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In This Issue

This issue of Survey Methodology begins with a special section entitled Weighting and Estimation
which contains four papers.

The first paper in this spectal section, by Singh and Mohl, gives an overview of calibration methods
from a different perspective, with the objective of gaining a better heuristic understanding of these
methods. Deville and Sérndal presented calibration methods as minimizing the overall distance of the
final weights from the survey weights, subject to the restriction that estimates of totals of certain
covariates match known population totals. Singh and Mohl present different calibration methods as being
derived from different models for the weight adjustment factors. Computational algorithms for different
methods are provided in an appendix, and a numerical example is given to illustrate how the resulting
weight adjustment factors might vary among the different methods.

Stukel, Hidiroglou and Sérndal also investigate calibration estimators, the class of design-based point
estimators developed by Deville and Sarndal. These estimators are derived from distance functions and
allow for restricting of the final weights such that they are positive or upwardly bounded, thus avoiding
the usual problem of negative weights that arises from using the regression estimator. Through
simulation, the properties of a number of these estimators based on different distance functions are
studied; particular emphasis is given to the properties of the corresponding variance estimators,
specifically the Jackknife and the Taylor. The surprising conclusion is that the bias of both the point
estimators and the corresponding variance estimators is minimal, even under severe restricting of the final
weights.

Jayasuriya and Valliant compare three methods of deriving household weights for the Consumer
Expenditure Survey of the U.S. Bureau of Labor Statistics. Survey weights are usually calibrated to
population totals of individual level characteristics, resulting in different final weights for individuals in
the same household. The principal person method defines the final weight for the houschold to be the
same as that for a particular person in the houschold. The regression approach replaces the vector of
auxiliary variables for each individual in a houschold by the household average, resulting in identical
calibrated weights for persons in the same household. Another option is obtained by restricting the weight
adjustment factors 1o avoid extreme or negative weights. Variations on these methods are compared with
respect to the final weights and the estimated CVss for a variety of household expenditure categories.

In the final paper in the section on Weighting and Estimation, Chen and Chen consider the problem
of confidence interval estimation for a finite population average when auxiliary information is available.
Noting the earlier results of Royall and Cumberland that show that naive use of existing design-based
methods results in confidence intervals with very poor conditional coverage probabilities, they suggest
transformations of the data which improve the adherence to the underlying normality assumption and thus
improve the coverage rates. Auxiliary information is incorporated in two ways: either directly into the
inference when auxiliary information is known for each unit or through calibration with empirical
likelihood when auxiliary information is known only at the population level. Through simulation applied
to six real populations, they show that their methods perform well.

In their paper, Thompson and Fisher modify the one and two sample McNemar tests for use with
complex survey data. They then apply the modified two sample test to data from the U.S. Burcau of the
Census Current Population Survey’s Split Panel Study to test whether or not the shift to computer
assisted telephone interviewing using a redesigned questionnaire would affect the estimates of
unemployment. Results of this test are discussed and compared to other research on the effect of CATI
on unemployment estimates.

Eltinge and Jang suggest ways for evaluating the stability of estimates of variance components
(specifically within-PSU variance estimators) and other related quantities, under a complex three-stage
design. As measures, they consider a simple design-hased variance estimator of the within-PSU variance
estimator, as well as an estimated “degrees of freedom™ approach. A simulation based method permits
the assessment as to whether an observed stability measure is consistent with standard assumptions
regarding variance estimator stability. They apply the proposed methods to NHANES III data and show
that true stability properties may vary substantially across variables, and that within-PSU variance
estimators can be substantially less stable than onc would anticipate from using a simple count of
secondary units within each stratum,
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Berger discusses Chao’s plan for sequentially selecting an unequal-probability sample of fixed size
without replacement. In this context, he suggests an approximation of the second-order probabilities of
inclusion in order to obtain an approximate estimator of the variance for the Horvitz and Thompson
estimator, This variance is then compared to apprroximations given for other procedures or selection
plans. Equivalence conditions for these approximations are presented.

Cowling, Chambers, Lindsay and Parameswaran present two techniques for producing spatially
smoothed data and consider their implications in both small and large area estimation. For the small area
application, the sample weights are spatially smoothed using a modified linear regression approach,
which results in a decrease in the variance but an increase in the bias of the estimates. For the large area
application, a nonparametric regression method is used to spatially smooth the data and then the
smoothed data is mapped using a Geographic Information System package. The results of a simulation
study are presented, in which the most appropriate method and level of smoothing for use in the maps
is investigated.

Brick, Waksberg and Keeter suggest using information on interruptions of telephone service so as to
adjust the survey estimates to compensate for undercoverage bias. The data collected on telephone service
interruptions serve to reduce the bias, but at the same time the variance is likely to increase owing to the
greater variability of the sampling weights. The results obtained from a national survey show a significant
potential for reducing the mean square error of the estimates under certain conditions.

Finally, Pandher uses a model based approach to find an optimal partition of a survey population into
take-all and take-some strata. The approach assumes that there is a single variable of interest and that
probability proportional to size sampling is used in the take-some stratum. An algorithm is presented for
determining the optimal cut point between the take-all and take-some groups. A key requirement for the
algorithm is that the model expectation of the variance is a convex function of the number of units in the
take-all straturn, which depends on the model assumptions and the form of the inclusion probabilities.
The method is applied to Statistics Canada’s Local Government Finance Survey.

The Editor
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Understanding Calibration Estimators in Survey Sampling

A.C. SINGH and C.A. MOHL!

ABSTRACT

There exist well known methods due to Deville and Sémdal (1992) which adjust sampling weights to meet benchmark
constraints and range restrictions, The resulting estimators are known as calibration estimators. There also exists an carlier,
but perhaps not as well known, method due to Huang and Fuller (1978). In addition, alternative methods were developed
by Singh (1993}, who showed that similar to the result of Deville-Sérndal, all these methods are asymptotically equivalent
to the regression method. The purpose of this paper is threefold: (i) to attempt to provide a simple heuristic justification of
all calibration estimators (including both well known and not so well known) by taking a non-traditional approach; to do
this, a model (instead of the distance function) for the weight adjustment factor is first chosen and then a suitable method
of model fitting is shown to correspond to the distance minimization selution, (ii) to provide to practitioners computational
algorithms as a quick reference, and (iii) to illustrate how various methods might compare in terms of distribution of weight
adjustment factors, point estirnates, estimated precision, and computational burden by giving numerical examples based
on a real data set. Some interesting observations can be made by means of a descriptive analysis of numerical results which
indicate that while all the calibration methods seem to behave similarly to the regression method for loose bounds, they
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however seem to behave differently for tight bounds,

KEY WORDS: Benchmark constraints; Distance minimization; Non-negative weights; Range restrictions,

1. INTRODUCTION

In providing estimates from sample surveys, sampling
weights are commonly adjusted to obtain calibrated weights
in order 10 match totals or benchmark constraints (BCs) for
auxiliary variables. The methods of regression and raking are
often used for this purpose. Although these methods have
good asymptotic properties (see Deville and Sirndal 1992),
they may lead to calibrated weights with undesirable (finite
sample) properties. The regression method can give negative
weights while the raking procedure can produce very high
weights, For this reason, range restrictions (RRs) may be
imposed on the calibrated weights. It would be desirable to
have a calibration method which (i} produces calibrated
weights close to the original sampling weights; this can be
achieved via minimization of a suitable distance function
between the two sets of weights, (ii) meets BCs, and (iii)
satisfies RRs. There exist several methods in the literature for
weight adjustment under BCs and RRs, see e.g., Deville and
Sarndal (1992, henceforth referred to as DS) for recent
developments, and Huang and Fuller (1978) for earlier
developments. For a review, as well as some further work, see
Singh (1993, henceforth referred to as Singh). These methods
are iterative in nature and can be classified into two families.
Family I consists of methods which satisfy BCs after each
iteration and continue to iterate until RRs are met. Family II,
on the other hand, consists of methods which satisfy RRs
after each iteration and continue to iterate until BCs are met.

Metheds of DS belong to family IT while that of Huang-Fuller
belongs to family I. Two additional methods, one for each
family, were proposed by Singh. Using arguments similar to
DS, Singh extended the remarkable result of DS by showing
that all of the methods in families I and II are asymptotically
equivalent to the regression method.

In Section 2, a non-traditional approach is followed in
introducing each method which is expected to help in under-
standing of calibration estimators. The functional form of the
weight adjustment factor is first heuristically motivated and
later on a connection between a suitable method of madel
fitting and minimization of the distance function is made.
Alongside, computational algorithms are given as a quick
reference for practitioners. A computer program in GAUSS
software is available from the second author; sce also Singh
and Mohl (1997). In Section 3, numerical examples are pre-
sented to illustrate various methods using data from Statistics
Canada's Family Expenditure (FAMEX) survey. It is of prac-
tical interest to see how different calibration methods might
compare for a real data set. In particular, we examine by means
of a descriptive analysis the impact of RRs on the computa-
tional burden, distribution of weight adjustment factors, point
estimates and their variance. Related comparative studies on
calibration methods based on real data sets are due to Deville,
Sédmdal and Sautory (1993) and Stukel and Boyer (1993).
These studies, however, are restricted to family I methods
and are primarily concerned with the distribution of weight
adjustment factors. Finally, Section 4 contains a discussion,

! A.C. Singh, Methodology Research Advisory Group, and C.A. Mohl, Health Statistics Methods Section, Household Survey Methods Division, Statistics

Canada, Ottawa, K1A 0T6.
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2. HEURISTIC JUSTIFICATION OF
CALIBRATION ESTIMATORS

We will use the following notation. Let n, N denote respec-
tively the sample size and the population size. Let &, denote
the initial or h-weight (used in the expansion or Horvitz-
Thompson estimator ¥, .k, ) for the k-th element where y,
is the value of the study variable. It is assumed that the
h-weights include adjustments for any non-response. The
parameter of interest is the population total for y, denoted by
1,. For each k, there are p-auxiliary variables, x;, j =1, .
for Wthh the population total or benchmark constramt,

Ty =3¥ 1% for each j is assumed to be known. The
transposed p-vector x, denotes (x,,, ..., X,), the k-th row of the
n x p matrix X. Let ¢} denote the calibrated or c-weight for
the k-th element at the v-th iteration. At v =0, ¢{” = h,. The
expansion estimators of population totals for vanables yand
x; using c-weights at the v-th iteration are denoted by ‘E and ‘i‘(’"
respectlvely

The RRs are specified by the condition L < g, < U where
g, =cfh and L <1 < U, where L and U denote suitable lower
and upper bounds. The adjustment factors (i.e., g,'s) are also
called g-weights. First we consider the unrestricted case (i.e.,
calibration without RRs) and then the restricted case. All

methods in the restricted case require iterations for finding a

solution, It is assumed that the iterative process converges in
a finite number of iterations.

The criterion for convergence is defined as follows. For
the iterative process to meet RRs, a tolerance level € (e.g.,
.005 or .01) for family I is defined so that the process ter-
minates if the maximum absolute relative error (ARE) for
RRs is < . Similarly, a tolerance level {5 > 0) for family II is
defined for meeting BCs by iterations. The reason for this is
that our primary goal is not minimization of the distance
function, but to find a solution which satisfies BCs and RRs.
In addition to € and &, a parameter v, is defined which limits
the number of iterations,

There are seven methods considered in this paper, two for
the unrestricted case, two for restricted case in family I and
the remaining three also for the restricted case but in family
II. We have given alternative names to existing methods to
facilitate understanding of the relationship between different
methods. The naming convention is based on the well known
distance measures used in the analysis of count data.

Note that since all the methods are asymptotically equiv-
alent to the regression method, the asymptotic variance of %y
can be estimated for each method by ¥,Y (m, -m,m) 7y
(e,g)(e;gp), as in DS (equation 3.4) where 1., 7, are respec-
tively the first and sccond order inclusion probabilities,
e, arc the sample residuals y, - B'x, with B'=(y'T X)
(X'T, X)!, and I is the n x n matrix diag(h).

2.1 METHOD 1 (Linear Regression or Unrestricted
Medified Chi Square, MCS-u)

This method is the simplest and gives rise to the popular
generalized regression estimator of Sérndal (1980). Here, the

model for the adjustment factor is taken to be linear in x, i.e.,
g, = 1 +x A, for some p-vector of model parameters A which
satisfies BCs. That is, Y.k, (1 +x; Axy =y, for all j.
This gives rise to AMS-® as (X'T X)!(t, - t®). The
c-weights remain close to the A-weights in the sense that the
above choice of g-weights minimizes the distance function,
AMES (¢ k) = .1 (¢, - b, )1k, subject to BCs. Note that the
g-weights could be negative for some % This is rather
undesirable in practice although the simplicity of the method
is quite attractive. The computational algorithm for MCS-u is
given in Appendix Al.

2.2 METHOD 2 (Raking or Unrestricted Modified
Discrimination Information, MDI-u)

This method is also commonly used. Here, the model for
the adjustment factor g, is taken as exp(x, A), thus making it
necessarily non-negative. Unlike the case of method 1, the
model parameter vector AM™™® is obtained iteratively to
meet BCs. The iterations can be started with AMSS™ from
the GR-csumalor i.e., foriteration 1, set A = AMCS-0 which
implies ¢\’ = h exp(x’l“’) These c-weights, in gcm:ral
do not sansfy BCs. For iteration 2 of this method, the A™
is adjusted (by a term of smaller order) to define A?®
as AD + X'T,X) ' (x, - "), where I, = diag (¢™). The A
term is defined similarly for further iterations until conver-
gence, i.e., until BCs are met. The c-weights remain close to
h-weights because iterations used in the above method
constitute the Newton-Raphson steps for minimizing the dis-
tance function, AMP(c,h) = ¥, [, log(c,th,) - ¢, + A, ]
subject to BCs. Note that although the g-weights are non-
negative, they could be very high which is clearly not
desirable in practice. The computational algorithm for MDI-u
is given in Appendix A2.

23 METHOD 3 (Modified Huang-Fuller or Scaled
Modified Chi Square, SMCS)

This method belongs to family I of the restricted case and
is a slight modification of the method due to Huang and Fuller
as given in Singh; see also Fuller, Loughin, and Baker (1994).
As in regression, the model for the adjustment factor is taken
to be linear in x. To facilitate the satisfaction of RRs by these
adjustments, a scaling factor g,, (0 < g, < 1), is used for each
k so that the change in A-weights for those units whose g,'s
tend to go outside the bounds [L,U7] is reduced. Thus, the
g-weight is given by g, = 1 + g, x; A where the model para-
meters g and A are chosen iteratively in the sense that A is
found for a given g and then g is found for a given A. We start
with g =1 for all k and setA®) = AMES~¥ for jteration 1.
Now, clearly ¢ ™ satisfies BCs but RRs need not be satisfied.
Depending on the location of g,'s in relation to [LU]), a
working rule can be used to define g,'s so that the g,
discount more for those units which are farther outside of the
boundaries than those which are nearer. The scaling factors
q\) so determined, define in turn A® for iteration 2 as
(X' T, X) (1, - t ) where T, = diag (gL ' h,), g} = a0 g,
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2@ satisfying BCs after the iteration. Note that under usual
regularity conditions, A% differs from A only by a term of
smaller order, since the maximum absolute difference
|q(1) - 1| is small. Next, if cm after iteration 2 does not satisfy
RRs, the scaling factorsq are defined appropriately and
compounded with q k "o get g ,‘2 for use in iteration 3. The
A% for iteration 3 is then obtained as before so that BCs
are satisfied after the iteration. Iterations continue until
convergence, i.e., until RRs are met. The weight vector ¢
is close to k because at each iteration v, ¢ minimizes
the distance function AMS(e k) = Y1, (e - by /hygy !
subject to BCs, where gi'""= g®gl g0V for v > 1.
Note that unlike the previous methods, the distance function
varies from iteration to iteration.

The computational algorithm for SMCS is given in
Appendix A3. Note that in the algorithm, [L, U/] is shrunk to
{L’, U’] by means of a parameter a« where L' = al +1 - «,
U'=alU+1-¢,and 0 < a < 1, This implies that some units
that are inside [L, U] but close to the boundary are also
discounted. This helps to speed up the convergence. Another
parameter f§, ¢ < P < 1 is also introduced to allow differential
discounting of different units.

2.4 METHOD 4 (Shrinkage-Minimization, SM)

This method also belongs to family I and is due to Singh.
As in regression, the model for the adjustment factor is taken
to be linear in x, but a new parameter termed the shrinkage
factor 4, (0 < ¢, < 1) is used for each & so that g,'s meet RRs,
ie., g issetat (1+y,x, A(k)). Notice that A is allowed to
depend on & through ¢, and x,. Unlike SMCS, here the
g-weights, after discounting, satisfy RRs exactly, i.e., those
g-weights which are outside (L, U] are shrunk to lie on or
inside the boundary. Therefore, {5,'s can be defined quite
casily in practice. The model parameters § and A are chosen
iteratively in a manner analogous to that for SMCS. We start
with ¢ =1 and set A® = AMC5® for iteration 1 to obtain

g as (1 +yPx; AD). Clearly BCs are satisfied afer the
1terat.10n but RRs need not be. Before iteration 2, g
shrunk by Y to obtain g as (1 + 'x; A1) where lIJ“] =
PO, whlch meets RRs. Given !, A?(%) is obtained
as AQ+ A& T Xy (-2 +x(x' T, x)!
(1, - )2 where I, = dlag(c“’ ) ¢ =h g“)' and
£+ is the expansion estimator using c‘” -weights. Again
BCs are satisfied after the iteration but RRs need not be. Note
that A®(k) differs from A"’ by a term of smaller order
uniformly over &. Iterations are continued until convergence,
i.e., until RRs are met. The weight vector ¢ is closc to &
because at each iteration v > 1, ™ minimizes the distance
function, AfM(c,c(‘"”‘) = Yha(e- "Y1l subject
to BCs. Note that in practice ¢ can be obtained directly
from ¢ without having to calculate Y separately. As with
SMCS, the distance function depends on the iteration.

The computational algorithm is given in Appendix A4.
Recall that in the above method, if a g-weight falls outside of
the L and U boundaries, an adjustment is made to bring the
g-weight back to the L or U boundary. A new parameter
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o (0 < & < 1) is introduced to allow the user to bring the
g-weight farther inside the boundary to a point L' or U
(L'=aL+1-a, U =alU+1-a). This is somewhat
similar to the « parameter of SMCS. Another parameter
N(0 < n < & < 1) is introduced to adjust the g-weights to the
level L' or U’ also for those units which are within [, I7], but
close to the boundary in that they are outside [L”, U] where
L"=mL+1-7, U"= nU +1-n. All these parameters
help speed up the convergence in general.

2.5 METHOD 5 (Linear Truncated or Restricted
Modified Chi Square, MCS-r)

This well known method belongs to family H of the
restricted case and is due to DS. As in SM, the model for the
adjustment factor is taken to be linear in x with a new
parameter termed the truncation factor ¢, (0 < ¢, < 1) which
is used for each k so that g,/'s meect RRs, i.e., g, is set at
(1 + ¢, x, A(k)). The only difference between the truncation
factor ¢, used here and the shrinkage factor used in SM is
that here those g-weights which are outside [L, U] are
always adjusted to lie exactly on the boundary. The model
parameters are chosen iteratively. Initially we set ¢ ¢ =1 and
at iteration 1, A® = AME {0 obtain g\ = (1 + ¢Px, AD),
which is further adjusted (or truncated) to obtain gk)

(1 + ¢l AD) where ¢} = P ¢, so that RRs are met.
However, g‘” may not satisfy BCs. Note that the difference
between g and g"* is of smaller order. Now, for itera-
tion 2, A is adjusted by a term of smaller order (umformly
over k) to define A®(k) as AD + (144 ) (X' T X" (x, - ©),

where I', = diag(h) except that the diagonal elements are
truncated to zero for all those k for which ¢(1) <1,tie,those
units which were truncated at the previous iteration. This
discounting of diagonal elements is somewhat similar to using
a zero scaling factor in SMCS. In the second iteration, we
have §2 = 1 + ¢, A®(k) and the truncation factors ¢(2)
are used to obtain g which satisfy RRs. The successive
iterations are defined in a similar manner. Clearly, unlike SM,
here RRs are met at each iteration, Iterations are continued
until BCs are met. The weight vector, ¢ is close to k
because the iterations defined above constitute the Newton-
Raphson steps for minimizing the distance function
AME (e, hy = ¥ (¢, - h,)Ih, ifLh, < ¢, < Uhy; > otherwise,
subject to BCs. The computational algorithm is given in
Appendix AS. Note that, in practice, it is more convenient to
work with g e d1rectly without having to compute tb(v]
separately.

2.6 METHOD 6 (Restricted Modified Discrimination
Information or MDI-r)

This method also belongs to family IT and was proposed by
Singh following the lines of DS in developing MCS-r. It is
related to MDI-u in the same way as MCS-t is to0 MCS-u. The
basic idea is to adjust parameters ¢ and A in the adjustment
factor g, = ¢, exp(x, A) so that RRs and BCs are satisfied.
The truncation parameter ¢ is similar to that for MCS-r. This



110 Singh and Mohl: Understanding Calibration Estimators in Survey Sampling

is done iteratively. Similar to MCS -1, at iteration 1 we set
g9 = dWexp @A) where ¢'9 = 1,00 < AMCSv Wthh
1s further adJusted by a term of smaller order to obtain g
as ¢ exp(x,; L") sothat RRs are met, i.e., it lies in [Z, U].
Next for iteration 2, g,fl) is adjusted by a term of smaller
order to obtam g? as dPexpx{A®), where A? =
AU+ (X' T X) ! (x, ~ 1), and T, = diag(h,g}) except that
the dlagonal elements are truncated to 0 for all those & for
which ¢}’ < 1. The truncation factors ¢ are used to ensure
that RRs are met. [terations arc continued until convergence,
i.e., until BCs are met. The weight vector ¢¥™'* is close to
h because the iterations defined above constitute the
Newton-Raphson steps for minimizing the distance function
AMPIT (e By = Y0 e, Jogle, b))~ ¢, + i) if Lk, < 6 < Uhy o
otherwise, subject to BCs. Note that in practice, the trunca-
tion factors are not nceded scparately to compute g
Appendix A6 gives the computational algorithm for MDI-r.

2.7 METHOD 7 (Logit or Generalized Modified
Discrimination Information, GMDI}

This is the last method considered. This well known
method of family II is due to DS. As in the raking method, we
start with exp(x, A) and an inverse logit-type transformation
is used ‘0 ensure that the adjustment factor satisfies RRs. The
model for the adjustment factor is given by g, = [(U - 1) +
(1 - L) exp(Ax )] [L(U - 1) + U(1 - L) exp(Ax )],
where A=(1 - L)" (U - 1Y (U - L). This adjustment factor,
unlike other methods, lies necessarily inside the interval
[L, U], i.e., does not take boundary values. As L —~ 0 and
U - o, the factor reduces to the familiar inverse logit form,
exp(x; A)/[1 + exp(x, A)). The model parameter A is obtained
iteratively to meet BCs. Starting with AM%* as AV for
iteration 1, we ad_]ust by a smaller order term to obtain A?

as A+ (X'T,X) ' (x, - 2V) where T, = diagth,d’),
d‘” =-1'a-0w- gl - L). Purther itera-
tions are done in a similar manner until BCs are met. The
weight-vector ™™ is close to k in the sense that subject to
BCs, the above iterative process corresponds to the Newton-
Raphson algorithm for minimizing the distance function
ASMDY(e k) given by A 'Y, k(g - L) log{(l - L)
(8- D)} + (U - g log{(U - 1) (U - g)}]. Appendix A7
gives the computational algorithm for GMDI.

3. NUMERICAL EXAMPLES

3.1 Data Description

We consider application of the seven adjustment methods
described above to data from the 1990 Statistics Canada's
Family Expenditure (FAMEX) Survey for the two cities (or
domains) of Regina and Saskatoon in the province of
Saskatchewan. Four study variables are considered: annual
expenditures on owned dwelling for repair and renovation,
furniture and equipment, ladies’ clothing , and men’s clothing.
The FAMEX survey is a supplementary survey to the
Canadian Labour Force Survey (LFS) and, therefore, is based
on the LFS design - a multistage stratified cluster sample of

households, see Singh et al. (1990). Samples are drawn
independently from the two cities of Regina and Saskatoon.
Respectively for the two cities, the numbers of strata are 30
and 34, and the numbers of primary sampling units (PSUs)
selected in the sample are 111 and 94. The total numbers of
sampled househotds are 321 and 278, while the corresponding
numbers {#) of individuals are 797 and 712.

3.2 Benchmark Constraints, Range Restrictions and
Common Weights per Household

The number (p) of BCs is four for each domain. They
correspond to the demographic population counts for the four
groups: age < 15, age = 15, one person households, and
households with two or more persons. The corresponding
counts are 40696, 139047, 12746, and 48457 for Regina, and
42544, 139299, 20628, and 52059 for Saskatoon. Thus, the
total numbers of households for the two domains are 61203
and 72687 respectively and the corresponding population
sizes (V) are 179743 and 181843. The auxiliary x-variables
here are indicators for the above four groups.

For Regina, (min, max) of g-weights are obtained as
(~0.72, 2.74) and (0.19, 3.95) respectively for regression and
raking methods. It is therefore of interest to make them
nonnegative for regression and to reduce the high weights for
raking. Two types of RRs are chosen: one has somewhat
loose bounds with L = 1/5 and U = 5 and the other has
somewhat tight bounds with L = 2/5 and U = 5/2. For
Saskatoon, (min, max) of g-weights are obtained as (0.86,
1.08) and (0.87, 1.09) respectively for regression and raking
methods. Note that both methods give g-weights close to 1,
and therefore there is no real need for RRs. However, for the
sake of illustration, we choose L=0.88 and /= 1.12.

The initial sampling weights or h-weights of individuals in
the same houschold are common and equal to the weight of
that household. It is desirable that after calibration, all
members of a household have the same ¢-weights. This can be
achieved by modifying the X matrix so that x;-values for each
person in the same household are comrmon and equal to the
average value for the houschold, see, e.g., Lemaitre and
Duflour (1987). We also perform an initial scaling on the
h-weights so that they add up to N; this is similar to the Hajek
modification of the Horvitz-Thompson estimator. This scaling
essentially redefines [L, U] to make them meaningful for
calibration of h-weights.

3.3 Descriptive Measures for Comparison

For comparing various methods, we consider four types of
descriptive measures:
(i) Summary statistics for the distribution of the g-weights,
(ii) Point estimates for several variables,
(iii) Estimated precision of the calibration estimates, and
(iv) Computational burden imposed by each method.

The first measure consists of a graphical summary using
a box plot for g-weights, and the standard deviation of
g-weights, SD(g), defined as [N !, 2, (g, - 1)*12. Note
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that the mean of g-weights, i.e, N™'Y} A g,,is | in view of
the fact that Y i, =¥ ¢, =N, and the SD(g) also equals
IN-'Tr (e, - 2,)2 /R, 1", the square root of a normalized
chi-square type distance for measuring closeness between
h- and c-weights. For comparing point estimates and their
precision for estimating parameter for each variable y of
interest, we compute relative difference (RD) and relative
precision (RP) with respect to the MCS-u weights, i.e.,
relative to the regression estimator. Denoting an estimator
based on c-weights as a c-estimator, we have RD as
(c-estimator minus regression estimator) divided by the
regression estimator, and RP as SE(regression estimator)
divided by SE(c-estimator). Note that for the numerical
examples under consideration, variances are computed using
jackknifing by deleting PSUs. Finally, the computational
burden is expressed in terms of the number of iterations.
Testing has shown that for all the restricted methods, each
iteration takes a similar amount of time and hence a good
comparison of their computational burden is the number of
iterations required for convergence.

3.4 Specification of Other Parameters

We also need to specify some other parameters, namely, «,
B for SMCS, and «, n for SM. Empirically, values of
« =0.67, 1 =0.9 and = 0.8 are found to perform well. The
tolerance levels € for family I and & for family II are set at
0.01, and v, is set at 10.

3.5 Results: A Descriptive Analysis

3.5.1 Distribution of g-weights

We first consider the Regina data. Figure 1 gives a box
plot of the distribution of g-weights with L =0.4 and U/ =2.5.
Note that there are negative g-weights (and hence negative
c-weights) for MCS-u and large g-weights (which produce
large e-weights) for the MDI-u method. For MCS-u, the
fraction of g-weights < 0 is 4.9%, the fraction < 0.4 is 5.9%,
the fraction above 2.5 is 1.25% while above 3.5 is 0%. For
MDI-u, the fraction below (0.4 is 4,9%, the fraction > 2.5 is
4.3% and above 3.5 is 1.25%. Thus, both methods yield
c-weights which are out of hounds with respect to RRs with
tight bounds. The range restricted methods all have median
g-weights between (.65 and 0.75; the SMCS g-weights show,
however, the most clustering around the median. Table 1
shows that under loose bounds, the SD{g) for each restricted
method is slightly higher (about 7%) than the regression
methad, but for tight bounds, the difference increases to about
[ 5% for family I and about 10% for family IL.

Now for the Saskatoon data, Figure 2 gives a box plot of
g-weights with L = 0.88 and U = 1.12. For both regression
and raking methods, about 5.6% are below L and 0% are
above /. All methods have similar interquartile range for
g-weights with medians slightly above 1. Also it is seen from
Table 1 that SD(g) for all the methods (restricted and
unrestricted) are about the same and quite small.

111
Table 1
Number of Iterations and SD{g)
(@=67,8=8n=9.¢e=8=01,v,,=10)
Regina Saskatoon
L=02U=50 L=04,U=125 L=0.88,
Method (Loose bounds) {Tight bounds) U=1.12
Number of »  Number of Number of
iterations D) iterations SDig) iterations 5D}
Family [
SMCS 2 0.647 3 0.702 2 0.071
SM 2 0.636 4 0.689 2 0.070
Family [I
MCS-r 2 0.628 3 0.654 | 0.069
MDI-r 3 0.642 3 0.660 l 0.065
GMDI 3 0.640 3 0.659 2 0.069

Note: For the unrestricted (or no bounds) case, the number of iterations and
SD(g) are: for Regina MCS-u and MDI1-u are (1,0.599} and (3,0.647)
respectively; for Saskatoon MCS-u and MDI-u are (1,0.070) and
(1,0.069) respectively.

3.5.2 Relative Difference of Point Estimates

Tables 2(a) and (b) show that for Regina, under loose
bounds RD is small for all the methods for each of the
variables, In fact, it is negligible except for the variable
“owned dwelling” for which it is generally under 4%.
However, under tight bounds, it increases somewhat but
remains small with values ranging between 1% and 5%. For
Saskatoon (Table 2c), under the given bounds RD is
negligible for all the methods.

3.5.3 Estimated Relative Precision of Estimates

For Regina, under loose bounds, RP is generaily within 5%
(of the precision of the regression estimator) for all methods
and alt variables except for MDI-r with the variable “ladies’
clothing” for which it is lower by 9%. However, under tight
bounds, RP varies more and is now generally within 9%
except for SMCS and SM with the variable “Men's clothing”
(RP is lower by 20%) and MDI-r for the variable “Ladies’
clothing” for which RP is lower by 11%. For Saskatoon
(Table 2¢), under the chosen bounds RP is close to 1 for all
cases.

3.54 Computational Burden

For Regina (Table 1), under loose bounds each method
takes two or three iterations. As the bounds are tightened,
most of the methods require more iterations to converge. To
see how tightly the bounds could be squeezed before
encountering convergence problems, three more sets of
bounds were used with [L, U] = [0.425, 2.35], [0.45, 2.22]
and [0.475, 2.11]. These results are not shown in the table.
With v, as 10, the SM method does not converge for [0.425,
2.35]. The SMCS and GMDI methods do not converge
for [0.45, 2.22] and the MCS-r and MDI-r finally have
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Table 2a
Difference in Point Estimates and Precision Relative to
Regression Estimater (x = .67, p=.8,1=.9,€=8=.01, v, =10)
Regina: L = 0.2, U/ = 5.0 (Loose Bounds)
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Table 2¢
Difference in Point Estimates and Precision Relative to
Regression Estimater (¢ = .67, =8,1=9,e=6= 01, v, =10)
Saskatoon: L=0.88, U=1.12

Owned Dwelling Fumiture\Equipment Owned Dwelling Fumiture\Equipment
RD RP RD RP RD RP RD RP
Family I Family I
SMCS -0.043 1.047 0.001 1.032 SMCS -0.001 1.001 -0.001 0995
sM -0.036 1.032 -0.002 1.040 SM -0.000 1.001 -0.000 0.999
Family II Family I
MCS-r -0.032 1.035 0.002 1.034 MCS-r 0.000 0.999 0.000 1.000
MDI-r -0.033 0.991 -0.008 1.037 MDI-r 0.002 0.997 0.002 0.994
GMDI -0.037 0.99% -0.004 1.041 GMDI -0.000 1.007 -0.000 0.9%0
Ladies" Clothing Men's Clothing Ladies’ Clothing Men's Clothing
Family I Family I
SMCS 0.015 0.931 0.009 0.952 SMCS 0.000 1.013 -0.001 0.999
M 0.010 0.951 0.006 0.968 SM -0.000 1.002 -0.000 0.998
Family I Family I
MCS-r 0.011 0.950 0.008 0.964 MCS-r 0.000 0.990 0.000 0,994
MDI-r 0.007 0.911 -0.001 0.961 MDI-r 0.002 1.001 0.002 0.983
GMDI 0.009 0.940 0.002 0.968 GMDI 0.000 0977 -0.000 0.990
Notes: Notes:

1. RD and RP denote respectively “relative difference” and “relative
precision™,

2. For the ynrestricted (or no bounds) case, the carresponding measures for
the raking (MDI-u) method retative to regression are (-0.034, 1.005),
(-0.008, 1.049), {0.004, 0.968) and (0.002, 0.980) for the four study
variables respectively.

Table 2b
Difference in Point Estimates and Precision Relative to
Regression Estimator (¢ =.67,$=.8,n=.9,e=86=01, v, = 10)
Regina: L = 0.4, I/ = 2.5 (Tight Bounds)

Owned Dwelling Fumiture\Equipment
RD RP RD RP
Family I
SMCS -0.056 1.100 0.012 1.000
SM -0.055 0.992 0.017 0919
Family II
MCS-r -0.048 1.073 0.008 0.952
MDI-r -0.045 1.087 0.012 0.965
GMDI -0.047 1.077 0.009 1.006
Ladies’ Clothing Men's Clothing
Family I
SMCS 0.024 0.917 0.038 0.808
SM 0.025 0917 0.024 0.801
Family II
MCS-r 0.020 0.504 0.012 0.922
MDI-r 0.025 0.888 0.012 0.922
GMDIL 0.021 0.938 0.018 0.917

Note: During the jackknifing procedure, the SM method failed to converge
in ten iterations for four pseudo-replicates (out of a total of 111).

1. For the unrestricted (or no bounds) case, the corresponding measures for
the raking (MDI-u) method relative to regression are {0.002, 1.000),
(0.002, 1.000), (0.002, 1.002) and (0.002, 0.995) for the four study
veriables respectively.

2. During the jackknifing procedure, the S$M method failed to converge in
ten iterations for two pseudo-replicates (out of a total of 94),

convergence problems for [0.475, 2.11]. For Saskatoon
(Table 1), under the chosen bounds each method takes only
one or two iterations. With v, as 10, as bounds are tightened
o [0.92, 1.08], SM does not converge. At [0.93, 1.07],
SMCS, MCS-r, and MDI-r have convergence problems, and
finally at [0.96, 1.06], GMDI has problems.

4. DISCUSSION

Although numerical results for a few variables for two
different domains considered in this paper are quite limited to
draw general conclusions, the results based on a descriptive
analysis are nevertheless interesting and may provide some
indications which might be useful in practice. These can be
summarized in the following observations. For loose bounds,
all the restricted methods seem to perform almost at par with
the regression method. However, for tight bounds, there seem
to be a difference in point estimates and especially in
estimated precision. This observation clearly needs further
study in light of the fact that all methods are asymptotically
equivalent to the regression method. A simulation study in
this regard would be desirable. The recent study of Stukel,
Hidiroglou, and Sérndal (1996) sheds some light on this issue.
Moreover, for tight bounds, there may not be convergence
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under the specified number of iterations even if a solution
exists. This problem may be more apparent in dealing with
jackknife replicates. Therefore, caution should be exercised
in choosing the maximum number of iterations for tight
bounds. Finally, in practice, it is possible that even with
minimal requirements on BCs and RRs, none of the cali-
bration estimators converge within a reasonable number of
iterations. In this situation, it would be of interest to investi-
gate whether the (asymptotic) design consistency of calibra-
tion estimators could be preserved while allowing deviation
from BCs. The idea of using ridge regression by Bardsley and
Chambers (1984), although not in the design-based context,
may be useful for this purpose. This problem is currently
being investigated in collaboration with J.N.K. Rao.

APPENDIX

Here we provide computational algorithms for all seven
methods of weight adjustment. These algorithms were used to
wrilc computer programs in GAUSS software for the
numerical examples presented in this paper.

In all the methods, some form of the following expression
denoted by the n-vector £, is used repeatedly for computing
c?) forv=1,2,...

f[\.') = X(X! I‘V_IX)-I(TI - %i\?-l)) (1)

where I',_,, is an n x n diagonal matrix defined below in the
algorithm for cach method. Initially Iy = diag(h) and
2O =V xh,.

Al. METHOD 1 (MCS-u)

The solution is non-iterative and is given in two steps as
follows.
@  Compute f, k=110 from (1) by sctting T,.,, = [y

(ii) Computeg,as 1+ fi” and then ci’ms'“ as h, g,.

A2, METHOD 2 (MDI-u)

The solution is obtained iteratively by the following steps

forv=1,2,...

@) Set the tolerance level = 0 for meeting BCs at some
small value.

(i)  For the v-th ileration, compute 2 k=1ton, from
(1) bysetting T,_, = diag(ck“'l)().

Gii) For v = 1, 2, ... compute g} as g5 ‘exp(f{),
gf) =1 and then civ) from hkg(k").

(iv) Repeat steps (ii)-(iii) until the BCs are met up to the
tolerance level & or the number of iterations is at its

maximum, v, The last iteration gives ¢y °.

A3. METHOD 3 (SMCS)

The solution is obtained iteratively as follows.
(i) Set the RRs, i.e.,choose Land U, L< 1< U/
(i)  Set the tolerance level € > O at a small value for
meeting the RRs.

(iii) Choose a parameter o between 0 and 1 (e.g. 2/3) and
set L'=aL+1-a, U =all +1-a. The default
value of 1 for o is also allowed in which case L' =L,
u=Uu.

(iv) For _tlhc v-th iteration Wiﬂl g(ko) =1, define g‘: -

Gy - 1) if gV s 1 (g V- I - 1)
otherwise.

(v) Choose another parameter 8 between O and 1 (e.g.,
ar5).Set gV = 1if Y Ve 1/2; 1 - PeES V- 1722
172 < BV Va1 (1-PrayEY Y ifEY™ 2 1 and then
define for v=1, 2, ..., gl =¢Q... g¢" where
qv T}l. Note compounding of g-factors in defining

[v-
R

(vi) Compute " from(1) by setting ', , =diag(h,q}" "),
and £ = @ for alll V.

(vii)) Find g(; Yas 1+ qiv : (;) and then c(,c") as hkg(:).

(viii) Repeat steps (iv)-(vii) until the RRs are met up to the
tolerance level € or v = v,,,,. The last iteration gives
;" *, The value of {§ should remain the same at each
iteration.

A4. METHOD 4 (SM)

This method consists of the following steps performed
iteratively.
(i)-(ii) Same as in Method 3.
(iii} Choose parameters a, 1, O<e <n<1,(eg,a=213,
1 =9/10) and define
L=e¢L+(1-a), U=alU+(1-a)
L"=nL+(1-n)U"=qU~+(1-mn).

The default option for & and 1 is 1 in which case
L'=L"=LU=U0"=U.

(iv) (Shrinkage). The ¢\ from the v-th iteration is shrunk
o obtain c.”* according to ¢{”" = L'k if e < L"hy;
U'h, if > U"h,; c:) otherwise. For v = 0,
V=P =h,.

(v) (Minimization). Find f;” from (1) by setting

val — diag(c("‘l)') and eiv-l) = Rlve-1)r

(vi) Compute gi” as g& "7 (1+ f,((“f) where gi'™""
¢ U/, and then " from kg%’

(vii) Repeat steps (iv)-(vi) until the RRs are satisfied up to
tolerance € or v = v,.. The last iteration gives cj™.

AS5. METHOD 5 (MCS-r)

The iterative algorithm consists of the following steps.

(i) Set Land U,

(ii)  Set the tolerance level & 2 0 for meeting the BCs.

Gii) Compute f¢ from (1) by setting T,_, = diag(h,ay )
where (™ = 1 if g{"" was truncated to L or U, and
0 otherwise.

(iv) Set g¥=1 and compute g}’ as PR S
L < g\ < U; otherwise truncate g§” to L or U as the
case may be, and then ¢!}’ as h gl

(v) Repeat steps (iii)-(iv) untii BCs are met at the
tolerance level d or v = v,,,. The last iteration gives
C’I:‘ICS-I‘
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A6. METHOD 6 (MDI-r)

The iterative algorithm consists of the following steps.

(i)-(ii) Same as in Method 5.

(i) Compute f% from (1) by setting I, =
diag(c{" Val V) where a\" " is defined as in Step
(iii) of Method 5.

(v) Set g0 =1 and compute g =gl Vexp(sY) if
L < g < U; otherwise truncate g to L or U as the
case may be, and then ¢} as h, g4’

(v)  Repeat steps (iti)-(iv) until BCs are satisfied at
tolerance & or v = v,,,. The last iteration gives ¢, .

A7. METHOD 7 (GMDI)

The iterative algorithm consists of the following steps.

(i)-(ii) Same as in Method 3.

(iii) Compute f from (1) by sewing T, , =
diag(h, d{""") where d{""V is analogous to dg” of
Section 2.7,

(iv) Using x; A7 =x/ 2% D+ find g from the
forr:n):la for g, given in Section 2.7, and then ¢}’ as
hog .

(v) R]ép;at steps (iii)-(iv) unti]l BCs are met at tolerance &
or v = v, . The last iteration gives cf
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Variance Estimation for Calibration Estimators:
A Comparison of Jackknifing Versus Taylor Linearization

DIANA M. STUKEL, MICHAEL A. HIDIROGLOU and CARL-ERIK SARNDAL'

ABSTRACT

The use of auxiliary information in estimation procedures in complex surveys, such as Statistics Canada’s Labour Force
Survey, is becoming increasingly sophisticated. In the past, regression and raking ratio estimation were the commonly used
procedures for incorporating auxiliary data into the estimation process. However, the weights associated with these
estimators could be negative or highly positive. Recent theoretical developments by Deville and Sidmdal (1992) in the

construction of “restric

" weights, which can be forced to be positive and upwardly hounded, has led us to study the

properties of the resulting estimators. In this paper, we investigate the properties of a number of such weight generating
procedures, as well as their corresponding estimated variances. In particular, two variance estimation procedures are
investigated via a Monte Carlo simulation study based on Labour Force Survey data; they are Jackknifing and Taylor
Linecarization. The conclusion is that the bias of both the point estimators and the variance estimators is minimal, even under

severe “restricting” of the final weights.

KEY WORDS: Auxiliary information; Raking ratio estimators, Regression estimators; Restricted weighting.

1. INTRODUCTION

Auxiliary information has many uses in survey sampling,
One typical use is its incorporation at the estimation stage
through the use of regression estimators or raking ratio esti-
mators. For these estimators, a unit’s sampling weight is
multiplicd by an adjustment factor to produce the final
weight. A well-known shortcoming associated with the
regression estimator is that some of the adjustment factors
may be negative, resulting in negative final weights. On the
other hand, for the raking ratio estimator, some adjustment
factors may be very large and positive, resulting in unduly
large final weights. These shortcomings can be overcome by
considering a family of estimators, known as “calibration
estimators”, Developed by Deville and Sérndal (1992), the
estimators in this family incorporate auxiliary information,
and in certain cases, non-negative weights can be ensured by
prespecifying lower and upper bounds on the weights. These
“calibration” weights are gbtained by minimizing functions
which measure the distances between original sampling
weights and final calibrated weights, while respecting a set of
benchmarking constraints. Huang and Fuller (1978) and
Singh and Mohl (1996) have developed similar estimators
which maintain the above properties. Ordinarily, there are
very small differences between the point estimates cor-
responding to the various distance functions.

Historically, Statistics Canada’s Labour Force Survey
(LLFS) has used, at different points in time, both the Taylor
and Jackknife variance estimation techniques in tandem with
regression and raking ratio estimators. Recently, the LFS has
also allowed for the option of using other calibration esti-
mators in addition to the previously available regression

cstimator, to climinate the problem of potential negative
weights. It is therefore of interest to investigate the behaviour
of these point estimators and their corresponding Taylor and
Jackknife variance estimators, particularly for those esti-
mators that allow bounding on the weights. Therein lies the
main focus of this paper. Now, both the Taylor and the
Jackknife have their advantages. The Taylor method is com-
putationally much less intensive than the Jackknife method,
but requires working out new expressions for each different
parameter that is considered; this is particularly a burden in
multipurpose surveys where many different parameters may
be of interest. On the other hand, for the Jackknife method,
cumbersome variance expressions need not be derived for
each new parameter; only the functional form of the point
estimator itself is required.

The paper is structured as follows: section 2 provides the
theoretical underpinnings of calibration estimation and intro-
duces a family of related distance functions. In section 3,
variances for calibration estimators are discussed. Section 4
provides the results of a Monte Carlo simulation study, in
which the bias of both the point estimators and their cor-
responding Taylor and Jacklmife variance estimators (relative
to a “true” variance) is tracked, for a variety of distance func-
tions from calibration theory. In section 3, some concluding
remarks are made.

2. DISTANCE FUNCTIONS AND CALIBRATION
ESTIMATORS

We begin by introducing the basic idea behind calibration
estimation. Let / = {1, ..., k, ..., N} denote the index set for

! Diana M. Stukel, Houschold Survey Methods Division, and Michael A. Hidiroglou, Business Survey Methods Division, Statistics Canada, Ottawa, Ontario,
K1A 0T6; Car)-Erik S#imdal, Département de Math&matiques et de Statistique, Université de Montréal, C.P. 6128, Succursale A, Montréal, P.QQ., HAC 3)7,
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the N units of a finite population of units. In survey sampling,
one is often interested in estimating parameters of a finite
population such as totals, means and ratios. For the sake of
simplicity, we will focus on totals, although the ideas
presented in this paper may easily be extended to include
other parameters. Thus, suppose the objective is to estimate
the population total ¥ =Y, ., y,, where y, is the value of y,
the variable of interest for the k-th population unit.

A probability sample s is drawn from U by a given
sampling design which induces the inclusion probabilities
1, = P(kes). These are assumed known and positive. Let
a, = 1/m, be the sampling weight associated with the &-th unit.
Finally, let the auxiliary information be specified in the form
of known population totals of one or more auxiliary vaniables,

An elementary estimator of Y is the Horvitz-Thompson
(HT) estimator:

17a = E A Yy
kes

The HT cstimator possibly but not necessarily (depending
on the sampling design) incorporates anxiliary information at
the design stage only; what is sought is an improved estimator
which incorporates the auxiliary information at the estimation
stage, as well. The incorporation of auxiliary information can
be reflected in the creation of new weights, denoted by w,,
kes. The new estimator is then of the form:

Fu=2 ey @.1)

The approach of Deville and Sérndal (1592) and Deville,
Samdal and Sautory (1993) involves determining these new
weights {w,: kes} by making them as close as possible to the
original sampling weights {a;; kes} according to a specified
distance function. Constraints placed on the new weights are
such that, when applied to each of the auxiliary variables, the
known popalation total X is reproduced. That is,

wx =X
g kv 2.2)
is required to hold, leading to a problem in constrained
minimization. Here x; = (x;, X, ., X,;)is a vector of length
p containing the values of the auxiliary variables for the k-th
individual, and the auxiliary information available from an
external source is summarized by the known vector total
X-= ZteU ¥y

We denote the distance from w, to a, by F*(w,, a,}. Deville
and Sirndal (1992) limit their discussions to distance
functions of the form F*(w, a) = axcF(w/a,) where
w,/a, = g,, the ratio of the final calibrated weight to original
sampling weight, is called the *g-factor”. Here c; is a known
positive weight unrelated to a,; the uniform weighting ¢, = 1
is often used in applications. Note that equation (2.1) can
alternatively be writien as:

?w = Z B 8 Vi
kes

It is assumed that F is non-negative and convex, and that
F(1) = 0, implying that when w, = q, the distance between the
weights is zero. Moreover, it is required that F” is continuous,
one-to-one, and that F’(1) = 0 and F”(1) > 0 which makes
w, = a, a local minimum. (See Deville, Sirndal and Sautory
1993.) The total distance, },_a,c,F(w,/a,), is minimized
subject to the constraint (2.2). That is,

Y a.c,F(wla,)- l'( E Wk, - X)

kes kes

is minimized with respect to the w,, where A is a p-vector of
Lagrange multipliers. Differentiating with respect to w,,
equating to zero, and solving for w, leads to the calibrated
weights w, = a, g, = a, g(A'x,/c,) where g is the inverse
function of fand f(z) = dF(z)/dz. To compute w,, one must
first obtain A as the solution of the calibration equation
implied by (2.2), namely,

g a, g(A'xfe)x, =X (2.3)

The solution of this (possibly) nonlinear system of p
equations in p unknowns may require the use of some itera-
tive procedure, such as the Newton-Raphson method.

A number of distance functions are considered by Deville
and Sdrndal (1992), Huang and Fuller (1978) and Singh and
Mohl (1996). Two important distance functions which we
first discuss are the Generalized Least Squares ((GLS) distance
function and the Raking Ratio (RR) distance function, both
given in Deville and Simdal(1992).

The GLS distance function is defined by:

F*(w..a,) =Fgs(w,a)
=c,(w, - a)a, = ayc (wila, - 1. (2.4)

It generates the well-known generalized regression
estimator (GREG), which encompasses as special cases the
ratio estimator, the simple regression estimator, and the
simple post-stratified estimator, among others. It follows from
(2.3) that the calibrated weights corresponding to the GLS
distance function are:

G\t ' -1
wo=a,g, =a[l+X-X) (GE axx, ch) x/c,]
JES

where X =Y, a,x, is the HT estimator of X. The
corresponding estimator of ¥ can be written in the usual
regression estimator form as

Y yoree = Pu + (X - %P (2.5)
where
st
p= ( p)) ax,x,'/ CJ:) Y axy e, (2.6)
kes kes
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Thus, the regression estimator can be thought of as the HT
estimator plus an adjustment term. A drawback of the GLS
distance function is that it may give rise to negative weights,
particularly if the system is overconstrained. In practice,
negative weights are rare; however, it is desirable to eliminate
them entirely since it may be difficult to give them any
meaningful interpretation.

The Raking Ratio (RR) distance function is defined by:
F*{w.a) = Fep(w,,a,)
=c, iwloglw,/a)-w, +a) 2.7

=a,c [(wla)log(w, fa) - (wla,) + 1].

Solving for g-factors using the RR distance function and
the constraint defined by equation (2.3) can be shown to be
equivalent to using the Iterative Proportional Fitting (IPF)
algorithm of Deming and Stephan (1940) when calibrating on
known marginals of frequency tables of dimension two or
higher. Unlike the GLS distance function, which has a closed
form solution, the calibration equations for the RR distance
function can only be solved iteratively. Computer software
exists for this purpose; for example, the CALMAR software
(see Deville, Sdrndal and Sautory 1993) solves the calibration
equations for the RR distance function using the Newton-
Raphson method, rather than the IPF algorithm originaliy
proposed by Deming and Stephan. The RR distance function
always ensures positive weights; however, it also has the
undesirable property that some of the resulting calibration
weights can be excessively targe.

Neither the possibility of negative weights produced by the
GLS distance function nor the possibility of large positive
weights produced by the RR distance function are desirable,
One can define restricted distance functions whereby the
range of the resulting weights w, are limited. This is achieved
by imposing restrictions on the distance function F(w,/a,) in
such a way that the g-factors g, = w,/a, are bounded within
a prespecified interval. To this end, one can specify a lower
bound L and an upper bound U, such that L < 1 < U. To
guarantee positive weights, one would choose L > 0. Now,
Deville and Sérndal (1992) define restricted versions of the
two distance functions given above; they are: the Restricted
GLS (RGLS) distance function and the Restricted Raking
Ratio (RRR) or Logit distance function. Twao other methods
of restricting final weights are proposed by Huang and Fuller
(1978) and Singh and Mohl (1996). All four restricted
distance functions are considered in this paper; they are also
discussed in detail in Singh and Mohl (1996), but from a
different perspective.

The Restricted GLS distance function is defined by:
F'(w,a,)=
c,we-ala, if L<wia, <U

£ ‘GLS(W @) =
" o {w otherwise. (2.8)
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The Restricted RR (or Logit} distance function is defined
by:

F'(w,,a) = Faep(w,,a,) =
(471 c, [(wa, - L)logl(w,/a, - L)1 - L))
U - wpla)log((U - wla)I(U -~ D]

if L<wla,<U

| otherwise (29

where A = (U - L)/((1 - L)(U- 1)}. The specification L =0,
U/ =« gives the RR distance function. It is easy to show that
the Restricted GLS and Restricted RR distance functions
share the property that the corresponding weights w, satisfy
L<wy/a, < U.

Now, Huang and Fuller (1978) propose a method for
adjusting regression weights such that the calibration
constraints given by equation (2.2) are satisfied and such that
the g-factors are restricted to lie close to one, Singh and Moh)
(1996) show that their method can be writien in terms of
minimizing a distance function which changes from iteration
to iteration, Singh and Mohl also modify the original method
to allow for arbitrary restrictions on the g-factors, similar to
the restricted distance functions above, and show that the
estimator resulting from the modified distance function is
asymptotically equivalent to the regression estimator. The
Modified Huang-Fuller (MHF) distance function is given by:

e (V-1) (), (v-1}
Fiw, a) =Fyelw, ay)

(v-1) {v-1)-, _
k

- a)lag " v =12, (2.10)

where ¢"""" = g g g with g\ = 1 and where v is
the iteration number. Here,

1 if £ Ves

(v-1) _

g, 1-8E""-5? if 5<E V<1

(1-8ayE" D if gV 05

for & arbitrarily chosen such that 0 < & < 1. Also

g - - i gt V<
k -

(g - D/U - 1) otherwise

where L' =al +1 - eand U’ = al/ + 1 - « for a arbitrarily
chosen such that 0 < @ < 1 and L and U are as in earlier
restricted distance functions. The parameters ¢ and & serve to
speed up the convergence of the iterative algorithm used to
provide a solution. Singh and Mohl (1996) empirically test a
variety of values for these parameters using large data sets,
and suggest that & = .67 and & = .8 work well in practice.
Finally, the g-factor at each iteration is
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(v-1) _
N
~(y— =T -1
1+(x- X0 ”)'(2 aq"? xjxj’) X v=23,..
jes

where X0 % = ¥, owd Pxi; v = 2,3,... and where wi P =
a,gf; v=2,3,... Starting values are given by g{” = 1
and w® = a,.

Singh and Mohl (1996) also propose a new distance
function which changes from iteration {0 iteration called the
Shrinkage-Minimization (SM) distance function, and show
that the estimator resulting from this distance function is also
asymptotically equivalent to the regression estimator. It is
given by:

* -1 * -1)
Frow ™ a) = Fgqy (. " ap)

R S L N T 23 & A

= (wy .11

where

. {v-1)
L'a, if w,

~1)= , : = 7
a,fv = Ua, if w,fv l)>U’ak
wi Y

<L"a,
v=23,..

otherwise.

Terms in the above equations are defined as follows:
L'sal+(1-a),U=acU+(l - ), L”"=nL+(1-7n) and
U =qU + (1 - n) for « and n arbitrarily chosen such that
0 < & <1 s 1. As before, the parameters « and 7 serve to
speed up the convergence of the iterative algorithm used to
provide a solution; Singh and Mohl (1996) suggest that

¢ = 67 and 1 = .9 work well in practice. Finally,
(v-1) _ (v-1),

w, =ag, ; v=2,3,. where
a(v—2)e -1
-1 _ “x _ plv=2)y, (v-2)+ ' .
g -a—k1+(X X0 )[jzes:aj xj.tj) x|

v=2073 .

and where X2 is as before. Starting values arc given by
a® =a, and w =a,.

A property of the Modified Huang-Fuller and Shrinkage-
Minimization distance functions is that the calibration
constraints (equation (2.2)) are met at every iteration whereas
the range restrictions on the g-factors are met only upon
convergence. For the Restricted GLS and Restricted Raking
Ratio distance functions, the range restrictions on the
g-factors are met at every iteration whereas the calibration
constraints are only met upon convergence. Now, it is often
useful to specify an upper bound on the number of iterations
to convergence; this feature may be programmed into the
iterative algorithm for operational expediency. If this upper
bound is exceeded due to slow convergence, the iterative
algorithm may be terminated prematurely. Regardless, for the
Modified Huang-Fuller and Shrinkage-Minimization distance
functions, the calibration constraints will be met. Likewise,

for the Restricted GLS and Restricted Raking Ratio distance
functions, the range restrictions will be met.

Now, the behaviour of the g-factors from some of the
distance functions has been studied extensively; see, for
example, Deville, Sirndal and Sautory (1993). Stukel and
Boyer (1992) empirically show that the GLS and RR distance
functions, as well as their restricted counterparts having loose
bounds imposed on them, give g-factors whose distributions
over a given data set adhere to normality rather closely.
However, as the bounds on the restricted distance functions
are squeezed together more closely, the distributions exhibit
a “pile-up” of g-factors at the lower and upper bounds.
Regardless, even under extreme squeczing, the restricted
distance functions seem to give point estimates that are close
to their unrestricted counterparts, as the results of our em-
pirical study will verify. However, the biases of both the point
and variance estimators under extreme squeezing on the
restricted distance functions have not been investigated. This
investigation is of interest to surveys such as the LFS, where
an augmentation to the current estimation system has been
implemented, which now allows users the option of choosing
from amongst the Restricted GLS distance function and the
Shrinkage-Minimization distance function, in addition to the
previously available GLS distance function.

3. VARIANCE ESTIMATION FOR CALIBRATION
ESTIMATORS

The exact variance of the calibration estimator ¥, is
intractable since the point estimator itself is nonlinear. In
addition, there is no explicit unbiased method of vanance
estimation. Therefore, approximately unbiased methods, such
as the Taylor and the Jackknife, are often used in practice.

Now, for stratified multistage designs, “with replacement”
sampling is not often used in practice since the possibility of
drawing the same unit more than once is unappealing. There-
fore, the preponderance of surveys use “without replacement”
sampling, at least at the first stage of sampling. Even so, if the
first stage sampling fraction is small (say, less than 10 percent
as a rule of thumb), it ray be reasonable to use a simplified
variance formula that assumes “with replacement” sampling
at the first stage of sampling. For the generalized regression
estimator (GLS distance function) under a stratified multi-
stage design this simplification of the variance estimator
yields:

r (Yuioree)) =
"h 2

L Ay
Z b E Qi Chix ~ _I‘E Z e, G)

we M= 1o [kes, Ry sl kes,,

ny,

where s,; is the sample of individuals in the i-th primary
sampling unit (PSU) and the h-th stratum, a, is the original
sampling weight under the stratified multi-stage design for
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sampled individual k in PSU ¢ and stratum A, and n, is
the number of sampled PSUs in stratum h.  Also
€ = Yuir = x;uﬁ 1s the estimated residual associated with the
regression estimator where = (F, .. a0 Xpu Xia/Cra)
Y hikes @hie Xnax Ynin/Chi-  For many designs, the “with
replacement” formula given by (3.1) overestimates the true
variance (see Sirndal, Swensson and Wretman 1992, section
4.6). Note that although, technically speaking, this simplified
variance estimator is not the Taylor variance estimator, it is
often referred to as such for historical reasons and so will it
be in this paper.

An improvement to equation (3.1), which includes the
g-factor in the variance formula (recall that w,, =a,, g,.), is
suggested by Hidiroglou, Fuller and Hickman (1980). It is
given by:

V(¥ ucrea)) =

L iy 2
E E E Wi €hiz ~ —Z Z Wi | - - 2)

k=1 ny— 13T e, N, it kesy

An analogue of equation (3.2) is also suggested by Samdal
(1982) in the context of two-stage sampling, but for Yates-
Grundy type variance estimators. Now Deville and Sirndal
(1992) show that any distance function which obeys a set of
general conditions will produce an estimator that is asympto-
tically equivalent to the one produced by the GLS distance
function, that is, ¥ w(crEG) &iven by (2.5). Singh and Mohl
(1996) extend this result to include the Modified Huang-
Fuller and Shrinkage-Minimization distance functions. As a
result, the asymptotic variance of the calibration estimator F
can be considered to be roughly equal to that of Y, ;ppc,-
This observation leads to a method for estimating the Taylor
variance which is common to all calibration estimators,
namely, to estimate the variance of f’ using a modification
of the Taylor variance estimator employed for ¥  A—
rather then rederiving the Taylor formula for each of the
distance functions separately. Thus, whenever a variance
estimator associated with a distance function different from
the GLS is required, equation (3.2) is used, replacing the final
weights {w,;} from the GLS distance function with those
from the distance function in question.

1t is straightforward to apply the Jackknife procedure to
obtain a variance estimator for ?w, regardless of the distance
function used to obtain the final calibrated weights. An
expression for the variance formula under a stratified mult-
stage design using with replacement sampling at the first stage
is given by:

P7)-3

h=1

—- Ry
nhl

E (¥ (- ¥ )’ (3.3)

where fw(h i) is often referred to as the “replicate estimator™;

*“replicates” are formed by taking what remains of the sample
after removing PSU § from stratum k. Thus, ¥ L(RE) is
calculated by recomputing Y after removing the i- th PSU
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from the h-th stratum, k=1, ..., L; i = 1, ..., n,, .e., with the
original sampling weights altered to reflect the PSU removal
and the g-factors recatculated based on the reduced sample or
replicate. Finally, the Jackknife estimator is constructed by
repeatedly removing PSUs one at a time, calculating the
corresponding replicate estimator, and then assembling the
final estimator using (3.3). The Jackknife variance estimator
given by (3.3) is the most conservative among the four varia-
tions suggested in the extensive discussion on the subject by
Wolter (1985).

It is interesting to note that, for the GREG estimator, Yung
and Rao (1996) obtain (3.2) as an approximation to the
Jackknife variance estimator given by (3.3); they call (3.2) the
“Jackknife Linearization Variance Estimator”. Their simul-
ation study shows that biases (both conditional and uncon-
ditional) of the Taylor variance estimator (equation (3.1)), the
Jackknife Linearization variance estimator (equation (3.2))
and the Jackknife variance estimator (equation (3.3)) behave
simnilarly. While their simulation focuses on variance esti-
mators for the unrestricted GREG estimator, our simulation
study, which we discuss next, focuses on variance estimators
for the GREG as well as for estimators based on other
restricted and unrestricted distance functions.

4. MONTE CARLQO SIMULATION STUDY

4.1 Design of the Study

In order to compare the performance of the calibration
estimators and their corresponding Taylor and Jackknife
variance estimators, we undertook a Monte Carlo simulation
study, in which we investigated their finitc sample design-
based frequentist properties.

December 1990 Labour Force Survey (LFS) sample data
for the province of Newfoundland was used to simulate a
finite population, from which repeated samples were drawn.
The LFS is the largest ongoing household sample survey
conducted by Statistics Canada. Monthly data relating to the
labour market is collected using a complex multi-stage
sampling design with several levels of stratification. The
details of the design of the survey prior to the 1991 redesign
can be found in Singh, Drew, Gambino and Mayda (1990).
In general, provinces are stratified into “‘economic regions”,
which are large areas of similar economic structure; New-
foundland has four such economic regions. The economic
regions are further substratified into “self-representing units”
(SRUs) and “non self-representing units” (NSRUs), which
are, in turn, further substratified into lower level substrata.
SRUs are cities whose population exceeds 15,000, such as
St. John's and Cormerbrook, in the case of Newfoundland.
Now, the lowest level of stratification in Newfoundland
yielded 435 strata, each of which contained less than 6 primary
sampling units (PSUs), which was an insufficient number
from which to sample, for the purposes of the simulation.
Thus, the 45 strata were collapsed down to 18, each
containing between 6 and 18 PSUs. In collapsing the strata,
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economic regions were kept intact, as were the Census
Metropolitan Areas (CMAs) of St. John’s and Cornerbrook.

For the Monte Carlo study, R = 4,000 samples, each of size
approximately 1,000, were drawn from the Newfoundland
“population” {(which was of size 9,152), according to a two-
stage design, For collapsed strata belonging to NSRUs, two
PSUs were selected at the first stage using Probability
Proportional to Size (PPS) with replacement (WR) sampling,
where the size measure used was the number of dwellings in
the PSU. At the second stage, one in five dwellings were
selected from the sampled PSUs using Simple Random
Sampling (SRS) without replacement (WOR). For collapsed
strata belonging to SRUs, three PSUs were selected at the
first stage using PPS WR sampling. At the second stage, all
the dwellings in the sampled PSUs were selected, reducing
this part of the design to one-stage take-all cluster sampling.
This feature was necessary since there were not enough
dwellings per PSU to subsample in SRUs. The selection of
two PSUs in NSRU strata versus three in SRU strata was
driven by the fact that, in general, NSRU strata had fewer
population PSUs from which to sample than did SRU
strata. In all, there were 47 sampled PSUs. In cither case
(NSRUs or SRU3), all dwelling members were included in the
sample. Although this design is a hybrid between 2 one and
two-stage design, we shall refer to it as a two-stage design, for
convenience.

We took Y, the total number of unemployed, to be the
parameter of interest. This was calculated from the finite
populationby: ¥ =}, vy, = Zk | ¥, where y, = 1 if individual
k was unemployed; O otherwise. For each of the R = 4,000
samples, we calculated Y the estimated total number of
unemployed as ¥, =Y, W, The {w, kes} were deter-
mined by the followmg six distance functions discussed
earlier:

(1) the Generalized Least Squares (GLS) Distance Function
(equation (2.4)),

(2) the Raking Ratio (RR) Distance Function (equation
(2.7)),

-(3) the Restricted GLS (RGLS) Distance Function (equation
(2.8)),

(4) the Restricted RR (RRR) or Logit Distance Function
(equation (2.9)),

(5) the Modified Huang-Fuller (MHF) Distance Function
(& = .67, & = .8) (equation (2.10)), and

(6) the Shrinkage-Minimization (SM) Distance Function
(e = .67, 1 =.9) (equation (2.11)).

For the latter four distance functions, the following four
scts of bounds were imposed on each to restrict the
minimization: (i) L= 0, U =4, (iiyL = 4, U =2, (iii) L = .68,
U =16 and (iv) L = .8, U/ = 1.3, This yielded a total of
eighteen point estimators. For each of the gighteen point
estimators, the calibration used auxiliary information based
on Census projections at the province level for 10 mutually
exclusive and exhaustive agefsex categories (age categories:
< = 14, 15-24, 25-44, 45-64, > = 65 crossed with the two
sexes) and the four economic regions of Newfoundland.

Thus, the auxiliary information for each individual was a
vector of length fourteen having exactly two ones and twelve
zeros. However, for computational purposes, the dimen-
sionality of the vector had t0 be reduced to thirteen when
using the Newton-Raphson procedure to solve equation (2.3).
For the first four distance functions, we set ¢, = 1.

For each of the R = 4,000 samples and each of the eighteen
point estimators, we calculated the Jackknife variance esti-
mator given by equation (3.3). We also calculated the Taylor
variance estimator given by equation (3.2), and the modifica-
tion suggested in section 3 was used for distance functions
other than the GLS. Note that since PPSWR, rather than
PPSWOR, was used at the first stage of sampling, the use of
the variance estimator given by equation (3.2) was entirely
appropriate for our simulation. Finally, for the GLS distance
function only, the formula (3.1) was calculated to observe the
impact of omitting g-factors from the variance estimator.

For each of the six distance functions given above, a
number of frequentist properties were investigated. These are
given below.

(A) The Percent Relative Bias of the Estimated Number of
Unemployed (with respect to the population value) is
estimated by:

-

E,(F)-Y

* 100 4.1)
Y

where
. 1 & .
Ey¥)=—3 7,
R r=1 r

is the Monte Carlo expectation of the point estimator Y
taken over the R samples, and Y 1s the value of Y for
sample r,

(B) The Percent Relative Bias of the Taylor/Jackknife
Variance Estimator (with respect to the true variance) is
estimated by:

(E,(VEN-V_)

* 100 4.2)
th'ue
where
o oa 1 & s
E, (V) = PIRACH
r=1
and

R
Vi =%,E( L - Ey (7))

and ‘I?r(f’w) is the value of ?(f’w) (Taylor or Jackknife) for
sample r.

(C) The Percent Coefficient of Variation of the Taylor/
Jackknife Variance Estimator (with respect w0 the true
variance) is estimated by:
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1.
1Y 0.0 v,y
N R i y + 100 (4.3)

i.e., the root mean squared error of the variance estimator
divided by the true variance, expressed as a percentage.
Although most studies focus on the kbias of the variance
estimators, it is also of secondary interest to look at the
coefficient of variation of the variance estimators to see how
variable the variance estimates themselves are.

Note that in equations (4.2) and (4.3), it may have been
more appropriate to make comparisons relative to a “true
mean squared error” rather than a “true variance”. However,
for our simulation, the relative biases were so small that the
differences between the two types of comparisons are vir-
tually negligible.

Finally, in order to assess the appropriateness of the choice
of number of repeated samples, we calculated Monte Carlo
errors, using as a measure the Percent Coefficient of Varia-
tion of E, (V(¥,)), given by:

R
\ # Zl V() - E, (V(F, )]

E V(7))

4.4)

* 100,

The Monte Carlo errors were found to be consistently low
(between .99% and 3.60%) for both the Jackknife and Taylor
wsing R = 4,000, indicating stable results.
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4.2 Results of the Study

Talle 1 gives the Percent Relative Bias of the Point Esti-
mators (equation (4.1)) as well as the Percent Relative Bias of
the Taylor and Jackknife Variance Estimators (equation (4.2))
and the Percent CVs of the Taylor and Jackknife Variance
Estimators (equation (4.3)). The percent relative bias for all
the point estimates (column two) is negligible, ranging in
value from 0.10% to (.52%, but much less than 1% in all
cases. The fact that all point estimates have a similar bias
seems reasonable, given the asymptotic equivalence of all
calibration estimators to the regression estimator,

The third column gives the percent relative bias of the
Taylor variance estimator. Here, the true variance is always
underestimated, but never by more than 6.2%. In the case of
the regression estimator, it appears to make little difference
whether or not the g-factor is included in the variance formula
(equation (3.1) versus (3.2)); the bias improves only slightly
for the case of the g-factor included (-5.82% versus -6.01%).
The Jackknife variance estimator (column four), on the other
hand, outperforms the Taylor variance estimator uniformly.
The Jacklmife almost always underestimates the true variance,
but by less than 2% in all cases.

To produce 2 solution, all distance functions but the GLS
required an iterative algorithm. This being the case, some of
the 4,000 samples experienced convergence problems, parti-
cularly in the case of exireme bounding on the g-factors.
Those samples for which the algorithm did not converge were
discarded. Thus, they did not contribute to the various Monte
Carlo measures. The number of such discarded samples is

Table 1
Percent Relative Bias of the Point Estimators, and Percent Relative Bias and Percent CV of the Taylor and
Jackknife Variance Estimators (Sample Size About 1000)

Percent ‘Percent Percent v Number of
} } Relative Relative Relative Percent CV Percent C Discarded
Distance Function Bias Point Bias Taylor  Bias Jackknife Taylor .La,ack'kmfe Samples
Estimator Variance Variance Variance anance (From 4000)
GLS (Regression) 1 -6.01 (eq 3.1} -1.73 60.79 (eq 3.1) 62.86 0
~5.82 (eq 3.2} 59.60 (eq 3.2}
Restricted GLS (L=0,U=4) A1 -5.82 -1.73 59.60 62.86 0
(L=4,U=2) 10 -3.36 -1.27 59.93 63.21 32
Raking Ratio 52 -6.20 0.84 59.45 63.35 0
Restricted RR (L=0,U=4) .50 -6.09 -0.31 59.48 63.47 0
(L=4,U=2) 46 -5.69 -0.39 59.81 64.21 32
Modified (L=0,U=4) A1 -582 -1.73 59.60 62.86 0
Huang-Fuller (L=4,U=2) 10 -5.36 -1.20 59.94 63.27 32
Shrinkage- L=0,U=4) A1 -5.82 -1.73 59.60 62.86 0
Minimization L=4,U=2) .10 -5.36 -1.27 59.94 63.25 32
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indicated in the last column of Table 1. In the case of extreme
bounds (L = .68, U = 1.6 and L = .8, U = 1.3), so many
samples were discarded (between 231 and 234 for the cases
L = .68, U= 1.6 and between 1,562 and 1,602 for the cases
L = 8, U/ =1.3) that the results were not considered reliabie,
and so are not reported here. However, these tighter bounds
were of interest, so the simulation was rerun using
approximately double the sample size (increase from roughly
1,000 to 2,000). Note that Deville and Samdal {1992) show
that convergence is achieved for all distance functions with
probability one as the sample size increases.

Columns five and six of Table 1 give the Percent CVs of
the Taylor and Jackknife Variance Estimators. The coeffi-
cients of variation are similar for all distance functions,
ranging in value from 59.45% to 64.21%. However, the CVs
corresponding to the Jackknife are always slightly larger than
that of Taylor. Coefficients of variation of this magnitude,
although large, have been encountered in other simulation
studies relating to variances. See, for example, Kovadevic,
Yung and Pandher (1995). However, we were interested in
secing if the key results relating to the bias of the variance
estimators would still hold if the CVs were lowered.
Therefore, at the suggestion of a referce, we reran the simu-
lation, increasing the number of PSUs drawn from 47 to 83,

since CVs of variance estimators are known to be approxi-
mately inversely related to the number of PSUs drawn. The
PSUs were increased in such a way that the overall design
was made self-weighting; this approach appeared to have the
greatest effect on lowering the CVs. The second stage of
sampling remained the same as before. Rerunning the simu-
lation had the secondary benefit of roughly doubling the
sample size, and thus, solving the convergence problems
referred to in the last paragraph.

The results from the second run of the simulation are
reported in Table 2. The last column in Table 2 shows the
reduced number of discarded samples due to convergence
problems. The fifth and sixth column of this table show that
the CVs are significantly reduced to between 22.70% and
24.2% with the Jackknife consistently exhibiting slightly
higher values. Now, as before, the percent relative bias in the
point estimator is negligible, always being well under 1%. In
the previous run, the percent relative biases for the Taylor
estimator were always roughly -6%; here, they are always
about -3%, again implying underestimation of the true vari-
ance. Once more, in the case of the GLS distance function,
there is very little difference in the bias that results from using
equation (3.1) versus (3.2). The percent relative bias in the
Jackknife estimator (always ronghly -1.5%) is consistently

Table 2
Percent Relative Bias of the Point Estimators, and Percent Relative Bias and Percent CV of the Taylor and
Jackknife Variance Estimators (Sample Size About 2000)

Percent Percent Percent Percent CV Percent CV Number of
Distance Function I_lelati\.re Relative _ Relative i Taylor Jackknife Discarded
Bias Point Bias Taylor  Bias Jackknife Variance Variance Samples
Estimator Variance Variance {From 4000)
GL.S (Regression) .02 -2.71(eq 3.1) -1.43 23.03(eq 3.1) 23.29 0
-2.61 (eq 3.2) 22.84 (eq 3.2)
Restricted GLS (L= 0,U=4) .02 -2.61 -1.43 22.84 23.29 0
(L=4,U=2) .02 -2.61 -1.43 22.84 23.29 0
(L=.68,U=1.6) .02 -2.61 -1.44 22.84 - 2329 0
(L=8,U=13) .02- -2.75 ~1.56 2270 23.15 118
Raking Ratio 25 -275 -1.15 22.84 23.43 0
Restricted RR (L=0,U=4) 17 -2.67 -1.36 22.84 23.30 1]
(L=4,U=2) 16 -2.70 -1.42 22.84 23.29 1]
(L=.68,U=1.6) A1 -2.77 -0.49 22.83 24.20 0
(L=8,U=13) 27 -2.91 * 22.70 * 118
Modified (L=0,U=4) .02 -2.61 -143 22.84 23.29 0
Huang-Fuller (L=4,U=2) .02 -2.61 -143 22.84 23.29 0
(L=.68,U=1.6) .02 -2.61 -1.44 22.84 23.29 0
(L=8,U=13) .02 -2.58 -1.36 22.73 23.18 116
Shrinkage- (L=0,U=4) 02 -2.61 -1.43 22.84 23.29 0
Minimization (L=.4,U=2) .02 -2.61 -1.43 22.84 23,29 0
(L=.68,U=1.6) 02 -2.61 -1.44 22.84 23.29 0
(L=8,U=13 .02 -2.61 -1.24° 22.73 23.63 118
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smaller in absolute value than that of Taylor. For the Jack-
knife estimator, there is one case (Restricted RR (L = .8,
U = 1.3)) where there were convergence problems; those
results are omitted, indicated by a “*”. Surprisingly, for both
the Taylor and Jackknife, there is virtually no change in bias
for the restricted distance functions as the bounds are made
successively more tight. In fact, there seems to be very little
difference in the percent relative bias across all of the distance
functions, for both the Taylor and the Jackknife. Note that for
the rerun of the simulation, the Monte Carlo errors ranged
between .37% and 2.13%.

5. CONCLUSIONS

This paper focused on exploring the behaviour of point
estimators and their corresponding Taylor and Jackknife
variance estimators for a number of different distance
functions available through calibration theory. Particular
emphasis was given to those distance functions which
allowed range resirictions to be imposed on the g-factors,
eliminating the possibility of negative and high positive final
weights. All of the point estimators which were investigated
exhibited a negligible bias.

Both the Jackknife and Taylor variance estimators
exhibited small underestimation of the true variance, although
the Jackknife consistently had smaller biases (in absolute
value) than the Taylor. The most striking result was that, for
both Taylor and Jackknife, the biases remained roughly the
same in the cases of extrerne bounding on the g-factors as in
the cases of less restrictive bounding. In general, however,
caution should be exercised in the use of extreme bounds, due
to the convergence problems that may be experienced,
particularly when Jackknifing is used for variance estimation
and the point estimators must be recalculated repeatedly. If
the main objective of using the restricted distance functions
is to eliminate the possibility of negative or high positive
weights, then modest bounds on the g-factors should suffice,

As a final remark, it is interesting to note that roughly 97%
of the computing time was spent Jackknifing while the
remaining 3% was spent on Taylor linearization. This rather
extreme difference in computation time may give the Taylor
method an advantageous edge if measures of precision are
required for a large number of domains. However, given
recent developments in the computational efficiency of the
Jackknife variance estimator (for example, the program
WESVARPC (1995)), it may be possible to offset this im-
balance. Even so, it should be noted that, at this time,
WESVARPC has improved the computational efficiency for
designs having only two PSUs per stratum, and poststratified
estimators having only one dimension.

In conclusion, since our study does not conclusively show
either variance estimator to be clearly superior and shows
both to behave reasonably well for all distance functions, it is
up to the user to decide which variance/ distance function
combination best fits the system requirements.
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An Application of Restricted Regression Estimation
in a Household Survey

BODHINI R. JAYASURIYA and RICHARD VALLIANT!

ABSTRACT

This paper empirically compares three estimation methods — regression, restricted regression, and principal person — used
in a household survey of consumer expenditures. The three methods are applied to post-stratification which is important
in many household surveys to adjust for under-coverage of the target population. Post-stratum population counts are
typically available from an external census for numbers of persons but not for numbers of households. If household
estimates are needed, a single weight must be assigned to each household while using the person counts for
post-stratification. This is easily accomplished with regression estimators of totals or means by using person counts in each
household’s auxiliary data. Restricted regression estimation refines the weights by controlling extremes and can produce
estimators with lower variance than Horvitz-Thompson estimators while still adhering to the population controls. The
regression methods also allow controls to be used for both person-level and household-level counts and quantitative
auxitiaries. With the principal person method, persons are classified into post-strata and person weights are ratio adjusted
to achieve population control totals. This leads to each person in a household potentially having a different weight. The
weight associated with the “principal person” is then selected as the household weight. We will compare estimated means
from the three methods and their estimated standard errors for a number of expenditures from the Consumer Expenditure

survey sponsored by the U.S. Bureau of Labor Statistics.

KEY WORDS: Calibration; Principal person method; Replication variance; Restricted regression.

1. INTRODUCTION

A signal problem in large household surveys is under-
coverage of the target population often arising from
differential response rates among population subgroups and
frame deficiencies. Post-stratification is one method used at
the estimation stage to reduce mean square errors based on
information that affect the response variables. The estimator
is constructed in such a way that the estimated total number of
individuals falling into cach post-stratum is equal to the true
population count. Post-stratum population counts are typically
available from an external census for numbers of persons but
not always for numbers of households. If household estimates
are needed, a single weight must be assigned to each house-
hold while using the person counts for post-stratification.
Regression estimators of totals or means accomplish this by
using person counts in each household’s auxiliary data.
Restricted regression estimation controls extreme weights and
can produce estimators with lower variance than the Horvitz-
Thompson estimator while still adhering to the population
controls. An alternative used by some surveys is the Principal
Person (PP) method (Alexander 1987) in which the household
weight is based on the individual designated as the*principal
person” in each houschold. Persons are classified into
post-strata and person weights are ratio adjusted to achieve
population contrgl totals, leading to the possibility that each
person in a houschold may have a different weight. The
weight associated with the principal person is then assigned to
the household. This ad hoc method is difficult to analyze
theoretically. The regression estimators discussed in this

paper, while casily adjusting for the population under-count,
automatically provide a household weight that is not based on
any particular one of its members. Lemaitre and Dufour
(1987) address Statistics Canada’s use of the regression
estimator in this regard.

There are a growing number of precedents for the use of
regression estimators in surveys both in the theoretical
literature and in actual survey practice. Statistics Canada has
incorporated the general regression estimator into its
generalized estimation system (GES) software that is now
used in many of its surveys (Estevao, Hidiroglou and Simdal
1995). Fuller, Loughin and Baker (1993) discuss an
application to the USDA Nationwide Food Consumption
Survey, One of the attractions of regression estimation is that
tany of the standard techniques in surveys including the
post-stratification estimator mentioned above are special cases
of regression estimators. The regression estimator also more
flexibly incorporates auxiliary data than other more common
methods. In a housechold survey, for example, both person-
level and houschold-level auxiliaries that can be qualitative or
guantitative are easily accornmodated. Other works related
to regression estimation and post-stratification include
Bethlehem and Keller (1987), Casady and Valliant (1993),
Deville and Sarmdal (1992), Deville, Sirndal and Sautory
(1993) and Zieschang (1990).

In this study we compare the regression estimator with the
PP estimator currently in use at the Bureau of Labor Statistics
(BLS). Each estimator can be written in the form of a
weighted sum of the sample values of the response variable.
Then each weight is traditionally interpreted as the number of

' Bodhini R. Jayasuriya and Richard Valliant, U.S. Burean of Labor Statistics, 2 Massachusetts Avenue, N.E., Room 4915, Washington, DC 20212, US.A.
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individuals in the population who would have the correspond-
ing value of the response variable. This interpretation requires
that each weight be greater than or equal to one. The ordinary
least-squares regression estimator has the disadvantage that it
can produce non-positive weights. A number of ways are
suggested in the literature on how to overcome this problem.
Possibly the easiest is the methad introduced by Deville and
Sirndal (1992) which can remove any negative weights as
well as control extreme weights. The restricted regression
estimators produced by these new weights are also compared
to the original regression estimator and the PP estimator.

In Section 2, the three different estimators are presented.
Section 3 is an application of these procedures to the
Consumer Expenditure (CE) Survey at BLS — the same setting
as in Zieschang (1990). We compare the coefficients of
variation for a number of the survey target variables for the
full population and for a number of domains. Section 4
provides a summary of our conclusions.

2. REGRESSION, CALIBRATION
AND PRINCIPAL PERSON
ESTIMATION

First, we give a briel introduction to the regression
estimator. A sample s of size n is selected from a finite
population U of size N. Let the probability of selection of the
i-th unit be 7,. The sample could be two-stage and the unit
could be either the primary sampling unit or the secondary
sampling unit. There is no need here to complicate the
notation with explicit subscripts for the different stages of
sampling. Let the variable of interest be denoted by y and
suppose that its value at the i-th unit, y,, is observed for each
ies. Assume the existence of K auxiliary variables x,,x,,...x,
whose values at each fes are available. Define
x = (xl.l,xn,...,x‘.x)’, for each ie U, where x, denotes the
value of the variable x, atuniti. Let X = (X|,..,X)" denote
the K-dimensional vector of known population totals of the
variables X,x,,...x;. The regression estimator is then
motivated by the working model &:

i =By + Boxg v+ Prxy € (2.1

fori=1, .., N.Here, B,,.., B, arc unknown model parameters.
The &, are random errors withEE(s,) =0 and var(e) = 0% for
i =1, ..., N. The term “working model” is used to emphasize
the fact that the model is likely to be wrong to some degree. In
the CE, the unit of analysis, indexed by i, is a consumer unit
(CU), which is similar to a household and defined in more
detail in Section 3. The value y, might be the total food
expenditures by the CU and the x,,’s might be various CU
characteristics like numbers of people of different ages, or CU
income, that have an effect on the CU’s expenditure on food.
The variance of expenditures might be dependent on CU size
so that having 0'.2 proportional to the number of persons in the
CU might be reasonable. We include an intercept in some of
our models by setting the first auxiliary variable, x,, equal to 1.

A linear regression estimator of the population total of y is
defined to be

PPt (X-%£)P (2.2)

where §_ denotes the m-estimator (or Horvitz-Thompson
estimator) of the population total of y, i.e.,

J.= X ay (2.3)
ics
with a, = 1/n,. Also, £ =(£ ..} is the vector of
n-estimators of the population totals of the variables
X3 Xyy..s Xy ANd

axx![
Z i le

ics (4] ;

B=(B,.Bp =

¢ ExY
) — (2.4)
ies 0;

We assume that } . a.xx/ of is nonsingular. Even if model
(2.1) fails to some degree, ¥./N is a design consistent
estimator of the population mean ¥ irrespective of whether
the assumed model is tru or false. This is clear from (2.2). If ¥_/N
and £ /N are design consistent estimators of ¥ and of X,
the vector of population means of the auxiliaries, then the
second term in Yy /N converges to zero while the first
converges to Y . For more details, see Simdal, Swensson and
Wretman (1992).

The regression estimator §, can also be expressed as a
weighted sum of the sample y,’s, which is a desirable feature
for survey operations. It is easily seen that (2.2) can be

re-written as ¥, =} . w,y, with
cafl(x-2yA
w=a|l (X -£) A7 — (2.5)
g;
where A=Y, axx// o’. The weights do depend on the

sample through the x,’s that are in the sample, but this is also
true of many survey estimators, including the post-
stratification estimator. However, these weights do not depend
on the particular y variable being studied, implying that one
set of w, weights can be used for all estimates.

A mean per unit is estimated in the obvious way:
3"_3 = )?Rlﬁ where N = Y.ic,W;- If we estimate the totals of the
auxiliaries x , then

axx!
> wr, = X fage] + (X - £y At 5
ics iex Uiz (26)

= X',

i.e., we reproduce the known population totals. This is also a
characteristic of the post-stratification estimator.

The estimator of § in (2.4) does not account for any
correlation among the errors in model (2.1). In clustered
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populations, units that are geographically near each other, e.g.,
CU’s in the same neighborhood, may be correlated. Using a
full covariance matrix ¥ may be more nearly optimal (e.g., see
Casady and Valliant 1993 and Rao 1994). Though use of a full
covariance matrix V may lower the variance of ﬁ the
elements of V will depend on the particular y being studied,
and estimation of ¥ is generally a nuisance. Consequently, it
is interesting and practical to consider the simple case of
V = diag(c?) that leads to (2.2). Note that when the design-
variance var_(¥.) is estimated, it will be necessary to use a
method that properly reflects clustering and other design
complexities,

The regression estimator has the disadvantage that the
weights can be unreasonably large, small or, even negative.
The restricted calibration estimators of Deville and Sérmdal
(1992), introduced next, add constraints to control the size of
the weights. Calibration estimators are formed by minimizing
a given distance, F, between some initial weight and the final
weight, subject to constraints. The constraints can involve the
available auxiliary variables thus incorporating them into
the estimator. The regression estimator presented above is a
special case of the calibration estimator in which F is defined
to be the generalized least squares (GLS) distance function,

a,

ac, | w, 2
Flw,a) = #[——i - 1]

fori=1,...,n,with ¢; aknown, positive weight (e.g., c, :al.z
or ¢;=1) associated with unit i, and w,, the final weight. The
total sample distance ¥, F(w,a) is minimized subject to the

constraints,

ies
ZW.--",- =X, 2.7
ies

In this form, the weights of the regression estimator of the
population total of y given in (2.5) can be written as,

w,=ag(c,'Vx) (2.8)

fori=1,.., n where
glu)=1+u, 29
for ue & and A is a Lagrange multiplier evaluated in the
minimization process. The particular form of w; with ¢, = 0,2

for the regression estimator was given in (2.5). To eliminate
extremes, the weights can be refined by restricting g so that

L if u<l-1

gluy=t1+u if L-1susl-1 2.10)
U if us>U-1.
With this definition of g, the weights w, satisfy
Lew/a<U (2.11)
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fori=1, ..., nsothat L and U can be chosen in such a way as
1o reflect the desired deviation from the initial weights 4.
Choosing L > 0 ensures that the weights are positive, and U is
picked to be appropriately small to prohibit large weights. The
restricted regression weights must be solved for iteratively;
one easily programmed algorithm is given in Stukel and Boyer
(1992). Another method of restricting weights is ridge
regression as used by Bardsley and Chambers (1984).

In most household surveys, post-stratification serves
primarily as an adjustment for under-coverage of the target
population by the frame and the sample. In the U.S., there are
few rcliable population counts of households to use in
post-stratification. Consequently, population counts of persons
are usually used for the post-strata control totals. This
disagreement in the unit of analysis (the household) and the
unit of post-stratification (the person) when a household
characteristic is of interest led to the development of the PP
method that is used in the CE and Current Population Surveys.

In the PP method described in Alexander (1987), a
household begins the weighting process with a single base
weight, g, that is then adjusted for non-response. The
adjusted weight is assigned to each person in the household
and the person weights are then further adjusted to force themn
to sum to known population controls of persons by age, race,
and sex, This last adjustment can result in persens having
different weights within the same household. The houschold
is then assigned the weight of the person designated as the
“principal person” in the houschold. This method has an
element of arbitrariness and is difficult to analyze mathe-
matically. The intent of this research was not to see if the PP
method could be improved upon, but rather to use the current
implementation of PP as a convenient baseline for measuring
the performance of other estimators.

The regression and restricted regression estimators can be
formulated in such a way that population person controls are
satisfied, all persons in a household retain the same weight,
and no arbitrary choice among person weights is needed to
assign a household weight. This is accomplished by defining
the auxiliary variables at the household level. For example, if
there were three age post-strata and household i has 1, 0, and
2 persons in these post-strata, the anxiliary data vector would
be x, =(1,0,2)". Note that this formulation is different from
Lemaitre and Dufour (1987) who defined the auxiliary
variables at the person level and assigned the average of the
household data — (1/3, 0, 2/3) in the example — to each person.
Those authors used this “average™ method because they were
interested in estimates both for persons, e.g., number
employed, and for households, e.g., economic families. We,
on the other hand, need only a household weight since our
target variables (i.e., y) like shelter or utility expenditures are
collected at the household level.

3. AN APPLICATION

We compare the three estimators (i.e., regression, restricted
regression (with L = .5, U = 4), and principal person) by an
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application to the estimated means and their estimated
standard errors for a number of expenditures from the CE
Survey sponscred by the Bureau of Labor Statistics.

The CE Survey gathers information on the spending
patterns and living costs of the American consumers. There
are two parts to the survey, a quarterly interview and a weekly
diary survey. The Interview Survey collects detailed data on
the types of expenditures which respondents can be expected
to recall for a period of three months or longer {e.g., property,
automobiles, major appliances) — an estimated sixty to seventy
percent of total household expenditures. The Diary Survey is
completed at home by the respondent family for two
consecutive 1-week periods and collects data on all the
expenses of the family in that time period. The sample is
selected in two stages with geographic primary sampling units
at the first stage and houscholds at the second.

We evaluated the estimators described above for a number
of expenditures from the Interview Survey. Data collected
during the second quarier of 1992 consisting of n = 5156
CU’s were used. The CE Survey’s primary unit of analysis is
the consumer unit, an economic family within a household. A
consumer unit (CU) consists of individuals in the household
who share expenditures. Thus, there may be more than one
CU in a household.

Five different sets of auxiliary variables (x,’s in the
notation of Section 2) were studied. They were chosen by
testing the adequacy of model (2.1) for the selected
expenditures with different combinations of the available
auxiliary variables. Combinations of auxiliares were
identified in which each estimated regression coefficient was
significant in an ordinary least squares regression at the 5%
level. A key step that substantially improved the fit of the
models was simply including an intercept. Factored into the
selection of auxiliaries was also the knowledge that the survey
has more under-coverage of Blacks than non-Blacks and that
this needed to be accounted for by post-stratification. We
viewed this method of variable selection as exploratory and,
consequently, a number of combinations were studied to
determine which set produced the best estimators of mean
expenditures. The 56 post-strata based on age/racefsex
currently in use in the CE were included. (The 56 are routinely
collapsed in actual CE operations because of small sample
sizes in some cells)) Other variables that were statistically
significant in various combinations were region (NE, MW,
8, W), urbanicity (urban/rural) by region, age of reference
person of the CU (< 25, 25-34, 35-44, 45-64, 65+), household
tenure (owner/renter), income before taxes of the CU, and the
56 post-strata collapsed by sex and some of the age categories
to form 10 agefrace categories. Based on this information,
weights (2.8) were computed vsing g given in (2.9) — regwis
— and (2.10) — calwts. For both the regression and restricted
regression weights, we set a, equal to the adjusted base
weight, ie., 1/m, times a non-response adjustment. In order
for the matrix A in Section 2 to be nonsingular, one of the
categories in some auxiliaries, like region, was omitted from
each x . For this application, the population totals necessary

to evaluate X = (X)X K)’ were obtained mostly from the
Statistical Abstract of the United States (1993) whose sources
are the 1990 Census figures and the Current Population
Reports published by the U.S. Bureau of the Census. When an
intercept is used, the appropriate control total for that variable
is the number of CU’s in the population for which we used the
PP estimate as a surrogate. The combinations of auxiliaries
used to form the different weights are given in Table 1.
Regwts0, with 56 age/racefsex post-strata uses the largest
number of post-strata. The 56 are the starting point for the PP
method but are usually collapsed to 30-40 because of small
cell sizes. When computing calwts0, those 56 post-strata were
collapsed to 45 since the constraints imposed by the L and U
bounds could cause singularity in the matrix based algorithm.

Table 1
Weights and Their Corresponding Auxiliary Variables

Weights Auxiliary Variables K
regwis0 Apgelracefsex 56
regwisl Intercept, age/race/sex, region, urban x region 18
regwis2 Intercept, age/race/sex, region, urban x region, 24
age of reference person, housing tenure,
family income before taxes
calwts0 Agelracefsex 45
calwts] Intercept, age/race/sex, region, urban x region 18
calwts2 Intercept, age/race/sex, region, urban x region, 24
age of reference person, housing tenure,
family income before taxes
calwts3 Intercept, agefrace/sex, region, urban x region, 19
family income before taxes (truncated at
$500,000}
calwisd Intercept, age/race/sex, region, urban X region, 23
age of reference person, housing tenure
PP Agefrace/sex 56!

' The initial set of 56 is usually collapsed to 30-40 because of small sample

sizes in some cells.

3.1 Comparisons of Weights

A variety of comparisons of weights produced by the
different methods were made, only a few of which can be
mentioned here. Figure 1 shows plots of the PP weights,
regwts0, calwisQ, and calwtsl versus the adjusted base
weights. For PP and regwts0, the adjustments to go from a, to w,
are much morte variable than for calwts0 and calwtsl, which
employ the L = 0.5 and U = 4 restrictions. High variability
among the w, can lead to expenditure estimates with high
variance and to poor confidence interval coverage since large
sample normality may not hold. Even though (2.11) implies
that ai.IZ <w,<da, for each i for the calwis, the lower right
panel in Figure 1 shows that the calwtsl satisfy
a/2 <w, < 2a, for each i. Thus, seiting U = 2 or 3 would
have little effect on calwts1. Calwts0O would have been slightly
affecied by setting U = 2 since a few points were outside the
upper reference line. The upper two panels indicate that the
PP weights and regwis0 do not conform to the restriction
ail<w<2a,.
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Figure 1. Four sets of weights plotted versus adjusted base weights
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The concem about negative regression weights was minor
in the application. In the full sample, only one CU had a
negative weight for regwis] and regwts2 while regwts0 had no
negative weights. However, in the replicates used for variance
estimation, described in Section 3.2, 2 or 3 CU’s did have
negative weights in many replicates so that vsing the L
restriction was more important there.

3.2 Precision of Estimates from the Different Methods

Although comparison of weights is instructive, the methods
must ultimately be judged based on the level of estimated CU
means and their precision. The standard errors of these
estimators were computed via the method of balanced half
sampling (BHS) using 44 replicates as currently implemented
in the CE for the PP estimator. The BHS estimator is
constructed to reflect the stratification and the clustering that
is used in the CE. A half sample is constructed in a prescribed
way (McCarthy 1969) to contain one half of the first-stage
sample units in a survey. Defining the mean per CU based on
CU’s in half-sample « to be y izy a0 that for the full sample
to be Yo the BHS estimate of variance is Vg, (¥ R(a.))
Ea (¥, R(e) -y y gV /44, To compute each y Ry (NE same
estimation steps used for the full sample are repeated for the
CU’s in the half-sample. As the expenditure estimates from
the CE Survey are published for various inter domains of
interest, we computed the means and the standard errors for a
few chosen domains as well. For each of these, the coefficient
of variation (cv) was computed and then its ratio to the cv of
the PP weight estimate was calculated.

For each type of weight, if the ratio of each expenditure cv
to that of the PP weights is less than one, an improvement over
the PP estimate is indicated since, for all the weights, the
expenditure mean estimates were very close to those of the PP
estimates. We computed the ratios of cv’s and the ratios of
means for each of the sets of weights described in Table 1, for
each of the chosen expenditures, and for each of the following
domains:

(1) Age of Reference Person: < 25, 25-34, 35-44, 45-54,
55-64, 65+

(2) Region: NE,MW, S, W

(3) Sizeof CU: 1,2,3,4, 5+

(4) Composition of Household: Husband and wife only,
Husband and wife + children, Other Husband and wife,
One parent + at least one child < 18, Single person and
other CUJ’s

(5) Household Tenure: Owner, Renter

(6) Race of Reference Person: Black, Non-Black.

We will discuss only domains (1) — (3) here. In addition,
ratios for all CU’, i.e., the total across the domains, were
computed for each expenditure and are shown in Table 2. For
All Expenditures, regwts2, calwts2, and calwts3, with ratios
of .79, .78, and .75, provide substantial reduction in cv
compared to PP. For less aggregated expenditures regwts1 or
calwts] provide reasonably consistent improvements over PP

Table 2

Ratios to PP cv of cv's for the Different Weighting Methods
The Minimum Ratio is Highlighted in Each Row

regwis calwts
Expenditure
0 1 2 o 1 2 3 4

All expenditures 098 09 079 058 090 0.87
Shelter 093 085S 075 093 035 0.84
Utilities 108 103 094 107 103 0.92
Furniture 108 121 352 {106 121 1.17
Major appliances 108 106 104 1.06 108 103
Al vehicles 090 I0RS 098 091 089 0.50
Newcars, tacke .95 (051 101 096 091 091
Usedcars, trucks ~ 0.98 (094 096 097 094 095
Gasokine, motorcil 117 1.iF 103 112 110 (0199 1.10
Health care 105 097 036 107 097 085 0.94
Education 092 093 104 091 {093 0.88
Cash contributions  £150f 1.02 1.28 EEOF '1.02 1.03
Personal insurance, e

pensions 100 Y7 164 101 098 124 098 095
Life, otber perscnal

insurance 108 102 153 108 098 138 1331 10
Pensions, social o ’é’&g o

security 100 {099 175 101 055 134 106 097

without the losses incurred by some of the other weights for
expenditures like Furniture, Personal insurance and pensions,
and its sub-category Pensions and social security.

Trellis plots (Cleveland 1993) of the cv and mean ratios for
calwts0 and calwtsl are given in Figures 2-4. CalwitsO is
pictured because it is the nearest calibration equivalent to the
current method of post-stratification. Calwts1 appears to be
the best of the alternatives we have examined in the sense of
improving the All Expenditures estimates while providing
consistent performance for individual expenditure groups. In
each panel of the plots a vertical reference line is drawn at 1,
the point of equality between the calibration results and those
for the PP method. The lower row in each plot presents ratios
of means from calwisQ and calwtsl to the PP means and
illustrates that with a few exceptions the levels of the means
from the two restricted regression choices are about the same
as from PP.

The two calibration choices, in the main, improve cv’s
compared to PP, L.e., cv ratios tend to be less than 1, for most
domains and expenditures, and calwisl is somewhat better
than calwts0. For the age-of-reference-person domains < 25
and 65+, for example, 12 of the 15 expenditures have calwisl
ratios of less than 1. For CU sizes 1-4 the numbers of cv ratios
less than or equal to 1 are 12, 9, 9, and 11. There are
exceptions, of course. For the South region only 6 of
15 expenditures have calwis1 cv ratios less than or equal to 1.

Calwis2 and calwts3, which used family income before
taxes as one of the auxiliaries, had somewhat erratic perfor-
mance for domains, sometimes making major improvements
over PP but occasionally showing serious losses. This is
connected to the nature of the family income variable itself.
For the entire data set of 5156 CU’s, income before taxes was
positive for 4698 CU’s, zero for 450 CU’s and negative for
8 CU’s. The zeroes are incomplete income reporters while the
negatives are for families that had business losses added to
other income, In either case, these CU’s vitiate the usefulness
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Figure 2, Ratios to PP of cv's and means for two weighting methods by age of reference person



Jayasuriya and Valliant: An Application of Restricted Regression Estimation in a Household Survey

134

LSgED

dd 9] soliey

oS RD

S—, " - RV W Y o8- —
- e a  an ......1.:. o (R —— - e — S 4 S p—.
R éll.. - - I.luam T —— !nlllwm
AN W S——— SRS DU [ - Y
& o«
o L S
9 S8 —1C
© 00 10O
- - L} ®-Q
) 5 RN
OIS O O
1)} F o]

Jeyeys

S8pPIYBA IV
seanjjpuadxe Jy
DO ‘S0 MON
uopesnp3

PN} "SI0 oS
8Ied YYeoH

-] insujseyio 3 &

suojsued ¥ 1NSu| [RUOSIO
285 508 J suoisued

o] SUOANQUINOD YSED

SafiInn
seouejdde Joley
o Jojow 's8d
eunyjuwing

Jejjeys

so[jyeA ||y
sanpuadxe |y
o] ‘wed meN
uoednp3

] $ONU} "81IBD POS()
s e} B1ED YUBOH
s ] HYSU JOYI0 R O

suopsued 2 nsuy [BUoSied

| oes o0s 3 suoisued

SUORNQUILOS YSBD

‘s8N

seouedde Jofeyy
{lo Joj0w ‘seD)
amnyuwngy

Figure 3. Ratios to PP of cv's and means for twp weighting methods by region



135

Survey Methodology, December 1996

ISimMiED

dd o} soney

0osmfed

L0

| seyeysg

SO[YOA [y
saunppuedxe Iy
SO 'SIBD MBN
uoneonpy

] SHONUY ‘G1RD pOS[Y
e e e ] GIED YBOH
e memeee] ANGUY 4610 P BY

suojsued B Jnsu) [euoieg
008 008 7 SUOIRURY
SLORNQLILCD YSEBD
sefinn

seouejdde Jofely

110 JOj0W ‘sery

ampuung

meys
Sop|yeA liy
seinypuedxe iy

L TSI ‘RIED MEN

uopesnp3

{ saonu ‘sied pesn

aed yyeay

Insu| Jey1o 9 &)
suojsued 2 insu) reuosied
295 208 ¥ SUOJSUS
SUOANGUIVOD YSBY
Seflinn

seouejdde solewy

[0 Jejow ‘swe)

e eeimeee ] UYL

Figure 4. Ratios ta PP of cv’s and means for two weighting methods by size of CU



136 Jayasuriya and Valliant: An Application of Restricted Regression Estimation in a Household Survey

of this variable in predicting expenditures. Perhaps, use of
another measure of income combined with item imputations
for missing incomes would improve calwts2 and calwts3 for
domain estiration.

Taking all of the above into consideration, regwisl,
calwtsl and calwts4 are efficient choices in this application.
Calwts]l has the advantage of non-negative weighis over
regwtsl. Since calwts4 requires 23 auxiliary variables as
opposed to calwtsl’s 18, calwtsl is the more parsimonious
choice. Subsequent to the analysis discussed here, we
performed a similar study using a full year's data for both the
Interview and Diary Surveys for 1990. Results were similar to
those reported here and a final set of 24 auxiliaries was
adopted based on number of persons by age, race, sex, region,
urban X region, and number of CU’s by tenure, and an
intercept. The conversion of CE estimation to restricted
regression is now underway.

4. CONCLUSION

The objective of this study was to investigate methods for
deriving household weights that did not depend on the weight
of one single member of the household. Different types of
weights based on the regression estimation procedure were
presented and their relative merits evaluated. Regression
estimation incorporates the current survey post-stratification
methods in which the weighted sum of the persons in each
post-stratum is forced to be equal to an independent census
count of that number. This is accomplished via auxiliary
variables that are incorporated into the regression model. It
also automatically produces for each sample household a
weight that does not depend on any single one of its members.

We studied eight types of weights that came from five
different regression models. In order to ecliminate the
undesirable negative weights that can result from ordinary
least-squares regression estimation, restricted regression
estimators were adapted to the present problem. Restricted
regression has the flexibility to restrict the possible deviation
of each final weight from its base weight while adhering to the
properties discussed above. This, in particular, allows the
constraint of positive weights. The restricted regression
weights are easily computed via matrix-oriented software like
S-Plus™ or SAS/IML™,

Restricted regression, and more generally, restricted
calibration have a number of atiractive features for household
surveys, like the one studied here, but also for surveys of other
types of units like hospitals, schools, or business establish-
ments where a variety of auxiliary data may be available.
Given past data on target variables, standard model building
procedures can be used for the selection of auxiliary variables.
The properties of regression estimation can be used to choose
the predictors optimally in order to reduce the redundancy of
information that gets incorporated into the survey estimation
procedure. This is one of the greatest advantages of using an
estimator that has a vast and tested literature behind it. Good

predictors may include qualitative variables, e.g., age, race,
type of hospital (general medical, psychiatric, etc.), type of
business (manufacturing, retail trade, etc.) that might be often
used in stratification or post-stratification. The predictors can
also be quanfitative variables like family income, annual sales,
number of students at different levels, or the number of
inpatient days lo name but a few. In our application, including
an intercept also led to noticeably smatler standard errors of
survey estimates. The regression approach also allows data at
different levels to be easily incorporated in estimation. In the
household survey studied here, auxiliaries on both persons and
households were included.

The immense flexibility of regression gives practitioners
options they might not otherwise have. If new, pertinent
predictor variables become available, software for regression
estimation can accommodate them simply by changing the
matrix of auxiliaries and vector of population controls.
Software that is rigidly written to perform only post-
stratification or ratic estimation with a single auxiliary, for
example, might have to undergo a major overhaul to change
the estimator. Of course, if the estimator is one of the less
general post-stratification or the ratio types, regression
software will often handle it as a special case. In the United
States, an extremely large continuing household survey is
being contemplated (Love, Alexander and Dalzell 1995) that
will provide very precise estimates of many characteristics
that may be used as control totals in smaller surveys. The
restricted regression approach positions the CE Survey to
smoothly incorporate such new data in estimation should it
become available.
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A Transformation Method for Finite Population Sampling
Calibrated With Empirical Likelihood

GEMAI CHEN and JIAHUA CHEN'

ABSTRACT

In this paper, we study a confidence interval estimation method for a finite population average when some auxiliary
information is available. As demonstrated by Royall and Cumberland in a series of empirical studies, naive use of existing
methods to construct confidence intervals for population averages may result in very poor conditional coverage
probabilities, conditional on the sample mean of the covariate. When this happens, we propose to transform the data to
improve the precision of the normal approximation. The transformed data are then used to make inference on the original
popuiation average, and the auxiliary information is incorporated into the inference directly, or by calibration with empirical
likelihood. Our approach is design-based. We apply our approach to six real populations and find that when transformation
is needed, our approach performs well compared to the usual regression method.

KEY WORDS: Finite population; Sampling; Confidence interval; Transformation; Empirical likelihood.

1. INTRODUCTION

Let(x;, y),i=1, 2, ..., N be values associated with N units
in a finite population. For unit , y, is the variable of interest
and x, is an auxiliary variable. One of the most extensively
studied finite population problems is the estimation of the
population average ¥ = (y, + ... + y,)/N (or total N7) under
various sampling schemes. We shall focus on the simple
random sampling scheme in this paper, because the nature of
the problems we want to study can be better seen from this
scheme and the results obtained here can be easily generalized
into other sampling schemes of which the simple random
sampling scheme is the building block.

It is often true that some information about the auxiliary
variable x is known and can be used to make inference about
y. For example, let S = {1, ..., i, ..., Nland lets cSbe a
simple random sample of size n. When X = (x; + ... + /N is
known, and x and y are correlated, the population average ¥
can be estimated by the ratio estimator § = (,/%)%, or by
the regression estimator y = ¥, + b(x - x,), where X, and 3,
are the sample averages of x and y, respectively, and
b= z(xi B -f_,)()’,- - y;)/}:(xf - xs)z‘

Under very general conditions, both the ratio estimator and
the regression estimator are asymptotically normal; see Scott
and Wu (1981), Bickel and Freedman (1984), and Theorem 2.1
of Section 2. Hence, if v is a carefully chosen estimator of the
variance of ¥, the standardized variable (¥ - 7)/yv is
customnarily treated to have the standard normal distribution.
Therefore, if z, denotes the upper ¢-percentile of the standard
normal distribution, then

(5 -2,9% 5~ 2d¥) (1.1)

will produce an approximate 100 (1 - 2a)% confidence
interval for ¥.

Confidence interval (1.1) is widely used in practice.
However, problems arise when it is applied to certain
populations. Royall and Cumberland (1981a, 1981b, 1985)
studied the ratio and regression estimators and applied them
to six real populations where strong correlations between x
and y seemed to exist. (See Section 3 for a summary of the six
populations.) Various estimators of the variance of y were
used. It was found that the actual conditional coverage rate of
the confidence interval (1.1), conditional on X, depended
heavily on the size of %, and were usually much lower than
the claimed coverage rate, even with the most adaptive
variance estimator. For example, the 95% confidence interval
for a population named Counties 70 had a conditional
coverage rate 76% with the jackknife variance estimator when
% was small, and the conditional coverage rate could go as
low as 50% with other variance estimators.

The above mentioned studies point to the need to construct
confidence intervals that “‘will live up to their name” (Royall
and Cumberland 1983, p. 359). However, up to now there has
been little progress made in this direction. In this paper, we
present some results from studying an alternative procedure
for constructing confidence intervals and from applying it to
the six populations studied by Royall and Cumberland and
many others. As will be shown in Section 3, the conditional
coverage rate of our confidence intervals is more accurate.

Two important ideas, namely, transformation and empirical
likelihood, are used simultancously to attack the problems
encountered by Royall and Cumberland in particular, and to
develop a new procedure in general. As explained in Cochran
(1977, p. 150), the preference in sample survey theory is to
make, at most, limited assumptions about the frequency

! Gemai Chen, Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada, S45 0AZ; Jiahua Chen, Department of Statistics
and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1.
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distribution followed by the data in the sample. However,
ratio or regression estimator can help ¢btain increased pre-
cision by taking advantage of the correlation between y, and
x;. This, of course, can be described by some assumption(s),
such as an approximate linear relationship between y and x.
Although almost no further assumptions are necessary to use
the ratio or regression approach, the procedure (1.1} is clearly
based on an normal approximation. But as it is well known,
the normal approximation can be very poor when the
population distribution is severely skewed and the sample size
is small. In terms of procedure (1.1), the closer the estimator
distribution is to the normal, the better one can construct
confidence intervals. If the population distribution is severely
skewed, a transformation may produce a population distri-
bution that is at least more symmetric, so that the normal
approximation for the estimator is more accurate.

When using the ratic and regression estimators, knowing x
is crucial to gain improvement over the use of sample mean.
In our proposed procedure, the complete information about
the auxiliary variable x can be incorporated. But if X is the
only auxiliary information available, it is difficult to use this
information directly when a transformation is involved,
because any non-linear transformation obscures the link
between % and ¥. In this second case, we find the method of
empirical likelihood very helpful in solving our problem; see
particularly Owen (1988, 1990} and Chen and Qin (1992) for
references. The empirical likelihood method in this situation
can also be regarded as a calibration method as discussed in
Deville and Sérndal (1992). This approach rescues us from
losing information about x after transforming the data.

There have been many discussions on how 1o use transfor-
mations to make better inference on the transformed scale
(Box and Cox 1964; Carrolt and Ruppert 1988; Calvin and
Sedransk 1991, and the references therein). There have also
been some studies on how to make inference on the original
scale, after a transformation is applied (Carroli and Ruppert
1984, Elliott 1977). What is new with our procedure is the
attempt to link the above two steps by combining transfor-
mation with auxiliary information andfor by applying
empirical likelihood method when necessary.

The details of our procedure are given in Section 2. Then
our procedure is applied to the six populations studied by
Royall and Cumberland in Section 3. The validity of our
procedure in an arbitrary setting is demonstrated in Section 4
and some comments are made at the end of the paper.

2. THE NEW PROCEDURE

As mentioned in the last section, a problem with the
confidence interval (1.1) is that it will fail if the distribution
of (¥ - ¥ M/4/v is severely asymmetric and far from the normal
distribution. The problem can be inherited from the skewness
of the population distribution. When the skewness is severe,
a central confidence interval procedure like (1.1) is doomed
to fail. The basic model employed by Royall and Cumberland
(1981a, 1981b, 1985) is

yi=oa+px +e, (2.1)

with E(e;) = 0, V(¢;) = 0” and Cov(e,,€;) = 0, for i = j. Itis
easy to find that for the six real populations studied by Royall
and Cumberland, the cormresponding error distributions are
very skewed. These observations lead us to consider
transforming the variables y and/or x, and consider the model

h()’,) i Bg(xj) +JE, (2.2)

where A(-} and g(-) are two monotone functions. There are
many families of transformations suggested in the literature.
One commonly used family is the Box-Cox power transfor-
mation family defined by

(x*- 1)/A when A =0,

A) =
foxer) {log(x) when A =0.

Model (2.1) is a special case of (2.2) when both k and g equal
fix 1)

The choice of transformations in model (2.2) might be
suggested by an examination of the sample x's and y's based
on a possible model relationship, or by our subject knowledge
about the population under investigation. For example, for the
six populations discussed in Royall and Cumberland, the
population distributions are severely skewed towards the right
which can be learned from the nature of the finite popu-
lations. Therefore, a log transformation may make them all
less skewed. Other more objective methods of choosing
transformations arc discussed in Section 4.

We emphasize that models (2.1} and (2.2) are used here to
motivate transformations, point estimators, or confidence
interval procedures. Our study of conditional coverage rates
will, however, be based on the probability measure generated
by the design, as in Royall and Cumberland (1985). For this
purpose, we embed our finite population in a sequence of
populations indexed by k. This means that a sub-index k is
needed to write N = N, and n = n,, etc., but for simplicity,
we will suppress the index k if there is no possibility for
confusion.

Let v, = h(y), ¥ = gx), vy=N"'Y¥ v and
gy =N"'Y} u,. Define

Eﬁl(ui - &)V,
BN = —_—

N = 2
Ei:l(ui - ity)
Gy = Py~ Byily,

e, = v~ (oy + Byuy,
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Suppose 5 = § is a simple random sample of size n. We
similarly define

B - Zie:(u:‘ B ﬁs)vi
Lies(; - &, )y ‘
a=v,-pa,

where & and v, are the sample averages.

Denote the inverse function of A(-} by A7'(:). Then the
fitted value of y, is

$=h7'@+PBu). (2.3)

We discuss confidence interval estimation of ¥ in two cases.
In the first case where all x; (i = 1, ..., N) are known, a natural
estimator of ¥ is ():,.aT ¥+ Em ¥)/N. However, for the
purpose of constructing confidence intervals for 7, we study
the distribution of

N o
@P==+ Y5=[ r'@+buwdfm 9
i=1

1
N

]

instead, where F, () is the empirical distribution function of
the u; (i = 1, ..., N}. Clearly, the distribution of ¥ (&, B) is
determined by the distribution of (&, ﬁ) which is descibed in
the following design-based theorem.,

Theorem 2.1 Suppose that when k ~ =, both n = n, and
N-n=N,-n,gotoocand

NITN u; exists.

2. N'TN ul=0q1).

3. ol =lim,__o’y=lim,__(N-1)' TV (u,- ) exists
and is greater than zero.

1. &=1lim,_

o

4. @ =lim,__oy=lim_ (N-1y'¥¥

greater than zero.

5. N'Lileff =0, NULL (k- 7yl = D).

6. r=lim,__ (0}, o) 'N VTN, (u;- By)? e exists and is
greater than zero.

2 -
i-1€; cxists and is

7. f=lm,__n/N exists and is less than 1.
Then

(1) yn(&- ay, f-B,) converges in distribution to the
bivariate normal distribution N, (0,}), where

=2

1 +u_r —ir
A
> - (1-f)o
74 1
——zr —2?'
g, g,
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(2) Let B, be any joint 100(1 - y)% confidence region for
(¢, By and define G, by

G,={5 (@ : (@p)eB,}, (2.5)
then,
PI'Ob{?(CCN, BN) EG,,} 21- ¥

where ¥(¢ty, By) =T b ! (2 + By, )N,
The proof is deferred to the Appendix.

We note that without underlying normality on the errors,
it is not easy to get an exact confidence region B, for (e, B,)
for a specified confidence level 1 — y. The B, used in the
following discussion and the expressions built upon it are,
therefore, approximate.

Theorem 2.1 allows us to construct confidence intervals
for ¥ (et,.B,), but ¥(a,,B,) is not equal to ¥ in general. This
is an intrinsic problem as long as a non-linear transformation
is used. If only a point estimator is needed, we would use the
regression estimator currently, and we suggest that the
methodology developed in this paper be used for interval
estimation. Bias corrections for ¥ (&,f3) are, however,
possible, and a specific one is used in our simulation study.
Work on general corrections is under study.

According to Theorem 2.1, G, is a conservative confidence
interval for y (aN,ﬁ »)» Which can also be regarded as an
approximate confidence interval for ¥. To improve the
coverage rate of G, observe that the contours of ¥ (e, B) in
a small neighborhood of O = (&, 8)are approximately parallel
straight lines on the afi plane; see Figure 1. Let (g, &) be the

Bgla
0.8 0.9 1.0
1 1 i
; n . ..'."._.- S,
: .
2 —
T o 7
o
; .
oo
N
/A

Figure 1. Contour plot of the bi-variate function ¥ (ct, B) in the
neighbourhoed of O = (&, B) , based on a random
sample of size 32 taken from population Cancer
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directional cosines of the direction EF along which the
contours increase. Then ¥ (e,B) is (approximately) a
monotone function of T =a(x - &) +b(P - ), where T,is
the corresponding change along the direction EF 1o the
changes in @ and (. A natural choice of B, is

B, ={(ap) : |a(e- &)+ b -P)| < cdt(y/2n-2)},

where ¢” = Var(T )/o?, Var(T,) is the variance of T,, and
t(y/2; n — 2) is the upper v/2-percentile of the ¢ distribution
with n — 2 degrees of freedom. This B, is the region between
two parallel straight lines AB and CD in Figure 1.

A drawback of the above B, is that it is an unbounded
region. If the contours of ¥ («,f) are not close to be parallel
andfor straight, this B, will lead to very conservative
confidence intervals. To guard against this possibility, we
construct a bounded elliptic region C, defined by those (e, )
that satisfy

{n(a 8P e 2nm (- BB+

Y
n[ ﬁi + rS'IM] (ﬁ _ﬁ)z}
n-1

<l1-2le22(yi2;n-2),
[ N] (v/2;n-2)

where (1 — n/N) is part of the variances of & and B, because
we are doing sampling without replacement from a finite
population, and

n Y e - B, - 8- ﬂml.)2

{08 w2 H - 27 0, - 0 - Bu?)
(2.6)

T, =

is a sample estimate of the quantity r in Theorem 2.1. The C,
thus defined is represented by the region inside the ellipse in
Figure 1 and has the property that it touches both boundary
lines of B, regardless of the direction {(a, ). Therefore, when
3 («,P) is indeed a monotone function of 7, C, produces the
same confidence interval for y as B, does. However, C, is less
vulnerable than B, if the contours of ¥ (a,[) are not close to
be parallel and/or straight, because C, shrinks to one point as
n increases. A confidence interval for § corresponding to C,
is defined as

L={F@p): (@PeC}. 2.7

As the error distributions are more symmetric after the
transformation, the new confidence interval based on C, is
therefore expected to be better than the confidence interval
without transformation. Note that since all x, are known,
other approaches, such as optimal stratification and post-
stratification, may be better. However, optimal stratification

may not be possible in some cases as discussed in Cochran
(1977, p. 134). Also research is needed on the use of post-
stratification when the error distributions are severely skewed.

We now turn to the discussion of the second case where
¥ =(x +..+x)/Nis known, but x,, i = 1, .., N, are
unknown. If we want to proceed as in the first case, one
approach is to estimate F,(u) and somchow make use of the
information in X. The following empirical likelihood
methodology is found to be an effective way of doing this.
We outline the main ideas here; the interested reader should
consult Owen (1988, 1990) and Chen and Qin (1992) for
more details. The key idea is to maximize the (empirical}
likelihood functions under various restrictions formed by the
knowledge about some aspects of the parameters. For
example, in our problem, the knowledge is X. Itis shown by
Chen and Qin (1992) that the resulting estimators with the
presence of resirictions are asymptotically more efficient than
those without restrictions.

Specifically, we estimate F,,(«) in (2.4) by

FN(u) = _ZP;I[“: s ul, 2.8)

where the p; are chosen by maximizing
P;
g 2.9)

subject to
.20, Yop,=1, Y px =%
€S

ics

(2.10)

If y,, i € s are regarded as realizations of the random variables
Y, i € 5, with distribution function F, the p, in (2.9) can be
defined by p, = F(Y) — F(Y;-), and (2.9) is called the
empirical likelihood function in Owen (1990).

Deville and Sdrndal (1992) look at the above approach
from a calibration point of view. They suggest using unequal
weights for different units sampled to reflect their different
contributions, while keeping }_ p,x, = X. It is believed that if
these weights give a perfect estimate of %, they should also be
good for eéstimating .

The solution to (2.9) and (2.10) will not exist if either the
minimum x value in a sample is greater than or equal to %, or
the maximum x value in a sample is less than or equal to x.
When this happens, one remedy is to replace (2.9) with

> (np,- 17, 2.11)
fes
subject to a milder constraint
Ypi=l Lpx=% 2.12)
LES JES
Under (2.11) and (2.12), we have
P,' =l +(i_f:) (x:'_is)/z: (x‘,-f’)z, (2-13)
n ies
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which always exists unless all the x; in the sample are the
same. The latter situation corresponds to the lack of a
covariate, which implies p; = n"! if ¥ = x,, or the solution does
not exist if ¥ = x,. The function given in (2.11) is called the
Euclidean likelihood, which is asymptotically equivalent to
the empirical likelihood (2.9} (Owen 1990).

For our simulation study in Section 3, we suggest a bias
correction to be used in our computation. If A(w) = g(w) =
log(w), we suggest a corrected estimator of ¥ as

5 @.p) = f_:exp{a + P, +% OZ}FN(u). (2.14)

if all ,, i = 1, ..., N are known, and replace Fy(u) by Fy (1)
and &, in(2.6) by iz when only x is known. This correction
is motivated by model-based considerations under a normality
assumption. Correspondingly, , of (2.7) is corrected as

0 100000 200000 30000¢ 400000

Y
2
§ -
£
:
> g )
2
g€ D
et -f? | T
0 20000 40000 60000
X
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I = {3 (aP) : (@P)eC,}.

When other power transformations are used, similar correc-
tions can be made using the results in Pankratz and Dudley
(1987).

(2.15)

3. APPLICATION TO SIX REAL
POPULATIONS

The six real populations studied by Royall and
Cumberland (1981a, 1981b, 1985) are summarized in Table 1.
Attention was given to the varety in the type of data
{demographic, economic, efc.), and in the logical relationship
between the x and y variables, when these populations were
chosen. Note that we have added 1 to the y values in
population Cancer in order to take the log transformation.

2 3N 4 50

10
1

log(Y)
g -
o -
- Rd
- - g
= e
= L
on =) - . wy
o -
REC
a 1
i
-] - "
& 7 8 ] 10 1"
log (X)

Figure 2. Histograms and scatter plots for the population Counties 70 before and after taking the log transformation
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Table 1
Summaries of the Six Populations

Table 2
Simulation results based on 10,000 simple random
samples of size 32

Population N X ¥y oty Pos, .. . . .
log(y)} Cancer Cities Counties 60 Counties 70 Hospitals  Sales
Regression Method (regression variance)
Cancer 301 1.1288 x 10°  4.0847x 10" 0967 0.948

Cities 125 26602x10° 28553x10° 0.947 0.953
Counties 60 304 89312x1¢° 3.2916x10* 0998 0.998
Counties 70 304 89312x10* 3.6984x10* 0982 0.991
Hospitals 393 2.7470x 107 8.1465x 10* 0911 0.943
Sales 331  23164x10° 24078x10° 0997 0.985

The Counties 70 data are plotted in Figure 2. The histogram
of y clearly indicates that the population distribution is
severely skewed, while the same plot for log(y) shows a
substantial improvement. Also, the scatter plot of log(y) vs.
log(x) shows a better linear relationship than the scatter plot
of y vs. x. The need and the benefit of taking transformation
is therefore obvious, Similar comments can also be made for
populations Cities, Counties 60 and Hospitals. For popu-
lations Cancer and Sales, the log transformation (or any other
power transformations) seem to weaken the linear relationship
that exists between x and y.

Now, we illustrate our new procedure by assuming
h = g = log in (2.2). Equations (2.9) to (2.15) are used 1o
perform the calculations. As in Royall and Cumberland
(1981b, 1985), for each of the six populations, we take a
simple random sample of size 32 and calcutate X, 5 (,B)
and construct a 95% confidence interval Iy, We repeat this
process 10,000 times for each population. The results are
reported in Table 2 under the title “Transformation Method”
when all x values are known, and under the title “Empirical
Likelihood Method” when only % is known. The term ratio
denotes the average length of the confidence intervals divided
by the root mean square error for each population. The non-
coverage rate (Ncr) is the proportion of intervals that fail
to contain the population average y. The quantities under
the titles “Regression Method (regression variance)” and
“Regression Method (jackkmife variance)” are obtained using
the same method of Royall and Cumberland (1981b) when the
usual regression variance and the jackknife variance of ¥ are
used, respectively, but for 10,000 random samples instead of
the original 1,000 samples. The results under “Empirical
Likelihood Method (created population)” are to be explained
in the next Section.

Next, we follow Royall and Cumberland to make design
based inference and to study the conditional coverage pro-
perties of several interval estimation procedures. Specifically,
we divide the confidence intervals into 20 groups according
to the size of %, , and plot the proportions of intervals in each
group that fail to contain the population average ¥ . For each
specific group, the proportion of those intervals that lay above
(below) ¥ is plotted above (below) the horizontal line.
Figure 3 contains such plots for the Counties 70 data. The top
two plots show the non-coverage rates of the regression
method using the usual regression variance and the jackknife

Ratio 3.26 3.65 3.05 2.90 162 294
Ner 0.141 0.116 0.146 027 0.098 0.176

Regression Method (jackknife variance)

Ratio 4,03 3.88 4.03 3.57 393 3.95
Ner 0.081 0.102 0.083 0.192 0068 0.079

Transformation Method (all x values are known)

Ratio 5.08 4.00 3.75 3.76 4.04 541
Ner 0.018 0.074 0.053 0.069 0.042  0.001

Empirical Likelihood Method (only % is known)

Ratio 5.12 374 3.37 3.69 4.15 490
Ner 0.017 0.082 0.081 0.082 0.037 0.006

Empirical Likelihood Method (created population)

Ratio 392 3.92 397 3.96 190 399
Ner 0.057 0.059 0.055 0.058 0059 0.059

variance for ¥ ; the middle two plots show the non-coverage
rates of our new procedure. The bottom left plot will be
explained in Section 4. As can be seen clearly, our new
procedure with a log transformation produces substantial
improvement. For populations Cities, Counties 60 and
Hospitals, our new procedure also produces some improve-
ment (plots are not shown here). For populations Cancer and
Sales, the new procedure produces very conservative results.
This is likely due to the fact that the log transformation {or
any power transformation) actually weakens the linear
relationship between x and y.

We have also performed simulations for sample sizes 16
and 64, and/or for target coverage rate 90%. The results are
very similar to what we have presented.

4. DISCUSSION

We use the log transformation in some of our discussions
because it is perhaps the most frequently used transformation
in practice. Nevertheless, there exist more objective methods
to select transformations. One such a method is the well known
Box-Cox power transformation which we have mentioned;
see Box and Cox (1964), Box and Tidwell (1962), Carroll
and Ruppert (1988). Another recent method is based on a
procedure called alternating conditional expectation (ACE)
(Breiman and Friedman 1985, De Veaux and Steele 1989).

There are other possibilities to improve conditional cov-
erage rate. One such a possibility is to employ asymmetrical
error distributions such as the inverse Gaussian family
(Whitmore 1983). Another possibility is to adopt quasi-
likelihood (Nelder and Pregibon 1987) fo finite population
problems.
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Regression Method
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Figure 3. Plots of conditional non-coverage rates for the population Counties 70 based on 10,000 simple random samples of size 32. Reference
lines are drawn at 2.5% and the expected non-coverage rate is 5%

The validity of our new procedure is also demonstrated in
the following simulation study. For each of the six real popu-
lations, we create a new population by replacing the original
¥, values with

¥ =expla + Blog(x) o€},

where &, fland 8 are the parameter estimates from fitting
model (2.2) with h = g = log to the old population, and €, are
generated as 1.1.d. standard normal variates. Using the six

created populations which are fixed, we repeat the simula-
tions as in Section 3 for the case where only ¥ is known.
Table 2 contains the summary of this simulation study, and
the non-coverage plot for the Counties 70 data is shown at the
bottom left corner of Figure 3. (Non-coverage plots for other
populations look very similar to this plot) It is clear from this
study that when the finite population is generated from a
super-population model like (2.2) with a normal error distri-
bution, our new procedure gives the correct conditional cover-
age rates. Furthermore, we decrease the correlation between
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x and y to as low as 0.5 for each of the six populations by
increasing § and repeat the above simulations. The results are
as good as those shown in Table 2 and Figure 3.

Although only the simple random sampling scheme is
considered in this paper, the proposed procedure is applic-
able as long as (i} there is a linear correlation between h(y)
and g(x) for some monotone functions 4 and g, and (ii) either
Fy(u) or F, (1) can be found. Since the six populations
studied here are carefully chosen to be representative, our
new procedure is expected to be useful to study other finite
populations.
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APPENDIX

Proof of Theorem 2.1 (1). For any given real numbers ¢,
and ¢,, we have

7(&-ay) + B - ﬁN)=
tnty e e —1 1 Y (u,-

fex ):(E\(u - u )2 ies
From Conditions 1, 2 and 3, we have

- _ 2
n ]E(“f uﬁ_)2 -0,

i€s

a-r,
Therefore, we can write
t, (& - “N) + tg(p - QN) =

r]n"Zeittz "E(u—u)e +o,n” %,

es 0 ies
]

The Llndeberg Hijek condition is satisfied for te, +
[ tu/o (v, - @)e, under the moment condition 5, see
Héjek (]960) Scott and Wu (1981) and Bickel and Freedman
{1984). Together with Conditions 4, 6 and 7, the desired
result follows by using the Cramér-Wold device.

Proof of Theorem 2.1 (2). Because there may be other
values (a’,B’) € B, for which y(a’,B") = ¥(«,B) for some
(«,B)e B,,G, is always conservative.
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The Application of McNemar Tests to the Current
Population Survey’s Split Panel Study

KATHERINE JENNY THOMPSON and ROBIN FISHER'

ABSTRACT

Results from the Current Population Survey split panel studies indicated a centralized computer-assisted telephonc
interviewing (CATI) effect on labor force estimates. One hypothesis is that the CATI interviewing increased the probability
of respondent’s changing their reported labor force status. The two sample McNemar test is appropriate for testing this type
of hypothesis: the hypothesis of interest is that the marginal changes in each of two independent sample’s tables are equal.
We show two adaptations of this test to complex survey data, along with applications from the Current Population Survey's
Parallel Survey split panel data and from the Current Population Survey’s CATI Phase-in data.

KEY WORDS: Current Population Survey; Parallel survey; Nonparametric statistics.

1. INTRODUCTION

Results from the Current Population Survey’s Parallel
Survey split panel study and from the Current Population
Survey’s CATI Phase-in Project provided some indication of
a centralized computer-assisted telephone interviewing
(CATT) effect on the United States’ monthly labor force
estimates (Thompson 1994 and Shoemaker 1993). One
hypothesis is that the CATI interviewing increased the
probability of respondent’s changing their reported labor
force status from the first (personal) interview to the second
(CATI) interview.

The two sample McNemar test is appropriate for testing
this type of hypothesis. The McNemar test (1947) has been
generalized to a two sample situation where the hypothesis of
interest is that the marginal changes in each of two
independent samples’ 2 x 2 tables are equal (Feuer and
Kessler 1989). The application presented was for a two
sample cohort analysis and assumed simple random sampling.

Certain modifications of the test statistic for a McNemar
test are necessary for a complex survey data application. First,
because the data are not obtained through a simple random
sample and are weighted, a separate estimate of the variance
is required. Second, unless the survey has a longitudinal
design, a separate link of individuals in two consecutive
months’ of data must be performed. In general, such a link
will include some false matches and exclude some true
matches. This adds another source of variance.

We show two adapiations of this test to complex survey
data. In particular, we present these tests along with
applications to the Current Population Survey’s Parallel
Survey split panel study and from the Current Population
Survey’s CATI Phase-in Project. In Section 2 we describe
these test modifications including background on the one and
two-sample McNemar tests (Section 2.1), modifications for

‘and variance estimates (Section 3.2),

complex survey data (Section 2.2), and some remarks on
applications to several months’ data (Section 2.3). Section 3
presents applications of these tests specifically to Current
Population Survey Parallel Survey Data and to Current
Population Survey CATI Phase-in data including background
on the two studies (Section 3.1), details of the panel estimates
diagnostics
(Section 3.3), and results (Section 3.4). We make some
concluding remarks in Section 4. Details of covariance
estimation are included in the appendix,

2. TEST AND MODIFICATIONS

2.1 General

A sample is randomly split into two independent
representative samples (split panels). After a baseline
measurement is taken in both panels, a new technique is
administered in one panel, the treatment panel. The other
panel serves as a control.

The records are linked longitudinally after the second
measured. A matched response can be +, -, or * (missing).
Since this is matched data, the “**” cell will be empty.

This scenario is represented pictorially as

Treatment Panel
Month 2
Treatment
+ - *
Month 1 ) xL] x ] XL X
No Treatment - | x x X X

! Katherine Jenny Thompson, Economic Statistical Methods and Programuming Division, and Robin Fisher, Housing and Household Economic Statistics

Division, United States Bureau of the Census, Washington, DC 20233, U.S.A.
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Control Panel

Month 2
No Treatment
+ - *
i I ! i
Month 1 +xL x| x| X,
No Treatment - | x| x’ [ x'. | x’
* x:+ xt’- x:.

where n is not necessarily equal to n’.

For each panel, define

M“z) as the set of cases which have month 1 and month 2
responses (matched cases). This set contains ng, =
(x,, +x,_ +x__ +x__)elements;

Mg, 88 the set of cases which have month [ responses,
but no month 2 response. This set contains
g = (x,, *+x_,) elements;

My, as the set of cases which have month 2 responses, but
no month | response. This set contains n g, = (x,, +x,.)
clements.

Note that the n’s are sample sizes and do not have weights.

First, consider the one-sample case. Traditionally, the one-
sample McNemar test statistic is constructed from the #,;;, and
n(]'z) matched responses, where a prime ('} indicates the
control panel. In the one-sample scenario, we test the
hypothesis

Hy. p.. = p.,. where the p’s refer to cell probabilities
H,: NotH,

i.e., the hypothesis that the movement from one state to the
other (+ to -, or ~ 10 +) is zero. We also refer to this
movement as the flux.

The one-sample test can be a useful diagnostic in the two-
sample situation. We examine the Control panel estimates to
see if there is zero movement. Any significant movernent in
the Treatment panel can be measured as a deviation from zero
flux or as a change in the probability of a “+.”

The two-sample hypothesis is

Hy (p_.-p.Y=(@ . -p.)
H;: NotH,.

In other words, the difference in the probabilities of switching
in the two directions is the same, regardless of the treatment,
or equivalently, the difference in panel fluxes is zero.

The Feuer and Kessler generalization (1989) to a two-
sample McNemar test (described in 2.2.1 below) is confined
tothe M, and M, linked sets. We can add an additional
assumption, however, to allow the unmatched responses to be
included in computation of the test statistics. This assumption
motivates the discussion in Section 2.2.2.

2.2 Complex Survey Modifications

2.2.1 Modification One: Longitudinally Linked Data

This method is a straightforward application of the two-
sample McNemar test, using longitudinally linked data from
a complex survey.

To construct the test statistic, we examine the cell
probabilities and note that

_.-p.1=lp..*p. )., +p.)]
=[p* - p¥]
=p;-p}

where p is the marginal probability of a + response month 2,
given a matched response for both months; and p} is the
marginal probability of a + response month 1, given a
matched response for both months.

The one-sample test statistic constructed from this panel’s
data is

p;-p)

JVar(p; - p7)

Z’I":

where

Ry a2

Given two independent panels, the two-sample test statistic is

pz-pPD - @ -p")

Z* =
[+] [+] ) I
\/Var(pz -p])+var(p2 _plo)
where
W Xt xl el
P] ‘_n, s Pp_ - .
(12) Ran

These results hold regardless of sample design. To extend
the results to a complex survey application, we use weighted
estimates and complex survey variances and covariances in
place of simple random sample variances.

If the survey is designed to collect longitudinal data, then
this modification is a natural extension of the method described
by Feuer and Kessler. For this type of survey design, an
effective mechanism to link individuals from month to month
is presumably in place. Often, however, this is not the case,
and one data set must be physically linked to another, Canse-
quently, the n,, elements in the domain will contain some
false matches, and some actual matches may be inadvertently
excluded. Both the record weights and variance estimates will
need to be adjusted to account for the matching. Jabine and
Scheuren (1986) provide an excellent summary of the method-
ological issues arising from the use of linked data, both for
model-based and ad-hoc (“hard”) record linkage techniques.
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2.2.2 Modification Two: Unlinked Data

This method omits the longitudinal linkage step altogether,
noting that the construction of the traditional McNemar test
statistic can be expressed in terms of estimates of marginal
probabilities. Assume that under the null hypothesis, the
expected value of (p, - p,)is zero. This is described for a
simple random sampling application in Marascuilo er al.
{1988).

The domain for the first month of data is given
M, v M\, which contains n, + 1, = n, elements. The
domain for the second month of data is given by M,;,, v Mg,
which contains n,; + ng,, = n,clements.

The one-sample test statistic constructed from the unlinked
data is given by

Zl _ Py P, ‘
\lvar(pz 'Pl)
where
x, X
PHh=— P; =
n, R,

Given two independent panels, the two-sample test statistic is

7. @mP)-@i-p])
V@, - py) + Var@; - pp

where

p;:_

As with the application described in 2.2.1, all estimates are
weighted estimates, and variances are complex survey
variances.

2.3 Linear Combinations

We can use our estimated covariance matrix to test linear

combinations of A,, A-, and & over time, where A‘r =p, - Pp»

A =p;-py, and d=A,-Ac, and p,.py, p,and p, are
vectors containing the marginal probabilities for the time
period under consideration.

General linear hypotheses of the form K’y are now easily
tested. One might wish to test for contrast by time period, for
example testing the average difference from January through
Junc against the remainder of the year’s data. Perhaps the
most interesting (to our applications) of these tests is of the
hypothesis Hy: 1’y =0, where p is the expected value of one
of the vectors described above.

Another test of particular interest is the “omnibus
hypothesis,” where we test H;: p = 0. The test statistics for
this hypothesis are & ;' ¥3ip Ar, A ¢ Fiin Acoand A5 ¥ig Ay,
each of which has an approximate chi-squared distribution
with r degrees of freedom, where r is the dimension of the
vector of interest.
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3. APPLICATIONS

In this section, we apply the one and two-sample
McNemar techniques for unlinked data outlined in 2.2.2 and
2.3 to two scparate sets of data: the Current Population
Survey’s Parallel Survey split panel data and Current
Population Survey CATI Phase-in data. Tables 1 and 2
(section 3.4.1) provide the results for Paralle! Survey split
panel data. Tables 3 and 4 (section 3.4.2) provide the results
for the Current Population Survey CATI Phase-in data.

3.1 Background

The official monthly civilian labor force estimates from
January 1994 onward are based on data from a compre-
hensively redesigned Current Population Survey. The redesign
included implementation of a new, fully computerized
questionnaire, and an increase in centralized computer-
assisted telephone interviewing (CATT). To gauge the effect
of the Current Population Survey redesign on published
estimaics, a Parallel Survey was conducted using the new
questionnaire and data collection procedures from July 1992
through December 1993. Special studies were embedded in
both the Parallel Survey and the Current Population Survey
during the same time period to provide data for testing
hypotheses about the effects of the new methodological
differences on labor force estimates: the Parallel Survey split
panel study and the Current Population Survey CATI Phase-
in Project (a continuation of the study presented in
Shoemaker 1993).

The effect of increased centralized computer-assisted
telephone interviewing was of particular interest. Findings
from the study described in Shoemaker (1993) had shown that
including centralized telephone interviews tended to yield a
larger unemployment rate. The two-sample McNemar test
appeared to be a good vehicle for examining this pheno-
menon. In both the Current Population Survey and the
Paralle] Survey, households are interviewed for 4 consecutive
months, not interviewed for the next 8 consecutive months,
and then interviewed for another 4 consecutive months. The
first and fifth interviews are conducted by a personal visit,
and the subsequent interviews are conducted by telephone
whenever possible. Thus the first and fifth interviews provide
a baseline measurement of labor force status; the second and
sixth interviews provide a “post-treatment” measurement of
labor force status.

To create the panels for both studies, sample within
selected sample areas was randomly divided into two repre-
sentative panels using systematic sampling methods., The
treatment panel was designated as CATI eligible. This meant
that the sample households in the panel were eligible for
interview at a centralized facility after the initial (first and
fifth) interviews. To be interviewed by CATI, a respondent
must have a telephone and speak English or Spanish, and
must agree to be interviewed in subsequent months by
telephone. Not all households in this panel were interviewed
by CATI. The other panel served as a control.
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The monthly unemployment rate is the primary statistic of
interest published from Current Population Survey data. This
rate is defined as the estimated number of unemployed
persons divided by the estimated number of persons in the
civilian labor force (the denominator does not include military
personnel, persons under sixteen years old, or people who are
no longer looking for work, or retired persons). Our primary
goal was to understand how including CATI interviews
influenced the probability of changing labor force status, in
this case from unemployed to not unemployed (or vice versa),
Our statistics for the one and two-sample McNemar tests used
unemployment to population ratios, rather than unem-
ployment rates. This allowed for a slightly more precise
estimate of the proportion by decreasing the variability of the
test statistic.

3.2 Estimates

Each month/panel estimate is an unbiased estimate. That
is, the weights used to produce the estimates were strictly a
function of the probability of selection: each weight is the
product of the baseweight (the inverse probability of selection
for a PSU), the weighting control factor (an adjustment for
field subsampling), and a split panel factor (an adjustement
for the probability of inclusion in a split panel). The split
panel factor for the Parallel Survey study was constant by
design: nine tenths of the sample was randomly assigned to
the treatment panel. The split panel factors for the CPS CATI
Phase-in were not constant: the sample in the treatment panel
varied on a monthly level, as more sample was randomly
assigned to CATI facilities.

Variances of levels were computed with generalized
variance functions (GVFs). For more details, see Fisher et al.
(1993). Robert Fay used his VPLX software (Fay 1990) 10
calculate replicate estimates of correlation between rotation
groups for unemplioyed and for civilian labor force using
September 1992 through December 1993 data from the
Current Population Survey. We used these correlations for the
test statistics based on unlinked data, assuming that they
would not differ by survey (Current Population Survey versus
Parallel Survey) or by geography (national versus sub-
national}). We derived an expression for the within-panel
correlation for civilian population by relating previously
calculated autocorrelations (Fisher and McGuinness 1993)
and variance estimates to the individual rotation group
estimates. See the appendix for details of the estimation of the
correlations.

We did not use the linked modification in our applications
for several reasons. The primary reason was the difficulty of
longitundinally matching the data. Moreover, we were unable
to evaluate the success of our matching, Finally, we did not
have any estimates of correlation for the linked data.

Implicit in our analysis of the unlinked data is the
assumption that the probability of a nonresponse (or a non-
match) is random. We assume that the probability of a
nonresponse one month is independent of the respondent’s

labor force classification in the previous month. This assump-
tion is not universally recognized. In fact, Stasny and
Fienberg (1984) argue the reverse, and propose several
alternative discrete-time models for the use of longitudinally
linked CPS data. In our application, the estimates of marginal
probabilities based on our (perhaps) poorly matched linked
data were almost identical to the estimates based on unlinked
data, and so we feel that our analysis did not suffer
particularly from our assumption.

1.3 Diagnostics

Small expected sample sizes in individual cells will result
in highly variable and consequently unreliable tests. We are
not aware of a general method of calculating adequate sample
sizes for this type of analysis using complex survey data.
Instead, as a naive approach we used a slightly modified
version of the traditional Pearson chi-squared test diagnostic
to form a cut-off value as follows:

As defined in Section 2.2.2, let

x, =unweighted unemployed persons in month 1;
x__ = unweighted not-unemployed persons in month 1;
x , = unweighted uncmployed persons in month 2;
x _ = unweighted not-unemployed persons in month 2,

Recall that in the case of the usual contingency table, E[+-] =
x, x_/ iy E[-+]=x_x_/ Maz under the assumption of
independence (and ignoring missing values). In our estimates
of expected cell size, we used unlinked marginal data. The
sample sizes for the two marging corresponding to the two
months are different; that is, the denominators of the expected
cell totals are different depending on which margin we
examine. Because we could not cbserve n,,,, we estimated it
by the geometric mean of n, and n,, which seemed to most
closely resemble the expression for the expected cell size. We
have not evaluated the effectiveness of the geometric mean
versus alternative estimators.

A commonly used rule in contingency table analysis is that
expected cell sizes should be at least five. However, both the
Current Population Survey and Parallel Survey designs are
highly clustered, and we felt that the cut-off value should be
adjusted upwards. Accordingly, we multiplied the cut-off
value by a design effect. We further increased the cut-off
value for expected cell sizes to compensate for the correlation
between the rows and columns of our tables to arrive at our
final cut-off expected cell size of ten.

3.4 Results

34.1 Parallel Survey Split Panel Study

This section presents the formal results from the one and
two-sample McNemar tests using unlinked Parallel Survey
split panel data. Although this data was collected monthly,
small expected cell sizes in the control panel led us to omit
several sets of adjacent months from this analysis, Table 1
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Table 1
One-Sample McNemar Tests for Individual Parallel
Survey Panels — Unlinked Data

Treatment Panel

Time Frame

P se(p, - p) Z-Statistic P-Value
10/92 - 11/92 -0.62 0.29 -2.18 0.03
11/92 - 12/92 -0.47 0.28 -1.68 0.09
04/93 - 05/93 -0.76 0.27 ~2.84 0.00
06/93 - 07/93 -0.04 027 -0.16 0.88
08/93 - 09/93 -0.66 0.27 -2.42 0.02

Control Panel

Pa- Pl se(p, - p))  Z-Statistic P-Value
10/92 - 11/92 244 0.81 3.02 0.00
11/92-12/92 0.11 0.83 0.14 0.89
04/93 - 05/93 0.20 0.72 027 0.78
06/93 - 07/93 097 0.71 1.38 0.17
08/93 — 09/93 -1.73 0.68 -2.54 0.01

provides summary statistics for the one-sample “monthly”
tests for each panel which were based on unlinked data from
the Parallel Survey’s split panels. Table 2 provides summary
statistics for the two-sample tests based on unlinked data.

The reported values of p,, p,, p,, and p, are percentages
of estimated unemployed to estimated total population for the
panel. Recall that p, and p; are the panel ratio of estimated
unemployed from the first and fifth interviews to the
estimated panel population from the first and fifth interviews;
p,and p, are the panel ratio of estimated unemployed from
the second and sixth interviews to the estimated panel
population from the second and sixth interviews. Data from
the time frame of February 1993 — March 1993 are omitted:
a CATI facility was closed during the March interview week
because of a blizzard,

The one-sample McNemar tests in Table 1 test the
probability that the proportion unemployed does not change
between the initial and the subsequent interview within the
same pancl. We use the Control panel to examine the
unemployment flux from one month to the next in the absence
of CATI. Note that the two significant point estimates are in
the opposite direction.

The entire vector of differences of proportions was
found to be significantly different from the zero vector
{p-value = 0.00), but the sum of the individual components
was not found to be significant (p-value = 0.24). Conse-
quently, we did not test any further linear combinations,

We expected a certain amount of month-in-sample bias to
be present in these estimates. In Adams (Bureau of the
Census 1991), the estimates of p, constructed from the first
and fifth months in sample of the full Current Population
Survey were roughly six percent larger than their respective
second and sixth month-in-sample analogues (p,). Conse-
quently, estimates of (p, - p,) calculated from the full Current
Population Survey data were generally negative. As seen in
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Table 1, this was not the case with the Parallel Survey Conirol
panel’s estimates: counter to our intuition, the estimated
difference (p, - p,} is generally positive. This could be a
function of the time difference, a geographic difference, or a
design difference. Adams used 1987 data from the Current
Population Survey to calculate national estimates of biases
associated with rotation groups. Thus in each of these one-
sample tests, the net movements are intertwined with an
unmeasured effect from month-in-sample bias.

Note the negative unemployment flux in the Treatment
panel. This observation is supported by the significant
result from the formal test of the omnibus hypothesis
{(p-value = 0.00), and the significant result for the hypothesis
1'p =0 (p-value = 0.00).

The two-sample McNemar test results are presented below.

Table 2
Two-Sample McNemar Tests — Unlinked Paralle] Survey Data

. @.-p)-  sellp-p)- Z-Statisti
Time Fram , oY o -Statistic P-Value

me < (Pz‘P]) (pzfpl)]
10/92 - 11/92 ~3.06 0.86 -3.58 0.00
11/92 - 12/92 -0.58 0.88 -0.66 0.51
04/93 - 05/93 -095 0.77 -1.24 0.22
06/93 - 07/93 -1.02 0.76 -1.34 0.18
08/93 - 05/93 1.08 0.74 1.47 0.14

Individually, the monthly results do not demonstrate a
clear difference in the unemployment flux between the two
pancls. On the other hand, the omnibus test statistic is
significant (p-value = 0.00). The mean unemployment flux
seerns to be lower in the treatment panel as evidenced by the
significant test results of the hypothesis 1'p = 0, where y is
the vector of ((p,-p,) - (p, - p[));’s, with each element
comresponding to a month’s estimate (p-value = 0.01).

In these tests, we make staternents about contrasts in a
table of probabilities, looking for indicators of the effect of a
treatment on unemployment movement. As mentioned earlier,
some month-in-sample bias is present in the one-sample tests.
The tested hypotheses examine combinations of the net
movement within a panel and month-in-sample bias. This
problem is somewhat mitigated in the two-sample tests.
Indeed, if month-in-sample bias is an additive term which
affects both panels equally, it will cancel out of the test
statistic. Moreover, this effect will be alleviated somewhat in
the two-sample test even if it is not the same between the two
panels or is multiplicative. Our preliminary sensitivity
analysis bore this out: we found that the one-sample tests
were sensitive to month-in-sample bias, but that the two-
sample tests were not. '

The two-sample #-tests presented in Thompson (1994)
failed to detect a difference by panel in mean unemployment
rale using the Paralle] Survey split panel data. This contrasts
with the Current Population Survey CATI Phase-in resutts:
over two years, the CATI (Treatment) panel had consistently
significantly higher unemployment rates than the non-CATI
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(Control) panel. See Shocmaker (1993). In this analysis of
Parallel Survey split panel data, we have evidence that the
expected value of the proportion unemployed is lower in the
presence of CATI. There are, however, some problems with
the data. First, as previously mentioned, there is some
confounding in the Treatrmment (CATI) panel, since not all
respondents in this panel have their second interview
conducted from a centralized telephone facility. Second, in
cach month the expected sample size in the Control panel
cells was near ten, which could be small enough to make the
distribution behave unpredictably. This latter problem is not
an issue with the Current Population Survey CATI Phase-in
study analysis presented in 3.4.2.

3.4.2 Current Population Survey CATI Phase-in
Project Results

The Current Population Survey CATI Phase-in project was
a continuation of the study presented in Shoemaker (1993).
The primary purpose of this study was to measure the effect
of including CATI interviewing on the unemployment rate.
CATI interviewers in this study used an automated version of
the old Current Population Survey paper questionnaire, which
had a slightly modified version of the lead-in labor force
question, More details are provided in Thompson (1994), The
data considered in this paper are from the same time period as
the Parallel Survey split panel data examined in 34.1:
October 1992 through December 1993, again omitting the
February 1993 — March 1993 time frame. Expected cell sizes
in both the Treatment (CATT) and Control (non-CATT) pancls
were well over one hundred, and so all other contiguous
months of data are included.

The one-sample McNemar test results for both panels are
presented in Table 3. Test statistics are constructed with
unlinked data. The reported values of p,, p,, p,, and p, are
percentages of estimated unemployed to estimated total
population for the panel.

As with the Parallel Survey split panel data, the one-
sample McNemar tests using the CATI Phase-in data test the
probability that the proportion unempioyed does not change
between the initial and the subsequent interview within the
same pancl. Again, we use the Control panel to estimate the
unemployment flux from one month to the next in the absence
of CATI. The monthly tests for the Control panel do not
appear to exhibit any particular movement. Furthermore, the
omnibus hypothesis test was not significant (p-value = (.29},
so we did not test any further linear combinations.

Again basing our expectations on the effects of month-in-
sample bias presented in Adams (1991), we believed that the
Control panel estimate of p, (from the first and fifth months-
in-sample) would be larger than its respective second and
sixth month-in-sample analog, p, . On the average, this was
the case: although quite variable, the estimates of p| are on
the average about 4 percent larger than the estimates of p, .
Because both panels are representative samples from the same
parent sample, we assume that the month-in-sample bias

Table 3
One-Sample McNemar Tests for Individual Current
Population Survey Panels — Unlinked Data

Treatment Panel
Time Frame
pa-b se(p: - py) Z-Statistic P-Value
10/92 - 11/92 1.13 0.16 7.63 0.00
11/92 - 12/92 0.07 0.17 0.44 0.66
12/92 - 01/93 043 0.13 1.46 0.00
01/93 - 0293 0.00 0.14 0.03 097
03/93 — 04/93 -0.25 0.14 -1.81 0.07
04/93 - 05/93 0.63 013 4.99 0.00
05/93 - 06/93 0.88 0.13 6.56 0.00
06/93 - 07/93 0.84 0.13 649 0.00
07/93 - 08593 ~-0.07 0.14 -0.51 0.61
08/93 - 09/93 042 0.13 .17 0.00
09/93 - 10/93 0.06 0.12 0.52 0.60
10/93 - 11/93 1.05 012 845 0.00
11/93 - 12/93 0.18 (.14 1.27 0.20
Control Panel
P:- P se(p; - py)  Z-Suatistic P-Value

10/92 - 11/92 0.08 047 0.11 092
11/92 - 12/92 -0.14 047 -0.30 0.76
12/92 - 01/93 072 0.43 1.68 0.09
01/93 - 02/93 -0.91 0.43 -2.11 0.03
03/93 — 04/93 -0.16 0.39 -0.40 0.69
04/93 — 05/93 -0.18 0.43 -0.42 0.67
05/93 — 06/93 047 0.38 122 022
06/93 - 07/93 -0.32 0.46 -0.68 0.49
07/93 - 08193 -0.52 0.39 -1.32 0.19
08/93 - 09/93 -0.54 0.44 -1.21 0.23
09/93 — 10/93 -0.08 0.37 -0.22 0.83
10/93 - 11/53 -0.63 0.42 -1.50 0.13
11/93 - 12493 -0.09 037 -0.23 0.82

behaves similarly in both panels. The Treatment (CATT) panel
cstimates of p, are larger on the average than the estimates of
p,. Given the Control panel’s estimates behavior, this
phenomenon provides some evidence of a CATI effect.

Note the movement in the Treatment panel from not
unemployed to unemployed. This observation is supported by
the significant result from the formal test of the omnibus
hypothesis (p-value = 0.00), and the significant result for the
hypothesis 1"y = 0 (p-value =0.00). In contrast to the Parallel
Survey results provided in 3.4.1, this data provides some
evidence that unemployment rate is higher in the presence of
CATI. This evidence is further supported by the two sample
McNemar test results provided Table 4. The individual
monthly results in Table 4 provide some evidence of
difference in the unemployment flux between two panels.
Furthermore, the omnibus test is significant (p-value = 0.00).
The mean unemployment flux in the Treatment panel seems
to be higher as evidenced by the significant test results of the
hypothesis 1’ =0,

The two-sample t-tests presented in Thompson (1994) also
detected a positive difference by panel in mean unemploy-
ment rate using the Current Population Survey split panel data
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Table 4
Two-Sample McNemar Tests — Unlinked Current
Population Survey Data

P-pl-  sellp-pi}-

Z-Suatistic P-Value

Tmefame o 5y p-p)]

10/92 - 11/92 1.18 0.50 2.38 0.02
11/92 - 12/92 0.22 0.50 0.43 0.67
12/92 - 1/93 -0.29 0.45 -0.64 0.52
01/93 - 02/93 0.92 0.45 2.03 0.04
03/93 - 04/93 -0.10 0.42 -0.23 0.81
04/93 - 05/93 0.8i 0.45 1.81 0.07
05/93 - 06/93 0.41 041 1.01 031
06/93 - (7/93 1.16 0.48 241 0.02
07/93 - (8/93 0.45 042 1.07 0.28
08/93 - 09/93 0.95 0.46 2.06 0.04
09/93 - 10/93 0.14 0.39 0.37 0.71
10/93 - 11/93 1.69 0.44 3.83 0.00
11/93 -12/93 0.26 (.40 0.66 0.51

i.e., including CATI intervicws resulicd in a higher unem-
ployment rate. These results were consistent with the Current
Population Survey CATI Phase-in resulis presented in
Shoemaker (1993). This analysis of Current Population Survey
split panel data reinforces thal conclusion. Again, it is
impossible to attribute the positive net migration from not
uncmployed to unemployed entirely to the effect of CATI: the
same confounding described in 3.4.1 is present in this
Treatment (CATT) panel.

3.5 Discussion

Our results appear to yield opposite conclusions about the
effect of CATI on unemployment flux. The CATI effect is
not, however, the same in both tests.

Perhaps the key difference is the questionnaire. The
Parallel Survey data was collected using the newly redesigned
Current Population Survey questionnaire. The new question-
naire was designed as an automated instrument. In contrast,
the old Current Population Survey questionnaire used for the
Current Population Survey CATI Phase-in Project was
designed as a paper instrument. Field interviewers were
required to memorize complicated skip patterns. To minimize
respondent burden, both versions of the Current Population
Survey questionnaire are designed for an average interview
length of twenty minutes. Using an automated questionnaire,
an interviewer can collect more (and more detailed)
information in the same amount of time, since she no longer
has to determine the path of the interview. Besides the
automation difference, the wording of the labor force
questions differs between the two questionnaires.

Parallel Survey interviews were conducted using the same
questionnaire both in the field interviews (using a laptop
computer) and in the CATI facilities. In contrast, the Current
Population Survey CATI Phase-in interviews used two
different versions of the old questionnaire: a paper version
for the field interviews; and an automated version, with a
slightly modified lead-in labor force question for the CATI
interviews.
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Given these questionnaire differences, and the caveats
about the Parallel Survey split panel data, we view our results
as preliminary. Instead, we recommend pursuing this
examination using one and two-sample McNemar techniques
on the new Current Population Survey split panel data, which
uses the old CATI Phase-in design and the redesigned, fully
automated questionnaire.

4. CONCLUSION

‘We have presented two modifications of the one and two-
sample McNemar tests using complex survey data, with
applications from the unlinked data modification. If the
survey does not have a longitudinal design, then the applica-
tion using the linked data will have an unknown variance/
covariance structure and will include a variance component
due to matching error. In this case, using the unlinked data
makes sense with respect to the model’s interpretation,
although the statistic based on the (unlinked) estimates of
marginal probabilities may be inferior to a well-developed
linked model. If the survey has a longitudinal design, then the
first method may be preferred, as it is a straight-forward
extension of the traditional test, and consequently, the
interpretation is equivalent to the textbook interpretation.

The two-sample McNemar test is not the sole approach
one might use in the situation described in section 2.2.2.
Another approach to the unlinked form of this problem would
be to use a log-linear model for a 2 x 2 x 2 contingency table
as in Rao and Scott (1984). In either case, there are trade-offs.
The interpretation of the McNemar test is intuitive: itis a
cause and effect model, or a repeated measures type of
experimental design. The 2 x 2 x 2 contingency table model’s
interpretation is perhaps Iess intuitive, Note, however, that the
test statistic for the McNemar tests are ‘“Wald-like” statistics,
which are often considered to be less efficient than the chi-
squared type, e.g., Fay (1985), I is also worth noting that
unlike the Rao-Scott formulation, the approach described in
this paper makes explicit provisions for the use of linked data.

Areas for future research include investigations into the
power of these tests in the context of complex sample data,
variance/covariance estimation for linked data including
matching error vanance contributions, and the difference in
efficiency in the two approaches. In data analytical applica-
tions, one and two-sample McNemar tests seem to have uses
in comparing aspects of different survey methods or effects
on responses within a method over time. The approach is
nonparametric in its conception; when the approximation is
good, it avoids pitfalls that may be associated with model-
based tests.
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APPENDIX

For the unlinked data modification of the McNemar Test,
(p,- p)) isestimated by X /N, +X /N, whereX,, X, N,
and N, are weighted estimates, and

—~ x, [[varx,)  varw)
Var{p, -p)) = > - >
N, X N

+,

X, 2[Var(X+) Var(N,)
] L
N, [ x? N}

2X, X, [Cov(X_X ) Var(N)
N\ N; [ X X, N}

Var(N,) se(N,)se(N,)
- +
sz NN,

In this appendix we discuss the derivation of the
covariance term in the variance estimate, considering only the
unlinked data.

Consider the within-panel correlation

Cov(X, ,X,) =Cov( Y X0 XZ,j) (AD)

J=1,3 f=2,6

where X, is a weighted sample level for month i, month-in-
sample (MIS) j. Note that X, ; and X, ;,, are from the same
rotation group unless j = 4 since a rotation group is out of
sample for eight months after being in for four.

We assumed that the correlations between X, ; and X, ,, can
be decomposed into three separate categories:

1) A within-rotation-group correlation,

Cov(X,

”.,XMJ.’]) =ry, when j=123,5,6,7.
2) A within-month-between-rotation group correlation,
Cov(X,._J.,X’.,k) =w, k=*j, and

3) A between-rotation-group between-month correlation,

Cov(X,

i X =Y. k2 jrlor j=3

Replicate estimates of these correlations were available.

The covariance in (A1) becomes

Cov(X, . X ) =Cov(X, , +X, 5. X,, + X, )

= COV(Xl,i ’Xz,z) + COV(X1,| 'X2.6) +
Cov(X],5 , Xz,z) + Cov(XI's Xy 6)
=2(r, +vy)Var (Xu)' (A2)

using the simplifying assumption that Var(X, ) is constant for
all ¢ and j. The variance for a full month’s estimate,
Var(z;‘:"=l X, J.) is available in the form of a generalized
variance function {GVF). We use this estimate to calculate
Var(X; ) by applying the following derivation:

Var

8
EXi,j = E E COV(X:‘,} s Xik)
i i &

=3 Var(X, ) + ZE Cov(X, ;. X, )
J Eid
=(8 + 56w) Var(Xi'j)

50

Var(X, ) = (8 + 56w)”" Var

3
zlj X, J.]. (A3)

j:
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Stability Measures for Variance Component Estimators
Under a Stratified Multistage Design

J.L. ELTINGE and D.S. JANG'

ABSTRACT

In work with sample surveys, we often use estimators of the variance components associated with sampling within and
between primary sample units. For these applications, it can be important to have some indication of whether the variance
component estimators are stable, Le., have relatively low variance. This paper discusses several data-based measures of the
stability of design-baseqd variance component estimators and related quantities. The development emphasizes methods that
can be applied 1o surveys with moderate or large numbers of strata and small numbers of primary sample units per stratum.
We direct principal attention toward the design variance of a within-PSU variance estimator, and two related
degrees-of-freedom terms. A simulation-based method allows one to assess whether an observed stability measure is
consistent with standard assumptions regarding variance estimator stability. We also develop two sets of stability measures
for design-hased estimators of between-PSU variance components and the ratio of the overal] variance to the within-PSU
variance. The proposed methods are applied to interview and examination data from the U.S, Third National Health and
Nutrition Examination Survey (NHANES IH). These results indicate that the true stability properties may vary substantially
across variables. In addition, for some variables, within-PSU variance estimators appear to be considerably less stable than
one would anticipate from a simple count of secondary units within each stratum,

KEY WORDS: Between-PSU variance; Complex sample design; Degrees of freedom; Diagnostic; Design-based analysis;
Satterthwaite approximation; Stratum collapse; U.S. Third National Health and Nutrition Examination
Survey (NHANES IIT); Within-PSU variance.
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1.INTRODUCTION

In work with sample surveys, it is often desirable to have
good estimates of the variance components attributable to
sampling within and between primary sample units (PSUs).
For example, the magnitude of an estimated within-PSU
variance, relative to a between-PSU variance, may influence
decisions regarding sample allocation and related design
issues (e.g., Hansen er al. 1953, Chapter 7). Similar relative-
magnitude properties affect the bias of certain variance esti-
mators derived under simplifying assumptions regarding the
sample design (e.g., Korn and Graubard 1995, p. 278-279, 287;
and Wolter 1985, p. 4446). Also, some survey analysts have
a general interest in identification of surveys and variables for
which the between-PSU component of variance is substantially
greater than zero. See, e.g., Herzog and Scheuren (1976, p. 398)
and Wolter (19885, p. 47) for related comments. In addition,
Jang and Ellinge (1996) give an example for which there is
some interest in the within-PSU variances by themselves.

In some application work, estimates of within-PSU
variances and related quantities are reported with the apparent
assurnption that the estimates are stable, i.e., have relatively
low variances. This paper shows that it can be important to
carry out data-based checks of this assumption of stability,
and that some relatively simple checking methods follow from
standard design-based ideas. We emphasize methods that can
be applied to designs with a moderate or large number of
strata and a small number of PSUs selected per stratum.

Subsection 2.1 reviews the relevant estimators of within-
PSU variances and overall stratum-level variances. Sub-
section 2.2 identifies two distinct comnponents of the variance
of the within-PSU variance estimator. Subsection 2.3 presents
simple design-based estimators of the variances of two within-
PSU variance estimators. Section 3 develops two related
degrees-of-freedom measures.

Section 4 examines the extent to which related design-
based methods can be used to assess the stability of quantities
that depend both on the within-PSU variance estimator and on
the overall stratum-level variance estimator. Principal atten-
tion is directed toward an estimator of the between-PSU
variance and an estimator of the ratio of the overall stratum-
tevel variance divided by the within-PSU variance. Section 4.2
discusses one set of methods based on the stability measures
from Section 2 and some moderately restrictive moment
assumptions. Section 4.3 outlines a second set of methods
based on stratum collapse.

Section 5 applies the main ideas of Sections 2 through 4 to
variance estimates computed for the U.S. Third National
Health and Nutrition Examination Survey. Section 5 also uses
a simple simulation-based method to assess the consistency of
the observed measures with standard assumptions regarding
variance estimator stability. The Section 5 results suggest that
the true stability of within-PSU variance estimators can be
substantially less than anticipated from a simple count of the
number of secondary units contributing to each PSU. In
addition, the results indicate that the stability properties of

! JL. Elinge and D.S. I ang, Department of Statistics, Texas A&M University, College Station, TX 77843-3143, US.A.
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within-PSU variance estimators and related quantities can
vary substantially across different variables collected in the
same survey. Section 6 gives additional comments on the
methods and empirical results presented here.

2. WITHIN-PSU AND OVERALL
STRATUM-LEVEL
VARIANCE ESTIMATORS

2.1 General Notation

In principle, we could use cither design-based or model-
based methods to examine within-PSU and between-PSU
variance components. The present work will take a design-
based approach. This is consistent with some related previous
literature, e.g., Wolter (1985, p. 40-41, 47). The design-based
approach will be especially useful in highlighting some
strengths and limitations of the proposed stability-assessment
methods. For example, in Section 2.3 this approach will give
us some indication of specific design features that may affect
variance estimator stability. Also, in Section 4 the design-
based approach will help to clarify the extent to which certain
moment restrictions are needed to justify one set of stability
measures.

Following the notation and ideas in Wolter (1985,
p- 43-47), consider a stratified multistage sample design with
L strata and with N, primary sampling units (PSUs) contained
instratum h =1, 2, ..., L. We select n, PSUs with replacement
and with per-draw selection probabilities p,;,. Within selected
PSU (h,i), we select n,; secondary sample units (SSUs) with
replacement and with per-draw selection probabilities p,;.
Further subsampling is carried out within a selected S5U to
obtain n,; individual elements for interview or examination.
The stability-assessment methods developed here are intended
primarily for designs with moderate or large L, relatively
small n, (e.g., n, = 2), and relatively large n,. Designs with
these characteristics are often used in large household inter-
view surveys, e.g., the health survey discussed in Section 4.

We will focus on estlmauon of a populauon total
Y=F,. Y, whereY, =T Y, ¥ Zj 12.& M ¥ Yy 18
a survey itcm for element kin SSU _; in PSU i in stratum h, N,;
is the number of SSUs in PSU (A,), and N,; is the number of
elements in SSU (4, §, ). Extensions to nonlinear functions of
population totals are straightforward and will be considered
in the applications in Section 5. A standard design-based
estimator of Yis ¥ = ¥, ¥, where

2.1)

Wy is the customary weight derived from selection proba-
bilities and sample sizes to ensure unbiased estimation of each
Y,, and the lower-case terms y,,;, denote sample observations.
In subsequent work, it will be useful to rewrite expression
(2.1) as
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5 -lei _ Ry
where ¥y, = n,; 102,800 2= 1, Py D) Wage Vg

2.2 Within- and Between-PSU Variances

Throughout this discussion, expectations and variances
will be defined with respect to the sampie design. Under the
conditions stated above, the variance of ¥ is V(Y) iV b
where  V, =V, + Vg, Vy, = V(n,;‘z, P Y Ve
n, Z: | Phi Ozﬂ", and oi," V(Y - Y, | hi); see eg.,
Wolter (1985, p. 42). Note espccuﬂly that ¥ 1s the true
population total for selected PSU (4, i), and that 02,“ reflects
the variability in Y - Y, attributable to subsampling at the
SSU and finer ]evels

A customary unbiased estimator of the overall stratum-
level variance V, is

fy
" o R _ e ~ 72
V) =n, (- 'Y (py T - V),
i=1

and the corresponclmg estimator of V(Y) ):,, 1V(Y ) is
V() = }:h IV(Y ).

Now consider estimation of the within-PSU variance Vy,,.
Since Y, is a sample mean of the independent and identically
dlstrlbutcd terms z,;, siandard arguments show that for a
given PSU (hi), an unblased estimator of 02," is
85 = My (- 1) 2} 12y - ) Thus, an unbiased
estimator of Vi, is

My
-2 -2
= Zl "y Pm 2Jn E nhi (nlu - 1) 12 (xhy xh:) '

- Mhij T L el
where Xy = ";,.-EHW,,;-,* b and %,; = n,, s A Note that
the latter expression for V_, uses only sample sizes, the
observations y,;, and the customary weights w),;,.

2.3 The Variance of V,,

A direct modification of standax:d conditional-moment
arguments shows that the variance of V,, is y,, + Y, where

-2
- V(nk E p}u O?Ju

and
Nn'l
- -3 2 .
Ywn = ”hsz Ppi V(O | Byi).
in1

Thus, the variance of ‘?% itself depends on a sum of
between- and within-PSU variances, and the relative
magnitudes of v, and Y, depend on trade-offs among 0;, ,
Dui and n,;. For example, under regulanity conditions, the terms
V( 62," | h.6) are approximately inversely proportional to n,,.
Thus, if the n,; are uniformly large within stratum k, then Y,
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may be relatively small. Also, if the terms P;.-izﬂi,,,- are
approximately constant within a given stratum, then y,, may
be rclauvely small. Conversely, marked heterogeneity of
Pri oi," may inflate yp, and thus inflate V(V )} as well.

In addition, note that under the stated design conditions,
VWh is the sample mean of the independent and identically
distributed terms n, p," 62,“ Thus, an unbiased estimator of
the variance of V

Ay
i1a; - - -1_- A 2
ViV = - 'Y (0, ' p 202, - V). 22)

i=1

Some applications focus on the full-population level,
rather than on individual strata, and so the “within-PSU”
coniribution of interest is the sum of the within-PSU
variances, Vy, ):h Vi Under the condmons given above,
an unbiased estlmatorof Vi is V ):h t Vg« Also, since our
samplmg and subsamplmg are mdependent across strata, we
have V(VW) ):h 1{Ygx * Yws)» and an unbiased estimator of
V(VW)IS

L
V(V,) =Y V(V,,).
k=1

Finally, note that the preceding development used the

assumption of sampling with replacement at both the primary-
and secondary-unit levels. Two applications of result (2.4.16)
in Wolter (1985, p. 46) show that under mild conditions that
hold for many, but not all, without-replacement designs,
V will be unbiased or conservative for the true within-PSU
variance; and V(V wy,) Will be unbiased or conservative for the
true variance of V . A formal technical statement and proof
of this result is available from the authors.

2.4 Balanced Interpretation of Stability Measures

The remainder of this paper uses V(V,,) and related
quantities to assess the stability of variance-component
estimators, In working with these results, it is useful to
remember that data-based measures of variance eslimator
stability are justifiably viewed with some caution, because
they are functions of fourth sample moments, and thus are
themselves subject to a considerable amount of sampling
variability. See, e.g., Fuller (1984, p. 111). This caution
carries over to the proposed estimator 17(17%) and to the
related statistics discussed in Sections 3 and 4 below.

However, one should not overstate this caution to the point
of making no attempt at data-based assessment of variance
estimator stability. The estimator V(V,,), and the related
measures in Sections 3 and 4, are relatively simple to
compute, and provide diagnostics that can heip to identify
variables for which:

(a) the instability of ‘l?% is especially problematic; or
(b) the instability of V,, has a substantial cffcct on the

precision of estimators of the relative magnitudes of
between-PSU and within-PSU variances.
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Consequently, interpretation of specific values of 17(\7’%)
and related stability measures should reflect a balance
between the abovementioned general caution and a recogni-
tion of their potential diagnostic value.

3. TWO STABILITY MEASURES FOR
WITHIN-PSU VARIANCE
ESTIMATORS

3.1 Degrees-of-Freedom Diagnostics for Variance
Estimator Stability

Some analysts prefer to express variance estimator stability
through “degrees of freedom” measures related to the
Satterthwaite (1941, 1946) approximation, To introduce this
idea, con51dcr a general variance estimator V, and note that
{E(V)} 'dV has the same first and second moments as a
chi-square random variable on d degrees of freedom, where
d is the solution to the equation,

2HEWM) - v(V)d = 0.

If the distribution of {E(f/)}'ld‘:’ is indeed well
approximated by a chi-square distribution, then d may be
viewed fairly literally as a “degrees of freedom™ term.
Otherwise, d can be viewed as twice the inverse of the
squared coefficient of variation of V. In either case, d has a
certain appeal because it is scale-free, and can be tied fairly
directly to notions of “effective sample size™ in the evaluation
of variance estimator performance. Subsection 3.3 gives
related comments for two special cases.

Given an unbiased estimator V(V) of the variance of ‘7,
one may compute a “degrecs of freedom” estimator d as the
solution to the unbiased estimating equation

2V - V(V)} - V(V)d =0, (3.1)

ie, d= {V(V)} '2¥%- 2. Under mild regularity condi-
tions, d 'd converges in Probablhty to one, provided
{V( V)} V(V) and {E( V)} V both converge in probability
to one,

3.2 Degrees-of-Freedom Diagnostics for Pooled and
Stratum-Level Estimators of Within-PSU
Variances

We can apply these general degrees-of- freedom ideas to
the within-PSU variance estimators V and V developed
in Section 2. First consider the case in whlch there i§ intrinsic
interest in the stability of individual sl:rarum level estimators
\?Wh. The assocxated “degrees of frecdom™ measure is dy, =
{V(V, )} 2V . For desxgns w1th large ny, onc may use(3.1)
tocornputeesumators a’% {V( )} 2V - 2 separately
for each stratum. For designs wnrh small n, (e g.,n,=2for
each stratum}, the estimator d itself may be very unstable.
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Consequently, it also is useful to consider the alternative
combined estimator

Lo .oyl )

= [2 V(VW,,)} 2 Vi, -2,

k=1 k=l

under the assumption that all dy, equal a common value dyy.
Now consider the pooled within-PSU variance estimator V,,

developed in Section 2.3. The resultmg “degrees of freedom”

measure is dyp = { Y5 V(Vy,)} ' 2V.2, and expression (3.1)
suggests the estimator

dw={g x‘f(i?%)}_lzvz -

3.3 Comparison of d,, and d,;; to Direct SSU Counts

To interpret ‘iwo and JW as stability measures, consider
the following idealized setting. Assume that for all h, the PSU
counts n, are equal to a common value n,, say; and that for
all % and i, the SSU counts n,; are equal to a common value
n,y. In addition, assume that the terms p,;>03,; are constant
within each stratum; and that, conditional on (h, i), each
Oyilny - 1) Gi,n. is distributed as a chi-square random vari-
able on n,; - 1 degrees of freedom. Then routine arguments
show that d,,, = n,(n,, - 1). If the preceding assumptions are
satisficd approximately, and if the product n,(n,, - 1) is large
(greater than 40, say), then a data user may be inclined
to view !7% as relatively stable, or equivalently, to view the
errors Vi, - Vg, as negligible. This appears to be the
reasoning used implicitly when estimates V,, are treated as
known values in design or analysis work. However, the
application in Section 5 will give some examples for which
this reasoning is problematic, so that evaluation of the
estimates tfwo is important.

Also, under the idealized conditions described above, and
under the additional assumption that the V,, are all equal, we
have dy; = Ln(n;, - 1).

4. COMPARISON OF WITHIN-PSU
AND OVERALL
STRATUM-LEVEL VARIANCES

4,1 Estimators of Between-PSU Variances and
Related Variance Ratios

Section 1 cited some applications that hinge on the magni-
tude of V, relative 1o V,. The specifics of the relative-
magnitude comparisons vary with the individual application,
but interest generally focuses on differences or ratios.
For example, recall that V,, = V, - V.. and define the overall
between-PSU variance term Vy =}, Vg, . In addition, note
thaxunblased estimators of Vg, and Vyare V.Bh = V V and

Zn 1 Vg, respectively.

Smnlar]y, define the ratio R =Vy V(Y) the magnitude
of the overall variance V(¥) relanve to the w1th1n PSU
contribution V. A direct estimator of Ry, is R = V V(Y)
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Note that if V%V:. =Ry, for all k, then ffwv could also be
viewed as a pooled estimator of this common stratum-level
ratio.

For both V and R , stability assessment involves the
variance of V and the covariance of V with V . Estima-
tion of the thcsc moments can be somewhat problemaue for
surveys that select small numbers of PSUs from each stratum.
We consider two approaches to resolving this problem.
Section 4.2 uses moderate restrictions on the moment
structure of (‘7’“, , ‘.7,') to develop estimators V(f’h) and
related quantities. Section 4.3 uses stratum collapse to
develop alternative stability measures.

4.2 Stability Measures Based on V(V,,) and Moment
Conditions

4.2.1 Moment Conditions

Under moderate moment restrictions, we can estimate the
variance of V directly from V 1tself Specxﬁcally, assume
that the variance of V,‘ equals (n,l -1y 2V,l, thlS would hold
e.g., under the standard assumption that V, (n,‘ I)V is
distributed as a chi-square random variable on n, - 1 degrees
of freedom. As in Sections 2 and 3, we continue to assume that
V is unbxased for V,. Then routine moment arguments show
that (n,l + 1) 2V is an unbiased estimator of the variance
of V

In the remainder of Section 4.2, we will also assume that
Cov(V%, V,,) 0. Routine condmonal—moment arguments
show that this will hold if the terms p," 02," are equal within
a given stratum; and if, conditionat on (h.i,j), the SSU-level
estimates x;,; are normally distributed, so that 6,_,‘, is condi-

tionally independent of Y

4.2.2 Stability Measures

Under the cogditions sta}ed in Section 4.2.1, unbiased
estimators of V(V,,) and V(V,) are

V(V,) = (n, + 112V - %(V,) @.1)

and V(V,) = ¥ V(V ), where V(V,,) is defined in expres-
sion (2.2). Also, under the same conditions routine ratio-
estimation arguments lead to the variance estimator

L
=V {(nk 1200 + R V(VW,,)}. @2)

A=1

4.3 Alternative Stability Measures Based on Stratum
Collapse

The assumptions of Section 4.2.1 may be problematic in
some applications. For example, for some survey designs and
variables, the SSU-level estimators x;; may have markedly
nonnormal distributions, so the assumption Cov(V . V,) =0
may not hold. For these cases, one may consider the use of
stratum collapse to produce alternative estimators of V(VB)
and V(va)
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Specifically, partition the set of L strata into  prespecified
groups, with L, strata contained in group §,, g = 1, ..., G.
With this new notation, note that

G
VOV,V) =Y ¥ (V,.V,. V).
g=1 kF..S'g

Standard stratum-collapse methods (e.g., Wolter 1985,
Section 2.5) then lead to the alternative vatiance estirnator,

[rd
7 - 2
V:r(VB) = E (Lg - 1) ng E Dgh'
=1 keSs

where Dy, = Vg - Ly Ljes Vg Similarly, a collapsed-
stratum variance estimator for R, is,

VR = (V) 2zj(L -)L ES Cg,,,
he

where C , = (V, - Ry, Vi) - L, E,es (V Ry, )

In gcncral col]apsed—stratum variance estnnators require
some care in interpretation; see, e.g., Rust and Kalton (1985),
Wolter (1985, Section 2.5) and references cited therein. For
example, collapsed-stratum variance estimators generally will
be conservative, In addition, for cases with moderate L, the
variance estimators Vc";(l?_,_,) and V7 (R,,) may themselves
have limited stability.

5. APPLICATION TO THE U.S, THIRD
NATIONAL HEALTH AND
NUTRITION EXAMINATION
SURVEY

5.1 Sample Design and Estimation Methoeds

The methods proposed in Sections 2 through 4 were
applied to data from Phase I of the Third National Health and
Nutrition Examination Survey (NHANES HI). National
Center for Health Statistics (1996) gives a general description
of this survey, including special characteristics associated
with Phase [ (data collected between 1988 and 1991). For the
present discussion, three aspects are of special interest. First,
variance estimators were constructed on the basis of a
collapsed design involving L = 22 strata (large groups of
counties), with two primary sample units (generally individual
counties) selected per stratum. Second, each selected PSU
had a relatively large number of selected SSUs (generally
groups of ¢ity blocks, or similar rural areas). The number of
selected SSUs within cach stratum ranged from 30 to 63, with
a mean of 45.8.

Third, additional subsampling within each SSU led to
selection of the survey elements (individual noninstitu-
tionalized U.S. civilians). Each selected person was asked to
respond to a health questionnairc and to participate in a
detailed medical examination. Twelve of the resulting
variables are listed in Table 1.
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Standard weighted ratio estimates & were computed for
the population means of cach of the twelve variables listed in
Table 1. The first two columns of Table 2 present the
corresponding variance estimates V(#) and V,,. As part of
a larger study of the within-PSU variances V,,, discussed in
Jang and Eltinge (1996), there was considerable interest in the
stability of the individual estimates "}wn' Since wehadn, =2
for each stratum, the reasoning in Section 3.2 indicated that
it was not feasible to examine the individual terms J
Consequently, Section 5.2 will examine the pooled measure
dwo of the stability of the V and will also present some
related simulation-based tests and diagnostic plots.

Table 1
Twelve NHANES HI Variables
Variable name Description
HAE2 Told by health professional that you had
hypertension (indicator variablc)
HAE7 Told by health professional that your blood
cholesterol was high (indicator variable)
HAD!1 Told by health professional that you had
diabetes (indicator variable)
HAR3 Do you smoke cigarettes now?
BMPHT Height
BMPWT Weight
HDRESULT HDL cholesterol
TCRESULT Serum total cholesterol
LEAD Blood lead, in micrograms per deciliter
log(LEAD) Natural logarithm of biood lead
BF1K1 Systolic blood pressure
BP1K5 Diastolic blood pressure

Table 2
Variance Estimates and Stability Measures for
Twelve NHANES III Variables
Variable name Ve 1402 dyo Ay
HAE2 0.0000385 0.0000511 23.7 4258
HAE7? 0.0000821 0.000135 13.6 2256
HAD1 0.00000956 0.00000749 8.8 160.6
HAR3 0.000122 0.000205 6.4 1258
BMPHT 0.0223 0.0416 153 275.1
BMPWT 0.104 0.122 86 1392
HDRESULT 0.0743 0.163 115 1962
TCRESULT 0.5%0 0.860 21.2 3539
LEAD 0.00388 0.00657 28 488
log(LEAD) 0.000211 0.000678 105 1749
BP1K1 1.073 2.896 1.0 265
BPIKS5 0.252 0.217 17.2 529

In addition, there was interest in the extent to which the
variances of the V _contributed to the variances of the pooled

quantities V and R

. Section 5.3 explores this question.
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5.2 Within-PSU Variance Estimates and Associated
Stability Measures

5.2.1 Comparison Across Variables

The final two columns of Table 2 report the degrees-of-
freedom estimates ‘iwo and ‘iwr for the twelve NHANES III
variables. Note especially that the stratum-level stability
measures dwo are relatively low, compared to the mean of
45.8 SSUs per strahum. For example, all of the variables have dwo
less than 24, and five (HAD1, HAR3, BMPWT, LEAD and
BPIKI) have dwo less than 10. Due to the interest in the
dwo described above, this led to two general questions.

(1) Are the observed dw consistent with the nominal
degrees-of-freedom value d,,, that one would anticipate
from the direct SSU counts n,, + n;, - 27

(2) Conversely, arc the observed awo consistent with
distributional conditions that produce considerably
smaller values of d,,,?

Standard large-sample-theory-based tests for (1) and (2)
would have depended on eighth sample moments, and thus
were inadvisable in the present case, due to the relatively
small values of L = 22 and n, = 2. Instead, the following
simulation-based test was carried out.

5.2.2 Simulation-Based Interpretation of Stability
Measures

This simulation work covers six cases involving different
values of two terms. The first term, denoted d,; , represents
the degrees of freedom associated with the variance estimator
(’32,u in PSU (h, i). The second term, denoted R,, , is the ratio
of the expressions p,,; oi,u in the first and second sample
PSUs in stratum A.

In each of the six cases discussed below, independent
pseudorandom variables g,; were generated from g chi-square
distribution on d,, degrees of freedom for h=1,2, .. 22
and i = 1, 2. Re-scaled variables V ;= dm Vion: 8y WETE then
computed, where Vi, is a ra.ndom variable equal to one
with probability one-half and equal to R,, with probability
one-half. The random variables 8hi and Vi are mutually
independent. Finally, the sums an Lt V , and the
associated measures V( an): V(Vw) and dwo were com-
puted. This was repeated 10 000 times.

Table 3 lists the values of d,; and R,, covered in the six
cases, and Table 4 lists the resulting simulated means,
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standard deviations and quantiles for "fwo When interpreting
the results for these cases, note that randonmess of the g,
corresponds to the estimation error in the 62,“ due to
subsampling at the SSU and lower levels; and randomness of
the Vy,, reflects the variability of the p,; 02," induced by
sampling of PSUs within a given stratum,

Tahle 3
Cases Covered for the Simulated Quantiles

Cases d Ry,

22
Obs. Dist.
5
22
Obs. Dist.
5

[- NI I SR VS I S
O D D = = =

Case 1 uses dy; = 22 and R, = 1. Arguments from
Section 3.3 show that the resulting '»7% are distributed as
constant multiples of a chi-square random variable with
dyy = 44 degrees of freedom. Thus, for Case 1, the choice of
d,,, = 22 has led to simulated quantiles of dw0 that are
approximately those that one would anticipate from the mean
SSU count of 45.8 observed for Phase [ of NHANES III,
under the setting described in Section 3.4. Note that even in
this idealized Case 1, the relative variability of the ‘iwo is
fairly high.

Now compare the dwn reported in Table 2 to the sunulated
quantiles from Case 1. All twelve of the observed dwo fall
below the (.023 simulated quantile of 24.8; and ten of the
twelve fall below the 0.005 quantile of 21.1. Thus, the d,
observed for the NHANES III variables are not consistent
with a nominal dy;, = 44 produced in the idealized setting
covered by Case 1.

5.2.3 Simulation Under Alternative Conditions with
Smaller dwo

In general, the distribution of ‘fwu may deviate from that
observed under the idealized Case 1 due to: (a) variability in
the true SSU counts n,;; (b) limited stability of the PSU-level
esumatcs 6,_," ; and (c) heterogeneity of the true PSU-level
terms om Cases 2 throogh 6 cover the combined effects of
these three factors.

Table 4 .
Simulated Quantiles for dy,,

Cases Mean 5.D. 9 005 qd0 q.ms 405 910

25 q 50 g5 450 95 4s I99 Q935

48.9 177 211 225 248 274 307
48.3 175 207 219 242 268 299
11.3 47 4.1 45 5.1 5.6 6.4

Oy LA B b —
wn
LA
b
~1
—
F Y
—
o
[
=]
N
w
N
~J

367 455 574 712  BlS 926 1085 1221
363 452 566 702 803 920 1062 1180
80 103 13.5 173 200 230 268 301
37 5.0 6.8 89 105 121 148 167
3.7 5.0 6.7 89 106 121 14.1 16.1
2.1 30 44 6.0 7.4 88 1.2 126
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The design for Case 2 was identical 10 that for Case 1,
except that the d,; were random variables, sclected with equal
probabilities and with replacement from the 44 values n,, — 1
corresponding to the 44 SSU counts #,, in the original data-
set. The resulting simulated quantiles of ﬁwu are similar to
those for Case 1.

Case 3 uses d,; = 5 and R,; = 1; the resulting I?Wh are
distributed as constant multiples of chi-square random
variables with dy, = 10 degrees of freedom. The simulated
quantiles for Case 3 were somewhat more consistent with the
dwo observed for the NHANES III dataset. For example, ten
of the twelve variables have d wo 4t or above the simulated
0.10 quantile of 6.4. However, two of the variabies (Icad and
systolic blood pressure) had their ﬁwo below the simulated
0.005 quantile for Case 3.

Cases 4 through 6 cover more extreme cases of instability,
induced by use of the scale factor R,, = 9. A scale factor
different from one introduces a component of vanablhty
associated with sampling of PSUs with unequal oz,u, and
causes the V% to have disuributions outside of the rescaled
chi-square family. Cases 4 through 6 use the same d,; values
used in Cases 1 through 3, respectively. The smallest
observed NHANES III &WD values are somewhat more
consistent with the simulated quantiles for Cases 4 through 6,
although the on = 1.0 for systolic blood pressure still falls
below the simulated 0.005 quantile for Cases 4 and §, and
is approximately equal to the simulated 0.025 quantile for
Case 6.

In addition, note that the three largest observed cfwo values
(for the hypertension indicator, the total cholesterol measure,
and diastolic blood pressure) fall above the simulated upper
0.995 quantiles for each of cases 4 through 6. This, in con-
junction with the abovementioned results for Cases 1
through 3, indicates that the twelve observed ‘?wo are
consistent with settings that produce substantially different
true dyy values for different variables.

Taken together, these simulation results suggest that for
the twelve NHANES IH variables examined, the stability of V,,,
may be substantially worse than one would anticipate from a
simple count of SSUs within each stratum; and that the true
stability measures dy, may vary substantially from one
variable to the next.

5.2.4 Diagnostic Plots

In a purely numencal sense, dwo depends on the magni-
tudes of the V(V wn) TElative to the terms ZV . Conse-
quently, dlagnosm plots of V(V, )y’ against V arc useful
in the identification of specific patterns and “problem strata”
that lead to unusually high or low cfwo

Figures 1 through 3 give plots for the variables HAE2
(diagnosed hypertension), log(blood lead), and blood lead,
respectively. Each plot was constructed with horizontal and
vertical axes on the same scale. The plot for HAE?2 has the
bulk of its points well below a line with slope = 1 and
intercept = 0. In addition, the values of V(V,,)* that are large
in an absolute sense are still substantially .less than the
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corresponding V - This is consistent with the relatively large
degrees-of- frecdom value dwa =23.7. The plot for log(blood
lead) shows a somewhat greater concentration of points near
the line with slope = 1 and intercept = (), which is consistent
with the somewhat smaller value on =10.5.

The plot for blood lead shows one apparent outlier: the
largest value of V(V%)"’ is approximately equal to t.he
correspondmg V . For this stratum, we examined the terms V
and p,, 62&; for unusual patterns, e.g., extreme md1v1dual
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Figure 1. Plotof V(V,,)* against V,,, for HAE2
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Figure 2. Plot of V(V,,,)" against V,,, for log (blood lead)
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Figure 3. Plot of ‘7(‘7%)"“ against th for blood lcad

values or extreme elemcnt—lcvcl weights. Here, one of the
two associated p,; 62," values was approximately equal to
zero and the other was the largest of all the PSU-level
terms pm 62,,, In addition, the stratum in question had the
largest V, value. However, this stratum did not display
outlying values of V(V,,)* and V, for other related
variables, e.g., log (blood lead). Thus, t.he unusuval pattern
observed for blood lead may be attributable to a few very
high observed values for the blood lead variable, rather
than to the sample design or weighting as such. Within this
context, note that at the population level in the U.S., lead
measurements tend to have a roughly lognormal
distribution, and high lead measurements show some
tendency to be clustered together due to environmental
factors.

5.3 Between-PSU Vaf-iance Estimates and the
Variance Ratio R,

Table 5 presents the estimates V, and R, and
associated standard errors, for the twelve NHANES III
variables. Of special interest are the columns labeled
V(V,) ' W(V,), the proportion of the variance estimate
V(V ) that is almbutable to the within-PSU vanance term;
and V(va) 1VWR,;WV(VW) the corresponding proportion
for Ryy. Relatively large values for these proportions
1ndlcate that V(V ) makes a substantial contribution to
V(v ) and V(Rw) for the vanablcs in quest:mn

Notc that the proportion V(va) ‘V R: V( ) is
greater than or equal to 0.3 for blood lead, BPlKl (systolic
blood pressure) and BP1KS (diastolic blood pressure). For
blood lead and BP1K1, the large proportions arise primarily
because of the relatively large value of V(V,). For BP1K5,
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N . Table5
Estimates of V; and R, for Twelve NHANES I Variables
with Associated Standard Errors and Relative
Within-PSU Contributions

~

Variable name Vy se(‘l?a) 17'(\7'8)" \7(\?“.)
HAE2 0.0000126 0.0000188 0.020
HAE? 0.0000532 0.0000445 0.030
HADI1 -0.00000208  0.00000246 0.186
HAR3 0.0000825 0.0000703 0.047

BMPHT 0.0193 0.0t14 0.027
BMPWT 0.0174 0.0400 0.096

HDRESULT 0.0887 0.0744 0.010

TCRESULT 0.270 0.253 0.031
LEAD 0.00269 0.00188 0.168

log(LEAD) 0.000468 0.000205 0.012
BP1K1 1.823 0.997 0.081
BP1K5 -0.0351 0.0793 0.367

-~ A

R, se(Ryp) V(R 'R VV,)

HAE2 1.327 0.491 0.034
HAE? 1.648 0.556 0.077
HADI 0.783 0.247 0.123
HAR3 1.676 0.600 0.122
BMPHT 1.864 0.530 0.089
BMPWT 1.168 0.391 0.126
HDRESULT 2.193 1.020 0.047
TCRESULT 1.458 0.436 0.063
LEAD 1.694 0.555 0.367
log(LEAD) 3.221 1.025 0.112
BPIKi 2.699 1.142 0.391
BPIKS 0.861 0.300 0.300

V(V } is not as large on a relative scale, but the Eroporuon
V(RW-V) IVW R.,W V(Vw) is still large because V,, is not
small relative to V(Y) For all t.hree vanables the relatively
large values of V(RW) 1V iy V( w) _ indicate that it is
important to account for the variance V( w) when one con-
siders the stability of R For BP1KS, a similar comment
applies to the effect of V( &) on the stability of V

6. DISCUSSION

This paper has presented three main ideas. First, due to
the role that estimated within-PSU variances V% play in
survey design and analysis, it is important to account for
the sampling ermor cncountered in estimation of V.
Second, standard design-based estimation methods lead to
relatively simple estimators of the design variance of ‘?’%
In general, interpretation of these stability measures
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requires some caution. However, they can provide useful
diagnostics for the identification of variables for which the
instability of ‘I?’m is especially problematic, or has an
especially pronounced effect on the variance of related
quantities like V and R . Third, the application to the
U.S. Third Natmnal Hea]th and Nutrition Examination
Survey (NHANES III), and associated simulation work,
indicated the following.

(i) For different sets of variables, the observed stability
measures ‘fwo are consistent with substantially
different sets of stability conditions.

(ii} For some variables, the estimators I?% are
considerably less stable than one would anticipate
from a direct count of secondary sample units.

(iii) For some variables, the estimated variance of V,,
makes a substantial contribution to the estimated
variances of the estimated between-PSU variance V
and the variance ratio R
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Asymptotic Variance for Sequential Sampling Without
Replacement With Unequal Probabilities

YVES G. BERGER'

ABSTRACT

We propose & second-order inclusion probability approximation for the Chao plan (1982) to obtain an approximate variance
estimator for the Horvitz and Thompson estimator. We will then compare this variance with other approximations provided
for the randomized systematic sampling plan (Hartley and Rao 1962), the rejective sampling plan (H4jek 1964) and the
Rao-Sampford sampling plan (Rao 1965 and Sampford 1967). Our conclusion will be that these approximations are
equivalent if the first-order inclusion probabilities are small and if the size of the sample is large.

KEY WORDS: Sampling with replacement; Randomized systematic sampling plan; Rejective sampling plan; Rao-
Sampford sampling plan; Inclusion probabilities; Horvitz-Thompson; Yates-Grundy,

1. INTRODUCTION

Consider a finite population U, containing N units and a
subset U, of U, comprising the first units & of U, Let 1,
denote the first-order inclusion probabilities for a population
U,. We assume that they are proportional to an auxiliary
variable. These probabilities have two arguments: the size k
of the population and the serial number { of the unit within the
population. We assume that n,;, < 1 for all { and that all
k > n. This hypothesis has more chance of breaking down
when & is small, i.e., close to n. We can solve this problem by
assuming that the values of the auxiliary variable show little
dispersion for those units occurring at the beginning of the
population.

Let m,,;, denote the second-order inclusion probability of
units i and j for a population U,. These probabilities are
dependent on the sampling plan used.

We will use the Homtz—'lhompson estimator (1951) to
estimate the total ):, 1 Y; of a variable Y. This estimator is
given by

‘HT=E

ey TE(N:J')

(M

where Sy, is a sample of Uy. We assume that the size of Sy is
constant and equal to n.

Given that the size of the sample is fixed, a variance
estimator of (1) is given by the Yates-Grundy estimator
(1953),

2
V- 3D “Awip| Y - Y; 2)
iy ieSyi Towin | Twp Tvg
where
A(N;J'J) * Toviip) ~ Tovn Tovar &)

Let us consider the sample size sequence {n,, n,, ..., n,, ...}
and the population size sequence {N,, N,, ..., N,, ...}, where
n, and N, increase whenever v — «. To simplify the problem
we eliminate the index v.

The asymptotic approach used here is that of Hijek (1964):

N
d =,-z.; Tp[1 = Toypl==,

which means that n ~ = and (¥ - n) - =, given that
ds E)‘i] [1- n(N:)] =N-nandthat d< ¥, (N:j) = n.

In section 2, we introduce the Chao sampiing plan (1982)
as well as three results linked to first and second-order
inclusion probabilities. In section 3, we provide an approxi-
mation of %, In section 4, we propose an approximation
of the Yates-Grundy variance. Section 5 compares this
variance approximation with other approximations proposed
for the randomized systematic plan, the rejective plan and the
Rao-Sampford plan. Two numerical examples are provided in
section 6.

2. CHAO SAMPLING PLAN

This is a sampling plan without replacement with unequal
probabilities, of fixed size. This method is a generalization of
the method used by McLeod and Bellhouse (1983) for a
simple pian.

Let §¢ denote a sample of size n of U, with a set { my,: i e U, }
of first-order inclusion probabilities. The Chao plan provides
for a sample §,,, of size n of U,,, with a set {my,,,: i € Uy}
of first-order inclusion probabilities. The method entails
selecting the (« + 1)-th unit with the probability m,,,,). If
this unit is not selected, then we take S, ,, = §,; otherwise we
take §;,, = 8, v {k + I)\{j}, where j is a unit selected at
random within §,. The procedure starts from an initial sample
§, = U, comprising the first units n of the population.
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The Chao plan provides the advantage of being sequential.
In fact, it allows us to select a sample through a simple
sequential run of the population. The systematic plan is
another sequential plan that is often used. However, the latter
is inconvenient in that it induces zero second-order inclusion
probabilities. We can avoid this problem by randomizing the
systematic plan. In such a case, the population is ordered at
random before the sample is selected. This operation
eliminates in part the problem of zero second-order inclu-
sion probabilities. As will be seen at the end of this section,
the Chao plan offers the advantage of not having any zero
second-order inclusion probabilities. Randomization is there-
fore not needed for the latter.

The rejective plan and the Rao-Sampford plan are incon-
venient in that they are not sequential. In fact, the units are
selected at random with replacement within the population. If
a unit is selected twice, we are forced to select a new sample.
These two plans, although they are more easily understood,
are more difficult to implement than the Chao plan.

The following theorem, which is a direct application of the
theorem given by Chao (1982), provides a relation between
the first-order inclusion probability 1., of the i-th unit of U,
and the firsi-order inclusion probability 7., of the i-th unit
of U,,,

Theorem 1
. = (1~ Mgy R Ty fOr i<k 1
(k+130) Teke1k-1) , for i=k+1; @
where
1-m ..
__M, for k=ﬂ,
T
= {n+lm1)
R(k;l') B
- , for k>n+1, &)
n

The second-order inclusion probabilities can be calculated
iteratively using the following theorem:

Theorem 2 (Chao, 1982)
Tein = .
{ - T Re g+ R pI gy, e for i<j<k

Ton 1 =R 191 Tao1p , for i<j=k

Bethlehem and Schuerhoff (1984) give a sufficient and

necessary condition for the second-order inclusion proba-
bilities to be strictly positive for a population Uy

#{iristandmy,=1}+n-1,forfsuchthatn<?sk.

Since m,, < 1 for all i and ¢ such that i < ¢ < £, this
condition is always met. Therefore, within the framework of
this article, we will never have zero second-order inclusion
probabilities.

Moreover, the quantity Ay, , is always negative if we use
the Chao plan (Chao 1982, p. 656). Then the Yates-Grundy
variance offers the advantage of always being positive.

3. APPROXIMATION OF SECOND-ORDER
INCLUSION PROBABILITIES

The following theorem provides us with an asymptotic
expression for sccond-order inclusion probabilities for the
Chao plan.

Theorem 3
n-1 e s .
E(N;n’t(h':n——n_ , if jen+1;
Py
T~ Tnets * Fmotz ~ |
n+1;e n+l.f . . .
T Tewsi) , if jen+1; (6)

Tiaeti) Mae13)

where Py = Nip and i<j.

The proof of this theorem can be found in Appendix L

Note that this approximation has a different structure
depending on whether j > n + 1 or j < n + 1. To avoid this
problem, we will use a plausible condition for the auxiliary
variable so that these two structures will be equivalent. Let us
consider the hypothesis given in the introduction, that the
values of the auxiliary variable show little dispersion for the
first units # + 1 of the population. More precisely, we assume
that the auxiliary variable is constant for the first units n + 1,
ie.

n .
M, .=—— foricn-+1.
(n+1;) n+1
In this case,
Tty ¥ Tengp ~ 1 __n-1
o130 TMine 13 = M)

By using (6), we have the following approximation for
second-order inclusion probabilities

n-1

Tovigp = Tovn Tovp if i <j; D

R=Py

where

[Ty o B SERL,
Po ™y if jen+1. @®)

n+1;5)*

4, VARIANCE ESTIMATOR

Relation (7) leads to the following approximation for
Ap.ip
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i Pp-l
Bwin = Mo vp o+ T 1<) 9
P

(2), (7) and (9) provide an asymptotic expression for the
Yates-Grundy estimator.

y 2
Y (-pl Y. l ,-]_ (10)

Ve=
En - 1 e, ieSyris) “(N:) T

But this expression tends to underestimate the variance. In
fact, to establish relation (6), we use approximation (19} from
Appendix I. This approximation always implies that:

T <T T —-—-—n . (1 1)
(S8 R Rl () :
- py,

This can easily be verified if we observe that (20) is
obtained from (18) using approximation (19). Inequatity (11)
is therefore true for j > n + 1. Forj < n + 1, it is sufficient to
observe that (21) is also obtained from (19). Inequality (11)
implies that:

1-p
> [#)] . (12)
Tonif) n-1
given that A, < 0. From (2), (10) and (12), we have
effectively

_ A(N;i.ﬂ

V> 1{:

To overcome this problem of variance underestimation, we
plan to make an adjustment on (%). It is well known that:

N
, ,2 Twep = (0 Dy (13)
i=liinf
Approximation (7) does not abide by constraint (13). The
adjustment involves assuming that the p; are unknown and
selecting them so as to satisfy (13) for the second-order
probability approximation, i.e.:

i-1

n-
.t“(N:ﬂ“(NJ) E L
i=1 n- P(J) i=j+l

n-1 1

This constraint can be written as follows:
n-

SI: E )
Tt N —— =N~ P, . (14)
N, N,
i=1 (L) l'=j+] ()] n- p(' (¥}

Given that ): -1 Ty =M, constraint (14) is practically
verified if

Py = T (15)
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) 3
T = T 16
;':]'Eﬂ’l b n- ﬂ(N;I-) i=f+l Wi’ ( )

Relation (16) is plausible given that the difference between
the left and right sides of (16) has as its lower bound

N

1

n 2 T (Fany ~ Twp)»
f=f+l

and as its upper bound

1
n-1 .

E Ton Moy = Twip] -
i=j+l

These two bounds are close to zero when the T, show
little dispersion. This means that solution (15) is appropriate
when the Ty, are small. Furthermore, the greater the value of
j, the closer the two bounds are to zero. Therefore, solution
(15) verifies (13) all the more as j is large. This implies that
our approximation (9) is very good for the duplicate pairs (%, j)
(i < j) such that the unit j is located at the end of the
population. In fact, we want approximation (9) to be the best
for the duplicate pairs (i, j) whose presence in the sample is
highly probable (i.e., for the pairs (i, j) (i <) for which m,
is the largest). It is therefore preferable to place the units
having high first-order inclusion probabilities at the end of the
population.

If we choose to have py, = T, , we have p, smaller than
(8). This leads to a larger variancc approximation. This
solution is all the more acceptable as it corresponds to the
result of the simple plan without replacement. In fact, if we
replace within (7)., T  and py, by n/N, we obtain

-1 e

nw’wﬁ% , if i»n+1.
This expression corresponds, quite clearly, to the result of the
simple plan without replacement,

In conclusion, we approximate A ,; through (9) with
P = Tovs- We assume that the population is ordered in such
a way that the units having small 7, are located at the
beginning of the population and that the units having large
Ty are located at the end of the population. We alse assume
that the ., do not show too much dispersion for the first
units » + 1 of the population.

5. COMPARISON WITH OTHER PLANS

Instead of comparing the second-order inclusion proba-
bilities, we will compare the quantities - Ay, /Ty 5 Which
are of some use in calculating the Yates-Grundy variance. We
will examine what these quantities provide for the Chao plan,
the randomized systematic plan (Hartley and Rao 1962), the
rejective plan (Héjek 1964) and the Rao-Sampford plan (Rao
1965, and Sampford 1967).
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Theorem 4
-,
—h s For the Chao plan;
n-1
- A(N;EJ) _ 1-% )~ v for the rgndomized
= 1 s systematic plan;
vy n
all-my J11-m,. 5] for the rejective plan and

d(n-1) + the Rao-Sampford plan.

The proof of this theorem can be found in Appendix II.

It is important to note that the proposed approximation for
the randomized systematic plan comes from Deville’s
approximation (p. 21) and not from the famous Hartley-Rao
approximation (1962). We were not able to use the Hartley-
Rao formula because the latter is based on the asymptotic
hypothesis, n fixed and N - =, which is different from that
adopted in this paper.

We observe that if the my,, are small,-A,, /T, ; is
equivalent for the Chao plan and for the systernatic plan.
However, we observe that -A; /Ty, » is always smaller in
the sysiematic case than it is in the Chao case. This is
certainly due to the fact that the approximation for the
systematic plan underestimates - Ay, /Ty, 5. This can be
confirmed by replacing my, and Ty, by n/N. We then have

By . N-2n
Nin-1)’

vy

for the randomized systematic plan. This is equivalent to a
simple plan, thus

N-=n
Nan-1)

~Bewin -

Ty

We intend to adjust the approximation of - A, »/my., , for
the systematic plan by multiplying it by

N-n 1-f
N-2n

—
{

2

<<

where f = n/N is the sampling rate.

The approximation of -A; /Ty, , for the Chao plan is
also of the same magnitude as that of the rejective plan. In
fact, if the 7, are small, we have the approximation

n[l- w1 . n{l - i)
N
(1~ 7l El v
pe

=1

Therefore, the Yates-Grundy estimator is approximately the
same whether we use the Chao plan, the randomized sys-
tematic plan, the rejective plan or the Rao-Sampford plan, for
large n and small =y,

6. NUMERICAL EXAMPLES

The two following examples correspond to two extreme
cases. In the first example, the ., show little dispersion; in
the second, they show much more dispersion. Let us consider
a small sample of size 20. The population size is 50 so that the
Ty are not too small. We have willingly opted for a bad
situation in order to show that even with a sample of size 20
and a small population, the asymptotic results nevertheless
represent a good approximation.

Example 1

Let us consider the first-order inclusion probabilities
represented in Figure 1.

1+
09T
0.8+
0.7 1
0.8+

0.5+
0.4
0.3+

.......................
[+ J TR TR SRR SRR RS S e s e e R S e

Figure 1. First-order inclusion probabilities in the case of
Example 1

Figure 2 shows, on the Y axis, the true values of
-Ap.i T for the Chao plan and, on the X axis, the
approximations, We have also represented the straight line
where the approximations are equal to the true values. The
approximations are all the better as the points are close to the
straight line.

0.045 = L ]

0.04 +

0.035 < ‘.
Q.03 +

0.025 L

0.02 L } i

0.02 0.025 0.03 0.035 0.04

Figure 2. Approximations and true values of - Ay, /Tt 5, in the
case of Example 1

‘We have a mean error of -0.000569 with a standard devia-
tion of 0.0015996. This is very small in relation to the order
of magnitude of the approximations. The centre of gravity of
the scatter plot is located in (0.0313; 0.0318). It might seem
surprising that there are less points at the left of the centre of
gravity than at the right. This is simply due to the fact that
most of the points at the left of the centre of gravity overlap.
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We observe that the pairs (4, j) with i <j such that 7, is
large comrespond to points located on the left. They are the
pairs showing the best approximation. Moreover, there is a
high probability that these pairs are located within the sample
given that m, is large. Therefore, our approximate variance
(10) is definitely acceptable.

Example 2

The first-order inclusion probabilities are given in Figure
3. Here we notice that these probabilities are more dispersed
than in Example 1. Figure 4 provides the true values as well
as the approximations of - Ay, /T 5 -

1
08+
08+
0.7 ¢+
06 1
056+
0.4 ¢
0.3 ¢
0.2+
0.1 4

L I e LSS B I st B i o 5. B

FeRe e iR 85359 9%

49

Figure 3. First-order inclusion probabilities in the case of
Exarnple 2

0.08 — L

007 -+ ® ®

0.08 <+
0.08 4
0.04 <
0.03 4
0.02 +
001 4

Fl J
L] L]

° { $ .
o 0.01 0.02 0.03 0.04 0.05

Figure 4. Approximations and true values of - Ay, 5Ty 5 in the
case of Example 2

We have a mean error of --0.006999 with a standard
deviation of 0.006438. The centre of gravity of the scatter plot
is located in (0.02957; 0.036606).

We reach the same conclusion as in Example 1. The
second example leads to worse approximations. This is
simply due to the high first-order inclusion probabilities.

7. CONCLUSION

The Chao plan provides a number of advantages: (i) it is
sequential; (ii) the second-order inclusion probabilities are
positive; and (iii) the Yates-Grundy variance is always
positive, On the other hand, the second-order inclusion
probabilities are difficult to calculate. That is why we propose
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to approximate them. We have observed that this approxi-
mation is better when the beginning of the population consists
of units having small x,.,, and the end of the population
consists of units having large 7. We have compared our
approximation with other approximations provided for the
randomized systematic plan, the rejective plan and the Rao-
Sampford plan. We have concluded that these approximations
are equivalent if the first-order inclusion probabilities are
small and if the size of the sample is large. The two numerical
examples which close this paper confirm the sound results of
our approximation.

APPENDIX I
Proof of Theorem 3

Before proving this theorem, we will demnonstrate the
following two lemmas.

Lemmal
. 1
T =P H 1- “(v;o‘;]‘
t=a,
where
. [ Np i i>n+l;
Py~ PR )
T f Fsn+ 1]
. i+l if i>»n+1;
a; =
fola+2 if icn+l a7
Lemma 2
k
. 2],
Tain =90 L1 |1~ Ty ;}'
t=a;
where i <,
1) ., . _
) “(;-1;0"03)[1 - “,;] if j>n+l;
qpn~

ety ¥ Tnetif) = 1 if jsn+];

and a; is defined by (17).

Now, with these two lemmas, we can demonstrate
Theorem 3.

Proof of Theorem 3
Case 1: Ifj> n+ 1, using Lemma 2, we have

N

1
Tovig = -1 “Uu)(l - ;] H
{=j+1

2
1- ﬂ“u,) ;].
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On the basis of Lemma 1, this last expression becomes

o 1
™NiL]) = P ’“u;n(l } ;) h

f:a;

1 2
I- Ty _] H [1 ) ;]

n g=j+l
By multiplying this last expression by

1- Ty

1= Ty 1= Ty

= 2])—
RIS E NN

and by regrouping certain terms, we obtain

n-1 ﬁ

T o =T . P
Wi, ) Gdra|
= Wi t=a;

2

1-n =

1 N @a ,
[1 "‘(e;n‘,;] H - 1|
et [y _ oy =
(a:9) n

On the basis of Lemma 1, this last expression becomes

2
n-1 N l_n(m);;
Tavin ™ [ e T H Tl 18
Gid) GEALIN I I Mgy =
“n
If n is sufficiently large
-1 2
Sy | 2|[, . 1],
17 1":(m); T‘(c-,c)"'i' ;
1-=n,. —
0 n
2
<1+ Ty _ 214y _ 2N |
n n nz
a1 en (19)
n
Then (18) becomes,
N
n-1 1
Teviny = —— "vn T [ P )1
N [n _ n(.r':.i) W) GD cgl (Y n]
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Finally, on the basis of Lemma 1, this last expression can be
written:

T = T T
i~ T Tavp T -
n nU:ﬁ

Case 2: If j < n+ 1, Lemma 2 provides

N
Tvip = [Minorip * Tiperp = 1 aH

=n+2

1-= 2
@0,

in other words

N 11X
Tovip = H [1 " T —] H

t=n+2 n g=n+2

1- T

(i * Tnergp ~ 1
1

EEE RS

" Mg

By using approximation (19), we obtain

N

] 2
1-x,, —
2 (M)"”

n

+ T -1
{n+1:) (n+1;n
Tn-1:0 Tin1: .

n(n+l;l') n(u*l;j]

On the basis of Lemma 1, we obtain finally

T T = 1

. (21)
Tty Tne1iy

Ty = Tovs ovp

QED.

APPENDIX II
Proof of Theorem 4
* For the Chao plan, it is sufficient to use (6), (9) and (15).

* For the randomized systematic plan, it is sufficient to use
the approximation of the %, , given by Deville (p. 21)

n-1

Tovn = Ton Mo 5 (22)

Ty ~ T

This expression is obtained from the hypothesis

T
(N3
Ma‘xlsisﬁ{ n }"0'

This last hypothesis is verified since n ~ «,
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* For the rejective plan, using Hajek's result (1964, p. 1508),
we have

"By - W] [1 - Ty )
T@ip d-[1- Tl [1 - Tiw:p)

(23)

for d - «=. We note that (23) remains valid for the Rao-
Sampford plan (see Hijek 1981, Theorem 8.2, p. 82). Using
the approximation (H4jek 1964, p. 1521),

-1 n
td= = mp] (1= Tl = dn-1)
we obtain the result of the theorem.
QE.D.
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Applications of Spatial Smoothing to Survey Data

ANN COWLING, RAY CHAMBERS, RAY LINDSAY and BHAMATHY PARAMESWARAN!

ABSTRACT

In this paper we present two applications of spatial smoathing using data coliected in a large scale economic survey of
Australian farms: one a small area and the other a large area application. In the small area application, we describe how the
sample weights can be spatially smoothed in order to improve small area estimates. In the large area application, we give
a method for spatially smoothing and then mapping the survey data. The standard method of weighting in the survey is a
variant of linear regression weighting. For the small area application, this method is modified by introducing a constraint
on the spatial variability of the weights. Results from a small scale empirical study indicate that this decreases the variance
of the small area estimators as expected, but at the cost of an increase in their bias. In the large area application, we describe
the nonparametric regression method used to spatially smooth the survey data as well as techniques for mapping this
smoothed data using a Geographic Information System (GIS) package. We also present the results of a simulation study
conducted to determine the most appropriate method and level of smoothing for use in the maps.

KEY WORDS: Kernel estimation; Mapping survey data; Small area estimation; Survey weighting.

1. INTRODUCTION

The Australian Bureau of Agricultural and Resource
Economics (ABARE) is the applied economic research
organisation attached to the Department of Primary Industries
and Energy. Amongst its information gathering activities,
ABARE conducts annual surveys of selected Australian
agricultural industries which provide a broad range of
information on the economic and physical characteristics of
farm business units.

The largest survey is the Australian Agricultural and
Grazing Industries Survey (AAGIS), which covers farm
cstablishments with an estimated value of agricuttural opera-
tions (EVAO) of $A22,500 or more in the last agricultural
census that are classified to one of the broadacre industries —
that is, cereal crop production, beef cattle production, and
sheep and wool production. For the last two years, around
1650 farms have been included in the AAGIS sample, which
is stratified by geographic area, industry, and EVAO. The
sample farms are located throughout Australia with a
non-uniform density. The latitude and longitude of the sample
farms (defined in terms of the location of the farm “gate™) is
recorded as a regular part of the collection. This knowledge
of the location of the surveyed farms enables the spatial
smoothing techniques described in this paper to be used.

Traditionally, AAGIS estimates have been presented only
as tables of numbers showing averages for all Australia, each
state, and industries within states. However, the concern of
rural industry and government about the combined impact of
drought in some areas of Australia and the decline in certain
commodity prices has highlighted the need for timely and
detailed information on regional trends in farm performance.

In particular, there has been a perceived need for information
which portrays the spatial distribution of farm performance,
reflecting actual variability in climate and production across
Australia.

A highly effective way of presenting information on a
spatial basis is to map the regional variation in economic
performance of the surveyed farms. We use a nonparametric
regression method to spatially smooth the farm level survey
data, which is then presented in the form of a map. Recent
improvement in computing power and the availability of high
quality and affordable GIS packages have made this form of
presentation a practical alternative to the traditional tabular
method of presenting survey results.

Maps have been found to be a successful form of
exposition for a number of reasons. First, estimates presented
in a map are easily interpreted; when presented with too many
tables it is very easy for a client to overlook local variations
or be “swamped” by numbers. Next, maps make it easy for a
client to relate the geographic variation in one variable with
that of another. Finally, a colour map has great visual impact.

This demand for information on a spatial basis has resulted
in an increased emphasis on small area estimates. One method
of small area estimation (which originated naturally fromn
smoothing survey data for presentation in maps) is to spatially
smooth the sample weights. This reduces the variability of the
small area estimates.

In Section 2, we examinc a method of integrating
geographical location into ABARE's survey weighting
methods in order to make our small area estimates less
variable. It is applied 10 sub-regional estimation within two
Agricultural Regions in Section 3. In Section 4, we describe
how kemel regression techniques can be used to produce

! Ann Cowling, CSIRO Division of Fisheries, GPO Box 1538, Hobart TAS 7001, Australia and Australian Bureaw of Agricultural and Rescurce Economics;
Ray Chambers, Department of Social Statistics, University of Southampton, Highfield, Southampton 5017 1BJ, United Kingdom; Ray Lindsay and Bhamathy
Parameswaran, Australian Bureau of Agricultural and Resource Economics, GPO Box 1563, Canberra ACT 2601, Australia.
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maps which give a good indication of the local geographic
variation of a surveyed variable. Two methods of mapping the
smoothed data are discussed, both of which use ARC/INFO,
a GIS software package. The results of a simulation study
comparing various kernel regression methodologies for use in
ABARE’s maps are summarised in the Appendix.

2. SMALL AREA ESTIMATION BY
SPATIALLY SMOOTHING
SAMPLE WEIGHTS

The standard method used to compute sample weights at
ABARE is described in Bardsley and Chambers (1984). It
rests on the assumption that at some appropriate level of
aggregation (say, Agricultural Region) the variable Y follows
a lincar model of the form

Y=XB+V 2.1

where ¥ is the N-vector of values of Y at this level of aggrega-
tion, X is a N x p matrix of values of a set of p benchmark
variables, [ is an unknown p-vector of regression coefficients
and V is a N-vector of errors satisfying E(V) = 0 and
var(V) = 6}, where 0 is an unknown scale parameter and
Qs a known N x N diagonal matrix having as its elements the
measure of size of each farm, EVAOQ, introduced in the
previous section.

Since this model is a multipurpose model, with the same
set of benchmark variables used for each survey variable, the
column dimension, p, of X is usually large. Typically, X
consists of between 3 and 7 variables related to the main
agricultural commodities produced by farms in the region
together with dummy variables indicating industry strata
within the region. Best linear unbiased estimation of the
population total of a survey variable on the basis of such an
overspecified model typically results in weights that are
highly variable and often negative.

As discussed in Bardsley and Chambers (1984), negative
weights are highly undesirable in a multi-purpose survey like
AAGIS, In particular, such weights can lead to nepative
estimates of intrinsically positive quantities. This problem has
been pointed out in the literature a number of times (see for
example, Deville and Sirndal 1992; Bankier, Rathwell and
Majkowski 1992; and Fuller, Loughin and Baker 1994). The
method used at ABARE to control for strictly positive sample
weights is based on the ridge-type modification to the best
linear unbiased weights suggested by Bardsley and Chambers
(1984},

Given a sample of size n from a particular region, the ridge
weighting approach determines the sample weight vector w
by minimising the mean squared error criterion

Q=A"BTCB +(w-1)Tw(w-1). 2.2)

Here B =T -x™w is a p-vector of benchmark biases,
corresponding to the differences between the (known)

population totals T of the p benchmark variables making up
X and the corresponding survey estimates x'w of these
totals, C isa p x p diagonal matrix of non-negative relative
“costs” associated with these biases, w is the sample
component of Q, x is the sample component of X, 1is a
n-vector of ones and A is a scaling constant which is chosen
by the survey analyst. The value of w minimising O is

w=1+02%A!+xTo) " (r-xT). (2.3)

The scale constant A is called the ridge parameter
associated with these weights. As A increases from zero, the
sample weights in w move away from their best linear
unbiased values under the model (2.1) (namely, their values
at A = 0) and become less and less variable. That is, as A
increases, the variances of the survey estimates based on
these weights decrease. On the other hand, as A increases,
these estimates become more biased under (2.1), so the
components of B move away from their zero values at A = 0
(where the sample weights define unbiased estimates under
(2.1)). These components become larger and larger (in
absolute terms) as A increases.

The survey analyst makes a tradeoff between these two
competing sources of “error”” by choosing the smallest value
of A such that the sample weights in w stabilise at strictly
positive values as close as possible to their best lingar
unbiased values under (2.1). This ensures that the components
of B are as small as possible subject to this stability
requirement. At ABARE, the value of A is chosen so that the
sample weights are at least unity.

Recent small area estimation research in ABARE has
focussed on a method of modifying this ridge weighting
procedure to create sample weights that are less spatially
variable. We achieve this by modifying the mean squared
error criterion @ in (2.2) to include a constraint on spatial
variability, while continuing to regard the elements of the
variable ¥ as being independent.

Let K be an n % n matrix reflecting Enclidean distance
between sample farms, such that K is symmetric and
non-negative, K, =1 for all i and K i 1 0 as the distance
between farm i and farm j increases. Put # = w - 1. The aim
is then to choose u so that when K is large, the difference
between u; and u, is small. That is, we seek to minimise a
quantity of the form

Y Y Kyu - u ) =2u®)KL-wKe (24)

€5 jes

where (#®), = (#,)’. An appropriate modification to the
mean squared error criterion (2.2) leads to minimisation of
Q" =A"'B'CB +u"wu + (u®)'K1 - u"Ku.
Minimising with respect to & leads to
u=nx(AC +xTq Y (T -x71)
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provided m! exists, where

n =diag(K1) - K + w. (2.5)
Clearly, then,

w=1+n"x(AC" +xT™x)" (T -x"1). (2.6)

It can be seen that the modificd mean squared error
criterion J* equally weights the spatial smoothness criterion
given in (2.4), and the term corresponding to the variance of
the prediction error of the sample estimates, u” wu. As the
scale of K was arbitrarily specified, the comparative
weighting of the two criteria must be modified by “scaling
up” the spatial matrix {diag(X1) - K} by a factor ¢in order
to make it comparable in size with the heteroscedasticity
matrix w, and by adding a parameter 2, 0 < o < 1, to the
expression for 1 in equation (2.5), so that

n=(1-a)@{diag(K1)-K}+aw.

These spatially smoothed sample weights can be derived
in a second way, providing deeper insight intc how they
should be interpreted. This follows from noting that

2
o) + E} kK, -k, . -K,
2
- K, o+, K, -K,,
n= m=2
2
-Knl _an on * E Km'mJ
m+n

can be expressed as 1 =8 R §, where S is a diagonal matrix
with § . = (of + Y...K,)  and R is a correlation matrix
with

1 if i=j

R, = “Kg{(03+szn)(of+zxjm)}-% if i=j.

mri m+j

Thus the spatially smoothed sample weights can alter-
natively be derived as ridge-type regression weights based on
the assumption that the variable ¥ follows a linear model of
the form (2.1), with V redefined as satisfying E(V) = 0,
var(¥,) =0} + ¥, K,,, and cov(¥,¥ ) = -K, for i »].
The usual ridge weighting procedure then leads directly to
(2.6) with m defined by (2.5). Note that under this implied
medel neighbouring farms are negatively correlated.

This second method of derivation shows clearly that the
introduction of spatial smoothness for the survey weights is
at odds with standard concepts of statistical efficiency as far
as estimation at the aggregate level is concerned. Since the
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spatial correlation between neighbouring farms will typically
be positive, efficient survey estimation at the aggregate level
will involve weighting based on (2.3) with w replaced by a
non-diagonal variance/covariance matrix reflecting this
positive spatial correlation. These are not the weights that
result when one imposes as spatial similarity constraint.
Consequently, one could expect that such “large area
efficient” weights would tend to be more dissimilar for
neighbouring farms than they would be for farms that are far
apart. That is, there is a price to pay in weighting — if less
variable aggregate level estimates are required, then this tends
to lead to more variable small area estimates. Conversely, if
(2.6) is adopted as the method of weighting because of its
desirable small area properties, then it can be expected that
aggregate level estimates obtained by summing these small
area estimates will be less efficient.

The spatially smooth sample weights (2.6) have been
implemented using

Kg-:CxP(‘d"z,“zj“); (2'7)

where |z, -z ;i is the distance between farm i and farm j and
d is a constant controlling the radius of circle around the i-th
farm within which spatial smoothing is applied. The smaller
the value of 4, the larger the radius of spatial smoothing. At
present, the “scaling up” constant ¢ is computed as the ratio
of the determinants of the X and w matrices, raised to the
power n%. An empirical evaluation of this method is
described in the following Section.

3. AN APPLICATION OF SPATIALLY
SMOOTHED SAMPLE
WEIGHTING

Initial results from an evaluation of the first method of
spatially smoothed ridge weighting described in the previous
section are set out in Tables 1 to 3. These results are for two
Agricultural Regions. The first, Region A, is in New South
Wales. In spatial terms, this region is relatively homogeneous,
being located in the southwestern comer of the state. The
principal agricultural activities are wheat and rice production
and wool and lamb production. The second, Region B, is in
Western Australia. This region is more spatially hetero-
geneous, ranging from established cropping and wool pro-
duction farms in the central west of the state to much larger
livestock and cropping farms on marginal farming land in the
south east of the state. The principal agricultural activities are
wheat and legumes production and wool production.

Six variations of the spatially smoothed ridge weights (2.6)
with K given by (2.7) were used in the evaluation, defined by
values of d = 0.05 (weak spatial effects) and d = (.005 (strong
spatial effects), and values of o = 0.9 {most emphasis on the
standard ridge weights), o = 0.5 (equal emphasis on standard
ridge weights and spatially smooth weights) and «=0.1 (most
emphasis on spatially smooth weights).
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Table 1
Values {(in relative percentage terms}) of the biases associated
with estimation of the benchmark variables corresponding to
the principal agricultural commodities produced in Region A
(sample size n = 101 farms) and Region B
(sample size n = 85 farms) using the standard ridge weights (2.3)
and the spatially smooth ridge weights (2.6)

‘Wheat Sheep Rice
Region A
Standard ridge weights -0.50 50 13.0
Spatially smoothed ridge weights
d=0.05 x=09 -0.50 4.6 11.9
«=035 -3.46 4.7 124
a=0.1 0.07 6.2 17.4
d =0.005 =09 -0.40 4.9 127
a=05 0.80 39 28.0
a=0.1 9.20 25.0 60.0
Wheat Sheep Legumes
Region B
Standard ridge weights 043 -125 1.49
Spatially smoothed ridge weights
d=0.05 a=09 042 -1.16 1.37
=05 0.44 -1.14 1.40
e=01 0.69 -1.25 2.53
a=0.005 =09 0.50 -1.20 1.68
=05 1.51 1.14 973
=01 26.57 15.61 45.46

Table 1 shows the relative biases associated with esti-
mation of the population totals of the main commodity related
benchmarks for each region under these different weighting
systems, as well as the corresponding biases associated with
the standard ridge weights. The increase in these biases as the
amount of spatial smoothing in the weights is increased is
evident. Since these production benchmarks are positively
correlated with most of the economic variables measured in
the survey, these benchmark biases can be expected to be
translated into a corresponding upward bias in survey
estimates based on these weights.

Figures 1 to 4 show the difference between the smoothed
weights and the standard ridge weights for the two “extreme”
combinations of ¢ and 4 in both regions changes as the size
{measured in terms of the logarithm of the estimated value of
agricultural operations, or log{(EVAQ)) of the sample farms
changes.

Observe that for relatively strong spatial smoothing
(Figures 1 and 3), the effect of smoothing is to increase the
weights of most of the larger sample farms, while dramat-
ically decreasing the weights of a small number of smaller
sample farms. Weak spatial smoothing (Figures 2 and 4)
changes the weights much less, and there is little relationship
between the size of the farm and the direction of weight
change. Consequently, an upward shift in survey estimates
for these regions could be expected with the introduction of
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Figure 1. Difference between smoothed weight with & = 0.1 and
d =1.005 and standard ridge weight, Region A
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Figure 4. Difference between smoothed weight with ¢ = 0.9 and
d = 0.05 and standard ridge weight, Region B

strongly spatially smoothed sample weights. Given the
increased positive biases indicated in Table 1, this upward
shift would be expected to be essentially due to the intro-
duction of a positive bias in these estimates.

Is this increased bias compensated for by a lower standard
error? To eyaluate this question, survey estimates and
estimated standard errors were computed for a key financial
variable, total cash costs. These estimates are set out in
Table 2 (Region A) and Table 3 (Region B). Estimates are
provided both for each region and for small areas within each
region, denoted SR-i in the table, with the index i ranging
between 1 and 6 for Region A and between 1 and 7 for
Region B.

Table 2
Estimates (with corresponding estimated standard errors in
parentheses) of the average value of ¥ = total cash costs
in subregions SR—1 to SR—6, making up Region A
(sample size n = 10] farms), using the standard ridge
weights (2.3) and the spatially smooth ridge weights (2.6)

Spatially smoothed ridge weights
Standard
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Table 3
Estimates (with corresponding estimated standard errors in
parentheses) of the average value of ¥ = total cash costs
in subregions SR-1 to SR-7, making up Region B
(sample size n = 85 farms), using the standard ridge
weights (2.3) and the spatially smooth ridge weights (2.6)

Standard
weights

Spatially smoothed weights

d=0.05

d=0.005

a=0%

a=035

a=0.1

a=09

a=05

x=0.1

SR-1

SR-2

SR-3

5R-4

SR-5

SR-6

SR-7

Region B

183,194
(64,851)

261,952
(70,989)

113,499
(30,304)

242,220
(26,160)

134,524
(32,420)

176,540
(60,377)

205,287
(44,137)

176,283
(19,039

183,262
(64,325)

261,487
(70,601)

113,441
(30,28%)

242,182
(25,671}

134,970
(32,528)

176,977
(60,703)

205,644
(44,008)

176,342
(18,869)

183,528
(64,051)

251,119
(70,502)

113,742
(30,255)

242,208
(26,159)

135,700
{32,432)

175,708
(59,214)

205,433
(43.963)

176,397
(18,874)

186,151
(64,967

261,182
{713,131)

116,847
(30,731)

242,221
(26,160)

139,122
(30,607)

163,241
(46,361)

202,039
(44,044}

176,822
{18.213)

184,287
(64,132)

261,938
(70,723)

114,631
(30,377

242,163
(26,154)

134,734
(32,202)

172,076
(55,925)

204,519
(43972)

176,294
(18,51

195,138
(69,859)

276912
(79,751)

125,525
(31,507

242,439
(24,244)

131,448
(27,.867)

148,434
(36,218)

194,998
(45434)

179,998
(13,540)

257,652
(59,.518)

331,805
(62.356)

157,007
(32,500)

250,871
(24,836)

148,629
(27,942)

171,856
(39,527)

219,959
(51,690)

216,445
(17,099)

weights

d=0.05

d=0.005

a=09

a=05

a=0.1

a=09

e=0.5

a=0.1

SR-1

SR-2

SR-3

SR-4

SR-5

SR-6

Region A

100,618
(24,551)

115,320
(26,754)

167,524
(28,479)

182,940
(106,471)

132,050
(25,089)

132,493
(44,385)

134,114
(15.691)

100,453
(24,511}

115,417
(26,661}

167,453
(28,467}

180,317
(105,485}

132,083
(25,096)

132,184
(44,546)

133,807
(15.655)

101,297
(23,906)

116,002
(26,448)

167,486
{(28,473)

177.838
(101,012)

132,389
(25,154)

133,204
(44,757)

134,141
(15,426)

107,263
(20,487)

120,362
(25,637)
168,257
(28,426)
163,556
(74,418)

134,786
(25.475)

141,623
(46,736)

137,080
(13.845)

102,059
(23,474)

116,917
(26,423)

167,709
(28,175)

176,257
97,823y

132,490
(25,173

133,763
(45,078)

134,506
(15,199

112,635
(18,923)

126,165
(25,950)

170,781
(26,471)

174,077
(69,109)

136,369
(24,410)

147,652
(46,953)

142,040
(13,4%4)

135419
(18,011)

153,707
(27,915)

187,683
(24,211)

192,296
(43,651)

151,046
(23,110)

192,781
(53,105)

166,432
(12.815)

It is seen that, in general, the answer to the question posed
above is yes. The estimated standard errors of the survey
estimates decrease as the degree of spatial smoothness of the
weights increases (from left to right across the tables).
However, as expected, the estimates themselves also increase
in size, becoming more and more positively biased. Overall,
the gain due to reduced standard error seems to cancel out the
increase in bias, except for the heaviest spatial smoothing
(e = 0.1, d = 0.005). In this latter case the increase in bias
outweighs the reduction in standard error. The choice « = 0.1
and 4 = 0.05 seems a good compromise, leading to reasonable
(but not spectacular) bias-variance tradeoffs in Region A, and
little change in the estimates in Region B,

4. ESTIMATION AND MAPPING
OF LOCAL AVERAGES

A survey data map is a two-dimensional surface which
estimates the spatial mean function of the survey variable in
the population. In practice, such a map is obtained by
applying a nonparametric regression technique to the
weighted unit record data obtained in the survey,

At ABARE, we use kernel regression (a nonparametric
technique) to produce maps which show the spatial varia-
tion of the estimated spatial mean function surfaces of key
survey variables. These surfaces are obtained by replacing
the observed sample values of these variables by locally
weighted averages. In addition, for each local averagg map, a
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corresponding map is produced which shows an estimate of
the local variability of the variable of interest. We give below
a brief outline of the technique: for clarity of exposition we
deal only with the univariate case. See Ruppert and Wand
(1994), Wand and Jones (1995, p140), and the references
therein, for discussion of the multivariate case.

We assume that the finite population is generated as an iid
sample {(Z,¥,),i=1,.., N} froma super population where
Y, is the value of a response variable Y observed at location Z,.
We suppose that the observations follow the model

Y.=m(Z) + ¢, i=1,..N

where m(z) = E(Y|Z = z) is the conditional mean of Y given
Z, and the €, are independent random variables with zero
mean and variance 02(z) . Suppose that the error terms €; are
independent of the process by which the sample is selected,
so that the sample values {(Z,Y),i=1,..,n}] follow the
same model, and write f for the density of Z,, ..., Z, .

A natural choice for the local average at any point z is then
the mean of the values of the response variable for those
observations with locations close to z, since observations
from points far away will tend to have very different mean
values. The local average is defined as a weighted mean

m@=n"'Y WY,
i=]

where the weights {W,(z)} depend on the locations {Z;} of
the sample observations, and #i(z) estimates m(z).

The weights are constructed using a function X known
as the kernel, which is continuous, bounded, symmetric
and integrates to one. Various weight sequences have
been proposed: the traditional Nadaraya-Watson weights
(Nadaraya 1964 and Watson 1964) are

W,.(2) =h"1<{(z—z,.)/h}/ ()Y Ki(z-Z)/h} |,
j=1

where A is a scale factor known as the bandwidth. The kernel
function K gives an observation close to z relatively more
influence on the local average at this location than it gives to
an observation further from z.

Where observations are sparse, a fixed-bandwidth window
may contain few points and the corresponding estimator may
therefore have a very high variance. This may be avoided
by using the k-nearest-neighbour method in which a different
bandwidth is used at each estimation point z. The band-

width at z is the distance to the k-th nearest neighbour of z, so-

that there are always exactly & points in the bandwidth
window. Let h, be the distance between z and its k-th
nearest neighbour. The k-nearest-neighbour Nadaraya-Watson
weights are

W, @ = by K{(z-Z)h,) /[(nhk)" Y. K{@z-Z)n}|.
i=

‘We show in Table 4 the asymptotic mean squared error
(MSE) properties of the usual (fixed-bandwidth) and
k-nearest-neighbour estimators as given in Hirdle (1990,
p. 46).

Table 4
Asymptotic bias and variance of Nadaraya-Watson estimators;
ce= | K{u)du, d, = [ W' K{u)du

Fixed-bandwidth k-nearest-neighbour
Bias p2lmtf s 2mf)0) ( k ) mtf 2 2m )
&) X n 873(x)
. 2 252
Variance :Tg)c . ﬂk(t) ex

Clearly, the bias of the estimated regression function can
be reduced by using a smaller bandwidth A (number of
nearest-neighbours k), but this leads to a noisy estimate #
with local detail masking global features of the curve (i has
high variance). If k(k) is large, /% is smoother but the global
features are dampened (i has high bias and low variance).
The bias, then, can only be reduced at the expense of variance
and vice versa, with the bandwidth h determining the ratio of
(squared) bias to variance.

In reality, the survey design and the spatial distribution of
a survey variable ¥ will not be independent, so simple local
averages for Y derived from the sample data will be
misleading as estimates of the local population means of this
variable. To overcome this problem the kernel weights are
multiplied by the survey weights to get the final smoothing
weights used for calculating the local average. This is
equivalent to estimating the local population mean m(z) of ¥
under the assumption that it is locally linear in the same
benchmark variables as those used to model the overall
population mean of ¥,

A wide array of alternative kernel smoothing procedures
have been discussed in the literature. As well as various
sequences of smoothing weights {W,}, there are different
types of bandwidths, and several automatic bandwidth selec-
tion methods. A simulation study was therefore conducted to
deterrnine the most appropriate kernel methodology for use in
ABARE’s maps. This is described in the Appendix.

Uncertainty about the estimate of the spatial mean derived
via kernel-based spatial smoothing can be represented by
mapping the local variability of the variable of interest. Areas
of high local variability correspond to areas where the map of
the mean function is less precise and vice versa for areas of
low local variability.

The usual method of determining confidence regions for
a kernel curve estimate is the bootstrap; see Hirdle (1990),
Hall (1992), and references therein. However, for com-
putational efficiency, we use the expectiles (Newey and
Powell 1987} of the spatial distribution of ¥ to describe this
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Key:

[] o data

less than -27000
B -27000 — -25000
Il 25000 — -24000
W -24000 — -21000
B greater than -21000

Figure 5. Polygon map of farm business profit in 1991-1992, all
broadacre farm ($)

Key:

[ no data

less than 29000
I 29000 — 32000
W 32000 — 42500
W 42500 — 46500
W greater than 46500

Figure 6. Polygon map of interexpectile range of farm business
profit in 1991-1992, all broadacre farms ($)

local variability. An expectile bears the same relationship to
the mean as the corresponding quantile does to the median. In
particular, the difference between the 75th and 25th expectiles
of a distribution is a measure of the spread of the distribution
in the same way as the interquartile range is a measure of this
spread. The smoothing program contains a module for non-
parametric M-quantile regression (Breckling and Chambers
1988) which is used to fit a smooth surface to the expectiles
of the Y-distribution at any location. The difference between
the smoothed 75th and 25th expectile surfaces (the smooth
expectile analogue of the interquartile range) is then mapped
to show areas of high and low variability in the data.

Not surprisingly, this smooth interexpectile range tends to
be highest in areas where the farms are sparsely located and
the farm-to-farm variability in Y is therefore highest. The
interexpectile range map corresponding to Figure 5 is shown
in Figure 6. Note that these smoothed interexpectile range
maps provide similar information to confidence bands at any
particular point on the map. However, they do not have the
same repeated sampling interpretation as confidence intervals,
and hence should be treated as guides to, rather than measures
of, the uncertainty associated with a particular map.
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For confidentiality reasons, care must be taken when
mapping the smoothed data for publication to ensure that the
locations of the surveyed farms are not revealed. Another
requirement is output quality compatible with desktop
publication packages. Two procedures for generating the final
maps that satisfy these requirements have been developed
using ARC/INFO.

In the first method, a Thiessen polygon is constructed
around each farm. The polygon defines the area closer to that
farm than to any other farm. The farm location is not in the
centre of its polygon, and the polygon shape does not
resemble the shape of the farm, so the polygons conceal the
locations of the survey farms, as shown in Figure 7. The
whole of each polygon is coloured according to the smoothed
value of Y at the farm location in that polygon. Usually ten
colours are used in each map and the estimated population
deciles of the smoothed data are used as boundaries for the
colour area. The maps shown in this paper are black-and-
white analogues of these colour maps.

Figure 7. Thiessen polygons constructed around selected ABARE
survey farms. Farm location is shown as a small square
within each polygon

In the second method, smoothed values on a dense
rectangular grid are used in place of smoothed values at the
farm locations, and a further minor interpolation of the data
is carried out in ARC/INFO. A continuous 3-dimensional
surface which passes through the smoothed values at the grid
points is built in two steps. As a first approximation, a faceted
surface of triangles obtained by Delauney triangulation is
constructed, and then a bivariate fifth degree polynomial is
fitted within each triangle using Akima’s algorithm (Akima
1978). The resulting continuous surface is then contoured
using the estimated population deciles. Figure 8 is an example.

In this second method of presentation, the locations of the
survey farms are not used in any way, thereby completely
concealing the location of each survey farm. It also gives
smooth contours, and the result is not as patchy as the
polygon based map. Moreover, it is preferred by ABARE’s
graphics staff because it reduces the number of areas to be
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Key:

[] mo data

less than -27000
B -27000 — -25000
W -25000 — -24000
W -24000 — -21000
[ oreater than -21000

Figure 8. Contour map of farm business profit in 1991-1992, all
broadacre farms ($)

separately coloured and has lower storage requirements,
enabling the maps to be more readily manipulated in desktop
publishing packages. Its disadvantage is that it uses more
computing time in the ARC/INFO stage.

Since the above procedures interpolate across all of
Australia, including areas where there is no agricultural
activity, the final stage of the map production in ARC/INFO
is the “blanking out” of those areas of Australia where there
are few or no farms involved in the particular broadacre
industry represented by the map. As Figure 9 shows, different
areas are blanked out for different industries.

Key:

[[] no data

[ tess than -180
-180 - 0
Bo-135

W 135 - 250

M greater than 250

Figure9. Polygon map showing expected change in wool
production, 1991-92 to 1992-93, farms with 100 or more
sheep in 1991-92 (kg)

5. DISCUSSION

In this paper we have demonstrated that when survey data
has a spatial dimension, as in the case of the AAGIS, spatial
smoothness concepts may be useful to the analyst. The
concept can be used to modify survey weights to ensure less
variable small area survey estimates. It may also be used to
smooth the data along spatial dimensions before mapping the
spatial mean function.

Because we describe mapping in this paper, we have only
considered smoothing along spatial dimensions. However, it
is clearly possible to use the same techniques to smooth along
other dimensions. Thus, if there is reason to expect the
presence of strong serial correlation when the underlying
population is ordered according to some variable, then one
can consider applying the methods described in this paper to
mapping the “change” in the survey variables relative to the
change in this variable. In doing so, it should be noted that
such “maps” are nothing more than nonparametric estimates
of the conditional means of the survey variables given this
“ordering” or “smoothing” variable. The analyst should, how-
ever, remember the “curse of dimensionality”: the effective
sample size drops sharply with each additional smoothing
variable used in these nonparametric techniques.

Finally, in mapping the survey data, we have used kernel-
based estimation techniques. However, spline smoothing, or
even parametric methods could also be used. We regard the
choice of smoothing technology as somewhat subjective and
purpose specific, as there are no definitive objective reasons
for preferring one method over another.
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APPENDIX

In the last few years a number of optimality properties
have been established for the locally-linear kernel weights
(see for example Wand and Jones (1995) and references
therein). We therefore compared Nadaraya-Watson (NW) and
locally-linear (LL) weight sequences using fixed (FBW) and
k-nearest-neighbour (NN) bandwidths with each weight
sequence. For each of these combinations, we selected the
bandwidth using least-squares cross-validation (CV), and an
ad hoc method (detailed in the last paragraph of this section)
aimed at reducing the speckledness of a map (SF).

Two criteria were used to evaluate the performance of each
methodology. The first, MSE, is the obvious statistical
criterion for assessing a biased estimator. The second
criterion is more ABARE specific. As estimates are produced
both in tables (by State) and in maps, the impression of the
state average given by the map should be close to the
tabulated value. We therefore used a weighted sum of the
squared differences between the state averages of the raw and
smoothed survey data (SB?). This measure was also calculated
at regional rather than state level (RB?; there are between one
and nine regions in each state).

Data were generated at the survey farm locations using
three smooth functions with varying degrees of smoothness
(measured by [m") and normal mixture errors. For example,
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z, - 132.5} [ 2z, +27.5
CcOs
2.25 1.75

m,(2) =6.25 % 10* x cos

where z, and z, are the longitude and latitude of the point z.
The functions m (z) were scaled to have the same range as the
smoothed values of a key survey variable, and the errors were
scaled to have the same range as the residuals of the same
variable after smoothing. Large variances were generated at
locations with high residuals, and small variances at locations
with low residuals. The simulation results based on the
smooth function are given in Table 5.

Using MSE as the criterion for assessing methodology, the
results were not consistent for the three functions m(z).
However, when either RB? or SB? was used as the perfor-
mance measure, the LL estimator with k-nearest-neighbour
bandwidth selected using SF outperformed the other methods
by at least ten percent for each function mg(z), and is
therefore the currently preferred methodology for producing
ABARE's maps.

Table 5
Comparison of locally-linear (LL) and Nadaraya-Watson (NW)
weight sequences, using fixed (FBW) and k-nearest-neighbour (NN)
bandwidths selected by least-squares cross-validation (CV)

and the criterion detailed below (SF). The results were obtained

from 400 independent samples with mean function

and normal mixture errors. The MSE values were

calculated using the average over the finite population

of iy - M)

MSE x 10°7 RB x 107 SB*x 1077

Ccv SF cv SF Ccv SF

LL FBW 39.64 9393 444 1.67 1.33 039
NN 20.50 22.83 222 135 037 014

NW FBW 41.91 5278 329  1.77 034 017
NN 21,77 2222 303 233 062 041

The bandwidth selection method aimed at reducing the
speckledness of a map (SF) is a measure of the smoothness of
the map: it measures how similar the smoothed value is at any
farm to that of its neighbours. Let p(i) be the survey estimate
of the percentile of the smoothed variable at the i-th farm. Let
S; be the set of indices of the six farms closest to the i-th
farm, In this method, the value of

SF(y = (6m)" Y |p( -p(R)| -

r
keS;
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is calculated. It is scale-free, and decreases monotonically as
the bandwidth decreases. The chosen bandwidth is the
smallest bandwidth with a sufficiently small (< €) rate of
decrease of SF. The value of € was chosen subjectively
following detailed examination of maps of five key variables
for five values of €.
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Using Data on Interruptions in Telephone Service
as Coverage Adjustments

J. MICHAEL BRICK, JOSEPH WAKSBERG and SCOTT KEETER'

ABSTRACT

Telephone surveys in the U.S. are subject to coverage bias because about 6 percent of all households do not have a
telephone at any particular point in time. The bias resulting from this undercoverage can be important since those whao do
not have a telephone are generally poorer and have other characteristics that differ from the telephone population.
Poststratification and the other usual methods of adjustment often do not fully compensate for this bias. This research
examines a procedure for adjusting the survey estimates based on the observation that some households have a telephone
for only part of the year, often due to economic circumstances. By collecting data on interruptions in telephone service in
the past year, statistical adjustments of the estimates can be made which may reduce the bias in the estimates but which at
the same time increase variances because of greater variability in weights. This paper considers a method of adjustment
using data collected from a national telephone survey. Estimates of the reductions in bias and the effect on the mean square
error of the estimates are computed for a variety of statistics. The results show that when the estimates from the survey are
highly related to economic conditions the telephone interruption adjustment procedure can improve the mean square error
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of the estimates.

KEY WORDS: Coverage; Bias; Weighting adjustment; Telephone sampling; RDD surveys.

1. INTRODUCTION

Telephone surveys provide a relatively economical method
of data collection compared with face-to-face interviewing.
However, telephone surveys in the U.S, arc subject to an
important source of bias that does not affect household
surveys conducted with face-to-face interviewing: at present
only 94 percent of households nationally have telephone
service at any given time. Moreover, for some populations
such as households with young children, coverage rates are
even lower.

Weighting that includes poststratification based on demo-
graphic variables known 1o be associated with telephone
coverage is effective in mitigating some of the consequences
of coverage bias in telephone surveys. Postsurvey weighting
is also generally used to compensate for nonresponse and
other biases. But even when effective, weighting to known
demographic totals only partially solves the problem of cover-
age bias, undercompensating for some variables (Massey and
Botman 1988) and overcompensating for others (Brick,
Burke, and West 1992).

This article describes a study of an alternative method for
adjusting telephone survey data to compensate for coverage
bias. The method, suggested by Keeter (1995), is based on the
observation that telephone subscription is a dynamic condi-
tion not just across households in the population, but also
within many houscholds over time. A sizable number of U.S.
households lose and gain telephone status during a given year.
Because of this phenomenon, the telephone population at a
given time includes households that have recently been in the

nontelephone population, Despite considerable information
on the size and characteristics of the nontelephone population,
little is known about its dynamics over shorter time periods.
Evidence from social workers, telephone companies, and
others who deal with indigent households suggests that for
many familics, telephone subscription is episodic. House-
holds may have a telephone when they can afford it, but the
telephone may be urned off when times are harder, or when
the bills get too large to manage, (Federal Communications
Commission 1988). It is not known how many households
change their telephone status and how long they stay in a
particular status.

Keeter (1995) examined two household panel surveys
to obtain estimates of the dynamics of telephone service
subscription. Those households that changed telephone status
(presence of a telephone in the household) are called
‘transient’ houscholds. For data from one panel survey that
collected data 12 months apart, half of the 6 percent of all
households without a telephone at cither time were transicnt.
For the other panel survey in which data were collected only
two months apart, one-fourth of the 6 percent of households
without telephones at either point in time were transient.
Since these estimates were based on observations at two
points in time rather than continuous measurement, they
underestimate the percent of households that are transient.
Nevertheless, these results show that a substantial proportion
of households without a telephone at a specific point in time
is transient.

Another important condition that must be satisfied if the
transient telephone households are to be useful in reducing

! 1. Michael Brick and Joseph Waksherg, Westat, Inc., 1650 Research Blvd,, Rockville, MD 20850, U.S.A.; Scott Keeter, Virginia Commonwealth University,

Survey Research Laboratory, Richmond, VA 23284, U.S.A.



186 Brick, Waksberg and Keeter: Using Data on Interruptions in Telephone Service as Coverage Adjustments

coverage bias involves the characteristics of transient house-
holds and nontelephone households. If the two groups are
not similar, then the adjustments will not be effective. Using
the panel data and data from several Virginia surveys, Keeter
(1995) showed that the characteristics of the transient
households are much more consistent with nontelephone
households than telephone households.

These findings suggest the possibility that weighting
adjustments that use the data from households that have tele-
phones only sometimes during the year might be an improve-
ment over the current practice. To evaluate this approach to
adjusting the weights, questions were added to two national
surveys conducted in 1993 by Westat. Both of these surveys
were random digit dial (RDD) and computer assisted
telephone surveys, and the data were collected in the tele-
phone research centers of Westat.

One of the surveys is the National Household Education
Survey of 1993 (NHES:93). The NHES:93 was conducted for
the National Center for Education Statistics of the Depart-
ment of Education in the spring of 1993 to study issues
related to school readiness of young children and school
safety and discipline of children in school. The other survey
was the National Survey of Veterans (NSV) which was
conducted in the second half of 1993 for the U.S. Department
of Veterans Affairs. In this survey, adults were screened to
determine if they were veterans, and the veterans were then
asked about a variety of topics including their health, educa-
tion, and financial status.

Below, we present estimates of the percentage of persons
that experienced some interruption of telephone service,
describe procedures for adjusting the survey weights using
these data, and discuss the statistical implications of using the
adjusted weights. The final section summarizes the findings
and gives some considerations for using this technique in
RDD telephone surveys.

2. ESTIMATES OF INTERRUPTIONS
OF TELEPHONE SERVICE

Estimates of the percentage of persons with interruptions
of telephone service from national surveys were needed to
further examine the potential of reducing coverage biases
using these data. Questions were added to the NSV and the
NHES:93 for this purpose. In the NSV, about 23,000 house-
holds were screened and interviews were completed with over
5,500 eligible veterans. In the screening interview, all house-
hold members 14 years and over were enumerated and
questions were asked about their characteristics and their
veteran status. If a sampled adult was a veteran, then a more
detailed interview was attempted. The results reported here
are those asked about the adults enumerated in the screening
interview which included only a few characteristics of the
adults and the household.

In the NHES:93, 64,000 households were screened and
nearly 30,000 interviews were conducted within those
screened households. Two survey components were included:

School Readiness (SR) and School Safety and Discipline
(SS&D). Approximately 11,000 parents of 3- to 7-year-olds
completed interviews on SR topics and about 12,700 parents
of children in grades 3 through 12 were interviewed for the
S5&D component. Data on interruptions in telephone service
were collected from households in which at least ore SR or
S8&D interview was completed.

Since the responses to the questions in the NHES:93 were
only obtained for those households that completed either an
SR or SS&D interview, many characteristics of the children
can be analyzed, but the data do not apply to as broad a
population as the NSV. The NSV applies to all aduits, but
only limited data were collected on most of the adults. For all
households that had completed an interview (a screening
interview in the NSV and a more detailed interview in the
NHES:93), a member of the household was asked if the
household had experienced an interruption in telephone
service in the last 12 months and how long it lasted.

Estimated Service Interruptions in the NSV and
NHES:93

The estimated percentage of persons in households that
had a telephone interruption of one day or more during the
last 12 months varies substantially from survey to survey.
Only 2.3 percent of adults had an interruption of one day or
more based on the data from the NSV, while the percentage
from the NHES:93 for younger children (the SR population of
3- 1o 7-year-olds) was 12.0 percent, and for the SS&D popu-
lation of older children (grade 3 through 12) it was 9.2 percent.

Figure 1 shows estimates and 95 percent confidence
intervals of the percentage of persons that had interruptions
of one day or more along with estimates for those with
interruptions of telephone service that lasted for at least one
week and at least 4 weeks. While the percentages vary
from sample to sample, the patterns of increase by length of
interruption are relatively stable. The percentage with inter-
ruptions of one week or longer is less than half the percentage
with any interruption, and the percentage with interruptions
of 4 weeks or more is about one-fourth the percentage with
any interruption.

14
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Estimated percent of persans
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Figure 1. Estimated percentage of persons with interrupted
telephone service from the three populations
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The large difference in the estimates from the NSV and the
NHES:93 comes from at least two important sources. The
first source is that the populations werc different. We would
expect young children to live in houscholds that experience
more interruptions than older children and adults. Thornberry
and Massey (1988) estimated that the telephone coverage rate
for young children was lower than for any other age group.
Thus, the difference of about 3 percent in the estimates of the
percentage with an interruption between the younger (SR) and
older (S§5&D) children from the NHES:93 is reasonable.

The difference in the populations does not completely
account for the large difference between the NSV and the
NHES:93 estimates. An important reason for this difference
is related to the way the questions were asked in the two
surveys. The NHES:93 interview began by asking, “During
the past 12 months, has your household ever been without
telephone service for more than 24 hours?”. In the NSV inter-
view, respondents were asked if, “At any time during the past
12 months, has your household nof had telephone service?”.
This was followed by a question that asked if the interruption
was for at least 24 hours. Thus, the NSV version was a
screening item followed by a more detailed question. This
type of construction often depresses reports of subsequent
activities, which is consistent with the lower NSV estimates.

A more important reason for the difference is probably due
to the wording of the questions. With the NSV question, a
‘no’ response may have confused respondents because the
question asks if they did not have telephone service. Converse
and Presser (1986) discuss the problems that arise with this
type of question construction. The wording for the NHES:93
is less confusing. The combination of the wording and the use
of a screening item in the NSV is likely to be the main reason
for the smaller estimate using the NSV questionnaire.

The difference in the estimates associated with the
different ways of asking the interruption questions is evident
from the estimates from two surveys conducted in Virginia by
Virginia Comrmunity University. In a November 1993 survey,
the iterns about telephone interruptions were asked using the
NSV wording; in April 1994 the items were changed to the
NHES:93 wording. The results from the surveys parallel the
differences in the estimates between the NSV and the
NHES:93. The November 1993 Virginia study estimated that
3 percent had an interruption in service in the last 12 months,
while in April the estimated percentage was 9 percent. Thus,
it is clear that the different ways of asking the questions
heavily influenced the size of the estimates, and it suggests
that the estimates from the NSV are biased downward. Some
adults who did experience an interruption in telephone service
during the previous 12 months probably responded incorrectly
in the NSV,

Characteristics of Persons With Service Interruptions

Estimates of the percentage of persons who had a tele-
phone interruption are examined below by the characteristics
of the person to evaluate the potential of using these data to
adjust for coverage bias. We estimated the percentage of
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persons in households with any interruption in service by
characteristics collected in both the NSV and the NHES:93.
These estimates are shown in the first part of table 1. Some
differences in the distributions may be due to the different
ways of asking the questions. For example, the education
classification is different in the two surveys: in the NSV
education is recorded for the oldest person in the household,
while in the NHES:93 education is the highest for either of
the parents of the child. .

All subsequent analysis is restricted to NHES:93 data for
two reasons. First, more data on the characteristics are avail-
able from the NHES:93 detailed SR and SS&D interviews
than the NSV screening interview. Second, the telephone
interruption estimate from the NSV is biased due to the
wording of the item, as discussed earlier. Of course, the
NHES:93 estimates apply to households with children which
have higher nontelephone rates than the general population,
and in that sense they do not reflect the situation for the total
population.

Using the NHES:93 data, we find that the percents of
persons with some interruption are relatively consistent for
the SR and the SS&D populations (sce table 1). The
characteristics generally associated with lower economic status
have the highest percentage with interruptions. For example,
the percentage of children with interruptions in both the SR
and SS&D populations is larger for those from households
with lower household income than for those from households
with higher income. Similarly, children participating in public
assistance programs (WIC or free meals) have much higher
rates of service interruptions than nonparticipants. However,
the percentages of children in households with telephone
interruptions are less variable for characteristics related to
school readiness and school safety and discipline than for
the socioeconomic items. Additional characteristics for
both populations were examined and presented in Bnck,
Keeter, Waksberg and Bell (1996), but are not shown here.
For most of the other substantive items, the differences in the
percentage of persons with some interruption in telephone
service were either not statistically significant or not large
enough to be of great practical importance.

3. WEIGHT ADJUSTMENTS

In almost all sample surveys, the data collected from
respondents are adjusted to account for nonresponse and
noncoverage and to reduce the variability in the estimates by
using auxiliary data from other data sources. One of the most
important benefits of this type of adjustment in telephone
samples is that it often reduces the bias associated with the
undercoverage of persons living in households without tele-
phones.

Kalton and Kasprzyk (1986) discuss adjustments to the
base weights, classifying the adjustments into four categories:
population weighting adjustments, sample weighting adjust-
ments, raking ratio adjustments, and response probability
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Table 1
Estimated Percentage of Persons With Any Interruptions in Telephone Service in Last 12 Months for Three Populations
NSV NHES:93 SR NHES:93 §8&D
Estimate ~ Standard  pgimye  Standard  peimpe Standard
error error error
Total 23 0.1 12.0 04 9.2 0.3
Region
Midwest 23 0.2 1.0 1.0 7.3 0.7
Northeast 2.0 0.2 9.5 12 9.0 08
South 26 02 13.6 0.7 10.8 0.6
West 24 0.2 12.5 0.9 92 0.8
Race/ethnicity'
White 20 0.1 9.3 0.5 7.2 0.3
Black 35 0.4 19.8 1.5 14.7
Hispanic 39 0.5 17.2 1.5 14.1 .
Other 2.6 0.6 11.7 26 9.3 1.5
Education®
Less than high school diploma 32 02 18.4 1.8 17.4 1.6
High school graduate 20 0.2 154 08 11.0 08
Some college 23 02 11.8 0.7 86 0.5
Bachelor's degree 1.6 02 5.5 08 53 08
Graduate school 22 03 5.2 0.7 4.5 0.6
Household income
$10,000 or less 228 13 19.0 1.3
510,001 to $20,000 19.9 1.4 15.7 1.1
$20,001 to $30,000 9.3 08 7.9 0.6
Meore than $30,000 55 0.5 50 03
Women, infant and children program
participant’
Yes 18.2 1.3
No 8.0 0.6
Free meal at school or center®
Yes 21.1 1.2
No 7.6 05
Birth weight
5.5 pounds or less 120 1.6
Greater than 5.5 pounds 12.0 0.4
School control
Public 9.4 04
Private 7.5 1.1
Ease of obtaining marijuana at school®
Very or fairly easy 9.7 0.6
Hard 8.0 08
Nearly impossible 90 0.7

! Race/ethnicity is reported for the oldest member in the NSV and for the child in the NHES:93.

? Education is for the oldest household member in the NSV and the most educated parent of the child in the NHES:93,

? Estimate restricted to preschoolers.

* Estimate applies to children except preschoolers.

¥ Estimate applies only to children in grades 6 through 12.

Source: U.S. Department of Veterans Affairs, National Survey of Veterans, summer/fall 1993, and U.S. Department of Education, National Household
Education Survey, spring 1993,
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adjustments. In the NHES:93, sampie weighting adjustments
and raking ratio adjustments were used. Sample weighting
adjustments were used to account for differential nonresponse
from sampled persons. Raking ratio adjustments were then
used to make the specified marginal distributions of the
sample correspond to totals from the October 1992 Current
Population Survey (CPS). One of the most important benefits
of the type of raking ratio adjustment used in the NHES:93 is
that it reduces the bias associated with the undercoverage of
persons living in households without telephones because the
CPS covers persons in both telephone and nontelephone
households.

The data on telephone service interruptions can be used to
make a response probability adjustment. Response probability
adjustments are constructed by assuming that each sampled
unit has a probability of responding to the survey, estimating
that probability, and then using the inverse of the estimated
response probability as a weighting adjustment. The Politz
and Simmons (1949) method is probably the best known
application of the response probability adjustment procedure,
and Kalton and Kasprzyk (1986).discuss others,

To apply this type of adjustment using the telephone
service interruption data, assume that living in a telephone
household is a dynamic phenomenon and that a probability
distribution can be associated with this status, Conceptually,
a survey is conducted by sampling from this distribution and
obscrving only those members that live in telephone house-
holds at the time of the survey. The probability of living in a
telephone household (the equivalent of the response proba-
bility) must then be estimated for each respondent. The inverse
of the estimated probability is the coverage adjustment. This
model assumes that each person can be assigned a probability
of being in a household with a telephone and that the
probability is between zero and one (but not equal to zero).

The data on whether or not a household had an interruption
in telephone service and the length of that interruption are the
basis for this type of adjustment. Persons are divided into two
categories: those in households with interruptions in service
and those in households without interruptions in service. The
probability is assumed to be cqual to one for persons in
households without interruptions and their weights are not
adjusted. The weights of persons in households with at least
some interruptions in the last 12 months are adjusted to
account for other households that have a probability of being
covered of less than one. The adjustments may vary depending
on the length of time they lived in nontelephone households
and on other characteristics of the household. The purpose of
having different adjustments is to account for the fact that
some persons are more likely to live in nontelephone house-
holds than others.

Although the weighting adjustments may reduce the under-
coverage bias, introducing adjustments also typically increases
the variances of the estimates. Kish (1992) discusses the
reasons for unequal weights as well as the consequences from
using them in a variety of situations. He advocates a common
statistical approach of balancing the bias reductions against
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the variance increases. If the weights reduce the bias of the
estimates significantly, then it may be worthwhile accepting
the variance increases. On the other hand, small reductions
in bias associated with large variance increases are not
recommended.

In the remainder of this section, the specific weighting
adjustment procedures are described. The statistical properties
of the weights developed under four altemative adjustment
schemes are presented. The alternative weights are applied to
the NHES:93 data and the decrease in the bias of the
estimates is compared with the increase in the variance of the
estimates due to the unequal weighting.

Adjustment Schemes

The first step was to decide how to classify the length of
interruption in telephone service. Various lengths of interrup-
tions were examined to determine cut-off's that discriminated
between temporary interruptions, not due to economic causes
and others. It was decided 1o use two categories for forming
adjustment cells: one week or more, and one month or more.

Within each of the length-of-service interruption catego-
ries, the children were classified into adjustment cells based
on ¢ither parental education or tenure (home ownership).
Racc/ethnicity was used to form cells within the parental
education and tenure categories. These cells were chosen
because the percentage of persons with interruptions varied
by these characteristics and the corresponding data were also
available from the CPS. Four adjustment schemes were
defined using these items: '

Scheme Al - children in households that had a telephone
service interruption of one week or more within categories
defined by parental education (less than high school, high
school diploma, college diploma or above) and race/ethnicity
(Hispanic, black/non-Hispanic, whitc and other/non-Hispanic);
Scheme A2 - children in households that had a telephone
service interruption of one month or more within categories
defined by parental education and race/ethnicity;

Scheme B1 - children in households that had a telephone
service interruption of one week or more within categories
defined by tenure (own/other, rent) and race/ethnicity; and

Scheme B2 - children in households that had a telephone
service interruption of one month or more within catcgories
defined by tenure and race/ethnicity.

The adjustment factors for these schemes could not be
obtained directly from the NHES:93 data because no data
were collected from households without telephones. Instead,
the adjusiments were developed using both CPS and
NHES:93 data and then applied to the NHES:93 weights.

To motivate the adjustment of the weights, consider
partitioning the universe of persons into four components: ¢,
is the number of persons in telephone households with no
telephone interruptions in the past year; ¢, is the number of
persons in telephone houscholds with some telephone
interruptions in the past year; ¢, is the number of persons in
nontelephone households with no telephone interruptions in
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the past year (i.e., persons who lived in nontelephone house-
holds throughout the entire year); and ¢, is the number of
persons in nontelephone houscholds with some telephone
interruptions in the past ycar. As noted above, the response
probability model assumes t, = 0.

Using the CPS it is possible to estimate ¢, + ¢, and ¢,
(assuming ¢, = 0); designate these estimates as fl + f2 and t; )
respectively. From the NHES:93, ¢, and #, can be estimated
separately; call these estimates ¢} and 3, respectively. The
bias in the NHES:93 estimates arises because they are from a
telephone survey and do not include persons in nontelephone
households (t,).

A weight adjustment of A = 1 + z,/t, would result in
unbiased estimates of totals; however, this adjustment in-
volves unknown, population quantities that must be estimated.
Since ¢, can only be estimated from the NHES:93 and ¢, can
only be estimated from the CPS (assuming ¢, = 0), the adjust-
ment is expressed in ratios to reduce the bias due to estimating
the totals from different surveys. The revised weight is

where w;, is the NHES:93 weight adjusted for nonresponse of
sampled persons but not yet raked to October 1992 CPS
totals, &, =1 if the person lives in a household that had an
interruption of telephone service in the last year and is zero
otherwise. The quantity in parenthesis in (1) is an estimate of
A, the weight adjustment.

Revised weights were computed separately for the SR and
SS&D components. Rather than the overall adjustment as
given in (1), the weight adjustments were computed within
the cells defined for each of the four weighting schemes (Al,
A2, Bl, and B2). Table 2 shows the resulting adjustment
factors for the SR and SS&D components. The adjustments
in the first column are those for schemes Al and B1. The
second column contains the adjustment factors for schemes
A2 and B2. The adjustment factors for the schemes based on
the one month or more interruptions are greater than those
based on the one week or more because the denominator of
the ratio is, by definition, smaller for this classification (sec
Figure I for estimates of the percentage of persons with
interruptions for each scheme).

The last weighting step rakes the four alternative weights
to the same October 1992 CPS totals used in raking the
standard NHES:93 person-level weights. The result of this

woew|1e5 "2 ' ey process is the standard NHES:93 weight and four alternative
b B weights based on different adjustment schemes. All five of
gk the weights conform to the same marginal totals. The only
difference in the weights is the adjustment for the telephone
1]
Table 2
Weighting Cell Adjustments Factors, Based on Length of Interruption of Telephone Service
SR 55&D
Factor Length of service interruption
One week One month One week  One month
0f more or more or more or more
Cells defined by parental education and race/ethnicity (Schemes Al and A2)
Less than high school; Hispanic 5.75 16.35 4.89 8.52
Less than high school; black, non-Hispanic 5.10 6.72 4.26 5.95
Less than high school; white and other, non-Hispanic 498 5.37 3.81 4.86
High school diploma; Hispanic 231 2,76 2.67 4.51
High school diploma; black, non-Hispanic 2.65 373 3.06 471
High school diploma; white and other, non-Hispanic 216 279 2.18 3.09
College degree or more; Hispanic 1.34 2.33 1.96 822
College degree or more; black, non-Hispanic 1.77 2.64 1.35 3.83
College degree or more; white and other, non-Hispanic 1.58 2.09 1.91 348
Cells defined by tenure and race/ethnicity (Schemes Bl and B2)
Renter; Hispanic 374 5.15 3.58 6.08
Renter; black, non-Hispanic 323 4.54 3.38 495
Renter; white and other, non-Hispanic 243 296 299 4.00
Owner/other; Hispanic 2.00 3.06 2.81 5.66
Owner/other; black, non-Hispanic 2.53 3.46 290 6.11
Owner/other; white and other, non-Hispanic 2,26 3.45 2.03 3.10
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service interruption prior to raking. The standard weights are 4.1 Coverage Bias Reduction
not further adjusted while the alternative weights have

. . . If esti isti
different adjustments depending on the scheme. estimates of the same characteristics as those produced

from the NHES:93 were available from an independent
source and these benchmark estimates were free of telephone

4. FINDINGS coverage bias, then it would be possible to compare the five

estimates to the benchmark. However, benchmarks compar-

As noted above, adjustment of the weights to reduce the able to the estimates from the two components of the

bias increases the variability of the weights, thus increasing NHES:93 do not exist and other methods are needed to assess
the variance of the estimates. Kish (1992) gives an the bias-reducing potential of the coverage adjustments.

approximate expression for this increase in variance arising Due to of the lack of a benchmark, some model assump-

from unequal weights. We call this expression for the increase tions are required to assess the effectiveness of the adjust-

in variance due to differential weights the variance inflation ments. For this evaluation we assume that the adjustment

factor (VIF), The VIF can be written as procedures reduce the coverage bias. As a result of this

assumption, the difference between the standard estimate and

VIF = 1 + CV* (weights) (2 the adjusted estimate is considered an unbiased estimate of

the decrease in the coverage bias resulting from using the
procedures. Clearly, the coverage bias is not completely

Table 3 shows the VIF for the standard NHES:93 weights eliminated by any of the adjustment procedures. Even if the
for each component. The $S&D component is broken down model were correct, the bias reductions from the data would
by the grade of the student, because youth were selected at still be subject to sampling error. Despite the problems with
different rates for these grade levels. The VIF for each of the this assumption, this type of assumption is necessary to obtain
components is about 1.4, indicating the variance is inflated by some idea of the cffectiveness of the adjustment. If the

where CV is the coefficient of variation of the weights.

about 40 percent due to the variability in the standard weights, adjustment eliminates the bias, the mean square errors of the
The VIF for the combined SS&D file is somewhat larger (1.5) adjusted estimates are equal to the variances of the estimates,
because it includes youth who were sampled at different rates. with no contribution from coverage bias. Therefore, the

The other factors given in table 3 are the ratios of the VIF model assumption is favorable to the adjusted estimates,
for the four alternative weights to the VIF for the standard positing the adjusted estimates to be unbiased. The impact of
weight. These ratios show how much greater the variances of this assumption is discussed critically after evidence of the
estimates produced using the alternative weights are expected effectiveness of the method is presented.
to be as compared to the variances of the standard NHES:93 The estimate from each scheme can be compared to the
weights. standard NHES:93 estimate, and the difference between the

Overall, the increase in variance due to the telephone inter- standard estimate and the adjusted estimate is an estimate of
ruption coverage adjustment are from 9 to 13 percent for the reduction in the coverage bias. With four adjusted esti-
schemes Al and Bl in the SS&D component but up to mates, four different estimates of bias reduction are possible.
20 percent for the SR component. The ratios are larger for the The estimated reduction in bias is
schemes A2 and B2, ranging from 24 to 35 percent, with the b =p-p., 3)
largest ratio for Scheme A2 for the SR component. The larger ¢one e
ratios (hence VIFs) for the schemes based on interruptions of where b, is the estimated bias reduction using adjustment
one month or more are a consequence of the larger and more scheme a {a = Al, A2, B1, or B2), p, is the estimate of the
variable factors shown in the second column of table 2. The proportion using the standard estimate, and p, is the
ratios for the SR population are higher than the SS&D ratios. estimated proportion using adjustment scheme a.

Table 3
Ratios of Variance Inflation Factor Due to Coverage Adjustment
VIF* Ratio of scheme's VIF to standard weight's VIF
Component Sizr;l;lc standard Scheme Scheme Scheme Scheme
weight Al A2 Bl B2

School Readiness 10,888 1.36 1.20 1.35 1.16 1.26
School Safety and Discipline

3rd through 5th graders 2,563 1.37 1.12 1.25 1.13 1.26

6th through 12th graders 10,117 1.39 ' 1.13 1.27 1.09 1.24

3rd through 12th graders 12,680 1.49 1.12 1.26 1.1 1.25

* VIF is the standard inflation factor. 1t is the coefficient of variation of the weights squarcd plus one.
Source: U.5. Department of Education, National Center for Education Statistics, National Household Education Survey, spring 1993,
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The estimated reductions in bias under each adjustment
weighting scheme are given in table 4. Estimates for additional
characteristics are given in Brick et al. (1996). The bias
reductions in the standard estimate assume each adjustment
scheme eliminates the coverage bias.

The bias reduction estimates for most of the items in
Table 4 are less than one percent and consistent in direction
across the schemes. Before summarizing the estimates, we
must account for the fact that the total number of children is
constant for all the estimates due to the raking of the estimates
to the CPS totals. The fixed total number of children across
response categorics has two consequences: if creates a nega-
tive correlation in the estimated reduction in bias across
response categories; and it gives a false impression of the
number of independent pieces of information in the tabled
values.

The approach taken to address to this problem in sum-
marizing the bias estimates is to delete the estimate for one of
the response categories for each item. The “no” response cate-
gory for all items with “yes” and “no” response categories
was deleted. For other types of variables, the response cate-
gory with the smallest esiimate was deleted.

Figure 2 presents the absolute value of the reduction in
bias estimated using scheme Al for the SR characteristics,
and figure 3 is the same representation for the $S&D. These
figures use all the estimates presented in Brick et al. (1996),
rather than just those shown in table 4. For both components,
the bias reductions are small. The largest absolute bias is
1.3 percent for SR and 0.9 percent for S§&D. The mean and
median of the bias reductions and the absolute values of the
bias reductions were also computed for each scheme and each
component. For the SR component, the mean and median of
the absolute value of the cstimated bias reductions for the
four schemes are between 0.2 and 0.4 percent. For the S8&D,
the mean and median of the absolute values are between 0.1
and 0.3.
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Figure 2. Estimated reduction in absolute bias for School
Readiness characteristics (scheme Al)
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Figure 3. Estimated reduction in absolute value of bias for
School Safety and Discipline characteristics
(scheme Al)

Bias Ratio

The size of the absolute reduction in bias is not a very
useful statistical measure of the impact of the bias because it
does not take the magnitude of the sampling error of the
estimate into account. Cochran (1977) discusses the impact
on confidence intervals as the ratio of the bias to the sampling
error varies. For each scheme the bias ratio is given by

b

a

se(p,)’

Ta “)
with the standard error of the standard estimate as the
denominator. As the bias ratio increases, the chance of
covering the population value departs significantly from the
nominal confidence interval.

The bias ratios for selected characteristics are shown in
Table 4. Many of the bias ratios for the SR items are large,
even though the average and median ratios are near zero.
Nearly half of the ratios for all the items examined are larger
than 0.4 in absolute value. A ratio of 0.4 is large enough to
reduce a nominal confidence interval from 95 percent to about
93 percent. For the SS&D items, the bias ratios are smaller,
with only 15 percent of all the items having bias ratios greater
than 0.4,

4,2 Mean Square Error

Since the variance is not an adequate measure of error for
biased estimates, the mean square error of the estimates is
used instead. The mean square error (MSE)} is the sum of the
variance and the square of the bias of the estimate.

The MSE can be estimated for the NHES:93 estimates
by using the standard variance estimates and the bias reduc-
tion estimates presented above. The estimated MSE can be
approximated as

MSE,, = var(p,) + b, (5)
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Table 4
Estimated Reduction in Bias and Bias Ratio for Selected Characteristics of the NHES:93
Standard estimate Estimated reduction in bias Bias ratio
Characteristic Estimate Standard Scheme Scheme Scheme Scheme Scheme Scheme Scheme Scheme
error Al A2 B1 B2 Al A2 B1 B2

School Readiness (SR) population
Parental educational level

Less than high school graduate 8.6 03 -1.7 -1.9 0.1 0.1 -53 -6.3 03 0.3

High school graduate or equivalent 339 0.8 04 03 -07 -1.0 0.5 04 ~-0.9 -13

Some college 57.5 0.7 13 16 0.6 09 19 23 0.9 1.3
Mother's employment status

No mother in household 24 0.2 -0.1 -0.1 -0.1 -0.1 -0.5 ~-0.5 -0.5 -0.5

Employed 35 hours/week or more 343 0.5 0.5 03 0.2 0.5 1.0 1.6 04 1.0

Employed less than 35 hours/week 20.9 035 -0.1 -0.2 0.0 -0.2 -0.2 -0.4 0.0 -0.4

Seeking employment 6.6 04 0.0 -0.1 -0.1 -0.1 0.0 -0.3 -03 -0.3

Not in labor force 358 0.6 -04 -03 0.0 0.0 -0.7 -0.5 0.0 0.0
Father’s employment status

No father in household 26.3 0.5 -0.4 -0.6 0.0 -0.1 -0.8 -1.2 0.0 -0.2

Employed 35 hours/week or more 63.4 0.6 03 05 0.1 0.2 05 08 0.2 03

Employed less than 35 hours/weck 38 03 0.0 -0.1 0.0 0.1 0.0 -03 0.0 0.3

Seeking employment 32 03 0.0 0.0 -0.1 -0.2 0.0 0.0 -03 -0.7

Not in labor force i3 02 0.1 0.2 0.0 0.1 05 10 0.0 0.5
Time since doctor visit for routine care

Less than 1 year 84.1 04 0.4 04 02 0.1 1.0 10 05 0.2

Over | year 15.9 0.4 -0.4 -0Q.5 -02 -0.1 -1.0 -1.3 -0.5 -0.2
Birth weight

5.5 pounds or less 93.3 0.3 -0.1 0.0 0.0 0.1 -0.3 0.0 0.0 0.3

Greater than 5.5 pounds 6.7 0.3 0.1 00 0.0 -0.1 0.3 0.0 0.0 -03
Child attending center-based program’

Yes 326 08 09 03 0.8 0.6 1.1 0.4 1.0 08

No 474 08 -0.9 -03 -08 -0.6 -1.1 -0.4 -1.0 -0.8
Child ever attended center-based program'

Yes 62.9 0.8 0.5 0.3 04 0.3 0.6 04 05 04

No 371 08 -0.5 -0.3 -D.4 ~-D3 ~-0.6 -0.4 -0.5 -04
Attended center-based program prior to school®

Yes 735 0.5 0.6 0.7 05 0.6 12 14 1.0 1.2

No 26.5 0.5 -06 ~0.7 -0.5 -0.6 -12 -14 -1.0 -12
Women, Infant, and Children program participant

Yes 338 1.0 -0.6 -0.1 -0.8 -0.7 -0.6 -0.1 -0.8 -0.7

No 66.2 1.0 0.6 0.1 08 0.7 0.6 0.1 03 0.7
Free meal at school or center®

Yes 35.8 0.6 -0.9 -1.1 -0.5 -0.5 -15 -18 -08 -8

No 64.2 0.6 0.9 1.1 0.5 05 1.5 i8 08 0.8
Repeated kindergarten®

Yes 5.7 04 -0.3 -05 -0.2 -02 -0.8 -13 ~0.5 -05

No 943 04 03 0.5 0.2 02 0.7 1.3 05 05
School Safety and Discipline (SS&D) population
Parental educational level

Less than high school graduate 9.4 0.5 -12 -13 -0.3 -0.6 -24 -26 -0.6 -12

High school graduate or equivalent 327 0.6 0.3 0.0 -0.2 -06 0.5 0.0 -0.3 -1.0

Some college 579 Q.5 09 13 05 i.1 1.8 2.6 1.0 22
Mother's employment status

No mother in household 3.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Employed 35 hours/weck or more 46.2 0.5 0.0 0.1 -0.1 0.1 0.0 02 -0.2 0.2

Employed less than 35 hours/week 203 035 0.1 0.0 0.0 -0.1 0.2 0.0 00 -0.2

Seeking employment 45 03 -0.2 -0.2 -0.2 -0.2 -0.7 -0.7 -0.7 -0.7

Not in Labor force 255 0.5 0.0 0.1 0.2 02 0.0 02 0.4 0.4
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Table 4
Estimated Reduction in Bias and Bias Ratio for Selected Characteristics of the NHES:93 — Concluded
Standard estimate Estimated reduction in bias Bias ratio
Characteristic Estimate Standard  Scheme  Scheme Scheme Scheme Scheme Scheme Scheme  Scheme
error Al A2 Bl B2 Al A2 BI B2

Father's employment status

No father in household 26.8 0.6 -0.2 -02 -0.1 -0.2 -0.3 -03 -0.2 -0.3

Employed 35 hours/week or more 63.2 0.5 0.6 09 0.6 0.8 12 L8 1.2 1.6

Employed less than 35 hours/week 3.1 0.2 -0.2 -0.2 -0.2 -0.2 -1.0 -1.0 -1.0 -1.0

Secking employment 26 02 -0.2 -03 -0.2 -0.3 -1.0 -15 -1.0 -1.5

Not in labor force 4.3 03 -0.1 -0.1 -0.1 -0.1 -03 -0.3 -03 -0.3
School control

Public 91.2 03 -0.1 -0.1 -0.1 -0.1 -03 -0.3 -03 -03

Private 88 03 0.1 0.1 0.1 0.1 03 03 03 03
Visitors required to sign in at school

Yes 79.9 0.5 0.1 0.4 0.0 0.2 02 0.8 0.0 04

No 201 0.5 -0.1 -0.4 0.0 -0.2 -0.2 -0.8 0.0 -0.4
Had drug or alcoho! ed program this year

Yes 68.5 0.7 0.6 0.8 07 0.9 0.9 1.1 1.0 1.3

No 31.5 0.7 -0.6 -08 -0.7 -0.9 -0.9 -1.1 -1.0 -1.3
Students in fighting gangs at school®

Yes 223 05 -0.3 -0.4 -0.3 -0.35 -0.6 -0.8 -0.6 -1.0

No 7.7 0.5 0.3 04 0.3 0.5 0.6 0.8 0.6 1.0
Ease of obtaining marijuana at school*

Very or fairly easy 39.2 0.6 -0.2 -03 -0.2 -03 -03 -05 -0.3 -05

Hard 297 0.5 0.1 0.1 02 0.2 0.2 0.2 0.4 04

Nearly impossible 311 0.6 0.1 0.1 0.0 0.1 0.2 0.2 0.0 0.2
Fear of incident of crime at school

None 66.1 05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fear of theft or robbery’ 1.9 05 -0.1 -0.2 0.0 -0.2 -0.2 -04 0.0 -04

Fear of bullying or assault® 86 03 -0.1 -0.1 -0.1 -0.1 -03 -03 -0.3 -b3

Fear of two or more types of incidents’ 13.3 0.5 0.1 0.3 0.1 0.2 0.2 0.6 0.2 0.4
Knowledge of crime at school

None 387 0.6 0.2 0.1 0.2 0.1 03 0.2 03 0.2

Fear of theft or robbery’ 14.1 0.5 02 03 0.2 03 04 0.6 04 0.6

Fear of bullying or assault® 15.6 04 -Q0.5 -4 -0.4 -0.4 -1.3 -1.0 -1.0 ~-1.0

Fear of two or more types of incidents® 316 0.6 0.1 0.0 0.0 0.0 02 0.0 0.0 0.0
Victimization by crime

Not victimized 73.0 05 03 0.2 0.3 a2 0.6 0.4 0.6 04

Victim of theft or robbery® 109 0.3 -0.2 -0.1 -0.1 0.0 -0.7 -0.3 -0.3 0.0

Victim of bulling or assault® 89 03 -0.1 0.0 -0.2 -0.1 -0.3 0.0 -0.7 -03

Victim of two or more types of incidents’ 72 03 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 -3
Witnessed crime at school

None 63.8 0.8 0.2 0.2 02 0.2 0.2 0.2 0.2 0.2

Witnessed robbery* 0.6 0.1 0.0 Q.0 0.0 0.0 0.0 0.0 0.0 0.0

Witnessed bulling or assault® 24.1 0.8 -03 -0.3 -0.3 -0.3 -0.4 -0.4 -0.4 -04

Witnessed two or more types of incidents 114 0.4 0.0 0.1 0.0 0.0 0.0 02 0.0 0.0

' Applies to preschoolers only.

? Applies to all children except preschoolers.
* Applies to children in primary school only.
¢ Applies to students in grades 6 through 12 only.

* For the fear of incident, knowledge of crime, and victimized by crime variables, the second response category is used if either theft or robbery was reported
but not both, the third response category is used if either bullying or assault was reported but not both.
* This response category is used if either bullying or assault was reported, but not both, was reported.
Note: Percents may not add to 100 because of rounding.
Source: U.S. Department of Education, National Center for Education Statistics, National Household Educatien Survey, spring 1953.
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where g, is the estimated proportion under the standard
approach and b, is the reduction in bias under scheme a.
Because of the high correlation in the estimates of the bias
from the four adjustment schemes, only the mean square
errors for scheme Al were computed. In Brick et al. (1996),
the estimates using other schemes are shown to have
negligible effects.

The mean square errors of the adjusted estimates are now
contrasted with the variability in the standard NHES:93
estimates. The variance increase from adjusting the weights
using the telephone service interruption data was expressed as
a VIF in table 3. Multiplying the variance estimates of the
standard estimates by the appropriate adjustment factor yields
an approximate variance for the adjusted (presumably
unbiased) estimates which are then compared to the mean
square error of the standard estimates.

To aid in comparing the weighting procedures, ratios of the
variance of the adjusted estimate to the mean square error for
the standard estimate were tabulated (see Brick et al. 1996).
The ratio is called the mean square ratio and can be writien as

100 x relative VIF | x var(ﬁj)

mse,(5)

msr, (B) =

(6)

Note that the mean square error is derived using the bias
estimated from scherne Al only, but it is used to compute the
mean square ratios for all four schemes. As noted above, this
simplification does not have much effect on the mean square
ratios because the bias estimates are approximately the same
across schemes.

The mean square ratios include contributions from the bias
(in the mean square error estimates) and the variance (in the
VIF). When the mean square ratio is 100, the variance of the
adjusied estimate is exactly equal to the mean square error of
the biased, standard estimate. A ratio less than 100 indicates
that the bias reduction of the adjustment is greater than the
variance increase that comes with it. A mean square ratio over
100 means that the variance increase associated with the
adjustment is greater than the bias reduction,

Figures 4 and 5 graphically present the msr for the two
component surveys using scheme Al. In addition, Table 5
shows summary statistics for the msr for all four adjustment
schemes. The distributions of mean square ratios for both
components are very similar with the mean square ratios
slightly lower for the SR component. The medians for
schemes Al and Bl (those based on interruptions of one
week or more) are near the break-even point of 100. The
means for these schemes are close to 90 and the figures
confirm that the difference between the mean and medians is
due to the skewed distributions of the mean square ratios.

A striking feature of the distributions of the mean square
ratios for schemes Al and B1 is the size of the ratios at the
extremes of the distribution. The maximum mean square ratios
for both components is 120, while some ratios are as small
as 26, This means the maximum increase in the mean square
error of the estimates is 20 percent, while the reductions in
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Figure 4. Estimated mean square ratios for selected School
Readiness items (scheme Al)
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Figure 5, Estimated mean square ratios for selected School
‘Safety and Discipline items (scheme A1)

mean square error for a number of other estimates are quite
large. Thus, the penalty associated with adjusting even when
the estimate is not biased is modest, but the benefits of
adjusting when it is needed are impressive,

The distributions for the mean square ratios for schemes
Al and B1 are very similar, and the choice of which of these
schemes should be used may be determined by nonstatistical
issues, such as availability of data and the other types of
adjustments required in the survey, The mean square ratios
show that the adjusted weights reduce the mean square error
for about half the estimates considered below those derived
from the standard weights. The distributions of the mean
square ratios for schemes A2 and B2 (those based on
interruptions of 1 month or more) have medians and means
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Table 5
Summaries of Distribution of Mean Square Ratios for Selected
Characteristics of School Readiness and School
Safety and Discipline Components

Adjustment scheme

Al A2 Bl B2

Schoo! Readiness

Mean 898 1010 868 942
Median 960 1080 928 100.8
Minimum 270 303 261 2R3
Maximum 1200 1350 1160 126.0
School] Safety and Discipline
Mean 933 1049 922 1039
Median 1008 1134 999 1125
Minimum 264 297 262 295
Maximum 112.0 1260 111.0 125.0

Source: U.S. Department of Education, National Center for Education
Statistics, National Household Education Survey, spring 1993.

that are greater than 100. Essentially, thesec mean square ratios
are shifted upward when compared with those of schemes Al
and B1, and are not recommended.

5. CONCLUSIONS

If the percentage of the target population living in non-
telephone households is relatively large and the characteristics
of those persons are different from those who live in
telephone households, then the estimates may be susceptible
to significant coverage bias. One method of addressing this
problem without resorting to other modes of data collection
is to adjust the weights to reduce the coverage bias. In this
study, the weights for persons in households reporting an
interruption in telephone service were increased to account
for those without telephones.

The bias reduction estimates computed under the assumed
model showed that the coverage adjustmenis for the SR
component improved some of the estimates substantially, and
did not do much harm to any statistics. The bias reduction
estimates from the SS&D component, on the other hand, were
not as substantively important. The adjustments reduced bias
for both components, but they also increased the variability of
the estimates. The distributions of the mean square ratios
show that about half the estimates could be improved using
the telephone service interruption adjustments. Furthermore,
even for thosc estimates that were less accurate due to the
variance increases associated with the differential weights, the
magnitude of the increases were not large. In other words, the
penalty for adjusting when it did not reduce the coverage bias
was not very great. These findings suggest that the
adjustments should be seriously considered.

The alternative weighting schemes performed differently
with respect to the mean square ratios. The schemes based on

interruptions of telephone service of one week or more were
better than the schemes based on interruptions of one month
or more. The bias adjustments resulting from using
educational attainment by race/ethnicity categories were
roughly equivalent to those using tenure by race/ethnicity.

The size of the sample is a relevant factor that should be
taken into account when evaluating the use of the telephone
service interruption adjustment. Bias ratios increase with the
sample size because the bias is not affected while the sampling
error of the estimate (the denominator of the bias ratio)
decreases. Thus, the adjustments should be more beneficial in
surveys with large sample sizes where the bias ratios might be
expected to be large.

While the results of this study suggest that the adjustments
could be useful for many estimates from telephone surveys,
confirmation is needed before the adjustments are recom-
mended. As discussed earlier, the estimates of the mean
square errors in this study were based on the assumption that
the adjusted estimates eliminated the bias of the estimates.
This model assumption could not be verified because of the
lack of benchmark data for comparison. The assumed model
is very beneficial to the adjusted estimates in the sense that it
results in lower bounds on the mean square errors for the
adjusted estimates. Thus, the findings of this study should be
taken as an indication that adjustment using data on
interruptions in telephone service is a feasible method, but
requires further study and evaluation.

The questions about interruptions in telephone service
were recently added to the National Health Interview Survey,
a survey conducted by the Census Bureau for the National
Center for Health Statistics. The findings frem this survey
should be very useful in evaluating this method because the
survey covers households without telephones by in-person
interviews, ecliminating the need for the critical model
assumption used in this study.
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ABSTRACT

Within a survey re-engineering context, the combined methodology developed in the paper addresses the problem of finding
the minimal sample size for the generalized regression estimator in skewed survey populations (e.g., business, institutional,
agriculture populations). Three components necessary in identifying an efficient sample redesign strategy involve
i) constructing an efficient partitioning between the “take-all” and “sampled” groups, ii) identifying an efficient sample
selection scheme, and iii) finding the minimal sample size required to meet the desired precision constraint(s). A scheme
named the “Transfer Algorithm” is devised to address the first issue (Pandher 1995) and is integrated with the other two
components Lo arrive at a combined iterative procedure that converges to a globally minimal sample size and population
partitioning under the imposed precision constraint. An equivalence result is obtained allowing the solution to the proposed
algorithm to be alternatively determined in terms of simple quantities computable directly from the population auxiliary
data. Results from the application of the proposed sample redesign methodology to the Local Government Survey in Ontario
are reported. A 52% reduction in the total sample size is achieved for the regression estimator of the total at a minimum
coefficient of variation of 2%.

KEY WORDS: Minimal sample size; Optimal sample selection; Precision constraint; Sampled group; Take-all group.

1. INTRODUCTION

199

Although the work presented in this paper is motivated by a

In many survey situations additional information is
available on all population units before the survey is
undertaken. This aoxiliary information is frequently useful in
devising a more efficient sample design and estimation
strategy. In a survey redesign context, the most optimal
strategy holds the promise of offering the targest reduction in
survey costs by requiring the lowest sample size necessary to
meet the desired precision constraint on the estimates. In
repeat surveys of skewed populations, an efficient sample
design and estimation strategy may be realized by exploiting
a) the correlation structure between the size-based auxiliary
information x (e.g., population of municipality, employees
in a firm, farm acreage) and the survey variables y (e.g.,
municipality expenditures, value of shipments, farm yield)
and b) the variance relationship between the survey variable
and the auxiliary size information.

In this paper, a comprehensive sample redesign meth-
odology is developed for skewed populations with the
ultimate objective of bringing about maximal reductions in
the current sample size while ensuring a desired level of
precision for the generalized regression estimator of the total.
This work was motivated by the redesign of the Local
Government Finance Survey (LGFS) conducted by Statistics
Canada's Public Institutions Division. Financial information
(e.g., revenues, expenditures, debt, efc.) obtained from local
government units is used in the estimation and publication of
financial statistics on a provincial and national basis.

concrete application, the sample design methodology devised
applies generally to all surveys based on skewed populations
(e.g., agricultural, business, and institutional surveys).

In identifying an efficient new sample design, the overall
methodology addresses and integrates the solution to three
problems:

1) Creation of the “Take-all” and “Sampled Groups”

Since the variability of the survey response v, tends to
increase with the size of the unit x,, it is common in skewed
populations to sample the largest x-valued units with certainty
in order to improve the efficiency of the population
estimators. The demarcation of the population into the non-
overlapping “take-all” U, = {1, ..., N,} and “sampled” groups
U,={1,..,N,} is obtained through a new scheme named the
“Transfer Algorithm™.

2) Choosing an Efficient Sample Selection Scheme

Letp(s; 1) = (p,(5,). p;(s,: \)) represent the complete sample
design where the sample design parameter A determines the
type of sample selection implemented in the sampled group U, .
The sample inclusion probabxhtlcs due to p,{s,; 1) may be
expressed as 7, (A) = n,(x, /ZU xm) ke lU,. Note that the
parameter A defines a broad class of sample demgns with SRS
(A =0) and pps (A = 2) as particular cases. Design optimality
results (Godambe and Joshi 1965) allow the identification of
the most optimal value for the sample design parameter A.

' Gurupdesh S. Pandher, Survey Analysis and Methods Development Section, Household Survey Methods Division, Methodology Branch, Statistics Canada,

16th Floor, R.H. Coats Building, Ottawa, Ontario, Canada, K1A 0T§.
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3) Minimal Sample Size Determination

The third component of the overall methodology is aimed
at finding the minimal sample size required to meet the
imposed precision constraints for the estimator.

The combined procedure devised integrates these
components to allow a new globally minimal sample size and
optimal population partitioning to be determined under a
flexible range of sample selection strategies (e.g., SRS, pps,
generalized pps). Firstly, the “Transfer Algorithm” is
proposed which finds an optimal population allocation
between the take-all and sampled population groups in the
sense of minimizing the varance of the generalized
regression estimator (GREG) of the total. Desirable math-
ematical properties of this algorithm such as existence and
optimality of solution along with an equivalence result were
established in Pandher (1995). The equivalence result allows
the solution {0 be determined in terms of simple quantities
computable directly from the population auxiliary data.

The Transfer Algorithm in then synthesized iteratively
with the sample size determination step to find the minimal
sample size needed to satisfy the imposed precision
constraints through an iterative procedure. The combined
methodology produces a sequence of sample sizes and
population partitionings which converge to a globally optimal
solution where further reductions in the sample size are not
possible given the imposed precision comstraint. An
application of the procedure is given for Ontario using
provincial data from the Local Government Finance Survey.

Lavallée and Hidiroglou (1988), Hidiroglou and Srinath
(1993) (subsequently denoted as L&H and H&S, respec-
tively), and Glasser (1962) have proposed alternative
methodologies for constructing the take-all and sampled
groups within the context of stratified SRS design. The
proposed approach differs from other methods in three
respects. Firstly, the population demarcation is obtained under
a flexible range of sample selection strategies (e.g., SRS, pps,
generalized pps). Secondly, the criterion for constructing the
population demarcation is based on minimizing the variance
of the GREG estimator of the total under the desired sample
selection strategy (Glasser and L& H base their allocation on
minimizing the within-stratum sum-of-squares x; H&S use the
total regression sum-of-squares under a regression model with
a compulsory iniercept assuming SRS), Thirdly, the proposed
methodology explicitly captures the size-induced hete-
roscedasticity present in skewed survey populations which
has been ignored in other frameworks.

Lastly, it is useful to qualify the sense in which the term
“optimal” is used. Since, the redesign uses auxiliary infor-
mation from a previous cycle of the survey to estimate the
design parameters, there is a level of sub-optimality
introduced in the redesign methodology by this lag. But as a
practical malter, using the data from the most recent survey is
the best that can be done. Once the design parameters have
been estimated or are known however, the cut-offs and
sample sizes required to achieve the desired precision yield
the lowest anticipated design variance given that the estimates

are true (or close to it). It is therefore, in this sense that the
word “optimal” is used.

2. SURVEY FRAMEWORK

The model assisted survey framework is adopted for the
skewed population whose auxiliary and survey characteristics
are denoted by Cyy = {(x,, ), ... (Xp ¥&)}. In this framework,
underlying the class of generalized regression estimators for
the population total are regression models (Sdrndal 1992,
p. 255) exploiting the correlation between the survey variables y
and the auxiliary covariates x. Different model assumptions
on the deterministic and stochastic components of the under-
lying model lead to different regression estimators for the pop-
ulation total. For example, a ratio-form heteroscedastic model

ye=Bx. +e, 2.1

with the error €.~ (0, ok) and the variance structure given
by 01 = cx,c (v is the heteroscedasticity parameter) leads to
the following GREG estimator:

B
ExtB 2 0, - %8 @2

]r

where B = (X, ¥, /7 /(X x, /) is the sample-based prob-
ability weighted estimate of the population regression para-
meter B.

Given this estimation framework, the total across both
groups f = 2, + t, is estimated by { =1+ i, where 7,
1= fy ¥, since all units are sampled in thc take-all group and

lpp, i8 the GREG estimator under the relevant model. The
anticipated variance of ‘m, (defined as the variance with
respect to both the design and the model, denoted p and &£,
respectively) is expressible as

~ ~ ) 1 2
Vitgy) =BV (1)) = k§.', [-E; - 1] o (2.3)

Furthermore, if o,‘ depends on the anxlhary measure x,
according to the formulation Ok =cx, 7(2.4), then design
optimality (Godambe and Joshi 1965) implies that the optimal
sample inclusion probabilities are 7, (Y) x:’z, keU,.
Therefore, the sample design p, (s,;A = ) in the sampled
sub-populancm deﬁmng the first order inclusion probabilities
T (y) = n(x,c 2 va %), ke U,, minimizes the anticipated
variance V(tRb)

In the model assisted framework used in this paper, the
auxiliary measure x, is assumed to be a scalar. As noted by a
referee, the more general case where x, is a vector could be
handled by fitting the appropriate parametric relationship

% =S (X »-n %) and using the estimated 6§, in lieu of x, in
dcﬁnmg the 1nc1u510n probabilities. The approach for the
multivariate x, seems intuitively sound and is mentioned here
for completeness but requires further study and investigation.
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Three methods for estimating the heteroscedasticity
parameter y from past survey data called the “Least Squares
Method”, the “Maximum Likelihood Method”, and the
“Graphical Method” are described in Appendix A of Pandher
(1995).

3. TRANSFER ALGORITHM

In this section, an iterative scheme named the “Transfer
Algorithm” is proposed to determine the optimal demarcation
between the take-all and sampled sub-populations under the
sample design p{s;A). The criterion for this construction is
based on finding a population partitioning minimizing the
estimated anticipated variance of t':%. An equivalence result
from Pandher (1995) is used to find an alternative and simpler
method of solution based entirely on quantities defined on the
auxiliary popuiation data.

The proposed scheme for constructing the take-all and
sampled sub-populations, U, and U,, respectively, is based on
the following idea. Initially, place all population units in the
sampled group, labelling it U,fo) (the superscript / represents
the iteration cycle). Hence, the take-all group is an empty set
U‘fo) ={e}. The resulting population and sample size
allocation at ! = 0 is given by N® =0, % =0, N¥ =N,
and n;m=no where n, is the current sample size.

In a repeat survey setting, the variances 0: in (2.3) can be
empiricalty modelled using the relation 0: =c x,;’ (2.4) where
¥ and ¢ are estimated from previous sample data as mentioned
before. Using the estimated version of (2.4) in (2.3) yields the
following estimator for V@i, ; ):

Wi NS M= Y [ 1

ket \ T )

- 1] et @Y

where the largest ! x-valued units have been removed from
U;o) . Note that A is used here to parameterize the sample
design to allow greater generality when A # vy,

In the iterative algorithm, we start initially with all
population units placed in U;O). Then for each iteration
1,0 < I<n, the largest I + | x-valued unit x;.,.,, is transferred
from Uf) to U‘ED and the difference

A =V A N- - 1,n-1-1)

VPG A N-Ln-D) (32

is computed. Negative values of A (/) mean that the transfer
of the unit corresponding to the ordered value x,.,_;, lead to
a decrease in the variance. Moreover, such transfers continue
to result in a reduction in the variance of be as long as
A(l}<0. In general, for any iteration [, the relationship
between the population and sample size allocations is
described by the following relations: Nf’ =N-1, n;” =n -1,
and Na”’= nj'): {. These relations hold because the overall
population and sample sizes must remain constant
(N=ND+N? and n=n®+n") for all iterations.
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The solution is also constrained by the condition
T A)<1,ke U, (I"). Let I" (A), 0 < I" < n, represent the
solution to the Transfer Algorithm. Given the discussion
above, the solution to the Transfer Algorithm under the
sample design p(s;A) may be formulated as

[*(A) = m}n{l: [TE(N_D(JL) <1] and
Ay = VP4 - V(6,012 0,0 s 1<n).(33)

The optimal population allocation to the take-all group
U, (I") is then given by the population units coinciding with
the I” ordered units transferred to the take-all auxiliary vector
X, = (vt Xgu-s-<1y» - Xy cOTrespondingly the sampled
group U, (I") consists of the units corresponding to X, =
G Xy Xopae)- .
Transferring a unit from U," to U;” causes two opposite
effects on the variance V®(i,, ;). The reduction in the
population size (Nb(m) = me - 1)has the impact of decreasing
the variance, while the equivalent reduction in the sample size
(nb(m) = n,f’) - 1) has the reverse effect of increasing
V(O(fkb; ‘). Somewhere in this process, a critical value
I, 0 < I" < n, exists which gives the optimal breakdown
{U,; (1), U, (I"}}. Moreover, in Theorem 3 of Pandher
(1995), it is shown that as long as the conditions
(e = Xy 2 Oand (x A2 - x 47320 2 0,0 < I < 1, hold,
a solution to the Transfer Algorithm exists and that the system
remains stable (optimal) upon reaching !". Stability further
implies that the solution is optimal since the conditions leading
to the solution do not change in the range I* < [ < n . These
two properties may be more precisely defined as follows:

Existence: 3{7,0 <! <n, such that V¢ - v, 0
and ni’i ,< L.

Stability: If V™D - v®™ 3 0, then VU*V - 0 0
and nly <1 for0<l"<li<n.

An example of the application of the Transfer Algorithmto
the LGF survey population of local municipalities in Ontario
(with N =793, n =108, y =2, and A = 1) is given in Figure 1.
The curves are plotted for ! > 8 because in the interval
0 <! < 8, the first condition of (3.3), na:gelyn[nw_‘,)().) <1],
is not satisfied. The minimum value of V™'(¢,,) is achieved
atl" =57 where A(I*y = V0 -y g,

-
] v v T T LA S S . S v T
- Y T T T

x10°
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Figure 1. Changes in variance of regression estimator
A= AD=V"NL I, N-1-1,n-1-1)-
VO LN=-1Ln-1)



202 Pandher: Optimal Sample Redesign Under GREG in Skewed Populations

Theorem 2 from the complete paper is an important result
which allows the solution to the Transfer Algorithm to be
equivalently expressed in terms of simpler quantities based on
the auxiliary data. A brief sketch of the development of this
theorem is given in the Appendix.

Theorem 2. Equivalent Solution to the Transfer
Algorithm

The solution °(A) to the Transfer Algorithm stated in (3.3)
in terms of V@ - V¥ and ‘thﬂ._n(?\.) may also be equivalently
expressed as

mlin{l:n—lsR(l;y—MZ),Oskn},Osl<y
') = mlin{l:n—lsR(l;‘ylZ),Osl<n},l-‘—y
m;'n{l:n—lsR(l;M),Osl<n},y<lsZy

where R(l;y - A2) = fﬂf x(‘,’c; mlx&",f and R(;A2) =
YA x gy, define the critical values.

This use of this theorem to find the optimal population
allocation is illustrated graphically in Figure 2 (Ontario data).
In this case, 0 < A < v, and the solution is determined by the
behaviour of the functions R(!; ¥ - A/2) (the lower curve in
the graph) and n - 1. The same solution /* = 57 is obtained as

before.

E

40 0 120 180 208 248 280 328

N I, s
[] 20 40 50 " 100 120

{ {units ransiarred)

Figure 2. Use of R({; ¥y - A/2), R(;A/2), and (n - [) 10 construct
optimal take-all/sampled groups (Ontario)

4. SAMPLE SIZE DETERMINATION
AND COMBINED
ITERATIVE PROCEDURE

Given a sample design p(s, A), 0 < A < 2v, with sample size
n, the Transfer Algorithm yields an optimal construction of the
take-all and sampled sub-populations, U (/") and U, (I*),
respectively. Next, an expression for finding the minimal
sample size is obtained which meets the imposed precision
constraint — expressed in terms of the coefficient of variation
CV . The sample determination step is then integrated with
the Transfer Algorithm to develop a combined procedure
which allows the survey designer to find the globally minimal
sample size and optimal population partitioning,

4.1 Expression for New Sample Size

Let g represent the iteration cycle for the combined proce-
dure and n; = n,_+ n,, denote the total minimal sample size
required to satisfy the precision constraint. Given the sample
design p (s,A,l’(A,n)), current sample size n_, and the

a2 q -ql . . q * * * * q ..
population partitioning {U, q(lq »LU, q(lq }}, the precision
constraint for 7, =1, + 7., may be stated formally as

G102, *
V, s M, N-1 .0
min 2 =
IR

ov l) @.1)

Solving this inequality for n,, gives the following expression
for the minimal sample size needed in the sampled group
U;q(l ; ) to meet the precision constraint:

X M) X ()0 - M2)e

Mg =1, - 1 (n) = —L (4.2)

tg CVou + XU, €

where X(I;,M2) = Dot xa?, XU, - M2) = Ty txgs ™2,
and ¢, may be estimated from past survey data corresponding
to the period of the auxiliary information. The total new
minimal sample size required to meet the precision constraint
is then given by

ny =ng +n=10(n) vy, 4.3)

4.2 Combined Sample Redesign Methodology

Next, note that the solution to the Transfer Algorithm I”
depends on the current total sample size: Iq'(l)E 1; ,n).
Once the new minimal sample sizen, is determined, the
existing partitioning (U, ("), Uy, (1)} which was optimal at
n, is no longer optimal at the new fninimal sample size n,
because l‘(l,nq)k I'(A,nq) if n % n,. Therefore, letting
n, =n,,anew population partitioning from the Transfer
Aigorimp based on I.,(A.n,..), given by (U, ..,
Uy, ge1Uig.1)}, is 1equired to optimize the construction of
the take-all and sampled sub-populations. Next, applying
(4.2) over Upg.i(lg.)) gives a new minimal sample size
ng =l )+ ny,., required to achieve the desired
precision CV . Proceeding in this fashion, the combined
scheme produces a sequence of population partitionings,

sample sizes, and sample allocations
@A) (n, =t ., =n - 1)),
(N =1 Ny =N~ = 1m0, g =0,1,... (44)

with n_,, =n; =n,, +n,, and the initial value n, (current
survey sample size). The combined procedure is repeated
until further reductions in the minimal sample size can no

longer be achieved. This leads to the stopping rule

q * = min{ q: "q:—l - Hq‘ > 0}. (4.5)
q
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The optimality of the combined procedure can be
established using Theorem 2 and is omitted here due to space
(see Pandher 1995). The main result is that the combined
procedure converges to a globally optimal solution along the
path defined by (4.4) to a point where further reductions in
the sample size are not possible (by reconstructing U, and

U,) given the imposed precision constraint.

5. APPLICATION

The combined sample design pracedure described above
is now applied to the redesign of the Local Government
Finance Survey in the province of Ontario. The survey
response y in this application is the actual expenditures
reported for sampled local government units for Ontario in
1989. The actual estimates are prepared 30 months after the
end of the survey year from financial statements submitted by
the local government units to the Department of Municipal
Affairs (provincial). Population counts for the local
government units from the nearest census (1991) are used as
the auxiliary variable x. The population of local-level
municipalities for Ontario consists of a total of 793 units of
which a sample of 108 units is currently taken.

The results of applying the combined methodology to
Ontario LGFS data are reported in Table 1. The level of
desired precision CV_,, was set at 2% for the total regression
gstimator sz 1+ fR ,- Using the methods of Pandher (1995),
the best value for the heteroscedasticity parameter y in
Ontario was determined to be ¢ = 2; the corresponding pro-
portionality constant was estimated to be & = 0825, The near
optimal sample design defined by A = ¢ (p(s; 9)) was used.

Table 1

Application of Combined Methodology 10 LGF Survey Data
(Ontario, 1989)

- * *

Iteration (g) n, i n) L Ty, n,
0 108 39 39 18 57
1 57 16 16 34 50
2 50 12 12 38 50

For Ontario the combined scheme stopped at iteration
g = 2. The globally optimal population partitioning between
the take-all and sampled groups is N, = 16 and N, = 777.
The new minimal total sample size is n” = 50 with allocations
n,=16 and n,=34. A total sample size reduction of
ng - ny =108 - 50 = 58 is achieved at the desired CV of 2%
for the regression estimator tR =+ t

6. CONCLUDING REMARKS

This paper provides a comprchensive methodology for
identifying and implementing an efficient sample design for
recurrent surveys of skewed populations. The combined
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procedure intcgrates the solution to the following three
problems; i) identifying an efficient sample selection scheme,
ii} constructing an efficient demarcation between the take-
all and sampled population groups at a given sample size, and
iii) determining the minimal sample size required to meet the
precision constraink(s).

The equivalence resuit to the Transfer Algorithm (Pandher
1995) was used to create the take-all and sampled groups. The
first two components were then combined with a sample size
determination step through an iterative procedure. Under the
stoping rule, the combined iterative procedure converges to a
globally minimal sample size and optimal population
partitioning. Results from the application of the proposed
sample redesign methodology to the Local Government
Survey in Ontario were reported. A 52% reduction in the total
sample size was achieved for the regression estimator of the
total (f, =¢, - f,,) at the desired precision of CV = 2%.
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APPENDIX

A brief sketch of the development behind Theorem 2
(Equivalence Result) is given here; for technical details see
Pandher (1995). The same paper also establishes the desirable
mathematical properties of the Transfer Algorithm such as
existence and optimality of solution as well as the optimality
of the combined procedure.

Using the expression for the variance of V“)(be; -} given
in (3.1), the difference V**! - V% may be expressed as

pen_po_ o AMD BO (A1)
(n-0) (n-1-1) '

where

o A2

A=Y x5 - (- Dxgy

j=1

and
B(h= Z J‘(k) -h x(\;v—-ﬁ)n

The condition B(l} <0 may also be expressed as
n—1>R{;y - M2) where R({; ) = Y3 x /xiy_p. Similarly,
the condition A(f) > 0 corresponds to n - I < R(I; A/2). All
possible states of the system defined by the Tramsfer
Algorithm are summarized in Table A.1.
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Table A.1

Outcomes for V¢V - v@ < and VD -vD, g
inTermsof n® =n -

VL - y0 <o

i A B
Behaviour of A and Conditionon ¥ =n -1

AD>0 R{l; v - M) <n-1<R{; A2)
B(H<0 (T.1)
A <O RGA) <n-l<R{;y - A2)

B(H>0 (T.3)

vEboyd, 0
Conditionon n% =n - I

AD >0 n- s mn{R{;A2), R(l;vy - A2)}
B =20 (T.2)
A <0 n-12>max{R(I;M2), R(!y - A2)}
B <0 (T.4)

The first colurnn describes the behaviour of A(Z) and B(J)
leading to the outcome V¢V - V@< 0 and VOV -v© 0,
respectively. The second column describes the equivalent
condition in terms of n” = n - I, R(l; ¥ - A/2), and R(}; \/2)
corresponding to V@-vU V<0 and v®-yiD,
respectively. An important condition required for the solution
to the Transfer Algorithm [ *(A) is that K(N_D()L) <1 hold. It
is easy to verify that Ty n(A) < 1= A(D) > 0. In terms of the
description for the Transfer Algorithm given in Table A.1,
this condition means that the solution can occur only when
both A(l) > 0 and B(l) > O or, equivalently, when n - [
satisfies condition (T.2).

Table A.1 compietely enumerates all possible states of the
system defined by the Transfer Algorithm. The correspon-
dence between the internal cell quantities (computable
directly from the auxiliary data and estimated parameters) and
the margins (A(D), B(f), V¥V - v) represents a tautology

which leads directly to Theorem 2 (Equivalence Result). The
behaviour of the system described in the table also depends
on the sample design p(s; A) employed. The three relevant
cases are:

a) 0sd<y=[R(Iy~ A2)<R({; A2)],
b) A=y =[R(Y - M2) =R(L; A/2)], and
¢} Y<A=I[R(, vy - AM2)> R(, A2)].

In case a) the system starts (! = 0) in state (T.4), moves to
(T.1) and then finally rests in state (T.2); state (T.3) is
infeasible here, The solution to the Transfer Algorithm I'(A)
is given by the smallest { leading the system to move into state
(T.2). In case b), the system starts in state (T.4) and moves to
(T.2); (T.1) and (T.3) do not apply. Finally, in case c), the
transition path is from (T.4) 1o (T.3) to (T.2); here (T.1) is
invalid.
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