogeneity and the pattern 
of heterogeneity seems different in the ALS. The lack of 
fit of the independence model might also be explained in 
part by the dependence among the samples (in particular 
between the census and the P-sample) and in part by 
heterogeneous catchability. 

The partial quasi-symmetry model incorporates the 
[CP] dependence and thus is an alternative to the model 
[CP] [PA] in Table 5. The two models yield similar fits 
to the data, but they give dramatically different estimates 
ofN, with the model incorporating heterogeneity having 
a much larger estimate accompanied by a much larger 
estimated standard error. This suggests that there is a 
considerable instability associated with heterogeneity 
parameters and, although the two models are not nested 
and thus not directly comparable, it seems reasonable to 
opt for the smaller and more stable estimate which does 
not incorporate heterogeneity. 

Darroch et al. (1993) considered four substrata for 
stratum 11 in their analysis. The two cross-classification 
variables for the four substrata 02 , R2, 0 3 and R3 are 
whether residents owned or rented homes and whether 
they were age 20-29 or 30-44. The data for the four sub­
strata are given in Table 8 where 1 corresponds to presence 
in a sample and 0 is for absence. We have reanalyzed them 
for comparison. Table 9 and Table 10 give estimates for 
both heterogeneity models. As pointed out earlier, the high 
match rate yields similar estimates and fits for models 
incorporating matching errors. The partial quasi-symmetry 
model shows significant improvement in fits over the full 
quasi-symmetry model with the best fits obtained for R2 
and R3. If we add the estimates of Â  across the four 
substrata, the total for the matching error version of 
partial quasi-symmetry is TV = 2980.8, more than 16% 
larger than the estimate from the collapsed model in 
Table 7. Of course, the standard error of the estimate has 
increased by a similar magnitude. 

Table 8 

Three-Sample Data for Four Substrata of Stratum 11 
Source: Table 2, Darroch et al. (1993) 

c 
0 
0 
0 
1 
1 
I 
1 

Sample 

P 

0 
1 
1 
0 
0 
1 
1 

A 

1 
0 
1 
0 
1 
0 
1 

0 2 

59 
8 

19 
31 
19 
13 
79 

Substratum 

R2 

43 
34 
11 
41 
12 
69 
58 

0 3 

35 
10 
10 
62 
13 
36 
91 

R3 

43 
24 
13 
32 
7 

69 
72 
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Table 9 
Estimates for Full Quasi-Symmetry 

Sub-

02 

R2 

0 3 

R3 

Sub­
stratum 

02 

R2 

0 3 

R3 

MLE from 
Darroch et al. (1993) 

N(S.E.) 

780.83 (294.8!) 

394.34 (56.45) 

765.45 (254.57) 

361.83(47.33) 

Fit (d.f.) 

11.70(2) 

41.09(2) 

25.99(2) 

59.31 (2) 

Table 10 

MLE Using Matching 
Error Model (2) 

TV (S.E.) 

777.98(293.99) 

391.14(55.29) 

759.97 (252.44) 

358.71 (46.20) 

Estimates for Partial Quasi-Symmetry 

MLE from 
Darroch et al. (1993) 

N(S.E.) 

605.66(212.63) 

652.34(205.12) 

1124.00(473.26) 

611.78(200.82) 

Fit (d.f.) 

7.51(1) 

0.04(1) 

8.27(1) 

2.92(1) 

Fit (d.f.) 

11.69(2) 

41.02(2) 

25.98(2) 

59.22 (2) 

MLE Using Matching 
Error Model (2) 

N(S.E.) 

601.44(210.93) 

646.59 (202.58) 

1126.90(476.54) 

605.91 (198.26) 

Fit (d.f.) 

7.52(1) 

0.04(1) 

8.22(1) 

2.92(1) 

6. SUMMARY 

In this paper, we have presented models for matching 
errors and models for the estimation of the population 
total and census undercount in a multiple sample census. 
We have illustrated our methods by reanalyzing census 
coverage data from the 1988 St. Louis Dress Rehearsal 
census. Two sources of information are considered in our 
analysis, the data from a Matching Error Study (MES), 
and triple-system data with every individual cross-classified 
according to presence or absence in each of three samples: 
the census, a post enumeration survey (P-sample) and an 
administrative list supplement. We imbed the standard 
log-linear model formulation of Fienberg (1972) into our 
estimation procedure to account for statistical dependency 
together with matching errors and to allow for formal 
goodness-of-fit test of various models. Our method applies 
to any model of a log-linear form and we have illustrated 
how heterogeneity models can be incorporated into our 
approach to allow for both matching errors and heter­
ogeneous catchabiUty. 

Our matching error models assume that false matches 
are negligible. Sensitivity analysis in Ding (1990) shows 
that when both the false nonmatch rate and the false match 
rate are the same order of magnitude, the matching bias is 
dominated by the false nonmatch rate (see also Fay, Passel, 
Robinson and Cowan 1988, p. 53). This is because the 
capture probabilities in the census and the post enumeration 

survey are high, and thus a comparable change in both the 
false nonmatch and false match rates has substantially 
more impact on false nonmatches than false matches. For 
the 1986 Los Angeles test census data, the estimates of 
false nonmatch rate and false match rate computed in 
Ding and Fienberg (1994) are about 0.5% and 0.8%, 
respectively. Based on these empirical findings, we have 
some reason to believe that, at least in the census applica­
tion described here, our models for false nonmatch errors 
are reasonable approximations to reality. 

We have analyzed the St. Louis triple-system data with 
an estimate of the matching rate taken from the MES. 
Matching rates may not be homogeneous over different 
population strata, and we suggest that the MES data 
associated with the same sampling stratum be used. We 
have developed formulation in §3 for the /:-sample census, 
and our approach can be readily applied to a A:-sample 
census with k > 4. 
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Applying the Lavallee and Hidiroglou Method to 
Obtain Stratification Boundaries for the Census Bureau's 

Annual Capital Expenditures Survey 
JOHN G. SLANTA and THOMAS R. KRENZKE' 

ABSTRACT 

The Lavall6e-Hidiroglou (L-H) method of finding stratification boundaries has been used in the Census Bureau's 
Annual Capital Expenditures Survey (ACES) to stratify part of its universe in the pilot study and the subsequent 
preliminary survey. This iterative method minimizes the sample size while fixing the desired reliability level by 
constructing appropriate boundary points. However, we encountered two problems in our application. One problem 
was that different starting boundaries resulted in different ending boundaries. The other problem was that the 
convergence to locally-optimal boundaries was slow, i.e., the number of iterations was large and convergence was 
not guaranteed. This paper addresses our difficulties with the L-H method and shows how they were resolved so 
that this procedure would work well for the ACES. In particular, we describe how contour plots were constructed 
and used to help illustrate how insignificant these problems were once the L-H method was applied. This paper 
describes revisions made to the L-H method; revisions that made it a practical method of finding stratification 
boundaries for ACES. 

KEY WORDS: Convergence; Contour plots; Economic surveys. 

1. INTRODUCTION 

The primary objectives of the sample design of the Census 
Bureau's Annual Capital Expenditures Survey (ACES) 
are to meet desired reliability levels using operationally-
feasible methodology and to stay within budget limita­
tions. To achieve these goals, we implemented a stratified 
simple random sample design using a modified version of 
Lavallde and Hidiroglou's (L-H) (1988) approach of 
finding stratum bounds. This stratification method for 
skewed populations obtains optimal boundary points by 
minimizing the total sample size given a desired coefficient 
of variation (c.v.). Survey managers associated with a 
single-purpose survey having access to a single stratifier 
can benefit from its operational ease and cost reductions. 

We considered several papers that documented other 
methods for finding size stratum boundaries. Hess. Sethi, 
and Balakrishnan (1966) compared several stratifying 
techniques. The popular Dalenius and Hodges method 
(Cochran 1977, p. 129) was considered easy to implement 
in our case but was initially ruled out because it was not 
designed with certainty strata in mind. Sethi's method 
(1963) of using standard distributions was not used because 
we thought it would be cumbersome to identify the distri­
bution and sub-optimal to use standard distributions for 
each of the 80 ACES industries. Eckman's rule (1959) of 
equalizing the product of stratum weights and stratum 
range seemed to require rather ominous calculations. 

The L-H method was the most appealing to our appli­
cation. Designed specifically for skewed populations, 
which is often the case for economic surveys, it creates a 
boundary that defines the take-all stratum, and the optimal 
boundary point(s) for the take-some strata. It sometimes 
will create additional take-all strata if through Neyman 
Allocation, the stratimi sample size is greater than or equal 
to the stratum size. 

The L-H method goes through an iterative algorithm 
beginning with computing or arbitrarily setting the initial 
stratum boundaries. Then, stratum statistics are computed 
such as. the stratum size. mean, and the variance. These 
parameters are entered into boundary formulas that were 
derived from minimizing the sample size subject to a desired 
CV. If the new boundaries do not converge then the stratum 
statistics are calculated for the newly defined size strata. 
The cycle continues until the boundaries converge. 

Schneeberger (1979) discussed the problem of finding 
optimal stratification boundaries. Schneeberger shows in 
the paper that when expressing this problem as a non-Unear 
program, when solved by a gradient method, the solution 
may be relative or global minima, maxima, or saddle 
points of the variance of the sample mean. Detlefsen and 
Veum (1991) document this as a shortcoming of the L-H 
method when testing its appUcation for the Census Biu-eau's 
Monthly Retail Trade Survey. In the L-H method, they 
found that many times the resulting boundaries differed 
substantially from where the initial boundaries were set, 

' John G. Slanta, Manufacturing and Construction Division; Thomas R. Krenzke, Decennial Statistical Studies Division, U.S. Bureau of the Census, 
Washington, D.C. 20233, U.S.A. 
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so the minimum sample size attained was a local minimum. 
Geometrically, the sample size as a function of two strata 
boundaries, appears Hke a landscape with one or more 
bowl-shaped valleys. The L-H method begins in a region 
and descends until it reaches the lowest point. If more than 
one minimum exists, it will not continue to search for the 
global minimum. Therefore, one objective is to have initial 
boundaries that are in the neighborhood of the global 
minimum. Using starting boundaries resulting from a 
technique such as the Dalenius and Hodges method may 
help satisfy this desire. 

Detlefsen and Veum (1991) also noted instances of 
slow or non-convergence. However, they also noted that 
convergence occurred faster when the number of strata 
was reduced and when starting boundaries were the same 
as the previous survey's sample selection boundaries. In 
order to defend ourselves against infinite loops in the 
computer program or a large number of iterations, we 
decided on doing two things. First, we implemented a 
sample design in which the L-H method would create sets 
of only three size strata. Second, we decided to implement 
stopping rules so that when the convergence rate appeared 
to slow down, the program stopped processing. 

In this work, we give background information on the 
ACES and briefly describe the way the L-H method was 
appUed. We show how contour plots and three-dimensional 
plots gave us justification for using the L-H method to get 
the final boundaries. We show how the contour plots 
address the convergence problem by showing how con­
straints can be setup to be met after each iteration. This 
would protect us against slow or non-convergence under 
the assumption that the marginal gain achieved is not 
worth the extra effort. 

2. ACES BACKGROUND 

The 1992 ACES was designed by the Census Bureau to 
be a large-scale operational test ofthe sampling, processing, 
programming, data entry, editing, and estimation procedures 
which extended beyond a 1991 pilot study, to prepare for 
the 1993 full-scale survey. Capital expenditure estimates 
for domestic activities were published at conglomerated 
industry levels from the 1992 survey. In addition, the 1991 
and 1992 preliminary surveys provided valuable capital 
expenditure data that will be used in future sample design 
enhancements. 

The sampling unit for the ACES was the company 
which may be comprised of several establishments. The 
sampled population included all active companies with five 
or more employees from all major industry sectors except 
Government. These sectors include mining, construction, 
manufacturing, transportation, wholesale and retail trade, 
finance, services, and a portion of the agriculture sector 
that includes agricultural services, forestry, fishing. 

hunting, and trapping. Only companies with domestic 
activity were included in the sampling frame. The Research 
and Methodology Staff of the Census Bureau's Industry 
Division constructed the sampling frame, selected the 
sample, and generated estimates. 

The ACES sampling frame was constructed from the 
Census Bureau's Standard Statistical Establishment List 
(SSEL) in November 1992 using final 1991 data for single 
unit (SU) establishments and 1990 data for establishments 
associated with multiunit (MU) firms. Major exclusions 
from the frame were public administration, U.S. Postal 
Service, international establishments, estabhshments in 
Puerto Rico. Guam. Virgin Islands, and the Mariana 
Islands. EI Submasters which are SU records on the SSEL 
that are associated with MU establishments, estabhshments 
associated whh agricultural production, and private house­
holds were also excluded from the frame. 

The establishment-based file was consolidated into a 
company-based file. In addition, the 4-digit Standard 
Industrial Classification (SIC) codes for each company 
were recoded into ACES categories. The 80 ACES cate­
gories consisted of either 3-digit SICs or combinations of 
3-digit SICs. The ACES sampling frame included approx­
imately two million companies. 

3. THE L-H METHOD APPLIED TO THE ACES 

The universe of companies was classified into two 
major strata. Stratum I was an arbitrarily defined take-all 
stratum that consisted of large companies with more than 
500 employees and over $100 million in assets. Stratum I 
companies were not classified into one ACES industry. For 
the estimated industry level payroll totals used in the calcu­
lation ofthe industry-level sample sizes, stratum I companies 
could contribute to more than one ACES industry depending 
on the number of different ACES industries the companies 
have payroll in, identified in the SSEL. 

Stratum II contained companies that had five or more 
employees and had less than 500 employees. Stratum II 
companies were classified into one industry, even if engaged 
in more than one activity. Each company had frame infor­
mation available for each of the ACES industries the 
company had activity in. However, the company's payroll 
contributed only to estimated total payroll for the industry 
that the company was classified in. Subsequently, within 
stratum II, for each ACES industry category, three size 
strata were created based on total company annual payroll 
using the L-H method. 

A concern with the sample design is the result of 
companies being misclassified due to the measure of size 
being used. We classified each stratum II company into 
its highest payroll industry; however, companies self-report 
their capital expenditures into ACES industries on the 
ACES questionnaire. Companies may report in multiple 
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industries. If too many companies self-report into indus­
tries other than where they were classified, then control 
on the reliability of the estimates is lost. 

A similar concern is that the variation in payroll is not 
the same as the variation in expenditures. Since sample size 
is directly related to the variance, sample sizes may be 
different than what is really required. Therefore, since the 
correlation between payroll and expenditures is not high, 
the chances that reliabihty constraints will be met will 
diminish. 

The appHcation of the L-H method to the ACES 1992 
preliminary survey sample design involved splitting 
stratum II into one take-all size stratum and two take-
some size strata for each ACES industry. The boundaries 
were derived for each industry by taking the partial deri­
vative of the sample size with respect to a boundary while 
fixing the other boundary. However, in practice, we allowed 
both boundaries to move simultaneously. This results in 
an iterative process of minimizing the sample size for each 
industry subject to c.v. constraints. Within stratum II for 
each ACES industry and assuming Neyman Allocation 
(Detlefsen and Veum 1991), the sample size equation that 
is minimized is. 

n — n 

^(Y ^J^)' 
\j=i / 

TA 
cv^Y^ 

N 

(1) 

+ Y ^j^j 
j=i 

where, nrA is the number of companies in the take-all size 
stratum within stratum II defined by the L-H method, N 
is the number of stratiun II companies in the ACES mdustry 
of interest, H^ = Nj/N is the stratum proportion, Nj is 
the number of stratum II companies for size stratumy, cv 
is the desired coefficient of variation for the ACES industry 
of interest, y is the total payroll for stratum I and II for 
the ACES industry of interest defined by, 

N, 3 Nj 

y=Yy^+i: D^>" 
k=i j=i i=i 

NJ is the number companies in stratum I, and Sj is the 
standard deviation of payroll from the SSEL for size 
stratum j in stratum II defined by. 

Sj = 

Y <^yj>-Yjr 
;=1 

Nj- 1 

where, yji is the payroll value of company / of size stratum 
j for the ACES industry of interest, and Yj is the mean 
of payroll for size stratum y. 

The reliability level for each industry was an expected 
c.v. of 5% on payroll. It was not known, however, what 
standard errors would result for capital expenditures, as 
no capital expenditures data exist for the frame records. 
Companies responding in ACES industries different from 
the ones they contributed to in the sample design also 
caused the c.v.'s to fluctuate. The total number of com­
panies selected for the ACES 1992 preliminary survey was 
11.194. consisting of 1,500 stratum I companies and 9,694 
stratum II companies. 

4. CONVERGENCE INTO NEIGHBORHOODS 

One of the problems with the L-H method is that it 
sometimes takes a large number of iterations before the 
boundaries converge; sometimes they never converge. 
Generally after just a few iterations, a large proportion of 
the improvement in the sample size has already occurred. 
Our goal was to be able to implement stopping rules so that 
when an area around a local minimum is reached, we can 
stop processing. This prompted our use of contour plots 
in analyzing the effect the boundaries have on the resulting 
sample size. It also allowed us to get a graphical view of 
the neighborhoods around the local minima. We will use 
two distributions to illustrate the benefits of reviewing con­
tour plots. 

4.1 Non-Skewed Distribution 

The first example is a non-skewed distribution from 
Schneeberger's paper. This distribution is symmetric at 
X = 1 as shown in Figure 1. 

0 
2x 
2 ( 1 - x ) 

•^W = 2 ( x - l ) 
2 ( 2 - A : ) 

0 

for 

A- < 0 
0 < X < 0.5 
0.5 < X < 1 
1 < A: < 1.5 
1.5 < A: < 2 
2 < X 

Schneeberger's objective was to find boundaries for 
three take-some strata using a gradient method. Using the 
objective function of z = {I.Wf,ah)^, the results attained 
are listed in Table 1. 

Table 1 
Optimum Boundaries for Non-Skewed Distribution 

1̂ Optimum Point 

(2a) 
(2b) 
(2c) 

.50241 

.70910 

.96015 

1.03985 
1.29090 
1.49759 

Minimum 
Saddle Point 
Minimum 

Source: Schneeberger (1979). 
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Table 2 
L-H Boundaries for Three Take-Some Strata for Non-Skewed Distribution 

N 

50 
100 
200 
1000 
5000 

50 
100 
200 
1000 
5000 

50 
100 
200 
1000 
5000 

Starting Method 

Ni=N2 = N-i 
Ni = N2 = N3 
^ 1 = ^ 2 = A^3 
Ni=N2= NJ 
Ni = N2 = N3 

Dalenius-Hodges 
Dalenius-Hodges 
Dalenius-Hodges 
Dalenius-Hodges 
Dalenius-Hodges 

Off Line 
Off Line 
Off Line 
Off Line 
Off Line 

bi 

.59 

.59 

.59 

.59 

.59 

.70 

.70 

.70 

.70 

.70 

.50 

.50 

.50 

.50 

.50 

1st Iteration 

b2 

1.41 
1.41 
1.41 
1.41 
1.41 

1.40 
1.40 
1.40 
1.40 
1.40 

1.30 
1.30 
1.30 
1.30 
1.30 

n 

10.89 
12.60 
13.42 
13.85 
14.12 

10.09 
10.90 
11.42 
11.86 
11.95 

10.87 
11.95 
12.64 
13.24 
13.37 

bi 

.66 

.66 

.66 

.66 

.66 

.70 

.84 

.83 

.86 

.86 

.57 

.57 

.56 

.56 

.56 

Iteration Within 5% 

of Sample Size 

h 

1.34 
1.34 
1.34 
1.34 
1.34 

1.40 
1.40 
1.40 
1.42 
1.42 

1.20 
1.18 
1.14 
1.14 
1.14 

n 

9.98 
10.91 
11.43 
11.75 
11.84 

10.09 
10.14 
10.44 
10.67 
10.74 

9.43 
10.04 
10.28 
10.59 
10.67 

iter.# 

2 
2 
2 
2 
2 

1 
7 
7 
8 
8 

3 
3 
4 
4 
4 

bi 

.70 

.70 

.71 

.71 

.71 

.77 

.93 

.95 

.96 

.96 

.55 

.53 

.51 

.50 

.50 

Final Iteration 

b2 

1.31 
1.30 
1.29 
1.29 
1.29 

1.37 
1.47 
1.49 
1.50 
1.50 

1.11 
1.07 
1.05 
1.04 
1.04 

n 

9.77 
10.55 
10.99 
11.37 
11.45 

9.63 
9.65 
9.96 

10.27 
10.34 

9.11 
9.65 
9.96 

10.27 
10.34 

iter.# 

4 
5 
6 
7 
9 

4 
13 
17 
23 
28 

6 
8 

12 
18 
24 

We generated five datasets of different sizes {e.g., 
N = 50. 100. 200, 1000, and 5000) using the formula, 
F{x) = {j - l/2)/A^. For this example, we adapted the 
L-H method to construct three take-some strata and no 
take-all stratum in order to compare our results with the 
results in the Schneeberger paper. With our application 
of estimating totals, when minimizing the sample size 
subject to a c.v. = 0.05, the L-H method ran for each of 
the five population sizes using three different starting 
techniques. The results are given in Table 2. 

There are three main points from the information in 
Table 2. First, the algorithms convergence depends on the 
population size. The underlying theory ofthe L-H method 
is based on continuous distributions. Our examples and 
any survey appHcation has discrete data from finite popula­
tions. It is also apparent that as Ngets larger, the resulting 
boundaries get closer to where the minimum is under an 
infinite population size. Figure 2 shows the roughness of 
the sample size surface when Nis small {i.e., N = 50). 
The resulting surface illustrates the saddle in three dimen­
sions in Figure 2. In this graph, the axes are the lower and 
upper boundaries and the surface is the resulting sample 
sizes. This graph shows the saddle-point, the two local 
minima, and it also gives a picture ofthe magnitude ofthe 
sample size reductions as a result of shifting the boundaries. 
In contrast. Figure 3 shows the smoothness of the surface 
when A îs large {i.e., N = 5000). From this, it seems that 
the roughness ofthe sample size surface and consequently 
the population size has an effect on where the boundaries 
converge. 

The second point of this example reemphasizes that 
the ending boundaries are dependent on the starting 

boundaries. For this example, Schneeberger describes that 
with a starting point symmetric to x = 1, where bi = I —\ 
and Z72=1 + X ( 0 < X < 1 ) which defines the line 
b2 = 2 — bi, the gradient method moves the gradient 
along the line bi = 2 — bi into the saddle-point. When 
we set the starting boundaries on this line, which occurred 
when we started with the condition Ni = N2 = N^, the 
L-H method also converged to the saddle point (see 
Table 1). With starting boundaries from the Dalenius-
Hodges method, which are not on the line in the case where 
62 > 2 - 61, the L-H method converged to a minimum 
(2c). The Dalenius-Hodges method works well in this 
example because of the three take-some strata. With 
starting boundaries which are not on the line in the case 
where b2<2 - bi (specifically, bi = .5 and 62 = 1.3). the 
L-H method converges to a different minimum (2a). This 
problem is not unique to the L-H method, as Schneeberger 
points out that the gradient method's resulting boundaries 
are also dependent of the starting boundaries. 

The third point of this example is that there seems to 
be relatively large reductions in sample size in the first few 
iterations and then there are several iterations where there 
are small reductions in sample size. Results are shown in 
Table 2 from the iteration in which the algorithm produced 
a sample size within 5% of the final sample size. This 
implies that the L-H algorithm quickly goes to a neigh­
borhood around an optimal boundary. While close to an 
optimal sample size, there seems to be a wide range of 
boundary points resulting in a small range of sample sizes. 
The point is that stopping rules can save computing time 
while not relinquishing any real reduction in sample size, 
since sample size is in integer values. 
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Figure 1. Graph of non-skewed distribution. 
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Figure 2. Sample size surface for non-skewed distribution (Â  = 50). 
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Figure 3. Sample size surface for non-skewed distribution {N = 5000). 
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A contour plot of the surface shown in Figure 3 is given 
in Figure 4. Again, the axes are the lower and upper 
boundaries and the surface is defined by the resulting 
sample size. The hues in the plot represent a sample size 
value. The space between the lines gives an area that 
contains a range of sample size values. For example, a solid 
line represents a sample size of 11 and a series of short dash 
marks represents a sample size of 13. The area in between 
the sohd line and the Hne of short dash marks contains 
sample sizes in the range of 11 to 13. This contour plot 
shows a marginal improvement in the sample size by 
illustrating that when an area around the bottom of the 
surface is reached, moving on is unnecessary. At this 
point, most of the improvement on the sample size from 
iteration to iteration is less than a value of one. It becomes 
apparent that after the first few iterations, the improvement 
of the sample size from iteration to iteration reduces 
quickly. For instance, in Table 2, where A'̂  = 5000 and 
where the Dalenius-Hodges method was used for the 
starting boundaries, the first eight iterations accounted for 
74% of the total reduction in the sample size from itera­
tion 1 to the 28th and final iteration. 

4.2 A Skewed Distribution 
Economic data are usually highly skewed and therefore 

it is more appealing to have a take-all stratum. The next 
example comes from the Pareto distribution, which is a 
very typical distribution of economic universes, where 
there are a large number of small companies and a small 
number of large companies. 

The Pareto distribution function is defined as F{x) = 
1 — 1/(1 -I- x)*, 0 < X < 00. From this we again 
generated five datasets of different sizes using the formula 
F{x) = {j — I /2)/N. We let the values of b change as 
the population size changed. This was done so as to keep 
the upper tail of the finite discrete distribution roughly the 
same proportion to the entire population for each popula­
tion size. To do so, the parameter b was chosen in such 
a way that about 90% ofthe total sum could be accounted 
for in the top 20% of all possible sampling units. Since the 
datasets contain a finite number of discrete values there 
was no problem deriving variances of different strata when 
values of b were less than 2. 

Table 3 gives the L-H results for different population 
sizes and starting points. The first group uses starting values 
which yield equal stratum populations {Ni = N2 = N^). 
The second group uses the Dalenius-Hodges method to 
obtain all initial boundaries. The third group obtains 
starting boundaries by first using a method for deter­
mining the take-all boundary as presented by Hidiroglou 
(1986) and uses the Dalenius-Hodges method for the other 
boundary. Again it can be observed that the sample size 
surface given strata boundaries is much more choppier for 
smaller population sizes (see Figure 5). For example, when 
TV = 50 and bi is fixed, there was only one sample size 
when 62 varied between 11.8 and 14.7. This is because 
there were no values within this range in the population. 
As the population size increases, the data values are closer 
together, and the sample surface becomes very smooth 
(see Figure 6). 

Table 3 
L-H Boundaries for Skewed Distribution (one take-all stratum, two take-some strata) 

A' 

50 
100 
200 
1000 
5000 

50 
100 
200 
1000 
5000 

50 

too 
200 
1000 
5000 

Starting Method 

Ni=N2= NJ 
Ni=N2= A'3 
Ni=N2 = A/3 
Ni=N2 = N3 

Ni=N2 = N3 

Dalenius-Hodges 
Dalenius-Hodges 
Dalenius-Hodges 
Dalenius-Hodges 
Dalenius-Hodges 

Hidiroglou 1986 
Hidiroglou 1986 
Hidiroglou 1986 

Hidiroglou 1986 
Hidiroglou 1986 

b 

.80 

.90 

.90 

1.00 
1.05 

.80 

.90 

.90 
1.00 
1.05 

.80 

.90 

.90 
1.00 
1.05 

bl 

.63 

.56 

.56 

.50 

.47 

1.25 
1.39 
1.82 
2.37 
3.09 

.94 

.74 
1.39 
2.02 
3.24 

1st Iteration 

t>2 

2.81 

2.33 
2.36 
2.00 
1.85 

8.04 
8.98 

11.66 
17.28 
26.27 

6.50 
6.17 
9.55 

15.13 
28.72 

"TA 

17 

34 
67 

333 
1665 

9 
13 
20 
55 

155 

10 
17 
24 
62 

142 

n 

17.2 
34.3 
67.2 

334.2 
1667.2 

10.5 
16.6 
24.3 

65.6 
175.0 

11.3 
19.6 
27.2 
71.3 

164.1 

bl 

1.66 
1.61 
2.35 
3.35 
4.67 

1.76 
1.62 
2.45 

3.15 
4.98 

1.58 
1.66 
2.50 
3.34 
5.11 

Iteration Within 5% 
of Sample Size 

b2 

10.20 
10.29 
17.04 

30.58 
64.33 

10.37 
10.16 
17.29 
29.70 
66.28 

10.02 
10.38 
17.58 
30.54 
67.05 

"TA 

7 
11 
15 
32 
62 

7 
11 

15 
33 
60 

7 
11 
14 
32 
59 

n 

9.6 
15.8 
21.8 
53.0 

113.5 

9.5 
15.8 
21.7 

53.5 
112.3 

9.6 
15.8 
21.5 
53.0 

112.0 

iter.# 

5 
5 
6 
7 
7 

3 
2 
3 
3 
4 

3 
4 
4 
4 
4 

b 

.80 

.90 

.90 
1.00 
1.05 

.80 

.90 

.90 
1.00 
1.05 

.80 

.90 

.90 
1.00 
1.05 

bl 

2.44 
2.58 
3.61 
4.93 
7.39 

2.44 
2.58 
3.61 
4.93 
7.39 

2.44 
2.58 
3.61 
4.93 
7.39 

Final Iteration 

b2 

11.81 
12.44 

20.46 
36.32 
79.38 

11.81 
12.44 

20.46 
36.32 
79.38 

11.81 
12.44 
20.46 
36.32 

79.38 

"TA 

7 
10 
13 
27 
50 

7 
10 
13 
27 
50 

7 
10 

13 
27 

50 

n 

9.4 

15.1 
20.9 
51.3 

108.8 

9.4 
15.1 
20.9 
51.3 

108.8 

9.4 
15.1 
20.9 
51.3 

108.8 

iter.# 

9 
12 
13 
18 
22 

6 
9 

10 
15 
19 

7 
11 
10 
15 
19 
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Figure 5. Sample size surface for skewed distribution (N = 50). 
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Figure 6. Sample size surface for skewed distribution {N = 5000). 
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The contour plot for N = 50 (Figure 7) has erratic 
shapes defined by straight Hues for contour markings. The 
contour plot for N — 5000 (Figure 8) has almost smooth 
concentric ellipses for contour markings. It would appear 
to be a desirable quality for the contour markings to be 
the same shape and concentric. This would imply that the 
global minimum is the only local minimum. 

The contour plot for N = 50 demonstrated the case 
where the L-H method didn't converge to optimal bound­
aries. Since, for this example, we let the L-H program run 
until it converged the question may arise as to why the L-H 
method didn't converge to the optimal boundaries. The 
easiest way to explain this is by viewing Figure 5. We can 
see that when the population size is small then the sample 
size surface is not as smooth as in Figure 6. We see several 
major ridges in Figure 5 that are caused by wide gaps 
in the skewed discrete data (X43 = 9.71. X44 = 11.81, 
X45 = 14.79. X46 = 19.29). This means that for a given 
bl, any value of 62 between 11.81 and 14.79 would yield 
the same sample size. When we ran the L-H program for 
different starting boundaries other than the three listed in 
Table 3 we came up with the final boundaries as in Table 3 
along with other boundaries and their corresponding 
sample sizes. It appears that the L-H method converges 
to a low region on one of the major ridges, provided that 
the region is in the neighborhood of the optimal bound­
aries. The minimum sample size is 9.22 and the L-H 
method in Table 3 yielded a sample size of 9.36. The 
smallest whole integer sample size for each result that 
meets or exceeds the constraint is 10. Here again we see 
that the L-H method performs exceptionally well even with 
discrete distributions that have small population sizes as 
we see that the boundaries converge within the neigh­
borhood containing the optimal solution. 

Another observation to be pointed out is that there is 
a broad range of values that the boundaries can take on 
while keeping the integer value of the sample size the same. 
As the size of the neighborhood expands, the range of 
boundary values extends as well. It should also be pointed 
out that even though the range of bi values for a given 
neighborhood is smaller than the range of values for 62, 
there are far more sampling units in the range of bi than 
62 because of the skewed distribution. 

5. SUMMARY 

The graphs presented here have shown that a wide range 
of boundary values result in a small range of sample sizes 
when in a neighborhood around an optimal value (the 
bowl shape bottom of the graphs). Any extraordinary 
improvement on the sample size, i.e., a smaU marginal 
gain, might not be worth the extra effort to obtain. This 
marginal gain may or may not even improve the sample 
size since the sample size is really an integer and the 

marginal gain might only be a small fraction. The L-H 
method proved very effective in obtaining boundary 
values in a desired neighborhood around an optimal value, 
and did it relatively fast. 

By measuring the rate of convergence using the sample 
size instead of boundary values we were better able to 
determine when a desired neighborhood around an optimal 
value was reached. This is because boundary values vary 
greatly in such a neighborhood while sample size (which 
is of main interest) varies slightly. When the improvement 
in sample size from iteration to iteration was marginal or 
nonexistent we immediately terminated the program under 
the assumption that we reached the desired neighborhood. 
The following stopping rules are recommended. Stop 
processing when: 

1) the difference between the new upper boundary and the 
previous iteration's upper boundary is less than one. 
The whole number, one. is used in our case since payroll 
values are only available to us in whole number values 
and any shifting of boundaries of a value less than one 
does not affect any companies; 

2) the difference between the new lower boundary and the 
previous iteration's lower boundary is less than one; 

3) the difference between the new sample size and the 
previous iteration's sample size is less than a small 
arbitrary value. We recommend a number less than one 
since sample sizes are usually rounded up and any 
fractional improvement on the sample size is negligible. 
One should be careful when choosing this value since 
it is possible that the sample size reduction rate may 
increase from iteration to iteration because the slope of 
the surface changes; 

4) the program goes into the 30th iteration. Of course, this 
is an arbitrary value and may depend 011 the number of 
times (industries) one has to apply the L-H method. 

Another note is that small population sizes may cause 
convergence ofthe boundaries to a point suboptimal, as 
shown in the examples. Graphs of the sample size surface 
show a rough surface for small populations and a smooth 
surface for large populations. It is this rough surface due 
to the discrete nature ofthe small population that contrib­
ute, in part, to where the L-H method converges. 

Another point in conclusion, in our application, the 
Dalenius-Hodges method assumes that all resulting strata 
wiU be sampled. The L-H method is written to construct an 
analytical take-all substratum. Therefore, the top stratum 
developed by the Dalenius-Hodges method, when creating 
the initial boundaries for ACES industries, will be top-
heavy since it will not be sampled. Improvements in the 
sample size were noticed from the Dalenius-Hodges method 
to the first iteration of the L-H method in this situation. 
The error that occurs is that the starting boundaries may 
lead to a local minimum that is not the best solution. 



Survey Methodology, June 1996 75 

ACKNOWLEDGEMENTS 

The authors are grateful to Michel Hidiroglou for 
useful comments and discussion. We also thank Carol 
(Veum) Caldwell, Easley Hoy, the referees from Survey 
Methodology, and the Research and Methodology Branch 
managers of the Manufacturing and Construction Division 
for helpful comments during review. 

REFERENCES 

COCHRAN, W.G. (1977). Sampling Techniques, (3rd Ed.). 
New York: John Wiley and Sons. 

DETLEFSEN, R., and VEUM, C. (I99I). Design issues for the 
retail trade sample surveys ofthe U.S. Bureau ofthe Census. 
Proceedings of the Section on Survey Research Methods, 
American Statistical Association, 214-219. 

ECKMAN, G. (1959). An approximation useful in univariate 
stratification. The Annals of Mathematical Statistics, 30, 
219-229. 

HESS, I., SETHI, V.K., and BALAKRISHNAN, T.R. (1966). 
Stratification: A practical investigation. Journal of the 
American Statistical Association, 61, 74-90. 

HIDIROGLOU, M.A. (1986). The construction of a self-
representing stratum of large units in survey design. The 
American Statistician, 40, 27-31. 

LAVALLEE, P., and HIDIROGLOU, M.A. (1988). On the 
stratification of skewed populations. Survey Methodology, 
14, 33-43. 

SCHNEEBERGER, H. (1979). Saddle-points of the variance of 
the sample mean in stratified sampling. Sankhya, Series C, 
41,92-96. 

SETHI, V.K. (1963). A note on optimum stratification of 
populations for estimating the population means. American 
Journal of Statistics, 5, 20-23. 





Survey Methodology, June 1996 
Vol. 22, No. 1, pp. 77-83 
statistics Canada 

77 

A New Method to Reduce Unwanted Ripples and Revisions 
in Trend-Cycle Estimates From X-11-ARIMA 

ESTELA BEE DAGUM' 

ABSTRACT 

The estimation of the trend-cycle with the X-11-ARIMA method is often done using the 13-term Henderson filter 
applied to seasonally adjusted data modified by extreme values. This filter however, produces a large number of 
unwanted ripples in the final or "historical" trend-cycle curve which are interpreted as false turning points. The 
use of a longer Henderson filter such as the 23-term is not an alternative for this filter is sluggish to detect turning 
points and consequently is not useful for current economic and business analysis. This paper proposes a new method 
that enables the use of the 13-term Henderson filter with the advantages of: (i) reducing the number of unwanted 
ripples; (ii) reducing the size of the revisions to preliminary values and (iii) no increase in the time lag to detect turning 
points. The results are illustrated with nine leading indicator series of the Canadian Composite Leading Index. 

KEY WORDS: Trend-cycle; X-11-ARIMA; Turning points; Leading economic indicators. 

1. INTRODUCTION 

The estimation of the trend-cycle with the X-11-ARIMA 
seasonal adjustment method (Dagum 1980,1988) as weU 
as the U.S. Bureau of the Census X-11 variant (Shiskin, 
Young and Musgrave 1967) is done by the application of 
Hnear filters due to Henderson (1916). These Henderson 
filters are applied to seasonally adjusted series where the 
irregulars have been modified to take into account the 
presence of extreme values. The length of the filters is 
automatically selected on the basis of specific values of 
noise to signal ratios (I/S) being the most commonly 
chosen the 13-term filter. 

The problem of trend-cycle estimation has attracted the 
attention of several authors, among others. Rhoades (1980); 
Cholette (1981, 1982); Kenny and Durbin (1982); Castles 
(1987); Dagum and Laniel (1987); Cleveland. Cleveland, 
McRae and Terpenning (1990); Wallgren and Wallgren 
(1990); Gray and Thomson (1990); Findley and Monsell 
(1990); Scott (1990); and Kenny (1993). Nevertheless, most 
statistical agencies (excepted the Australian Bureau of 
Statistics) concentrate their publications on seasonally 
adjusted series and only very few provide some sort of infor­
mation on the trend-cycle, usually under the form of graphs. 

There are several reasons for limiting the publication 
of trend-cycle estimates. In the majority of the cases, the 
seasonally adjusted data are already smooth enough as to 
be able to provide a clear signal of the short-term trend. 
But for highly volatile series where further smoothing is 
required the main objections for trend-cycle estimation 
are: (1) the size of the revisions of the most recent values 
(generally much larger than for the corresponding seasonaUy 
adjusted estimates) and (2) the presence of short cycles or 
ripples (9 and 10 months cycles) in the final trend-cycle 

curve when the 13-term Henderson filter is appHed. On this 
regard, Kenny (1993) has argued that the presence of 
ripples in the final estimates of the trend-cycle leads to a 
large number of false turning points, making the 13-term 
filter unsuitable for monitoring turning points. He has 
proposed the use of the 23-term Henderson filter with the 
object of obtaining a much smoother trend. However, it 
is well known that this longer filter is sluggish to detect 
turning points and, hence not useful for current economic 
and business analysis. For this latter viewpoint, the 13-term 
filter is preferable but it produces ripples which can be 
interpreted as false turning points (an unwanted property). 

The main purpose of this study is to introduce a new 
method by which the 13-term Henderson filter can be used 
with the advantages of: (1) reducing the number of un­
wanted ripples, (2) reducing the size of the revisions made 
to the most recent estimates when new observations are 
added to the series, and (3) not increasing the time lag to 
detect turning points. 

2. TREND-CYCLE CASCADE FILTERS 

The 13-term Henderson filter is the most often selected 
and combined with the standard seasonal filters (5- and 
7-term moving averages) produces a symmetric cascade 
filter for final or central values (at least four years from 
each end of the series) with a gain as exhibited in Figure 1. 

Figure 1 also shows the gain functions of other filter 
convolutions, namely: (1) short seasonal filters with the 
9-term Henderson filter and (2) long seasonal filters with 
the 23-term Henderson filter. It is apparent that cycles of 
9 and 10 months (in the 0.08-0.16 frequency band) will not 
be suppressed by any of the cascade filters, particularly. 

Estela Bee Dagum, Faculty of Statistical Sciences, University of Bologna, Via delle Belle Arti 41, (40126) Bologna, Italy. 
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- (3X3) (3X3) (H-9) - (3X3)(3X5)[H.131 —(3x3)(3X9)[H-23) 

Figure 1. Trend-cycle symmetric cascade filters. 

— (3X3)(3XS)[H-9] — (3X3)(3X5)(H-13) —(3X3)(3X5)(H-23) 

Figure 2. Trend-cycle concurrent cascade filters. Standard 
seasonal m.a. combined with three Henderson filters. 

those using the 9- and 13-term Henderson filters. In fact, 
the symmetric trend-cycle cascade filter that results from 
the 9-term Henderson passes about 90% of the power of 
these short cycles; 72% and 21 % are passed by the 13- and 
23-term Henderson filters, respectively. 

For the concurrent trend-cycle filters which are applied 
to the last available observation, the peak reached at the 
frequency band corresponding to 9 and 10 months cycles 

is even larger (see Figure 2). Furthermore, all these asym­
metric filters introduce phase shift, being near to two 
months for the 23-term (the largest), one month for the 
13-term, and one-half month for the 9-term filter. 

0.2 0.2S 0.3 
frequency 

0 O.OS 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
frequency 

~ With conslsleni extrapdatkins — Wittwut extrapolalians 

Model (0 ,1 .1) (0 .1 .1)«- .40 O - . 6 0 

Figure 3. Trend-cycle concurrent cascade filters, (3 x 3) (3 x 5) 
[H - 13], with and without ARIMA extrapolations. 

Figure 3 shows how the use of ARIMA extrapolations 
makes the gain ofthe concurrent cascade filters (using the 
13-term Henderson) to resemble the symmetric one although 
at the expense of a smaU increase in phase shift. The 
extrapolations are from an ARIMA model (0,1,1) (0,1,1 )j 
where the regular moving average parameter is 0 = 0.40 
and the seasonal moving average parameter is 0 = 0.60. 

Although not shown for space reasons,the gain and 
phase shift of this trend-cycle concurrent filter fall between 
the other two combinations. 

When ARIMA extrapolations are used, the gain of the 
concurrent filter converges very fast to that of the final. 
Dagum and Laniel (1987) show that after three more 
observations are added to the series, the gain of the asym­
metric trend-cycle filter is very close to the symmetric one. 
The properties of these filters are also extensively discussed 
in Dagum, Chhab and Chiu (1993, 1996). 
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The presence of ripples in the final trend-cycle estimates 
will be produced by the 13-term Henderson filter only if 
some power is present in the input to the filter at the 
0.08-0.16 frequency band. The input to the filter is the 
seasonally adjusted data with extreme values replaced. 

In most empirical cases, the presence of unwanted 
ripples occurs in periods of high volatility when the 
observed data are mostly influenced by outliers which can 
be falsely interpreted as turning points. Although the 
seasonally adjusted series are modified by extreme values, 
there is a need for further smoothing which can be done 
either by applying a longer Henderson filter or by being 
stricter with the replacement of outliers. Since we want to 
keep the advantage of a short filter to detect turning points 
faster, the latter approach is the one followed here. 

In the current procedure, the default sigma limits for 
the replacement of extreme values are ± 1.5 sigma and 
±2.5 sigma. Values greater than ±2.5 sigma receive a zero 
weight and those smaller than ±1.5 sigma a weight of one 
(full weight). Values falling within the boundaries are 
assigned a linearly graduated weight between zero and one. 

priors, if applicable. The seasonally adjusted values are 
printed in Table DI 1. The seasonally adjusted series 
is modified by extreme values with zero weights using 
the default sigma limits and printed in Table E2. When 
the estimates of the pubhshed seasonally adjusted 
series for the current year are modified according to 
some revision practices, then this published revised 
series should be resubmitted to the X-11-ARIMA 
program to obtain the corresponding output shown 
in Table E2. 

(2) The output from Table E2 is extended with one year 
of extrapolations from an ARIMA model. The ARIMA 
model found adequate with many real series is the (0,1,1) 
(0,0,1) model. Although the output from Table E2 
does not contain seasonaHty, the seasonal moving 
average parameter (often of very small value) is needed 
to correct for some sort of seasonal autocorrelation in 
the data. The extended series is then run with the 
X-11-ARIMA program using the Summary Measures 
option and requesting strict sigma limits (± 0.7ff and 
± l.Off) and the 13-term Henderson filter. The new 
trend-cycle estimates are printed in Table D12. 

3. A NEW METHOD 

The new method here proposed, basically consists of: 
(1) extending a smoothed seasonally adjusted series 
(modified by extreme values with zero weight) with ARIMA 
extrapolations, and (2) applying the 13-term Henderson 
filter to the extended series using stricter sigma limits for 
the identification and replacement of extreme values. 

Experimentation with real data showed that the power 
spectrum of the seasonally adjusted series at the 0.08-0.16 
frequency band was drastically reduced only when strict 
sigma limits such as ±0.7 sigma and ±1.0 sigma were 
used. Hence, when applying the 13-term Henderson filter, 
the trend-cycle curve did not exhibit unwanted ripples 
while still maintaining its good property of rapid detection 
of turning points. Under the assumption of normality, 
these new sigma Hmits imply that 48% of the irregulars will 
be modified. 32% will get zero weight and will be replaced 
by the mean value and 16% wiH get graduated weights 
from zero to one. 

The extension of the smoothed seasonally adjusted 
series with ARIMA extrapolations is needed to reduce the 
size of the revisions for the most recent estimates of the 
trend-cycle. 

The implementation of this new procedure in the context 
of the X-11-ARIMA and X-11 methods must be done in 
two steps as follows: 

(1) Produce the best seasonally adjusted series selecting 
appropriate options for the estimation of the compo­
nents, that is, seasonaHty, trend-cycle, trading-day varia­
tions and Easter effects plus permanent or temporary 

4. EMPIRICAL RESULTS 

The new method for trend-cycle estimation is tested 
with nine leading indicator series of the Canadian Com­
posite Leading Index. In the so called "filtered" version 
of the Canadian Composite Leading Index pubhshed by 
Statistics Canada, each of the components series as well 
as the Index itself are smoothed applying to the seasonally 
adjusted data asymmetric filters based on ARM A models 
developed by Rhoades (1980). The spectral properties of 
these ARMA trend-cycle filters are similar to those of the 
end point of the 9- 13- and 23-term Henderson filters 
depending on the ARMA model chosen (see Cholette 
1982). (Although a comparison with the ARMA filters is 
not done in this paper, it is likely that the new approach 
will also give improved results.) Most of the series are 
highly volatile and all lead at turning points in the business 
cycle. The series are: 

TSE300 Stock Price Index (TSE300) 
House Spending Index (HSI) 
Money Supply (Ml) 
Business and Personal Services Employment (BPSE) 
Average Workweek in Manufacturing (AWM) 
Retail Sales of Furniture and Appliances (RSFA) 
Retail Sales of Durable Goods (RSDG) 
New Orders for Durable Goods (NODG) 
Shipments to Inventories Ratio (SIR). 

The advantages of the new procedure versus the ciu^rently 
available in X-11-ARIMA are evaluated as follows. 
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4.1 Reduction of Ripples in the Final Trend-Cycle 
Estimates 

To calculate the reduction of ripples we first introduce 
the definition of a turning point within the context of 
trend-cycle data. A turning point is generally defined as 
a point in time t when a series, say Y, is larger (smaller) 
than or equal to the preceding k and subsequent m obser­
vations of the series. That is. 

y,_^< . . . < Y,_i > r, > y,+, > . . . > 

defines a downturn and 

^+m 

Y,- > Y,_i < y, < r,+, < . . . < y,+„ 

defines an upturn. 

From the viewpoint of seasonally adjusted series and 
trend-cycle data, there is no general consensus for what 
values of k and m, a turning point has occurred. Rhoades 
(1980) defines a turning point for A: = 1 and m = 0; 
Wecker (1979) defines a turning point to be the second of 
two (or more) successive decHnes or increases, i.e., for 
k = 2 and m = 2; Zellner, Hong and Min (1991). LeSage 
(1991) and Pfeffermann and Bleuer (1992) have chosen 
A: = 3 and m = 0. These definitions do not necessarily 
correspond to those of cyclical turning points for business 
cycle analysis but any one can be useful to calculate the 
number of unwanted ripples as long as two turning points 

(a downturn and an upturn) occur within a period of ten 
months or less. We use here the turning point definition 
for which A: = 3 and m = 0 given the smoothness of the 
trend-cycle data. 

Table 1 shows the number of ripples present in the 
trend cycle estimates from the standard and the modified 
13-term Henderson filter for the period January 1981-
December 1993. 

Table 1 

Number of Unwanted Ripples in the Trend-Cycle Data 
Using the 13-Term Henderson Filter for the Period 

1981-1993 

Series Standard Procedure Modified Procedure 

NODG 
HSI 
RSDG 
BPSE 
AWM 
SIR 
TS300 
Ml 
RSFA 

The results show that the reduction is larger for those 
series with a large number of ripples and significant in 
all cases. 
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Figure 4. Average work week manufacturing. 
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For illustrative purposes. Figures 4 and 5 for AWM and 
NODG respectively, exhibit the seasonally adjusted values 
and the trend-cycle data of both the standard and modified 
procedures. It is apparent that the new method reduces the 
ripples in the trend-cycle data with respect to those shown 
by the standard procedure. In fact, the modified trend-
cycle data resembles that of the 23-term Henderson filter 
but with larger penetration into peaks and troughs of 
cycles of long duration. 

4.2 Turning Point Detection 

It is important that the reduction of ripples in the final 
estimates ofthe trend-cycle is not achieved at the expense 
of increasing the lag in detecting turning points which is 
the main limitation of the 23-term Henderson filter. 

To study the revision path of the trend-cycle for any 
given point in time, the estimates were computed for all 
end points and previous time points. The revision path of 
the modified trend-cycle values showed that the identifica­
tion of cyclical turning points is done with an average lag 
similar to the standard approach. Depending on the series, 
the lag was either equal or plus minus one month. For illus­
trative purposes. Figures 6a. exhibits the revision path of 
the modified trend-cycle values of New orders for durable 
goods for the cycHcal turning point of February 1991. 
Successive updates are carried out using data up to 
March 1991. April 1991 and so on. The turning point is 
recognized in April, after 2 months whereas it takes 

MUlonsollMI ddtara 
9400 

Sep-90 Oct Nov Dae Jan Ftb-91 Mar Apr May Juu Jul 

Figure 6a. New orders for durable goods. Trend-cycle modified 
HI3 revisions path. 
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Figure 6b. New orders for durable goods. Trend-cycle standard 
H13 revisions path. 
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3 months for the standard procedure as exhibited in 
Figure 6b. Furthermore, it is shown that successive revi­
sions of the trend-cycle estimates keep generally very close 
to the final values. The lines which protude, indicating a 
large revision, can be explained in terms ofthe underlying 
data which seem to indicate an increasing decline contra­
dicted by the following values. 

Figures 7a. and 7b. for the Average work week in 
manufacturing reveal that the turning point February-
March 1991 is detected three months later by both 
procedures. 

37.8 

J7.4 
0ct'90 Nov D«c Jan Feb Mar-91 Apr May Jun Jul Aug 

Figure 7a. Average work week manufacturing. Trend-cycle 
modified HI3 revisions path. 

Table 2 shows the mean absolute percent revision of the 
concurrent trend-cycle estimates over a four year period 
from January 1988 untill December 1991. The results 
indicate that for six of the nine cases analyzed the total 
revisions of the concurrent trend-cycle values using the 
modified procedure are much smaller compared to the 
standard, only for two series they are slightly larger. 

Table 2 
Mean Absolute Percent Total Revision of 

Concurrent Trend-Cycle 
Values Using the 13-Term Henderson Filter 

Series 
Standard 
Procedure 

(1) 

Modified 
Procedure 

(2) 

Ratio 
(2)/(l) 

NODG 
RSFA 

RSDG 
SIR 
AWM 

TS300 
Ml 
HSI 
BPSE 

1.55 
0.62 
0.77 
0.87 
0.13 
1.12 
0.35 
2.09 

0.40 

1.10 
0.47 
0.62 
0.70 
0.12 
1.07 
0.35 
2.20 

0.42 

0.73 

0.76 
0.80 
0.80 
0.92 

0.95 
1.00 
1.05 

1.05 

5. CONCLUSION 
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Figure 7b. Average work week manufacturing. Trend-cycle 
standard H13 revisions path. 

This paper introduced a new method for trend-cycle 
estimation which enables the use ofthe 13-term Henderson 
filter with the advantages of: (i) reducing the number of 
imwanted ripples in the final trend-cycle curves, (u) reducing 
the size of the revisions to preliminary concurrent values, 
and (iu) not increase the time lag in turning point detection. 

The new method basically consists of extending a 
smoothed seasonally adjusted series (modified by extreme 
values with zero weight) with one year of ARIMA extrap­
olations, and then applying the 13-term Henderson filter 
using strict sigma limits for the identification and replace­
ment of outHers. 

The procedure is illustrated with nine leading indicator 
series of the Canadian Composite Leading Index and the 
results are highly satisfactory. 

4.3 Reduction of Revisions of Concurrent Trend-Cycle 
Estimates 

Another important aspect to take into consideration is 
to reduce the total revision of the most recent estimate of 
the trend-cycle which is of preliminary character. Theo­
retically, the final trend-cycle value is obtained after the 
series is extended with four years of data but the size of 
the revisions is negligible after three more months. 
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A Moving Stratification Algorithm 
YVES TILLEl 

ABSTRACT 

A general algorithm with equal probabilities is presented. The author provides the second order inclusion probabilities 
that correspond to the algorithm, which generalizes the selection-rejection method, so that a sample may be drawn 
using simple random sampling without replacement. Another particular case of the algorithm, called moving 
stratification algorithm, is discussed. A smooth stratification effect can be obtained by using, as a stratification 
variable, the serial number of the observation units. The author provides approximations of first and second order 
inclusion probabilities. These approximations lead to a population mean estimator and to an estimator of the variance 
of this mean estimator. The algorithm is then compared to a classical stratified plan with proportional allocation. 

KEY WORDS: Selection algorithm; Equal probability sampling; Strata. 

1. INTRODUCTION 

When a file is ordered according to an auxihary variable 
that is close to the variable of interest, how can a sample 
be selected using such information? One solution to the 
problem consists of making a stratified selection. However, 
making such a selection requires that a delicate problem 
be resolved, namely subdividing the population into strata. 
Another simple solution that is both quick and efficient 
consists of making a systematic selection. The algorithm 
can be written in a few lines. Moreover, the way in which 
the file is ordered can be put to good use. However, a 
systematic selection has one major flaw, namely that 
estimating the variance of total or mean estimators requires 
one or several hypotheses concerning the population. 
It will be shown that there is another simple selection 
algorithm with which a sample can be drawn in one pass 
using the file ordering system. For this algorithm, an 
estimator of the variance of a total or mean estimator is 
provided, requiring no modelHng of the population. 

A general selection algorithm providing equal first 
order inclusion probabihties is presented in section 2. First 
and second order inclusion probabilities are provided. In 
section 3. the proposed algorithm is shown to generalize 
the selection-rejection method so that a simple random 
sample can be drawn without replacement along with the 
stratified plan with proportional allocation. Finally, in 
section 4, the moving stratum method is defined and, in 
section 5, conclusions are drawn. 

2. PRESENTATION OF THE GENERAL ALGORITHM 

2.1 The Algorithm 

Let us consider a finite population U = ( 1 . . . . , / , . . . , 
N]; we write ^'i, ...,>',•, . . . . y^^ the N values assumed 

by variable 3' for TV observation units of U. The mean of 
the values assumed by variable y for the population is 
written as 

^ = ^ E '̂•• N 
iiU 

A random sample 5 of fixed size n is drawn from this 
population. The random variables indicating the presence 
of observation units in s are written as /,, / € U. The first 
order inclusion probability is written as TT, = Pr(/€5') = 
E{Ii),i i Uand the second order inclusion probabihty as 
TTik = E{lilk), i 9^ k i U. The algorithm is very short. 
It resembles the algorithms of Fan, Fuller and Rezucha 
(1962). Bebbington (1975), McLeod and Bellhouse (1983) 
and Sunter (1977, 1986). Only N, n and the 6,. / = 0, 
..., N — 1 need to be known. The other variables are 
working variables. 

General Algorithm 

y < = 0; 
/ < = 0; 
Repeat for / = 0. . . . . N — 1 

M < = a random number with a uniform distribution [0,1]; 

. . {bi-\-i)n/N-j 
if —• > M then 

bi 

select record / -I- 1; 

j < = j + I; 
otherwise, pass the record / + 1; 

/ < = / + 1. 

At each step.y represents the number of records already 
selected and / the number of records passed (selected or 
not). For each iteration, a decision is made about selec­
ting the record / -I- 1. If the record is selected, it becomes 
the {j -I- 1 )-th in the sample. The coefficients bi, i = 0, 
..., N — 1. are strictly positive real numbers. These 

' Yves Till6, Laboratoire de Mahodologie du Traitement des Donnfies, CP . 124, University Libre de Bruxelles, avenue Jeanne, 44, 1050 Bruxelles, 
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quantities must meet certain conditions discussed below 
if the plan is to be of fixed size or if the units are to be 
selected with equal probability. The choice of different 
values for 6,-, /• = 0, . . . , A'̂  - 1, will make it possible to 
generate several special cases of the general algorithm. 

If bi are strictly positive reals such that bi < N — i, 
then the sample size is equal to or smaller than n. In fact, 
assuming we have already drawn n units from the popula­
tion at step / and that bi < N - i, then 

{bi + i)n/N-n 

bi 

n N- i n 
— < -

n N-i 

N bi N N N-i N 

It becomes impossible to draw a further unit. It will be 
assumed in everything that follows that b, < N — i. 
Moreover, if bi < N - i, i = I, .. .,N - n - 1 and if 
bi — N - i, i = N — n, ..., N — 1. the sample is of 
fixed size n. Note that these conditions for obtaining a 
sample of fixed size are sufficient but not necessary. 

Three particular cases of the algorithm are examined 
below. These three cases are defined by three choices of 
coefficient 6,, / = 0, . . . . Â  — 1. Before examining these 
particular choices, we will determine the first and second 
order inclusion probabilities without loss of generality. 

2.2 First Order Inclusion Probabilities 

We write n,, the number of units selected after passing 
/ records. We see immediately that «i. ..., ni, ..., n^^ 
is a Markov chain. In fact, we directly derive from the 
algorithm that 

Pr[«,- = y I «i, . . . , «,_,] = Pr[/7,- = j \ n ,_ i ] . 

The random variables 

c,. = ^^- ^ ' ^ " ^ ^ -"',1 = 0 N - l , 
bi 

can sometimes assume values greater than 1 or less than 
0. Since max(0, « - N - I - / ) < « , < min ( / , « ) . then 
Pr[0 < d < 1] = l i f 

6 , > 

in ( / -, N - i\ if /I < A^/2 

in ( / — - — . N-i] if n > N/2 
\N-n J 

i = 0,...,N-l. (1) 

Again conditions (1) are sufficient but not necessary. We 
can therefore construct 6, which do not meet these con­
ditions but which provide c, in [0,1 ] . The case dealt with 
in section 3.2 (stratification) represents one example. 

The following example also provides c, in [0.1] 
without meeting condition (1): let us consider Â  = 12. 
n = 4 and bo = bi = bj = b^ = b^ = 6, b2 = bs = 7, 
bi = N- i, i= 12- i,i = 7, ..., II. We have CQ = 1/3, 
c, = (7 - 3/j,)/18, C2= {3- /j2)/7, C3 = (3 - nj)/6, 
C4 = (10 - 3«4)/18, C5 = (4 - rt5)/7, C6 - (4 - «6)/6, 
Cv = (4 - n-,)/5, cg = (4 - ns)/4, cg = {4 - ng)/3, 
Cio = (4 - nio)/2, Cii = (4 — nn). We note that 
«i < 1, rt2 ^ 2, «3 < 3. If «3 = 3 then Cj = 0 and 
therefore 714 < 3. We then have n$ < 4 and if /J5 = 4 
then C5 = 0 and therefore Wg < 4. This last conment is 
true for all c, that follow. We therefore note that all c, are 
in [0,1] whereas 64 = 6 does not meet condition (1). 

In order to simplify the demonstrations which follow, 
it will be assumed that 

Pr[0 < c, < 1] = I, i = 0, ...,N - I. 

We will return to the problem of c, values greater than 
1 or smaller than 0 later on. If 

Pr[0 < c, < 1] = 1, / = 0, . . . ,A^ - 1, 

we have 

Elli+i ! « ! , . . . , «,] = Elli+i I «,] = 

{bi -i- i)n/N - ni 

bi • 

It can be shown easily by recursion that if Pr [0 < c, < 1] = 
1, / = 0, . . . , Â  - 1, £[« , ] = / n/N, / = 0, ..., N. 
Therefore, 

E[Ii] = Elm] - E[ni_i] n (2) 

2.3 Second Order Inclusion Probabilities 

Four results provided by lemmas 1,2 and 3 are needed 
in order to determine second order inclusion probabilities. 

Lemma 1 If P r [ 0 < c, < 1] = 1, / = 0, . . . . Â  - 1, 
then 

E[ni+k I «,] 

= (/ + k) 

i = I, ...,N - l,k = I, ...,N - i. 

This lemma can be demonstrated by recursion if it is 
assumed to be true for k — I. Using lemma 1. the 
following lemma is readily obtained by subtraction: 
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Lemma 2 If P r [ 0 < c , < I] = I, i = 0, ..., N - I, 
then 

E[Ii+k I "/] 

i+k-2 

= ^ - ( n i - i ^ ) ^ ' u ' ^ ' N y NJ bi+k-i i l bl 

i = I, ...,N - l,k = I, ...,N - i. 

It is assumed by convention that an empty product has a 
value of 1. 

Lemma 3 If Pr[0 < c ,< 1] = 1 . / = 0, . . . . Â  - 1. 
then 

>=1 t=j ' 

The demonstration is provided in the appendix. 

Finally, the second order inclusion probabihty is pro­
vided by the following proposition: 

Proposition! I fPr[0 < c, < 1] = 1 , / = 0, ...,N- 1, 
then 

E[li+kli+i] 

_ n^ n N - n 1 
_ 

If the design is of fixed size, we can use the Yates and 
Grundy variance formula (1953) 

ki^i 

Since TT, = n/N, / = 1, . . . , Af and assuming that 

N' 
lik = I - ''^ik^y 

n^ 

we can write 

var[A] =^2Yll^y> -yk)^y>k-
iiU kiU 

k^i 

The variance estimator is provided by 

"̂[̂ .] = ii-.i:i: ( - - - ) -
iis kis 

kpii 

This can be written here as 

'"'ik 

V'̂ [̂̂ '̂ ] = ^ I ; E ( ^ ' - ^ * ) \ - T 

N^ N N bi+ 

iis kis 
k^i 

lik 

(6) 

(7) 

k-l 

i + * - 2 

\ • j=l t=j ' ' f=;+l ' 

i = 0, ...,N - 2,k = 2, ...,N - i. (4) 

The demonstration is provided in the appendix. 

Corollary 1 If Pr[0 < c, < 1] = 1 , / = 0, . . . , A^- 1, 
then 

3. APPLICATION 1: SIMPLE AND STRATIFIED 
RANDOM SELECTIONS 

3.1 Simple Design 

The simplest selection algorithm, the selection-rejection 
method described in Fan, Fuller and Rezucha (1962, 
method 1), Beddington (1975) and Deville and Grosbras 
(1987, p. 210). is of course a particular case ofthe general 
algorithm. We need only take 

n" n N-n( 1 ' ^ llf 6, - 2\ 

1 ^ 6 , - 1 n bk-i bl 

7 = 1 t=j 

, i = I, ...,N - l,k > i. 

2.4 The Horvitz-Thompson Estimator and its Variance 

The Horvitz-Thompson estimator is the simple sample 
mean since the first order inclusion probabiUties are aU equal 

bi = N - i, i = 0, ..., N - I. 

We always have 0 < c, < 1. The first order inclusion 
probabihties always have a value of n/N. Calculations for 
second order inclusion probabilities follow from proposi­
tion 1. Assuming k > i, on the basis of corollary 1, we can 
find the second order inclusion probabilities of the simple 
design: 

'r,* -
n{n - 1) 

A^(A^- 1)' 

A = - D yi-
We also recall some classical resuhs concerning the simple 
design that we will be using later on. The estimator for j ' 
is therefore the mean of the sample 
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ysrs — /_, yi-

The variance of this estimator is provided by 

w r- T oj N - n 

(8) 

n N - I 

where 

aj = 
l^ 

N a: = - Y ^y- - y^' 
iiU 

(9) 

(10) 

An unbiased estimate of this variance is 

^ - r - T Sy N - n 

n N 
where 

•s> - ^ _ J 2J {y' y^^v • 

(11) 

(12) 

3.2 Stratified design 

The stratified design can also be defined using the general 
algorithm. The stratification variable in this case is the serial 
number of the individual. Let us consider the particular 
case of a stratified design of H strata with proportional 
allocation where all the strata are of the same size. The 
strata are such that the individuals of a given stratum are 
adjacent in the data file. It is also assumed that N/His an 
integer. This stratified design is obtained by simply taking 

bi = f ( A r - / - l ) m o d ^ l -I- 1, / = 0 A^- 1. 

4. APPLICATION 2: MOVING STRATIFICATION 

4.1 The Problem 

The file is assumed to be ordered according to an aux­
iliary variable that is close to the variable of interest. The 
problem is as follows: how can we draw a random selection 
that yields a small variance for the Horvitz-Thompson 
estimator of a mean? Looking at the formulation of the 
Yates-Grundy variance (5), we see that there are two 
distinct answers to this question. 

The first solution consists of selecting with unequal 
probabilities using first order inclusion probabilities that 
are proportional to the variable of interest. If such a selec­
tion could be made, all quantities 

{yi _ y,\ 
X^i W 

The second solution consists of using second order 
inclusion probabilities. A good selection could be one 
where ir,vt are close to TT, TT*̂  if yi is very different from yk. 
On the other hand, if ^, is very close to^^ . we can select 
second order inclusion probabilities ir„t that are clearly 
smaller than itiTtk- Thus, where quantities 

would be large (respectively small), quantities Tr/Tr̂ t — 7r,vt 
would be small (respectively large). We would thus have 
a small variance. 

The second solution we have just described is m fact often 
used. It is the basic idea for stratification. Our objective 
is to apply this idea to the construction of a sequential selec­
tion algorithm that is easy to unplement. Such an algorithm 
could be applied to any file without the need to know 
anything save the size ofthe population. It would therefore 
apply to very large files. We could thus benefit from the 
information provided by this auxiliary variable like for strati­
fication, without the need to actually subdivide into strata. 

4.2 The Method 

We first define M the length of the moving stratum 
within the population. M represents, in a way, the size 
of the stratum within the population and is such that 
N/n < M < N. The algorithm of the moving stratum is 
defined by 

bi = min{M, N - i),i = 0, ...,N- 1. 

There is, however, one problem. Quantities c, defined 
by 

• {M + i)n/N - «,• . 

Ci = 

n — n 
.N-i 

M 

7 Otherwise. 

if i < N - M 

would be zero and therefore the variance would be zero. 

are not always in [0,1 ] . 

In fact, let us assume that, before the {N - A/)-thstep of 
the algorithm, c, is positive and very close to zero and that 
through some bad luck the unit / is nevertheless chosen. In 
such a case. c,+1 would have a value of c, — {N— n )/{NM). 
c,+1 can therefore have a negative value but this negative 
value is always greater than — {N-n)/ {NM). In fact, if 
one of the c, is already negative, the unit / is not selected 
and therefore c,+ j has a value greater than c,. 

Let us now assume that before the {N — M)-th step 
of the algorithm, one c, is very slightly smaller than 1 and 
that nevertheless unit / is not selected. In such a case, c,+1 
would have a value of c, + n/{NM). c,+1 can therefore 
take on a value greater than 1 but this value greater than 1 
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is nevertheless always smaller than 1 -I- n/ {NM). In fact, 
if one of the c, is already greater than 1, the unit / is always 
selected and therefore c,+, has a value smaller than c,. 

We obtain 

A- N-n 
NM 

<Ci< I -\-—1 =l,i = 0,...,N-M. 
NM] 

(13) 
The design is however of fixed size, a result that follows 
the following proposition: 

Proposition2 If 6, = min(M,N- i ) , {N/n <M<N), 
0 = 1. ..., N - 1, then the design is of fixed size. 

The demonstration is provided in the appendix. 

Since the c, are not always within the interval [0,1 ] , 
we carried out 50 simulations of the moving stratum 
algorithm for various sample and population sizes. The 
selected N population sizes were 100. 500, 2500, 12500, 
62500, 312500. The reciprocals of sampling rates {N/n) 
were 2,4,8,16,32,64,128,256,512,1024,2048,4096. We 
carried out several simulations by varying the size of the 
moving stratum as follows: M = N/n, 2N/n, 3N/n, 
The simulations seem to indicate that the greater the value 
for M, the smaller the probabihty that a c, will fall outside 
of [0,1 ] . As soon as M > lON/n, for all the simulations 
that we carried out, the problem was no longer raised. 
This first result does not imply that the probability that 
at least one of the c, will fall outside of [0,1 ] is zero when 
M > lON/n. However, it may be said that such a prob­
ability would then be very small. 

4.3 Estimating the Mean and Bias 

In examining the results yielded by expression (2) and 
proposition 1, we get. as a first approximation, a value of 
about TT, = n/N for first order inclusion probabilities. 
This approximation of inclusion probabilities makes it 
possible to construct an estimator. 

ysm — 7j yi-
n ^^ iis 

This estimator is slightly biased since the c, are not all 
exactly within the interval [0,1 ] . This bias is 

B[ysm] = jjY "'•̂ '• 
iiU 

where a, = TT, N/n — 1. Since the design is of fixed size, 
E /«£/«( = 0- We can therefore write the bias in the form 
of a covariance: fi[AmJ = o>a where 

iiU 

(14) 

Since the absolute value of a covariance is always equal 
to or smaller than the product of the two standard devia­
tions, we obtain an upper bound for the absolute value of 
the bias 

I B[ysm\ I ^ <'y<^a 

where Oy is defined by (10) and 

N 
iiU 

The variance of the estimator is of a magnitude that is 
comparable (for N and fixed n) to the variance of the 
estimator of the mean in the simple design without replace­
ment. We can therefore write 

I B[ysm] I ^ C„ JVar[A„] 

where Var [^srs] is defined by (9) and 

•\ {N-n) 

We will assume that the bias is negligible when the upper 
bound of the bias of the estimator ̂ ^^ is negligible with 
respect to Var[^j„] '^\ '-^-> when C„ is small. 

Recursively we can calculate the exact value of the 
Pr[/J, = j] since we have 

Pr[7, = 1 I n,] = Ci,i = 1, ...,N - M 

where c, has a value of 0 if c, < 0, c, if 0 < c, < 1 and 
1 if c, > 1. From this result we can derive the exact value 
of first order inclusion probabilities. 

We have calculated (Appendix. Table 1) the values of 
Ca for various sample and population (100 - 312500) 
sizes. The values of C„ are provided for sizes of moving 
strata Mequal to N/n, 2N/n, 3N/n, 4N/n and 5N/n. It 
can be seen that as soon as the value of the moving stratum 
is 2A /̂n. C„ never exceeds 0.07. When M = 3N/n, the 
coefficient C„ is expressed in thousandths. According to 
Cochran (1977, pp. 13-14), the bias is then negligible. The 
table therefore shows that if Af > 3N/n, the bias of the 
estimator will be negUgible at least for the specified sample 
and population sizes. 

However, these results do not imply that the bias of the 
estimator is large when M is very small (for example 
M = N/n). The C„ are bias upper bounds. From expres­
sion (14), we see that the bias will be all the greater as the 
variable of interest correlates with the exact inclusion 
probabilities. We have shown (Figure 1) the exact inclusion 
probabilities {y axis) for N individuals {x axis) obtained 
by using the moving stratification algorithm with the 
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Figure 1. Inclusion probabilities. 

parameters A^= 51. n = 11, M = N/n. This case is 
obviously very unfavourable. The result is interesting. In 
this case. «/Ar = 0.215686. The inclusion probabilities are 
distributed on both sides of n/N with no marked tendency 
associated with the ordering of the file. In practical terms, 
the probability can be considered very small that there will 
be a variable of interest that strongly correlates with the 
exact inclusion probabihties; as a result, the bias will most 
often be clearly smaller than the given upper bound. 

We could, of course, use the exact inclusion probabilities 
to estabUsh an estimate. We feel that this is not worthwhile, 
for two reasons: 

• first, because calculating the exact inclusion probabilities 
requires a significant amount of time, 

• second, because the exact first order inclusion proba­
bilities are such that 

Var 
L iis '-' 

In this case, we have a random Horvitz-Thompson esti­
mator of a constant variable {yk = C). To overcome this 
problem, an estimate of the mean is usually carried out 
using Hajek's (1971) ratio. This estimator is also biased. 

4.4 Estimating the Variance of the Estimator 

Assuming that Pr(0 < c, < 1) = 1, we can also build 
an approximation of second order inclusion probabilities 
using corollary 1. Given that 6, has a value of M if 
i < N - Mand N - i otherwise, we obtain the following 
approximation: 

T,fr «= ^ (1 — 

N^ 

where 

0ik = 
N n 

2n M 

I ( /M - 2\™n('-l.^-^)^ 

( ^ ) 

max(0,min(Af-Af-;+l,/t-/)) 
k > i. 

Assuming that the first order inclusion probabilities have 
a value of n/N, an approximation of the variance of psm 
can be obtained: 

Var,^^[A„] = -J3 D D (^' - yk)^^ik- (15) 
2N iiU kiU 

ki£i 

From (15), an estimator of the variance of the estimator 
of the mean can be obtained: 

Var,^^[A.] = 2"^ D D iyi - •>'*)' r ^ V " (16) 
iis kis 

k^i 

Again, this estimator is biased. In order to assess the 
magnitude of the bias, we carried out a series of simula­
tions. The results are given in Table 2 in the appendix. 
We generated populations of size Â  = 400. The values 
assumed by the two variables x and y were generated by 
means of pseudo-random numbers having a bivariate 
normal distribution with a fixed coefficient of correlation 
p. The populations were then sorted in terms of the 
variable x. The objective was to estimate y. 

In these populations, samples of size 64 were selected 
using the moving stratum method {sm),a stratified design 
with proportional allocation in which the sizes of the strata 
were all equal {strut), as well as a simple design without 
replacement {srs). These three methods are particular 
cases ofthe general algorithm and they were implemented 
using the same random numbers. Simulations were carried 
out for different values ofthe moving stratum M(case: sm) 
and for different numbers of strata H (case: strut). An 
explanation is provided below for the choices of M and 
H. For each simulation, 200,000 samples were selected. 

For each of the simulations, three results are given: 

• The means for the simulations of the estimators of the 
variance of the estimator of the mean, which are ex­
pressed as Esirryar{y). These variance estimators are 
given by expressions (11) {srs) and (16) {sm). 

• The mean-square errors for the simulations of the esti­
mators of the mean. These quantities are expressed as 
EQMsir„{y) = Esi„,{y - y)\ 

• The variances of the estimators of the mean. These 
variances are given by expressions (9) {srs) and (15) 
{sm). In the case of the moving stratification, this is of 
course the proposed approximation. 
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A careful reading of the results seems to indicate that 
the variance estimator proposed for the moving stratum 
algorithm is not affected by a systematic bias no matter 
what the value for the coefficient of correlation between 
A-and;'. The results also seem to indicate that the approx­
imate expression given for the variance of the estimator 
of the mean for the moving stratification is a valid 
approximation. 

4.5 Interest of the Algorithm 

Within the class of algorithms defined by the general 
algorithm, we call the mean horizon of an algorithm the 
quantity 

N-l 

B= - Y bi. 
N i = 0 

For the simple design, we get ^5^ = {N -\- 1) /2. For the 
algorithm of the moving stratum, we have 

N-M-l 

5sm = 

*- / = 0 

N-l 

M •¥ Y ^^ 
i = N-M - ' > ] 

= ̂ [ -^] 
Let us now assume that, as described in section 3.2, we 

select a sample using a design with proportional allocation 
in which all the strata are of the same size and in which 
the sizes of H strata are all equal. In such a design, the 
mean horizon has a value of 

=K2-> 
A change in the mean horizon does not fundamentally 

affect the first order inclusion probabilities. The second 
order inclusion probabilities, on the other hand, are 
strongly affected by a change of horizon. In fact, it can 
easily be seen that the smaller the mean horizon, the 
smaller the probability of selecting two close individuals. 
(Two individuals are said to be close if the absolute value 
of the difference of their serial numbers in the data file is 
small.) Intuitively, we can expect the moving stratum 
algorithm to have a stratification effect similar to that of 
a stratified design with proportional allocation having the 
same mean horizon, i.e., when 

t^strat — t^sm > 

or in other words, when 

M = N -\-- -
2 

1 X.2 ^ - 1 
- -{• N^ . 

4 H 
(17) 

When N is large in relation to M, we have approximately 

M « 
2N 
H' 

For each series of simulations presented in the Appendix 
(Table 2), the sizes of the moving strata (case: sm) were 
fixed in terms ofthe number of strata (case: strat) in such 
a way that the mean horizons of the two designs were 
identical in terms of expression (17). It is observed that, 
in such a case, the increased precision (compared to that 
of the simple design) derived from the moving stratum 
algorithm is of the same order of magnitude as that derived 
by means of stratification. 

5. COMMENTS 

The simulations that were carried out clearly show that 
the moving stratification algorithm yields a stratification 
effect of the same type as classical stratification with 
proportional allocation. This algorithm makes it possible 
to study the delicate problem of subdividing a continuous 
variable into strata. The estimators of the mean that 
are proposed are slightly biased. However, as long as 
M > lON/n, simulations show that it is extremely rare for 
at least one of the c, to fall outside of [0,1 ] . Moreover, 
we have shown that even when that probability is not zero, 
the bias of the estimator that we propose is negligible as 
long as M > 3N/n. 
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APPENDIX 1 

Demonstration of the Lemmas and Propositions 

Demonstration of Lemma 3 

Var[/i,+,] 

= Var[«,] -I- Var[/,+,] 

Since 

--2 

bi 

we obtain 

Var[«,] . 

bi- 2 n N - n 
Var[«,+,] = Var[/i,] ^ - — -h - — r — , 

O, A A 

/ = 1, . . . . A T - 1. (18) 

We then show that (3) verifies the recursion equation (18) 
and the initial condition given by 

Var (/J,) = 
n N — n 

Case 2: / > 0. Using lemma 2. we obtain: 

E[li+kli+i\ni = t] 

= E[Ii+k\ni + i =t-l-l]E[Ii + i\ni = t] 

Cn / n\ I ' 1 ^ ^ bl - n 

'<[^('-'•^)i]• 
Which means that 

E[E[Ii+kIi+i I «/]] 

_ri^ 1 _ r n N - / 1 _ Var [ni] ^ ^j bf-l 

~ N^ bi+k-i [N N bi J ÂÂ  bl 

Lemma 3 thus gives us Var [«,] . We immediately obtain 

(4). 

Demonstration of Proposition 2 

Using (13). we have 

N N 
pAn - M - -

L ^ 

N -
< n\]_\A < 

N N 
" 1 , 
- -I- « = 1. 

Demonstration of Proposition 1 

Case 1: / = 0. From lemma 2 we immediately get: 

EUkh] = E[E[h\ n,]/ii] 

n n N — n 1 

N^ N N b 

k-2 n 
k-l ,_ 1=1 

bl - 1 

bl 

Therefore. 

Pr[0 < n - nt^_M -^ M] = 1 . 

Beginning with step N - M, the algorithm is a selection-
rejection algorithm of the type described in section 3.1. This 
algorithm yields a sample of exactly n — n^^^M observa­
tion units during the final M steps. Since n — W/V-M ^ M 
this operation raises no difficulty and the algorithm is 
therefore of fixed size n. 
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APPENDIX 2 

Tables, Bias Upper Bounds and Simulations 

Table 2 
Results of the Simulations, Simple Design, Stratification 

and Moving Stratification 

N n 

100 50 
25 
12 
6 
3 

500 250 
125 

62 
31 
15 
7 
3 

2,500 1,250 
625 
312 
156 
78 

39 
19 
9 
4 

12,500 3,125 
1,562 

781 
390 
195 
97 

48 
24 
12 
6 
3 

62,500 3 906 
1,953 

976 
488 
244 

122 
61 
30 
15 
7 
3 

312,500 4,882 
2,441 
1,220 

610 
305 
152 
76 
38 
19 
9 
4 

Table 1 
Value of the Bias Upper Bounds C„ 

N 
M= -

n 

0.000000 
0.057326 
0.041716 
0.032227 
0.023515 

0.000000 
0.129091 
0.090863 
0.066891 
0.048544 
0.035508 
0.024046 

0.000000 
0.289060 
0.202458 
0.147113 
0.105662 
0.075975 
0.054525 
0.039560 
0.028388 

0.646539 
0.452450 
0.327879 
0.234114 
0.166626 
0.118357 
0.084217 
0.060797 
0.044677 
0.033727 
0.024172 

0.732684 
0.522918 
0.371301 
0.263300 
0.186736 
0.132653 
0.094601 
0.067467 
0.049227 
0.035847 
0.024176 

0.829762 
0.587909 
0.416165 
0.294647 
0.208743 
0.147877 
0.105272 
0.075422 
0.054695 
0.039644 
0.028427 

Value of the Coefficient C„ 

2 ^ 
M = — 

n 

0.000000 
0.002610 
0.002604 
0.002029 
0.000645 

0.000000 
0.006002 
0.005664 
0.004666 
0.003586 
0.002552 
0.000699 

0.000000 
0.013495 
0.012607 

• 0.010234 
0.007742 
0.005719 
0.004174 
0.003014 
0.001451 

0.030208 
0.028177 
0.022798 
0.017131 
0.012500 
0.008995 
0.006452 
0.004689 
0.003461 
0.002356 
0.000712 

0.050942 
0.038250 
0.027833 
0.019979 
0.014259 
0.010168 
0.007273 
0.005207 
0.003820 
0.002637 
0.000713 

0.062191 
0.044596 
0.031758 
0.022555 
0.016008 
0.011356 
0.008098 
0.005817 
0.004238 
0.003038 
0.001457 

iN 
M = — 

n 

0.000000 
0.000185 
0.000235 
0.000134 
0.000000 

0.000000 
0.000437 
0.000534 
0.000484 
0.000384 
0.000215 
0.000000 

0.000000 
0.000987 
0.001190 
0.001064 
0.000841 
0.000634 
0.000466 
0.000301 
0.000034 

0.002211 
0.002661 
0.002371 
0.001863 
0.001388 
0.001009 
0.000727 
0.000529 
0.000377 
0.000173 
0.000000 

0.005299 
0.004159 
0.003092 
0.002243 
0.001609 
0.001150 
0.000823 
0.000590 
0.000427 
0.000227 
0.000000 

0.006909 
0.005006 
0.003583 
0.002551 
0.001813 
0.001287 
0.000918 
0.000659 
0.000479 
0.000305 
0.000034 

4 ^ 
M= — 

n 

0.000000 
0.000015 
0.000023 
0.000005 

0.000000 
0.000038 
0.000059 
0.000059 
0.000046 
0.000015 

0.000000 
0.000086 
0.000133 
0.000130 
0.000107 
0.000082 
0.000060 
0.000029 
0.000000 

0.000193 
0.000297 
0.000290 
0.000238 
0.000181 
0.000133 
0.000096 
0.000069 
0.000044 
0.000008 

0.000649 
0.000531 
0.000403 
0.000295 
0.000213 
0.000152 
0.000109 
0.000078 
0.000054 
0.000016 

0.000901 
0.000659 
0.000474 
0.000339 
0.000241 
0.000171 
0.000122 
0.000087 
0.000062 
0.000030 
0.000000 

5N 
M= — 

n 

0.000000 
0.000001 
0.000002 
0.000000 

0.000000 
0.000004 
0.000007 
0.000008 
0.000006 
0.000001 

0.000000 
0.000008 
0.000016 
0.000017 
0.000015 
0.000012 
0.000008 
0.000002 

0.000018 
0.000036 
0.000039 
0.000033 
0.000026 
0.000019 
0.000014 
0.000010 
0.000005 
0.000000 

0.000087 
0.000074 
0.000057 
0.000042 
0.000031 
0.000022 
0.000016 
0.000011 
0.000007 
0.000001 

0.000128 
0.000095 
0.000068 
0.000049 
0.000035 
0.000025 
0.000018 
0.000013 
0.000009 
0.000002 

2 
P 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

Plan 

sm 
srs 

stral 

sm 
srs 

slrat 

sm 
srs 

stral 

sm 
srs 

strat 

sm 
srs 

slrat 

sm 
srs 

slrat 

sm 
srs 

slrat 

sm 
srs 

slrat 

sm 
srs 

stral 

sm 
srs 

stral 

sm 
srs 

stral 

sm 
srs 

stral 

sm 
srs 

stral 

sm 
srs 

stral 

sm 
srs 

stral 

sm 
srs 

strat 

sm 
srs 

slrat 

sm 
srs 

slrat 

Parameters 

M = IS.SiN/n 

H =2 

M = 18.83Wn 

H = 2 

M = IS.SiN/n 

/ / = 2 

M = IS.SiN/n 

H = 2 

M = 18.83Wn 

H = 2 

M = l8.SiN/n 

H = 1 

M = 8.65Wn 

/ / = 4 

M = 8.65W/I 

H = 4 

M = 8.65yv/n 

/ / = 4 

M = 8.65/V/n 

/ / = 4 

M = S.65N/n 

H = 4 

M = 8.65N/n 

/ / = 4 

M = A.2lN/n 

H = 8 

M = 4.2lN/n 

H = S 

M = 4.2lN/n 

H = S 

M = 4.2lN/n 

/ / = 8 

M = 4.2lN/n 

/ / = 8 

M = 4.2lN/n 

H = 8 

Esim^^^y 

0.01318 
0.01317 
0.01319 

0.01210 
0.01316 
0.01172 

0.01073 
0.01316 
0.00943 

0.00957 
0.01315 
0.00783 

0.00839 
0.01315 
0.00630 

0.00757 
0.01314 
0.00514 

0.01319 
0.01317 
0.01320 

0.01107 
0.01316 
0.01080 

0.00876 
0.01316 
0.00811 

0.00695 
0.01315 
0.00637 

0.00484 
0.01315 
0.00402 

0.00312 
0.01314 
0.00206 

0.01317 
0.01317 
0.01321 

0.01067 
0.01316 
0.01055 

0.00810 
0.01316 
0.00794 

0.00592 
0.01315 
0.00575 

0.00344 
0.01315 
0.00315 

0.00124 
0.01314 
0.00085 

Vary 

0.01317 
0.01316 
0.01319 

0.01210 
0.01316 
0.01188 

0.01073 
0.01316 
0.00929 

0.00957 
0.01316 
0.00778 

0.00839 
0.01316 
0.00624 

0.00757 
0.01316 
0.00508 

0.01319 
0.01316 
0.01318 

0.01107 
0.01316 
0.01076 

0.00876 
0.01316 
0.00793 

0.00694 
0.01316 
0.00639 

0.00484 
0.01316 
0.00391 

0.00312 
0.01316 
0.00197 

0.01317 
0.01316 
0.01324 

0.01067 
0.01316 
0.01047 

0.00809 
0.01316 
0.00789 

0.00592 
0.01316 
0.00564 

0.00344 
0.01316 
0.00311 

0.00124 
0.01316 
0.00079 

EQMsimP 

0.01301 
0.01296 
0.01318 

0.01187 
0.01287 
0.01164 

0.01080 
0.01320 
0.00946 

0.00954 
0.01301 
0.00774 

0.00839 
0.01322 
0.00622 

0.00760 
0.01319 
0.00513 

0.01317 
0.01296 
0.01316 

0.01084 
0.01287 
0.01054 

0.00882 
0.01320 
0.00796 

0.00688 
0.01301 
0.00632 

0.00485 
0.01322 
0.00390 

0.00313 
0.01319 
0.00197 

0.01316 
0.01296 
0.01325 

0.01046 
0.01287 
0.01025 

0.00808 
0.01320 
0.00789 

0.00588 
0.01301 
0.00561 

0.00345 
0.01322 
0.00308 

0.00125 
0.01319 
0.00080 
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Table 2 

Results of the Simulations, Simple Design, Stratification 
and Moving Stratification - end 

2 
P 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

Plan 

sm 
srs 

slrat 

sm 
srs 

slrat 

sm 
srs 

strat 

sm 
srs 

stral 

sm 
srs 

strat 

sm 
srs 

slrat 

sm 
srs 

slrat 

sm 
srs 

stral 

sm 
srs 

strat 

sm 
srs 

strat 

sm 
srs 

stral 

sm 
srs 

stral 

Parameters 

M = 2.1 IN/n 

H = 16 

M =2.1 IN/n 

H = 16 

M = 2.1 IN/n 

H =16 

M = 2.1 IN/n 

H = 16 

M = 2.llN/n 

/ / = 16 

M = 2.1 IN/n 

H = 16 

M = 1.09Wn 

/ / = 32 

M = l.(BN/n 

/ / = 32 

M = l.09N/n 

/ / = 32 

M = l.09N/n 

H = 32 

M = l.tBN/n 

H =32 

M = l.tBNIn 

H = 32 

Esim^^^} 

0.01319 
0.01315 
0.01315 

0.01038 
0.01317 
0.01034 

0.00796 
0.01316 
0.00790 

0.00572 
0.01315 
0.00568 

0.00295 
0.01317 
0.00287 

0.00048 
0.01317 
0.00037 

0.01325 
0.01313 
0.01201 

0.01070 
0.01313 
0.00972 

0.00807 
0.01315 
0.00732 

0.00538 
0.01315 
0.00484 

0.00283 
0.01317 
0.00255 

0.00016 
0.01317 
0.00012 

y&Ty 

0.01319 
0.01316 
0.01308 

0.01036 
0.01316 
0.01034 

0.00796 
0.01316 
0.00801 

0.00573 
0.01316 
0.00572 

0.00294 
0.01316 
0.00288 

0.00048 
0.01316 
0.00034 

0.01316 
0.01316 
0.01239 

0.01062 
0.01316 
0.01018 

0.00803 
0.01316 
0.00751 

0.00534 
0.01316 
0.00484 

0.00281 
0.01316 
0.00276 

0.00016 
0.01316 
0.00007 

EQMsin,9 

0.01328 
0.01332 
0.01331 

0.01021 
0.01334 
0.01025 

0.00792 
0.01323 
0.00794 

0.00561 
0.01299 
0.00563 

0.00290 
0.01325 
0.00285 

0.00048 
0.01335 
0.00034 

0.01310 
0.01317 
0.01302 

0.01064 
0.01316 
0.01083 

0.00811 
0.01309 
0.00803 

0.00536 
0.01310 
0.00543 

0.00276 
0.01283 
0.00280 

0.00017 
0.01304 
0.00011 

REFERENCES 

BEBBINGTON, A.C. (1975). A simple method of drawing a 
sample without replacement. Applied Statistics, 24, 136. 

COCHRAN, W.G. (1977). Sampling Techniques. New York: 
Wiley. 

DEVILLE, J . -C , and GROSBRAS, J.-M. (1987). Algorithmes 
de tirage. In Lessondages. Droesbeke, J.-J., Fichet, B., and 
Tassi, P. (Eds.). Paris: Economica, 209-233. 

FAN, C.T., MULLER, M.E., and REZUCHA, I. (1962). Devel­
opment of sampling plans by using sequential (item by item) 
selection techniques and digital computers. Journal of the 
American Statistical Association, 57, 387-402. 

HAJEK, J. (1971). Comment on an essay of D. Basu. In 
Foundations of Statistical Inference. Godambe V.P., and 
Sprott, D.A. (Eds). Toronto: Holt, Rinehart and Winston. 

McLEOD, A.L, and BELLHOUSE, D.R. (1983). A convenient 
algorithm for drawing a simple random sampling. Applied 
Statistics, 32, 182-184. 

SUNTER, A.B. (1977). List sequential sampling with equal or 
unequal probabilities without replacement. Applied Statistics, 
26, 261-268. 

SUNTER, A.B. (1986). Solutions to the problem of unequal 
probability samphng without replacement. International 
Statistical Revue, 54, 33-50. 

YATES, F., and GRUNDY, P.M. (1953). Selection without 
replacement from within strata with probability proportional 
to size. Journal of the Royal Statistical Society, B, 15, 
235-261. 



Survey Methodology, June 1996 
Vol. 22, No. 1, pp. 95-103 
Statistics Canada 

95 

A View on Statistical Disclosure Control for Microdata 
A.G. de WAAL and L.C.R.J. WILLENBORG' 

ABSTRACT 

Problems arising from statistical disclosure control, which aims to prevent that information about individual 
respondents is disclosed by users of data, have come to the fore rapidly in recent years. The main reason for this 
is the growing demand for detailed data provided by statistical offices caused by the still increasing use of computers. 
In former days tables with relatively little information were published. Nowadays the users of data demand much 
more detailed tables and, moreover, microdata to analyze by themselves. Because of this increase in information 
content statistical disclosure control has become much more difficult. In this paper the authors give their view on 
the problems which one encounters when trying to protect microdata against disclosure. This view is based on their 
experience with statistical disclosure control acquired at Statistics Netherlands. 

KEY WORDS: Statistical disclosure control; Microdata; Uniqueness. 

1. INTRODUCTION 

Statistical disclosure control (SDC) is becoming increas­
ingly important as a result of the growing demand for 
information provided by statistical offices. The informa­
tion released by these statistical offices can be divided into 
two major parts: tabular data and microdata. Whereas 
tables have been released traditionally by statistical offices, 
microdata sets are released only since fairly recently. In 
the past the users of data usually did not have the tools 
to analyze these microdata sets properly themselves. 
Nowadays every serious researcher is in possession of a 
powerful personal computer. Analyzing microdata is 
therefore no longer a privilege of the statistical office. The 
users of data can and want to analyze these microdata 
themselves. This creates non-trivial SDC-problems. 

A key problem in the theory of SDC for microdata is 
the determination of the probability that a record in a 
released microdata set is re-identified. In order to estimate 
this probability a number of different approaches have 
been attempted. The aim of these attempts differ consider­
ably. In some publications the aim was to gain a qualitative 
insight into the probability of re-identification of an 
unspecified record from a microdata set. In other publica­
tions the aim was set much higher, namely to obtain the 
probability that a specific record is re-identified. These are, 
of course, extreme cases. The former case is comparatively 
easy to solve, akhough still difficult. The latter case is more 
difficult and may be impossible to solve. 

In this paper we give an overview of the problems for 
which Statistics Netherlands has attempted to provide a 
solution and problems of which the suggested solution has 
attracted our attention. We consider the problems and 
their outline of the solutions, while technical points are 

skipped. The choice of the problems and the possible 
solutions we consider is heavily influenced by the expe­
riences of Statistics Netherlands in the field of SDC. 

The rest of this paper is organized as follows. Basic 
concepts are defined in Section 2. Preliminaries on SDC 
for microdata are the subject of Section 3. Our basic phi­
losophy of SDC for microdata is discussed in Section 4. 
In Section 5 we describe the ideal situation for microdata: 
in this case we would have a probability for each record 
that this specific record can be re-identified. A somewhat 
less ideal situation is described in Section 6: in this case 
we have a probability for a data set that an unspecified 
record can be re-identified. In Section 7 we have to face 
reality: at the moment we do not have a good disclosure 
risk model and we have to be satisfied with heuristic 
arguments. In Section 8 we summarize our conclusions 
and suggest some possibilities for future research. 

2. BASIC CONCEPTS 

In this section a number of basic concepts are defined. 
We will assume that the statistical office wants to release 
a microdata set containing records of a sample of the 
population. Each record contains information about an 
individual entity. Such an entity could be a person, a 
household or a business enterprise. In the rest of this paper 
we will usually consider the individual entity to be a 
person, although this is not essential. 

The two most important concepts in the field of SDC 
are re-identification and disclosure. Re-identification is 
said to occur if an attacker establishes a one-to-one rela­
tionship between a microdata record and a target indi­
vidual with a sufficient degree of confidence. Following 

' A.G. deWaal and L.C.R.J. Willenborg, Statistics Netherlands, Division of Research and Development, Department of Statistical Methods 
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Skinner (1992) we distinguish between two kinds of disclo­
sure. Re-identification disclosure occurs if the attacker is 
able to deduce the value of a sensitive variable for the target 
individual after this individual has been re-identified. 
Prediction disclosure (or attribute disclosure) occurs if the 
microdata enable the attacker to predict the value of a sen­
sitive variable for some target individual with a sufficient 
degree of confidence. For prediction disclosure it is not 
necessary that re-identification has taken place. Most 
research so far has concentrated on re-identification 
disclosure. In this paper we will use the term disclosure to 
indicate re-identification disclosure unless stated otherwise. 

Now, let us define what is meant by an identifying 
variable. A variable is called identifying if it can serve, 
alone or in combination with other variables, to re-identify 
some respondents by some user of the data. Examples of 
identifying variables are residence, sex, nationality, age, 
occupation and education. A subset ofthe set of identifying 
variables is the set of duect (or formal) identifiers. Examples 
of direct identifiers are name, address and public iden­
tification numbers. Direct identifiers must have been 
removed from a microdata set before it is released for else 
re-identification is very easy. Other identifiers in most 
cases do not have to be removed from the microdata set. 
A combination of identifying variables is called a key. The 
identifying variables that together constitute a key are also 
called key variables. A key value is a combination of scores 
on the identifying variables that together constitute the key. 

In practice, determining whether or not a variable is 
identifying is a problem that can only be solved by sound 
judgment. No limitative list of intrinsically identifying 
variables exists, nor, for that matter, an unambiguous and 
well-defined set of rules to determine such variables. 
Selecting a set of identifying variables, and therefore of 
keys, is generally based on subjective assumptions about 
the population. Statistics Netherlands applies some criteria, 
like the visibihty of the categories of a variable, to deter­
mine whether or not a variable is identifying, but these 
criteria do not provide a definite answer to this problem 
for all variables. Whether or not a variable is considered 
identifying is essentially a matter of judgment. In the 
remainder of this paper we will assume however that a set 
of keys has been determined. 

The counterparts of identifying variables are the sensi­
tive (or confidential) variables. A variable is called sensitive 
(or confidential) if some of the values represent character­
istics a respondent would not hke to be revealed about him. 
In principle, Statistics Netherlands considers all variables 
sensitive, but in practice some variables are considered 
more sensitive than others. Like in the case of identifying 
variables, determining whether or not a variable is sensitive 
can be solved only by sound judgment in practice. The 
variables sexual behavior and criminal past are generally 
considered sensitive, but for other variables this may 
depend on, for instance, cultural background. Keller and 

Bethlehem (1992) give as an example the variable income. 
In the Netherlands income is considered sensitive, whereas 
in Sweden it is not. Moreover, there are variables which 
should be considered both identifying and sensitive. An 
example of such a variable is ethnic membership. However, 
in the literature it is usually assumed that the identifying 
and sensitive variables can be divided into disjoint sets. In 
the remainder of this paper we will also assume that a set 
of sensitive variables has been determined which is disjoint 
from the set of identifying variables. 

By using information about the identifying variables a 
potential attacker can try to disclose information about 
sensitive variables. Note that this way of disclosure is only 
possible in case the link between the values of the identi­
fying variables and the values of the sensitive variables has 
not been perturbed by noise in the data or by a technique 
like data-swapping. 

To end this section, we give a definition of SDC. 
Statistical disclosure control aims to reduce the risk that 
sensitive information of individual persons can be disclosed 
to an acceptable level. What is acceptable depends on the 
policy of the data releaser. In order to reduce the risk of 
disclosure an estimate for the risk of disclosure would 
be very helpful although it is not a necessary requisite 
{cf. Section 7). Some research has been devoted to defining 
and estimating this risk of disclosure. 

3. PRELIMINARIES ON SDC FOR 
MICRODATA 

As a customer of a statistical office, the user of a micro-
data set should be satisfied with its quality. The user is 
usually not interested in individual records, but only in 
statistical results which can be drawn from the total set of 
records. For instance, he wants to examine tables he has 
produced himself from the microdata set. 

Because a microdata set is meant for statistical analysis 
it is not necessary that each record in the set is correct. 
The statistical office has the possibility to perturb records, 
e.g., by adding noise or by swapping parts of records 
between different records, in order to reduce the risk of 
re-identification. By perturbing records the risk of re-
identification is reduced because even when a correct re-
identification takes place the information which is disclosed 
may be incorrect. In any case the attacker cannot be sure 
that the disclosed information is correct. The statistical 
office 'only' has to guarantee that the statistical quality 
of, for instance, the tables the user wants to examine is 
high enough. This may be quite complicated to achieve in 
practice, however. 

Although data perturbation methods may prove to be 
useful, for the time being Statistics Netherlands does not 
use them. To protect its microdata sets Statistics Nether­
lands applies local suppression and global recoding only. 
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When local suppression is applied some values of variables 
in some records are set to 'missing', i.e., deleted from the 
microdata set. When global recoding is applied some 
variables are given a coarser categorization. In a first step, 
we try to protect a microdata set by means of global 
recoding. However, when protecting a microdata set 
entirely by means of global recodings would result in a 
considerable information loss, we apply local suppressions 
as well. In this way we try to avoid that too much infor­
mation will be lost. It should be clear that local suppres­
sions are only applied parsimoniously. 

An advantage of local suppression and global recoding 
is that these techniques preserve the integrity of the data. 
A disadvantage of local suppression is that it introduces 
a bias, because extreme values will be locally suppressed. 
However, when local suppressions are only applied parsi­
moniously, this bias will be small. 

From the SDC point of view a user of the data should 
also be looked upon as a potential attacker. Hence, it is 
useful to consider the ways in which disclosure can take 
place. An attacker tries to match records from the micro-
data set with records from an identification file or with 
individuals from his circle of acquaintances. An identifica­
tion file is a file containing records with values on direct 
identifiers and values on some other identifiers of the 
microdata set. The latter identifiers may be used to match 
records from the released microdata set with records from 
the identification file. After matching the direct identifiers 
in the identification file can be used to determine whose 
record has been matched, and the sensitive variables in the 
released microdata set can be used to disclose information 
about this person. A circle of acquaintances is the set of 
persons in the population for which the attacker knows 
the values on a certain key from the microdata set. So, a 
circle of acquaintances could actually be an identification 
file, and vice versa. In the rest of this paper we will 
therefore use the terms 'identification file' and 'circle of 
acquaintances' interchangeably. 

In order for re-identification of a record of an individual 
to occur the following conditions have to be satisfied: 

C1. The individual is unique on a particular key value K. 
C2. The individual belongs to an identification file or a 

circle of acquaintances of the attacker. 
C3. The individual is an element of the sample. 
C4. The attacker knows that the record is unique in the 

population on the key K. 
Cs. The attacker comes across the record in the microdata 

set. 
Cfi. The attacker recognizes the record of the individual. 

Whenever one of the conditions Cj to Cg does not 
hold, re-identification cannot be accomphshed with abso­
lute certainty. If either condition Ci or C4 does not hold, 
then a matching can be made but the attacker cannot be 
sure that this leads to a correct re-identification. 

It is clear from the conditions Cj to Cg that a 'good' 
model for the risk of re-identification should incorporate 
aspects of both the data set and the user. When a Dutch 
microdata set is used by someone in, say, China who is 
essentially unfamiUar with the Dutch population, then the 
risk of re-identification is negligible. In order to rcridentify 
someone in a microdata set it is necessary to acquire 
sufficient knowledge about the population. The amount 
of work that should be done to acquire this knowledge is 
proportional to the safety of the microdata set. 

4. A PHILOSOPHY OF SDC 

It seems likely that the attention of a potential attacker 
is drawn by combinations of identifying variables that are 
rare in the sample or in the population. Combinations that 
occur quite often are less hkely to trigger his curiosity. If 
he tries to match records deliberately then he will probably 
try to do this for key values that occur only a few times. 
If the user does not try to match records deliberately, but 
he knows an acquaintance with a rare key value then a 
record with that particular key value may trigger him to 
consider the possibihty that this record belongs to this 
acquaintance. Moreover, the probability of a correct 
match is higher in case the number of persons that score 
on the matching key value is smaller. Finally, it is also very 
likely that among the persons that score on a rare key value 
there are many uniques if the key is augmented with an 
additional variable. Records that score on such rare 
combinations of identifying variables are therefore more 
likely to be re-identified. 

In particular key values which occur only once in the 
population, i.e., uniques in the population, can lead to 
re-identification. In the past emphasis was placed almost 
exclusively on uniqueness. It should be noted, however, 
that uniqueness is neither sufficient nor necessary for 
re-identification. If a person is unique in the population 
on certain key variables, but nobody realizes this, then this 
person may never be re-identified. If on the other hand this 
person is not unique in the population, but there is only 
one other person in the population with the same key, then 
this other person is, in principle, able to re-identify him. 
Furthermore, suppose a person is not unique, but belongs 
to a small group of people. Suppose also that the attacker 
happens to know information about him which is not 
considered to be identifying by the statistical office, but 
which is contained in the released microdata set, then it 
is very well possible that he is unique on the key combined 
with the new information. So, it is possible that a person 
is re-identified although he is not unique on the keys of 
identifying variables in the population. Finally, prediction 
disclosure may occur. That is, if a person is not unique in 
the population, but belongs to a group of people with 
(almost) the same score on a particular sensitive variable. 
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then sensitive information can be disclosed about this 
individual without actual re-identification. Prediction 
disclosure is not discussed further in this paper. For more 
information on prediction disclosure we refer to Skinner 
(1992), US Department of Commerce (1978), Duncan and 
Lambert (1986), and Cox (1986). 

SDC should concentrate on key values that are rare in 
the population. A probability that information from a 
particular respondent, whose data are included in a micro-
data set, is disclosed should reflect the 'rareness' ofthe key 
value of this respondent's record. A probability for the 
event that information from an arbitrary respondent is 
disclosed should reflect the 'overall rareness' ofthe records 
in the data set. If there are many records in a microdata 
set of which the key value is rare, then the probability of 
disclosure for this data set should be high. In the next 
sections we will examine some attempts to incorporate 
these ideas within a mathematical framework. 

5. RE-IDENTIFICATION RISK PER RECORD 

In an ideal world (as far as SDC is concerned) a releaser 
of microdata would be able to determine a risk of re-
identification for each record, i.e., a probability that the 
respondent of this record can be re-identified. Such a risk 
per record would enable us to adopt the following strategy. 
First, order the records according to their risk of re-
identification with respect to a single key. Second, select 
a maximum risk the statistical office is willing to accept. 
Finally, modify all the records for which the risk of 
re-identification with respect to the key chosen is too 
high. Repeat this procedure for each key in case there are 
more keys. 

Unfortunately, we do not live in such an ideal world at 
the moment. However, steps towards the ideal situation 
have been made by Paass and Wauschkuhn (1985), and 
Fuller (1993). In Paass and Wauschkuhn (1985) it is 
assumed that a potential attacker has both a microdata 
file, released by a statistical office, and an identification 
file at his disposal. Between both files there may be many 
data incompatibilities. These data incompatibilities may 
be caused by e.g., coding errors, by different definitions 
of categories or by 'noise' in the data. By assuming a prob­
ability distribution for these data incompatibilities and a 
disclosure scenario Paass and Wauschkuhn develop a 
sophisticated model to estimate the probability that a 
specific record from the microdata file is re-identified. The 
type of distribution of the errors that caused the data 
incompatibilities was assumed to be known to the attacker. 
The variance ofthe errors was assumed unknown to him. 
A potential attacker had to estimate this variance, on the 
basis ofthe (assumed) knowledge ofthe statistical production 
process. The model of Paass and Wauschkuhn is essentially 
based on discriminant analysis and cluster analysis. 

Paass and Wauschkuhn distinguish between six different 
scenarios. Each scenario corresponds to a special kind of 
attacker. The number of records in the identification file 
and the information content ofthe identification file depend 
on the chosen scenario. An example of such a scenario is 
the journahst scenario, where a journaHst selects records 
with extreme attribute combinations in order to re-identify 
respondents with the aim of showing that the statistical office 
fails to secure the privacy of its respondents. 

Paass and Wauschkuhn apply their method to match 
records from the identification file with records from the 
microdata file. If the probability that a specific record 
from the identification file belongs to a specific record 
from the microdata set is high enough, then these two 
records are matched. This probability is the probability 
of re-identification per record, conditional on a particular 
disclosure scenario. 

Muller, Bhen, Knoche, Wirth et a/. (1991) and Blien, 
Wirth and Miiller (1992) apphed the method recommended 
in Paass and Wauschkuhn (1985) to real data. When 
compared to simple matching, i.e., a record is considered 
re-identified by an attacker if he succeeds in finding a unique 
value set in the microdata file which is identical to a value 
set in the identification file, the method suggested by Paass 
and Wauschkuhn tiuned out to be not superior. Apparently, 
the number of correctly matched records when applying 
the method by Paass and Wauschkuhn was in disagreement 
with the probability of re-identification per record. 

In the context of masking procedures, i.e., procedures 
for microdata disclosure limitation by adding noise to the 
microdata. Fuller (1993) obtained an expression for the 
probability that a specific record in the released microdata 
set is the same as a specific target record from an identifica­
tion file. That is, an expression for the re-identification 
probability per record is derived. To derive this expression 
several assumptions are made. It is assumed that the data, 
the noise and errors in the data are normally distributed. 
Moreover, it is assumed that the covariance matrices of 
both the noise and the errors in the data are known to an 
attacker. Finally, it is assumed that the data have been 
obtained by simple random sampling. These assumptions 
allow Fuller (1993) to derive his expression for the re-
identification probabihty by means of probability theo­
retical considerations. Unfortunately, the approach by 
Fuller has not been tested on real data yet. Hence, it is hard 
judge the applicability of this approach. For a comment 
on the approach by Fuller see Willenborg (1993). 

Paass and Wauschkuhn (1985), and Fuller (1993) are 
mainly interested in the effects of noise that has (uninten­
tionally and intentionally, respectively) been added to the 
data on the disclosure risk. A weak point of their respective 
approaches is the, implicit, assumption that the key is a 
high-dimensional one. Assuming a high-dimensional key 
implies that (almost) everyone in the population is unique. 
The probability that a combination or key value occurs more 
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than once in the population is negligible. This makes the 
computation of the probability of re-identification per record 
considerably easier. On the other hand, in case of low-
dimensional keys it is not unhkely that certain key values 
occur many times in the population. Therefore, deriving 
a probability of re-identification per record for low-
dimensional keys is much harder than for high-dimensional 
keys, because for high-dimensional keys the probability 
of statistical twins in the population is almost zero. 

A good model for the re-identification risk per record 
does not appear to exist at the moment. In Section 6 we 
therefore consider less ambitious models, namely models 
for the re-identification risk per file. 

6. RE-IDENTIFICATION RISK PER FILE 

In a somewhat less ideal world a releaser of microdata 
would not be able to determine the risk of re-identification 
for each record, but he would be able to determine the risk 
that an unspecified record from the microdata set is re-
identified. In this case, the statistical office should decide 
on the maximal risk it is wilhng to take when releasing a 
microdata set. If the actual risk is less than the maximal 
risk, then the microdata set can be released. If the actual 
risk is higher than the maximal risk, then the microdata 
set has to be modified. Determining which records have 
to be modified remains a problem, however. 

A basic model to determine the probability that an 
arbitrary record from a microdata set is re-identified has 
been proposed by Mokken, Pannekoek and Willenborg 
(1989) and Mokken, Kooiman, Paimekoek and Willenborg 
(1992). In Mokken et al. (1989) only the case where there 
is a single researcher, an unstratified population and a 
single key is considered. It has been extended to include 
the cases of subpopulations, multiple researchers and 
multiple keys {cf. Willenborg 1990a; Willenborg 1990b; 
Mokken et al. 1992). The model of Mokken et al. (1992) 
takes three probabihties into account. The first probabiUty, 
/ , is equal to the sampling fraction. In other words,/, is 
the probability that a randomly chosen person from the 
population has been selected in the sample. The second 
probability,/a, is the probability that a specific researcher 
who has access to the microdata knows the values of a 
randomly chosen person from the population on a particular 
key. The third probability,/„, is the probability that a 
randomly chosen person from the population is unique in 
the population on a particular key. Combining these three 
probabilities, / , /„ and/u, the probability that a record 
from a microdata set is re-identified can be evaluated. 

For each sample element a number of variables is 
measured. The values obtained by these measurements 
(scores) are collected in records, one for each sample 
element. It is assumed that the variables in the key are 
either categorical variables or variables for which the 
measurements fall into a finite number of categories. 

Together, the records constitute a data set S that will be 
made available to an researcher/?. We recall that whenever 
we use the term disclosure in fact re-identification disclo­
sure is meant. The model of Mokken et al. (1989, 1992) 
does not take prediction disclosure into account. 

In terms of the Paass and Wauschkuhn (1985) set-up 
fa and /„ together reflect the Informationsgehalt der 
Uberschneidungsmerkmale, i.e., the information content 
of the matching values. The various scenarios they consider 
differ in terms of/a and/„. In particular,/„ is influenced 
by the number of variables and the information content 
of these variables, i.e., their categorization, an attacker 
has at his disposal to re-identify a record. The parameter 
fa is determined by the number of records that are con­
tained in the information file. 

With respect to researcher R and key Â  there is a circle 
of acquaintances >1. Obviously,/I and its size \A \ will 
depend on the particular researcher R as well as on the key 
Kand the variables as registered and coded in the data set. 

It is assumed that if conditions Cj, Cj and C3 of the 
conditions for re-identification given in Section 3 hold, then 
conditions C4, C5 and Cg hold too. Condition C4 is a rather 
exacting one, but it can be introduced as an assumption 
for the sake of convenience in formulating a disclosure risk 
model. Note that it then yields a worst-case situation, in 
the sense that fallible perception and memory or other soiu-ces 
of ignorance, confusion and uncertainty for a potential 
discloser are excluded. Taken as an assumption together 
with C5 and Cg the imphcation is that the occurrence of 
any unique acquaintance EofRin data set S is equivalent 
to re-identification by /?. It is assiuned that re-identification 
of a record implies disclosure of confidential information. 
Thus re-identification can be treated as equivalent to 
disclosure. Imphcitly, it is assumed that the link between 
the identifying variables and the sensitive variables has not 
been disturbed by a technique such as data-swapping. 

Furthermore it is assumed that both the identifying and 
the confidential information are free of error or noise to 
researcher R, contrary to e.g., Paass and Wauschkuhn 
(1985), and Fuller (1993). Clearly, this assumption is 
unrealistic for most microdata sets. 

The disclosure risk D^ for a certain microdata set S 
with respect to a certain researcher R and a certain key K, 
is defined to be the probabihty that the researcher makes 
at least one disclosure of a record in S on the basis of K. 
In order to apply a criterion based on the disclosure risk, 
the value of this quantity for a given data set has to be 
determined. An expression for this quantity can be derived 
on the basis of a set of assumptions. 

In the model of Mokken et al. the following assump­
tions are made in addition to Ci — C^: 

AI. The circle of acquaintances A can be considered as a 
random sample from the population. 

A2. The data set S is a random sample from the population. 
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Assumption Ai serves to imply that the probability 
that a randomly chosen element from the population is an 
acquaintance of/? is/ , = | A |/AT, where Â  is the size of 
the population. As a consequence the expected number of 
unique elements in A, \ Ua \, is equal to fa \ U \ = 
\ A I /„ , where U is the set of unique persons in the 
population and | (/ | its size. Obviously assumption A2 
implies that the probability that a specific unique element 
E is selected in the sample is/. These assumptions allow 
one to obtain a very simple expression for the disclosure 
risk Dji in terms of f, fa and/„, namely 

Do = 1 exp{-Nffafu). (1) 

Two of the parameters in the model of Mokken et al. 
(1989, 1992), fa and/u, are unknown. The parameter/, 
can be 'guestimated', i.e., obtained by inspired guesswork, 
by assuming different scenarios an attacker may follow. 
A number of such scenarios has been described in Paass 
and Wauschkuhn (1985) and Paass (1988). Evaluating/^ 
seems difficult, however. In order to estimate the other 
parameter,/„, a number of models has been proposed in 
the literature. Models to estimate the number of uniques 
in the population, and hence/„, that have been proposed 
include the Poisson-gamma model (Bethlehem, Keller and 
Pannekoek 1989; Mokken et al. 1989; Willenborg, Mokken 
and Paimekoek 1990; De Jonge 1990), the negative binomial 
superpopulation model (Skinner, Marsh, Openshaw and 
Wymer 1990), the Poisson-lognormal model (Skinner and 
Hohnes 1992; Hoogland 1994), models based on equivalence 
classes (Greenberg and Zayatz 1992) and models based on 
modified negative binomial-gamma functions (Crescenzi 
1992; Coccia 1992). As we have remarked in Section 4 not 
only the number of population uniques is important, but 
the numbers of cells with two, three, etc. persons are 
important as well. The Poisson-gamma model, the Poisson-
lognormal model and the negative binomial superpopula­
tion model can be applied to estimate the number of cells 
with two, three, etc. persons as well. It seems that the other 
models mentioned above can be extended in order to 
estimate these numbers. A major drawback is that the 
results are not very reliable in many cases. 

From the model by Mokken et al. (1989,1992) it is clear 
that the statistical office that disseminates the data is able 
to influence the risk of re-identification. The statistical 
office basically has two ways to do this. First of all, the 
size of the data set can be reduced, i.e., the samphng 
fraction / can be reduced. A reduction of / implies a 
reduction of the risk. However, lowering/is generally 
undesirable, because usually/has to be reduced substan­
tially to be effective. This implies that only a small part 
of the data available can be released. The second way in 
which the statistical office can influence the re-identification 
risk is by reducing the number of population uniques, i.e., 
by reducing/„. The fraction/„ depends on the information 

provided by the key variables. The less information the key 
variables provide the less uniques there are in the popula­
tion. In order words, /„ can be reduced by collapsing 
categories (global recoding) and by replacing values by 
missings (local suppression). Collapsing categories is a 
global action, because it generally affects many records; 
replacing values by missings is a local action because it 
affects only a few individual records. Usually, the loss in 
information when reducing /„ is considerably less than 
the loss in information when reducing / . Therefore, a 
statistical office will usually choose to control the re-
identification risk by reducing/„ rather then reducing/. 
The third possibility of controlling the re-identification 
risk, i.e., by reducing/^, is not apphed in practice, because 
fa is difficult to model. 

Although the model by Mokken et al. (1989, 1992) 
provides some insight in how to reduce the disclosure risk 
it can hardly be used as a basis for the protection of micro-
data sets. The reason for this is that the two parameters 
of the model, /„ and/a, are often difficult to evaluate. 
Usually there is insufficient data available to estimate/„ 
and fa accurately. We conclude that even a model for a 
re-identification risk for an entire microdata set is difficult 
to apply in practice. In Section 7 we therefore face reality 
in which we have no satisfactory model for either the re-
identification risk per record or re-identification risk for 
an entire microdata set. 

7. INTUITIVE RE-IDENTIFICATION RISK 

In reality we are, unfortunately, forced to base SDC on 
heuristic arguments rather than on a solid theoretical basis. 
The SDC rules mentioned in this section all reduce the re-
identification risk. It is, however, not possible to evaluate 
this reduction of the re-identification risk. At Statistics 
Netherlands, rules for SDC of microdata are based on 
testing whether scores on certain keys occur frequently 
enough in the population. A few problems arising here are 
the determination of the keys that have to be examined, 
the way to estunate the number of persons in the population 
that score on a certain key, to make operational the meaning 
of the phrase 'frequently enough' by determining e.g., 
(a) threshold value(s), and how to determine appropriate 
SDC-measures. 

Statistics Netherlands distinguishes between two kinds 
of microdata sets. The first kind is a so-called public use 
file. A public use file can be obtained by everybody. The 
keys that have to be examined for a public use file are all 
combinations of two identifying variables. The number of 
identifying variables is limited, and certain identifying 
variables, such as place of residence are not included in 
a public use file. Moreover, sampling weights have to be 
examined before they can be included in a public use file, 
because there are many situations in which weights can give 
additional information {cf. De Waal and Willenborg 1995a). 
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For instance, when a certain subpopulation is oversampled 
then this subpopulation can be recognized by the low 
weights associated with its members in the sample. Weights 
may only be published when they do not provide additional 
information that can be used for disclosure purposes. 
In case sampling weights are not considered suited for 
publication SDC measures should be taken, such as sub-
sampling the units with a low weight in order to get a sub-
sample in which all units have approximately the same 
weight. Because the weights are approximately equal 
assuming that they are exactly equal would introduce only 
a small error. The second kind of microdata set is a so-
called microdata set for research. A microdata set for 
research can only be obtained by well-respected (statistical) 
research offices. The information content of a microdata 
set for research is much higher than that of a public use 
file. The number of identifying variables is not limited and 
an identifying variable such as place of residence may be 
included in a microdata set for research. Because of the 
high information content of a microdata set for research, 
researchers have to sign a declaration stating that they will 
protect any information about an individual respondent 
that might be disclosed by them. The keys that have to be 
examined for a microdata set for research consist of three-
way combinations of variables describing a region with 
variables describing the sex, ethnic group or nationality 
of a respondent with an ordinary identifying variable. 

The rules Statistics Netherlands applies for SDC are 
based on the following idea: a key value, i.e., a combina­
tion of scores on the identifying variables that together 
constitute the key, is considered safe for release if the 
frequency that this key value occurs in the population is 
more than a certain threshold value do. This value do was 
chosen after a careful and extensive search considering 
many different values and comparing the records which 
have to be modified for each value of do- The value that 
leads to the 'most hkely' set of records which have to be 
modified has been chosen to be the value of do. Which 
records are considered to be the 'most hkely' ones to be 
modified is a matter of personal judgment. 

When applying one of the above rules we are generally 
posed with the problem that we do not know the number 
of times that a key value occius in the population. We only 
have the sample available to us. The population frequency 
of a key value has to be estimated based upon the sample. 
For large regions it is possible to use an interval estimator 
to test whether or not a key value occurs often enough in 
a region. This interval estimator is based on the assump­
tion that the number of times that a key value occurs in 
the population is Poisson distributed {cf. Pannekoek 
1995). However, for relatively small regions the number 
of respondents is low, which causes the estimator to have 
a high variance which in turn causes a lot of records to 
be modified. To estimate the number of times that a key 
value occurs in a small region we therefore suggest to apply 

a point estimator. We will now discuss some possibilities 
for such an estimator. 

A simple point estimator for the number of times that 
a certain key value occurs in a region is the direct point 
estimator. The fraction of a key value in a region / is 
estimated by the sample frequency of this key value in 
region / divided by the number of respondents in region 
/. The population frequency is then estimated by this 
estimated fraction multiplied by the number of inhabitants 
in region /. When the number of respondents in region / 
is low, which is often the case, the direct estimator is un-
reUable. Another point estimator is based on the assump­
tion that the persons who score on a certain key value are 
distributed homogeneously over the population. In this 
case the fraction of a key value in region / can be estimated 
by the fraction in the entire sample. The advantage of this, 
so-called, synthetic, estimator is that the variance is much 
smaller than the variance of the direct estimator. Unfor­
tunately, the homogeneity assumption is usually not 
satisfied which causes the estimator to be biased. However, 
a combined estimator can be constructed with both an 
acceptable variance and an acceptable bias by using a 
convex combination of the direct estimator and the syn­
thetic estimator. Such a combined estimator has been 
tested in Pannekoek and de Waal (1995). 

Another practical problem that deserves attention is 
top-coding of extreme values of continuous (sensitive) 
variables. These extreme values may lead to re-identification 
because these values are rare in the population. At the 
moment Statistics Netherlands uses an interval estimator 
to test whether there is a sufficient number of individuals 
in the population who score on a 'comparable' value of 
the continuous variable (c/. Pannekoek 1992). If this is the 
case, then the extreme value may be published, otherwise 
the extreme value must be suppressed. In order to apply 
this method in practice it remains to specify what is meant 
by 'sufficient' and by 'comparable'. 

Some important practical problems occur when deter­
mining which protection measures should be taken when a 
microdata set appears to be unsafe. In that case the original 
data set must be modified in such a way that the informa­
tion loss due to SDC-measures is as low as possible while 
the resultant data set is considered safe. In De Waal and 
Willenborg (1994a) and De Waal and Willenborg (1995b) 
a model for determining the optimal local suppressions 
is presented. Determining the optimal global recodings 
is much more difficult. Comparing the information loss 
due to global recodings to the information loss to local 
suppressions is already a problem. In DeWaal and 
Willenborg (1995c) this latter problem is solved by using 
the entropy. 

Currently a general purpose software package for SDC 
of microdata is being developed at Statistics Netherlands 
{cf. De Jong 1992; DeWaal and Willenborg 1994b; Van 
Gelderen 1995; Pieters and DeWaal 1995; DeWaal and 
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Pieters 1995). The package, ARGUS, should enable the 
statistical office to analyze the data and to carry out 
suitable protection measures. It will consist of two separate 
parts: ft-ARGUS for SDC of microdata and T-ARGUS for 
SDC of tabular data. The structure of the package is such 
that it will be possible to specify different disclosure control 
rules. This implies that ARGUS will be suited for other 
statistical offices too. Moreover, it will be possible to 
incorporate changes in the rules fairly easily in the package. 

8. CONCLUSIONS 

There is one important conclusion one can draw from 
this paper: SDC still offers a lot of possibilities for future 
research, despite the considerable amount of research that 
has been carried out to date. The theory of SDC for 
microdata has a number of gaps. Among the technical 
problems that remain to be solved are the following. When 
we want to release data for small regions we need an accep­
table estimator for the number of times that a key value 
occurs in these regions. Such an estimator is difficult to 
construct, although the preliminary results obtained at 
Statistics Netherlands seem encouraging. An important 
practical problem is the determination of appropriate 
global recodings and local suppressions. Yet another one 
is the determination of the number of uniques, or more 
generally the number of rare frequencies, in the population. 
Some of the models proposed in Section 6 appear to be 
acceptable, but can probably be improved upon. An alter­
native approach is to determine which elements in the 
sample are unique in the population. In Verboon (1994), 
and Verboon and Willenborg (1995) this approach is 
examined. An extension of the model by Mokken et al. 
(1989, 1992) to estimate the risk of re-identification of a 
file is yet another problem to be solved. This extension 
should take into account that measurement errors have 
been made and that population uniqueness is not necessary 
in order to disclose information. Finally, a model to 
estimate the re-identification risk per record would be very 
welcome. In fact, it would yield a sound criterion to judge 
the safety of a microdata set. This criterion can guide one 
in producing safe microdata sets by applying SDC-measures 
such as global recoding and local suppression. 

Apart from technical problems there are also some 
policy problems. Based on the policy that a statistical 
office wants to pursue the following decisions should be 
made. The combinations of variables that should be 
examined should be specified. Suitable threshold values 
should be selected. 

More and better software must be developed in order 
to deal with time-consuming calculations. For microdata, 
software must be developed to indicate which records and 
variables must be modified, and how they should be 
modified, when applying a particular disclosure rule. At 

the time of writing an international project on SDC is 
about to start. The participating institutions in this project 
are the Eindhoven University of Technology, the University 
of Manchester, the University of Leeds, the Office of 
Population Censuses and Surveys (OPCS), the Istituto 
Nazionale di Statistica (ISTAT), the Consortio Padova 
Ricerche (CPR), and Statistics Netherlands. One of the 
major aims of the project is to develop software for the 
SDC of both microdata (/^-ARGUS) and tabular data 
( T - A R G U S ) . 

Finally, some very practical problems remain to be 
solved. An example of such a problem is the determination 
of a set of rules for selecting identifying variables. Such 
a set of rules would be a very valuable asset. Without these 
rules identifying variables are selected by making subjec­
tive choices. Developing such a set of rules is another goal 
of the above mentioned SDC-project. 
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