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In This Issue 

This issue of ^wrvey Methodology begins with a special section entitied Weighting and Estimation 
which contains foiu" papers. 

The first paper in this special section, by Singh and Mohl, gives an overview of calibration methods 
from a different perspective, with the objective of gaining a better heuristic understanding of these 
methods. Deville and Samdal presented calibration methods as minimizing the overall distance of the 
final weights from tiie survey weights, subject to the restriction that estimates of totals of certain 
covariates match known population totals. Singh and Mohl present different calibration methods as being 
derived from difl'erent models for the weight adjustment factors. Computational algorithms for different 
methods are provided in an appendix, and a numerical example is given to illustrate how the resulting 
weight adjustment factors might vary among the different metiiods. 

Stukel, Hidiroglou and Samdal also investigate caUbration estimators, the class of design-based point 
estimators developed by Deville and Samdal. These estimators are derived from distance functions and 
allow for restricting of the final weights such that they are positive or upwardly bounded, thus avoiding 
the usual problem of negative weights that arises from using the regression estimator. Through 
simulation, the properties of a number of these estimators based on different distance functions are 
studied; particular emphasis is given to the properties of the corresponding variance estimators, 
specifically the Jackknife and the Taylor. The surprising conclusion is that the bias of both the point 
estimators and the corresponding variance estimators is minimal, even under severe restricting of the final 
weights. 

Jayasuriya and Valhant compare three methods of deriving household weights for the Consumer 
Expenditure Survey of the U.S. Bureau of Labor Statistics. Survey weights are usually calibrated to 
population totals of individual level characteristics, resulting in different final weights for individuals in 
the same household. The principal person metiiod defines the final weight for the household to be the 
same as that for a particular person in the household. The regression approach replaces the vector of 
auxiliary variables for each individual in a household by the household average, resulting in identical 
calibrated weights for persons in the same household. Another option is obtained by restricting the weight 
adjustment factors to avoid exfreme or negative weights. Variations on these methods are compared with 
respect to the final weights and the estimated CVs for a variety of household expenditure categories. 

In the final paper m the section on Weighting and Estimation, Chen and Chen consider die problem 
of confidence interval estimation for a finite population average when auxiliary information is available. 
Noting the earlier results of Royall and Cumberland that show diat naive use of existing design-based 
methods results in confidence intervals with very poor conditional coverage probabilities, they suggest 
ttansformations of the data which miprove the adherence to the underlying normality assumption and thus 
improve the coverage rates. Auxiliary information is incorporated in two ways: either direcfly into the 
inference when auxihary information is known for each unit or through calibration with empirical 
likelihood when auxiliary information is known only at the population level. Through simulation apphed 
to six real populations, they show that tiieir methods perform well. 

In their paper, Thompson and Fisher modify the one and two sample McNemar tests for use with 
conplex survey data. They then apply the modified two sample test to data from the U.S. Bureau of the 
Census Current Population Survey's Spht Panel Smdy to test whetiier or not the shift to computer 
assisted telephone interviewing using a redesigned questionnaue would affect the estimates of 
unenployment. Results of this test are discussed and compared to other research on the effect of CATI 
on unemployment estimates. 

Eltinge and Jang suggest ways for evaluating the stability of estimates of variance components 
(specifically withm-PSU variance estimators) and otiier related quantities, under a complex tiuee-stage 
design. As measures, they consider a sirrple design-based variance estimator of the within-PSU variance 
estimator, as well as an estimated "degrees of freedom" approach. A simulation based method permits 
the assessment as to whether an observed stability measure is consistent with standard assumptions 
regarding variance estimator stabiUty. They apply tiie proposed methods to NHANES III data and show 
that true stability properties may vary substantially across variables, and that within-PSU variance 
estimators can be substantially less stable than one would anticipate from using a simple count of 
secondary units within each stratum. 
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Berger discusses Chao's plan for sequentially selecting an unequal-probability sample of fixed size 
without replacement. In this context, he suggests an approximation of the second-order probabilities of 
inclusion in order to obtain an approximate estimator of the variance for the Horvitz and Thompson 
estimator. This variance is then compared to apprroximations given for other procedures or selection 
plans. Equivalence conditions for these approximations are presented. 

Cowling, Chambers, Lindsay and Parameswaran present two techniques for producing spatially 
smoothed data and consider their imphcations in both small and large area estimation. For the small area 
application, the sample weights are spatially smoothed using a modified linear regression approach, 
which results in a decrease in the variance but an increase in the bias of the estimates. For the large area 
application, a nonparametric regression method is used to spatially smooth the data and then the 
smoothed data is mapped using a Geographic Information System package. The results of a simulation 
study are presented, in which the most appropriate method and level of smoothing for use in the maps 
is investigated. 

Brick, Waksberg and Keeter suggest using information on interruptions of telephone service so as to 
adjust the siu f̂ey estimates to compensate for undercoverage bias. The data collected on telephone service 
interruptions serve to reduce the bias, but at the same time the variance is likely to increase owing to the 
greater variability of the sampling weights. The results obtained from a national survey show a significant 
potential for reducing the mean square error of the estimates under certain conditions. 

Finally, Pandher uses a model based approach to find an optimal partition of a siurey population into 
take-all and take-some strata. The approach assumes that there is a single variable of interest and that 
probability proportional to size sampling is used in the take-some stratum. An algorithm is presented for 
determining the optimal cut point between the take-all and take-some groups. A key requuement for die 
algorithm is that the model expectation of the variance is a convex function of the number of units in the 
take-all stratum, which depends on the model assumptions and the form of the inclusion probabihties. 
The method is apphed to Statistics Canada's Local Govermnent Finance Sm^ey. 

The Editor 
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Understanding Calibration Estimators in Survey Sampling 
A.C. SINGH and C.A. MOHL' 

ABSTRACT 

There exist well known methods due to Deville and Samdal (1992) which adjust sampling weights to meet benchmark 
constraints and range restrictions. The resulting estimators are known as calibration estimators. There also exists an earlier, 
but perhaps not as well known, method due to Huang and Fuller (1978). In addition, alternative methods were developed 
by Singh (1993), who showed that similar to the result of Deville-Samdal, all these methods are asymptotically equivalent 
to the regression method. The purpose of this paper is threefold: (i) to attempt to provide a simple heuristic justification of 
all calibration estimators (including both well known and not so well known) by taking a non-traditional approach; to do 
this, a model (instead of the distance function) for the weight adjustment factor is first chosen and then a suitable method 
of model fitting is shown to correspond to the distance minimization solution, (ii) to provide to practitioners computational 
algorithms as a quick reference, and (iii) to illustrate how various methods might compare in terms of distribution of weight 
adjustment factors, point estimates, estimated precision, and computational burden by giving numerical examples based 
on a real data set. Some interesting observations can be made by means of a descriptive analysis of numerical results which 
indicate that while all the calibration methods seem to behave similarly to the regression method for loose bounds, they 
however seem to behave difierentiy for tight bounds. 

KEY WORDS: Benchmark constraints; Distance minimization; Non-negative weights; Range restrictions. 

1. INTRODUCTION 

In providing estimates from sample surveys, samphng 
weights are commonly adjusted to obtain calibrated weights 
in order to match totals or benchmark constraints (BCs) for 
auxihary variables. The methods of regression and raking are 
often used for this piupose. Although these methods have 
good asymptotic properties (see Deville and Samdal 1992), 
they may lead to calibrated weights with undesu-able (finite 
sample) properties. The regression method can give negative 
weights while the raking procedure can produce very high 
weights. For this reason, range restrictions (RRs) may be 
imposed on the calibrated weights. It would be deskable to 
have a calibration method which (i) produces calibrated 
weights close to the original samphng weights; this can be 
achieved via minimization of a suitable distance function 
between the two sets of weights, (u) meets BCs, and (iii) 
satisfies RRs. There exist several methods in the literatiue for 
weight adjustment under BCs and RRs, see e.g., Deville and 
Samdal (1992, henceforth referred to as DS) for recent 
developments, and Huang and Fuller (1978) for earher 
developments. For a review, as well as some further work, see 
Singh (1993, henceforth referred to as Smgh). These methods 
are iterative in natiue and can be classified into two families. 
Family I consists of methods which satisfy BCs after each 
iteration and continue to iterate until RRs are met. Family n, 
on the other hand, consists of methods which satisfy RRs 
after each iteration and continue to iterate until BCs are met. 

Methods of DS belong to family IT while that of Huang-Fuller 
belongs to family I. Two additional methods, one for each 
family, were proposed by Singh. Using arguments similar to 
DS, Singh extended the remarkable result of DS by showing 
that all of the methods in famiUes I and II are asymptotically 
equivalent to the regression metiiod. 

In Section 2, a non-traditional approach is followed in 
introducing each method which is expected to help in under
standing of cahbration estimators. The functional form of the 
weight adjustment factor is first heuristically motivated and 
later on a connection between a suitable method of model 
fitting and minimization of the distance function is made. 
Alongside, computational algorithms are given as a quick 
reference for practitioners. A computer program in GAUSS 
software is available from the second author; see also Singh 
and Mohl (1997). In Section 3, numerical examples are pre
sented to illusti-ate various methods using data from Statistics 
Canada's Family Expenditure (FAMEX) survey. It is of prac
tical interest to see how different calibration methods might 
con^jare for a real data set. In particular, we examine by means 
of a descriptive analysis the impact of RRs on the computa
tional burden, distiibution of weight adjustinent factors, point 
estimates and their variance. Related comparative studies on 
cahbration methods based on real data sets are due to Deville, 
Samdal and Sautory (1993) and Stiikel and Boyer (1993). 
These studies, however, are restricted to family II methods 
and are primarily concemed with the distribution of weight 
adjustment factors. Finally, Section 4 contains a discussion. 

A.C. Singh, Methodology Research Advisory Group, and C.A. Mohl, Health Statistics Methods Section, Household Survey Methods Division, Statistics 
Canada, Ottawa, KIA 0T6. 



108 Singh and IVIohl: Understanding Calibration Estimators in Survey Sampling 

2. HEURISTIC JUSTIFICATION OF 
CALIBRATION ESTIMATORS 

We will use the following notation. Let n, N denote respec
tively the sample size and the population size. Let /î  denote 
the initial or /i-weight (used in the expansion or Horvitz-
Thompson estimator Y,k=i yk^t^ ^^^ *^ ^'^ element where y^ 
is the value of the study variable. It is assumed that the 
/i-weights include adjustments for any non-response. The 
parameter of interest is the population total for y, denoted by 
Tj,. For each k, there arep-auxihary variables, x,^j,j = I,..., p 
for which die population total or benchmark constraint, 
T̂ . = Y,k=iXk- fo'' ^^'-^ J ^^ assumed to be known. The 
ti-ansposedp-vector x^ denotes (jc^,,..., x^^, the ^-th row of the 
nxp matrix X. Let ĉ "' denote die calibrated or c-weight for 
the k-th element at tiie v-th iteration. At v = 0, c^ - h^. The 
expansion estimators of population totals for variables y and 
Xj using c-weights at the v-th iteration are denoted by t^ and t]^j 
respectively. 

The RRs are specified by the condition L^ g^< U where 
gt = c^lh^ andL<1 <U, where L and Udenote suitable lower 
and upper bounds. The adjustment factors {i.e., g '̂s) are also 
called g-weights. First we consider the unrestricted case {i.e., 
calibration without RRs) and then the restricted case. All 
methods in the restricted case require iterations for finding a 
solution. It is assumed that the iterative process converges in 
a finite number of iterations. 

The criterion for convergence is defined as follows. For 
tiie iterative process to meet RRs, a tolerance level e {e.g., 
.005 or .01) for family I is defined so that the process ter
minates if the maximum absolute relative error (ARE) for 
RRs is ^ e. Similarly, a tolerance level (6 > 0) for family II is 
defined for meeting BCs by iterations. The reason for this is 
that our primary goal is not minimization of the distance 
function, but to find a solution which satisfies BCs and RRs. 
In addition to e and 6, a parameter v,^ is defined which limits 
the number of iterations. 

There are seven methods considered in this paper, two for 
the unrestricted case, two for restricted case in family I and 
the remaining three also for the restricted case but in family 
n. We have given alternative names to existing methods to 
faciUtate understanding of the relationship between different 
methods. The naming convention is based on the well known 
distance measures used in the analysis of count data. 

Note that since all the methods are asymptotically equiv
alent to the regression method, the asymptotic variance of ty 
can be estimated for each method by I^tX/(^u " '"•t'̂ /) ''•*/ 
{e^gi){e,gi), as in DS (equation 3.4) where it̂ .Ttt, are respec
tively the first and second order inclusion probabilities, 
e^ are the sample residuals y^^-B'Xj with B'= {y'T^X) 
{XTQ Xy^, and F^ is the n x n matiix diag(A). 

2.1 METHOD 1 (Linear Regression or Unrestricted 
Modified Chi Square, MCS-u) 

This method is the simplest and gives rise to tiie popular 
generahzed regression estimator of Samdal (1980). Here, the 

model for the adjustment factor is taken to be linear in x, i.e., 
gj = 1 + X;(A,, for somep-vector of model parameters X which 
satisfies BCs. That is, Yl-i^k^^ '^xl^k)Xkj =T^J, for all / 
This gives rise to X^cs-u as (A-ToA^-Hx, - ti"^)- The 
c-weights remain close to the /i-weights in the sense that the 
above choice of g-weights miiumizes the distance function, 
A'^^^-"(c,A) = Ztii^k - Kf'K subject to BCs. Note that the 
^-weights could be negative for some k. This is rather 
undesirable m practice although flie simphcity of the method 
is quite attractive. The conputational algorithm for MCS-u is 
given in Appendix Al. 

2.2 METHOD 2 (Raking or Unrestricted Modified 
Discrimination Information, MDI-u) 

This method is also commonly used. Here, the model for 
the adjustment factor g ̂  is taken as exp {x,^ X), thus making it 
necessarily non-negative. Unlike the case of method 1, the 
model parameter vector A.**"""" is obtained iteratively to 
meet BCs. The iterations can be started with A."̂ ^ '̂" from 
die GR-estimator, i.e., for iteration 1, set A,̂ '̂  = A.'̂ ^̂ -û  ^jyj,jj 
implies ĉ '̂  =/i^exp(x^A.^'^). These c-weights, in general, 
do not satisfy BCs. For iteration 2 of this metiiod, the A,"* 
is adjusted (by a term of smaller order) to define A'̂ ' 
as A "̂ + (A"r,A')-'(T^ - t^' '), where T, = diag (c">). The k 
term is defined similarly for further iterations until conver
gence, i.e., until BCs are met. The c-weights remain close to 
/i-weights because iterations used in the above method 
constitute the Newton-Raphson steps for minimizing the dis
tance function, A'^°'-"(c,ft) = ^=1 t̂ ifclogC'̂ t/̂ t) '^k^ ' ' J 
subject to BCs. Note that although the g-weights are non-
negative, they could be very high which is clearly not 
desirable in practice. The conqiutational algorithm for MDI-u 
is given in Appendix A2. 

2.3 METHOD 3 (Modified Huang-Fuller or Scaled 
Modified Chi Square, SMCS) 

This method belongs to family I of the restricted case and 
is a shght modification of the method due to Huang and Fuller 
as given in Singh; see also Fuller, Loughin, and Baker (1994). 
As in regression, the model for the adjustment factor is taken 
to be linear m x. To facihtate the satisfaction of RRs by tiiese 
adjustinents, a scaling factor q^, {0<q^<, 1), is used for each 
k so that the change in /i-weights for those units whose g^s 
tend to go outside the bounds [L,U] is reduced. Thus, the 
g-weight is given by g^ = 1 + ^̂ ^Xj A. where the model para
meters q and A, are chosen iteratively in the sense that A is 
found for a given q and then q is found for a given A.. We start 
witii qf^ = 1 for all k and setA"' = A"̂ ^̂ "" for iteration 1. 
Now, clearly c'" satisfies BCs but RRs need not be satisfied. 
Depending on the location of g^s in relation to [L,U], a 
working mle can be used to define ^^'s so that the q^s 
discount more for those units which are farther outside of the 
boundaries than those which are nearer. The scaling factors 
g'/' so determined, define in tum A'̂ ' for iteration 2 as 

[11, , [11. {X'T,X)-\x^-t'^^) where F, =diag{q["h,), q[" = ^f^O ,(1). 
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A,'̂ ' satisfying BCs after the iteration. Note that under usual 
regularity conditions, A.'̂ ' differs from A.'" only by a term of 
smaller order, since the maximum absolute difference 
\q^ - 11 is small. Next, ifc*^'after iteration 2 does not satisfy 

RRs, the scaling factors ̂ ^ are defined appropriately and 
compounded with 9^" to get q^^^ for use in iteration 3. The 
A,''' for iteration 3 is then obtained as before so tiiat BCs 
are satisfied after the iteration. Iterations continue until 
convergence, i.e., imtil RRs are met. The weight vector ĉ "*̂ * 
is close to h because at each iteration v, c'"̂  minimizes 
tiie distance function A^^^{c,h) = YJc-i{Ck' KflK^l]^'^^ 
subject to BCs, where ^^"-" = qfq^^...q'i;-'^^ for v ^ 1. 
Note that unlike the previous methods, the distance function 
varies from iteration to iteration. 

The computational algorithm for SMCS is given in 
Appendix A3. Note that in the algorithm, [L, U] is shmnk to 
[U, U'] by means of a parameter a where L' = aL -1-1 - a, 
f/' = a(/ -t-1 - a, and 0 < a ^ 1. This implies that some uiuts 
that are inside [L, U] but close to tiie boundary are also 
discounted. TTiis helps to speed up the convergence. Another 
parameter p, 0 s P s 1 is also introduced to allow differential 
discounting of different units. 

2.4 METHOD 4 (Shrinkage-Minimization, SM) 

This method also belongs to family I and is due to Singh. 
As in regression, the model for the adjustment factor is taken 
to be linear in x, but a new parameter termed the shrinkage 
factor tl/j (0 < t|;t ^ 1) is used for each k so that g^s meet RRs, 
i.e., gt is set at (1 + ^i^x'^X{k)). Notice that A, is allowed to 
depend on il: tiirough t|ft and Xj. Unlike SMCS, here the 
g-weights, after discounting, satisfy RRs exactiy, i.e., those 
g-weights which are outside [L, U] are shmnk to lie on or 
inside the boundary. Therefore, tlt̂ 's can be defined quite 
easily in practice. The model parameters tj; and A. are chosen 
iteratively in a maimer analogous to that for SMCS. We start 
witii ^f = 1 and set A<'̂  = A'̂ '̂ '̂" for iteration 1 to obtain 
gf as (1 + t|rf x^ A.('̂ ). Clearly BCs are satisfied after tiie 
iteration but RRs need not be. Before iteration 2, g\ is 
shrunk by 41^ to obtain gf' as (1 + t|4"x;A."^) where 41^ = 
4lWl\ which meets RRs. Given tj;"', A,'̂ '(it) is obtained 
as A(»+(l/t|4")(A-TiA:)-' (x^- t^ '*) +x^(A" rjA-)"' 
(T,-t<^"*)A(" where F; = diag(c'"*), c'^k^'= KgT', and 
t^i)' is the expansion estimator using c*"*-weights. Again 
BCs are satisfied after the iteration but RRs need not he. Note 
that A,®(*) differs from A.*" by a term of smaller order 
uniformly over k. Iterations are continued until convergence, 
i.e., until RRs are met. The weight vector c*** is close to h 
because at each iteration v > 1, c*"' minimizes the distance 
function, A^''(c,c(^-"*) = ^=1(^4- c ^ " • ) V c ^ " • subject 
to BCs. Note diat in practice c'"'* can be obtained directiy 
from c*'' without having to calculate tl/*"' separately. As with 
SMCS, the distance function depends on the iteration. 

The computational algorithm is given in Appendix A4. 
Recall that in the above method, if a g-weight falls outside of 
the L and U boundaries, an adjustment is made to bring the 
g-weight back to the L ox U boundary. A new parameter 

a {0 < a. <. 1) is introduced to allow the user to bring the 
f-weight farther inside the boundary to a point L' or U' 
{L = aL + I - a, U' = aU + 1 - a). This is somewhat 
similar to the a parameter of SMCS. Another parameter 
T|(0 < r | ^ a ^ l) is introduced to adjust the g-weights to the 
level L' or U' also for tiiose units which are witiiin [L, U], but 
close to the boundary in that they are outside [L", U"] where 
L" = TiL + 1 - Ti, U" = Tit/ + 1 - T). All these parameters 
help speed up the convergence in general. 

2.5 METHOD 5 (Linear Truncated or Restricted 
Modified Chi Square, MCS-r) 

This well known method belongs to family II of the 
restricted case and is due to DS. As in SM, the model for tiie 
adjustment factor is taken to be linear in x with a new 
parameter termed the tinincation factor 4)j (0 < {j)j ̂  1) which 
is used for each k so that g^s meet RRs, i.e., g^ is set at 
(1 + 4)jXj( A {k)). The only difference between the trancation 
factor ^^ used here and the shrinkage factor used in SM is 
that here those g-weights which are outside [L, U] are 
always adjusted to lie exactiy on the boundary. The model 
parameters are chosen iteratively. Initially we set (|)t = 1 and 
at iteration 1, A.'" = X"^""^" to obtain ^P = (1 + (^fxj^X^^^), 
which is fiuther adjusted (or tmncated) to obtain g^ as 
(1 + <j)5k''x̂ A,(')) where (J)';̂ " = <\>f<t>^l\ so tiiat RRs are met. 
However, ^*" may not satisfy BCs. Note that the difference 
between g'" and g"**" is of smaller order. Now, for itera
tion 2, X*̂* is adjusted by a term of smaller order (uniformly 
over k) to define X'^'\k) as Â '̂  + (1 /(l)'̂ ') {X' T^X)-' (T, - T;^") , 
where Fj = diag(fc) except that die diagonal elements are 
tmncated to zero for all those k for which ^\ < 1, i.e., those 
units which were tmncated at the previous iteration. This 
discoimting of diagonal elements is somewhat similar to using 
a zero scaling factor in SMCS. In the second iteration, we 
have jf ' = 1 + ^^k^XkX^^\k) and die tiimcation factors ^f 
are used to obtain g'-^ which satisfy RRs. The successive 
iterations are defined in a similar manner. Clearly, unlike SM, 
here RRs are met at each iteration. Iterations are continued 
until BCs are met. The weight vector, c^*^' is close to h 
because the iterations defined above constitute tiie Newton-
Raphson steps for minimizing the distance function 
A^^-'{c,h) = Y.^{c^ - h^f/h^ ifLh^ s c* ^ f/Aj; «>olhervrise, 
subject to BCs. The computational algorithm is given in 
Appendix A5. Note that, in practice, it is more convenient to 
work with g^ direcfly without having to compute (j)]̂ ^ 
separately. 

2.6 METHOD 6 (Restricted Modified Discrimination 
Information or MDI-r) 

This method also belongs to family II and was proposed by 
Singh following the lines of DS in developing MCS-r. It is 
related to MDI-u in the same way as MCS-r is to MCS-u. The 
basic idea is to adjust parameters ((> and A, in the adjustment 
factor g^ = <|)jexp(x^A) so that RRs and BCs are satisfied. 
The tmncation parameter <j) is similar to that for MCS-r. This 
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is done iteratively. Similar to MCS-r, at iteration 1 we set 
gf = (t)fexp(x^A(") where <i>^f = 1,A.('> = A^^^-u^ ^^ich 
is further adjusted by a term of smaller order to obtain g^^^ 
as (|) '̂̂ exp(Xj A'") so that RRs are met, i.e., it lies in [L, U]. 
Next for iteration 2, g^^^ is adjusted by a term of smaller 
order to obtain g^^^ as (j)'f exp(x4A'^'), where A'̂ ^ = 
A''> + (A"riA)-Ux;t-'ti^>),andri =diag{hi^gf) except that 
the diagonal elements are tmncated to 0 for all those k for 
which (j)̂ ^̂  < 1. The tmncation factors (t)*̂  are used to ensure 
that RRs are met. Iterations are continued until convergence, 
i.e., until BCs are met. The weight vector c"*™'"' is close to 
h because the iterations defined above constitute the 
Newton-Raphson steps for minimizing the distance function 
AM°'-^(c,A) = n=i[c,log(c,//i,)-c, + /i,] ifLh,^c,^Uh,;c« 
otherwise, subject to BCs. Note that in practice, the tmnca
tion factors are not needed separately to compute g^^\ 
Appendix A6 gives the computational algoritiim for MDI-r. 

2.7 METHOD 7 (Logit or Generalized Modified 
Discrimination Information, GMDI) 

This is flie last method considered. This well known 
metiiod of family II is due to DS. As m the raking method, we 
start witii exp(Xj( A) and an mverse logit-type transformation 
is used to ensiue tiiat tiie adjustment factor satisfies RRs. The 
model for the adjustment factor is given by g^ = [{U - 1) -i-
(1 - L) exp(Ac^A)]-' [L{U - 1) -H f/(l - L) exp(/lx;A)], 
where A = (1 - L)'' {U - 1)"' {U - L). This adjustinent factor, 
unlike other metiiods, ties necessarily inside the interval 
[L, [/], I.e., does not take boundary values. As L - 0 and 
[/-=», the factor reduces to the familiar inverse logit form, 
exp(x ̂  A)/[ 1 + exp(x ̂  X)]. The model parameter X is obtained 
iteratively to meet BCs. Starting witii X^^" as A*'' for 
iteration 1, we adjust by a smaller order term to obtain A<̂ ' 
as A"̂  + (ATiA)- ' (T,- 'e( i ' ) where Fj = diag{h^d^^^), 
d^" = {U- l )- i( l - L)-^{U-gf){gf - L). Further itera
tions are done in a similar manner until BCs are met. The 
weight-vector c*^" '̂ is close to h in the sense that subject to 
BCs, the above iterative process corresponds to the Newton-
Raphson algorithm for minimizing the distance function 
A™°'(c,/i) given by A-'H^h,[{g, - L) log{(l - L ) ' 
{g, - L)] + {U-g,) log{{U - ly {U - g^}]. Appendix A7 
gives the computational algorithm for GMDI. 

3. NUMERICAL EXAMPLES 

3.1 Data Description 

We consider application of the seven adjustment methods 
described above to data from the 1990 Statistics Canada's 
Family Expenditiue (FAMEX) Survey for the two cities (or 
domains) of Regina and Saskatoon in the province of 
Saskatchewan. Four study variables are considered: annual 
expenditures on owned dwelling for repair and renovation, 
furniture and equipment, ladies' clothing, and men's clothing. 
The FAMEX survey is a supplementary survey to the 
Canadian Labour Force Survey (LFS) and, tiierefore, is based 
on tiie LFS design - a multistage sti-atified cluster sample of 

households, see Singh et al. (1990). Samples are drawn 
independenfly from the two cities of Regina and Saskatoon. 
Respectively for the two cities, the numbers of stiata are 30 
and 34, and the numbers of primary samphng units (PSUs) 
selected in tiie sample are 111 and 94. The total numbers of 
sampled households are 321 and 278, while die corresponding 
numbers («) of individuals are 797 and 712. 

3.2 Benchmark Constraints, Range Restrictions and 
Common Weights per Household 

The number (p) of BCs is foiu for each domain. They 
correspond to tiie demographic population counts for tiie four 
groups: age < 15, age > 15, one person households, and 
households with two or more persons. The corresponding 
counts are 40696,139047,12746, and 48457 for Regina, and 
42544, 139299, 20628, and 52059 for Saskatoon. Thus, die 
total numbers of households for the two domains are 61203 
and 72687 respectively and the corresponding population 
sizes (AO are 179743 and 181843. The auxihary x-variables 
here are indicators for the above four groups. 

For Regina, (min, max) of g-weights are obtained as 
(-0.72, 2.74) and (0.19, 3.95) respectively for regression and 
raking methods. It is therefore of interest to make them 
noimegative for regression and to reduce the high weights for 
raking. Two types of RRs are chosen: one has somewhat 
loose bounds witii L = 1/5 and U = 5 and tiie other has 
somewhat tight bounds with L = 2/5 and U = 5/2. For 
Saskatoon, (min, max) of g-weights are obtained as (0.86, 
1.08) and (0.87,1.09) respectively for regression and raking 
methods. Note that both metiiods give g-weights close to 1, 
and tiierefore there is no real need for RRs. However, for the 
sake of illustration, we choose L = 0.88 and 1/ = 1.12. 

The initial san^jling weights or /i-weights of individuals in 
the same household are common and equal to the weight of 
tiiat household. It is desuable tiiat after calibration, all 
members of a household have the same c-weights. This can be 
achieved by modifying the X matrix so that Xy-values for each 
person in the same household are common and equal to the 
average value for the household, see, e.g., Lemaitre and 
Dufour (1987). We also perform an initial scaling on the 
/i-weights so that tfiey add up to Â ; tius is similar to the Hdjek 
modification of tiie Horvitz-Thompson estunator. This scaling 
essentially redefines [L, U] to make tiiem meaningful for 
calibration of /i-weights. 

3.3 Descriptive Measures for Comparison 

For comparing various metiiods, we consider four types of 
descriptive measures: 
(i) Summary statistics for the distribution of the g-weights, 
(ii) Point estimates for several variables, 
(iii) Estimated precision of the calibration estimates, and 
(iv) Computational burden imposed by each metiiod. 

The first measure consists of a graphical summary using 
a box plot for g-weights, and the standard deviation of 
g-weights, SD(g), defined as [/V"'E*=i'»t(«t- l)^]"^.Note 



Survey Methodology, December 1996 111 

that the mean of g-weights, i.e., N'^YH^i ^k^v '̂  ^ '" ^'^^ of 
the fact that Y.K^Y.^k^^> "̂<̂  the SD(g) also equals 
[N'^li"k=ii(^k~ ^k^^^^k^^'^' the square root of a normalized 
chi-square type distance for measuring closeness between 
h- and c-weights. For comparing point estimates and their 
precision for estimating parameter for each variable y of 
interest, we compute relative difference (RD) and relative 
precision (RP) with respect to the MCS-u weights, i.e., 
relative to the regression estimator. Denoting an estimator 
based on c-weights as a c-estimator, we have RD as 
(c-estimator minus regression estimator) divided by the 
regression estimator, and RP as SE(regression estimator) 
divided by SE(c-estimator). Note that for the numerical 
examples under consideration, variances are computed using 
jackknifing by deleting PSUs. Finally, the computational 
burden is expressed in terms of the number of iterations. 
Testing has shown that for all the restricted methods, each 
iteration takes a similar amount of time and hence a good 
comparison of their computational burden is the number of 
iterations required for convergence. 

3.4 Specification of Other Parameters 

We also need to specify some other parameters, namely, a, 
p for SMCS, and a, r\ for SM. Empirically, values of 
a = 0.67, r\ - 0.9 and P = 0.8 are found to perform well. The 
tolerance levels e for family I and 6 for family II are set at 
0.01, and v^„ is set at 10. 

3.5 Results: A Descriptive Analysis 

3.5.1 Distribution of g-weights 

We first consider the Regina data. Figure 1 gives a box 
plot of the disti-jbution of g-weights with L - 0.4 and U = 2.5. 
Note that there are negative g-weights (and hence negative 
c-weights) for MCS-u and large g-weights (which produce 
large c-weights) for the MDI-u method. For MCS-u, the 
fraction of g-weights < 0 is 4.9%, the fraction < 0.4 is 5.9%, 
the fraction above 2.5 is 1.25% while above 3.5 is 0%. For 
MDI-u, the fraction below 0.4 is 4.9%, the fraction > 2.5 is 
4.3% and above 3.5 is 1.25%. Thus, both methods yield 
c-weights which are out of bounds with respect to RRs with 
tight bounds. The range restricted methods all have median 
g-weights between 0.65 and 0.75; the SMCS g-weights show, 
however, the most clustering around the median. Table 1 
shows that under loose bounds, the SD(g) for each restricted 
method is slightiy higher (about 7%) than the regression 
method, but for tight bounds, the difference increases to about 
15% for family I and about 10% for family II. 

Now for the Saskatoon data. Figure 2 gives a box plot of 
g-weights with L = 0.88 and t/ = 1.12. For both regression 
and raking methods, about 5.6% are below L and 0% are 
above U. All methods have similar interquartile range for 
g-weights with medians slightiy above 1. Also it is seen from 
Table 1 that SD(g) for all the methods (restricted and 
unrestricted) are about the same and quite small. 

Table 1 
Number of Iterations and SD(g) 

(a = .67,p = .8,Ti = .9,e = 6 = .01,v_ = 10) 

Method 

Family I 
SMCS 
SM 

Family II 
MCS-r 
MDl-r 
GMDI 

Regi 

Z. = 0.2, (/ = 5.0 
(Loose bounds) 

Number of cr^, , 
Iterations 

2 0.647 
2 0.636 

2 0.628 
3 0.642 
3 0.640 

ina 

L = 0.4, (7 = 2.5 
(Tight bounds) 

Number of 
iterations *" 

3 0.702 
4 0.689 

3 0.654 
3 0.660 
3 0.659 

Saskatoon 

Z. = 0.88, 
U= 1. 

Number of 
iterations 

2 
2 

1 
1 
2 

12 

SD(ĵ .) 

0.071 
0.070 

0.069 
0.069 
0.069 

Note: For the unrestricted (or no bounds) case, the number of iterations and 
SDCg) are: for Regina MCS-u and MDI-u are (1,0.599) and (3,0.647) 
respectively; for Saskatoon MCS-u and MDI-u are (1,0.070) and 
(1,0.069) respectively. 

3.5.2 Relative Difference of Point Estimates 

Tables 2(a) and (b) show that for Regina, under loose 
bounds RD is small for all the methods for each of the 
variables. In fact, it is negligible except for the variable 
"owned dwelling" for which it is generally under 4%. 
However, under tight bounds, it increases somewhat but 
remains small with values ranging between 1% and 5%. For 
Saskatoon (Table 2c), under the given bounds RD is 
negligible for all the methods. 

3.5.3 Estimated Relative Precision of Estimates 

For Regina, under loose bounds, RP is generally within 5% 
(of the precision of the regression estimator) for all methods 
and all variables except for MDI-r with the variable "ladies' 
clothing" for which it is lower by 9%. However, under tight 
bounds, RP varies more and is now generally within 9% 
except for SMCS and SM with the variable "Men's clothing" 
(RP is lower by 20%) and MDI-r for the variable "Ladies' 
clothing" for which RP is lower by 11%. For Saskatoon 
(Table 2c), under the chosen bounds RP is close to 1 for all 
cases. 

3.5.4 Computational Burden 

For Regina (Table 1), under loose bounds each method 
takes two or three iterations. As the bounds are tightened, 
most of the methods require more iterations to converge. To 
see how tightiy the bounds could be squeezed before 
encountering convergence problems, three more sets of 
bounds were used with [L, U] = [0.425, 2.35], [0.45, 2.22] 
and [0.475, 2.11]. These results are not shown in the table. 
With v ^ as 10, the SM method does not converge for [0.425, 
2.35]. The SMCS and GMDI methods do not converge 
for [0.45, 2.22] and the MCS-r and MDI-r finally have 
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Figure 1. Box Plot: g-weights for Regina FAMEX data (L = 0.4, U = 2.5) 
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Figure 2. Box Plot: g-weights for Saskatoon FAMEX data (L = 0.88, t/ = 1.12) 
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Table 2a 
Difference in Point Estimates and Precision Relative to 

Regression Estimator (a = .67, P = .8, ii = .9, € = 6 = .01, v ^ = 10) 
Regina: L = 0.2, U = 5.0 (Loose Bounds) 

Table 2c 
Difference in Point Estimates and Precision Relative to 

Regression Estimator (a = .67, P = .8, T| = .9, € = 6 = .01, v ^ = 10) 
Saskatoon: L = 0.88, C/=1.12 

Family I 
SMCS 
SM 

Family n 
MCS-r 
MDI-r 
GMDI 

Family I 
SMCS 
SM 

Family n 
MCS-r 
MDI-r 
GMDI 

Owned 

RD 

-0.043 
-0.036 

-0.032 
-0.033 
-0.037 

Ladies' 

0.015 
0.010 

0.011 
0.007 
0.009 

DweUing 

RP 

1.047 
1.032 

1.035 
0.991 
0.999 

Clothing 

0.931 
0.951 

0.950 
0.911 
0.940 

FumitureXEquipment 

RD 

0.001 
-0.002 

0.002 
-0.008 
-0.004 

Men' 

0.009 
0.006 

0.008 
-0.001 

0.002 

RP 

1.032 
1.040 

1.034 
1.037 
1.041 

s Clothing 

0.952 
0.968 

0.964 
0.961 
0.968 

Family I 
SMCS 
SM 

Family n 
MCS-r 
MDI-r 
GMDI 

Family I 
SMCS 
SM 

Family n 
MCS-r 
MDI-r 
GMDI 

Owned 

RD 

-0.001 
-0.000 

0.000 
0.002 

-0.000 

Ladies' 

0.000 
-0.000 

0.000 
0.002 
0.000 

Dwelling 

RP 

1.001 
1.001 

0.999 
0.997 
1.007 

Clothing 

1.013 
1.002 

0.990 
1.001 
0.977 

FumitureVEquipment 

RD 

-0.001 
-0.000 

0.000 
0.002 

-0.000 

Men' 

-0.001 
-0.000 

0.000 
0.002 

-0.000 

RP 

0.999 
0.999 

1.000 
0.994 
0.990 

s Clothing 

0.999 
0.998 

0.994 
0.983 
0.990 

Notes: 
1. RD and RP denote respectively "relative difference" and "relative 

precision". 
2. For the unrestricted (or no bounds) case, the corresponding measures for 

the raking (MDI-u) method relative to regression are (-0.034, 1.005), 
(-0.008, 1.049), (0.004, 0.968) and (0.002, 0.980) for the four study 
variables respectively. 

Notes: 
1. For the unrestricted (or no bounds) case, the corresponding measures for 

the raking (MDI-u) method relative to regression are (0.002, 1.000), 
(0.002, 1.000), (0.002, 1.002) and (0.002, 0.995) for the four study 
variables respectively. 
During the jackknifing procedure, the SM method failed to converge in 
ten iteradons for two pseudo-replicates (out of a total of 94). 

Table 2b 
Difference in Point Estimates and Precision Relative to 

Regression Estimator (a = .67, P = .8, T| = .9, e = 6 = .01, v ^ = 10) 
Regina: L = 0.4, U = 2.5 (Tight Bounds) 

Family I 
SMCS 
SM 

Family n 
MCS-r 
MDI-r 
GMDI 

Family I 
SMCS 
SM 

Family n 
MCS-r 
MDI-r 
GMDI 

Owned 

RD 

-0.056 
-0.055 

-0.048 
-0.045 
-0.047 

Ladies' 

0.024 
0.025 

0.020 
0.025 
0.021 

Dwelling 

RP 

1.100 
0.992 

1.073 
1.087 
1.077 

Clothing 

0.917 
0.917 

0.904 
0.888 
0.938 

FumitureVEquipment 

RD 

0.012 
0.017 

0.008 
0.012 
0.009 

Men' 

0.038 
0.024 

0.012 
0.012 
0.018 

RP 

1.000 
0.919 

0.952 
0.965 
1.006 

s Oothing 

0.808 
0.801 

0.922 
0.922 
0.917 

Note: During the jackknifing procedure, the SM method failed to converge 
in ten iterations for four pseudo-replicates (out of a total of 111). 

convergence problems for [0.475, 2.11]. For Saskatoon 
(Table 1), under the chosen bounds each method takes ortiy 
one or two iterations. Witii v ^ as 10, as bounds are tightened 
to [0.92, 1.08], SM does not converge. At [0.93, 1.07], 
SMCS, MCS-r, and MDI-r have convergence problems, and 
finally at [0.96,1.06], GMDI has problems. 

4. DISCUSSION 

Although numerical results for a few variables for two 
different domains considered in this paper are quite hmited to 
draw general conclusions, the results based on a descriptive 
analysis are nevertheless interesting and may provide some 
indications which might be useful in practice. These can be 
smnmarired in the following observations. For loose bounds, 
all the restricted methods seem to perform almost at par with 
the regression metiiod. However, for tight bounds, tiiere seem 
to be a difference in point estimates and especially in 
estimated precision. This observation clearly needs further 
study in light of tiie fact that all methods are asymptotically 
equivalent to the regression method. A simulation stiidy in 
this regard would be desirable. The recent shidy of Stiikel, 
Hidiroglou, and Samdal (1996) sheds some hght on this issue. 
Moreover, for tight bounds, tiiere may not be convergence 
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under the specified number of iterations even if a solution 
exists. This problem may be more apparent in dealing witii 
jackknife replicates. Therefore, caution should be exercised 
in choosing tiie maximum number of iterations for tight 
bounds. Finally, in practice, it is possible tiiat even with 
minimal requirements on BCs and RRs, none of tiie cali
bration estimators converge witiiin a reasonable number of 
iterations. In this situation, it would be of interest to investi
gate whether tiie (asymptotic) design consistency of calibra
tion estimators could be preserved while allowing deviation 
from BCs. The idea of using ridge regression by Bardsley and 
Chambers (1984), altiiough not in tiie design-based context, 
may be useful for tiiis purpose. This problem is currenfly 
being investigated in collaboration with J.N.K. Rao. 

APPENDIX 

Here we provide computational algorithms for all seven 
metiiods of weight adjustinent. These algoritiims were used to 
write computer programs in GAUSS software for the 
numerical examples presented in this paper. 

In all die metiiods, some form of tiie following expression 
denoted by tiie n-vector /*"', is used repeatedly for computing 
c'; 'forv = l ,2, . . . 

f''^^X{X'T^_,X)-'{x^-t^;-'^) (1) 

where ^ , . 1 , is an n x n diagonal matiix defined below in tiie 
algoritiim for each metiiod. Initially FQ = diag(A) and 

Al. METHOD 1 (MCS-u) 

The solution is non-iterative and is given in two steps as 
follows. 
(i) Compute f^ ,k=lton from (1) by setting T^^.^ = FQ. 
(ii) Compute gt as 1 + / / ' and tiien c f^^'" as /î  g,,. 

A2. METHOD 2 (MDI-u) 

The solution is obtained iteratively by tiie following steps 
for v = 1, 2, . . . . 
(i) Set flie tolerance level 6 a 0 for meeting BCs at some 

small value, 
(ii) For tiie v-tii iteration, compute f'^^\ k=l ton, from 

(1) by setting F , . , = d iag(cr 'V 
(iii) For V = 1, 2, ... compute gY as g\ 'expC/"* ). 

g f = 1 and tiienc^''from V f . 
(iv) Repeat steps (ii)-(ui) until tiie BCs are met up to the 

tolerance level 6 or tiie number of iterations is at its 
maximum, v ^ . The last iteration gives c]^ '". 

A3. METHOD 3 (SMCS) 

The solution is obtained iteratively as follows, 
(i) Set tiie RRs, i.e., choose L and I/, L < 1 < I/, 
(u) Set tiie tolerance level e S; 0 at a small value for 

meeting the RRs. 

(in) Choose a parameter a between 0 and 1 {e.g. 2/3) and 
set L' =aL + l-a,, U' =aU + l-a. The default 
value of 1 for a is also allowed in which case U = L, 

(iv) For tiie v-tii iteration witii g^" = 1, define ^ j " " " = 
(g';-"- i)t{L' -1) if gf" ^ 1; («r"- mv - D 
otherwise, 

(v) Choose anoflier parameter B between 0 and 1 (e.g.. 
C(v-l) 

4 / 5 ) . S e t 9 r ' = l i f ^ r ' < l / 2 ; ^ - ml 
if 1/2 < iT'^< I; (1 - p / 4 ) / ? ^ " if ? ' r " ^ 1 and then 
define for v = 1, 2, ..., ^ r " = ? f - ^V^ where 
q^^^ = 1. Note compounding of ^-factors in defining 

(vi) Confute/t 'from(l)by setting r^.i=diag(/it9^'' " ) , 
and^("-') = t f forallv. 

(vii) Find J:^ as 1 . q^'^fV andflien c f as h.g'l'. 
(viii) Repeat steps (iv)-(vii) until tiie RRs are met up to tiie 

tolerance level e or v = v ^ . The last iteration gives 
ŝMcs rpjjg ^^^^ Q̂  p should remain tiie same at each 

iteration. 

A4. METHOD 4 (SM) 

This method consists of the following steps performed 
iteratively. 
(i)-(ii) Same as in Method 3. 
(ui) Choose parameters a, ii, 0 < a ^ T] ^ 1, (g,g., a = 2/3, 

•n = 9/10) and define 
L' =aL + (l -a), U' = aU •>• {I - a) 
L" =r\L + {l-r\),U" = rif/+ (1 - TI). 

The default option for a and r) is 1 in which case 
L' = L" =L,U' = U" = U. 

(iv) (Shrinkage). The ĉ "' from tiie v-tii iteration is shrunk 
to obtain ĉ "'* according to ĉ "'* = L'/i^ ifc^k^ <l-"K'^ 
U'h^ ifc^k^>U"h^; c f otiierwise. For v = 0, 
cT-cf'=h,. 

(v) (Minimization). Find / j " ' from (1) by setting 

v-l 
diag(c ' ;" '^*)andt(- ' )=t(-"- . 
.te P1^' as pl^-'>*fl +fl'̂ ') wh (vi) Compute g ^ as gl^-'^*(l ^Z^) where g'^"* = 

(V) c^'"''7/i;t andtiien c^' from h^g'l'. 
(vii) Repeat steps (iv)-(vi) until flie RRs are satisfied up to 

tolerance e or v = v ^ . The last iteration gives cf^. 

A5. METHOD 5 (MCS-r) 

The iterative algoritiim consists of tiie following steps, 
(i) Set L and f/. 
(ii) Set flie tolerance level 6 k 0 for meeting tiie BCs. 
(iu) Compute / i" ' from (1) by setting r„_ j = diag{h,^a^^' '̂ ) 

where a^^'^^ = 1 if g^l'^^ was truncated to L or U, and 
0 otherwise, 

(iv) Set g f = 1 and compute g'^' as gf + / / if 
L <. g^l'' <• U; otiierwise truncate g^ '̂ to L or 1/ as tiie 
case may be, and tiien c'̂ ^ as h^g'{'. 

(v) Repeat steps (iii)-(iv) until BCs are met at tiie 
tolerance level 6 or v = v ^ . The last iteration gives 
.MCS-r 
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A6. METHOD 6 (MDI-r) 

The iterative algoritiim consists of the following steps. 
(i)-(ii) Same as in Method 5. 
(iii) Compute /^"^ from (1) by setting Fv-i = 

diag(c/""'^a/'"") where af"" is defined as in Step 
(iii) of Metiiod 5. 

(iv) Set gf = l and compute g^^^ = gT^^exp{ff) if 
L <. g'-p <, U; otiierwise truncate g^^^ to L or {/ as tiie 
case may be, and then c'/̂  as /i^g'̂ ^. 

(v) Repeat steps (ui)-(iv) until BCs are satisfied at 
tolerance 6 or v = v ^ . The last iteration gives c^^^'\ 

AT. METHOD 7 (GMDI) 

The iterative algorithm consists of the following steps. 
(i)-(ii) Same as in Method 5. 
(in) Compute /'̂ "̂  from (1) by setting F . = 

diag(/ijd/^-'^) where d[^"" is analogous to d)P of 
Section 2.7. 

(iv) Using x;A,(^'=;t:;A(^-"+/;f^', find g^'' from tiie 
formula for g. given in Section 2.7, and tiien cl"' as 

hk8r-
(v) Repeat steps (iii)-(iv) until BCs are met at tolerance 6 

GMDI 
OTV = v,^. The last iteration gives c^. 
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Variance Estimation for Calibration Estimators: 
A Comparison of Jackknifing Versus Taylor Linearization 

DIANA M. STUKEL, MICHAEL A. HIDIROGLOU and CARL-ERIK SARNDAL' 

ABSTRACT 

The use of auxiliary information in estimation procedures in complex surveys, such as Statistics Canada's Labour Force 
Survey, is becoming increasingly sophisticated. In the past, regression and raking ratio estimation were the commonly used 
procedures for incorporating auxiliary data into the estimation process. However, the weights associated with these 
estimators could be negative or highly positive. Recent theoretical developments by Deville and Samdal (1992) in the 
construction of "restricted" weights, which can be forced to be positive and upwardly bounded, has led us to study the 
properties of the resulting estimators. In this paper, we investigate the properties of a number of such weight generating 
procedures, as well as their corresponding estimated variances. In particular, two variance estimation procedures are 
investigated via a Monte Carlo simulation study based on Labour Force Survey data; they are Jackknifing and Taylor 
Linearization. The conclusion is that the bias of both the point estimators and the variance estimators is minimal, even under 
severe "restricting" of the final weights. 

KEY WORDS: Auxiliary information; Raking ratio estimators; Regression estimators; Restricted weighting. 

1. INTRODUCTION 

Auxiliary information has many uses in survey sampling. 
One typical use is its incorporation at flie estimation stage 
through the use of regression estimators or raking ratio esti
mators. For diese estimators, a unit's samphng weight is 
multiplied by an adjustment factor to produce tiie final 
weight. A well-known shortcoming associated with the 
regression estimator is that some of the adjustment factors 
may be negative, resulting in negative final weights. On the 
other hand, for the raking ratio estimator, some adjustment 
factors may be very large and positive, resulting in unduly 
large final weights. These shortcomings can be overcome by 
considering a family of estimators, known as "calibration 
estimators". Developed by Deville and Samdal (1992), the 
estimators in this family incorporate auxihary information, 
and in certain cases, non-negative weights can be ensured by 
prespecifying lower and upper bounds on the weights. These 
"calibration" weights are obtained by mirumizing functions 
which measure the distances between original sampling 
weights and final cahbrated weights, while respecting a set of 
benchmarking constiaints. Huang and Fuller (1978) and 
Singh and Mohl (1996) have developed similar estimators 
which maintain the above properties. Ordinarily, there are 
very small differences between the point estimates cor
responding to the various distance functions. 

Historically, Statistics Canada's Labour Force Survey 
(LFS) has used, at different points in time, both the Taylor 
and Jackkrufe variance estimation techniques in tandem with 
regression and rakmg ratio estimators. Recenfly, the LFS has 
also allowed for the option of using other calibration esti
mators in addition to the previously available regression 

estimator, to eliminate the problem of potential negative 
weights. It is therefore of interest to investigate the behaviotu-
of these point estimators and their corresponding Taylor and 
Jackknife variance estimators, particularly for those esti
mators that allow bounding on the weights. Therein Ues the 
main focus of this paper. Now, both the Taylor and the 
Jackkrufe have theu- advantages. The Taylor method is com
putationally much less intensive than the Jackkrufe method, 
but requkes working out new expressions for each different 
parameter that is considered; this is particularly a burden in 
multipurpose surveys where many different parameters may 
be of interest. On the other hand, for the Jackknife method, 
cumbersome variance expressions need not be derived for 
each new parameter; only tiie functional form of the point 
estimator itself is required. 

The paper is stiiictured as follows: section 2 provides the 
theoretical underpinnings of calibration estimation and intro
duces a family of related distance functions. In section 3, 
variances for calibration estimators are discussed. Section 4 
provides the results of a Monte Carlo simulation study, in 
which the bias of both the point estimators and theu- cor
responding Taylor and Jackkrufe variance estimators (relative 
to a "tine" variance) is tracked, for a variety of distance func
tions from calibration theory. In section 5, some concluding 
remarks are made. 

2. DISTANCE FUNCTIONS AND CALIBRATION 
ESTIMATORS 

We begin by introducing the basic idea behind calibration 
estimation. Let U = {I,..., k,..., N] denote the index set for 

' Diana M. Stukel, Household Survey Methods Division, and Michael A. Hidiroglou, Business Survey Methods Division, Statistics Canada, Ottawa, Ontario, 
KIA 0T6; Carl-Erik Samdal, D6partement de Math6matiques et de Statistique, University de Montreal, C.P. 6128, Succursale A, Montreal, P.Q., H3C 3J7. 



118 Stukel, Hidiroglou and Sarndal: Variance Estimation for Calibration Estimators 

the Â  units of a finite population of units. In siuvey sampUng, 
one is often interested in estimating parameters of a fiiute 
population such as totals, means and ratios. For the sake of 
simplicity, we will focus on totals, although the ideas 
presented in this paper may easily be extended to include 
other parameters. Thus, suppose the objective is to estimate 
the population total Y = Y^keuyk' where y^ is the value of y, 
the variable of interest for the k-th population urtit. 

A probability sample s is drawn from U by a given 
sampling design which induces the inclusion probabilities 
Ttj = P{kes). These are assumed known and positive. Let 
Oj = I/TIJ be the samphng weight associated wifli the k-th unit. 
Finally, let the auxihary information be specified in the form 
of known popidation totals of one or more auxihary variables. 

An elementary estimator of Y is the Horvitz-Thompson 
(HT) estimator: 

l-Y^kyk-
kes 

The HT estimator possibly but not necessarily (depending 
on the sampling design) incorporates auxihary information at 
the design stage only; what is sought is an inqiroved estimator 
which incorporates the auxihary information at the estimation 
stage, as well. The incorporation of auxiliary information can 
be reflected in the creation of new weights, denoted by w ;̂ 
kes. The new estimator is then of flie form: 

E 
kes 

W; 'kyk- (2.1) 

The approach of Deville and Samdal (1992) and Deville, 
Samdal and Sautory (1993) involves determirung these new 
weights {wj: kes] by making them as close as possible to the 
original sampling weights {ay, kes] according to a specified 
distance function. Constraints placed on the new weights are 
such that, when apphed to each of the auxiliary variables, the 
known population total X is reproduced. That is. 

E 
kes 

(2.2) 

is required to hold, leading to a problem in constrained 
minimization. Here x^ = (Xĵ , x.2k, -, ^pt)is a vector of length 
p contaming the values of the auxihary variables for the k-th 
individual, and the auxiliary information available from an 
extemal soiuce is summarized by flie known vector total 

We denote flie distance from Wj to a^ by F*{wy, a^). Deville 
and Samdal (1992) limit theu- discussions to distance 
functions of the form F*{Wy, a^) = ayC,f{wy/a,^ where 
w/a^ = gt, the ratio of the final calibrated weight to original 
sampling weight, is called the "g-factor". Here ĉ  is a known 
positive weight unrelated to a ;̂ the uiuform weighting ĉ  = 1 
is often used in apphcations. Note that equation (2.1) can 
altematively be written as: 

*̂w = E «*«*)'*• 
kes 

It is assumed that F is non-negative and convex, and that 
F(l) = 0, implying that when w^ = a^ the distance between the 
weights is zero. Moreover, it is reqvured fliat F' is contimuous, 
one-to-one, and that F'(l) = 0 and F"(l) > 0 which makes 
Wj = Oj a local miiumum. (See Deville, Samdal and Sautory 
1993.) The total distance, T,kes'^kC^F{Wi^/a^), is minimized 
subject to the constraint (2.2). That is. 

kes 
^'[Y^k^k-x] 

is minimized with respect to the w ,̂ where X is a p-vector of 
Lagrange multiphers. Differentiating with respect to w^, 
equating to zero, and solving for ŵ  leads to the calibrated 
weights Wj = flt gt = flj g(A.'x/ct) where g is the inverse 
function of/and/(z) = dF{z)ldz. To compute w^, one must 
first obtain A. as the solution of the calibration equation 
impUed by (2.2), namely. 

E <'kS{^'Xk'''k)^k 
kes 

X. (2.3) 

The solution of this (possibly) nonlinear system of p 
equations in p unknowns may require the use of some itera
tive procedure, such as the Newton-Raphson method. 

A munber of distance functions are considered by Deville 
and Samdal (1992), Huang and Fuller (1978) and Singh and 
Mohl (1996). Two important distance functions which we 
first discuss are the Generahzed Least Squares (GLS) distance 
function and the Raking Ratio (RR) distance function, both 
given in Deville and Samdal(1992). 

The GLS distance function is defined by: 

F'{w,,a,)=Fcus{w,,,a^) 

= ̂ t(**'ifc - «*)'/"* = «*^* K/«it - !)'• (2-4) 

It generates the well-known generalized regression 
estimator (GREG), which encompasses as special cases the 
ratio estimator, the simple regression estimator, and the 
simple post-sti-atified estimator, among ofliers. It follows from 
(2.3) that the calibrated weights corresponding to the GLS 
distance function are: 

"^k = ^kik = «*[! ^ (^ - ^"^t ? '"i^'i^'i'""^ '̂ *̂ *̂̂  

where X^ = Etej'^t^t '* *^ ^ ^ estimator of X. The 
corresponding estimator of Y can be written in flie usual 
regression estimator form as 

i'.^GREG, = j ' < , - ( ^ - ^ a ) ' ^ (2.5) 

where 

M f E «it^*^t'/J ' E flt^t^^/Cf (2.6) 
\ kes I kes 
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Thus, the regression estimator can be thought of as the HT 
estimator plus an adjustment term. A drawback of the GLS 
distance function is that it may give rise to negative weights, 
particulariy if the system is overconstrained. In practice, 
negative weights are rare; however, it is desirable to eliminate 
them entirely since it may be difficult to give them any 
meaningful interpretation. 

The Raking Ratio (RR) distance function is defined by: 

F-(w^,aP=F;^(vt;^,a^) 

= c J w j o g (w^/a^) - ŵ  +a J (2.7) 

= a^cJ(w^/a^)log(w^/a^) - {wja,) + 1]. 

Solving for g-factors using the RR distance function and 
the constraint defined by equation (2.3) can be shown to be 
equivalent to using the Iterative Proportional Fitting (IFF) 
algorithm of Deming and Stephan (1940) when calibrating on 
known marginals of frequency tables of dimension two or 
higher. Unlike the GLS distance function, which has a closed 
form solution, the calibration equations for the RR distance 
function can only be solved iteratively. Computer software 
exists for this purpose; for example, the CALMAR software 
(see Deville, Sarndal and Sautory 1993) solves the calibration 
equations for the RR distance function using the Newton-
Raphson method, rather than the IFF algorithm originally 
proposed by Deming and Stephan. The RR distance function 
always ensures positive weights; however, it also has the 
undesirable property that some of the resulting calibration 
weights can be excessively large. 

Neither the possibility of negative weights produced by the 
GLS distance function nor the possibility of large positive 
weights produced by the RR distance function are desirable. 
One can define restricted distance functions whereby the 
range of the resulting weights ŵ  are limited. This is achieved 
by imposing restrictions on the distance function F{w,^/a,^ in 
such a way that the g-factors ĝ  = w /̂â  are bounded within 
a prespecified interval. To this end, one can specify a lower 
bound L and an upper bound U, such that L < 1 < {/. To 
guarantee positive weights, one would choose L > 0. Now, 
Deville and Sarndal (1992) define restricted versions of the 
two distance functions given above; they are: the Restricted 
GLS (RGLS) distance function and the Restricted Raking 
Ratio (RRR) or Logit distance function. Two other methods 
of restricting final weights are proposed by Huang and Fuller 
(1978) and Singh and Mohl (1996). All four restricted 
distance functions are considered in this paper; they are also 
discussed in detail in Singh and Mohl (1996), but from a 
different perspective. 

The Restricted GLS distance function is defined by: 

F\w^,a^) = 

^k^'^k ~ '^k'i^l'^k if ^ < wj'^k < ^ 

00 otherwise. (2.8) 
pRCisi^k'^k) = 

by: 
The Restricted RR (or Logit) distance function is defined 

A "'cj(w^/fl^ - L)\og[{wJay - L)l{\ - L)] 

+ {U - wJa,)\og[{U - wJay)l{U - 1)]] 

if L< wjui^ < U 

oo otherwise (2.9) 

where A = {U- L)1{{1 - L){U- 1)}. The specification L = 0. 
(/ = oo gives the RR distance function. It is easy to show that 
the Restricted GLS and Restricted RR distance functions 
share the property that the corresponding weights ŵ , satisfy 
L < w,^/a^. < U. 

Now, Huang and Fuller (1978) propose a method for 
adjusting regression weights such that the calibration 
constiaints given by equation (2.2) are satisfied and such that 
the g-factors are restiicted to lie close to one. Singh and Mohl 
(1996) show that their method can be written in terms of 
minimizing a distance function which changes from iteration 
to iteration. Singh and Mohl also modify the original method 
to allow for arbitrary restrictions on the g-factors, similar to 
the restricted distance functions above, and show that the 
estimator resulting from the modified distance function is 
asymptotically equivalent to the regression estimator. The 
Modified Huang-Fuller (MHF) distance function is given by: 

c - v ( v - l ) s C- (V) ' / (V- l ) s 

F {w, ,a ,)=F^^p(w; >,ai) 

= (v . f - " -« jX9r ' ' " ; v = l,2,... (2.10) 

Ik -^k '3 
the iteration number. Here, 
where q'"^'^^''^ q'i^'^^••.q'^^^qf^ with 17/'̂  = 1 and where v is 

( v - l ) 
Ik 

•C C ( V - I ) £• 

if i,\ <.5 
ir(v- l ) 

l-6(^i"-"-.5)^ if .5<e 
( v - l ) 

(1 -6 /4) / ( ( v - l ) 
if t ( v - l ) . 

for 6 arbitrarily chosen such that 0 < 6 < 1. Also 

c ( v - l ) 

( v - l ) 

( v - l ) 

( v - l ) 
i)/(L'-i) if g r ^ i 

1)/((/'- 1) otherwise 

where L' = aL + 1 - a and [/' = a(/ + 1 - a for a arbitrarily 
chosen such that 0 < a < 1 and L and U are as in eariier 
restiicted distance functions. The parameters a and 6 serve to 
speed up the convergence of the iterative algorithm used to 
provide a solution. Singh and Mohl (1996) empirically test a 
variety of values for these parameters using large data sets, 
and suggest that a = .67 and 6 = .8 work well in practice. 
Finally, the g-factor at each iteration is 
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8r -
iHx-try^Yaj,r'-j-j'y-k-^^--2,x---

where xl^'^^ = Ikes^t^^Xk; v = 2, 3,... and where w^^^ = 
^kSt'^^' ^ = 2, 3,.... Starting values are given by g f = 1 
and wl°^ = flj. 

Singh and Mohl (1996) also propose a new distance 
function which changes from iteration to iteration called the 
Shrinkage-Minimization (SM) distance function, and show 
that the estimator resulting from fliis distance function is also 
asymptotically equivalent to the regression estimator. It is 
given by: 

r . » / (v-l) \ i7(v)*/ (v-l) ^ 

F (w; ',a^) = FsM {Wk -a*) 

•{wr'-a^'-'^yiar' v = l,2,... (2.11) 

where 

( v - l ) . 

L'a^ ifH'f""<L"fl^ 

f/'flj if wf"">f / "a j 

w^"' otherwise. 

v=2 ,3 , . 

for the Restricted GLS and Restricted Raking Ratio distance 
functions, the range restiictions will be met. 

Now, the behaviour of the g-factors from some of the 
distance functions has been studied extensively; see, for 
example, Deville, Samdal and Sautory (1993). Stukel and 
Boyer (1992) empirically show tiiat flie GLS and RR distance 
functions, as well as tiieir restricted counterparts having loose 
bounds imposed on them, give g-factors whose distiibutions 
over a given data set adhere to normality rather closely. 
However, as the bounds on the restricted distance functions 
are squeezed together more closely, the distributions exhibit 
a "pile-up" of g-factors at the lower and upper bounds. 
Regardless, even under extieme squeezing, tiie restricted 
distance functions seem to give point estimates that are close 
to their unrestricted counterparts, as the results of our em
pirical study will verify. However, flie biases of bofli flie point 
and variance estimators under extieme squeezing on the 
restiicted distance functions have not been investigated. This 
investigation is of interest to surveys such as die LFS, where 
an augmentation to the current estimation system has been 
implemented, which now allows users flie option of choosing 
from amongst the Restiicted GLS distance function and the 
Shrinkage-Minimization distance function, in addition to the 
previously available GLS distance function. 

Terms in the above equations are defined as follows: 
L' = aL-i-{l-a),U' = aU-i-{l - a), L" =i^L + {I - x]) and 
U" = T]U -I- (1 - T|) for a and r| arbitiarily chosen such that 
0 < a < r | ^ l .As before, the parameters a and r| serve to 
speed up the convergence of the iterative algorithm used to 
provide a solution; Singh and Mohl (1996) suggest that 
a = .67 and ri = .9 work well in practice. Finally, 

, ( v - l ) ^ t ^ r ' ^ ; v = 2, 3,... where 

Sk 

(v-2). 
(v-l) _ "k iHx-x^ryiY-r^^j'j'Y^k 

v=2,3,.. . 

and where X^'''^^ is as before. Starting values are given by 
ar-a,ar,dwr-a,. 

A property of the Modified Huang-Fuller and Shrinkage-
Miiumization distance functions is that the calibration 
constiaints (equation (2.2)) are met at every iteration whereas 
the range restiictions on tiie g-factors are met only upon 
convergence. For the Restricted GLS and Restricted Raking 
Ratio distance functions, the range restrictions on the 
g-factors are met at every iteration whereas the calibration 
constiaints are only met upon convergence. Now, it is often 
useful to specify an upper bound on the number of iterations 
to convergence; tiiis feature may be programmed into the 
iterative algoritiim for operational expediency. If this upper 
bound is exceeded due to slow convergence, the iterative 
algoritiim may be terminated prematiuely. Regardless, for the 
Modified Huang-Fuller and Shrinkage-Minimization distance 
functions, the calibration constiaints will be met. Likewise, 

3. VARIANCE ESTIMATION FOR CALIBRATION 
ESTIMATORS 

The exact variance of the calibration estimator Y^ is 
intractable since the point estimator itself is nonlinear. In 
addition, there is no explicit unbiased method of variance 
estimation. Therefore, approximately unbiased methods, such 
as the Taylor and the Jackknife, are often used in practice. 

Now, for sti-atified multistage designs, "with replacement" 
sanqiling is not often used in practice since the possibility of 
drawing the same urut more than once is unappealing. There
fore, the preponderance of surveys use "without replacement" 
sampling, at least at the first stage of sampling. Even so, if tiie 
first stage sanpling fraction is small (say, less tiian 10 percent 
as a mle of thumb), it may be reasonable to use a simplified 
variance formula that assumes "with replacement" sampling 
at the first stage of sampling. For the generalized regression 
estimator (GLS distance function) under a stiatified multi
stage design this simplification of the variance estimator 
yields: 

' r ( ' w ( G R E G ) ^ 

n. E^E 1 * 
E ^hik^hik - — E E t^hik^hik 
kes,^ " A ' " 1 * " , , . 

(3.1) 

where j ^ , is the sample of individuals in the i-th primary 
sampling unit (PSU) and the h-th stiatiim, a ĵj is tiie original 
sampling weight under tiie stiatified multi-stage design for 
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sampled individual k in PSU i and sttatum h, and n̂  is 
the number of sampled PSUs in stiatum h. Also 
^hik ~ yhik ~ ^hik ̂  ^̂  *^ estimated residual associated with the 
regression estimator where P = (ZAtea^itX^^^jr^^/c^..^)-' 
Ihikes'^hik^hikyhik'^hik- For niany designs, tiie "witii 
replacement" formula given by (3.1) overestimates the tme 
variance (see Samdal, Swensson and Wretman 1992, section 
4.6). Note that although, teclmically speaking, this simplified 
variance estimator is not the Taylor variance estimator, it is 
often referred to as such for historical reasons and so will it 
be in this paper. 

An improvement to equation (3.1), which includes the 
g-factor in flie variance formula (recall that ŵ ;̂  = â ijtgAijt). is 
suggested by Hidiroglou, Fuller and Hickman (1980). It is 
given by: 

L 

E 

(GREG) ) = 

/i = l " A ~ 1 1 = 1 
E - E E (3.2) 

An analogue of equation (3.2) is also suggested by Samdal 
(1982) in the context of two-stage sampling, but for Yates-
Gmndy type variance estimators. Now Deville and Samdal 
(1992) show that any distance function which obeys a set of 
general conditions will produce an estimator that is asympto
tically equivalent to the one produced by the GLS distance 
function, that is, F,„(GREG) given by (2.5). Singh and Mohl 
(1996) extend tiiis result to include the Modified Huang-
Fuller and Shrinkage-Minimization distance functions. As a 
result, the asymptotic variance of the calibration estunator Y^ 
can be considered to be roughly equal to that of î (GREG) • 
This observation leads to a method for estimating the Taylor 
variance which is common to all calibration estimators, 
namely, to estimate the variance of Y^ using a modification 
of the Taylor variance estimator employed for i'̂ ./QREG)' 
rather then rederiving the Taylor formula for each of the 
distance functions separately. Thus, whenever a variance 
estimator associated with a distance function different from 
the GLS is required, equation (3.2) is used, replacing the final 
weights {w ĵj} from the GLS distance function with those 
from the distance function in question. 

It is sttaightforward to apply the Jackknife procedure to 
obtain a variance estimator for Y^, regardless of the distance 
function used to obtain the final calibrated weights. An 
expression for the variance formula under a stiatified multi
stage design usmg with replacement san^jling at the first stage 
is given by: 

ŷ(t) = E^^E(t(/'0-t)' 
A=i n. ,=1 

(3.3) 

where Y^{h i) is often referred to as the "repUcate estimator"; 
"rephcates" are formed by taking what remains of the sample 
after removing PSU i from sttatum h. Thus, Y^{hi) is 
calculated by recomputing Y after removing the i-th PSU 

from the h-th sttatum, h = l,..., L; i = I,..., n^, i.e., with the 
original samphng weights altered to reflect the PSU removal 
and tiie g-factors recalculated based on flie reduced sample or 
replicate. Finally, the Jackkiufe estimator is constmcted by 
repeatedly removing PSUs one at a time, calculating the 
corresponding replicate estimator, and then assembling the 
final estimator using (3.3). The Jackknife variance estimator 
given by (3.3) is flie most conservative among the four varia
tions suggested in die extensive discussion on the subject by 
Wolter (1985). 

It is interesting to note tiiat, for flie GREG estimator, Yung 
and Rao (1996) obtain (3.2) as an approximation to the 
Jackknife variance estimator given by (3.3); tiiey call (3.2) the 
"Jackknife Linearization Variance Estimator". Their simul
ation study shows that biases (both conditional and uncon
ditional) of the Taylor variance estimator (equation (3.1)), the 
Jackknife Linearization variance estimator (equation (3.2)) 
and the Jackkrufe variance estimator (equation (3.3)) behave 
similarly. While their simulation focuses on variance esti
mators for the um-estricted GREG estimator, our simulation 
study, which we discuss next, focuses on variance estimators 
for the GREG as well as for estimators based on other 
restricted and unrestricted distance functions. 

4. MONTE CARLO SIMULATION STUDY 

4.1 Design of the Study 

In order to compare the performance of tiie calibration 
estimators and their corresponding Taylor and Jackkrufe 
variance estimators, we undertook a Monte Carlo simulation 
study, in which we investigated tiieir finite sample design-
based frequentist properties. 

December 1990 Labour Force Survey (LFS) sample data 
for the province of Newfoundland was used to simulate a 
fiiute population, from which repeated samples were drawn. 
The LFS is flie largest ongoing household sample survey 
conducted by Statistics Canada. Monthly data relating to the 
labom- market is collected using a complex multi-stage 
sampling design with several levels of sttatification. The 
details of the design of tiie survey prior to the 1991 redesign 
can be found in Singh, Drew, Gambino and Mayda (1990). 
In general, provinces are stiatified into "economic regions", 
which are large areas of similar economic stmcture; New
foundland has four such economic regions. The economic 
regions are fiuther substtatified into "self-representing units" 
(SRUs) and "non self-representing units" (NSRUs), which 
are, in tum, further substtatified into lower level substtata. 
SRUs are cities whose population exceeds 15,000, such as 
St. John's and Comerbrook, in the case of Newfoundland. 
Now, the lowest level of sttatification in Newfoundland 
yielded 45 sttata, each of which contained less than 6 primary 
sampling uiuts (PSUs), which was an insufficient number 
from which to sample, for the purposes of tiie simulation. 
Thus, the 45 sttata were collapsed down to 18, each 
containing between 6 and 18 PSUs. In collapsing the sttata. 
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economic regions were kept intact, as were the Census 
MettopoHtan Areas (CMAs) of St. John's and Comerbrook. 

For the Monte Carlo study, R = 4,000 samples, each of size 
approximately 1,000, were drawn from flie Newfoundland 
"population" (which was of size 9,152), according to a two-
stage design. For collapsed sttata belonging to NSRUs, two 
PSUs were selected at tiie first stage using Probabihty 
Proportional to Size (PPS) with replacement (WR) sampling, 
where the size measure used was the number of dwellings in 
the PSU. At the second stage, one in five dwellings were 
selected from the sampled PSUs using Simple Random 
Sampling (SRS) without replacement (WOR). For collapsed 
sttata belonging to SRUs, three PSUs were selected at tiie 
first stage using PPS WR sampling. At the second stage, all 
the dweUings in the sampled PSUs were selected, reducing 
this part of tiie design to one-stage take-all cluster sampling. 
This feature was necessary since there were not enough 
dwellings per PSU to subsample in SRUs. The selection of 
two PSUs in NSRU sttata versus tiiree in SRU sttata was 
driven by the fact that, in general, NSRU sttata had fewer 
population PSUs from which to sample than did SRU 
sttata. In all, there were 47 sampled PSUs. In either case 
(NSRUs or SRUs), all dwelUng members were included in the 
sample. Although this design is a hybrid between a one and 
two-stage design, we shall refer to it as a two-stage design, for 
conveiuence. 

We took Y, the total number of unemployed, to be the 
parameter of interest. This was calculated from the finite 
population by: Y =Y,i^^yyi^ =E ' i f )"* where yt= 1 if mdividual 
k was unemployed; 0 otherwise. For each of the /? = 4,000 
samples, we calculated Y^, the estimated total number of 
unemployed as Y^ = EtoW'^)'i- The {w^:kes] were deter
mined by the following six distance functions discussed 
earlier: 

(1) the Generalized Least Squares (GLS) Distance Function 
(equation (2.4)), 

(2) tiie Raking Ratio (RR) Distance Function (equation 
(2.7)), 

(3) tiie Restiicted GLS (RGLS) Distance Function (equation 
(2.8)), 

(4) tiie Restiicted RR (RRR) or Logit Distance Function 
(equation (2.9)), 

(5) the Modified Huang-Fuller (MHF) Distance Function 
(a = .67, 6 = .8) (equation (2.10)), and 

(6) the Shrinkage-Minimization (SM) Distance Function 
(a = .67, Ti = .9) (equation (2.11)). 

For the latter foiu distance functions, tiie following four 
sets of bounds were imposed on each to restrict the 
minimization: {i)L = 0,U = 4, (ii) L = .4,U = 2, (iii) L = .68, 
U = 1.6 and (iv) L = .8, f/ = 1.3. This yielded a total of 
eighteen point estimators. For each of the eighteen point 
estimators, the calibration used auxiliary information based 
on Census projections at the province level for 10 mutually 
exclusive and exhaustive age/sex categories (age categories: 
< = 14, 15-24, 25-44, 45-64, > = 65 crossed witii tiie two 
sexes) and the four economic regions of Newfoundland. 

Thus, the auxiliary information for each individual was a 
vector of lengfli fourteen having exactiy two ones and twelve 
zeros. However, for computational purposes, the dimen
sionality of the vector had to be reduced to thirteen when 
using the Newton-Raphson procedure to solve equation (2.3). 
For the first four distance functions, we set Cj = 1. 

For each of the 7? = 4,000 samples and each of tiie eighteen 
point estimators, we calculated the Jackknife variance esti
mator given by equation (3.3). We also calculated the Taylor 
variance estimator given by equation (3.2), and the modifica
tion suggested in section 3 was used for distance functions 
otiier tiian tiie GLS. Note fliat since PPSWR, ratiier tiian 
PPSWOR, was used at the first stage of sampling, the use of 
the variance estimator given by equation (3.2) was entirely 
appropriate for our simulation. Finally, for the GLS distance 
function only, the formula (3.1) was calculated to observe the 
impact of omitting g-factors from the variance estimator. 

For each of the six distance functions given above, a 
number of frequentist properties were investigated. These are 
given below. 

(A) The Percent Relative Bias of the Estimated Number of 
Unemployed (witii respect to the population value) is 
estimated by: 

^ M O - J - I -
* 100 (4.1) 

where 

EM = ̂ Yt, 
is the Monte Carlo expectation of the point estimator Y^ 
taken over the R samples, and Y^ is the value of Y^ for 
sample r. 

(B) The Percent Relative Bias of the Taylor/Jackknife 
Variance Estimator (with respect to the tme variance) is 
estimated by: 

{E^{V{YJ)-V^^) 
* 100 (4.2) 

where 

and 

Ei,{nyj) = ^Yyr(t) 
K r=l 

true n '— ^.n.e4E(t-£M(0)' 

and V^(FJ is the value of V{Y^ (Taylor or Jackknife) for 
sample r. 

(C) The Percent Coefficient of Variation of tiie Taylor/ 
Jackknife Variance Estimator (with respect to the true 
variance) is estimated by: 
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N ^Y(Vr(YJ-V^f 
A r=l *100 (4.3) 

i.e., die root mean squared error of die variance estimator 
divided by the tme variance, expressed as a percentage. 
Although most studies focus on the bias of the variance 
estimators, it is also of secondary interest to look at the 
coefficient of variation of the variance estimators to see how 
variable the variance estimates themselves are. 

Note that in equations (4.2) and (4.3), it may have been 
more appropriate to make comparisons relative to a "tme 
mean squared error" rather than a "tme variance". However, 
for our simulation, the relative biases were so small that the 
differences between the two types of comparisons are vir
tually neghgible. 

Finally, in order to assess the appropriateness of the choice 
of number of repeated samples, we calculated Monte Carlo 
errors, using as a measiu-e the Percent Coefficient of Varia
tion of E^f{V{YJ), given by: 

.^,Y[Vr(yj-Et,(v(t))f 
\ R^ r=l *100. 

(4.4) 

E^,iViYJ) 

The Monte Carlo errors were found to be consistentiy low 
(between .99% and 3.60%) for bofli the Jackknife and Taylor 
using R = 4,000, indicating stable results. 

4.2 Results of the Study 

Table 1 gives the Percent Relative Bias of the Point Esti
mators (equation (4.1)) as well as the Percent Relative Bias of 
the Taylor and Jackknife Variance Estimators (equation (4.2)) 
and the Percent CVs of tiie Taylor and Jackkrufe Variance 
Estimators (equation (4.3)). The percent relative bias for all 
the point estimates (column two) is negligible, ranging in 
value from 0.10% to 0.52%, but much less flian 1% in all 
cases. The fact that all point estimates have a similar bias 
seems reasonable, given the asymptotic equivalence of all 
calibration estimators to the regression estimator. 

The tiiird column gives the percent relative bias of the 
Taylor variance estimator. Here, the tine variance is always 
underestimated, but never by more than 6.2%. In tiie case of 
the regression estimator, it appears to make littie difference 
whether or not the g-factor is included in flie variance formula 
(equation (3.1) versus (3.2)); the bias improves only slightiy 
for flie case of the g-factor included(-5.82% versus -6.01%). 
The Jackkrufe variance estimator (column four), on tiie other 
hand, outperforms the Taylor variance estimator uniformly. 
The Jackknife almost always underestimates the tme variance, 
but by less than 2% in all cases. 

To produce a solution, all distance functions but the GLS 
requtted an iterative algorithm. This being the case, some of 
the 4,000 sanqjles experienced convergence problems, parti
cularly in the case of extteme bounding on the g-factors. 
Those samples for which die algorithm did not converge were 
discarded. Thus, they did not contribute to the various Monte 
Carlo measures. The number of such discarded samples is 

Table 1 
Percent Relative Bias of the Point Estimators, and Percent Relative Bias and Percent CV of the Taylor and 

Jackknife Variance Estimators (Sample Size About 1000) 

Distance Function 

GLS (Regression) 

Restiicted GLS 

Raking Ratio 

Restiicted RR 

Modified 
Huang-Fuller 

Shrinkage-
Minimization 

(L = 0, l / = 4) 
(L= .4 , t /=2) 

(L = 0,(/ = 4) 
(L=.4,U=2) 

(L = 0, f/ = 4) 
(L = .4, t /=2) 

(L = 0, l/ = 4) 
{L=.4,U = 1) 

Percent 
Relative 

Bias Point 
Estimator 

.11 

.11 

.10 

.52 

.50 

.46 

.11 

.10 

.11 

.10 

Percent 
Relative 

Bias Taylor 
Variance 

-6.01 (eq 3.1) 
-5.82 (eq 3.2) 

-5.82 
-5.36 

-6.20 

-6.09 
-5.69 

-5.82 
-5.36 

-5.82 
-5.36 

Percent 
Relative 

Bias Jackknife 
Variance 

-1.73 

-1.73 
-1.27 

0.84 

-0.31 
-0.39 

-1.73 
-1.20 

-1.73 
-1.27 

Percent CV 
Taylor 

Variance 

60.79 (eq 3.1) 
59.60 (eq 3.2) 

59.60 
59.93 

59.45 

59.48 
59.81 

59.60 
59.94 

59.60 
59.94 

Percent CV 
Jackknife 

Variance 

62.86 

62.86 
63.21 

63.35 

63.47 
64.21 

62.86 
63.27 

62.86 
63.25 

Number of 
Discarded 
Samples 

(From 4000) 

0 

0 
32 

0 

0 
32 

0 
32 

0 
32 
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indicated in the last column of Table 1. In the case of extteme 
bounds {L = .68, 1/ = 1.6 and L = .8, [/ = 1.3), so many 
samples were discarded (between 231 and 234 for the cases 
L = .68, U = 1.6 and between 1,562 and 1,602 for the cases 
L = .i,U= 1.3) that the results were not considered reliable, 
and so are not reported here. However, these tighter bounds 
were of interest, so the simulation was remn using 
approximately double the sample size (increase from roughly 
1,000 to 2,000). Note tiiat Deville and Samdal (1992) show 
that convergence is achieved for all distance functions witii 
probability one as the sample size increases. 

Columns five and six of Table 1 give the Percent CVs of 
the Taylor and Jackknife Variance Estimators. The coeffi
cients of variation are similar for all distance functions, 
ranging in value from 59.45% to 64.21 %. However, the CVs 
corresponding to flie Jackknife are always sUghfly larger than 
that of Taylor. Coefficients of variation of this magnitude, 
altiiough large, have been encountered in other simulation 
studies relating to variances. See, for example, Kovacevic;, 
Yung and Pandher (1995). However, we were interested in 
seeing if the key results relating to the bias of the variance 
estimators would still hold if flie CVs were lowered. 
Therefore, at the suggestion of a referee, we reran the simu
lation, increasing the number of PSUs drawn from 47 to 83, 

since CVs of variance estimators are known to be approxi
mately inversely related to the number of PSUs drawn. The 
PSUs were increased in such a way that the overall design 
was made self-weighting; this approach appeared to have the 
greatest efl'ect on lowering the CVs. The second stage of 
sampling remained the same as before. Reranning the simu
lation had the secondary benefit of roughly doubting the 
sample size, and thus, solving the convergence problems 
referred to in the last paragraph. 

The results from the second ran of the simulation are 
reported in Table 2. The last column in Table 2 shows the 
reduced number of discarded samples due to convergence 
problems. The fifth and sixth column of this table show that 
the CVs are significantiy reduced to between 22.70% and 
24.2% with the Jackknife consistentiy exhibiting slightiy 
higher values. Now, as before, the percent relative bias in the 
pomt estimator is neghgible, always being well under 1%. In 
the previous ran, the percent relative biases for the Taylor 
estimator were always roughly -6%; here, they are always 
about - 3 % , again implying underestimation of the trae vari
ance. Once more, in the case of the GLS distance function, 
tiiere is very htiie difference in flie bias that results from using 
equation (3.1) versus (3.2). The percent relative bias in the 
Jackkiufe estimator (always roughly -1.5%) is consistentiy 

Table 2 
Percent Relative Bias of the Point Estimators, and Percent Relative Bias and Percent CV of the Taylor and 

Jackknife Variance Estimators (Sample Size About 2000) 

Distance Function 

GLS (Regression) 

Restiicted GLS 

Raking Ratio 

Restiicted RR 

Modified 
Huang-Fuller 

Shrinkage-
Minimization 

(L= 0, C/ = 4) 
{L=.4,U=2) 
(L=.68, t/=1.6) 
(L = .8, t/=1.3) 

(L = 0, f/ = 4) 
(L=.4, (7=2) 
(L = .68, t/=1.6) 
(L=.8, t/=1.3) 

(L = 0, t/ = 4) 
(L= .4 , t /=2) 
(L=.68, t/=1.6) 
(L = .8,U=1.3) 

(L = 0, t/ = 4) 
(L = .4,t/ = 2) 
(L=.68, i/=1.6) 
(L=.8, f/=1.3) 

Percent 
Relative 

Bias Point 
Estimator 

.02 

.02 

.02 

.02 

.02 

.25 

.17 

.16 

.31 

.27 

.02 

.02 

.02 

.02 

.02 

.02 

.02 

.02 

Percent 
Relative 

Bias Taylor 
Variance 

-2.71 (eq 3.1) 
-2.61 (eq 3.2) 

-2.61 
-2.61 
-2.61 
-2.75 

-2.75 

-2.67 
-2.70 
-2.77 
-2.91 

-2.61 
-2.61 
-2.61 
-2.58 

-2.61 
-2.61 
-2.61 
-2.61 

Percent 
Relative 

Bias Jackknife 
Variance 

-1.43 

-1.43 
-1.43 
-1.44 
-1.56 

-1.15 

-1.36 
-1.42 
-0.49 

* 

-1.43 
-1.43 
-1.44 
-1.36 

-1.43 
-1.43 
-1.44 
-1.24-

Percent CV 
Taylor 

Variance 

23.03 (eq 3.1) 
22.84 (eq 3.2) 

22.84 
22.84 
22.84 
22.70 

22.84 

22.84 
22.84 
22.83 
22.70 

22.84 
22.84 
22.84 
22.73 

22.84 
22.84 
22.84 
22.73 

Percent CV 
Jackknife 
Variance 

23.29 

23.29 
23.29 
23.29 
23.15 

23.43 

23.30 
23.29 
24.20 

* 

23.29 
23.29 
23.29 
23.18 

23.29 
23.29 
23.29 
23.63 

Number of 
Discarded 
Samples 

(From 4000) 

0 

0 
0 
0 

118 

0 

0 
0 
0 

118 

0 
0 
0 

116 

0 
0 
0 

118 
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smaller in absolute value than that of Taylor. For the Jack-
knife estimator, there is one case (Restiicted RR (L = .8, 
U = 1.3)) where there were convergence problems; those 
results are omitted, indicated by a "*". Surprisingly, for both 
the Taylor and Jackkiufe, there is vutually no change in bias 
for the restricted distance functions as the bounds are made 
successively more tight. In fact, there seems to be very littie 
difference in the percent relative bias across aU of the distance 
functions, for both the Taylor and the Jackknife. Note that for 
the reran of the simulation, the Monte Carlo errors ranged 
between .37% and 2.13%. 

5. CONCLUSIONS 

This paper focused on exploring the behaviour of point 
estimators and their corresponding Taylor and Jackknife 
variance estimators for a number of different distance 
functions available through calibration flieory. Particular 
emphasis was given to those distance functions which 
allowed range restiictions to be imposed on the g-factors, 
eliminating the possibihty of negative and high positive final 
weights. All of the point estimators which were investigated 
exhibited a negligible bias. 

Both the Jackknife and Taylor variance estimators 
exhibited small underestimation of tiie tine variance, altiiough 
the Jackknife consistentiy had smaller biases (in absolute 
value) than tiie Taylor. The most stiiking result was that, for 
both Taylor and Jackknife, flie biases remained roughly the 
same in the cases of extteme bounding on the g-factors as in 
the cases of less restrictive bounding. In general, however, 
caution should be exercised m the use of extteme bounds, due 
to the convergence problems that may be experienced, 
particularly when Jackkiufing is used for variance estimation 
and the point estimators must be recalculated repeatedly. If 
the main objective of using tiie restiicted distance functions 
is to eliminate the possibility of negative or high positive 
weights, tiien modest bounds on tiie g-factors should suffice. 

As a final remark, it is interesting to note that roughly 97% 
of the computing time was spent Jackkiufing while the 
remaining 3% was spent on Taylor linearization. This rather 
extteme difference in computation time may give the Taylor 
method an advantageous edge if measures of precision are 
required for a large number of domains. However, given 
recent developments in the computational efficiency of the 
Jackknife variance estimator (for example, the program 
WESVARPC (1995)), it may be possible to offset tiiis im
balance. Even so, it should be noted that, at this time, 
WESVARPC has improved the computational efficiency for 
designs having only two PSUs per sttamm, and poststtatified 
estimators having only one dimension. 

In conclusion, since our study does not conclusively show 
either variance estimator to be clearly superior and shows 
both to behave reasonably well for all distance functions, it is 
up to the user to decide which variance/ distance function 
combination best fits the system requirements. 
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An Application of Restricted Regression Estimation 
in a Household Survey 

BODHINIR. JAYASURIYA and RICHARD VALLIANT' 

ABSTRACT 

This paper empirically compares three estimation methods - regression, restricted regression, and principal person - used 
in a household survey of consumer expenditures. The three methods are applied to post-sttatification which is important 
in many household surveys to adjust for under-coverage of the target population. Post-sttatum population counts are 
typically available from an extemal census for numbers of persons but not for numbers of households. If household 
estimates are needed, a single weight must be assigned to each household while using the person counts for 
post-stî tification. This is easily accomplished with regression estimators of totals or means by using person counts in each 
household's auxiliary data. Restricted regression estimation refines the weights by conttoUing exttemes and can produce 
estimators with lower variance than Horvitz-Thompson estimators while still adhering to the population conttols. The 
regression methods also allow controls to be used for both person-level and household-level counts and quantitative 
auxiliaries. With the principal person method, persons are classified into post-sttata and person weights are ratio adjusted 
to achieve population contiol totals. This leads to each person in a household potentially having a different weight. The 
weight associated witii tiie "principal person" is then selected as the household weight. We will compare estimated means 
from the three methods and their estimated standard errors for a number of expenditures from the Consumer Expenditure 
survey sponsored by the U.S. Bureau of Labor Statistics. 

KEY WORDS: Calibration; Principal person method; Replication variance; Restricted regression. 

1. INTRODUCTION 

A signal problem in large household surveys is under
coverage of the target population often arising from 
differential response rates among population subgroups and 
frame deficiencies. Post-sttatification is one method used at 
the estimation stage to reduce mean square errors based on 
information that affect the response variables. The estimator 
is constracted in such a way that the estimated total number of 
individuals falling into each post-sttatum is equal to the trae 
population count. Post-sttatiun population counts are typically 
available from an extemal census for numbers of persons but 
not always for numbers of households. If household estimates 
are needed, a single weight must be assigned to each house
hold while using the person counts for post-sttatification. 
Regression estimators of totals or means accomplish this by 
using person counts in each household's auxiliary data. 
Restiicted regression estimation conttols extteme weights and 
can produce estimators with lower variance than the Horvitz-
Thompson estimator while still adhering to the population 
conttols. An alternative used by some siuveys is the Principal 
Person (PP) metiiod (Alexander 1987) in which the household 
weight is based on the individual designated as the"principal 
person" in each household. Persons are classified into 
post-sttata and person weights are ratio adjusted to achieve 
population conttol totals, leading to the possibility tiiat each 
person in a household may have a different weight. The 
weight associated wifli the principal person is then assigned to 
the household. This ad hoc method is difficult to analyze 
theoretically. The regression estimators discussed in this 

paper, while easily adjusting for the population under-count, 
automatically provide a household weight fliat is not based on 
any particular one of its members. Lemaitte and Dufour 
(1987) address Statistics Canada's use of the regression 
estimator in this regard. 

There are a growing number of precedents for the use of 
regression estimators in surveys both in the theoretical 
literature and in actual siuvey practice. Statistics Canada has 
incorporated the general regression estimator into its 
generalized estimation system (GES) software that is now 
used in many of its surveys (Estevao, Hidiroglou and Samdal 
1995). Fuller, Loughin and Baker (1993) discuss an 
application to the USDA Nationwide Food Consumption 
Survey. One of the atttactions of regression estimation is that 
many of the standard techniques in siu-veys including the 
post-sttatification estimator mentioned above are special cases 
of regression estimators. The regression estimator also more 
flexibly incorporates auxiliary data than other more common 
methods. In a household survey, for example, both person-
level and household-level auxiliaries that can be qualitative or 
quantitative are easily accommodated. Other works related 
to regression estimation and post-sttatification include 
Betiilehem and Keller (1987), Casady and Valhant (1993), 
Deville and Samdal (1992), Deville, Samdal and Sautory 
(1993) and Zieschang (1990). 

In this study we compare the regression estimator with the 
PP estimator currentiy in use at flie Bureau of Labor Statistics 
(BLS). Each estimator can be written in the form of a 
weighted sum of the sample values of the response variable. 
Then each weight is ttaditionally interpreted as the number of 

' Bodliini R. Jayasuriya and Richard Valliant, U.S. Bureau of Labor Statistics, 2 Massacliusetts Avenue, N.E., Room 4915, Washington, DC 20212, U.S.A. 
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individuals in the population who would have the correspond
ing value of the response variable. This interpretation requires 
that each weight be greater than or equal to one. The ordinary 
least-squares regression estimator has the disadvantage that it 
can produce non-positive weights. A number of ways are 
suggested in the literatiu-e on how to overcome this problem. 
Possibly the easiest is the method inttoduced by Deville and 
Samdal (1992) which can remove any negative weights as 
well as conttol extteme weights. The restricted regression 
estimators produced by these new weights are also compared 
to the original regression estimator and the PP estimator. 

In Section 2, the three different estimators are presented. 
Section 3 is an application of these procedures to the 
Consumer Expenditure (CE) Survey at BLS - the same setting 
as in Zieschang (1990). We compare the coefficients of 
variation for a number of the survey target variables for the 
full population and for a number of domains. Section 4 
provides a summary of otir conclusions. 

A linear regression estimator of the population total of y is 
defined to be 

h-y.-^^-K)'^ yR (2.2) 

where y^ denotes the it-estimator (or Horvitz-Thompson 
estimator) of the population total of y, i.e.. 

y^ = E a,)',- (2.3) 

with a; = l/7t(. Also, x^={x^.^,...,x^J' is the vector of 
TI-estimators of the population totals of the variables 
x^,X2,...,Xi^ and 

P=(^,v..4)' = 
ies o,. 

« , • * . ) ' , 

(2.4) 
16S O , 

- 2 • 

2. REGRESSION, CALIBRATION 
AND PRINCIPAL PERSON 

ESTIMATION 

First, we give a brief inttoduction to the regression 
estimator. A sample s of size n is selected from a finite 
population U of size N. Let the probability of selection of the 
i-th unit be ^,. The sample could be two-stage and the unit 
could be either the primary sampling unit or the secondary 
sampling unit. There is no need here to complicate the 
notation with explicit subscripts for the different stages of 
sampling. Let the variable of interest be denoted by y and 
suppose that its value at the i-th uiut, y,., is observed for each 
i e j . Assume the existence of X̂  auxiliary variables x^,X2, .,% 
whose values at each ies are available. Define 
Xj = {x.^,x^.2,...,x.g)', for each ieU, where x.^ denotes the 
value of the variable ;Cj at unit i. Let X = (Xj, ...,Xf,)' denote 
the /^-dimensional vector of known population totals of the 
variables x^,X2,...,Xfr. The regression estimator is then 
motivated by the working model ^: 

yi = Pî .-i h^i* hh iK + E; (2.1) 

for J = 1,..., N. Here, Pj,..., P,̂  are imknown model parameters. 
The E. are random errors with £j(ej) = 0 and varj(e;) = Oj for 
i= I, ...,N. The term "working model" is used to emphasize 
tiie fact that die model is likely to be wrong to some degree. In 
the CE, the unit of analysis, indexed by i, is a consumer unit 
(CU), which is similar to a household and defined in more 
detail in Section 3. The value y, might be the total food 
expenditures by the CU and the x-f^'s might be various CU 
characteristics like numbers of people of different ages, or CU 
income, that have an effect on the CU's expenditure on food. 
The variance of expenditures might be dependent on CU size 
so that having ô  proportional to the number of persons in the 
CU might be reasonable. We include an intercept in some of 
our models by setting the first auxihary variable, x^, equal to 1. 

We assume that Y^i^^OiXiX'.lOj is nonsingular. Even if model 
(2.1) fails to some degree, y^lN is a design consistent 
estimator of the population mean Y irrespective of whether 
the assimied model is true or false. This is clear fixjm (2.2). If y ĵ/A' 
and xJN are design consistent estimators of Y and of X, 
the vector of population means of the auxiliaries, then the 
second term in ŷ j/Â  converges to zero while the first 
converges to Y. For more details, see Samdal, Swensson and 
Wretinan(1992). 

The regression estimator ŷ , can also be expressed as a 
weighted stun of the sample y/s, which is a desirable feature 
for survey operations. It is easily seen that (2.2) can be 
re-written as y^ = Y^i^^w.y. with 

W: = a. l+(A:-f ) 'A- ' -^ 
o. 

(2.5) 

where A = Y^j^^a-X-x^lOf. The weights do depend on the 
sample through the x/s that are in the sample, but this is also 
trae of many survey estimators, including the post-
sttatification estimator. However, these weights do not depend 
on the particular y variable being studied, implying that one 
set of w. weights can be used for all estimates. 

A mean per unit is estimated in the obvious way: 
tfi = SR'N where /V = £ 
auxiharies x^, then 

w.. If we estimate the totals of the 
tes I 

E -.•^; a^x;HX-£JA -I '^i^'i^'i 

•X', 

(2.6) 

i.e., we reproduce the known population totals. This is also a 
characteristic of the post-sttatification estimator. 

The estimator of P in (2.4) does not account for any 
correlation among the errors in model (2.1). In clustered 
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populations, units that are geographically near each otiier, e.g., 
CU's in the same neighborhood, may be correlated. Using a 
full covariance matrix V may be more nearly optimal {e.g., see 
Casady and Valhant 1993 and Rao 1994). Though use of a fiill 
covariance matrix V may lower the variance of p, the 
elements of V will depend on the particular y being studied, 
and estimation of V is generally a nuisance. Consequentiy, it 
is interesting and practical to consider the simple case of 
V = diag(o,.) tiiat leads to (2.2). Note that when the design-
variance var (y^) is estimated, it will be necessary to use a 
method that properly reflects clustering and other design 
complexities. 

The regression estimator has the disadvantage that the 
weights can be unreasonably large, small or, even negative. 
The restricted calibration estimators of Deville and Samdal 
(1992), inttoduced next, add consttaints to conttol the size of 
the weights. Cahbration estimators are formed by minimizing 
a given distance, F, between some initial weight and tiie final 
weight, subject to consttaints. The consttaints can involve the 
available auxihary variables thus incorporating them into 
the estimator. The regression estimator presented above is a 
special case of the cahbration estimator in which F is defined 
to be the generalized least squares (GLS) distance function. 

F(w,a,) = ^ 
( \2 

y^i 

for i = 1,..., n, with c. a known, positive weight {e.g., c. = of 
or Cj = 1) associated with unit i, and w., the final weight. The 
total sample distance Z,ej^(**','0,) is minimized subject to the 
consttaints. 

Ew,x,=z. (2.7) 

In this form, the weights of the regression estimator of the 
population total of y given in (2.5) can be written as. 

Wi = a.g{cr^X'x) 

for 1= 1,..., n where 

g{u) = 1 +M, 

(2.8) 

(2.9) 

for ueBi and A is a Lagrange multiplier evaluated in the 
minimization process. The particular form of w. with c. = of 
for the regression estimator was given in (2.5). To eliminate 
exttemes, the weights can be refined by restricting g so that 

L if u<L-l 
g{u)=\l+u if L-liu<U-l (2.10) 

U if u>U-I. 

With this definition of g, the weights w. satisfy 

L<w./a.<U (2.11) 

for t = 1,..., n so that L and U can be chosen in such a way as 
to reflect the desired deviation from the initial weights a.. 
Choosing L > 0 ensures that the weights are positive, and U is 
picked to be appropriately smaU to prohibit large weights. The 
restricted regression weights must be solved for iteratively; 
one eastiy programmed algoritiim is given in Stukel and Boyer 
(1992). Another method of restricting weights is ridge 
regression as used by Bardsley and Chambers (1984). 

In most household surveys, post-sttatification serves 
primarily as an adjustment for under-coverage of the target 
population by the frame and tiie sample. In the U.S., there are 
few reliable population counts of households to use in 
post-sttatification. Consequentiy, popidation coimts of persons 
are usually used for the post-sttata conttol totals. This 
disagreement in the unit of analysis (the household) and the 
unit of post-sttatification (the person) when a household 
characteristic is of interest led to the development of the PP 
method that is used in the CE and Current Population Siureys. 

In the PP method described in Alexander (1987), a 
household begins the weighting process with a single base 
weight, a., that is then adjusted for non-response. The 
adjusted weight is assigned to each person in the household 
and the person weights are then further adjusted to force them 
to sum to known population conttols of persons by age, race, 
and sex. This last adjustment can result in persons having 
different weights within the same household. The household 
is then assigned the weight of tiie person designated as the 
"principal person" in the household. This method has an 
element of arbittariness and is difficult to analyze mathe
matically. The intent of this research was not to see if the PP 
method could be improved upon, but rather to use the current 
implementation of PP as a conveiuent baseline for measuring 
the performance of other estimators. 

The regression and restricted regression estimators can be 
formulated in such a way that population person conttols are 
satisfied, all persons in a household retain the same weight, 
and no arbittary choice among person weights is needed to 
assign a household weight. This is accomplished by defining 
the auxihary variables at the household level. For example, if 
there were fliree age post-sttata and household i has 1, 0, and 
2 persons in these post-sttata, the auxiliary data vector would 
be X, = (1,0,2)'. Note that this formulation is different from 
Lemaitte and Dufour (1987) who defined the auxiliary 
variables at the person level and assigned the average of the 
household data - (1/3,0,2/3) in the example - to each person. 
Those authors used this "average" method because they were 
interested in estimates both for persons, e.g., number 
employed, and for households, e.g., economic families. We, 
on the other hand, need oitiy a household weight since oiu 
target variables {i.e., y) like shelter or utility expenditiues are 
collected at the household level. 

3. AN APPLICATION 

We compare the three estimators {i.e., regression, restricted 
regression (wifli L = .5, U = 4), and principal person) by an 
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application to the estimated means and their estimated 
standard errors for a number of expenditures from the CE 
Survey sponsored by the Bureau of Labor Statistics. 

The CE Survey gathers information on the spending 
pattems and hving costs of the American consumers. There 
are two parts to the survey, a quarterly interview and a weekly 
diary survey. The Interview Siuvey collects detailed data on 
the types of expenditures which respondents can be expected 
to recall for a period of three months or longer {e.g., property, 
automobiles, major apphances) - an estimated sixty to seventy 
percent of total household expenditures. The Diary Siuvey is 
completed at home by the respondent family for two 
consecutive 1-week periods and collects data on all the 
expenses of the family in that time period. The sample is 
selected in two stages with geographic primary sampUng units 
at the first stage and households at the second. 

We evaluated the estimators described above for a number 
of expenditures from the Interview Survey. Data collected 
during the second quarter of 1992 consisting of n = 5156 
CU's were used. The CE Siuvey's primary unit of analysis is 
the consumer unit, an economic family within a household. A 
consumer uiut (CU) consists of individuals in the household 
who share expenditures. Thus, there may be more than one 
CU in a household. 

Five different sets of auxiliary variables {x.'s in the 
notation of Section 2) were studied. They were chosen by 
testing the adequacy of model (2.1) for the selected 
expenditures with different combinations of the available 
auxiliary variables. Combinations of auxiliaries were 
identified in which each estimated regression coefficient was 
significant in an ordinary least squares regression at the 5% 
level. A key step that substantially improved the fit of the 
models was simply including an intercept. Factored into the 
selection of auxiharies was also the knowledge that the survey 
has more under-coverage of Blacks than non-Blacks and that 
this needed to be accounted for by post-sttatification. We 
viewed this method of variable selection as exploratory and, 
consequentiy, a number of combinations were studied to 
determine which set produced the best estimators of mean 
expenditures. The 56 post-sttata based on age/race/sex 
currentiy in use in the CE were included. (The 56 are routinely 
collapsed in actual CE operations because of small sample 
sizes in some cells.) Other variables that were statistically 
significant in various combinations were region (NE, MW, 
S, W), urbanicity (urban/rural) by region, age of reference 
person of tiie CU (< 25,25-34, 35-44,45-64, 65-I-), household 
tenure (owner/renter), income before taxes of the CU, and the 
56 post-sttata collapsed by sex and some of the age categories 
to form 10 age/race categories. Based on this information, 
weights (2.8) were computed using g given in (2.9) - regwts 
- and (2.10) - calwts. For both the regression and restricted 
regression weights, we set a, equal to the adjusted base 
weight, i.e., llii. times a non-response adjustment. In order 
for the matrix A in Section 2 to be nonsingular, one of the 
categories in some auxiliaries, like region, was omitted from 
each x.. For this application, the population totals necessary 

to evaluate X = (Xj,...,X^)' were obtained mostly from the 
Statistical Absttact of the United States (1993) whose sources 
are the 1990 Census figures and the Current Population 
Reports pubhshed by the U.S. Bureau of the Census. When an 
intercept is used, the appropriate conttol total for that variable 
is the number of CU's in the population for which we used the 
PP estimate as a surrogate. The combinations of auxiliaries 
used to form the different weights are given in Table 1. 
RegwtsO, with 56 age/race/sex post-sttata uses the largest 
number of post-sttata. The 56 are the starting point for the PP 
method but are usually collapsed to 30-40 because of small 
cell sizes. When computing calwtsO, those 56 post-sttata were 
collapsed to 45 since the consttaints imposed by the L and U 
botmds could cause singularity in the matiix based algorithm. 

Table 1 
Weights and Their Corresponding Auxiliary Variables 

Weights 

regwtsO 
regwts 1 
regwts2 

calwtsO 
calwts 1 
calwts2 

calwts3 

calwts4 

PP 

Auxiliary Variables 

Age/race/sex 
Intercept, age/race/sex, region, urban x region 
Intercept, age/race/sex, region, urban x region, 
age of reference person, housing tenure, 
family income before taxes 
Age/race/sex 
Intercept, age/race/sex, region, urban x region 
Intercept, age/race/sex, region, urban x region, 
age of reference person, housing tenure, 
family income before taxes 
Intercept, age/race/sex, region, urban x region, 
family income tiefore taxes (ttuncated at 
$500,000) 
Intercept, age/race/sex, region, urban x region, 
age of reference person, housing tenure 
Age/race/sex 

K 

56 
18 
24 

45 
18 
24 

19 

23 

56' 

The initial set of 56 is usually collapsed to 30-40 liecause of small sample 
sizes in some cells. 

3.1 Comparisons of Weights 

A variety of comparisons of weights produced by the 
different methods were made, oitiy a few of which can be 
mentioned here. Figiue 1 shows plots of the PP weights, 
regwtsO, calwtsO, and calwts 1 versus the adjusted base 
weights. For PP and regwtsO, the adjustments to go from a. to w. 
are much more variable than for calwtsO and calwts 1, which 
employ the L = 0.5 and U = 4 restrictions. High variability 
among the w. can lead to expenditure estimates with high 
variance and to poor confidence interval coverage since large 
sample normality may not hold. Even though (2.11) implies 
that a.l2 < w. < 4a. for each i for the calwts, the lower right 
panel in Figiue 1 shows that the calwts 1 satisfy 
a.l2 < w. < 2a., for each i. Thus, setting t/ = 2 or 3 would 
have littie effect on calwts 1. CalwtsO would have been sUghtiy 
affected by setting U=2 since a few points were outside tiie 
upper reference line. The upper two panels indicate that the 
PP weights and regwtsO do not conform to the restiiction 
a,/2<w,<2a... 
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The concern about negative regression weights was minor 
in the application. In the full sample, only one CU had a 
negative weight for regwts 1 and regwts2 while regwtsO had no 
negative weights. However, in the rephcates used for variance 
estimation, described in Section 3.2, 2 or 3 CU's did have 
negative weights in many rephcates so that using the L 
restriction was more important there. 

3.2 Precision of Estimates from the Different Methods 

Although comparison of weights is instractive, the methods 
must ultimately be judged based on the level of estimated CU 
means and their precision. The standard ertors of these 
estimators were computed via the method of balanced half 
sampling (BHS) using 44 rephcates as currentiy implemented 
in tiie CE for the PP estimator. The BHS estimator is 
constracted to reflect the sttatification and the clustering that 
is used in the CE. A half sample is constiiicted in a prescribed 
way (McCarthy 1969) to contain one half of the first-stage 
sample units in a survey. Defining the mean per CU based on 
CU's in half-sample a to be f^^^^ and that for the full sample 
to be Jg, the BHS estimate of variance is V'g^(y^^ijj) = 
lZi(fR(a) - y«)'/44. To compute each %^^^, the same 
estimation steps used for the full sample are repeated for the 
CU's in the half-sample. As the expenditure estimates from 
the CE Survey are published for various inter domains of 
interest, we computed the means and the standard errors for a 
few chosen domains as well. For each of these, the coefficient 
of variation (cv) was computed and then its ratio to the cv of 
the PP weight estimate was calculated. 

For each type of weight, if the ratio of each expenditiue cv 
to that of the PP weights is less than one, an improvement over 
tiie PP estimate is indicated since, for all the weights, the 
expenditure mean estimates were very close to those of the PP 
estimates. We computed the ratios of cv's and the ratios of 
means for each of the sets of weights described in Table 1, for 
each of the chosen expenditures, and for each of the following 
domains: 

(1) Age of Reference Person: < 25, 25-34, 35-44, 45-54, 
55-64, 65-H 

(2) Region: NE,MW,S,W 
(3) Size of CU: 1,2,3,4,5-f 
(4) Composition of Household: Husband and wife only. 

Husband and wife -i- children. Other Husband and wife. 
One parent -i- at least one child < 18, Single person and 
oflier CU's 

(5) Household Tenure: Owner, Renter 
(6) Race of Reference Person: Black, Non-Black. 

We will discuss only domains (1) - (3) here. In addition, 
ratios for all CU's, i.e., the total across the domains, were 
computed for each expenditure and are shown in Table 2. For 
All Expenditures, regwts2, calwts2, and calwts3, with ratios 
of .79, .78, and .75, provide substantial reduction in cv 
compared to PP. For less aggregated expenditures regwts 1 or 
calwts 1 provide reasonably consistent improvements over PP 

Table 2 
Ratios to PP cv of cv's for the Diff'erent Weighting Methods 

The Minimum Ratio is Highlighted in Each Row 

Expenditure 

AU expendituiES 

Shelter 
Utilities 
Funnture 
Major appliances 
All veliicles 

New can, tracks 
Used cars, tracks 

Gasoline, motor oil 
Healthcare 
Education 
Cash contributions 
Personal insurance. 

pensions 
Life, other personal 

insurance 
Pensions, social 

security 

0 

0.98 

0.93 
1.08 
1.08 
1.08 
0.90 
0.95 
0.98 
1.17 
1.05 
0.92 

IMSI 
1.00 

1.08 

1.00 

regwts 

1 

0.90 

0.85 
1.03 
1.21 
1.06 
0.89 
0.91 
0.94 
1.11 
0.97 
0.93 
1.02 

-0.97 

1.02 

[OM 

2 

0.79 

0.75 
0.94 
3.52 
1.04 
0.98 
1.01 
0.96 
1.03 
0.86 
1.04 
1.28 

1.64 

1.53 

1.75 

0 

0.98 

0.93 
107 
106 
106 
0 91 
0.96 
0.97 
1.12 
1.07 
0.91 

BM 
1.01 

1.08 

1.01 

1 

090 

0.85 
103 
121 
108 
089 

10.91? 
?t).94: 
i.ib 
0.97 

10.93 
i:o2 

0.98 

0.98 

ow 

calwts 

2 

0.78 

0.74 
088 
2.58 
1.09 
0.98 
1.02 
0.97 

10:99 
?0.85; 
1.06 
1.30 

1.24 

1.38 

1.34 

3 

p)?75 

i0;72 
ifl.91i 
2.57 
1.00 
0.97 
1.02 
0.96 
0.94 
0.87 
1.07 
1.29 

098 

1.33 

1.06 

4 

0.87 

0.84 
092 
1.17 
1.03 
0.90 
091 
0.95 
1.10 
0.94 
0.88 
1.03 

0.95 

1.01 

0.97 

without the losses incurred by some of the otiier weights for 
expenditures like Furniture, Personal insiu'ance and pensions, 
and its sub-category Pensions and social security. 

TreUis plots (Cleveland 1993) of the cv and mean ratios for 
calwtsO and calwts 1 are given in Figures 2-4. CalwtsO is 
pictured because it is the nearest calibration eqiuvalent to the 
current method of post-sttatification. Calwtsl appears to be 
the best of the alternatives we have examined in the sense of 
improving the All Expenditures estimates while providing 
consistent performance for individual expenditiu-e groups. In 
each panel of the plots a vertical reference line is drawn at 1, 
the point of equahty between the calibration results and those 
for flie PP metiiod. The lower row in each plot presents ratios 
of means from calwtsO and calwtsl to the PP means and 
illusttates that with a few exceptions the levels of the means 
from the two restricted regression choices are about the same 
as from PP. 

The two calibration choices, in flie main, improve cv's 
compared to PP, i.e., cv ratios tend to be less than 1, for most 
domains and expenditiu-es, and calwtsl is somewhat better 
than calwtsO. For the age-of-reference-person domains < 25 
and 65-I-, for example, 12 of the 15 expenditures have calwtsl 
ratios of less than 1. For CU sizes 1-4 the numbers of cv ratios 
less tiian or equal to 1 are 12, 9, 9, and II. There are 
exceptions, of course. For the South region only 6 of 
15 expenditures have calwtsl cv ratios less than or equal to 1. 

Calwts2 and calwts3, which used family income before 
taxes as one of the auxiliaries, had somewhat erratic perfor
mance for domains, sometimes making major improvements 
over PP but occasionally showing serious losses. This is 
connected to the nature of the family income variable itself. 
For the entire data set of 5156 CU's, income before taxes was 
positive for 4698 CU's, zero for 450 CU's and negative for 
8 CU's. The zeroes are incomplete mcome reporters while the 
negatives are for families that had business losses added to 
other income. In either case, these CU's vitiate the usefulness 
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of this variable in predicting expenditures. Perhaps, use of 
another measure of income combined with item imputations 
for missing incomes would improve calwts2 and calwts3 for 
domain estimation. 

Taking all of the above into consideration, regwts 1, 
calwtsl and calwts4 are efficient choices in this application. 
Calwtsl has the advantage of non-negative weights over 
regwts 1. Since calwts4 requires 23 auxiliary variables as 
opposed to calwtsI's 18, calwtsl is the more parsimonious 
choice. Subsequent to the analysis discussed here, we 
performed a similar study using a full year's data for both the 
Interview and Diary Surveys for 1990. Results were similar to 
those reported here and a final set of 24 auxiharies was 
adopted based on number of persons by age, race, sex, region, 
urban x region, and number of CU's by tenure, and an 
intercept. The conversion of CE estimation to restricted 
regression is now underway. 

4. CONCLUSION 

The objective of this study was to investigate methods for 
deriving household weights that did not depend on the weight 
of one single member of the household. Different types of 
weights based on the regression estimation procediu-e were 
presented and their relative merits evaluated. Regression 
estimation incorporates the current survey post-stratification 
methods in which the weighted sum of the persons in each 
post-stiatum is forced to be equal to an independent census 
count of that number. This is accomplished via auxiliary 
variables that are incorporated into the regression model. It 
also automatically produces for each sample household a 
weight that does not depend on any single one of its members. 

We studied eight types of weights that came from five 
different regression models. In order to eliminate the 
undesirable negative weights that can result from ordinary 
least-squares regression estimation, restricted regression 
estimators were adapted to the present problem. Restricted 
regression has the flexibility to restrict the possible deviation 
of each final weight from its base weight while adhering to tiie 
properties discussed above. This, in particular, allows the 
constraint of positive weights. The restiicted regression 
weights are easily computed via matrix-oriented software like 
S-Plus™ or SAS/IML™. 

Restricted regression, and more generally, restricted 
cahbration have a number of attractive features for household 
surveys, like the one smdied here, but also for surveys of other 
types of units like hospitals, schools, or business estabhsh-
ments where a variety of auxihary data may be available. 
Given past data on target variables, standard model building 
procedures can be used for the selection of auxihary variables. 
The properties of regression estimation can be used to choose 
the predictors optimally in order to reduce the redundancy of 
information that gets incorporated into the survey estimation 
procedure. This is one of the greatest advantages of using an 
estimator that has a vast and tested hterature behind it. Good 

predictors may include qualitative variables, e.g., age, race, 
type of hospital (general medical, psychiatric, etc.), type of 
business (manufacturing, retail tiade, etc.) that might be often 
used in stiatification or post-sttatification. The predictors can 
also be quantitative variables like family income, annual sales, 
number of students at different levels, or the number of 
inpatient days to name but a few. In our application, including 
an intercept also led to noticeably smaller standard errors of 
survey estimates. The regression approach also allows data at 
different levels to be easily incorporated in estimation. In the 
household survey studied here, auxiharies on both persons and 
households were included. 

The immense flexibihty of regression gives practitioners 
options they might not otherwise have. If new, pertinent 
predictor variables become available, software for regression 
estimation can accommodate them simply by changing the 
matrix of auxiliaries and vector of population conttols. 
Software that is rigidly written to perform only post-
sttatification or ratio estimation with a single auxiliary, for 
example, might have to imdergo a major overhaul to change 
the estimator. Of coiu-se, if the estimator is one of the less 
general post-sttatification or the ratio types, regression 
software will often handle it as a special case. In the United 
States, an exttemely large continuing household survey is 
being contemplated (Love, Alexander and Dalzell 1995) that 
will provide very precise estimates of many characteristics 
that may be used as conttol totals in smaller surveys. The 
restricted regression approach positions the CE Survey to 
smoothly incorporate such new data in estimation should it 
become available. 
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A Transformation Method for Finite Population Sampling 
Calibrated With Empirical Likelihood 

GEMAI CHEN and JIAHUA CHEN* 

ABSTRACT 

In this paper, we study a confidence interval estimation method for a finite population average when some auxiliary 
information is available. As demonstrated by Royall and Cumberland in a series of empirical studies, naive use of existing 
methods to constmct confidence intervals for population averages may result in very poor conditional coverage 
probabilities, conditional on the sample mean of the covariate. When this happens, we propose to transform the data to 
improve the precision of the normal approximation. The ttansformed data are then used to make inference on the original 
population average, and the auxiliary information is incorporated into the inference direcfly, or by calibration with empirical 
likelihood. Our approach is design-based. We apply our approach to six real populations and find that when transformation 
is needed, our approach performs well compared to the usual regression method. 

KEY WORDS: Finite population; Sampling; Confidence interval; Transformation; Empirical likelihood. 

1, INTRODUCTION 

Let {Xj, y,), 1 = 1,2,..., Â  be values associated witii N units 
in a finite population. For unit i, y, is tiie variable of interest 
and Xj is an auxiliary variable. One of the most extensively 
studied finite population problems is the estimation of the 
population average y = (y, -i-... -t- yff)/N (or total Ny) under 
various sampling schemes. We shall focus on the simple 
random sampling scheme in this paper, because the natiire of 
the problems we want to study can be better seen from this 
scheme and the results obtained here can be easily generahzed 
into other sampling schemes of which the simple random 
sampling scheme is the building block. 

It is often tine that some information about the auxiliary 
variable x is known and can be used to make inference about 
y. For example, let 5 = {1, ..., i, ..., N] and let J î  5 be a 
simple random sample of size n. When x = (jCj +... -i- Xfi)lN is 
known, and x and y are correlated, the population average y 
can be estimated by the ratio estimator^ = {yjx^)x, or by 
the regression estimator J = y, + b{x - x^), where x^ and y^ 
are the sample averages of x and y, respectively, and 

b = l{Xi-x^){yi-y,)/li^i-V-
Under very general conditions, both the ratio estimator and 

the regression estimator are asymptotically normal; see Scott 
and Wu (1981), Bickel and Freedman (1984), and Tlieorem 2.1 
of Section 2. Hence, if v is a carefully chosen estimator of the 
variance of y, the standardized variable (y -y ) / \A ' is 
customarily tteated to have the standard normal distribution. 
Therefore, if z„ denotes the upper a-percentile of tiie standard 
normal distribution, then 

{y •2«\A'. y+^av/v) (1.1) 

will produce an approximate 100 (1 - 2a)% confidence 
interval for y. 

Confidence interval (1.1) is widely used in practice. 
However, problems arise when it is applied to certain 
populations. Royall and Cumberland (1981a, 1981b, 1985) 
studied the ratio and regression estimators and applied them 
to six real populations where sttong correlations between x 
and y seemed to exist. (See Section 3 for a summary of the she 
populations.) Various estimators of the variance of y were 
used. It was found tiiat die actual conditional coverage rate of 
the confidence interval (1.1), conditional on x^, depended 
heavily on the size of x^ and were usually much lower than 
the claimed coverage rate, even with the most adaptive 
variance estimator. For example, the 95% confidence interval 
for a population named Counties 70 had a conditional 
coverage rate 76% witii the jackknife variance estimator when 
XJ was small, and the conditional coverage rate could go as 
low as 50% with other variance estimators. 

The above mentioned studies point to the need to construct 
confidence intervals that "will Uve up to their name" (Royall 
and Cumberland 1985, p. 359). However, up to now tiiere has 
been littie progress made in this dttection. In this paper, we 
present some results from studying an alternative procediue 
for constructing confidence intervals and from applying it to 
the six populations studied by Royall and Cumberland and 
many others. As will be shown in Section 3, the conditional 
coverage rate of our confidence intervals is more accurate. 

Two inqiortant ideas, namely, ttansformation and empirical 
likelihood, are used simultaneously to attack the problems 
encountered by Royall and Cumberland in particular, and to 
develop a new procedure in general. As explained in Cochran 
(1977, p. 150), the preference in sample survey theory is to 
make, at most, limited assumptions about the frequency 

' Gemai Chen, E)epaitment of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada, S4S 0A2; Jiahua Chen, Department of Statistics 
and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1. 
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distribution followed by the data in the sample. However, 
ratio or regression estimator can help obtain increased pre
cision by taking advantage of the correlation between y, and 
Xj. This, of course, can be described by some assumption(s), 
such as an approximate linear relationship between y and x. 
Although almost no further assumptions are necessary to use 
the ratio or regression approach, die procedure (1.1) is clearly 
based on an normal approximation. But as it is well known, 
the normal approximation can be very poor when the 
population distribution is severely skewed and the sample size 
is small. In terms of procedure (1.1), the closer tiie estimator 
distribution is to the normal, the better one can construct 
confidence intervals. If the population distribution is severely 
skewed, a ttansformation may produce a population distri
bution that is at least more symmetric, so that the normal 
approximation for the estimator is more acciuate. 

When using the ratio and regression estimators, knowing x 
is crucial to gain improvement over the use of sample mean. 
In our proposed procedure, the complete information about 
tiie auxiliary variable x can be incorporated. But if x is the 
only auxiliary information available, it is difficult to use this 
information directiy when a ttansformation is involved, 
because any non-linear ttansformation obscures the link 
between x and y. In this second case, we find the method of 
empirical Ukehhood very helpful in solving our problem; see 
particularly Owen (1988,1990) and Chen and Qin (1992) for 
references. The empirical likelihood metiiod in tiiis situation 
can also be regarded as a calibration method as discussed in 
Deville and Samdal (1992). This approach rescues us from 
losing information about x after ttansforming the data. 

There have been many discussions on how to use ttansfor-
mations to make better inference on the ttansformed scale 
(Box and Cox 1964; Carroll and Ruppert 1988; Calvin and 
Sedransk 1991, and the references therein). There have also 
been some studies on how to make inference on the original 
scale, after a ttansformation is applied (Carroll and Ruppert 
1984; Elliott 1977). What is new with our procedure is the 
attempt to link the above two steps by combining ttansfor
mation with auxiliary information and/or by applying 
empuical likelihood method when necessary. 

The details of our procedure are given in Section 2. Then 
our procedure is applied to tiie six populations stiidied by 
Royall and Cumberland in Section 3. The validity of our 
procediue in an arbittary setting is demonsttated in Section 4 
and some comments are made at the end of the paper. 

2. THE NEW PROCEDURE 

y^^a* ^x. + e,.. (2.1) 

witii £(6,) = 0, V(e,) = o^ and Cov(e,,e^) = 0, for i * j . It is 
easy to find tiiat for tiie she real populations smdied by Royall 
and Cumberland, the corresponding error distributions are 
very skewed. These observations lead us to consider 
ttansforming the variables y and/or ;c, and consider the model 

/i(y,.)=a + Pg(x,.) + oe,., (2.2) 

where h{-) and g{-) are two monotone functions. There are 
many families of ttansformations suggested in the hterature. 
One commonly used family is the Box-Cox power ttansfor
mation family defined by 

f{x,X) = 
(;c^- 1)/A when X *0, 

. log(j:) when A, = 0. 

Model (2.1) is a special case of (2.2) when both h and g equal 
f{x, 1). 

The choice of ttansformations in model (2.2) might be 
suggested by an examination of die sample x's and y's based 
on a possible model relationship, or by our subject knowledge 
about the popidation under investigation. For example, for the 
six populations discussed in Royall and Cumberland, the 
population distiibutions are severely skewed towards the right 
which can be learned from the natiu-e of the finite popu
lations. Therefore, a log ttansformation may make them all 
less skewed. Other more objective methods of choosing 
ttansformations are discussed in Section 4. 

We enphasize fliat models (2.1) and (2.2) are used here to 
motivate ttansformations, point estimators, or confidence 
interval procedures. Our study of conditional coverage rates 
will, however, be based on the probability measiue generated 
by the design, as in Royall and Cumberland (1985). For this 
purpose, we embed our finite population in a sequence of 
populations indexed by k. This means that a sub-index k is 
needed to write N = N^ and n = n*, etc., but for simplicity, 
we will suppress the index Jk if there is no possibility for 
confusion. 

Let V,. = /i(y,.), M,. = g{xi), v^ = N'^Y.tiV. and 
Uf^ = N~^ Z,=i", • Define 

P^ = 
EM(",-»;y)'^,-

Zr=i(",-";v)' 

As mentioned in tiie last section, a problem with the 
confidence interval (1.1) is that it will fail if the distribution 
of {y - y )/\/v is severely asymmetiic and far from the normal 
distribution. The problem can be inherited from the skewness 
of the population distribution. When the skewness is severe, 
a centtal confidence interval procedure like (1.1) is doomed 
to fail. The basic model employed by Royall and Cumberland 
(1981a, 1981b, 1985) is o„ = 

N-l 

1 'v 
1 V^ 2 
—T 2 . «. • i=l 
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Suppose J c 5 is a simple random sample of size n. We 
similarly define 

^ 
!.«(".-",)v,-

& = V j - N , . 

d̂  = -^-E(v,-a-3«,)'. 
n- 2 ie, 

where u^ and v̂  are the sample averages. 

Denote tiie inverse function of h{-) by h'\-). Then the 
fitted value of y, is 

y. =/>-'(&+ N,). (2.3) 

We discuss confidence interval estimation of y in two cases. 
In the first case where all x^ {i=l,..., N) are known, a natural 
estimator of y is (E,es3'i "̂  Lifj^,)/^- However, for the 
purpose of constincting confidence intervals for y, we study 
the distribution of 

y (& J ) = i E y, = / " /»"'(& ̂  û)dF^ (") (2-4) 
N ,=1 

instead, where Fjy (M) is the enpuical distribution function of 
the M; (i = 1, ..., AO. Clearly, the distiibution of y{&,^) is 
determined by the distribution of (a, ̂ ) which is descibed in 
the following design-based theorem. 

Theorem 2.1 Suppose that when k ^ «>, both « = «* and 
A/ - « = iV̂  - /It go to «> and 

1. M = hm^,„ A^'' Ef=i ", exists. 

2. A^- ' I" i« . =0(1). 

3. o.. =limj.„o„jv = lim;t_(A^ - 1)"' E,^I(M,. - Mjv) exists 
and is greater than zero. 

4. o^ =lim^_„o^ = lim^^JA^-l)"'^j^,e,. exists and is 
greater than zero. 

5. A'''Er=i k,P = 0(1), A ^ - ' E M i(" .- "iv)«.P = 0(1). 

6. r = lim^_ (of^ o^)"'A^"' if./M,- - Ĥ )̂̂  ef exists and is 
greater tiian zero. 

7. /=l im. nW exists and is less than 1. 

Then 

(1) \fn{&- a^, p - P^)' converges in distribution to the 
bivariate normal distribution Â2 (O.E)' where 

, u u 1 + — r - — r 
2 2 

O O 
( l - / ) o ^ . 

(2) Let B„ he any joint 100(1 - Y ) % confidence region for 
(a; ,̂ ^^) and define G„ by 

then, 

G„ = {y(a,P):(a,P)efi„}, 

Prob{y(a^ ,P^ )eG„}^ l -Y . 

(2.5) 

where y(a;y, P^) =Ef=i^"' {"-N "" Pw".)/^-

The proof is deferred to the Appendix. 

We note tiiat without underlying normality on the errors, 
it is not easy to get an exact confidence region B„ for (â ,̂ P;̂ ) 
for a specified confidence level 1 - y. The B„ used in the 
following discussion and the expressions built upon it are, 
therefore, approximate. 

Theorem 2.1 allows us to construct confidence intervals 
for y (oc .̂Pft,), but y (a^.Pjy) is not equal to y in general. This 
is an intrinsic problem as long as a non-linear ttansformation 
is used. If only a point estimator is needed, we would use the 
regression estimator currentiy, and we suggest that the 
methodology developed in this paper be used for interval 
estimation. Bias corrections for f {&, 0) are, however, 
possible, and a specific one is used in our simulation study. 
Work on general corrections is under study. 

According to ITieorem 2.1, G„ is a conservative confidence 
interval for y(a^,p^), which can also be regarded as an 
approximate confidence interval for y. To improve the 
coverage rate of G„, observe tiiat tiie contours of y (a, p) in 
a small neighborhood of O = (a, 0)are approximately parallel 
sttaight lines on the aP plane; see Figure 1. Let (a, b) be the 

0.8 

Beta 

0.9 1.0 

> 
-D 

D) 

b 

K) 

Figure L Contour plot of the bi-variate function y (a, P) in the 
neighbourhood of 0 = (&, P), based on a random 
sample of size 32 taken from population Cancer 
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directional cosines of the dttection EF along which the 
contours increase. Then f (a ,P) is (approximately) a 
monotone function of T̂  = a(a - a) + fc(P - 0), where r„ is 
the corresponding change along the direction EF to the 
changes in a and p. A natural choice of B„ is 

fi„ = {(a.P) : | a ( a - a ) + fc(p-3)|<c6r(Y/2;n-2)}, 

where c^ = Var(r j /o^, Var{T^ is the variance of r„, and 
f (Y/2; n - 2) is the upper Y/2-percentile of the t distribution 
with n-2 degrees of freedom. This B„ is the region between 
two parallel sttaight lines AB and CD in Figure 1. 

A drawback of tiie above fi„ is tiiat it is an unbounded 
region. If the contours of y (a, p) are not close to be parallel 
and/or sttaight, this B„ will lead to very conservative 
confidence intervals. To guard against this possibihty, we 
construct a bounded eUiptic region C„ defined by those (a, P) 
that satisfy 

I n(a - a)^ + 2nu^{a - a) (P - 0) + 

may not be possible in some cases as discussed in Cochran 
(1977, p. 134). Also research is needed on the use of post-
sttatification when the error distiibutions are severely skewed. 

We now tum to the discussion of the second case where 
X = {xi •¥ ... -f x^)IN is known, but A:,, i = 1, ..., Â , are 
unknown. If we want to proceed as in the first case, one 
approach is to estimate F^(M) and somehow make use of the 
information in x. The following empirical likelihood 
methodology is found to be an effective way of doing this. 
We outiine tiie main ideas here; the interested reader should 
consult Owen (1988, 1990) and Chen and Qin (1992) for 
more details. The key idea is to maximize the (empuical) 
likelihood functions under various restiictions formed by the 
knowledge about some aspects of the parameters. For 
example, in our problem, the knowledge is 3c. It is shown by 
Chen and Qin (1992) that the resulting estimators with the 
presence of restiictions are asynqitotically more efficient than 
those without restrictions. 

Specifically, we estimate F^(M) in (2.4) by 

ĵv(") = E P , ^ K ^ " ] ' (2.8) 

_2 , ^ - lE ,e . (" , - " . ) (p-0)' 

^1 l-j^\(ih^{yl2;n-2). 

where (1 - nlN) is part of the variances of a and p, because 
we are doing sampling without replacement from a fiiute 
population, and 

r. = 
«"'E,e.(«.-MV,-«-P«,)' 

{«-'E,e.(«.- - «;.)1{(« - 2)-E..(v,. - a - 0«,)̂ } 
(2.6) 

is a sample estimate of the quantity r in Theorem 2.1. The C„ 
thus defined is represented by the region inside the ellipse in 
Figure 1 and has the property that it touches both boundary 
lines of fi„ regardless of the direction {a, b). Therefore, when 
y (a, P) is indeed a monotone function of T,,, C„ produces the 
same confidence interval for y as jB„does. However, C„ is less 
vuhierable tiian B„ if the contours of y (a, P) are not close to 
be parallel and/or sttaight, because C„ shrinks to one point as 
n increases. A confidence interval for y corresponding to C„ 
is defined as 

/„ = {J(a .P) : (oc.P)eC„}. (2.7) 

As the error distributions are more symmetiic after flie 
ttansformation, the new confidence interval based on C„ is 
therefore expected to be better than the confidence interval 
witiiout ttansformation. Note that since all x, are known, 
other approaches, such as optimal sttatification and post-
sttatification, may be better. However, optimal sttatification 

where the p, are chosen by maximizing 

UPI 

subject to 

Pi^o, E P ^ I . E Pi^i 

(2.9) 

(2.10) 

If y„ i e J are regarded as reahzations of the random variables 
y„ i e s, with distiibution function F, the />, in (2.9) can be 
defined by p, = F{Y,) - F{Y,-), and (2.9) is called die 
empuical likelihood function in Owen (1990). 

Deville and Samdal (1992) look at the above approach 
from a calibration point of view. They suggest using unequal 
weights for different uruts sampled to reflect theu- different 
contributions, while keeping Y, PtXi = 3c. It is believed that if 
these weights give a perfect estimate of x, they should also be 
good for estimating y. 

The solution to (2.9) and (2.10) will not exist if eitiier tiie 
minimum x value in a sample is greater than or equal to 3c, or 
the maximum x value in a sample is less than or equal to 3c. 
When tills happens, one remedy is to replace (2.9) witii 

E("p,-i)'. 

subject to a milder consttaint 

E P . = I. E PiXi=X. 

(2.11) 

(2.12) 

Under (2.11) and (2.12), we have 

Pi = -^{x- x^) {Xi - X , ) / E ( ,̂ - V^' (2.13) 
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which always exists unless all the ;c, in the sample are the 
same. The latter situation corresponds to the lack of a 
covariate, which inches p, = n' ' if 3c = x„ or the solution does 
not exist if 3c t̂ Xj. The function given in (2.11) is called the 
Euclidean likelihood, which is asymptotically equivalent to 
tiie empirical likelihood (2.9) (Owen 1990). 

For our simulation study in Section 3, we suggest a bias 
correction to be used in our computation. If h{w) = g{w) = 
log(H'), we suggest a corrected estimator of y as 

/ ; = {r(a,P) : (a,P)eC„}. (2.15) 

When other power ttansformations are used, similar correc
tions can be made using the results in Pankratz and Dudley 
(1987). 

APPLICATION TO SIX REAL 
POPULATIONS 

y'{&,^) = r „ e x p & + ̂ u. + 1 d^\F^{u), (2.14) 

if all Mj, I = 1,..., Â  are known, and replace F^(M) by ^f, («) 
and Uf^ in (2.6) by S^when only 3c is known. This correction 
is motivated by model-based considerations under a normahty 
assumption. Correspondingly, /„ of (2.7) is corrected as 

The six real populations studied by Royall and 
Cumberland (1981a, 1981b, 1985) are summarized in Table 1. 
Attention was given to the variety in the type of data 
(demographic, economic, etc.), and m the logical relationship 
between the x and y variables, when these populations were 
chosen. Note that we have added 1 to the y values in 
population Cancer in order to take the log ttansformation. 
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Figure 2. Histograms and scatter plots for the population Counties 70 before and after taking the log transformation 
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Tkblel 
Summaries of the Six Populations 

Population N Pix.y) pOogW, 
log()')) 

Cancer 
Cities 
Counties 60 
Counties 70 
Hospitals 
Sales 

301 
125 
304 
304 
393 
331 

1.1288x10* 
2.6602 X 10= 
8.9312x10^ 
8.9312x10' 
2.7470 x l O ' 
2.3164x10' 

4.0847 X 10' 
2.8553 X lO' 
3.2916x10* 
3.6984 X 10* 
8.1465x10^ 
2.4078 X 10» 

0.967 
0.947 
0.998 
0.982 
0.911 
0.997 

0.948 
0.953 
0.998 
0.991 
0.943 
0.985 

The Counties 70 data are plotted m Figme 2. The histogram 
of y clearly indicates that the population distribution is 
severely skewed, while the same plot for log(y) shows a 
substantial improvement. Also, the scatter plot of log(y) vs. 
log(A:) shows a better Imear relationship than the scatter plot 
of y vs. X. The need and the benefit of taking ttansformation 
is therefore obvious. Similar comments can also be made for 
populations Cities, Counties 60 and Hospitals. For popu
lations Cancer and Sales, flie log ttansformation (or any other 
power ttansformations) seem to weaken the linear relationship 
that exists between x and y. 

Now, we illusttate our new procedure by assuming 
h = g = login (2.2). Equations (2.9) to (2.15) are used to 
perform the calculations. As in Royall and Cumberland 
(1981b, 1985), for each of the six populations, we take a 
sinqile random sample of size 32 and calculate x^, y' {&, p) 
and constmct a 95% confidence interval /3*2. We repeat this 
process 10,000 times for each population. The results are 
reported in Table 2 under the tide "Transformation Metiiod" 
when all x values are known, and under the tide "Empuical 
Likelihood Method" when only x is known. The term ratio 
denotes the average length of the confidence intervals divided 
by the root mean square error for each population. The non-
coverage rate (Ncr) is the proportion of intervals that fail 
to contain the population average y. The quantities under 
the tides "Regression Method (regression variance)" and 
"Regression Method (jackknife variance)" are obtained using 
flie same method of Royall and Cumberland (1981b) when the 
usual regression variance and the jackknife variance of y are 
used, respectively, but for 10,000 random samples instead of 
the original 1,000 samples. The results under "Empirical 
Likelihood Method (created population)" are to be explained 
in the next Section. 

Next, we follow Royall and Cumberland to make design 
based inference and to study the conditional coverage pro
perties of several interval estimation procedures. Specifically, 
we divide the confidence intervals into 20 groups according 
to the size of x^, and plot the proportions of intervals in each 
group that fail to contain the population average y. For each 
specific group, the proportion of those intervals that lay above 
(below) y is plotted above (below) the horizontal line. 
Figitte 3 contains such plots for the Counties 70 data. The top 
two plots show the non-coverage rates of the regression 
method using the usual regression variance and the jackknife 

Table 2 
Simulation results based on 10,000 simple random 

samples of size 32 

Cancer Cities Counties 60 Counties 70 Hospitals Sales 

Regression Method (regression variance) 

Ratio 
Ncr 

Ratio 
Ncr 

Ratio 
Ncr 

Ratio 
Ncr 

Ratio 
Ncr 

3.26 
0.141 

4.03 
0.081 

5.08 
0.018 

5.12 
0.017 

3.65 
0.116 

3.05 
0.146 

2.90 
0.271 

3.62 
0.098 

Regression Method (jackknife variance) 

3.88 
0.102 

4.03 
0.083 

3.57 
0.192 

3.93 
0.068 

Transformation Method (all x values are known) 

4.00 
0.074 

3.75 
0.053 

3.76 
0.069 

4.04 
0.042 

Empirical likelihood Method (only x is known) 

3.74 
0.082 

3.37 
0.081 

3.69 
0.082 

4.15 
0.037 

2.94 
0.176 

3.95 
0.079 

5.41 
0.001 

4.90 
0.006 

Empirical Likelihood Method (created population) 

3.92 
0.057 

3.92 
0.059 

3.97 
0.055 

3.96 
0.058 

3.90 
0.059 

3.99 
0.059 

variance for y; the middle two plots show the non-coverage 
rates of our new procedure. The bottom left plot will be 
explained in Section 4. As can be seen clearly, our new 
procedure with a log ttansformation produces substantial 
improvement. For populations Cities, Counties 60 and 
Hospitals, our new procediue also produces some improve
ment (plots are not shown here). For populations Cancer and 
Sales, the new procedure produces very conservative results. 
This is likely due to the fact that the log ttansformation (or 
any power ttansformation) actually weakens the linear 
relationship between x and y. 

We have also performed simulations for sample sizes 16 
and 64, and/or for target coverage rate 90%. The results are 
very similar to what we have presented. 

4. DISCUSSION 

We use the log ttansformation in some of our discussions 
because it is perhaps the most frequentiy used ttansformation 
in practice. Nevertheless, there exist more objective methods 
to select ttansformations. One such a method is the well known 
Box-Cox power ttansformation which we have mentioned; 
see Box and Cox (1964), Box and Tidwell (1962), Carroll 
and Ruppert (1988). Anotiier recent method is based on a 
procedure called alternating conditional expectation (ACE) 
(Breiman and Friedman 1985, De Veaux and Steele 1989). 

There are other possibilities to improve conditional cov
erage rate. One such a possibility is to employ asymmetiical 
error distiibutions such as the inverse Gaussian family 
(Whitmore 1983). Another possibility is to adopt quasi-
likelihood (Nelder and Pregibon 1987) to finite population 
problems. 



Survey Methodology, December 1996 145 

Regression Method 
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(Jackknife variance) 
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(aii X vaiues are known) 
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Figure 3. Plots of conditional non-coverage rates for the population Counties 70 based on 10,000 simple random samples of size 32. Reference 
lines are drawn at 2.5% and the expected non-coverage rate is 5% 

The vahdity of our new procedure is also demonsttated in 
the following simulation study. For each of the six real popu
lations, we create a new population by replacing the original 
y, values with 

y- =exp{a + piog(A:,.)de,.}, 

where a, ^and 6 are the parameter estimates from fitting 
model (2.2) witii h = g = logto the old population, and e, are 
generated as i.i.d. standard normal variates. Using flie six 

created populations which are fixed, we repeat the simula
tions as in Section 3 for the case where only x is known. 
Table 2 contains the summary of this simulation study, and 
tiie non-coverage plot for tiie Counties 70 data is shown at flie 
bottom left comer of Figure 3. (Non-coverage plots for other 
populations look very similar to flus plot.) It is clear from fliis 
smdy fliat when die finite population is generated from a 
super-population model like (2.2) with a normal error distri
bution, our new procediue gives the correct conditional cover
age rates. Furthermore, we decrease the correlation between 
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X and y to as low as 0.5 for each of the six populations by 
increasing6and repeat the above simulations. The results are 
as good as those shown in Table 2 and Figure 3. 

Although only the simple random sampling scheme is 
considered in this paper, the proposed procedure is applic
able as long as (i) there is a linear correlation between h{y) 
and g{x) for some monotone functions h and g, and (ii) either 
Ff^{u) or fi^{u) can be found. Since the six populations 
studied here are carefully chosen to be representative, our 
new procedure is expected to be useful to study other finite 
populations. 
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APPENDIX 

Proof of Theorem 2.1 (1). For any given real numbers f, 
and t^, we have 

? , ( a -a^ ) + f2(P-Pw) = 

t.^- t^u. _.^ 
1" L^ "i • T T - — r - ^ E (" / - "v)e,-',«"'E' 

ies y .^ {u- U ) ie. 
^te.-i^ t s^ 

From Conditions 1, 2 and 3, we have 

ies 

Therefore, we can write 

r , ( a - a ^ ) + ?2(P-PA/) = 

The Lindeberg-Hajek condition is satisfied for îC, + 
t.^- t^ula^{u.- u)e. under the moment condition 5, see 
Hajek (1960), Scott and Wu (1981) and Bickel and Freedman 
(1984). Together with Conditions 4, 6 and 7, the desired 
result follows by using the Cramer-Wold device. 

Proof of Theorem 2.1 (2). Because there may be other 
values (a ' ,P') €B^ for which y(a' ,P') = y(a,P) for some 
(a, P) € B^ ,G^ is always conservative. 
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The Application of McNemar Tests to the Current 
Population Survey's Split Panel Study 
KATHERINE JENNY THOMPSON and ROBIN FISHER' 

ABSTRACT 

Results from the Current Population Survey split panel studies indicated a centralized computer-assisted telephone 
interviewing (CATI) effect on labor force estimates. One hypothesis is that die CATI interviewing increased the probability 
of respondent's changing their reported labor force status. The two sample McNemar test is appropriate for testing this type 
of hypothesis: the hypothesis of interest is that the marginal changes in each of two independent sample's tables are equal. 
We show two adaptations of this test to complex survey data, along with applications from the Current Population Survey's 
Parallel Survey split panel data and from the Current Population Survey's CATI Phase-in data. 

KEY WORDS: Current Population Survey; Parallel survey; Nonparametric statistics. 

1. INTRODUCTION 

Results from the Current Population Survey's Parallel 
Survey split panel study and from the Current Population 
Survey's CATI Phase-in Project provided some indication of 
a centtalized computer-assisted telephone interviewing 
(CATI) effect on the United States' monthly labor force 
estimates (Thompson 1994 and Shoemaker 1993). One 
hypothesis is that the CATI interviewing increased the 
probability of respondent's changing their reported labor 
force status from the first (personal) interview to the second 
(CATI) interview. 

The two sample McNemar test is appropriate for testing 
this type of hypothesis. The McNemar test (1947) has been 
generalized to a two sample situation where the hypothesis of 
interest is tiiat the marginal changes in each of two 
independent samples' 2 x 2 tables are equal (Feuer anc} 
Kessler 1989). The application presented was for a two 
sample cohort analysis and assumed simple random sampUng. 

Certain modifications of tiie test statistic for a McNemar 
test are necessary for a complex sittvey data appUcation. First, 
because the data are not obtained through a simple random 
sample and are weighted, a separate estimate of the variance 
is required. Second, unless the survey has a longitudinal 
design, a separate link of individuals in two consecutive 
months' of data must be performed. In general, such a Unk 
will include some false matches and exclude some tine 
matches. This adds another source of variance. 

We show two adaptations of this test to complex survey 
data. In particular, we present these tests along with 
applications to the Current Population Survey's Parallel 
Survey split panel study and from the Current Population 
Survey's CATI Phase-in Project. In Section 2 we describe 
these test modifications including background on the one and 
two-sample McNemar tests (Section 2.1), modifications for 

complex survey data (Section 2.2), and some remarks on 
apphcations to several montiis' data (Section 2.3). Section 3 
presents applications of these tests specifically to Current 
Population Survey Parallel Survey Data and to Current 
Population Survey CATI Phase-in data including background 
on flie two studies (Section 3.1), details of tiie panel estimates 
and variance estimates (Section 3.2), diagnostics 
(Section 3.3), and results (Section 3.4). We make some 
concluding remarks in Section 4. Details of covariance 
estimation are included in the appendix. 

2. TEST AND MODIFICATIONS 

2.1 General 

A sample is randomly split into two independent 
representative samples (spht panels). After a baseline 
measurement is taken in both panels, a new technique is 
administered in one panel, the tteatment panel. The other 
panel serves as a conttol. 

The records are linked longitudinally after the second 
measured. A matched response can be -i-, - , or * (missing). 
Since this is matched data, the "**" cell will be empty. 

This scenario is represented pictorially as 

Treatment Panel 
Montii2 

Treatment 
4- - * 

Month 1 -H 

No Treatment - X., x__ x__ 

X.. X,. 

' Katherine Jenny Thompson, Economic Statistical Methods and Programming Division, and Robin Fisher, Housing and Household Economic Statistics 
Division, United States Bureau of the Census, Washington, DC 20233, U.S.A. 
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Contn )l Panel 
Month 2 

No Treatment 

Month 1 •¥ 

No Treatment 

* 

-t-

x!. 
x!^ 

xL 
x' 

xi 
x:_ 

X,'. 

x' 

* 

xi 
xi 

x' 

X 

X 

X 

n 

where n is not necessarily equal to n'. 

For each panel, define 

M(,2) as the set of cases which have month 1 and month 2 
responses (matched cases). This set contains «(|2) = 
{x + X ->• X + x_) elements; 

^(10) 
but no 

n (10) 

as the set of cases which have month 1 responses, 
month 2 response. This set contains 

(A:^. + X_J elements; 

M(m) as the set of cases which have month 2 responses, but 
no month 1 response. This set contains n̂ gj) = {x,^ + ^ , J 
elements. 

Note that the n's are sample sizes and do not have weights. 

First, consider the one-sample case. Traditionally, the one-
sample McNemar test statistic is constructed from the n^l2) and 
rt,,'2) matched responses, where a prime (') indicates the 
control panel. In the one-sample scenario, we test the 
hypothesis 

^0- P+- = ?-+' where the p's refer to cell probabilities 
//,: Not//,, 

i.e., the hypothesis that the movement from one state to the 
other (-1- to - , or - to -i-) is zero. We also refer to this 
movement as the flux. 

The one-sample test can be a useful diagnostic in the two-
sample situation. We examine the Control panel estimates to 
see if there is zero movement. Any significant movement in 
the Treatment panel can be measured as a deviation from zero 
flux or as a change in the probability of a "+." 

The two-sample hypothesis is 

Ho:{p.^-p^.)={pi-pi) 
//,: Not//,,. 

In other words, the difference in the probabilities of switching 
in the two directions is the same, regardless of the tteatment, 
or equivalently, the difference in panel fluxes is zero. 

The Feuer and Kessler generalization (1989) to a two-
sample McNemar test (described in 2.2.1 below) is confined 
to the A/,,2) and M'^. linked sets. We can add an additional 
assumption, however, to allow the unmatched responses to be 
included in computation of the test statistics. This assumption 
motivates the discussion in Section 2.2.2. 

2.2 Complex Survey Modifications 

2.2.1 Modification One: Longitudinally Linked Data 

This method is a sttaightforward application of the two-
sample McNemar test, using longitudinally linked data from 
a complex survey. 

To consttuct the test statistic, we examine the cell 
probabilities and note that 

[p.^-p,.] = [ ( / ' „ + / ' _ , ) - ( p . , + / ? , . ) ] 

= lP*-P*J 

= P2~ Pi 

where p* is the marginal probability of a -H response month 2, 
given a matched response for both months; and p* is the 
marginal probability of a -i- response month 1, given a 
matched response for both months. 

The one-sample test statistic constructed from this panel's 
data is 

^ 
Pi ~Pi 

^War{pl-p°) 

where 

Jf_ +x^ 
P l = -

x^^ +x_ 

"(12) "(12) 

Given two independent panels, the two-sample test statistic is 

{Pl-P°i)-{P1-P\°) 
^ a r ( p ° - / 7 ° ) + V a r ( p - - p ; ° ) 

where 

A:' + x' 

'(12) 
P2 

X. . + X 

'(12) 

These results hold regardless of sample design. To extend 
the results to a complex survey application, we use weighted 
estimates and complex survey variances and covariances in 
place of simple random sample variances. 

If the survey is designed to collect longitudinal data, then 
this modification is a natural extension of the method described 
by Feuer and Kessler. For this type of survey design, an 
effective mechanism to link individuals from month to month 
is presumably in place. Often, however, this is not the case, 
and one data set must be physically linked to another. Conse
quentiy, the n(,2) elements in the domain will contain some 
false matches, and some actual matches may be inadvertentiy 
excluded. Both the record weights and variance estimates will 
need to be adjusted to account for the matching. Jabine and 
Scheuren (1986) provide an excellent summary of the method
ological issues arising from the use of linked data, both for 
model-based and ad-hoc ("hard") record linkage techniques. 
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2.2.2 Modification Two: Unlinked Data 

This method omits flie longitudinal Unkage step altogeflier, 
noting that the construction of the ttaditional McNemar test 
statistic can be expressed in terms of estimates of marginal 
probabihties. Assume that under the null hypothesis, the 
expected value of (p, -/> J i s zero. This is described for a 
simple random sampling application in Marascuilo et al. 
(1988). 

The domain for the first montii of data is given 
M,j2) u Af,,„, which contains nn2) + "(lo) = "i elements. The 
domain for flie second monfli of data is given by M..~. u M 

(12)' '(02) 
which contains «(,2) + n^^^ = n^ elements. 

The one-sanple test statistic constructed from the unlinked 
data is given by 

Pi-Pi 

^Var(p2-/ ' i) 

where 

Pi = P2 = — 

Given two independent panels, the two-sanqile test statistic is 

(P2-PI)-(P2-PD 

^Var(p2 -Pi)+ Var(p^ - p[) 

where 

^ ' ^ l ^ ' ^2 " T^ • 
"l «2 

As wifli the apphcation described in 2.2.1, all estunates are 
weighted estimates, and variances are complex survey 
variances. 

2.3 Linear Combinations 

We can use our estimated covariance matiix to test Unear 
combinationsofXj., Ac. andSovertime, whereA =£2 ~Ui, 
X =£2 " £ i ' ^ d 6 = Xj.- X^, and £j,£2'£i '^nd £2 are 
vectors containing the inarginal probabilities for the time 
period under consideration. 

General linear hypotheses of the form K'li are now easily 
tested. One might wish to test for conttast by time period, for 
example testing the average difference from January tiirough 
June against the remainder of the year's data. Perhaps the 
most interesting (to our apphcations) of these tests is of the 
hypotiiesis Hg: I'ji = 0, where \i is flie expected value of one 
of the vectors described above. 

Another test of particular interest is the "onmibus 
hypothesis," where we test HQ. y. = 0. The test statistics for 
tillshypofliesisare Aj.' EM'T^AT-. AcEi(oAc'and Aj Lmh' 
each of which has an approximate chi-squared distribution 
with r degrees of freedom, where r is the dimension of the 
vector of interest. 

3. APPLICATIONS 

In this section, we apply the one and two-sample 
McNemar techniques for unlinked data outiined in 2.2.2 and 
2.3 to two separate sets of data: the Current Population 
Survey's Parallel Survey split panel data and Current 
Population Survey CATI Phase-in data. Tables 1 and 2 
(section 3.4.1) provide the results for Parallel Survey split 
panel data. Tables 3 and 4 (section 3.4.2) provide the results 
for the Ciurent Population Survey CATI Phase-in data. 

3.1 Background 

The official monthly civilian labor force estimates from 
January 1994 onward are based on data from a compre
hensively redesigned Current Population Survey. The redesign 
included implementation of a new, fully computerized 
questionnaire, and an increase in centtalized computer-
assisted telephone interviewing (CATI). To gauge the effect 
of the Current Population Survey redesign on published 
estimates, a Parallel Siuvey was conducted using the new 
questionnaire and data collection procedures from July 1992 
through December 1993. Special studies were embedded in 
both the Parallel Siu^ey and the Current Population Survey 
during the same time period to provide data for testing 
hypotheses about die effects of the new metiiodological 
differences on labor force estimates: the Parallel Survey split 
panel study and the Cmrent Population Survey CATI Phase-
in Project (a continuation of the study presented in 
Shoemaker 1993). 

The effect of increased centtalized computer-assisted 
telephone interviewing was of particular interest. Findings 
from the shidy described in Shoemaker (1993) had shown that 
including centtalized telephone interviews tended to yield a 
larger unemployment rate. The two-sample McNemar test 
appeared to be a good vehicle for examining this pheno
menon. In both the Current Population Survey and the 
Parallel Siurey, households are interviewed for 4 consecutive 
months, not interviewed for the next 8 consecutive months, 
and tiien interviewed for another 4 consecutive months. The 
first and fifth interviews are conducted by a personal visit, 
and the subsequent interviews are conducted by telephone 
whenever possible. Thus tiie first and fiftii interviews provide 
a baseline measurement of labor force status; the second and 
sixth interviews provide a "post-tteatment" measiuement of 
labor force status. 

To create die panels for both studies, sample witiiin 
selected sample areas was randomly divided into two repre
sentative panels using systematic sampling methods. The 
tteatment panel was designated as CATI eligible. This meant 
that the sample households in the panel were eligible for 
interview at a centtalized facility after tiie initial (first and 
fifth) interviews. To be interviewed by CATI, a respondent 
must have a telephone and speak EngUsh or Spanish, and 
must agree to be interviewed in subsequent months by 
telephone. Not all households in this panel were interviewed 
by CATI. The otiier panel served as a conttol. 
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The monthly unemployment rate is the primary statistic of 
interest pubhshed firom Current Population Survey data. This 
rate is defined as the estimated number of unemployed 
persons divided by tiie estimated number of persons in the 
civiUan labor force (tiie denominator does not include miUtary 
personnel, persons under sixteen years old, or people who are 
no longer looking for work, or retired persons). Our primary 
goal was to understand how including CATI interviews 
influenced the probabihty of changing labor force stams, in 
this case from unemployed to not unemployed (or vice versa). 
Oiu statistics for the one and two-sanple McNemar tests used 
unemployment to population ratios, rather than unem
ployment rates. This allowed for a shghtiy more precise 
estimate of the proportion by decreasing die variabiUty of the 
test statistic. 

3.2 Estimates 

Each month/panel estimate is an unbiased estimate. That 
is, the weights used to produce the estimates were strictiy a 
function of the probabihty of selection: each weight is the 
product of the baseweight (the inverse probabihty of selection 
for a PSU), the weighting conttol factor (an adjustment for 
field subsampling), and a split panel factor (an adjustement 
for the probability of inclusion in a split panel). The spht 
panel factor for the Parallel Survey study was constant by 
design: nine tenths of the sample was randomly assigned to 
the treatment panel. The spht panel factors for the CPS CATI 
Phase-in were not constant: the sanple in the tteatment panel 
varied on a monthly level, as more sample was randomly 
assigned to CATI facilities. 

Variances of levels were computed with generalized 
variance functions (GVFs). For more details, see Fisher et al. 
(1993). Robert Fay used his VPLX software (Fay 1990) to 
calculate replicate estimates of correlation between rotation 
groups for unemployed and for civilian labor force using 
September 1992 through December 1993 data from the 
Current Population Survey. We used these correlations for the 
test statistics based on unlinked data, assuming that they 
would not differ by survey (Current Population Survey versus 
Parallel Survey) or by geography (national versus sub-
national). We derived an expression for the within-panel 
correlation for civiUan population by relating previously 
calculated autocorrelations (Fisher and McGuinness 1993) 
and variance estimates to the individual rotation group 
estimates. See the appendix for details of the estimation of the 
correlations. 

We did not use the linked modification in our applications 
for several reasons. The primary reason was the difficulty of 
longitundinally matching the data. Moreover, we were unable 
to evaluate the success of our matching. Finally, we did not 
have any estimates of correlation for the Unked data. 

Implicit in our analysis of the unlinked data is the 
assumption that the probability of a nonresponse (or a non-
match) is random. We assume fliat the probabihty of a 
nonresponse one month is independent of the respondent's 

labor force classification in the previous month. This assump
tion is not uruversally recognized. In fact, Stasny and 
Fienberg (1984) argue the reverse, and propose several 
alternative discrete-time models for the use of longitudinally 
linked CPS data. In our appUcation, the estimates of marginal 
probabilities based on our (perhaps) poorly matched linked 
data were almost identical to the estimates based on unlinked 
data, and so we feel that our analysis did not suffer 
particularly from our assumption. 

3.3 Diagnostics 

Small expected sample sizes in individual cells will result 
in highly variable and consequentiy unreUable tests. We are 
not aware of a general method of calculating adequate sample 
sizes for this type of analysis using complex survey data. 
Instead, as a naive approach we used a slightiy modified 
version of the ttaditional Pearson chi-squared test diagnostic 
to form a cut-off value as follows: 

As defined in Section 2.2.2, let 

x.^ = unweighted unemployed persons in month 1; 
X. = unweighted not-unemployed persons in month 1; 
A: + = unweighted unemployed persons in month 2; 
X . = unweighted not-unemployed persons in month 2. 

Recall that in flie case of the usual contingency table, E[-(—] = 
x^ X_/nf^^2y E[-+] =x_ x^/n^^2) under the assumption of 
independence (and ignoring missing values). In our estimates 
of expected cell size, we used unlinked marginal data. The 
sample sizes for the two margins corresponding to the two 
months are different; that is, the denominators of the expected 
cell totals are different depending on which margin we 
examine. Because we could not observe n(,2), we estimated it 
by the geometric mean of «, and nj. which seemed to most 
closely resemble the expression for the expected cell size. We 
have not evaluated the effectiveness of the geometric mean 
versus alternative estimators. 

A commonly used ntie in contingency table analysis is tiiat 
expected cell sizes should be at least five. However, both the 
Current Population Survey and Parallel Survey designs are 
highly clustered, and we felt that the cut-off value should be 
adjusted upwards. Accordingly, we multiplied the cut-off 
value by a design effect. We further increased the cut-off 
value for expected cell sizes to conqiensate for the correlation 
between the rows and columns of our tables to arrive at our 
final cut-off expected cell size of ten. 

3.4 Results 

3.4.1 Parallel Survey Split Panel Study 

This section presents the formal results from the one and 
two-sample McNemar tests using unlinked Parallel Survey 
split panel data. Although this data was collected montiily, 
small expected cell sizes in flie conttol panel led us to omit 
several sets of adjacent months from this analysis. Table 1 
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Table 1 
One-Sample McNemar Tests for Individual Parallel 

Survey Panels - Unlinked Data 

Treatment Panel 

10/92-11/92 
11/92-12/92 
04/93 - 05/93 
06/93 - 07/93 
08/93 - 09/93 

Pi-Pi 

-0.62 
-0.47 
-0.76 
-0.04 
-0.66 

se(pj - pi) 

0.29 
0.28 
0,27 
0,27 
0,27 

Z-Statistic 

-2,18 
-1.68 
-2.84 
-0.16 
-2.42 

P-Value 

0.03 
0.09 
0.00 
0.88 
0.02 

Control Panel 

P 2 - P 1 se(p2 - Pi') Z-Statistic P-Value 

10/92-
11/92-
04/93-
06/93 -
08/93 -

-11/92 
-12/92 
- 05/93 
- 07/93 
- 09/93 

2.44 
0.11 
0.20 
0.97 

-1.73 

0.81 
0.83 
0.72 
0.71 
0.68 

3.02 
0.14 
0.27 
1.38 
2.54 

0.00 
0.89 
0.78 
0.17 
0.01 

provides summary statistics for tiie one-sample "monthly" 
tests for each panel which were based on unlinked data from 
tiie Parallel Survey's spht panels. Table 2 provides summary 
statistics for the two-sample tests based on unlinked data. 

The reported values of p„ Pi,p[, and p j are percentages 
of estimated unen^loyed to estimated total population for the 
panel. Recall that p, and p [ are the panel ratio of estimated 
unemployed from the first and fifth interviews to flie 
estimated panel population from the first and fifth interviews; 
P2 and P2 are the panel ratio of estimated unemployed from 
tiie second and sixth interviews to the estimated panel 
population from the second and sixth interviews. Data from 
the time frame of February 1993 - March 1993 are omitted: 
a CATI facUity was closed during tiie March interview week 
because of a blizzard. 

The one-sample McNemar tests in Table 1 test the 
probabihty that tiie proportion unemployed does not change 
between the initial and the subsequent interview within the 
same panel. We use the Conttol panel to examine the 
unemployment flux from one monfli to tiie next in flie absence 
of CATI. Note that the two significant point estimates are in 
the opposite du-ection. 

The entire vector of differences of proportions was 
found to be significantly different from the zero vector 
(p-value = 0.00), but the sum of tiie individual components 
was not found to be significant (p-value = 0.24). Conse
quentiy, we did not test any further linear combinations. 

We expected a certain amount of month-in-sample bias to 
be present in these estimates. In Adams (Bureau of the 
Census 1991), the estimates of pi constructed from the first 
and fiftii months in sample of tiie full Current Population 
Survey were roughly six percent larger than their respective 
second and sixth month-in-sample analogues (pj)- Conse
quentiy, estimates of (pj - Pi) calculated from tiie fuU Current 
Population Survey data were generally negative. As seen in 

Table 1, this was not the case with the Parallel Survey Conttol 
panel's estimates: counter to oiu intuition, the estimated 
difference (pj - p[) is generally positive. This could be a 
function of the time difference, a geographic difference, or a 
design difference. Adams used 1987 data from tiie Current 
Population Survey to calculate national estimates of biases 
associated with rotation groups. Thus in each of tiiese one-
sample tests, the net movements are intertwined witii an 
unmeasured efl"ect from month-in-sample bias. 

Note the negative unemployment flux in the Treatment 
panel. This observation is supported by the significant 
result from the formal test of the omnibus hypotiiesis 
(p-value = 0.00), and the significant result for the hypothesis 
i'U = 0 (p-value = 0.00). 

The two-sample McNemar test results are presented below. 

Table 2 
Two-Sample McNemar Tests - Unlinked Parallel Survey Data 

Time Frame 
(P2 - Pi) -

(P2 - Pi) 

se[(P2 - Pi) -

(P2 - Pi')] 
Z-Statistic P-Value 

10/92-
11/92-
04/93-
06/93 -
08/93 -

-11/92 
-12/92 
- 05/93 
- 07/93 
- 09/93 

-3.06 
-0.58 
-0.95 
-1.02 

1.08 

0.86 
0.88 
0.77 
0.76 
0.74 

3.58 
0.66 
1.24 
1.34 
1.47 

0.00 
0.51 
0.22 
0.18 
0.14 

Individually, tiie monthly results do not demonsttate a 
clear difference in the unemployment flux between the two 
panels. On the other hand, the omnibus test statistic is 
significant (p-value = 0.00). The mean unemployment flux 
seems to be lower in the tteatment panel as evidenced by the 
significant test results of the hypothesis i 'ji = 0, where g is 
the vector of {{p.^ - p,) - (pj - Pi')),'s, with each element 
corresponding to a month's estimate (p-value = 0.01). 

In these tests, we make statements about conttasts in a 
table of probabihties, looking for indicators of the effect of a 
ti-eatment on unemployment movement. As mentioned earher, 
some month-in-sample bias is present in tiie one-sample tests. 
The tested hypotiieses examine combinations of tiie net 
movement within a panel and montii-in-sample bias. This 
problem is somewhat mitigated in the two-sample tests. 
Indeed, if month-in-sample bias is an additive term which 
affects both panels equally, it will cancel out of the test 
statistic. Moreover, tius effect will be alleviated somewhat in 
the two-sample test even if it is not flie same between the two 
panels or is multiplicative. Our preliminary sensitivity 
analysis bore this out: we found that the one-sample tests 
were sensitive to month-in-sample bias, but that the two-
sample tests were not. 

The two-sample Mests presented in Thompson (1994) 
failed to detect a difference by panel in mean unemployment 
rate using the Parallel Survey split panel data. This conttasts 
with the Current Population Survey CATI Phase-in results: 
over two years, the CATI (Treatment) panel had consistentiy 
significantiy higher unemployment rates flian tiie non-CATI 
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(Conttol) panel. See Shoemaker (1993). In this analysis of 
Parallel Survey split panel data, we have evidence that the 
expected value of the proportion unemployed is lower in the 
presence of CATI. There are, however, some problems with 
the data. Fust, as previously mentioned, there is some 
confounding in the Treatment (CATI) panel, since not all 
respondents in this panel have thett second interview 
conducted from a centtalized telephone facility. Second, in 
each month the expected sample size in the Conttol panel 
cells was near ten, which could be small enough to make the 
distribution behave unpredictably. This latter problem is not 
an issue with the Current Population Survey CATI Phase-in 
study analysis presented in 3.4.2. 

3.4.2 Current Population Survey CATI Phase-in 
Project Results 

The Current Population Survey CATI Phase-in project was 
a continuation of the study presented in Shoemaker (1993). 
The primary purpose of this study was to measure the effect 
of including CATI interviewing on the unemployment rate. 
CATI interviewers in this study used an automated version of 
the old Current Population Sittvey paper questionnaire, which 
had a slightiy modified version of the lead-in labor force 
question. More details are provided in Thonpson (1994). The 
data considered in this paper are from the same time period as 
the Parallel Survey split panel data examined in 3.4.1: 
October 1992 through December 1993, again omitting the 
February 1993 - March 1993 time frame. Expected cell sizes 
in both the Treatment (CATI) and Conttol (non-CATI) panels 
were well over one hundred, and so all other contiguous 
months of data are included. 

The one-sample McNemar test results for both panels are 
presented in Table 3. Test statistics are constructed with 
unlinked data. The reported values of p„ pj, p / , and p^ are 
percentages of estimated unemployed to estimated total 
population for the panel. 

As witii the Parallel Survey split panel data, the one-
sample McNemar tests using the CATI Phase-in data test the 
probabihty that the proportion unemployed does not change 
between the initial and the subsequent interview within the 
same panel. Again, we use the Conttol panel to estimate the 
unemployment flux from one month to the next in the absence 
of CATI. The monthly tests for the Conttol panel do not 
appear to exhibit any particular movement. Furthermore, the 
omnibus hypotiiesis test was not significant (p-value = 0.29), 
so we did not test any further linear combinations. 

Again basing our expectations on the effects of month-in-
sample bias presented in Adams (1991), we beheved that the 
Conttol panel estimate of pj (from the first and fifth months-
in-sample) would be larger than its respective second and 
sixth month-in-sample analog, p j . On the average, this was 
the case: althoughquite variable, the estimates of pj are on 
the average about 4 percent larger than the estimates of p j . 
Because both panels are representative samples from flie same 
parent sample, we assume that the month-in-sample bias 

Table 3 
One-Sample McNemar Tests for Individual Current 

Population Survey Panels - Unlinked Data 

Time Frame 

10/92-11/92 
11/92-12/92 
12/92-01/93 
01/93 - 02/93 
03/93 - 04/93 
04/93 - 05/93 
05/93 - 06/93 
06/93 - 07/93 
07/93 - 08/93 
08/93 - 09/93 
09/93 - 10/93 
10/93-11/93 
11/93-12/93 

10/92-11/92 
11/92-12/92 
12/92-01/93 
01/93 - 02/93 
03/93 - 04/93 
04/93 - 05/93 
05/93 - 06/93 
06/93 - 07/93 
07/93 - 08/93 
08/93 - 09/93 
09/93 - 10/93 
10/93-11/93 
11/93-12/93 

P2-P1 

1.13 
0.07 
0.43 
0.00 

-0.25 
0.63 
0.88 
0.84 

-0.07 
0.42 
0.06 
1.05 
0,18 

P2 - Pi 

0.05 
-0,14 

0.72 
-0.91 
-0.16 
-0.18 

0.47 
-0.32 
-0.52 
-0,54 
-0.08 
-0.63 
-0.09 

Treatment Panel 

se(p2 - pi) 

0.16 
0.17 
0.13 
0.14 
0.14 
0.13 
0.13 
0.13 
0.14 
0.13 
0.12 
0.12 
0.14 

Z-Statistic 

7.63 
0.44 
3.46 
0.03 

-1.81 
4.99 
6.56 
6.49 

-0.51 
3.17 
0.52 
8.45 
1.27 

Control Panel 

se(P2 - Pi') 

0.47 
0.47 
0.43 
0.43 
0.39 
0.43 
0.38 
0.46 
0.39 
0.44 
0.37 
0.42 
0.37 

Z-Statistic 

0.11 
-0.30 

1.68 
-2.11 
-0.40 
-0.42 

1.22 
-0.68 
-1.32 
-1.21 
-0.22 
-1.50 
-0.23 

f-Value 

0.00 
0.66 
0.00 
0.97 
0.07 
0.00 
0.00 
0.00 
0.61 
0.00 
0.60 
0.00 
0.20 

/"-Value 

0.92 
0.76 
0.09 
0.03 
0.69 
0.67 
0.22 
0.49 
0.19 
0.23 
0.83 
0.13 
0.82 

behaves similarly in both panels. The Treatment (CATI) panel 
estimates of P2 are larger on the average than the estimates of 
Pi. Given the Conttol panel's estimates behavior, this 
phenomenon provides some evidence of a CATI effect. 

Note the movement in the Treatment panel from not 
unemployed to unemployed. This observation is supported by 
the significant result from tiie formal test of the omnibus 
hypothesis (p-value = 0.00), and the significant result for the 
hypothesis i'ji = 0 (p-value = 0.00). In conttast to tiie Parallel 
Survey results provided in 3.4.1, this data provides some 
evidence that unemployment rate is higher in the presence of 
CATI. This evidence is further supported by the two sample 
McNemar test results provided Table 4. The individual 
monthly results in Table 4 provide some evidence of 
difference in the unemployment flux between two panels. 
Furthermore, the omnibus test is significant (p-value = 0.00). 
The mean unemployment flux in the Treatment panel seems 
to be higher as evidenced by the significant test results of the 
hypothesis i'y. = 0. 

The two-sample r-tests presented m Thompson (1994) also 
detected a positive difference by panel in mean unemploy
ment rate using the Current Population Survey split panel data 
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Table 4 
TWo-Sample McNemar Tests - Unlinked Current 

Population Survey Data 

Time Frame 
(Pi - Pi) -

(Pi - Pi') 
se[(P2 - Pi) -

(P2'-Pi ' ) ] 
Z-Statistic P-Value 

10/92-
11/92-
12/92-
01/93 -
03/93 -
04/93-
05/93 -
06/93 -
07/93 -
08/93 -
09/93 -
10/93 -
11/93-

-11/92 
-12/92 
- 01/93 
-02/93 
-04/93 
- 05/93 
- 06/93 
- 07/93 
- 08/93 
- 09/93 
-10/93 
-11/93 
-12/93 

1.18 
0.22 

-0.29 
0.92 

-0.10 
0.81 
0.41 
1.16 
0.45 
0.95 
0.14 
1.69 
0.26 

0.50 
0.50 
0.45 
0.45 
0.42 
0.45 
0.41 
0.48 
0.42 
0.46 
0.39 
0.44 
0.40 

2.38 
0.43 
0.64 
2.03 
0.23 
1.81 
1.01 
2.41 
1.07 
2.06 
0.37 
3.83 
0.66 

0.02 
0.67 
0.52 
0.04 
0.81 
0.07 
0.31 
0,02 
0.28 
0,04 
0.71 
0.00 
0.51 

i.e., including CATI interviews resulted in a higher unem
ployment rate. These results were consistent with the Current 
Population Survey CATI Phase-in results presented in 
Shoemaker (1993). This analysis of Cmrent Population Survey 
split panel data reinforces that conclusion. Again, it is 
impossible to atti-ibute the positive net migration from not 
unenployed to unemployed entirely to the effect of CATI: the 
same confounding described in 3.4.1 is present in this 
Treatinent (CATI) panel. 

3.5 Discussion 

Our results appear to yield opposite conclusions about the 
effect of CATI on unemployment flux. The CATI effect is 
not, however, the same in both tests. 

Perhaps the key difference is the questionnaire. The 
Parallel Survey data was collected using the newly redesigned 
Current Population Sittvey questioimaire. The new question
naire was designed as an automated instrument. In conttast, 
the old Ciurent Population Sittvey questionnaire used for the 
Current Population Survey CATI Phase-in Project was 
designed as a paper instrument. Field interviewers were 
required to memorize compUcated skip pattems. To miiumize 
respondent burden, both versions of the Current Population 
Survey questionnaire are designed for an average interview 
length of twenty mmutes. Using an automated questionnaire, 
an interviewer can collect more (and more detailed) 
information in the same amount of time, since she no longer 
has to determine the path of the interview. Besides the 
automation difference, the wording of the labor force 
questions differs between the two questionnaires. 

Parallel Survey interviews were conducted using the same 
questionnaire both in the field interviews (using a laptop 
computer) and in tiie CATI facilities. In conttast, the Current 
Population Siuvey CATI Phase-in interviews used two 
different versions of the old questioimaire: a paper version 
for the field interviews; and an automated version, with a 
slightiy modified lead-in labor force question for the CATI 
interviews. 

Given these questionnaire differences, and the caveats 
about tiie Parallel Sittvey spht panel data, we view our results 
as preliminary. Instead, we recommend pursuing this 
examination using one and two-sample McNemar techiuques 
on the new Cmrent Population Survey spht panel data, which 
uses the old CATI Phase-in design and the redesigned, fully 
automated questionnaire. 

4. CONCLUSION 

We have presented two modifications of the one and two-
sample McNemar tests using complex survey data, witii 
applications from the unlinked data modification. If the 
survey does not have a longitudinal design, then the applica
tion using the linked data will have an unknown variance/ 
covariance structure and will include a variance component 
due to matching error. In this case, using the unlinked data 
makes sense with respect to the model's interpretation, 
although the statistic based on the (unlinked) estimates of 
marginal probabilities may be inferior to a well-developed 
Imked model. If the survey has a longitiidmal design, then tiie 
first method may be preferred, as it is a sttaight-forward 
extension of the ttaditional test, and consequentiy, the 
interpretation is equivalent to the textbook interpretation. 

The two-sample McNemar test is not the sole approach 
one might use in the situation described in section 2.2.2. 
Another approach to the unUnked form of this problem would 
be to use a log-linear model for a 2 x 2 x 2 contingency table 
as in Rao and Scott (1984). In either case, there are ttade-offs. 
The interpretation of the McNemar test is intuitive: it is a 
cause and effect model, or a repeated measures type of 
experimental design. The 2 x 2 x 2 contingency table model's 
interpretation is perhaps less mtuitive. Note, however, that the 
test statistic for the McNemar tests are "Wald-like" statistics, 
which are often considered to be less efficient than the chi-
squared type, e.g., Fay (1985). It is also worth noting that 
unlike the Rao-Scott formulation, tiie approach described in 
flus paper makes exphcit provisions for the use of Unked data. 

Areas for future research include investigations into the 
power of these tests in the context of complex sample data, 
variance/covariance estimation for linked data including 
matching error variance contributions, and tiie difference in 
efficiency in the two approaches. In data analytical applica
tions, one and two-sample McNemar tests seem to have uses 
in comparing aspects of different survey methods or effects 
on responses within a method over time. The approach is 
nonparametric in its conception; when the approximation is 
good, it avoids pitfalls that may be associated with model-
based tests. 
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APPENDIX 

For the unlinked data modification of the McNemar Test, 
(P2 - p , ) is estimated by X^ lN^ + X JN^ where X^, X.,, A',, 
and N2 are weighted estimates, and 

V a r ( p 2 - p , ) = 
A', 

Var(X^ ) Var(/V,) 

N. 

N 

V a r ( X J yar{N^ 

2X^ X^ 

N,N, 

N 

C O V ( A ' ^ A : J Var(N,) 

X^ X^ < 

Var(A^2) se(A?,) se{NA 

N N,N., 

In this appendix we discuss the derivation of the 
covariance term in the variance estimate, considering only the 
unlinked data. 

Consider the within-panel correlation 

C o v ( X , . , X J = C o v f EXi,j,Tx,j 
\ j = l,5 j=2,6 

(Al) 

where X,j is a weighted sample level for month 1, month-in-
sample (MlS)y. Note that X, ^ and Xj^^., are from the same 
rotation group unless j = 4 since a rotation group is out of 
sample for eight months after being in for four. 

We assumed that the correlations between X,y and Xj„ can 
be decomposed into three separate categories: 

1) A within-rotation-group correlation, 

Cov(A'. .,X,.^,^,^,) = r,, when ; = 1,2,3,5,6,7. 

2) A within-month-between-rotation group correlation, 

Cov{X. .,X.j^) = w, k*j, and 

3) A between-rotation-group between-month correlation. 

Cov{X..,X.^^^) = -^,k*j^l o r y = 3 . 

Replicate estimates of these correlations were available. 

The covariance in (Al) becomes 

Cov (X,. , X. J = Cov(X, , + X, 5, X2 2 + ̂ 2,6) 

= Cov(X, , ,X2 2 ) + C o v ( X , , , X 2 , ) + 

C0V(X,5,X2 2)+C0v(X,3,X2g) 

= 2 ( r ,+Y)Var (X . . ) , (A2) 

using the simplifying assumption that Var(X,j) is constant for 
all I and /. The variance for a full month's estimate, 
Var( Ĵ .̂,, X,,̂ ,) is available in the form of a generalized 
variance function (GVF). We use this estimate to calculate 
Var(X,y) by applying the following derivation: 

Var E^,,J=EECov(X.. ,X. ,) 
\M 

= E V a r ( X , . ) + E C o v ( X , . , X , , ) 

= (8+56a))Var(X,.p 

so 

i ^ ^ 
Var(X. . )= (8+56co) - 'Var X^ X.. (A3) 
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Stability Measures for Variance Component Estimators 
Under a Stratified Multistage Design 

J.L. ELTINGE and D.S. JANG' 

ABSTRACT 

In work with sample surveys, we often use estimators of the variance components associated with sampling within and 
between primary sample units. For tiiese applications, it can be important to have some indication of whetiier the variance 
component estimators are stable, i.e., have relatively low variance. This paper discusses several data-based measures of the 
stability of design-based variance component estimators and related quantities. The development emphasizes methods tiiat 
can be applied to surveys with moderate or large numbers of strata and small numbers of primary sample units per sttatum. 
We direct principal attention toward the design variance of a within-PSU variance estimator, and two related 
degrees-of-freedom terms. A simulation-based method allows one to assess whether an observed stability measure is 
consistent with standard assumptions regarding variance estimator stability. We also develop two sets of stability measures 
for design-based estimators of between-PSU variance components and the ratio of the overall variance to the within-PSU 
variance. The proposed methods are applied to interview and examination data from the U.S. Third National Health and 
Nutrition Examination Survey (NHANES UI). These results indicate tiiat die ttue stability properties may vary substantially 
across variables. In addition, for some variables, within-PSU variance estimators appear to be considerably less stable than 
one would anticipate from a simple count of secondary units within each stratum. 

KEY WORDS: Between-PSU variance; Complex sample design; Degrees of freedom; Diagnostic; Design-based analysis; 
Satterthwaite approximation; Stratum collapse; U.S. Third National Health and Nutrition Examination 
Survey (NHANES m); Witiiin-PSU variance. 

1. INTRODUCTION 

In work witii sample surveys, it is often desirable to have 
good estimates of the variance components attributable to 
sampling within and between primary sample units (PSUs). 
For example, the magnimde of an estimated within-PSU 
variance, relative to a between-PSU variance, may influence 
decisions regarding sample allocation and related design 
issues (e.g., Hansen et al. 1953, Chapter 7). Similar relative-
magnitude properties affect the bias of certain variance esti
mators derived under simplifying assumptions regarding the 
sample design (e.g., Kom and Graubard 1995, p. 278-279,287; 
and Wolter 1985, p. 44-46). Also, some survey analysts have 
a general interest in identification of siu f̂eys and variables for 
which the between-PSU component of variance is substantially 
greater tiian zero. See, e.g., Herzog and Scheuren (1976, p. 398) 
and Wolter (1985, p. 47) for related comments. In addition, 
Jang and Eltinge (1996) give an example for which there is 
some interest in the within-PSU variances by tiiemselves. 

In some apphcation work, estimates of within-PSU 
variances and related quantities are reported with the apparent 
assumption that the estimates are stable, i.e., have relatively 
low variances. This paper shows that it can be important to 
carry out data-based checks of this assumption of stabihty, 
and fliat some relatively simple checking metiiods follow from 
standard design-based ideas. We emphasize methods that can 
be applied to designs with a moderate or large number of 
strata and a small number of PSUs selected per sttatum. 

Subsection 2.1 reviews the relevant estimators of within-
PSU variances and overall sfratum-level variances. Sub
section 2.2 identifies two distinct conponents of the variance 
of the witiun-PSU variance estimator. Subsection 2.3 presents 
simple design-based estimators of flie variances of two wifliin-
PSU variance estimators. Section 3 develops two related 
degrees-of-freedom measures. 

Section 4 examines the extent to which related design-
based methods can be used to assess the stabiUty of quantities 
fliat depend botii on the wiflun-PSU variance estimator and on 
the overall stiatum-level variance estimator. Principal atten
tion is duected toward an estimator of the between-PSU 
variance and an estimator of the ratio of the overall sttatiim-
level variance divided by the wifliin-PSU variance. Section 4.2 
discusses one set of methods based on the stabihty measures 
from Section 2 and some moderately restrictive moment 
assumptions. Section 4.3 outiines a second set of methods 
based on sttatum collapse. 

Section 5 appUes flie main ideas of Sections 2 tiirough 4 to 
variance estimates computed for the U.S. Thu-d National 
Healtii and Nuttition Examination Survey. Section 5 also uses 
a simple simulation-based method to assess the consistency of 
tiie observed measures with standard assumptions regarding 
variance estimator stabiUty. The Section 5 results suggest that 
the true stabiUty of within-PSU variance estimators can be 
substantiaUy less tiian anticipated from a simple count of the 
number of secondary units contiibuting to each PSU. In 
addition, flie results indicate fliat the stability properties of 
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within-PSU variance estimators and related quantities can 
vary substantially across different variables coUected in the 
same survey. Section 6 gives additional comments on the 
methods and empirical results presented here. 

Â = "A'E/ ' /»• '^w 

where Y^. = n̂ ,. Ij^iZ^^and z^y = n^n^iPh^k^hijkyhiik-

WITfflN-PSU AND OVERALL 
STRATUM-LEVEL 

VARIANCE ESTIMATORS 

2.1 General Notation 

In principle, we could use either design-based or model-
based methods to examine within-PSU and between-PSU 
variance components. The present work will take a design-
based approach. This is consistent with some related previous 
literahore, e.g., Wolter (1985, p. 40-41,47). The design-based 
approach will be especially useful in highhghting some 
sttengths and hmitations of the proposed stability-assessment 
methods. For exanple, in Section 2.3 this approach will give 
us some indication of specific design features that may affect 
variance estimator stability. Also, in Section 4 the design-
based approach wiU help to clarify the extent to which certain 
moment restrictions are needed to justify one set of stability 
measures. 

Following the notation and ideas in Wolter (1985, 
p. 43-47), consider a stiatified multistage sample design with 
L sttata and with N^ primary sampling units (PSUs) contained 
in sttatum h = l,2,..., L. We select n^ PSUs with replacement 
and witii per-draw selection probabilities p^,. Within selected 
PSU {h,i), we select n̂ , secondary sample units (SSUs) with 
replacement and with per-draw selection probabilities p̂ ,y. 
Further subsampling is carried out within a selected SSU to 
obtain n^j individual elements for interview or examination. 
The stability-assessment methods developed here are intended 
primarily for designs with moderate or large L, relatively 
small n^ {e.g., n^ = 2), and relatively large n^. Designs with 
these characteristics are often used in large household inter
view surveys, e.g., the health survey discussed in Section 4. 

We will focus on estimation of a population total 
Y = y^ Y wherey = V'̂ * 7 Y = y'^'^ X'^'^J Y Y is 
^ Lh'l ^ h'^"'^"^ ' h Li=l^hi'^hi Lj^lLk'l'hijk' ^hijk^'' 
a sittvey item for element k in SSUy in PSU i in sttatum h, N^^ 
is flie number of SSUs in PSU {h,i), and Â .̂̂  is flie number of 
elements in SSU {h, i,j). Extensions to nonlinear functions of 
population totals are sttaightforward and will be considered 
in the applications in Section 5. A standard design-based 
estimator of Fis f = Ĵ ^̂ j y^ where 

.̂ = EE5i 
1=1 j = i *=i 

^hijk yhijk ' (2.1) 

Wi,y^ is the customary weight derived from selection proba
bilities and sample sizes to ensure unbiased estimation of each 
y ,̂ and the lower-case terms y^J^ denote sample observations. 
In subsequent work, it will be useful to rewrite expression 
(2.1) as 

2.2 Within- and Between-PSU Variances 

Throughout this discussion, expectations and variances 
will be defined with respect to the sample design. Under the 
conditions stated above, the variance of Y is V{Y) = Y,h-i ^h' 
where V, = V,, . V^„V,, = V{n,'i:ip-^YJ, V^ = 
"h ll-iPhi ^^ij^i' and o^^ = V{Y^.-Yjh,i)\ see, e.g., 
Wolter (1985, p. 42). Note especially tiiat Y^ is tiie tine 
population total for selected PSU {h, i), and that Oĵ j reflects 
the variabUity in Yf^. - Y^. attributable to subsampling at the 
SSU and finer levels. 

A customary unbiased estimator of the overall sttatum-
level variance V̂  is 

" A 

and tiie corresponding estimator of V{Y) =Y,h-i ^(Y^) is 
V{Y) = lliV{Y,). 

Now consider estimation of the within-PSU variance Vy^^. 
Since y .̂ is a sample mean of the independent and identically 
distributed terms Zhij, standard arguments show that for a 
given PSU {h,i), an unbiased estimator of Oĵ , is 

estimator of V̂ ^ is 

" A " A " f t t 

t̂w, = E "A W ^ L = E "W'K- - I ) ' ' E (-^hij - ^hi)^' 
1=1 i=l 

.-Wi-i where x^y = n^.lk'^\w^ijkyhijk ^nd x^, = n^ Ij^iX^^j. Note tiiat 
the latter expression for V^ uses only sample sizes, the 
observations y^jj^ and the customary weights w^^^. 

2.3 The Variance of V, Wh 

A direct modification of standard conditional-moment 
arguments shows that the variance of 1/,̂ ^ is YBA •*̂  Yiw.' where 

YBA = ^K '^E / ' / . ?OL) 

and 

Thus, the variance of V„^ itself depends on a sum of 
between- and witiiin-PSU variances, and the relative 
magnitudes of YBA and y^^ depend on ttade-offs among Oĵ ,,, 
Py and %. For exanple, under regularity conditions, the terms 
V{d2hi I ^ ' 0 are approximately inversely proportional to n ,̂. 
Thus, if the n^ are uniformly large within sttatum h, then YH,, 
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may be relatively small. Also, if the terms p;,̂  Oĵ ,,. are 
approximately constant witiiin a given sttatum, tiien y^^ may 
be relatively small. Conversely, marked heterogeneity of 
Phi ^2hi "^y inflate YB^ and tiius inflate ^'(V'^) as well. 

In addition, note tiiat under tiie stated design conditions, 
V^̂  is the sample mean of the independent and identically 
distributed terms n^ p^i d2;,,,. Thus, an unbiased estimator of 
the variance of V^ is 

nywH) = n-\n,-iy 'E(« 
i = l 

h^phi ^2hi VWH) (2.2) 

Some applications focus on the full-population level, 
rather tiian on individual sttata, and so the "witiiin-PSU" 
contribution of interest is the sum of the within-PSU 
variances, V^ = ^^^j V ,̂̂ . Under tiie conditions given above, 
an unbiased estimator of V„ is V^ = EA=I ^wh • Also, suice oiu 
sampling and subsampUng are independent across sttata, we 
have V{V^) = X;,-I(YB;, + Y W ' ^ ^ an unbiased estimator of 
V(V^)is 

Consequentiy, interpretation of specific values of V{V^) 
and related stability measures should reflect a balance 
between the abovementioned general caution and a recogni
tion of their potential diagnostic value. 

3. TWO STABILITY MEASURES FOR 
WITfflN-PSU VARIANCE 

ESTIMATORS 

3.1 Degrees-of-Freedom Diagnostics for Variance 
Estimator Stability 

Some analysts prefer to express variance estimator stability 
through "degrees of freedom" measures related to the 
Satterthwaite (1941, 1946) approximation. To inttoduce tiiis 
idea, consider a general variance estimator V, and note that 
{E{V)} dV has the same first and second moments as a 
chi-square random variable on d degrees of freedom, where 
d is the solution to the equation, 

v{K) = Ev(VwHy 

Finally, note that the preceding development used the 
assumption of sampling with replacement at both the primary-
and secondary-unit levels. Two apphcations of result (2.4.16) 
in Wolter (1985, p. 46) show that under mild conditions that 
hold for many, but not all, without-replacement designs, 
V^ wiU be unbiased or conservative for the true within-PSU 
variance; and V'( V^ )̂ will be unbiased or conservative for tiie 
true variance of V^. A formal technical statement and proof 
of this result is available from the authors. 

2.4 Balanced Interpretation of Stability Measures 

The remainder of this paper uses V(V^) and related 
quantities to assess the stability of variance-component 
estimators. In working with these results, it is useful to 
remember that data-based measures of variance estimator 
stability are justifiably viewed with some caution, because 
they are functions of fourth sample moments, and thus are 
themselves subject to a considerable amount of sampling 
variabiUty. See, e.g.. Fuller (1984, p. 111). This caution 
carries over to the proposed estimator V{V^) and to the 
related statistics discussed in Sections 3 and 4 below. 

However, one should not overstate tius caution to tiie point 
of making no attempt at data-based assessment of variance 
estimator stabiUty. The estimator V{V^), and the related 
measures in Sections 3 and 4, are relatively simple to 
compute, and provide diagnostics that can help to identify 
variables for which: 

(a) the instabiUty of V^ is especially problematic; or 

(b) the instability of V^ has a substantial effect on die 
precision of estimators of the relative magnitudes of 
between-PSU and within-PSU variances. 

2{E{V)]- V{V)d = 0. 

If tiie distiibution of {E{V)}'^dV is indeed well 
approximated by a chi-square distiibution, tiien d may be 
viewed fairly literally as a "degrees of freedom" term. 
Otherwise, d can be viewed as twice the inverse of the 
squared coefficient of variation of V. In eitiier case, rf has a 
certain appeal because it is scale-free, and can be tied fairly 
directiy to notions of "effective sample size" in flie evaluation 
of variance estimator performance. Subsection 3.3 gives 
related comments for two special cases. 

Given an unbiased estimator V{V) of tiie variance of V, 
one may compute a "degrees of freedom" estimator d as the 
solution to the unbiased estimating equation 

2{V - V(V)}-V(l/)d = 0, (3.1) 

i.e., d = {V{V)] 
• 1 ^ 0 

2V - 2 . Under mild regularity condi
tions, d d converges in probability to one, provided 
{V{V)]'^V{V) and {£(V)}Vbotii converge in probability 
to one. 

3.2 Degrees-of-Freedom Diagnostics for Pooled and 
Stratum-Level Estimators of Within-PSU 
Variances 

We can apply tiiese general degrees-of-freedom ideas to 
the within-PSU variance estimators V„^ and V^ developed 
in Section 2. First consider tiie case in which there is intrinsic 
interest in tiie stabiUty of individual sttatum-level estimators 
V 
{V{V, 

The associated "degrees of freedom" measure is d^ = 
wi)} 2 ̂ wh • Por designs witii large n ,̂ one may use (3.1) 

to confute estimators dy^,i^ = {V{V^^)}'^2V^^-2 separately 
for each sttatum. For designs with small n^ {e.g., n^ = 2 for 
each sttahim), tiie estimator d ^ itself may be very unstable. 
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Consequentiy, it also is useful to consider the alternative 
combined estimator 

dwo = {tnvJt'2tvl,-2, 

Note that if V^V. = R^^ for all h, then R^^^ could also be Wh'h ^WV 

' / i= l A = l 

under the assumption tiiat all d^^ equal a common value d^ .̂ 
Now consider the pooled within-PSU variance estimator V^ 

developed in Section 2.3. The resulting "degrees of freedom" 
measure is d^^ = { LLIH^'H,; , )} '2V^, and expression (3.1) 
suggests the estimator 

' A = I ' 

3.3 Comparison of dim ^^^ ^WF to Direct SSU Counts 

To interpret d^^ and d ,̂̂  as stabiUty measures, consider 
the foUowing idealized setting. Assume that for aU h, the PSU 
counts n^ are equal to a common value nj, say; and that for 
all h and i, the SSU counts n̂ , are equal to a common value 
n„. In addition, assume that the terms p ,̂, Oĵ ,. are constant 
within each sttatum; and that, conditional on {h, i), each 
^aAî îi "1) ^2hi î  distributed as a chi-square random vari
able on nil ~ 1 degrees of freedom. Then routine arguments 
show fliat d^ = ni(«n - 1). If flie preceding assumptions are 
satisfiedapproximately, and if the product n,(njj - 1) is large 
(greater than 40, say), then a data user may be incUned 
to view V^ as relatively stable, or equivalentiy, to view the 
errors V^ - V^ as negligible. This appears to be the 
reasoning used impUcitiy when estimates V^ are tteated as 
known values in design or analysis work. However, the 
application in Section 5 will give some examples for which 
this reasoning is problematic, so that evaluation of the 
estimates d^^ is important. 

Also, under the ideaUzed conditions described above, and 
under the additional assunqition that the V^ are all equal, we 
have d„,^ = Ln,(/iii - 1). 

4. COMPARISON OF WITfflN-PSU 
AND OVERALL 

STRATUM-LEVEL VARIANCES 

4.1 Estimators of Between-PSU Variances and 
Related Variance Ratios 

Section 1 cited some applications that hinge on the magni
tude of Vyi^ relative to V;,. The specifics of the relative-
magnitude conqiarisons vary with the individual application, 
but interest generally focuses on differences or ratios. 
For example, recall tiiat V̂ ^ = ^i,~ ^m ^ d define the overaU 
between-PSU variance term Vg - ^^^, VBH- In addition, note 
fliat unbiased estraiators of V^^ and Vg are V̂ ^ = ^^ " ^wh ^ d 
^B = 1/1=1 f̂l/, ""espectively 

Similarly, define the ratio R^^^y = V,^V{Y), the magnitude 
of the overall variance V{Y) relative to the within-PSU 
conttibution Vy,. A direct estimator ofR^^ is Ry^y = V^ V{Y). 

viewed as a pooled estimator of fliis common jrratMm-level 
ratio. 

For both V^ and R^^y, stability assessment involves the 
variance of V^ and tiie covariance of V^̂  with V^. Estima
tion of tiie these moments can be somewhat problematic for 
siuveys that select smaU numbers of PSUs from each sttatum. 
We consider two approaches to resolving this problem. 
Section 4.2 uses moderate restrictions on the moment 
structure of (V^,^, V )̂ to develop estimators V{Vf) and 
related quantities. Section 4.3 uses sttatum coUapse to 
develop alternative stability measittes. 

4.2 Stability Measures Based on V(V^A) and Moment 
Conditions 

4.2.1 Moment Conditions 

Under moderate moment restrictions, we can estimate the 
variance of V^ directiy from V^ itself. Specifically, assume 
that the variance of y^ equals (n^ - 1)"'2V^; this would hold, 
e.g., under the standard assumption that V '̂ (n̂ , - 1)V^ is 
distributed as a chi-square random variable on «;, - 1 degrees 
of freedom. As in Sections 2 and 3, we continue to assume that 
V^ is unbiased for V .̂ Then routine moment arguments show 
that (n^ + 1)"*2V^ is an unbiased estimator of the variance 
ofV,. 

In the remainder of Section 4.2, we will also assume that 
Cov(V^, V )̂ = 0. Routine conditional-moment arguments 
show that this will hold if die terms p^^ a^j^i are equal within 
a given sttatum; and if, conditional on {h,i,j), the SSU-level 
estimates x^j are normally distributed, so that dj ,̂, is condi
tionally independent of y^̂ . 

4.2.2 Stability Measures 

Under the conditions stated in Section 4.2.1, unbiased 
estimators of V(V'ĝ ) and V(Vg) are 

nVJ- {n,^iy'2Vl^V{V^) (41) 

and V{V^ = Ĵ ^̂ j V(Vg^), where V'(V^) is defined in expres
sion (2.2). Also, under the same conditions routine ratio-
estimation arguments lead to the variance estimator 

^i-Rwv) = v^wE K - ^r"2yl-Kv^iKH)\- (42) 
A = l 

4.3 Alternative Stability Measures Based on Stratum 
Collapse 

The assumptions of Section 4.2.1 may be problematic in 
some applications. For example, for some survey designs and 
variables, flie SSU-level estimators x^^j may have markedly 
nonnormal distributions, so the assumption Cov (V„^, V^ = 0 
may not hold. For these cases, one may consider the use of 
sttatum collapse to produce alternative estimators of V{V^ 
and V{R^). 
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Specifically, partition the set of L sttata into G prespecified 
groups, with L̂  sttata contained in group S^, g = I, ..., G. 
With tills new notation, note tiiat 

(V(y) .V„, .V,)=E TiVH'VwH'VsH)-
«=1 heS, 

Standard sttatum-collapse methods {e.g., Wolter 1985, 
Section 2.5) then lead to the alternative variance estimator. 

«=i heS. 

where Dg^= Vgf^- Lg HJ^S^^BI- Similarly, a coUapsed-
sttatiim variance estimator for Ry^ is. 

«=1 heS. 

where C^, = (V, - R^^V^J - L^es^ (V̂ , " R^vKj)-
In general, coUapsed-sttatum variance estimators require 

some care in interpretation; see, e.g.. Rust and Kalton (1985), 
Wolter (1985, Section 2.5) and references cited therein. For 
example, coUapsed-sttatum variance estimators generaUy will 
be conservative. In addition, for cases with moderate L, the 
variance estimators V *̂(V'fl) and V'^*(^,^) may tiiemselves 
have limited stability. 

S. APPLICATION TO THE U.S. TfflRD 
NATIONAL HEALTH AND 

NUTRITION EXAMINATION 
SURVEY 

5.1 Sample Design and Estimation Methods 

The metiiods proposed in Sections 2 through 4 were 
applied to data from Phase I of flie Third National Health and 
Nutiition Examination Survey (NHANES UI). National 
Center for Healtii Statistics (1996) gives a general description 
of this survey, including special characteristics associated 
wifli Phase I (data collected between 1988 and 1991). For flie 
present discussion, three aspects are of special interest. First, 
variance estimators were constructed on the basis of a 
collapsed design involving L = 22 sttata (large groups of 
counties), witii two primary sample units (generaUy individual 
counties) selected per sttamm. Second, each selected PSU 
had a relatively large number of selected SSUs (generally 
groups of city blocks, or similar rural areas). The number of 
selected SSUs witiiin each sttatum ranged from 30 to 63, wifli 
a mean of 45.8. 

Third, additional subsampling within each SSU led to 
selection of the survey elements (individual noninstitu-
tionaUzed U.S. civilians). Each selected person was asked to 
respond to a health questionnaire and to participate in a 
detailed medical examination. Twelve of the resulting 
variables are Usted in Table 1. 

Standard weighted ratio estimates B were computed for 
the population means of each of flie twelve variables listed in 
Table 1. The first two columns of Table 2 present the 
corresponding variance estimates V'(^) and V^,. As part of 
a larger study of the within-PSU variances V^̂  discussed in 
Jang and Eltinge (1996), tiiere was considerable interest in the 
StabiUty of flie mdividual estimates V^^. Since we had n̂  = 2 
for each sttatum, the reasoning in Section 3.2 indicated that 
it was not feasible to examine the individual terms d ^ . 
Consequentiy, Section 5.2 will examine the pooled measure 
d̂ Q of the StabiUty of the V,^ and wUl also present some 
related simulation-based tests and diagnostic plots. 

Table 1 
Twelve NHANES HI Variables 

Variable name Description 

HAE2 Told by health professional that you had 
hypertension (indicator variable) 

HAE7 Told by health professional that your blood 
cholesterol was high (indicator variable) 

HADl Told by health professional that you had 
diabetes (indicator variable) 

HAR3 Do you smoke cigarettes now? 
BMPHT Height 
BMPWT Weight 

HDRESULT HDL cholesterol 
TCRESULT Serum total cholesterol 

LEAD Blood lead, in micrograms per deciliter 
log(LEAD) Natural logarithm of blood lead 

BPIKI Systolic blood pressure 
BP1K5 Diastolic blood pressure 

Table 2 
Variance Estimates and Stability Measures for 

Twelve NHANES UI Variables 

Variable name 

HAE2 
HAE7 
HADl 
HAR3 

BMPHT 
BMPWT 

HDRESULT 
TCRESULT 

LEAD 
log(LEAD) 

BPIKI 
BP1K5 

K 
0.0000385 
0.0000821 
0.00000956 
0.000122 
0.0223 
0.104 
0.0743 
0.590 
0.00388 
0.000211 
1.073 
0.252 

V{Y) 

0.0000511 
0.000135 
0.00000749 
0.000205 
0.0416 
0.122 
0.163 
0.860 
0.00657 
0.000678 
2.896 
0.217 

Ko 

23.7 
13.6 
8.8 
6.4 

15.3 
8.6 

11.5 
21.2 
2.8 

10.5 
1.0 

17.2 

KF 

425.8 
225.6 
160.6 
125.8 
275.1 
139.2 
196.2 
353.9 
48.8 

174.9 
165 
52.9 

In addition, there was interest in the extent to which the 
variances of tiie V^^ contiibuted to flie variances offliepooled 
quantities Vg and R^^. Section 5.3 explores this question. 
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5.2 Within-PSU Variance Estimates and Associated 
Stability Measures 

5.2.1 Comparison Across Variables 

standard deviations and quantiles for dy,^. When interpreting 
the results for these cases, note that randomness of the ĝ , 
corresponds to the estimation error in the dj^, due to 
subsampUng at the SSU and lower levels; and randomness of 

2_2 The final two columns of Table 2 report tiie degrees-of- ^ ^ ^mi reflects tiie variabiUty of tiie p,, a^, induced by 

freedom estimates dy^^ and dy^^ for the twelve NHANES III 
variables. Note especially that the sttatum-level stability 
measures dy^^ are relatively low, compared to the mean of 
45.8 SSUs per stratum. Forexanple, all of the variables have dy,^ 
less tiian 24, and five (HADl, HAR3, BMPWT, LEAD and 
BPIKI) have rf^,^ less than 10. Due to the interest in the 
dy/^ described above, this led to two general questions. 
(1) Are the observed dy^^ consistent with the nominal 

degrees-of-freedom value dy^^ that one would anticipate 
from the direct SSU counts n^^ -H n^j ~ 2? 

(2) Conversely, are the observed dy^^ consistent with 
distributional conditions tiiat produce considerably 
smaller values of dy,Q ? 

Standard large-sample-theory-based tests for (1) and (2) 
would have depended on eighth sample moments, and thus 
were inadvisable in the present case, due to the relatively 
small values of L = 22 and n^ = 2. Instead, the following 
simulation-based test was carried out. 

5.2.2 Simulation-Based Interpretation of Stability 
Measures 

This simulation work covers six cases involving different 
values of two terms. The first term, denoted d^ , represents 
the degrees of freedom associated with tiie variance estimator 
^2hi ^ P^U (''' ')• ' ^ ^ second term, denoted R12, is the ratio 
of the expressions p ĵ Oj;,, in the first and second sample 
PSUs in sttatum h. 

In each of the six cases discussed below, independent 
pseudorandom variables ĝ , were generated from g chi-square 
distiibution on d^ degrees of freedom for h = 1, 2, ..., 22 
and i = 1, 2. Re-scaled variables Vy^. = d^^ ^miiShi ^^re then 
computed, where V^, is a random variable equal to one 
with probabihty one-half and equal to /?,2 with probabihty 
one-half. The random variables g^ and Vn̂ , are mutually 
independent. Finally, the sums Vy^ = V^j + V^j and the 
associated measures V{Vy^), V(y^) and dy^^ were com
puted. This was repeated 10,000 times. 

Table 3 lists the values of d̂ , and R12 covered in the six 
cases, and Table 4 lists the resulting simulated means. 

sampling of PSUs within a given sttatum. 

Table 3 
Cases Covered for the Simulated Quantiles 

Cases d 

22 
Obs. Dist. 

5 
22 

Obs. Dist. 
5 

Case 1 uses d̂ , = 22 and R12 = 1. Arguments from 
Section 3.3 show that the resulting Vy,^ are distiibuted as 
constant multiples of a chi-square random variable with 

'•wo 44 degrees of freedom. Thus, for Case 1, the choice of 
d,,i = 22 has led to simulated quantiles pf dy,Q that are 
approximately those that one would anticipate from the mean 
SSU count of 45.8 observed for Phase I of NHANES UI, 
under the setting described in Section 3.4. Note that even in 
this idealized Case 1, the relative variability of the dy,Q is 
fairly high. 

Now compare the dy,^ reported in Table 2 to the simulated 
quantiles from Case 1. All twelve of the observed dy,Q fall 
below the 0.025 simulated quantile of 24.8; and ten of the 
twelve fall below tiie 0.005 quantile of 21.1. Thus, tiie dy,^ 
observed for the NHANES HI variables are not consistent 
with a nominal dyi^ = 44 produced in the idealized setting 
covered by Case 1. 

5.2.3 Simulation Under Alternative Conditions with 
Smaller d^g 

In general, the distribution of dy,^ may deviate from that 
observed under the idealized Case 1 due to: (a) variability in 
the true SSU counts %; (b) limited stability of the PSU-level 
estimates QJAJ ; and (c) heterogeneity of the true PSU-level 
terms o^^^. Cases 2 through 6 cover the combined effects of 
these three factors. 

Table 4 
Simulated Quantiles for dy,f^ 

Cases 

1 
2 
3 
4 
5 
6 

Mean 

48.9 
48.3 
11.3 
5.5 
5.5 
3.5 

S.D. 

ll.l 
17.5 
4.7 
2.7 
1.1 
2.1 

9.005 

21.1 
20.7 
41 
1.4 
1.4 
0.7 

9.01 

22.5 
21.9 
4.5 
1.6 
1.6 
0.8 

9.025 

24.8 
24.2 

5.1 
2.0 
1.9 
1.0 

9.05 

27.4 
26.8 

5.6 
2.3 
2.3 
1.2 

9.10 

30.7 
29.9 

6.4 
2.7 
2.7 
1.5 

9.25 

36.7 
36.3 

8.0 
3.7 
3.7 
2.1 

9.50 

45.5 
45.2 
10.3 
5.0 
5.0 
3.0 

9.75 

57.4 
56.6 
13.5 
6.8 
6.7 
4.4 

9.90 

71.2 
70.2 
17.3 
8.9 
8.9 
6.0 

9.95 

81.5 
80.3 
20.0 
10.5 
10.6 
7.4 

9.975 

92.6 
92.0 
23.0 
12.1 
12.1 
8.8 

9.99 

108.5 
106.2 
26.8 
148 
141 
11.2 

9,995 

122.1 
118.0 
30.1 
16.7 
16.1 
12.6 
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The design for Case 2 was identical to that for Case 1, 
except that flie d,^ were random variables, selected with equal 
probabihties and witii replacement from the 44 values n̂ , - 1 
corresponding to the 44 SSU counts n^ in the original data-
set. The resulting simulated quantiles of J^Q are similar to 
those for Case 1. 

Case 3 uses d^i = 5 and /Jjj = 1; tiie resulting V^ are 
distributed as constant multiples of chi-square random 
variables witii rf^ = 10 degrees of freedom. The simulated 
quantiles for Case 3 were somewhat more consistent with the 
d̂ Q observed for tiie NHANES HI dataset. For example, ten 
of the twelve variables have dy,^ at or above the simulated 
0.10 quantile of 6.4. However, two of tiie variables (lead and 
systolic blood pressure) had their dy,Q below the simulated 
0.005 quantile for Case 3. 

Cases 4 flirough 6 cover more extteme cases of instability, 
induced by use of flie scale factor /?i2 = 9. A scale factor 
different from one inttoduces a component of variability 
associated with sampling of PSUs with unequal Oj^,, and 
causes the Vy,^ to have disttibutions outside of the rescaled 
chi-square family. Cases 4 through 6 use the same d̂ , values 
used in Cases 1 through 3, respectively. The smallest 
observed NHANES IU dy^^ values are somewhat more 
consistent witii flie simulated quantiles for Cases 4 through 6, 
although tiie dy,Q = 1.0 for systoUc blood pressure still falls 
below the simulated 0.005 quantile for Cases 4 and f, and 
is approximately equal to the simulated 0.025 quantile for 
Case 6. 

In addition, note fliat the fliree largest observed dy^^ values 
(for flie hypertension mdicator, the total cholesterol measure, 
and diastolic blood pressure) fall above the simulated upper 
0.995 quantiles for each of cases 4 through 6. This, in con
junction wifli the abovementioned results for Cases 1 
through 3, indicates that the twelve observed dy,Q are 
consistent wifli settings that produce substantially different 
true dy^ values for different variables. 

Taken together, these simulation results suggest that for 
flie twelve NHANES EI variables examined, flie stabihty of V^ 
may be substantially worse than one would anticipate from a 
simple count of SSUs witiiin each sttatum; and that the true 
StabiUty measures dwo may vary substantially from one 
variable to the next. 

5.2.4 Diagnostic Plots 

In a purely numerical sense, J^g depends on the magni
tudes of tiie V{Vy^) relative to the terms 2vL,. Conse-

Wh-

quentiy, diagnostic plots of V'(V^)^ against V^ are useful 
in the identification of specific pattems and "problem sttata" 
that lead to unusually high or low d^^. 

Figures 1 through 3 give plots for tiie variables HAE2 
(diagnosed hypertension), log(blood lead), and blood lead, 
respectively. Each plot was constructed witii horizontal and 
vertical axes on the same scale. The plot for HAE2 has the 
bulk of its points well below a line with slope = 1 and 
mtercept = 0. In addition, the values of V{Vy^)'^ fliat are large 
in an absolute sense are still substantially .less than tiie 

corresponding Vy^. This is consistent with the relatively large 
degrees-of-freedom value dy,^ = 23.7. The plot for log(blood 
lead) shows a somewhat greater concenttation of points near 
tiie line witii slope = 1 and intercept = 0, which is consistent 
with the somewhat smaller valued^g = 10.5. 

The plot for blood lead shows one apparent outiier: the 
largest value of V'(V^)'^ is approximately equal to the 
corresponding V^. For this stratum, we examined flie teims V, 

-2^2 Wh 

and p^. d2hi for unusual pattems, e.g., extteme individual 

10 ^ 2 X 10"^ 3 X 10 ® 

ywh 

Figure 1. Plot of V{Vy^)'^ against Vy,,^ forHAE2 
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Figure 2. Plot of V{VyJ^ against Vy,. for log (blood lead) 
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Figure 3. Plot of V(V„^)'̂  against V^ for blood lead 

values or extteme element-level weights. Here, one of the 
- 2 2 

two associated p^, dj^, values was approximately equal to 
zero and the other was the largest of all the PSU-level 

- 2 2 

terms p ,̂, dj^,. In addition, the sttatum in question had the 
largest V^ value. However, this sttatum did not display 
ouUying values of ^(V^^)^ and V^ for otiier related 
variables, e.g., log (blood lead). Thus, the unusual pattern 
observed for blood lead may be attributable to a few very 
high observed values for the blood lead variable, rather 
than to the sample design or weighting as such. Within this 
context, note that at the population level in the U.S., lead 
measurements tend to have a roughly lognormal 
distribution, and high lead measurements show some 
tendency to be clustered together due to environmental 
factors. 
5.3 Between-PSU Variance Estimates and the 

Variance Ratio Ry^^y 

Table 5 presents the estimates Vg and Ry^y, and 
associated standard errors, for the twelve NHANES UI 
variables. Of special interest are the columns labeled 
^ ( ^ ) ' KV'fl,), the proportion of the variance estimate 
V{VB) fliat is attributable to the wifliin-PSU variance term; 

and V{Ry,yy^Vy,Ry^V{Vy,), tUc corresponding proportion 
for Riyy. Relatively large values for these proportions 
indicate that ^(V'^) makes a substantial contribution to 
V{Vg) and V{Ry,y) for the variables in question. 

Note fliat flie proportion V(^„T,)"'V„f^^ V(V^) is 
greater flian or equal to 0.3 for blood lead, BPIKI (systoUc 
blood pressure) and BP1K5 (diastoUc blood pressure). For 
blood lead and BPIKI, the large proportions arise primarily 
because of flie relatively large value of V{Vyy). For BP1K5, 

l^bleS 
for Twelve NHANES m Variables 

with Associated Standard Errors and Relative 
Witiiin-PSU Contributions 

Estimates of Vg and Ry^y 

Variable name 

HAE2 

HAE7 

HADl 

HAR3 

BMPHT 

BMPWT 

HDRESULT 

TCRESULT 

LEAD 

log(LEAD) 

BPIKI 

BP1K5 

HAE2 

HAE7 

HADl 

HAR3 

BMPHT 

BMPWT 

HDRESULT 

TCRESULT 

LEAD 

log(LEAD) 

BPIKI 

BP1K5 

VB 

0.0000126 

0.0000532 

-0.00000208 

0.0000825 

0.0193 

0.0174 

0.0887 

0.270 

0.00269 

0.000468 

1.823 

-0.0351 

" w 

1.327 

1.648 

0.783 

1.676 

1.864 

1.168 

2.193 

1.458 

1.694 

3.221 

2.699 

0.861 

se(VJ 

0.0000188 

0.0000445 

0.00000246 

0.0000703 

0.0114 

0.0400 

0.0744 

0.253 

0.00188 

0.000205 

0.997 

0.0793 

se(^^) 

0.491 

0.556 

0.247 

0.600 

0.530 

0.391 

1.020 

0.436 

0.555 

1.025 

1.142 

0.300 

V{Vg)-'V{V„) 

0.020 

0.030 

0.186 

0.047 

0.027 

0.096 

0.010 

0.031 

0.168 

0.012 

0,081 

0,367 

v{R^yW-^RlyV{v^) 

0,034 

0,077 

0,123 

0.122 

0.089 

0.126 

0.047 

0.063 

0.367 

0.112 

0.391 

0.300 

V{V^) is not as large on a relative scale, but the proportion 
V{Ryfyy^V^Ry,yV{V„) IS stiU laTgc because Vy, is not 
small relative to V{Y). For aU three variables, the relatively 

1/) 'wRwv'("w) indicate that it is large values of V{Ry^, 'w'^wv"<'w' ^ 
important to account for the variance V{Vy,) when one con
siders tiie StabiUty of Ry,y. For BP1K5, a similar comment 
appUes to the effect of V{Vy,) on the stability of Vg. 

6. DISCUSSION 

This paper has presented three main ideas. First, due to 
the role that estimated within-PSU variances V„^ play in 
survey design and analysis, it is important to account for 
the sampling error encountered in estimation of V^. 
Second, standard design-based estimation methods lead to 
relatively simple estimators of the design variance of Vy^. 
In general, interpretation of these stabiUty measures 
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requires some caution. However, they can provide useful 
diagnostics for the identification of variables for which the 
instability of V^ is especially problematic, or has an 
especially pronounced effect on the variance of related 
quantities like Vg and Ry^. Third, the application to the 
U.S. Third National Health and Nutiition Examination 
Survey (NHANES IU), and associated simulation work, 
indicated the following. 

(i) For different sets of variables, the observed stability 
measures d ,̂(, are consistent with substantially 
different sets of stability conditions. 

(u) For some variables, the estimators V^ are 
considerably less stable than one would anticipate 
from a direct count of secondary sample units. 

(iii) For some variables, the estimated variance of V^ 
makes a substantial contribution to the estimated 
variances of the estimated between-PSU variance V„ 
and the variance ratio Ry^. 
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Asymptotic Variance for Sequential Sampling Without 
Replacement With Unequal Probabihties 

YVES G. BERGER' 

ABSTRACT 

We propose a second-order inclusion probability approximation for the Chao plan (1982) to obtain an approximate variance 
estimator for the Horvitz and Thompson estimator. We will then compare this variance with other approximations provided 
for the randomized systematic sampling plan (Hartiey and Rao 1962), the rejective sampling plan (Hijek 1964) and tiie 
Rao-Sampford sampling plan (Rao 1965 and Sampford 1967). Our conclusion will be that these approximations are 
equivalent if the first-order inclusion probabilities are small and if the size of the sample is large. 

KEY WORDS: Sampling with replacement; Randomized systematic sampling plan; Rejective sampling plan; Rao-
Sampford sampling plan; Inclusion probabilities; Horvitz-Thompson; Yates-Gmndy. 

1. INTRODUCTION 

Consider a finite population {/̂  containing Â  units and a 
subset U^ of U^ comprising the first units k of U^. Let n^^.j) 
denote the first-order inclusion probabilities for a population 
t/j. We assume that they are proportional to an auxihary 
variable. These probabilities have two arguments: the size ik 
of the population and the serial number i of the unit within the 
population. We assume that n^^.j^ < 1 for all i and that all 
k> n. This hypothesis has more chance of breaking down 
when k is smaU, i.e., close to n. We can solve this problem by 
assuming that the values of the auxiliary variable show Uttie 
dispersion for those units occurring at the beginning of the 
population. 

Let 7i;(t,y) denote tiie second-order inclusion probability of 
units i and j for a population U^. These probabihties are 
dependent on the sampUng plan used. 

We will use the Horvitz-Thompson estimator (1951) to 
estimate the total X,=i Y^ of a variable Y. This estimator is 
given by 

Let us consider die sample size sequence {«„ ^2. • ••, «„• • ••} 
and the population size sequence {Â i, A^ ,̂..., N„ ...}, where 
n„ and N„ increase whenever v - «>. To simplify the problem 
we eliminate the index v. 

The asymptotic approach used here is that of Hdjek (1964): 

N 

d-Y,n (.N:j) f l " ^(N;j)i^°°' 

which means that n - ~ and {N - n) ~ °°, given that 
^ ^ Zjli [1 - T^(N;j)] = N- nand tiiat d ^ L7=I^(Mj) = "• 

In section 2, we introduce the Chao sampling plan (1982) 
as well as three results Unked to first and second-order 
inclusion probabilities. In section 3, we provide an approxi
mation of T^^N^ij)- In section 4, we propose an approximation 
of the Yates-Gmndy variance. Section 5 compares this 
variance approximation witii other approximations proposed 
for the randomized systematic plan, the rejective plan and the 
Rao-Sampford plan. Two numerical examples are provided in 
section 6. 

'HT 2^ 
'^^N "-(AT;!) 

(1) 
2. CHAO SAMPLING PLAN 

where S^ is a sample of U,,. We assume that the size of 5^ is 
constant and equal to n. 

Given that the size of tiie sample is fixed, a variance 
estimator of (1) is given by the Yates-Gmndy estimator 
(1953), 

y-T E \N:i.j) 

jeSf, ieS^i<i '^(N;i,j) '^WO ^(N;J) 

where 

^N-.iJ) '̂ (W;.-,y) (̂W;0̂ (W;0-

(2) 

(3) 

This is a sampUng plan without replacement with unequal 
probabiUties, of fixed size. This method is a generalization of 
the method used by McLeod and Bellhouse (1983) for a 
simple plan. 

Let Sg denote a sample of size n of U^ witii a set {•K̂ .̂̂., -.ieU^] 
of first-order inclusion probabihties. The Chao plan provides 
for a sanple 5̂ +, of size n of f/t+, with a set {Tifĵ ,.,,,: i e U^^i} 
of first-order inclusion probabilities. The method entails 
selecting the {k -i- l)-th unit with the probability T^(M.j,.,iy If 
this unit is not selected, then we take S^+i = S,,; otherwise we 
take S^.^l = S^ u {k •¥ l]\{j], where) is a unit selected at 
random within S^. The procedure starts from an initial sample 
S„ = U„ comprising tiie first units n of the population. 

' Yves Berger, University libre de Bruxelles, Laboratoire de Mdthodologie du Traitement des Donntes, C.P. 124, Avenue Jeanne, 44, Bruxelles, Belgique, 
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The Chao plan provides the advantage of being sequential. 
In fact, it aUows us to select a sample through a simple 
sequential mn of the population. The systematic plan is 
another sequential plan that is often used. However, the latter 
is inconvenient in tiiat it induces zero second-order inclusion 
probabUities. We can avoid this problem by randomizing the 
systematic plan. In such a case, tiie population is ordered at 
random before the sample is selected. This operation 
eliminates in part the problem of zero second-order inclu
sion probabilities. As wiU be seen at the end of this section, 
the Chao plan offers the advantage of not having any zero 
second-order inclusion probabilities. Randomization is there
fore not needed for the latter. 

The rejective plan and the Rao-Sampford plan are incon
venient in that they are not sequential. In fact, the units are 
selected at random with replacement within the population. If 
a unit is selected twice, we are forced to select a new sample. 
These two plans, although they are more easily understood, 
are more difficult to implement than the Chao plan. 

The foUowing tiieorem, which is a du-ect appUcation of tiie 
theorem given by Chao (1982), provides a relation between 
the first-order inclusion probability n^|^.,.^ of the i-th urtit of I/j 
and the first-order inclusion probability Ttft+j,;, of the i-th unit 
of t/..,. 

Theorem 1 

[[1 - %.!;*.!) V^]'^*.)' f°̂  '<*+l; 
['\k*l;k*l) , for i=k+l; (4) 

where 

\k:0 

l - u , 
(n*l:0 

''(n + l;n + l) 

, for k = n. 

, for k> n + I. (5) 

Moreover, the quantity \N:i.j) is always negative if we use 
tiie Chao plan (Chao 1982, p. 656). Then tiie Yates-Gmndy 
variance offers the advantage of always being positive. 

3. APPROXIMATION OF SECOND-ORDER 
INCLUSION PROBABILITIES 

The following tiieorem provides us with an asymptotic 
expression for second-order inclusion probabilities for the 
Chao plan. 

Theorem 3 

\N\iJ) ' 

Tt/,,..., n„ 
n- I 

\m'\N:f) 
n P^j) 

'^(N;i)'^(N;f) 

t / , ., + 71, , ., - 1 {n + l;i) (n + l;j) 

if 7 > n + 1; 

i f y s n + l; (6) 

where p.-^ = 7t.,,. and i <j. 

The proof of this theorem can be found in Appendix I. 

Note that this approximation has a different stmcture 
depending on whether j > n -i- 1 or j s n -i- 1. To avoid this 
problem, we will use a plausible condition for the auxihary 
variable so that these two stmctures will be equivalent. Let us 
consider the hypothesis given in the introduction, that the 
values of the auxihary variable show Uttie dispersion for the 
first units n -n 1 of the population. More precisely, we assume 
that the auxiUary variable is constant for the first units n -i-1, 
i.e.: 

\n*l;i) n + 1 
for i 5 n + I. 

In this case. 

The second-order inclusion probabihties can be calculated 
iteratively using the following theorem: 

Theorem 2 (Chao, 1982) 

^ik:i,j) = 

|n- '^( t ;„[%i;0^Vi; ; -)]}Vi; . - .7V f°^ '<><'^; 

l ^ ( f c « [ l - % i ; o l V i ; 0 • f""" '<•/" = *• 

Betiilehem and Schuerhoff (1984) give a sufficient and 
necessary condition for the second-order inclusion proba
bilities to be strictiy positive for a population U^. 

n - 1 

« - 71, (.n*^!) 

By using (6), we have the following approximation for 
second-order inclusion probabilities 

where 

^NUJ) ~ ^(N;i)\N;j) 
n- I 

n-p. 
if i <j; 

( ; • ) 

Po-)=' 
W:!) , if j>n + I, 

V i ; ; ) ' if 7 ^ 1 + 1-

(7) 

(8) 

# {i:i <. ( and 7i(,.j) = 1} * n - 1, for C such that n<( ^ k. 

Since itp.̂  < 1 for all i and f such that i <. H < k, this 
condition is always met. Therefore, within the framework of 
this article, we wiU never have zero second-order inclusion 
probabihties. 

4. VARIANCE ESTIMATOR 

Relation (7) leads to the following approximation for 

^WiJ)-

file:///N/iJ
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\N:i.j) ^ W O ' ^ ^ W J - ) 
P(fi-^ 

n-p, 
, if i < j . 

(J) 
(9) E "wo 

n - 71, 
(N-J) 

,=j>l ' n 7tj^.,,j i=ytl 
E "(N;.r (16) 

(2), (7) and (9) provide an asymptotic expression for the 
Yates-Gmndy estimator. 

Vc-T-^.En-Pu.'i E 
in- iijeS,/ i^S„;i<j "(AT;.-) ''^iN-.f) 

(10) 

But this expression tends to underestimate the variance. In 
fact, to estabUsh relation (6), we use approximation (19) from 
Appendix I. This approximation always implies that: 

^Ww)'^'^(A';0'"'W;) 
n- 1 

n-p. 0) 
(11) 

This can easily be verified if we observe that (20) is 
obtained from (18) using approxunation (19). Inequality (11) 
is therefore tme fory > n -f 1. Fory ^ n -(-1, it is sufficient to 
observe that (21) is also obtained from (19). Inequality (11) 
implies that: 

'^N;i,j) 1-P, ( ; • ) 

'•(N:i,f) n- I 
(12) 

given that A(̂ .,j) < 0. From (2), (10) and (12), we have 
effectively 

V>X:-

To overcome this problem of variance tmderestimation, we 
plan to make an adjustinent on (9). It is weU known tiiat: 

£.V.-,;i = (""l)^ 
i=l;i*j 

(N:j) • (13) 

Approximation (7) does not abide by constiaint (13). The 
adjustment involves assuming that the p^j, are unknown and 
selecting them so as to satisfy (13) for the second-order 
probability approximation, i.e.: 

<r̂  n - 1 v^ n-l 

n p^j.^ i=pi i=l 

This constiaint can be written as follows 

•P<J) 

(«-l)7t , XNjr 

1=1 i=j*i n n-p. 
n-p, or (14) 

(0 

Given fliat ^y,, 71^ .̂. = n, constiaint (14) is practically 
verified if 

Pv) '"•(m (15) 

Relation (16) is plausible given tiiat tiie difference between 
the left and right sides of (16) has as its lower bound 

N 

I 
n ,=;V1 

1 '̂  
~ 2 ^ ''•(AT;!-) [''•(Af;0 ~ "(Af;;V ' 

and as its upper bound 

N 1 
- 7 E \N;i) ["(W;0 ~ ^Wf)^ • 
n - l ,=; + l 

These two bounds are close to zero when the ii^^.j^ show 
littie dispersion. This means that solution (15) is appropriate 
when the n^f,.^.^ are smaU. Furthermore, the greater the value of 

j , the closer the two bounds are to zero. Therefore, solution 
(15) verifies (13) all the more as j is large. This implies tiiat 
our approximation (9) is very good for tiie dupUcate pairs (i, j) 
{i < j) such that the unit j is located at the end of the 
population. In fact, we want approximation (9) to be the best 
for the duplicate pairs (i, j) whose presence in the sample is 
highly probable {i.e., for the pairs (i, j) {i <j) for which 71,̂ ,̂ 
is the largest). It is therefore preferable to place the units 
having high first-order inclusion probabiUties at the end of the 
population. 

If we choose to have p^[^ = iif^.i,, we have P(Q smaller tiian 
(8). This leads to a larger variance approximation. This 
solution is all the more acceptable as it corresponds to the 
result of the simple plan without replacement. In fact, if we 
replace within {l)n^^.j^, n^^.j^ and p^j^ by n/N, we obtain 

\N;i.j) 
n{n - 1) 
A (̂A -̂ 1) 

if i > n + 1. 

This expression corresponds, quite clearly, to the result of the 
simple plan without replacement. 

In conclusion, we approximate A(̂ . .̂ ^ through (9) witii 
P(i) = "(wfl- We assume that the population is ordered in such 
a way that the units having small it;̂ .,̂  are located at the 
beginning of the population and that the units having large 
7t(̂ ,̂ are located at the end of the population. We also assume 
that the n^^.j^ do not show too much dispersion for the first 
units n H-1 of the population. 

5. COMPARISON WITH OTHER PLANS 

Instead of comparing the second-order inclusion proba
biUties, we wiU compare the quantities -A(^.,y7t(^.i^, which 
are of some use m calcttiating the Yates-Gmndy variance. We 
wiU examine what these quantities provide for the Chao plan, 
the randomized systematic plan (Hartiey and Rao 1962), the 
rejective plan (Hdjek 1964) and tiie Rao-Sampford plan (Rao 
1965, and Sampford 1967). 
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Theorem 4 6. NUMERICAL EXAMPLES 

^(NU,f) 

\N:>,J) 

l-n (N;f) 

n-l 

1 ^(N;i) ^(.N;j) 

For the Chao plan; 

for the randomized 
systematic plan; 

n - l 

n[l- 7t(̂ .,,j] [ 1 - ^^^f^.j^ for the rejective plan and 
' the Rao-Sampford plan. d{n-l) 

The proof of this theorem can be found in Appendix II. 

It is important to note tiiat tiie proposed approximation for 
the randomized systematic plan comes from Deville's 
approximation (p. 21) and not from the famous Hartley-Rao 
approximation (1962). We were not able to use tiie Hartiey-
Rao formula because tiie latter is based on tiie asymptotic 
hypothesis, n fixed and Â  - «=, which is different from that 
adopted in this paper. 

We observe that if the 7r(̂ .,̂  are small,-A(^.,y7i(;v.,y) is 
equivalent for the Chao plan and for tiie systematic plan. 
However, we observe tiiat - A^^.^j^n^^.^j^ is always smaller in 
the systematic case tiian it is in tiie Chao case. This is 
certainly due to the fact that the approximation for the 
systematic plan underestimates -L^^.^J^•tl^f,.^Jy This can be 
confirmed by replacing ir̂ v̂,,̂  and ^l^^.Jy by n/N. We then have 

V;.J)_ N-2n 

\N\i,j) N{n - I) 

for the randomized systematic plan. This is equivalent to a 
simple plan, thus 

^(N;i.j) _ 

'•(N;i.j) 

N^n 
N{n - 1)' 

We intend to adjust the approximation of -A(̂ .,y7i:(;v,jj,) for 
the systematic plan by multiplying it by 

N-n 1 - / 
N-2n 1 - 2 / 

where/= n/N is the sampling rate. 

The approximation of - t:L^^.^J•K^^.^J^ for tiie Chao plan is 
also of the same magnitude as that of the rejective plan. In 
fact, if the 7t(̂ .,̂  are small, we have the approximation 

[1 - ^^N;i)^ E ", 
M 

tN:j) 

1-

Therefore, the Yates-Gmndy estimator is approximately the 
same whetiier we use the Chao plan, tiie randomized sys
tematic plan, the rejective plan or the Rao-Sanqiford plan, for 
large n and small T^^N-I^. 

The two following examples correspond to two extreme 
cases. In the first example, the 7i(̂ .,) show Uttie dispersion; in 
the second, they show much more dispersion. Let us consider 
a smaU sanple of size 20. The population size is 50 so that the 
7t(̂ .,) are not too small. We have willingly opted for a bad 
situation in order to show that even with a sample of size 20 
and a small population, the asymptotic results nevertheless 
represent a good approximation. 

Example 1 

Let us consider the first-order inclusion probabilities 
represented in Figure 1. 

1 
0.9 
0.8 
0.7 
o.e 
0.5 
0,4 
0,3 
0.2 
0.1 

0 I I I I I M M 
^ h - O C O t O O J C i J I O C O ' - ^ ' ^ O C O C O O 

Figure 1. First-order inclusion probabilities in the case of 
Example 1 

Figure 2 shows, on the Y axis, the tine values of 
- A^f,.ijfTz^f,.iji for the Chao plan and, on the X axis, the 
approximations. We have also represented the stiaight line 
where the approximations are equal to the tme values. The 
approximations are aU the better as the points are close to the 
straight line. 

0.045 • 

0.04 -

0.035 • 

0.03 -

0.025 . 

0.02 . V-

M''*^ 

1— 

jJV 

• 
• 

• ^ ^ 

1 
0.02 0.025 0.03 0.035 0.04 

Figure 2. Approximations and true values of - A,̂ ,, y T:,;̂ ,; j^, in the 
case of Example 1 

We have a mean error of -0.000569 with a standard devia
tion of 0.0015996. This is very small in relation to the order 
of magnitiide of tiie approximations. The centi-e of gravity of 
tiie scatter plot is located in (0.0313; 0.0318). It might seem 
siuprising that there are less points at the left of the centte of 
gravity than at tiie right. This is simply due to tiie fact that 
most of the points at the left of the centre of gravity overlap. 
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We observe that tiie pairs (i, j) with i <j such that Tt,;̂ )̂ is 
large correspond to points located on the left. They are ttie 
pairs showing the best approximation. Moreover, there is a 
high probability that tiiese pairs are located witiiin tiie sample 
given that 7i(̂ j, is large. Therefore, om- approximate variance 
(10) is definitely acceptable. 

Example 2 

The first-order inclusion probabilities are given in Figure 
3. Here we notice tiiat these probabilities are more dispersed 
than in Example 1. Figure 4 provides the tme values as well 
as the approximations of - A(jv.,y7t(̂ .,.y). 

1 • • 

0.9 • 
0.8 • 
0.7 •• 
0.6 . . 
0.5 •• 
0.4 •:. 
0 .3 •" 
0.2 • 
0.1 •• 

I I I I I I I I I I I I I I I I I I I I I I 
<o a> a> (M m 
, - . - ^ CM CM 

CM P> CO CO 
o CD O) 

Figures. First-order inclusion probabilities in the case of 
Example 2 

0.01 0.02 0.03 0.04 0.05 

Figure 4. Approximations and tme values of - A(f,.^j^n^f|.^fl, in the 
case of Example 2 

We have a mean error of -0.006999 with a standard 
deviation of 0.006438. The centi-e of gravity of flie scatter plot 
is located in (0.02957; 0.036606). 

We reach the same conclusion as in Example 1. The 
second example leads to worse approximations. This is 
simply due to tiie high first-order inclusion probabiUties. 

7. CONCLUSION 

The Chao plan provides a number of advantages: (i) it is 
sequential; (ii) the second-order inclusion probabilities are 
positive; and (iu) the Yates-Gmndy variance is always 
positive. On the other hand, the second-order inclusion 
probabiUties are difficult to calculate. That is why we propose 

to approximate them. We have observed that this approxi
mation is better when the beginning of the popidation consists 
of units having small 7t,̂ ,,j and the end of tiie population 
consists of units having large Tiff^.j). We have compared our 
approximation witii other approximations provided for the 
randomized systematic plan, the rejective plan and the Rao-
Sanqiford plan. We have concluded fliat these approximations 
are equivalent if the first-order inclusion probabilities are 
smaU and if the size of tiie sanqile is large, flie two numerical 
exanqiles which close this paper confirm the sound results of 
our approximation. 

APPENDIX I 

Proof of Theorem 3 

Before proving this theorem, we wiU demonstiate the 
foUowing two lemmas. 

Lemma 1 

vo=P(o n 
f=fl, 

1 - 7 1 , 
(t;f). 

where 

P(0 

Tty.,,̂  if i > n + l; 

V i ; 0 »f ' ^ " + 1; 

i + 1 if i > n + 1; 

n + 2 if i s n + 1. (17) 

Lemma 2 

T'ik-.ij)=%•) I i 
1 2 

where i <j, 

9w = 1 

V i ; 0 ^ Vi;;-) " 1 '^ 7 ^ " + 1; 

and a* is defined by (17). 

Now, with these two lemmas, we can demonstrate 
Theorem 3. 

Proof of Theorem 3 

Case 1: If j>n-i-1, using Lemma2, we have 

V;.-.l=Vi;o'^0-.4l-;^) n^ 1 - 2 
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On the basis of Lemma 1, this last expression becomes 

n{N;i,j) ^p^^n^j.Al "fi 
f=fl. 

1 - 7 1 , 
1 

({;0 

N 

n 1 - n, , — 

By multiplying this last expression by 

1 - n,.., — 

1 - 71,. ,, — 

0;;-)„ 

N 

n 
1 - 7 1 — 

^ ^(f;t) ^ 

1 - 7 1 — 
^ "•(f;t) „ 

= 1, 

and by regrouping certain terms, we obtain 

n- 1 
7T:,.,,.- ..̂  = 71, 

(A';'.;1 ''^U-.DPin 
n-n U:j) 

N 

n 

^ " ( f ; 0 ^ n 
1 - - . . ) -

l - 7 t . 
(9;?) • 

Finally, on the basis of Lemma 1, this last expression can be 
written: 

^iN;i.j)~ •"'(Af;0'^W;-) 
n- 1 

n-n, V:J) 

Case 2: Ify s n -i-1, Lemma 2 provides 

in other words 

=n+2 

1 2 

WiVO n 
{=n+2 

1 - ^ 0 -

! - - ( . . ) -

1 - 71 , . , . , -!-
(9;9) 

n 
q=n-^2 

[ ^ n . l ; 0 ^ '^(n-l;;)" ^l" 

By using approximation (19), we obtain 

12 

7t, XN:i,j) n 
| {=n+2 

1 - 7 . 1 
'• "•(t;f) „ 

'^(n-l; . ) ^(n+ !;;•) 

On the basis of Lemma 1, this last expression becomes On the basis of Lemma 1, we obtain finally 

\N:i.j) 

n- 1 

n-n U.J) t=j*i 

^-\m-

1 - 7 1 
(f;0 • 

(18) 
^(N;i,j) ~ •" (̂MO '^Wj) • (21) 

Q.E.D. 

If n is sufficientiy large 

^ " ^ ( W ) -

! - " ( « ) - 1 ^ " ( W ) -

~ 1 + ^C ' ' ) _ C;') _ (g;g). 

n n 

\ f ; f ) 
(19) 

APPENDIX II 

Proof of Theorem 4 

• For the Chao plan, it is sufficient to use (6), (9) and (15). 
• For the randomized systematic plan, it is sufficient to use 

tiie approximation of the 71,̂ .; ̂ ^ given by Deville (p. 21) 

n - l 
(22) V; i ,y )~ '"̂ (Mo'̂ CAfj-) 

" ''•(JV;i) '^W;-) 

This expression is obtained from the hypothesis 

Then (18) becomes, 

n- I 
(N;i.j) 

n-n UJ) 
''iN;i)\:j^ n l - T t , 

(f;0 (20) 

Max 'wo 
liiiN - 0 . 

This last hypothesis is verified since n- °°. 
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For the rejective plan, using Hdjek's result (1964, p. 1508), 
we have 

(23) 

for d - 00. We note that (23) remains valid for the Rao-
Sampford plan (see Hdjek 1981, Theorem 8.2, p. 82). Using 
tiie approximation (Hdjek 1964, p. 1521), 

{ d - [ i - V o H i - % , , ] } 

we obtain the result of the theorem. 

-1 _ n 
d{n - 1) 

Q.E.D. 

ACKNOWLEDGEMENTS 

The author wishes to thank the referees who submitted a 
number of constmctive comments that led to considerable 
improvements. 

REFERENCES 

BETHLEHEM, J.G., and SCHUERHOFF, H. (1984). Second-order 
inclusion probabilities in sequential sampling without replace
ment with unequal probabilities. Biometrika, 71, 642-644. 

CHAO, M.T. (1982). A general purpose unequal probability 
sampling plan. Biometrika, 69, 653-656. 

DEVILLE, J.-C. (No date). Cours de sondage, Chapitre IU: Ies outils 
de bases. Lecture notes, ENSAE, Paris. 

H A J E K , J. (1964). Asymptotic theory of rejective sampling with 
varying probabUities from a firute population. Annals of 
Mathematical Statistics, 35, 1491-1523. 

H A J E K , J. (1981). Sampling from a Finite Population. New York 
and Bassel: Marcel Dekker, Inc. 

HARTLEY, H.O., and RAO, J.N.K. (1962). Sampling witii unequal 
probabilities without replacement. Annals of Mathematical 
Statistics, 33, 350-374. 

HORVrrZ, D.G., and THOMPSON, D.J. (1951). A generalization 
of sampling without replacement from a finite universe. Journal 
of the American Statistical Association, 47,663-685. 

McLEOD, A.I., and BELLHOUSE, D.R. (1983). A convenient 
algorithm for drawing a simple random sample. Applied 
Statistics, 32, 2. 

RAO, J.N.K. (1965). On two simple schemes of unequal probability 
sampling without replacement. Journal of the Indian Statistical 
Association, 3,173-180. 

SAMPFORD, M.R. (1967). On sampling witiiout replacement witii 
unequal probabilities of selection. Biometrika, 54, 494-513. 

YATES, F., and GRUNDY, P.M. (1953). Selection witiiout replace
ment from within strata with probability proportional to size. 
Journal of the Royal Statistical Society, series B, 1, 253-261. 





Survey Methodology, December 1996 
Vol. 22, No. 2, pp. 175-183 
Statistics Canada 

175 

Applications of Spatial Smoothing to Survey Data 
ANN COWLING, RAY CHAMBERS, RAY LINDSAY and BHAMATHY PARAMESWARAN' 

ABSTRACT 

In this paper we present two applications of spatial smoothing using data collected in a large scale economic survey of 
Australian farms: one a small area and the other a large area application. In the small area application, we describe how the 
sample weights can be spatially smoothed in order to improve small area estimates. In the large area application, we give 
a metiiod for spatially smoothing and then mapping the survey data. The standard method of weighting in tiie survey is a 
variant of linear regression weighting. For the small area application, this metiiod is modified by inuoducing a constraint 
on tiie spatial variability of the weights. Results from a small scale empirical study indicate that this decreases the variance 
of the small area estimators as expected, but at the cost of an increase in their bias. In the large area application, we describe 
the nonparametric regression method used to spatially smooth the survey data as well as techniques for mapping this 
smoothed data using a Geographic Information System (GIS) package. We also present the results of a simulation study 
conducted to determine the most appropriate method and level of smoothing for use in the maps. 

KEY WORDS: Kemel estimation; Mapping survey data; Small area estimation; Survey weighting. 

1. INTRODUCTION 

The Austtalian Bureau of Agricultural and Resource 
Economics (ABARE) is the applied economic research 
organisation attached to flie Department of Primary Industiies 
and Energy. Amongst its information gathering activities, 
ABARE conducts annual surveys of selected Austialian 
agricultural industries which provide a broad range of 
information on the economic and physical characteristics of 
farm business units. 

The largest survey is the Austialian Agricultural and 
Grazing Industries Survey (AAGIS), which covers farm 
estabhshments with an estimated value of agricultural opera
tions (EVAO) of $A22,500 or more in tiie last agricultiiral 
census that are classified to one of the broadacre industries -
that is, cereal crop production, beef cattie production, and 
sheep and wool production. For the last two years, around 
1650 farms have been mcluded in the AAGIS sample, which 
is stiatified by geographic area, industi^, and EVAO. The 
sample farms are located throughout Austialia with a 
non-uniform density. The latitude and longitude of tiie sample 
farms (defined in terms of tiie location of the farm "gate") is 
recorded as a regular part of the coUection. This knowledge 
of flie location of the surveyed farms enables the spatial 
smoothing techniques described in this paper to be used. 

Traditionally, AAGIS estimates have been presented only 
as tables of numbers showing averages for all Austialia, each 
state, and industries within states. However, the concern of 
rural industry and government about the combined impact of 
drought in some areas of Austialia and the decline in certain 
commodity prices has highlighted the need for timely and 
detaUed information on regional tiends in farm performance. 

In particular, there has been a perceived need for information 
which porttays tiie spatial distiibution of farm performance, 
reflecting acmal variability in climate and production across 
Austialia. 

A highly effective way of presenting information on a 
spatial basis is to map the regional variation in economic 
performance of the surveyed farms. We use a nonparametric 
regression method to spatially smooth the farm level survey 
data, which is then presented in tiie form of a map. Recent 
improvement in computing power and flie avaUabUity of high 
quaUty and affordable GIS packages have made fliis form of 
presentation a practical alternative to the tiaditional tabular 
method of presenting survey results. 

Maps have been found to be a successful form of 
exposition for a number of reasons. First, estimates presented 
m a map are easily interpreted; when presented witii too many 
tables it is very easy for a client to overlook local variations 
or be "swamped" by numbers. Next, maps make it easy for a 
client to relate the geographic variation in one variable with 
that of another. Finally, a colour map has great visual impact. 

This demand for mformation on a spatial basis has resulted 
in an increased emphasis on small area estimates. One method 
of small area estimation (which originated naturally from 
smoofliing survey data for presentation in maps) is to spatiaUy 
smoofli tiie sample weights. This reduces tiie variabUity of tiie 
small area estimates. 

In Section 2, we examine a method of integrating 
geographical location into ABARE's survey weighting 
methods in order to make our small area estimates less 
variable. It is appUed to sub-regional estimation witiiin two 
Agricultural Regions in Section 3. In Section 4, we describe 
how kemel regression techiuques can be used to produce 

Ann CowUng, CSIRO Division of Fisheries, GPO Box 1538, Hobart TAS 7001, Australia and Australian Bureau of Agricultural and Resource Economics; 
Ray Chambers, Department of Social Statistics, University of Southampton, Highfield, Southampton S017 IBJ, United Kingdom; Ray Lindsay and Bhamathy 
Parameswaran, Australian Bureau of Agricultural and Resource Economics, GPO Box 1563, Canberra ACT 2601, Australia. 
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maps which give a good indication of tiie local geographic 
variation of a surveyed variable. Two metiiods of mapping the 
smooflied data are discussed, botii of which use ARC/INFO, 
a GIS software package. The results of a simulation study 
comparing various kemel regression methodologies for use in 
ABARE's maps are summarised in tiie Appendix. 

2. SMALL AREA ESTIMATION BY 
SPATIALLY SMOOTHING 

SAMPLE WEIGHTS 

The standard metiiod used to compute sample weights at 
ABARE is described in Bardsley and Chambers (1984). It 
rests on the assumption that at some appropriate level of 
aggregation (say, Agricultural Region) flie variable y follows 
a Unear model of the form 

Y=X^+V (2.1) 

where Y is flie A -̂vector of values of Y at this level of aggrega
tion, X isaNxp matrix of values of a set of p benchmark 
variables, P is an unknown p-vector of regression coefficients 
and V is a A -̂vector of errors satisfying E{V) = 0 and 
var( V) = o^Q, where o is an unknown scale parameter and 
Q is a known NxN diagonal matrix having as its elements tiie 
measure of size of each farm, EVAO, inttoduced in tiie 
previous section. 

Since this model is a multipurpose model, with the same 
set of benchmark variables used for each sittvey variable, the 
column dimension, p, of X is usually large. Typically, X 
consists of between 3 and 7 variables related to the main 
agricultural commodities produced by farms in the region 
together with dummy variables indicating industry sttata 
within the region. Best linear unbiased estimation of the 
population total of a survey variable on the basis of such an 
overspecified model typically results in weights that are 
highly variable and often negative. 

As discussed in Bardsley and Chambers (1984), negative 
weights are highly undesirable in a multi-purpose survey like 
AAGIS. In particular, such weights can lead to negative 
estimates of intrinsicaUy positive quantities. This problem has 
been pointed out in the hterature a number of times (see for 
example, DeviUe and Samdal 1992; Bankier, RathweU and 
Majkowski 1992; and FuUer, Loughin and Baker 1994). The 
method used at ABARE to conttol for strictiy positive sanple 
weights is based on the ridge-type modification to the best 
linear unbiased weights suggested by Bardsley and Chambers 
(1984). 

Given a sample of size n from a particular region, the ridge 
weighting approach determines tiie sample weight vector w 
by minimising the mean squared error criterion 

Q = X-^B^CB + (w - l)̂ co(M' - 1). (2.2) 

population totals T of the p benchmark variables making up 
X and the corresponding survey estimates x^w of tiiese 
totals, C is a p X p diagonal matiix of non-negative relative 
"costs" associated with these biases, w is the sample 
component of Q, x is the sample component of AT, 1 is a 
n-vector of ones and A, is a scaling constant which is chosen 
by the survey analyst. The value of w minimising Q is 

w 1 + a)-'x(AC-' +x^a)-'x)"'(T -jc^l). (2.3) 

Here B = T - x^w is a p-vector of benchmark biases, 
corresponding to tiie differences between the (known) 

The scale constant X is called the ridge parameter 
associated with these weights. As X increases from zero, the 
sample weights in w move away from their best linear 
unbiased values under the model (2.1) (namely, their values 
at A = 0) and become less and less variable. That is, as X 
increases, the variances of the sittvey estimates based on 
these weights decrease. On the other hand, as X increases, 
these estimates become more biased under (2.1), so the 
components of B move away from their zero values at A, = 0 
(where the sample weights define unbiased estimates under 
(2.1)). These components become larger and larger (in 
absolute terms) as X increases. 

The sittvey analyst makes a ttadeoff between these two 
conqietijig sources of "error" by choosing the smallest value 
of X such tiiat the sample weights in w stabilise at strictiy 
positive values as close as possible to their best linear 
unbiased values under (2.1). This ensiues that the components 
of B are as small as possible subject to this stabiUty 
requirement. At ABARE, tiie value of X is chosen so that the 
sample weights are at least unity. 

Recent small area estimation research in ABARE has 
focussed on a method of modifying tiiis ridge weighting 
procedure to create sample weights that are less spatially 
variable. We achieve this by modifying tiie mean squared 
error criterion Q in (2.2) to include a consttaint on spatial 
variability, whUe continuing to regard tiie elements of tiie 
variable Y as being independent. 

Let K be an n X n matrix reflecting EucUdean distance 
between sample farms, such tiiat K is symmetiic and 
non-negative, K.. = 1 for all i and K.. lO as the distance 
between farm i and farmy increases. Put u = w - 1. The aim 
is then to' choose u so tiiat when K.. is large, the difference 
between u^ and «. is small. That is, we seek to minimise a 
quantity of the form 

E E ^.;(«i - «;)' = 2(«^'')^A:1 - 2u^Ku (2.4) 
ies jes 

where (ii^^') = {u.)^. An appropriate modification to the 
mean squared error criterion (2.2) leads to minimisation of 

Q * = X^B^CB ^u'^wu + {u^^^Kl - u^Ku. 

Minimising with respect to u leads to 

u=T]-^x{XC-^ +x^Ti- 'x)" ' (7 ' -x^l) 
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provided x] exists, where 

ri = diag{Kl) -K + w. 

Clearly, then. 

w = 1 +Ti-'jc(AC-' +x\^xy\T xh). 

(2.5) 

(2.6) 

It can be seen that the modified mean squared error 
criterion Q* equaUy weights the spatial smoothness criterion 
given in (2.4), and the term corresponding to the variance of 
the prediction error of tiie sample estimates, U^QM . As the 
scale of K was arbitiarily specified, the comparative 
weighting of tiie two criteria must be modified by "scaling 
up" flie spatial matiix { diag (ATI) - iRT} by a factor tp m order 
to make it comparable in size with the heteroscedasticity 
matrix (i), and by adding a parameter a, 0 s a ^ 1, to tiie 
expression for T\ in equation (2.5), so that 

Ti=(l -a)(p{diag{Kl)-K} + aw. 

These spatially smoothed sample weights can be derived 
in a second way, providing deeper insight into how they 
should be interpreted. This foUows from noting tiiat 

-*^2, o ^ E J ^ . 
m»2 

'•In 

'•nl -K n2 <-Y.K 

spatial correlation between neighbouring farms will typically 
be positive, efficient survey estimation at tiie aggregate level 
will involve weighting based on (2.3) with u replaced by a 
non-diagonal variance/covariance matrix reflecting this 
positive spatial correlation. These are not tiie weights tiiat 
result when one imposes as spatial similarity consttaint. 
Consequentiy, one could expect that such "large area 
efficient" weights would tend to be more dissimilar for 
neighboming farms flian they would be for farms that are far 
apart. That is, there is a price to pay in weighting - if less 
variable aggregate level estimates are required, then this tends 
to lead to more variable small area estimates. Conversely, if 
(2.6) is adopted as the method of weighting because of its 
desttable small area properties, then it can be expected tiiat 
aggregate level estimates obtained by summing these small 
area estimates will be less efficient. 

The spatially smooth sample weights (2.6) have been 
implemented using 

«:, = exp(-d| |z, .-z, | |) . (2.7) 

where ||z ̂  - Zj \\ is tiie distance between farm i and farmj and 
d is a constant continuing flie radius of circle around the i-fli 
farm within which spatial smoothing is applied. The smaller 
the value of d, the larger tiie radius of spatial smoothing. At 
present, the "scaling up" constant (p is computed as the ratio 
of flie determinants of the K and co matiices, raised to tiie 
power n'^. An empirical evaluation of this method is 
described in the following Section. 

AN APPLICATION OF SPATIALLY 
SMOOTHED SAMPLE 

WEIGHTING 

can be expressed asT\=SRS, where S is a diagonal matrix 
with Sj.. = (Oj + yi„,iK^^) , and /? is a correlation matrix 
with 

^ij-

1 if i =j 

*.\ m*i f \ m*i ' t 

Thus the spatially smoothed sample weights can alter
natively be derived as ridge-type regression weights based on 
the assumption that the variable Y foUows a linear model of 
the form (2.1), with V redefined as satisfying E{y) = 0, 
var(r,) = of . I „ . , « : ^ , and cov(F,,y.) = -K. for i *f 
The usual ridge weighting procedure tiien leads direcfly to 
(2.6) with T) defined by (2.5). Note tiiat under this implied 
model neighbouring farms are negatively correlated. 

This second method of derivation shows clearly that the 
inttoduction of spatial smoothness for the survey weights is 
at odds with standard concepts of statistical efficiency as far 
as estimation at the aggregate level is concemed. Since the 

Initial results from an evaluation of the first metiiod of 
spatiaUy smoothed ridge weighting described in the previous 
section are set out in Tables 1 to 3. These results are for two 
Agricultural Regions. The first. Region A, is in New South 
Wales. In spatial terms, tiiis region is relatively homogeneous, 
being located in the southwestern comer of the state. The 
principal agricultural activities are wheat and rice production 
and wool and lamb production. The second, Region B, is in 
Western Austialia. This region is more spatially hetero
geneous, ranging from established cropping and wool pro
duction farms in tiie centtal west of tiie state to much larger 
livestock and cropping farms on marginal farming land in the 
south east of the state. Tlie principal agricultural activities are 
wheat and legumes production and wool production. 

Six variations of tiie spatiaUy smooflied ridge weights (2.6) 
wifli K given by (2.7) were used in flie evaluation, defined by 
values ofd = 0.05 (weak spatial effects) and d = 0.005 (sttong 
spatial effects), and values of a = 0.9 (most emphasis on the 
standard ridge weights), a = 0.5 (equal emphasis on standard 
ridge weights and spatiaUy smoofli weights) and a = 0.1 (most 
emphasis on spatially smooth weights). 
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Table 1 
Values (in relative percentage terms) of the biases associated 
with estimation of the benchmark variables corresponding to 
the principal agricultural commodities produced in Region A 

(sample size n = 101 farms) and Region B 
(sample size n = 85 farms) using the standard ridge weights (2.3) 

and the spatially smooth ridge weights (2.6) 

Wheat Sheep Rice 

Region A 

Standard ridge weights 

Spatially smoothed ridge weights 

d = 0.05 a = 0.9 
a = 0.5 
a = 0.1 

d = 0.005 a = 0.9 
a = 0.5 
a = 0.1 

Region B 

Standard ridge weights 

Spadally smoothed ridge weights 

d = 0.05 a = 0.9 
a = 0.5 
a = 0.1 

-0.50 

-0.50 
-0.46 
0.07 

-0.40 
0.80 
9.20 

5.0 

4.6 
4.7 
6.2 

4.9 
8.9 

25.0 

13.0 

11.9 
12.4 
17.4 

12.7 
28.0 
60.0 

Wheat Sheep Legumes 

d = 0.005 = 0.9 
= 0.5 
= 0.1 

0.43 

0.42 
0.44 
0.69 

0.50 
1.51 

26.57 

-1.25 

-1.16 
-1.14 
-1.25 

-1.20 
1.14 

19.61 

1.49 

1.37 
1.40 
2.53 

1.68 
9.73 

45.46 

Table 1 shows the relative biases associated with esti
mation of the population totals of flie main commodity related 
benchmarks for each region under these different weighting 
systems, as well as the corresponding biases associated with 
the standard ridge weights. The increase in tiiese biases as the 
amount of spatial smootiiing in the weights is increased is 
evident. Since these production benchmarks are positively 
correlated with most of the economic variables measured in 
the survey, these benchmark biases can be expected to be 
ttanslated into a corresponding upward bias in survey 
estimates based on these weights. 

Figures 1 to 4 show the difference between the smoothed 
weights and flie standard ridge weights for flie two "extteme" 
combinations of a and d in both regions changes as the size 
(measured in terms of tiie logarithm of the estimated value of 
agricultural operations, or log(EVAO)) of the sample farms 
changes. 

Observe that for relatively sttong spatial smoothing 
(Figures 1 and 3), the effect of smoothing is to increase the 
weights of most of the larger sample farms, while dramat
ically decreasing the weights of a small number of smaller 
sample farms. Weak spatial smootiiing (Figittes 2 and 4) 
changes the weights much less, and there is Uttie relationship 
between the size of the farm and the direction of weight 
change. Consequentiy, an upward shift in survey estimates 
for these regions could be expected with the inttoduction of 
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Figure 1. Difference between smoothed weight with a = 0.1 and 
d = 0.005 and standard ridge weight. Region A 
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Figure 2. Difference between smoothed weight with a = 0.9 and 
d = 0.05 and standard ridge weight. Region A 
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Figure 3. Difference between smoothed weight with a = 0.1 and 
d = 0.005 and standard ridge weight. Region B 
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Figure 4. Difference between smoothed weight with a = 0.9 and 
d = 0.05 and standard ridge weight. Region B 

sttongly spatially smoothed sample weights. Given the 
increased positive biases indicated in Table 1, this upward 
shift would be expected to be essentially due to the intto
duction of a positive bias in tiiese estimates. 

Is this increased bias compensated for by a lower standard 
error? To evaluate this question, survey estimates and 
estimated stapdard errors were computed for a key financial 
variable, total cash costs. These estimates are set out in 
Table 2 (Region A) and Table 3 (Region B). Estimates are 
provided both for each region and for smaU areas within each 
region, denoted SR-i in the table, with the index i ranging 
between 1 and 6 for Region A and between 1 and 7 for 
Region B. 

Table 2 
Estimates (with corresponding estimated standard errors in 

parentheses) of the average value of y = total cash costs 
in subregions SR-1 to SR-6, making up Region A 

(sample size n = 101 farms), using the standard ridge 
weights (2.3) and the spatially smooth ridge weights (2.6) 

Spatially smoothed ridge weights 

Standard 
weights <i = 0.05 (i = 0.005 

a = 0.9 a = 0.5 a = 0.1 a = 0.9 a = 0.5 a = 0.1 

SR-1 

SR-2 

SR-3 

100,618 100,453 101,297 107,263 102,059 112,635 135,419 
(24,551) (24,511) (23,906) (20,487) (23,474) (18,923) (18,011) 

115,320 
(26,754) 

115,417 
(26,661) 

116,002 120,362 116,917 126,165 153,707 
(26,448) (25,637) (26,423) (25,990) (27,975) 

167,524 167,453 167,486 168,257 167,709 170,781 187,683 
(28,479) (28,467) (28,473) (28,426) (28,175) (26,471) (24,211) 

SR-4 182,940 180,317 177,838 163,556 176,257 174,077 192,296 
(106,471) (105,485) (101,012) (74,418) (97,823) (69,109) (43,651) 

SR-5 132,050 132,083 132,389 134,786 132,490 136,369 151,046 
(25,089) (25,096) (25,154) (25,475) (25,173) (24,410) (23,110) 

SR-6 132,493 132,184 133,204 141,623 133,763 147,652 192,781 
(44,385) (44,546) (44,757) (46,736) (45,078) (46,953) (53,105) 

Region A 134,114 133,807 134,141 137,080 134,506 142,040 166,432 
(15,691) (15,655) (15,426) (13,845) (15,199) (13,494) (12,815) 

Tables 
Estimates (with corresponding estimated standard errors in 

parentheses) of the average value of y = total cash costs 
in subregions SR-1 to SR-7, making up Region B 

(sample size M = 85 farms), using the standard ridge 
weights (2.3) and the spatially smooth ridge weights (2.6) 

Spatially smoothed weights 

Standard 
weights d = 0.05 c/ = 0.005 

0 = 0.9 a = 0.5 a = 0.1 a = 0.9 a = 0.5 a = 0.1 

SR-1 183,194 183,262 183,528 186,151 184,287 195,138 257,652 
(64,851) (64,325) (64,051) (64,967) (64,132) (69,859) (59,518) 

SR-2 261,952 261,487 261,119 261,182 261,938 276,912 331,805 
(70,989) (70,601) (70,502) (73,131) (70,723) (79,751) (67,356) 

SR-3 113,499 113,441 113,742 116,847 114,631 125,525 157,007 
(30,304) (30,289) (30,255) (30,731) (30,377) (31,507) (32,500) 

SR-4 242,220 242,182 242,208 242,221 242,163 242,439 250,871 
(26,160) (25,671) (26,159) (26,160) (26,154) (24,244) (24,836) 

SR-5 134,524 134,970 135,700 139,122 134,734 131,448 148,629 
(32,420) (32,528) (32,432) (30,607) (32,202) (27,867) (27,942) 

SR-6 176,540 176,977 175,708 163,241 172,076 148,434 171,856 
(60,377) (60,703) (59,214) (46,361) (55,925) (36,218) (39,527) 

SR-7 205,287 205,644 205,433 202,039 204,519 194,998 219,959 
(44,137) (44,008) (43,963) (44,044) (43,972) (45,434) (51,690) 

Region B 176,283 176,342 176,397 176,822 176,294 179,998 216,445 
(19,039) (18,869) (18,874) (18,213) (18,511) (18,540) (17,099) 

It is seen that, in general, flie answer to the question posed 
above is yes. The estimated standard errors of the survey 
estimates decrease as the degree of spatial smoothness of the 
weights increases (from left to right across the tables). 
However, as expected, the estimates themselves also increase 
in size, becoming more and more positively biased. Overall, 
the gain due to reduced standard error seems to cancel out the 
increase in bias, except for the heaviest spatial smoothing 
{a = O.l, d = 0.005). In this latter case the increase in bias 
outweighs the reduction in standard error. The choice a = 0.1 
and d = 0.05 seems a good compromise, leading to reasonable 
(but not spectacular) bias-variance ttadeoffs in Region A, and 
Uttie change in tiie estimates in Region B. 

4. ESTIMATION AND MAPPING 
OF LOCAL AVERAGES 

A survey data map is a two-dimensional surface which 
estimates the spatial mean function of the survey variable in 
the population. In practice, such a map is obtained by 
applying a nonparametric regression technique to the 
weighted unit record data obtained in the survey. 

At ABARE, we use kemel regression (a nonparametiic 
technique) to produce maps which show the spatial varia
tion of tiie estimated spatial mean function surfaces of key 
survey variables. These surfaces are obtained by replacing 
the observed sample values of these variables by locally 
weighted averages. In addition, for each local averagg map, a 
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corresponding map is produced which shows an estimate of 
the local variability of the variable of interest. We give below 
a brief outiine of the technique: for clarity of exposition we 
deal only with the univariate case. See Ruppert and Wand 
(1994), Wand and Jones (1995, pl40), and the references 
therein, for discussion of the multivariate case. 

We assume that the finite population is generated as an iid 
sample {(Z,., y.), i = 1,..., Â } from a super population where 
yj is the value of a response variable Y observed at location Z,. 
We suppose that the observations follow the model 

y,. = m(Z.)+e,, i = l,...,N 

where m(z) = £(y | Z = z) is the conditional mean of Y given 
Z, and the e,. are independent random variables with zero 
mean and variance a^{z). Suppose that the error terms ê . are 
independent of the process by which the sample is selected, 
so that the sample values ((Z,, y,), / = 1,..., n} follow the 
same model, and write/for the density of Z,,..., Z„. 

A natural choice for the local average at any point z is then 
the mean of the values of the response variable for those 
observations with locations close to z, since observations 
from points far away will tend to have very different mean 
values. The local average is defined as a weighted mean 

m {z)=n-''£w.{z)Y. 

of where the weights {W.{z)} depend on the locations {Z, 
the sample observations, and m{z) estimates m{z). 

The weights are constructed using a function K known 
as the kernel, which is continuous, bounded, symmetric 
and integrates to one. Various weight sequences have 
been proposed: the traditional Nadaraya-Watson weights 
(Nadaraya 1964 and Watson 1964) are 

W.{z) = h-'K{{z-Z,)lh} {nh)-''£K{{z-Zj)lh] 

where his a scale factor known as the bandwidth. The kernel 
function K gives an observation close to z relatively more 
influence on the local average at this location than it gives to 
an observation further from z. 

Where observations are sparse, a fixed-bandwidth window 
may contain few points and the corresponding estimator may 
therefore have a very high variance. This may be avoided 
by using the ̂ -nearest-neighbour method in which a different 
bandwidth is used at each estimation point z. The band
width at z is the distance to the k-th nearest neighbour of z, so 
that there are always exactiy k points in the bandwidth 
window. Let /î  be the distance between z and its it-th 
nearest neighbour. The ̂ -nearest-neighbour Nadaraya-Watson 
weights are 

W. ),^{z) = h-K{{z-Z,)lh,] {nhX' Y.K{{z zpih, 

We show in Table 4 the asymptotic mean squared error 
(MSE) properties of the usual (fixed-bandwidth) and 
^-nearest-neighbour estimators as given in Hardle (1990, 
p. 46). 

Table 4 
Asymptotic bias and variance of Nadaraya-Watson estimators; 

c^ = J K'(u)du, d^ = J u^K(u)du 

Fixed-bandwidth <:-nearest-neighbour 

Bias 

Variance 

^ 2 ( m " / + 2 m ' / ' ) ( j ) ^ 

2f(x) " 

oHx) 
nhfix) 

kY(,m"f*2mr){x)j 

2o'W,. 

Clearly, the bias of the estimated regression function can 
be reduced by using a smaller bandwidth h (number of 
nearest-neighbours k), but this leads to a noisy estimate m 
with local detail masking global features of the curve (m has 
high variance). If h{k) is large, m is smoother but the global 
features are dampened (m has high bias and low variance). 
The bias, then, can only be reduced at the expense of variance 
and vice versa, witii the bandwidth h determining the ratio of 
(squared) bias to variance. 

In reality, the survey design and the spatial distribution of 
a survey variable Y will not be independent, so simple local 
averages for Y derived from the sample data will be 
misleading as estimates of the local population means of this 
variable. To overcome this problem the kernel weights are 
multiplied by the survey weights to get the final smoothing 
weights used for calculating the local average. This is 
equivalent to estimating the local population mean m{z) of Y 
under the assumption that it is locally linear in the same 
benchmark variables as those used to model the overall 
population mean of Y. 

A wide array of alternative kernel smoothing procedures 
have been discussed in the literature. As well as various 
sequences of smoothing weights {IV,}, there are different 
types of bandwidths, and several automatic bandwidth selec
tion methods. A simulation study was therefore conducted to 
determine the most appropriate kernel methodology for use in 
ABARE's maps. This is described in the Appendix. 

Uncertainty about the estimate of the spatial mean derived 
via kernel-based spatial smoothing can be represented by 
mapping the local variability of the variable of interest. Areas 
of high local variability correspond to areas where the map of 
the mean function is less precise and vice versa for areas of 
low local variability. 

The usual method of determining confidence regions for 
a kernel curve estimate is the bootsttap; see Hardle (1990), 
Hall (1992), and references therein. However, for com
putational efficiency, we use the expectiles (Newey and 
Powell 1987) of the spatial distribution of Y to describe this 
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Figure 5. Polygon map of farm business profit in 1991-1992, all 
broadacre farm ($) 
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Figure 6. Polygon map of interexpectile range of farm business 
profit in 1991-1992, all broadacre farms ($) 

local variability. An expectile bears the same relationship to 
the mean as flie corresponding quantile does to the median. In 
particular, tiie difference between tiie 75th and 25tii expectiles 
of a distribution is a measure of tiie spread of the distribution 
in the same way as the interquartile range is a measure of this 
spread. The smoothing program contains a module for non
parametric Af-quantile regression (Breckling and Chambers 
1988) which is used to fit a smooth surface to the expectiles 
of the y-distribution at any location. The difference between 
the smoothed 75tii and 25th expectile surfaces (the smootii 
expectile analogue of the interquartile range) is then mapped 
to show areas of high and low variability in the data. 

Not siuprisingly, tiiis smooth interexpectile range tends to 
be highest in areas where the farms are sparsely located and 
the farm-to-farm variability in Y is therefore highest. The 
interexpectile range map corresponding to Figure 5 is shown 
in Figure 6. Note that these smoothed interexpectile range 
maps provide similar information to confidence bands at any 
particular point on the map. However, they do not have the 
same repeated sampling interpretation as confidence intervals, 
and hence should be tteated as guides to, rather than measures 
of, the uncertainty associated with a particular map. 

For confidentiality reasons, care must be taken when 
mapping flie smooflied data for publication to ensure thai tiie 
locations of the surveyed farms arc not revealed. Another 
requirement is output quality compatible with desktop 
publication packages. Two procedures for generating tiie final 
maps that satisfy these requirements have been developed 
using ARC/INFO. 

In the first method, a Thiessen polygon is constructed 
around each farm. The polygon defines tiie area closer to tiiat 
farm than to any other farm. The farm location is not in the 
centte of its polygon, and the polygon shape does not 
resemble the shape of the farm, so the polygons conceal the 
locations of the survey farms, as shown in Figure 7. The 
whole of each polygon is coloured according to the smoothed 
value of y at the farm location in tiiat polygon. Usually ten 
colours are used in each map and the estimated population 
deciles of the smoothed data are used as boundaries for the 
colour area. The maps shown in this paper are black-and-
white analogues of these colour maps. 

Figure 7. Thiessen polygons consuucted around selected ABARE 
survey farms. Farm location is shown as a small square 
within each polygon 

In tiie second method, smoothed values on a dense 
rectangular grid are used in place of smoothed values at the 
farm locations, and a further minor interpolation of the data 
is carried out in ARC/INFO. A continuous 3-dimcnsional 
surface which passes tiirough flie smoothed values at the grid 
points is built in two steps. As a first approximation, a faceted 
surface of triangles obtained by Delauney triangulation is 
constmcted, and then a bivariate fifth degree polynomial is 
fitted within each triangle using Akima's algorithm (Akima 
1978). The resulting continuous surface is then contoured 
using the estimated population deciles. Figure 8 is an example. 

In tills second mefliod of presentation, the locations of the 
survey farms are not used in any way, thereby completely 
concealing the location of each survey farm. Il also gives 
smooth contours, and the result is not as patchy as tiie 
polygon based map. Moreover, it is preferred by ABARE's 
graphics staff because it reduces the number of areas to be 
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Figure 8. Contour map of farm business profit in 1991-1992, all 
broadacre farms ($) 

separately coloured and has lower storage requirements, 
enabling the maps to be more readily manipulated in desktop 
publishing packages. Its disadvantage is that it uses more 
computing time in the ARC/INFO stage. 

Since the above procedures interpolate across all of 
Austtalia, including areas where there is no agricultural 
activity, the final stage of the map production in ARC/INFO 
is the "blanking out" of those areas of Austtalia where there 
are few or no farms involved in the particular broadacre 
industry represented by the map. As Figiu-e 9 shows, different 
areas are blanked out for different industries. 

Because we describe mapping in this paper, we have only 
considered smoothing along spatial dimensions. However, it 
is clearly possible to use the same techniques to smootii along 
other dimensions. Thus, if there is reason to expect the 
presence of sttong serial correlation when the underlying 
population is ordered according to some variable, then one 
can consider applying the methods described in this paper to 
mapping the "change" in the survey variables relative to the 
change in this variable. In doing so, it should be noted that 
such "maps" are nothing more than nonparametric estimates 
of the conditional means of tiie survey variables given this 
"ordering" or "smootiung" variable. The analyst should, how
ever, remember the "curse of dimensionality": the effective 
sample size drops sharply with each additional smoothing 
variable used in these nonparametiic techniques. 

Finally, in mapping the survey data, we have used kernel-
based estimation techniques. However, spline smoofliing, or 
even parametric methods could also be used. We regard the 
choice of smoothing technology as somewhat subjective and 
purpose specific, as there are no definitive objective reasons 
for preferring one method over another. 
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5. DISCUSSION 

In this paper we have demonsttated that when siuvey data 
has a spatial dimension, as in the case of the AAGIS, spatial 
smoothness concepts may be useful to the analyst. The 
concept can be used to modify survey weights to ensure less 
variable small area survey estimates. It may also be used to 
smooth the data along spatial dimensions before mapping the 
spatial mean function. 

APPENDIX 

In the last few years a number of optimality properties 
have been established for the locally-linear kemel weights 
(see for example Wand and Jones (1995) and references 
therein). We therefore conpared Nadaraya-Watson (NW) and 
locally-linear (LL) weight sequences using fixed (FBW) and 
A:-nearest-neighbour (NN) bandwidths with each weight 
sequence. For each of these combinations, we selected the 
bandwidth using least-squares cross-validation (CV), and an 
ad hoc method (detailed in the last paragraph of this section) 
aimed at reducing the speckledness of a map (SF). 

Two criteria were used to evaluate the performance of each 
methodology. The first, MSE, is the obvious statistical 
criterion for assessing a biased estimator. The second 
criterion is more ABARE specific. As estimates are produced 
both in tables (by State) and in maps, the impression of the 
state average given by the map should be close to the 
tabulated value. We therefore used a weighted sum of the 
squared differences between the state averages of the raw and 
smootiied stu-vey data (SB^). This measure was also calculated 
at regional rather than state level (RB^; there are between one 
and nine regions in each state). 

Data were generated at the survey farm locations using 
three smooth functions with varying degrees of smootiiness 
(measured by \m") and normal mixmre errors. For example. 
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m. (z) = 6.25 X 10* x cos 
132.5 

2.25 

27.5 
cos 1.75 

where z, and Z2 are the longitude and latitude of the point z. 
The functions m.{z) were scaled to have the same range as the 
smoothed values of a key survey variable, and the errors were 
scaled to have the same range as the residuals of the same 
variable after smoothing. Large variances were generated at 
locations with high residuals, and small variances at locations 
with low residuals. The simulation results based on the 
smooth function are given in Table 5. 

Using MSE as the criterion for assessing metiiodology, the 
results were not consistent for the three functions m.{z). 
However, when either RB^ or SB^ was used as the perfor
mance measure, the LL estimator with ;t-nearest-neighbour 
bandwidth selected using SF outperformed the otiier methods 
by at least ten percent for each function m.i^^z), and is 
therefore the currently preferred methodology for producing 
ABARE's maps. 

Table 5 
Comparison of locally-linear (LL) and Nadaraya-Watson (NW) 

weight sequences, using fixed (FBW) and <:-nearest-neighbour (NN) 
bandwidths selected by least-squares cross-validation (CV) 

and the criterion detailed below (SF). The results were obtained 
from 400 independent samples with mean function 
and normal mixture errors. The MSE values were 

calculated using the average over the finite population 
ofCy-m(z))^ 

LL FBW 
NN 

NW FBW 
NN 

MSE 

CV 

39.64 
20.50 

41.91 
21.77 

x l O ' 

SF 

93.93 
22.83 

52.78 
22.22 

RB'x 

CV 

4.44 
2.22 

3.29 
3.03 

10-' 

SF 

1.67 
1.35 

1.77 
2.33 

SB^x 

CV 

1.33 
0.37 

0.34 
0.62 

10-' 

SF 

0.39 
0.14 

0.17 
0.41 

The bandwidth selection method aimed at reducing the 
speckledness of a map (SF) is a measure of the smoothness of 
the map: it measures how similar the smoothed value is at any 
farm to that of its neighbours. Let p{i) be the survey estimate 
of the percentile of the smoothed variable at the i-th farm. Let 
5, be the set of indices of the six farms closest to the (-th 
farm. In this method, the value of 

SF{h) = {6ny'Y^ \p{i)-p{k)\ 
i 

keS, 

is calculated. It is scale-free, and decreases monotonically as 
the bandwidth decreases. The chosen bandwidth is the 
smallest bandwidth with a sufficientiy small (< e) rate of 
decrease of SF. The value of e was chosen subjectively 
following detailed examination of maps of five key variables 
for five values of e. 
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Using Data on Interruptions in Telephone Service 
as Coverage Adjustments 

J. MICHAEL BRICK, JOSEPH WAKSBERG and SCOTT KEETER' 

ABSTRACT 

Telephone surveys in the U.S. are subject to coverage bias because about 6 percent of all households do not have a 
telephone at any particular point in time. The bias resulting from this undercoverage can be important since those who do 
not have a telephone are generally poorer and have other characteristics that differ from the telephone population. 
Poststratification and the other usual methods of adjustment often do not fully compensate for this bias. This research 
examines a procedure for adjusting the survey estimates based on the observation that some households have a telephone 
for only part of the year, often due to economic circumstances. By collecting data on interruptions in telephone service in 
the past year, statistical adjustments of the estimates can be made which may reduce the bias in the estimates but which at 
the same time increase variances because of greater variability in weights. This paper considers a method of adjustment 
using data collected from a national telephone survey. Estimates of the reductions in bias and the effect on the mean square 
error of the estimates are computed for a variety of statistics. The results show that when the estimates from the survey are 
highly related to economic conditions the telephone interruption adjustment procedure can improve the mean square error 
of the estimates. 

KEY WORDS: Coverage; Bias; Weighting adjustment; Telephone sampUng; RDD surveys. 

1. INTRODUCTION 

Telephone surveys provide a relatively economical method 
of data collection compared with face-to-face interviewing. 
However, telephone siuveys in the U.S. are subject to an 
important source of bias tiiat does not affect household 
surveys conducted with face-to-face interviewing: at present 
only 94 percent of households nationally have telephone 
service at any given time. Moreover, for some populations 
such as households with young children, coverage rates are 
even lower. 

Weighting tiiat includes poststiatification based on demo
graphic variables known to be associated with telephone 
coverage is effective in mitigating some of the consequences 
of coverage bias in telephone surveys. Postsurvey weighting 
is also generally used to compensate for nonresponse and 
other biases. But even when effective, weighting to known 
demographic totals only partiaUy solves the problem of cover
age bias, underconqiensating for some variables (Massey and 
Botman 1988) and overcompensating for others (Brick, 
Burke, and West 1992). 

This article describes a study of an alternative method for 
adjusting telephone survey data to compensate for coverage 
bias. The metiiod, suggested by Keeter (1995), is based on tiie 
observation that telephone subscription is a dynamic condi
tion not just across households in the population, but also 
within many households over time. A sizable number of U.S. 
households lose and gain telephone status during a given year. 
Because of this phenomenon, the telephone population at a 
given time includes households that have recentiy been in the 

nontelephone population. Despite considerable information 
on the size and characteristics of tiie nontelephone population, 
littie is known about its dynamics over shorter time periods. 
Evidence from social workers, telephone companies, and 
others who deal with indigent households suggests that for 
many families, telephone subscription is episodic. House
holds may have a telephone when they can afford it, but the 
telephone may be tumed off when times are harder, or when 
the biUs get too large to manage, (Federal Communications 
Commission 1988). It is not known how many households 
change theu telephone status and how long they stay in a 
particular status. 

Keeter (1995) examined two household panel surveys 
to obtain estimates of the dynamics of telephone service 
subscription. Those households tiiat changed telephone stams 
(presence of a telephone in the household) are called 
'transient' households. For data from one panel survey that 
collected data 12 months apart, half of tiie 6 percent of all 
households without a telephone at either time were tiansient. 
For the other panel survey in which data were collected only 
two months apart, one-fourth of the 6 percent of households 
without telephones at either point in time were tiansient. 
Since these estimates were based on observations at two 
points in time rather than continuous measurement, they 
underestimate the percent of households that are tiansient. 
Nevertheless, these results show that a substantial proportion 
of households without a telephone at a specific point in time 
is tiansient. 

Another important condition that must be satisfied if the 
tiansient telephone households are to be useful in reducing 

' J. Michael Brick and Joseph Waksljerg, Westat, Inc., 1650 Research Blvd., Rockville, MD 20850, U.S.A.; Scott Keeter, Virginia Commonwealth University, 
Survey Research Laboratory, Richmond, VA 23284, U.S.A. 
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coverage bias involves the characteristics of tiansient house
holds and nontelephone households. If the two groups are 
not similar, then the adjustments wUl not be effective. Using 
the panel data and data from several Virginia surveys, Keeter 
(1995) showed that the characteristics of the tiansient 
households are much more consistent with nontelephone 
households than telephone households. 

These findings suggest the possibility that weighting 
adjustments that use the data from households that have tele
phones only sometimes during the year might be an improve
ment over the current practice. To evaluate this approach to 
adjusting tiie weights, questions were added to two national 
surveys conducted in 1993 by Westat. Both of tiiese surveys 
were random digit dial (RDD) and computer assisted 
telephone surveys, and the data were collected in the tele
phone research centers of Westat. 

One of the surveys is the National Household Education 
Survey of 1993 (NHES:93). The NHES:93 was conducted for 
the National Center for Education Statistics of the Depart
ment of Education in the spring of 1993 to study issues 
related to school readiness of young children and school 
safety and discipUne of children in school. The other survey 
was the National Survey of Veterans (NSV) which was 
conducted in tiie second half of 1993 for the U.S. Department 
of Veterans Affairs. In this survey, adults were screened to 
determine if they were veterans, and the veterans were then 
asked about a variety of topics including their health, educa
tion, and financial stams. 

Below, we present estimates of the percentage of persons 
that experienced some interraption of telephone service, 
describe procedures for adjusting the survey weights using 
these data, and discuss the statistical imphcations of using the 
adjusted weights. The final section summarizes the findings 
and gives some considerations for using this technique in 
RDD telephone surveys. 

2. ESTIMATES OF INTERRUPTIONS 
OF TELEPHONE SERVICE 

Estimates of the percentage of persons with intermptions 
of telephone service from national surveys were needed to 
further examine the potential of reducing coverage biases 
using these data. Questions were added to the NSV and the 
NHES:93 for tiiis purpose. In tiie NSV, about 23,000 house
holds were screened and interviews were completed with over 
5,500 ehgible veterans. In the screening interview, all house
hold members 14 years and over were enumerated and 
questions were asked about their characteristics and their 
veteran status. If a sampled adult was a veteran, then a more 
detailed interview was attempted. The results reported here 
are those asked about the adults enumerated in the screening 
interview which included only a few characteristics of the 
adults and the household. 

In tiie NHES:93, 64,000 households were screened and 
nearly 30,000 interviews were conducted within those 
screened households. Two survey conponents were included: 

School Readiness (SR) and School Safety and Discipline 
(SS&D). Approximately 11,000 parents of 3- to 7-year-olds 
completed interviews on SR topics and about 12,700 parents 
of children in grades 3 through 12 were interviewed for the 
SS&D component. Data on interruptions in telephone service 
were collected from households in which at least one SR or 
SS&D interview was completed. 

Since the responses to the questions in the NHES:93 were 
only obtained for those households that completed eitiier an 
SR or SS&D interview, many characteristics of the children 
can be analyzed, but the data do not apply to as broad a 
population as the NSV. The NSV applies to all adults, but 
oitiy limited data were coUected on most of the adults. For all 
households that had completed an interview (a screening 
interview in the NSV and a more detailed interview in the 
NHES:93), a member of the household was asked if the 
household had experienced an intermption in telephone 
service in the last 12 months and how long it lasted. 

Estimated Service Interruptions in the NSV and 
NHES:93 

The estimated percentage of persons in households that 
had a telephone intermption of one day or more during the 
last 12 months varies substantially from survey to survey. 
Only 2.3 percent of adults had an intermption of one day or 
more based on the data from the NSV, while the percentage 
from the NHES :93 for younger children (the SR population of 
3- to 7-year-olds) was 12.0 percent, and for the SS&D popu
lation of older chUdren (grade 3 tiu-ough 12) it was 9.2 percent. 

Figure 1 shows estimates and 95 percent confidence 
intervals of the percentage of persons that had intermptions 
of one day or more along with estimates for those with 
intermptions of telephone service that lasted for at least one 
week and at least 4 weeks. While the percentages vary 
from sample to sample, the pattems of increase by length of 
intermption are relatively stable. The percentage with inter
mptions of one week or longer is less than half tiie percentage 
with any intermption, and the percentage with intermptions 
of 4 weeks or more is about one-fourth the percentage with 
any intermption. 

more than 1 day more than 1 week 

Length of Intenuption 

more than 4 weeks 

Figure 1. Estimated percentage of persons with interrupted 
telephone service from the three populations 



Survey Methodology, December 1996 187 

The large difference in the estimates from the NSV and the 
NHES:93 comes from at least two important sources. The 
first source is that the populations were different. We would 
expect young children to Uve in households that experience 
more intermptions than older children and adults. Thomberry 
and Massey (1988) estimated that tiie telephone coverage rate 
for young children was lower than for any other age group. 
Thus, the difference of about 3 percent in the estimates of the 
percentage with an intermption between the yotmger (SR) and 
older (SS&D) children from tiie NHES:93 is reasonable. 

The difference in the populations does not completely 
account for the large difference between the NSV and the 
NHES:93 estimates. An important reason for this difference 
is related to the way the questions were asked in the two 
surveys. The NHES:93 interview began by asking, "During 
the past 12 months, has your household ever been without 
telephone service for more flian 24 hours?". In the NSV inter
view, respondents were asked if, "At any time diuing the past 
12 months, has your household not had telephone service?". 
This was foUowed by a question that asked if the intermption 
was for at least 24 hours. Thus, the NSV version was a 
screening item followed by a more detailed question. This 
type of constmction often depresses reports of subsequent 
activities, which is consistent with the lower NSV estimates. 

A more inqiortant reason for the difference is probably due 
to the wording of the questions. With the NSV question, a 
'no' response may have confused respondents because the 
question asks if fliey did not have telephone service. Converse 
and Presser (1986) discuss die problems that arise witii this 
type of question constmction. The wording for the NHES:93 
is less confusing. The combination of the wording and the use 
of a screening item in the NSV is likely to be the main reason 
for the smaller estimate using the NSV questionnaire. 

The difference in the estimates associated with the 
different ways of asking the intermption questions is evident 
from the estimates from two surveys conducted in Virginia by 
Virginia Community University. In a November 1993 survey, 
the items about telephone intermptions were asked using the 
NSV wording; in April 1994 the items were changed to the 
NHES:93 wording. The results from the surveys parallel the 
differences in the estimates between the NSV and the 
NHES:93. The November 1993 Virginia stiidy estimated tiiat 
3 percent had an intermption in service in the last 12 months, 
whUe in April the estimated percentage was 9 percent. Thus, 
it is clear that the different ways of asking the questions 
heavily influenced the size of tiie estimates, and it suggests 
that the estimates from the NSV are biased downward. Some 
adults who did experience an interraption in telephone service 
during the previous 12 months probably responded incorrectiy 
in tiie NSV. 

Characteristics of Persons With Service Interruptions 

Estimates of the percentage of persons who had a tele
phone interraption are examined below by the characteristics 
of the person to evaluate tiie potential of using these data to 
adjust for coverage bias. We estimated the percentage of 

persons in households with any interraption in service by 
characteristics collected in botii the NSV and die NHES:93. 
These estimates are shown in the first part of table 1. Some 
differences in the distributions may be due to the different 
ways of asking the questions. For example, the education 
classification is different in the two surveys: in the NSV 
education is recorded for the oldest person in the household, 
while in the NHES:93 education is the highest for either of 
the parents of the child. 

AU subsequent analysis is restricted to NHES:93 data for 
two reasons. First, more data on the characteristics are avail
able from tiie NHES:93 detailed SR and SS&D interviews 
than tiie NSV screening interview. Second, tiie telephone 
intermption estimate from the NSV is biased due to the 
wording of the item, as discussed earUer. Of course, the 
NHES:93 estimates apply to households witii children which 
have higher nontelephone rates than the general population, 
and in that sense they do not reflect the sitiiation for the total 
population. 

Using the NHES:93 data, we find that the percents of 
persons with some interraption are relatively consistent for 
tiie SR and die SS&D populations (see table 1). The 
characteristics generaUy associated with lower economic status 
have the highest percentage with interraptions. For example, 
the percentage of chUdren with intermptions in both the SR 
and SS&D populations is larger for those firom households 
with lower household income flian for those fk)m households 
with higher income. Similarly, chUdren participating in public 
assistance programs (WIC or free meals) have much higher 
rates of service intermptions than nonparticipants. However, 
the percentages of children in households with telephone 
interraptions are less variable for characteristics related to 
school readiness and school safety and discipline than for 
the socioeconomic items. Additional characteristics for 
both populations were examined and presented in Brick, 
Keeter, Waksberg and BeU (1996), but are not shown here. 
For most of flie oflier substantive items, the differences in the 
percentage of persons with some interraption in telephone 
service were either not statistically significant or not large 
enough to be of great practical importance. 

3. WEIGHT ADJUSTMENTS 

In almost all sample surveys, the data collected from 
respondents are adjusted to account for nonresponse and 
noncoverage and to reduce flie variability in the estimates by 
using auxiUary data firom other data sources. One of the most 
important benefits of this type of adjustment in telephone 
samples is that it often reduces the bias associated with the 
undercoverage of persons living in households without tele
phones. 

Kalton and Kasprzyk (1986) discuss adjustments to the 
base weights, classifying flie adjustments into four categories: 
population weighting adjustments, sample weighting adjust
ments, raking ratio adjustments, and response probability 
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Table 1 
Estimated Percentage of Persons Witii Any Interruptions in Telephone Service in Last 12 Months for Three Populations 

NSV NHES:93 SR NHES:93 SS&D 

Estimate Standard Estimate Standard Estimate Standard 
error error error 

Total 2.3 0.1 12.0 0.4 9.2 0.3 

Region 
Midwest 
Northeast 
South 
West 

Race/ethnicity' 
White 
Black 
Hispanic 
Other 

Education^ 
Less than high school diploma 
High school graduate 
Some college 
Bachelor's degree 
Graduate school 

Household income 
$10,000 or less 
$10,001 to $20,000 
$20,001 to $30,000 
More tiian $30,000 

2.3 
2.0 
2.6 
2.4 

2.0 
3.5 
3.9 
2.6 

3.2 
2.0 
2.3 
1.6 
2.2 

0.2 
0.2 
0.2 
0.2 

0.1 
0.4 
0.5 
0.6 

0.2 
0.2 
0.2 
0.2 
0.3 

11.0 
9.5 

13.6 
12.5 

9.3 
19.8 
17.2 
11.7 

18.4 
15.4 
11.8 
5.5 
5.2 

22.8 
19.9 
9.3 
5.5 

1.0 
1.2 
0.7 
0.9 

0.5 
1.5 
1.5 
2.6 

1.8 
0.8 
0.7 
0.8 
0.7 

1.3 
1.4 
0.8 
0.5 

7.3 
9.0 

10.8 
9.2 

7.2 
14.7 
14.1 
9.3 

17.4 
11.0 
8.6 
5.3 
4.5 

19.0 
15.7 
7.9 
5.0 

0.7 
0.8 
0.6 
0.8 

0.3 
1.1 
1.1 
1.5 

1.6 
0.8 
0.5 
0.8 
0.6 

1.3 
1.1 
0.6 
0.3 

Women, infant and children program 
participant' 

Yes 
No 

Free meal at school or center* 
Yes 
No 

Birth weight 
5.5 pounds or less 
Greater than 5.5 pounds 

School control 
PubUc 
Private 

Ease of obtaining marijuana at school^ 
Very or fairly easy 
Hard 
Nearly impossible 

18.2 
8.0 

21.1 
7.6 

12.0 
12.0 

1.3 
0.6 

1.2 
0.5 

1.6 
0.4 

9.4 
7.5 

9.7 
8.0 
9.0 

0.4 
1.1 

0.6 
0.8 
0.7 

' Race/ethnicity is reported for the oldest member in the NSV and for the child in the NHES:93. 
^ Education is for the oldest household member in the NSV and the most educated parent of the child in the NHES:93. 
' Estimate restricted to preschoolers. 
" Estimate applies to children except preschoolers. 
' Estimate applies only to children in grades 6 through 12. 
Source: U.S. Department of Veterans Affairs, National Survey of Veterans, summer/fall 1993, and U.S. Department of Education, National Household 

Education Survey, spring 1993. 
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adjustments. In the NHES:93, sample weighting adjustinents 
and raking ratio adjustments were used. Sample weighting 
adjustments were used to account for differential nonresponse 
from sampled persons. Raking ratio adjustments were then 
used to make the specified marginal distributions of the 
sample correspond to totals from the October 1992 Current 
Population Survey (CPS). One of tiie most inportant benefits 
of the type of raking ratio adjustment used in the NHES :93 is 
that it reduces the bias associated with the undercoverage of 
persons hving in households without telephones because the 
CPS covers persons in both telephone and nontelephone 
households. 

The data on telephone service intermptions can be used to 
make a response probability adjustinent. Response probabihty 
adjustments are constmcted by assuming that each sampled 
unit has a probabihty of responding to the stu-vey, estimating 
that probabUity, and then using the inverse of tiie estimated 
response probability as a weighting adjustment. The Politz 
and Simmons (1949) method is probably the best known 
appUcation of tiie response probabiUty adjustment procedure, 
and Kalton and Kasprzyk (1986)-discuss others. 

To apply this type of adjustment using the telephone 
service intermption data, assume that Uving in a telephone 
household is a dynamic phenomenon and that a probabiUty 
distribution can be associated with this status. Conceptually, 
a survey is conducted by sampUng from this distribution and 
observing only those members that live in telephone house
holds at the time of the survey. The probability of living in a 
telephone household (the equivalent of the response proba
biUty) must then be estimated for each respondent. The inverse 
of the estimated probability is the coverage adjustment. This 
model assumes that each person can be assigned a probabUity 
of being in a household with a telephone and that the 
probability is between zero and one (but not equal to zero). 

The data on whether or not a household had an intermption 
in telephone service and the length of that intermption are the 
basis for this type of adjustment. Persons are divided into two 
categories: those in households with interraptions in service 
and those in households without interraptions in service. The 
probabUity is assumed to be equal to one for persons in 
households without interraptions and their weights are not 
adjusted. The weights of persons in households with at least 
some intermptions in the last 12 months are adjusted to 
account for other households that have a probabiUty of being 
covered of less than one. The adjustments may vary depending 
on the length of time they lived in nontelephone households 
and on other characteristics of tiie household. The purpose of 
having different adjustinents is to account for flie fact that 
some persons are more likely to Uve in nontelephone house
holds than others. 

Altiiough the weighting adjustments may reduce the under
coverage bias, introducing adjustments also typically increases 
the variances of the estimates. Kish (1992) discusses the 
reasons for unequal weights as weU as the consequences from 
using them in a variety of situations. He advocates a common 
statistical approach of balancing the bias reductions against 

the variance increases. If the weights reduce the bias of the 
estimates significantiy, then it may be worthwhile accepting 
the variance increases. On the other hand, small reductions 
in bias associated with large variance increases are not 
recommended. 

In the remainder of this section, the specific weighting 
adjustment procedures are described. The statistical properties 
of the weights developed under four alternative adjustment 
schemes are presented. The alternative weights are applied to 
the NHES:93 data and the decrease in the bias of the 
estimates is compared with the increase in the variance of the 
estimates due to the unequal weighting. 

Adjustment Schemes 

The first step was to decide how to classify the length of 
interraption in telephone service. Various lengths of interrap
tions were examined to determine cut-offs that discriminated 
between tenqiorary intermptions, not due to economic causes 
and others. It was decided to use two categories for forming 
adjustment ceUs: one week or more, and one montii or more. 

Within each of the length-of-service intermption catego
ries, the children were classified into adjustment cells based 
on either parental education or temue (home ownership). 
Race/ethnicity was used to form ceUs within the parental 
education and tenure categories. These cells were chosen 
because the percentage of persons with interraptions varied 
by these characteristics and the corresponding data were also 
available from the CPS. Four adjustment schemes were 
defined using these items: , 

Scheme Al - children in households that had a telephone 
service intermption of one week or more within categories 
defined by parental education (less than high school, high 
school diploma, coUege diploma or above) and race/ethnicity 
(Hispanic,black/non-Hispanic, white andotiier/non-Hispanic); 
Scheme A2 - children in households that had a telephone 
service intermption of one month or more within categories 
defined by parental education and race/ethnicity; 
Scheme Bl - chUdren in households that had a telephone 
service intermption of one week or more witiiin categories 
defined by tenure (own/other, rent) and race/ethnicity; and 
Scheme B2 - chUdren in households that had a telephone 
service intermption of one month or more within categories 
defined by tenure and race/ethnicity. 

The adjustment factors for these schemes could not be 
obtained directiy from the NHES:93 data because no data 
were coUected from households without telephones. Instead, 
the adjustinents were developed using both CPS and 
NHES:93 data and tiien applied to flie NHES:93 weights. 

To motivate the adjustment of the weights, consider 
partitioning the universe of persons into four components: r, 
is the number of persons in telephone households with no 
telephone interruptions in the past year; fj is the number of 
persons in telephone households with some telephone 
interruptions in the past year; t^ is the number of persons in 
nontelephone households with no telephone interruptions in 
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flie past year {i.e., persons who lived in nontelephone house
holds throughout the entire year); and t^ is the number of 
persons in nontelephone households with some telephone 
interruptions in the past year. As noted above, the response 
probability model assumes r, = 0. 

Using the CPS it is possible to estimate ti + tj and t^ 
(assuming t^ = 0); designate tiiese estimates as fj +1^ and i^, 
respectively. From the NHES:93, fj and 2̂ can be estimated 
separately; call these estimates t* and f*, respectively. The 
bias in the NHES:93 estimates arises because they are from a 
telephone survey and do not include persons in nontelephone 
households {t^). 

A weight adjustment of A = 1 + tjt2 would result in 
unbiased estimates of totals; however, this adjustment in
volves unknown, population quantities that must be estimated. 
Since ij can only be estimated from the NHES:93 and t^ can 
only be estimated from tiie CPS (assuming t^ = 0), tiie adjust
ment is expressed in ratios to reduce the bias due to estimating 
the totals from different surveys. The revised weight is 

w.- 1+6, 
t, +t. 

t* +t* 

(1) 

where w, is the NHES:93 weight adjusted for nonresponse of 
sampled persons but not yet raked to October 1992 CPS 
totals, 6. = 1 if the person lives in a household tiiat had an 
intermption of telephone service in the last year and is zero 
otherwise. The quantity in parenthesis in (1) is an estimate of 
A, the weight adjustment. 

Revised weights were computed separately for the SR and 
SS&D components. Rather than the overall adjustment as 
given in (1), the weight adjustments were computed witiiin 
the ceUs defined for each of the foiu" weighting schemes (Al, 
A2, Bl, and B2). Table 2 shows the resulting adjustment 
factors for the SR and SS&D components. The adjustinents 
in the first column are those for schemes Al and Bl. The 
second column contains the adjustment factors for schemes 
A2 and B2. The adjustment factors for the schemes based on 
the one month or more interraptions are greater than those 
based on tiie one week or more because the denominator of 
the ratio is, by definition, smaller for this classification (see 
Figure 1 for estimates of the percentage of persons with 
interraptions for each scheme). 

The last weighting step rakes the four altemative weights 
to tiie same October 1992 CPS totals used in raking flie 
standard NHES:93 person-level weights. The result of this 
process is the standard NHES:93 weight and four altemative 
weights based on different adjustment schemes. AU five of 
the weights conform to the same marginal totals. The only 
difference in the weights is the adjustment for the telephone 

Table 2 
Weighting Cell Adjustments Factors, Based on Length of Intenuption of Telephone Service 

SR SS&D 

Factor Length of service intermption 

One week 
or more 

5.75 
5.10 
4.98 
2.31 
2.65 
2.16 
1.34 
1.77 
1.58 

3.74 
3.23 
2.43 
2.00 
2.53 
2.26 

One month 
or more 

16.35 
6.72 
5.37 
2.76 
3.73 
2.79 
2.33 
2.64 
2.09 

5.15 
4.54 
2.96 
3.06 
3.46 
3.45 

One week 
or more 

4.89 
4.26 
3.81 
2.67 
3.06 
2.18 
1.96 
1.35 
1.91 

3.58 
3.38 
2.99 
2.81 
2.90 
2.03 

One month 
or more 

8.52 
5.95 
4.86 
4.51 
4.71 
3.09 
8.22 
8.83 
3.48 

6.08 
4.95 
4.00 
5.66 
6.11 
3.10 

Cells defined by parental education and race/ethnicity (Schemes Al and A2) 
Less than high school; Hispanic 
Less than high school; black, non-Hispanic 
Less than high school; white and other, non-Hispanic 
High school diploma; Hispanic 
High school diploma; black, non-Hispanic 
High school diploma; white and other, non-Hispanic 
College degree or more; Hispanic 
College degree or more; black, non-Hispanic 
College degree or more; white and other, non-Hispanic 

Cells defined by tenure and race/ethnicity (Schemes Bl and B2) 
Renter; Hispanic 
Renter; black, non-Hispanic 
Renter; white and other, non-Hispanic 
Owner/other; Hispanic 
Owner/other; black, non-Hispanic 
Owner/other; white and other, non-Hispanic 



Survey Methodology, December 1996 191 

service intermption prior to raking. The standard weights are 
not fiuther adjusted while the altemative weights have 
different adjustments depending on the scheme. 

4. FINDINGS 

As noted above, adjustment of the weights to reduce the 
bias increases the variability of the weights, thus increasing 
the variance of the estimates. Kish (1992) gives an 
approximate expression for tiiis increase in variance arising 
from unequal weights. We call flus expression for the mcrease 
in variance due to differential weights the variance inflation 
factor {VIF). The VIF can be written as 

WF =1-I-CV (weights) (2) 

where CV is the coefficient of variation of the weights. 

Table 3 shows flie VIF for die standard NHES:93 weights 
for each component. The SS&D component is broken dovra 
by the grade of the student, because youth were selected at 
different rates for these grade levels. The VIF for each of the 
components is about 1.4, indicating the variance is inflated by 
about 40 percent due to the variabiUty in the standard weights. 
The VIF for tiie combined SS&D file is somewhat larger (1.5) 
because it includes youth who were sampled at different rates. 

The other factors given in table 3 are the ratios of the VIF 
for the four altemative weights to the VIF for the standard 
weight. These ratios show how much greater the variances of 
estimates produced using the altemative weights are expected 
to be as compared to the variances of the standard NHES:93 
weights. 

Overall, the increase in variance due to the telephone inter
mption coverage adjustment are from 9 to 13 percent for 
schemes Al and Bl in the SS&D component but up to 
20 percent for the SR component. The ratios are larger for the 
schemes A2 and B2, ranging from 24 to 35 percent, with the 
largest ratio for Scheme A2 for the SR component. The larger 
ratios (hence VIFs) for the schemes based on intermptions of 
one month or more are a consequence of the larger and more 
variable factors shown in the second column of table 2. The 
ratios for flie SR population are higher tiian the SS&D ratios. 

4.1 Coverage Bias Reduction 

If estimates of the same characteristics as those produced 
from the NHES:93 were available from an independent 
source and these benchmark estimates were free of telephone 
coverage bias, tiien it would be possible to compare flie five 
estimates to the benchmark. However, benchmarks compar
able to the estimates from the two components of the 
NHES:93 do not exist and other metiiods are needed to assess 
the bias-reducing potential of the coverage adjustments. 

Due to of the lack of a benchmark, some model assump
tions are required to assess tiie effectiveness of the adjust
ments. For this evaluation we assume that the adjustment 
procedures reduce the coverage bias. As a result of this 
assumption, the difference between the standard estimate and 
the adjusted estimate is considered an unbiased estimate of 
tiie decrease in the coverage bias resulting from using the 
procedures. Clearly, the coverage bias is not completely 
eliminated by any of the adjustment procedures. Even if the 
model were correct, the bias reductions from the data would 
still be subject to sampling error. Despite the problems with 
this assumption, tiiis type of assunqition is necessary to obtain 
some idea of tiie effectiveness of the adjustment. If the 
adjustment eUminates the bias, the mean square errors of the 
adjusted estimates are equal to the variances of the estimates, 
with no contribution from coverage bias. Therefore, the 
model assumption is favorable to the adjusted estimates, 
positing flie adjusted estimates to be unbiased. The impact of 
this assumption is discussed critically after evidence of the 
effectiveness of the method is presented. 

The estimate from each scheme can be compared to the 
standard NHES:93 estimate, and the difference between the 
standard estimate and the adjusted estimate is an estimate of 
the reduction in the coverage bias. With four adjusted esti
mates, foiu- different estimates of bias reduction are possible. 
The estimated reduction in bias is 

K^Ps'Pa' (3) 

where fc„ is the estimated bias reduction using adjustment 
scheme a (a = Al, A2, Bl, or B2), p^ is the estimate of the 
proportion using the standard estimate, and p is the 
estimated proportion using adjustment scheme a. 

Table 3 
Ratios of Variance Inflation Factor Due to Coverage Adjustment 

Component Sample 
size 

VIF* 
standard 
weight 

Ratio of scheme's VIF to standard weight's VIF 

Scheme 
Al 

Scheme 
A2 

Scheme 
Bl 

Scheme 
B2 

School Readiness 10,888 1.36 1.20 1.35 1.16 

* VIF is the standard inflation factor It is the coefficient of variation of the weights squared plus one. 
Source: U.S. Department of Education, National Center for Education Statistics, National Household Education Survey, spring 1993. 

1.26 
School Safety and Discipline 

3rd through 5th graders 
6th through 12th graders 
3rd through 12th graders 

2,563 
10,117 
12,680 

1.37 
1.39 
1.49 

1.12 
1.13 
1.12 

1.25 
1.27 
1.26 

1.13 
1.09 
1.11 

1.26 
1.24 
1.25 
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The estimated reductions in bias under each adjustment 
weighting scheme are given in table 4. Estimates for additional 
characteristics are given in Brick et al. (1996). The bias 
reductions in the standard estimate assume each adjustment 
scheme eliminates flie coverage bias. 

The bias reduction estimates for most of the items in 
Table 4 are less than one percent and consistent in direction 
across the schemes. Before summarizing the estimates, we 
must account for the fact that the total number of children is 
constant for aU the estimates due to the raking of flie estimates 
to the CPS totals. The fixed total number of children across 
response categories has two consequences: it creates a nega
tive correlation in tiie estimated reduction in bias across 
response categories; and it gives a false impression of the 
number of independent pieces of information in the tabled 
values. 

The approach taken to address to this problem in sum
marizing the bias estimates is to delete the estimate for one of 
tiie response categories for each item. The "no" response cate
gory for all items with "yes" and "no" response categories 
was deleted. For other types of variables, the response cate
gory with the smallest estimate was deleted. 

Figure 2 presents the absolute value of the reduction in 
bias estimated using scheme Al for the SR characteristics, 
and figure 3 is the same representation for the SS&D. These 
figures use all the estimates presented in Brick et al. (1996), 
rather flian just those shown in table 4. For botii components, 
the bias reductions are small. The largest absolute bias is 
1.3 percent for SR and 0.9 percent for SS&D. The mean and 
median of the bias reductions and the absolute values of the 
bias reductions were also con îuted for each scheme and each 
component. For the SR component, the mean and median of 
the absolute value of the estimated bias reductions for the 
four schemes are between 0.2 and 0.4 percent. For tiie SS&D, 
the mean and median of the absolute values are between 0.1 
and 0.3. 
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Figure 2. Estimated reduction in absolute bias for School 
Readiness characteristics (scheme Al) 
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Figure 3. Estimated reduction in absolute value of bias for 
School Safety and Discipline characteristics 
(scheme Al) 

Bias Ratio 
The size of the absolute reduction in bias is not a very 

useful statistical measure of the impact of the bias because it 
does not take the magnitude of the sampling error of the 
estimate into account. Cochran (1977) discusses the impact 
on confidence intervals as the ratio of the bias to the samphng 
error varies. For each scheme the bias ratio is given by 

(4) se (p j ' 

with the standard error of the standard estimate as the 
denominator. As the bias ratio increases, the chance of 
covering the population value departs sigruficantiy from the 
nominal confidence interval. 

The bias ratios for selected characteristics are shown in 
Table 4. Many of the bias ratios for the SR items are large, 
even though the average and median ratios are near zero. 
Nearly half of the ratios for all the items examined are larger 
than 0.4 in absolute value. A ratio of 0.4 is large enough to 
reduce a nominal confidence interval from 95 percent to about 
93 percent. For the SS&D items, the bias ratios are smaller, 
with only 15 percent of all the items having bias ratios greater 
flian 0.4. 

4.2 Mean Square Error 

Smce flie variance is not an adequate measure of error for 
biased estimates, the mean square error of the estimates is 
used instead. The mean square error (MSE) is the sum of the 
variance and the square of the bias of the estimate. 

The MSE can be estimated for tiie NHES:93 estimates 
by using the standard variance estimates and the bias reduc
tion estimates presented above. The estimated MSE can be 
approximated as 

MSE„ = var(p;).fc„' (5) 
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Table 4 
Estimated Reduction in Bias and Bias Ratio for Selected Characteristics of the NHES:93 

Characteristic 

School Readiness (SR) population 
Parental educational level 

L£ss than high school graduate 
High school graduate or equivalent 
Some college 

Mother's employment status 
No mother in household 
Employed 35 hours/week or more 
Employed less than 35 hours/week 
Seeking employment 
Not in labor force 

Father's employment status 
No father in household 
Employed 35 hours/week or more 
Employed less than 35 hours/week 
Seeking employment 
Not in labor force 

Time since doctor visit for routine care 
Less than 1 year 
Over 1 year 

Birth weight 
5.S pounds or less 
Greater tiian 5.5 pounds 

Child attending center-based program' 
Yes 
No 

Child ever attended center-based program' 
Yes 
No 

Attended center-based program prior to school^ 
Yes 
No 

Women, Infant, and Children program participant' 
Yes 
No 

Free meal at school or center^ 
Yes 
No 

Repeated kindergarten^ 
Yes 
No 

School Safety and Discipline (SS&D) population 
Parental educational level 

Less than high school graduate 
High school graduate or equivalent 
Some college 

Mother's employment status 
No motiier in household 
Employed 35 hours/week or more 
Employed less than 35 hours/week 
Seeking employment 
Not in labor force 

Standard estimate 

Estimate 

8.6 
33.9 
57.5 

2.4 
34.3 
20.9 
6.6 

35.8 

26.3 
63.4 

3.8 
3.2 
3.3 

84.1 
15.9 

93.3 
6.7 

52.6 
47.4 

62.9 
37.1 

73.5 
26.5 

33.8 
66.2 

35.8 
64.2 

5.7 
94.3 

9.4 
32.7 
57.9 

3.5 
46.2 
20.3 
4.5 

25.5 

Standard 
error 

0.3 
0.8 
0.7 

0.2 
0.5 
0.5 
0.4 
0.6 

0.5 
0.6 
0.3 
0.3 
0.2 

0.4 
0.4 

0.3 
0.3 

0.8 
0.8 

0.8 
0.8 

0.5 
0.5 

1.0 
1.0 

0.6 
0.6 

0.4 
0.4 

0.5 
0.6 
0.5 

0.2 
0.5 
0.5 
0.3 
0.5 

Estimated reduction in 

Scheme 
Al 

-1.7 
0.4 
1.3 

-0.1 
0.5 

-0.1 
0.0 

-0.4 

-0.4 
0.3 
0.0 
0.0 
0.1 

0.4 
-0.4 

-0.1 
0.1 

0.9 
-0.9 

0.5 
-0.5 

0.6 
-0.6 

-0.6 
0.6 

-0.9 
0.9 

-0.3 
0.3 

-1.2 
0.3 
0.9 

0.0 
0.0 
0.1 

-0.2 
0.0 

Scheme 
A2 

-1.9 
0.3 
1.6 

-0.1 
0.8 

-0.2 
-0.1 
-0.3 

-0.6 
0.5 

-0.1 
0.0 
0.2 

0.4 
-0.5 

0.0 
0.0 

0.3 
-0.3 

0.3 
-0.3 

0.7 
-0.7 

-0.1 
0.1 

-1.1 
1.1 

-0.5 
0.5 

-1.3 
0.0 
1.3 

0.0 
0.1 
0.0 

-0.2 
0.1 

Scheme 
Bl 

0.1 
-0.7 

0.6 

-0.1 
0.2 
0.0 

-0.1 
0.0 

0.0 
0.1 
0.0 

-0.1 
0.0 

0.2 
-0.2 

0.0 
0.0 

0.8 
-0.8 

0.4 
-0.4 

0.5 
-0.5 

-0.8 
0.8 

-0.5 
0.5 

-0.2 
0.2 

-0.3 
-0.2 

0.5 

0.0 
-0.1 

0.0 
-0.2 

0.2 

bias 

Scheme 
B2 

0.1 
-1.0 

0.9 

-0.1 
0.5 

-0.2 
-0.1 

0.0 

-0.1 
0.2 
0.1 

-0.2 
0.1 

0.1 
-0.1 

0.1 
-0.1 

0.6 
-0.6 

0.3 
-0.3 

0.6 
-0.6 

-0.7 
0.7 

-0.5 
0.5 

-0.2 
0.2 

-0.6 
-0.6 

1.1 

0.0 
0.1 

-0.1 
-0.2 

0.2 

Scheme 
Al 

-5.7 
0.5 
1.9 

-0.5 
1.0 

-0.2 
0.0 

-0.7 

-0.8 
0.5 
0.0 
0.0 
0.5 

1.0 
-1.0 

-0.3 
0.3 

1.1 
-1.1 

0.6 
-0.6 

1.2 
-1.2 

-0.6 
0.6 

-1.5 
1.5 

-0.8 
0.7 

-2.4 
0.5 
1.8 

0.0 
0.0 
0.2 

-0.7 
0.0 

Bias ratio 

Scheme 
A2 

-6.3 
0.4 
2.3 

-0.5 
1.6 

-0.4 
-0.3 
-0.5 

-1.2 
0.8 

-0.3 
0.0 
1.0 

1.0 
-1.3 

0.0 
0.0 

0.4 
-0.4 

0.4 
-0.4 

1.4 
-1.4 

-0.1 
0.1 

-1.8 
1.8 

-1.3 
1.3 

-2.6 
0.0 
2.6 

0.0 
0.2 
0.0 

-0.7 
0.2 

Scheme 
Bl 

0.3 
-0.9 

0.9 

-0.5 
0.4 
0.0 

-0.3 
0.0 

0.0 
0.2 
0.0 

-0.3 
0.0 

0.5 
-0.5 

0.0 
0.0 

1.0 
-1.0 

0.5 
-0.5 

1.0 
-1.0 

-0.8 
0.8 

-0.8 
0.8 

-0.5 
0.5 

-0.6 
-0.3 

1.0 

0.0 
-0.2 

0.0 
-0.7 

0.4 

Scheme 
82 

0.3 
-1.3 

1.3 

-0.5 
1.0 

-0.4 
-0.3 

0.0 

-0.2 
0.3 
0.3 

-0.7 
0.5 

0.2 
-0.2 

0.3 
-0.3 

0.8 
-0.8 

0.4 
-0.4 

1.2 
-1.2 

-0.7 
0.7 

-0.8 
0.8 

-0.5 
0.5 

-1.2 
-1.0 

2.2 

0.0 
0.2 

-0.2 
-0.7 

0.4 
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Table 4 
Estimated Reduction in Bias and Bias Ratio for Selected Characteristics of the NHES:93 - Concluded 

Characteristic 

Father's employment status 
No father in household 
Employed 35 hours/week or more 
Employed less than 35 hour,s/week 
Seeking employment 
Not in labor force 

School control 
Public 
Private 

Visitors required to sign in at school 
Yes 
No 

Had drug or alcohol ed program this year 
Yes 
No 

Students in fighting gangs at schoof 
Yes 
No 

Ease of obtaining marijuana at schoof 
Very or fairly easy 
Hard 
Nearly impossible 

Fear of incident of crime at school 
None 
Fear of theft or robber/ 
Fear of bullying or assault' 
Fear of two or more types of incidents' 

Knowledge of crime at school 
None 
Fear of theft or robbery' 
Fear of bullying or assault' 
Fear of two or more types of incidents' 

Victimization by crime 
Not victimized 
Victim of theft or robbery' 
Victim of bulling or assault' 
Victim of two or more types of incidents' 

Witnessed crime at school 
None 
Witnessed robbery' 
Witnessed bulling or assault' 
Witnessed two or more types of incidents 

Standard estimate 

Estimate 

26.8 
63.2 

3.1 
2.6 
4.3 

91.2 
8.8 

79.9 
20.1 

68.5 
31.5 

22.3 
77.7 

39.2 
29.7 
31.1 

66.1 
11.9 
8.6 

13.3 

38.7 
14.1 
15.6 
31.6 

73.0 
10.9 
8.9 
7.2 

63.8 
0.6 

24.1 
11.4 

Standard 
error 

0.6 
0.5 
0.2 
0.2 
0.3 

0.3 
0.3 

0.5 
0.5 

0.7 
0.7 

0.5 
0.5 

0.6 
0.5 
0.6 

0.5 
0.5 
0.3 
0,5 

0.6 
0.5 
0.4 
0.6 

0.5 
0.3 
0.3 
0.3 

0.8 
0.1 
0.8 
0.4 

Estimated reduction in 

Scheme 
Al 

-0.2 
0.6 

-0.2 
-0.2 
-0.1 

-0.1 
0.1 

0.1 
-0.1 

0.6 
-0.6 

-0.3 
0.3 

-0.2 
0.1 
0.1 

0.0 
-0.1 
-0.1 

0.1 

0.2 
0.2 

-0.5 
0.1 

0.3 
-0.2 
-0.1 

0.0 

0.2 
0.0 

-0.3 
0.0 

Scheme 
A2 

-0.2 
0.9 

-0.2 
-0.3 
-0.1 

-0.1 
0.1 

0.4 
-0.4 

0.8 
-0.8 

-0.4 
0.4 

-0.3 
0.1 
0.1 

0.0 
-0.2 
-0.1 

0.3 

0.1 
0.3 

-0.4 
0.0 

0.2 
-0.1 

0.0 
0.0 

0.2 
0.0 

-0.3 
0.1 

Scheme 
Bl 

-0.1 
0.6 

-0.2 
-0.2 
-0.1 

-0.1 
0.1 

0.0 
0.0 

0.7 
-0.7 

-0.3 
0.3 

-0.2 
0.2 
0.0 

0.0 
0.0 

-0.1 
0.1 

0.2 
0.2 

-0.4 
0.0 

0.3 
-0.1 
-0.2 

0.0 

0.2 
0.0 

-0.3 
0.0 

)ias 

Scheme 
B2 

-0.2 
0.8 

-0.2 
-0.3 
-0.1 

-0.1 
0.1 

0.2 
-0.2 

0.9 
-0.9 

-0.5 
0.5 

-0.3 
0.2 
0.1 

0.0 
-0.2 
-0.1 

0.2 

0.1 
0.3 

-0.4 
0.0 

0.2 
0.0 

-0.1 
-0.1 

0.2 
0.0 

-0.3 
0.0 

Scheme 
Al 

-0.3 
1.2 

-1.0 
-1.0 
-0.3 

-0.3 
0.3 

0.2 
-0.2 

0.9 
-0.9 

-0.6 
0.6 

-0.3 
0.2 
0.2 

0.0 
-0.2 
-0.3 

0.2 

0.3 
0.4 

-1.3 
0.2 

0.6 
-0.7 
-0.3 

0.0 

0.2 
0.0 

-0.4 
0.0 

Bias ratio 

Scheme 
A2 

-0.3 
1.8 

-1,0 
-1,5 
-0.3 

-0,3 
0,3 

0.8 
-0.8 

1,1 
-1,1 

-0,8 
0.8 

-0,5 
0,2 
0.2 

0.0 
-0.4 
-0,3 

0,6 

0.2 
0.6 

-1,0 
0,0 

0,4 
-0.3 

0.0 
0,0 

0.2 
0,0 

-0,4 
0.2 

Scheme 
Bl 

-0.2 
1,2 

-1,0 
-1,0 
-0.3 

-0.3 
0,3 

0.0 
0,0 

1.0 
-1.0 

-0,6 
0.6 

-0.3 
0.4 
0,0 

0,0 
0,0 

-0,3 
0.2 

0.3 
0.4 

-1,0 
0,0 

0.6 
-0.3 
-0,7 

0,0 

0,2 
0,0 

-0,4 
0,0 

Scheme 
B2 

-0.3 
1.6 

-1.0 
-1,5 
-0,3 

-0,3 
0,3 

0,4 
-0.4 

1.3 
-1.3 

-1,0 
1,0 

-0,5 
0,4 
0.2 

0.0 
-0.4 
-0.3 

0,4 

0.2 
0.6 

-1.0 
0.0 

0,4 
0,0 

-0,3 
-0,3 

0.2 
0,0 

-0,4 
0.0 

' Applies to preschoolers only, 
^ Applies to all children except preschoolers. 
' Applies to children in primary school only. 
" Applies to students in grades 6 through 12 only. 
' For the fear of incident, knowledge of crime, and victimized by crime variables, the second response category is used if either theft or robbery was reported 

but not both, the third response category is used if either bullying or assault was reported but not both. 
' This response category is used if either bullying or assault was reported, but not both, was reported. 
Note: Percents may not add to 100 because of rounding. 
Source: U.S. Department of Education, National Center for Education Statistics, National Household Education Survey, spring 1993, 
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where p, is the estimated proportion under the standard 
approach and fe„ is the reduction in bias under scheme a. 
Because of the high correlation in flie estimates of tiie bias 
from the four adjustment schemes, only the mean square 
errors for scheme Al were computed. In Brick et al. (1996), 
tiie estimates using otiier schemes are shown to have 
negligible effects. 

The mean square errors of the adjusted estimates are now 
contiasted with the variabiUty in the standard NHES:93 
estimates. The variance increase from adjusting the weights 
using flie telephone service interruption data was expressed as 
a V7F in table 3. Multiplying the variance estimates of the 
standard estimates by the appropriate adjustment factor yields 
an approximate variance for die adjusted (presumably 
unbiased) estimates which are then compared to the mean 
square error of flie standard estimates. 

To aid in comparing tiie weighting procedures, ratios of the 
variance of the adjusted estimate to the mean square error for 
the standard estimate were tabulated (see Brick et al. 1996). 
The ratio is caUed the mean square ratio and can be written as 

140.0 

msx^iP) 
100 X relativeV7F. x var [P:) 

mse^i(p) 
(6) 

Note that the mean square error is derived using the bias 
estimated from scheme Al only, but it is used to compute the 
mean square ratios for all four schemes. As noted above, this 
simpUfication does not have much effect on the mean square 
ratios because the bias estimates are approximately the same 
across schemes. 

The mean square ratios include contributions from tiie bias 
(in the mean square error estimates) and the variance (m the 
VIF). When the mean square ratio is 100, the variance of the 
adjusted estimate is exactiy equal to the mean square error of 
the biased, standard estimate. A ratio less than 100 indicates 
that the bias reduction of the adjustment is greater than the 
variance increase that comes with it. A mean square ratio over 
100 means that the variance increase associated with the 
adjustment is greater than the bias reduction. 

Figures 4 and 5 graphically present the msr for the two 
component surveys using scheme Al. In addition. Table 5 
shows summary statistics for the msr for all four adjustment 
schemes. The distributions of mean square ratios for both 
components are very similar with the mean square ratios 
sUghtiy lower for tiie SR component. The medians for 
schemes Al and Bl (those based on interruptions of one 
week or more) are near the break-even point of 100. The 
means for these schemes are close to 90 and the figures 
confirm tiiat flie difference between the mean and medians is 
due to the skewed distributions of the mean square ratios. 

A stiiking feature of the distributions of the mean square 
ratios for schemes Al and Bl is the size of the ratios at the 
extremes of the distribution. The maximum mean square ratios 
for botii components is 120, whUe some ratios are as small 
as 26. TTiis means the maximum increase in the mean square 
error of the estimates is 20 percent, while the reductions in 
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Figure 4. Estimated mean square ratios for selected School 
Readiness items (scheme Al) 
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Figure 5. Estimated mean square ratios for selected School 
Safety and Discipline items (scheme Al) 

mean square error for a number of other estimates are quite 
large. Thus, the penalty associated with adjusting even when 
the estimate is not biased is modest, but the benefits of 
adjusting when it is needed are impressive. 

The distributions for the mean square ratios for schemes 
Al and Bl are very similar, and the choice of which of these 
schemes should be used may be determined by nonstatistical 
issues, such as availabUity of data and the other types of 
adjustments required in the survey. The mean square ratios 
show that the adjusted weights reduce the mean square error 
for about half the estimates considered below those derived 
from the standard weights. The distiibutions of the mean 
square ratios for schemes A2 and B2 (those based on 
interruptions of 1 month or more) have medians and means 
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Table 5 
Summaries of Distribution of Mean Square Ratios for Selected 

Characteristics of School Readiness and School 
Safety and Discipline Components 

Adjustment scheme 

School Readiness 
Mean 
Median 
Minimum 
Maximum 

School Safety and Discipline 
Mean 
Median 
Minimum 
Maximum 

Al 

89.8 
96.0 
27.0 

120.0 

93.3 
100.8 
26.4 

112.0 

A2 

101.0 
108.0 
30.3 

135.0 

104.9 
113.4 
29.7 

126.0 

Bl 

86.8 
92.8 
26.1 

116.0 

92.2 
99.9 
26.2 

111.0 

B2 

94.2 
100.8 
28.3 

126.0 

103.9 
112.5 
29.5 

125.0 

Source: U.S. Department of Education, National Center for Education 
Statistics, National Household Education Survey, spring 1993. 

that are greater flian 100. Essentially, these mean square ratios 
are shifted upward when compared wifli those of schemes Al 
and B1, and are not recommended. 

5. CONCLUSIONS 

If the percentage of the target population living in non-
telephone households is relatively large and the characteristics 
of those persons are different from those who Uve in 
telephone households, then the estimates may be susceptible 
to significant coverage bias. One method of addressing this 
problem without resorting to other modes of data coUection 
is to adjust the weights to reduce the coverage bias. In this 
study, the weights for persons in households reporting an 
interruption in telephone service were increased to account 
for those without telephones. 

The bias reduction estimates conqiuted under the assumed 
model showed that the coverage adjustments for the SR 
component improved some of the estimates substantially, and 
did not do much harm to any statistics. The bias reduction 
estimates from tiie SS&D component, on the other hand, were 
not as substantively important. The adjustments reduced bias 
for both conqionents, but they also increased the variabiUty of 
the estimates. The distributions of the mean square ratios 
show that about half the estimates could be improved using 
the telephone service interruption adjustments. Furthermore, 
even for those estimates that were less accurate due to the 
variance increases associated with flie differential weights, the 
magnitude of the increases were not large. In other words, the 
penalty for adjusting when it did not reduce the coverage bias 
was not very great. These findings suggest that the 
adjustments should be seriously considered. 

The altemative weighting schemes performed differenfly 
with respect to the mean square ratios. The schemes based on 

interruptions of telephone service of one week or more were 
better than the schemes based on interruptions of one month 
or more. The bias adjustments resulting from using 
educational attainment by race/ethnicity categories were 
roughly equivalent to those using tenure by race/ethnicity. 

The size of the sample is a relevant factor that should be 
taken into account when evaluating the use of the telephone 
service mterruption adjustment. Bias ratios increase with the 
san^ile size because the bias is not affected whUe the sampling 
error of the estimate (the denominator of the bias ratio) 
decreases. Thus, the adjustments shoitid be more beneficial in 
surveys with large san^ile sizes where the bias ratios might be 
expected to be large. 

While tiie results of flus shady suggest tiiat flie adjustments 
could be useful for many estimates from telephone surveys, 
confirmation is needed before the adjustments are recom
mended. As discussed earlier, the estimates of the mean 
square errors in this study were based on the assumption that 
the adjusted estimates eliminated the bias of the estimates. 
This model assumption could not be verified because of the 
lack of benchmark data for comparison. The assumed model 
is very beneficial to flie adjusted estimates in the sense that it 
results in lower bounds on the mean square errors for the 
adjusted estimates. Thus, flie findings of this smdy should be 
taken as an indication that adjustment using data on 
interruptions in telephone service is a feasible method, but 
requires further study and evaluation. 

The questions about interruptions in telephone service 
were recenfly added to flie National Health Interview Survey, 
a survey conducted by the Census Bureau for the National 
Center for Health Statistics. The findings from tiiis survey 
should be very useful in evaluating this method because the 
survey covers households without telephones by in-person 
interviews, eliminating the need for the critical model 
assumption used in this study. 
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Optimal Sample Redesign Under GREG in Skewed 
Populations With Application 

GURUPDESH S. PANDHER' 

ABSTRACT 

Within a survey re-engineering context, the combined methodology developed in the paper addresses the problem of finding 
the minimal sample size for the generalized regression estimator in skewed survey populations (e.g., business, institutional, 
agriculture populations). Three components necessary in identifying an efficient sample redesign strategy involve 
i) constructing an efficient partitioning between the "take-all" and "sampled" groups, ii) identifying an efficient sample 
selection scheme, and iii) finding the minimal sample size required to meet the desired precision constraint(s). A scheme 
named tiie 'Transfer Algorithm" is devised to address tiie first issue (Pandher 1995) and is integrated with the otiier two 
components to arrive at a combined iterative procedure tiiat converges to a globally minimal sample size and population 
partitioning under the imposed precision constraint. An equivalence result is obtained allowing the solution to the proposed 
algorithm to be altematively determined in terms of simple quantities computable directiy from the population auxiliary 
data. Results from the application of the proposed sample redesign metiiodology to the Local Government Survey in Ontario 
are reported. A 52% reduction in the total sample size is achieved for the regression estimator of the total at a minimum 
coefficient of variation of 2%. 

KEY WORDS: Minimal sample size; Optimal sample selection; Precision consu-aint; Sampled group; Take-all group. 

1. INTRODUCTION 

In many survey situations additional information is 
available on all population units before the survey is 
undertaken. This auxUiary information is frequentiy useful in 
devising a more efficient sample design and estimation 
sttategy. In a survey redesign context, the most optimal 
stiategy holds tiie promise of offering the largest reduction in 
survey costs by requiring the lowest sample size necessary to 
meet the desired precision constraint on the estimates. In 
repeat surveys of skewed populations, an efficient sample 
design and estimation stiategy may be realized by exploiting 
a) the correlation structure between the size-based auxiliary 
information x {e.g., population of municipality, employees 
in a firm, farm acreage) and the siuvey variables y {e.g., 
municipality expenditures, value of shipments, farm yield) 
and b) the variance relationship between the survey variable 
and the auxiUary size information. 

In tills paper, a comprehensive sample redesign meth
odology is developed for skewed populations with tiie 
ultimate objective of bringing about maximal reductions in 
the current sample size while ensuring a desired level of 
precision for tiie generalized regression estimator of the total. 
This work was motivated by tiie redesign of the Local 
Government Finance Survey (LGFS) conducted by Statistics 
Canada's PubUc Institutions Division. Financial information 
{e.g., revenues, expenditures, debt, etc.) obtained from local 
government units is used in tiie estimation and publication of 
financial statistics on a provincial and national basis. 

Altiiough the work presented in this paper is motivated by a 
concrete application, the sample design methodology devised 
appUes generally to all surveys based on skewed populations 
{e.g., agricultural, business, and institutional surveys). 

In identifying an efficient new sample design, the overall 
methodology addresses and integrates tiie solution to three 
problems: 

1) Creation of the "Take-all" and "Sampled Groups" 

Since the variability of the survey response ŷ  tends to 
increase with the size of the unit x^, it is common in skewed 
populations to sample the largest J:-valued units with certainty 
in order to improve tiie efficiency of tiie population 
estimators. The demarcation of the population into the non-
overlapping "take-all" U^ = (l,..., NJ and "sampled" groups 
f/(,= {1, ...,Ni,} is obtained tiirough a new scheme named tiie 
"Transfer Algorithm". 

2) Choosing an Efficient Sample Selection Scheme 

Let/7(j; X) = {pj{sj, p^{s^; X)) represent tiie complete sample 
design where the sample design parameter X determines the 
type of sample selection implemented in the sampled group U^. 
The sample inclusion probabilities due to Pi,{s^; X) may be 

A/2 i/2. expressed as n,^{X) =n^{x^ /y^y Xj ), <:e l/^. Note tiiat tiie 
parameter X defines a broad class of sample designs witii SRS 
{X = 0) and pps {X = 2) as particular cases. Design optimality 
results (Godambe and Joshi 1965) allow tiie identification of 
tiie most optimal value for the sample design parameter X. 

' Gurupdesh S. Pandher, Survey Analysis and Metiiods Development Section, Household Survey Metiiods Division, Methodology Branch, Statistics Canada, 
16tii Floor, R.H. Coats Building, Ottawa, Ontario, Canada, KlA 0T6. 
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3) Minimal Sample Size Determination 

The fliird con^onent of the overaU mefliodology is aimed 
at finding the minimal sample size required to meet the 
imposed precision constraints for the estimator. 

The combined procedure devised integrates these 
components to aUow a new globally minimal sample size and 
optimal population partitioning to be determined under a 
flexible range of sample selection stiategies {e.g., SRS, pps, 
generalized pps). Firstiy, the "Transfer Algorithm" is 
proposed which finds an optimal population allocation 
between the take-all and sampled population groups in the 
sense of minimizing the variance of the generalized 
regression estimator (GREG) of the total. Desirable math
ematical properties of this algorithm such as existence and 
optimality of solution along with an equivalence result were 
estabhshed in Pandher (1995). The equivalence result allows 
the solution to be determined in terms of simple quantities 
computable directiy from the population auxiUary data. 

The Transfer Algorithm in then synthesized iteratively 
with the sample size determination step to find the minimal 
sample size needed to satisfy the imposed precision 
constiaints through an iterative procedure. The combined 
methodology produces a sequence of sample sizes and 
population partitionings which converge to a globaUy optimal 
solution where further reductions in the sample size are not 
possible given the imposed precision constraint. An 
application of the procedure is given for Ontario using 
provincial data from the Local Government Finance Survey. 

Lavall6e and Hidu-oglou (1988), Hidu-oglou and Srinatii 
(1993) (subsequentiy denoted as L&H and H&S, respec
tively), and Glasser (1962) have proposed altemative 
methodologies for constructing the take-all and sampled 
groups witiiin the context of stiatified SRS design. The 
proposed approach differs from other methods in three 
respects. Firstiy, the population demarcation is obtained under 
a flexible range of sample selection sti-ategies {e.g., SRS, pps, 
generahzed pps). Secondly, the criterion for constructing the 
population demarcation is based on minimizing the variance 
of the GREG estimator of tiie total under the desUed sample 
selection sttategy (Glasser and L&H base theu- allocation on 
minimizing the within-sttatum sum-of-squares x; H&S use flie 
total regression sum-of-squares under a regression model with 
a compulsory intercept assuming SRS). Thirdly, the proposed 
methodology explicitiy captures the size-induced hete
roscedasticity present in skewed survey populations which 
has been ignored in other frameworks. 

Lastiy, it is useful to qualify the sense in which the term 
"optimal" is used. Since, the redesign uses auxiUary infor
mation from a previous cycle of the survey to estimate the 
design parameters, there is a level of sub-optimality 
inttoduced in the redesign methodology by this lag. But as a 
practical matter, using tiie data from tiie most recent survey is 
the best that can be done. Once the design parameters have 
been estimated or are known however, the cut-offs and 
sample sizes required to achieve tiie desired precision yield 
the lowest anticipated design variance given that the estimates 

are tioie (or close to it). It is therefore, in this sense that the 
word "optimal" is used. 

2. SURVEY FRAMEWORK 

The model assisted survey framework is adopted for the 
skewed population whose auxihary and survey characteristics 
are denoted by Cy = {(;ci, y,),..., (%, y^)]- In this framework, 
underlying the class of generalized regression estimators for 
the population total are regression models (Samdal 1992, 
p. 255) exploiting flie correlation between tiie survey variables y 
and the auxUiary covariates x. Diiferent model assumptions 
on flie deterministic and stochastic components of the under
lying model lead to different regression estimators for flie pop
ulation total. For example, a ratio-form heteroscedastic model 

yk = ^h^^k' (2.1) 

with the error €^^-(0,0^) and the variance stiiicture given 
by Oj = c x^ (y is the heteroscedasticity parameter) leads to 
the foUowing GREG estimator: 

.» = E . . « * E ^ ^ (2.2) 

where B = (Ei>'t/'^t)/(Zj^t/^t) is the sample-based prob
abUity weighted estimate of the population regression para
meter B. 

Given this estimation framework, the total across both 
grotips r = tg + Ij, is estimated by t =t^+ tg,^ where t^ = 
ta- Si/ yk ^iT^<^^ aU units are sampled in the take-all group and 
ig^ is the GREG estimator under the relevant model. The 
anticipated variance of tg^ (defined as tiie variance witii 
respect to both the design and the model, denoted p and 5, 
respectively) is expressible as 

^M-Ej^M^ E - 1 o k-
keU, 

(2.3) 

Furthermore, if o^ depends on the auxiliary measure x̂  
according to the formulation o^ = c;c/ (2.4), then design 
optimality (Godambe and Joshi 1965) impUes fliat flie optimal 
sample inclusion probabilities are ''^l{y)'^x^ , keU^. 
Therefore, the sample design Ph{s,,,X = y) in the sampled 
sub-population, defining the first order inclusion probabUities 
^it(Y) ="(^jt''^/Zt/^/'^)''^^^(,' minimizes the anticipated 
variance V{tgi). 

In the model assisted framework used in this paper, the 
auxiUary measure X/^ is assumed to be a scalar. As noted by a 
referee, the more general case where Xi, is a vector could be 
handled by fitting the appropriate parametric relationship 
al =f{xi^^,...,x.)and using the estimated 6^ in Ueu of AJJ in 
defining tiie inclusion probabilities. The approach for the 
multivariate x^ seems inhiitively sound and is mentioned here 
for completeness but requires further study and investigation. 



Survey Methodology, December 1996 201 

Three metiiods for estimating the heteroscedasticity 
parameter y from past survey data called the "Least Squares 
Method", the "Maximum Likelihood Method", and the 
"Graphical Mefliod" are described m Appendix A of Pandher 
(1995). 

3. TRANSFER ALGORITHM 

In this section, an iterative scheme named the "Transfer 
Algorithm" is proposed to determine the optimal demarcation 
between flie take-all and sampled sub-populations under the 
sample design p{s;X). The criterion for this construction is 
based on finding a population partitioning minimizing the 
estimated anticipated variance of r^ .̂ An equivalence result 
from Pandher (1995) is used to find an altemative and sinpler 
method of solution based entirely on quantities defined on the 
auxUiary population data. 

The proposed scheme for constiucting the take-all and 
sampled sub-populations, [/„ and U,,, respectively, is based on 
the following idea. Initially, place all population units in the 
sampled group, labeUing it U^ (the superscript / represents 
the iteration cycle). Hence, the take-all group is an empty set 
U^ =[z]. The resulting population and sample size 

(0) .C) m allocation at Z = 0 is given by N^"' = 0, n^"' = 0, Â "̂' = N, 
and ifc -"o where n^ is the current sample size. 

In a repeat survey setting, the variances o^ in (2.3) can be 
empttically modeUed using the relation o^^ = c x^ (2.4) where 
Y and c are estimated from previous sample data as mentioned 
before. Using the estimated version of (2.4) in (2.3) yields the 
following estimator for V^'^{tgi^; -): 

xf),; .1 fjV) (I). 
V {tg,X,N^ ,«ft ) 

keUl' 

1 

[ n^{X) 
1 ex x,.1 (3.1) 

where the largest / A:-valued units have been removed from 
Ul . Note that X is used here to parameterize the sample 
design to allow greater generality when X * y. 

In the iterative algorithm, we start initially with all 
population units placed in U^ . Then for each iteration 
/, 0 ^ / < n, the largest / + 1 j:-valued unit x,„ ._,, is ttansferred 
from UI to t/^ and the difference 

^{[)=V^'*^\tg^;X,N-l- l,n-l-l) 

-V^'\fg^;X,N-l,n-l) (3.2) 

is computed. Negative values of A (/) mean that the ttansfer 
of the unit corresponding to the ordered value %.,.]) lead to 
a decrease in the variance. Moreover, such ttansfers continue 
to result in a reduction in the variance of f̂^ as long as 
A(/)<0. In general, for any iteration /, the relationship 
between tiie population and sample size allocations is 
described by the following relations: NP = N-l, nP = n -I, 

(l) (l) o o 

and NJ=nJ=l. These relations hold because the overall 
population and sample sizes must remain constant 
{N = N^^ Nf and n = « f + nf) for all iterations. 

The solution is also consttained by the condition 
itj(X) < 1, ^e Ul{l'). Let V (A,), 0 ^ /* < n, represent the 
solution to the Transfer Algorithm. Given the discussion 
above, the solution to the Transfer Algorithm under the 
sample design p{s\X) may be formulated as 

/ *(A,) = minj/: [TI(^.Q(A,) < 1] and 

A(0 = VV^'*'\l^^,X) - v"'(r;,;X)] ^ 0.0 s /<n}.(3.3) 

The optimal population allocation to the take-all group 
(/̂ *(/ *) is then given by the population units coinciding with 
the /* ordered units ttansferred to flie take-all auxiliary vector 
•̂ o* = (^(/v-/-)'^(/v-/-.i). ••.,A:(JV)); correspondingly flie sampled 
group t/j (/ *) consists of flie units corresponding to X^ = 

(^(i)'^(2)'-'V-r-i))- ,,, . 
Transferring a unit from U^ to t/^ causes two opposite 

effects on the variance V^\t„.;-). The reduction in the 
population size (Â ^ = Â^ 1) has the impact of decreasing 
the variance, while flie equivalent reduction in the sample size 
(« 

(/+i) 
b ^ 

.(0 nl - I) has the reverse effect of increasing 
V^\tg^^•,•). Somewhere in this process, a critical value 
/*, 0 ^ /* < n, exists which gives the optimal breakdown 
{f/g*(/*), l/j(/*)}• Moreover, in Theorem 3 of Pandher 
(1995), it is shown that as long as the conditions 
(^(^0 - ^(^/-i)) ^ 0 and {xl^}^-x^^^l,^ a 0,0 ^ /< n, hold, 
a solution to the Transfer Algorithm exists and that the system 
remains stable (optimal) upon reaching / *. StabUity further 
inqilies that the solution is optimal since the conditions leading 
to the solution do not change in the range I' <. l<n . These 
two properties may be more precisely defined as follows: 

Existence: 3l',0<.l'<n, such tiiat V"*-̂ '* - V<'*' ̂  0 

Stability: If V"'"" - V"*' ^ 0 , tiien V"^ " - V" ^ 0 
and Ti|jJ.̂  < 1 for 0 ^ /* < / < n. 

An exan^le of the appUcation of the Transfer Algorithm to 
the LGF stu-vey population of local municipalities in Ontario 
(with Â  = 793, n = 108, y = 2, and A, = 1) is given in Figure 1. 
The curves are plotted for / > 8 because in the interval 
0 < Z ^ 8, the first condition of (3.3), namely [T^^I^^IXX) < 1], 
is not satisfied. The minimum value of V {tg^) is achieved 
atZ* = 57where A(Z*) = V = i/(f"*i). v(f>^o. 

100 

Figure 1. Changes in variance of regression estimator 
{X = 1): A(Z) = V"""(f; 1, TV - Z - 1, n - Z - 1) 
V<''(f;l,ZV-Z,n-Z) 
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Theorem 2 from flie complete paper is an important result 
which allows the solution to the Transfer Algorithm to be 
equivalentiy expressed in terms of simpler quantities based on 
the auxiUary data. A brief sketch of the development of this 
theorem is given in the Appendix. 

Theorem 2. Equivalent Solution to the Transfer 
Algorithm 

The solution l'{X) to tiie Transfer Algoritiim stated in (3.3) 
in terms of V*" - V""'* and T^[j!/-,-,{X) may also be eqiuvalentiy 
expressed as 

minjZ: n - Z s R{l;y - A/2), 0 ^ Z< n}, 0 s A < y 

Z*(A) ='{niin{Z:«- Z S / ? ( Z ; Y / 2 ) , 0 < Z<n},A, = Y 

min [l:n-I <R{l;X/2),0il<n],y<Xi2y 

N-l y->J2,^y-m 
k=l X(k) Ix^^"' and R{l;XI2) where R{l;y - XI2) = Y, 

Y!k=i^^l^^-D define the critical values. 
This use of this theorem to find the optimal population 

allocation is iUusttated graphically in Figure 2 (Ontario data). 
In this case, 0 <.X<y, and the solution is determined by the 
behaviour of the functions R{1; y - A/2) (the lower curve in 
the graph) and n-l. The same solution Z* = 57 is obtained as 
before. 

(0 10 100 120 
/ (units translerred) 

Figure 2. Use of R{.l; y - XII), R{l;XI2), and (w - /) to consttuct 
optimal take-all/sampled groups (Ontario) 

4. SAMPLE SIZE DETERMINATION 
AND COMBINED 

ITERATIVE PROCEDURE 

Given a sample design p(5, A), O s A < 2Y, with sample size 
n, the Transfer Algorithm yields an optimal constmction of the 
take-all and sampled sub-populations, U^{1') and U^{1 *), 
respectively. Next, an expression for finding the minimal 
sample size is obtained which meets the imposed precision 
consttaint - expressed in terms of the coefficient of variation 
CV^. The sample determination step is then integrated with 
the Transfer Algorithm to develop a combined procedm-e 
which allows flie survey designer to find the globally minimal 
sample size and optimal population partitioning. 

4.1 Expression for New Sample Size 

Let q represent flie iteration cycle for the combined proce-
diue and n* = «* + n / denote the total minimal sample size 
required to satisfy the precision consttaint. Given the sample 
design p {s,X,l*{X,n )), current sample size n^, and the 
population partitioning {U'{l*),U^^{l*)], the precision 
consttaint for ig = t^ + tg^ may be stated formally as 

CV > 
nun 

C('«fc;^'^-C'^-0 (4.1) 

Solving this inequality for ni gives the foUowing expression 
for the minimal sample size needed in the sampled group 
Ui{l') to meet the precision consttaint: 

"bq «,-',(«,) 
X(Z;,A/2)X(Z;,-?-A/2)c 

'7cv̂ ^̂ (C.?)̂ " 
(4.2) 

If'' <i-'>J2 

1 •*(*) 
where X{11,XI2) = Y!1'JI'x^, X{l^,^-Xl2) 
and tg may be estimated from past survey data corresponding 
to the period of the auxiUary information. The total new 
minimal san^jle size reqiured to meet the precision consttaint 
is then given by 

• "ag -̂  " i . ',(V "br (4.3) 

4.2 Combined Sample Redesign Methodology 

Next, note that the solution to the Transfer Algorithm Z' 
depends on the ciurent total sample size: 1^{X)= I*(A,n ). 
Once the new minimal sample sizen* is determined, me 
existing partitioning {U'jd^q). U^^{1^)} which was optimal at 
n^ is no longer optimal at the new minimal sample size n^ 
because Z*(A,n^*)̂  Z*(A,n ) if n^kn^. Therefore, letting 
n i = n*, a new population partitioning from the Transfer 
Algoritiim based on Z^*,i(A,n^ ,̂), given by {[/„',,i(Z,*,i), 
t/j' j(Z * , )} , is required to optimize the constmction of 
the take-all and sampled sub-populations. Next, applying 
(4.2) over Ub,q*i{lq^i) gives a new minimal sample size 
ŵ '+i = ',*+i(no+i)"̂ "i,*,+i requtted to achieve the desired 
precision CV,^. Proceeding in this fashion, the combined 
scheme produces a sequence of population partitionings, 
sample sizes, and sample allocations 

(Z \X,n^), (n^ = Ẑ*, n^ = n^- Q, 

(K = C-K=^- C)-(< = C'%))' 9 = 0,1,... (4.4) 

with n J =n* = nj^ + n^^ and the initial value «„ (current 
survey sample size). The combined procedure is repeated 
until further reductions in the minimal sample size can no 
longer be achieved. This leads to the stopping mle 

q' = min{ q : n' - n' ^ 0} . (4.5) 
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The optimality of the combined procedure can be 
estabhshed using Theorem 2 and is omitted here due to space 
(see Pandher 1995). The main result is that the combined 
procedure converges to a globally optimal solution along the 
path defined by (4.4) to a point where further reductions in 
the sample size are not possible (by reconstmcting U^ and 
t/j,*) given the imposed precision consttaint. 

5. APPLICATION 

The combined sample design procedure described above 
is now applied to the redesign of the Local Government 
Finance Survey in the province of Ontario. The survey 
response y in tiiis application is the actual expenditures 
reported for sampled local government units for Ontario in 
1989. The actual estimates are prepared 30 montiis after the 
end of the siu '̂ey year from financial statements submitted by 
the local govemment units to the Department of Municipal 
Affairs (provincial). Population counts for the local 
govemment units from flie nearest census (1991) are used as 
the auxiliary variable x. The population of local-level 
municipalities for Ontario consists of a total of 793 units of 
which a sample of 108 units is currentiy taken. 

The results of applying the combined methodology to 
Ontario LGFS data are reported in Table 1. The level of 
desired precision CV^^ was set at 2% for the total regression 
estimator tg=t^-t-tg^. Using the methods of Pandher (1995), 
the best value for the heteroscedasticity parameter y in 
Ontario was determined to be ^ = 2; the corresponding pro-
portionaUty constant was estimated to be c = .0825. The near 
optimal sample design defined by A = •? {p{s; ?)) was used. 

Table 1 
Application of Combined Methodology to LGF Survey Data 

(Ontario, 1989) 

Iteration (q) 

0 
1 
2 

"» 

108 
57 
50 

Z,(^.",) 

39 
16 
12 

<<, 

39 
16 
12 

<<, 

18 
34 
38 

"«* 

57 
50 
50 

For Ontario the combined scheme stopped at iteration 
q' = 2. The globaUy optimal population partitioning between 
the take-all and sampled groups is Ng = l6 and N^=lll. 
The new minimal total sample size is n = 50 with allocations 
n^*=16 and n^=34. A total sample size reduction of 
«(, - n̂ * = 108 - 50 = 58 is achieved at flie desired CV of 2% 
for the regression estimator tg = t^ + T^̂ . 

procedure integrates the solution to the following three 
problems: i) identifying an efficient sample selection scheme, 
ii) constracting an efficient demarcation between the take-
all and sampled population groups at a given sample size, and 
iu) determining the minimal sample size requtted to meet the 
precision consttaint(s). 

The equivalence result to the Transfer Algorithm (Pandher 
1995) was used to create the take-all and sampled groups. The 
first two components were then combined with a sample size 
determination step through an iterative procedure. Under the 
stoping mle, the combined iterative procedure converges to a 
globally minimal sample size and optimal population 
partitioning. Results from the application of the proposed 
sample redesign methodology to tiie Local Govemment 
SiuAfcy in Ontario were reported. A 52% reduction in flie total 
sample size was achieved for the regression estimator of the 
total {tg = t^ + tg^) at the desu-ed precision of CV = 2%. 

ACKNOWLEDGEMENTS 

The author would like to acknowledge the support of 
Public Institutions Division for sponsoring this work and 
tiiank M.P. Singh, H. Mantel, M.S. Kovacevic, S. Wu and 
the referees for their valuable comments on earlier drafts of 
the paper. 

APPENDIX 

A brief sketch of the development behind Theorem 2 
(Equivalence Result) is given here; for technical details see 
Pandher (1995). The same paper also estabUshes flie desirable 
mathematical properties of the Transfer Algorithm such as 
existence and optimality of solution as weU as tiie optimality 
of the combined procedure. 

Using the expression for the variance of V^'\tgi^; •) given 
in (3.1), the difference V"*'' - V*" may be expressed as 

(A.l) 

where 

y"-• i )_ y O ^ , 

A{[)--

(n 

^0) 

A{D B(Z) 
- Z ) ( « - Z -

-{n-[)x 

-1) 

(N-t) 
M 

and 

N-l 

B(o=E -m 

*=! 
\k) {n-D Y-A/2 

6. CONCLUDING REMARKS 

This paper provides a comprehensive methodology for 
identifying and implementing an efficient sample design for 
recurrent surveys of skewed populations. The combined 

The condition B{[) < 0 may also be expressed as 
n - 1>R{1; y - A/2) where R{l;a) = E^j'^(^/^(^.^. Similarly, 
the condition A{1) > 0 corresponds to n - Z < R{1; A/2). All 
possible states of the system defined by the Transfer 
Algorithm are summarized in Table A. 1. 
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Table A.l 
Outcomes for V^"" - V® < 0 and V^"'^ - V<" 2 0 

in Terms of n ̂ '̂  = « - / 

Behaviour of A and B Condition on n ̂ '̂  = n - Z 

A(0>0 
B{1)<0 

A{1)<0 
B{1)>0 

R{l;y-Xtl)<n-l<R{l;Xll) 
(T.l) 

R{l\Xll)<n- l<R{l;y - Xll) 
(T3) 

V('̂ » - V» S 0 
Condition on n ̂ '̂  = n - Z 

A(0>0 
B(Z)2 0 

A(0sO 
fi(Z)sO 

n-l<. min{/J(Z;A/2), /J(/;Y - A/2)} 
(T2) 

« - / i max{/f(Z;A/2), /?(/;Y - A/2)} 
(T4) 

The first column describes the behavioiu of A{t) and B{1) 
leading to flie outcome V('"'> - V̂ '̂  < 0 and V""') - V "̂ ̂  0, 
respectively. The second column describes the equivalent 
condition in terms of n™ = n-l, R{1; y - A/2), and R{1\ A/2) 
corresponding to V^'^ - V^'"" < 0 and V^^ - V""'' s 0, 
respectively. An important condition required for the solution 
to the Transfer Algorithm Z *(A) is that T^(i^.fp>-) < I hold. It 
is easy to verify that 7i( .̂̂ (A) < 1 «=» A{1) > 0. In terms of the 
description for the Transfer Algorithm given in Table A.l, 
this condition means that the solution can occur oitiy when 
both A(Z) > 0 and B(Z) ^ 0 or, equivalentiy, when n-l 
satisfies condition (T.2). 

Table A.l completely enumerates all possible states of the 
system defined by tiie Transfer Algorithm. The correspon
dence between the intemal cell quantities (computable 
direcfly from the auxiUary data and estimated parameters) and 
the margins (A(Z), B(Z), V*'*'̂  - V '̂") represents a tautology 

which leads directiy to Theorem 2 (Equivalence Result). The 
behaviour of the system described in the table also depends 
on the sample design p{s; X) employed. The three relevant 
cases are: 

a) 0 ^ A < Y - [R{1; y - A/2) < R{1; A/2)], 

b) A = Y =- {R{1\ y - A/2) = R{1; A/2)], and 

c) Y < ^ =• {R{i\ y - ^/2) > R{1; A/2)]. 

In case a) the system starts (Z = 0) in state (T.4), moves to 
(T.l) and tiien finally rests in state (T.2); state (T.3) is 
infeasible here. The solution to the Transfer Algorithm Z*(A) 
is given by the smallest Z leading the system to move into state 
(T.2). In case b), flie system starts in state (T.4) and moves to 
(T.2); (T.l) and (T.3) do not apply Finally, in case c), flie 
ttansition pafli is from (T.4) to (T.3) to (T.2); here (T.l) is 
invalid. 
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