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In This Issue 

This issue of Survey Methodology contains articles on a variety of topics. Stafford and Bellhouse, in 
tiie first paper, present the basic building blocks to develop a comprehensive computer algebra for survey 
sampling theory. They show that three basic techniques in sampling theory depend on the repeated 
application of mles that give rise to partitions. The methodology is illusttated through applications to 
moment calculation of tiie sample mean, tiie ratio estimator and the regression estimator under the special 
case of simple random sampling without replacement. The machine application to the methodology 
described was done in the programming language Mathematica. 

Hinkins, Oh and Scheuren inttoduce a new sttategy for analysis of data from complex surveys. They 
draw a sub-sample in such a way tiiat the sub-sample may be considered to be a simple random sample 
from the original population and then apply standard procedures for IID data. They suggest repeating 
tiie procedure many times to recover information lost in sub-sampling tiie original sample. They show 
how to inplement their approach for sttatified element sampling, for one and two stage cluster sampling, 
and for two PSU per sttatum designs. 

Nascimento Silva and Skinner consider the problem of variable selection for regression estimation. 
They develop an approach based on minimizing tiie mean squared ertor of the resultant estimator. They 
empirically compare tiieir approach to otiiers using data from a 1988 test of Brazilian census procedures; 
the proposed procedures have good bias and mean squared ertor properties. 

Eltinge and Yansaneh study tiie problem of formation of nonresponse adjusttnent cells. Within tiie 
general paradigms of estimated-probability and estimated-item based cells, they consider a variety of 
diagnostics for evaluating a set of adjustment cells. The diagnostic procedures include: comparison of 
estimates and standard errors for different numbers of adjustment cells; assessment of within-cell bias; 
assessment of cell widths relative to precision of estimated response probabilities; and comparisons of 
cell-based estimates to the unadjusted estimate. 

KovaCevic and Yung conduct an empttical study to compare variance estimation methods for measures 
of income inequality estimated from complex survey data. Variance estimation methods included in the 
study are: jackknife; bootsttap; grouped balanced half-sanple metiiod; repeatedly grouped balanced half-
sample method; and a Taylor method based on estimating equations. After comparing relative bias, 
relative stability, and coverage properties of associated confidence intervals for a number of income 
inequality measures, tiiey conclude that the Taylor metiiod works best witii tiie bootsttap method coming 
second. 

Humphreys and Skinner investigate the use of the instmmental variable estimation method for 
estimation of gross flows among discrete states. This approach may be useful when external estimates 
of misclassification rates are not available. They numerically illusttate their method using data from the 
U.S. Panel Study of Income Dynamics and the two states "employed" and "not employed". They show 
that when measurement error is present, the unadjusted estimates can have considerable bias; this 
problem may be overcome by using suitable instmmental variables. 

Waksberg, Judkins and Massey discuss issues involved in oversatr^ling geographical areas to produce 
estimates for small domains of the population in demographic surveys, in conjunction with household 
screening. An enpirical evaluation of the variance reduction is presented, along with an assessment of 
tiie sampling robustness over time. Simultaneous geographic oversampling for estimation of several small 
domains is discussed. 

Losinger, in his paper, proposes a modified random groups standard ertor estimator for data from the 
U.S. Decenial Census sample. The usual random groups estimator has two undesirable properties for 
binomial variables: estimates of standard ertor for the "yes" and "no" responses are not equal; if all 
respondents answer "yes" the estimated standard ertor is not equal to zero. The essential idea of the 
proposed modification is to apply a ratio adjustment to each subgroup estimate so tiiat subgroup estimates 
of population agree with the total. 



In This Issue 

Finally, Zeelenberg gives a simple technique, which exploits the use of differentials, to linearize 
design-based, nonlinear estimators. Ultimately, the linearized expressions allow one to obtain simple 
Taylor-based expressions for tiie variances of tiie nonlinear estimators. He illusttates tiie technique using 
two examples: the regression coefficient estimator and the regression estimator. 

The Editor 
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A Computer Algebra for Sample Survey Theory 

J.E. STAFFORD and D.R. BELLHOUSE' 

ABSTRACT 

A system of procedures that can be used to automate complicated algebraic calculations frequently encountered in sample 
survey theory is inttoduced. It is shown that three basic techniques in sampling theory depend on the repeated application 
of mles that give rise to partitions: the computation of expected values under any unistage sampling design, the 
determination of unbiased or consistent estimators under these designs and the calculation of Taylor series expansions. The 
methodology is illustrated here through applications to moment calculations of the sample mean, the ratio estimator and 
the regression estimator under the special case of simple random sampling without replacement. The innovation presented 
here is that calculations can now be performed instantaneously on a computer without error and without reliance on existing 
formulae which may be long and involved. One other immediate benefit of this is that calculations can be performed where 
no formulae presently exist. The computer code developed to implement this methodology is available via anonymous ftp 
atfisher.stats. u-wo.ca. 

KEY WORDS: ^-statistics; Partitions; Product moments; Ratio and regression estimators; Symbolic computation; Variance 
estimation. 

I. INTRODUCTION 

In classical sampling tiieory two general problems concern 
us. These are the determination of an unbiased estimator of 
a parameter 9 and the calculation of moments of 0, the 
estimator of 0. 

The basic method to handle expectations and unbiased 
estimation is to operate on sample and population nested sums 
respectively tiuough the inclusion probabilities, either single 
or joint probabilities as appropriate. A nested sum is a sum 
over the range of one or more indices such that each term in 
the sum depends on indices of different value. An unbiased 
estimator of any population nested sum is the associated 
sample nested sum with the quantity under the summation 
divided by the appropriate inclusion probability. Similarly the 
expectation of any sample nested sum is the associated 
population nested sum witii the quantity under tiie summation 
multiplied by the appropriate inclusion probability. 

In sampling theory, as well as s'everal other areas of 
statistics, many algebraic calculations depend on a partition 
of some kind. With particular reference to sampling, Wishart 
(1952) showed that basic moment calculations under simple 
random sampling without replacement relied heavily on 
partitions. Here we will use partitions to express the sum of 
products of means or totals as linear combinations of nested 
sums and vice versa. 

In the results presented here we consider the situation in 
which 0 and 0 can be expressed as smooth functions of 
means or totals, population or sample as appropriate. There 
are two possibilities: the smooth function under consider
ation can be expressed as the sum of products of means or 
totals, or the smooth function cannot be so expressed. When 
the second possibility is operative the function 0 is first 

linearized through a Taylor expansion and 0 is exjpressed as 
the root of an estimating equation. We use integer partitions 
to obtain terms in the Taylor linearization of a function or for 
the root of a function. The end result is that 0 and 0 can be 
expressed, either exactly or approximately, as the sum of 
products of means or totals. These in turn can be expressed 
in terms of linear combinations of nested sums and vice versa. 
Estimation of 0 or calculation of the moments of 0 is then a 
tiiree step procedure: (a) Express an estimating equation for 0 
or the estimator 0 as the sum of products of means or totals, 
using Taylor linearization when necessary, (b) Transform 
the expression obtained in the first step to a linear combina
tion of nested sums. Then operate on these nested sums to 
obtain unbiased estimates or expectations as appropriate, 
(c) Transform the resulting nested sums in the second step 
back into a sum a products of means or totals. 

The key to automation of sampling tiieory results is the use 
of partitions. In general, whether these partitions are simple 
partitions, like that of an integer, or more complicated, like a 
full partition, each results from the repeated application of a 
fundamental mle. When tiie rule is identified, the possibility 
of automating a calculation arises. Seemingly unrelated 
formulae can result from the same fundamental rule and one 
computer algebra tool can be consttuctive in implementing 
many different calculations. 

The notation used in the paper is outlined in §2. A 
discussion of expectation operators is given in §3. The 
concept of partitioning is reviewed in §4 and a rule is 
provided which leads to a simple recursive method for the 
enumeration of partitions. Integer partitions and Taylor 
linearization is discussed in §5. It is shown in §6 how the 
enumeration of partitions leads to the automatic calculation of 
expected values of products of sample means and ^-statistics 

J.E. Stafford and D.R. Bellhouse, Department of Statistical and Actuarial Sciences, University of Western Ontario, tendon, Ontario, N 6 A 5B7. 
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and to the derivation of unbiased estimators of products of 
finite populations means and ^-statistics. Also in tiiis section 
we apply the methodology to ratio and regression estimation. 

Automation of these calculations and derivations will 
provide procedures which can be performed instantaneously 
and without ertor on a computer. Also, tiie reliance on 
formulae which may be long and involved is eliminated. A 
great deal of hand written algebra can be avoided. All 
computer code for the implementation of the methodology 
described here was written in the symbolic package 
Mathematica 2.0 which was installed on an IBM Rise 6000 
with 64 megabytes of RAM. It is available via anonymous ftp 
atfisher.itats.uwo.ca. Altiiough we use Mathematica, imple
mentation in otiier envttonments such as Maple, Macsyma or 
Reduce is no doubt possible: For example, Keqdall (1993) 
describes a system, implemented in Reduce, for the 
identification of invariant expressions. For a complete review 
of conqiuter algebra in probability and statistics prior to 1991, 
see Kendall (1993). 

2. SOME NOTATION 

Consider a finite population of size N. A measurement of 
interest v is made on each umt j,j e U = [I N). In 
addition a single auxiliary variable Xj or possibly a P x I 
vector of auxiliary variables Xj may be taken on the units. 
The p-th entry of this vector Xj is x^j, where p = I,.... P. 
Several kinds of finite population parameters may be defined 
on the measurements y ,̂ Xj, or Xj for 7 = 1,..., N. We denote 
a finite population parameter of interest by 0. Often 0 can be 
expressed as a smooth function of finite population means, 
centtal moments and it-statistics. For convenience here we 
will deal only with means and A;-statistics. Note tiiat finite 
population variances and covariances are also second order, 
i-statistics. 

Not all A'̂  population elements are observed. Suppose that 
a sample s of size n is chosen froin tiie population U by some 
sanphng scheme. An estimator of 0, given by 0, is a smooth 
function of sample means and sample ^-statistics. 

In order to avoid much cumbersome summation notation 
we adapt tiie index notation of McCuUagh (1987) to our 
purposes. For anyy the vector jc contain P entiies so that 
each of these x-variables may be associated with one of the P 
indices. Suppose {/,,..., i^} is a subset of m of these P 
indices. In our adaptation of McCuUagh's notation, x, is 
now what we called the vector xf. Products of these indexed 
quantities become multidimensional artays. For example the 
product X x X is a three-dimensional array of dimension 
PxPxP. 

Let A/denote a finite population mean. The argument of 
M shows the stmcture of the summand in the mean. For 
example, M{y) = Y^j^ay/N and M{yy) or equivalentiy 
M{y^) = Y^euyJ^^- ^" index notation, for example. 

is a three-dimensional array. An element of this array is the 
mean of products in one of tiie permutations of the P elements 
taken three at a time in JC where up to three of the elements 
may be alike. The {p,q,r)-th element of this artay is 
y ^,,x x X where p,q,r = 1,..., P. The sample mean is 
denoted by m so that, for example. 

jes 
(2) 

For the purpose of making asymptotic expansions, since 
the variance of a given estimator 0 will be 0{n"'), we define 
a standardized variable for 0: it is the original variable 0 
centered about its expectation and scaled by l/^w. That is, 

z(0) = [0-£(0)]v/^. (3) 

When necessary we use the summation convention of 
McCuUagh (1987), where subscripts repeated as superscripts 
indicate implicit sums over that index. As a particular 
example, on assuming that the Xj are independent and 
identically disttibuted vectors from some infinite super-
population, multivariate superpopulation moments can be 
obtained through the moment generating function which is 
expressed in this convention as 

M G F ( 0 = 1 + E P , . . . , ]!/' '//»!. (4) 

where 

M, 

A=l 

a* 

7 = 1 

' '* dt, ...dt, 
MGF{t)\,__,. (5) 

jeU 
(1) 

By definition, the relationship between tiie moment generating 
function and the cumulant generating function is determined 
by the mle MGF(0 = exp {K{t)], where 

K(O=I:K ..rir'v/,! (6) 
h'l ' *y=i 

is the cumulant generating function, where 

The finite population ^-statistics, denoted by K{-), are 
defined as the unbiased (under the i.i.d. superpopulation 
model) estimators of the associated model cumulants. The 
number of arguments in K separated by, commas denotes the 
order of the A:-statistic. For example, tiie tiiird order ^-statistic 
K{x. ,x. ,x ) is the model-unbiased estimate of (6), where 

' l '2 '} 

^^\'\'''<) ~- {N-l){N-2) 

X E ^\j - Mx,,)][x - M(x,;][x,^. - M{x,)]. (7) 
jeU 

In the univariate case finite population ^-statistics are 
described in Wishart (1952). In particular K{y,y) and 
K{y,y,y) in the curtent notation are K^ and K.^ in Wishart's 
(1952) notation. The sample ^-statistics, denoted by *()with 
the appropriate arguments, are defined as the unbiased 
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estimators under simple random . sampling without 
replacement of the associated finite population ^-statistics. As 
in Wishart (1952) the sample ^-statistic can be obtained from 
the population ^-statistic upon replacing N by n and upon 
taking the sum over jes rather than all units in the finite 
population. For example, 

^x,. ,x, ,x.)= ?̂ 
'• '' '' {n - l){n - 2) 

X Y: [X,,̂  - m(x. )][x,̂ . - m(x,p][x,^. - m(x,;]. 

Note that if a comma is not present in the population or 
sample ^-statistic, then the product of elements which appear 
together is required. For example, K{xy) is the first order 
finite population ^-statistic of a new variable which is the 
product of tiie measurements Xj and y forj=l,...,N; K{x,y) 
is a second order ^-statistic, in particular the finite population 
covariance between x and y. 

3. OPERATORS 

The expectation operator E can be applied directly to any 
sample nested sum to obtain a finite population nested sum. 
Likewise an unbiased estimator of any finite population 
nested sum is a sample nested sum. In terms of ttiple nested 
sums, for example. 

and 

Jl^ij\kS,YE^jkt\jX^,k^i,, 

N 

T\j\k\,~j:x,^jX,^,x,^,/njkr 
- '3.1 -fi^^ 

(8) 

(9) 

where J^ is tiie index set {/, k, I] such tiiat y * k* I and where 
tiju is ajoint inclusion probability. Parallel expressions may 
be established for with replacement sampling schemes. 

Note that m will be unbiased for the associated M under 
simple random sampling witiiout replacement. In general for 
any sampling design of fixed size n, 

E[m{x.x^x.;)] = -M{x.x.x,n) 

and 

M{x x. x.)~ — m{x. x. X, In) 
'1 '2 <i \i '1 '2 '3 

where M{x.x.^x.) and OT(X.^X. X. ) are defined in (1) and (2) 
respectively. 

The whole operation of finding expectation of an estimator 
0 or of finding an unbiased estimator for the parameter of 0 
may be represented schematically as 

En-EE-En. 

where YJl denotes the sum of products and Y^T. denotes a 
sum of nested sums. If 0 or 0 can be expressed as a YJl 
quantity, i.e., a sum of products of means, then finding an 
unbiased estimator of 0 or moments of 0 reduces to following 
the schema in (10) and applying the appropriate operator, such 
as those given in (8) or (9), to XZ. the middle step in the 
schema. If 0 or 0 are smooth functions of means but cannot 
be expressed directly as YJl quantities, then an initial step is 
required before applying the schema in (10). For 0 the initial 
step is to obtain a Taylor expansion of 0. For 0 the initial 
step is to obtain an estimating equation and then to solve it for 
the parameter. 

We illusttate tiie schema in (10) by considering the simple 
case of finding £[{OT(X, )}^] under simple random sampling 
without replacement. 'The first operation is to express 
{OT(X, )}^ in terms of nested sums. In particular, 

l'"̂ ,)l' = -^E4-7J?V.,. n jes n '•j'kes 
(11) 

This is the YJl °* EE step. Now the expectation operator can 
be applied to EZ- On applying inclusion probabilities 
nj = nlN and 7r̂^ = «(n-1)/[A'(A^-1)], the expectation 
operation on (11) yields 

1 n 1 « V-v : 1 n{n- 1) 
„2 Nj^i •'' „2 N{N- 1) jtj; E-„ \ j \ k • (12) 

Now the ZZ •°* Z n step is applied. On expressing the nested 
sum in (12) as the sum of products, in particular Z ' l iX. x .= 
Z>=î ,,yZy=iX,,y- Lj^iXijX.^ , the third operauon yields 

£ [ { ( . ( x . ) } ^ ] = M ^ 
' (A ' -1 )A7 

{M(x,.)}^. ^ - " -'-' 
n{N-\) 

^(Xi). (13) 

(10) 

In (13), M{x.;)=K{x) and M(x,̂ ) = [M(A^-1)]A:(X,.^,X,_) + 

K{x. )K{x^) so that (13) can be ree'xpressed as 

E{m{x./) = {/C(x,. )}2 + {N-n)K{x^,x.)l{Nn). (14) 

Likewise, following the schema in (10), the operations for 
finding an unbiased estimator of, for example, {A/(x, )}^ is 
similar to (11), (12) and (13). The estimand {M{x'')]^ is 
expressed in nested sums similar to (11). These sums will be 
nested finite population sums. Similar to (12) the inclusion 
probabilities are applied. In this case the finite population 
sums are replaced by sample sums and summand is divided by 
the appropriate inclusion probability. Finally, similar to (13) 
the resulting nested sample sums are expressed as products of 
sums. 

Each of the elementary operations to obtain an expected 
value through equations (11), (13) and (14), or to obtain an 
unbiased estimator, can be carried out using partitions. These 
operations are: expressing sums of products as nested sums 
and vice versa, and expressing means in terms of ;fc-statistics 
and vice versa. 
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4. PARTITIONS AND FUNDAMENTAL 
PROCEDURES 

Central to the automation of all algebraic calculations 
considered here is the notion of a partition. Partitioning as a 
focal point gives the appearance that the automated methods 
presented here are notiiing more than an integer partition or a 
partition of an index set. While we assume that a partition of 
an integer is understood, a full partition requires a more 
formal definition. 

Consider a set of m indices /^ = {i,,..., i^]. A single 
partition P^ of /^ divides the m indices into k ^ m mutually 
exclusive and exhaustive subsets or blocks of /^. We write 
P^ = (*i I *21 ••• I ^*) • where die i , , ...,b^ are tiie blocks of /„. 
P is unique up to permutations of indices within the blocks 
b^. The block 6, is comprised of a subset of the indices of 
/ . Elements within a block may be consttained to an 
alphabetical ordering and the blocks themselves may be 
ordered such tiiat leading elements of each block are ordered 
alphabetically. This ensures the uniqueness of the partition 
P . In this case P would be called a standard ordered 

m m 

partition. Ordering the partitions in this manner does not 
offer any computational advantage and hence is not a 
requirement in what follows. The full partition of /^ is the 
set P^ of all single partitions P^ of /^. 

Now we may identify the full partition of /^ in an 
algorithmic way via an inclusion-exclusion mle. 
i. Let P, = {(,}. 
ii. An inclusion-exclusion mle determines the conttibution 

to P, by a partition /',_, e P,., • In the inclusion part of 
the rule, the new index /, is added as an element in turn 
to each of the blocks by ..., b^ which comprise /•,.,. If 
/',_, has/t blocks, A^partitions for P, are created. In the 
exclusion part of the rule a new block containing the 
single index /, is added to /",_,. 

For example, the full partition of /j = {/,, i^, '3} is given by the 
steps 
i. P, = {(',)} 
ii. 9^ = [{i,i^),{i,\i^)] (15) 
iii. P3 = {(1, /2/j), (1, /21 '3). ('1 '3 I '2)' ('11 '2'3)' ('11 '21 '3)}• 

From step (i) to step (ii) the inclusion rule results in the 
partition (/, i.^ and tiie exclusion mle results in (/, | i.^). From 
step (ii) to step (iii) the inclusion mle results in the creation of 
the partitions (/, i.2.i^), (/, /31 /j), and (/, | ij/j). The exclusion 
mle yields the partitions (/, i^ \ '3) and (/, | i^ \ i^). This type of 
constmction is easy to automate since it depends on a simple 
rule. Details of automating the partition of indices into full 
partitions and complementary set partitions are given in 
Stafford (1996). 

Consider, for example, the classical problem of writing the 
model moments of the random vector x, in terms of its 
cumulants. As in (5) we can identify the h-th moment array 
by differentiating MGF(r) in (4) h times and setting / equal 
to the zero vector. The result is the h-th coefficient in the 
expansion of MGF(0. Equivalentiy we can apply the same 
operation to exp{K(0}. In this case the result is a sum that 

depends on the coefficients of K(/) in (6). For example, we 
may write the first three moments in terms of cumulants as 
follows: 

^'', = \ 

U . . = K. + K . K. + K K. + K. K. , + K, K. K, . 
^'l '2 '3 'l'2'3 'l'2 '3 'l'3 '2 '1 '2'3 'l '2 'j 

Now in each case the result is a sum over the full partitions 
given in (15). These partitions arise since the multiplication 
rule for differentiation mimics the inclusion-exclusion mle for 
the enumeration of the full partition. 

The above result is applied to sampling theory where we 
consider the problem of finding the expected value of a 
product of sarrq)le sums. The calculation requires expanding 
the product of the sums to identify terms where tiie finite 
population expectation operator will behave differentiy due 
to differences in tiie values of inclusion probabilities and joint 
inclusion probabilities. 

For example, tiie product of sums Yjes^i^jljes\jYj,s^i,j 
can be expressed as 

Ê ,,ŷ ,V ,̂y * E ,̂,ŷ ,v̂ * * E Wk^, 
jes j»kes 

^ E \k^ij\' E \j\k\i-{16) 
j'kes Jrk'les 

The result corresponds to the full partition of the indices 
/j = [iyi^,i.^] given by P3 in (15). The order of the partitions 
in P3 is the same as the order given for the terms in (16). For 
each partition in P3, the variables in the same block have the 
same second index in the appropriate term in (16). For 
example, the partition {i^ i^ \ i.^) corresponds to the term 
Z.^^^x, x,^x. in (16). Each term in the result can be 
identified by a partition of I^ and each partition determines 
the manner in which the expected value operator will behave. 

In general, we want to expand products of the form 
nr=i Z/ejX, /> where tiie product is taken over the elements i^ 
of the index set /^ = {/,,..., i^]. As in (16), the product can 
be expressed in terms of the full partition of /^. This is 
because the iterative mle for expanding a product of sums 
mimics the inclusion-exclusion mle. 

The expansion of the products of sums through partitions 
is demonsttated inductively as follows. Assume the product 
of the first r - 1 sums can be expressed as a sum over the full 
partition of the index set /, . ,= {/,,...,/,.,}, in particular 

n(Ev= E .̂, (17) 
r=1 jes 

In (17) the term X^ is the sum identified by the partition 

?, . , = ( i , I... I bf), k=l,...,t-l. The blocks 6. indicate groups 
of variables with the same second index and so /*,., induces 
an index set J^ = (/,, ..,7^} of second indices. We can 
express X, as 

file:///j/k/i
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= E 
j^'...*ji,es m- (18) 

where X^ is a product of x's defined by the block b. that all 
have tiie same second index. To illusttate (18), consider, for 
example, the third term of (16). Here /',_, = {i^i.^\i.^ and 
^2 = I/', k] so tiiat in (18) tiie sum is taken overy ;* A:65 and tiie 
multiplicands of the product are X^ =x. x. and X^ =x. ^. 
Returning to tiie general discussion, when etther side of (1^) 
is multiplied by Zjes^ij the product of the first t sums is 
obtained. Now tiie product X, y.^x,, can be expressed as 

>Ji,es 
ThtUx, 
/=! 

V/ 
jeJ, > i ' - ' V > * . i " (^'•4 (19) 

The first term in (19) corresponds to the inclusion part of the 
mle and tiie second term in (19) cortesponds to the exclusion 
part of tiie mle. When (19) is summed over aU /*,. ,??,. , , the 
result will be a sum over the full partition of tiie first t indices 
given by /,, i.e., the sum over all P,e9^. 

Once tiie product of sums, nr=i Zye.^, y '« expanded into 
a sum of nested sums, the finite population expected value 
operator can be applied to each term so that the expected 
value of this product can be obtained. The expected value 
under simple random sampling without replacement of the 
product of sums results in a weighted sum of nested sums, 
witii each sum taken over tiie finite population. We tiien wish 
to evaluate these nested sums. 

In general we wish to evaluate the nested sum Zy Yj 
where 7, is tiie index set (/,, ...,y,}. The sum is taken over all 
y'l " • •• *j, with each y,. = 1,..., Â . The summand Yj is the 
product X X ... X. .. In the special case when 't = 3 or 

•L/l '272 hJi * 

Ji = \J,k,l] tiie nested sum can be written in terms of full sums 
as 

T.Y> jki 

N 

- E 
J'k-I=l 

•jkl 

N 

- E ^i^i^i^k^ijl '' 

N N N 

2E \j^i,j\j- E x . , / , E ^,3,- E ^../vE ^v -
J-' j'i j'l j=i y=i 

N N N N N 

E x,„E \j\j'T \jE ^,,yE \j • (20) 

Note that the full sums in the rightmost expression in (20) 
result from the full partition pj in (15). The order of the 
partitions in pj is the same as the order of the terms on the 
right of (20). The subscripts on the right of (20) denote the 
block membership in p j . For example, tiie partition (/, i^ \ i^) 
cortesponds to tiie term Zy'tiX,,yX,,yZy'liX,,y i" (20). Note also 
from (20) that the detemunation of" a nested sum is 
complicated by the additional determination of the 
appropriate coefficients of the full sums. 

In general the evaluation of finite population nested sums 
results from the repeated application of the rule 

E 
y , * . ' y , = i '•=1 / Jt'-'j,-ri 

N 

- E 
J,'..'J,.ri 

/ - I 

•rJr 

/J 
(=1 I i-i 

(21) 

This expression mimics the inclusion-exclusion mle where the 
first set of sums on the right follows the exclusion part of the 
mle and the second set follows the inclusion part of the rule. 
Repeated application of (21) yields 

N I I \ 

- . . . » ; , -1 V'-=l 7 i ' - ' A -
E (-1) 

\jy\p,\ 

i\K\-\) 

where 17, |, | /»,! and | i J are the number of indices in 7,, 
the number of blocks in the single partition P and the 
number of elements in the block b^ respectively. 

5. INTEGER PARTITIONS AND TAYLOR 
LINEARIZATION 

Suppose that under some sampling design an estimator 0 
of a parameter 0 is of interest. The methodology described 
in §§2 to 4 may be used in moment calculations for 0 or to 
find unbiased estimators of these moments. Only in the 
simplest cases can this methodology be applied directly. 
Typically 0 must be linearized so that it becomes a 
polynomial function of sample means or sums which are 
0^{\) random variables with respect to the sampling design. 
Once 0 is linearized in this way the methodology of §§2 to 
4 is applicable. 

The objective of the linearization is to write 0 as an 
asymptotic expansion where terms descend in order by 1/v/n, 
specifically 

0 = 0 „ . Ojy[n + Oj/i + (22) 

where 0. is the coefficient of the n'"'^ term. Typically 0 is a 
product of quantities that can also be expanded in this way. 
For example, if the measurement of interest is y and one 
auxiliary variable x is present then 0 might be Miy) and the 
auxiliary information available is M{x) as well as x. forye^. 
Then 0 = M{x)m{y)lm{x), the simple ratio estimator, is a 
product of three quantities M{x),ni{y) and llm{x) all having 
asymptotic expansions of their own. The expansion of M{x) 
is itself. From (3) the expansion for mty) yields 
Miy) + z{m{y))l-ln. The expansion for l/w(x) results from 
(3) and then applying a Taylor expansion to 
[M(x)+z(w(x))/v/«]-'. 
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In general any expansion of a function with sufficient 
regularity can be found if operators are defined to expand a 
function, say g<e) where e is itself an expansion! We are 
interested in expanding functions of the form 

g(e) A 
y=i 

^r (23) 

where e itself has the expansion Yjl^oC^jn'-"^. In hnearizing 0 
the basic requirement is to define an operator that returns 0, 
in (22). The efficiency of this operator derives solely from a 
rule for expanding functions of the form giveii in (23). The 
calculations required are functions of integer partitions. For 
example the lln term in the expansion of Jlj^i Cj is 

^21^02^03 ^ ^01^22^03 * ^01^02*23 * ^11^12^13 "̂  

^11^02^13 * ^01^12^13 • (24) 

Collecting first indices for each term in tiie sum results in a list 
in which each element sums to 2: {(2,0,0), (0,2,0), (0,0,2), 
(1,1,0), (1,0,1), (0,1,1)}. On noting that the order n'"^ term 
in any expansion e is actually the (/ + l)-th term in the sum 
Zr=o ,̂ " "^' we may modify tiie list derived from (24) so that 
entries identify the position of terms in a sum. The 
modification is to add 1 to each index value in the list. In the 
list derived from (25) tiiis results in all partitions of tiie integer 
5 into 3 blocks: {(3,1,1), (1,3,1), (1,1,3), (2,2,1), (2,1,2), 
(1,2,2)). In general, the i-tii term in the expansion of J^,, Cj 
or ef, where p is a positive integer, is a sum over all 
partitions of the integer / + p into p blocks. Consequentiy, 
using this methodology any term in the expansion of, for 
example, the ratio estimator can be found. 

We illusttate this technique with ratio and regression 
estimation. The ratio estimator is given by 

M{x)m(y)lm{x) (25) 

e,3=(-l)'{z(/w(>'))}'/{A/(Jc)}'*'- Togetthe l/y^ term in the 
expansion of (27), in which case / = 1 and /? = 3, we need to 
find the integer partitions of 4 in blocks of 3. This yields the 
partitions (2,1,1), (1,2,1) and (1,1,2). On subtracting 1 from 
each index value in the list we obtain the list (1,0,0), (0,1,0), 
(0,0,1). Therefore the required term in the expansion is 

(̂ 11 0̂2̂ 03 ̂  «oi 1̂2̂ 03 ̂  0̂1 ̂ t>2^y})l^f" °^ cquivalcntiy 
{z{m{y))-M{y)z{m{x))IM{x)]l^|n. The 1/w term is obtained 
from (24) which reduces to 

[M(y>{z(x)} /̂{M(x)}2 - z{x)z{y)IM{x)]ln. 

The regression estimator in (26) may be expressed as 

K{y)^'JM}.. K{x,y)^^^^^^Myi 

K{x,x) 

fn 

z{k{x,x)) 

fn 
z{k{x)) 

fn 
(28) 

using (3). The terms in the square brackets in (28) can be 
expanded in a similar fashion to the ratio estimator. In this 
case the terms in the expansions become: CQ, = K{x,y), 
e.. =_z{k{x,y)) and e. :0;e,2 = (-l)'{z(A:(x,x))}7 
{A:(X,X)}'*' for / = 0, 1, 2,...; and 603 =0, Cj, =z(A(x)) and 

li^ 6̂ 3 =£33 = ••• =0. Consequently, the ll^n term in the 
expansion of the terms in the square brackets in (28) is 

K{x,y)z{k{x)) 

K{x,x)fi 

and the lln term is 

z{k{x,y)) K{x,y)z{k{x,x)) z{k{x)) . 
K{x,x) K{x,xf 

These were obtained by the same argument that was used in 
the ratio estimator. 

and the regression estimator by 

k{y) + b {K{x) - k{x)] = k{y) + - ^^^ [^ (x ) - *(x)] (26) 
K(X,X) 

6. MACHINE APPLICATIONS TO THE 
CALCULATION OF EXPECTED VALUES OF 

SAMPLE STATISTICS AND THE DERIVATION OF 
UNBIASED ESTIMATORS 

in the notation of ̂ -statistics. 
On using (3) tiie ratio estimator (25) may be expressed as 

M{x) M(y) £00 

fn 
M{x)^^ (27) 

The expression in (27) may be expressed in terms of (24) with 
p = 3. The first term in (27) is die expansion Zr=o^;i" '̂  witii 
CQ, =M{X) and e^^ =e •^01 

brackets in 
2, = ••• = 0. The first term in square 

(28) is the expansion Y.1=o^,i"'''^ where 
= 0. The second 0̂2 =M{y), e,2 = z{m{y)) and ê ^ = e^^ 

term in square brackets is the expansion YJI^-O^H"''^ where 

Since the machine application to the methodology 
described in §§3 to 5 was done in the programming language 
Mathematica we give a brief description of the operation of 
Mathematica. Then we describe the operators that were 
developed in Mathematica to provide a computer algebra for 
survey sampling theory. 

Programming in Mathematica is cartied out using 
expressions of the form /i[e,, e^ ...] where the object h is 
called the head of the expression and the e's are the elements 
of the expression. We have developed a number of machine 
expressions in Mathematica in the form of /j[e,, Cj. • ••] fo"" 
operators which we apply to developing a computer algebra 
for sampling. All of these operators have been devised to 
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handle vectors as their arguments as well as scalars. There 
are four basic operators: EV[-] for expected value, Cum[-] 
for calculation of cumulants, UEl] for unbiased estimator, 
and Aexp[] for asymptotic expansion. There is also an 
operator to switch from notation using ^-statistics to notation 
using means and vice versa. 

The expected value operator EV[-] on sample statistics 
combines and carries out in Mathematica the three basic 
operations shown in the schema in (10). EV[-] contains two 
arguments, the first is the expression for which the expected 
value is to be obtained and the second is the sampling design 
which defines tiie inclusion probabilities. The application in 
Mathematica of EV[-] to m{x, )m{x, )/n(x,.) under simple 

I 2 3 

random sampling without replacement yields 

K{;c.)K{x^)K{x.) 
11 If i . 

{N-n){K{x.^,x.^)K{x.^) 

Nn 

K{x,,x,^K{x,yK{x,)K{X,,x,^) 

Nn 
{N^-3Nn*2n^)K{x,,x.,x.) 

'l '2 '3 

2„2 N^n 

in the simplest expression of the output. Note that the result 
is a function of the full partition of {/,, Ẑ , i^ ] • If the operand 
is changed to {m (x,._) - M{x.)} x {m{x.) - M{x.) ] x 
{OT(X,. )-A/(x,.)}, application of £ l l ] yields 

{N^-3Nn*2n^)K{x.,x,,x.) 
' i '2 '3 

N^n^ 

which was obtained by Natii (1968) for particular values of the 
indices /,,/2 and i^. In fact, the results in Nath (1968, 1969) 
for tiie products of three and four means and the exact results 
in Raghunandanan and Srinivasan (1973) for up to a product 
of eight means can all be reproduced automatically with the 
software that has been developed. 

To this point the sampling design used in each of the 
examples has been simple random sampling without 
replacement. Results under general sampling designs can be 
obtained. We illusttate these results for the operator Cum[-] 
which is used to obtain the cumulants of an estimator. Note 
that the second cumulant for an estimator is also the variance. 
The operator Cum[-] has three arguments. The first is an 
expression for the estimator, the second is the order of the 
cumulant and the third is the sampling design. Under general 
sampling designs, estimators can be expressed in terms of 
z n '1 the schema given by (10) and the ZII can be 
expanded to obtain ZZ- the middle term in (10). There is, 
however, no general simplification to obtain the final term in 
(10). This is illusttated witii tiie Horvitz-Thompson estimator 
of M{y) given by {nlN)m{yln) in the notation developed 
here. Application of the operator Cum[-] under a general 
sampling design to obtain the third cumulant of the Horvitz-
Thompson estimator yields 

tAm ti 
' = ' " / , 

N' 

N N 

/=! J=l {liptj) 

N' 

N N 

N' N' 

N N N 

*EEE 
; = 1 A = l * = 1 

hjkyjyjVk 

N' 

where, for example, the term jr.. is the single inclusion 
probabiUty n.. 

The operator Aexp[-] has two arguments, the function for 
which the expansion is required and the order of the 
expansion. This operator is used in combination with the 
£F[]or Cum[-] operators to obtain approximate 
expectations or cumulants. This is illusttated in the case of 
the multiple linear regression estimator under simple random 
sampling without replacement. When there are q covariates 
the resulting regression estimator is given by 

k{y)^b.[K{x'')-k{x'')] (29) 

using index and ^-statistics notation. In (29) the coefficient 
b. is the vector resulting from the product kix., y) ik{x'', x.) 
in index notation, where the ^ x qr array /Vt(x., x.) is tlie 
inverse of the qxq artay given by A(x,. ,x,.p. Similarly we 
will use IK{Xi,x.) to denote the inverse of the finite 
population array A(x. ,x . ) . Derivation of the mean square 
error of (29) requires Taylor expansions of the elements of 6. 
followed by the appropriate moment calculations anci 
collection of terms. The Mathematica command to obtain the 
approximate variance of (29) is obtained by first applying 
Aexpl] to (29) with 2 as the order in the expansion. Then the 
dperator Cum[-] is applied to the result with the following 
arguments: the result from the asymptotic expansion as the 
estimator, simple random sampling as the design and 2 for the 
order of the cumulant. This yields 

(:N-n)K{y,y) , {'^^ ^ ")K{x^^,y)K{x,^,y)IK{x\x'^) 

Nn Nn 

in index notation as output. 
Estimation is achieved through the operator UE[-] which 

has two arguments, the estimand and the sampling design. 
For example, application of UE[-] to {M{x)]^ under simple 
random sampling yields 

{Nn){k{x))^+ {N-n)k{x,x) 
Nn 
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If the estimand cannot be expressed as a sum of nested sums, 
but instead can be expressed as the root of an estimating 
function, then UE[-] obtains a consistent estimator. 

from the Natural Sciences and Engineering Research 
Councils of Canada and by a research conttact from Statistics 
Canada. 

7. DISCUSSION OF FUTURE WORK 

The basic building blocks to develop a comprehensive 
computer algebra for survey sampling theory have been given. 
The foundation of this algebra is based on tiie enumeration of 
partitions. Fundamental operations under partition enumer
ation include the evaluation of nested sums and Taylor series 
expansions. Once tiiese operations have been completed then 
expectations of sample statistics can be calculated or unbiased 
estimators of population quantities can be determined. 

The next phase in this work is to extend the unistage 
results to multistage and multiphase sampling. In both multi
stage and multiphase sampling the problem reduces to the 
computer evaluation of multiple sums under an expectation 
operator or the determination of an unbiased estimator of 
multiple finite population sums. The problem of multistage 
sampling is curtently under investigation. Another curtent 
area of inquiry is to extend the algebra to superpopulation 
models. 

Once the basic algebra is in place then research problems 
involving algebraically complex sampling formulae can be 
easily investigated. 
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Inverse Sampling Design Algorithms 
SUSAN HINKINS, H. LOCK OH and FRITZ SCHEUREN' 

ABSTRACT 

In the main body of statistics, sampling is often disposed of by assuming a sampling process that selects random variables 
such that they are independent and identically distributed (IID). Important techniques, like regression and contingency table 
analysis, were developed largely in the IID worid; hence, adjustments are needed to use them in complex survey settings. 
Rather than adjust the analysis, however, what is new in the present formulation is to draw a second sample from the original 
sample. In this second sample, the first set of selections are inverted, so as to yield at the end a simple random sample. Of 
course, to employ this two-step process to draw a single simple random sample from the usually much larger complex survey 
would be inefficient, so multiple simple random samples are drawn and a way to base inferences on them developed. Not 
all original samples can be inverted; but many practical special cases are discussed which cover a wide range of practices. 

KEY WORDS: Finite population sampling; Inference in complex surveys; Resampling. 

I. INTRODUCTION 

The development of modern survey sampling is an 
extraordinary achievement (Bellhouse 1988; Hansen 1987; 
Kish 1995). The very richness in that development may have 
had tiie effect, though, of isolating survey sampling from the 
rest of statistics - where it is the richness of models that is 
given emphasis. In fact, it is a well-known commonplace tiiat, 
in the main body of statistics, sampling is often disposed of 
by assuming a sampling process tiiat selects random variables 
such that they are independent and identically distributed 
(IID). 

Important techniques, like regression and contingency 
table analysis, were developed largely in this IID world; 
hence, adjustments are needed to use them in complex survey 
settings. Indeed, whole books have been written on this 
problem (Skinner, Holt and Smith 1989); and much time and 
effort have been devoted to it in software (like SUDAAN or 
WESVAR PC) specially written for surveys (See also Wolter 
1985). With all that has been done already, can something 
more of value be added? We think we may have a 
contribution to offer on how to deal better with the "seam" 
which curtently exists between IID and survey statistics. 

Organizationally, the paper is divided into four sections. 
This introduction is Section 1. In Section 2 and 3 a general 
problem statement is provided and several "resolutions" are 
offered in a few of tiie better known designs. Our approach is 
to resample the complex sample to obtain an easier to analyze 
data structure. Specifically, we cover stratified element 
sampling, one and two-stage cluster samples, plus the 
important two PSU per stratum design (Section 2). Because 
any given resample is unlikely to contain all the information 
in the original survey, we look at what happens when the 
original complex sample is repeatedly resampled. A concrete 
illustration of our ideas is also given in Section 3; this has 

been taken from our practice and is based on a highly 
sttatified Statistics of Income (SOI) sample of corporate tax 
returns {e.g., Hughes, Mulrow, Hinkins, Collins and Uberall 
1994). In a concluding section (Section 4), we discuss a few 
applications and some next steps needed for our still embry
onic ideas to grow more useful. 

2. PROBLEM STATEMENT AND POSSIBLE 
"RESOLUTIONS" 

2.1 Motivation and Basic Approach 

Suppose we wanted to apply an IID procedure to a 
complex survey sample. Suppose, too, tiiat we wanted to take 
a fresh look at "solving" the seam problem that occurs 
because the survey design is not IID. How might one 
proceed? Well, tiiere is a familiar expression that may fit our 
approach 

If you only have a hammer, every 
problem turns into a nail. 

Now, as samplers, we have a hammer and it is sampling 
itself. Can we turn the seam problem in surveys into a nail 
that can be dealt with by using another sampling design? 

It is our contention tiiat some of tiie time the answer to this 
question is "Yes." We call this second sample design an 
"Inverse Sampling Design Algorithm" - hence, the name of 
this paper. 

A schematic might help visualize tiie algoritiim(see figure 1). 
In tiie diagram two sampling approaches are compared - both 
yielding simple random samples from a population: 
(1) The first design (top row) does this by employing a 

conventional direct simple random (SRS) selection 
process {eg., Cochrane 1977), such that all possible 

Susan Hinkins, Internal Revenue Service, Bozman, MT, U.S.A.; H. Lock Oh, Intemal Revenue Service, Washington, DC, U.S.A : Fritz Scheuren Ernest and Young, 1402 RuffnerRd., Alexandria,VA 22302 U.S.A. 6 • • i/; .ji-iicuren, cmesc ana 
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samples of a given size have the same probability of 
selection. (Such designs are often impracticable or 
inefficient or both; hence, they are almost never used by 
survey samplers, despite their ubiquity in textbooks.) 

(2) The second design envisions a two-step process. The 
first step is to sample the population in a complex way 
that focuses carefully on the nature of the population 
and tiie client's needs - using the client's resources 
frugally (this is the survey sampler's province, par 
excellence).' 

(3) What is new in our formulation is to draw a second 
(perhaps complex?) sample that inverts tiie first setxjf 
selections, so as to yield at tiie end a simple random 
sample. Of course, to employ this two-step process to 
draw a single simple random sample from the usually 
much larger complex survey would be inefficient, so 
we propose to create multiple simple random samples 
and base our inferences on them. 

Popula
tion 

1 
Complex 
Sample 
Design 

1 
Complex 
Sun/ey 
Sample 

Usual 
SRS 

Selection 
• 

Simple 
Random 
Sample 

Inverse 
Sample 

Selection 
• 

Simple 
Random 
Sample 

While elaborations are possible, the basic nature of the 
algorithms we are talking about should, by this point, be 
obvious. They can consist of just four basic steps: 
(1) Invert, if you can, the existing complex design, so that 

simple random subsamples can be generated (to some 
useful degree of approximation). 

(2) Potentially, apply your conventional statistical package 
directiy to tiie subsample, since that is now appropriate. 

(3) Repeat the subsampling and conventional analysis, in 
steps (1) and (2), over and over again. 

(4) Retain, if you can, the flavour of the original 
randomization paradigm by using the disttibution of 
subsample results as a basis of inference (rather than 
the original complex sample). 

Notice some tilings tiiat tiiis approach is - and is not: First, it 
is exttemely computer intensive - presupposing (;heap, even 
very cheap computing. Second, it presupposes that practical 
inverse algorithms exist (which may not always be the case). 
Third, it also assumes that the original power of the full 
sample can be captured if enough siibsamples are taken, so 
that no appreciable efficiency is lost. Fourth, as much as it 

niay resemble the bootsttap (Efron 1979), we are not doing 
bootstrapping. There is no intent to mimic the original 
selections, as would be required to use the bootstrap properly 
{e.g., McCarthy and Snowmen 1985; Rao and Wu 1988) -
just the opposite; our goal here is to create a totally different 
and more analytically tractable set of subsamples from the 
original design. 

2.2 Defining An Inverse Sampling Algorithm 

Suppose that we wish to draw a simple random sample, 
without replacement, from a finite population of size N. 
Suppose further tiiat tiie population is no longer available for 
sampling, but we have a sample selected from tiiis population 
using a sample design D; let 5^ denote this sample. Let 5^ 
denote a second sample of size m that could be drawn from 
the population. An inverse sampling algorithm must describe 
how to select a sample from S^ so that for any given sample S^ 

Pr(select5„|So)*Pr(5„cSo) 1 

C) 
(1) 

The first step is to calculate the probability that an arbitrary 
but fixed sample S^ is contained in the sample 5^. 
Obviously, there are consttaints on the size of the simple 
random sample (SRS) that can be drawn in this manner; the 
probability that ̂ 5^ contains S^ cannot be zero. Certainly, 
therefore, the SRS cannot be larger than the size of the 
original sample 5^, and in fact the size of the SRS is 
generally required to be much smaller than the original 
complex sample. 

The problem, then, is to find a general algorithm to select 
an SRS from a given sample S^ with the cortect conditional 
probability. It is also necessary to check that valid probability 
functions are used. The following subsections show the 
inverse sampling algorithms for a few of the more common 
sample designs: sttatified, cluster, multistage, and sttatified 
multistage designs. We also give an example where an inverse 
algorithm at first does not appear feasible. 

2.3 Inverting A Stratified Sample 

In this subsection the inverse algorithm is given for a 
sttatified sample with four strata. The algorithm generalizes 
for any number of strata. We have a sttatified sample with 
fixed sample sizes /j^ in each sttatum h, and known sttatum 
population sizes, Â , + TVj + Â3 + iV̂  = N. Because a given 
sample of arbittary size m from the population might be 
contained entirely within one stratum, the largest simple 
random sample that can be selected from a sttatified sample 
is of size ffi = min («^}. 

For a given sample S-^, let (x,,X2,X3,x^) denote the 
number of units in each sttatum. Each x. will be between 0 
and m, and x, + Xj + Xj + x^ = m. The probability that S^ is 
contained in the sttatified sample is equal to the number of 
sttatified san^les containing these m units divided by tiie total 
number of possible sttatified samples, i.e. 
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Pr(5„c5^) 

N,-x, N^-x^ N -X 
y»3 X j ^ - ^ 4 

N, N. K 

'ij 

N, 

\"*} 

(2) 

The algorithm for selecting a SRS from the sttatified 
sample consists of the following three steps: 
(1) Determine the size of the SRS to be selected: 

OTsmin{«^}. 
(2) Generate a realization [m^,...,m^) from a hyper-

geometric distribution, with probabilities 

Pr(ffl, =/,,OT2 = /2, ...,/W4 = /„) 

N, K N. 

C) 

N. 

\Ai (3) 

where /, + /̂  + 1.^ + i^=m and 0 s /", ^ /», 0 ^ i.^. ^ '"> 
0 ^ /j ^ m, 0 ^/^ i. m. 

(3) In each sttatum h, select a simple random sample of 
size m^, without replacement, from the «^ sample 
units. 

The conditional probability of selecting the sample S 
given that it is contained in the sttatified sample, is then 

N, N. 

C) 
V^i 

\ • 

\ ^*t 

(4) 

The probability of selecting any given sample S^ using tiie 
inverse algoriUim is tiie product of tiie two probabilities given 
in equations (2) and (4). It is sttaightforward to show tiiat tiiis 
product is equal to 

Therefore this procedure reproduces a sirtiple random 
sampling mechanism unconditionally, i.e., when taken over 
all possible sttatified samples. Note that in order to generate 
all possible SRS's from this population, the entire sequence 
must be repeated, starting with selecting a sttatified sample 
and proceeding through steps 1-3. 

2.4 Inverting a One Stage Cluster Sample 

In this subsection, we consider three special cases. To 
begin witii, we examine cluster samples where tiie clusters are 
of equal size. This is followed by die more usual case where 

the clusters are of unequal size. In both of these settings we 
assume tiie clusters are sampled by a simple random sampling 
mechanism and without replacement. The third case studied 
is that of sampling unequal clusters by a probability 
proportional to size (PPS) mechanism. In this last instance we 
assume that the sampling is witii replacement. 

2.4.1 One Stage Cluster Sampling With Equal Cluster 
Sizes, Sampled With Equal Probability 

Assume we have a population of N clusters where all 
clusters are of size A/and k of them are selected by a simple 
random sampling mechanism without replacement. 

To constiiict an inverse algoritiim, we need to decide what 
the largest element subsample might be. It is immediate that 
the largest SRS of elements that can be selected is k. 
Incidentally, the cluster size is not a consttaint on the size of 
the subsample. 

For a given sample S ,̂ let q denote tiie number of clusters 
represented in 5^; 0 < (? s k. Then tiie probability that S^ is 
contained in the cluster sample is equal to the number of 
cluster samples containing tiiese q clusters divided by tiie total 
number of possible cluster samples, i.e. 

Pr(5,c5^) ( 1 ^ 
C) 

(5) 

As for tiie sttatified sample, tiie algoritiim first determines the 
number of units to be chosen from each cluster, 
{nty "'2 ^k>- The probability distribution to be used to 
select the m.'sis 

Pr('w,=;, m.=i.) = 

M 

i,. 

NM 
k 

^N{N-l)...{N-q^l) 
k{k-iy..{k-q+l) 

where O^ij^ k, /, + /̂  + ... + /̂  = k, and q is the number of 
nonzero i^'s. For example, with M = 100, Â  = 6, and * = 3 

Pr(/w, = 1,/W2 = 0,/M, =2) 

Pr(»», =3,/M2=0,/M3=0) 

lOOU 100 U 100 

1 M O H 2 J 6*5 
3*2 600 

3 
100| 
3 J 6 

3 ' (T) 
Once tiie m.'s are determined, a simple random sample of 
size m. is selected from cluster i,i = 1,2, ...,k. Therefore the 
conditional probability of selecting S^ is 
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Pr(select 5^ | S^) 1 

NM 
k 

N{N-l)...{N-q^l) (7) 
k{k-l)...{k-q+l) ' 

The probability of selecting a particular sample S^ is found 
by multiplying equation (5) times equation (7). It is routine to 
verify that this gives the correct probability of selecting an 
SRS. 

Unlike the stratified example, where the function for 
selecting the values of m. was a known probability function, 
it is not immediately obvious that equation (6) describes a 
probability disttibution. Since the values generated by this 
function are all nonnegative, it need only be shown that they 
sum to one over the space of possible values. The first factor 
in tiie equation has tiie form of a hypergeometric disttibution, 
except tiiat the numerator is consttained to only k out of the Â  
clusters, while the denominator still reflects the total Â  
clusters. It is useful to define a partition of /: as a combination 
of positive integers that adds to k, without regard to order. 
For example, the partitions of ^ = 3 are {3}, {1,2}, and 
{1,1,1}. Because the clusters are all of the same size, M, all 
patterns of selection that cortespond to the same partition 
have the same probability of occurting. Take, for example, 
Â  = 6, and k=3. In the full hypergeometric distribution, with 
equal cluster size, each of tiie following combinations has the 
same probability of occurring 

(0,0,0,0,1,2), (0,0,0,0,2,1), (0,0,0,1,2,0) (2,1,0,0,0,0). 

The total number of such combinations is 
A (̂A -̂ 1)... {N- q + 1), where q is the size of the partition, 
that is tiie number of (nonzero) values in the partition. In the 
example above, q = 2. For a given partition, if the nonzero 
counts can only be put into k specific cells, then there are 
k{k - I)... {k - q •*• I) such orderings. Therefore, summing 
the disttibution over all values of (/,,..., /^ can be done by 
first summing over all partitions of k and then for each 
partition, summing over all possible orderings of that partition 
in k cells. Because all orderings associated with a particular 
partition share a common probability of occurtence, this 
results in a summation that is equivalent to summing the 
hypergeomettic over the cortect space, and therefore 
expression (6) sums to one. 

The probability distribution needed for this simple cluster 
design (equation 6) is noticeably more difficult to generate 
than the hypergeomettic distribution in the case of the 
stratified sample. However, as the sampling fraction kIN 
decreases, the probability is often contained in only two of 
the partitions: q = k and q = k- I. (These probabilities are 
calculated in the Appendix). Indeed, the probability may be 
concenttated in just the pattern with q = k {A special case of 
this is also shown in the Appendix). 

Given the results in the Appendix, it may be possible to 
approximate the exact inverse by selecting one case from each 
cluster, using systematic sampling from the original cluster 
sample. This approach is of real value because the probability 

distribution calculations become unwieldy as the number of 
clusters in the sample grows large. For a systematic inverse to 
work, however, the "step" would naturally have to be at least 
as large as A/ or maybe even greater, depending on the 
number of clusters in the population. To carry out this 
subsampling repeatedly, for each systematic sample inverse, 
the units within each cluster would be reordered randomly 
before the next selection and the clusters resorted randomly 
as well - then another random start obtained before stepping 
again through the original sample. 

2.4.2 One Stage Cluster Sampling with Unequal 
Clusters, Sampled With Equal Probability 

The inverse sampling algorithm for a sample of clusters of 
equal size does not generalize readily when a sample of 
unequal sized clusters is drawn. This is so despite the fact that 
it would appear to be sttaightforward to generalize this 
approach in an obvious way. In particular, it does not seem 
difficult to generalize the previous method so that the 
"probabilities" would multiply out successfully to give the 
"cortect" probability of selection, i.e. 

1 

M. 
:-, where M^ = E ^ / - (8) 

However, generalizing to unequal cluster sizes A/, by 
selecting the m. as 

Pr(/M,=/,,...,/M^=/^)=-

fA^tl \ ^ \ 
N{N-l)...{N-q*l) 

' k{k-l)...{k-q+l) 

(9) 

does not result in a valid probability distribution. We will 
again assume, by the way, that the original clusters are being 
sampled with equal probability and without replacement, as 
was the case in subsection 2.4.1. Later (Subsection 2.4.3), as 
already noted, we will look at original samples which employ 
some form of Probability Proportional to Size (PPS) 
selection. 

To see that it is not sttaightforward to simply generalize 
equation (6) into the form in equation (9), consider the 
following counter-example where the "probability" calculated 
using (9) is greater than one. Suppose A'̂  = 4 with cluster 
sizes; M^ =4,M^ = 6, M^ = 8, and A(, = 10. Suppose further 
that we draw a cluster sample with k = 2 and that just by 
chance the two clusters picked are the largest - i.e., M3 = 8 
and M^ = 10. It is immediate that with these selections, 
equation (9) would generate a probability of selecting one unit 
from each cluster that was greater than one. 

Can tius difficulty be fixed? Yes, although not perhaps in 
an entirely satisfactory way. One metiiod is to employ a 
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hypergeometiic that, assumes all the clusters were as large as 
the largest cluster in the population. The price paid is that the 
inverse sample size achieved is no longer fixed, and the 
resulting subsample is only conditionally SRS given the 
achieved sample site, denoted, say, as k^. That is, for a given 
sample size k^, k^ ^ k, all samples of size k^ have the same 
probability of being selected using the inverse algorithm. 

Let M. denote the maximum cluster size, M, = 
Max{A/,, A/2,..., A/^}. Create a population by fiUing out each 
original cluster with "dummy" units or placeholders, 
j = M.* 1, A/,. + 2, ...,A/,. Then using a method similar to 
Lahiri's (1951) for PPS sampling, the inverse algorithm 
selects units from the population consisting of Â  clusters each 
of size M,, and then discards any element not in the 
"subpopulation" consisting of the original clusters of size M.. 

Specifically, given a cluster sample consisting of k 
clusters, select the vector m from the probability distribution 

Pr(m, = / , , . . . , OTj = /^) = 

M.ll Af.l \ M 

I \ N{N-l)...{N-q^l) (10) 
k{k-l)...{k-q+l) 

where the components of m sum to k, and q of the 
components m. are nonzero. This is now a proper probability 
distribution. Given tiie selected value of m., select a random 
sample of m^ units from cluster /', where the cluster contains M 
units from the population and A/, - M. "placeholders." 
Discard any selected units that are placeholders, in the set of 
j = M. + 1, A/. + 2,..., A/.. Therefore the final sample size 
will not necessarily be equal to k, but may be smaller, say k^. 

The resulting sample is conditionally a SRS from the 
population, in the sense that for a given value of Â , all 
samples of size k^ have the same probability of being selected 
using tills inverse algoritiim. To see this, continue to view tiie 
problem as a subpopulation, P, of Â  clusters of size 
M., / = 1,..., A', within a population /*. of Â  clusters each of 
size A/.. Note that for any sample, 5., of size k selected 
from the population /*., tiie probability of selecting 5. using 
the inverse algorithm is 

(11) 

If Q̂ = ^ then this is the probability of selecting this sample 
using the inverse algorithm. For a fixed k^ < k, let S^ denote 
any given sample of size k^ contained in P. We can generate 
a sample 5. containing Sg by starting with S^ and adding to 
itk-k^ elements from the N' M,- M^ placeholders in /*,. 
The number of such samples 5., that result in selecting 5„, is 

Â Af. - Af̂  

k-k^ 
where Af^=53A/,- (12) 

Therefore, the probability of selecting 5Q using the inverse 
algoritiim is equal to the probability of selecting S. using the 
inverse algoritiim, given in (11), summed over all samples 5. 
constiucted as described above, where the number of such 
samples is given by (12). This probability equals 

' NM,-M^ 

and all samples of size k^ have the same probability of being 
selected using the inverse algorithm. 

There is a positive probability, unfortunately, that a sample 
might be selected with this approach that has no elements. 
This could occur if there were a large difference in tiie cluster 
sizes. However, if the number of clusters k in the original 
sample is large, this is unlikely to be a problem. 

Again, as in the case of equal cluster sizes, an approxi
mation is available using a systematic subsample as an 
inverse. This time we would want a step at least as large as the 
maximum cluster size. Using a systematic inverse, by the way, 
would have the advantage of conttolling better the actual 
subsample size drawn. 

2.4.3 One Stage Cluster Sampling with Unequal 
Clusters, Sampled With Unequal Probability 

If a sample of k clusters is selected with PPS, an inverse 
algorithm may exist. Suppose the samples are selected with 
replacement from a population consisting of Â  clusters, with 
unequal cluster sizes. A/,, A/j,..., A/^ Suppose, further, that 
the measure of size is either.equal to M or proportional to 
M.. Then at each draw. 

M. 
Pr(select clustery) = —i-

M^ 
N 

where M^=YM. 
1=1 

(13) 

Finally, since a one stage sample is being taken, once cluster 
j is selected, then all Mj units from that cluster are included 
in the sample. 

An inverse algorithm in this case should result in a 
SRSWR. That is, for any vector S resulting from k 
independent selections from tiie population, tiie probability of 
selecting the ordered vector is 

/ , \ k 
Pr(select S) (14) 
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An inverse algorithm is to simply randomly select one unit 
from each cluster in the cluster sample. Because the clusters 
were chosen with replacement, one should think of the 
sampled clusters as being ordered, by the order in which they 
were selected, or in any fixed order. For example, if the 
population contained 20 clusters, a possible cluster sample of 
size A: = 5 is (7, 5,7, 18, 6), etc. 

The population consists of M^ units, denoted as 
Wj, Wj. •••. "M*- ^ ^ ^ denote a given sample, with replace
ment, S = {s^, s^,.,., S/), and let c = (c,, C2,..., c )̂ denote the 
associated cluster for each unit. For example, suppose the 
population is: 

Cluster 

1 

2 

3 

4 

5 

6 

Units 

"1 "2 «3 "4 

"5 "6 "7 "8 

"9 "10 "11 

"12 «13 " l 4 

"15 «16 "17 

"18 "19 "20 

and k = 3. Then the sample(5, u^, S3 = u^J) cortes
ponds toe = (1,1,5). The sample (s, ="18,^2 '"ir^s ""is) 
cortesponds to c = (6,6,6). Note that tiiis second san^le can 
only be selected if cluster 6 is the only cluster chosen in the 
cluster sample. 

For a given sample 5 of size k, and the corresponding 
vector c of cluster membership, the unconditional probability 
of selecting S using the inverse algorithm is 

Pr(select S \ cluster sample c) * Pr(select c) 
k 

n 1 

[ ' = ' ^c^i)} 

* M n "' 
1=1 Af. 

(15) 

which is equal to the desired probability, equation (14). 
Note that this same inverse algorithm works in the case 

where k clusters are selected with ppswr, but a sample of 
fixed size m is selected (srswor) from the chosen cluster, 
assuming that M.>m for all clusters / . 

2.4.4 Some Comments On One Stage Designs. 

We have seen tiiat, witii care, inverse algorithms can be 
constiTicted for several special cases where the original 
sarrple has a one stage cluster design. Two of our results are 
for cluster samples drawn with equal probability without 
replacement. The third is a ppswr design. 

A convenient systematic inverse may even be workable as 
an approximation to the cortect inverse algorithm when we 
have a cluster sample. The approximation works when using 
SRSWR is "close to" SRSWOR-/.e, in our notation when kINM 
is very small so that ll{NM - * + 1) is approximately equal to 
IINM. So everything seems intuitively to be consistent, 
across the cases studied. 

Many cluster designs do not fall into any of the special 
cases examined. For some of them we conjecture that exact 
inverse algorithms may not exist. In particular, the general 
case of PPSWOR sampling seems to be one of these, 
including the frequently used variant of systematic PPSWOR. 
This may, or may not be a problem for practitioners who often 
employ the (usually) conservative practice of assuming that 
tiie sampling was witii replacement - in which case an inverse 
algorithm would exist to the same order of approximation as 
was being assumed to estimate variances. 

2.5 Multistage Cluster Designs 

What about multistage designs? Can they be inverted? In 
some cases, we believe the answer is "Yes." Three designs 
will be looked at: (1) a two-stage design with simple random 
sampling at the first and second stages (Subsection 2.5.1); 
then, (2) a design which employed probability proportional to 
size (PPS) sampling at the first stage and simple random 
sampling at the second (Subsection 2.5.2). Finally, (3) the 
very important sttatified multistage design with two PSUs per 
sttatum deserves at least a brief comment. 

As will be seen, the sttatified and one stage results extend 
fairly readily. To demonsttate this, our basic sttategy is to 
repeatedly apply the approaches already discussed earlier. 

2.5.1 Multistage Designs With Simple Random 
Sampling at Both Stages 

Suppose, first, that originally a simple random sample of 
k clusters, all of size M, was drawn at the first stage and a 
simple random subsample of size "r" was drawn at the second 
stage, within each cluster selected at the first stage. 

As earlier, our inverse sample can be no larger than k. 
Suppose first that ll{NM- A + 1) is approximately equal to 
IINM, then we can employ an srswr inverse algorithm, since 
SRSWR and SRSWOR are very close. Using the results in 
Subsection 2.4.3, we would take a SRSWR sample of k 
clusters and then within each selected cluster take one 
observation at random. Alternatively, we could as in 
Subsection 2.4.1, first determine the number of units to be 
chosen from each cluster, (OT,, ffj2,...,/w^). Once tiie m.'s are 
determined, a simple random sample without replacement of 
size m. is selected from cluster i,i = 1,2, ...,k. "This may be 
a nearly exact result, except for the possibility that die inverse 
second stage sample size m. may be larger than the original 
second stage sample size "r." When this occurs, we still can 
appeal to the results in Subsection 2.4.2 and draw our second 
stage sample with "placeholders." In this second instance, the 
resulting actual sample would no longer be fixed; but still 
would be conditionally SRS. If the first stage clusters are 
unequal in size but sampled with replacement, then we can 
again employ the ttick used in Subsection 2.4.2 of creating 
"placeholders." The sample sizes are random and only 
conditionally do we achieve an SRS inverse. 

Another way to approach this problem is to note that the 
largest SRS that can be selected using an inverse algorithm is 
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of size kg = min {k,r}. This is done by first determining the 
number of units to select from each cluster, (m,, m^,..., m,), 
where now the m.'s must sum to k^ rather than k. Once the 
ni.'s are determined, a simple random sample of size TO. is 
selected from cluster /, / = 1,2,..., *. The probability distti
bution to be used to select the TO 's is 

Pr(TO, = / , TO^ = /^) = 

A^Af 

MN-l)..-{N-q^l) 
k{k-l)...{k-q+l) 

where 0<.ij<. k^, /, + /j +...+ /̂  = k^, and q is the number of 
nonzero / ' s . 

One final comment, for both equal and unequal cluster 
sizes, the possibility of an approximate systematic inverse 
seems available - with essentially die same caveats, of course, 
as noted above. 

2.5.2 Multistage Designs With PPS Sampling at the 
First Stage and SRS Sampling at the Second 

Again, our inverse sample can be no larger than k. It is 
immediate that one way to constmct an inverse would be to 
use the results in Subsection 2.4.3. Specifically, we would 
take a srswr sample of k clusters and tiien witiiin each selected 
cluster take one observation at random. Other inverse 
algorithms may exist too. A systematic inverse seems 
reasonable, provided the probability of selecting the same 
cluster more than once is small to vanishing. 

2.5.3 Stratified Multistage Designs With Two PSU's 
Per Stratum 

Can two Primary Sampling Unit (PSU) designs be 
inverted? Our answer is "Yes," if the within sttatum 
selections are made in one of the ways we discussed in detail 
earlier. This is basically the only case we will cover. 

From our results in Subsections 2.3 and 2.4, it is 
immediate tiiat if an inverse is to exist, tiien tiie sample size m 
cannot be any larger tiian TO = 2. Depending on the sampling 
witiiin each sttata, we could employ one or more of the exact 
or approximate inverses to obtain two SRS selections within 
each sttatum. To obtain an overall SRS sample, we would 
employ tiie inverse algorithm of Subsection 2.3 on these two 
selections and end up, finally, witii just two selections overall. 

2.5.4 Some Comments On Multistage Designs 

In this Subsection, we have quickly covered a few 
multistage designs and provided exact or approximate 
inverses. The results were derived by appealing to earlier 
results in Subsections 2.3 and mainly 2.4. Of course, many 
multistage designs do not fall into any of the special cases 
examined - notably tiiose witii systematic selections at tiie last 
stage. 

One last observation, many readers may wonder, at this 
point, how a metiiod tiiat selects only a sanqjie of size two (as 
we did in Subsection 2.5.3) can be of any practical value. 
Perhaps the next section will help. 

3. RESAMPLING TO INCREASE POWER 

3.1 General Setting 

Drawing a single, smaller simple random sample from a 
larger, more complex sample might be adequate for some 
users in some settings. However, for most users, the loss in 
power between tiie estimate based on tiie complex sample and 
the estimate based on a simple random sample would not be 
acceptable. 

In order to increase the power of our approach, it was 
natural to consider resampling techniques. We are limited in 
the size of the SRS tiiat can be drawn, but we can repeat the 
process. By repeating tiie entire subsampling procedure, we 
can generate g single random samples each of size TO, where 
each SRS is selected independently from the overall original 
sample. Each repetition must include all steps of the 
subsampling procedure. For example, in the sttatified case, 
the sttatum subsample sizes must be redrawn using the 
hypergeomettic disttibution. 

In this section, conditions are given under which tiie 
precision of tiie estimates using multiple SRSs can be made 
arbittarily close to tiie precision of tiie original estimates. We 
will begin our discussion by first defining some notation. 

Let D denote any invertible design (such as a design of the 
type covered in Section 2). Let The the population quantity 
of interest (say, a population total); and let 7"̂  be an unbiased 
estimator of T calculated from the sample 5^. Suppose g 
simple random samples are independently drawn from the 
given sample 5"^ and let /. denote the estimator from the /-th 
simple random sample. Then it can be shown that 

if £(r, I S^) = T^ 

then Var 
1 s 

\gi-i , 
= Var(7'o) + l(Var(/,)-Var(7'^)). 

Proof: Because the g replications of the simple random 
sampling process are conditionally independent, then 

for i*j,E{t.tj\S^) = T^\ 

Therefore, unconditionally, for / not equal toy, 

Cov{t.,tj)= E{t.tp-T^ 

= Var(7'^). 

And the result follows directly. 
Some of the conditions in this proof can be relaxed; if Tr, 

is biased, tiien similar results can be obtained for MSE instead 
of variance. However, the condition that 

file:///gi-i
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E{t, I S^) = T^ 

is necessary. And this condition is not met for ratio 
estimators. But, if the condition is met separately for the 
numerator and for the denominator of the ratio estimate and 
if tiie final size of the combined sanple is sufficientiy large so 
that a Taylor Series approximation is acceptable, then similar 
results can be found for approximations to the variance for 
ratios in the usual manner. Incidentally, even in the two PSU 
per sttatum design, this approach works - provided we can 
obtain an unbiased estimate from each individual sample of 
size 2. And for estimates of totals, this can be the case -
assuming at each stage of sampling that an inverse can be 
constmcted. 

Therefore, by replacing S^ and Var(r.) with unbiased 
estimates and replacing E{s,) with s„ we can generate 
approximately unbiased estimates of Var(/,,). 

It may be worth emphasizing that this result does not 
require the user to know anything about the original sample 
design. If users are given a way to invert the original design, 
then they can, by repeated subsampling, achieve nearly the 
efficiency of the original design and readily estimate the 
appropriate sampling ertors. There is one condition on this 
result, namely that the subsample size be such that TO s 2. 
Incidentally, for TO = 2, the variance expression becomes 

Var(/..) = ^ 5 ^ J l J E V a r ( r . ) - A f ^ f 
2 g - l 

2g 
E{s]). 

3.2 Estimating The Sampling Error for Means 
or Totals 

By resampling, one can achieve almost the same precision 
as the original design estimator. But because the resampled 
srs's are only conditionally independent, the estimation of the 
standard error is not as simple as if only one srs had been drawn. 
However the estimation remains relatively sttaightforward. 

Let 5^ denote the population variance for the variable A' 
and let 7" be its population total. For tiie sample means, totals 
and variances calculated from the generated simple random 
samples, let 

1 A 1 ^ „_ I X- N -^ '..= - E'; = - E^^y = - E - Ê y, 
g j-i ' g j-i ^ g j'l m ,-.i 

-4]E(-,-9^ 
TO - 1 ; , = 1 

sl-[-^\tti^ji-^,.f 
\gm-l}j-.ii.i 

where x.. = - ^ = — E E V 
N gm j , 

Note that the sample variance using all gTO units can be 
expressed as 

1 
TOg- 1 

Hence 

- ^ 2 m — 
{m-i)E^r^E(^j-'n'-^At„-T)'' 

pi ' N^pi ' N^ 

E{s]) I 

mg- I 

Rewriting this gives 

g(m - 1)5^ + - ^ E Var(r; - -^Var( / . . ) 
N^j-i 

V a r ( r . . ) = A r ^ f i ^ j s ^ ^ f l J E V a r ( r . ) 

Based on this, as above, a variance estimator could be built 
for two PSU per sttatum designs. 

3.3 An SOI Illustration 

In this subsection we consider an example of an inverse 
algorithm and how well it works. The Statistics of Income 
(SOI) corporate sample will be our starting point. Now, as 
noted earlier, the SOI sample has essentially a sttatified SRS 
design and so can be inverted (subsection 2.2). 

It is our belief that many SOI users might find a full SRS 
inverse sample more valuable and easier to employ than the 
conplete, sttatified sample data base. An interim goal could 
be to provide them with a set of simple random samples. A 
more flexible system would be to provide tiie interactive 
software to allow the user to designate the simple random 
samples of interest, to be selected from the complete data 
base. 

In our simulations we used four of the sttata in the SOI 
sample of corporate returns, namely tiie sttata representing tiie 
smallest regular corporations (Hughes et al. 1994). As can be 
seen from table 1, the sttatified sample (of four sttata) 
consisted of 15,618 units, and the largest SRS that can be 
selected is TO = 2,224. The table also shows the population 
sizes and the estimated variance of the variable Total Assets, 
within each sttatum. 

Table 1 
Corporate Population and Sample Size, plus Estimated 

Stratum Variances, For Four SOI Stratum 

Strata 
(h) N,. (in lOOO's) 

1 
2 
3 
4 

1,376,801 

552,909 

678,371 

436,023 

3,889 

2,224 

4,005 

5,500 

222,808 

670,162 

12,796,578 

14,984,753 

The variable total assets was used because it is tiie primary 
stratifying variable; and, therefore, the loss in precision due 
to removing the sttatification should be relatively large. 
Indeed, this proved to be the case. 
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Shown below is the ratio of the variance of the estimated 
total using g simple random samples, of 2,224 each, divided 
by the variance of the total based on the stratified sample. 
The table displays values of g from 1 to 1,000. For example, 
if only one SRS is selected the variance of tiie estimated total 
is 29 times larger than the variance of the sttatified total. 

g 
1 
2 

10 
100 
500 

1000 

Relative Variance Increase 

29.31 
15.16 
3.83 
1.28 
1.06 
1.03 

By resampling 500 to 1,000 times, the variance has been 
reduced to the same order of magnitude as the sttatified 
sample. Even at 100 subsamples good results exist here, 
suggesting that the use of an inverse algorithm could work 
well for sttata such as these. This is not to recommend that an 
inverse algorithm be employed in general with so few 
resamples. Doubtless, in highly skewed populations a much 
larger number would be required. 

4. POTENTIAL APPLICATIONS 
AND NEXT STEPS 

In this paper we have shown that inverse sample design 
algorithms exist in a few special cases. We do not, as yet, 
have a general result - if, indeed, tiiere is one. This is clearly 
a part of tiie problem tiiat needs more work. Like most tools, 
an inverse sampling algorithm may not be the best choice in 
certain cases; it may not be even a reasonable alternative in 
some circumstances. But there are applications where it 
appears to have advantages and so should be considered. In 
this section we both briefly suggest areas where this 
methodology may be useful and also mention some of the 
limitations and problems that remain. 

Customer-Driven Perspective - It is worth emphasizing tiie 
customer-driven nature of our approach. Even if it could not 
be justified on other grounds, inverse algorithms might be 
advocated as a part of "reinvention" {e.g., Osborne and 
Gaebler 1992). Right now many large complex surveys may 
not be sufficiently benefiting society, because they are so 
badly under-analyzed or even misanalyzed: 

- For the long mn, we must work towards increasing the 
survey and general quantitative literacy of existing and 
potential customers - e.g., as with the new series What 
Is a Survey? (Scheuren (ed.) 1995). 

- In the short mn, we need to start where our customers 
are - giving due respect to the often small part that 
survey data may add to their decision making. Certainly 
it is worth thinking about ways to lower the cognitive 
costs customers bear when using our complex survey 
"products." 

A "Sample" of Possible Opportunities - There is an 
increasing awareness of the weaknesses within the 
traditional randomization paradigm {e.g., Samdal and 
Swensson 1993). Of particular concem here is all tiie fiddling 
we have to do when tiying tocortect for nonsampling ertors. 
Some of this flavour is evident in Rao and Shao (1993). By 
putting tiie possible adjusUnents for tiiese nonsampling ertors 
back into a simple random sampling framework, we may, 
indeed, be able to make more progress. 

For decades, survey practitioners have elaborated 
exceedingly complex sample designs; and, then, made 
efficient point and confidence interval estimates from them. 
On the otiier hand, how much do we really understand about 
the disttibutions that our sample estimators generate when 
effective sample sizes are small to moderate? Will we be able 
to fully capitalize on the "visualization revolution" now 
occurring {e.g., Cleveland 1993)? Particularly in the presence 
of nonsampling ertor? Maybe we should be building in a way 
to always look at distributions. The use of an inverse 
sampling algorithm might be one possibility (See also 
Pfeffermann and Nathan 1985). In any case, stronger 
visualization tools for complex surveys could help, even the 
very experienced among us, deepen our intuitions and connect 
them better to the particular population under study. 
Obviously, visualization efforts also pay off by lowering the 
price customers pay to use survey data. 

An inttiguing problem where the inverse sampling 
algoritiim may have an application is the case where we have 
a two PSU per sttatum design with L sttata where L is small, 
say less than 30. Suppose further that for some of the 
variables in the survey the sttatification and clustering are 
unimportant - i.e., the design effect is 5 = 1, approximately. 
For these variables, would it not be possible for the stability 
of the variance estimate to be greater with the resampled 
metiiod tiian witii the Balanced Repeated Replication (BRR) 
approach to variance estimation that is usually employed? 

Anotiier example tiiat we are considering is tiie case where 
the user is interested in tests of independence in 2 x 2 tables, 
based on stratified sample data (Hinkins, Oh and Scheuren 
1995). For the chi-square test statistic we are now in the 
midst of comparing our results with the approach suggested 
by Scheuren (1972) and Fellegi (1980). So far it appears that 
the power of our metiiod is comparable to these more familiar 
approaches (as might be expected from, say, Westfall and 
Young (1993)). This may be an instance where the extra 
work involved in the inverse sampling algorithm may have 
real benefits - beyond just making it easier for users to 
employ familiar tools - by allowing the user to look at the 
distribution rather than just onep-value. 

A "Sample" of Problems Remaining - A "sample" of the 
problems that remain with our inverse algorithm might be 
given here. For example, what happens when we do not know 
what the population size is? What happens when the 
population has more tiian one elementary unit - persons, say, 
for one analysis; households for anotiier; neighbourhoods for 
still a tiiird? Answers exist for tiiese difficulties but tiiey have 
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an ad hoc flavour to us. In many surveys, for instance, we 
guess about A'̂  and use that guess in poststtatification. That 
degree of aipproximation for an inverse might be acceptable. 
For the problem of multiple analysis units, we could do 
several inverses. While potentially workable, this seems 
exceedingly awkward. 

We have indicated that in soriie cases it may not be too 
difficult to resample multiple times using tiie inverse 
algorithm in order to reproduce reasonably efficiency. But 
what about the case where the user of a sttatified sample is 
interested in subpopujations. If the domains of interest are in 
fact the sttata, then tiie user does not gain any benefits by 
using the SRS's produced using the inverse algorithm. If the 
domains of interest cut across the sttata and they are small, 
then the number of samples required using the inverse 
algorithm may be very large in order to maintain reasonable 
estimation for tiie domains. 

Finally, we briefly mention one more problem tiiat we have 
thought about. Many multistage designs actually select only 
one PSU per sttatum. The sttata are then paired for variance 
estimation purposes. We have atteady noted that an inverse to 
this approximation is available which can be made about as 
good as tiiat approximation is to begin \yith. Is there a way to 
get a better approximation using the inverse approach 
directly? 

Last Words - Many things are changing in our profession. 
The worldwide quality revolution certainly has had an impact 
(Mulrow and Scheuren 1996). We are remaking the way 
surveys are done - from design, to data capture, to tiie way 
customers use them. This paper may be a small contribution 
to that process. 

Call this probability /*, 
approximated by 

If NM>>>k then P, can be 

n 
(=1 

(A^-O _ {N- l){N-2)...{N-k+l) 

N N k-l 

Consider next the partition of k corresponding to 
q = k- 1; this cortesponds to exactiy one partition of k, 
namely {1,1,..., 1,2}. There are k{k- 1) equally likely 
possible patterns of {my...,mi) with q = k-l. The 
probability of selecting a vector m with q = k- I, is 

?T{q = k- I) 
k{k- 1){M- 1), 

2M{N-k^l) ' 
Therefore it is not difficult to calculate tiie probability tiiat tiie 
selected m has eitiier q = kor q = k- I. The following table 
shows some examples for two values of M. 

Table A 
Vx{q = k-l or q = k) 

k 

4 
4 
10 
10 
10 
10 
50 
50 
50 

N 

8 
20 
20 
30 
50 
200 
500 
1000 

5000 

A/=10 

.92 

.99 

.38 

.63 

.83 

.99 

.35 

.70 

.98 

A/=100 

.90 

.98 

.34 

.59 

.80 

.98 

.30 

.66 

.98 
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APPENDIX 

Suppose one has a cluster sample of k clusters from a 
population of N clusters, where each cluster has the same 
number of units, M. In the inverse sampling algorithm, the 
first step is to choose the vector (TO,, TO2, ..., TO^) containing 
the number of units to be chosen from each cluster. Let q 
indicate the number of nonzero values of TO .. The probability 
of selecting tiie one partem with q = k, tiiat is tiie pattern with 
m. = 1, for all / = 1,2 k, is 

__ _ ̂ . . {N-l){N-2)...{N-k^l) 
{NM- 1){NM- 2)...{NM- k+l) 

For small k, it is not difficult to calculate the entire 
probability disttibution needed to generate TO. But as k 
increases, the number of partitions increases, and this 
calculation becomes difficult or at least tedious. For k = 4, 
there are only 4 partitions; for * = 10 there are 39 possible 
partitions. One can see from Table A, that as the cluster 
sample becomes "larger," if the sampling rate is small 
enough, i.e., if k«N, tiien one might only need to calculate 
the probabilities for these two partitions in order to 
approximately invert the cluster sample. For t = 10 and 
A'̂  = 200, tiiese two partitions essentially account for all of the 
probability distribution. 

The probability of selecting just one unit per cluster 
{q = k) is smaller than the values in Table A; so, in order to 
use a systematic inverse, we would want k«<N. This can 
be obtained in some settings when the number of clusters is 
large and we are willing to take k very small, relying on 
repeatedly resampling the original survey, as described in 
Section 3. 

To illiisttate, assume a sample of size k^ where, of course, 
kQ<k, so that an inverse is possible; Further, to see if a 
systematic inverse would work, let kQ<«N. This is the 
case we illusttate in table B. In table B, we have confined 

file:///yith
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attention to just one value of N,N = 5000 clusters, although 
tiie results could be extended readily. 

Table B 
Pr{inverse sample picks the pattern (1,1,..., 1)} 

*0 

2 

5 

10 

20 

30 

40 

50 

kJN 
.0004 

.001 

.002 

.004 

.006 

.008 

.01 

M=\0 

.9998 

.9982 

.9919 

.9663 

.9245 

.8687 

.8015 

A/=100 

.9998 

.9980 

.9911 

.9627 

.9166 

.8553 

.7821 

_ Clearly, as klN gets small, a systematic sample becomes a 
better and better approximate inverse. Only experience would 
confirm if tiie approximation at Â, = 20 and kJN = .004, say, 
is adequate. We think it might be, especially since the effect 
of using a systematic inverse usually is to make the variance 
calculations more conservative (since typically tiie inttacluster 
correlation p > 0). 
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Variable Selection for Regression Estimation 
in Finite Populations 

PEDRO L.D. NASCIMENTO SILVA and CHRIS J. SKINNER' 

ABSTRACT 

The selection of auxiliary variables is considered for regression estimation in finite populations under a simple random 
sampling design. This problem is a basic one for model-based and model-assisted survey sampling approaches and is of 
practical importance when the number of variables available is large. An approach is developed in which a mean squared 
error estimator is minimised. This approach is compared to alternative approaches using a fixed set of auxiliary variables, 
a conventional significance test criterion, a condition number reduction approach and a ridge regression approach. The 
proposed approach is found to perform well in terms of efficiency. It is noted that the variable selection approach affects 
the properties of standard variance estimators and thus leads to a problem of variance estimation. 

KEY WORDS: Auxiliary information; Calibration; Sample surveys; Subset selection; Ridge regression. 

1. INTRODUCTION 

Regression estimation is widely used in sample surveys for 
incorporating auxiliary population information (Cochran 
1977, chap. 7). For tiie basic case when die population mean X 
of a vector of variables x. is known and simple random 
sampling is used, the regression estimator of the population 
mean F of a survey variable y, takes the form 

y=yH^-xyb (1) 

where y and x are the sample means of y. and x. 
respectively, and b is the sample vector of linear regression 
coefficients of y. on x.. 

Regression estimation is useful for at least three reasons. 
First, it is flexible. Any number of population means of 
continuous or bmary variables can, in principle, be 
incorporated into X. In particular, poststtatification arises as 
a special case (Samdal, Swensson and Wretman 1992, sec. 
7.6). The procedure also extends to handle complex sampling 
designs. Second, regression estimation has certain optimal 
efficiency properties. See, for example, Isaki and Fuller 
(1982, Theorem 3). Third, y^ has the "calibration" property 
that if y. is one of tiie variables of x,. so tiiat Y is known then 
y^ = Y (Deville and Sarndal 1992). 

In this paper we consider the question of how to select the 
X variables for use in the regression estimator. This question 
is of interest for at least two reasons. First, there is simply the 
practical reason that in some circumstances the number of 
potential variables in x, may be very large. For example, in 
population censuses in a number of countties values of some 
variables are recorded on a "short form" for all individuals 
and values of other variables are collected on a "long form" 
for a sample. The population means of the short form 
variables together with their squares, cubes, products and so 

forth will thus be known. Small area identification will also 
typically be available. Thus the dimension of x, as a vector 
containing functions of tiie short form variables together with 
dummy variables representing each small area could easily 
mn into the thousands. In such cases, the selection of x 
variables becomes a practical necessity. 

A second reason is more fundamental for a model-assisted 
or model-based approach to survey sampling. These 
approaches may be characterised as follows in the context of 
regression estimation. First a regression model is selected 
which has "good predictive power", so that the regression 
estimator will have "good efficiency". Then, either a design-
based approach to inference is adopted in the model-assisted 
approach (Sarndal et al. 1992) or model-based prediction is 
employed in the model-based approach. Although the 
literature on the latter problem of inference is vast, there 
seems remarkably littie formal attention devoted to tiie former 
model selection problem. In practice, the most that seems to 
happen is tiiat tiie "main" x variables which account for "most 
o f the sample R^ are chosen {cf. Sarndal et al. 1992, 
sec. 7.9.1). However, more theoretical guidance seems 
needed, especially when a large number of x variables is 
available. 

A further reason for considering the variable selection 
problem more formally is that it may help clarify the issue of 
the impact of variable selection on inference. The problem 
that sample-based selection of estimators may affect the 
properties of the selected estimator has long been recognized 
(Hansen and Tepping 1969, App.) but little study seems to 
have been made of what tiie effects may be. 

In this paper we consider a variable selection approach 
aimed at minimising the mean squared error of y. First, 
however, we study the dependence of the mean squared ertor 
of y^ on the number of x variables in section 2 and then 
consider altemative estimators of tiie mean squared error of y 

Pedro L.D. Nascimento Silva, BGE-Departamento de Metodologia, Avenida Chile 500, Rio de Janeiro-RJ, Brasil; and Professor Chris J. Skinner, Department 
of Social Statistics, University of Southampton, Southampton, SO 17 IBJ, United Kingdom. 



24 Silva and Skinner: Variable Selection for Regression Estimation 

in section 3. Variable selection procedures based on these 
estimators are then proposed in section 4. 

We contrast our variable selection approach with four 
existing approaches. First, we consider the ttaditional 
approach of using a fixed subset of auxiliary variables 
regardless of the observed sample. Next, we consider a 
"condition number reduction procedure" inspired by work of 
Bankier (1990), in which auxiliary variables are discarded in 
order to reduce the condition number of a certain cross-
products mattix of the x variables. 

Third, we follow Bardsley and Chambers (1984) and 
consider a ridge regression approach. This does not involve 
variable selection but instead addresses the possible problem 
of multicollinearity in the regression estimator by modifying 
the estimator, allowing for some calibration ertor. Both the 
ridge regression and condition number reduction procedures 
have tiie advantage tiiat tiiey do not require specification of a 
response variable y, because they aim to provide a single set 
of "calibration" weights to be used for all survey variables. 
However, they do not guarantee gains in efficiency. Their 
results are separated by a line from the results for the other 
procedures in the tables presented in section 6 to indicate that 
they differ. 

Fourth, we consider variable selection following 
conventional significance test criteria. Our general view is 
that the objective of variable selection in regression 
estimation for finite populations is quite different from the 
objective of parameter estimation or prediction of y values for 
single observations in classical regression (Miller 1990). 
However, it seems desirable to tteat such an approach as one 
benchmark for comparison. 

In section 5 we consider properties of the regression 
estimator following variable selection on the basis of 
estimated variances. Section 6 describes an empirical study 
carried out to compare our proposed variable selection 
procedures with the competing procedures described above. 
This study used data from a test census cartied out in the 
municipality of Limeira, Brasil, as part of the preparation for 
the 1991 Brazilian Population Census. Section 7 presents our 
conclusions and some directions for further research. 

2. THE DEPENDENCE OF THE VARIANCE OF 
THE REGRESSION ESTIMATOR ON THE 

NUMBER OF JC VARIABLES 

We begin by defining some notation. Let U = {1,...,A^} 
denote a finite population of Â  distinguishable elements and 
let 5 c (/ denote a sample of n distinct elements drawn from 
U according to a simple random sampling without 
replacement design. Let x. = (x,.,,...,x.p' be tiie q̂  x 1 vector 
of auxiliary variables associated with the /-th population 
element. It is assumed, that the sample values of x.{i^ s), 
togetiier witii the population mean vector X = N'^Y.ieu^i ^^ 
known. The vector of sample means is denoted 3c = «"'Y^i^^x.. 

Let y. denote the value of a survey variable y for the /-th 
population element and suppose the values of y. are only 
observed for / e s. The aim is to estimate tiie population mean 

Y-^'%euyr 
The regression estimator of Y is given by y^ in equation (1), 

^vheiey = n ->E,„y, b = S;%,^ = n -%^^ {x, - x)(x, - x)', 
andS^ = A7-'I ,„(x,-x)(y,-y). 

This estimator may be motivated by the underlying linear 
model 

y, = Po+x;p + e, (2) 

where the e are independent disturbances with zero means 
and common variance o ,̂ since we may write y, = PQ + X' p, 
where PQ =y - x' 6 and p = 6 are tiie least squares estimators 
of PQ and p, respectively. Under this model the variance of 
y^- Y conditional on the x. may be written 

Var^(y,-F|x,)=o2/j- ^[l-nIN*{X- 3c)'S;' {X - x)]. 0) 

The final term may be interpreted as the effect of 
estimating P by b. As tiie number ^ of x variables increases 
the residual variance o^ may be expected to decrease, but the 
term {X - x)'5^"'(X - x) may increase as S^ becomes more 
unstable. An altemative way to interpret tiiis term is to write y^ 
as a weighted estimator y , = ''"'E,6j^,>',' where g, = 1 + 
{X - x)'S/'(x,. - x ) . Then we may write (3) alternatively as 

Va r^ (y , -y | x , )=o^« - ' ( l nIN + cp (4) 

where c is the sample coefficient of variation of the g.. 
To study the expected dependence of c^ on q we now 

extend tiie model by supposing that the x. are independently 
and identically normally disttibuted. Notijig tiie independence 
of (x - X) and 5^ and also tiiat Ej^{y^ - Y \ x.) = 0, we obtain 
the unconditional variance 

!-l^ 
V a r ^ ( 7 , - J 0 

= a^n-Hl-nlN^tr[EJ{X-x){X-xy]EM{S,")]} (5) 

= c^n'\l-nlN)[l *ql{n-q-2)] 

using tiie fact that i ' ' 5^ ' has an inverse Wishart disttibution 
(Mardia, Kent and Bibby 1979, p. 69 and 85). This result 
holds for large n even without normality, in the sense that 
[1 - nIN + cf]l{l - nlN)[l + ql{n - q - 2)] still converges to 
1 as n increases for fixed q (under weak conditions). 

Expression (5) makes the dependence on q explicit. As q 
increases we may expect o^ todecreasebut E^{Cg) to increase. 
The reduction of o^ may be expected to be small after a few 
importantx variables are included and thus the variance may be 
expected to start increasing at some point where the number of 
X variables is a nonnegligible fraction of the sample size. 

Results (4) and (5) are based on sttong modelling 
assumptions and hence provided us only with motivation. In 
the general case x - ^ = O («""^) (under the randomization 
disttibution with standarci regularity conditions) so that the 
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last term of (3) is of O (« '^ ) . A more general second order 
asymptotic approximation for the design mean squared error 
of y^ when model (2) need not hold may be obtained by 
generalising Theorem 4.1 of Deng and Wu (1987). Details are 
given in Silva (1996). 

Our aim is to develop a variable selection procedure that 
minimizes the estimated mean squared ertor of y^, and 
estimators of this mean squared error are considered next. 

3. ESTIMATION OF THE MEAN SQUARED 
ERROR OF THE MULTIPLE REGRESSION 

ESTIMATOR 

A simple estimator of the mean squared ertor of y^ is 
obtained by generalizing expression (7.29) of Cochran (1977, 
p. 195) to the case of several auxihary variables: 

l-f< 
n 

(6) 

where S^ = {n-q- 1)"'Y^.^^e, and e,. = (y, - y ) - (x,-x)'6. 
This estimator makes no allowance for the 0{n'^) 

component of the mean squared ertor, however. Thus, as a 
second mean squared ertor estimator, we generalize the 
estimator v^ studied in Deng and Wu (1987) to the case of 
general q. "This is a special case of the model-based, bias-
robust variance estimator G^ originally proposed by Royall 
and Cumberiand (1978), for the case where the residual 
variances in the model (2) are constant. This estimator is 
given by 

1 - / . 2 

" ( " - l)ies 
E a,e*; (7) 

where 

O; =(^/ - 2g,/+/)/{(l - / ) [1 - {x-x)'S;\x- x)l{n - 1)]). 

We originally conjectured that Vj would be second order 
unbiased, as Deng and Wu (1987, eq. 4.4) show that it is for 
the case of q = 1. However this turns out not to be the case 
for general q>l, altiiough it may be expected tiiat tiie bias of 
Vj is smaller than that of v,, as indicated by the second order 
bias expressions for v, and Vj obtained by Silva (1996). 

A difficulty with v̂  as a variance estimator is that it does 
not generalize easily to complex survey designs. Thus we 
consider as a tiiird variance estimator a modified version of an 
estimator proposed by Samdal, Swensson and Wretman 
(1989), defined as: 

1 - / 
n{n-q- l),e E 2 . 2 

(8) 

This estimator may be expected to behave similarly to Vj since 
a, = gf + 0^(« ""^). In tiie terminology ofSamdale/a/. (1992, 
p. 232), the g. are the appropriate g-weights under simple 

random sampling if (2) is adopted as the underlying model. 
Expression (8) differs from the corresponding estimator 
proposed by Samdal et al. (1989, example 4.4) in that we use 
the denominator {n- q- I) instead of the original {n- I). 

4. VARIABLE SELECTION PROCEDURES 

We consider two basic variable selection procedures. First, 
an all subsets approach that involves computing one of the 
mean squared ertor estimators v ,̂ v^ or v of section 3 for all 2 ' 
possible subsets of the q auxiliary variables (always including 

"the intercept) and choosing that subset cortesponding to the 
smallest mean squared ertor estimate. This procedure can 
clearly involve considerable confutation if qr is large. Thus as 
a second procedure, we consider a forward selection 
approach which starts with the sample mean as an estimator, 
then adds that variable which minimizes the mean squared 
ertor estimate. The procedure is repeated until the mean 
squared ertor estimate starts to increase, at which point the 
subset of variables which gave the minimum mean squared 
ertor estimate is selected. 

These procedures may be conttasted with an approach 
inspired by the work of Bankier and his associates - see 
Bankier (1990) and Bankier, Ratiiwell and Majkowski (1992). 
We call this a condition number reduction approach. To 
describe tiie approach, first note that the regression estimator 
in (1) can alternatively be expressed as 

y , = [ny + {NX' - nxy{X;'X;y'x;'y^]IN (9) 

where X^' is the n x {q + I) mattix with x / ' = 
(_l,x,.,,...,x.^)' = (l -x,') as its /"-th row, x*=(l : x') ' and 
X' = (1 i A")' are the sample and population mean vectors of 
X* respectively, and y^ is the w x 1 vector with the sample 
observations of the response. 

The regression estimator thus depends on the inversion of 
the cross-products mattix X'/X'^, a mattix which can 
sometimes become ill-conditioned and thereby inflate the 
variance of the regression estimator. 

Bankier (1990) proposed a two-step procedure for 
computing regression eistimators of means (or totals) in which 
columns of the auxiliary data mattix X^ were eliminated in 
order to reduce the condition number of the cross-products 
matrix A'/'A'/, as well as to avoid undesirable situations 
(negative or outlying weights, rare characteristics, or exact 
linear dependence between columns). Bankier et al. (1992) 
describe in detail the procedure as applied to the 1991 
Canadian Population Census. It is worth noting that the 
approach developed by Bankier and associates, although 
incorporating variable selection, is not targeted at achieving 
efficiency for a particular survey variable. Its main focus is on 
calibration, while at the same time providing a single set of 
weights tiiat are used for all survey variables. 



26 Silva and Skinner: Variable Selection for Regression Estimation 

The condition number reduction approach that we consider 
can be described by the algorithm below, which adopts a 
backward elimination procedure to discard auxiliary variables 
generating large condition numbers for the cross-products 
mattix CP =A'/'A'/, instead of the forward inclusion of 
variables described by Bankier et al. (1992). 
1) Compute the cross-products matrix CP=X^'X^ 

considering all the columns initially available 
(saturated subset). 

2) Compute the Hermite canonical form of CP, say H (see 
Rao 1973, p. 18), and check for singularity by looking 
at the diagonal elements of H. Any zero diagonal 
elements in //indicate that the cortesponding columns 
of X^'X^ (and A"/), are linearly dependent on other 
columns (see Rao 1973, p. 27). Each of these columns 
is eliminated by deleting the corresponding rows and 
columns from X^'X^. 

3) After removing any linearly dependent columns, the 
condition number c =X„„A. .„ of the reduced CP 

max nun 

matrix is computed, where X^^^ and X^^ are the largest 
and smallest of the eigenvalues of CP, respectively. If 
c < £, a specified value, stop and use all the auxiliary 
variables remaining. 

4) Otherwise perform backward elimination as follows. 
For every k, drop the ^-th row and column from CP, 
and recompute the eigenvalues and the condition 
number of the reduced mattix. Compute the condition 
number reductions /"̂  = c - c ,̂ where ĉ^ is the 
condition number after dropping the k-t\i row and 
column from CP. Determine r ĵĵ  = max^(r^)and 
™̂,v = (^:''™. =r.) and eliminate the column i „ by 
max * max k* max •' 

deleting the k^^^ row and column from CP. Make 
c = Ci^ and iterate while c ^ L and qi: 2, starting each 
new iteration with the reduced CP mattix resulting 
from the previous one. 

One further approach that we consider is the 'ridge 
regression estimator of Bardsley and Chambers (1984). It 
does not rely on selecting subsets from the auxiliary variables 
available, but rather on relaxing the calibration properties of 
the regression estimator in favour of more stable estimates. 
The ridge regression estimator is given by 

VBC = ^^' (^^' - rvc-nxc-' ^x;'x;yX'y^iN (10) 

where A. is a scalar ridging parameter and C is a diagonal 
matrix of "cost" coefficients associated with the calibration 
errors tolerated when estimating totals of the auxiliary 
variables using y^^. 

Bardsley and Chambers (1984) suggested that the 
specification of the matrix C could be used to control the 
influence of each auxiliary variable on the resulting estimator 
of the response mean, thus imitating the subset selection 
process. As for the ridging parameter X, they suggested 
taking the smallest value such that all the implicit case 
weights are not smaller than 1/Â  (or 1 for estimating totals). 

5. PROPERTIES OF REGRESSION ESTIMATORS 
AFTER VARIABLE SELECTION 

For our basic variable selection procedures, a set of 
estimation sttategies S = {(y ,̂ v ̂ ); y e F} is cohsidered, where 
y\ and v^ are the regression estimator and an estimator of its 
variance respectively for a subset y of the q auxiliary variables 
available, and f is tiie set of all subsets. The variable selection 
procedure selects a subset y' from F according to a mle 
which is determined by the data and by S, and the resulting 
point estimator is y^ . 

For each fixed subset y, it follows under standard 
regularity conditions (Isaki and Fuller 1982) that y^ is 
consistent for the population mean Y, that is y^ ~ ^ ~ °n(l)-
Now, for given 5 > 0, \y\ - F | > 8 implies \f^- F | > 6 for 
some y, and so we have 

Vr{\y\-Y\>h)^y:Vr{\y\-Y\>b) (H) 
y e f 

and because r is finite, the right hand side of (11) con
verges to zero, and it follows that y^ is also consistent. 

The disttibution of y^ will, however, depend on the 
selection mle in a complex way. See Grimes and Sukhatme 
(1980) for an investigation of the efficiency of ŷ , in the 
simplest case when there are just two possible estimators: a 
regression estimator with one x variable and a difference 
estimator (a special case of which is the mean) and the 
variables are jointiy normally distributed. 

In conttast to the consistency of y^^, there is no reason 
why v^ should be consistent for Var(y^), even if v^ is 
consistent for Var(y^) for each fixed y. In particular we may 
expect v^ to underestimate Var(y^^) if the selection rule is 
such that v^ is the minimum of the v^. This effect is similar 
to the well known overestimation of R^ after subset selection 
in standard multiple linear regression (Miller 1990, p. 7-10). 

6. A SIMULATION STUDY 

In this section we present a small simulation study cartied 
out to evaluate the performance of the alternative variable 
selection procedures considered. We took as our simulation 
population a data set comprising 426 records for heads of 
household surveyed using the sample (long) questionnaire 
during the 1988 Test Population Census of Limeira, in Sao 
Paulo state, Brasil. 

This test was cartied out as a pilot survey during the 
preparation for the 1991 Brazilian Population Census. The 
test consisted of two rounds of data collection. In the first 
round, each enumerator would visit all the occupied 
households in a given enumeration area (an area with between 
200 and 300 households on average) and would fill in a short 
questionnaire. This form contained a few questions about 
characteristics of the household and about each member of 
the household (sex, age, relationship to head of household 
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and literacy). For heads of household only, a question on 
education and another about monthly total income were also 
included. The reported monthly total income for heads of 
household provides only a proxy to the actual income, due to 
the limitations of the interviewing process in this first round 
of data collection. 

Then a second round of data collection was undertaken in 
each enumeration area. The same enumerators would visit a 
sample of 1 in 10 of the households (selected systematically 
from the list of occupied households compiled in the first 
round of data collection) to obtain information using a long 
(more detailed) questionnaire, which contained all the 
questions asked in the short form plus many other questions. 

The size of the surveyed population was approximately 
44,000 households with 188,000 individuals. The sample size 
was roughly 10% of the population size. For reasons of 
computational cost, we used in our simulation study a sub-
population comprising all the sample records for 426 heads of 
household living in 20 of the 170 enumeration areas. We 
chose these records as our simulation population because they 
contain all the detailed information provided in the sample 
questionnaire, as well as the proxy information available from 
the first round interviews using the short form. 

We considered total monthly income, as obtained from the 
long form, as the main response variable (y) together with 
11 potential auxiliary variables, namely: 

X| 

X , 

^5 = 

^6 = 

^7 = 

^8 = 

x, = 

X,, = 

indicator of sex of head of household equal male; 
indicator of age of head of household less tiian or equal 
to 35; 
indicator of age of head of household greater than 35 
and less than or equal to 55; 
total number of rooms in household; 
total number of bathrooms in household; 
indicator of ownership of household; 
indicator that household type is house; 
indicator of ownership of at least one car in household; 
indicator of ownership of colour TV in household; 
years of study of head of household; 
proxy of total monthly income of head of household. 

From these 11 variables, we constmcted two alternative 
sets of auxiliary variables for our simulations. The first set 
was defined by taking five auxiliary variables, namely 
X,, ...,X4 and x,,, that have reasonable explanatory power in 
predicting y, especially due to the presence of the proxy 
income x,,. The second set we considered contained ten 
auxiliary variables, namely X,,...,X,Q, which due to the 
exclusion of x,,, has smaller predictive power than the 
previous one. For reference, the population correlation mattix 
for tiie survey variable y and the 11 auxiliary variables in the 
population is given in Table 3. 

We then selected 1,000 samples of size 100 from this 
simulation population by simple random sampling without 
replacement. 

Before proceeding to examine the detailed simulation 
results, we first consider the potential for gains from variable 
selection following the motivating model-based discussion of 
section 2. Recall from equation (4) that under model (2) the 
conditional variance of y^ is inflated by a term c because of 
estimation of p. We evaluated the disttibution of c^ over the 
1,000 samples for both the cases of five and ten auxiliary 
variables. For tiie case of five auxiliary variables, the median 
value of Cg was 0.036, with upper quartile of 0.056 and 
maximum 0.255. This accords roughly with equation (5) 
which inches that under the model the expected value of c 
is (1 - nlN)ql{n - q-2) = 0.041. Note that tiie wide varia
tion of Cg across samples suggests that it may be sensible to 
adopt a procedure which selects a different set of variables for 
each sample. The variation of c is even greater for the case 
of ten auxiliary variables, when the median was 0.078, the 
upper quartile was 0.107 and tiie maximum was 0.329, which 
also accords roughly with the expected value under the model 
of 0.087, according to equation (5). This interpretation 
clearly depends on the validity of the model (2), which is 
doubtful for these data, but it does suggest that there are 
potential efficiency gains to be made from variable selection. 

Another way to assess the potential for efficiency gains 
from variable selection is to compute approximations to the 
variance of the regression estimator considering various 
subsets of the auxiliary variables available, using all the 
population records. Figure 1 displays a plot of the 
approximation given by a finite population version of 
equation (5) computed for increasing subsets of the ten 
auxiliary variables, where the variable added at each step is 
the one yielding the biggest decrease in the approximation. 
The values of the standard first order design-based 
approximation (1 -f)SJn are also plotted for reference, 
although as has already been noted, this approximation is 
monotone non-increasing when new auxiliary variables are 
added. Simulation estimates of tiie mean squared ertor for the 
regression estimator cortesponding to each subset are also 
plotted. The plot shows clearly that if a standard regression 
estimator with a fixed set of auxiliary variables is to be used, 
the subset with five predictors would be tiie best choice when 

2 3 4 9 6 7 8 
Number of ouKlllory voriobln Inctudad 
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Figure 1. Finite population approximations and simulation estimations for 
the MSSE of the regression estimator computed for increasing 
subsets of the ten auxiliary variables. 
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the normal approximation for the variance based on 
expression (5) was considered, whereas the saturated subset 
would be chosen in case the standard design-based 
approximation for the variance was considered. The plot also 
reveals that the simulation estimates of the mean squared 
ertor agree more closely with the normal model approxima
tion than witii the standard first order approximation, 
especially for larger subsets of auxiliary variables. Similar 
results are achieved when cortesponding variance approxima
tions are computed given the set of five auxUiary variables. 

Hence both the simulation distributions of c^ and the 
finite population approximations to the variance of the 
regression estimator indicate tiiat tiiere are potential efficiency 
gains to be made from variable selection for this population. 
To investigate this for our data we now proceed to describe 
the details of the simulation study. 

For each sample replicate (say s) and for each of the two 
altemative sets of auxiliary variables considered, estimates of 
the population mean of total montiily income were computed, 
as well as corresponding variance estimates, using a number 
ofestimation sttategies. Each estimation sttategy is defined 
as a combination of a subset selection procedure, an estimator 
for tiie mean and a cortesponding variance estimator. The list 
of all strategies considered follows. 

SM) Sample mean estimator, with no auxiliary variables 
(y,v). This sttategy provides the standard against 
which all the others will be compared. 

Fs) Forward selection of auxiliary variables with (y,, v^). 
Fd) Forward selection of auxiliary variables with (y,, v^). 
Fg) Forward selection of auxiliary variables with (y ̂ , vp . 
Bs) Best subset selection from all subsets of auxiliary 

variables with (y^'^j)-
Bd) Best subset selection from all subsets of auxiliary 

variables with (y^.v^). 
Bg) Best subset selection from all subsets of auxiliary 

variables with (y,,v ). 
FI) Fixed subset of auxiliary variables with (y^'^j) • 
SS) Saturated subset of auxiliary variables with {y ,.,v). 
FR) Forward subset selection using SAS PROC REG, with 

(y.-v.)-
CN) Condition number reduction subset selection procedure 

with (y,,v). 
RI) Ridge regression estimator with saturated subset of 

auxiliary variables and a variance estimator that we 
denote Vi^, proposed by Dunstan and Chambers 
(1986), ^BC'^Dcy 

Sttategies Fs to Bg are variations of the two procedures we 
proposed for subset selection arising from the use of the three 
mean squared ertor estimators considered in section 3. 
Strategies FI and SS use the same set of auxiliary variables 
irtespective of tiie sample selected. In SS the saturated subset 
including all auxiliary variables available is always used. In 
FI a subset was chosen from each of the two sets with five 
(x,,x^,x,,chosen) or ten (x,,X2,X5,Xg,x,oChosen) auxiliary 

variables considered, by applying a standard forward subset 
selection regression procedure to the population dataset. The 
selected subsets were then used for every sample, thus the 
name "fixed subset" sttategy for FI. This sttategy would not 
be feasible in practice because tiie population information 
would not be available for tiieresponse, but it was considered 
as a theoretical "best possible scenario" under tiie ttaditional 
approach. 

For tiie sttategy FR, SAS PROC REG was used "naively" 
to perform a standard forward subset selection for each 
sample. The p-value used to decide whether a new variable 
should be included was the default of the procedure, namely 
0.50. For more details, see SAS (1990, p. 1397). 

For the condition number reduction subset selection 
sttategy CN, the value used for the parameter L that conttols 
the method was 1,000. For the ridge regression estimator 
sttategy RI, the cost coefficients associated with calibration 
errors for different variables were all set equal to 1. After 
having chosen the value of X that guarantees all the weights 
are not less than l/N, the weights were rescaled such tiiat tiiey 
sum to exactiy 1, in order to ensure exact calibration when 
estimating the population size. 

For any estimation sttategy, tiie estimates of the population 
mean and its mean squared ertor for tiie san^le s are denoted 
by y{s) and v[y(i)] respectively. The simulation results for 
each estimation sttategy were summarised by computing 
estimates of tiie bias, mean squared ertor (MSE), and average 
of mean squared ertor estimates (AVMSE) from the set of 
1,000 sample replicates, given respectively by 

BIAS=53[j ' ( i)-Jl /1.000 
S 

MSE=X)[y(>s)-?]^/1.000 
S 

AVMSE = Y^ v[y{s)]ll,O0O. 

(12) 

(13) 

(14) 

A measure of efficiency was also calculated for each 
strategy by dividing the corresponding simulation mean 
squared ertor by the simulation mean squared ertor for the 
sample mean (sttategy SM) and multiplying tiie result by 100. 
Empirical coverage rates for 95% confidence intervals based 
on asymptotic normal tiieory were also computed for each 
estimation sttategy and these rates, expressed as percentages, 
are presented in the last columns of Tables 1 and 2. 

Table 1 displays tiie simulation results for estimation of tiie 
population mean of tiie response variable given tiie set of five 
auxiliary variables (x, - x^,x^^) with larger predictive power. 
In this case, the use of the regression estimator greatly 
improves precision for every estimation sttategy employed, 
except for subset selection using condition number reduction 
(CN). The bias was negligible (less than 1% in terms of the 
absolute relative bias) for all estimation sttategies (the 
population mean of y is 194.34) except perhaps RI, which 
displayed a slight bias. 
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Tablet 
Bias, Mean Squared Error, Average of Mean Squared Error Estimates, Efficiency and Empirical Coverage of Altemative Estimation 

Strategies for the Mean of Response Variable y with Five Auxiliary Variables (x, - x ,̂ x,,) Available 

Estimation strategy 

SM) Sample mean (y, v )̂ 

Fs) Forward {p^,v^) 

Fd) Forward (y^.v^) 

Fg) Forward (y , ,vp 

Bs) Best(y^,v^) 

Bd) Best(y,,v^) 

Bg) Best(y, ,vp 

FI) Fixed (y^,v^) 

SS) Saturated (y,,v^) 

FR) PROC REG (y,,v^) 

CN) Cond. num. red. (y^,v^) 

RI) Ridge ^BC<VDC) 

BIAS 

0.25 

.0.40 

-1.25 

-l.;28 

0.44 

-1.22 

-1.24 

0.29 

0.30 

0.38 

0.34 

2.12 

MSE 

620.09 

233.78 

188.08 

188.38 

236.90 

190.52 

190.83 

227.90 

233.58 

235.86 

507.33 

304.95 

AVMSE 

619.05 

239.62 

196.88 

192.73 

239.49 

196.84 

192.71 

241.24 

242.32 

240.26 

483.63 

257.07 

Efficiency 
over SM (%) 

100.00 

37.70 

30.33 

30.38 

38.20 

30.72 

30.77 

36.75 

37.67 

38.04 

81.82 

49.18 

Empirical' 
Coverage (%) 

91.8 

82.7 

82.0 

81.1 

82.7 

82.0 

81.1 

83.3 

82.5 

82.5 

89.8 

82.5 

Nominal 95% coverage. 

There was no difference between the results for sttategies 
based on forward selection (Fs-Fg) and cortesponding stta
tegies based on selection from all possible subsets (Bs-Bg). 
Hence the faster and cheaper forward selection procedures are 
preferable. 

Amongst the sttategies using forward subset selection, Fd 
and Fg (with Vj and v̂  as the mean squared ertor estimators 
respectively) yielded greater efficiency, and performed very 
similarly. Note also tiiat Fd and Fg performed better tiian FI 
and SS, the sttategies that adopted the regression estimator 
with a fixed subset of the five auxiliary variables for every 
sample. This is tiTie both for tiie saturated subset (SS) and 
when the fixed subset was chosen using information from the 
whole population (FI). This shows tiiat one can do better than 
the ttaditional approach of using the regression estimator with 
a fixed set of auxiliary variables, by using an adaptive 
procedure that chooses tiie "best" regression estimator 
(subset) for each given sample, at least when the target 
response variable is tiie one considered for subset selection: 
This property was suggested by the wide variation in the 
values of c^ between samples, where we may expect to 
benefit from a sttategy which selects fewer x variables for 
samples with the largest values of c^. 

Comparison witii tiie adaptive sttategy FR, which used the 
standard subset selection available in PROC REG of SAS, 
shows that a criterion using an appropriate estimator of the 
mean squared ertor of the regression estimator makes some 
difference. FR yielded similar efficiency to that of ttaditional 
fixed subset sttategies (FI-SS). 

A more striking result is the low efficiency achieved by the 
subset selection procedure based on condition number 
reduction (CN) compared to all the other sttategies based on 
the regression estimator. This was not unexpected, because 
that procedure did not take the response variable into account. 

This favours the argument that when the mean of some 
specified response variable is the main target for inference, 
this should be taken into account when selecting the auxiliary 
varfables to use in connection with the regression estimator. 

When the set of five auxiliary variables was considered, 
we also observed that, for every sample, the first variable 
eliminated to reduce tiie condition number was proxy income 
(x,,). This happened because eigenvalues (and hence condi
tion numbers) of tiie CP matiix are dependent on the units of 
measurement of the auxiliary variables. Because all other 
auxiliary variables are counts of some kind, proxy income is 
the variable witii tiie largest variance by far. Its exclusion for 
every sample provides some explanation for the poor 
performance of this approach, because it is the best single 
predictor for the response. 

This difficulty was not apparent in Bankier's work, because 
in the target application of his procedure, the sample data 
from tiie 1991 Canadian Population Census, all the auxiliary 
variables considered were counts of persons, families or 
households, thus measured in similar units. 

Unlike the eigenvalues of the CP mattix, the regression 
estimator is invariant to location and scale ttansformation of 
the auxiliary variables. To remove the arbittary dependence 
of tiie condition number approach on tiie units of the auxiliary 
variables, it is tiierefore natural to standardise these variables 
first and to compute the condition number of the sample 
correlation matrix R^ ratiier than X^'X^. However this was 
fried and even modest values of Z, (100) failed to cause 
elimination of any auxiliary variables, which resulted in the 
saturated set being used every time, so tiiat CN reduced to SS. 

The sttategy based on tiie ridge regression estimator (RI) 
performed worse than the saturated subset sttategy (SS) in 
terms of efficiency. It also displayed some bias for estimating 
the mean squared ertor. This loss of efficiency is due to the 
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requirement that all tiie weights should be greater than or 
equal to l/N, which was imposed only under tiiis sttategy. On 
the other hand, it performed much better than the condition 
number reduction sttategy CN in terms of efficiency. 

In terms of the empirical coverage rates, only the condition 
number reduction sttategy CN performed close to SM 
(sanqile mean), both leading to modest undercoverage. All the 
other sttategies based on regression estimation yielded similar 
coverage rates, well below the target of 95%. 

Results for the simulation carried out with the set of ten 
auxiliary variables (x, - x,^) are displayed in Table 2 below. -
As expected, tiiese results show tiiat tiie sttategies that use tiie 
regression estimator still provide some gain in efficiency over 
the sample mean. However these gains are not as large as 
those reported in Table 1, when there are five auxiliary 
variables witii higher explanatory power. As before, adaptive 
Sttategies based on forward subset selection performed 
similarly to their counterparts based on best subset selection 
from all possible subsets. Adaptive sttategies using v^ or v^ 
as the estimator of tiie mean squared ertor were again slightly 
more efficient tiian tiie cortesponding sttategies based on v ,̂ 
although in this case at the expense of larger undercoverage 
of the corresponding nominal 95% confidence intervals. 

The more efficient adaptive estimation strategies (Fd, Fg, 
Bd and Bg) display nonnegligible bias for botii tiie population 
mean and for tiie mean squared ertor. In conttast, sttategies FI 
and SS present no significant bias for the mean, although 
there is some bias in the mean squared error estimation under 
strategy SS. Note particularly tiie large negative bias of the 
estimators of the mean squared error, as indicated by the 
differences between the columns labelled MSE and AVMSE 
in Table 2. This appears to be worse for sttategies Fd, Fg, Bd 
and Bg, followed by Fs and Bs, and not so bad for SS, FR 
and CN. 

Comparing Fd and Fg witii CN, tiiere is a moderate gain in 
efficiency over the condition number reduction procedure, at 
the expense of some increased bias in both the mean and 
mean squared ertor estimators. Thus, even when the 
predictive power of the available auxiliary variables is not 
large, it is still possible to gain efficiency over strategy CN. 

A bad choice of fixed subset (as for example, tiie saturated 
subset used in sttategy SS) could yield poor results in terms 
of efficiency and also some bias in the mean squared ertor 
estimation. However, if for example v^ was used as the 
estimator for the mean squared ertor under sttategy SS instead 
of v ,̂ there would be no apparent bias (the AVMSE observed 
in that case was 459.67, hence much closer to the estimated 
simulation mean squared ertor of 462.71). 

The ridge regression estimator was again slightly inferior 
to the saturated subset sttategy (SS), but now without any 
apparent bias in estimating the mean or the mean squared 
ertor. It outperformed tiie condition number reduction strate
gy CN once again in terms of efficiency, albeit by a smaller 
margin. It also performed well in terms of empirical coverage. 

Sttategy FR performed similarly to the fixed subset sttate
gies FI and SS again, and so was outperformed by sttategies 
using a specialized criterion based on an estimator of the mean 
squared error of the regression estimator such as v^ or v .̂ 

These results suggest that, when estimating the population 
mean of a single response, the proposed adaptive procedures 
combining the regression estimator witii some form of subset 
selection based on an appropriate mean squared ertor estima-
ator can offer some useful improvements in efficiency 
against its competitors. However such sttategies may 
introduce some bias when the predictive power of the 
auxiliary variables available is not large, and the 
cortesponding MSE estimators may be substantially biased, 
leading to poor coverage. 

Bias, Mean Squared Error, Average of Mean Squared 
Strategies for the Mean of Response 

Table 2 
Error Estimates, Efficiency and Empirical Coverage of Altemative Estimation 
Variabley with Ten Auxiliary Variables (x, -X,Q) Available 

Estimation strategy BIAS MSE > AVMSE Efficiency 
over SM (%) 

Empirical' 
Coverage (%) 

SM) Sample mean (y,Vj) 

Fs) Forward (y,,Vj) 

Fd) Forward (y,>v^) 

Fg) Forward (y,,vp 

Bs) Best (y,,v) 

Bd) Besi{y^,Vj) 

Bg) Best(y^,vp 

FI) Fixed {y^,v) 

SS) Saturated iy^,v) 

FR) PROC REG (y,,v) 

0.25 

0.06 

-8.12 

-7.90 

-0.00 

-7.90 

-7.60 

0.45 

-0.20 

-0.07 

620.09 

468.46 

434.27 

433.71 

466.16 

434.54 

433.26 

490.49 

462.71 

466.13 

619.05 

397.99 

338.90 

328.46 

397.59 

336.88 

326.05 

461.86 

413.17 

399.34 

100.00 

75.55 

70.03 

69.94 

75.18 

70.08 

69.87 

79.10 

74.62 

75.17 

91.8 

86.7 

81.7 

81.6 

86.6 

81.5 

81.6 

89.0 

86.9 

86.4 

CN) Cond. num. red. {y,.,v) 

RI) Ridge (y^^, v^ ) 

3.49 

1.05 

562.91 

480.18 

450.36 

472.82 

90.78 

77.44 

87.3 

89.4 

' Nominal 95% coverage. 
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Table 3 
Correlation Matrix for Variables Used in the Simulation Study with the 1988 Census Population 

Variable 

^1 

*2 

^3 

^4 

^5 

h 
^7 

^8 

Xg 

•''lO 

^11 

y 

0.23 

-0.04 

0.17 

0.47 

0.48 

0.05 

-0.17 

0.38 

0.20 

0.43 

0.78 

^1 

0.20 

0.07 

0.13 

0.09 

-0.09 

0.01 

0.29 

0.08 

0.23 

0.23 

X j 

-0.40 

-0.15 

-0.11 

-0.32 

-0.12 

0.07 

-0.06 

0.33 

-0.00 

*3 

0.12 

0.15 

-0.03 

-0.01 

0.17 

0.04 

0.17 

0.22 

^4 

0.83 

0.22 

-0.17 

0.44 

0.30 

0.39 

0.54 

^5 

0.20 

-0.31 

0.41 

0.25 

0.39 

0.54 

^6 

0.16 

0.13 

0.16 

-0.10 

0.01 

^7 

-0.20 

-0.13 

-0.30 

-0.19 

^8 

0.37 

0.49 

0.41 

x. 

0.26 

0.21 

•"̂ 10 

0.49 

7. CONCLUSIONS AND FUTURE DIRECTIONS 

Our results suggest tiiat, when using regression estimation, 
there is potential for some gain in efficiency by adopting a 
variable selection procedure based on one of tiie mean 
squared ertor estimators v^ or v . Under SRS, and 
considering the limited simulation evidence, tiiere seems little 
to choose between these two mean squared error estimators. 

Forward subset selection procedures were as effective as 
those based on searches carried out considering all possible 
subsets, which involve much more computation. Our results 
also indicate that it is possible to improve over subset 
selection procedures based on condition number reduction 
whenever a specific response variable is of interest. 

One problem witii a variable selection approach is that the 
associated variance estimation is likely to become biased for 
the estimation of the overall mean squared error of the 
regression estimator following variable selection, thus leading 
to poor coverage of standard confidence interval procedures. 
Further research is necessary to investigate possible 
alternative variance estimation procedures. 

This paper has focused on the use of regression estimation 
to reduce sanpling variance in tiie classical sampling context. 
In practice, regression estimation is widely used to cortect for 
biases arising from non-sampling errors. In such applications 
the question of how many auxiliary variables to use is also an 
important one. Some variables might be included for reasons 
unrelated to sampling error, for example because they are 
known to be important determinants of nonresponse. 
Nevertheless, as the number of auxiliary variables increases 
the sampling variance may also eventually increase and we 
suggest that a decision mle to limit the number of auxiliary 
variables employed might still usefully be based on sampling 
variance considerations. In the presence of nonsampling bias, 
the difference between x and X will generally be of 0^(1) 
not Op{n'"^) and so the results of tiiis paper are not directly 

applicable. Further research is therefore needed to consider 
the extension of our approach to this case. 

Further research is also necessary to extend our approach 
to complex sampling designs. One possible approach for the 
general regression estimators, considered e.g. by Samdal et al. 
(1992, sec. 6.4), would be to replace the weights g, by the 
"generalized" weights, described by Sarndal e/a/. (1992, 
eq. 6.5.9), and to base variable selection on the minimization 
of tiie generalized version of v̂  given by Sarndal et al. (1992, 
eq. 6.6.4). 
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Diagnostics for Formation of Nonresponse Adjustment Cells, 
With an Application to Income Nonresponse in the U.S. 

Consumer Expenditure Survey 
JOHN L. ELTINGE and IBRAHIM S. YANSANEH' 

ABSTRACT 

This paper discusses the use of some simple diagnostics to guide the formation of nonresponse adjustment cells. Following 
Little (1986), we consider constmction of adjustment cells by grouping sample units according to their estimated response 
probabilities or estimated survey items. Four issues receive principal attention: assessment of the sensitivity of adjusted 
mean estimates to changes in k, the number of cells used; identification of specific cells that require additional refinement; 
comparison of adjusted and unadjusted mean estimates; and comparison ofestimation results from estimated-probability 
and estimated-item based cells. The proposed methods are motivated and illustrated with an application involving 
estimation of mean consiimer unit' income from the U.S. Consumer Expenditure Survey. 

KEY WORDS: Incomplete data; Missing data; Quasi-randomization; Response propensity; Sensitivity analysis; 
Weighting adjustment. 

1. INTRODUCTION 

1.1 Problem Statement 

Survey analysts often use adjustment cell methods to 
account for nonresponse. The main idea is to define groups, 
or "cells", of sample units which are believed to have approx
imately equal response probabilities, or approximately equal 
values of a specific survey item, e.g., income. Weighting 
adjustinent or simple hot-deck imputation then iscarried out 
separately witiiin each adjustinent cell. The resulting adjusted 
estimator of a population mean or total will have a 
nonresponse bias approximately equal to zero, provided the 
within-cell covariances between survey items and response 
probabilities are approximately equal to zero. 

Some previous nomesponse-adjustment work formed 
adjustinent cells tiirough combinations of simple demographic 
or geographical classificatory variables... However, Littie 
(1986) and otiiers considered formation of cells by direct 
grouping of sample units according to their estimated 
response probabilities or estimated item values. The present 
paper discusses some simple diagnostics tiiat are useful in 
implementing tiiese cell-formation ideas. Principal attention 
is directed to the sensitivity of results to the number of cells 
used; identification of specific cells tiiat require additional 
refinement; comparison of adjusted and unadjusted mean 
estimates; and comparison of estimation results from 
estimated-probability and estimated-item based cells. These 
diagnostics are illusttated witii income data collected in tiie 
U.S. Consumer Expenditure Survey. 

1.2 Notation, Nonresponse Bias, and Adjustment Cells 

Let Ubea fixed population of size N with survey items 
y,, /• e U; and consider estimation of the population mean 

^ = ^ " ' E,e (/ ̂ , • A sanple 5 of size n is selected from U, and TT, 
is the probability that unit / is included in the sample. 

Nonresponse is assumed to satisfy the following quasi-
randomization model (Oh and Scheuren 1983). Let R. be an 
indicator variable equal to 1 if the selected sample unit / is a 
respondent and equal to 0 otiierwise. Assume that the R. are 
mutually independent Bemoulli (q.) random variables, where 
tiie fixed response probabilities x]. are allowed to differ across 
units. In addition, define tiie survey weights X. = TU," ' and the 
unadjusted survey-weighted mean response 

p def (S '̂̂ 'l 
- I 

I:\RiYr (1.1) 

Because^ of differences among tiie q., tiie unadjusted 
estimator Y^ has a nonresponse bias approximately equal to 
^'^n'^Leuni{Yr Y), where n =^"'E,e(/n, and expecta
tions are taken over both the original sample design and the 
quasi-randomization model. To reduce tiiis bias, one often 
partitions tiie population into k "adjustment cells" U^, 
partitions die sample j into cortesponding groups s^, and tiien 
uses the adjusted estimator 

yk'^=^t^hYhn' (1-2) 

where H-, = (i:,.^,X,)->I,.,,^X, and F,, = d X,/?,.)-
hes,\^iYr Note that if * = 1, then estimators (1.1) and 
(1.2) are identical. For some general discussion of adjustinent 
cell metiiods see, e.g., Cassel, Samdal and Wretman (1983), 
Oh and Scheuren (1983), ^nd Kalton and Maligalig (1991). 

The adjusted estimator Y^ has remaining nonresponse bias 
approximately equal to 

k 

V(Yi-Yh)' (1-3) 
^1, 

A^-'EnrE(ri, 

' B^tRMi^^isStutl^'^ ^^^ University, College Station, TX 77843-3143. U.S.A.; Ibrahim S. Yansaneh, Westat. 1650 Research 

file://I:/RiYr
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where Â ,̂ is the number of units in f/̂  and (ii^, ?^) = 
^h E,e(/ (l/' y) • Consequentiy, one prefers to constinct cells 
such that the population covariance between q. and Y. is 
approximately equal to zero within each cell. In practice, one 
attempts to accomplish this by constiaicting cells that are 
approximately homogeneous in the response probabilities q, 
or in the items Y^, or both. In some cases, "natural" sets of 
cells are defined a priori through combinations of 
classificatory variables that are available for both respondents 
and nonrespondents. For example, Ezzati and Khare (1992) 
used 72 cells defined by age, race, region, urbanization status, 
and household size to perform nonresponse adjustments for 
part of the National Health and Nuttition Examination 
Survey. In many practical cases, however, the list of 
reasonable candidate variables for cell formation is fairly 
large, and may produce a substantial number of cells that 
contain few, if any, respondents. Consequentiy, several 
authors have developed methods to screen out the less 
important classificatory variables and to collapse sparse 
adjustment cells in a way that preserves a reasonable degree 
of homogeneity within each of tiie remaining cells. See, e.g., 
Tremblay (1986); Lepkowski, Kalton and Kasprzyk (1989); 
Kalton and Maligalig (1991); Gbskel, Judkins and Mosher 
(1991); and the related discussion of pooling of poststrata in 
Little (1993). In addition, adjustment cell methods are related 
to otiier metiiods like regression-based adjustinents {e.g., Rao 
1996, Section 2.4 and references cited therein) and general
ized raking (Deville, Sarndal and Sautory 1993). 

1.3 Adjustment Cells Based on Estimated Response 
Propensities or Predicted Items 

Adjustment cells are expected to be approximately 
homogeneous, so one may argue that such cells implicitly 
define a model for either the q, or 7, values, or both. More 
explicit modeling leads to two related cell formation methods. 
First, let X^ be a vector of auxiliary variables observed for 
both responding and nonresponding sample units /, and use 
the sample {R^,X) values to fit a model for q_. = q(X.) 
through linear, logistic, or probit regression. The sample cells 
5̂  are tiien formed by grouping the sample units according to 
their estimated response probabilities fj.. As a second 
alternative, consider regression of responses Y. on an 
auxiliary vector X. to produce estimated items Y. for both 
responding and nonresponding sample units. The sample 
cells Sf^ are then formed by grouping units according to the 
values Y.. 

These two methods were suggested by Little (1986), 
extending the observational-data propensity-score work of 
Rosenbaumand Rubin (1983, 1984). See also David, Littie, 
Samuhel and Triest (1983). These ideas were developed 
originally in a model- based context, but extend directly to the 
curtent framework. Little (1986) argued that use of cells 
based on either the fj. or Y. values could reduce nonresponse 
bias, and that the K.-based cells could also control variance. 
Also, in some cases the fj. and K,.-based cells can be more 
flexible tiian cells defined a priori. In addition, the 

y,-based adjustment cells are conceptually related to optimum 
sttatification ideas {e.g., Cochran 1977, Sections 5A.7-5A.8). 

Little (1986) did not propose a specific mle to determine 
cell divisions. However, in keeping with related observa
tional-data work by Cochran (1968) and by Rosenbaum and 
Rubin (1984), one may consider cell divisions defined by the 
estimated k'^j quantiles of the q, or Y. populations, 
j = 1,2,..., k-l. This equal-quantile method gives some 
conttol over the expected number of respondents in each cell. 
In addition, review of the preceding two references suggests 
that, for a given set of predictors X^, most of the feasible bias 
reduction may be achieved with a relatively small number of 
cells, say k =5. A case study by Czajka, Hirabayashi, Little 
and Rubin (1992) used ^ =6 f|,-based adjustment cells 
within each of several strata, using cell-formation rules that 
were somewhat more complex than the equal-quantile rule 
considered here. However, the potential adequacy of a small 
number of cells should not be over-interpreted. For example, 
if an important regressor is omitted, then the resulting 
cell-based adjusted estimators may retain a substantial amount 
of bias, regardless of the specific number of estimated-
probability or estimated-item based cells used. 

Finally, an important alternative to weighting adjustment 
is imputation. For example, simple hot-deck imputation 
replaces a missing value within a given adjustment cell by 
randomly selecting respondent donors from the same cell. In 
parallel with (1.1) and (1.2), the resulting mean estimator is 
F ={y ^ Xy^y ^ X. Y,', where Y,' is either an observed or 
imputed value, as appropriate. Practical applications often 
use weighting adjustment for unit nonresponse and 
imputation for item nonresponse. However, for a given set of 
cells, both the weighting adjustment point estimator (1.2) and 
tiie imputation estimator f. have the same approximate bias 
(1.3). For simplicity, the remainder of this paper will focus 
on weighting adjustment, but one should bear in mind tiiat for 
a given set of cells, the same bias-reduction issues arise 
regardless of whether those cells are used for weighting 
adjustment or simple hot deck imputation. 

1.4 Outline of the Present Paper 

This paper discusses some implementation details of the 
estimated-probability and estimated-item methods of cell 
formation. We devote special attention to diagnostics to 
identify problems in a specific set of cells, and motivate and 
illustrate these diagnostics with an extended example 
involving income nonresponse in the U.S. Consumer 
Expenditure Survey. Section 2 gives some general back
ground on this income nonresponse problem. Section 3 
describes and applies several diagnostics, including 
comparison of F^ estimates and standard errors for several 
values of k (Section 3.1); partial assessment of within-cell 
bias (Section 3.2.1); assessment of cell widths relative to the 
precision of f\. estimates (Section 3.2.2); and cornparison of 
the adjusted and unadjusted mean estimates F^ and F, 
(Section 3.3). Section 4 shows that similar diagnostics can be 
applied to adjustment cells based on predicted incomes Y., 
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and also compares the mean income estimates computed from 
estimated-probability and estimated-income based cells. 
Section 5 summarizes the main ideas used in this paper, and 
notes some areas for future research. 

2. INCOME NONRESPONSE IN THE 
U.S. CONSUMER 

EXPENDITURE SURVEY 

2.1 The Consumer Expenditure Survey, Weighting 
Methods and Variance Estimation 

The U.S. Consumer Expenditure Survey (CE) is a 
sttatified multistage rotation sample survey conducted by the 
Census Bureau for the Bureau of Labor Statistics. Sample 
elements are "consumer units", roughly equivalent to 
households. In the interview component of this survey, each 
selected sample unit is asked to participate in five interviews. 
The curtent CE weighting procedure accounts for initial 
selection probabilities, a noninterview adjustment, post-
stratification based on several demographic variables, and 
additional refinements; see Zieschang (1990) and United 
States Bureau of Labor Statistics (1992). The complexity of 
the CE weighting work has led the BLS to use variance 
estimators based on pseudo-replication methods with 44 repli
cates. This pseudo-replication is approximately equivalent to 
standard balanced repeated replication (Wolter 1985, Ch. 3). 
All standard ertors reported here are based on this pseudo-
replication method, with all additional parameter estimation 
and weighting adjustment steps performed separately within 
each replicate. 

2.2 Income Nonresponse 

The noninterview adjustment in the current CE weighting 
procedure is generally considered to account adequately for 
unit nonresponse, e.g., noncontact or refusal to participate in 
a specific interview. Thus, unit nonresponse in the CE will 
not be considered further here. However, the BLS has had 
concerns about possible bias in mean income estimates due to 
item nonresponse that occurs with income questions in the 
CE; some background is as follows. 

Detailed income data are collected in the second and fifth 
interviews of the CE, and are used to produce estimates of 
mean consumer unit income (U.S. Bureau of Labor Statistics 
1991) and other parameters. CE income data are collected 
through a complex set of questions, and nonresponse rates for 
these questions are relatively high. To provide a summary 
indication of response or nonresponse to the full set of 
income questions, tiie BLS classifies each second- or 
fifth-interview consumer unit as a complete or incomplete 
reporter of income. The formal definition of "complete 
income reporter" status is fairly complex; Garner and 
Blanciforti (1994) give a detailed discussion. Curtent BLS 
procedure estimates mean income with the unadjusted mean 
response F, defined by (1.1), witii tiie /?, equal to indicators 

of complete income reporting, Y. equal to income, and 
weights X. as described in Section 2.1. The weighted mean F, 
uses both second- and fifth-interview data from a specified 
time period, but does not make direct use of the CE panel-data 
structure. In parallel with this, the present paper will 
distinguish between second- and fifth-interview data only in 
the consttuction of q. and Y. models. 

Here, we used data from the second and fifth interview 
reports from all consumer units that had a second interview 
scheduled during 1990. The second-interview data involved 
5,125 interviewed units and the fifth-interview data involved 
5,093 interviewed units. For each interviewed unit (both the 
complete and tiie incomplete income reporters), BLS records 
provided a large number of demographic and expenditure 
variables; these were used as auxiliary variables in the 
modeling work described in Sections 3 and 4 below. For both 
the second and the fifth interviews, approximately 14 percent 
of the interviewed consumer units were incomplete income 
reporters. 

3. CELLS BASED ON ESTIMATED RESPONSE 
PROBABILITIES 

We first considered constmction of adjustinent cells based 
on estimated response probabilities. Logistic regression 
models for the complete-income-reporter probabilities 
q, = r[{X) were fit separately for the second and fifth 
interview data described in Section 2. Model fitting details, 
including model parameter estimates and standard ertors, are 
reported in Yansaneh and Eltinge (1993). All variance 
estimates were computed by the pseudo-replication method 
described in Section 2. The final model fits were used to 
estimate complete-reporter probabilities fj. for each second-
and fifth-interview unit. Following the sttategy in Section 
1.3, units were grouped according to their f̂ . values into a 
total of k cells, with cell boundaries defined by die 
equal-quantile method. 

3.1 Initial Sensitivity Analysis for the Number of 
Cells Used 

The firsj tiiree columns of Table 1 report tiie adjusted point 
estimates F^ of mean income, and associated standard ertors, 
for several values of k. Comparisons of tiiese point estimates 
indicate tiie extent to which the adjusted estimates are 
sensitive to a specific choice of k. For k^5, the reported 
point estimates are relatively stable, varying between $32,630 
and $32,664. This is consistent witii tiie suggestion in Section 
1.3 that k = 5 cells may provide most of the effective bias 
reduction to be obtained from a given cell-formation method; 
see Rosenbaum and Rubin (1984, Section 1 and Appendix A) 
for some related mathematical background. 

In addition, note that for * ^ 3, the standard errors of ?^ 
are also relatively stable, ranging from $508 to $530. This is 
in partial conttast witii tiie general idea tiiat selection of an 
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appropriate number of cells hinges on a bias-variance 
ttade-off. For the present' dataset, it appears tiiat the effective 
bias reduction occurs fairly quickly (at ^ = 5, say), while 
substantial variance inflation does not occur until some point 
beyond k = 20. This is not unreasonable, since even for 
k = 20, the number of income responses per cell remained 
fairly large (ranging from 461 to 569), and thus avoided the 
general unstable-estimator problem associated with increasing 
numbers of sparse cells. Conversely, bias-variance tradeoff 
problems may be more severe for moderate k in applications 
involving smaller effective sample sizes, e.g., estimation for 
small subpopulations. 

Table 1 
Adjusted Estimates of Mean Income with Cell Boundaries 
Determined by Estimated Response Probability Quantiles 

Number 
of Cells 

Point 
Estimate 

Standard „_ / & & \ MSE Ratio 
Error 

Unadjusted 

k=3 cells 

^ = 4 cells 

k=5 cells 

k=:6 cells 

*= 10 cells 

A =15 cells 

* = 20 cells 

32.967 

32.736 

32.779 

32.630 

32.664 

32.640 

32.638 

32.634 

569 

530 

518 

523 

515 

514 

515 

508 

N/A 

112 

122 

138 

122 

116 

118 

118 

N/A 

1.30 

1.28 

1.53 

1.51 

1.58 

1.58 

1.63 

3.2 Two Simple Cell Diagnostics 

To complement the preceding sensitivity analysis, it is 
useful to study some sets of adjustment cells in additional 
detail. Let C, = {5,,...,5^} be a given candidate set of adjust
ment cells, e.g., the ^ = 3 or A = 5 equal-quantile- division 
cells in Section 3.1. The cells in C, can be refined by using 
equal-quantile divisions with a larger value of k; or by directiy 
splitting one or more of the cells in C,. This refinement may 
be worthwhile if there are empirical indications: (1) that the 
within-cell mean estimator Y^g may be substantially biased; 
or (2) that a cell is wide relative to the precision with which 
the q, values are estimated. Subsections 3.2.1 and 3.2.2 use 
two simple diagnostic methods to address issues (1) and (2), 
respectively. In each subsection, the proposed diagnostics 
lead to identification of potential "problem cells", and to 
constmction of a refined set of adjustment cells, Cj, say. 
Comparisons of estimates of Y based on C, and Cj then 
lead to some conclusions regarding the preferted set of 
f̂ j-based adjustment cells. 

3.2.1 Assessment of Within-Cell Bias 

As noted in Section 1.2, a given adjusted estimator F^ 
reduces, but may not entirely eliminate, nonresponse bias; and 
the residual bias of Y^ depends on the biases of the within-

cell mean estimates Y^g. Consider the altemative within-cell 
mean estimator 

'*n (S^'"'"') 
-1 

i:^:\R,Yr (3.1) 

If the fj. estimates were equal to the tme response 
probabilities q,, then (3.1) would be an approximately 
unbiased estimator of the tiTie subpopulation mean ^ . In that 
case, an estimator of the within-cell bias E(F^^ - Yf) would 
be B, Y - Y 

' hR ' hrC 
and the corresponding estimator of the 

be i = (ZL '̂  ^^•' would 
• i ^ > " » ^ ) ' overall bias E(y^ - Y) 

EA=l(Iys.,^)^A-
Because the f̂, values are subject to estimation ertor, the 

terms 5^ and B give only a partial indication of potential bias 
problems. For example, a large value of 5^ may reflect a 
substantial bias in F^^, or may reflect biases in the altemative 
estimator F. due to the errors f̂, - q.; cf. the cautionary 
remarks in Littie (1986, p. 146) regarding direct use of the 
weights % in adjusted estimation of F. Thus, if one 
observes a large value of fi^, it is worthwhile to consider 
refinement of cell h\ but the final decision of whether to use 
the resulting refined set of cells will depend on whether the 
refined set produces a substantially different estimate of the 
overall mean F. 

Tables 2 and 3 present 5^ values and associated standard 
ertors and t statistics for equal-quantile-division cells with 
* = 3 and k = 5, respectively. Note that for the case i = 3, 
the Bf^ diagnostics indicate a possible bias contribution from 
the lowest cell. This is consistent with the suggestion from 
Section 3.1 that ^ = 3 cells may not provide a satisfactory 
nonresponse adjustment. In addition, the cortesponding value 
of B was 111, with a standard error of 75; this value of B js 
very close to the difference Fj 
and Y^ from Table 1. 

FJ = 106 of the estimates Fj 

Table 2 
Within-Cell B. Statistics for Probability-Based Cells, k=3 

B, se{B^) t = BJse{Bf) 

269 
-19 

84 

136 
43 
45 

1.98 
-0.44 
1.87 

Table 3 
Within-Cell B. Statistics for Probability-Based Cells, * = 5 

h 

1 

2 

3 

4 

5 

Bh 

96 

- 7 2 

- 5 2 

- 1 6 

98 

se{Bf) 

111 

116 

56 

27 

50 

t = BJse{B^) 

0.44 

-0.62 

-0.93 

-0.59 

1.96 

In light of the preceding results, the low-i^. cell from the 
^ = 3 case was split in half. The upper bounds for the two 
new cells (A = 1' and h = I", say) were determined by the 
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0.167 and 0.333 estimated quantiles of the fj. population. 
The resulting 5^ values and standard ertors were 90 and 197 
forceU 1', and-42 and 79 for ceU 1". In addition, the 
refined set of four cells had B = 30, with a standard error of 
75; and the adjusted estimate of F equal to $32,652 and 
standard ertor of $518 were close to those obtained from the 
equal-quantile-division method with k = 5. 

In contrast with die results for ^ = 3, the 4^ results for k = 5 
indicated relatively little basis for concem, with the possible 
exception of cell h = 5, which had a t statistic of 1.96. For 
* = 5, the value of B -was 11, with a standard ertor of 93. 
Additional splitting of cell h = 5 did not lead to notable 
changes in eitiier tiie estimate of F or tiie associated standard 
ertors. The 5^ results, for equal-quantile-division cells with 
larger values of k showed even fewer indications of within-
cell bias. For example, for A = 6 all six cells had 5^ values 
witii t statistics less tiian or equal to 1.65; and for * = 10, all 
cells had B^ values witii / statistics less than or equal to 1.54. 

3.2.2 Relation of Cell Widths to Precision of x\. 
Estimates 

The relationship between the widths of adjustment cells 
and the widths of confidence intervals for the response 
probabilities q, leads to another diagnostic for identification 
of potential problem cells. First, define a^ = (£.^^ \ ^ , ) ' ' 
X,e, X., the nonresponse-adjustment factor us*ed for 
responding units in cell h. Second, following standard results 
for logistic regression, note that an approximate 95% 
confidence interval for q is 

{LB., UB) = ([1 + exp{-^;9 + 1.96D,"^}]-' 

[l+exp{-Jr;9-1.96D,"'}]-'), 

where 9 is tiie vector of logistic regression parameter 
estimates, D. =X; Kgjr,,and V^ is tiieps^udo-replicate-based 
estimated covariance matiix for 9. Let J^ be tiie X..-weighted 
san^jle mean of tiie confidence interval widtiis UB. - LB. for 
units / in cell h, and consider a comparison of d^ to the width 
of cell h. If cell/i is relatively wide, botii on an absolute scale 
and relative to rf^, tiien division of this cell may produce two 
new cells with two substantially different weight factors, a^. 
Conversely, if d^ is substantially larger tiian the width of cell 
h, tiien differences among f̂, in tiiat cell may result more from 
estimation ertor tiian from differences in tiie tine \].. In that 
case, additional division of cell h is unlikely to produce much 
useful change in weight factors a ;̂ and thus tiiere will be 
relatively little change in tiie resulting nonresponse-adjusted 
estimator of F. 

Tables 4 and 5 report ceU boundaries, cell widtiis, rf^, and a^ 
values for * = 5 and * = 10, respectively. For k = 5, tiie 
widths of cells 2 tiirough 5 were not large relative to the d^ 
values. Each of tiiese cells is essentially split in half to 
produce tiie A = 10 cell case. The resulting pairs of a^ for 
* = 10 are relatively close to tiie cortesponding a^ values in 
cells 2 tiirough 5 witii * = 5. 

By conttast, with k = 5, cell 1 is over twice as wide as d^. 
When A = 10, this cell is divided into cells with somewhat 
different nonresponse adjustment weight factors a^: 1.45 and 
1.27, respectively. However, the^ cortesponding cell-mean 
estimates are relatively close: Y^g = $24,045 and Y^g = 
$24,582 for k=lO. Thus, in this example, the non-
response-adjusted estimates Fj and F,g are relatively close 
because four of the five cell divisions produced relatively 
small changes in weights, and because the other cell division 
produced two cells with similar cell means. 

Table 4 
Estimated-Probability Cell Boundaries, Cell Widths, Mean 
Confidence Interval Widths and Nonresponse Adjustment 

Factors, k = 5 

h 

1 
2 
3 
4 
5 

Lower 
Bound 

0.384 
0.810 
0.861 
0.894 
0.924 

Upper 
bound 

0.810 
0.861 
0.894 
0.924 
0.994 

Cell 
Width 

0.426 
0.051 
0.033 
0.030 
0.070 

dh 

0.197 
0.139 
0.110 
0.088 
0.067 

''h 

1.35 
1.20 
1.13 
1.08 
1.07 

Finally, the or̂  factors in Table 5 indicate tiiat mean 
response rates in tiie A = 10 cells fall in a moderate range, 
from (1.45)-' = 0.69 to (1.06)' = 0.94. Some other non-
response datasets involve a wider range, and thus are more 
likely to produce,more pronounced cell-splitting results. 
Conversely, otiier nonresponse datasets may display a tighter 
distiibution of response probabilities, and thus are less likely 
to display notable cell-splitting effects. 

Table 5 
Estimated-Probability Cell Boundaries, Cell Widths, Mean 
Confidence Interval Widths and Nonresponse Adjustment 

Factors, i = 10 

h 

1. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Lower 
Bound 

0;384 

0.762 

0.810 

0.840 

0.861 

0.878 

0.894 

0.908 

0.924 

0.944 

Upper 
Bound 

0.762 

0.810 

0.840 

0.861 

0.878 

0.894 

0.908 

0.924 

0.944 

0.994 

Cell 
Width 

0.378 

0.048 

0.030 

0.021 

0.017 

0.016 

0.014 

0.016 

0.020 

0.050 

dh 

0.220 

0.174 

0.146 

0.132 

0.111 

0.108 

0.093 

0.083 

0.072 

0.062 

^h 

1.45 

1.27 

1.21 

1.19 

1.14 

1.11 

1.09 

1.08 

1.08 

1.06 

3.3 Comparison of Cell-Based Estimates to the 
Unadjusted Estimate 

To conclude tiie assessment of f|,-based cells, we 
compared tiie adjusted estimates F^ with the unadjusted 
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estimate F,. First, Table 1 indicates that for the reported 
values of A ^ 5, tiie differences F, - F^ are greater tiian or 
equal to $303. Second, for * ̂  5, the estimated standard 
ertors of the differences F, - T^ are all less than or equal to 
$138, and the corresponding / statistics are all greater than 
2.44. Thus, for k = 5, say, a formal test of the hypothesis 
HQ. E ( F , - FJ) = 0 would be rejected at standard significance 
levels; i.e., the adjustment-cell method has produced a 
significant change in the mean income estimate. 

In addition, a rough comparison of the efficiencies of F, 
and T^ follows from the estimated mean squared error ratio 

t , = { ^^(F,)}-'[^(F.) + niax{0,(F, - F / - F(F, - F,)}] 

where V{Y^), V{Y^), and V{Y^-Y|)are the pseudo-
replicate-based variance estimates for the indicated means. 
To interpret this ratio, assume for the moment that F^ is an 
approximately unbiased estimator of F. Then ŷ  is an 
estimator of the mean squared error of the unadjusted 
estimator F,, relative to the mean squared ertor of F^. 
Consequently, f̂  reflects the loss of efficiency incurted by 
using the biased, unadjusted estimator F, instead of the 
adjusted, unbiased estimator ?^. However, this interpretation 
should be viewed with some caution, since it depends on the 
assumption that F^ is approximately unbiased for̂  F, and 
since the y^ are functions of the random terms Y^- Yf^, 

V{?,), F(F,), and V{?i-?,). 
As suggested by a referee, one could also consider a mean 

squared error ratio 

{V{Y^)]-' [V{K) ^ niax{0,(F,- ?/ - V{Y,- F,)}] 

where F equals expression (1.1) with X, replaced by 
(fj,)"' X,. This would amount to comparing each cell-based 
estimate F^ to F . This is appropriate if F^ is approximately 
unbiased, but this unbiasedness may be problematic in some 
cases; cf Littie (1986, p. 146). 

The final column of Table 1 reports the estimated ratios y^ 
for specified values of k. For ki:5, each reported y^ js 
greater tiian 1.5. Finally, note that each adjusted estimate ?^ 
fell below the unadjusted estimate F,. This occurred 
because, for a given k, cells associated with larger response 
probabilities tended to ha^e larger mean estimates F^ .̂ For 
example, for k = 5, the Y^g values were $24,333, $33,729, 
$33,398, $34,620, and $37,057 for A = 1 (the low q.cell) 
through /j = 5 (the high q. cell), respectively. 

4. CELLS BASED ON ESTIMATED 
INCOME VALUES 

The general diagnostic ideas of Section 3 also apply to F. 
based cells. To illustrate this idea, we fit separate weighted 
regressions of Y. = reported income for second- and 

fifth-interview respondents. Yansaneh and Eltinge (1993) 
report details of the work, including parameter estimates and 
standard ertors. The resulting regression models were used 
to compute estimated incomes F. for both complete and 
incomplete income reporters. Units were then grouped into 
cells according to their F, values, with cell boundaries 
determined by tiie equal-quantile metiiod. 

Table 6 reports the basic sensitivity-analysis and efficiency 
results for the F. based cells; the organization of this table is 
the same as in "Table 1. The sensitivity-analysis results are 
qualitatively similar, but not identical, to those reported for 
the f .̂-based cells. In additional work not detailed here, we 
considered splitting individual equal-quantile F.-based cells. 
For A 2 4, the resulting mean estimates and associated 
standard ertors did not differ notably from those reported in 
Table 6. 

Table 6 
Adjusted Estimates of Mean Income with Cell Boundaries 

Determined by Estimated Income Quantiles 

Adjustment 
Method 

Unadjusted 

(*=!) 

k=3 cells 

k = 4 cells 

k=5 cells 

* = 6 cells 

*= 10 cells 

*= 15 cells 

* = 20 cells 

Point 
Estimate 

32,967 

32,512 

32,468 

32,473 

32,492 

32,488 

32,478 

32,495 

Standard 
Error 

569 

509 

512 

511 

508 

510 

504 

513 

SE(P , - ? , ) 

N/A 

106 

108 

115 

117 

119 

124 

124 

MSE 
Ratio 

N/A 

2.01 

214 

2.12 

2.08 

2.07 

216 

2.02 

The final two columns of Table 6 permit comparison of F^ 
t9 the unadjusted estimate F,. For k^4,the differences 
F, - F^ are greater than or equal to $472, with estimated 
standard ertors less than or equal to $124. The associated / 
statistics are all greater than 3.80. In addition, the estimated 
mean squared error ratios y^ are all greater than 2.0. 

Also, the q. and F.-based cells produced somewhat 
different adjusted estimates of mean income, but the observed 
differences were not statistically significant at customary a 
levels. For example, with k = 5, the difference between the 
q,.- and F.-based ceU estimates is $32,630 - $32,473 = $157, 
with a standard ertor of $122 and a t statistic of 1.29. 
Similarly, for A: = 10, the difference between the f\.- and F.-
based estimates is $152, witii a standard ertor of $104. Thus, 
the data provide relatively little power to distinguish between 
results of the two general cell-formation methods. 

Finally, note that a given set of F.-based cells are 
fundamentally linked with a particular Y variable, e.g., 
consumer unit income. Consequentiy, that set of cells will 
not necessarily work well for estimation of the mean of a 
different F variable. 
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5. DISCUSSION ACKNOWLEDGEMENTS 

5.1 Summary of Methods 

This paper has discussed some simple diagnostics for 
formation of nonresponse adjustment cells. The methodology 
may be summarized as follows. 

1. Based on preliminary modeling work and observed 
auxiliary variables X^, compute an estimated response 
probability fĵ  for each sample unit (respondents and 
nonrespondents). 

2. Constmct k adjustment cells with boundaries determined 
by the estimated k'^ quantiles of the f|. population, 
y = 1,2, ...,_k- 1. Compute the resulting adjusted mean 
estimate, F^. 

3. Repeat (2) for several integers k > I. As k increases, 
identify tiie point at which the F^ become approximately 
constant. In keeping with Rosenbaum and Rubin (1984) 
and the empirical results discussed here, values of k near 
5 may be of special interest. 

4. Use simple screening diagnostics {e.g., B^ and J^ in 
Section 3.2) to check for potential problems in the 
equal-quantile-division adjustment cells. If the dia
gnostics identify potential "problem cells," then try 
addi^onal refinements of these cells. Compute estimates 
of F based on these refined sets of cells, and compare 
these new estimates to the F^ from (3). 

5. Assess the overall effect of adjustment by comparing the 
differences F, - F^ to the standard ertors se(F, - F^); 
and by computing the estimated mean squared ertor ratios 

6. Repeat steps (1) tiirough (5), as appropriate, for F,-based 
adjustment cells. Compare the final estimates of F 
obtained from the q. and F.-based cell methods. 

5.2 Areas for Future Research 

The results of this work suggest two potentially useful 
areas for future research. First, the CE incoine nonresponse 
problem is similar to nonresponse problems in some other 
large-scale surveys, but as with any case study one should not 
over-generalize the empirical results reported here. It would 
be useful to apply these diagnostics to problems involving 
different estimands {e.g., cross-class means) or involving 
nonresponse datasets witii somewhat different characteristics, 
e.g., larger or smaller effective sample sizes; or wider or 
nartower disttibutions of fj. estimates. This in tum would 
offer additional insight into the operating characteristics of q, 
and F.-based adjustment cell methods in practical 
applications. Second, extensions to multivariate problems 
{e.g., relationships involving second-interview and fifth-
interview CE income data) also would be of interest. 

The authors thank Richard Dietz, Thesia Garner, Paul 
Hsen, Eva Jacobs, Geoffrey Paulin, Stuart Scott, and 
Stephanie Shipp for many helpful discussions of the 
Consumer Expenditure Survey; and Wayne Fuller, Steve 
Miller, Geoff Paulin, Stuart Scott, three referees and the 
editor for helpful comments on earlier versions of this paper. 
This work was carried out while tiie authors were visiting the 
Bureau of Labor Statistics through the ASA/NSF/BLS 
Research Fellow Program, and was supported by a grant from 
the National Science Foundation (SES-9022443). Eltinge's 
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National Institutes of Health (CA 57030-04). The views 
expressed in this paper are those of the authors and do not 
necessarily represent the policies of the Bureau of Labor 
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Variance Estimation for Measures of Income Inequality and 
Polarization - An Empirical Study 

MILORAD S. KOVACEVK!; and WESLEY YUNG' 

ABSTRACT 

Measures of income inequality and polarization are fundamental to the discussions of many economic and social issues. 
Most of these measures are non-linear functions of the distribution function and/or the quantiles and thus their variances 
are not expressible by simple formulae and one must rely on approximate variance estimation techniques. In this paper, 
several methods of variance estimation for six particular income inequality and polarization measures are summarized and 
their performance is investigated empirically through a simulation study based on the Canadian Survey of Consumer 
Finance. Our findings indicate that for the measures studied here, the bootstrap and the estimating equations approach 
perform considerably better than the other methods. 

KEY WORDS: Gini index; Lorenz curve ordinate; Low income proportion; Polarization index; Quantile share; 
Resampling variance estimation; Linearization method. 

I. INTRODUCTION 

Analyses of the distiibution of income are fundamental to 
the discussions of important economic and social issues such 
as the extent of inequality, poverty, the size of tiie middle 
class, etc. There exists extensive statistical and econometiic 
literature on this subject, especially on different measures of 
income inequality and their properties (Sen 1973, Kakwani 
1980, Nygard and Sandsttbm 1981). However, seldom is 
there any attempt to produce information regarding the 
sampling variability associated witii the estimates used to 
assess the magnitude of inequality or polarization. Such 
information is necessary for two reasons: i) as a measure of 
tiie precision of tiie estimates obtained from survey data and 
ii) to provide a basis for formal statistical inference on income 
distributions, particularly when income distributions" are 
compared over different regions or across time. 

Measures of income inequality and polarization are finite 
population parameters expressible as functions of tiie ordered 
population values, thus their variances are not obtainable in 
simple formulae and one has to rely on approximate variance 
estimation techniques. Generally, inference about tiiese 
measures, based on a complex sample design, embodies point 
estimation and confidence intervals. We investigate variance 
estimation for some of these measures such as quantiles, low 
income line, low income proportion, Lorenz curve ordinates, 
quantile shares, Gini index, and tiie polarization index. 

Throughout this paper we assume a fixed finite population 
framework, that is, we assumie that associated witii each 
population unit is a fixed but unknown real number: the value 
of income earned by tiie unit. We assume tiiat tiie population 
is sttatified into L sttata with N^ primary sampling units 
(PSU's) in the A-th sttatum In die first stage sample, «^(a 2) 
PSU's are selected from sttatum h (independentiy across 

Sttata). We assume that subsampling within sampled PSU's 
is performed to ensure unbiased estimation of PSU totals, 
Y^^,c = \,...,n^;h = l,...,L. Attached to the (/»c/)-th ultimate 
unit, along with the observed variable of interest, y^„,is the 
sampling weight w^^.. We use E^ = E ^ L I , to "denote 
summation over all ultimate units in tiie sample, incorporating 
all stages of sampling. 

After reviewing tiie basic definitions of these measures, we 
give tiieir point estimates under our sample design in section 2. 
Section 3 deals with variance estimation of these measures. 
Existing methods are reviewed and five metiiods, jackknifing, 
grouped and repeatedly grouped balanced half-sample, 
bootsttap and linearization via the estimating equations 
approach are summarized in detail. Section 4 contains the 
description of the simulation study based on data collected in 
the 1988 Canadian Survey of Consumer Finance. The empi
rical study is aimed at comparisons of tiie variance estimation 
methods for a number of income inequality measures. 
Various results are presented, summarized and interpreted. 
Our conclusions are presented in section 5. 

2. ESTIMATION OF INCOME INEQUALITY 
MEASURES 

The simplest measures of inequality between two 
distiibutions are the cumulative disttibution function (CDF) 
and the quantiles of the two distributions. We start this 
section by defining the CDF and tiie finite population 
quantiles. The remaining measures studied in this paper are 
functions of the CDF or a fixed number of quantiles and are 
inttoduced in section 2.1. 

For a variable F defined over a finite population 
U= {l,...,N], we define the CDF as 

Milorad S. Kova£evi6, Senior Methodologist, Household Survey Methods Division, and Wesley Yung. Senior Methodologist, Business Survey Methods 
Division. Statistics Canada, R.H. Coats Building. Tunney's Pasture. Ottawa, Ontario. Canada, KIA 0T6. 
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fs(y)-T,nY,^y}j^, 
ieU 

where I{a] is an indicator function taking on a value of 1 if a 
is true and 0 otherwise. A design unbiased estimator of 

F{y) = T.t{yi^y) 
w, 

N 

where the sampling weights, w., are obtained from the 
sample design and are equal to the inverse of the first order 
inclusion probabilities. This estimator- may not be a CDF 
since F('=°) = NIN may not necessarily be equal to 1. Thus we 
would rather use the possibly design-biased estimator: 

F{y) = E f^Yi ^ y)'^i/T, ^i = E ^iYi ^ y)^i' (2.1) 
ies ies ies 

where w. = w.lYw.,ies. The estimator (2.1) is design 
unbiased when Y^w. = N which can occur under simple 
random sampling or if the weights, w., are benchmarked to 
known population totals. In general, the estimator (2.1) uses 
final weights which usually involve poststtatification, non-
response adjustment, some iterative calibrations and so on. In 
this paper, we consider only the case where the design 
weights are used. 

Turning to the quantiles, we define the finite population 
quantiles as 

4^(/7) = inf{r. |F,.s/7} for 0<pil, 
ieU 

where F. = F^{Y). The population quantiles are estimated by 
the sample quantiles 

| , = inf{y, |F,^/7) for 0<p<. 1, 
ies 

where F. = F{y.). If a parameter is a function of quantiles, 
say ^N = S{IN\ with^§Ar= { ^Afi^/'iX-.^wi/'t)}' then k is 
estimated by 0 = g( | ) where | = (1^ ,..., l,^). 

2.1 Income Inequality and Polarization Measures as 
Finite Population Parameters 

In this section we present some frequentiy used income 
inequality and polarization measures. They are the low 
income line, the low income proportion, the Lorenz Curve 
and its related statistics, the quantile shares, the Gini index 
and finally tiie polarization curve and the polarizationihdex. 
Our intention is to briefly introduce these measures, not to 
discuss them in detail. For more details, we refer the readers 
to Nygard and Sandstrom (1981) and Wolfson (1994). 

The low income line, or the poverty line, is defined as a 
fraction of the median, X̂  = a ^^ (0.5), where 0 < a s 1 is a 
given constant and ^^ (0.5) is the finite population median. Its 
estimate is simply l̂ ^ = a |Q 5. 

The low income proportion (LIP) is the percentage of units 
(individuals, families, households) in the population falling 
below the low income line X^ and is given by A^ = Ff^{X^). 

The estimate of the low income proportion involves the 
estimation of botii the distribution function and the low 
income line, A„ = F( 1 J = X, / (Yhd ^ « ^.5 ^ ^*a • 

The finite population Lorenz curve ordinate (LCD) gives 
the share of income received by the poorest lOOp percent of 
the population and is defined as a function ofp{Oi.pi 1). It 
simply depicts the cumulative income against the population 
share. As a parameter it is defined as 

L{p) = -^''!Ldq 
Hj .0 ^ 

where p^ is the population mean, and ^ is the quantile 
function. For a large population without ties the expression 
above is approximated by 

r t , ^ ^<^.^-P>^- 1 
^N(P) = 1.U Â  

and estimated as 

r(p,=j:,i!£s^k. hci 

where p =EAa>'fc, and F,^, = Hy^J. 
The quantile share (QS) is defined as the proportion of 

total income shared by the population allocated to a quantile 
interval [4^_,^^y. 

, V- f^^Pi^Fi^p^]Y. 1 , , , , , , 
QN(PI'P2) = Hu 77 = ^M^ - ^N^i) 

MAT ^ 

For 0 ^ p, <P2 ^ 1 't is estimated by replacing the parameters 
with their estimates. 

The most popular measure of aggregate inequality of 
income distribution, the Gini index, is defined as the area 
between the Lorenz curve and the 45° line, normalized to lie 
between 0 and 1:G = l-2i\L(p)dp.lt& finite population 
version is estimated by 

G = E^^^^V^-hci' 

For more about the Gini index we refer the reader to Nygard 
and Sandstrom (1985). 

Using the analogy of the Lorenz curve and the Gini index, 
Foster and Wolfson (1992) defined the polarization curve as 

.<„=|£:i^.„ 
0.5 

or in the finite population form 

B{p)=' 

1 0 . 5 - / ? - — E I{p<F.<0.5]Y.-^,0<p^0.5, 

0.5-P + — E /{0.5^F,</7}yJ-,0.5<p^l. 
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The polarization curve shows, for any population percentile, 
how far its income is from the median. The area below the 
polarization curve is considered as a summary measure of the 
polarization. A version of it, normalized to lie between 0 and 
1, is named the polarizatiori index (PI): 

^/v=E 
[ 2 - 2 / { F . ^ 0 . 5 } - 2 F . ] r , . 1 

4;v(0.5) N 

where ^^0.5), p^ and F. were previously defined. The 
estimate of tiie polarization index is obtained by replacing the 
parameters with their estimates. 

3. VARIANCE ESTIMATION 

The estimation of the variance of non-smooth statistics like 
quantiles, as well as quantile based functions like the low 
income proportion or the polarization index, is not sttaight
forward especially when the assumption of simple random 
sampling is untenable and there is a need to take into account 
the complex sample design. In the first part of this section we 
review some results on variance estimation for quantiles as a 
starting point for understanding the complexity of variance 
estimation for income inequality measures. We also review 
results on variance estimation for some measures like the 
Lorenz curve ordinates. The second part describes the 
methods of variance estimation that are used in this study. 

Woodmff (1952) proposed a metiiod to obtain confidence 
intervals for individual quantiles. These intervals were used 
by Francisco and Fuller (1986) and Rao and Wu (1987) to 
derive variance estimators. Though tiie estimator depends on 
tiie confidence coefficient, Rao and Wu (1987) established its 
asymptotic consistency for any significance level a. Using 
Monte Carlo simulations, they studied the standard errors of 
quantiles for cluster samples estimated in this manner. Their 
results suggest that a 95% confidence interval works well as 
a basis for extracting the standard ertor. Binder (1991) 
obtained a similar form of the variance estimator by using the 
linearization method. 

Jackknife variance estimators have become exttemely 
popular for smooth functions of totals and means with the 
increase in computing power. Standard asymptotic tiieory 
applied to the median of a distribution with bounded con
tinuous density,/ shows thatnE{l^^-^^f^ ll[4f\%Q,)] 
as « - oo. Efron (1979) pointed out that tiie jackknife metiiod 
applied to tiie sample median gives a variance estimate which 
is asymptotically inconsistent since 

nvar JK ( ^ . 5 ) -
1 

4/'(^.5) 
[xM 

where [x2/2]^ has mean of 2 and variance of 20 which means 
that the jackknife variance estimator tends to over estimate, 
on the average, the cortect asymptotic variance by 100%. 
Kovar (1987) confirmed empirically the inconsistency of the 

delete-one-unit jackknife estimators for a stratified sample 
design. In a simulation study using a sttatified population, he 
showed that the delete-one-unit jackknife estimators (he 
considered six of tiiem) performed poorly, over estimating the 
true variance by 30-70% in the design with two units per 
stratum and performed even worse in the five units per 
sttatum design. Shao and Wu (1989), however, have shown 
that under certain conditions, the delete-rf jackknife method 
has desirable asymptotic properties for variance estimation of 
non-smootii statistics. This result has motivated Rao, Wu and 
Yue (1992) to apply the delete-one-PSU jackknife for 
stratified multistage sampling. In a limited simulation study 
they found that both bias and relative bias of the jackknife 
variance estimator of the median decrease as the cluster size 
increases for a fixed inttacluster cortelation. 

Bootsttap variance estimation for the median was first 
reported by Efron (1979), and in the case of independent and 
identically distributed observations the bootsttap provides 
consistent results, (see also Babu 1986). Rao and Wu (1988) 
gave a modified bootsttap method for variance estimation in 
stratified designs. Kovar (1987) and Kovar, Rao and Wu 
(1988) reported good performance for medians when the size 
of the bootstrap sample is «^ = n^ - 1. 

In the grouped balanced half-sample method (GBHS) of 
variance estimation, the sampled clusters in each sttatum are 
randomly divided into two groups (halves) and the balanced 
repeated replication method is applied to the groups. Rao and 
Shao (1996) showed that this method is asymptotically 
incortect in the sense that the associated /-pivotal does not 
converge in distribution to a standard normal distribution and 
that the associated confidence intervals are asymptotically 
incorrect. To overcome this difficulty tiiey proposed indepen
dentiy repeating the grouping T times and then taking the 
average of the resulting T variance estimates. They showed 
the asymptotic correctness of such an estimator for a sttatified 
random sampling design as min /2̂  - «> and T - 00. in a small 
simulation study tiiey found tiiat tiie method performs well for 
T as small as 15 in the case of smooth estimators. For a 
variance estimator of the population median, the RGBHS 
metiiod performed better tiian tiie jackknife and GBHS in the 
sense that the RGBHS had a smaller relative bias and a 
smaller coefficient of variation. Recentiy, McCarthy (1993) 
discussed and compared a variety of procedures for variance 
estimation of the median based on simple random samples 
drawn from a finite population without replacement. His 
study includes most resampling procedures. 

Although, the linearization methods useful for nonlinear 
statistics are difficult to implement for quantiles since density 
estimation is involved. Binder (1991), Binder and KovaCevitS 
(1995) and Kovadevic and Binder (1997) obtained consistent 
estimators for the variance of some non-smooth measures of 
income inequality and polarization using the linearization 
method within the estimating equation framework. 
Estimators obtained using this method are computationally 
simpler tiian tiie resampling estimators but require theoretical 
derivation. 
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Variance estimation of the Gini Index has been studied by 
several authors under the assumption of simple random 
sampling, Glasser (1962), Sendler (1979), Sandsttbm, 
Wretman and Wald6n (1985) and Yitzhaki (1991). In the 
case of a conplex design. Love and Wolfson (1976) proposed 
a 'crude half-sample replication' method. Sandsttom, 
Wretman and Wald^n (1988) compared approximate variance 
techniques with the delete-one-unit jackknife for three 
sampling designs, two of which were complex. 

Estimation of the variance of the Lorenz curve ordinates 
and the cortesponding quantile shares has received less 
attention. The derivation of tiieir asymptotic variances is quite 
complicated. There is the pioneering work of Beach and 
Davidson (1983) and Beach and Kaliski (1986). Their work 
is based on the superpopulation framework in which the 
survey weights are seen as constants in the constmction of 
estimates. This approach, due to its model-based nature, may 
have its limitations in applications to data obtained from 
sample surveys where the sample design is deemed to be 
significant. 

In the following subsections we review the variance 
estimation methods used in this study. 

3.1 Delete-one-PSU Jackknife 

This metiiod is based on tiie sequential exclusion (deletion) 
of one PSU at a time from the computation of the estimate. 
After deletion, the weights of the remaining units in the 
sample are modified in such a manner tiiat tiie deleted weights 
are compensated and that the CDF estimated from the 
remaining sample has the same properties of the original 
CDF. Let F^^y{y) denote the estimate of the CDF based on 
a sample without the g '̂-th PSU, that is 

^to)^ = G^)(yyK) 

where 

G t o ) ( ) ' ) = E E E > ^ / , a ^ { n c / ^ > ' } ^ 
h'g c i 

jm^gJ^Ygci^y) _ . M^ 1^ get ' - ' g o 
" g 1 c*j i 

and 

ô.> = E E E w . . , + • 

h*g CI g 
EE 
c*j i 

V -

The 'delete-one-PSU' jackknife variance estimator of F{y) is 

vjiirn) = E — E (F^^)(y)- F{y)f-

Asymptotic consistency of v^,(F(y)) can be established using 
results from Krewski and Rao (1981). 

For convenience, we note that all measures considered 
here can be written in the general form 

%-EJ(F^yi'?)j;,^ 
u ^ 

where J{-) is a real-valued function possibly dependent on tiie 
nuisance parameter, p. The finite population parameter 9^ 
is then estimated by 

0 = Ey( .̂;'*c,.P)>^-hci (3.1) 

where p denotes tiie estimated vector of nuisance parameters 
and w^̂ , are the standardized weights. Using this general 
form, tiie estimate of an income inequality measure computed 
from the sample after omitting PSU gj, is 

9, igj) EsJ(F, (g/)'.>'to'P(w)^**"(«7) 

are the values of the distribution where F^^, and p^^., 
function and the nuisance parameter estimated from the 
sample with the gj-th PSU deleted and 

^hci'^(gj)' if f'^g' 

w hcHgj) 
n„ 

—^-w^N. gci-igj)> 'f f'=g,C*f 

0, if h=g, c=j. 

The resulting 'delete-one-PSU' jackknife variance estima
tor of 9 is 

»„(») «=1 "g 7=1 

• e ) ^ (3.2) 

If 9 is substituted by 9 = YgYj^igj-/" ^ variant of tiie 
jackknife variance estimate is obtained. We denote it by 
v^(9). Obviously v^(9) <; v^,(9). The consistency of (3.2) 
for smootii statistics has been established by Krewski and Rao 
(1981). 

In the case of variance estimation for quantiles and 
functions of quantiles, we first compute the quantiles based 
on the sample with the gj-th PSU deleted, 

'^gj^{p) = inf {y,,, I F^^pHci) ^ P' hcies\{gj)], 

compute 9(̂ ĵ = g d ^ ) ) and then use equation (3.2) to obtain 
a jackknife variance estimator. 

3.2 Grouped Balanced Half-Sample (GBHS) Method 
and Repeatedly Grouped Balanced Half-Sample 
(RGBHS) Method 

Originally, tiie balanced half-sample metiiod was proposed 
for tiie two clusters-per-sttatum designs. The case that we are 
interested in is when there are more than 2 clusters per 
stratum. This situation is usually handled by grouping the 
clusters (primary stage units) in each sttatum into two groups. 
We explore the idea given by Wu (1991) and simplify its 
application for the variance estimation of the CDF. First, in 
each sttatum h,{h = l, ...,L), tiie PSU's are grouped at random 
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into two halves, /J, and /i^. containing OT^ =[n^/2] and 
'"h ~"h~"^h PSU's, respectively. Setting the group indica
tor to 

where r = l,...,R denotes a half-sample (replicate), the half-
samples are balanced on the groups if YH^I ^V = ^ ^^^ 
Zf=i ^V ^V = 0,(/j * h'). A minimal set of balanced half-
samples can be obtained from a Hadamard matrix of order 
R{L*I^R^'L*4). 

The estimator of tiie disttibution function based on the r-th 
half-sample is 

F<V) = ^*'W 
N (r) 

where 

Mr), 
G'"{y)-l,lX:Y;^hciny,,^^y)J Cri^) . 

LhLc^hc Li'^hci 

and /ly,̂  is the weight modifier and is constant for all clusters 
in the same half-sample. We assume that the weights of all 
units (households) in a cluster are rescaled equally by the 
modifier A*^^. 

The standard GBHS method, when n. is even, uses 

l + 8 < " , C6A,, 

1 -8^^ ceh^ 
(3.3) 

which means that the weights are modified either by 2 or 0 
depending on whetiier a unit is in tiie replicate or not. When n^ 
is odd, a number of different modifications have been 
considered (see Shao 1993 and Sitter 1993). 

The method tiiat we are using is based on the standard 
balanced replication resampling plan and a variant of the 
reseating metiiiod proposed by Shao (1993): 

Ar) 
*hc 

(/•) l + ( l - a , ) 6 ) , ^ ceA,; 

l - ( l - 6 J 5 l , ' \ C€h,. 

The maintenance of the sttatum sample size in any of the 
half-sample replicates means that 

En-(i-a,)5r].En-(i-^)5r]=«,. 
cehl 

which results in 

ceh2 

^hc ^ 

ir) l + ( l - f l , ) 5 r . ceh,; 

l - ( l - a , ) ^ 5 f , ceAj. 
(3.4) 

To ensure the non-negativity of the modified weights, a^ 
should satisfy 0 ^ a^< 1. When ŵ  is even we would like 
(3.4) to reduce to (3.3). Following Shao's idea (1993), we 
want tiie GBHS variance estimator to agree with a consistent 
estimator of tiie variance in the case of linear statistics. This 
leads to the following requirements for the sttatum-specific 
perturbation factors 1 - a :̂ 

ForaU h: (f) 0<l - a^^ I; (U) (1 - a^f{m^lm^^f = 1; 
(Hi) {I- a^fm^lm^^-l. For the even /i^'s we simply let 
1 - a^ = 1. However, Wping 1 - â  = 1 forodd w^'s would 

exclude any conttibution from the clusters in the first half-
sample when 5 '̂' = - 1, see equation (3.4). For tiie purpose 
of the simulation study we chose 

1 - a . 
N 2m 

(3.5) 
« 

which reduces to 1 for an even n^. In the case of an odd 
sttatum sample size it is equal to J l - ll{n^ + 1). In our 
simulation study very few strata have an odd n^ and we 
obtain Vg5,( p^) = VQ^{\x,yf = v^(py) where \\y is tiie sample 
mean and v̂  (py) is tiie commonly used linearization variance 
estimator. However, it is felt tiiat more research is needed into 
modifying the GBHS method to handle many strata 
containing an odd number of PSU's. 

As in tiie case of the jackknife method, the estimate of the 
income inequality measure computed from the r-tii half-
sample is Q"'\-YAF'^yhci^r)^hci where 'f^ is an 
estimate of the nuisance parameter based on the r-th half-
sample and w^^i 
estimator of 9 is 

^hci^hc- The resulting GBHS variance 

'GBl (9) 3E(e^'^-e)^ (3.6) 

By repeating the random grouping of units within each 
sttatum T times, computing VQg,(9) each time and averaging 
over the T repetitions we obtain the Repeatedly Grouped 
Balanced Half Sample (RGBHS) variance estimator 

1 
''«Cl(e)= - E v c B , (9). 

A variant of the GBHS estimator (and RGBHS) is 
obtained by replacing 9 by 9 = X^6*'V/;, and will be denoted 
by VGB2(e) (and Vg^^{0)). 

Needless to say tiiat when weights are calibrated tiiey have 
to be property modified for each GBHS replication using the 
same balanced half sample procedure. 

3.3 Bootstrap Method 

We also investigated tiie performance of the bootsttap 
metiiod for variance estimation of different income statistics. 
We adopted tiie bootsttap resanpling scheme for tiie sttatified 
cluster sample as given by Rao, Wu and Yue (1992). Briefly, 
draw a simple random sample of w^- 1 clusters with 
replacement (from die n^ sample clusters) independentiy in 
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Table 1 
Definition of «;*,, Variates for the EE Approach 

Measure 

Gini Index ^l^^iyH^ynd * ^(>'*./) " M(C? * I )/21/|a where Aiy) = Fiy) - ^ ^ and Biy) = Y,, ne,>'*.,^ (>'*c,̂ >' > • 

Ixirenz Curve [(y^,, - |pl{y^,, s |^) +p4, " >'/,<:/i(P)VM 

Quantile Share ^[iy,^, -1,^)/{>'»„ 4 , ^ ) " iy^d " ^,,)^(>'*c/_i i , ' *PJK, 'PA, -yi.ci^^vP2>l 

Quantile - ll{y s | ) - p IZ/tL). /(•) is the finite population density estimator 

Low Income 

Proportion 2/(^0.5) 

Polarization Index ^ [ ( l o . s - >'»c,)(̂ lj'f ^ ^.5} " 0-5) - ('4(>'/,.<)>'/,„ + Biy,J - (6 * 1)^5/2 * 6yJ2)] + 
/>/ 

^.5/45) 
iny,^^^.,]-0.5)-PI 

each stratum. The bootsttap weight, w^V, is obtained by 
modifying the original weight w^^. as follows: 

where «;, = E,̂ *̂ , 

* ' / ,«= ^ A c ^ c , 

where 

Ahc = 
" A - 1 

•ffi *c 

and m;;^ is the number of times the he-th cluster is selected. 
Note that Yc'"hc ="/, ~ ^ • ^ ' s procedure is repeated 
independently B times; for each bootstrap sample, we 
calculate 9' = Ey(^*'J'An'P*)^A*a where p* is an estimate 
of tiie nuisance parameter based on the bootsttap sample and 
'^hci - '^UYjs'^hci- The bootsttap estimate of the variance of 
9 is then given by 

-v«.(e)4E(0, (A) e)l 

Another variance estimate is obtained by substituting 9 with 
the mean of bootstrap replicates. 

3.4 Linearization via the Estimating Equations 
Approach 

The estimating equations (EE) approach of Binder (Binder 
1991, Binder and Patak 1994, Binder and Kovacevic 1995), 
unlike the resampling methods, is not computatijonally 
intensive. This method, based on linearization, provides 
formulae for asymptotic variances which are easy to program 
despite their complicated appearance. 

Applying the EE methodology as given in Binder and 
Patak (1994), Binder and Kovacevic (1995) and Kovacevic 
and Binder (1997) one obtains expressions for the 
approximate variance estimators of the studied measures as 

'EE 
" . - 1 

E c ( "Ac-"*') ' (3.7) 

A./"Ac/, ^i, =lc'*hcl"h' and w^^. is a 
normalized weight. For more on the EE approach, in 
particular the relationship between the «;,'„ variates and the J 
function, we refer the reader to Binder and KovaCevic (1995). 
The M̂V variates for the considered measures are given in 
Table 1. 

The expressions for the M;,V variates for the low income 
proportion and polarization index depend on the estimate of 
the density function at the median, / ( ^ 5), and half of the 
median, f{\^^l2). An appropriate method for estimating 
these quantities is given in Binder and Kovacevic (1995). 

4. SIMULATION STUDY 

4.1 Data and the Design of the Simulation Study 

The Ontario sample from the 1988 Canadian Survey of 
Consumer Finance (SCF) was used as the underlying 
population of tiie study. The SCF is an annual supplement to 
the monthly Canadian Labour Force Survey. The population 
contained 7474 households in 525 PSU's from 40 strata. 
Originally, tiie Ontario sample was taken from 91 sttata which 
we collapsed to form sufficientiy large strata. For each 
household a nonnegative value of the total annual income was 
available. The distribution of the income on this micro 
population was highly skewed to the right with coefficients of 
skewness and kurtosis obtained as 4.5 and 89.5, respectively. 
The true values of the parameters of interest (measures of 
income inequality and polarization) were computed from 
this population. Neyman allocation was used to assign 108 
sample clusters (PSU's) to the 40 strata. A one-stage cluster 
design with the strata samples sizes between 2 and 6 clusters, 
selected with probability proportional to size and with 
replacement was used. In a selected cluster all households 
(6 to 20) were enumerated. 

We considered the following measures in the study: Gini 
Index, Low Income Proportion, Polarization Index, a set of 
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Quantile Shares, a set of Lorenz Curve Ordinates and the 
cortesponding quantiles. The MSE's of the estimates of these 
measures were approximated by the empirical mean squared 
error (EMSE), computed over 10,000 independent samples 
drawn by the design explained above. These EMSE's were 
used as 'tme' MSE's for comparison with the estimated 
variances. 

From each of the 10,(X)0 samples, along with the estimates 
of the parameters, we computed estimates of the sampling 
variances using the following methods: the delete-one-PSU 
jackknife (JK), the grouped balanced half-sample (GBHS) 
and the repeatedly grouped balanced half-sample (RGBHS), 
the bootsttap (BS) and the linearization method via estimating 
equations (EE). For all resampling methods two different 
estimators were used, one using the 'full sample' estimate and 
another one using the mean over all replicates. The jackknife 
variance estimators were based on 108 jackknife replicates 
while the bootsttap method was based on 100 replicates. The 
GBHS and RGBHS were based on 44 balanced replicates 
obtained from a 44 by 44 Hadamard matrix and 3 repetitions 
for RGBHS, totalling 132 half-sample replicates for this 
method. Note that the number of jackknife replicates is non-
arbitrary and is determined by the number of clusters in the 
sample. Similarly, the number of GBHS replicates is deter
mined by the number of strata. In order to make the number 
of replicates comparable over all methods, we decided to have 
100 (= 108) bootsttap replicates and 3 repetitions of the 
GBHS resulting in 132 replicates for RGBHS. 

In order to evaluate the accuracy and the precision of the 
considered methods we computed their relative biases and 
relative variance (instability) over the .4= 10,000 simulations: 

rel.bias(v^) = 
E„ v^a)//l - EMSE 

EMSE 

rel. var.l 
{ZMay^EMSEjlA 

EMSE 

To evaluate the effectiveness of normal-theory confidence 
intervals, empirical coverage rates were computed for 
nominal confidence coefficients of 100(1 - a)% = 90,95 and 
99 percent. 

cov. prob. (v^) E„/{|e„-9|/^/^wW^2^a} 

where z^2 is the upper a/2-th standard normal percental. 
Upper and lower tailed error rates were also calculated as 
follows, 

, , , E»/ ( ( i -e ) /^ /^<-^„ /2} 
err_Z,(v^) = '-^ 

ert_t/(v^) Tj{(^-^)/fJ^) >z. a/2' 

The large set of results obtained from the simulation study 
are summarized separately for each income inequality 
measure. 

4.2 Summary of Findings 

Gini Index 

Conceming the accuracy of the variance estimators for the 
Gini index, all methods performed similarly, with very small 
negative relative biases ranging between -2.2 and -0.6 
percent. Of all the estimators, the RGBHS estimators had the 
smallest relative bias. 

All estimators were found to be of approximately the same 
stability, in tiie range of 87-99%. The grouped balanced half-
sample methods (GBHS and RGBHS) perform slightly worse 
than other methods. 

The coverage probabilities for the 95% confidence 
intervals were in the range of 92.6 (for GBHS) to 93.9 (for 
RGBHS). The lower tail ertor rates were understated by the 
nominal 2.5% rate for all methods considered. We found that 
the lower tails were more tiian 100% heavier than die nominal 
2.5%, ranging between 4.6 and 5.4%. The upper tail ertor 
rates were overstated by tiie nominal rate for all methods. (See 
Table 2). We also computed the coverage rates for the 90% 
and 99% confidence intervals and they were in the range of 
87.2 (for GBHS) to 88.5 (for RGBHS) and in the range of 
97.7 (for GBHS) to 98.5 (for RGBHS), respectively. 
Similarly, the tail rates for the nominal 5% and 1% followed 
the pattern of 2.5%. 

Overall, for variance estimation of the Gini index it is 
difficult to say which method is the best since all compared 
methods performed similarly. There is a slight trade off 
between accuracy and stability in the case of the balanced 
half-sample methods which give the most accurate estimates 
of the variance but at the same time the least stable. The 
empirical coverage probabilities for all of the estimators are 
also very similar. The realized values of the tail ertor rates 
suggest that the use of asymmetric confidence intervals is 
more appropriate. 

Low Income Proportion (LIP) 

All methods considered tended to overestimate the 
variance of the LIP. However, the difference in the magnitude 
of overestimation was large, and ranged between 1.1 % for the 
EE and 76.9% for the JKL The best performer among 
resampling methods was the bootsttap, where the relative bias 
for the BSl estimator was 8.9% and for BS2 3.8%. 

The jackknife estimate of tiie variance of the LIP was very 
unstable. The GBHS estimators also had increased instabili
ty. The bootsttap and EE estimators performed similarly with 
relative variation between 31 and 45%. 
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Table 2 
Values of the Evaluation Statistics for the Variance Estimators of the Gini Index 

Relative Bias (%) 

Relative Variation (%) 

Coverage Probability (95%) 

Tail Error Rates (2.5%) L 

U 

Jackknife 

"ji 

-1.3 

87.1 

93.8 

4.8 

1.4 

"ji 

-1.3 

87.1 

93.8 

4.8 

1.4 

GBHS 

ycBi 

-0.9 

99.4 

92.6 

5.4 

2.0 

'^GB2 

-1.1 

99.2 

92.6 

5.4 

2.0 

RGBHS 

^RCl 

-0.6 

95.2 

93.9 

4.6 

1.5 

^RG2 

-0.7 

95.1 

93.9 

4.6 

1.5 

Bootstrap 

"Bi 

-1.2 

88.5 

93.5 

5.0 

1.5 

^B2 

- 2 2 

87.6 

93.4 

5.1 

1.5 

Estimating 
Equations 

^££ 

-1-5 

87.0 

93.7 

4.9 

1.4 

Tables 
Values of the Evaluation Statistics for the Variance Estimators of the Low Income Proportion 

Relative Bias (%) 

Relative Stability (%) 

Coverage Probability (95%) 

Tail Error Rates (2.5%) L 

U 

Jackknife 

'"h 

76.9 

113.1 

97.4 

2.1 

0.5 

"JZ 

58.4 

81.0 

96.9 

2.6 

0.6 

GBHS 

^asi 

25.8 

62.5 

94.6 

3.3 

2.0 

^GB2 

21.0 

61.0 

94.1 

3.5 

2.4 

RGBHS 

^RGl 

26.8 

40.8 

96.2 

2.4 

1.4 

^RG2 

21.9 

39.5 

95.7 

26 

1.7 

Bootstrap 

"BI 

8.9 

35.1 

93.9 

4.6 

1.5 

^B2 

3.8 

33.5 

93.3 

5.0 

1.7 

Estimating 
Equations 

^££ 

1.1 

31.0 

93.2 

5.0 

1.7 

The 95% confidence interval for the LIP based on the JK 
variance estimates had higher than nominal coverage rates, 
97.4 and 96.9%, consequences of the overestimation of the 
variance. The other methods had slightiy lower coverage rates 
than nominal. The tail ertor rates showed that all methods 
resulted in heavier lower tails, indicating a skewed distri
bution of the LIP witii a long tail to tiie right. For the cases of 
90% and 99% confidence intervals we obtained exactiy the 
same pattern for the coverage and the tail ertor rates. 

Overall, for variance estimation of the LIP, the bootsttap 
and the EE method show supremacy over the other methods 
considered. 

Polarization Index 

The evaluation statistics for the variance estimators of the 
polarization index showed a high level of agreement in 
performance with variance estimation for the low income pro
portion. Again, the bootsttap and EE method were the best. 

Table 4 
Values of the Evaluation Statistics for the Variance Estimators of the Polarization Index 

Relative Bias (%) 

Relative Stability (%) 

Coverage Probability (95%) 

Tail Error Rates (2.5%) L 

U 

Jackknife 

Vyi 

95.4 

138.7 

98.6 

0.7 

0.8 

"ji 

56.5 

78.5 

98.0 

0.8 

1.1 

GBHS 

"GBI 

13.9 

77.5 

94.2 

2.2 

3.6 

"GBI 

11.2 

75.9 

93.8 

2.4 

3.9 

RGBHS 

"RGI 

14.7 

60.0 

95.4 

1.4 

3.2 

^RG2 

121 

58.6 

95.2 

1.4 

3.4 

Bootstrap 

"si 

6.0 

48.4 

95.0 

1.8 

3.2 

^B2 

2.9 

47.0 

94.7 

2.0 

3.4 

Estimating 
Equations 

"EE 

4.2 

50.0 

94.4 

2.0 

3.6 
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Lorenz Curve Ordinates and Quantile Shares 

The full results for the Lorenz Curve Ordinates and 
Quantile Shares are given in Kovadevic, Yung and Pandher 
(1995). We present here a graphical summary of the results 
in Figures la-lc. The jackknife method (both estimators) 
significantiy overestimates the variances of all considered 
Lorenz Curve Ordinates (LCO) and Quantile Shares (QS). 
The relative bias of the JKI estimator for the LCO ranged 
between 15 and 45% and between 9 and 27% for the JK2 
estimator. The relative bias was smaller in the middle of the 
interval (0 ^ /? s 1) and almost three times larger at the tails 
(for small and large values of ;?). The relative bias of tiie JKI 
estimator was about 50% larger than the relative bias of the 
JK2 estimator for the LCO. The difference can be atttibuted 
to the significant difference between the full sample estimate 
of the LCO and the average taken over jackknife replicates. 

Similar findings held for the performance of the JK 
variance estimators for QS's which overestimated the 
variance between 26-237%, depending on the population 
share. The largest overestimation appeared in tiie middle. 
Again, the JKI was larger than JK2 by about 75%. 

The magnitude of tiie relative bias was very small for the 
other two methods. However, there was no clear pattern 
about tiie direction of bias - sometimes it was positive, but 
often it was negative. The bootsttap estimators and the EE 
estimator outperformed the other methods, especially around 
the LCO cortesponding to p = 0.5 (see Figure 2a). For clarity 
of tiie graphical presentation the JK metiiods are not shown in 
Figures 2a and 2b. 

The variance of tiie QS's is estimated similarly. The 
bootsttap and EE provided the most accurate estimates of the 
variances of LCO and QS. For tiie LCO the relative bias 
ranged between - 2 and + 3% for bootsttap and - 5 to + 1 % 
for EE. At tiie same time, for tiie QS, the bootsttap estimates 
had relative biases between -3 and +8% and EE estimates 
between -3 and +5%. 

Conceming the stability of the different variance 
estimators we found that all methods perform similarly with 
a slight advantage for the EE method. Also, there is an 
obvious direct dependence of the relative variation measure 
and the value of/?. 

When we compared the methods according to the coverage 
properties of tiie variance estimators for tiie LCO and QS we 
found tiiat for tiie nominal 95% confidence interval, the JK 
method gave empirical coverage rates between 94.5 and 
96.5% for the LCO and 94.5 to 99% for the QS. Otiier 
metiiods performed similarly witii coverage rates between 88 
and 94%. Better coverage was found for tiie LCO and QS 
with smaller value of p (see Figure Ic). In conttast to 
findings for the Gini index, the lower tail ertor rates were 
about twice the upper tail ertor rates for all metiiods and for 
both LCO and QS. A similar pattem was observed for 90% 
and 99% confidence intervals. 

Our empirical findings suggest that the jackknife method 
is not a good choice for the variance estimation of the LCO 
and QS especially for small and large values of ;?. Much 

better alternatives are the GBHS or the RGBHS. However, 
the best choice is either the EE method or the bootstrap. 

a) Relative Bias 

b) Relative Variation 
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s «° 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 1 

P 

c) Coverage Rate (for Nominal 95%) 

o-JKl 0-GBHSl A-RGBHSl D-BSI o-EE 

Figure 1. Properties of the Variance Estimators of Lorenz 
Curve Ordinates 
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in 

3 5 

1.P2): (0.0.1) {0.0.2) (0.2.0.4) (0.4.0.6) (0.6.0.B) (O.B.I.O) (0.0.1) (0.0S.1) 

a) Relative Bias (JK methods are not shown) 

. (p1,p2): (0.0.1) (0.0.2) (0.2.0.4) (0.4,0.6) (O.e.0.8) (0.8,1.0) (0.9.1) (0.95,1) 

b) Relative Variation (JK methods are not shown) 
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> 90 
o 
O 

85 
(p1,p2): (0,0.1) (0.0.2) (0.2,0.4) (0.4,0.6) (0.6,0.8) (0.8,1.0) (0.9,1) (0.95,1) 

c) Coverage Rate (for nominal 95%) 

I [JKI S S GBBSI ZZ RGBHSI BSl £ S EE 

Figure 2. Properties of the Variance Estimators of Quantile Shares 

Quantiles 

The full results obtained for the quantiles are presented in 
KovaSevic, Yung and Pandher (1995) and are summarized 
graphically here. The relative bias of the JKI estimate of the 
variance for the quantiles was between 23 and 67% and for 
JK2 between 17 and 52%. The largest overestimation 
occurted for the variances of |Q ,(, and ^ ,5. The RGBHS 
and GBHS show quite a different picture. "The variance of the 

median was overestimated by 27% but the varjances of tail 
quantiles were obtained very accurately, with the relative bias 
between 3 and 7%. Other methods also performed much 
better for the tail quantiles and moderately better for the 
median and quantiles around it. In particular, the bootstrap 
and the EE method produced estimates with the smallest 
relative biases, although without clear pattern about the 
direction of the bias. For tiie bootsttap estimators, the relative 
bias was in tiie interval (-5%,+9%), and for EE (-8%, -i-9%) 
(see Figure 3a). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8- 0.0 

a) Relative Bias 

c) Coverage Rate (for nominal 95%) 

o-JKl 0-GBHSl A-RGBHSl D-BSl •-EE 

Figure 3. Properties of the Variance Estimators of Quantiles 
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Table 5 
Rankings of methods by relative bias, relative stability and empirical coverage probability 

Jackknife GBHS RGBHS Bootstrap EE (Taylor) 

2,1,2 
2,1,2 
2,1,3 
1,1,4 
1,2,3 

Best methods 

EE.BS 
EE,BS 
BS,EE 
EE,BS 
BS.EE 

Gini Index 
Quantiles 
Lorenz Curve 
Quantile Shares 
Low Income 
Polarization Index 

5,5,5 
5,5,5 
5,5,5 
5,5,5 
5,5,5 

All procedures performed similarly 
3.4,4 4,3,1 1,2,3 
3,4,4 4,3,1 1.2,3 
3,4,4 4.3,1 1.2,2 
3,4, 2 4, 3. 1 2, 2 ,3 
3,4,4 4.3,2 2,1,1 

The jackknife estimators were the least stable. The 
RGBHS, bootsttap and EE showed similar stability which, on 
average over all quantiles, was about three times higher than 
the stability of JK estimators. The highest stability was 
attained around the median (see Figure 3b). 

In general, the coverage probabilities for the quantiles 
were less than nominal for all of the methods considered, with 
some exceptions for the GBHS and RGBHS methods (see 
Figure 3c). When we compared the observed tail error rates, 
it seemed tiiat all methods exhibited similar behaviour, for the 
lower quantiles {p =0.1,0.2) the upper (right) tails were 
heavier; for others it was opposite, the lower tails were 
heavier. Similar results were obtained for the 90% and 99% 
confidence intervals. 

The findings from this empirical study confirm that for 
variance estimation of quantiles, the jackknife method should 
be avoided. For the variance of the median, in particular, the 
best choice seems to be either the EE or the bootstrap. For 
other quantiles the RGBHS showed very good performance 
as well. 

We condense our findings in Table 5 where the relative 
bias, relative variation and the coverage probabilities for the 
methods considered were ranked from 1 to 5 (1 = the best). 
For the resampling methods we averaged the values over both 
estimators. For the quantiles, LCO and QS we averaged the 
values over all p's. The last column contains the choice of 
the two best performing methods. 

5. DISCUSSION AND CONCLUSION 

The linearization method via EE has shown tiie best overall 
performance, the smallest relative bias, the smallest relative 
variation and relatively good coverage properties. Next to the 
EE method is the bootsttap method, as the best resampling 
method considered. The RGBHS and GBHS method 
performed comparably well for the Lorenz Curve ordinates, 
quantile shares and some of the quantiles, in the sense of the 
small relative bias and relative stability comparable with the 
bootsttap method. The jackknife method has performed 
poorly for all measures except the Gini index. 

It is well known that the jackknife variance estimator 
performs poorly for non-smooth functions. The smoothness 
of the J function defined in (3.1) is an essential determinant 

of the asymptotic properties of its variance estimator. 
Classifying our measures as smooth or non-smooth on the 
basis of the J functions, we see that the only smooth esti
mator considered here was the Gini index. Not surprisingly, 
the Gini index was the only measure for which the jackknife 
performed well. However, when considering the jackknife 
variance estimator, care must be taken to ensure that the 
assumptions under which the jackknife is valid are fulfilled. 

If the goal is to provide one method for variance estimation 
for the large list of different income statistics, our empirical 
study has shown that the bootstrap is the best resampling 
choice, and that tiie linearization via the estimating equations 
approach is the best computationally non-intensive method, 
which however, requires some preparatory algebraic work, 
different for each measure. 

It should be emphasized that the empirical study was based 
on an one-stage cluster sampling design, with the clusters 
selected proportionally to their size, so the inttacluster 
variability was not accounted for. Some other limited studies 
have shown similar behaviour of these methods in the case of 
two stage sampling plans (see Binder and KovaCevic 1995, 
and KovaCevic and Binder 1997). 
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Instrumental Variable Estimation of Gross Flows in the Presence 
of Measurement Error 

K. HUMPHREYS and C. J. SKINNER' 

ABSTRACT 

The problem of estimating transition rates from longitudinal survey data in the presence of misclassification error is 
considered. Approaches which use external information on misclassification rates are reviewed, together with altemative 
models for measurement error. We define categorical instrumental variables and propose methods for the identification and 
estimation of models including such variables by viewing the model as a restricted latent class model. The numerical 
properties of the implied instrumental variable estimators of fiow rates are studied using data from the Panel Study of 
Income Dynamics. 

KEY WORDS: Latent class; Longitudinal; Misclassification; Transition rate. 

I. INTRODUCTION 

One of the major benefits of longitudinal surveys is that 
they permit the estimation of gross flows, for example flows 
out of unemployment into employment (see e.g., Hogue and 
Flaim 1986). A key problem when estimating flows is the 
bias induced by measurement ertor. For the estimation of 
cross-sectional proportions, misclassification into and out of 
states may tend to cancel out (Chua and Fuller 1987). Such 
compensation tends not to occur, however, when estimating 
longitudinal flows. 

The first response to the problem of measurement ertor 
should clearly be to attempt to reduce the ertor in the survey 
measurement procedures. Relevant approaches are discussed 
by Biemer, Groves, Lyberg, Mathiowetz and Sudman (1991), 
but will not be considered here. Even with the "best" survey 
procedures, however, some measurement error will inevitably 
arise and there will remain a need to compensate for the effect 
of error in the survey analysis. 

Methods for compensating for measurement error are 
generally based on some assumed model of the error process. 
Some models which have been proposed in the literature will 
be referted to in Section 2. In order to identify and estimate 
these models it is generally necessary to use additional 
auxiliary information, such as provided by reinterview studies 
{e.g., Meyer 1988). Since reinterview studies are costly, 
however, and since in practice their aim is often not to 
estimate the characteristics of the measurement error 
distribution (Forsman and Schreiner 1991), there remains a 
need for alternative procedures which may be used when no 
reinterview data is available. For measurement error on 
continuous variables, a common approach employed in the 
absence of auxiliary information about the measurement ertor 
distiibution is the metiiod of insUoimental variable estimation 
{e.g., FuUer 1987, Sect. 1.4). An instrumental variable is a 
variable included in the survey dataset which is related to the 

tme variable measured with ertor but is uncortelated with the 
measurement error. These and associated assumptions supply 
information which replaces that provided by reinterview 
studies and enables parameters of the model involving the 
true variable to be identified and estimated. The aim of this 
paper is to investigate how the instrumental variable 
estimation method may be adapted to estimate flows among 
discrete states. We find that latent class models {e.g., 
Bartholomew 1987, Ch. 2) provide a general framework 
within which the assumptions about the instmmental variable 
cortespond to certain restrictions on the model parameters. 
Our approach is thus related to other approaches which 
impose restrictions on latent class models {e.g., van de Pol 
and de Leeuw 1986; van de Pol and Langeheine 1990). 

2. MODELS 

We consider only the case of two occasions / = 1 and 
t = 2. Let the number of states into which each individual can 
be classified at each occasion be r. Denote the classified 
states at / = 1 and / = 2 by A' and Y respectively and the 
cortesponding true states by x and y. We assume a model in 
which the vectors of values of {X, Y, x, y) are generated as 
independent outcomes of a common random vector with 
distribution pr(A' = /, Y =j, x = u,y = v). 

The first assumption about this distribution, made by a 
number of authors {e.g., Abowd and Zellner 1985; Poterba 
and Summers 1986 and Chua and Fuller 1987) and which we 
shall also make, is that the classification errors on the two 
occasions are conditionally independent given the true states, 
that is 

pr{X=i,Y=j\x = u,y = v) = 

pr(A'=/| x = u,y = v)pr{Y=i \x = u,y = v). ('^O 

K. Humphreys. Department of Psychology. Stockholm University. S-106 91 Stockholm. Sweden; C.J. Skinner. Department of Social Statistics, University 
of Southampton. Southampton. S017 IBJ. United Kingdom. 
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Such an assumption is common in general latent variable 
models {e.g., Anderson 1959). It seems a reasonable initial 
assumption when the survey measurement procedures are 
independent on the two occasions. On the other hand, if A" is 
obtained retrospectively from the same interview in which Y 
is measured then it seems likely that the tendency for 
respondents to give over-consistent responses in a single 
interview may tend to induce positive association between 
classification ertors. See, for example. Marquis and Moore 
(1990) on evidence from the Survey of Income and Program 
Participation. A further reason for doubting the conditional 
independence assumption is the possibility of individual 
heterogeneity in misclassification probabilities, for example 
some respondents may be more reliable than others. See 
Skinner and Torelli (1993) and Singh and Rao (1995). In 
Section 4 we shall allow for heterogeneity by assuming only 
that the model holds within cells of a cross-classification of 
observed variables. 

Our next basic assumption.is that classification error only 
depends on curtcnt true state so that 

pr(A' =i\x = u,y = v) = pr(X = /1 x = M) = K^^^, say, 

pr(r =y I X = M,y = V) = pr(r =j\y = v) = K^j^,say. (A2) 

The K^.^ and K .^ define rxr misclassification matrices 
A^ = [K^.J] and K ={K J. LettingPdenote the r x r matrix 
with ij-th element pv{X = ;, Y =J) and Uthe rxr matrix with 
Mv-th element pr(x = u,y = v) we have the matrix equation 

K^YIK;. (1) 

The matrix n contains the parameters of interest, whereas 
it is the matrix P which may be estimated consistently from 
sample Xand F values. If auxiliary estimates of K^ and K^ 
are available and these are non-singular then we can solve 
equation (1) to obtain estimates of n. If it is possible to 
ascertain the tme states in reinterview studies then K^ and K^ 
may be estimated directly (Abowd and Zellner 1985). On the 
other hand, if the reinterview study only provides independent 
reclassifications then it is only possible to estimate the 
interview-reinterview matrices 

K^A^K: and K^A^K; 

where A^=diag[pr(x = M)], Â  = diag[pr(y = v)] (Chua and 
Fuller 1987). Each interview-reinterview matrix is symmetric 
with elements summing to one and so only contains 
r ( r + l ) / 2 - l "independent" items of information. Since each 
column of each K matrix and the diagonal of each A matrix 
sum to one, the number of unknown parameters on each 
occasion is r{r- l ) + r - 1 =r^- 1. The excess of parameters 
over items of information is therefore r^- l-r{r+l)l2 + l = 
r{r-1)12 at each occasion and so the model is 
underidentified for r a 2. Chua and Fuller (1987) suggest 
that a natural extra assumption to make to help achieve 
identification is to suppose that the measurement errors arc 
unbiased on each occasion in the sense that 

pr(x = /)=pr(^=/), pr(y = /)=pr(r = /) /=1 r. (2) 

In this case false positives and false negatives tend to 
compensate for each other in cross-sectional estimates of 
proportions. This assumption reduces the number of 
parameters by r - 1 on each occasion. Even under this 
assumption the model remains underidentified for r ^ 3 and 
Chua and Fuller (1987) have to introduce further 
assumptions. 

Let us now consider how the model might be identified 
when no reinterview data is available. For simple linear 
regression with measurement error in the covariate, the 
instrumental variable approach (Fuller 1987, Sect. 1.4) 
assumes the availability of an observed "instrumental" 
variable fV, which is correlated with the covariate, but is 
independent of the measurement error and independent of the 
error in the regression equation. We extend this assumption 
to our framework by defining W to be an instrumental 
variable if it is not independent of x and if 

IV and {X, Y) are conditionally independent given (x,y), (A3) 

W and y are conditionally independent given x. (A4) 

In general we shall allow If' to be a categorical variable 
with an arbitrary number s of categories, although since we 
shall desire W t̂o be closely related tox, we shall usually have 
5 = /• in practice. One specific possibility is to take Was the 
classified state at time / - 1. This use of a lagged value of a 
"covariate" as an instrumental variable may be traced back to 
the earliest discussions of instrumental variable estimation 
{e.g., Reiersol 1941; Durbin 1954). In this case, assumption 
A4 follows if the true states obey a Markov process and the 
classification errors are conditionally independent, as in Al. 

The model resulting from assumptions (A1)-(A4) may be 
represented by the conditional independence graph in Figure 1. 
Each vertex in the graph represents a variable. Edges between 
pairs of vertices are absent if the corresponding variables are 
conditionally independent given the remaining variables. 

X 

W 

Figure I. Conditional Independence Graph of Basic Model 

The model is an example of a restricted latent class model 
(Goodman 1974), where the observed variables X, Y and W 
are conditionally independent given the latent variables x and 
y, that is they are independent within the r^ latent classes 
defined by the pairs of values of (x,y). There are 
2{r- l)r^ + {s- \)r^ + {r^- 1) parameters of this model given 
by the (r-\)r^ parameters pr{X = i\x = u,y = v), the 
{r-\)r^ parameters pv{Y=j\x = u,y = v), the ( 5 - l ) r ' 
parameters pr(W = ̂  |x = M,y = v) and the r^-\ free 
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parameters pr(x = M,y = v). These parameters are subject to 
the 2/•(/--1)^ restrictions in (A2) and the {s-l)r{r- I) 
restrictions implied by (A4). We first restrict attention to the 
case r = 2. In this case there are 45 + 7 parameters subject to 
2s +2 restrictions, leaving 2^ + 5 free parameters 

K2„"^>.2«'<<'2„'-'*'.«'^«''^; "= l '2v= 1,2}, 

where ^^^ = pr( ff' = ^ | x = «), _̂̂  = pr(y = 2 | x = «), and rt = 
pr(x = 2). The number of "free" cell probabilities in the 
observed table of Xby I'by W is r^s- 1, or 4 5 - 1 when 
r = 2. Hence a necessary condition for identification when 
r = 2 is that 45 -1^25 + 5 or 5 ^ 3 . Unfortunately, this is not 
a sufficient condition. For let 

R, = pr{Y=2\x 
v=l 

OJ 
2-v (3) 

Then 

pT{X=i,Y=J,W = k) = 

tKiuVkX\^-Kr'^"-\\-nf-''- (4) 

Hence the 45 - 1 free cell probabilities are determined by just 
the 25 + 3 parameters 

so a necessary condition for identification of these parameters 
is that 45 - 1 s 25 + 3 or 5 2 2. In fact this is also a 
sufficient condition for identification of these parameters, 
except for certain exceptional combinations of these 
parameters. (See Madansky (1960) for the case 5=2 and 
Goodman (1974) for the case of general 5^2.) 

However, even though the above 25 + 3 parameters are in 
general identified for 5^2 it is not possible to determine the 
4 parameters /^ ^p ^̂ 22- ̂ 1 ^"'̂  ^2 '̂"'̂ ^ ^^^^ ^^ related to 
only two identified parameters, /?, and R.^, via equation (3). 
In particular the key parameters of interest 0, and 9^ remain 
underidentified whatever the value of s. 

It is therefore necessary to impose at least 2 further 
restrictions on the model to identify 0, and O^- Following 
Chua and Fuller (1987), one idea would be to assume 
unbiased measurement errors as in (2) which imposes the two 
constraints 

7t = A : , , ( 1 - 7 t ) + A:2,Ji 
: t22' 

l9,( l - 7 t ) + (927t = / ? , ( l - 7 t ) /?27t. 

(5) 

(6) 

Unfortunately the first constraint only applies to the 
parameters which are already identified for 5 s 2 so these 
constraints are insufficient to identify 0. and O^- An 

alternative assumption which we shall make is that the error 
process is constant over time so that 

K ^^.iu = ̂ i.' say, fo r / ,«= 1,2,...,/-. (A5) 

This seems a natural basic assumption if the same survey 
measurement procedure is used over time. The under-
identification problem for the case r = 2 discussed above is 
removed by this assumption since, given the identification of 
K = K and R , we can determine 6 from (3) by 

xiu tu u^ u ^ ^ J 

0={R-K,i)l{K,,-K,,) (7) 

(excluding the trivial case when the measured variables are 
independent of the true variables so that K22 = ^21 )• 

In summary, when assumptions (Al) - (A5) hold and 
r = 2, our model has 25 + 3 free parameters 
[K2^,(P2^,...,(p^^,6^,n; u= 1,2} which are identified if 5^2 , 
except in exceptional cases such as discussed by Madansky 
(1960). 

Finally, let us return to the case of general r. Since (A5) 
imposes {r- l)r restrictions, the number of free parameters 
becomes 2 ( r - l ) r ^ +(5- l)r^ + {r^- l)-[2r{r-l)^->-{s- 1) 
/•(r-1)]-(/--l)/- = 2 r ^ + 5 r - 2 r - 1 . There are r^5 - 1 free 
cell probabilities in the table of Xby Yby Wso the model will 
in general be identified if r{r - l ) ( 5 - 2 ) ^ 0 . Thus the 
condition for identification of these parameters remains 5^2 , 
for any value of /• s 2. Furthermore we can write 

r 

R =PT{Y=J\X = U) = TK 0 
ju \ J \ ' JL^ jv uv 

v=l 

where 6^^ = pr(y = v | x = M). Hence, provided the matrix 
[K.^] is non-singular, the 6^^ may be determined from the R. 
and K ̂  and hence are also identified. Thus for general r, the 
model is identified under assumptions (A1)-(A5), except for 
exceptional cases as discussed by Goodman (1974). 

3. ESTIMATION 

We shall suppose that for a sample of size n we observe 
counts « .̂  in the cells of the rxrxs contingency table of 
Xx Yx W, and that these are multinomially distributed with 
parameters n and p..^ = pv{X = i, Y =j,W = k).The implied log 
likelihood is 

/ EEE«, ijk 'ogp, iJk-

Under a complex sampling design, we may take the /j..^ to 
be weighted counts, giving a pseudo log likelihood (Skinner 
1989). The estimators of the parameters obtained by 
maximising / will be called instrumental variable (IV) 
estimators. 

For the remainder of this paper we shall only consider the 
case r = s =2 when the model is just identified (except for 
exceptional values of the parameters). In this case we might 
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attempt to set /? ^ = n.Jn and then solve equations (6) and (7) 
for the unknown parameters. If the resulting solutions lie 
within the feasible parameter space, that is probabilities lie in 
the range [0,1], then these solutions will be the IV estimates. 
However, in practice we have found that, for moderate sample 
sizes, infeasible solutions can often arise. Furthermore the 
solution of these equations is not computationally straight
forward. Hence we have found it easier to maximise / directiy 
using the numerical procedures in the package GAUSS 
(Edlefsen and Jones 1984) or else by using packages which fit 
latent class models using the EM algorithm such as 
PANMARK (van de Pol, Langeheine and de Jong 1991). For 
a latent class package it would be possible to fit an 
unrestricted two class model and then to estimate 5, and 6^ 
via (7). However, there would be no guarantee that the 
resulting estimates would lie in the feasible range [0,1] with 
this approach. Furthermore there would be the additional 
complication of determining standard crtors for the estimates 
of 1̂ and 0^ from the covariance matrix of the estimates of 
(/?,, /?2, ^21' ^̂ 22)- Hence we have found it more convenient 
to fit the model directly as a restricted latent class model., A 
further advantage of this approach is that it extends naturally 
to the fitting of similar models across subgroups subject to 
possible constraints that some parameters are constant across 
subgroups. This possibility is explored further in Section 4. 

Under multinomial assumptions, standard errors may be 
based on the second derivatives of the log-likelihood 
evaluated at the IV estimates. This approach becomes proble
matic, however, if the maximum of / is at the boundary of 
the parameter space. One approach then is simply to treat the 
values of the parameters at the boundary as known. However, 
this is likely to lead to underestimation of uncertainty. Baker 
and Laird (1988) consider two alternative approaches to 
obtaining interval estimates for individual parameters in such 
circumstances: a bootstrap method and a profile likelihood 
method. The bootstrap method involves drawing repeated 
multinomial samples with p,̂ .̂  set equal to n.jjn and 
recording the distribution of parameter estimates across 
repeated bootstrap samples. Interval estimates for given 
parameters are obtained by the profile likelihood methods as 
the sets of values of the parameter which are not rejected by 
a likelihood ratio test. These methods are illustrated at the 
end of Section 4. 

4. NUMERICAL ILLUSTRATIONS 

For the purpose of numerical illustration we use data from 
the equal probability subsample of the US Panel Study of 
Income Dynamics (PSID). See Hill (1992). We consider the 
two states employed and not employed, coded 1 and 2 
respectively, thus restricting attention again to the binary 
variable case. For simplicity, we ignore non-response and 
consider the sample of 5,357 individuals aged 18-64 in 1986 
with complete values on the variables: employment status in 
1985, 1986 and 1987, car ownership, age, sex and education. 

We assess the properties of the IV estimator in two ways. 
First, in Section 4.1, we compare the bias and standard ertor 
of the IV estimator with the "unadjusted" estimator for 
hypothetical instmmental variables, with a range of different 
associations with x. Second, in Section 4.2, we consider the 
impact of using different actual PSID variables as 
instrumental variables. 

4.1 Bias and Standard Error Properties of Estimators 
for Hypothetical Instrumental Variables 

The parameters of primary interest are the joint 
probabilities pr(x = /, y =j) or the conditional probabilities 
pr(y =7 IX = 0 derived from these. The simple "unadjusted" 
estimators of these parameters are based on the corresponding 
sample proportions for the classified variables X and Y and 
have expectations pr(A'= /, Y=j) under multinomial sampling. 
Since Pr(A'=/, Y=j) differs in general from pr(x = i,y=j) the 
unadjusted estimators are typically biased. Provided the 
model assumptions (A1)-(A5) hold, the IV estimators of 
pr(x = /, y =j) will be asymptotically unbiased although their 
variances may be larger than those of the unadjusted 
estimators. The aim of this section is to investigate the extent 
to which there exists a trade-off in practice between the bias 
of the unadjusted estimators and the increased variance of the 
IV estimators. It will be assumed that the model assumptions 
(A1)-(A5) hold and that the sample is large enough for the IV 
estimator to be treated as unbiased. 

For the numerical investigation in this section we wish to 
use some "realistic" parameter values. These were determined 
by rounding the values of estimates for annual flows between 
the years 1986 and 1987 from analyses in Section 4.2 
(reported in Table 3). The values of the five free model 
parameters not involving W^were set to be ^21 =0.03, K22 = 
0.94, pr(x = 2) = 71 = 0.22, pr(y = 2,x = 1) = 6̂ ,(1 - 7t) = 0.03 
and pr(y = 2,x = 2) = O^it = 0.19. Different values of the 
remaining two free parameters ^,, =pr{lV=l \x = l) and 
^,2= pr{lV=l |x = 2) are set in the different columns of 
Table 1. Cramer's V statistic, which measures the association 
between two binary variables, essentially by scaling the chi-
square statistic to a [0,1] interval, is provided as a summary of 
the strength of association between the variables fV and x. 
For each of tiie choices of parameter values. Table 1 displays 
the estimated standard errors of the IV estimators for the 
PSID sample size n = 5,357. Table 1 also contains the biases 
and standard ertors of the unadjusted estimator for the same 
parameter values K^p K22, n, 5, and 62 and the same sample 
size. 

To illustrate the calculation of the biases of the unadjusted 
estimators, consider pr(x = 1, y = 1). The expectation of the 
unadjusted estimator of this parameter is pT{X= 1, Y= 1), 
which is calculated from the given values of K2^, K22, t , 1̂ 
and 62 and assumptions (A1)-(A5) as 0.71. This compares 
with the assumed value of pr(x = 1, y = 1) of 0.75. The bias is 
thus 0.71 - 0.75 = -0.04. The biases of the IV estimators are, 
as noted above, assumed to be zero. The standard errors of the 
unadjusted estimators are obtained from standard binomial 
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Table 1 
Biases and Standard Errors under Altemative Hypothetical IVs 

Parameter Values Assumed for IV estimator 

p r ( » ' = l | x = l ) 

p r ( W = l | x = 2) 

Cramer's V 

Parameter 
Estimated 

p r ( x = l , y = l ) 

p r (x=l ,y=2) 

pr(x = 2 , y = l ) 

pr(x = 2,y = 2) 

p r O ' = l | x = l ) 

p r (y=l |x = 2) 

Bias (X 100) 
of Unadjusted 

Estimator 

-4.0 

3.0 

3.0 

-2.0 

-3.9 

12.4 

Unadjusted 
Estimator 

0.62 

0.32 

0.32 

0.51 

0.37 

0.60 

I.O 

0.0 

1.0 

0.68 

0.39 

0.32 

0.59 

0.50 

1.40 

0.1 

0.9 

0.74 

0.1 

0.7 

0.59 

Standard Errors (x 

0.75 

0.43 

0.37 

0.65 

0.55 

1.63 

0.1 

0.5 

0.42 

100) 

IV Estimator 

0.88 

0.51 

0.44 

0.73 

0.64 

1.95 

1.13 

0.64 

0.57 

0.89 

0.81 

256 

0.3 

0.7 

0.34 

1.16 

0.69 

0.66 

1.06 

0.88 

2.90 

0.1 

0.3 

0.24 

1.82 

1.03 

0.95 

1.42 

1.30 

4.30 

0.5 

0.3 

0.17 

2.05 

1.24 

1.27 

1.99 

1.58 

5.55 

Note: 1 = employed, 2 = not employed; n = 5.357; multinomial sampling assumed; biases of IV estimators are zero. 

formulae. For example, the standard ertor of the unadjusted 
estimator of pr(x = l,y = 1) is v/0.71 x 0.29/5,357 = 0.0062, 
where 0.71 is tiie value of Pr(A' = 1, 7 = 1). The standard 
ertors of the IV estimators are obtained from the inverse of 
the expected information mattix, which is given by 
"YPijk^ijk' where H.J^ is the 7 x 7 mattix of second 
derivatives of logp.^ with respect to the seven free para
meters. Following differentiation, these parameters are set 
equal to their assumed values, as indicated above. Note that 
the standard ertors obtained from tiie multinomial information 
matrix are likely to be under-estimates because of the 
complex sampling design employed in the PSID. 

There is a clear pattem of tiie standard ertors of the IV 
estimator increasing as the association between W and x 
decreases. The amount of increase is fairly similar across all 
parameters, for example tiie ratio for V = 0.20 versus V = 1.00 
lies between 3 and 4 for all parameters. In all cases the 
standard error of the IV estimator is greater tiian that of the 
unadjusted estimator. The loss of efficiency of the "best" IV 
estimator (with perfect association between W and x) 
compared to the adjusted estimator varies between parame
ters. Roughly speaking, the loss is greater for the conditional 
parameters than for the unconditional parameters. This loss 
of efficiency might be interpreted as the effect of adjusting 
for measurement ertor in y, which is still necessary even when 
X is perfectly measured by W. Under this interpretation, the 
greater relative loss of efficiency for the conditional 
parameters seems plausible since these are "less dependent" 
on tiie parameters of the marginal x distiibution which the iV 
information helps to estimate. 

To examine the ttade-off between the bias of the 
unadjusted estimator and the increased variance of the IV 
estimator we have calculated the minimum value of the 
sample size n necessary for the MSE of the IV estimator to be 

less than that of the unadjusted estimator. For complex 
designs the sample sizes should be interpreted as effective 
sample sizes. Table 2 gives these minimum values under a 
variety of sttengths of association between fV and x. If there 
were no misclassification the entries would all be infinity 
since the unadjusted estimators would always be more 
efficient than the IV estimators. For the assumed amount of 
misclassification given by /Tji =0.03 and K^2 = 0.06, the 
sample size required increases rapidly as V decreases. The 
differences between tiie rows of Table 2 are partly accounted 
for by tiie differences between tiie rows of Table 1 and partly 
by differences between the biases of tiie unadjusted estimator. 
Thus, the bias of the unadjusted estimator of pr(x = 2,y = 2) 
is relatively small and this leads to the large values in the 
corresponding row of Table 2. Note that the value of 1 for 
pr(x = 2,y = 1) and Cramdr's V = 1 arises because in this 
case the standard ertors of the two estimators are equal (see 
Table 1) and so tiie bias of the unadjusted estimators implies 
that the IV estimator has smaller MSE for any n ̂  1. 

The main conclusion we wish to draw from Table 2, 
however, is simply that we may expect there to be a number 
of practical situations where IV estimation will be worth
while provided the model assumptions hold, even if the 
necessary sample sizes are inflated somewhat to allow for 
complex sampling designs. 

4.2 Results for Actual Instrumental Variables 

The results in the previous section were based on 
hypothetical instiumental variables. To provide a more 
realistic illustration we now consider possible real 
instmmental variables. The key problem is how to choose a 
variable W which obeys (A3) and (A4). It seems easier to 
find a variable which satisfies (A3) than (A4), in particular 
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Table 2 
Sample Size Necessary for MSE of IV Estimator to be less than that of Unadjusted Estimator 

(Multinomial Sampling) 

Parameter 

Estimated 

p r ( x = l , y = l ) 

p r ( x = l , y = 2) 

pr(x = 2 , y = l ) 

pr(x = 2 ,y = 2) 

p r ( y = l | x = l ) 

p r ( y = l | x = 2) 

1.0 

28 

31 

1 

, 112 

42 

57 

Value of Cramer's 

0.74 

59 

50 

20 

227 

60 

81 

0.59 

Sampl 

132 

91 

51 

366 

97 

121 

V assumed for IV estimators 

0.42 0.34 

e size n required 

300 

184 

129 

720 

183 

216 

320 

219 

198 

1184 

219 

281 

0.24 

971 

573 

476 

2397 

541 

633 

0.17 

1273 

843 

811 

5070 

818 

1061 

measured without error obey (A3). However, it seems more 
difficult to find variables which one is sure are not related to 
change in employment status and hence obey (A4). 

For illusttation, we have considered two possibilities. First 
we have taken Was car ownership (W'= 2 if the individual 
owns a car, W = I if not). This variable is likely to be 
measured with some error but it seems a reasonable first 
assumption that this ertor is unrelated to ertors in measuring 
employment status. For example, in an analysis of errors in 
recording car ownership in the 1981 British Census, Britton 
and Birch (1985, p. 67) conclude that "the main problems 
associated with tiie small number of discrepancies were those 
connected with either vehicles out of use or vehicles 
temporarily available - for example, those hired..." and it 
seems at least plausible that such ertors need have littie 
relation to tiie kinds of ertors in recording employment status. 
On the other hand, it is plausible that car ownership acts as a 
proxy for some kind of social or economic status which is 
related to change in employment status so assumption (A4) 
seems more questionable. However, for our illustrative 
purpose we assume (A3) and (A4) hold. 

As a second illusttation we have taken Wto be the lagged 
employment status in 1985. A problem here is that (A4) 
effectively implies that individual employment histories 
follow Markov processes with common transition rates. In 
fact, ttansition rates will vary among individuals and this will 
invalidate assumption (A4) {e.g., van de Pol and Langeheine 
1990). Therefore, to allow for departures from assumption 
(A4), we disaggregated the sample into 16 groups defined by 
cross-classifying age (4 groups), sex and education (up to 
college level or not). We then assumed the model held within 
subgroups and used likelihood ratio tests to assess what 
parameters were constant across subgroups. These tests only 
provide a very rough guide since they ignore the complex 
sampling design of the PSID. There was no significant 
evidence of differences in tiie misclassification probabilities K 
across subgroups. Furthermore, within each of the 8 sub
groups defined by age. x sex there was no significant 
evidence of differences in Pr(W^|x, subgroup) between the 

2 education subgroups. Assuming equality of these 
parameters gave a non-significant likelihood-ratio goodness-
of-fit chi-squared value of 52.9 on 46 df (46 is obtained as 
the number of cells = 16 x 8 = 128, less 2K.j parameters, less 
16x4 =64 pr(x,y,subgroup) parameters, less 8 x 2 = 16 
pr( WIX, subgroup) parameters). Combining the parameter 
estimates for the disaggregated model appropriately gives 
estimates of the overall flows pr(x, y). 

Table 3 contains estimates of the key parameters for the 
two choices of instmmental variable and for the disaggregated 
version of the second choice. We note first that the standard 
errors for the IV estimator based on car ownership are 
relatively high. This may be expected from Table 1 since the 
association between x and W is low (Cramer's V is 0.12). 
Even so, the resulting adjustments increasing the estimates 
for the diagonal entries are plausible and the confidence 
intervals resulting from this IV, estimator seem more realistic 
than those for the unadjusted estimator. 

Table 3 
Unadjusted and IV Estimates for PSID Data 

Parameter 

pr(ac=l.>'=l) 

pTix=\,y=2) 

pi(x = 2,y=l) 

pr(x=2.y = 2) 

Unadjusted 

Estimates 

0.719 

(0.006) 

0.055 

(0.003) 

0.061 

(0.003) 

0.166 

(0.005) 

rV Estimates 

IV = Car IV = Lagged 

Ownership Employment 

0.773 

(0.033) 

0.011 

(0.020) 

0.018 

(0.019) 

0.198 

(0.027) 

0.766 

(0.008) 

0.017 

(0,005) 

0.024 

(0.004) 

0.193 

(0,007) 

rV = Lagged 

Employment 

(Disaggregated) 

0.757 

(0.007) 

0.025 

(0.003) 

0.032 

(0,003) 

0,186 

(0.006) 

Note: Standard errors under multinomial assumptions in paren
theses. Disaggregation is by age (4 groups), sex and 
education (2 groups). 
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The standard ertors for the second choice of instrumental 
variable are smaller, as expected since the association with X 
is now higher (Cramer's V is 0.73). Indeed these standard 
ertors are not much larger than those for the unadjusted 
estimator. The (2 standard error) confidence intervals now do 
not overlap with the corresponding intervals for the 
unadjusted estimator for any of the four parameters. 

As noted earlier, assumption (A4) is questionable for the 
lagged employment variable. The disaggregated version of 
this estimator makes "weaker" assumptions by only requiring 
(A4) to hold within subgroups. The resulting estimates are 
seen to be fairly close to the original IV estimator and to have 
slightly smaller standard errors, perhaps attributable to the use 
of the additional information on sex, age and education (but 
see later discussion). It is interesting that the effect of the 
disaggregation is to diminish the effect of adjustment by a 
relatively small amount in each case. It seems plausible that 
departures from (A4) may tend to lead to overadjustment in 
the IV estimator and that the disaggregation approach here 
helps to overcome this bias and, for alternative choices of 
disaggregating variables, enables an assessment of the 
sensitivity of results to the model specification. 

As noted in Section 3 we have often come across IV 
estimates on the boundary of the interval [0,1]. Of the 
analyses reported in Table 3 in fact only the disaggregated 
analysis involved boundary estimates. For the 64 parameters 
pr(x = i,y =y,subgroup) for i,j = 1,2, subgroup = 1,..., 16, 
five of the estimates were on the boundary (none of the 
estimates of the remaining 18 parameters, pr{W=l\X=l) 
and so forth, were). The standard errors reported in Table 3 
treat these parameters as known and hence may underesti
mate the uncertainty in the estimates of the aggregate 
pr(x = /, y =j) parameters. 

Table 4 
Altemative Estimates of Standard Errors 

for Males Aged 26-35 with no College Education 

Pflffimptpr 
1 L U C l l l l w l W i 

p r ( l f = l | x = l ) 

p r ( » ' = l | x = 2) 

p r ( X = l | x = l ) 

p r ( X = l | x = 2) 

p r ( x = l , y = l ) 

pr(x=l ,y = 2) 

pr(x = 2 . y = l ) 

pr(x = 2,y=2) 

pr(x = 1) 

p r ( y = l | x = l ) 

pT(y=l\x = l) 

IV estimates -

0.947 

0.107 

0.969 

0.084 

0.953 

0 

0.006 

0.041 

0.953 

1 

0.128 

Estimated Standard Error 
Standard 

0.011 

0.089 

0.006 

0.088 

0.011 
* 

0.007 

0.012 

0.011 
* 

0.139 

Bootstrap 

0.011 

0.091 

0.007 

0.075 

0.012 
* 

0.006 

0.011 

0.011 
* 

0.117 

Note: n = 455; "standard" estimators based on observed infor
mation matrix, treating parameters estimated at the boundary 
as known; 10,000 replications of bootstrap; multinomial 
assumptions. 

Table 4 presents alternative estimates of the standard 
ertors for one subgroup, males aged 26-35 with no college 
education. The estimate of pr(x = 1, y = 2) as well as derived 
estimates, such as pr(y = 1 | x = 1) lie on the boundary. The 
"standard" estimates of the standard errors are, as in Table 3, 
based on the observed information matrix, tteating parameters 
estimated at the boundary as known. Bootsttap standard ertor 
estimates (for 10,000 replications) are found to be very close 
to these standard estimates for parameters with estimates not 
on tiie boundary. For the IV estimate of pr(x = 1, y = 2) at the 
boundary no standard estimate of the standard error is 
available. Indeed it seems to make little sense to estimate the 
standard deviation of the sampling distribution in this case. 
It seems more sensible to derive a one-sided confidence 
interval which may be done either using the profile likelihood 
metiiod, which gives [0, .016], or using the bootstrap percen
tile method, which gives [0, .009]. The cortesponding inter
vals for prO' = 1 |x = 1) are [.983, 1] and [.990, 1]. 

5. CONCLUSION 

The presence of measurement ertor can induce substantial 
bias into standard estimates of transition rates from 
longitudinal data. If external estimates of misclassification 
rates are available then a variety of adjustment methods exist. 
If no such information is available then this paper shows how 
adjustment for measurement ertor altematively can be cartied 
out using instioimental variable estimation. 

The main problem, as in conventional instiiimental 
variable estimation, is finding a variable which one can be 
confident satisfies the conditions required of an instmmental 
variable. Even if the conditions are satisfied then it is 
desirable, in order to obtain reasonable precision, tiiat tiiere be 
a fairly sttong association between this variable and the tine 
state. If such a variable can be found then instiumental 
variable estimation may be useful. 
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Geographic-Based Oversampling in Demographic Surveys 
of the United States 

JOSEPH WAKSBERG, DAVID JUDKINS and JAMES T. MASSEY' 

ABSTRACT 

Often one of the key objectives of multi-purpose demographic surveys in the U.S. is to produce estimates for small domains 
of the popujation such as race, ethnicity, and income. Geographic-based oversampling is one of the techniques often 
considered for improving the reliability of the small domain statistics using block or block group information from the 
Bureau of the Census to identify areas where the small domains are concentrated. This paper reviews the issues involved 
in oversampling geographical areas in conjunction with household screening to improve the precision of small domain 
estimates. The results from an empirical evaluation of the variance reduction from geographic-based oversampling are 
given along with an assessment of the robustness of the sampling efficiency over time as information for stratification 
becomes out of date. The simultaneous oversampling of several small domains is also discussed. 

KEY WORDS: Sample design; Stratification; Rare populations. 

1. INTRODUCTION 

The sponsors of many broad multi-purpose demographic 
surveys require separate analyses of domains defined by race, 
ethnicity and income. Equal probability samples generally do 
not provide sufficient sample sizes for some of these domains 
to yield the precision needed, making some form of 
oversampling necessary. This requirement poses interesting 
methodological problems since there is no registry of the U.S. 
population from which samples sttatified by these domains 
can be drawn. Housing lists containing identifiers for these 
domains are maintained at tiie Bureau of tiie Census, but they 
are not available to researchers outside of the Bureau. For 
surveys requiring face-to-face interviews, outside researchers 
are thus forced to use area sampling techniques. Even within 
the Bureau, geography is sometimes used as the basis of 
oversampling since the lists are only updated once every ten 
years. This paper describes efficient methods for over-
sampling the aforementioned domains in the context of area 
sampling. 

Data from the U.S. Decennial Census on concenttations of 
various demographic domains are publicly available for small 
geographic units; race and ethnicity are reported for every 
block and income for every block group. (A "block" is an 
area bounded on all sides by roads and not ttansected by any 
roads. Block groups are combinations of several neigh
bouring blocks.) These data may be used to inexpensively 
improve the precision of statistics about rare domains by 
oversampling blocks or block groups that contain higher than 
average concenttation of members of rare domains and then 
dropping or subsampling screened persons not in the targeted 
rare domains. The general theory for tiiis type of sample 
design was worked out by Kish (1965, Section 4.5). An 
independent presentation of the theory with examples from 

the 1960 Decennial Census was given by Waksberg (1973). 
Further examples and a discussion of alternative methods are 
given by Kalton and Anderson (1986) and by Kalton writing 
for tiie United Nations (1993). In tiiis paper, we extend prior 
illusttations to cover more domains, update results to 1990, 
and evaluate empirically the robustness of these methods over 
time. 

We first briefly review the issues involved with screening 
and subsampling persons not in the targeted domains. Then 
we review the theory for optimal allocation where the strata 
are defined in terms of the density of rare populations and 
apply this theory to several rare populations. The main part 
of the paper is an empirical evaluation of the reduction in 
variance reduction from the geographic oversampling of 
various minority and other rare populations as well as how 
robust the variance reductions are over time. We also discuss 
the special problems involved with simultaneous targeting of 
several rare populations before summarizing our conclusions. 

2. SURVEY COST STRUCTURE AND THE 
SCREENING DECISION 

Let U stand for some target universe such as persons or 
households for which a sampling frame exists. Let D stand 
for some small domain of particular interest such as black 
persons tiiat cannot be separately identified from the balance 
of U at the time of sampling. Let F be a vector of 
characteristics of interest such as annual income, employment 
status, and number of doctors' visits in the last year. In some 
surveys, the only objective is estimation of the distribution of 
Fon D. In such surveys, members of (AZ) tiiat are discovered 
in the course of screening sampled members of U will be 
dropped from the sample. A general inexpensive interview 

Joseph Waksberg. Westat Inc.. 1650 Research Blvd., Rockville, MD 20850, U.S.A.; David Judkins. Research Triangle Institute. 5901 -B Peachtree-Dunwoody 
Road, Suite 500. AUanta, GA 30325, U.S.A.; James T. Massey. formerly of Westat Inc.. now deceased. 
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questionnaire is used for the screening to determine who is 
eligible for a full questionnaire. 

In other surveys, estimation of the disttibution of F on D 
and on Uare both important objectives. For such a survey, at 
least some of the members of U-D that are discovered in the 
course of screening interviews will be retained for full 
interviews. If geographic-based oversampling is used, the 
initial sample will contain an oversample of those members of 
U-D who happen to reside in areas witii heavy concenttations 
of D. Even when U-D is of interest, tiiis oversampling of U-D 
in areas with high concenttations of D is usually undesirable 
since resulting variation in probabilities of selection for U-D 
leads to unnecessarily large design effects for statistics both 
about U and about U-D. These larger design effects mean 
that the extra sample size for U-D will usually result in only 
a trivial decrease in variances for statistics about U-D. 
Generally, the funds expended on the extta interviews with 
U-D would be better spent on increasing the total initial 
sample size. 

It is fairly easy to set up subsampling procedures that result 
in an equi-probability sample of U-D. The subsampling can 
be done centtally after tiie completion of the entire screening 
operation, or it can be done by the interviewer while still in 
the sample household after obtaining data on household 
composition. Techniques have been developed that make the 
subsampling process very easy for the interviewer (Waksberg 
and Mohadjer 1991). Interviewers do not need to be trained 
to carty out random draws. With paper and pencil survey 
instmments, interviewers are given house-by-house pre-
interview instmctions about which domains can be inter
viewed at which households. These instmctions are 
randomized centtally prior to screening to yield the desired 
sampling rates. Alternatively, with CAPI, the subsampling 
can be programmed and cartied out automatically in the 
laptop computer used for CAPI; the computer notifies the 
interviewer which households are to be retained for the full 
interview and which ones to reject as a result of subsampling. 

Whether it is better to keep all sampled members of U-D 
or to subsample them depends on the relative sizes of U and 
U-D, the precision requirements for both and on the relative 
costs of full interviews and the shorter screening interviews. 
Let c*be the variable cost associated with sampling a single 
member of Uand collecting and processing all data of interest 
about that member. Let c' be the variable cost associated with 
sampling, screening, and then dropping a single member of U. 
Let c = c*/c', be the ratio of the cost of a full interview to the 
cost of a screening interview. If c is much greater than 1, then 
subsampling should be considered for the survey that has 
interest in U-D even though subsampling of U-D will 
inttoduce some additional complexity into survey operations. 
Given that the full interview is by definition longer that the 
screening interview, it should always be the case that c is at 
least slightly greater than 1. On panel and longitudinal 
surveys, the cost of all follow-back interviews should be 
counted as part of c*, typically making the cost of a full 
interview many times larger than the cost of a screening 

interview; /.e., c> > 1. The same will be tme of surveys that 
involve the collection of physical specima requiring 
expensive laboratory work and of surveys that require 
expensiye experts (such as medical doctors) to participate in 
the primary data collection. For such surveys, we would 
highly recommend tiiat geographic-based oversampling not be 
employed by itself, but rather, in conjunction with screening 
and subsampling. For a door-to-door survey with a single 
interview by a standard grade interviewer (trained to ask 
questions and record answers but not to make any technical or 
anthropological assessments), c is frequently in the range of 
3 to 5. This is large enough in many applications to justify 
the complication of subsampling U-D in oversampled areas. 

3. FORMING THE STRATA 

We assume that even though D cannot be separated from 
U at the time of sampling, there is some information available 
about the distribution of D and U across a set of 
geographically defined entities. In the United States, the 
natural entities are blocks or block groups (BGs) and 
information for these entities is supplied by the decennial 
census. (Prior to the 1990 decennial census, blocks were not 
defined in rural areas; larger entities called "enumeration 
districts" were used for oversampling.) The U.S. Bureau of 
the Census makes data on the racial and ethnic composition 
of blocks publicly available along with mapping information 
so that.these blocks can be identified years later by any survey 
organization. Income data are only made available at the BG 
level. 

Standard practice calls for the stratification of the blocks 
or BGs by the local concentration of D. Thus, all blocks 
where D constitutes less that 10 percent of the block's total 
population might constitute one stratum. Further outpoints 
for defining the strata might be 30 percent, and 60 percent, 
yielding a total of four strata. There has been little empirical 
study of the optimal number of strata nor of the optimal 
cutpoints. In general, more strata will yield more efficient 
designs, but, at some point, the operational complexities of a 
largechumber of strata outweigh the gains in efficiency. 
Conventional wisdom dating back to Kish (1965) holds that 
a fairly small number of strata will achieve most of the gains 
attainable through stratification. 

4. OPTIMAL ALLOCATION FOR A SINGLE 
DOMAIN 

Our objective is to adapt the general formulas for optimum 
allocation of a stratified sample to apply to the reduction in 
variance due to geographic-based oversampling. The 
derivations are essentially those given by Kish (1965) using 
the notation of Kalton in United Nations (1993). Let the 
population be divided into a number of strata as discussed 
above. Let Â  be the size of the total population and Â^ be the 
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size of the total population within the h-th stratum. Let P,, be 
the proportion of the h-th sttatum that consists of members of 
D. Let P be the overall proportion of the population that 
belongs to D. We may use the prior decennial census to 
estimate P), and P, or we may use some more recent large 
survey that cartied block and/or BG codes for every sample 
household/person so that matching to the last decennial 
census will yield the stratum identification for every sample 
household/person. 

We assume that c is constant across the strata even though 
this may sometimes not be very accurate. For example, 
interviewing in blocks with high concentrations of American 
Indians, Eskimos or Aleuts almost always means interviewing 
in remote locations with difficult transportation issues. 
However, estimation of even a national average for c is 
difficult for most survey operations. It will not generally be 
possible to get estimates by stratum. 

We also assume that the distribution of Yon D is constant 
across the sttata. More specifically, we assume that 

£(y |Dand/j) = £ (F |D) and that 

Var(y|Dand/i) = Var(F|D), 

where the expected value and variance are with respect to the 
population, not the sample design. This is usually not a very 
good assumption, but given a vector of characteristics of 
interest, the components of the vector will usually behave 
differentiy across the sttata so there is no point in trying to be 
more exact. Lastly, we assume that the sampling fractions are 
small enough in all the strata to make the finite population 
correction factors ignorable. 

Given these assumptions, the optimal sampling fraction for 
the h-th sttatum for a survey where all screened members of 
U-D are dropped is 

A = * 
> P,{c-l)^l 

(1) 

where ^ is a constant determined by either precision 
requirements or budget constraints. (For a proof of (1), see 
either of the sources referenced above. This allocation mle is 
an application of Neyman allocation.) If c = l, {i.e., 
screening is as expensive as interviewing), then this 
proportionality reduces to fh'^JP'h' which can yield 
allocations quite different from an equi-probability sample 
across strata. However, if the cost of screening is far less 
than the cost of interviewing {i.e., c » l ) and D is not 
extremely rare {i.e., P,, is not close to zero), then this 
relationship results in close to a flat set of sampling intervals, 
which is equivalent to allocation in proportion to total 
population. 

Given a fixed budget of B, k is determined by the cost 
equation 

B = J:NJ,C'[P,CHI Ph)\ (2) 

To obtain a simple random sample of size n from domain D 
would require selecting a screening sample of size n/P, 
resulting in a total cost of 

B = ncc' + — - n\c' (3) 

By equating these two costs, we can solve for the constant of 
proportionality in (1) and get: 

k = 
«| c - 1 + — 

P 
(4) 

c- I + — 
P. 

To calculate the benefits of this allocation realistically, it 
is necessary to acknowledge the fact that the estimates of P^ 
that are used to guide the allocation will be somewhat out of 
date by the tiine that tiie survey is actually conducted. Let A,, 
be the proportion of D actually to be found within the h-th 
stratum at the time of sampling and data collection. It is 
assumed that P is unchanged even though the disttibution 
across sttata changes according to A^. By letting NP = A/̂  and 
Np A^ = Np), it can readily be shown that the actual sample 
size, n,), that will be achieved on D is given by 

h (5) 

From Kish (1965), this sample will have higher variance 
than a simple random sample of the same size on D. The 
variance inflation factor or design effect associated with the 
differential sampling rates across sttata is the well-known 

rf^#=(E^*A)(EV^*)- (6) 

Thus, the effective sample size associated with the 
geographic-based oversampling is 

NP 

[?VA) 
'•D . 
def 

Substitution of formulae (1) and (4) into (7) yields 

1 

(7) 

n\ c- 1 +-

deff 
1 + 

1 A' P 

* NP \ 
1 + — 

(8) 
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This formula allows us to compare the variance for an 
arbitrary statistic on domain D given geographic-based 
oversampling with the variance for the same statistic given a 
simple random sample of D of tiie same total cost B. Formula 
(8) can be rewritten algebraically such that the proportion of 
simple random sample variance that is eliminated by the 
geographic-based oversampling is given by 

n 

I -
h 

I + 
Â  P 

h NP \ 
I + 

±1 
c- I + 

) ) 

(9) 

It is definitely possible for this reduction to be negative, 
meaning that a simple random sample would have provided 
lower variance for the same cost. This is most likely to 
happen when there exists a sttatum for which NPA^»Ni^Pf^, 
meaning that there exists a sttatum which was thought to have 
a very small portion of D but, in fact, has quite a significant 
portion of D. Note that if Pf^ = P, then no variance reduction 
can be expected from geographic-based oversampling. Also, 
as c goes to infinity for fixed P (equivalent to screening 
becoming cheaper and cheaper relative to full interviews), the 
variance reduction approaches zero. Given the extra 
complication of a sttatified sample, this means that for large 
c and moderate P, the sample designer should consider 
drawing a simple random sample instead of a stratified 
sample. Geographic-based oversampling increases in value 
as P approaches zero, c approaches 1, and D becomes more 
concentrated in a single sttatum. As the small domain of 
interest, D, becomes more concenttated in a single sttatum the 
sample becomes more efficient, since there are fewer cases 
from D in the remaining sttata with large differential. The 
potential reductions in variance due to geographic-based 
oversampling under a number of conditions are shown 
empirically for several demographic domains in the section 
below. 

blocks change in that process (Judkins, Massey and Waksberg 
1992). To the extent that members of D move into areas 
where they were previously not common, the benefits of the 
geographic-based oversampling diminish. Not wishing to 
overstate the benefits of the procedure, we searched for some 
method to get reasonable estimates of the A^ at postcensal time 
points. Matching block- or BG-level data for two consecutive 
censuses might appear to be a good solution but is not 
possible. Up to now, blocks have been defined and labelled 
independently from census to census with no attempt to 
preserve definitions for longitudinal. Thus, alternate 
information sources are required to estimate A^. 

For the analysis of the benefits of geographic-based 
oversampling for tiie black and Hispanic populations, micro-
level data from current household surveys conducted by the 
Census Bureau tumed out to be a good source of information 
on the A^. Specifically, we used data from the 1988 National 
Healtii Interview Survey (NHIS). Staff at the Census Bureau 
prepared a special tape for us that gave the 1980 block group 
or enumeration disttict code for almost all households 
interviewed in the 1988 NHIS in residences built prior to 
1980. (Residences consttucted during the 1980s would have 
been sampled for tiie NHIS from building permits rather than 
by area sampling. Due to technical difficulties, block and 
block group labels are not attached to such sample dwellings.) 
We then matched the 1988 NHIS against 1980 Census 
summary files by block group or enumeration district in order 
to classify NHIS households into sttata defined by 
concentrations of blacks and Hispanics in 1980. Using 
survey weights, we were then able to estimate the distribution 
of various domains across those sttata. (Housing built during 
the 1980s was assumed to be in the sttatum with the lowest 
concenttation of the rare domains.) Similar operations could 
have been carried out for Asians, Pacific Islanders, American 
Indians, Eskimos, Aleuts, and persons with low income but 
were not. 

Tables and charts in the balance of the paper will refer to 
data at several points in time and from several sources. It is 
useful to bear in mind that the data used to form the strata do 
not have to be the same as the data used to allocate the 
sample, and tiiat the data used to evaluate the sample may be 
from a third point in time or source. We have the following 
combinations in this paper: 

5. EMPIRICAL EVALUATION 

Equation (9) is quite difficult to evaluate for domains of 
interest. Data on P^ can be obtained from summary tapes 
from the decennial censuses that are published at the block, 
block group, and enumeration distiict levels by the Bureau of 
the Census. This allows one to define reasonable strata and 
to evaluate equations (1) through (4). If one were to assume 
that the /'/.are static over time, then the rest of the equations 
could also be evaluated. However, Americans tend to move 
frequently, and the racial and ethnic composition of many 

Label 

80/80/80 BG 

80/80/88 BG 

80/88/88 BG 

90/90/90 BG 

90/90/90 blk 

Source of 
stratification data 

1980 Census 
(BG level) 

1980 Census 
(BG level) 

1980 Census 
(BG level) 

1990 Census 
(BG level) 

1990 Census 
(block level) 

Source of 
allocation data 

1980 Census 

1980 Census 

1988 NHIS 

1990 Census 

1990 Census 

Source of 
evaluation data 

1980 Census 

1988 NHIS 

1988 NHIS 

1990 Census 

1990 Census 
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Table 1 
Residential Clustering of Blacks 

Density stratum (Blacks as a 
percent of the stratification unit in 
the year of stratification) 

Percentage of blacks living in the stratum in 
the indicated year 

Percentage of the total population living in 
the stratum in the indicated year 

Measurement year 

Stratification year 

Stratification unit 

<10% 
10-30% 
30-60% 
60-100% 

Total populations (1000s) 
Blacks as percent of nation in 

measurement year 

1980 

1980 

BG/ED 

9.7 
13.5 
18.9 
57.9 

26,495 

11.7 

1988 

1980 

BG/ED 

20.5 
13.2 
20.4 
45.9 

29,380 

12.0 

1990 

1990 

BG 

12.0 
16.8 

•̂  20.3 
51.0 

29.986 

12.1 

1990 

1990 

Block 

8.5 
13.9 
16.2 
61.4 

29,986 

12.1 

1980 

1980 

BG/ED 

78.2 
8.9 
5.1 
7.8 

226,546 

1988 

1980 

BG/ED 

81.4 
7.1 
5.1 
6.4 

240,876 

1990 

1990 

BG 

75.7 
11.4 
5.7 
7.2 

248,710 

1990 

1990 

Block 

77.5 
9.6 
4.5 
8.4 

248,710 

Sources: 1980 Decennial Census (Westat tabulation) 
1988 National Health Interview Survey (Westat tabulation) 
1990 Decennial Census (Westat tabulation) 

6. OVERSAMPLING THE BLACK POPULATION 

Table 1 shows various aspects of residential segregation 
for tiie black population in tiie U.S. that are important to know 
about when designing a population survey. Although the 
percentage of blacks living in densely black (60+ percent) 
block groups declined between 1980 and 1990, it is clear that 
blacks were still sttongly segregated. The columns about the 
population in 1988 are particularly inqiortant since tiiey show 
the dynamics of the sttatification data over time. By 1988, the 
percentage of the black population living in the block groups 
that were less than 10 percent black in 1980 had doubled. 

Variance Reduction Relative to SRS of Same Cost 

5 10 15 20 25 30 35 40 
Ratio of the Cost of 1 Full Interview to 1 Screener 

Figure 1. Variance Reduction from Geographic-based Oversampling 
for Blacks 

from just 9.7 percent of blacks to 20.5 percent. This has 
major implications for the efficacy of geographic-based 
oversampling as will be shown below. It is also interesting to 
note that the total population in the block groups that were 
densely black {i.e., over 60% black) in 1980 actually declined 
by about 2 million persons between 1980 and 1988. At least 
part of this shift came from abandonment of some old housing 
and neighbourhoods. Concentration levels are sharper at the 
block level tiian at tiie block group level in 1990, as would be 
expected. (Block level data are not available for the whole 
nation from 1980.) Although sampling blocks is slightiy 
more costiy than sampling block groups (due to the larger 
number of blocks and tiie need to make provisions for blocks 
that have fewer inhabitants than the desired sample cluster 
size), it does allow sharper focus on the targeted domain. 

Figure 1 summarizes the implications of the density data 
shown in Table 1 for oversampling blacks. This figure shows 
the substantial effect of c on tiie efficiency of geographic-
based oversampling. For values of c beyond 20, the best way 
to sample the black population is probably just to screen an 
equi-probability sample. 

The figure also illusttates the danger of relying upon the 
Sttatification data to evaluate tiie benefits of geographic-based 
oversampling. The 80/80/80 line shows the variance 
reductions that could be made if there were no change over 
time in the distribution of the black population across the 
density sttata defined in terms of 1980 block group data. The 
80/80/88 line shows the actual variance reductions that are 
possible in 1988 for tiie same sttata and allocation. At c = 5, 
tiie variance reduction given a static distiibution is 26 percent, 
while the variance reduction given observed changes in the 
disttibution is just 16 percent. We examined whether 
allocating the sample across tiie old sttata according to new 
distribution data could improve the actual variance reduction 
in 1988. The answer is yes, but not by much. The 80/88/88 
shows the variance reductions that are possible using tiie 1988 
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distribution across the 1980 sttata to guide the allocation for 
a survey conducted in 1988. At c = 5, the variance reduction 
given this allocation is 18 percent, a very modest impro
vement over the 16 percent variance reduction possible with 
the allocation guided by the old disttibution. This led us to 
conclude that the major problem was the old sttatification 
itself. By 1988, tiie extent of migration by the black 
population from block groups that were densely black in 1980 
into block groups that had lower concentrations of black 
populations in 1980 was so great as to cut the variance, 
reduction achievable through oversampling almost in half. 
The shift of the black population into block groups with lower 
concenttations of blacks in 1980 results in more sample 
blacks with large weights thus increasing the variability 
among weights which increases the variance. Nonetheless, 
the variance reductions indicated by the 80/80/88 line for 
c < 10 are certainly large enough to be useful. 

Tuming attention to the 1990 data in Figure 1, we observe 
that the 90/90/90 BG line is consistentiy several points below 
the 80/80/80 line, indicating that geographic oversampling at 
the block group level is likely to be slightiy less useful during 
the 1990s than it was during the 1980s. This is a reflection of 
the slight reduction in segregation of the American black 
population in 1990 compared to 1980 noted above. On the 
other hand, tiie 90/90/90 blk line is almost exactly the same as 
tiie 80/80/80 line, indicating that tiie geographic oversampling 
at the block level can be expected to be as effective during the 
1990s as it was at the block group level in the 1980s. 
Although data have not yet been collected on the distribution 
of the black population in the late 1990s across 1990 density 
sttata, we would expect that migration has continued and that 
therefore the gains indicated by the 1990 lines should 
probably be reduced (along the general ttend indicated by the 
80/80/88 line) when projecting savings into the late 1990s and 
the first few years after 2000. 

7. OVERSAMPLING HISPANICS 

Table 2 shows various aspects of residential segregation 
for Hispanics in the U.S. that are important to know about 
when designing a population survey. Several points are 
interesting to note. First, it appears that Hispanics (unlike 
blacks) became slightiy more segregated between 1980 and 
1990. Otiier patterns, however, are similar for the black and 
Hispanic populations. In 1980, 30 percent of the Hispanic 
population lived in block groups that were 60 percent or more 
Hispanic. By 1988 these same block groups contained only 
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Figure 2. Variance Reduction from Geographic-based Oversampling 
for Hispanics 

Table 2 
Residential Clustering of Hispanics 

Density stratum (Hispanics as a 
percent of the stratification unit in 
the year of stratification) 

Percentage of Hispanics living in the stratum 
in the indicated year 

Percentage of the total population living in 
the stratum in the indicated year 

<5% 

5-10% 

10-30% 

30-60% 

60-100% 

Measurement 
Stratification 

year 
year 

Stratification unit 

Total populations (1000s) 
Hispanics as percent of nation 
measurement year 

in 

1980 
1980 

BG/ED 

14.8 

9.6 

22.6 

23.1 

30.0 

14,609 

6.4 

1988 
1980 

BG/ED 

29.3 

9.5 

21.2 

18.8 

21.2 

19,393 

8.1 

1990 
1990 

BG 

10.6 

8.7 

22.8 

24.1 

33.9 

22,354 

9.0 

1990 
1990 

Block 

6.6 

8.1 

22.1 

23.3 

39.8 

22,354 

9.0 

1980 
1980 

BG/ED 

76.8 

8.8 

8.5 

3.5 

2.4 

226,546 

1988 
1980 

BG/ED 

79.8 

7.7 

7.4 

3.0 

2.0 

240,876 

1990 
1990 

BG 

68.4 

10.9 

11.8 

5.1 

3.8 

248,710 

1990 
1990 

Block 

68.9 

10.3 

11.5 

4.9 

4.4 

248,710 

Sources: 1980 Decennial Census (Westat tabulation) 
1988 National Health Interview Survey (Westat tabulation) 
1990 Decennial Census (Westat tabulation) 
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about 21 percent of the Hispanic population. In contrast, the 
percent of Hispanic population living in the 1980 block 
groups tiiat were less than 5 percent Hispanic increased from 
15 percent in 1980 to 29 percent in 1988. These changes 
reflect both a shift of the Hispanic between areas and the 
increase in the Hispanic population coming into the United 
States. The restratification of the Hispanic population using 
1990 data shows patterns similar to the 1980 distribution 
patterns. 

Figure 2 summarizes the implications of these segregation 
data on oversampling schemes. The curves show the same 
general patterns as the black curves. Geographic-based 
oversampling appears to be a useful tool for values of c < 10. 
Again though, it is important to be mindful of the effect of 
migration on the variance reduction. The gap between the 
80/80/80 and 80/80/88 lines is greater for Hispanics than for 
blacks, particularly for c < 5. At present, we do not have a 
good basis for predicting whether this will be as ttue in the 
1990s as it was in the 1980s. 

8. OVERSAMPLING OTHER RACIAL 
MINORITIES 

Tables 3 and 4 show segregation data for Asians and 
Pacific Islanders and for American Indians, Eskimos and 
Aleuts, respectively. Figures 3 and 4 show corresponding 
implications for oversampling these domains. Data from 
1980 and 1988 were not tabulated for this work because the 
1990 data are not encouraging for the inexpensive 
oversampling of these populations even with the use of 
stratification by density. The percent reductions in variance 
are quite large, greater than those for the black and Hispanic 
populations, since the amount of screening that would 
otherwise be required is much larger. However, the rarity of 
these populations in the U.S. means that very large screening 
samples are still required in order to get respectable 
interviewed sample sizes. For example, witii a cost ratio of 3, 
even with geographic-based oversampling, it is necessary to 
screen 61,000 persons (or about 24,000 households) in order 

Table 3 
Residential Clustering of Asians and Pacific Islanders 

Density stratum (Asians and Pacific 
Islanders as a percent of the 1990 block 
or block group in 1990) 

Percentage of Asians and Pacific Islanders 
living in the stratum in 1990 

Percentage of the total population living 
in the stratum in 1990 

Stratification unit: 

<5% 

5-10% 

10-30% 

30-60% 

60-100% 

Total population (1000s) 
Asians and Pacific Islanders as percent 

of nation in measurement year 

BG 

30.5 

17.2 

27.8 

14.6 

9.8 

6,968 

2.8 

Block 

19.4 

17.7 

32.1 

18.0 

13.0 

6,968 

2.8 

BG 

86.4 

7.2 

5.0 

1.0 

0.4 

248,710 

Block 

85.2 

7.4 

5.7 

1.3 

0.5 

248,710 

Sources: 1990 Decennial Census (Westat tabulation) 

Table 4 
Residential Clustering of American Indians, Eskimos and Aleuts 

Density stratum (American Indians, 
Eskimos and Aleuts as a percent of the 
1990 block or block group in 1990) 

Percentage of American Indians, 
Eskimos and Aleuts 

living in the stratum in 1990 

Total population (1000s) 
American Indians, Eskimos and Aleuts as 

percent of nation in measurement year 

1,793 

0.7 

Sources: 1990 Decennial Census (Westat tabulation) 

1,793 

0.7 

Percentage of the total population living 
in the stratum in 1990 

<5% 
5-10% 
10-30% 
30-60% 
60-100% 

Stratification unit: BG 
50.3 
7.4 

12.4 
6.0 

23.8 

Block 
34.6 
12.1 
15.9 
7.7 

29.6 

BG 
98.3 
0.8 
0.6 
0.1 
0.2 

Block 
97.4 

1.4 
0.8 
0.1 
0.2 

248,710 248,710 
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to obtain a sample of American Indians, Eskimos and Aleuts 
witii precision equal to a (theoretical) simple random sample 
of 1,000 persons from this domain. (Of course, to success
fully screen 24,000 households, more housing units would 
have to be selected to allow for vacants and nonresponse). 
The comparable number for Asians and Pacific Islanders is 
18,000 persons or roughly 7,000 households. 
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Figure 3. Variance Reduction from Geographic-based Oversampling 
for Asians and Pacific Islanders 

9. OVERSAMPLING THE POOR 

Table 5 shows the 1990 disttibution of the low income 
population by block groups classified according to the 
proportion of low-income population in the BG. The BGs in 
each of the classes depends on the definition of low income. 
The figures shown in the table are the percentages of low-
income persons in each class. Table 5 shows a rather flat 
distribution of low income among the classes for all three 
definitions in 1990. Data (not shown) from the 1970 
decennial census and tiie Curtent Population Survey indicate 
that segregation of persons below the poverty level increased 
between 1970 and 1990 (Waksberg 1995), but tiie segregation 
is still far less than the segregation of racial and ethnic 
groups. The concenttations are somewhat greater for persons 
under 150 percent than for the other two definitions but, 
even for this group, it is considerably less than for racial and 
ethnic groups. As can be seen, with this definition, only 
about 25 percent of the poor live in BGs where 50 percent or 
more of the population is poor. The comparable percentages 
are 19 percent for persons below 125 percent of poverty and 
only 13 percent for persons below 100 percent of poverty. 
Such distiibutions imply that oversanpling households in the 
sttata witii relatively high percentages of low-income persons 
will not be much better than oversampling and screening the 
entire sampling frame unless the full interview costs are only 
slightiy higher than screening costs. 

Figure 5 shows the ratio of the variance of the optimum 
sample to an SRS at the same cost, for statistics relating to the 
low-income populations. Interestingly, despite the greater 
concentration associated with the broadest definition of low 
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Figure 4. Variance Reduction from Geographic-based Oversampling 
for American Indians, Eskimos and Aleuts 

Figure 5. Variance Reduction ttom Geographic-based Oversampling 
for Persons with Low Income 
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Table 5 
Residential Clustering of the Low Income Population 

Density stratum (Persons with low 
income as a percent of 1990 block 
group in 1990 according to various 
definitions of low income) 

Percentage of persons with low 
income living in the stratum in 1990 

Percentage of the total population 
living in the stratum in 1990 

Low income definition: 

<5'% 
5-10% 
10-20% 
20-30% 
30-40% 
40-50% 
50-100% 

Total populations (1000s) 
Persons with low income as percent 

of nation in measurement year 

$ < Poverty 

5.8 
12.3 
24.8 
19.8 
14.3 
10.0 
13.0 

31,797 

12.8 

$<125% 
of Poverty 

3.2 
8.3 

21.0 
20.2 
15.9 
12.2 
19.3 

42,316 

17.0 

$<150% 
of Poverty 

1.8 
5.7 

16.8 
19.2 
17.0 
13.7 
25.7 

52,521 

21.1 

$ < Poverty 

33.3 
22.1 
22.8 
10.7 
5.4 
2.9 
2.8 

248,710 

$<125% 
of Poverty 

22.4 
19.7 
25.2 
14.4 
8.1 
4.8 
5.4 

248,710 

$<I50% 
of Poverty 

15.4 
16.7 
24.8 
16.8 
10.7 
6.7 
8.8 

248,710 

Sources: 1990 Decennial Census (Westat tabulation of STF-3) 

income, the reduction in variance for geographic-based 
oversarr^iling is sttongest for tiie nartowest definition because 
it requires more screening and thus has more to gain from a 
sampling sttategy that reduces screening. For all three 
definitions, there appear to be moderate advantages to 
oversan^ling when c is under 3 or 4, about a 10 or 15 percent 
reduction in variances. When c is as large as 10, tiie gains are 
very slight, and there is virtually no advantage to 
oversampling BGs witii high levels of poverty when c is 20 or 
larger. Of course, migration must be taken into account here 
as well, but we did not obtain the necessary data. Due to tiie 
effects of migration, the actual variance reductions will 
almost certainly be smaller than those shown in the chart. 
Furthermore, tiie income data in tiie 1990 Census are based on 
a one-sixth sample. The sample size in a typical block group 
was a littie under 100 households. The classification of 
blocks according to percentage of low-income persons 
therefore has a fair amount of fuzziness to it, and many block 
groups will not be in the categories tiiat Census data assign 
tiiem, but in neighbouring classes, further weakening the 
variance reductions that can be achieved with geographic-
based oversampling. As a result of tiiese factors, it is unlikely 
that geographic-based oversampling will improve the 
efficiency. In fact, by mid-decade or later, it may actually 
result in an increase in variance. A related unpublished study 
by Waksberg in 1989 showed similar results when 
considering tiie possibility of merging ZIP-code level 
summary income data onto banks of telephone numbers used 
in RDD sampling. The gains achievable tiirough sttatification 
appear quite limited. 

An examination of more detailed tables (not shown) 
indicates that the effectiveness is about the same for various 
types of geographic breakdowns, e.g., states, large or small 
MSAs, centtal cities, suburban areas, and nonmettopolitan 

areas. Conclusions drawn from this analysis will thus 
approximately apply to subnational surveys. 

However, geographic-based oversampling is an extremely 
effective tool for the low-income black and Hispanic 
populations. As shown in Table 6, blacks and Hispanics 
living in poverty are highly concenttated and others living in 
poverty are not. The left-hand side of Table 6 indicates the 
disttibution of the poor black, Hispanic, and other popula
tions across density sttata defined in terms of poverty rates 
specific to the domain of interest. Interpreting one example 
from tiie left side, 32 percent of poor Hispanics lived in 1990 
in block groups where tiie poverty rate for Hispanics was over 
50 percent. The right hand side indicates the disttibution of 
the poor black and Hispanic populations across density strata 
defined just in terms of the local concentrations of blacks or 
Hispanics without regard to income levels. Interpreting one 
example from the right side, 44.8 percent of poor Hispanics 
lived in 1990 in block groups where Hispanics constituted 
over 60 percent of tiie local population. From these numbers, 
we infer that over 90 percent of both poor blacks and poor 
Hispanics live in areas with above average concentrations of 
their respective racial/ethnic groups. This means that a 
sampling sttategy that oversamples blocks with high black or 
Hispanic concenttations will automatically yield 
disproportionately large numbers of poor blacks and 
Hispanics. Furthermore, almost no poor blacks or poor 
Hispanics live in areas witii low poverty rates for tiieir groups. 
This stands in marked conttast to the patterns for poor people 
who are neitiier black nor Hispanic. It appears tiiat many poor 
nonhispanic whites live in close proximity to more well-off 
whites, possibly because poverty tends to be a transitory 
phenomenon for tiiem, or perhaps because tiiey are retired and 
purchased their homes when they were in better 
circumstances. 
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Table 6 
Residential Clustering of the Low Income Population by Race and Ethnicity 

Density stratum 
(Poverty rate in 1990 for 
persons of the indicated 
race/ethnicity within the 
block group in 1990) 

<5% 

5-10% 

10-20% 

20-30% 

30-40% 

40-50% 

-50-100% 

Total populations (1000s) 

Percentage of persons with the 
indicated race/ethnicity and income 
below the poverty line living in the 

stratum in 1990 

Blacks 

0.6 

2.2 

8.8 

13.8 

17.0 

17.3 

40.4 

8,557 

Domain 

Hispanics 

0.6 

2.4 

11.0 

17.0 

19.3 

17.7 

32.0 

5,536 

Others 

10.4 

19.6 

32.6 

18.1 

9.0 

4.6 

5.6 

17,975 

Density stratum 
(Indicated minority as a 
percent of 1990 block 
in 1990) 

<5% 

5-10% 

10-30% 

30-60% 

60-100% 

Total populations (1000s) 

Percentage of persons with the 
indicated race/ethnicity and income 
below the poverty line living in the 

stratum in 1990 

Blacks 

4.0 

3.7 

13.2 

19.0 

60.0 

8,557, 

Domain 

Hispanics 

4.6 

5.1 

19.9 

25.5 

44.8 

5,536 

Others 

n/a 

n/a 

n/a 

n/a 

n/a 

17.975 

Sources: 1990 Decennial Census (Westat tabulation of STF-3) 

10. SIMULTANEOUS OVERSAMPLING 
OF SEVERAL 

RACE-ETHNIC DOMAINS 

In general, geographic-based oversampling can be used as 
easily and effectively for targeting multiple race-ethnic 
domains as for a single race-ethnic domain. In fact, the 
optimal sampling rates for tiie sttata witii high concenttations 
of each of the targeted domains will be about the same as if 
only it were being targeted. However, the overall level of 
screening will be increased since the number of areas with 
high sampling rates will increase with the number of targeted 
domains. Both these observations are due to the limited 
overiap between tiie highly segregated areas of the examined 
racial and ethnic minorities. 

Table 7 presents some data on this subject from the 1990 
Decennial Census. The only domains that overlap signifi
cantly in their concenttated areas are Hispanics and Asians 
and Pacific Islanders, and even that overiap only works one 
way. Since there are so many more Hispanics in the U.S. than 
Asians and Pacific Islanders, the proportion of Hispanics that 
live in blocks with Asian /Pacific Islander populations over 
10 percent of the local population is only 13.7 percent while 
the percent of Asians and Pacific Islanders tiiat live in blocks 
with Hispanic populations over 10 percent of the local 
population is a high 40.8 percent. The practical significance 
of this particular overlap is probably slight, however, since it 
would take such a large screening sample (both in and out of 
highly concenttated areas) to find enough Asians and Pacific 
Islanders to meet moderate precision requirements that such 

. Percentage of blacks living 
•^"^"y in the stratum in 1990 
stratum 
(Indicated Stratification domain 
minority as r—: r : ' . , Asian Amencan 
a percent of , , .. •̂  and Indian. 

Islander and Aleut 

<10% 

10-30% 

30-60% 

60-100% 

79.2 

12.7 

5.8 

2.2 

95.4 

3.8 

0.7 

0.1 

99.6 

0.3 

0.0 

0.0 

Table 7 
Residential Mixing of Minorities 

Percentage of Hispanics living 
in the stratum in 1990 

Stratification domain 

Asian American 
and Indian. 

Pacific Eskimo 
Islander and Aleut 

Percentage of Asians and Percentage of American Indians. 
Pacific Islanders living in 1990 Eskimos and Aleuts living in 1990 

Stratification domain Stratification domain 

Black 

73.4 

15.5 

7.4 

3.6 

American Asian 

Black Hispanic ^ Black Hispanic p - | _ ^ 

and Aleut Islander 

86.3 

10.7 

2.5 

0.5 

99.1 

0.8 

0.1 

0.1 

78.9 

15.2 

4.2 

1.6 

59.2 

26.9 

10.8 

3.2 

99.6 

0.4 

0.0 

0.0 

85.9 

8.2 

3.3 

2.5 

81.4 

12.3 

4.5 

1.8 

95.1 

3.9 

0.8 

0.2 

Sources: 1990 Decennial Census (Westat tabulation) 
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a screening sample would probably find enough Hispanics 
without resorting to disproportionate allocation of the sample 
to blocks with higher concentrations of Hispanics. 

II. CONCLUSIONS 

For household surveys in the U.S., geographic-based 
oversampling using data from the most recent decennial 
census is a useful sampling strategy for improving the 
precision of statistics about the black and Hispanic 
populations provided that the cost of full interviews is less 
than 5 to 10 times the cost of screener interviews. It is also a 
useful sttategy for improving the precision of statistics about 
tiie Asian/Pacific Islander and American Indian/Eskimo/Aleut 
populations, even at very high ratios of the cost of full 
interviews to the cost of screener interviews. 

However, this does not mean that a survey of reasonable 
cost can be designed to simultaneously provide highly precise 
statistics about all these domains while maintaining desired 
precision levels for the total population. Most demographic 
surveys require reasonable precision for both targeted 
domains and for the total population. Shifting some portion 
of tiie full interviews from the white nonhispanic population 
to the other domains is bound to decrease the precision of 
statistics about the total population. It is generally useful to 
strike a balance between precision attained for subpopulations 
and the total population. The point of this observation is 
merely that geographic-based oversampling does not obviate 
the need to select very large samples and conduct many 
screening interviews when trying to obtain precise statistics 
about rare domains at the lowest possible cost. Furthermore, 
precise statistics about rare domains will continue to be 
expensive even when using geographic-based oversampling. 

For surveys of low-income persons, only small gains are 
possible with geographic-based oversampling, and those only 
when the cost of a full interview is only a few times larger 
than the cost of screening and dropping a household. Most of 
these gains are likely to disappear when deterioration over 
time is taken into account. In fact, by the middle of a decade 
or later, when Census data become seriously outdated, there 
is the distinct possibility tiiat geographic-based oversampling 
could reduce efficiency rather than improve it because of 
migration of the poor and sampling ertor in measuring 
poverty at the block group level. Geographic-based 
oversampling is a useful tool, however, when the focus of 
interest is on the black or Hispanic poor. 
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A Modified Random Groups Standard Error Estimator 
WILLARD C. LOSINGER' 

ABSTRACT 

The standard error estimation method used for sample data in the U.S. Decennial Census from 1970 through 1990 yielded 
irregular results. For example, the method gave different standard error estimates for the "yes" and "no" response for the 
same binomial variable, when both standard error estimates should have been the same. If most respondents answered a 
binomial variable one way and a few answered the other way, the standard error estimate was much higher for the response 
with the most respondents. In addition, when 100 percent of respondents answered a question the same way, the standard 
error of this estimate was not zero, but was still quite high. Reporting average design effects which were weighted by the 
number of respondents that reported particular characteristics magnified the problem. An altemative to the random groups 
standard error estimate used in the U.S. census is suggested here. 

KEY WORDS: Census; Variance estimation; Random groups; Design effect. 

1. INTRODUCTION 

During the 1990 Decennial Census, all respondents were 
asked to provide information on certain data items (called 
100-percent data). Most respondents provided this 
information on the census short form. In addition, a 
systematic sample (ranging from one-eighth to one-half, but 
averaging about one-sixth) of respondents provided 
information for more data items (sample data) on the census 
long form. 

Rather than providing standard ertor estimates for each 
published sample data estimate, the Census Bureau published 
tables of generalized design effects. For any sample data 
estimate, data users were instmcted to create a standard error 
assuming simple random sampling (either using tiie standard 
formula or from a table) and a one-in-six sampling rate. 
Then, data users were to multiply this standard error by a 
generalized design effect (provided in another table). The 
table of generalized design effects listed design effects by 
data item type and percent of persons or housing units 
included in the sample (Table 1 provides the design effects 
published for 1990 U.S. census sample data for Vermont). 
For example, for all published sample estimates that dealt 
with occupation, a data user would find four generalized 
design effects for occupation: one for each of four sampling 
rate categories for persons in the report. To estimate the 
standard ertor for the number of teachers in a published 
report, a data user would multiply the simple-random-
sampling standard ertor (assuming a one-in-six sampling rate, 
derived from the formula or table of standard crtors) by the 
design effect for occupation data items for the reported 
sampling rate. The data user could then use the estimated 
number of teachers and standard error to construct a 
confidence interval. More details on the use of the table of 
design effects are available in the Accuracy of the Data 

section for any sample data product (U.S. Bureau of the 
Census 1993, for example). 

2. ESTIMATION OF STANDARD ERRORS 

A random-groups approach was used to estimate standard 
ertors for tiie census sample data. The United States was 
divided into just over 60,000 distinct areas (called weighting 
areas-areas for which sample weights were derived). For 
each weighting area, sample units (a sample unit being either 
a housing unit or a person residing in a group quarter) were 
assigned systematically among 25 random groups. Thus, it 
was thought that each random group so formed met the 
requirement of having approximately the same sampling 
design as the parent sample (Wolter 1985). 

For each of the 25 random groups, a separate estimate of 
tiie total for each of 1,804 sample data items was computed by 
multiplying the weighted count for the sample data item 
witiiin tiie random group by 25. For each data item for which 
the total number of people with a particular characteristic was 
estimated from the sample data, the random-groups standard 
ertor estimate was then computed from the 25 different 
estimates of the total from the random groups: 

•^RG " 

25 (Y - yi2 

where n represents the unweighted number of persons in the 
sample within the weighting area; Â  represents the census 
count of persons within the weighting area; Y. represents the 
estimate of the total for the data item achieved by multiplying 
the weighted count for the data item within the /-th random 
group by 25; and Y is the weighted count for the data item 
{i.e., the sample estimate) within the weighting area. 

Willard C. Ix)singer. U.S. Department of Agriculture: APHIS:VS. CEAH. 555 South Howes Street. Suite 200. Fort Collins, CO 80521. U.S.A. 
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Tablet 
Design Effects Published for 1990 U.S. Census 

Sample Data for Vermont 

Characteristic 

Age 
Sex 
Race 
Hispanic origin (of any race) 
Marital status 
Household type and relationship 
Children ever bom 
Work disability and mobility 

limitation status 
Ancestry 
Place of birth 
Citizenship 
Residence in 1985 
Yearofentty 
Language spoken at home and ability 

to speak English 
Educational attainment 
School enrollment 
Type of residence (urban/mral) 
Household type 
Family type 
Group quarters 
Subfamily type and presence of 

children 
Employment status 
Industry 
Occupation 
Class of worker 
Hours per week and weeks worked 

in 1989 
Numt)er of workers in family 
Place of work 
Means of transportation to work 
Travel time to work 
Private vehicle occupancy 
Time leaving to go to work 
Type of income in 1989 
Household income in 1989 
Family income in 1989 
Poverty status in 1989 (persons) 
Poverty status in 1989 (families) 
Armed forces and veteran status 

Percent of persons or housing 

< 15% 

1.2 
1.2 
1.2 
1.2 
1.1 
1.2 
2.5 

1.2 
1.8 
1.9 
1.7 
1.9 
1.3 

1.6 
1.3 
1.6 
1.7 
1.2 
1.1 
1.0 

l.t 
1.2 
1.2 
1.2 
1.2 

1.4 
1.3 
1.4 
1.4 
1.3 
1.4 
1.2 
1.3 
1.1 
1.1 
1.5 
1.1 
1.4 

units in sample 

15-
30% 

1.0 
1.0 
1.0 
1.0 
0.9 
1.0 
2.2 

1.0 
1.5 
1.6 

.1.4 
1.7 
1.0 

1.3 
1.1 
1.4 
1.7 
1.0 
1.0 
1.1 

0.9 
1.0 
1.0 
1.0 
1.0 

1.2 
1.1 
1.2 
1.2 
I.I 
1.2 
1.0 
1.1 
1.0 
1.0 
1.2 
0.9 
1.1 

30-
45% 

0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
1.3 

0.6 
1.0 
1.0 
1.0 
1.0 
0.6 

0.9 
0.6 
1.0 
1.4 
0.6 
0.6 
0.9 

0.5 
0.6 
0.6 
0.6 
0.6 

0.7 
0.7 
0.8 
0.7 
0.6 
0.7 
0.6 
0.6 
0.6 
0.6 
0.7 
0.5 
0.7 

i 4 5 % 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
1.2 

0.5 
0.8 
0.9 
0.8 
0.9 
0.5 

0.7 
0.5 
0.8 
1.4 
0.5 
0.5 
0.8 

0.5 
0.5 
0.5 
0.5 
0.5 

0.6 
0.6 
0.6 
0.6 
0.5 
0.6 
0.5 
0.5 
0.5 
0.5 
0.7 
0.5 
0.6 

Source: U.S. Bureau of the Census (1993). 1990 Census of 
Population: Social and Economic Characteristics: Vermont. 
Report Number 1990 CP-2-47. Page C-11. 

For a state report of sample data, the design effects for each 
data item were averaged across the weighting areas in the 
state. Then, a generalized design effect for each data item 
type (for example, all data items that dealt with occupation) 
was computed. The generalized design effect was weighted 
in favor of data items that had higher population estimates. 
Details on most of the procedures followed are available in a 
Census Bureau document (U.S. Bureau of the Census 1991). 
The same basic method was also used for sample data 
products in both the 1970 and 1980 census. 

3. A HYPOTHETICAL EXAMPLE OF 
RANDOM GROUPS 

Table 2 presents a hypothetical example of data that might 
have arisen from the random-groups metiiod. For a weighting 
area in Vermont, weighted counts of whites and blacks are 
listed for the 25 random groups. In this hypothetical 
weighting area, there are no persons of other race. The 
standard errors assuming simple random sampling are the 
same for whites and blacks (as one would expect for a 
binomial variable). However, 5,,^ is much higher for the 
estimate of whites than the estimate of blacks. And, the 
design effect is nearly five times higher for the estimate of 
whites than the estimate of blacks. Since the generalized 
design effect conputed for groups of data items was weighted 
in favor of data items that had higher population estimates, 
the generalized design effect computed for race for the state 
of Vermont was quite high. 

Data on race were frequently included in 1990 U.S. census 
sample data products. Because race was asked of every 
census respondent {i.e., it was a census 100-percent data 
item), and because the weighting process used by the Census 
Bureau effectively forced the sample estimates by race to 
match the 100-percent Census counts by race, the standard 
ertors for estimates of race probably should have been 
considered to be zero. However, generalized design effects 
were still published by race, although set to arbitrary 
constants for all reports (rather than as computed by this 
method). 

A standard ertor based upon simple random sampling and 
a one-in-six sampling rate was computed thus: 

A MODIFIED APPROACH TO THE RANDOM 
GROUPS METHOD 

S,^,=sl5Y{l-YIN) 

developed from standard formulas displayed in Cochran 
(1977). 

For each data item within the weighting area, a design 
effect was computed as the ratio of the 5^^ to .Sg^j: 

A slight modification of the random groups method 
(essentially applying a ratio-estimation technique) can achieve 
much more satisfactory results in the estimation of standard 
ertors. Rather than using Y. as defined above for the estimate 
of the total for the /-th random group, one could instead use 

^RG 

^SRS 
Z,, = NXJW, 
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Table 2 
Hypothetical example of data that could have resulted 

from the Random Groups method used to estimate 
standard errors for census sample data. 

For a weighting area in Vermont, people are asked their race. 
A few (110) are black; most (2,518) are white. 

A sampling rate of one-in-six is assumed (N= 2,628, n = 438). 

«..,.,. Cr. ^"^'","' Weighted count Total weighted 
Random Group count ? u- » populauon 

of blacks* count* 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Sum of weighted 
counts {Y) 

^RG 

•^SRS 

F 

10 

0 

0 

0 

5 

8 

12 

20 

0 

0 

0 

0 

10 

0 

0 

0 

5 

8 

12 

20 

0 

0 

0 

0 

0 

110 
145.98 

22.96 

6.36 

90 

100 

110 

140 

70 

50 

103 

60 

65 

too 
125 

130 

90 

too 
110 

140 

70 

52 

103 

160 

65 

100 

125 

130 

130 

2.518 

687.96 

22.96 

29.96 

100 

100 

110 

140 

75 

58 

115 

80 

65 

100 

125 

130 

100 

100 

110 

140 

75 

60 

115 

180 

65 

100 

125 

130 

130 

2.628 

* The first 25 figures in this column represent X. for the /-th 
random group under the modified random groups method. 
Multiplying the figure by 25 yields Y. for the random groups 
method employed by the U.S. Bureau of the Census. 

# The first 25 figures in this column represent W. under the 
modified random groups method. 

where X. represents the weighted count for the data item 
within the /-th random group, W^ is the weighted count of all 
persons in the /-th random group, and Â  represents the census 
count of persons in the weighting area. The modified random 
groups standard error estimate is then 

''-\ ; = 1 ^^ 

Using tills metiiod, 5^ is 160.78 for botii blacks and whites 
in the hypothetical weighting area of Table 1 (close to the 
value of 5̂ Q for blacks). In this case, the requirement for 
standard ertor estimates for both responses for a binomial 
variable to be identical is met. Moreover, if all sample units 
have tiie same response for some variable, S^ becomes zero, 
whereas 5^^ only becomes zero when each random group has 
the same weighted count. 

This modified standard ertor estimation procedure could 
be useful for researchers who do not have access to any of tiie 
many computer programs now available for computing 
estimates from sample data (such as SUDAAN, STATA, 
PC-CARP, VPLX, etc.). In addition, the U.S. Bureau of the 
Census ought to consider modifying its approach for 
estimating standard ertors for sample data from the 2000 
census. Moreover, with the U.S. Bureau of the Census' 
current emphasis on quality management, the U.S. Bureau of 
the Census may wish to poll users of sample data products to 
determine how useful the presentation of standard errors 
(through design effects) was to them, and involve a number 
of the data users in improving the presentation of standard 
errors for the next census. 
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A Simple Derivation of the Linearization of the 
Regression Estimator 

KEES ZEELENBERG' 

ABSTRACT 

We show how the use of matrix calculus can simplify the derivation of the linearization of the regression coefficient 
estimator and the regression estimator. 

KEY WORDS: Matrix calculus; Regression estimator; Taylor expansion. 

I. INTRODUCTION 

Design-based sampling variances of non-linear statistics 
are often calculated by means of a linear approximation 
obtained by a Taylor expansion; examples are the variances 
of the general regression coefficient estimator and the re
gression estimator. The linearizations usually need some 
complicated differentiations. The purpose of this paper is to 
show how matiix calculus can simplify these derivations, to 
the extent that even the Taylor expansion of the regression 
coefficient estimator can be derived in one line, which should 
be compared with the nearly one page that Samdal et al. 
(1992, p. 205-206) need. To be honest, the use of matrix 
calculus requires some more machinery to be set up, which is 
not needed for tiaditional methods. However this set-up can 
be regarded as an investment; once it has been leamed, it can 
be used fmitfuUy in many other applications. After this paper 
had been written. Binder (1996) appeared, in which similar 
techniques are used to derive variances by means of 
linearization. The present paper can be seen as a pedagogical 
note, in which the use of differentials is exposed. 

2. MATRIX DIFFERENTIALS 

2.1 Introduction 

We will use the matiix calculus by means of differentials, 
as set, out by Magnus and Neudecker (1988); this calculus 
differs somewhat from the usual methods, which focus on 
derivatives instead of differentials. Therefore in this section 
we will briefly describe the definitions and properties of 
differentials (see Zeelenberg 1993, for a more extensive 
survey). We first define differentials for vector functions, 
and then generalize to matiix functions. 

2.2 Vector Functions 

Let/be a function from an open set S<^W to M"; let x̂  
be a point in S. The function/is differentiable at x^ if there 

exists a real n x m-matrix A, depending on JCQ, such that for 
any M 6 M"* for which x^ + w e S, there holds 

/(JCo •*"") = /(^o) "" -̂ x " •" °(")> (1) 

where o{u) is a function such that lim. , Q|O(M)|/|M| = 0; the 
matrix A is called the first derivative of/at x^, it is denoted as 
Df{x^ or dfld{x')\^^^ . The derivative Df is equal to the 
matrix of partial derivatives, i.e., Df{x).j = df.ldx.. The linear 
function df : M^-K" defined by df :u>-^A w is called the 
differential of fatx^. Usually we write dx instead of u so that 
df{cbc)=A^dx. From (1) we see that the differential 
corresponds to the linear part of the function, which can also be 
written as 

y-Yo •*o Xr), 

where y^ =f{x^. Therefore the differential of a function is the 
linearization of the function: it is the equation of the 
hyperplane through the origin that is parallel to the hyperplane 
tangent to the graph of / a t x^; so the linearized function can 
be written as 

f{x)^f{x,)^A^^{x Xc)- (2) 

Altematively, if fi is a matiix such tiiat df^ {dx) = Bdx, then 
B is the derivative of/at x^ and contains the partial derivatives 
of/at XQ . This one-to-one relationship between differentials 
and derivatives is very useful, since differentials are easy to 
manipulate. 

Finally, we usually omit the subscript 0 in *„, so that we 
write df=A^dx. 

2.3 Matrix Functions 

A matrix function F from an open set S c l"""" to K'""' is 
differentiable if vec F is differentiable. The derivative DF is 
the derivative of vec F with respect to vec X, and is also 
denoted by d vec Fld{\ec X)'. The differential fl!F is the matrix 
function defined by vec dFy{U) = Ay vec U. 
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2.4 Properties of Differentials 

Let A be a matrix of constants, F and G differentiable 
matrix functions, and a a real scalar. Then the following 
properties are easily proved: 

dA=0, 

d{aF) = adF, 

d{F + G)=dF + dG, 

d{FG) = {dF)G + F{dG), 

dF-^ =-F-\dF)F-\ 

(3) 

(4) 

(5) 

(6) 

(7) 

The last property can be proved by taking the differential 
of FF'^ = / and reartanging. 

4. LINEARIZATION OF THE REGRESSION 
ESTIMATOR 

The regression estimator of a population total is {cf. Samdal 
etal. 1992, section 6.6) 

^yr = ty.*^'. U'B, (10) 

where t ^ is the n-estimator of the variable of interest, t,, is the 
vector with the population totals of the auxiliary variables, t^^ 
is the vector with the n-estimators of the auxiliary variables, 
and B is the estimator of the regression coefficient of the 
auxiliary variables on the variable of interest. Taking the total 
differential of (10), using properties (3) and (6), and evaluating 
at the point where i^ = t^, i^^ = t^, and B = B,we get the linear 
approximation of the regression estimator 

3. LINEARIZATION OF THE REGRESSION 
COEFFICIENT ESTIMATOR 

The rt-estimator (Horvitz-Thompson estimator) of the 
finite population regression coefficient {cf. Sarndal et al. 
1992, section 5.10) is 

S = f"'f, (8) 

where 

d'yr = dt^-{dtJ'B, 

so that 

t =t +t -t +{t -t yB = t +{t -t )'B. 
yr y yz y ^ x xn' « ^ x xn' yr y yz 

Note that for the linearization of the regression estimator we do 
not need that of the regression coefficient estimator B. 

k^s 

E 
kss 

HYk 

y^ is the variable of interest for individual k, x^ is the vector 
with the auxiliary variables for individual k, n^ is the inclusion 
probability for individual k, and s denotes the sample. 

Taking the total differential of (8), using properties (6) and 
(7), and evaluating at the point where t=T,t = t, we get 

dB= -T-\df)T-U + T'\dt)- (9) 

Because of the connection between differentials and linear 
approximation, as given in equation (2), it immediately 
follows that (9) corresponds to the linearization of the 
regression coefficient estimator: 

B = B- T-\f-T)T'U+ T'\t-t) = 5 + T'\i-fB), 

where B = T'U. 
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