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In This Issue 

This issue of Survey Methodology contains articles on a variety of topics. Kott, Amhrein and 
Hicks tackle the problem of multi-purpose surveys. For such surveys, it would be desirable to be able 
to sti-atify the target population in various ways in order to improve the precision of the estimates of 
interest. The authors present four sampling methods for the selection of samples through various 
stratifications while reducing die overall size of the sample. These strategies are then evaluated using 
data taken from an agriculture survey. The authors then show how a calibration estimator can 
improve the relative efficiency. 

Singh, Horn and Yu examine the problem of estimating the variance of the general linear regression 
estimator. They carry out calibration at two distinct levels. The higher-level calibration thus defined uses 
the known total and variance of the auxiliary variables. The authors show that this method covers a 
broader range of estimators dian die lower-level calibration method, which uses only the known total of 
the auxiliary variables. An empirical study is presented to assess the efficiency of die proposed sti-ategies. 

Hidiroglou and Sarndal concern themselves with the use of auxiliary data in two-phase sampling. 
They explain how diese data are converted into calibration weight, in two phases, in order to create 
efficient estimators of a population total. The authors show that the calibration estimator, using the 
generalized least squares function, can be expressed as a perfectly equivalent two-phase regression 
estimator, Uiat is, an estimator diat is the product of two successive regression fits. They examine forms 
of the two-phase calibration estimator when the auxiliary data are for population subsets known as 
"calibration groups." They also discuss the estimation of domains of interest and the estimation of 
variance. 

Byczkowski, Levy and Sweeney consider survey frames having a many-to-many structure, diat is, any 
unit in the frame may be associated with multiple target population elements and any target population 
element may be associated with multiple frame units. This problem is motivated by a building 
characteristics survey in which the target population consists of commercial buildings, but the frame 
consists of a list of sti-eet addresses (which in turn correspond to either single buildings, multiple 
buildings or parts of buildings). Under this setting, estimators of totals and means and their variances 
using simple and stiatified random sampling without replacement are developed. 

Yansaneh and Fuller present a recursive regression estimation procedure to reduce the compiitational 
complexity associated wiUi best linear unbiased estimation in the context of a repeated survey with partial 
overlap. They use data from the U.S. Current Population Survey (CPS) to compare variances of their 
recursive regression estimator to some alternative estimators including the current CPS composite 
estimator. The proposed estimator seems to be very competitive for estimates of both level and change. 
They also estimate variances under various rotation patterns and find that the current 4-8-4 rotation 
pattern is superior to continuous rotation for current level and long-period averages, but inferior for short 
period changes. 

Lehtonen and Veijanen bring together two well-known ideas, generalized regression (GREG) and 
pseudo maximum likelihood estimation, to develop a new methodology for estimating the population total 
of a categorical survey variable, given a vector of known auxiliary variables. The values of the categorical 
variable are modeled as realizations from a multinomial logistic and the corresponding unknown 
parameters are estimated through pseudo maximum likelihood. Then, the pcipulation frequencies of 
interest are estimated via a modified GREG estimator which uses these estimated parameters. Variance 
estimates of the frequencies are given Uyough Taylor linearization, and some empirical results based on 
Finnish Labour Force Survey data are provided. 

Casady, Dorfman and Wang consider the constiTJction of confidence intervals for domain parameters 
in the case where the domain sample size is not fixed by the design. They condition on the observed 
domain sample size and show how, under certain assumptions about the population, conditional /-based 
confidence intervals can be obtained. In an empirical study using data from the U.S. Bureau of Labor 
Statistics Occupational Compensation survey, they demonstiate that the proposed conditional intervals 
have better coverage probabilities than standard marginal intervals. 



In This Issue 

Montanari compares two well-known estimators of a finite population mean: the GREG and the 
design-optimal regression estimator obtained from the difference estimator. While the former can be 
inefficient if the underlying model is misspecified, the latter, although model-free, is vulnerable to 
sampling fluctuations. An efficiency measure, which provides a criterion for choosing between the two 
estimators, is given. The results of an empirical study, which investigates the behaviour of both estimators 
under a variety of tnisspecified and correct models, are discussed. 

Haines and Pollock provide a fresh examination of estimating totals with multiple frames. Estimators 
are developed when information is only available from list frames and, in addition, when information is 
also provided from an area frame. A simulation shows that the best estimator depends on the known, or 
assumed, dependence of die frames. They also study the situation when observations are either available 
for all units or only available for a sub-sample from each frame. Again, the preferred estimator changes 
when the dependence between frames is considered. 

Bates and Gerber analyze the dynamics of a difficult problem: how temporary mobility of an 
individual contributes to wiUiin-household coverage error. They develop a two dimensional typology to 
characterize temporary mobiUty, Uien using data from die Living Situation Survey, conducted in the U.S. 
in 1993, they identify four temporary mobility patterns. Two of these traits are found to be useful 
predictors of persons missed from censuses or surveys. 

The Editor 
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Sampling and Estimation From Multiple List Frames 

PHILLIP S. KOTT, JOHN F. AMRHEIN and SUSAN D. HICKS' 

ABSTRACT 

Many economic and agricultural surveys are multi-purpose. It would be convenient if one could stratify the target 
population of such a survey in a number of different ways to satisfy a number of different purposes and then combine the 
samples for enumeration. We explore four different sampling methods that select similar samples across all stratifications 
thereby reducing the overall sample size. Data from an agriculture survey is used to evaluate the effectiveness of these 
alternative sampling strategies. We then show how a calibration (i.e., reweighted) estimator can increase statistical efficiency 
by capturing what is known about the original stratum sizes in the estimation. Raking, which has been suggested in the 
literature for this purpose, is simply one method of calibration. 

KEY WORDS: Calibration; Collocated sampling; Permanent random numbers; Poisson sampling; Systematic probability 
proportional to size sampling. 

1. INTRODUCTION 

Many of the list frame surveys conducted by the National 
Agricultural Statistics Service (NASS) are integrated in the 
sense that data on a range of heterogenous items, such as 
planted crop acres and grain stock inventories, are collected 
in a single survey rather than through a number of indepen
dent surveys. Bankier (1986), Skinner (1991), and Skinner, 
Holmes and Holt (1994) have shown how an old method of 
combining independently drawn stratified simple random 
samples - where each sample comes from a (list) frame 
with a different stratification scheme - can be made more 
efficient; that is, the variances resulting from such a 
combined estimation strategy would not be as large as those 
from the independent surveys summarized by themselves. 

Even more appealing for many applications would be a 
sampling design that tends to select the same units from 
every frame, tiiereby reducing both the cost and respondent 
burden of an integrated survey. This paper explores several 
such designs. Three make use of permanent random 
numbers. The fourth uses a variation of systematic proba
bility proportional to size sampling. The goal for each is to 
meet or exceed - at least on average - a particular set of 
sample size targets. 

The paper shows how a calibration {i.e., reweighted) 
estimator can provide relative efficiency by capturing what 
we know about the original stratum sizes in the estimation. 
A final section points out that the use of a calibration tech
nique can do more than simply reflect original stratum sizes. 

An alternative strategy for burden reduction is to use 
separate instmments for different survey targets and to 
select distinct samples for each instmment. This increases 
the number of units selected over all, but reduces die burden 
per selected unit. NASS is using that approach in its 
Agricultural Resources Management Study (see Kott and 
Fetter 1997), but it is not the approach to be discussed here. 

2. INDEPENDENT SAMPLING AND UNBLVSED 
ESTIMATION 

Suppose we have F independent frames; for example, a 
sorghum frame, an oats frame, and a general grain stocks 
frame. Each frame is stratified independentiy, and without 
replacement simple random samples are drawn from each 
stratum of every frame. Frame / (say, the oats frame) 
contains Hf strata; stratum h (large oats operations) in 
frame/ has /^^ population units, out of which n„ units are 
selected. The union of the F frames must cover the entire 
(list) population, but no single frame need be complete. 
The frames may overlap. 

. One unbiased estimator for a population total T = £,gp>', 
is the simple multiplicity estimator suggested by Skinner 
(1991): 

'M = E,e;>:>',«(,y^["(/)l' (1) 

here P denotes the entire population, and «(,) is the number 
of times unit / is selected for the sample from any frame. 
Observe that n̂  .̂  = 0 for the population units not in the 
sample. In the great majority of applications, «(/) will be 
one for most sampled units, but «(,.j > 1 is a possibility with 
this design. 

The expected number of times unit / will be selected for 
the sample is E[n^.^ = YfPify where p-j-is tiie probability of 
selecting unit i in the stratified simple random sample from 
frame F; that is, p.j. = nj-JNj.^, where unit / is in stratum h of 
frame/ 

There is also a Horvitz-Thompson estimator for T under 
the design, namely ty^.^ = Y.iesyi^''^i' where S denotes the 
sample and 7i. = 1 - (1 - p.,) (1 - p.-j) - (1 - p.^). See 
Bankier (1986) for further discussion of this approach. 

Phillip S. Kott, Research Division; John F. Amrhein, Survey Sampling Branch; and Susan D. Hicks, Estimates Division, National Agricultural Statistics 
Service, USDA. 
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Simulated Probabilities of Selection 
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Figure 2. Simulated probabilities of selection for the fixed-sample-
size method-California 

6. CALIBRATION 

The problem with both /^ and tp (or / ^ ) is that they are 
often not very good estimators for T in term of precision 
(variance). One of the properties of single-frame, stratified 
simple random sampling is that the conventional expansion 
estimator estimates the stratum population size perfectly 
{i.e., with zero variance). In our multiple frame set up, 
however, neither tj^ nor tp will estimate the N„ perfectly 
in most applications. 

Let us define w° = «(,•)/£'[«(,)] as the original sampling 
weight of unit /in tj^. Similarly, w° = l/ma\j.[p.j.] in tp 
and 1 /TI, more generally for a Horvitz-Thompson estimator. 
Bankier (1986) proposed raking to create a set of adjusted 
weights such that 

ieS, 
'fh 

'/!• 
(2) 

for each stratum h in every frame/ where Sj.^ is that part of 
the sample that is in stratum h of frame/regardless of the 
frame(s) from which the units were selected. 

Deville and Sarndal (1992) call (2) a calibration equa
tion. They point out that there are a number of ways to 
compute the calibration weights, the wf-, so that equa
tion (2) is satisfied and wf-lwf is in some sense close to 1 
for all /. One method is raking as suggested by Bankier 
(1986). Another method, discussed at length by Deville and 
Samdal (1992), uses least squares. Either way, the resulting 
estimator 

k = E,r- •̂•' •/leS Yi^ 

where S denotes the entire sample, will be nearly design 
unbiased because w, /w, is close to 1 for all /. 

The estimator t^ is also unbiased under the model: 

', = Po ^ E E d^p, P//. * ̂ z' (3) 

where the dummy variable, d.„, is 1 when unit /' is in 
stratum h of frame/(sampled or not) and zero otherwise, 
while e,. is a random variable with a mean of zero. The PQ 
and the Pyv, are unknown constants (PQ represents the mean 
>'-value for a unit in the first stratum of every frame; that is 
why die second sum excludes h = 1). The same dip, values 
apply to every survey item {y) of interest, while the P 
values change with die survey item. For many survey items, 
P„ values will be zero when frame/(say, grain stocks) is 
irrelevant to the item (say, planted oat acres). 

Isaki and Fuller (1982) call the model expectation of the 
design mean squared error of tc the "anticipated mean 
squared error" of the estimator. This value is of most use at 
the planning stage of a sample survey. 

If the model in equation (3) holds, and the e. are uncor-
related, then the anticipated mean squared error of t^. is 

E^[MSE^{t^)] EAE^\L. c 
^i Yr TpYi)'^) 

^^oi^Adls^i^yrllpy)'^) 

= ̂ o{^J(E.>^/ ' 'e , -Epe,)^]} 

= EoiTs K^,'')' - 2w,^]£,(ef)} + Yp E,{e^) 

= E / > ( l ^ - l ) ^ e ( e / ) . 

(4) 

/ = ! A=2 

since w, = I/TI.. It is of some interest to note that using 
Poisson, collocated, and systematic PPS sampling result in 
estimators with approximately equal anticipated mean 
squared errors asymptotically. This surprising result is in 
part due to the nature of a calibrated estimator, but it is also 
a repercussion of the fact that when we take the design 
expectation of the approximate model variance in the last 
line of eqiiation (4), we average over all possible samples 
and remove the biggest source of variation among the three 
sampling designs. 

Now suppose we had used stratified simple random 
sampling and selected unit i with probability Pij- ̂  n., 
where/is the frame relevant to y. It is not hard to show 
that the anticipated variance of the simple expansion 
estimator would have been Y^p {'ilPif- l)E^{s]), which is 
at least as large as the right hand side of equation (4). Thus, 
there are gains - in large samples, at least - from 
"integrating" the samples from various frames as we have 
effectively done. How large the samples must be in practice 
for the asymptotic results to be relevant is unclear. At the 
very least, the sample size must be many times the number 
of model parameters in equation (3). 

A few words on mean squared error estimation for t^ are 
in order. The mean squared error estimator advocated by 
Deville and Samdal (1992) - an estimator with both good 
design and model-based properties - can not be implemented 
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unless the joint selection probability {K.J) for every pair of 
sample units (/ and j) is known. Among the designs we 
have discussed, these probabilities are easily calculated 
only for the Poisson variant of PRN (where n.. = n.n). 

As we have observed in equation (4), the anticipated 
mean squared error of the calibration estimator is the same 
under Poisson PRN, collocated PRN, and systematic PPS 
sampling. This suggests that the Poisson mean squared 
error estimator may be reasonable under each of the three 
designs. A stronger model-driven argument exists for this 
contention, but will not be made here. 

7. DISCUSSION 

In the last section, it was pointed out that if calibration 
weights were designed to satisfy equation (2), the resulting 
estimator would be unbiased under the model in equa
tion (3). Tn many applications, there may be a more 
appropriate model on which to base caUbration than the one 
in equation (3). For example, if there was a continuous 
control variable used to stratify a particular frame, it makes 
more sense to use that variable directiy in the model rather 
than indirectly through frame/stratum identifiers. 

Raking is a form of calibration under a particular model. 
With that in mind, it makes sense to use the most reasonable 
model available. Least squares has the advantage over 
raking that it can easily be applied to continuous control 
variables. Singh and Mohl (1996) provide an extensive 
review of alternative calibration algorithms including an 
extension of raking to continuous variables. An intriguing 
least-squares variant missed by Singh and Mohl (1996) can 
be found in Brewer (1994). 

Many economic and agricultural surveys employ rotating 
sample designs. This has proved an effective way to 
balance cost and burden considerations. Although our 
empirical findings demonstrated an advantage of the sys
tematic PPS methodology in terms of meeting target sample 
sizes, the three PRN designs are much more conducive to 
sample rotation. See, for example, Ohlsson (1995) on this 
topic. Moreover, with the PRN methods, one can integrate 
different frames at different times of the year (with systema
tic PPS there is no easy way to allocate the sample back to 
the frame of origin). This is a particularly useful property 
for agricultural surveys because different crops have 
different growing seasons. 

In summary, the fixed-sample-size PRN sample design 
is excellent for meeting target sample sizes but is hard to 
use in practice because selection probabilities are usually 
unknown and must be simulated. The systematic PPS 
design is very good at meeting target sample sizes but is 
difficult to incorporate into a sample rotation scheme. 
Moreover, mean squared error estimation requires invoca
tion of model assumptions. Our empirical example shows 
that collocated sampling may only be slightiy better than 
Poisson at meeting target sample sizes. It should be recog
nized, however, that other configurations of the frames, 

strata, and sampling fractions may produce different results. 
Moreover, collocated sampling is conducive to rotation 
schemes, like Poisson sampling. On the other hand, like 
PPS sampling, it requires the assumption of a model to 
estimate mean squared error. 

Finally, setting p.. or «., targets is a popular, but indirect, 
means of controlling the variance of the estimator t^ 
associated with each frame. These targets lead to our ad hoc 
decision to set 7t. equal to maxy[p..). A more direct 
strategy would be to set (asymptotic) anticipated variance 
targets for each frame estimator using equation (4) and 
postulated values for the E^ (ef). One could then choose, 
say, the set of n. that minimizes the expected sample size 
yet satisfy these variance targets. A similar approach is 
taken by Amrhein, Fleming, and Bailey (1997) who use 
Chromy's algorithm in a manner analogous to Sigman and 
Monsour (1995). Poisson PRN, collocated PRN, and 
systematic PPS sampling remain three viable alternatives 
for selecting the sample once optimal it. are determined. 
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Use of Auxiliary Information for Two-phase Sampling 
M.A. HIDIROGLOU and C.-E. SARNDAL' 

ABSTRACT 

Two-phase sampling designs offer a variety of possibilities for use of auxiliary information. We begin by reviewing the 
different forms that auxiliary information may take in two-phase surveys. We then set up the procedure by which this 
information is transformed into calibrated weights, which we use to construct efficient estimators of a population total. The 
calibration is done in two steps: (i) at the population level; (ii) at the level of the first-phase sample. We go on to show that 
the resulting calibration estimators are also derivable via regression fitting in two steps. We examine these estimators for 
a special case of interest, namely, when auxiliary information is available for population subgroups called calibration 
groups. Poststrata are the simplest example of such groups. Estimation for domains of interest and variance estimation are 
also discussed. These results are illustrated by applying them to two important two-phase designs at Statistics Canada. The 
general theory for using auxiliary information in two-phase sampling is being incorporated into Statistics Canada's 
Generalized Estimation System. 

KEY WORDS: Generalized regression; Two-phase sampling; Model assisted approach; Domain estimation; Calibration 
factors. 

1. INTRODUCTION 

Two-phase sampling is a powerful and cost-effective 
technique. It was first proposed by Neyman (1938). In 
Cochran's (1977) book, and in its two earlier editions dated 
1953 and 1963, one finds basic results for two-phase 
sampling, including the simplest regression estimators for 
such designs. This paper takes a broader outlook and 
proposes a general approach to the use of auxiliary 
information in two-phase survey designs. Our main 
references are Samdal and Swensson (1987), Samdal, 
Swensson and Wretman (1992) and Dupont (1995). Recent 
related work includes Breidt and Fuller (1993), who 
presented computationally efficient estimation procedures 
for three-phase sampling in the presence of auxiliary 
information. Chaudhuri and Roy (1994) studied optimality 
properties of the well-known simpler regression estimators 
for two-phase sampling. Binder (1996) described a simple 
linearization procedure to estimate variances of nonlinear 
estimators. His procedure can be applied to any sampling 
design, including two-phase-samphng. Throughout this 
paper, we assume arbitrary sampling designs for each of 
the two phases. 

Single-phase sampling involves the use of one layer of 
information for estimation. In two-phase sampling, how
ever, one has to consider two layers of information. This 
complicates matters, and it is not clear-cut how best to 
exploit the combined information from the two sources. 
Two approaches are considered in this paper for building 
estimators based on auxiliary information. These are the 
calibration approach and the generalized regression 
approach. We show that the generalized regression 
approach can be viewed as a special case of the calibration 

approach. The two approaches are examined under a 
common stmcture for the auxiliary information. It assumes 
that information exists about an auxiliary vector x^ for the 
units of the entire population, and about a second auxiliary 
vector x.^ for the units of the first phase sample. 
Consequently, at the level of the first phase sample, there is 
information about both vectors, Xj and x^. 

The generalized regression approach, as applied to two-
phase sampling, is discussed in Samdal et al. (1992). These 
authors develop the general regression estimator for two-
phase sampling, assuming arbitrary sampling designs in 
each of the two phases. Two regression fits are carried out. 
A "bottom level" regression is fitted to produce predicted 
values up to the level of the first phase sample, using the 
auxiliary information available for this step. Next, a "top 
level" regression is fitted to produce predicted values up to 
the entire population level, using the information 
appropriate for this step. The two sets of predicted values 
are used to build a generalized regression estimator. 

The calibration approach focuses on the weights given 
to the units for purposes of estimation. Calibration implies 
that a set of starting weights (usually the sampling design 
weights) are transformed into a set of new weights, called 
calibrated weights. The calibrated weight of a unit is the 
product of its initial weight and a caUbration factor. The 
calibration factors are obtained by minimizing a function 
measuring the distance between the initial weights and the 
calibrated weights, subject to the constraint that the cali
brated weights yield exact estimates of the known auxiliary 
population totals. In two-phase sampling the two levels of 
information imply two consecutive calibrations. The first 
phase of calibration uses the auxiliary information available 
(at least population counts) at the level of the entire 

' M.A. Hidiroglou, Business Survey Methods Division, Statistics Canada, Tunney's Pasture, Ottawa, Ontario, KIA 0T6; and C.-E. Samdal, University of 
Montreal, and Statistics Canada. 
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for kts.,, and 

J ^ y - '^ik'^ikXkX',^ 
(3.12) 

' 2 * 

Again, some gl may be zero or negative, but always 
positive gj* can be ascertained by adding to (3.8) the 
inequality constraints w^ > 0 for kts.^. 

Having determined die overall weights w\by equation 
(3.9), the estimator of 7is given by 

^=E. w kYk (3.13) 

Remark 3.1 A potential problem with the above approach 
is that some of the gj^'s may be negative or even zero. If 
this occurs, (3.7) is not a proper distance measure. Some of 
the important appUcations, such as poststatification, do not 
have this problem as their associated g,^'s are always 
greater tiian zero. If all die g,^'s are greater than zero, then 
the minimization criterion given by (3.7) is acceptable. 
Otiierwise, we have to modify it. One possible modification 
is to impose on the above-mentioned constraints that the 
Wĵ 's are positive for ^ e 5,. Anotiier possible modification 
is to replace Ĉ .̂ in (3.7) by 

C'=C ^ 
^2k ^2k • 

^Ik 

Then 

r* 
^2k 

'2k 

which is always positive. The resulting g'J-factors in (3.9) 
can be shown to be g^ = g^^ + g2i ~ 1 > where g,^ is given 
as before by (3.5), and ĝ ^ by (3.11) provided that we 
instead define T̂  as 

7-2 = E . 
^A ^ i ^ ' i 

c 2k 

It is our opinion tiiat in most applications the choice 
between^ the multiplicative g '̂ = gikS2k "̂<̂  ^^^ additive 
form g/ = g,̂  + g2i - 1 would have littie effect on the 
resulting estimates. That is, we believe the two point 
estimates would be very close, and so would be their 
associated estimates of variance. 
Remark 3.2: Bounding the weights ordinarily has negli
gible impact on the estimates. Recent experience with 
caUbration for single phase designs, Stukel, Hidiroglou, and 
Samdal (1996), has shown that mildly different sets of 
g-weights lead to point estimates that differ very little. 
Some recently developed computer software for calibration, 
for example, the software described in DeviUe et al. (1993), 
minimizes a distance function such that the resulting 

g-factors are guaranteed to be bounded from above and 
from below. 

Remark 3.3: The auxiliary data in Table 1 can be used in 
several ways for two-phase calibration. Considering in 
particular the second-phase calibration equation defined by 
(3.8), three different specifications of tiie vector x^ are: (i) 
^* = K*'^2*)'; (») x,=x^,; and (iii) x^^x^^. We 
comment on these possibilities, assuming for each of these 
that a first-phase calibration has been carried out, resulting 
in the first-phase calibrated weights (3.4). 

The case (i) specification x,^ = (x/^, jc '̂̂ )', recommended 
in Samdal et al. (1992), capitalizes on all the available 
information. Thus, in tiiis respect case (i) is ideal. Cases (ii) 
and (iii) disregard some available information. Case (ii) is 
sometimes of interest, despite some loss of information; an 
example is given in Section 7.1. Case (iii) implies that the 
data {ATĴ  : i e S, } are observed, but not used: we do not 
further consider this case. We call x^ = (A:/̂  , A:^^)' the full 
vector and A:̂  = Xĵ  the reduced vector. 

Second-phase calibration on the reduced vector x,^ = x.^i^ 
can be carried out witiiout significant loss of information if x^^. 
is a good substitute for J:,J., as also observed by Dupont 
(1995). However, if A:,̂  complements Xj ,̂ then the fuU 
vector Xi^ = {xl^,x^i^)' should clearly be used in the 
caUbration defined by (3.7). Otherwise, significant loss of 
information and increased variance may result. 

Remark 3.4: Both the fuU and the reduced x^-vectors lead 
to overall weights w\ caUbrated on x.^ from 2̂ to 5,. This 
means that Z^ji^i^2A = L , *it^2i' because (3.8) holds, 
and Xĵ  is contained in i^. However, there exists a 
difference between the full and reduced vector specifica
tions witii respect to die calibration on x,^. If the full vector 
specification is used in phase two, the resulting overall 
weights w\are calibrated on Xĵ  from s.^tos^, and from 5, 
to U. This means tiiat Z,^ w^x,^ = £,, w^.x,, = ^yX,^. In 
contrast, if the reduced vector specification is used, the 
resulting overall weights w\ are calibrated on x,^ from 5, 
to U by virtue of the first-phase calibration. That is 
^s.'^ik^ik'T.u^ik- However, they are not calibrated 
from 2̂ to 5j, because Xĵ . is not present in the second-
phase calibration. Hence, Z^ *A ^ u ' ' Z ^ ^ u ^u = 
ZyX,^. Thus if the survey requires a weight system that 
will reproduce the known Zc/^u' then the full vector 
specification must be used. 

So far, we have focused on the general framework for 
calibration with two levels of auxiliary information. This 
framework does not reveal the many interesting forms that 
the estimator Y given by (3.13) may take for specific cases 
of auxiliary information. Some illustrations are given in 
Section 7. We first address tiiree issues that are of practical 
interest in virtually every major survey: (i) poststratifica-
tion or, more generally, the presence of auxiliary informa
tion for population subgroups (Section 5), (ii) estimation for 
domains of interest (Section 6), and (iii) the construction of 
variance estimates (Section 6). 
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4. THE TWO-PHASE CALIBRATION 
ESTIMATOR VIEWED AS A REGRESSION 

ESTIMATOR 

An alternative expression for the calibration estimator 
(3.13) is given by formula (4.1) below. This expression 
links it exactiy with the regression estimator for two-phase 
designs introduced in Samdal et al. (1992, chapter 9). 

Theorem 4.1: When the overall calibrated weights w'^ are 
determined by (3.9), the calibration estimator (3.13) is 
identical to the two-phase regression estimator given by 

^ = E t / Yik -^E,, ^ikiy2k-yik) +E. , ^k(yk -y2k) (^-i) 

where j?,̂  and y^i^ are successive regression predictions 
such that 

j ? , * = ^ ; * ^ i (4.2) 

with 

«,-r,-'k^^'E."'''"'e^'-'"M(«) 
'Ik 'Ik 

where T. is given by (3.6), and 

y2k = * * ^ 2 

with 

B, = T; 
^ik'^2kXkyk 

(4.4) 

(4.5) 
• - 2 * 

where J j is given by (3.12). 
The proof for Theorem 4.1 uses some tedious but 

straightforward algebra and is not presented here. 
We now show that (4.1) can be constructed via 

regression estimation in two steps. For the first step, 
suppose that the variable of interest ;v̂  were observed for 
the full first-phase sample 5,. The auxiUary information on x,^ 
is available for kes^ and the population total Zfy-̂ î* '̂  
known. The resulting regression estimator of Y = Y^uyk 
would then be given by 

y-Huyik-^Z.-'iki^k-yik) 

= E. w Ik Yk MEC/^^A-E. w Ik • Yik (4.6) 

In the last expression, the first term represents the 
(hypothetical) first-phase Horvitz-Thompson estimator of 
Y. The second and third terms represent' a regression 
adjustment, where j?°̂  is the predictor of jv̂  based on the 
fitted regression of y,^ on x,^ for kes^. That is, 
yik=x;,Bl,witb 

B'l T^-L.. 
c Ik 

AO 
Note tiiat Zy Yik = CLu -^i/t)' -̂ t ^^ere Zy Ĵ u is known. 
However, none of the terms in (4.6) can be computed 
directly, because y,^ is only observed for the second-phase 
sample. A second step of regression estimation is thus 
necessary. It is carried out by replacing the unknown 
Zi ^ikYk i" (̂ -̂ ^ ̂ y '̂ ^ conditional regression estimator 

E . ^iky2k ^ E . w* (yk-y2k) (4.7) 

where jpĵ  = -̂ ^ ^2 ' ^ ' ^ ^2 8'^^" ̂ y (^•^)' '̂  '^e predictor 
of 7^ based on thejegression of yj^ on x^, known up to j , . 
Next, the vector 5 , required for computing yi;^ contains a 
known matrix T, and an unknown vector 

y - ^ik XikYk 

^Ik 

Using a regression estimator for this unknown vector, we 
obtain 5 , given by (4.3) as a replacement for B^. These 
two substitutions in (4.6) lead to the two-phase regression 
estimator given by (4.1), which is identical to the 
calibration estimator (3.13). 
Remark 4.1: A more direct alternative to 5 , in (4.3) 
would be to use only die second-phase sample. This would 
have produced 

B I, alt 

W, • " • l * - ^ ! * 

•'2k 

W^ Mt Yk 

'2k 

The resulting predictions .yu.ait "̂ -"̂ lA-̂ i.ait would be 
replacing j?,̂  in (4.1). However, the resulting regression 
estimator is not identical to (3.13) and is a less efficient 
alternative, because B, ^^ uses less x,^-information than 
B,. 

5. CALIBRATION GROUPS 

In this Section we apply the resuks of Sections 3 and 4 
to the important case where the auxiliary data in Table 1 
include information about mutually exclusive and 
exhaustive subsets of the population U, and of the first-
phase sample 5,. The population subsets are denoted by 
U.,i = I, ...,I, and the first-phase subsets by Sy,j = 
I,...,J. Such subsets are called calibration groups, for 
reasons that will become clear later in this Section. Simple 
examples of calibration groups are poststrata. 

Two vectors denoted A,̂  and Aĵ  will be used to specify 
the membership of a given unit k in the calibration groups U. 
and Sy, respectively. These group identifiers are 

(8 l i t ' 
,6,,^,..., 8,,.)' l/i-' (5.1) 
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with 

^lik 

\l if keU. 

0 otherwise 
for /• = 1,...,/ 

and 

with 
^2k = (^2lk'-'^2jk'-'^2Jky 

1 if kes.. 
5^^= / forj = l,...,J 

0 otherwise 

(5.2) 

(5.3) 

(5.4) 

Besides the group membership information, which is 
qualitative and specified by Aĵ  and A.^, there may exist 
information for the unit k about quantitative (continuous or 
discrete) variables. We call them supplementary auxiliary 
variables. For example, categorical information about a 
unit (enterprise) in a business survey may consist of an 
industry code or a geographical location code. In addition, 
quantitative variable information may also be available 
concerning the number of employees or the gross business 
income of the unit. Some of these supplementary auxiliary 
variables may be known up to the level of the population, 
and others up to the level of the first-phase sample. 

We assume in this Section that the vector Xj ,̂ used in 
calculating the first-phase g-factors, has the structure 

"^1* A' (8>7' (5.5) 

where z,̂  of dimension Q^ is the vector of supplementary 
auxiliary variables available for the first-phase sample. The 
information requirements in Table 1 apply to the vector 
x,j . This implies that we must know either the group 
membership specified by A,̂  and (be value of Zĵ  for every 
ke U, or the total Zy ^u separately for each group, 
i = l,...,I. 

When x,^ has the form given by (5.5), tiie first-phase g-
factors g,^ in (3.5) can be obtained by a group by group 
calculation. The T^ matrix to be inverted, given by (3.6), is 
block diagonal and of dimension / g , by / g , . The typical 
diagonal block, denoted as T^. of dimension gj by g , , is 
given by 

Tii-Es 
^lA ^Ikhk 

c 
(5.6) 

Ik 

for / = 1,...,/. The resuking inverse of Jj is also block 
diagonal with diagonal matrices 7,"/. The off diagonal 
blocks of the inverse of Tj are zero matrices. So we obtain 
from (3.6) 

^u = 1 + (Et/, Zu - E . , ^ik^ik)' T'l- - ^ (5.7) 

for kes^., i = 1,...,/, where 7,. is given by (5.6). Note that 
the resulting weights vi>ĵ . are tiie same as tiiose obtained by 
carrying out the first-phase calibration group by group, 
caUbrating for group / on the known total Zy z,̂ - That is, 
Z,,.*^uZu = Zy.^ii for ' = 1. -J- kis thus'fitting to caU 
the groups U. first-phase calibration groups. 

Now consider the second-phase g-factors gj^ given by 
(3.11). They are based on the auxiliary vectors x^, 
required to be known for the units kes^. We assume that 
x^ contains information about the second-phase groups so 
that 

^'k =A'2,<8'Z', (5.8) 

where Aĵ  is the second-phase group identifier, and z,^ is 
the value of a vector of supplementary auxiliary variables 
available for k6s^. Since the requirements in Table 1 
apply, it follows that Aĵ  (the second-phase group 
membership) and the value of ẑ  (the supplementary 
auxiliary vector) must be known for every kes^ Here ẑ . 
may contain some or all of the information in x,^ given by 
(5.5), and any other information available for the units 
kesy 

When x,̂  has the stmcture (5.8), the factors gj^ can also 
be obtained through a group by group calculation. This 
simplification is a result of the fact that the matrix to be 
inverted in (3.11) is block diagonal. We obtain 

^2t = 1 + (E.,. ^Ikh - E . . . ^lk^2kh)' Ty - ^ (5.9) 
^2k 

for kes.^. = s.^ns..,j = 1, ...,J, where "2] "2' '•'ij 

2̂. = E . '^lk^2k^k^k 

c. 
(5.10) 

2k 

The resulting overall weights -W/^ = w^ g/ where g^ = 
SikS2k ̂ re the same as those obtained by carrying out the 
second-phase calibration group by group, calibrating for 
group j on the known quantity Ly^lk' k- That is. 
Z.'j/^t ^k = Z.,,̂ ,̂̂ ^z^ fory = 1,..., y.'The groups 5,̂ . are 
called second-phase calibration groups. We now have a 
procedure for computing g,^ and gj,̂  group by group using 
(5.7) and (5.9). The total 7 is still estimated according to 
(3.13). 

6. DOMAIN ESTIMATION AND VARIANCE 
ESTIMATION 

The preceding sections dealt with estimation of the total 
ofy at the entire population level. In most surveys, there is 
also a need to provide estimates for various subpopulations 
or domains of interest. Requests for domain estimates can 
be made either before or after the sampling stage of the 
survey. Auxiliary information is essential for domains. A 
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precise domain estimate may be obtained (even for small 
domains) if: (i) calibration groups and domains of interest 
agree closely, and (ii) the auxiliary variables exhibit a strong 
regression relationship with the variable(s) of interest. 

Denote by Uj{Uj c f/) any domain of the population 
U for which an estimate is required. The >'-total for the 
domain U^ is defined by Y{d) = Y^u^y^ = Z[/3't(<^) ^i^^ 
y^{d) =y^ifkzU^ and y^ {d)=Oifk$ U^. 

The estimator of Y{d) is 

y(d) = Ts,^kyk(d) (6.1) 

where the overall calibrated weights vv/ = w^ g/ may be 
calculated group by group as described in Section 5. The 
calibration factors g,^ and g^^ are calculated using all 
relevant available auxiliary information, specified as in 
Table 1. So in this sense, the resulting overall calibrated 
weights w/ are the best possible ones. Note that these 
weights are independent of the particular domains requiring 
estimation in the survey. 

The estimator of the variance for the domain total 
estimator Y{d) is obtained using a design-based approach. 
This means that the variance is interpreted with reference to 
repeated draws of samples 5, and ^ j . Details for the 
derivation of this variance are given in Samdal et al. (1992) 
(Result 9.7.1, p. 362). The first order and second order 
inclusion probabilities enter into the weights used in the 
variance formula. The weights associated with the first-
phase sample are ^1^ = 1/tit ^"d Wjy = l/7t,^ with 
iiji^=P{k and ies^). The weights ^2^ = 1/̂ 2* ^'^ 
^2W"'^'^« with n2i^=P{k and lles.^\s^) denote their 
second phase counterparts. Two sets of regression residuals, 
one for each phase, are also required. The estimator of the 
variance of Y{d) is given by 

v{Y{d)} = 

E E >^2«(^i*^ir ^iw)(^u^u('^)) <^Sueii{d)) + 
kes^ tetj (6.2) 

EE^lt^H(^2*^2r^2«)(^2*^2*(^))(^2pS(^)) 

= { we have w,^ = w,^, and 1̂ 2̂  ^ 2 * 1 " Note that for k 
(6.2). We now specify the regression residuals in (6.2) 
assuming that there are first-phase calibration groups 
U.,i = l / , and second-phase calibration groups 
s^ .,j = 1,..., J, as explained in Section 5. We denote the 
associated sample subsets as follows: 52/ = ^̂2 "̂  ^i' 

The required residuals in (6.2) are, for ••s.^nsij. 

kE{s^.(^U^), 

^ik(d)=y,{d) ^'ik^iiid) 

and, for ke {s^j n U^) 

^2kid)=yk(d)-z'J,j{d) 

(6.3) 

(6.4) 

The estimated regression vectors B^. {d) and B^j {d) are 

Bii{d) = T[l 

fy- '^ikhky2k(^d) ^k Zi,{y,{d)-y^,{d))\ 

P" c„ ^̂^ c,, J • 
where J,,, is given by (5.6), and 

«,«') = ^^E.. ' '• '^''^'"^' (6.6, 
-2k 

with T2J given by (5.10), and 

y^,{d)=ziBy{d) for ke{s.Jr^U,). 

Remark 6.1: Note that for each new domain of interest, the 
variance estimator (6.2) requires two new sets of domain 
dependent residuals, e,̂ .(c/) and ^^.k^d). Moreover, these 
are required for all of the units k in the second-phase 
sample ^2, including units outside the domain. Variance 
estimation for domains can therefore be cumbersome. 

Remark 6.2: In practice the computation of estimated 
variances is seldom carried out as a double sum. For some 
important designs, the double sums reduce, after some 
algebraic manipulation, to single sum expressions. 
Examples of this occur for single sampling and for stratified 
single random sampling in both phases. Explicit algebraic 
developments for the variances have been given the former 
case by Samdal et al. (1992), and in the later case by 
Hidiroglou (1995), and Binder, Babyak, Brodeur, 
Hidiroglou and Jocelyn (1997). 

7. APPLICATIONS WITH 
POSTSTRATIFICATION AT THE FIRST PHASE 

7.1 The Case of the Tax Sample at 
Statistics Canada 

An application of the calibration group approach in 
section 5 has been in use at Statistics Canada, in the two-
phase design for sampling of tax records. The example is 
important because it provides the extension to two-phase 
designs of the tiaditional postratification technique as used 
in a single phase design. The sampling procedure, the post-
stratification criteria, and the estimators are described in 
Armstrong and St-Jean (1994). We now show how these 
estimators are obtained as special case of the technique in 
section 5. The sampling design, in each phase, is stratified 
Bemouilli, carried out with the permanent random number 
technique. The two stratifications are based on different 
criteria. The realized sample sizes are random at each phase 
on account of the Bemouilli sampling. To offset the 
resulting tendency toward an increased variance, poststrati-
fication is carried out at both phases of sampling. The two 
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poststratification criteria are different. We have in effect 
two crossing poststratifications. In the terminology of 
section 5, the first phase poststrata are the first-phase 
calibration groups. They are denoted as U.;i = I,..., I, and 
the group membership of a unit k is indicated by the vector 
by Ajjj. given by (5.1). The second phase poststrata are the 
second phase caUbration groups. They are denoted as 
Sy,j = l,...,J and the corresponding membership of a unit 
k IS indicated by the vector A2,̂  given by (5.3). 

The first-phase calibration is carried out using the 
information about the first-phase poststrata sizes, N.. In this 
survey design, there is no supplementary information, so 
Zn = 1 for aU k in (5.5), yielding x,^ = A,^. Specifying 
C,ĵ  = 1 for all k we obtain from (5.7) that 

Sik=N,IN,^ (7.1) 

for aU kes.^. where Â ,,. = Z.t„Wu estimates the known 
first-phase poststratum count N., and s^.=s.n U. denotes 
the part of the first-phase sample 5, that falls in the first-
phase poststratum U.. 

We arrive at the estimator of Armstrong and St-Jean 
(1994) by carrying out the second-phase calibration with 
Xj = A2ĵ , that is, we have z^ = 1 for all k in (5.8). This is 
a reduced x^-vector specification since it does not involve Xĵ .̂ 
Specifying Cj^ = 1 for aU kss^., and using (5.9) and 
(3.10), we obtain the overall caUbrated weights 

Sk 
N, N, 

^ l , ^2J 

(7.2) 

for all kes^a, where 

' N^ 
^t/=E 

(=1 N,. 

I I 

Ni,^Ny = Y 
/=1 N. 

I'V 

Â . 2iJ 

\ij = L , >vu and Â2,y = Z. n't* • Here, s 
;s the pan of the second-phase sample 5, th 

(7.3) 

at falls in 
witiiA ĵ 
denotes 
the second-phase poststratum 5, , and s^.. = U.^\s^.; 
S21J = S2r\U.r\s^j. It foUows that the estimator of the total 
Y(d) for a given domain U^ is given by Y{d) = 
Z5 ^kSkYk^d), or equivalentiy as 

' •' N N 

• ' • = ' > = ' ^ 1 , - ^ 2 ; • 
21J 

^i^Ykid)-

The estimated variance requires two types of residuals 
that are easily obtained from the general expressions given 
in Section 6. 

Alternatives exist to the reduced vector specification 
x^ = Aji^ used for this design. We therefore examine what 
the estimator would look like under a full vector 
specification. For the first-phase caUbration, as earlier, let 
x,j = A,4 corresponding to z^ = 1 for all k in (5.8). The 
first-phase g-factors g,,̂  are then given by (7.1). In this 

survey, information is available for assigning every unit 
kes^ to one of the / x y cells formed by cross-classifying 
the two poststratification criteria. Therefore, the vector x^ 
for the second-phase calibration can be taken as 

^; = K^^2k (7.4) 

This is a fuU vector specification in that it includes the 
first-phase information carrier A,^. Let us also specify 
Cjt = 1 for aU k. Since (7.4) is of the form (5.8), the 
second-phase g-factors gj,̂  are obtainable group-by-group 
from (5.9) with z^ = A,,̂ . The overall calibration factors 
are given by 

. . - ^ ^ 
M,- A'-

(7.5) 
2ij 

for aU k6Sj,.j. Here, TV,, is defined in (7.1), and TV,., and 
7V2,y are as in (7.3). These overall calibration factors are the 
product of two poststratified calibration factors. They are 
aU positive and well defined, provided all sample cells ^2, 
are non-empty. Collapsing of small cells 2̂, with relatively 
large non-empty cells is recommended for stable estimation. 
As pointed out in Remark 3.4, the overall weights obtained 
from (7.5) reproduce the known first-phase postrata sizes 
Â ;, whereas those obtained from (7.2) do not. 

Remark 7.1: Let us compare the calibration factors (7.2) 
and (7.5), resulting, respectively, from the reduced form 
x^ = Aĵ t and from the full form (7.4). Both factors are a 
product of two terms. The only difference lies in the second 
term. In both cases, the computation of the second term 
requires cross-classification information. That is, for every kes^, 
we need to identify the cross-classification cell ij to which 
k belongs. In the case of the reduced vector, the cell 
information is pooled across the first-phase groups. For the 
full vector, the cell information is kept separate, and one 
would expect the resulting weights to be more efficient. 

Remark 7.2: For the second-phase calibration, an 
altemative to (7.4) that also captures the information about 
the first-phase poststrata is to use 

••K^^2k)- (7.6) 

Note that with this specification, there is only one 
calibration group in the second phase, namely the whole 
first-phase sample J,. 

7.2 The Case of the Canadian Survey Employment, 
Payrolls and Hours 

The Survey on Employment Payrolls, and Hours (SEPH) 
covers all sectors of Canadian industry, and collects data 
on four principal variables: (i) salaries and payments to 
employees (denoted as z^; called payrolls); (ii) number of 
employees {z^; employment); (iii) hours worked by 
employees (>>,; hours); and (iv) summarized earnings 
(;̂ 2; earnings). 
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SEPH (1994) uses a stratified two-phase sampling 
design. In the first phase, a sample of payroll deduction 
accounts is selected using a stratified Bernoulli sampling 
design with sampling rates within strata ranging from 10% 
to 100%. The sti-ata are defined by region. A region is 
made up of one or more Canadian provinces. We describe 
the estimation for SEPH by considering one specific region. 

For units selected in the first-phase sample, two variables 
are transcribed, namely, payrolls {z^) and number of 
employees (zj). In the second-phase, a simple random 
sample is drawn. Data on the two variables of interest, >•, 
and _V2' are collected for respondents in this sample. In 
addition, classification by industry and province is recorded 
for sampled units. The first-phase sample is poststratified 
by employment size groups. These are used as first-phase 
calibration groups and denoted Ur,i = 1,..., / . Their sizes 
denoted as iV, for / = 1,...,/ are assumed known. The 
vector x,^ used for a first-phase calibration is of the form 
(5.5), where A,,̂  is given by (5.1) and z^^ = I for all k. We 
choose C,ĵ  = 1 for all k. It follows from (5.7) that the first-
phase g-factors are 

Sik •NJN,. (7.7) 

foraU kes^. = 5,0 C/., where N^. = Z^w^ii-' = 1- •••'̂ • 
We now tum to second-phase calibration. It is carried out 

using calibration groups s^J,j = 1,..., J, identified by the 
vector A2̂  given by (5.3). These groups are based on a 
province by industiy classification. They are consti-ucted so 
that: (i) there is a stiong regression relationship between y^^ 
and the two z-variables, and that (ii) there are at least 30 
observations within each group. The J ( / + 2) dimensional 
Xj-vector for the second-phase calibration is given by 

x;=A^,®(A,'^,Z2,,Z3^) (7.8) 

This specification requires (see Table I) that every kes^ 
can be classified into one of the / by J cells formed by 
crossing the calibration groups in the two phases. Let 
Sy = S2r\Sy; s^|J = s^Jf)U|;s.2.J=S2^\s^.J. Also, die quan
titative variable values z.^^. (payrolls) and Zĵ  (number of 
employees) must be known for k€s^. The x^-vector 
specification given by (7.8) is full, because it incorporates 
x.j = A,,. A reduced vector, ignoring the first-phase 
groups, would be x^ = A^k ® (^2i' 3̂*) • 

As in Example 7.1, we have two crossing sets of 
calibration groups. 

Since the x^-vector (7.8) has the structure defined by 
(5.8), we used (5.9) to derive the second-phase g-factors for 
each group j = I,..., J. It follows from (7.8) that we are 
fitting, within each second-phase calibration group, a 
separate regression of >'̂  on C* = (̂ 2*r'̂ 3A)' ^'^^ a" 
intercept that varies with the first-phase calibration group. 

Specifying C^i^ = I for all k, and using the additive form, 
Sk ~ Su '^ S2k~ ^' f̂*" '^^ overall calibration factors, we 
obtain after some algebra 

g; = G,G2,.^;r;'(c,-cJ 
for all kesj-j, where 

G,,=A^,/7V,,,G2,.=A^„/A^2/;-

Tj-iYs^^^k(^k-lJ^k-lsJ' 

with 

••ly — ' W ; y - •'2<;- ^^2ij ^ *•.- — - 1 / / 
L.=E. 

•lij -2iJ 

andA 2̂,y = Z.„ ,<-
"VJ 

It follows that we can write the estimator (6.1) as 
Y{d)-ti-X-iY,j^d)v^ith 

yiM)-GiiNiijry,{d)HL-lj'Bj{d)) 

where 

ys,,id)=l,y,y,{d)IN,,j 

and B.{d) = T:X_.iY^^w:{i:,,-\^^)y,{d). 
The form of Y{d) is easy to understand. It is composed 

of IxJ cell estimates YAd), each reflecting the regression 
of >'̂  {d) on ^ j . Note that the two-dimensional slope vector 
B.{d) is obtained by pooling data across the first-phase 
groups. This is because the specification (7.8) of x^ allows 
the intercept, but not the two regression slopes, to vary with 
the first-phase groups. 

8. CONCLUSIONS 

Two-phase designs have the advantage of being both 
economical and efficient. The present paper has provided 
a general theory for such designs when auxiliary 
information is present in each phase. 

Our goal is to incorporate this two-phase survey method
ology into Statistics Canada's Generalized Estimation 
System (GES) described in Estevao et al. (1995). The GES 
is a general purpose program that currently handles domain 
estimation for arbitrary single phase designs and incor
porates auxiliary information in its estimation process. In 
this paper we have extended the basic principles of the 
GES, including the important idea of calibration groups, to 
two-phase designs. 
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We have illustrated the theory by showing its use in two 
current surveys at Statistics Canada. Given its generality, 
the theory has potential application to any two-phase 
sample design that uses auxiliary information. 
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Estimation in Sample Surveys Using Frames With a 
Many-to-Many Structure 

TERRI L. BYCZKOWSKI, MARTIN S. LEVY and DENNIS J. SWEENEY' 

ABSTRACT 

In sample surveys, the units contained in the sampling frame ideally have a one-to-one correspondence with the elements 
in the target population under study. In many cases, however, the frame has a many-to-many structure. That is, a unit in 
the frame may be associated with multiple target population elements and a target population element may be associated 
with multiple frame units. Such was the case in a building characteristics survey in which the frame was a list of street 
addresses, but the target population was commercial buildings. The frame was messy because a street address corresponded 
either to a single building, multiple buildings, or part of a building. In this paper, we develop estimators and formulas for 
their variances in both simple and stratified random sampling designs when the frame has a many-to-many structure. 

KEY WORDS: Imperfect frames; Correspondence errors; Building characteristics survey; Weighting; Simple random 
sampling; Stratified random sampling. 

1. INTRODUCTION 

This research was motivated by a study that was 
conducted for a utility company to estimate various popu
lation characteristics of the commercial buildings located in 
their service area. Budgetary constraints prohibited the 
development of a list of commercial buildings using 
canvassing techniques. However, a sampling frame consis
ting of street addresses {i.e., addresses at which a utility 
meter was located) was available. A drawback of this 
frame was that it had a many-to-many relationship with the 
target population of commercial buildings. That is, some 
units in the frame were associated with multiple target 
population elements, and some target population elements 
were associated with multiple frame units. In fact, several 
of the relationships between street addresses and com
mercial buildings were relatively complex. 

An advantage of this frame, however, was that total 
annual electrical usage was available for each street 
address. This resulted in a variable upon which the frame 
of street addresses could be effectively stratified. One of 
the important characteristics to be measured was the total 
commercial square footage. Studies conducted in the 
United States have shown that energy consumption is 
associated with both building size and building activity. 
For example, consumption is higher for buildings used for 
health care or food sales, and lower for buildings used for 
religious worship or public assembly. Also, energy 
consumption is correlated with building size even if the 
activity of the building is not known, as was the case here 
(U.S. Department of Energy 1992). 

There is a vast amount of literature dealing with 
imperfect sampling frames. Comprehensive summaries of 
this Uterature can be found in Kish (1965), Wright and Tsao 

(1983), and Lessler and Kalsbeek (1992). Another body of 
literature addresses multiplicity sampling in which the 
frame is constmcted with a many-to-many structure by 
design. Here, frame imperfections are introduced in order 
to gather information more efficiently on rare occurrences 
in a population (Bimbaum and Sirken 1965, Sirken 
1972a,b, and Casady and Sirken 1980). Hansen, Hurwitz 
and Madow (I953a,b) present an estimator for use with 
sampling frames that have a many-to-one structure; 
population elements are represented multiple times in the 
frame. This estimator has also been adopted for use by 
National Agricultural Statistics Service (NASS) surveys 
(Musser 1993) with respect to the many-to-one frame. 
Bandyopadhyay and AdhUcari (1993) developed estimators 
for a ratio, population mean, and population total when an 
unknown amount of duplication is present in the frame. 
But, these estimators are restricted to the simple random 
sampling case and the many-to-one frame. 

Two methods for estimating population characteristics 
using a frame with a many-to-many stmcture appear in the 
literature. First, the Horvitz-Thompson estimator (1952) 
provides unbiased estimates of population means and totals 
when varying probabilities of selection are present. Musser 
(1993) shows how to compute the correct inclusion 
probabilities for the population elements selected in simple 
random sampling from a many-to-one frame. However, 
Musser's method can be extended to obtain inclusion 
probabilities for population elements in a simple random 
sample from the many-to-many frame as well. Second, 
Lavallee (1995) adapted the Weight Share Method, applied 
to longitudinal surveys, to the use of frames with a 
many-to-many structure. 

The purpose of this paper is to develop an altemative 
methodology for estimating population totals, counts, and 

' Terri L Byczkowski, Institute for Policy Research, Martin S. Levy and Dennis J. Sweeney, Department of Quantitative Analysis and Operations Management, 
University of Cincinnati, Cincinnati, OH 45221, U.S. A. 
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means when using sampling frames with a many-to-many 
structure under simple and stratified random sampling 
designs. Also, expressions for the variance of those 
estimators are derived. The results which we develop are 
not only of intrinsic interest, but expressions for the 
variance of the estimators are essential for the exploration 
of the effects of correspondence imperfections inherent in 
many-to-many sampling frames on the precision of these 
estimates. 

In section 2 we present these estimates in the simple 
random sampling without replacement (SRSWOR) case. 
We also describe the sampling methodology under which 
these estimators are appUcable, state a result on bias, and 
develop expressions for their variance. 

In section 3 some of the results are extended to the case 
of stratified random sampling. In section 4 we develop 
conclusions, discuss limitations and make suggestions for 
future research. 

2. MANY-TO-MANY FRAMES FOR SIMPLE 
RANDOM SAMPLING 

It is useful to think of the relationship between the frame 
and the target population as a graph. The sampling units in 
the frame and the elements of the target population are the 
two sets of nodes; arcs link the sampling units to elements 
of the target population. These arcs reveal the structure of 
the relationship between the frame and the target popu
lation. Figure 2.1 shows an example of a frame and target 
population with a many-to-many relationship. There are 
7 sampling units in the frame, 6 elements in the target 
population and 10 links (arcs) between the sampling units 
and the elements of the population. Thus, a graph with 
13 nodes and 10 arcs represents this many-to-many 
structure. In this paper we assume that each population 
element is linked to the set of frame units by at least one arc 
and that each frame unit is linked to the set of population 
elements by at least one arc as well. 

Let us fix some notation. We find it convenient to iden
tify both frame units and population elements with their 
respective indices. Let F = {1,2,..., TV} denote the set of 
indices for A'̂  sampling units, and let T= {1,2, ...,M} 
denote the set of indices for the M target population 
elements. An arc can be represented as an ordered pair; the 
first element of which comes from F, and the second from 
T. A population element A: in T is said to be represented by 
sampUng unity in F, if it is linked to it by an arc denoted 
{jk). This means that wheny is in the sample there is a 
nonzero probability of collecting data from population 
element k. We will denote by y,^ the measurement of 
interest on target population element kinT. 

We now describe the sampling methodology under 
which the estimators developed herein are appropriate. 
Assume a SRSWOR of size n frame units is selected from 
F. The number of population elements included in the 
sample and measured, however, depends upon the nature of 

the association between the frame units and the population 
elements. 

Under SRSWOR, one of four scenarios can occur when 
a frame unit is selected. In the first scenario, a frame unit 
corresponds to one and only one population element (a 
one-to-one stmcture). Here the surveyor would simply 
collect the information concerning the single population 
element corresponding to the selected frame unit (see frame 
unit 1 of Figure 2.1). 

Sampling 
Frame 

Target 
Population 

Population 
Element 

Value 

Figure 2.1. An example of the correspondence between the 
sampling frame and the target population 

In the second scenario, several frame units correspond to 
one population element (a many-to-one structure). For 
example, in Figure 2.1, frame units 2 and 3 correspond to 
the single population element 2. In this case, if frame 
units 2 and/or 3 are included in the sample, information on 
population element 2 is collected. Thus, it is possible that 
population element 2 could appear in the sample, and as a 
record in the data set used to develop the estimates, up to 
two times. 

In the third scenario, one frame unit corresponds to more 
than one population element (a one-to-many stmcture). For 
example, in Figure 2.1 frame unit 4 corresponds to 
population elements 3 and 4. Here, only one population 
element (3 or 4) is selected using a randomization indepen
dent of the choice of frame units. Economics dictated this 
policy because data collection entailed lengthy personal 
interviews conducted by individuals with technical back
grounds. In this paper we assume that these randomizations 
are conducted using equal probabilities. But, any probabili
ties could be used {e.g., probability proportional to size) 
provided they are non-zero. 
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In the fourth scenario, a many-to-many structure exists. 
This is illustrated by frame units 5, 6 and 7 and population 
elements 5 and 6 in Figure 2.1. Since these complex cases 
are combinations of scenarios 2 and 3 above, the same 
sampling rules apply. For example, if frame unit 5 is 
selected, population element 5 is measured. If frame unit 6 
is selected, only one of population elements 5 and 6 is 
randomly selected and measured. 

2.1 Population Totals 

2.1.1 Estimator for a Population Total 

A many-to-many frame results in varying probabilities of 
selection. The estimators developed here involve a method of 
weighting, which is an extension of the estimator presented 
by Hansen et al. (1953a pp. 62-64). Their estimators and 
formulas for the variance of those estimators are restricted to 
the many-to-one frame stmcture. We extend those estimators 
to the many-to-many frame structure. 

For a SRSWOR of size n, let J,,..., J^ denote random 
variables such that J. = j if the /-th draw results in the 
selection of unity from F. Hence 'Pr{J. = j) = UN forj in 
Fand / = 1, ...,n. Let K^,..., K^ denote random variables 
such that K. = k if the /-th draw from F is followed by the 
selection of k from T. We can now think of drawing a 
random sample of arcs [{J^K.^),..., {J„K^)} which has a 
joint probability distribution determined by both the 
SRSWOR sampling design and the subsequent randomiza
tion (if required) to choose an element in T. In particular, 
{JjK.) has marginal probability given by ^r[{J.K.) = 
{jk)} = {llN)s.,^, in which Sjj^ is the conditional probability 
given by, i'.̂  = rr(Ar. = ^ | / , =j). That is, i'.̂  is the condi-. 
tional probability of selecting population element kin T 
given that frame unity in F is selected. These conditional 
probabilities will be referred to as arc probabilities and are 
illustrated for Figure 2.1 in Table 2.1. 

Arcŷ r 1, 

Table 2.1 
Arc Probabilities for Figure 2.1 

1 2.2 3,2 4,3 4,4 5,5 6,5 

1 1 1/2 1/2 1 1/2 

6,6 

1/2 

7,5 

1/2 

7,6 

1/2 

For k in T, let Uj^ denote the set of units in F that have 
arcs with a destination at k in T. Let j ^ = Yjeu^^jk- Using 
the language in Hansen et al. (1953a pp. 62-64) which 
motivated our development, we call 5̂  the weight for 
population element k in T. These weights for Figure 2.1 
appear in Table 2.2. 

Table 2.2 
Calculation of the Population Element Weights (j^) for Figure 2.1 

1 

{s,) 112 1/2 

Arc probabilities and weights are used to compute the 
marginal probabilities of the K., namely, Vr{K. = k) = 

Y,pUi,{^l^)^jk ^ {llN)Si^, where kis in T, and / = 1,...,«. 
Clearly, computing the arc probabilities is the key step in 
developing the correct weights for the data collected. It 
depends on properly ascertaining the graph stmcture for 
each sampling unit selected: a maximally connected (MC) 
subgraph. A connected subgraph is a subset of the nodes 
which are connected by a sequence of arcs. Maximal 
means that no node outside the subset is connected to a 
node belonging to the subset. There are 4 MC subgraphs in 
Figure 2.1. Each represents a different frame - population 
stmcture, namely, one-to-one, many-to-one, one-to-many, 
and many-to-many stmcture. 

To develop the estimators it is not necessary to know the 
stmcture for the entire graph. It is only necessary to know 
the stmcture of the MC subgraphs to which sampled frame 
units belong. 

We make the following observations about .ŝ  and 
s.i^:{i)Si^ = W indicates that population element k has W 
times the probability of being selected on the /-th draw as 
that of a population element with a weight of one; 
(ii) Q< Si^<. N, k= l,...,M; (in) 0< 5.̂  i. l,ye[/j^and 
^ = 1,..., M; (iv) with respect to the one-to-many frame 
stmcture, 5 ^ = s,^; (v) with respect to the many-to-one frame 
structure, 5.̂  = 1 for all ^;and (vi) Yic^i E;=i ̂ jk ~ ^-

Now, let X,,..., Xj^ denote the weighted values associated 
with the indices in T. That is, let x̂  =ykl^ic- Define random 
variables x^, ...,Xf, , associated with draws I through n 
from F, respectively, so that x^ takes the value x^ if 
K. = k. Notice that we can write, 

E(V=i:^.Pr(^,=*)4.E-^* = T.' (2.1) 
*=i 

•-M 

N k^i Sj. N 

where Y = YLk^iYk '̂  ^^^ '•™^ population total. We take as 
our estimator of the population total based upon a 
SRSWOR from a sampling frame with many-to-many 
structure. 

Y = -l.x^. 
n ,=1 ' 

(2.2) 

Using (2.1) it follows that. 

E(7)=E 
'' n ^ 

n ,=1 

N N Y 
n ,=1 ' n N 

We thus obtain. 
Theorem 2-1: The estimator (2.2) for a population total 
used in SRSWOR is unbiased. 

Using Figure 2.1, we now give a siniple example of the 
use of this estimator. Suppose a simple random sample of 
four frame units was selected from the frame depicted in 
Figure 2.1 (2, 3, 4, and 7) which ultimately resulted in the 
selection of population elements 2,4, and 5. The estimator 
of the population total. 
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Y = — y" Jc„ , has value — 
n ,= 

20 20 
— + — + 

2 2 

15 , 10 
(1/2)"^ 2 

385 
4 

The above estimator can also be used for a population 
count. We could estimate the size of the target population 
by letting y^^ = I for all k. In addition, we could estimate 
the number of population elements that possess some 
characteristic by letting y^^ = I for those population 
elements with the characteristic of interest and y^ = 0 for 
those without the characteristic. 

2.1.2 Variance of the Estimator for a Population 
Total 

First, some additional terminology and notation used in 
this section must be defined. Let P represent the set of all 
unordered pairs of arcs. We shall define an unordered pair 
of arcs as inadmissible if they cannot both be included in a 
sample. Formally let g = { y in F: more than one arc 
emerges from y"}. Then R' = {[jk,jk']:jeQ and k*k'} 
is the set of unordered inadmissible pairs of arcs. Also, the 
set of unordered admissible pairs of arcs is the complemen
tary set/? * = P\R'. 

To iUustrate, consider Figure 2.1. The sampling metho
dology we employ requires that if frame unit 4 is selected, 
only one of population elements 3 and 4 can be included in 
the sample. Thus, {[4,3] [4,4]} is an unordered inadmissible 
pair of arcs. The other unordered inadmissible pairs of arcs 
in Figure 2.1 are {[6,5][6,6]} and {[7,5][7,6]}. Thus, R' = 
{[4,3][4,4],[6,5][6,6],[7,5][7,6]}. 
Theorem 2-2: The variance of the estimator (2.2) is. 

V(y) = N M 

E 
i=l 

Yk 
+ 2 

(« - l ) 

{N-l)-

E 
[jk,fk']eR-

Yk^jk Yk-'/k 

"k' 

(2.3) 

One can write 

M r M M 
Yk xl)-YVk^r{K.,-k)]-Y'-\i-^Y — {2.e) 

'' ''-•' ^ •' *=1 sf ^ ^ l " i ^k k=l 

As mentioned in Section 2.1, we can think of selecting 
a sample of arcs which ultimately leads to the selection of 
population elements. Each arc {jk) is associated with a 
value Xj^ "^Ykl^k ^^ ^^^ population element k at its destina
tion. Thus, we can rewrite the double summation in (2.5) 
as a summation over admissible unordered pairs of arcs, 
R'. 

'i^i^^.'4 
V 

E E [{x,x,)?r{K. = k, K, = k')]. (2.7) 
[ik,fk']eR-

Now, by virtue of the independence of the randomization 
and the choice of frame units: 

Pr(select[yA:,y'^'] in R') =Pr(select{y,y'} in F) 

Pr(select[jk.j'k'] in /? * | select {y", y'} in F) = -j^ ^jk^j'k-

2 

Substituting into (2.7) resuks in. 

«(«-i)E E 
\jk.j'k']sR-

(̂ *V Vn' 

2n{n - 1) ^ ^ 

N{N - I ) yk,fk']eR-

(2.8) 

where the double sum is over all unordered admissible pairs 
of arcs \_jk,j'k']. 
Proof: 

v ( y ) = E 

Now, 

{" Y 
Y.X,: 

LI '=1 ) . 

n /=i ' 

N'^ 
— E 
«2 

I n \2 

E^jf, 
< = i 

Y\ (2.4) 

EE^)*2^(^SK^4' '̂-'̂  

Now substituting (2.6) and (2.8) into (2.5) yields, 

/ „ \2 
n n 

~N 
E Yk 

2{n- I) Y Y 

{N-l) [jk.j'k']eR-

Yk'jk yk'^J'k' (2.9) 

Finally substituting (2.9) into (2.4) gives the resuk (2.3). 
Equation (2.3) is a generalization of the formula 

developed by Bandyopadhyay and Adhikari (1993) for the 
variance of the estimate of a population total in the case of 
the many-to-many frame structure. It can be shown that 
(2.3) reduces to their formula when the sampling frame is 
restricted to a many-to-one structure. 



Survey Methodology, June 1998 25 

Corollary 2-1: An altemative form of the variance formula 
in Theorem 2-2 is: 

V{Y)= — 
n 

E 
Jk 

I 
M 

Yk {n-l) 
— + -i U s, {N-D 

y ^ 
Jk \ 

( \ 2 
Yk 

5,., 

Proof: 
Write, 

\Jk \ ) 
= E 

2y^ y ^k^jk Yk'^jk 

[ik.jk']elV S,^ 5^, ^ 

Yk^jk 

\ 'k J 

2 Y Y .^k^jk Yk'^j'k- _^2 Y Y Yk^jkyk'^jk' 

lJkJ'k']eR- ^k ^k' l/k.Jk']eR' ^k ^k' 

It follows that: 

E E 
UkJ'k']eR • 

yk'jk J 

2 Jk 

'k'^JT _ 

( ^ 

yk'jk 

[ 'k J 

1 
2 

2 

( \ 

[ jk h J 

E 1 
UkJk']eR' 

2 

Yk^jkYk'^jk' 

Substituting the above expression into (2.3) provides the 
resuk. 

This formula is computationally simpler. Note that (2.3) 
requires that the term 

Yk'jk Yk'^rk 

\ 'k 

be summed over all unordered admissible pairs of arcs 
(/?*), whereas this altemative formula only requires a 
summation over pairs of arcs that are inadmissible {R'). In 
most practical scenarios the number of admissible pairs of 
arcs will be far greater than the number of inadmissible 
pairs of arcs. 

2.2 Population Means 

2.2.1 Estimator for a Population Mean 

The estimator for a population mean presented here 
extends the estimator presented by Hansen et al. (1953a) to 
the many-to-many frame structure. 

Associated with the n draws from F, define random 
variables s^, and z^ =lts^, so that s^, takes value 5̂  if 

K. = kfori = l,..., n and A: = 1,..., M. The estimator for a 
population mean. 

1 M 

M t=i 

when using SRSWOR and a many-to-many frame is: 

r = 
; = 1 

/=1 

(2.10) 

2.2.2 Mean-Square Error (MSE) of the Estimator 
for a Population Mean 

The estimator for a population mean is biased because it 
is a ratio estimator. But, it is well known that this bias 
becomes negligible for large samples and the bias is of 
order l/n (Cochran 1977, p. 160). 

Our approximation of the MSE requires a summation 
over R", the set of all ordered admissible pairs of arcs. 
Thus, if [jk,fk']eR\ then both [jk,fk']eR" and 
[rk',jk]eR". 

To approximate the mean square error of the estimator 
(2.10), we use 

MSE [Y] - M^ 

nN 
M 

E 
k-l s^ 

M . 

E -
\ 2 

M 

E -
Yk 2{n-l) E E Yk'jk Yk'^yk' 

4=15^ {N- 1) xjk,yk'\^R- h h-

I 

27 

+ 7^ 

Yk {n- I) 

[k-l Sk {N- l)^ ykj^^ 

V^ y ^ Yk^jk ^J'k' 

eR" ^k ^k' I 

Y I ^2{n- 1)Y .y ^ ^ 
k=l s. {N-D Uk.J'k-]eR- ^k ^k' j (2.11) 

To justify this approximation let 

n n 

E X. E ^K, 
M , 

E -
/=] ' - / = ! ' . ^ * = ' ^k 

X = , z = and Z = M 

Because 7 is a ratio of two estimates, the well known 
approximation for the mean square error (Cochran 1977, 
pp. 32-33) can be used: 
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MSE(7) = E 
- N x-Yz x-Yz 

^ [ E ( x 2 ) - 2 7 E ( z 3 c ) + 72E(i2)] 

M^ Ê ,̂ 
(=1 

2 7 E 
n n 

E%,E^^, + '̂E Y^K, 
/ = ! • ( = 1 V '=1 7 (2.12) 

The first expectation in (2.12) is simply (2.9). Next, 
using (2.1) on the middle term in (2.12) resuks in 

« n 

2^ ^KX^ ^K, 
(=1 i=l ) 

= E 
' 

k 

" 1 

1 = 1 s,. 

n n n n . \ M ,, I n n , 

ETx,^^ = ^ E ^ ^ E E E % -
,=1 / '=i ' Sf. N k'l Sf^ ,=1 /•=] ' Sf, 

Finally, similar to (2.1), 

^ ^ K , 
/=i 

2 I 
" 1 

E -

n 
'N 

' ^ I ,. 2 ( 7 7 - 1 ) ^ ^ S^SJ2 

l/kJ'k']eR- ^k ^k' J [-IS, {N-l) 

Substituting these expectations into equation (2.12) yields 
(2.11). 

3. ESTIMATORS FOR MANY-TO-MANY 
FRAMES UNDER STRATIFIED 

RANDOM SAMPLING 

3.1 Introduction 

In this section we develop the estimators for a population 
count, mean, and total in the many-to-many frame case, 
when stratified random sampling is used. First, however, it 
is necessary to describe the sampling methodology under 
which these estimates are appropriate. Figure 3.1 provides 
an example that will be used throughout this section. 

Using (2.7) and (2.9) yields. 

E E -.,.f 
; = 1 r = l Sf, 
i*i 

n{n- 1)E 1 ^ 

«(«-!) E E 
[jk,yk'\eR'-

Pr 
^k ^K, ^k' 

n{n-l) Y Y.-Yk I 

\Jk,j'k-[eR- ^k ^k' 
S,,,S„.. 

^N{N- I) ^* '̂*'̂  

«(« - ! ) 

^(^-^),kJ^eR 
E E yk'jk ^fk' 

Note that the double sum is over all admissible ordered 
pairs of arcs. Therefore, 

n . n n . 

E%— +E EE^;^-/=1 ' 5 . 

M 

/ = t /• = ! ' 5 . 

n\^ Yk ^ n{n- I) 
i-X- ^ - -' E E 
A ^ " . , Ar( iv- i )^ . ,^ . . ;^^ , . .^ 

yk'jk 'jT _ 

^k h' 

n 
M 
J-yk ,{n- 1) ^ yykfjkffki 

k-l S, {N- l)yk.JT],R- ' ' 'k h' 

3.2 The Sampling Methodology 

The same scenarios that were described in SRSWOR 
occur with respect to stiatified random sampling. However, 
there are some additional problems that can arise in this 
case. 

Consider the building characteristics study that moti
vated this research. Assume that the population element 
value in Figure 3.1 is the building size, and the stratification 
variable is electrical usage associated with the street 
address. Because the frame of street addresses had a 
many-to-many correspondence with the target population of 
connmercial buildings, the following problems arose in 
addition to those mentioned in Section 2.1: 
1. Mis-stratification: For example, frame unit (street 

address) 2 in stratum 1 appeared to be a large building 
because of the large electrical usage associated with it, 
and as a result, it was placed in the first stratum. The 
data collection revealed that the street address actually 
corresponded to two small buildings (population 
elements 2 and 3). In another example, frame units 5 
and 6 in stratum 2 appeared to be two small buildings in 
the frame, and were placed in the second stratum. But, 
the corresponding population element 7 is one large 
building with two street addresses. 

2. Crossover: For example, frame units 3 and 4 in stratum 1, 
and frame units 1 and 2 in stratum 2 each have a 
different street address and, as a result, appear in the 
frame to be two small and two large buildings. But, data 
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collection revealed that all four street addresses 
corresponded to only one building (e.g., a strip mall). In 
this case, not only is mis-stratification a problem, but not 
all the frame units associated with a single building are 
included in the same strata. That is, one population 
element {i.e., building) "crosses over" multiple strata. 

In the next section we develop estimators for population 
totals and counts and show that these estimators are unbiased 
despite mis-stratification and crossover. As is usually the 
case, however, mis-stratification increases tiie variance of the 
estimates. Also, insofar as crossover induces mis-
stratification, it too increases the variances of the estimates. 

Stratification Sampling 
Variable Value Frame 

Target Population 
Population Element Value 

Stratum 1 

Stratum 2 

30 

20 

30 

2 J 

5 

5 

5 

10 

10 

10 

1 

2 

3 

4 

1 

2 

3 

4 

5 

6 

1 

2 

3 

4 

4 

5 

6 

7 

30 

1J 

5 

6 J 

10 

J 

20 

Note: Frame units were placed in stratum 1 if the value of the stratification variable was 20 or more. 
Otherwise, the frame units were placed in stratum 2. 

Figure 3.1. An example of the correspondence between the frame and the target population in stratified random sampling 

Table 3.1 
Arc Probabilities for Figure 3.1 

Arc hjk 1,1,1 

^hjk 1 

1,2,2 

1/2 

1,2,3 

1/2 

1,3,4 

1 

1,4,4 . 

1 

2,1,4 

1 

2,2,4 

1 

2,3,5 

1 

2,4,5 

1/2 

2,4,6 

1/2 

2,5,7 

1 

2,6,7 

1 
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3.3 Population Totals and Counts 

3.3.1 Estimator for a Population Total 

The estimator developed here involves a method of 
weighting which extends the estimator presented in 
Hansen et al. (1953a, pp. 62-64) to stratified random 
sampling when using a many-to-many frame. 

Assume that F has beein partitioned into L mutually 
exclusive and exhaustive sttata F^,..., Fj^ of size A'̂ j,..., N^ 
respectively. Units in F^ will be denoted hj where 
y = I, ...,N^ and h = I, ...,L. Also, assume that a stratified 
random sample (without replacement) of size n = n^ 
+ ... + «̂  has been drawn, where n^ is the sample size from 
F^. Let h / j , . . . , h J^ denote random variables such that 
h J. = hj if the /-th draw from F^ results in the selection of hj. 
Let hK^,..., HK^ denote random variables such that 
hK. = k if the /-th draw from F^^ is followed by the 
selection of k from T. If hjk denotes the arc that originates 
at frame unit hj in F^ and terminates at k in T, the marginal 
probabiUty of the random arc {hJ., hK.) is given by. 

Pr{{hJ.,hK.) = {hjk)] _1_ 

in which 5, .̂  = Fr{hK. = k\hJ. = hj) is an arc probability. 
Note that 5. .̂  is the conditional probability of selecting 
population element k in 7 given that frame unit hj has been 
chosen. Assuming equal randomization probabilities. 
Table 3.1 shows the arc probabiUties for Figure 3.1. 

Let Wf^ denote the set of frame units hj in F that have 
arcs with a destination at k in T. For example, W^ = {(1,3), 
(1,4), (2,1), (2,2)}. Also, define the population element 
weight s, = Y,hj,iv,Sf,.,. 

Table 3.2 contains the weights (j^) for all the population 
elements in Figure 3.1. The same observations concerning 
arc weights (S;,̂ .) and population element weights (5^) 
made in section 2.3.1 apply here. 

Table 3.2 
Population Element Weights (s^) for Figure 3.1 

;t 1 2 3 4 

s, 1 1/2 1/2 1+1+1+1=4 1 + 1/2=3/2 

6 7 

1/2 1+1=2 

For each h = I, ...,L and / = 1, ...,«y,, let x^^ be random 
variables such that XhK. = Yk^^k if ^ in 7" is selected as a 
result of the selection of some hj in F^. 

The estimator of a population total for stratified random 
sampling, when using a sampling frame with a many-
to-many structure is: 

4 = E J ' / , . where7, 
h=l 

N. 

«*, '=1 
^hK, • (3.1) 

3.3.2 Variance of the Estimator for a Population 
Total 

Prior to developing the variance of estimator (3.1), some 
additional terminology must be defined. Let q^j^ denote the 

"stratum element weight". This additional weight is 
necessary because of the potential of crossover. Let f/̂^ 
denote the set of frame units in F^ that have arcs with a 
destination at population element k. For example, U^^ = 
((2, 1), (2, 2)). Then define q^,, = Y.hjeu,,s^jk- To illusti-ate, 
recaU in Figure 3.1 population element 4 is represented by 
two frame units in stratum 2, so q^^ = Yj2jeu Sj 4 = 2. 

The weight 9̂ ^ plays the role of Sf^ when selection is 
restricted to F^. In fact, ^̂ ^ = 5̂  when there is no cross
over. The probability of selecting any frame unit from F^ 
on step / out of «^ is 1/Â .̂ But, the probability of selecting 
a population element k represented by a frame unit in F^ is 
?r{hK. = k) = qJN,, for aU / = 1,..., «,. 

In order to develop the proof in this section, we 
introduce the term "apportioned stiatum total" denoted by Y^. 
In effect, the values of the population elements that are 

represented by frame units in multiple strata are apportioned 
among those strata. Let F̂  denote the set of population 
elements associated with frame units in F^. In our example 
V,={1, 2, 3, 4} and K = (4, 5, 6, 7}. Let 

Y: Y.ksv.yk9hk'^k 

where yj^ is the value of population element 
k,k= 1,2, ...,M. When crossover is present, use of the 
weights ^̂ ^ and 5̂  apportion the measure yj^ among the 
strata in which population element k is represented. We can 
think of the use of these weights as distributing the 
population element value among the strata depending upon 
the number of times the population element is represented 
in a stratum relative to the total number of times it is 
represented in the frame. For example in Figure 3.1 7,' 
and Y2 are calculated as follows: 

J,. ^ 30(1) ^ 15(1/2) ^ 5(1/2) ^ 65(2) ^ ^^ ^ 
' 1 1/2 1/2 4 

J,. ^ 6 5 ^ ^ 10(3/2) ^ 5(1/2) ^ 20(2) ^ ̂ ^ ^ 
^ 4 3/2 1/2 2 

Note that XA=I Â* ^Y whether or not crossover exists. 
Theorem 3-1: The estimator for a population total (3.1) is 
unbiased. 
Proof: 

From (3.1), 

I \ ^ N "i-Et=E^EE(x4 
^ ' /. = ! «,, /=t ^ ' ' 

(3.2) 

For each / = 1, ...,«^, 

Ek^)=E-Pr(/^^,=^) = 
^ '' k,V, S, 

Y ^^=—y MM = _L Yh- (3.3) 
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Substituting (3.3) into equation (3.2) yields F(7^,) = 7. 
In the main result below we need the following notation. 

Let R^ and R^ be the set of admissible and inadmissible 
unordered pairs of arcs originating in F^, respectively. 
Definitions of the above are identical to the corresponding 
concepts for the SRSWOR case, but restricted now to sti-ata. 
Theorem 3-2: The variance of (3.1) is: 

v(t) = E5^ 
/ i = i 

(3.4) 

where. 

. 2 ^H 

/ \2 

E 9hk 
key. 

yk 

s 
k) 

E 
lhJk.hJ'k']eR' 

2{n,-l) 
+ X 

(^ . -1) 

Yk^lijkyk'^ly'k' 

K 'k I. 

Yk^hk 
\2 

E 
key, s 

Proof: First write, 

v(t) = E{tf-7^=EE^, 2 

h 
V/> = l I 

EW^2[E(En4]-E^;^;V (3.6) 

The last two terms cancel because 7^ and 7^, are 
independent. This follows since apportionment creates a 
new stratified population containing no crossover and 
samples chosen within different strata are independent. 
Thus, with 

^^EW-W. V(7J=E[E7,^^ 

t[Y:h-tWi)-[Y:)')-tsi-
Now, 

E{>^J = ^ E 
i-l ', 

N 
EE( . ,^J^^2E(EX,^X,^^ ,J (3.7) 

For each / = 1, . . . , /J^, 

E(̂ /,/rJ^ = 

E 
key. 

I ^2 

tK'k, 

?r{hK. = k) E 
key. 

( \ 
y_k_ 

(3.8) 

Then, using equation (2.7) and (2.8), 

2 E | E X , ^ _ X , ^ , J =2 "^'•JE(;C,^X,^J = 

«/,(«/,- 1) E - — PK/ii^, = k, hK.. =k') = 
lhJk.hJ'k']eR; ^k ^k-

«/,K-i)E E 
lhJk,hj'k']eRJI 

YkYk^ 

[ 2 
*;*^y'*' 

2 » A K - 1) 

^ A ( ^ . - 1 ) 
E E 

lhJk.hJ'k']eR; [ ''k 

Yk^hjk Yk-hj'k' 

S„ (3.9) 

. (3.5) Equation (3.5) now follows from (3.8), (3.9), and the 
definition of Y^. 

Using the method of Corollary 2-1, (3.5) can be 
simplified for computing purposes as follows: 

. 2 N, 

n 

/ ^ 

E <ihk 
[keyn 

yk_ 

[h] 

E 
hJkeA^ 

Ykhjk 

K - 1) y Ykfjyk 

{Nh- ^)[[hJkeA, S, ^ 

( 
-2 E 

lliJk.hJk']eR,; 

Ykhjk Yk'hjk-

h h- / J 

/ \2 
y yklhk 

where ^^ denotes the set of arcs that originate at frame 
units in F^. 

3.4 Population Means 

3.4.1 Estimator for a Population Mean 

The estimator developed here for a population mean for 
stiatified random sampling extends the estimator presented 
by Hansen et al. 1953a (pp. 62-64) to the case of a stiatified 
random sample from a many-to-many frame. 

The estimator for a population mean when using 
stratified random sampling and a many-to-many frame is: 

A N, 
Y,-l:^Y„v^bereY, = ±L 

^hK, 

h=l N 
(3.10) 

As in the SRSWOR case, the estimator for a population 
mean is biased because it is a ratio estimator. 



30 Byczkowski, Levy and Sweeney: Estimation in Sample Surveys 

4. CONCLUSIONS 

In this paper we have developed estimators for 
population totals, counts and means that are appropriate 
when the sampling frame has a many-to-many stmcture. 
We have focused on simple random sampling and stratified 
random sampling designs. 

We used the metiiod of weighting described in tiiis paper 
in a study of commercial buildings for which a stratified 
random sample was employed. In this study, for which the 
sampling frame consisted of street addresses, interviewers 
recorded any additional street addresses that pertained to 
the selected building. It was then determined whether or 
not these additional street addresses were listed in the 
sampling frame, and whether or not they were connected to 
other population elements (conrmiercial buildings). In more 
complex scenarios, the interviewers sometimes resorted to 
schematic sketches of the buildings and labelling all the 
pertinent addresses. This allowed us to determine the 
stmcture of aU MC subgraphs in our sample and to develop 
the appropriate weights 5̂ .. 

In addition, we developed formulas for the variance of 
some of the estimators presented in this paper. It should be 
noted that these variance formulas are population para
meters and do not translate readily into corresponding 
sample estimates. In fact, the authors are unaware of any 
optimal method for estimating the variances discussed in 
this paper. However, there are many computer intensive 
methods (balanced repeated replication, bootstrapping, etc.) 
for estimating variances in complex sample surveys (Wolter 
1985). It should be emphasized that when using our estima
tors, each of these variance estimation' schemes aims at a 
common target: the variance formulas we have developed. 

Nevertheless, the usefulness of these variance formulas 
is in their application to the task of exploring the effects of 
frame imperfections, along with population characteristics, 
on the precision of estimation. Such an exploration, 
another future area of research, should result in recommen
dations and guidelines for the survey researcher on how to 
manage a frame with a many-to-many structure. That is, 
based upon frame and population characteristics, the survey 
researcher would be able to make strategic decisions 
concerning the options available: canvassing a population 
to remove correspondence imperfections, or using the 
estimators described herein. 

Another area of future research is a comparison of the 
precisionof our estimators to that of other estimators, such as 
the Horvitz-Thompson estimator. As noted in the introduction 
the Horvitz-Thompson estimator can be applied to sampling 
involving a many-to-many frame structure. An advantage of 
the Horvitz-Thompson estimator is that with properly 
identified first and second order inclusion probabilities, one 
can obtain both an estimate of a population characteristic and 
an unbiased estimate of its variance. In addition, the first order 
inclusion probabilities can be derived in a manner similar to 
Musser (1993) based only upon information from the MC 
subgraphs. However, theseprobabilities are very difficult to 

compute in a complex many-to-many frame structure such as 
ours. It is, however, relatively easy to calculate the necessary 
weights for our estimators. 
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Optimal Recursive Estimation for Repeated Surveys 
IBRAHIM S. YANSANEH and WAYNE A. FULLER' 

ABSTRACT 

Least squares estimation for repeated surveys is addressed. Several estimators of current level, change in level and average 
level for multiple time periods are developed. The Recursive Regression Estimator, a recursive computational form of the 
best linear unbiased estiriiator based on all periods of the survey, is presented. It is shown that the recursive regression 
procedure converges; and that the dimension of the estimation problem is bounded as the number of periods increases 
indefinitely. The recursive procedure'offers a solution to the problem of computational complexity associated with 
niinimum variance unbiased estimation in repeated surveys. Data from the U.S. Current Population Survey are used to 
compare altemative estimators under two types of rotation designs: the intermittent rotation design used in the U.S. Current 
Population Survey, and two continuous rotation designs. 

KEY WORDS: Recursive regression estimation; Composite estimation; Rotation designs; Rotation groups. 

1. INTRODUCTION 

We consider least squares estimation for surveys 
conducted on repeated occasions with partial overlap of 
sampling units. See Duncan and Kalton (1987) for a 
general discussion of different types of surveys and the 
objectives of such surveys. In this paper, we shaU be 
concerned with rotating panel surveys, in which repeated 
determinations are made on some sampling units but not 
every unit appears in the sample at every time point. 

Theoretical foundations for the design and estimation for 
repeated surveys based on generalized least squares proce
dures were laid down by Patterson (1950), following initial 
work by Cochran (1942) and lessen (1942). Least squares 
procedures have been considered further by several other 
authors. See, for instance. Fuller (1990), and the references 
cited therein. Least squares estimation for a fairly general 
class of repeated surveys was considered by Yansaneh 
(1992). Composite estimation is a procedure of estimation 
for repeated surveys which makes use of the observations 
from the current and preceding periods, and die estimator of 
level from the preceding period. Breau and Ernst (1983) 
compared various altemative estimators to a composite 
estimator for the U.S. Current Population Survey (CPS). 
Kumar and Lee (1983) did similar work using data from 
the Canadian Labor Force Survey (LFS). Wolter (1979) 
provided a general composite estimation strategy for 
two-level rotation schemes such as the one used in the U.S. 
Census Bureau's Retail Trade Survey. Singh (1996) has 
proposed an altemative class of composite estimators. 
These authors assumed the unknown quantities on each 
occasion to be fixed parameters. Other authors, such as 
Scott, Smith, and Jones (1977), Jones (1980), Binder and 
Dick (1989), Bell and Hillmer (1990), and Pfeffermann 
(1991) considered estimation for repeated surveys under the 

assumption that the underlying tme values constitute a 
realization of a time series. 

In this paper, we discuss estimation procedures for 
repeated surveys, under the assumption that the unknown 
true values are fixed parameters. The estimators are 
compared to the method of composite estiniation currently 
used in the CPS. The paper is organized as follows: In 
section 2, we state some basic assumptions regarding the 
general class of repeated surveys considered in this paper. 
A description of the CPS method of composite estimation 
is given in section 3. The method of best linear unbiased 
estimation is discussed in section 4. In section 5, we 
present a recursive regression estimation procedure 
designed to reduce the computational complexity associated 
with best linear unbiased estimation. Section 6 is devoted 
to an application to data from the CPS. Altemative 
estimators and rotation designs are compared. 

2. BASIC ASSUMPTIONS 

In this section, we describe surveys of the type we will 
study. A rotation group is a set of individuals selected for 
the sample and observed for a fixed number of periods and 
in a fixed pattem over time. Assume that in each period of 
the survey, s rotation groups are included in the sample, 
where 5 > I is fixed. Assume that the basic data from the 
survey can be organized in a set of elementary estimators 
(such as simple sample means and estimated totals) of the 
parameters of interest (such as population means and 
totals), where a set of elementary estimators is associated 
vvith each rotation group. For computational convenience, 
the data forp periods can be arranged in a pxs data 
matrix, denoted by H, in such a way that the observations 
on a rotation group appear in only one column. The total 

' Ibrahim S. Yansaneh, Statistical Group, Westat, Inc., 1650 Research Boulevard, Rockville, MD 20850; and Wayne A. Fuller, Department of Statistics, Iowa 
State University, Ames, lA 50011 U.S.A. 
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number of elementary estimators is n = pxs. We call the 
columns of .ff streams. Several rotation groups can appear 
in a stream. Assume that: 
(1) A given rotation group in a stream is observed over a 

period of total length TM + I, and the observation 
pattem for rotation groups is fixed and is the same for 
all groups. 

(2) The design is balanced on time-in-sample. That is, of 
the 5 rotation groups included in the sample at a given 
time, one group is being observed for the first time, one 
is being observed for the second time,..., one is being 
observed for the last time, where the last time is 
separated by m periods from the first observation. 

These assumptions are satisfied by surveys such as the CPS 
and the Canadian Labor Force Survey. See Yansaneh 
(1997) for an iUustration of the 4-8-4 rotation scheme used 
in the CPS. 

3. THE CPS COMPOSITE ESTIMATOR 

In general, composite estimators combine recent esti-
mator(s) and data from the current and preceding period(s) 
to form an estimator for the current period. With the CPS, 
six of the eight rotation groups observed at time / were 
observed at time / - 1. We shall refer to these six rotation 
groups as continuing rotation groups, and the remaining 
two as incoming rotation groups. 

The composite estimator currently in use is determined 
by two parameters. The estimator is 

9,c = ( l - V 3 ' , + V 9 , - , , c + 5,,.,)+7r25, (1) 

where, for the estimator currently used, Jtj = 0.4 and 
7i;2 = 0.2, y, ̂  is the elementary estimate of level obtained 
from the rotation group which is in its ^-th time in sample 
at time ^J", = ^'^^l=iy,k is die basic estimator, defined as 
the mean of the elemeiitary estimates based on the eight 
rotation groups observed at time t, 9,_, ^ is the composite 
estimator for time t- 1,5,,_, is an estimate of change in 
level, based on the six continuing rotation groups at time t, 
and 5, is the difference between the averages of the two 
incoming rotation groups and the six continuing rotation 
groups. Thus, 

5,,M=6''E{>',,i-3',-,,t-t)' 
keS 

and 

^ = ^-HTy,,k-y'Ty.,k] 
\ keT keS J 

where 7 ={ 1,5} and 5 = {2, 3,4,6,7, 8}. The composite 
estimator used until 1985 contained only the first two terms 
on the right of (1). The third term was introduced for the 

purpose of reducing the time-in-sample effects appearing in 
the original estimator. The incoming rotation groups 
produce larger estimates of unemployed than do the 
continuing rotation groups. Therefore, the direct differ
ence S,-,., is influenced by the fact that the rotation group 
in its first time-in-sample has a larger expected value than 
that of the second time-in-sample. The time-in-sample 
effects do not cancel out in the difference estimate. The 
third term is an adjustment term which has the effect of 
reducing both the variance of the original composite 
estimator and the bias associated with time-in-sample 
effects. See Bailar (1975) or Breau and Ernst (1983) for a 
discussion of the bias of the pre-1985 composite estimator 
due to time-in-sample effects. We shall refer to the three-
term composite estimator currently used in the CPS as the 
CPS Composite Estimator. This estimator has a variance 
close to that of the best linear unbiased estimator for 
monthly estimates of unemployment level. Let y.,, 
j = 1,2,..., 5, be the elementary estimator of the parameter 
of interest obtained from the rotation group which is in 
stream / at time t. The CPS composite estimator can be 
written as 

Kc = E ^i,ko,i)yi,i * E ">2,t(/.o>'/.'-i * " i^ ' -
;=t /=! 

l,c (2) 

where k{i, t) = k defines the time-in-sample of observa
tion {it) as a function of the stream (/) and time (0- If 
X^ = 1/8 and ^2 ~ ~^l^> and Xj = 1/3, then cOj ^ = JijA ,̂ 
and 

CO 1,* 1(1 - j t j ) A . 2 ~ ' ^ i ^ " ^ ^ ^ 1 ^ 3 ^^^ keS 

X^{1 - 7ti +7t2) for keT 

Let 

Pi ~'f^i,k(i,ty^i,k(2,ty • • • ' '^ i ,*(8 ,o) ' 

Pi ~ (®2, *(!,()' ^2,k(2,ty —' '''2,*(8,()) ' 

and y, = {yi^,,y2,,^ -^ys,,)'- Then, 

^^,,c=Piyt*P2yt-i*-^1^,-1,0 (3) 

Substituting in (3) recursively, we have, for an estimator 
initiated at time zero, 

e,,c =Piy, + E K^^2 + "i/'i)>/-i 
7 = 1 

(4) 

Equation (4) is an expression of 0, ^ as a linear function of 
current and past observations, where the weight of an 
observation declines as its distance from the current period 
increases. 
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4. BEST LINEAR UNBIASED ESTIMATION 

Suppose 0 =(9|,92,..., 0^)' is the pxl vector of 
parameters of interest, where 0,, / = 1,2, ...,p, is the level 
of the parameter of interest at time /. Thus at time j , 9 is 
the current level of the parameter of interest. For example, 
in the context of the CPS, 9. might represent the population 
mean or proportion of unemployed at txmej. Our objective 
is to constmct efficient estimators of the current level of the 
parameters. The change in level and average level over 
multiple periods of time are also of interest. 

The best linear unbiased estimator (BLUE) of the current 
level is defined to be the minimum-variance unbiased linear 
combination of the elementary estimators from the rotation 
groups available for estimation. It is possible in the process 
of computing the BLUE for the current level, to also 
compute the BLUEs for all periods using data available at 
the current time. 

Suppose that a repeated survey has been in operation for 
p periods and that s streams of data collected over/? periods 
are available for estimation. Let_y, = {y. ^,y. 2,,..,yi,p)' be 
tiie vector of/> observations in the/-til stream at time/. Let Y 
be die data vector formed by the streams or columns of the pxs 
data matrix H, arranged chronologically. Thus, Y = 
(yi,y{, •••.J'j')' is an nx 1 vector of observations, where 
n =sxp. Let AT = J^^,*8)/_x_ be the nxp design matiix 
which relates the estimates in Y to their expected values 
in 0^; where J^^, is the 5 x 1 vector of ones, Ip^p is the 
identity matrix of order p, and 0 denotes the Kronecker 
product. The linear model for Y is 

Y=X@+U„ 
p p p (5) 

where U is the vector of error terms satisfying the 
assumptions E{Up) =Q and E{UU') = V, where V is 
assumed to be a known, symmetric, and positive definite 
mati-ix. By the Gauss-Markov Theorem, the BLUE of 0 

•" p 

is 

0 „ = (^''^„"'A')''A"K"'F. 
p ^ p ' p p 

The covariance matrix of 0 is Y 
p ^p 

{x- v-;x)-

5. RECURSIVE REGRESSION ESTIMATION 

Recursive estimation techniques have been found useful 
in situations where data do not all become available at the 
same time but rather accumulate over time, and the 
computation of optimal estimates based on all available data 
is impractical. See, for example, Odell and Lewis (1971), 
Sallas and Harville (1981) and references cited therein, for 
recursive algorithms for best linear unbiased estimation. 
Tiller (1989) presented a Kalman-filter approach to 
estimation of labor force characteristics using survey data. 

As described in Section 4, the direct computation of the 
BLUE becomes progressively more complicated as the 

number of periods increases. We develop a recursive 
regression estimation procedure for repeated surveys that 
uses a judiciously chosen set of initial estimates, new 
observations of the current level, and the previous 
observations on the currently observed rotation groups to 
produce the BLUE of current level. 

5.1 Transformed Elementary Estimates and 
a Proposed Estimator 

Suppose a survey has been in operation for at least m 
periods and assume: 

(3) The rotation groups are independent. 
(4) The covariance stmcture of the observations is known. 
(5) The covariance stmcture of the observations in' a 

stream is constant over time, and it is the same; for all 
streams. 

These assumptions are used in the constmction of a linear 
estimator. Assumption (3) will be relaxed for the 
computation of the variance of the estimator. Under 
assumptions (I) and (3), observations that are more than m 
periods apart are independent. At the current time, denoted 
by c, where c>m, a set of 5 elementary estimates of the 
parameter 9̂  are observed. To constmct the generalized 
least squares estimator, the s current observations are 
transformed so that they are uncorrelated with previous 
observations. After tiansformation, the expected values of 
the transformed observations are functions of 9' and the 

c 

parameters for the m preceding periods. Assume that the 
BLUE of the vector of parameters for the previous m 
periods, and the mxm covariance matrix of these 
estimators, are available. Thus, at time c, we have: (i) m 
initial estimates 0<..,(„) = (9^.„,..., O^.j)'; (ii) tiie covari
ance matrix Xc.i(„) of ©c-Km)' "̂*̂  (*") ^ independent 
observations on the s streams at the current time. Let the 
transformed observations, denoted by z,.̂ , / = 1,2,..., s, be 

'-yi. 
7 = 1 

'k(i,c).jyi. c-j (6) 

where b^^^.^^^j are the coefficients such that z. ̂  is 
uncorrelated with y. .̂̂ . for all j > 0. By assumptions (4) 
and (5), the coefficients 6̂ ,̂. , . are fixed over time. By 
assumption (3), z._ ̂  is uncorrelated with all earUer observa
tions. The expected value of z. <, is 9̂  -~ 
/ = 1,2, ...,5. 

^7'"=i^{/,c),>Q e-7' 

5.2 The Recursive Regression Estimator 

Let Qf^{t),h ^ t, denote the least squares estimator of the 
(scalar) parameter 9̂  constmcted using data through time 
C; and let ©,(„) = (9,.„,i(/), ...,0,(/))' denote the least 
squares estimator of the vector of m parameters 
®;-m+i' •••• ®(• ^' '™^' constmcted using data through time 
/. Our objective is to constmct the minimum variance 
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estimator for 9 ,̂ the current level of the parameter of 
interest using all data available at time c. A linear model 
for data available at the current time is 

z = w®, ,, + u (7) 

where 

W 
V^2t 

^c = (®c'-i(m)' Zc')' ĉ = (^ic •••' O ' and X^i is an 5 X m 
matrix whose entries are constant over time, and are 
functions of the coefficients i^ . of (6). If Var{z; (,} = 
of, / = 1,2,..., s, and Q22 is the diagonal matrix with o? as 
the diagonal entries, then the covariance matrix of Z^ is 
F̂ , = blockdiag{5^^_,,^,, 022). ^^ î  assumed that oj, 
i = 1,2,..., s, are positive. 

The recursive regression estimator (RRE) of ®c:(m*i) '^ 
defined to be the least squares estimator of ®^^„^i^ based on 
model (7). Thus the RRE of 0<.(„,,) is 

®cin,.l)=i^'K wy^w'V'z^ (8) 

and the covariance matrix of 0c(m<.i) is 2c(m*i) ~ 
{w K;' W)-\ 

The utility of the estimator (8) is its computational 
simpUcity. At any fixed time / in a repeated survey, all the 
information relevant to the problem of estimating 
9,, 9, ,,..., 9, can be obtained from a set of m recursive 
least squares estimates and the current observations. 

We now describe more fully the recursive regression 
procedure. At time t, we have 0,(„^.,), the RRE of 0,(„^i), 
and its (w + 1) x (/n + I) covariance matrix £,(„^,). 
Partition t,(„.i) as 

2^t(m*l) 
•^11,' 

V 
'^12,1 

I2,t 

l^t(m) , 

where Vjj, is the variance of 9,.^(/), £,(^) is the 
covariance matrix of (9,.^^, (/),..., 9,(0)', and V^^, is the 
covariance between these two quantities. Observe that if 
9,_,̂  is retained in tiie parameter vector and 9,_,̂  is retained 
in the data vector, the estimator of 9,̂ , is unchanged (the 
estimator of Qj_^ would, in general, be changed). This is 
because the estimator of the original parameter vector of a 
least squares problem is not changed if an observation 
whose expectation is equal to a single new parameter is 
added to the problem. Thus, to update the RRE for the next 
period, we drop the initial estimate for the earliest period, 
9,-m(0. from the data vector, and drop the corresponding 
parameter 9,.^ from the parameter vector. The parameter 9,^, 

is then added to the parameter vector. In this way, the 
dimension of the basic model matrix W of the estimation 
problem is kept constant over time. Thus in the class of 
repeated surveys considered in this paper, there is an upper 
bound on the computational effort required for the BLUE 
of the vector of parameters of interest. 

The model at time t + I may be written as model (7), 
with c = / + 1,Z,̂ , = (9,.„.,(0,..., e,., (0, 9,(0, z,:,)', 
®,.i(m+i) = (̂ /-m*i' •••' ̂ r ^r+i)'' and the covariance matrix 
of Z,^, is K,,, =blockdiag{X,(„),^2}. The BLUE of 
0, ,, ,. and its covariance matrix are then obtained from 
the usual least squares formulas. The least squares 
estimators of the last m elements of ©,,,,„, n are then used 
as the initial estimates in the model for the next iteration. 

The following theorem states that the covariance matrix 
of the vector of recursive least squares estimators converges 
to a positive definite matiix as the number of periods in the 
survey increases indefinitely. A proof is given in the 
appendix. 

Theorem: At any time t, let the vector of recursive least 
squares estimators 0,(,„) = (9,.,„^i(0,..., ^,-i{t\ 9,(0)' be 
the BLUE of the vector of parameters 0,̂ ^̂ ^ = 
(®r-m+t' •••' ̂ r-i' 9/)' based on data through time ̂  Let £,, , 
be the covariance matiix of ®,,„y Let the assumptions (1) 
through (5) hold. Also assume that the elements of V'^ are 
bounded for aU n, where V^ is the covariance matrix of any 
n observations. Then, the covariance matrix Y^nm) 
converges as / - °°; and the limit is an mxm positive 
definite matrix. 

6. APPLICATION TO THE U.S. CURRENT 
POPULATION SURVEY 

6.1 The CPS Design 

The CPS is a monthly household survey conducted by 
the United States Census Bureau in cooperation with the 
Bureau of Labor Statistics for the purpose of providing 
national estimates of labor force characteristics such as the 
number employed, unemployed, and in the civilian labor 
force; and other characteristics of the non-institutionalized 
civilian population. The sample design of the CPS contains 
a rotation scheme that includes the replacement of a fraction 
of the households in the sample each month. For any given 
month, the sample consists of eight time-in-sample panels 
or rotation groups, of which one is being interviewed for the 
first time, one is being interviewed for the second time,..., 
and one is being interviewed for the eighth time. In other 
words, the interview scheme is balanced on time-in-sample. 
Households in a rotation group are interviewed for four 
consecutive months, dropped for the next eight succeeding 
months, and then interviewed for another four consecutive 
months. They are then dropped from the sample entirely. 
This system of interviewing is called the 4-8-4 rotation 
scheme, and is a special case of schemes described by Rao 
and Graham (1964). 
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6.2 Estimation and Variance Estimation Procedures 

We use estimates of the covariance structure of data 
from tiie CPS to compare altemative estimators and rotation 
designs. See Adam and Fuller (1992) and Fuller, Adam and 
Yansaneh (1993) for a detailed description of the con
stmction of the model, the estimation of its parameters, and 
the estimation of the covariance structure of observations 
within a given rotation group for various characteristics of 
interest. Because the rotation groups come from the same 
set of primary sampling units, tiiey are not independent and 
a component is included in the covariances to reflect the 
fact that the primary sampling units do not change. The 
RRE is computed with the eight current simple estimators 
and the 15 estimators for the 15 preceding periods. In 
computing tiie RRE, the covariances are used to create eight 
linear combinations of the current and the preceding fifteen 
observations that are uncorrelated with the preceding fifteen 
observations. Because of the primary sampling unit effect, 
these linear combinations are correlated with observations 
more than 15 periods in the past and in the same stream. 
Hence, they are correlated with the preceding estimators. 
The correlations with earlier estimators, 9,.,, / = 1,..., 15, 
are included in tiie covariance matiix when the estimator of 9, 
is constmcted. However, because only the most recent 15 
observations are used, the resultant estimator of 9, is not the 
BLUE for current level. The calculated covariance matrix 
of (9,.,5,..., §,_,, 9,)' is correct and, because the primary 
sampling unit effect is modest, it is felt that the estimator 
has efficiency close to that of the BLUE. 

We shall restrict attention to the estimation of various 
parameters for two characteristics of interest: Employed 
and Unemployed. For each characteristic, the parameters 
of interest are the current level and period-to-period change 
for, up to 12 periods. The estimators considered for 
comparison are the CPS composite estimator; the RRE; and 
the BLUEs using 2, 3, 12, 16, and 24 periods, where the 
BLUE forp periods at time / is the least squares estimator 
constructed using data from time t- p •*• I through time t. 
Results are reported for BLUEs based on 12 and 16 periods. 
In following the practice of the U.S. Bureau of Labor 
Statistics for CPS estimators, the estimators are not 
modified as new data become available. Thus the estimator 
of change in level of a characteristic of interest between 
times t- I and / is not the best possible estimator given all 
available data. It is the difference between the best 
estimator at time t based on data through time / and the best 
estimator at time / - 1 based on data through time / - 1. 

We do not consider seasonal adjustment in this 
discussion. However, the estimation procedures presented 
can be extended to include seasonal adjustments. To 
compute the variance of a given estimator at a given time, 
the estimator is first expressed as a linear combination of 
all the observations available at that time. The variance of 

the estimator is then computed as a function of the 
coefficients of the linear combination and the entries of the 
covariance matrix. 

6.3 Numerical Results and Discussion 

6.3.1 Comparison of Alternative Estimators 

The variances of the altemative estimators relative to the 
variance of the basic estimator of current level, for each of 
the characteristics of interest, are presented in Table 1. 
Recall that the basic estimator of the current level, denoted 
by >>, is the simple mean of the eight elementary estimators 
obtained from the eight rotation groups observed at time /. 
That is, y, = S-^ZLiy,,k^ and Var(J ,̂), = 0^/8, where 
o^ = Var(_v,̂ ) for all t and k. The basic estimator of change 
between two periods is the difference between the simple 
means for the two periods. 

The BLUE procedure based on 3 periods or more 
produces more efficient estimators of current level than the 
CPS composite estimator. In general, the best linear 
unbiased estimation procedure becomes more statistically 
efficient as the number of periods increases. For both 
characteristics, the results reveal that the best linear 
unbiased procedure based on 12 periods is uniformly more 
efficient than the CPS composite estimator for all 
parameters, except one-period change in unemployed. 
Recall that tiie estimator of change is not BLUE because the 
estimator is the difference of estimators constructed at time 
t and at time t- I. Thus, the estimator called "BLUE" is 
best only for current level using the stated amount of data. 
The difference between the variance of the composite 
estimator of one-period change and the variance of the 
I2-period BLUE of one-period change in unemployed is 
less than one percent. The gain in precision of the best 
linear unbiased estimation procedure for employed relative 
to the CPS composite estimator for current level is 22% for 
the BLUE for 12 periods, 28% for the BLUE for 16 
periods, 30% for the BLUE for 24 periods, and 33% for the 
RRE. The corresponding gains for unemployed are 2%, 
3%, and 3%. These results are a reflection of the nature of 
the autocorrelation functions of the characteristics. The 
autocorrelation function for unemployed declines much 
faster than that for employed. 

With the exception of one-period change in employed, 
there is an improvement in the efficiency of the estimation 
of change from using the altemative estimators instead of 
the CPS composite estimator. The gain in precision 
increases as the number of periods increases, reaching a 
maximum value at five-period change for both charac
teristics. The gain then decreases slightly. In the case of 
the RRE, the maximum gain in efficiency for estimated 
change is 64% for employed and 5% for unemployed. 
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Table 1 
Variances of altemative estimators relative to the variance of the basic estimator of current level 

Parameter 

(1) 
Current 
Level 

1-period 
change 

2-period 
change 

3-period 
change 

4-period 
change 

5-period 
change 

6-period 
change 

7-period 
change 

8-period 
change 

9-period 
change 

10-period 
change 

11-period 
change 

12-period 
change 

CPS 
Comp. 

(2) 

0.862 

0.511 

0.813 

1.065 

1.279 

1.363 

1.390 

1.388 

1.353 

1.255 

1.154 

1.061 

0.992 

BLUE for 
12 periods 

(3) 

0.704 

0.457 

0.646 

0.763 

0.830 

0.880 

0.910 

0.930 

0.932 

0.912 

0.895 

0.883 

0.883 

Employed 

BLUE for 
16 periods 

(4) 

0.672 

0.437 

0.613 

0.724 

0.800 

0.847 

0.873 

0.884 

0.884 

0.854 

0.824 

0.795 

0.767 

Recursive Regression 
Estimator 

(5) 

0.650 

0.432 

0.604 

0.711 

0.784 

0.829 

0.855 

0.865 

0.860 

0.832 

0.806 

0.782 

0.761 

CPS 
Comp. 

(6) 

0.947 

1.070 

1.361 

1.528 

1.645 

1.691 

1.708 

1.710 

1.701 

1.671 

1.641 

1.614 

1.593 

BLUE for 
12 Periods 

(7) 

0.924 

1.077 

1.345 

1.481 

1.569 

1.614 

1.637 

1.646 

1.645 

1.624 

1.606 

1.590 

1.577 

Unemployed 

BLUE for 
16 periods 

(8) 

0.918 

1.073 

1.338 

1.473 

1.563 

1.607 

1.628 

1.637 

1.635 

1.614 

1.595 

1.578 

1.563 

Recursive Regression 
Estimator 

(9) 

0.918 

1.073 

1.338 

1.473 

1.562 

1.606 

1.628 

1.636 

1.634 

1.614 

1.595 

1.578 

1.563 

6.3.2 Comparison of Alternative Estimators and 
Rotation Designs 

The variances of altemative estimators under various 
rotation designs are given in Table 2. All variances are relative 
to the variance of the basic estimator of current level under that 
design. The efficiencies of altemative estimators of current 
level, change in level, and average level for multiple time 
periods are compared under the intermittent 4-8-4 rotation 
design and two continuous rotation designs. The continuous 
rotation designs are the 6-continuous scheme and the 8-
continuous scheme. The 6-continuous scheme is the rotation 
scheme used in the Canadian Labor Force Survey conducted 
by Statistics Canada. For each period of the survey, the sample 
consists of six rotation groups, one rotation group in its first 
time-in-sample,..., and one rotation group in its sixth time-in-
sample. A given rotation group remains in the sample for six 
consecutive periods and then permanently drops out of the 
sample. See Kumar and Lee (1983) for more details about the 
design of the Canadian Labor Force Survey. In the 
8-continuous scheme, there are 8 rotation groups in the sample 
for each period. A given rotation group remains in the sample 
foreight consecutive periods and then permanently drops out 
of the sample. 

We compare the performance under the various rotation 
designs using the BLUE of current level based on 36 periods. 
We call this estimator the "best estimator" because its 
efficiency is vitually the same as that of the RRE. For all 
rotation schemes under consideration, there are some 
improvements in the precision of the estimators of current 
level from using the best estimator relative to the CPS 
composite estimator. As seen in Table 2, the gain is highest for 
employed where, under the 4-8-4 rotation scheme, the 
variance of the best estimator of current level is only 76% of 
that of the CPS composite estimator. 

The precision of the estimators of change relative to the 
precision of the CPS composite estimator depends on the 
rotation design. From Table 2, we see that under the 4-8-4 
rotation scheme, there is some gain in precision, which 
increases as the lag increases. For employed, the variance 
of the least squares estimator is 85% of the variance of the 
CPS composite estimator for one-period change, 61 % of the 
variance of the CPS composite estimator for six-period 
change, and 76% of the variance of the CPS composite 
estimator for 12-period change. (Compare columns (2) and 
(3) of Table 2.) 
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Table 2 
Variances of altemative estimators and rotation designs; the variance of the basic estimator of current level under each design equals one 

Parameter 

(1) 
Current 
Ixvel 

1 -period 
change 

2-period 
change 

3-period 
change 

4-period 
change 

5-period 
change 

6-period 
change 

7-period 
change 

8-period 
change 

9-period 
change 

10-period 
change 

11 -period 
change 

12-period 
change 

12-period 
average 

12-change 
in averages 

CPS Comp. 

(2) 

0.862 

0.511 

0.813 

1.065 

1.279 

1.363 

1.390 

1.388 

1.353 

1.255 

1.154 

1.061 

0.992 

0.369 

0.248 

Emjployed 

Best Est. 
(4-8-4) 

(3) 

0.653 

0.432 

0.604 

0.710 

0.783 

0.828 

0.854 

0.863 

0.858 

0.830 

0.803 

0.779 

0.758 

0.326 

0.162 

Best Est. 
(8 Cont) 

(4) 

0.761 

0.395 

0.559 

0.669 

0.731 

0.782 

0.828 

0.874 

0.828 

0.960 

0.993 

1.021 

1.046 

0.440 

0.365 

Best Est. 
(6 ConO 

(5) 

0.759 

0.434 

0.619 

0.747 

0.829 

0.901 

0.970 

1.026 

0.960 

1.108 

1.139 

1.165 

1.186 

0.394 

0.403 

CPS Comp. 

(6) 

0.947 

1.070 

1.361 

1.528 

1.645 

1.691 

1.708 

1.710 

1.701 

1.671 

1.641 

1.614 

1.593 

0.255 

0.273 

Best Est. 
(4-8-4) 

(7) 

0.918 

1.073 

1.338 

1.473 

1.562 

1.606 

1.628 

1.636 

1.934 

1.614 

1.595 

1.578 

1.564 

0.249 

0.262 

Unemployed 

Best Est. 
(8 Cont) 

(8) 

0.944 

1.003 

1.250 

1.372 

1.473 

1.533 

1.577 

1.612 

1.642 

1.663 

1.678 

1.688 

1.696 

0.301 

0.372 

Best Est. 
(6 Cont) 

(9) 

0.938 

1.051 

1.312 

1.443 

1.543 

1.607 

1.655 

1.686 

1.705 

1.719 

1.727 

1.733 

1.737 

0.266 

0.359 

For estimating 12-period averages in employed using the 
4-8-4 design, the CPS composite estimator is about 13% 
less efficient than the least squares estimator and, for 
estimating change in 12-period averages, it is about 53% 
less efficient, as can be seen by comparing the second and 
third columns of Table 2. For unemployed and the 4-8-4 
design, there are only modest gains in precision from using 
the least squares estimator relative to the CPS composite 
estimator, as shown in the sixth and seventh columns of 
Table 2. 

For estimation of 12-period change, 12-period average 
and change in 12-period averages, tiie 4-8-4 design is much 
superior to both continuous rotation designs for both 
characteristics. The continuous designs are generally 
superior for period-to-period changes for short periods. 

6.3.3 Internal Consistency 

In our analysis, we have constmcted the best estimator of 
employed using only the past history of employed and the 
best estimator of unemployed using only the past history of 

unemployed. There is no formal reason not to include the 
past history of both employed and unemployed in the 
constmction of the estimators. However, Fuller e/a/. (1993) 
state that the estimated cross correlations are less than 0.10, 
suggesting that there is Uttle gain from such inclusion. 

A method of constmcting estimates of multiple 
characteristics that are internally consistent was suggested 
by Fuller (1990). In this procedure, estimates of employed, 
unemployed, and not-in-the-labor-force are constmcted. 
Then these estimates are used as controls in a regression 
procedure to constmct weights for the current observations. 
The weights can then be used to construct internally 
consistent estimates of any parameter of interest. The 
estimation procedure, including estimates of subdivisions 
of the labor force, is planned for implementation in 1998 for 
the CPS. See Lent, Miller and Cantwell (1996). 

6.4 Conclusions 

The main conclusions emerging form the variance 
computations in this section can be summarized as follows: 
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1. For all rotation designs and all characteristics under 
consideration, there are altemative estimation proce
dures with a variance of the current level smaller than 
that of the CPS composite estimator. 

2. For estimation of change under the 4-8-4 rotation 
design, the gain in precision of the altemative estimators 
relative to the CPS composite estimator increases as the 
lag increases, and peaks around the lag of minimum 
overlap. 

3. The intermittent 4-8-4 rotation design is inferior to the 
continuous rotation designs for short-period changes, 
but superior for current level, long-period averages, and 
changes in long-period averages. 

4. The CPS composite estimator is comparable to the RRE 
for unemployed for the estimation of one-period change 
and 12-period change. However, the recursive regres
sion estimation procedure is superior to the CPS 
composite estimator for other measures of change. 

5. The RRE is more efficient in estimating change in level 
at lags for which the CPS composite estimator is not 
targeted, for instance, lags of four months to six months. 
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APPENDIX 

tion, the variances o,, / = 1, 2,..., s are bounded below and 
the quantity (£/=iO,' )"' is a positive lower bound for the 
variance of the estimator of 9̂  [see Lemma 4.2.3 of 
Yansaneh (1992)]. The variance of the estimator of 9̂  is 
non-increasing as the number of observations increases, and 
hence, the variance converges to a positive 
number. 

Lemma 2. Let the assumptions of the theorem hold. 
Then the variance of the least squares estimator of each of 
the parameters 9,_,„, 9,_,„ ,̂-,..., 9,_,, based on data through 
time /, converges to a positive number as t increases. 

Proof First, suppose at a fixed time x, at least m 
periods of observations are available both prior to x and 
after x. Define a transformation of the following form for 
the observations in each of the s streams at time x: 
",, =:v,„ - Il'.-n,bkii,.).jyi..-j' where ft.^,^, ̂  = 0 and u.^ is 
uncorrelated with all observations preceding and 
succeeding y. ^ in the /-th stream. Let the variance of u.^ 
be 1^, i = 1,2,..., s. These variances are bounded below by 
assumption. We conclude, as before, that there is a positive 
lower bound for the diagonal elements of the covariance 
matrix of the vector of recursive least squares estimators. 

Now, assume that at time t, we begin the sequence of 
estimation with the vector of recursive least squares 
estimators ©,.,(„) = (9,.,„,..., 9,_,)' based on data for the 
preceding m periods; and the vector of transformed 
observations z, = (z,,, ...,z^,). Thus the linear model for 
the data at time t is given by (7), with c replaced by t. The 
data vector Z, is of fixed dimension. Therefore, the 
covariance matiix of the BLUE of the vector of parameters 
0 '" ^ ^s-.-v^ .„„ . , - f . , 

/(m + l ) (9,.„,..., 9,.„ 9,)' is Z,(„,,^ = {W F,-' W)'\ For 
computational convenience, we express W âs {I^^.^,M')', 
where I^^^ is the identity matrix of order w + 1, and M is 
an (5 - 1) X (w + 1) matrix which is constant over time. 
Thus we have 

' r . - l ) i - r > - l E,(...) ={^;'n^.i,-M'Q-^M) 
(A2) 

^ " , - ! ( . . . ) - " , - . ( » . I ) ^ ' ^ , ^ " , - l ( . . . ) 

Lemma 1. Let the assumptions of the theorem hold. 
Then the variance of the estimator of current level 9̂  
converges to a positive number as the number of periods 
increases. 

Proof. If the means 9^_j, 9^.2,..., 9^_ ,̂ were known, 
thengj^,/ = 1,2,...,5 are unbiased estimators of 9_,, where 

Sic =yi,c'^s2,c =y2,c-b2i(y2,c-i - ^c-iy'-'^'igsc=ysc-
)i7-ibsj{ys,c-j-^c-jy Furthermore, g,^, / = 1,2, ...,5 are 
independent with variances' o,, / = 1, 2,..., s. We may 
write the linear model: 

g S C + e (Al) 

where g = (g,^,gjc ••.' g'ic)'' ^s ^^ the 5 x 1 column vector 
of ones, and e is the 5 x 1 vector of errors with E{e) =0, 
and E{ee') = V^ = Diag{Op a],..., o^}. Thus the BLUE of 
9̂  for model (Al) has variance (E/=i<'," ) '• By assump-

where 
diag{o2,...,aJ, ',-i(»,.i) = blockdiag{Z,.i(„),o,}, QQO 

and D, = Ci^^ + Mfi,_j, ^,.M'. Since the second term on 
the right hand side of (A2) is positive definite, we conclude 
that the first m diagonal elements of X/(m+i) are less than or 
equal to the original diagonal elements of Y.,-i{my ^^is 
means that as / increases, the variances of the estimators of 
9,_^,..., 9,_2, 9,_, are non-increasing. Since these variances 
are bounded below by a positive quantity, we conclude that 
the variances of the estimators of ^,.m' •••'^i-v^t-i 
converge to positive numbers as t increases. 

Lemma 3. Let the assumptions of the theorem hold. 
Then, the variance of the least squares estimator of each of 
the parameters 9,_„,, 9,_,̂ ,̂ - 9,_,^,..., 6, - 9,_j, based on data 
through time /, converges to a positive number as t 
increases. 
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Proof. First, we show that variance of the least squares 
estimator of 9̂  - 9̂ _, (where denotes the current period) 
converges as the number of periods increases by mimicking 
the arguments in the proof of Lemma 1. Also, arguments 
similar to those in the proof of Lemma 2 can be used to 
show that the variances of the least squares estimators of tiie 
parameters 9,.,̂ , 9,.,„ ,̂ - 9,.,„,..., 9, - 9,.,, all converge as 
the number of periods increases. 

Proof of theorem. Since Y,, , is a submatrix of the 
covariance matrix E,(m+i) of the least squares estimators of 
the full set of paranieters 9,-„, 9,-„^.i,..., 9,_,, 9,, at time /, 
it is enough to show that X/(m+i) converges to a positive 
definite matrix as / - «>. From Lemma 1 and Lemma 2, 
each of the diagonal elements of E((m*i) converges to a 
positive number as / - «>. From Lemma 3, the variance of 
the least squares estimator of each of the parameters 
9,-„. 9,-„,.i - 0,-,„ 9,-0,-1' converges to a positive 
number as / - «>. It follows that for each j , I ^j <. m, the 
covariance between the least squares estimators of 9, and 9, . 
converges as / - ~ and hence the covariance matrix X,(m+i) 
converges as / - «>. 

Next, we prove that the limiting covariance matrix is 
positive definite. Let lim,_„]^,,^. = Y.imy ^^ '̂  enough to 
show that the variance of any non-trivial linear combination 
of the recursive least squares estimators 9, (0, 
y = 1,2,..., w, is bounded below by a positive quantity. Let 
V be the lower bound of every linear combination of the 

mm J 

observations with one of tiie coefficients equal to one. The 
bound is positive by the assumption that the elements of 
V'^ are bounded. 

Now, every estimator of the parameter 9, ., 
y = 0, 1,..., m is a linear combination of all observations 
such that the sum of the coefficients for the observations in 
the s streams at time t-j is one, and the sum of the 
coefficients for the observations in the s streams at any 
other time is zero. This is a condition for the unbiasedness 
of the estimator for time t-j. For the sum of the 
coefficients of the s observations at time t-j to be equal to 
one, at least one of the coefficients must be greater than or 
equal to 5"'. The minimum variance of any linear combi
nation with first coefficient equal to 5"' is s'^v,^. 
Therefore, for; = 0, 1,..., m, Var{9,./0) ^ ^ '^v^„-

Now, consider an arbitrary, non-trivial linear 
combination of the recursive least squares estimators 
Q,.j{t),j = 0,l,...,m, given by Z7=oTŷ ,-y(̂ )' ^^ere, 
without loss of generality, YQ = 1 • This linear combination 
can be expressed as 

YyjKj(0 = Q,{t)-YyjKjO) 
J'O /"I 

, 
(A3) 

E E c,A.v,,A + E YyE E fmi,-j)yi,i, 
/= ! h'l 7=1 

=E 
i'l 

j'l 

.? , - 1 

CE 
/•=! /i = l 

Yi.i^i E '^ih •*" 2 ^ 7/7,7, (, -J) yi.h 

where c,,,/ = 1,2...,5, are the coefficients of >>,., in 9,(0, 
and ŷ ,,, ., 7 = I,..., m, are the coefficients of y.^ in 
9,.y(0.7 = l,-,m, respectively. Therefore, I,%fii= 1, 
and E;=,y;,(,.y) = 0, for j = l,...,m. Thus L=,[c,,+ 
Tj-iyjfini-j)^ ~ '̂ ^^^^ '^ ' '" ^^^ linear combination (A3), 
the sum of the coefficients for the observations >•,,, 
/ = 1,2,..., 5, at time / is one. Therefore, at least one of the 
coefficients is greater than or equal to 5"'. Hence, 
Var{X7=oY,0,-y(O} ^s'^v^^, and we conclude tiiat X(„) is 
positive definite. 
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Estimation of Variance of General Regression Estimator: 
Higher Level Calibration Approach 

SARJINDER SINGH, STEPHEN HORN and FRANK YU' 

ABSTRACT 

In the present investigation, the problem of estimation of variance of the general linear regression estimator has been 
considered. It has been shown that the efficiency of the low level calibration approach adopted by Samdal (1996) is less 
than or equal to that of a class of estimators proposed by Deng and Wu (1987). A higher level calibration approach has also 
been suggested. The efficiency of higher level calibration approach is shown to improve on the original approach. Several 
estimators are shown to be the special cases of this proposed higher level calibration approach. An idea to find a non -
negative estimate of variance of the GREG has been suggested. Results have been extended to a stratified random sampling 
design. An empirical study has also been carried out to study the performance of the proposed strategies. The well known 
statistical package, GES, developed at Statistics Canada can further be improved to obtain better estimates of variance of 
GREG using the proposed higher level calibration approach under certain circumstances discussed in this paper. 

KEY WORDS: Calibration; Estimation of variance; Auxiliary information; Ratio and regression type estimators; Model 
assisted approach. 

1. INTRODUCTION 

The statisticians are often interested in the precision of 
survey estimates. The most commonly used estimator of 
population total/mean is the generalized linear regression 
(GREG) estimator. Let us consider the simplest case of 
the GREG where information on only one auxiliary variable 
is available. Consider a population Q = {1,2, ....A'^}, from 
which a probability sample 5(5 c Q) is drawn with a given 
sampling design, p{.). The inclusion probabilities n.= 
Pr{ies) and Tt,;, e Pr{i and jes) are assumed to be stiictly 
positive and known. Let y. be the value of the variable of 
interest, y, for the /-th population element, with which also 
is associated an auxiliary variable x,.. For the elements, 
ies, we observe {y.,x.). The population total of the 
auxiUary variable x, X = Y.%iXi, is assumed to be 
accurately known. The objective is to estimate the 
population total F = Xf=i;',. Deville and Samdal (1992) 
used calibration on known population jc-total to modify the 
basic sampling design weights, d. = I/TC,, that appear in the 
Horvitz-Thompson (1952) estimator 

Y^-E^-TdiYi-
/= ] It/ /= i 

A new estimator. 

Yos = E ^iYi 

(1.1) 

(1.2) 
(=1 

was proposed by Deville and Samdal (1992), with weights w. 
as close as possible in an average sense for a given metric 
to the rf,., while respecting the calibration equation 

E>v,.̂ ,= -̂
i = l 

(1.3) 

A simple case considered by Deville and Samdal (1992) is 
the minimization of chi-square type distance function given 
by 

A (w,-c/,)^ 

/=! d.q. 
(1.4) 

where q. are suitably chosen weights. In most of the 
situations, the value of g', = 1. The form of the estimator 
depends upon the choice of q^. By minimizing (1.4) subject 
to calibration equation (1.3) we obtain weights 

W; = (/, + 
d.q.x. 

E diqiX^ 

X- Y diX, 
(=1 

(1.5) 

/ = ! 

Substitution of the value of w. from (1.5) in (1.2) leads to 
the traditional regression estimator of total given by 

'DS EdiYi 
E diqiX^Yi 
/=t 

(=1 
E diqixf 

X- Y diX^ 
i=l 

(1.6) 

(=1 

In this paper, the problem of estimation of variance of the 
regression estimator (1.6) has been considered at two 
different levels of calibration. The higher level calibration 
approach covers a greater variety of estimators than the low 
level calibration approach adopted by Samdal (1996). 

Saijinder Singh, Research Officer, Stephen Horn, Senior Research Officer and Frank Yu, Director, Methodology Division, The Australian Bureau of Statistics, 
P.O. Box 10, Belconnen, ACT 2616, Australia. 
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Higher level calibration approach makes use of known total 
as well as known variance of the auxiliary character, 
whereas low level calibration utilizes only known total of 
auxiliary character. 

The section 4 has been devoted to study the stratified 
sampling design. The original stratum weights are calibra
ted which results in combined regression and combined 
ratio estimators in stratified sampling. The estimators of 
variance of combined regression and combined ratio esti
mators proposed by Wu (1985) are shown to be the special 
cases of the low level calibration approach. The higher level 
calibration approach has been shown to apply to a broader 
variety of estimators. 

2. ESTIMATOR OF VARIANCE OF THE GREG: 
THE LOW LEVEL CALIBRATION 

APPROACH 

Following model assisted survey samphng approach of 
Samdal, Swensson and Wretman (1989, 1992), the Yates-
Grundy (1953) form of estimator of variance of the 
estimator (1.6) is given by 

y.o[Yus)-\ttDij{w,erWje;i' (2.i) 

For simplicity, let us consider simple random sampling and 
without replacement (SRSWOR) design i.e., n. = TI. = n/N 
and n.. = n{n - l)/N{N- I). Then we have following 
cases: 
Case 2.1: If q. = I, then (1.6) reduces to the usual regres
sion estimator of total, FGREG (say). Now if w. = d. in (2.1), 
it reduces to 

YG i^JREG/ 
_ # 2 ( 1 - / ) A 2 

n{n-l) ,=1 Te^ (2.5) 

where f=nlN and e. =_y. - P;c.. Thus (2.5) denotes the 
usual estimator of variance of the regression estimator (1.6). 
Case 2.2: If q. = llx. then the estimator (1.6) reduces to the 
ratio estimator of total, KRATIO (say). The estimator (2.1) 
reduces to an estimator of variance of the estimator 
JRATIO, given by 

V {Y \ - A ^ ^ ( i - / ) y - , 2 M 
(2.6) 

where 

^ , = > ' / -
'̂  N v^ c, and X= — 2^ x.. 

n /=i 

where D.^j = (n, Uj - n.j)/n.., i *j and e. =3^,-0 x. have tiieir 
usual meanings. This estimator can easily be written as 

^ Y o i y ^ ^ t^^yidiei-djc/^ 
^ 1=1 y=i 

<i>,k-E ,̂̂ , 
/=1 

^% X-YdiX, 
I - I 

where 

¥ i 

E diqixf 

(2.2) 

The estimator at (2.6) is a special case of a class of estima
tors of variance of the ratio estimator proposed by Wu 
(1982)as 

^ ' n{n-l) ,=1 \x\ 
(2.7) 

fo rg = 2. 

Case 2.3: Ifq. = I and w, is given by (1.5) then (2.2) and 
hence (2.1) becomes 

YG rGREG/' 

^^^ief^%{x-x).^2{x-xf{2.S) 
n{n-l) /=i 

and 

V2 

E E D,ji^ie.-djej)(d.q.x.e-djqjX.ej) (2.3) 
/=] y=i 

YY Dij{diqiX,e,-djqjX.e)j' (2.4) 

iYdiq^ 
/=1 7=1 

The estimator at (2.1) has been discussed by Samdal et al. 
(1989, 1992, 1996) on different occasions and covers a 
variety of estimators as discussed below: 

where 

<Vi = 

and 

{N-n) 

Yxf\n{n-l) 
\ '=1 ) 

YY(^r^jKXierXje) (2.9) 
, = 1 7 = 1 

W2 = 
{N-n) 

2N{n-l) Yxl 
\ '=1 1 

7 T E E ( ^ , ^ , - V / - (2. 
^ ,=1 7=1 

10) 
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Deng and Wu (1987) have defined a general class of 
estimators of the variance of the regression estimator as 

V (Y ] 
n{n- I) ,.1 

2\X\ 

\X\ 
(2.11) 

where e, =y . -^x . . The linear form of the class of 
estimators (2.11) takes the form as 

V (Y ] = inizfiY 

1-g , g ( g - l ) 
2 

(2.12) 

which is again similar to (2,8). Thus the low level calibra
tion approach considers estimators of variance of estimators 
of total i.e., both ratio and regression methods of estimation. 
It is remarkable that there is no choice of ,̂. which reduces 
(1.6) to the product method of estimation considered by 
Cochran (1963). Hence the estimation of variance of 
product estimator has not been considered. To look at the 
efficiericy of such estimators, we consider an analogue of 
the general class of estimators for estimating variance of 
GREG by foUowing Srivastava (1971) as 

new estimators are shown as special cases of the proposed 
higher level calibration approach. 

3. IMPROVED ESTIMATOR OF VARIANCE OF 
THE GREG: THE HIGHER LEVEL 

CALIBRATION APPROACH 

Here we apply the calibration approach to estimate the 
variance of GREG estimator at (1.6). The weights D.. of 
Yates and Gmndy (1953) for an estimator of variance given 
at (2.1) are calibrated such that the estimator of variance for 
the auxiliary variable has the exact variance. We consider 
an estimator of variance of GREG 

^ S S I ^ ^ G R E G I ^ ^ ^ % ( > * ' , ^ , - V / (3.1) 
;=i 7=1 

where f2.. are the modified weights attached to the 
quadratic expression by Yates and Gmndy (1953) form of 
estimator and are as close as possible in an average sense 
for a given measure to the £>,. with respect to the caUbration 
equation 

2t : E E " ^ ( ^ , ^ , - ^ 7 ^ 7 ) ' = ^ G M 
;=i 

(3.2) 

^s \^GREG / '' 
NHl-f)x-2 
n{n-l) Een^ i=i 

'x} 
(2.13) 

where 

where H{.) is a parametric function such that H{l) = l 
and satisfies certain regularity conditions. Following 
Srivastava (1971), it is easy to see that analogues of the 
general class of estimators (2.13) attain the minimum 
variance of the class of estimators proposed by Deng and 
Wu (1987) for regression estimator and Wu(1982) ratio 
estimator. We want to say here that if we will attach any 
function of the ratio XtX to the usual estimator of variance 
given by 

N\l - / ) v> 2 
n{n- 1) ,=1 

the asymptotic variance of the resultant estimator remains 
the same. In other words, the efficiency of the estimators of 
variance of regression estimator (GREG) of total obtained 
through low level calibration remains less than or equal to 
the class of estimators proposed by Wu (1982) and Deng 
and Wu (1987). The weights w. used to constmct estimator 
of variance of GREG at (2.1) were obtained while estima
ting the population total and hence named as low level 
calibration weights for variance estimation. The next 
section is devoted to the higher level calibration approach 
where variance of auxiliary character is known. Several 

^ ^ Y G I ^ H T I ^ ^ ^ ('^'^ -7t,)(rf,X,-rf,x/ 
^ ;=1 7=1 

denotes the known variance of the estimator of the auxiliary 
total X{ = Y,%iX.) given by X^^ = Y,%i d^x.. To compute 
the right hand side of (3.2) we need either information on 
every unit of the auxiliary character in the population, or 
only FyQ {X^-^) obtained from a past survey or pilot survey. 
The examples of a situation where information on every 
unit of the auxiliary character is known are the establish
ment tumover recorded from census or administrative 
records or Business Register (BR) or AustraUan Taxation 
Office (ATO). Known variance of the auxiliary character 
has also been used by Das and Tripathi (1978), Singh and 
Srivastava (1980), Srivastava and Jhajj (1980,1981), Isaki 
(1983), Singh and Singh (1988), Swain and Mishra 
(1992), Shah and Patel (1996) and Garcia and Cebrian 
(1996). Singh, Mangat and Mahajan (1995) have reviewed 
classes of estimators of unknown population parameters 
making use of the known variance of an auxiliary character. 
The idea of adjusting D.. weights has also been discussed 
by Fuller (1970) through a regression type estimation 
procedure. For simplicity we restrict otirselves to the two 
dimensional Chi-Square (CS) type distance, D, between 
two nxn grids formed by the weights Q,.. and D,.. for 
/, j = 1,2,..., n, given by 
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2 /=! 7=1 
(3.3) 

In most of the situations Q.j = I but other types of weights 
can also be used. We will show that the ratio type 
adjustment using known variance of auxiliary character is 
a special case for a particular choice of Q.. Minimization 
of (3.3) subject to (3.2) leads to modified optimal weights 
given by 

^r^n^ 
\ttD,Q,{d^x,-d^x;^ 
'• 1 = 1 7 = 1 

M^HT)-|EE^,K^,-^7^7)' 
•^ 1 = 1 7 = 1 

(3.4) 

for the optimal choice of Lagrange Multiplier X, given by 

^ Y G ( ^ H T ) - ^ E E ^ , K ^ , - ^ 7 ^ 7 ) ' 
2 1 = 1 7 = 1 

|EE^,e,K-,-^7-.r 
'• 1 = 1 7 = 1 

(3.5) 

Its proof is given in the Appendix. Substitution of £l. from 
(3.4) in (3.1) leads to the following regression type 
estimator, 

V [Y \-
' SS y GREG / 

^YG ( 4 S ) + ^1 [ ̂ YG (^HT) - ŶG (^HT)I (3.6) 

where 

ttDMdiX,-d^x^^[w,erw.e^-

itDijQSx,-d.x^Y 
1=1 7=1 

'22 

'04 

(say) (3.7) 

ŶG (^HT) = 2 I M X;=I ^1,(^1^1 - ^7^7)^^"^ ŶG (4s) 
is given in (2.1). Regression coefficient B^ makes use of 
the known total Xof the auxiliary variable and hence can be 
treated as an improved estimator of regression coefficient 
by following Singh and Singh (1988). Under the higher 
level calibration approach, we have the following cases: 

Case 3.1: Under SRSWOR sampling design if q. =x,."' 
and Q.J = {d^x. - djXj)''^ are the weights attached at low 
level and higher level calibration approach, respectively, 
then the proposed strategy reduces to 

SS if ) = 
y Ratio/ 

n {n- l),=i 

(s^\ 
2 

\ ' I 

(3.8) 

where s^ ={n- 1) Xi=i (̂ , - :>i:) is an unbiased estimator 
ofSl = {N-l)-'lti{x,-X)\ 
Case 3.2: If q. = 1 and Q.j = 1 V / & y, then we have 

y.o[Yo^o)-^^^tef^^i{x-x). 
^ ' n{n- 1) ,=1 

^,{X-Xf^^,[s',-S^) (3.9) 

where vj/, and vjî  are given by (2.9) and (2.10), 
respectively, and 

^3 
N\l-f) 

« E E ( ^ i - y 
1=1 7=1 

n n 

1=1 7=1 

{x.-Xj){e.-Cj 
^ ^ {X-X){xrxjf 

Ex; 
1=1 

(3.10) 

Without loss of generality, the estimators of variance of 
GREG given at (3.8) and (3.9) are neither members of a low 
level calibration approach nor of the class of estimators by 
Deng and Wu (1987). These estimators are members of the 
analogues of classes of estimators for estimating variance 
of GREG given by Srivastava and Jhajj (1981) as 

V (Y ]• '^SJ\-'GREG/ n{n- I) ,=1 
H X 

X 

. 2 \ 

(3.11) 

where H{.,.) is a parametric function such that H{1,1) = 1 
and which satisfies certain regularity conditions defined by 
them. Following Srivastava and Jhajj (1981) and Deng and 
Wu (1987), it is a class room exercise to see that the class 
of estimators at (3.11) remains better than the class of 
estimators defined at (2.11) and hence (2.13). 

A difficuk issue in using (3.1) is how to get non-negative 
estimates of variance using calibration. The simplest way is 
to optimize the CS distance function (3.3) subject to 
calibration constraint (3.2) along with the conditions 
Q.J s 0 V /, y = 1, 2,...,«. While it is difficult to develop a 
solution to this problem theoretically, well known quadratic 
programming techniques can yield useful numerical resuks. 
Stiaightforward extension to using other distance functions, 
as discussed by Deville and Samdal (1992) for instance, to 
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the two dimensional problem due to the indeterminate 
nature of the Z),y weights is not possible, k is open to others 
to propose new distance functions which guarantee the 
non-negativity of the weights. 

4. STRATIFIED SAMPLING DESIGN 

Suppose the population consists of L strata with A'̂^ 
units in the h-tb stratum from which a simple random 
sample of size «^ is taken without replacement. The total 
population size N = £^^, A'̂^ and sample size n = Y,h=i "h-
Associated with the /-th unit of the h-th stratum there are 
two values y^ and x^ with Jĉ  > 0 being the covariate. For 
the h-th stratum, let' PF̂  = N^/N be the stratum weights, 
/^ =nf^/N^ the sample fraction, J*̂ , 3ĉ , 7^, Jf̂  the _v-
and x - sample and population means respectively. Assume 
X = Y,h'i ^hXf, is known. The purpose is to estimate 
Y = Yji'i ^h Y/,' possibly by incorporating the covariate 
information x. The usual estimator of population mean Y is 
given by 

3 ' „=E ^hYh-
/i=i 

We are considering a new estimator, given by 

L 

(4.1) 

y's, = E ^hYh (4.2) 
A = l 

with new weights W^^. The new weights W^^ are chosen 
such that chi-square type distance, given by 

(^; - ̂ .f I. 

h-i W^q^ 

is minimum subject to the condition 

ilKxh^x. 

(4.3) 

(4.4) 

Minimization of (4.3) subject to calibration equation (4.4) 
leads to the combined regression type estimator given by 

E ^h Ih^hYh 

ys.-i:^,y„^^^ 
L 

E 
^=1 E ^h^h4 

x-Y^H^i 
/ i = i 

(4.5) 

/,=I 

for the optimum choice of weights given by 

w: = w.. T̂ ^̂ ^̂  ix-Yf^„x} 
E ^h^l,^!. 
/ i = i 

(4.6) 

- 2 V ' ' = > 

If qf^=x^ then estimator (4.5) reduces to the well known 
combined ratio estimator in stratified sampling. The well 
known estimator of variance of combined regression 
estimator is given by 

^(,-).t i!ilLA) 
/.=! ";, 

'eh (4.7) 

where 

4 = ("/,- 1)"'E4 
1=1 

is the h-th stratum sample variance and e^. =yhi~YH' 
biXhi-Xh) and * = i L i ^/,9/,J'/,^/,/Et=i ^/ ,9/ ,^A have 
their usual meaning. The lower level calibration approach 
yields an estimator of variance of the combined regression 
estimator as 

vMi)-i: 
/i=i 

L D^w:-

w 
'Sh (4.8) 

where 

D. 
< ( 1 - / . ) 

and fF;,* is given by (4.6). If ^^ = x;, then (4.8) reduces to 
an estimator given by 

iy'sil RATIO 

i xYj. ^.'(i-A)„2 
K^sij 

(4.9) 
A = l 

which is a special case of a class of estimators for estima
ting the variance of combined ratio estimator given by Wu 
(1985) as 

^(y'sX 
(xYj^wH'-f^),2 

^~ Z^ ^eli 
(4.10) 

for g = 2. The properties of variance estimators of the 
combined ratio estimator are also studied by Saxena, 
Nigham and Shukla (1995). In higher level calibration, a 
new estimator is given by 

^s, I^GREG) 2^ 
A = l 

L n.w' h " / I 
•s,, 

W 
eh (4.11) 

where Q^ are suitably chosen weights such that Chi-Square 
distance function given by 
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^ {^h - Dhf 
(4.12) 

is minimum subject to higher level calibration equation 
defined as 

L 

1 
A = l 

Ynh^l = y(xs,) (4.13) 

where. 

^(^5,)=E^.' 
0 -fh) 

^hx 
h=l 

is assumed to be known and Shx = {n^- 1)'' YtU (^A, ~ ^ A )̂  
is an unbiased estimator of 5^ = (Af̂  - l)-'X!=*i (^W'-^A)^-
This procedure leads to a new estimator for the variance of 
the combined regression estimator given by 

%)cLR = ' ^ 5 , ( 4 R E G ) - 5 „ [ F ( X „ ) - V[X,) (4.14) 

where 
r « 2 . 

4,=E 
' ^ r ( l - / , ) ^ . 2 . 2 / ^ ^ . ^ ( 1 - / , ) 4 

/. = 1 ",, 
Qh^lx^Sh/Y. 

h'l n. 
"hx 

denotes the combined improved estimator of regression 
coefficient in sti-atified sampling and 

V{x,)-twl^^^^sl 
h-i n^ 

is an unbiased estimator of ^(3cj,). If ^^ = l/3c^ and 
Qh ^ ^l^hx' then estimator (4.14) reduces to a new estimator 
of variance of the combined ratio estimator given by 

. / . v , ^ ^ / , ( 1 - / A ) 2 

^S, l̂ RaUo) ~ 2.^ ^eh 
h-l n. 

lxY\V{xs.)] 
•Si) 

(4.15) 

which is a ratio type estimator proposed by Wu (1985) for 
estimating variance of the combined ratio estimator but 
makes use of extia knowledge of the known variance of the 
auxiliary variable at the estimation stage. Several more new 
estimators can be constmcted for new choices of weights 
qh and Qh-

5. A WIDER CLASS OF ESTIMATORS 

If we define u =X/X;^, d.x. and v = V{X^^.^) I V{X^^.^), 
then a wider class of estimators has been defined as 

^SS(4REG) = | | E E D^j{dierdjenH{u,v) (5.1) 

where H {u, v) is a parametric function of u and v such 
that H{l,l) = l and which satisfies certain regularity 
conditions. Then all estimators obtained from the following 
functions, 

LT-/ ^ a B t r / \ 1 + C^(" ~ 1) H{u,v) = U V*', H{u,v) = î  , 

I + p ( v - 1) 

H{u,v) = l +a{u- l) + p(v- 1) 
and H{u,v) = {1 + a(M - 1) + P(v - 1)}"' are special cases 
of the higher level calibration approach, where a and (3 are 
unknown parameters involved in the function H{u,v). 
Replacing these parameters with their respective consistent 
estimators in the class of estimators at (5.1) leads to the 
same asymptotic variance as shown by Srivastava and Jhajj 
(1983), Singh and Singh (1984) and Mahajan and Singh 
(1996). The extension of present investigation to two phase 
sampling foUowing Hidiroglou and Samdal (1995) is in 
progress. 

The next section has been devoted to studying the 
performance of the higher order calibration approach 
through simulation. 

6. SIMULATION STUDY 

Under the simulation study, we have considered compa
risons of estimators of variance of ratio estimator as well as 
that of regression estimator. To avoid any kind of confu
sion, we have redefined the estimators considered for 
comparison as follows: 

6.1 Ratio Estimator 

We have compared the estimators of the variance of the 
ratio estimator, given by 

V[Y ) = i ^ ^ ^ 
''ll^RATlo/ „ ( ^ _ 

with the estimator, given by 

^ ^ ( I - / ) Y - 2{XY 
E ^ i 

1) 1=1 \X} 
(6.1.1) 

{ S2\ 

^2 ^ ^ R A T I O / ^ ^1 i^RATIO/ (6.1.2) 

6.2 Regression Estimator 

We have also compared the estimators of the variance of 
the regression estimator, given by 

V[Y V 
^ I \- 'GREG/ 

^^^^te]^^M-x).<^,{^-xJ (6.2.1) 
n{n- I) ,=1 
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with the estimator, given by 

^2 (4REG) = Vi (4REG) * V3 iSl - sl) (6.2.2) 

where vjy., / = 1,2, 3 have the same meaning as defined 
earlier. 

We have considered two types of populations viz. finite 
populations as well as infinite populations to cover almost 
all practical situations. 

6.3 Finite Populations 

In case of finite populations, we have taken a population 
consisting of Â  = 20 units from Horvitz and Thompson 
(1952). The study variable, y, is the number of house
holds on /-th block and known auxUiary character, x, is the 
eye-estimated number of households on the /-th block. All 
possible samples of size « = 5 were selected by SRSWOR, 
which results in 

N 15,504 

samples. From the ^-th sample, the estimator 

Y 1 = 7 
•* RATIO I * •* 

'x , with Y = ^Yy. 
n ,=1 

was computed. Empirical mean squared error of this 
estimator was computed as 

MSE(4^T^O). N] 
n) k'l 

C) 
E 'RATIO 1.-^^ (6.3.1) 

For the k-th sample, the ratio type estimators of variance 

^ » I \ ^ R A T I O / I A : ' " ~ ^ ' ^ ' 

given by (6.1.1) and (6.1.2) respectively, for estimating the 
variance of the ratio estimator were also obtained. The bias 
in the h-th ratio type estimator of variance was computed as 

B[yh[K^Tio)]-

^Y E J .̂l̂ ATio)!*- MSE(y^™) (6.3.2) 
\ n ) k-l 

and mean squared error was computed as 

M S E { F , ( f J ) = 

E['^.'(^RATlo)l*-MSE(FJ]^ (6.3.3) 

The percent relative efficiency of the estimator 
Fj (FRATIO) with respect to F, (FRATIO) was calculated as 

RE 

MSE {F, (F J ) X IOO/MSE{ V^ (FRATO)). (6.3.4) 

The coverage by 95% confidence intervals 

for A = 1,2 were calculated for h-th ratio type estimator of 
variance by counting the number of times the tme 
population total, Y, falls between the limits defined as 

'RATIO l*^'«-/,-i («)/^/,(^RA™)lr (6-3.5) 

These results were also obtained from all possible samples 
of size 6 and 7 and have been presented in Table 1. 

The same process was repeated for the regression 
estimator 

( n n \ 

Yo^Eo\k-Y^ YxiYi/Yx! [X-X) 
^,,=1 1=1 ; 

of total obtained from (1.6) under a SRSWOR design. The 
biases, relative efficiency and CCI were obtained by using 
h-th estimator of variance of the regression estimator, 
Vh{YGKE.o)\k for h = 1,2, given by (6.2.1) and (6.2.2), 
respectively. The results obtained have been presented in 
Table 2. In addition, it was observed that for 
« = 5, 0.020% estimates of variance obtained from the 
estimator Vi { F^REQ) and 0.022% estimates obtained from 
the estimator F2(FGREG) were negative. Similar results 
were observed for more natural populations given by 
Cochran (1963) and Sukhatme and Sukhatme (1970). Over 
all, second order calibration estimators perform better than 
first order calibration in case of the finite populations. 

In real life situations, the study variable and auxiliary 
variables may follow certain kinds of distributions like 
normal, beta or gamma etc. In order to see the performance 
of the proposed strategies under such circumstances, we 
generated artificial populations and considered the problem 
of estimation of finite population mean through simulation 
as follows. 
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Table 1 

Comparison of K̂  I J'RATIO) ^'"^ ^i (^RATIO) ^°^ ^'"''^ populations 

n 

5 
6 
7 

n 

5 
6 
7 

B viY )] 
' 1 y-" RATIO/J 

-211.33 
-141.92 

-99.34 

B , 1 lV3REG/J 

-328.49 
-223.92 
-157.88 

B yiyvumo]] 

217.01 
102.00 
58.60 

Comparison of K̂  (J'GREG) 

B[F2(4REO)] 

-194.78 
-136.34 
-94.38 

RE 

166.57 
115.06 
109.23 

CCI[F,(4^^,J) 

0.93 
0.91 
0.90 

Table 2 

and F, (ycREG) ̂ °'' finite populations 

RE 

112.04 
103.02 
101.21 

cci[F,(ycREG)l 

0.92 
0.90 
0.91 

CCI[K,(4^™)] 

0.95 
0.92 
0.90 

CCI[F,(4REG)] 

0.96 
0.93 
0.94 

6.4 Infinite Populations 

The size TV of these populations is unknown. We genera
ted n independent pairs of random numbers y* and x* 
(say), / = 1,2,...,«, from a subroutine VNORM with 
PHI = 0.7, seed(;^) = 8987878 and seed(A:) = 2348789 
following Bratley, Fox and Schrage (1983). For fixed 
Sy = 50 and S^ = 50, we generated transformed variables, 

y, = 3.0 + pl{l-f,^)y; + p Syx; (6.4.1) 

and 

x, = 4.0+Sx' (6.4.2) 

for different values of the correlation coefficient p. For the 
k-tb sample, the estimator 

X1 _ 1 
^RATIOU =y\^\' with y=-Yyi and 

X ) n i-.i 

1 " 

= - E - i 
n ,=1 

was computed. Empirical mean squared error of this 
estimator was computed as 

^^HkA-Uo) 
I 

15,000 

15,000 rn 
E [hATio\k-YY- (6.4.3) 

For the ̂ -th sample, the ratio type estimators of variance 

'^4^RATio)L'^ = 1.2, 

obtained from (6.1.1) and (6.1.2) respectively, for estima
ting the variance of the ratio estimator of population mean 
were also derived. The bias in the h-tb ratio type estimator 
of variance was computed as 

B{Vh[y^-no)]-

1 
15,000 

15,000 kTi 
E ' ^ 4 > ' R A ™ ) I * - M S E { ; ^ ™ ) (6.4.4) 

and mean squared error was computed as 

M S E { F , ( ^ R ^ ™ ) ) = 

, 15,000 |. 

7^;55^ E 1^4^RA™)l*-MSE(^RATio)r(6.4.5) 

^ The percent relative efficiency of the estimator 
2̂ (J'RATIO) ŵ '-h respect to F, (Ĵ RATIO) ̂ as calculated as 

RE = 

M S E { F , (^^™)} X 1 0 0 / M S E { F , ( ^ ^ ^ O ) } (6.4.6) 

The coverage by 95% confidence intervals 

CCl[F,(^,^„o)]fo'-^ = 1.2 

was calculated for h-th ratio type estimator of variance by 
counting the number of times the tme population mean, Y, 
falls between the limits defined as 

^ R A ™ l * ^ 1 . 9 6 / ' ^ , ( ^ R A ™ ) l r ^^•^•'^^ 

These results were obtained for samples of size/j = 60, 
80 and 100 for different values of correlation coefficient as 
presented in Table 3. 
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The same process was repeated for the regression estimator 

^ G R E G I * = > ^ * P ( ^ - ^ ) 

of mean obtained from (1.6) under a SRSWR design. The 
biases, relative efficiency and CCI were obtained by using 
h-th estimator of variance of the regression estimator. 

^/,(:>'GREG)l*fO'"'' 1,2, 

derived from (6.2.1) and (6.2.2), respectively. The results 
obtained have been presented in Table 4. We acknowledge 
that it is worth while studying tiie proposed strategy through 
simulation in more detail and its application in actual 
practice. The empirical study was carried out in 
FORTRAN-77 using a PENTIUM-120. 

7. CONCLUSION 

Higher level calibration approach can be used if variance 
of the auxiliary character is known in addition to the known 
total of that character. The statistical package GES 
developed by Statistics Canada can be modified to obtain 
better estimators of the variance of GREG, useful for 
surveys where information on variance of auxiliary charac
ters is available or can be calculated. 
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Table 3 
Comparison of Fj (J'RATIO) ^'"^ ^i (>'RATIO) ^°'' '"finite populations 

'̂ •(J^RATIO)] 5[f̂ 2(̂ RATio)l ^ ^ C C I [ F , ( ^ ^ ™ ) ] CCI [FJ ( ^ ^ ^ Q ) . 

60 

0.1 
0.3 
0.5 
0.7 
0.9 
0.1 
0.3 
0.5 
0.7 
0.9 
0.1 
0.3 
0.5 
0.7 
0.9 

13.02 
8.07 
4.33 
1.77 
0.33 
3.27 
2.06 
1.13 
0.47 
0.08 
0.76 
0.49 
0.27 
0.12 
0.02 

10.33 
6.35 
3.37 
1.37 
0.26 
2.91 
1.84 
1.01 
0.42 
0.08 
0.77 
0.49 
0.27 
0.12 
0.02 

188.7 
192.6 
195.9 
197.9 
197.7 
123.2 
123.0 
122.7 
122.0 
119.1 
106.1 
105.8 
105.3 
104.4 
102.2 

0.96 
0.97 
0.96 
0.97 
0.99 
0.94 
0.94 
0.95 
0.97 
0.98 
0.94 
0.94 
0.95 
0.96 
0.97 

0.95 
0.95 
0.96 
0.97 
0.98 
0.93 
0.94 
0.95 
0.96 
0.97 
0.93 
0.94 
0.95 
0.95 
0.95 

80 

100 

Table 4 
Comparison of Fj (ycREo) ^'''^ ^i (>'CREO) ^°' infinite populations 

^i (>'oREo)] B F,(>OREG) RE CCl[Vi{yaKEa)] CCI [F , (^„^O) ] 

60 

0.1 
0.3 
0.5 
0.7 
0.9 
0.1 
0.3 
0.5 
0.7 
0.9 
0.1 
0.3 
0.5 
0.7 
0.9 

10.12 
5.06 
3.32 
0.72 
0.13 
1.23 
1.03 
0.13 
0.07 
0.02 
0.65 
0.39 
0.13 
0.02 
0.01 

8.42 
4.33 
2.36 
0.38 
0.10 
1.11 
1.01 
0.11 
0.06 
0.03 
0.57 
0.32 
0.13 
0.02 
0.01 

177.6 
161.5 
152.5 
151.9 
147.7 
153.9 
143.5 
132.8 
121.6 
117.1 
136.1 
135.1 
129.6 
114.4 
112.2 

0.98 
0.97 
0.95 
0.97 
0.99 
0.96 
0.98 
0.97 
0.97 
0.96 
0.95 
0.94 
0.95 
0.96 
0.97 

0.95 
0.95 
0.96 
0.95 
0.97 
0.95 
0.94 
0.95 
0.95 
0.96 
0.94 
0.94 
0.95 
0.95 
0.96 

80 

100 
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APPENDIX 

This appendix has been devoted to deriving the optimum 
value of D..J as given in (3.4). The Lagrange's function is 
given by 

Z - l f V f i i l j ^ -
2 M ^ Di^Qij 

2X ^tY^SxrdjXjf-V^^(x^.,) 
/ 1=1 7=1 

. (A.I) 

On differentiating (A.l) with respect to fi,.. and equating to 
zero, we get 

(A.2) 

On putting (A.2) in (3.2), we get 

^ Y G ( ^ H T ) - J E E ^ , K ^ , - ^ 7 ^ 7 ) ' 
A. = . 

2 1=1 7=1 

\t±D,QS^rdjXjf 
^ 1=1 7=1 

(A.3) 

On substituting (A.3) in (A.2), we get the optimum value 
of Q.. as given in (3.4). 
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Logistic Generalized Regression Estimators 
RISTO LEHTONEN and ARI VEIJANEN' 

ABSTRACT 

In this paper we study the model-assisted estimation of class frequencies of a discrete response variable by a new survey 
estimation method, which is closely related to generalized regression estimation. In generalized regression estimation the 
available auxiliary data are incorporated in the estimation procedure by a linear model fit. Instead of using a linear model 
for the class indicators, we describe the joint distribution of the class indicators by a multinomial logistic model. Logistic 
generalized regression estimators are introduced for class frequencies in a population and domains. Monte Carlo 
experiments were carried out for simulated dataand for real data taken from the Labour Force Survey conducted monthly 
by Statistics Finland. The logistic generalized regression estimation yielded better results than the ordinary regression 
estimation for small domains and particularly for small class frequencies. 

KEY WORDS; Auxiliary information; Class frequencies; Generalized linear models; Labour force survey; Model-assisted 
estimation; Regression estimators. 

1. INTRODUCTION 

Consider the estimation of class frequencies of a discrete 
response variable in a sample survey. The number of 
individuals in a class equals the class indicator's sum over 
the population, the total of the indicator. Therefore, the 
problem can be solved by methods designed for the 
estimation of population totals. To improve the accuracy of 
the estimation, a survey statistician often makes use of the 
available auxiliary data. If the expectation of the response 
variable can be assumed to depend linearly on the auxiliary 
variables as can be the case for continuous response varia
bles, it is advisable to use the generalized regression 
estimator (Samdal, Swensson and Wretman 1992; Estevao, 
Hidiroglou and Samdal 1995). Generalized regression 
estimation can improve the efficiency and reduce the bias 
due to unit nonresponse if the auxiliary variables correlate 
strongly with the response variable. 

From a modeler's perspective, a linear model is quite 
restrictive and might not be the best choice for binary 
response variables, such as employment status of a person 
(employed, unemployed), or more generally for discrete 
response variables, such as a person's status in the labour 
market (employed, unemployed, not in labour force). For 
such variables we introduce a class of logistic generalized 
regression estimators based on a multinomial logistic model 
describing the joint distribution of the class indicators. The 
motivation for the selection of this specific model type thus 
is similar to that used in the context of generalized linear 
models (McCullagh and Nelder 1989). 

The parameters of the logistic model are here estimated 
by maximizing a sample-based weighted loglikeli'hood, the 
Horvitz-Thompson estimator of the population loglikeli-
hood function (Godambe and Thompson 1986; Nordberg 

1989; Skinner, HoU and Smith 1989; Samdal et al. 1992, 
p. 517). 

As an application, we consider the estimation of the 
• unemployment rate in the Labour Force Survey conducted 
monthly by Statistics Finland. Administrative records 
indicating whether a person is registered jobseeker in local 
employment office are available as register-based auxiliary 
data, and these records were merged with the survey data on 
individual basis using personal identification numbers which 
are unique in both data sources. The corresponding auxiliary 
variable correlates strongly with the survey measurement on 
person's unemployment. Thus, improvement in efficiency 
and reduction of bias can be expected by making use of these 
administrative data in the estimation procedure.. Additional 
auxiliary data (sex, age, regional data) were gathered from the 
Population Register. Also these auxiliary data were merged 
with the survey data on individual basis. 

The properties of the generalized, regression estimators 
were studied by Monte Carlo simulation methods where 
SRSWOR samples were repeatedly drawn from a population 
constructed from the Labour Force Survey data. We use 
incomplete poststratification or raking based on a main 
effects ANOVA model. The experiments indicate that the 
logistic formulation yields better results than the linear 
formulation for small domains. We obtained good results 
also when there was only one continuous auxiliary variable. 

This paper is organized as follows. Section 2 defines the 
multinomial logistic model and basic concepts used. In 
Section 3 we introduce generalized regression estimators of 
class frequencies in.a population and domains, and discuss 
the estimation of the model parameters by weighted 
loglikelihood. Variance estimators are presented. Monte 
Carlo experiments are discussed in Section 4. Conclusions 
are drawn in Section 5. 

Risto Lehtonen and Ari Veijanen, Statistics Finland, P.O. Box 5A, FIN-00022 Statistics Finland, Finland. 
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2. MODEL 

Consider discrete /M-valued random variables F̂  
associated with A'̂ elements ̂  in a finite population U. We 
observe their realized values y^ only in a sample 5c U of 
size n. Our goal is to estimate the frequency distribution of 
the '̂j.'s in the population; in classification problems, we 
estimate the class proportions. Suppose we know the vector 
of auxiliary variables x .̂ for every element in the 
population. We impose a multinomial logistic model 

P{YM] 
exp{jc;p.} 

E exp{x;p,} 

{i = l,2,...,m) (1) 

r=l 

and assume that the F^'s are conditionally independent 
given the x^Js. In the binary case, this is the model used in 
logistic regression. The parameter vector p is composed of 
vectors p.(/= 1, 2,..., w) with components P,y(7 = l, 
2,..., q). The parameters are assumed identifiable, that is, 
no two parameter values yield identical probabilities (1) for 
every k. This implies that the auxiliary variables 
^i/(7 = 1> 2,..., g') are linearly independent. To avoid 
identifiabiUty problems, we set p, = 0. It is straightforward 
to generalize (1) so that different auxiliary variables can be 
assigned for the m classes (Lehtonen and Veijanen 1998). 

The sampUng design specifies the inclusion probabilities 
of population elements. The ^-th element is drawn with 
inclusion probability TÎ  and elements k and p are simul
taneously in the sample s with probability 71, > 0 (TÎ .̂ = Jt̂ ). 
As usual, the sample membership indicators 4 = / {kss} are 
assumed conditionally independent of the F .̂'s given the 
Xfjs, but the inclusion probabilities may correlate with the 
auxiliary variables. 

Under unit nonresponse, if element k responds with 
probability 9̂  independently of the 7 's and Fp's {pe U), 
then we substitute 7t̂ 9̂  for n̂ .. Correspondingly, TC, is 
replaced by 7t, 6̂  0 when the elements respond indepen
dently of each other. 

LOGISTIC GENERALIZED REGRESSION 
ESTIMATION 

3.1 Definition of LGREG 

To estimate the frequency distribution of the y^.'%, we 
define class indicators Zi^.=I{Yk = i} with realizations 
Zj. and estimate the totals t.^Y^keu^ki- ^^^ Horvitz-
Thompson (HT) estimator of t. is tf^ = Y.kes'^k^ki' where 
the sampUng weights are â  = l/̂ t̂ . Generalized regression 
estimation (GREG) is assisted by a regression model 
Z .̂ = jc; pf + ê . with Var(e^.) = o | (Samdal et al. 1992; 
Estevao etal. 1995). The parameter p^ is estimated by 

T-k 
Xk^k 

2 
hi 

-U 

E-. 
kes 

^k ^ki (/ = 1,2, ...,m) (2) 

, AG 
and the fitted values f̂ . =A:^ p. are incorporated in the 
GREG estimator 

f = E4-E«*(^*i -4) (' = 1.2 m). (3) 
keU kes 

The selection of a linear model for a GREG estimator (3) 
is fully justified for a continuous response variable. For 
binary measurements Z .̂, a linear model might be un
realistic. Ordinarily, we would prefer a logistic model to a 
linear one. In the logistic formulation, the predicted value 
always lies in [0,1], whereas in the linear formulation, the 
predicted value can exceed these natural limits. If the 
probabiUty of Z .̂ = 1 is close to 0 or 1, then the two models 
yield different results. Moreover, when there are m>2 
classes, it appears sensible to describe the joint distribution 
of the Z^.'s (/ = 1, 2,..., m) by the multinomial logistic 
model (I). To apply the model (1) in generalized regression 
estimation, we estimate the expectations p^ =£(2^. Ix^; P) 
= P{7, = /l;c,;P}by 

i^,=nY, = i\x,;fl} = 
exp(jc;p.} 

i^Y^^pi^kK) 
r=2 

which depend nonlinearly on the auxiliary variables. We 
define a logistic generalized regression (LGREG) estimator 
by 

^ = E A „ ^ E « i ( ^ . i - p . i ) (' = 1.2 m). (4) 
keU kes 

The GREG and LGREG estimators (3) and (4) include 
a sum of predicted values over the population. However, it 
is not actually necessary to have information about the jĉ '̂s 
for every element in the population U. In GREG (3), it is 
enough to know the auxiliary totals Y,keuXk> because (3) 
can also be expressed in the form tf' = t^ + 
d t̂ec/-"-* ~I^i6i^i-^*)'P/ • For the special case of complete 
poststratification, the information required in LGREG is 
similar to that needed in GREG. For other cases, such as 
incomplete poststratification, we cannot compute Y^keuf^ki 
in (4) without knowing the frequency of each value of jĉ  
in the population. For example, if we have two discrete 
auxiliary variables, then in GREG we need the marginal 
frequencies, but in LGREG we need the cell frequencies. 

In addition to estimates for the whole population, 
estimates are usually calculated for subpopulations. The 
population Uis partitioned into domains U,j. <= U of size 
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A'̂ ,̂ .. The set s of respondents is composed of corres
ponding subsets 5(̂ j = sn f/̂^̂  with ŵ ^̂  elements. As in 
GREG estimation (Samdal et al. 1992), we apply LGREG 
estimator 

'(d)i= E P*,-̂  E «t(zti-Aii)-
keu„. kes. (<0 

(5) 

In our experiments, we apply a ratio estimator 
R = t./{t. +1). Its variance is estimated by Taylor 
linearization techniques (Samdal et al. 1992, p. 179): 

V{R) = I 

('i^9' 
( 1 - ^ ) ^ C , + 2 ^ ( ^ - 1 ) C ^ . + . R ' C ^ . (6) 

These estimators are additive: Y.i^(d)i~^(d)- ^^ ̂ ® 
combine two nonoverlapping domains <i, and d^,^ the 
LGREG estimate for d = d^ud.^ is t^^^^ ̂(d^)i/*''(d^)i-
Hence, Y,d^(d)~' ^^^ nonoverlapping domains and 
L^i-^-

In generalized regression estimation, an estimate (3) or 
(4) can be negative, when negative residuals coincide with 
large values of a^. Negative GREG estimates become more 
common, as the number of auxiliary variables increases 
(Chambers 1996). In LGREG estimation, in contrast, this is 
not so, because p^, is bounded by the model formulation. In 
our experiments, LGREG estimates were negative only for 
small domains in certain cases. In many cases, LGREG 
estimate equals the sum of estimated expectations and then 
it is always positive (see Section 3.2). 

If the model (1) includes an auxiliary indicator variable, 
its total over the population is exactly estimated by 
LGREG. This calibration property is desirable in many 
appUcations. 

3.2 ML Estimation by n-Weighted Loglikelihood 

We estimate the parameter p in the model (1) by 
maximizing a 7c-weighted loglikelihood 

Lsih P J 

Yn-kYY,=l]log 1-EM*, 
kes [ \ 1=2 

-YnY, = i}logiiJ 
1=2 

(Godambe and Thompson 1986; Nordberg 1989; Samdal 
et al. 1992, p. 517). In general, we maximize the likelihood 
function numerically by appropriate numerical methods 
such as a Newton-Raphson algorithm. 

It can be shown that for complete poststratification, the 
fitted values ẑ , in GREG are equal to the estimates p̂ ,. in 
LGREG. Thus, when there are no missing cells in complete 
poststratification, the GREG and LGREG estimators are 
identical (Lehtonen and Veijanen 1998). This does not 
hold for other models such as incomplete poststratification. 

The LGREG estimator (4) has two parts: a sum of esti
mated expectations over the population and an adjustment 
term Y^kes'^k'^^ki ~ Pw) • '̂ '̂ ^" ^^ shown that if the model 
contains an intercept, the adjustment term vanishes and the 
frequency /,. is estimated by Ltsu'Pw (Lehtonen and 
Veijanen 1998). 

where C.., the covariance of t. and /., is estimated by 

A,._ e,.; e. 
c,v=E kp ^ki ^pj 

•P k.pes % ^k '^ 
(7) 

In (7), e^. = z,. - p^. and Â ^ = Cov(4/p =n^-n^n^. 
Similar derivations hold for the corresponding domain 
estimators. 

4. EXPERIMENTS 

4.1 Details of Simulation Studies 

In all the simulation experiments, K= 1,000 samples 
were drawn from a population with simple random 
sampling without replacement (SRSWOR). Monte Carlo 
means and standard errors of the estimates were calculated 
from the simulated samples. The design effect for an 
estimator /,... was calculated as a ratio of estimated 

(")' /̂  » ,̂  • A.lfJ[ 

variances: Deff (f̂ ^̂ .) = F,^ {t^^^) IV^^ {t^^.^), where 
^mc ^hd)) denotes the Monte Carlo variance estimate of 
the HT estimator (Lehtonen and Pahkinen 1996). We 
measured the overall accuracy of domain estimates by the 
mean absolute relative domain error over D domains and K 
samples s.: 

MARDE(/) = 
1 ^ 

- E 
1 ^ 100 (dp\ :,(^7) - (d,)i 

idpV 

In the GREG estimates (2), the variance was a constant 
Oj, = o ,̂ which cancelled out. For LGREG, domain 
frequencies were estimated by (5) and variances by (7). For 
GREG and HT, see Samdal et al. (1992, p. 401). 
Confidence intervals for the frequencies were computed as 
if the class indicators were independent. At the nominal 
significance level of 95%, an acceptable coverage rate lies 
in [93.65%, 96.35%] for K = 1,000 simulated samples. 

4.2 An Experiment With Simulated Data 

To compare LGREG with GREG, we simulated a data 
set, in which the auxiliary variable X was a continuous 
random variable uniformly distributed in (-3,3). The 
variable of interest, Y, representing three classes followed 
distinbution (1) specified by x^p, =0, xj^ p^ = 3A'̂ . - 1, and 
x ; Pj = -2Xi^ for N = 10,000 elements {k = 1,2 A )̂. A 
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thousand samples of size n = 1,000 were independently 
drawn with SRSWOR. X^^ and X^ were used as auxiliary 
variables. All the estimators appeared unbiased (Table 1). 
The variance estimates had empirical bias smaller than 3% 
and standard deviation smaller than 5%. 

Table 1 
The design effects (Deff) for class frequency estimators and the 

empirical coverage rates (CR) (%) of 95% confidence intervals for 
classes i = 1, 2,3 

Method " 

HT 

GREG 

LGREG 

h 
1 

0.93 

0.89 

Deff 

h 
1 

0.55 

0.45 

h 
1 

0,57 

0.50 

h 
95.2 

95.0 

94.9 

CR 

h 
95.3 

94.3 

93.7 

'"̂ 3 

94.7 

95.6 

95.3 

The best results were obtained by LGREG, probably due 
to the fact that the proportional frequencies of classes varied 
greatly over the range of the auxiliary variable. The 
probability of each class was such a function of the 
continuous auxiliary variable that a linear regression model 
did not fit the data well. 

4.3 An Experiment With the Finnish Labour Force 
Survey Data 

4.3.1 Constructed Population 

We studied the estimation of the unemployment rate 
using the Finnish Labour Force Survey (LFS) data of three 
consecutive months of the year 1994. The constructed 
population consisted of 33,329 individuals. From the 
Population Register we obtained, for each population 
member, age class (15-24, 25-34, 35-44, 45-54, and 55-64 
years), sex and region (three areas). A jobseeker indicator 
was obtained from the register maintained by Ministry of 
Labour showing which individuals were registered as 
unemployed jobseekers. The time lag in this administrative 
data source is about two weeks. It can thus be expected that 
the proportion of persons with changes in the actual labour 
market status is small within this short time interval. It 
should be noticed that the register-based jobseeker status is 
defined differently from the employment status measured in 
the Labour Force Survey. The survey measurement is based 
on a standard Intemational Labour Office (ILO) definition. 
All these auxiliary data were merged with the survey data 
on individual basis. 

The nonresponse rate varied by jobseeker status so that 
among registered jobseekers the rate was 11.4% whereas for 
the others the rate was 7.6%. The probability of nonresponse 
was modeled by a logistic ANOVA model and the ML 
estimates of nonresponse rates (ranging from 2.9% to 22.8%) 
were used as a nonresponse model in simulations. 

For simulation experiments, we constructed an artificial 
population consisting of A'̂  = 30,835 persons. Employment 
status was defined by three classes: "employed", 
"unemployed", and "not in labour force" with population 
frequencies r, = 17,373, /j = 4,433, and /j = 9,029, 
respectively. The unemployment rate was defined by 
R = t.^l{t^ + t.^ = 20.33%. As domains we used the ceUs in 
the crosstabulation of age classes, sex, and the register-
based unemployment status. 

From the artificial population, K = 1,000 independent 
random samples of size n = 1,000 persons were drawn with 
simple random sampling without replacement. In each 
sample, nonresponse was simulated by the nonresponse 
model fitted to the original population. The response 
probabilities were then estimated from each sample by 
logistic regression with the same ANOVA model as in the 
nonresponse model. We multipUed each probability 7t̂  by 
the estimated response probability. 

Three models were used to compare LGREG with 
GREG. The components of A:̂  were dummies correspond
ing to age (5 classes), sex, region (3 areas) and jobseeker 
status. In incomplete poststratification, or raking, a main 
effects ANOVA model was based on classified auxiliary 
variables. We compared models with and without the 
jobseeker indicator. The third model also included a fourth-
order polynomial of age. 

4.3.2 Results 

Incorporating no auxiliary information, HT estimators 
had usually larger variance than the generalized regression 
estimators (Table 2). Both generalized regression estimators 
based on a raking model with age, sex, and region yielded 
some improvement over the HT estimates. Much better 
results were obtained by models including the jobseeker 
indicator, which correlates more strongly (r = 0.83) with 
the ILO unemployment indicator than the other auxiliary 
variables. Thus these auxiliary data improve the efficiency 
of estimation {cf. Djerf 1997). 

Table 2 
Properties of unemployment rate estimates (R(%)) for the raking 
model (R) and the model including age polynomial (P), with (E) 
or without (N) the jobseeker indicator. SD denotes the standard 

deviation and CR (%) denotes the coverage rate of 95% 
confidence intervals 

Model Method R Bias SD Deff CR MARDE 

HT 20.32 -0.0081 1.461 

RN GREG 20.30 -0.0262 1.454 

RN LGREG 20.31 -0.0229 1.454 

RE GREG 20.30 -0.0244 0.895 

RE LGREG 20.29 -0.0419 0.901 

PE GREG 20.30 -0.0259 0.887 

PE LGREG 20.29 -0.0421 0.896 

1 

0.995 

0.995 

0.612 

0.617 

0.607 

0.613 

95.7 

95.3 

95.3 

96.0 

94.8 

95.6 

95.1 

35.28 

46,03 

45.93 

35.74 

34.80 

35,41 

34.76 
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Table 3 
Mean absolute relative domain errors (MARDE) and mean 

coverage rates (CR) (%) of 95% confidence intervals 
for estimated class frequencies in domains with true frequency 

'w (' = L 2,3) (a) smaller than 100, and (b) at least 100. 
The model included the age polynomial 

MARDE CR 
Method 

r̂f)l ^(d)2 V ) 3 '{d)l \d)2 '(d)3 

(a) GREG 96.92 67.36 121.95 88.2 77.8 84.6 

LGREG 80.28 67.20 104.05 83.9 76.5 51.7 

(b) GREG 6.95 12.31 14.35 94.1 85.9 93.7 

LGREG 6.88 12.34 14.29 93.9 85.4 93.3 

The differences between GREG and LGREG were small 
at the population level (Table 2). LGREG was never 
inferior to GREG. Domain totals, especially in small 
domains, were more accurately estimated by LGREG than 
by GREG (Table 3). When the model included the age as a 
continuous auxiliary variable, the standard deviation of the 
unemployment rate estimate was smaller for LGREG than 
for GREG in 19 of 20 domains. Unfortunately, the 
confidence intervals obtained by LGREG were often too 
narrow due to small variance estimates (Table 3). 

5. SUMMARY 

We introduce a new approach to the model-assisted 
estimation of population class frequencies of a discrete 
response variable in survey sampling. Our logistic general
ized regression estimation (LGREG) is based on a multino
mial logistic model, which might be more realistic for class 
indicators than the linear model normally used in general
ized regression estimation (GREG). LGREG and GREG 
estimators yield identical results for complete poststratifi
cation, but differ for other models such as raking. As 
compared with GREG, LGREG usually requires more 
auxiliary information, not only the auxiliary totals. Never
theless, LGREG appears preferable to GREG when the 
class probabilities vary greatly over the range of continuous 
auxiliary variables and when we need estimates for small 

domains, particularly in the presence of small class 
frequencies. 
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Confidence Intervals for Domain Paranieters When 
the Domain Sample Size is Random 

ROBERT J. CASADY, ALAN H. DORFMAN and SUOJIN WANG' 

ABSTRACT 

Let .4 be a population domain of interest and assume that the elements of A cannot be identified on the sampling frame and 
the number of elements in A is not known. Further assume that a sample of fixed size (say n) is selected from the entire 
frame and the resulting domain sample size (say n^ ) is random. The problem addressed is the construction of a confidence 
interval for a domain parameter such as the domain aggregate T^ = Z,e^ Jc,- The usual approach to this problem is to redefine 
Xg, by setting *, = 0 if /' C/4. Thus, the construction of a confidfence interval for the domain total is recast as the construction 
of a confidence interval for a population total which .can be addressed (at least asymptotically in n) by normal theory. As 
an altemative, we condition on n^ and construct confidence intervals which have approximately nominal coverage under 
certain assumptions regarding the domain population. We evaluate the new approach empirically using artificial 
populations and data from the Bureau of Labor Statistics (BLS) Occupational Compensation Survey. 

KEY WORDS: Bayes method; Conditioning; Establishment surveys; Simple random sampling; Stratification; Survey 
methods. 

1. INTRODUCTION 

In sampling from a finite population, we often are 
interested in the estimation of totals, means, or other 
quantities, for parts of that population, usually referred to as 
domains. Such domains are not explicitly listed in the 
frame, the number of items that will occur in the survey is 
not known in advance, and often enough, we do not even 
know the number of their elements in the population. For 
example, we might sample schoolchildren for certain 
medical problems, and then wish to know the mean blood 
pressure of those children who are underweight. The class 
of underweight children would constitute a domain. The 
only information we have as to whether or not a child is 
underweight is likely to be among the sampled children; if 
so, then this would be a case where the domain is not 
explicitiy listed on the frame. 

An essential part of the inference process is tiie estimation 
of the precision of our estimators; this is typically given by 
an estimated standard deviation, coefficient of variation, or 
confidence interval. The notion of a valid confidence 
interval underUes whatever measure of precision we use. All 
confidence intervals have, by construction, a stated 
"nominal" confidence level. A valid confidence interval is 
a confidence interval with actual coverage matching the 
nominal coverage. The actual coverage may be determined 
theoretically or by empirical work mimicking the practical 
circumstances in which the confidence interval would be 
used. If a standard deviation is not such as to give rise to a 
valid confidence interval, then the standard deviation needs 
to be regarded as misleading. 

In the case of estimates for domains, confidence intervals 
constmcted along tiaditional lines can lead to serious under-
coverage, a fact not always appreciated in the literature. 
We refer to this as the domain problem. The present paper 
addresses tiiis problem by a somewhat complex methodolo
gy involving Bayesian ideas, which, however, leads to a 
rather simple practical solution, improving on current 
methodology. The main change in method lies in replacing 
the standard normal statistic used in the construction of 
confidence intervals, with a Student's /-statistic having 
degrees of freedom that depend on the number and 
configuration of the domain items in the sample. 

We shall focus on domain totals and domain means for the 
two common cases of simple random sampUng and stratified 
random sampling. In the case Of simple random sampling, it 
turns out that standard methods are satisfactory for the mean; 
however, for the total, coverage can be lower than nominal 
but not usually worrisome. For stratified random sampling, 
confidence intervals for both the mean and the total pose 
serious difficulties witii regard to coverage level. In this case, 
the new methodology is augmented by use of a well known 
approximation due to Satterthwaite (1946). Alternate 
approaches to ours, also using this approximation, may be 
found in Johnson and Rust (1993) and KoU (1994). 

An ouUine of the paper is as follows: In Section 2, to 
intioduce ideas, we consider the case of the total in simple 
random sampUng, using it to illustrate the standard 
approach for domain estimation, the coverage problem to 
which this gives rise, and the approach here taken to rectify 
the difficulty. Section 3 describes the extension to stratified 
random sampling. Section 4 states our conclusions. 

' Robert J. Casady and Alan H. Dorfman, U.S. Bureau of 1-abor Statistics, 2 Massachusetts Ave. N.E., Washington D.C., 20212-0001, U.S.A.; Suojin Wang, 
Department of Statistics, Texas A&M University, College Station, TX 77843, U.S.A. 
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2. THE CASE OF SIMPLE RANDOM SAMPLING 

2.1 Standard Method 

The standard approach to domain estimation is well 
described in Samdal, Swensson, and Wretman (1992); 
Sections 3.3, 5.8, and Chapter 10) (henceforth SSW). Their 
approach is general. Here we paraphrase it for the case of 
simple random sampling, and, by mild extension, for 
stratified random sampling as well, and focus on the 
domain total. 

Let X. be the value of the characteristic of interest for the 
/'-th (/ = 1,2,..., Â ) element of the population and let A be 
a domain of interest. We shall consider only the case where 
the elements of ̂  cannot be identified on the frame and the 
number A''̂  of elements in yi isnotknown; tiie case where A'̂  
is known is fully treated in SSW. It is assumed that any 
element of A included in a sample can be identified. The 
problem is to constmct a confidence interval for the domain 
total, T^ = X,6^^,' based on a sample of « elements selected 
from the entire frame. 

Explicitiy (as in SSW, Section 3.3) or implicitiy (as in 
SSW, Section 10.3) the standard approach to this problem 
is to redefine x., by setting x. = 0 if i€A, which forces the 
population total T = YJI^IXI to be equal to T^. Thus, the 
constiiiction of a confidence interval for the domain total is 
recast as the constmction of a confidence interval for a 
population total. In what follows it is assumed that the x.' s 
have been redefined as above. We shall also assume, here 
and throughout this paper, that n is sufficiently large and 
nIN sufficiently small that second order terms can be 
ignored. Define the additional population parameters, 

X = TIN = population mean, 

S^ = Y,i=i {x^ - X)^IN = population variance, and 

p^ =N^/N = proportion of population in ^ . 

Then 

(1) t = {N/n)j:%i X., X = E"=, x./n = tjN, s^ = 
Z M (Xj - x)^l{n - I), and p^ = njn (where n^ is the 
number of sample elements in ^ ) are unbiased for the 
corresponding population parameters, 

(2) E{t) = T^, 

(3) \ar{t^)=N^S^/n, 

(4) ^{t^ - T^)/{NS)—'-.N{0,1), and 

(5) 5^ is consistent for S^.' 

ItfoUowsthat ^{t^ - T^)/{Ns)-±^N{0,1), so, when 
n is "sufficientiy large", appropriate values from the normal 
distribution can be used to construct confidence intervals 
for T^, as noted by SSW, p. 391. 

The proportion of the population in y4 " is I - p^ and 
x. = 0 for ieA'^; therefore, when p. is smaU and the 
values of the x.'s for ieA are concenttated away from zero, 
the convergence in distribution in (4) can be slow. 

Consequently, the distribution of y/n{t^- T^)/Ns can 
deviate from normal even for what are usually considered 
to be moderate to large values of n. The simulation study 
in Section 2.5 illustrates this. 

For the case of stratified random sampling, confidence 
interval coverage for domain quantities using standard 
methods can be poor. Dorfman and Valliant (1993) noted 
the problem in their study of wage distributions for domains 
consisting of workers in specific occupational groups. 
Preliminary empirical work by the authors indicated that 
supposed 95% confidence intervals for total workers and 
total wages for occupation based domains typically 
provided only 75% to 85% coverage even for a large total 
sample size {n = 353 establishments). • These results are 
verified as part of the empirical work described in 
Section 3. Furthermore, their work indicated that the 
distribution of T^ - T^ was strongly dependent on the 
realized value of n^, which suggested that some type of 
"conditional" confidence interval should be considered. It 
seems desirable to establish methodology for the constmc
tion of conditional (on n^ or equivalentiy p^) confidence 
intervals for T^, which provide nominal, or near nominal, 
coverage regardless of the realized value of the domain 
sample size. Inference conditional on sample size is 
discussed in SSW, Section 10.4, but only for the case of 
known N^; we are concerned throughout this paper with 
the case of unknown A''̂ . 

2.2 Definitions and Notation 

We define the following parameters and estimators: 

Domain parameters: 

\iyt = TJN^ = domain mean, 

o^ = Y^ieA^x. - \i^)^/N^ = variance of population ele
ments in ^ . 

Domain estimators: 

N^=PAN, 

A/( = TH^iXf/n^ = TyilNyi (only defined for «^ ^ 1), and 
^l = Z"=i (^ - P J ' A " ^ - 1) (only defined for n^ ^ 2). 

In what foUows it is understood tiiat n^tl (or equivalentiy 
p^ ^ 2 In) unless specifically stated otherwise. At n^ = 1 or 
0, it is preferable to supply an "insufficient information" 
tag, rather than attempt inference. The relationships given 
below follow directly from the definitions: 

T_,=Np,^i,andt,=Np,^,, 

^=PA^A ^"'^•^ =PA\^A' 

S^=PA^^-PA)\^1*PA'^\ 

and 

,2 _ 
-^PA{}--PAY\ 
n- I ^ ' 

"PA I 
^l- (1) 
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Also, it is straightforward to verify that 

(sf^lN)(f, - T,) = ^ix.lp, - p,) + ^ o , Z , (2) 

where Z = Jnp^ (p^ - \i^)lo^. Thus, conditionally on 
p.,T. is biased for T., and if, for example, we assume an 
' A A A it- ^ 

underlying normality, and Standardize {<JnlN){T^ - T^)by 
the corresponding conditional variance, we will get a 
non-central /-distribution with unknown non-centrality 
parameter proportional to \/n\i^{p^ ~ PA^' Providing littie 
basis for (conditional) sound inference. This is tiie problem 
which the discussions in the next sections attempt to 
address. 

We remark that in estimating the mean p^ by p^, the 
bias is zero, and the problem of the preceding paragraph 
does not arise. This is the reason that, in simple random 
sampling, standard inference for means is sound, at least 
when the domain variates are normally distributed. 

2.3 General Methodology for Confidence Intervals 

Let 0 = (f̂  - T^)lsf , where Sf is an estimator (to be 
specified) of the (conditional or unconditional) variance of 
the total. Assume that the form of the conditional (on p^) 
distribution function of 0, say H{-\p^; p^, \i^, o^), is 
known where p^, p^ and o^ represent unknown parame
ters. In order to construct a conditional equal tailed 
(1 - a) X 100% confidence interval (CI) for T^, we define 
an upper critical value 

^u - ^U'<^^PA\PA) = - inf{^l^{«l^^;/'^)^ a/2} = 

-H-\al2,p^;p^) 

where p^ is considered fixed and the dependence on p^ 
and o^ is temporarily suppressed; a lower critical value, say 
Cj, is defined in a similar manner. A conditional, equal 
tailed ( l - a ) x ] 0 0 % CI for T^ is then given by 
CI(1 - a ) ={tt,u), where 

T^ + c^Sf^ and C TA + Cj^j, (3) 

At this point the obvious practical problem is that the 
critical values c^ and Cj depend not only on p^ but also on 
the unknown parameter p^. One approach to this problem 
is to take a Bayesian tack and assume the parameter p^ is 
the realization of a random variable. Adjusting the notation 
to reflect the assumption that p^ is stochastic, we replace 
H{x I ^^; p^) by H{x \p^,p^) and have that 

^r{Q^x\p}^ = F[X\p,) 

= J7r^[^{^\PA'PA)f{PA\PA)siPA)dPA' • (4) 

where h{p^) = jf{p^\p^)g{p^)dp^ and g{p^) is the 
density of p^. It should be noted that as a consequence of 
our sampling scheme the distribution of np^, conditional 
on p^, is Binomial. {n,p^) so that f{p^ \p^) is known. 
Under the Bayesian approach, the critical values are cj = 
c;(a,^^) = - F - ' ( a / 2 | p J and c,'^ c;{a,p^) = - F'' 
(•1 - a/2|p^) so the upper and lower limits for a 
conditional (1 - a) x 100% CI for T^ are 

u = t,-^ c' Si. and f = f̂  + Cf 5^ . (5) 

For the purposes of our current research, we assume tiiat the 
prior distribution g{Pji) is A (̂p̂  , o^ ) with p and o],^ 
to be specified, with the understanding thai o^ is 
sufficiently small that p^ lies between 0 and 1 with near 
certainty. The normality assumption is made for mathe
matical convenience. It also captures notions we may have 
of degrees of closeness to, and symmetry about, p . For an 
empirical Bayes approach, we use \ip = p/, we consider 
several possible alternatives for ô  discussed in detail 
below. Our experience indicates that the normality 
assumption is not cmcial; rather, it is primarily a matter of 
convenience. 

2.4 Confidence Intervals Under Normal 
Assumptions 

To proceed further we assume that within the domain A 
2 , , o^). In practice, this the X. are distributed A^(p ,̂ 

assumption may not be met. Nonetheless, it leads to 
suggested modifications tiiat wiU not at any rate give lower 
coverage of confidence intervals than the standard 
approach. Combining this assumption with earlier results, 
in particular equation (2), and ignoring lower order terms, 
we have 

(a) {^{TA - T^)ln \ PA,PJ is distiibuted 

^(\fn\^A(PA- PA^^PA^I)^ 
>2 

(b) 

(c) 

("PA 
^A 

D — 
^'A 

PA'PA is distributed Xi^pA " ^)' ^"d 

the conditional random variable in (b) is stochastically 
independent of the conditional random variable in (a). 

Consider 0, = (f̂  - T^)l{Nd^^ly/n), which utiUzes 
the conditional variance of t^ as the standardizing term. It 
follows immediately from (a), (b) and (c) that, conditional 
on {PA<PA) the random variable 0, is distributed as a 
non-central / with np^ - I = n^ 
non-centrality parameter 

1 degrees of freedom and 

with 

^^^yA^PA-PA^^fK' 

V^=Myo_,. 
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Thus, we have specified the conditional distribution 
function H{-\p^,p^) of 0,. As f{p^ 1P^) and g(j9^) 
have been previously specified, it follows that F{-1 p^) in 
(4) is well-defined although extremely cumbersome to 
calculate. The dependence on p^ and o\, through y^, 
should be noted. 

Although F{- \PA) as given above can be used to 
determine the critical values, they are extremely difficult to 
calculate. A relatively simple approach, given in the next 
paragraph, provides a close approximation to the critical 
values. We have verified the closeness of the approxi
mation by computing the exact values for selected cases 
using large scale simulations. 

Adoption of a locally uniform prior on p^ leads to the 
approximate posterior distribution p^ ~ N{p^,\ar{p^)) 
and we could approximate var{p^) by p^{l - p^)ln. We 
adopt the slightly more flexible prior p^~ N{ii,a^ ) , and 
empirically choose ]i =p^, with several possibilities for 
Op that will be specified below. It follows from Appendix 
A that [^ |p^] is distributed approximately as a normal 
with mean zero and variance j^{l -p^)l{l +V^), where 

"VA = PA(^ -PAy^'^ly 

Then, from the result in Appendix B, conditional on p^, 

[TA - TA) 

^^A\[fA Y.d-^,) 

v/^ N 1 ^ 'i'^ 
+ 1 

is distributed as a central / with n^ - I degrees of freedom. 
Let /j_„/2,« -1 be the (1 - a/2) 100% percentile of this 
distribution. The upper confidence limit u, defined in (5), 
is given (approximately) by 

u = T^+Na^pJnx 

M-a/2,n.-r (6) 

As d^ is conditionally unbiased for o^ and p^ - 6^/«^ 
is conditionally unbiased for p^, we use y^ = 
(p^ - a^ln^)la^ to estimate y^. Substituting y^ for y^ in 
(6) yields 

u^f^+ {Nsl^/n) X 

11 ^ - 2 

1 + PA'^A'^A 
\ 

I + "VA) 
(7) 

where s^ is defined in (1). 

It remains to choose \\i^. We note that M is strictly 
decreasing as v|/̂  increases and 

M^ f̂  + — / , g,,2„ ., = w as v|/̂  becomes smaU, 

- - T A ^ -
fn 

and 

l + ^ . d ^ ^ ' * ' ' 
' l - a / 2 , n . - 1 ••u^forM/^ = l, 

JPA'^A 
' l - a / 2 , « . - l "3 

as \|/̂  becomes large. (8) 

In each case the lower critical value can be dealt with in an 
analogous manner resulting in three competing confidence 
intervals; namely, CI.(1 - a) = (?., w.),; = 1, 2 ,3, with ?. 
defined similarly to ii. in (8) with /,_Q/2 « -1 replaced by 
'a/2n - r The competing confidence intervals are labeled in 
order of decreasing length. 

The first case is equivalent to assuming that o is large 
relative to var{p^ and leads to using the usual 
unconditional variance but with degrees of freedom equal 
to «^ - 1. In most practical problems this seems reasonable 
since o^ is an unknown constant and var{p^) isO{p^ln). 
The second interval corresponds to adoption of a normal 
prior as noted above, with Op =p^{l -p^)ln. The last 
confidence interval is based on the assumption that p^ is 
essentially degenerate at p^. 

2.5 Empirical Study for SRS 

We compared the several confidence intervals of 
Section 2.4 in a small empirical study, using artificial 
populations, for which the domain variable was normal. In 
all cases the population size Â  was 1,000, and the sample 
size n was 100 or 300. The parameters p^ and y^ varied 
from population to population. Letting M^ be the number 
of runs with n^ ^ 2, we allowed the run size Mto vary to 
give Mj = 10,000. Table 1 gives coverage results. CIQ 
represents the confidence interval based on the standard 
normal methodology. The results for CI^ closely approxi
mated the results for CI, and are excluded. The value of M 
is included to indicate how many trials feU into the 
"insufficient information" pile, at a given setting of the 
parameters. Several conclusions seem warranted: 

1. Standard confidence intervals using the usual variance 
estimate and normal quantiles can give low coverage. 
This occurs for several values of p^ when y^ = 1/2 or 
Ŷ  = 2, however, the under-coverage is not too severe 
if the domain variable is normal. The case where 
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Ŷ  = 2 or takes even larger values is probably more 
likely in practice. Thus if the domain variable is normal, 
the use of standard confidence intervals under simple 
random sampling case is not particularly worrisome. 

2. The strictiy conditional intervals {i.e., CI3) using the 
conditional variance can give abominable coverage, 
when Ŷ  is large. That is, confidence intervals based on 
"large" values of \\i^ gave very poor results. 

3. The use of the standard variance estimate but replacing 
the standard normal quantile with a /-quantile having 
degrees of freedom based on the number of sample units 
in the domain {i.e., CI,) gives approximately nominal or 
conservative coverage regardless of the value of 'Y^ . 

Table 1 
Coverage of 95% Confidence Intervals for Domain Total 

for Artificial Populations with 
Domain Variate Normally Distributed* 

Coverage 

PA 

.01 

.02 

.05 

.10 

.01 

.02 

.05 

.10 

n 

100 
300 

too 
300 

100 
300 

100 
300 

100 
300 

100 
300 

too 
300 

100 
300 

M 

y = 
38774 
11773 

16327 
10078 

10303 
10000 

10001 
10000 

y 
37749 
11740 

16348 
10075 

10312 
10000 

10000 
10000 

1/2 

100.0 
98.3 

91,1 
88,6 

88,7 
92,3 

90,9 
94,0 

= 2 

99.9 
94.4 

99.0 
91.4 

90.5 
93.8 

91.7 
94.0 

CI, 

100.0 
100.0 

99.4 
95.5 

97.8 
94.4 

94.8 
95.0 

100.0 
100.0 

100,0 
98.9 

99.5 
95.8 

96.5 
95.2 

CI3 

91.2 
83.2 

95,0 
93.9 

93.5 
92.5 

92,5 
92.3 

83,5 
89,1 

88,4 
74,7 

77,6 
66,6 

67,9 
65.0 

* See Equation (8) and accompanying text for definition of CI, 
and CI3. Clg is the standard normal confidence interval. 

As a minor observation on the results, we note the 
counter-intuitive increases in coverage for smaller p^ and 
n. We believe this is due to the fact that, at very small 
values of p^ and n, p^ is constrained to be positive, and so 
cannot deviate much below p^. Were intervals calculable 
for n^ = 0, there would be a serious drop in coverage in 
these cases. Note that the coverage rises unexpectedly only 
where M is large. 

3. THE CASE OF STRATIFIED RANDOM 
SAMPLING 

3.1 DeFinitions and Notation 

Assume there are K strata and, where appropriate, terms 
previously defined have corresponding stratum level 

definitions. For example, «̂  is the sample size and ŵ ^ 
is the number of sample elements in A for the k-tb stratum. 
Thus, a natural estimator for the domain total 

TA=lk=l lisA^'ki = Ik-l ^kPAk i^Ak is 

•'/( l^keB, ^Ak l^keB, ^k^Aki^ *Ak' 

Where p^, = «^t/«,, p^, = tit{x^.ln^^ and 5, ={k\n^^^l 
and 1 ^ k ^ Kj. As p^i^ = 0 for k$B^, it is stiaightforward 
to verify that 

4^.4 - ^A) \PA^PA] = Ef=l ^kiPAk - PAk^\^Ak = M̂  (9) 

and 

v a r ( r , - r , ) | ^ , , n E \T2 "2 2 , 
keB.^kPAk^Akl^Ak^ 

E T,,2 .2 2 I - 2 

keB.^kPAk^Ak'^k'^^A^ 

Where/^ = {PAIPA2-PAK\^PA = ^PAIPA2-PAKI Thus, 
as in the simple random sampling case, there is a 
conditional bias p^, which needs to be taken into account. 

3.2 A Methodology for Confidence Intervals 

The general methodology for confidence intervals of 
Section 2.3 for simple random sampling holds here as well. 
One need only reinterpret scalars as vectors; for example, 
replace p^ by PA=(PAI'-'PAKy- I" particular, 
H{x\PA,PA) = Pr{ 0 ^x^p^,p^] will be the conditional 
distribution function of 0 = {f^ - T^)ld^, where d̂  is a 
re-scaling factor to be specified. 

Let 8^ = {k\n^,^^2 and I ^ k ^ K] and, for keB^, 
define d̂ ;̂  = S/=i*(̂ w ~ ^Aif^^PAk ~ !)• Under normality, 
("^t" l)^^*/o'^*~X^("^A-1)' so if {di^\keB^] are 
non-negative constants with Y^keB dk > ̂ ' 'hen by the usual 
Satterthwaite (1946) two moment approximation, the 
conditional random variable 

( l /c)EteB/ i ("^t - ^)i^\kl^lk)\PA'P 

is distributed approximately as a y^ (v), where 

C = HkeB, dki^Ak - ^^/HkeB, dk("Ak - 1) 

and 

v = (E.efl, d,{n,,- \)?/YkeB/kinAk- D-

This suggests that we restrict our attention to expressions of 
the general form 

^l=YlkeB,dk("Ak- ^)^lkl^lk 
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with choice of the dk to be specified. Note thiat when 
^ _ ^ . 2 . _2 . . . . . 2 . 2 and 

.2 
1)^.4*/ ^Ak 

k-^iPAk^Ak'"k("Ak- 1), 6^ =6^ = Y.keB, 
is an unbiased estimator for the 

S1-B2 

dk^PAk-
conditional variance d^. However, as in the simple random 
sampling case, this estimator will tend to be too small. We 
use the more general expression to develop a family of 
/-statistics when we "uncondition" on p^. Each of these 
will involve unknown parameters, and, as in the simple 
random sampUng case (transition of equation (6) to 
equation (7)), estimation of these unknowns will be 
necessary. Thus the net result will be several rival "near 
/-statistics" which we may then compare empirically. 

Because the samples are selected independentiy from 
each stiatiim we have f{p^\p^) =^k^ifkiPAk\PAk^ ^"'^' 
as a consequence of our within stratum sampling scheme, 
"kpAk has abinomial distiibution B{ni^,p^i^). We assume 
that the {p ,̂̂  \l ^k <. K) are jointly independent so 
g{p^) = ^k=igk{PAk') which implies 

and 

fipA\PA)S(PA)=Ti^-l fk(PAk\PAk^Sk(PAk) 

h(pA)=W-l ffk(PAk\PAk)Sk(PAk)dpAk-

In what foUows, we assume that the prior distiibution of p^ ^ 
is A'̂ dip . o^ ) and for the empirical Bayes approach, we 
use p -pAk ^"'^' analogously to the case of simple 
random sampling, we define 

0 = E^^^^^^(yL(i-P..)*i). 
keB, n^ 

Thus, the upper bound on the CI would be (approximately) 

. J^keB^dki^Ak- ^)(^lk/^lk) .. .,o^ 
M = r ^ + J 1 0'-^/^, (10) 

^YkeB,dk(^Ak-^) 

where t^ stands for tiie critical values of the /̂  distribution. 
Unfortunately the bound depends not only on our choice of 
the df^, but also on the unknown parameters p^^ and o^^. 

It is not hard to show that v ^ Y^keB (^Ak~ ' ) ~ m̂ax ^"^' 
if we set c/̂  = I (or any constant for that matter) then 
V = v^^. We refer to v̂ ^̂ ^ specifically as the unweighted 
degrees of freedom. In this case the upper bound on the CI 
would be 

. J^keBdki^Ak- '^)(^lk/'^lk) ^^ 

^YkeB^i^Ak-^) 

Another approach is to attempt to finesse the problem of 
estimating 0 (at least when 5 , = B^) by a judicious choice 
of the df^. To that end let us assume that 5 , = B^ and let 

'VAk=pAk(^-pAk)'"k<'p,,-

It is straightforward to extend the result in Appendix A 
to the case of stratified random sampling and it then follows 
that, for p^ defined by (9), [p^/o^ | p ^ ] is distributed 

where v a r ( p j p j =^^5,^^* 
+ v|/^^). Using the resuU in Appendix 

)/o^). A^^(0,var(pj^-^ 

l^AkpAki^-pAk^^k^^ 
B, it follows that, conditional on p., the random variable 

_(T,-T,)/^var{iijp,)^o 

^j^lcv 

(TA-TA)I^^^<\^A\PA)^^. 
- 2 

'A 

N EteB, d,,{n^„- l)(Q^A/o^A)/EteB, dkinAk- D 

is distributed approximately as a central / with v degrees of 
freedom. 

Letting 0 = var(p^ \p^) + 6^, with 

, , 2 . 2 
, ^kPAk^Ak , 2 ,. - ^ ,-, 

dk-—, 7:^yAki^-PAk)^^) 

so that Y^keB dk("Ak~ ^) ~ ® ^^^ ® cancels out in (10). We 
then have 

u = T,^ 
^ 

\A - a.2 
^kPA.^Ak 2 ,, . . , , , 

IkeB, (yAki^ -PAk) + 1)^, , 
^ n,. ' 

where v, is the degrees of freedom associated with this 
second choice of the dj^. More generally {i.e., when 
5 , * B^), we have 

u = T, N 

N 

2 2 
V^ ^k pA.^Ak 2 
T^ksB. '—(yAki^-pAk)-^) 

.Q^t 

^ NlpAfik 2 ,, . . IS 
l^keB, (yAk(^ -PAk) + 1) 

y]k = M^/o^i 

and assuming the \j/^^ are near zero we have 

In any event, we are still faced with the problem of 
estimating the population parameters and we have the 
additional problem of estimating the degrees of freedom. 
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A third possibility, which we have already mentioned, is 
to let (î  = Â^ pAk^Ak^'"k("Ak - 1) so that when 5, = B^, 
^l=^^l^lkeB,dk("Ak-p^lk'^]k 's a conditionally 
unbiased estimator for a.. In this case we have 

M 
\/£ 

•keB, ^kPk^lk'^k .. 
0"̂  /., 

•keB,^kPk'^]k/"k 

where v̂  is the degrees of freedom associated with this 
third choice of the d^. As in the second case, we are faced 
with the problem of estimating the poptilation parameters 
and the degrees of freedom. 

2 2 

Now, it should be noted that if we estimate a^/^ with d̂ ^ 
for keB.^ and let 0 be a yet to be specified estimator of 0 
then the (estimated) upper bounds above are w = f̂  + 
0 /, f , . 0 /., and u r^ + 0 t^ respectively. 
The degrees of freedom are estimated by substituting 
estimates of the population parameters into the two 
respective choices of the d^. Both v, and v^ are smaller 
than v ĵijj, so, for any realized value of 0 , the confidence 
interval using v̂ ^̂  wiU be the shortest. There is no general 
relationship between the sizes of v, and Vj. Empirical 
evidence indicates that there is little to choose between the 
second and third approach. 

Addressing the problem of estimating 0 , we can write 

0 = E ^kpAk(\'Ak(^-pAk)*''lk)/"k^ 
keBf-B.^ 

E ^kpAk(\^lk{^ -pAk) * o ' t ) / « r 

2 

For keB^ - B^ the estimator d̂ ^ is not defined, however, 
it is straightforward to verify that (1 - p^i^)E[(i^i^ \ «^^] ^ 
oL + M *̂(l - pAk) ^ ^AI "^ J • It follows that 

''a=ll^kpAk(^-pAk)(^]k'"k-' 
tefl, 

EA^*p.*QLa-i/«*-!/«..)/«* 
tefl. 

will tend to underestimate 0 , and 

h= E ^kpAk(^Ak/"k^E^kpAk(^-pAk)(^lk/'^, 
keB,-B, keB, 

T,NkpAk^Aki^-^'"k-^/"Ak)/"k 
keB, 

2 2 will tend to overestimate 0 . Clearly, s^ ^ 5̂  with equality 
only when 5, =53. 

It can also be verified that in the case of stratified 
sampling, the standard variance estimator for estimated 
population totals is 

ŝ,d = E ^kSk/^k = E NkpAk(^ -PAk)(^Ak/(''k- 1) 
tes, tes, 

-E^kpAk^U^-^f"Ak)'(n,-l). 

This looks like a satisfactory estimator of 0 , if the AĴ  are 
not small. 

These results imply that CIs of tiie form {f^± 5^/, .̂ ^̂ ^ 0) 
will provide the highest level of coverage; but CIs of the 
form {T. ± 5„, /, .. ) andevenperhaps {T. ± s^,^ t ) std'l-a/2,(!, 

have obvious computational advantages. Several of these 
competing forms of CI are evaluated empirically in Section 
3.3. These results can easilybe extended to ratioestimators by 
the standard linearization approach. 

3.3 Empirical Investigation for Stratified Random 
Sampling: the BLS Wage Data 

With a view to improving estimation of precision on wage 
data produced by the U.S. Bureau of Labor Statistics^ we 
investigated coverage and interval length in two simulation 
studies on populations constructed from a test sample of the 
Occupational Compensation Survey Program (OCSP) 
conducted in 1991. The OCSP consisted of establishment 
surveys in several metropolitan areas, aimed at estimating 
wages levels for a select group of occupations. The surveys 
were carried out by stratified simple random sampling, with 
establishments stratified by employment size and industrial 
classification. 

One population (the "Small Population") took the test 
sample itself as the population, with six non-certainty strata, 
and one certainty stiatum of 12 establishments. Five hundred 
stratified random samples were taken from this population 
at sizes « = 36 and 60, corresponding to the choices «^ = 4 
and «̂  = 8, reflecting relative sample sizes of sampling 
from the original population. The second population (the 
"Large Population") was constmcted by expanding the 
sample data through replication (by simple random sampling 
with replacement, within each SmaU Population stratum) of 
establishments to achieve a population the size of the original 
population; again there were six noncertainty and one certain
ty strata; for each stiatum sample sizes were the same as in the 
actual sample. Domains are defined by the different occupa
tions of interest; only a fraction of establishments have 
workers in a particular occupation, and lie in the correspon
ding domain. Table 2 gives the number of establishments 
having workers in the selected occupations for the small 
population. 

In both cases sampling was without replacement, so 
finite population correction factors were included (as 
appropriate) in the constmction of the CIs. Also, the study 
was limited to a concern with 95% coverage. 
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Table 2 
Number of Establishments in Given Domain (Occupation), 

by Stratum for Small Population 
stratum 

Occupation 

4021 

1141 

1122 

3180 

2911 

1142 

1180 

1403 

AU Estabs 

1 
0 
0 
0 
10 

• 0 

2 
17 
12 
35 

2 
4 
3 
3 
11 
3 
8 
20 
16 
35 

3 
11 
11 
8 
5 
14 
15 
5 
22 
33 

4 
10 
7 
13 
25 
2 
9 
61 
28 
136 

5 
8 
11 
14 
20 
13 
15 
31 
25 
66 

6 
10 
9 
12 
4 
17 
19 
3 
27 
36 

7 
7 
7 
6 
5 
7 
9 
1 
9 
12 

total 

50 
48 
56 
80 
56 
77 
138 
139 
353 

Small Population: Table 3 gives coverage and median 
relative interval lengtii for total wages, at two sanple sizes "^ = 4 
and M̂  = 8, for 8 occupations, and three methods of confi
dence interval constmction: the standard variance estimator, 

with the standard normal z-quantile, the unweighted 
• ' s t d ' 

degrees of freedom v^^ ,̂ and the weighted degrees of 
freedom v,. Occupations are ordered by increasing values 
of the average value, over mns, of the unweighted degrees 
of freedom. We note: 
1) Almost universally, coverage using the standard vari

ance estimator and the standard normal quantiles 
(infinite df) is poor. 

2) Coverage for the other interval types is far more 
satisfactory. In general, the coverage is near the nominal 
95%, or slightly conservative, for weighted degrees of 
freedom; as expected, intervals based on unweighted 
degrees of freedom tend to yield coverage a few points 
below those based on weighted degrees of freedom. 

3) Two occupations (1122, 4021) yield seriously low 
coverage for totals even with the improved procedures. 
Investigation of these particular occupations suggests 
a strong violation of the normality assumption. In 4021, 
for example, two units in stratum 5 have a number of 
workers, and hence total wages, an order of magnitude 
higher than the other estabUshments in this stiatum and 
indeed in the population. Furthermore, the wage rate of 
these two outiiers is markedly lower than the great bulk 
of establishments: with just these two excluded from 
the population, the overall population average wage 
would be $9.68/hour; with them in, it is $8.28. Since 
there are 66 establishments in stratum 5, it is easy for 
these two establishments to escape being in a sample of 
size 8; the consequence is a serious overestimate of the 
mean wage or underestimate of total wage. At the 
same time, wages for the establishments that are in the 
sample are relatively homogeneous, so the variance 
estimate will tend to be too low. The presence of 
several smaller establishments in the domain contribute 
to enlarging the degrees of freedom, and so the 
/-adjustment is unable to compensate fully. It is hard to 
see how to guard against such a problem short of 
having prior information, and allotting such outliers to 
a certainty sti-atum. Even so, the adjusted intervals are 
a significant improvement on the naive normal 
distribution based interval. 

Interval lengths are taken relative to 2 xz ̂ ĵ = 4 times 
the root mean square error of T^ calculated over mns. 
We report the median of these standardized lengths 
(across runs). When the distribution of T^ is actually 
normal, the median length is close to 1. 

Table 3 
Estimated degrees of freedom, coverage, and relative median length of CIs for total wages of workers in occupation, 

for the small population 

Four Sample Establishments Per Stratum Eight Sample Establishments Per Stratum 

Occupation 4021 1141 1122 3180 2911 1142 1180 1403 1141 4021 1122 3180 2911 1142 1180 1403 

df=v^„ 1.5 1.6 1.6 2.0 2.3 2.8 4.3 6.1 
•' max 

# = v , 1.3 1.3 1.4 1.5 1.7 1.9 2.3 3.5 

3.7 3.8 3.9 5.6 6.0 8.0 12.3 16.6 

2.0 2.3 2.3 3.1 ' 3.5 4.3 5.4 9.7 

^A^S^i^ 

^ . * ^ S , d ' v „ 

^A^^^iU, 

TA^^M^ 

Coverage 

.47 .69 .51 .75 .73 .85 .89 .87 

.89 .92 .93 .99 .95 .96 .97 .92 

.92 .93 .95 .99 .96 .96 .98 .95 

.74 .49 .65 .79 .78 .86 .88 .92 

.87 .65 .75 .89 .86 .90 .90 .94 

.91 .74 .80 .94 .89 .95 .96 .96 

Median Relative Length 

0.53 0.75 0.59 0.70 0.74 0.85 0.90 0.88 0.87 0.63 0.66 0.80 0.83 0.88 0.92 0.96 

2.65 3.67 2.80 2.60 2.20 1.98 1.50 1.14 1.63 1.09 1.13 1.10 1.10 1.06 1.02 1.04 

3.30 4.32 3.19 3.40 3.08 3.06 2.70 1.58 3.08 2.40 2.38 2.00 1.74 1.38 1.38 1.13 
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4) The relative interval length of the standard interval 
tends to be too small, that is, it tends to be less than 1. 

5) Interval length among the other variance-degrees of 
freedom combinations is largest for Sjij with v,, and 
smallest for s,,,^ with v„„,. These differences can be 

stu max 

appreciable; there is a tradeoff between coverage and 
interval size. 

6) For a given interval type, the relative interval length 
tends to 1 as v„„, increases. The conclusions from a 

max 

Study of mean wages are similar. 
Large Population: Table 4 gives coverage and interval 
length for total wages for five interval types, and a wider 
range of occupations, ordered by average v^^. The 
interval types include tiie three used previously for the small 
population. The two new intervals utilize the weighted 
degrees of freedom together with s^ and i^ respectively. 
Results are based on 5,000 mns. 
1) The results are consistent with those for the Small 

Population, in terms of the relative coverage and interval 
sizes of the several interval types. The standard normal 
is unsatisfactory for many occupations. 

2) The coverage for intervals using tiie weighted degrees of 
freedom, v,, is less than 90% for only a small fraction 
of cases. 

3) There can be marked differences in interval length for 
the different interval types; however, all ratios of 
interval length to 4 x root mean square error tend to 1, 
^ m̂ax g^'s large. 

4) Little difference results from using 5^, 5^, or s^^^ with t^ . 

Again, the results for mean wages, while differing in detail, 
lead to the same overall conclusions, and are omitted. 

4. SUMMARY AND CONCLUSIONS 

From our theoretical investigation and simulation work, 
we draw the following conclusions: 
1. Standard 95% confidence intervals for domain means or 

totals, when based on the standard normal distribution and 
standard methods of variance estimation, tend to yield less 
than actual 95 % coverage. The extent of the deviation will 
vary with domain (occupation in the wage study), but can 
be quite considerable even when the sample size is large. 

2. New nonstandard methods offer a sharp improvement, 
giving intervals with better coverage, typically at or 
close to the nominal 95% coverage. These intervals tend 
to be longer than the standard intervals. The increase in 
length will vary with domain, and will depend on the 
particular method for CI constmction that is adopted. 

Table 4 
Estimated degrees of freedom, coverage, and relative median length of CIs for total wages of workers in occupation, 

for the large population 

•' max 

#=v, 

1718 

2.97 

2.67 

1604 

3.45 

2.34 

Occupation 

1802 1716 2911 2052 1332 1141 4021 1232 2853 3020 1122 

4.44 11.9 12.4 13.1 15.3 16.9 16.8 17.3 20.6 24.9 28.0 

2.35 5.97 5.90 4.25 11.4 9.00 6.32 15.5 13.5 10.4 15.2 

11421714 1514 3180 4030 

28.6 29.1 34.8 41.5 59.9 

9.67 15.3 18.0 25.2 14.3 

1063 

77.6 

27.4 

1403 

77.9 

28.5 

1180 

128 

90.0 

^.±V 

'^A^'s.A^ 

TA^SJ,^ 

TA^'stdU, 

TA^hU, 

^A-^'std^ 

'^A^'slj'.^ 

TA^'J,, 

^.4±Vc, 

TA^hU, 

.89 

.96 

.97 

.97 

.97 

0.99 

2.14 

2.32 

2.34 

2.47 

.60 

.83 

.88 

.89 

.89 

0.78 

1.47 

2.24 

2.27 

2.33 

.85 

.94 

.94 

.94 

.97 

.87 

.89 

.91 

.92 

.92 

0.92 0.97 

1.40 

2.46 

2.48 

2.79 

1.08 

1.37 

1.37 

1.39 

.87 

.88 

.89 

.90 

.90 

.89 

.91 

.97 

.97 

.97 

.93 

.95 

.96 

.96 

.96 

0.95 0.96 0.99 

1.06 

1.37 

1.39 

1.38 

1.06 

1.59 

1.60 

1.61 

1.08 

1.12 

1.13 

1.14 

Coverage 

.93 .89 .92 .92 .92 .88 

.95 .91 .94 .94 .93 .88 

.96 .91 .94 .94 .95 .89 

.91 .94 .94 .95 .89 .89 

.96 .91 .95 .94 .95 .89 

Median Relative Length 

0.98 0.96 0.97 0.98 .98 0.95 

1.06 1.04 1.04 1.04 1.03 0.99 

1.15 1.34 1.05 1.11 1.16 1.04 

1.18 1.34 1.05 1.13 1.18 1.04 

1.20 1.35 1.07 1.13 1.18 1.04 

.89 .85 .93 .92 .81 .94 .94 .94 

.90 .86 .93 .92 .81 .95 .94 .95 

.91 .86 .94 .93 .83 .95 .94 .95 

.91 .86 .94 .93 .83 .95 .95 .95 

.91 .87 .95 .93 .83 .95 .94 .95 

0.96 0.93 0.98 1.00 0.91 1.00 1.00 1.01 

1.00 0.98 1.01 1.03 0.93 1.01 1.01 1.02 

1.19 1.04 1.04 1.05 1.07 1.09 1.04 1.02 

1.20 1.04 1.04 1.06 1.07 1.10 1.05 1.02 

1.19 1.05 1.05 1.06 1.07 1.10 1.04 1.02 
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For domains which yield large samples, there will be 
little difference from standard intervals. 

3. The instances where coverage fell below nominal, even 
using the /-adjusted intervals, may be ascribed to severe 
violation of the normality assumption for the domain data. 
Thus the /-adjustment is not a cure-all. Nonetheless, even 
in such cases there is a good deal of improvement in 
coverage over the use of the standard normal interval. 

4. The key idea behind these intervals is to condition on 
the amount of information on the particular occupation, 
which, roughly speaking, is measured in terms of the 
number of units in the sample that belong to the domain. 
The fraction of such units within each stratum is 
unknown, and to handle this fact we put a prior 
distribution on this unknown, reflective of the degree of 
our ignorance of it, an idea we borrow from the 
Bayesians. However, in the final analysis, it is the 
realized coverage probabilities that determine the merit 
of the approach. 

5. The principal effect of these ideas is the abandonment, 
for purposes of CI constmction, of the standard normal 
quantiles (±1.96 for 95% coverage). These are re
placed by quantiles from the Student's /-distribution, 
with degrees of freedom determined from the sample 
and varying with domain. If because of publication 
requirements or for other reasons, there is need to report 
standard deviations rather than confidence intervals, 
then we recommend reporting an effective standard 
deviation given by the length of the proposed /-based 
95% confidence interval divided by twice 1.96. 

6. The standard estimate of variance seems acceptable for 
estimating the variance, when accompanying the new 
/-quantile. In most instances this combination should be 
quite satisfactory, so that the only change from standard 
methodology will be the introduction of adjusted 
degrees of freedom. However, in some instances, the 
altemative standard deviations may improve coverage or 
reduce the length of confidence intervals. 

7. An open question concerns what degree and type of 
collapsing of strata (if any) should be used in the ' 
estimation of variances and of the degrees of freedom 
for the purpose of confidence interval construction. In 
general, there will be a tradeoff: as strata are reduced in 
number, the estimate of variance will tend to increase, 
but so wiU the degrees of freedom (reducing the size of 
/̂  or /̂  .) The answer to this question may be 
population specific, and experience from past surveys 
useful. 
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APPENDIX A 

From the discussion in Section 2.2 we know that np^ 
has abinomial distribution Bin{n,p^), hence, for^^ =0, 
l/«,2/«,..., 1, 

fiPA\PA) 
r(« + i) r (« + 2) 

r(n + 2)r(«p^ + i)r(«(i-^^) + i) 

pT''''-\^-PAf''"''^''-'-k,SPA)Kn^i). 

For each (fixed) value of ^^, the function k. {p^) is the 
pdf of a Beta distribution with parameters co, =np^ + 1 and 
cOj = «(1 - / ^ ) + 1. As both 0), and cOj wiU be larger than 
unity with high probability (at least in most real world 
situations), it is reasonable to approximate k. {PA) with a 
normal pdf having equivalent mean and variance, which are 
approximately p^ and^^(l - p^)ln respectively. 

Assuming that p^~ N{\i.,o^), it follows that the 
posterior distribution is 

h{PA\pA)=f'<pA\PA)SiPA)/ 

\^ ApA\PA)SiPA)dPA^(^^ 
Jo 

tf ^PA-PA^ . (PA-V^f 

APAC^-PAV" 

where c is the normaUzing constant. 
Under the "empirical Bayes" assumption that V^ =PA ^nd 

a^ =p^{l -p^)ln wehave 

''(PAIPA) 
I 

y/2;i^p,{l-p,)l2n 

if (PA-PA)' 
2[p/l-p^)nn 

If we drop the specific assumption regarding o^, and let 

\V = {PAO-PA)^")'^^ 'hen [PA\PA] ~ ^(PA^PA(^' 
p^)l{l^^^l)n). 
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APPENDIX B 

Result: Assume Wis distributed N{0,c^) and, conditional 
on W = w, the random variable T is distributed as a 
non-central / with v degrees of freedom and non- centrality 
parameter w. Then, the unconditional distribution of 
Tl^c^ + 1 is central / with v degrees of freedom. 

Proof: First notice that T can be written as T = {X •>• 
W)l\]S'^lv, where A'is distributed as A (̂0, 1), 5^ is distri
buted as xl. and X, W, anti 5^ are mutually independent. 
Theitfore, X ={X+ W)I^Jl +c^ is distiibuted as A (̂0, 1). 
As X and 5^ are independent, it follows by definition that 
r = Tl\/l +c^ =X'I^JsVv is distiibuted as /^. 
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On Regression Estiniation of Finite Population Means 
GIORGIO E. MONTANARI' 

ABSTRACT 

This paper examines the main properties of the generalized regression estimator of a finite population mean and those of 
the regression estimator obtained from the optimal difference estimator. Given that the latter can be more efficient than the 
former, conditions allowing this to happen are established, and a criterion for choosing between the two types of regression 
estimators follows. A simulation study illustrates their finite sample performances. 

KEY WORDS: Generalized regression estimator; Difference estimator; Auxiliary information. 

1. INTRODUCTION 

Regression estimation is an effective technique for 
estimating survey variable finite population means or totals 
when the population means or totals of a set of auxiliary 
variables are known. The problem can be stated as follows. 
Consider a finite population 9 = {apa^, ...,a^} consisting 
of A'̂ units labelled 1,2,..., A'̂ . Let Y. be the value of unit a. 
of a survey variable>> whose population mean Y = Y,i Y^IN 
has to be estimated by means of a sample drawn from 9. 
To this end let us suppose that the population mean 
X= 5̂ 1 XjIN of a ^-dimensional auxiliary variable vector, 
having jc. = (x,.,X2,, ...,x )' as its value for unU a., is 
known, for example from administrative registers or a 
census. The entries of x. can be quantitative as well as 
indicator variables denoting the membership of the unit to 
given subpopulations. Let s be the set of sample unit labels 
obtained from a sampling design having first order 
inclusion probabUities n., i = 1,2, ...,N, strictly positive. 
Then, a regression estimator can be written as follows 

Y^ = YHX-X)'fi, (1) 

jg^x.lNn. are the Horvitz-whereF = i:,^^F./A^7t.and;^=i:,, 
Thompson unbiased estimators of Y and X, respectively, 
and p is a vector of regression coefficients, given by some 
function of sample data {{Y.,x/),ies]. Briefly, F̂  is 
obtained by adding to the unbiased estimator ? terms 
proportional to the difference between the true means of 
the auxiliary variables, ^^. =^^i X/^-IN, k = 1,2,..., q, and 
the corresponding estimates X,^ = E/ej^i,/^",-

This paper discusses the two chief methods of 
constructing the vector fi and the properties of the 
corresponding regression isstimators. A criterion based on 
a first order approximation analysis is then given for 
selecting one of the two altematives. Finally, the results of 
two empirical studies, carried out to explore the finite 

sample performances of the examined estimators, are 
reported. All unsubscripted expectations and variances are 
taken with respect to a sample design. When calculations 
are made with respect to a model, a subscript w will be 
used. 

2. MAIN PROPERTIES OF THE REGRESSION 
ESTIMATOR 

Mild restrictions on the second order inclusion proba
bilities of the sampling design and on the limiting pop
ulation moments of Y. and x. are sufficient to ensure that 
the estimator F^ can be approximated by the difference 
estimator 

Y=Y + {X-Xyfi, (2) 

where p is the limit in probability of the vector p, when 
both the sample size and the population size go to infinity, 
and the Umit is defined as in Isaki and Fuller (1992): Wright 
(1983); Montanari (1987). Then, the large sample perfor
mance of the regression estimator can be studied by means 
of its linear approximation (2). As a consequence, the 
regression estimator F̂  is approximately unbiased, because 
F̂  is unbiased. The sampling variance of F̂  can be 
approximated by that of F given by 

V{Y) = V{Y) + P' V{X) p - 2 ̂ 'C{X, Y), (3) 

where V{Y) is the variance of̂  F, V{X) is_the qxq 
dimensional variance matrix of X, and C{X, Y\ is the q 
dimensional covariance vector between X and F. Since 
Y^ can be rewritten 

F^=^'P + E 
A^TC, 

Giorgio E. Montanari, Dipartimenlo di Scienze Statistiche, Universiti di Perugia, Via A. Pascoli - 06100 Perugia, Italy. 
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where U. = F. - x/ p, then 

N 1 - 7 1 

Vit) =Jl^i 
/=1 

N N 71;. - 7l,7C, 
, '--TEUiUj^L^. 

N n. /=i j*i N'^n-Kj 

An approximately unbiased estimator of V{Y^) is given by 
the Horvitz-Thompson formula 

^(Y,) = Y ^'i •'^ L+Y y U.U.—!!- '-J-, 
- • • N^n^Kj K.J N'^Ti; ies j*i 

where U. - Y. - x.' p. Alternatively, when the sample size 
is fixed, the Yates-Gmndy variance estimator is available, 
i.e. 

v{i)-Yi: 
ies J>i 

A^^ 7t,-, 

/ A - N 
[/, U: 

K^^i ""JJ 

Henceforth V{Y^) wiU be called asymptotic variance of 
F. ' 

is a consistent estimator of p, and when replaced in (1) 
gives the generalized regression (GREG) estimator 

Y.=Y^{x- xyp, (6) 

In addition to those stated in section 2, this estimator has the 
foUowing properties: (i) the means of the auxUiary variables 
estimated through GREG equal the corresponding known 
population means, i.e. X ĵ =X; (ii) the model expected 
value of the asymptotic sampling variance, i.e. E^ F(F^,), 
is a minimum among all asymptotically design-unbiased 
estimators of F (Wright 1983). Consequently, if the model 
is well specified, no other asymptotically unbiased 
estimator exists that is on the average (with respect to the 
model) more efficient than F^,. 

Well known estimators currently used in practice, such 
as the ratio and post-stiatified estimator, belong to the class 
of GREG estimators. Furthermore, such a class has recentiy 
been extended by means of the calibration technique 
(Deville and Samdal 1992) to better control the variability 
of the final observation weights. 

THE GENERALIZED REGRESSION 
ESTIMATOR 4. THE OPTIMAL ESTIMATOR 

Two methods are generally used for constructing the 
vector p. The first one has been developed within the 
framework of the model assisted approach to survey 
sampling inference, as it is described in Samdal, Swensson 
and Wretman (1992; sec. 6.4) and Estevao, Hidiroglou and 
Samdal (1995). Letting Y. be either a random variable or 
an observation of it, consider the following linear 
regression superpopulation model 

£^(F.)=x.'P, i = l,2,...,N, 

V.(Y,)-^'^i^ 

C„{Yi,Yj) =0 , i*j, (4) 

where E , V and C denote expected value, variance and 
covariance with respect to the model; p and o^ are 
unknown model parameters; v. is a known function of x.. 
The vector 

' - 1 

P. 
N 

E 
/= i 

x.x. 

v.. 

x Y 

E ^ 
'• = 1 V , 

is the census least squares estimator of p. Under general 
conditions, such as those quoted in the referenced papers. 

Pi 
x.x. 

ies Tt.V. 

-I 
X Y 

Y-^ 

For constructing an altemative regression estimator 
based on the same auxiliary variable x. a second approach 
considers the vector p that minimizes the asymptotic 
variance (3) of the difference estimator (2). Assuming 
F(X) non singular, i.e. there are no linear combinations of 
the entries of X with a zero sampling variance, the 
minimum variance vector is given by 

P2=[F(X)]-'C(X,F). 

Now, consider the unbjased estimators V{X) and C{X, Y) 
of V{X) and C{X, Y), respectively, that exist provided 
that the second order inclusion probabilities of the sample 
design are all positive. They are given by the Horvitz-
Thompson formula or the Yates-Gmndy formula when 
applicable. For example, using the former we have the 
estimated covariance vector 

C{X,Y)=Yx,Y,^^YY.^iYj ".• 7C.7C .̂ 

AA^Ttf ies ]*i N'^n-Uj K.J 

Using V(X) and C(X, Y) we get the altemative regression 
estimator 

F,2 = F + ( x - i ) ' p 2 , 

(5) where p^ = \y{X)X^ C{X,Y). It was studied by 
Montanari (1987) and called by Rao (1994) the optimal 
estimator. When F ( ^ is singular and its rank is ^' < ̂ , to 
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define the optimal estimator jt is understood that one or 
more entries of x .̂, hence of X have to be dropped in such 
a way as to obtain a q'xq' non singular variance matrix. 

Using tiie expression for p^, the asymptotic variance of F̂ ^ 
simplifies to 

V{?^^)=V{?)-C{^,?y[V{X)]-^C{^,F). (7) 

The properties of the optimal estimator are: (i) asympto
tically, jhe efficiency of F̂ ^ is not inferior to that of F^,, 
/.e.,F(y^2) ^ F(F^,); (ii) the means of the auxiliary 
variables estimated through the optimal estimator equal the 
corresponding known population means, i.e. X^^ "^X. As 
for the case of the GREG estimator, when tiiere is more 
than one survey variable, the optimal estimator F̂ ^ can be 
expressed as a simple weighted estimator with the same 
weights applying to all variables of interest. For example, 
using the Horvitz-Thompson formula for variance and 
covariance estimators, we can write F ĵ = Hiss ^/^z where 

1 
w.= -^{X-Xy[V{X)Y 

( I-
X: N^nJ ^.^J 

n.Tij 

Jes 
N\njTi,jj 

A similar result can be achieved with the Yates-Gmndy 
formula. 

Note that the asymptotic optimality of F ĵ '̂  a strictiy 
design based property, achieved conditionally on the 
realized finite population (hence, within the fixed popula
tion approach to the finite population inference). On the 
contrary, the asymptotic optimality of F^, requires the 
model to be true, and concerns the average asymptotic 
variance over the finite populations that can be generated 
under the model. ^ . .̂  

Because of tiiese results, F ĵ would seem preferable to F^,. 
However, p, is a function of population total estimators, 
and Pj is a function of variance and covariance estimators. 
As a consequence, the former is more vulnerable to model 
misspecification, and the latter is more vulnerable to 
sampling fluctuations. In a finite size sample, Y^^ is 
generally less stable and more complex to compute and its 
variance can be greater than that of F^,; see Casady and 
Valliant (1993). However, if an adequate number, g, of 
degrees of freedom are available for estimating P2, the 
instability problem of F̂ ^ can be overcome. For example, 
for standard complex sampling designs having with-
replacement sampling at the first stage, g can be roughly 
taken as the number of sample clusters minus the number of 
strata (Lehtonen and Pahkinen 1995; p. 181; see Eltinge 
and Jang 1996, for more elaboration on tiiis topic). A stable p^ 
can be expected when g is large enough relative to the 
dimension q of the auxiliary variable x.. Since with 

modem computers the computation of F̂ ^ is less 
problematic, it becomes interesting to develop a criterion 
for recognizing when such an estimator is tmly 
advantageous. 

5. A CRITERION FOR CHOOSING BETWEEN 
F , AND f^. 

Consider the following theorem: 
Theorem: Let F(F) and V{Y^.^) be the asymptotic 
variances of the general regression estimator F̂  and the 
optimal estimator F̂ ^ - respectively. Then 

nfr)- Vi^r2) = C{x, ?;)'[F(X)]-'c{x, ?;). (8) 

Proof: Using (3) and (7), the difference in variances is 

V{?;) - V{?^^) = p' F(X)P - 2p'C(i, Y) + 

C(i^, F ) ' [ F X ] - ' C ( X , F). 

Since P2 = [F(X)]-'C(X, F) and p 'C( i , F) = p' V{^)^^ 
we have 

n^,) - F(F,2) = (P - P2)' nx)4 - h)-

But, C(J?, ?;> = C{R, F) - F(X)P = F(^)(P2 - p) and(8) 
follows. 

Note that the right hand side of (8) is a positive definite 
qua^r^ic forfn and it is equal to zero if and only if 
C{X, F̂ ) = 0. Therefore, the smaller the absolute values of 
the^entries jjf C{X,Y^) are, the smaller the difference 
y{Y^) - y{Y^2) '̂ - ^^^ "^^i" conclusion the theorem pro
vides us is that an efficient use of any known auxiliary 
variable population mean requires us to adopt estimators 
that are uncorrelated with the auxiliary variable mean 
estimator. 

Applying the theorem to the_GREG estimator, let us 
consider the k-th entry of C{X, F ,̂) that can be written 

c(^..ni) = E ^ ^ . . ^ -
/ = 1 N^K: 

N N 

EEf/, 
/=i j*j 

^ij - ^i^j 

N n.n. 

where U. = Y. - x.' p,. If the superpopulation model (4) is 
weU specified, it follows that E^{U.)=0, for all/, and 
£„[C(1^,F^,)] =0. Therefore, C(1^,F^,) must be 
approximately zero for all /: = 1, 2,..., ^, being proportional 
to a weighted average of A''uncorrelated random variables 
wit^ expecte_d values zero. Consequentiy the difference 
F(F^,) - F(F^2) "lust be negligable. The result suggests 
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using the more practical F^,. The conclusion is that the 
estimator T^j-^^^ achieve substantial gains in efficiency 
compared to F ĵ if the superpopulation model upon which 
the latter is based is not good enough. This can happen 
because of the specification of the linear superpopulation 
model is being confined to regressors with a known 
population mean. 

Since the following quantity 

X{?^,, ^2) = C{X, F^,)'[F(X)]-'C(X, ti)IV{?^,) 

Example 2. Consider a stratified random sample and the 
linear homoscedastic regression model E^{Y.)= a + x^p, 
V^{Y.) = o^ C^{Y., Y.) = 0, / *j. Assumetiiat A' isknown 
and that individual x.'s are known only for sample units 
and not for the nonsampled units. Now, the auxiliary 
information is given by x. = {l,jc.y ^ d the cogesponding 
GREG estimator can be written F^, = Y •^ {X - X)^^, where 

. _(E,e.^,V^",)-^^^ 

(Li^s^i'^^i)-^"' 

gives the asymptotic relative gain jn efficiency that can be 
achieved with F̂ ^ compared to F^j, we propose it as an 
indicator of a model inadequacy for extracting all 
information from the sample. When X{Y^^, Y^^) is greater 
than 10% or 15%, say, the optimal estimator should be 
adopted. Provided that the second order inclusioii proba
bilities are aU positive, under general conditions X{Y^^, F ĵ) 
can be consistentiy estimated from sample data. Then, the 
information offered jjy the estimate X{Y^^, Y^^) can be used 
for shifting from F^, to F̂ ^ i" ^^^ "cxt repetition of a 
periodic survey, or, as we suggest in section 6,̂ within the 
same survey, choosing between F^, and F ĵ ^' ^̂ e 
estimation stage. 

This section concludes with a few examples. 
Example 1. Consider a simple random sample of n units 
and the linear regression model through the origin 
E_JY.) =x.p, VJY^) = c^x., CJY., Yj) = 0, i *j, assuming 
X known. In this case the GREG is the ratio estimator of 
the mean, i.e., F ĵ =Xylx, where y and x are the sample 
ineans of ;y and x, respectively. The linear approximation is 
7,, =XR + Zies^i'"' where q 
Then, the covariance of x and Y, 

F. - Rx: and R = YIX. 
rl 

C{x,li)-^Sl JL-R 
c^2 

(9) 

where S is the population covariance between y and x and 
Sl is the population variance of x. If the model is well 
specified; then S IS^ ~ R and expression (9) must be 
approximately zero. Otherwise, the greater the absolute 
value of an intercept in a census linear regression of jv on x, 
the more F̂ ^ is asymptotically efficient than F^,. The 
result is not new (for example, see Cochran 1977; sec. 7.5), 
but it is achieved within the framework of a general theory. 
Note that X{F^^, Y^^) = [SJS^ - RfS^IS^, where 's^ is 
the population variance of U., is a constant with respect to 
the sample size. When A,(F ĵ, Y^^) is not negligable, F̂ ^ 
should be chosen as regression estimator, or, alternatively, 
an intercept plugged into the niodel in order to use the 
corresponding GREG estimator F^,. However, for simple 
random sarnpling both solutions give the same estimator, 
i.e., F , = F , , but in general they are different, even for 

and where the estimated a cancels out. Because p, = S,^JS. 
and Ui = Y.-Y-^^ {x. - X), we have 

yx 

C{X,li)-t^ 
h=i N^n, 

« . ) 7 _ (10) 

where the subindex h denotes stratum quantities and 
P/, 1 = ^hxy'^lx- "^^ "g^^ ''^"'^ ^'^^ of (10) is a function of 
the differences between each within-stratum regression 
coefficient and the coefficient for the whole population. If 
the model is well specified, the_differences P;,, - P, must 
be negUgible. Otiierwise, C{X, F^,) can take non negligible 
absolute values and, since only X is knovwi, tiie estimator F ĵ 
appears to^extract better all the information from the sample 
value of X 

It is interesting to note that when the allocation of the 
sample is proportional, i.e., nh °^ N,^, ignoring terms of order 
1 INf^ relative to unity, F ĵ î  ^l^^i ô ^̂ ^ GREG estimator 
based on the auxiliary variable x. = {d^.,d^,,...,df^^,x.y 
and V. = 1, where df^. is an indicator variable of the 
membership of unit / to stratum h = 1,2, ...,H. This model 
fits different regression lines with a common slope within 
the strata. 
Example 3. Consider a complex sampling design and 
suppose that the population can be partitioned into //post-
strata of known sizes. Assume the superpopulation model 
EJYi) = Kr ^n.(Yi) = o^ and CJY^, 7.) = 0, / *f wheie 
the subindex /j(/) denotes the post-stratum to which the 
r-th unit belongs. Denoting by <3?̂. the indicator variable of 
the i-th unit membership to post-stratum h, and with £>̂  its 
known population mean, putting x,. = {d^.,dj., ...,d^.y and 
V, = 1, in (5), we get the post-stratified estimator, 
Yri =l!i^h^h^^h' where Z^ and 5^ are the Horvitz-
Thompson mean estimators of the variables ẑ ,. = Yidhiand 
d.., respectively. The linear approximation is_ Yr_= 
f'+ ( X - i ) ' P , , where p, = (/?,,% •••.^//)'. ^h^^h'^h 
{i.e., the mean value of jv in the h-th post-stratum), and 
X = (5,, 4 . -,Df,y. ^ Since U. = Y. - Zf/?,^,,, the 
covariance of Z)̂  and F ĵ is 

self-weighting designs. 
C{?^„ D,) = C{t D,) - E RjC{5j, D,y 

y=i 
(11) 
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Under the superpopulation model upon which F^, is 
based on, w | have E^[C{Y^^,DJ] =0 and a negligible 
value of C{Y^^,Df^) is expected for all h. It can be easily 
seen that for simple random sampling, formula (11) is 
identically zero. But in complex sampling schemes such 
covariances might take non negligible values, for example, 
when in a multistage sampling scheme a linear regression 
of the primary unit totals of z/^. on the totals of <î . yields a 
non negligible intercept for some h. See Casady and 
Valliant (1993) for a case study. 

6. EMPIRICAL STUDIES 

The above analysis is based on first order approxi
mations. In the following empirical studies the finite sample 
performances of F ,̂ and F̂ ^ will be explored within the 
framework of example 2. 

6.1 The First Empirical Study 

In this first empirical study we consider a population of 
infinite size subdivided into two strata of equal weights and 
a proportional stiatified random sampling design to estimate 
the mean of a survey variable >>. To this end, let us suppose 
that there exists a scalar variables that was not available for 
stratification but with a known population mean X and 
unknown stratum means {i.e., the x values are not available 
for nonsampled units). 

Since only the population mean of JC is assumed known, 
a reasonable superpopulation model that can be assumed to 
identify a GREG estimator is the linear regression one, with 
homoscedastic errors, i.e., E^{Y.) = a +x:,.p, V^{Y.) = o ,̂ 
C^{Y., Yj) = 0, / *j. The auxiliary variable plugged into (5) 
is X. = {l,x.)' and the corresponding GREG estimator can 
be written 

ti=y-{x-x)s^Js^, 

where y and x are the sample means ofy and x, s ^is the 
sample covariance between y and x, and s^ is the sample 
variance of x. The linear approximation is 

~Y^,=yHX-x)S^JS^, 

where S and S^ are the population analogues of 5 ^ and 

Dropping the first component of x^ = (l,x.)', whose 
mean is estimated without error, the optimal estimator 
based on the same auxiliary variable is given by 

V^2=yHX-x)C{y,x)IV{xy 

where X is the population mean of x, C{y,x) and V{x) 
are the standard unbiased estimators of the covariance 

between y and x and the variance of x, respectively. The 
corresponding linear approximation is 

Y^,=yHX-x)C{y,x)IV{xy 

where C{y,x) and V{x) are the true covariance.and 
variance. 

In this case, the expression of X{Y^^, F̂ )̂ simplifies to 

MY,i, F , ) 
2^1 ^hx 

ris. 2 o 2 
hu 

ris, 
^ Z^l ^hx 

0 
hxy _ "j(x 

and it can be estimated replacing the population variances 
and covariances with the sample analogues. 

Four simulations were performed. In the first two, the 
sample values of A: were drawn from a uniform distribution 
on [30-70] in the first stratum and [50-90] in the second 
one. The sample values ofy, given x, were drawn from a 
normal distribution with expected values 1.26x in the first 
stratum and 0.82x in the second. The conditional variance 
was 8x in both strata in the first simulation and 3x in the 
second one. In the third and fourth simulation, the sample 
values of X were drawn from a linearly tiansformed gamma 
random variable with parameters chosen to achieve the first 
two simulation stratum means and variances for x and y and 
an asymmetry index for x (given by the ratio between the 
third central moment and the third power of the standard 
deviation) equal to 2.5. This allows studying the effects of 
a strong asymmetry in the marginal distributions ofy and x. 

The populations were constmcted to have A,(F ,̂, Y^^) = 
8.1% when V{Y\x) = 8x, and X(F^,, F̂ )̂ = 18.6%, when 
V{Y\x) = 3x. Note that the GREG estimator based on the 
true model is the separate ratio estimator; however, its use 
would require the knowledge of the stiatum means of x, but 
they are assumed unknown. 

In each simulation we drew 10,000 samples of size 20 
(ten units per stratum), and 5,000 of size 40 (twenty units 
per stratum). For each sample we computed the values of 
t^e Horvitz-Thompson estimator Y =y, and of F^,, Y^.^, 
^^,, F^2' ^"d A,(F ĵ, F^̂ )- We also computed an estimator 
Yr2, defined to take thq value of F^,, wheiil(F^,, F̂ )̂ ^ 
8%, and the value of F ĵ otherwise. So, F ĵ is a sample 
dppendeiit type estimator, constructed choosing between 
F ,̂ and F̂ 2 according to the estimated value of >.(F ,̂, F^ )̂. 
Here, 8% is an arbitrarily chosen threshold, over which 
shifting from F ,̂ to F̂ ^ 's thought to be convenient. 

Table 1 reports for each simulation the empirical results 
achieved with reference to the percent relative bias of 
estimators (RB) and the mean squared error (MSE), in the 
latter case having set that of the Horvitz-Thompson 
estimators equal to 100 by multiplying the MSE values by 
100/MSE(>'). As we can see, the biases are all negligible 
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(the biggest absolute value is less than 0.6% and aU biases 
are less than 10% of the corresponding standard errors) and 
contribute to the MSE in a negligible manner. The MSE 
reduction percentages that can be achieved shifting from 
F ,̂ to F̂ 2 ^r? apgroximately equal to the fixed in advance 
values of X,(F ,̂, Y^^), /.e.,^8.1% and 18.6%. The effective 
MSE values of F ,̂ and F̂ ^ ^^ greater than the corres
ponding asymptotic values, in particular when the 
population is asymrrietric and the estimator is the optimal 
one. For example, in the third simulation, when n = 20, the 
MSE of F̂ i shows a 5.1% relative increase compared to 
that of F^j, while the corresponding value for F ĵ is 10.7%. 
Doubting the sample size, those relative values decrease to 
2.8% and 3.6%, respectively. As we observed jn example 
2, when the sample allocation is proportional, Y^^ is equal 
to the GREG estimator based on a homoscedastic linear 
model that fits two parallel regression lines in the t^o 
strata. So, the greater loss in efficiency percentage of F̂ ^ 
with respect to its asymptotic variance can be explained by 
the added parameter to be estimated in the model. 

The performance of Y^^ is also interesting; this estimator 
is approximately unbiased and its MSE is lower than tiiat of 
F̂ j the more often Y^.^ is selected. Table 1 reports for each 
sim^ulation the percentages of samples for^ which 
X.{?^^, F ĵ) > 8% and F̂ 2 was sel|cte4 instead of Y^y The 
higher is the theoric value of A,(F ,̂, F ĵ)- ĥe more often 
F̂ 2 is chosen over F^,. 

Obviously, the performance of F ĵ depend^ on^the 
sampling distribution of the sample statistics A,(F^,, Y^^)-

Table 2 reports the means, the standard deviations, ^nd 
some quantiles of the empirical distributions of X{Y^y F̂ )̂ 
for the gamma populations, which are the mor| prqblematic 
ones. As it can be seen, the distributions of A,(F ,̂, F ĵ) were 
in all cases positively skewed and highly variable. This 
means that larger sample sizes than those considered here 
are needed to get reliable estimates of ^(F^,, f^^)- Clearly, 
the less the variance of X^Y^^, F^̂ )- the higher is the gai^ in 
efficiency of F ĵ over F ,̂ when the tjue value of ^(F^,, 
F̂ )̂ is over the threshold for ^(F^j, Y^^) chosen to shift 
from F̂ j to F 2̂-

Table 1 
Empirical percent relative bias (RB) and Mean Squared Error (MSE) of y, F,,, F^j, F^,, F,2 ^"^ ^ri 

and percentage of samples for which X(?^^, F ĵ) > 8% in the first empirical study 

Estimator 

Freq(A,>8%) 

Estimator 

y 

' n 

'r3 

Freq(>.>8%) 

Uniform populations 

F(y|;<:)=8x V(Y\x)=3x 

n=20 n=40 « =20 «=40 

RB (%) MSE RB (%) MSE RB (%) MSE RB (%) MSE 

-0.06 

-0.05 

-0.03 

0.07 

-0.05 

-0.06 

100.0 

83.8 

77.3 

87.7 

82.4 

85.0 

-0.08 

-0.06 

-0.04 

-0.01 

-0.04 

-0.05 

53.5% 53.6% 

100.0 

84.1 

77.7 

86.2 

80.1 

83.1 

Gamma popul< 

0.12 

0.10 

0.07 

0.22 

0.05 

0.03 

Uions 

100.0 

69.4 

56.2 

73.4 

59.8 

61.0 

-0.10 

-0.05 

0.01 

-0.00 

-0.00 

-0.01 

100.0 

68.8 

55.8 

70.5 

57.3 

57.9 

88.6% 93.5% 

V(Y\x)=8x V(Y\x)=3x 

n = 2 0 «=40 «=20 n = 4 0 

RB(%) MSE RB(%) MSE RB(%) MSE RB(%) MSE 

0.07 

0.08 

0.09 

-0.58 

0.03 

-0.05 

100.0 

84.1 

77.5 

88.4 

85.8 

87.9 

-0.01 

0.02 

0.05 

-0.30 

0.03 

0.07 

100.0 

84.3 

78.1 

86.7 

80.9 

86.2 

0.02 

0.06 

0.10 

-0.60 

0.12 

0.06 

100.0 

69.8 

57.1 

75.5 

63.5 

65.4 

-0.03 

-0.03 

-0.02 

-0.36 

-0.02 

-0.04 

100.0 

69.9 

56.9 

72.8 

59.1 

60.8 

50.6% 50.3% 86.9% 91.7% 



Survey Methodology, June 1998 75 

Table 2 

Selected characteristics of the empirical distributions of 

MY^^, ?^j) for gamma populations (first empirical study) 

Garhma 
Populations 

Mean Standard 
deviation 

Me- Quantiles 
dian 

V(Y\x)=8x, n = 20 10.7 9.8 

V{y\x) = 8x, n'40 9.2 6.3 

V(Y\x) = 3x, n = ZO 21.6 12.3 

V(Y\x)=3x, n'40 19.0 9.5 

8.7 1.3 24.9 

8.3 2.5 19.1 

19.2 6.9 40.7 

18.9 9.4 34.2 

6.2 The Second Empirical Study 

In the second empirical study, we consider a finite 
population subdivided into eight strata each of size 100, 
according to an auxiliary variable x whose values are 
assumed known for each unit of the population. In order to 
simulate a stratification based on x, the values of x were 
assigned through the monotonic function of h and / 

x,.=4.95+5Yj^h-i, 
7 = 1 

where hi is the label of the unit / = 1, 2 100 within the 
stratum h = 1,2,..., 8. 
. A finite population of >- values, given x, was generated 

using the model 

F,, = 20 + 2x,, + 0.06x,';. + e. * A / ' 

where e^. is a standard normal random variable. The 
realized values of the mean, standard deviation and 
asymmetry index of y are 618.2, 676.0, and 1.21, 
respectively. The correlation between y and x is 0.96. 

A proportional stratified random sampling without re
placement design was used to select 5,000 samples of size 
n =40 (five units per stiatum) and 2,500 samples of size 80 
(ten units per stratum). For each sample we computed the 
following quantities: 

- the unbiased estimator of the population mean F, i.e., 
y'' 

- the ratio estimator F^,,, based on the model f̂  (F̂ .̂) = 
Px;,,. and V^{Y^.) = o^x ,̂., and obtained from (5) and,(6) 
putting x^. = x .̂ and v̂ / = x,,,; 

- the optimal estimator F^j,, based on the same auxiliary 
variable used for F̂  11; 

- the GREG estimator F r l2 ' based on the model 
^m(Y,,i) = a + ^x^. and VJY^.) = o^x .̂, and obtained 
from (5) and (6) puttitig x^. = (l.x^,.)' and v̂ . =x^.; 
the optimal estimator F^jj based on the same auxiliary 
variables used for Fr 12; 

- the GREG estimator F r l3 ' based on the model 
K(Y,.) = a + Px,, + yx^. and VJY,,) = ô x,̂ . (the ti^e 
model), and obtained from (5) and (6) putting 
Xhi = 0'Xhi'xly and v^,,=x'' 

- the optimal estimator F̂ ŝ based on the same auxiliary 
variables used for 7^,3, 

- t^e lin̂ ear approximations F ,̂2, Y^^^, f^.^^, and F̂ 23 of 
^ri2' ^/-n- ^r22./nd Xr2i' respectively; 

'0% 90% - the statistics 1(7^,^, 7^2 )̂, for k = 1,2,̂ 3; 
the sample dependent estimators 7, 
defined to take the value of 7 
F., J ^ 8%, and the value of F 

,3* (^=1.2, 3) 
rik When X(7^,^, 

^2,;j ^ u ,u, ui.u ui.̂  vaiut vji 1 ^2k Otherwise. 
We do not consider separate regression estimation 

because sample sizes within ̂ strata are small. The finite 
population is sû ch tii^t X(F^„, F^^,) = 0.22, ?.(F^,^, F 2̂2) = 
0.16, and A, (7^, 3, 7̂ 23) = 0-00. I^ote that because of the 
sample design considered we have Y^^i 7̂ 22 3nd therefore 

r2V we omit 7̂  
Table 3 reports the empirical results achieved with 

reference to tiie percent relative bias of estimators (RB) and 
the Mean Squared Error (MSE), in the latter case having set 
that of tiie Horvitz-Thompson estimators equal to 100. The 
results are separated according to the sample size. 

Again, the biases are all negligible. The MSE reduction 
percentage tiiat can be achieved with respect to the sample 
mean increases with the number of auxiliary variables used. 

F ,̂2 are less efficient than However, as expected 7^,, and 
the optimal estimator 7̂ 22 phased on the same auxiliary 
variables. The statistics ^(F^n-^rzi) ^^'^ ^(^ri2'^^22) 
take values above the 8% threshold most of the time, 
especially when the_ sample size is 80. The sample 
dependent estirgators F^j, and F̂ 32 are botii more efficient 
than 7^n and 7 ,̂2- The resuU is due 19 the inadequacy of 
the models upon which F^,j and F ,̂2 are based for 
extractjng all information from the sample. On the other 
hand, F^,, is more efficient than Y^^-i because it î s based on 
the true model. Most of the time the statistic 1(F ,,, F.,,) 
is below the threshold, especially when the sample size is 
80, and the sample dependent estimator F^jj is almost as 
efficient as F^jj. 

Looking at the linear approximations,^first we observe 
F ,3 are that the MSE's of the GREG estimators 7 „ and rl2 

almost equal to those of 7 ,̂2 and 7̂ j3 in this second study. 
This is not true for the optimal estimators F ,- and F 

r23-

hi' 

The losses in efficiency with respect to their linear 
approximations F̂ 22 ̂ "d F̂ 23 are greater, but tiiey diminish 
rapidly when the sample size increases. The MSE's of the 
linear approximations confirm that given a certain amount 
of auxiUary information, a negligible gain in efficiency can 
be achieved through the optimal estimator, even with very 
large samples (compare F^jj with F^23)' when the model 
upon which the GREG is based holds true. Substantial 
gains in efficiency can be achieved if t̂he model is not 
adequate, such as those upon which F^,, and, F ,̂2 are 
based (compare F ,̂2 with F̂ 22)- Table4 reports the means, 
standard deviations and some quantiles of the empirical 
distributions of U^u, Y^^k)' 't = 1,2, 3. 
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Table 3 
Empirical percent relative bias (RB) and Mean Squared Error (MSE) of estimators and percentage of samples for which 

X,(?^,j, F^2i) > 8 ^ ' " * ^ second empirical study 

Auxiliary 
used 

Estimator 
RB(%) 

Sample size 40 Sample size 80 

MSE (X>8%) RB(%) 

none 

(x) 

(X) 

(UxY 

( l ,x ) ' 

(l,xY 

(hxY 

(\,xy 

(l,x,x^y 

(i,x,x^y 

{i,x,x^y 

(l,x,x^Y 

(i,x,xy 

y 

Ku 

t,i 
Kn 

' r22 

Y 
' ri2 

Ym 
Y 
^ r22 

In 
Ym 

^ . 3 3 

^ 1 3 

n.3 

0.01 

-0.01 

-0.05 

-0.01 

-0.05 

-0.05 

0.02 

0.02 

-0.01 

-0.10 

-0.04 

0.01 

0.01 

100.0 

55.2 

48.4 

51.7 

47.4 

48.3 

51.6 

44.3 

35.1 

38.0 

37.0 

34.9 

347 

82.6% 

72.7% 

28.9% 

MSE 

0.01 

0.00 

-0.02 

0.00 

-0.01 

-0.02 

0.01 

0.00 

0.02 

-0.03 

-0.01 

0.03 

0.03 

100.0 

54.3 

43.8 

50.8 

43.3 

43.8 

50.7 

42.3 

33.5 

34.7 

33.8 

33.5 

33.2 

(X>8%) 

85.0% 

83.2% 

10.5% 

Statistics 

Table 4 
Selected characteristics of the empirical distributions of HY.^, Y^y^), k= 1,1,3 (second empirical study) 

Sample size 40 Sample size 80 

Mean 
Standard 
deviation 

Median 
Quantiles 

10% 90% 
Mean 

Standard 
deviation 

Median 
Quantiles 

10% 90% 

X(y,„,y,,,) 0.24 

UtiJn2) 0.19 

UY,,J,,,) 0.06 

0.15 

0.14 

0.08 

0.23 

0.17 

0.03 

0.04 

0.02 

0.00 

0.45 

0.38 

0.18 

0.23 

0.18 

0.03 

0.10 

0.09 

0.04 

0.23 

0.17 

0.01 

0.07 

0.04 

0.00 

0.35 

0.30 

0.08 

7. DISCUSSION 

The optimal estimator can be an efficient altemative to 
the generalized regression estimator based on misspecified 
superpopulation models when the sample size is large 
enough. This efficiency can be measured by means of the 
sample statistic, 1(F^,, F^2)' i^at captty-es the asymptotic 
relative gain in efficiency of F̂ 2 o^^'' ^ri- Si^^" ^ certain 
amount of auxiliary information. The performance of the 
optimal estimator appears to be good, even in finite size 
samples, and its use profitable, provided that the value of 
X{Y^y F^2) is big enough to compensate for its greater 
instability. In fact, the empirical results confirm a greater 
instability in the optimal estimator, especially with 
asymmetric populations. Further empirical evidence is 
needed to evaluate its stability when the auxiliary variable 
is multivariate and to establish when a sample is large 
enough to overcome the problem. ^ ^ ^ 

In order to use the information provided by X(F^,, Y^^) 
within the same survey, the distributional properties of this 
sample statistic and of the sample dependent regression 

estimator, which seems to perform well in the empirical 
study, have to be studied in more detail. In particular, the 
distribution of A,(F ,̂, Y^^) when its true value is zero will 
be useful for choosing the threshold over which shifting 
from F^, to F̂ 2 is tmly profitable. Besides working with 
larger sample sizes, the instability problem of this statistic 
can be addressed by looking for more stable, consistent 
estimators of the variances and covariances appearing in 
X{Y^y f^^)- Furthermore, since in most practical situations 
there is more than one variable of interest, in order to apply 
the same weights to all variable, the optimal estimator 
should be chosen on the grounds of an averaged ^.-measure 
across the main survey variables, and such an average is 
more stable than single ̂ .-measures. 
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Combining Multiple Frames to Estimate Population Size 
and Totals 

DAWN E. HAINES and KENNETH H. POLLOCK' 

ABSTRACT 

Efficient estimates of population size and totals based on information from multiple list frames and an independent area 
frame are considered. This work is an extension of the methodology proposed by Hartley (1962) which considers two 
general frames. A main disadvantage of list frames is that they are typically incomplete. In this paper, we propose several 
methods to address frame deficiencies. A joint list-area sampling design incorporates multiple frames and achieves fiill 
coverage of the target population. For each combination of frames, we present the appropriate notation, likelihood ftjnction, 
and parameter estimators. Results from a simulation study that compares the various properties of the proposed estimators 
are also presented. 

KEY WORDS: Incomplete frame; Capture-recapture sampling; Screening estimator; Dual frame methodology; Multiple 
frame estimation. 

1. INTRODUCTION 

In classical sampling theory, it is assumed that a complete 
frame exists. In practice, however, this assumption is often 
violated. Frame imperfections such as omissions, duplica
tions, and inaccurate recordings are almost inevitable in any 
large data collection operation (Hansen, Hurwitz and 
Madow 1953). Information collected from list and area 
frames is used to obtain estimates of the unknown popula
tion size and totals. For example, an ecologist or wildlife 
biologist may use one list and one area frame sample to 
estimate the number of bald eagle nests in a given region. 
The U.S. Bureau of the Census uses dual system estimation 
to measure decennial census undercounts. Darroch, 
Fienberg, Glonek and Junker (1993) describe a three-
sample multiple-capture approach to estimating population 
size when inclusion probabilities are heterogeneous. In 
addition, state agriculture officials may be interested in 
estimating the number of hog farms and the total number of 
hogs in North Carolina. Typically, information from 
multiple information sources is combined to estimate 
population sizes and totals. 

List frames are physical listings of sampling units in the 
target population. These are constructed over the years 
using information from scientists as well as city, county, 
state, and federal agencies. Items found on a list frame can 
include, but are not limited to, names, addresses, telephone 
numbers, social security numbers, or physical descriptions 
of location. These and other miscellaneous stratification 
variables are used to identify persons, animals, businesses, 
or other establishments. When estimating the number of 
bald eagle nests in a region, we construct this year's list 
frame using information from last year's list frame. With 

the addition of new eagle nests, last year's list frame 
becomes quickly outdated and incomplete. Because of this 
incompleteness, estimates based solely on list frames typi
cally underestimate the true population size. Supplemen
ting available information with an area frame sample may 
provide an efficient estimation of the population size and 
totals. 

An area frame is a collection of geographical areas 
defined by identifiable boundaries. The entire area in 
which data are collected is divided into mutually exclusive 
and exhaustive sampling units called segments. The 
segments are usually sti-atified according to a characteristic 
of interest. Once a stratified random sample of segments is 
drawn, enumerators visit the sampled segments and record 
measurements on all reporting units contained therein. 

The National Agricultural Statistics Service (NASS) 
currentiy employs a multi-frame approach for its sampling 
and estimation of numerous agricultural commodities. 
Fecso, Tortora and Vogel (1986) provide a review of 
sampling frames for the agricultural sector of the United 
States while Nealon (1984) details the multiple and area 
frame estimators used by the U.S. Department of 
Agriculture. Kott and Vogel (1995) provide a general 
overview of multiple frame surveys. 

In Section 2, we consider estimation based on infor
mation from two or more independent list frames. We 
show how these methods are related to capture-recapture 
methods. In Section 3, we consider more efficient estima
tors of population size and totals when information from an 
independent area frame sample is available. We extend 
these methods to the case of dependent list frames in 
Section 4. Results from a simulation study that compare 
different estimators are summarized in Section 5. Finally, 

Dawn E. Haines, U.S. Bureau of the Census, Washington, DC 20233; Kenneth H. Pollock, North Carolina State University, Department of Statistics Box 
8203, Raleigh, NC 27695-8203, U.S.A. 
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Section 6 summarizes our results and discusses future 
directions for research. 

Pg are unknown parameters. The likelihood function is 
given by 

2. MULTIPLE LIST FRAMES 

2.1 Population Size Estimation 
List frames used to estimate population size are usually 

incomplete and do not cover the entire population. One 
solution to the incomplete list frame problem is to merge 
two or more incomplete list frames. Combining multiple 
Ust frames may resuU in improved coverage of the target 
population, and thus, may provide better estimators. In the 
case of multiple list frames, it is commonly assumed that 
each element in the population has the same probability of 
being included on a given list frame. Hence, the list frame 
elements themselves constitute our "samples." For 
example, individuals may decide independently whether or 
not to list their telephone numbers in the telephone 
directory with equal probability. In the case of bald eagle 
nests, this year's list frame is constructed based on last 
year's nest sightings. If we assume that the probability of 
a nest being sighted is tiie same for aU nests, tiien the above 
assumption is vaUd. Finally, the assumption is also valid in 
capture-recapture experiments where the first list frame 
consists of aU animals captured on the first sampling 
occasion and the second list frame consists of all animals 
captured on the second sampling occasion. This scenario 
corresponds to Model M, in the capture-recapture literature. 
See Otis, Bumham, White and Anderson (1978) for details. 
Model M, assumes all animals in the population are equally 
at risk to capture on each sampling occasion, but this 
probability can vary over different sampling occasions. 

To begin, we consider the case of two independent list 
frames, fi, and B^. Suppose 5, has size Â^ and B^ has 
size Ng . Let domain 61(^2) consist of those N^{N^ ) 
elements that belong only to frame B^{B2) and domain 
b^bj contain N,, j units that belong to both frames. The 
final domain includes existing target population elements 
that are not included on either list frame. Its size is 
N- Nf^ - N^ - Nb /,. Domain notation for list frames 5, 
and B2 'is presented in Table 1. Note that every element in 
every frame must be categorized into a domain without 
error. Ertors in domain determination are serious and 
cannot be corrected at a later time. These errors are not 
considered in the estimation phase and thus are regarded as 
nonsampling errors. Nealon (1984) claims that domain 
determination is the single largest source of nonsampling 
error in multiple frame designs (Kott and Vogel 1995). 

Let the probability that a population element is included 
on frame 5, {B^) be pg {pg ) . Since Ust frames 5, and B^ 
are assumed to be independent, the probability of an 
element belonging to domain 6; is ;7j, =PB,{1 - PB.,)- The 
remaining domain probabilities are defined similarly. The 
population size N and the inclusion probabilities pg and 

^(PB,'PB,'^\\'\^^I>I'>2) = 
N 

, \ ' \ ^ ^ » i ^ . 

N„. N, N-N„ N-N, 
PB,'PB,'i^-PB) ' O - V 

Table 1 
Domain Notation for List Frames 5 , and B^ 

«2 (1) 

Domain Size 

\ 

^*. 

\ h 

N - \ - \ - - iVj, b. '-P». 

Domain Probability 

•/'», =PB, ( l - / ' f l j ) 

PI,, = ^''-PB)PB, 

Pb,b, =PB,PB^ 

-Pb^-Pb,b, = {l-PB,){^-PB,^ 

Maximum likeUhood estimators (MLEs) of the frame 
inclusion probabilities are obtained by maximizing the 
logarithm of the lUcelihood (1). This procedure yields 

^B ^B 

PR =—- and Pg =—;^, 
^' N ' N 

(2) 

where the MLE 7̂  is substituted for Â . Rather than 
differentiating the log-likelihood function to approximate 
the value of Â , we employ the "ratio method" of 
maximizing the likelihood which equates ^{N) to 
'^{N- I) (Darroch 1958). This process accounts for the 
discrete parameter N and yields the equation 

N ^{N) 

^(N-l)\N-N,^-N,^-Ni,^h,) 

a-^a,)o-^s,) = i- (3) 
Here we assume that A'̂  is large so that 

^R ^B 

>̂ - ^' and 
^B, ^ « , 

N-l N N-l N 

Substituting the estimators in (2) into (3) yields 

N^=N 
N,, 

(4) 

Sekar and Deming (1949) derive an estimate of the variance 
of (4), given by 

V{N, )= ' ^ ' ' 
{\t,y 
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Substituting (4) into (2) yields the MLEs of pg and pg , 

A .̂ 
^ ^ • = ^ and p = 

A .̂ 

A .̂ 

The estimator AT, of Â  in (4) is called the Lincoln-
Petersen estimator in closed population capture-recapture 
models. The elements on list frame 5, may be considered 
as the units captured in the first sampling occasion and the 
elements on Ust frame B^ may be viewed as the units 
captured in tiie second sampling occasion. The elements in 
domain b^ b^ correspond to recaptured elements. With this 
correspondence, it is easy to see that'the likelihood for the 
population size and capture probabilities for two occasions 
will be the same as that given in (1). Hence, the MLEs 
derived for two independent list frames will be the same as 
the corresponding MLEs for the capture-recapture model 
with two sampling occasions. 

Extending these ideas, we contend that combining k 
independent list frames is directly related to having k 
sampling occasions under Model A/, in closed population 
capture-recapture models, where t = k (Otis et al. 1978). 
The general likelihood function for k independent list 
frames, 5,, B^,..., B^, has the form 

N 

^h'-'^h h 

Bi 

Y[PB, (1- .PB,) 
N-N„ 

(5) 

which has exactly the same stmcture as the likelihood 
introduced by Darroch (1958) and is discussed in great 
detail by Otis et al. (1978) and Seber (1982). The form of 
the estimated frame inclusion probabilities is 

Ng 
PB=^' l = h-,k. 

' N 
(6) 

Values of N are obtained b^ numerically solving the 
{k-l) degree polynomial in N resulting from the equality 

^{N) N 

( l - ^ ^ _ ) - ( I - p ^ ^ ) = l. (7) 

We then select as N as the root that maximizes the value of 
the likelihood function (5). Substituting this root into (6) 
yields MLEs of the ^ frame inclusion probabilities. 

2.2 Population Total Estimation 

Suppose the measured y. values are available for all 
units on the k independent list frames. The estimated 
probability that the first element is included on at least one 
of the k list frames is 

^/=i^/ = 1 (^-PBK^-PB,)-(^-PB,)' 

where pg = Ng IN and N is the MLE of Â  obtained from 
(7). From equation (7), 

N 
^J^.M-....M ^ 

( l - f t , ) = l 

which simplifies to 

Â . +-+A^. 
it^=-^ "•••"'* 

N 

An estimated Horvitz and Thompson (1952) estimator of 
the population total is 

1 
H-T E F,. 

ft] (eB,u...uBi 

N E F,=A^?,, 
\^-^\..b,ieB,....uB, 

where F^ is the mean of distinct elements on the list 
frames. Thus, for A: independent list frames, the estimated 
Horvitz-Thompson estimator coincides with the population 
total estimator proposed by Pollock, Turner and Brown 
(1994). 

In some situations, values of the variable of interest, y., 
are not available for all units on the list frames. If the list 
frames are large in size, random samples are selected from 
each list frame and data are collected on those subsampled 
elements. If there are k list frames, it is possible to define 2* 
domains. We consider an extension of Lund's (1968) 
estimator for the total of all units on the list frames, 

2*-l 

KL = E Â ,F/. 
/=i 

which is a weighted sum of 2* - 1 domain means, y,. The 
weights are given by the domain sizes. Further, the 
population total estimator is 

F = Â - ' L,L 

E?:;' N, 

3. MULTIPLE LISTS PLUS AN AREA FRAME 

3.1 Population Size Estimation 

Joining multiple, individual list frames with an area 
frame sample is a solution to overcoming list frame defi
ciencies. Assume that the geographical area of interest is 
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subdivided into U^ segments. Also, assume that a simple 
random sample of u^ segments is selected from U^ 
segments that cover the entire population. Therefore, the 
probability of a segment being selected is p^ = uJU^. In 
some surveys, it is possible to subdivide tlie region into 
approximately equally-sized segments. In such cases the 
segment selection probability corresponds approximately to 
the proportion of area sampled. The inclusion of an area 
frame provides completeness of the target population 
(Hartley 1962). We assume tiiat each reporting unit belongs 
to exactly one segment. Once a segment is selected, all 
reporting units within the segment are observed. For 
example, when estimating the number of bald eagle nests, 
each nest belongs to one and only one segment. However, 
this assumption is not always valid. Consider the case where 
a hog farm crosses segment boundaries. In this case, 
population elements may be associated with more than one 
segment. To address this problem, association mles linking 
population elements to segments are established at the 
estimation stage. See Faulkenberry and Garoui (1991) for 
more detail. The National Agricultural Statistics Service 
implements three correspondence mles that map elements in 
the population to sampled segments. The open, closed, and 
weighted segment estimators are described in Nealon 
(1984). Another related reference is Sirken (1970). 

Consider the case of k independent list frames plus an 
area frame. The population size, Â , and the list frame 
inclusion probabilities, pB^,i = l, - , k, are unknown para
meters. The area frame inclusion probability/>^ =uJU^ is 
known. The likelihood function has the form 

N 

"a'"abr-'"c,b,..b,'\'-'\...b,^ 
PA(^-PA)' 

N-n. 

.N-N„ 

/=1 B, 

where n^ is the total number of elements in tiie u^ sampled 
area segments and n^ is the number of elements in the u^ 
sampled area segments which do not belong to any list 
frames. Similariy, n^b^,..., nab^... b^,N^ ,..., Â ĵ  .i,̂  are 
defined as the sizes of different domains, it is important to 
emphasize that the inclusion of an area frame may cause the 
value of A'̂ ^ to change. A'̂  now corresponds to the 
number of elements on list frame 5 , which are not in the 
u^ selected area segments and not on any other list frame. 

The MLEs of the parameters are given by pg = Ng^lN, 
where iV is a solution to the ^-th degree polynomial 

N{l-pA){l-PB,)-ii-pB,) = 

Numerical methods are essential for solving (8) for the 
MLE N of N. Among the k roots of (8), we select N that 
maximizes the likelihood. 

Applying this methodology to one list frame and one 
area frame, we obtain 

Â  = A^„ + — . 
' ' PA 

(9) 

This estimator is also known as the screening estimator 
(Kott and Vpgel 1995). The screening estimator catego
rizes elements into two distinct groups. The first group 
contains elements which belong to both the list and area 
frames and is called the overiap domain. Since it is 
assumed that all elements on a list frame belong to the area 
frame, the size of the overlap domain coincides with the 
number of elements on frame 5 , and has the value Ng. 
The second group contains elements in the area frame not 
included on the list frame(s) and is referred to as the 
nonoverlap domain. The size of the nonoverlap domain is 
an unobserved random quantity, A^̂ . The term n^ is the 
number of elements found in the u^ area segments which 
are not included on the list frame(s) following a specific 
association rule. An estimated value of Â ^ is njp^. 
Hence, an estimate of the population size is given by Â  in 
(9). The resulting MLE of Pg is 

N. 

PBI 

N„ 
PA 

When multiple list frames are available, it is possible to 
combine them into a single list frame and use the above 
estimator to obtain an estimate ofN. That is, consider the 
screening estimator 

K=N = N„ ..uB, 
PA 

+ N, 

^bb + 
* l * 2 ' PA 

Note that the screening estimator T/j is appropriate even 
when the list frames are not independent of each otiier. We 
discuss this further in Section 4. 

Using this methodology for one area and two 
independent list frames yields the likelihood 

^(PB,'PB,^^\PA ' " a ' \ ' \ ' "ab,' "ab,' ^b,b,, "ab^b,) = 

N 

[ " C \ ' \ ' "ab,' "ab,' \b,,rtab,b. 

"A " « I P " « 2 
PA PB, PB, 

.N-n N-N, 
{1-PA)"'"'{1-PS) ' d - V 

N-N„, 
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The MLE of Â  is 

N^=N = {lp^)-'* 

[(̂ B, ^ '^B)PA * K - N,^b, - «,»,»,)] ^(2/?^)'' 

(11) 

where n^b^b^ denotes the number of elements included in 
the u^ sampled area segments that belong to both list 
frames. An estimate of the variance of N^ may be obtained 
using the Taylor series approximation of (II) and the 
asymptotic distribution of (A^̂ ,, Â ^̂ , n„,Nb^b,, "ab,b^)-

3.2 Population Total Estimation 

When ;;.'s are available for all elements on k indepen
dent list frames and for a sample of segments from an area 
frame, we consider an estimated Horvitz-Thompson estima
tor to estimate the population total. Recall that we assume 
the following: 

1. The probability that a unit is included on the /-th list 
frame, pg , is the same for all units. 

2. The event that a unit is included on one frame is 
independent of its inclusion on another frame. 

3. The probability that a unit is included in the area frame 
sample of u^ segments is p^ =uJU^. 

Since we consider the case where population units belong 
to exactly one area segment and all units within a sampled 
segment are observed, the third assumption is valid. Hence, 
the probability the /-th element is on at least one of the k Ust 
frames and/or the area frame sample is 

ft, = l - ( l - p , ) ( l - p , K i - ^ B ^ ) - ( l - P a P = 

« a ^ " « 6 , + - + ^ f t . . . . . . Vft,...i, 

Â  

The estimated Horvitz-Thompson population total estimator 
is 

N 
H-T 

/J,. + n ab, *N. b,...b, '6 sample 
E Yi^Ny,, 

where y, is the mean of the distinct elements on list frames 
B^,..., Bf^ and the elements in the area frame sample. 

We can also use the screening estimator to estimate the 
population total. The known overiap domain total is 
combined with an estimator of the nonoveriap domain 
(NOL) total to yield Y^^Y^-^ LeNOLYI^PA- The NOL 
domain consists of elements on the area frame that are not 
on any of the list frames and Y, =Yg^^g is the total of the 

distinct units on tiie k list frames. In the subsampling case, 
we may replace F^ in F^ by Lund's estimator, given by 

YL,L=\yb, 

\yt,^^b,bAb,^--\..b,yb,...b, 

4. DEPENDENT LIST FRAMES 

We now consider the case where dependencies exist 
among list frames but where area and list frames remain 
independent. In capture-recapture experiments, for 
example, the probability an animal is captured on the 
second sampling occasion may depend on whether it was 
captured on the first sampling occasion. See Fienberg 
(1972), Cormack (1989), Wolter (1990), Pollock, Hines, 
and Nichols (1984), Huggins (1989), and Alho (1990) for 
specific examples. 

We consider the case where we have two list frames, 5, 
and B^, that are dependent. Let /?,, denote the probability 
of being included on both list frames. If B^ and ^j are 
independent, then p^^ =PBPg where pg and pg are 
inclusion probabilities for 5,' ancl B^, respectively. Define 
PIQ(POI) ^^ ^^^ probability of being included on frame 
B^{B2) but not on frame ^2(5,). The probability of 
exclusion from both list frames is denoted by Pf^ = I -

PB,-PB,^PII-
The likelihood function is given by 

^(PB,'PB,'Pll'^\PA'"a'\'^b,'"ab,'»ab,'\l,,'"al,,l,J 

N 
"a'\'\'»al,,'"ab,'\t,,'"ab,b, 

PA{^-PA) 

<J>B,-Pii) (PB^-PU) Pll 

{1-PB -PB .p„)''"'''''''''""'*'""'*^"'''•'^'"^•'^ (12) 

Maximizing (12) witii respect to Pg,pg,p^^ andN leads to 
the approximate solution 

^ = ̂ b.* ^b. + "ab. + " . * . ^ Kb. + ".b.b. + — . o6, "aAj *i*2 a*i*2 
PA 

which coincides with the screening estimator N^. That is, N 
is also the estimator that is obtained by pooling the two Ust 
frames into a single list frame where the duplications are 
eliminated and the nonoverlap domain size is estimated 
using the area frame sample. Also, it can be shown that the 
two-stage maximum likelihood procedure of Sanathanan 
(1972) leads to: 
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«.. + Â = 
Â ^ 

Factor Levels Definition 

PA^(^-PA)-

•N.,. 

N, B.uB, 

K 

Thus, the maximum lUceUhood estimator and Sanathanan's 
estimator both coincide with the screening estimator. If 
information from two dependent list frames is available and 
the nature of the dependency is unknown, then we cannot 
estimate the individual parameters. When information from 
an independent area frame is available, all parameters are 
estimable. However, for estimating Â , Ng ^g is sufficient 
and no additional information is gained from Ng,Ng , and 

Nb,b,-
Methods are available for modeling the dependence 

among k list frames when estimating population size and 
totals. Additional population information or information 
from an independent area frame is needed to accurately 
model the dependence. Fienberg (1972) and Cormack 
(1989) consider consttained log-linear models to model the 
dependence. On the other hand, Wolter (1990) uses 
external constraints such as a known sex ratio to estimate 
the population size in the dependence case. Another 
technique used is to model the inclusion probabilities as a 
function of the covariates. Alho, Mulry, Wurdeman and 
Kim (1993) use a conditional logistic regression model to 
estimate the probability of being enumerated in a census 
and apply the model to the 1990 Post-Enumeration Survey. 
The role of auxiliary variables in capture-recapture 
experiments with unequal capture probabilities is addressed 
in Pollock et al. (1984), Huggins (1989), and Alho (1990). 

5. SIMULATION STUDY 

We conduct a simulation study to assess the overall 
efficiency of different population size estimators for the 
special case of two list frames plus an area frame. This is 
the most feasible combination of sampling frames for real 
survey problems. 

5.1 Design of the Study 

In order to study both dependent and independent cases, 
we define the parameter 6 that reflects the dependence 
structure between list frames B, and ^2. It has the same 
form as the odds ratio and is written formally as 

9 = PooPii 

PoiPio 
In the case of two list frames, the value of 9 determines a 
unique solution for p^y Our study varies the following 
factors: 

N 

PA 

500, 5000 

0.05,0.10,0.20 

Population size 

Inclusion probability for area 
frame A 

Inclusion probability for list 
frame 5,(5^) 

PB^PB,^ 0.7,0.9 

9 0.5,1.0,1.5,2.0 Odds ratio 

For each parametric combination, we generate data {n^, 
\ ' ^b,, «„ft,. n,b^, \ b,' "ab, b, )• One thousand Monte Carlo 
replications are generated for each parametric combination. 

5.2 Estimators 

We compare four population size estimators, iV,, A'2, Nj, 
and A'̂ ,, N^ is the Lincoln-Petersen estimator which does 
not incorporate area frame information. The estimator N^ 
is suitable when the list frames are independent. Since the 
estimator ignores information from the area frame sample, 
it is expected to be inefficient when information from an 
area frame is available. The screening estimator, N^ > sunns 
the overlap and nonoverlap domain estimates and is 
particularly suitable for the dependent list frame case. The 
third estimator, iVj, is derived from the full, independent 
sampUng frame lUcelihood function. This estimator exploits 
the information contained in the area and list frames and the 
fact that the list frames are independent (9 = 1). 

We expect N.^ to be the best estimator when Ust frames 5, 
and B2 are independent whereas we expect A/j ^ be the 
best estimator in the dependent case. As a result, we also 
consider a pre-test estimator that tests for independence of 
the list frames. We define N^ to be iVj if there is strong 
evidence to believe that frames 5, and B^ are not 
independent. Otherwise, we take N^ = Ny Formally, 

^ 4 = 
A^2ifG0F>x,, 0.05 = 3.84 

N., otherwise. 

where GOF is the chi-square goodness-of-fit test statistic 
for testing H^: 9 = 1 and is derived from the following 
two-way table. 

In 5 , 

Not In 5 , 

Figure 1. Classification of Sampled Area Frame Elements 

Figure 1 categorizes the n^ elements according to their 
presence on or absence from list frames 5, and iSj-

In 5 , 

" o i , «2 

"ab, 

"/(nfl, 

Not In 5 , 

"ab. 

"a 

"AOB; 

"AHB, 

"AnB{ 

"A 
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5.3 Comparing the Estimators 

Tables 2 and 3 display the percent relative bias and the 
percent relative root mean square error of the estimates 
N^, N^, Ny and N^ for population sizes of 500 and 5000, 
respectively. We scale the bias and the root mean square 
error by A'̂ in order to directiy compare estimators based on 
different population sizes. A comparison of N^ with N^ 
shows the benefit of drawing an area frame sample. In 
practice, these benefits depend on the relative cost of the 
area frame sample. In this study, we do not take sampling 
costs into account. The probability of being included on 
both list frames, /?,,, is given in parentheses in the 9 
column. When Pg =P(. = -^Pu must lie between .8 and .9. 
However, for 9 ranging from .5 to 2, /?,, varied only from 
.806 to .817. 

The estimator N^ is unbiased for A'̂  and has the smallest 
percent relative bias. The estimators N^ and N^ are 
asymptotically consistent for N and yield biases close to 0 
when 9 = 1 . On the other hand, N^ and Nj have large 
biases when Q * I. The percent relative bias of N^ is 
smaller than that of N.^ but it is not close to zero. The bias 
does not change significantly as p^ increases from .05 to 
.10 to .20. 

When A'̂  = 500 and PB = Pc = -9, N-^ has the smallest 
percent relative root mean square error (% RRMSE). This 
is partly due to the fact that the limited range of p^, values 
is similar to tiie/),, value for the independence case (.810). 
The % RRMSE for N.^ is 40 - 50 % smaller tiian that of Â2-
On the other hand, the % RRMSE of iV, is only 15 - 30 % 
smaller than that of Ny Therefore, when the list frames 
have very high inclusion probabilities, both N^ and N^ are 
much better than N^- Additionally, if area frame sampling 
costs are high, N^ may be a reasonable altemative estimator 
to Ny When A'̂ = 500 andpg =P(. = .7, N^^ has the smallest 
% RRMSE for the independence case. When 9 = 2, 7̂ 2 has 
the smallest % RRMSE. If Â  - 5000 and pg = .7, Â , has 
the smaUest % RRMSE for only 9 = 1 . For all other 9 
values, 7̂ 2 yields the smallest % RRMSE. In all cases, iV, 
has very small variance and most of the % RRMSE is due 
to the bias in Ny For 9 < 1, ./Vj tends to have positive bias 
while for 0 > 1, 7V3 has negative bias. For the case ofN = 
5000 and pg = .9, Â j has the smallest % RRMSE for 9 = 1. 
7̂ 2 has the smallest % RRMSE for 9 = .5 and 2. For 
9 = 1.5, there is no best estimator with respect to 
% RRMSE. 

As expected, the percent relative root mean square errors 
of Nj, Ny and N^ decrease as the value of p^ increases. 
Thus, as the area frame information increases, the 
% RRMSE decreases. Also, as the population size 
increases from 500 to 5000, the % RRMSE decreases. 
Since the values of p^ in our simulation are small, TV, has 
a large variance. On the other hand, even though A'3 is 
biased, it has a very small standard error and results in a 
smaller % RRMSE. The estimator N^ reduces the bias of N^ 

but has a large standard error. Hence, N^ is not a 
particularly beneficial estimator. For larger values of 9 and p^, 
we expect N^ to perform better than Ny For the values of 
9 and p^ we considered, we recommend N^ over other 
estimators. 

The value of % RRMSE for N^ is between that of N^ 
and N^ in most cases. We write the estimator N^ as N^ = 
5N2 + (1 - 5)Ny where 6 = 0 or 1 based on the results of 
the goodness-of-fit test. The % RRMSE and % RBias of 
A/4 need not be between those of 7̂ 2 and N^ because 8 is 
not independent of N^ and Ny 

5.4 Limitations of the Study 

The goal of our study is to compare the bias, standard 
error, and mean square error of four population size 
estimators. We assume that inclusion probabilities for both 
list frames are identical. Future studies may include 
unequal inclusion probabilities as well as larger values of 9. 
Clearly the benefit of N^ over N^ depends on the cost of 
sampling from an area frame. Our paper considers only 
small values of p^. Small p^ values are associated with a 
high area frame sampling cost. Even in this case, we 
observe a significant reduction in % RRMSE and % RBias, 
thereby justifying the use of N^ over Ny We do not 
consider an objective function which incorporates sampling 
costs, % RRMSE, and % RBias. 

Throughout this paper, we assume that all units have the 
same probability of being included on a given list frame. 
Haines (1997) considers the case where the inclusion 
probabilities are modeled as a function of a covariate. 
When inclusion probabiUties are heterogeneous, larger units 
may have a higher list frame inclusion probability than 
smaller units. Heterogeneous inclusion probabilities play 
an important role in estimating population totals when the 
response variable has a highly skewed distribution or has 
rare values. Haines (1997) also presents two stratification 
procedures that are useful when area and list frames are 
stratified on the same variable. These results will be 
presented in future publications. 

6. DISCUSSION 

The primary focus of this paper is population size 
estimation based on several sampling frames. Information 
from area and/or list frame(s) is collected and combined to 
obtain various estimators. We derive population size 
estimators when information is available only on k 
independent Ust frames and also when information is 
available on an area frame sample in addition to the list 
frames. We conduct a simulation study to compare the 
performance of the estimators in the special case of two list 
frames plus an area frame. Based on our simulation study, 
we recommend the estimator derived from the full, 
independent likelihood, N^, for the case where the list 
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Table 2 
Simulation Results for N = 500 

PB 9 

.7 .5 
(.462) 

1 
(.490) 

1.5 
(.508) 

2 
(.522) 

.9 .5 
(.806) 

1 
(.810) 

1.5 
(.814) 

2 
(.817) 

^ , 

N, 

N, 

^ 4 

^ 

N, 

N, 

^ 4 

^ 1 

N, 

^ 3 

^ 4 

^ . 

^ 2 

N, 

^ 4 

^ 1 

^ 2 

^ 3 

^ 4 

^ 1 

N, 

N, 

^ 4 

^ . 

^ 2 

^ 3 

^ 4 

^ 1 

N, 

N, 

^ 4 

% RBias 

62.30 

0.30 

55.52 

48.15 

0.47 

0.45 

0.43 

2.40 

-35.60 

3.11 

-32.07 

-22.74 

-60.07 

-6.12 

-55.36 

-41.39 

5.37 

0.08 

5.04 

5.94 

0.30 

0.78 

0.33 

3.23 

-4.29 

-0.65 

-4.07 

-0.43 

-8.28 

-0.29 

-7.80 

-2.52 

.05 

% RRMSE 

66.01 

49.07 

58.95 

58.88 

19.26 

57.34 

18.21 

27.57 

40.06 

66.43 

36.79 

47.62 

62.91 

66.59 

58.35 

63.79 

6.79 

1478 

6.44 

9.48 

5.01 

20.72 

4.83 

13.79 

7.07 

21.52 

6.78 

13.77 

10.27 

25.59 

9.82 

17.96 

% RBias 

60.64 

-0.75 

48.15 

37.88 

1.01 

0.34 

0.83 

1.39 

-36.48 

-5.08 

-31.01 

-26.21 

-61.31 

-1.15 

-51.21 

-34.79 

5.27 

-0.06 

4.62 

5.03 

0.17 

0.41 

0.20 

1.88 

-439 

0.35 

-3.83 

-1.18 

-8.40 

0.39 

-7.35 

-3.10 

PA 

.10 

% RRMSE 

64.04 

32.37 

51.15 

49.25 

19.08 

39.61 

16.93 

22.94 

40.58 

41.96 

35.28 

37.57 

64.06 

46.68 

54.19 

55.45 

6.63 

10.17 

5.93 

7.05 

5.01 

14.06 

4.68 

9.35 

7.32 

15.88 

6.73 

10.92 

10.36 

17.66 

9.38 

14.02 

% RBias 

63.26 

0.85 

40.53 

24.95 

-0.11 

0.88 

0.14 

0.29 

-35.69 

0.30 

-24.04 

-17.06 

-60.41 

1.67 

-40.89 

-18.60 

5.59 

-0.06 

4.24 

4.34 

0.25 

-0.06 

0.17 

1.00 

-4.55 

0.002 

-3.49 

-1.43 

-8.33 

0.35 

-6.30 

-2.73 

.20 

% RRMSE 

66.81 

22.58 

43.32 

38.80 

19.45 

27.25 

15.75 

17.96 

40.26 

28.79 

28.88 

30.38 

63.28 

30.99 

43.99 

41.35 

6.97 

6.55 

5.53 

5.72 

4.94 

9.03 

4.24 

5.98 

7.37 

10.27 

6.15 

8.20 

10.32 

11.41 

8.20 

10.33 
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Table 3 
Simulation Results for A' = 5000 

PB 0 

PA 

.05 .10 .20 

% RBias % RRMSE % RBias % RRMSE % RBias % RRMSE 

.7 
(.462) 

^ 3 

61.47 

-0.18 

54.84 

19.73 

61.82 

15.78 

55.17 

38.12 

61.39 

0.26 

49.06 

4.77 

61.76 

10.65 

49.38 

19.52 

61.69 

-0.15 

39.38 

-0.01 

62.04 

6.72 

39.65 

7.21 

(.490) 
Ni 

A^3 

-0.28 

0.43 

-0.22 

0.26 

6.14 

18.14 

5.82 

9.82 

-0.13 

0.47 

-0.03 

-0.04 

5.99 

12.85 

5.35 

7.44 

0.35 

-0.20 

0.16 

0.11 

6.15 

8.34 

488 

5.95 

1.5 A', 
(.508) 

-36.21 

0.41 

-32.87 

-19.11 

36.68 

20.39 

33.37 

31.15 

-36.29 

-0.16 

-29.97 

-11.51 

36.78 

14.21 

30.49 

23.92 

-35.90 

0.39 

-2413 

-3.12 

36.38 

9.55 

24.66 

1403 

(.522) 
Ni 

^ 2 

-61.04 

0.40 

-55.69 

-14.10 

61.3 

20.09 

55.96 

36.31 

-60.53 

0.60 

-50.24 

-2.34 

60.81 

15.43 

50.55 

20.96 

-60.64 

0.31 

-41.46 

0.26 

60.92 

9.67 

41.76 

9.84 

0.5 N, 
(.806) . 

^ 2 

A^3 

5.56 

-0.12 

5.21 

4.97 

5.70 

4.55 

5.35 

5.41 

5.52 

0.11 

4.86 

3.64 

5.67 

3.19 

5.01 

488 

5.54 

-0.03 

4.22 

2.26 

5.68 

2.08 

435 

3.79 

1 N, 
(.810) 

N. 

-0.02 

-0.09 

-0.03 

0.37 

1.58 

6.16 

1.53 

3.19 

0.08 

-0.17 

0.05 

0.11 

1.55 

4.08 

1.48 

2.18 

0.01 

-0.14 

-0.02 

0.09 

1.57 

2.79 

1.35 

1.89 

1.5 A', 
(.814) ^^ 

^^3 

-4.66 

-0.25 

-4.39 

-2.50 

5.00 

7.54 

4.73 

6.31 

-4.52 

0.11 

-3.96 

-2.26 

4.85 

4.95 

4.32 

5.02 

-4.61 

-0.09 

-3.55 

-1.84 

4.90 

3.14 

3.85 

3.82 

(.817) 
^ 1 

N. 

-8.45 

-0.21 

-7.95 

-3.76 

8.68 

7.86 

8.18 

8.80 

-8.38 

-0.06 

-7.39 

-2.77 

8.60 

5.29 

7.61 

6.99 

-8.46 

0.01 

-6.49 

-1.25 

8.69 

3.73 

6.73 

4.97 
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frames are independent or nearly independent. For the 
moderate to strong dependence cases, we recommend the 
screening estimator, N^-

We also study population total estimation. We consider 
two scenarios for estimating population totals. In the first 
case, we assume that observations are available on all units 
that comprise the list frames. In contrast, the second case 
assumes that information is available only on subsamples 
from each of the list frames. We consider an estimated 
Horvitz-Thompson estimator if list frames are independent 
and a screening estimator to estimate the population total if 
the list frames are dependent. 

In this paper, our focus is on population size estimation. 
In practice, one may be interested in estimating population 
totals for several characteristics based on multi-stage 
samples involving unequal inclusion probabilities. 
Relevant papers on this topic include Bankier (1986), 
Skinner (1991), and Skinner, Holmes, and Holt (1994). 
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Temporary Mobility and Reporting of Usual Residence 
NANCY BATES and ELEANOR R. GERBER' 

ABSTRACT 

Temporary mobility is hypothesized to contribute toward within-household coverage error since it may affect an individual's 
determiriation of "usual residence" - a concept commonly applied when listing persons as part of a household-based survey 
or census. This paper explores a typology of temporary mobility patterns and how they relate to the identification of usual 
residence. Temporary mobility is defined by the pattem of movement away from, but usually back to a single residence over 
a two-three month reference period. The typology is constructed using two dimensions: the variety of places visited and 
the frequency of visits made. Using data from the U.S. Living Situation Survey (LSS) conducted in 1993, four types of 
temporary mobility patterns are identified. In particular, two groups exhibiting patterns of repeat visit behavior were found 
to contain more of the types of people who tend to be missed during censuses and surveys. Log-linear modeling indicates 
that temporary mobility patterns are a significant predictor of usual residence, even when controlling for the amount of time 
spent away and demographic characteristics. 

KEY WORDS: Temporary mobility; Usual residence; Household rosters; Coverage. 

1. INTRODUCTION 

The fundamental challenge in any census of population 
is the accurate and complete count of every person within 
that population. Consequentiy, the extent to which people 
are missed or undercounted during a census is arguably the 
most important measure by which it is evaluated. Most 
censuses and household-based surveys begin with a roster 
question designed to list all "usual residents" of a 
household. 

Research evaluating the quality of census data suggests 
that coverage error is a problem. In 1990, the U.S. Post 
Enumeration Survey (PES) and demographic analyses 
estimated that the net national undercount was 
approximately 2% (Hogan 1993; Robinson, Ahmed, Das 
Gupta and Woodrow 1993). Other research suggests that 
coverage error in current surveys (such as the U.S. Current 
Population Survey) is even larger than undercoverage 
occurring during decennial censuses (Shapiro, Diffendal, 
Cantor 1993; Chakrabarty 1992; Pennie 1990; Hainer, 
Hines, Martin and Shapiro 1988). Research by Fein and 
West (1988) and Shapiro et al. (1993) suggest that failure 
to count all persons within a housing unit is a larger 
component of total coverage error than failure to count 
persons as a result of missing a housing unit. Others report 
that within-household omissions account for about one-
third of all census omissions (Ellis 1994; Fay 1989a). 

Coverage research also indicates that persons who are 
undercounted are not randomly distributed among the 
population. For example, blacks and Hispanics are 
undercounted at a higher rate than non-Hispanic whites 
(4.6% and 4.0%, respectively, compared to 0.7%; Hogan 
1993). Persons who reside in multi-unit structures (such as 
apartments) and those who rent are also more likely to be 

missed (Griffin and Moriarity 1992; Moriarity and Childers 
1993; Ellis 1993). 

This paper concentrates on a dimension long hypo
thesized to contribute to within-household coverage error. 
This dimension focuses on temporary mobility into and out 
of a residence over a period of time. Specifically, we 
examine movement in terms of the number of places a 
person may visit, the number of visits he/she makes and the 
amount of time he/she spends there. This analysis examines 
whether or not mobility may be a factor influencing 
coverage and indeed be a good indicator of household 
attachment. We hypothesize that a person's level of 
mobility tends to influence a household respondent's 
decision when defining that person as a usual resident and, 
consequently, someone he/she would or would not include 
on a census report. 

2. BACKGROUND 

The movement from one geographical location to another 
is usuaUy signified by a change of address, movement of 
possessions and so on. This type of mobility is commonly 
referred to as geographic mobiUty. In addition to 
geographic mobility, there exists a more subtle form of 
mobility that is not so clearly defined - temporary mobility. 
Defined here, temporary mobility refers to the temporary 
and sometimes pattemed movement away from a residence 
and encompasses both long and short, frequent and 
infrequent overnight stays. This type of mobility has been 
described as "one of the key features of irregular and 
complex households" (de la Puente 1993). One example of 
this is found in Haitian immigrant communities where 
typical household structure consists of a relatively 
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permanent "nuclear core" and a more mobile "fluid 
periphery." The fluid periphery consists of related and non-
related newcomers, staying for short periods of time, and 
members of the household who visit Haiti on a regular basis 
and can be away weeks or months at a time (Wingerd 1992). 

Temporary mobility is not limited to special commu
nities. Many examples can be found in the wider commu
nity, including mobiUty associated with long term business 
or vacation travel, attendance at college, custody situations, 
and persons who maintain a presence in one or more 
households over a given period of time. This mobility in 
the fluid periphery, or temporary mobility, differs from 
geographic mobility because it consists of movements away 
from, but usually back to, a single residence over time. 
Members of this fluid periphery present conceptual 
difficulties for respondents in identifying which members 
to include in a census or survey. Movement of these 
persons may not involve a permanent change in address, 
and thus can blur the concept of who is defined as living or 
staying at a given address. 

Given that there is Uttle literature on temporary mobility, 
studies on geographic mobility and household structure 
provide a good starting point for forming our hypotheses 
about temporary mobility. According to the March 1994 
Current Population Survey, young aduUs between 20-24 are 
reported to have the highest rates of geographic mobility, 
with one-third having moved between March 1993 and 
March 1994. Differences by race are also evident with a 
higher rate of mobility among blacks and Hispanics (19.6% 
and 22.4%, respectively) compared to whites (16.0%, see 
Hansen, 1994). Finally, tenure is also closely correlated 
with geographic mobility - renters were four times more 
likely than homeowners to have moved between 1993 and 
1994. Obviously, these geographic movers share many of 
the same characteristics as some undercounted populations. 

The kind of mobility with which we are concerned may 
also be a reflection of socioeconomic status. Temporary 
mobiUty, transitory situations, and peripheral connection to 
households can represent a means of adjusting for a lack of 
resources (Lipton and Estrada 1993). Hudgins and Holmes 
(1993) suggests that the undercounting of young black 
males is a result of their social and economic marginality 
evidenced in part by a lack of stable residences and 
relatively permanent mailing addresses. One facet of this 
may involve temporary movement to extended families or 
"kin" networks in order to receive family or financial 
assistance. This phenomenon of extended or kin networking 
among blacks has also been documented extensively by 
ethnographic studies (Martin and Martin 1985; Stack 1974; 
Hainer et al. 1988). These Uving arrangements suggest 
nontraditional (or at least non-nuclear) household forma
tions which could contribute to coverage error, especially 
if a person participates in kin networks by moving back and 
forth among them. 

Finally, Montoya (1992) describes a very different 
household composition that is characteristic of some recent 

Hispanic immigrant communities. Like kin-network house
holds, they contain people who come and go, however, the 
members are "loosely tied, ephemeral, and alienated" and 
often composed of young migrant men who work and sleep 
in different shifts and have virtually no social ties with one 
another. Several other ethnographers have identified 
similar households in other Hispanic communities across 
the United States (Velasco 1992; Mahler 1993; Romero 
1992.) They found that census coverage in such households 
was often restricted to those individuals who were actually 
present when the enumerator arrived. 

3. METHODOLOGY 

Data for this analysis come from the Living Situation 
Survey (LSS), a survey specifically designed to gather 
information about household membership, social attach
ments, mobility and the assignment of usual residence. The 
LSS was a voluntary survey conducted by the Research 
Triangle Institute (RTI) and sponsored by the U.S. Census 
Bureau between May and September of 1993. The sample 
was stratified to oversample for high and medium minority 
areas {i.e., greater than 80% black or Hispanic, between 
40% and 80% black or Hispanic) and areas containing 
renters {i.e., greater than 40% renters). To increase the 
efficiency of the sample design, RTI used housing unit data 
previously collected from a multistage probability sample 
used in the 1992 National Household Survey on Drug 
Abuse (NHSDA). 

The first portion of the LSS interview was conducted in-
person with the most knowledgeable household respondent, 
in most cases, the householder (by U.S. Census Bureau 
definition, this refers to the person in whose name the house 
is owned or rented). These householders provided a roster 
and then answered demographic questions for themselves 
as well as all other listed persons. Through a series of 
13 extensive roster probes, the questionnaire rostered 
"core" household residents but also included many persons 
having a less permanent presence. Persons with a more 
tenuous attachment were brought in by asking probes about 
who had spent the night there during the reference period, 
who was considered a household member even if they were 
staying elsewhere, and who considered the residence their 
permanent address or a place they received mail or phone 
messages (see Sweet 1994). (The length of the reference 
period varied depending upon the date of the interview. 
References periods began on the first day of the month two 
months prior to the interview month and ended on the day 
of the interview. Accordingly, interviews conducted toward 
the end of the month had a longer reference period than 
interviews conducted near the begining). In total, 999 
households were interviewed nationwide. Using the broad 
rostering technique, a total of 3,549 people were listed. 

The next step in the survey was to weed out rostered 
individuals determined to be only "casual visitors" to the 
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household. Individuals were defined as casual visitors ifi 
I) their usual residence was considered by the householder 
to be someplace other than the sample housing unit and 2) 
they had stayed at the household for one week or less 
during the reference period. This screening process 
identified persons from the broad rostering technique who 
had only a casual attachment to the household. Of the 
3,549 persons rostered, 712 were considered to be casual 
visitors. (Of the 712 casual visitors, 77% were related to 
the household respondent, 93% were non-Hispanic, 84% 
were white and 58% were female). For several reasons, 
casual visitors were ineligible for the remainder of the 
questionnaire. First, we assumed that casual visitors do not 
meet the Census Bureau definition of a usual resident at the 
interview household and second, excluding this group from 
the bulk of the questionnaire greatly reduced the time and 
resources required to carry out the survey. 

After follow-up for converting refusals and other non-
interviews, the final response rate for the household-level 
portion of the interview was 79.5%. (Follow-up actions 
included sending refusal conversion letters, having field 
supervisors call directly, make repeat visits, and re-assign 
interviewers. Respondents were contacted an average of 1.9 
times; nonrespondents an average of 5.9 times). Consider
ing the population, this was considered to be an acceptable 
rate of response. Nonetheless, since we suspect that nonre
sponse is highly related to coverage issues such as mobility, 
it is likely that this level of nonresponse has some effect upon 
our estimates. More discussion on this is included in the 
description of the individual questionnaire below. 

The next part of the survey was a self-reported 
individual-level questionnaire. This part of the survey 
contained questions about temporary mobility as well as 
self-reported demographics. Respondents were asked if 
they had stayed overnight at any other place beside the 
interview household during the reference period. If so, 
interviewers used a calendar to record each place and the 
dates stayed. Interviewers also gathered information about 
the type of each place stayed, the individual's attachment to 
each place, and the reason(s) for going there. 

Each of the householders answered the individual-level 
questionnaire for himself/herself. Additionally, all rostered 
persons who had stayed away for eight or more nights 
during the reference period answered the individual-level 
questionnaire. All persons identified as college students 
and persons with no usual residence were also eligible for 
an individual interview. Finally, the individual question
naire was also given to a simple random 10% sample of 
LSS households. Within these households, individual 
interviews were attempted with each person on the roster, 
with the exception of casual visitors. This somewhat 
complex selection criterion resulted in a base of persons 
representing people with a greater-than-casual association 
to the interview households, all of whom are included in the 
analyses reported below (A'̂  = 1,451). 

The individual-level portion of the questionnaire had a 
response rate of 85,3%. The majority o.f individual inter
views were conducted in-person (96%) and most of the 
adult interviews (89%) were self-reported while all inter
views with children were conducted by a knowledgable 
proxy. Because the householders answered basic living 
situation questions and demographic questions for all 
rostered individuals, we had some means for examining the 
characteristics of the approximately 15% who were selected 
for the individual questionnaire but did not respond. We 
found no significant sex or age differences between 
nonrespondents and respondents but we found that a 
disproportionate percentage of nonrespondents were black. 
We also found that nonrespondents were more likely to 
have spent more than one week away from the interview 
household than respondents. These findings shed some 
light on how representative our individual sample is both 
demographically and with respect to temporary mobility. 
Because nonrespondents were reported to be away more 
than respondents, we suspect the potential 'selectivity' bias 
may have underestimated our mobility measures. 

Household and individual-level weights were applied to 
adjust for the oversampling, the selection criteria for the 
individual-level survey and for nonresponse (see Lynch, 
Witt, Branson and Ardini 1993). All analyses were 
conducted using Contingency Table Analysis for Complex 
Sample Designs (CPLX), a computer variance estimation 
program designed to adjust for the LSS's complex sample 
design effects (see Fay 1989b; 1985). 

3.1 Typology of Temporary Mobility 

The typology which we present is empirically based. 
That is, the particular groupings of visits and destinations 
was derived analytically and not theoretically. Therefore, 
the categories we identify do not represent groups of persons 
with identical characteristics or in identical circumstances. 
Rather the typology should be regarded as an attempt to 
represent the complex underlying reality involved in mobile 
living situations. It is our hypothesis that such mobility has 
an affect on the strength of the social tie between an 
individual and a particular household, and that these ties 
influence the judgment of the household respondent in 
deciding who is a usual resident of the household. Time 
away, number of visits and number of destinations are an 
indirect measure of the strength of such ties. 

Our typology of temporary mobility was created using 
two dimensions of overnight movement outside the 
interview household. The first dimension taps into the 
variety of places a person visited over the reference period. 
This provides some idea of how many places other than the 
interview household that a person might have attachments 
to. The second dimension taps the frequency of movements 
outside the interview household by counting the number of 
times a person left for a period of one or more nights. 
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The use of these factors as a measure of the strength of 
attachment to a household is confirmed by ethnographic 
descriptions of highly mobile living situations. The pattem 
of movement represented in our typology reflects many 
different social processes, such as dispersed attachment to 
extended kin households (Stack 1974; Dressier, Hoeppner 
and Pitts 1985), immigration patterns (Wingerd 1992), and 
adaptation to poverty (Hainer 1987; Valentine and 
Valentine 1971). 

The LSS included several exploratory open-ended 
questions designed to examine respondents perception of 
the reasons for their mobility. The questions asked the 
reasons for going and reasons for retum for particular trips. 
We had hoped that these questions would provide us with 
a more direct assessment of the underlying social patterns 
that cause temporary mobility. Unfortunately the answers 
to these open ended questions were difficult to code without 
making unwarranted assumptions, largely as a result of the 
way in which they were expressed. As a result, we did not 
incorporate these reasons when formulating the typology. 

Each "move" was defined as a stay made outside the 
interview household for at least one night. For example, if 
a person left to spend three days at a girlfriend's, then 
moved from there to a relative's for one night before 
returning to the interview household that person would be 
assigned as having two total places with two total visits 
(one visit apiece). Conversely, if a person left to stay 
overnight at a friend's then retumed to the household and 
then two weeks later retumed to the same friend's home for 
a second visit, that person would be assigned one place with 
two total visits (two repeat visits). The first example 
exemplifies a potential bias in this method, that of counting 
each unique place visited during one extended trip outside 
the interview household as an independent move (such as 
a vacation with multiple destinations). On the other hand, 
this method also captures the movement of "floaters" by 
counting each separate place visited during one move away 
from the household as a separate move. 

A single mobility measure using various combinations of 
the number of places and number of moves was 
constmcted. In all, five categories were created with efforts 
made to identify different patterns of movement by 
separating out those making repeat visits to the same places. 
Our first category depicts persons who stayed all nights of 
the reference period at the interview household and 
represents persons with no temporary mobility (the "Non-
mobile"). The second category consists of persons who, 
according to the calendar, reported only one visit to one 
place (the "1-shots"). The "Boomerangs" reflect persons 
making repeat visits to one place only. The "No-repeats" 
are characterized as persons who traveled to more than one 
place, but never the same place twice. And finally, the 
"Floaters" stayed overnight at several different places, 
making repeat visits back to at least one of these places (see 
table 1). 

Table 1 
Temporary Mobility Typology 

4. CHARACTERISTICS OF MOBILITY TYPES 

Table 2 presents the weighted frequencies for the 
mobility typology. Slightly more than half of the persons 
administered the individual questionnaire reported no 
mobiUty outside the interview household during the 
reference period. The largest concentration of persons who 
were mobile fell into the 1-shot category, that is, they 
reported making only one move outside the interview 
household to one place (26%, overall). Eleven percent 
comprised the Boomerang category reporting a more 
repetitive pattem of two or more visits to a single place 
while 7% reported the less pattemed, yet highly mobile "No 
repeat" category. The Floaters comprised the smallest 
group with 4%. 

Table 2 
Typology of temporary Mobility by Sex and Hard-To-Enumerate 

(HTE)* Status (Weighted % and standard errors) 

MOBILITY 
TYPE 

Non-mobile 

1-Shots 

Boomerangs 

No Repeats 

Floaters 

Unweighted N 

Jackknife 
chi-square** 

Total 
Weighted 
Percent 

(s.e. in 
paren.) 

52% 
(14.0) 

26% 
(10.4) 

11% 
(4.0) 

7% 
(2.9) 

4% 
(1.0) 

1,451 

SEX 

MALE FEMALE 

40% 
(13.7) 

35% 
(13.9) 

15% 
(5.7) 

6% 
(2.4) 

4% 
(1.3) 

653 

A'2 =2.03 

df 

67% 
(13.6) 

16% 
(7.0) 

6% 
(2.9) 

8% 
(4.3) 

3% 
(1.3) 

798 

,p<.05, 

= 4 

HTE STATUS 

NON-HTE 

53% 
(14.3) 

27% 
(10.6) 

10% 
(4.1) 

7% 
(3.0) 

3% 
(0.9) 

1,375 

HTE 

38% 
(7.8) 

6% 
(2.9) 

21% 
(9.1) 

6% 
(5.4) 

29% 
(9.9) 

76 

X^ for distribution ex
cluding non-mobile 
category =2.14, 
p < .05, d.f. = 4 

* The hard-to-enumerate group includes black and Hispanic males 
aged 18-29. 

**See Fay 1985 for documentation of Jackknife chi-square test for 
complex samples. 
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Tables 2 also illustrates selected demographics for the 
five mobility categories including gender breakouts which 
illustrate a higher mobility propensity for males than 
females. Approximately 60% of the males reported at least 
one visit outside the interview household, which was 
significantiy higher than females at approximately 33%. 
This gender difference in temporary mobility is much more 
pronounced than in geographic mobility where the 
difference between the male and female move rate is only 
around 1% (17% of the male population moved between 
1993 and 1994 compared to 16% for females, see Hansen 
1994). This suggests that temporary mobility is more 
common than geographic mobiUty and that the demo
graphic characteristics associated with it are different as 
well. Military travel could explain the gender differences 
in temporary mobiUty, as could travel for business with 
males having a higher active-duty/population ratio and 
employment/population ratio compared to females (U.S. 
Departmeiit of Labor 1994). 

The right side of Table 2 integrates several demographic 
characteristics to create a subgroup known to have high 
rates of undercount in previous censuses. This group is 
comprised of males between 18 and 29 who are black or 
Hispanic. This subgroup is sometimes referred to as the 
"hard-to-enumerate" or HTE population. Only a smaU 
percentage of the LSS sample met the HTE criteria, but an 
examination of this group's mobility reveals very different 
patterns compared to the non-HTE group. 

First, the HTE group appears more mobile to begin with -
over 60% indicated spending at least one night someplace 
other than the interview household compared to less than 
50% for non-HTEs. Second, the distribution of mobile 
categories differs significantiy by HTE status. The majority 
of non-HTEs who are mobile are concentrated in the 1-shot 
category whereas the HTEs who are mobile are more 
concentrated in the repeat movement categories (Boomer
angs and Floaters with 21 % and 29%, respectively). 

We also examined the distributions for temporary 
mobility by race (white, black, Hispanic, and other) and age 
(0-17, 18-29, 30-49, 50+). Overall, temporary mobility did 
not vary significantiy by either, yet some interesting trends 
were noticeable. A relatively large concentration of 
Hispanics were found in tiie No-Repeat category (19%) and 
blacks in the Floater group (9%). A higher percentage of 
blacks were Non-mobile (66%) compared to whites (52%), 
in spite of the fact that blacks have higher rates of 
geographic mobility than whites. Finally, young aduUs 
between 18 and 29 appeared more mobile than other age 
groups (close to 70% of this age group spent at least one 
night away from the interview household) and a dispro
portionate percentage of this group were Floaters (14%). 
The lack of statistical significance among some of these 
trends may be an artifact of sample size. Alternatively, 
temporary mobility may be sufficiently different from 
geographic mobility such that it does not share the same 
characteristics of traditional 'movers'. 

Another important variable hypothesized to correlate 
with the pattern of temporary mobility is the amount of time 
spent away on visits. The U.S. Census Bureau residence 
rules vary in the use of time as a criterion for usual 
residence. For example, persons who work in another city 
during the week but retum home on weekends are to be 
counted at the place where they "live and sleep" the 
majority of the time - in this case, at the place they live 
during the week. However, a child living away at boarding 
school is to be counted at the parent's residence even though 
he/she probably spends the majority of time at the school. 
Likewise, a person staying at a group quarters on Census 
Day {e.g., a college dorm or a jail) is counted at that place, 
regardless of tiieir living situation the rest of the year. 
Gerber (1994) found that respondents also use time to 
varying degrees when defining household rosters - in 
certain situations, she found no clear relationship between 
being rostered and the amount of time spent at a place. 
Instead, things like household membership and relationship 
seemed to factor more heavily in the decision-making 
process. 

Nonetheless, it makes intuitive sense that the amount of 
time spent away plays some part in the householder's 
determination of where to count someone. In order to see 
how our mobility categories varied in term of length of time 
spent away, the sum of the total number of nights spent 
away during all visits in the reference period was divided by 
the total number of nights in the reference period and then 
expressed as a percentage. Table 3 presents this time 
measure expressed in terms of being away more or less than 
half of the reference period. 

Table 3 
Time Spent Away from the Interview Household during the 

Reference Period (Weighted % and standard errors) 

Away 50% of 
time or more? 

No 

Yes 

Unweighted N 

1-Shots 

94% 
(4.4) 

6% 
(4.4) 

314 

Boomerangs 

73% 
(11.5) 

27% 
(11.5) 

186 

No Repeats 

98% 
(1.4) 

2% 
(1.4) 

101 

Floaters 

63% 
(10.3) 

37% 
(10.3) 

134 

Total 

88% 
(3.6) 

12% 
(3.6) 

735 

Jackknife chi-square = l.l\,p<.05,d.f. =3 

Both the Boomerangs and Floaters were more likely than 
other groups to spend half or more of the reference period 
someplace other than the interview household. This 
supports the notion that the repeat visit pattems underlying 
these two groups are associated with an increase in total 
time spent away. It also suggests a higher degree of resi
dential ambiguity especially for the Floaters. Since 
members of this group report visits to at least two places in 
addition to the interview household, it is unclear whether 
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those away more than half the time are spending a majority 
of time at any one place. If time spent at each place is 
roughly equal, it is easy to imagine Floaters not being 
rostered at any of them or at more than one of them. 
Conversely, by definition we can assume the Boomerangs 
who were away more than half the reference period spent 
the majority of their time at the only other place they 
reported visiting. Assuming time plays a role in defining a 
sense of household membership, then presumably, the 
Boomerangs have a better chance of being counted because 
the majority of their time is being spent at the other place. 

5. USUAL RESIDENCE AND MOBILITY 

We next explored whether temporary mobility has an 
impact on the household respondent's determination of a 
person as a "usual resident". On the 1990 U.S. census 
form, respondents were instructed to list persons at the 
place where the person lives or sleeps most of the time. 
The LSS asked household respondents whether they 
considered the interview household to be the "usual 
residence, that is the place where [you/NAME] live(s) and 
sleep(s) most of the time". They were also asked to report 
whether "[you/NAME] have a usual residence somewhere 
else?" While this method is not a perfect replication of a 
census roster it provides an approximation of who, out of all 
those rostered during the LSS, the householder might 
naturally have included or excluded on a census form or 
current survey. 

Table 4 presents a cross-classification of usual residence 
assignment by mobility status. A combination of the usual 
residence questions resulted in four classification 
possibilities: usual residence at the interview household 
only, usual residence at someplace other than the interview 
household only, usual residence at both the interview 
household and another place, and usual residence at no 
place. (The category of "no place" was extremely small 
(less than 1%) and was combined into the category of 
"other place"). Assuming that answers of "other place" 
equate to being left off the census form, we see that overall, 
only around 4% of persons with a greater-than-casual 
association to the interview households might have been 
left off. Overall, the distribution of usual resident classifi
cations significantly differed according to mobility type. 

As might be expected, nearly all of the persons who 
spent every night at the interview household during the 
reference period were considered usual residents there 
(rounded to 100%). The most obvious deviation among 
categories is noticeable for the Boomerangs and Floaters. 
Between 20-25% of the people in these two groups were 
characterized by household respondents as usual residents 
someplace other than the interview household. This looks 
very different from both the 1-shots and No-repeat groups, 
where only 2% and 5%, respectively, were considered usual 

residents someplace else. These results suggest that the 
latter two groups typify mobility associated with pleasure or 
business but for persons with a firm tie to the household 
while the Boomerangs and the Floaters are more likely to 
include persons with a less-established association to the 
household. For this reason, and the fact that a sizable 
percentage of the HTE population were found in these two 
categories, the Boomerangs and Floaters arguably have the 
more interesting coverage implications and raise several 
questions. For example, do these persons get counted at 
one place, all places or no place? Additionally, where 
should they be counted? 

Table 4 
Where Does Household Respondent Consider Person to be a 

"Usual Resident" ? (Weighted % and standard errors) 

Where Usual Non , cu . r> No m . T . i r, J . r, », u-i 1-Shots Boomerangs „ Floaters Total Resident ? Mobile '̂  Repeat 

Interview HH 100% 97% 71% 95% 70% 95% 
Only 

Some Other 
Place 

Both Places 

Unweighted N 

(0.2) 

0% 
(-) 
0% 
(-) 
716 

(2.0) 

2% 
(1.8) 

1% 
(0.4) 

314 

(12.1) 

25% 
(11.0) 

4% 
(2.1) 

186 

(4.2) 

5% 
(4.2) 

0% 
(-) 
101 

(10.0) 

20% 
(9.4) 

10% 
(7.3) 

134 

(1.7) 

4% 
(1.5) 

1% 
(0.5) 

1,451 

Jackknife chi-square = 2.79,p < .05, d.f. = 8 

That a relatively large percentage of the Boomerangs and 
Floaters are considered residents some place other than the 
interview household suggests the potential for undercount
ing. On the other hand, 10% of the Floaters are defined as 
usual residents at both the interview household and another 
place suggests potential for overcoverage. The weighted 
number of Boomerangs and Floaters in these uncertain 
residency situations (usual residents elsewhere or at both 
places) represent approximately 4% of the total population. 
From this more global perspective, it seems that a non-
trivial segment of the population is at risk of some type of 
coverage error. 

6. MODELING OF USUAL RESIDENCE 
AND MOBILITY 

Our final section statistically models the household 
respondent's determination of usual residence. This analysis 
goes beyond the descriptive findings of the typology to 
explore whether mobility impacts the householder's 
conceptualization of residence. The assignment of usual 
residence by the householder served as the dependent 
variable in a series of models. The dependent variable 
consisted of two categories: 1) usual resident at the inter
view household and 2) not a usual resident at the interview 
household. Persons considered to have a usual residence at 
both the interview household and another place were put 
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into the first category. Predictor variables included age, 
sex, race, time away, and the mobility typology. The final 
models reported in Table 5, all of which include terms for 
the interaction of the independent variables, are equivilent 
to logit models for usual residence. 

The first model tested mobility as a dichotomous 
measure: those with no mobility (the Non-mobile) and those 
having spent at least one night away from the interview 
household (the 1-shot, No-Repeat, Boomerang and Floater 
categories combined). This model established first whetiier 
temporary mobility was a significant predictor of residency 
status regardless of the mobility pattem exhibited. This 
"first-cut" was necessary because approximately 50% of the 
sample fell into the Non-mobile category and second, 
because the Non-mobile group was extremely skewed 
toward the usual resident category of the dependent 
variable. Consequently, models that attempted to include 
all five categories of the mobility typology were misspeci
fied due to a large number of zero fitted cells. 

Results from the model with the dichotomous mobility 
measure and sex yielded a relatively good "fit" of the data 
(Jackknife X^ for overall goodness of fit = .28, d.f. = 2, 
p = .27. Neither race nor age improved the fit. Parameter 
estimates indicated that persons in the Non-mobile category 
were more likely to be classified as usual residents than 
those having some mobility (not shown). 

Having established that mobility was significantly 
related to residency status, we next explored whether the 
pattem of temporary mobility was a predictor. First, we 
tested an independence baseline model to predict usual 
residence (U). The predictors consisted of a mobility 
variable (M), sex (S), and the amount of time spent away 
(T). The mobility variable was comprised of the four 
mobile categories (1-Shots, No-Repeats, Boomerangs, and 
Floaters). Amount of time spent away was split into two 
categories: less than half the reference period and half or 
more of the reference period. Race and age were excluded 
since neither improved the fit of the data. 

Table 5 
Goodness-of-Fit Tests and Parameter Estimates for Log-Linear Models of the Effect of Sex (S), Temporary Mobility (M), and 

Length of Time Away (T) on Determination of Usual Residence Status (U) 

A. Goodness of Fit Test 

Model 

l .U,SMT 

2. US, UM, UT, SMT 

3. UTM, USM, SMT 

(U) Usual Residence Status 

d.f. Chi-square * 

15 4.79 

10 1.06 

4 0.78 

P 

.00 

.12 

.16 

B. Parameter Estimates, Model 3 

(M) MOBILITY: 

1-Shots 

Boomerangs 

No-Repeats 

Floaters 

(S) SEX: 

(Males) 

(T) TIME AWAY: 

(> Vi ref. period) 

(U)*(S)'*(M) INTERACTION (Males) 

I-Shots 

Boomerangs 

No-Repeats 

Floaters 

(U)'*(M)'»(T) INTERACTION (> '/a ref period) 

I-Shots 

Boomerangs 

No-Repeats 

Floaters 

beta 

1.08 

-1.54 

.83 

-.38 

.39 

-1.78 

-.64 

.69 

.85 

-.90 

-.72 

-1.20 

1.57 

.36 

s.e. 

.40 

.39 

.58 

.47 

.27 

.27 

.43 

.58 

.62 

.42 

.48 

.54 

.74 

.41 

std. value 

2.71' 

-3.94" 

1.43 

-.80 

1.44 

-6.52* 

-1.48 

1.18 

1.37 

-2.14* 

-1.50 

-2.26* 

2.12* 

0.88 
Jackknife Pearson chi-square for overall fit. 
Significant at the .05 level. 
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The baseline model (U, SMT) did not fit the data well so 
we rejected the null hypothesis that assignment of usual 
residence is independent of mobility pattem, sex, and 
amount of time spent away (Jackknife X^ overall goodness 
of fit = 4.79, d.f =15, p= .00, see Table 5). We then fitted 
a main effects model (2) which includes the additive effects 
of S, M and T upon U (US, UM, UT, SMT). This model 
yielded a good fit (Jackknife X^ overall goodness of fit = 
1.06, d.f. = 10, p. = .12). lastly, a model (3) including two 
interaction terms was also fitted (UTM, USM, SMT). This 
model assumes interactive effects of T*M and of S*M on 
U. A comparison between the main effects and interaction 
model suggested that several interactions were significant 
and should be retained (comparison Jackknife X^ = 1.99, 
d.f. = 6,p = .02). Table 5 contains the overall goodness of 
fit tests along with the parameter estimates from the best 
fitting interaction model (UTM, USM, SMT - Jackknife 
X^ overaU goodness of fit = 0.78, d.f = 4,p = .16.) 

The parameter estimates from Table 5 illustrate that 
temporary mobility has a significant main effect on 
assignment of usual residence in model 3 which controls for 
sex, amount of time spent away, and several interactions. 
Two of the mobility categories had significant beta 
coefficients albeit the directions were opposite. The 1-Shots 
were significantly more likely to be defined as usual resi
dents {b = +1.08). Conversely, the Boomerangs had a 
negative parameter estimate (b = -1.54) meaning that the 
odds of being defined a usual resident were significantly 
decreased for this group. 

Time spent away from the interview household had by 
far the largest effect on predicting usual residence with a 
strong negative association {b = -1.78). This means that 
for our temporarily mobile population, those away half or 
more of the reference period were significantly less likely 
to be considered usual residents than those away less than 
half of the time. Sex did not have a significant main effect, 
but was involved in a significant interaction. The inter
action appears in the Floater group where male Hoaters 
were less likely to be categorized as usual residents than 
female Floaters {b = -.90). Further investigation revealed 
few clues to explain this finding. Male and female Floaters 
differed littie in the types of places they visited, their 
reasons for visiting, and the relation to the householder of 
places they visited (relative versus non-relative). Perhaps 
the interaction reflects differences in other social attach
ments such as presence of children, personal belongings, 
and/or contribution of resources. 

The bottom of table 5 indicates that the interaction 
between usual residence, mobility and amount of time spent 
away is rather complex. The amount of time spent away 
appears to affect usual residence status for some types of 
mobility but not for others. The interaction coefficient is 
significant and negative for the Boomerangs {b = -1.20). 
Thus, the odds of being defined a usual resident are even 
lower for Boomerangs away half or more of the reference 
period compared to other groups away for a similar amount 

of time. This suggests that persons who "boomerang" back 
and forth between two households will be considered usual 
residents at the place they spend the majority of time. 

However, for the No-repeats, the coefficient is significant 
and positive, essentially canceling out time away's negative 
main effect (1.57 + -1.78 = -0.21). For this group, the 
amount of time spent away appears to have no association 
with usual residence assignment. Apparently, factors other 
than time may be more important in the cognitive process of 
determining where these persons "reside." One hypothesis 
is that No-repeaters are persons who must travel for a living 
and who, despite their frequent mobility and long periods 
away, clearly "belong" to a stable residence. This notion 
supports findings from a vignette study that found 
respondents did not require a stated rule to be able to 
correctly identify the usual residence of persons described as 
being away on business travel. Such persons were 
"intuitively" perceived to be part of the households from 
which they were away (Gerber, Wellens and Keeley 1996). 

7. CONCLUSIONS 

Temporary mobility, as defined in our research, involves 
long and short, frequent and infrequent, pattemed and 
unpattemed movement away from, but often back to, a 
single residence. Such mobility has long been hypothesized 
to contribute toward census and survey coverage error by 
blurring the concept of who exactiy lives or stays at a 
particular household. 

Our sample of persons having a more-than-casual 
association to households indicated a fair amount of tempo
rary mobility over a two-three month period. Interesting 
demographic differences were noted in the level of mobiUty 
as well as the pattem of mobility reported. The "hard to 
enumerate" (HTE) group (black/Hispanic males between 18 
and 29) were found to cluster in the Boomerang and Floater 
groups, suggesting a repeat pattem of temporary mobility. 
We suspect these groups include persons having strong 
attachments to multiple households, for example an adult 
son who splits time between a parent and girlfriend's or a 
young mother who stays periodically at different kin-
network households to receive assistance with child care. 

Besides the inclusion of the types of persons who tend to 
be missed in censuses and surveys, other considerations 
point to the Boomerang and Floaters as being of particular 
interest. First, compared to the other mobility categories, 
these groups spent a longer time away from the households 
in which they were "found" and second, were more often 
classified as having a usual residence someplace other than 
the household in which they were found. It is difficult to 
estimate how much this type of mobility contributes toward 
undercounting. However, it is very noteworthy that half the 
HTE population fall in either the Boomerang or Floater 
group. It seems more than a coincidence that such a large 
segment of this population belong to one of the two mobility 
groups most easily labeled "residentially ambiguous." 
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The log-linear analysis suggests that there is not a 
clearcut, simple relationship between temporary mobility 
and assignment of usual residence. We do not find that the 
greater the amount of temporary mobility the less the 
chance of being defined a usual resident. Instead, the 
relationship seems more driven by the pattem of movement. 
For example, the traveling salesman or truck driver who 
reports the greatest, variety of places visited and the largest 
number of visits may, nonetheless, have less residential 
ambiguity than a person visiting only one other place but 
making many repeat visits. And, in fact, this proved to be 
the case for the No-Repeats for whom the amount of time 
spent away had essentially no relation to usual residence 
assignment. 

Our exploration of temporary mobility represents a new 
research direction for the study of within-household census 
and survey coverage error. Two recommendations for 
improving census and survey coverage are offered. First, 
survey organizations should explore the possibility of 
directly measuring the association between temporary 
mobility and incidents of census and survey undercoverage. 
This could be accomplished by adding questions about 
mobility to post-census coverage interviews used to esti
mate the number of people missed or counted in error. If 
the correlation between coverage error and mobility is 
significant, then survey methods and procedures could be 
adjusted to try and reduce it. For example, new roster 
probes could be added to census forms and nonresponse 
follow-up interviews, the aim being to find more of the 
Boomerangs and Floaters. Measures of temporary mobility 
might also prove to be a powerful predictor variable when 
statistically modeling the undercount. While admittedly in 
the early stages, temporary mobility looks promising as an 
avenue to better understanding household coverage error. 
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First Announcement 
Call for Papers 

lASS SATELLITE CONFERENCE 
ON SMALL AREA ESTIMATION 

Riga, Latvia, 20-21 August 1999 

The Satellite Conference on Small Area Estimation will follow the ISI session in Helsinki. It is intended to 
cover aspects of both theoretical background in small area estimation and practical application of different 
estimation methods for small area statistics. This includes sample design for small area statistics (national 
experiences), new developments in the field of estimation for small area statistics and successful applications of 
small area estimation techniques, including those that use data from administrative systems. Small area statistics 
is a subject of great interest in many countries. Several statistical agencies in Western countries have introduced 
vigorous programmes to meet this new demand, with a view toward producing efficient and high quality statistics. 
Several intemational conferences and seminars have been organised in the last years and others are yet to be 
organised. Furthermore, significant research on both the theoretical and practical aspects of small area estimation 
is conducted at various universities and some national statistical offices. 

The Conference is organised on the initiative of the Baltic countries, and is aimed at improving knowledge 
transfer of new methods. The proceedings of the Conference should be of interest to all statisticians working in 
this field but it is of particular interest for the economies in transition in Central and Eastern European countries 
and the former Soviet Union countries, where complete reporting and complete statistical investigations are to be 
replaced or have been replaced with sample surveys, the production of reliable small area statistics has emerged 
as a pressing and frequently difficult and costiy problem. 

The conference proceedings will be opened by Dr. Danny Pfeffermann, who will provide an overview of the 
New Developments in Small Area Estimation. Initial plans also include holding a one day Short Course on Small 
Area Estimation immediately preceding the Conference, in order to allow some participants to acquire the basic 
knowledge that would allow them to appreciate fully the proceedings of the conference. The meeting is sponsored 
by the Intemational Association of Survey Statisticians (lASS), the Central Statistical Bureau of Latvia (CSBL), 
and theUniversity of Latvia (UL). 

The members of the Intemational Programme Committee are: Odon Elteto (Hungary), Wayne A. Fuller (USA), 
Jan Kordos (Poland, chair), John Kovar (Canada), Juris Krumins (Latvia), Janis Lapins (Latvia), Danny 
Pfeffermann (Israel), Richard Platek (Canada), J.N.K. RAO (Canada), Carl-Erik Samdal (Canada), Dennis Trewin 
(Australia) and Janusz Wywial (Poland). 

Abstracts of proposed papers should include full information on authors and their affiliations, and the contact 
address (including e-mail and fax) and a text of 200-300 words. The deadhne for submission is December 31, 
1998. EarHer submissions are encouraged and notifications of acceptance will be sent out as soon as possible. 
Acceptance is conditional on the attendance of the meeting by at least one of the authors. Abstract should be 
submitted, preferably via e-mail (in ASCII or WORD 6.0), or by fax or by mail to: 

Jan Kordos, Al. Niepodleglosci 208, 00-925 Warsaw, Poland; 
Fax: (0048-22) 825-03-95; E-mail: kordosCSgus.stat.gov.pl 

or to any other members of the Programme Committee 

It is tiie intention of the Programme Committee to publish the papers presented at the Conference in a special 
Proceedings of the Conference issue. The papers may also be published in any journal after the Conference. 



GUIDELINES FOR MANUSCRIPTS 

Before having a manuscript typed for submission, please examine a recent issue of Survey Methodology (Vol. 19, No. 1 and 
onward) as a guide and note particularly the points below. Accepted articles must be submitted in machine-readable form, 
preferably in WordPerfect. Other word processors are acceptable, but these also require paper copies for formulas and figures. 

1. Layout 

1.1 Manuscripts should be typed on white bond paper of standard size (S'/z x 11 inch), one side only, entirely double spaced 
with margins of at least 1 Vi inches on all sides. 

1.2 The manuscripts should be divided into numbered sections with suitable verbal titles. 
1.3 The name and address of each author should be given as a footnote on the first page of the manuscript. 
1.4 Acknowledgements should appear at the end of the text. 
1.5 Any appendix should be placed after the acknowledgements but before the list of references. 

2. Abstract 

The manuscript should begin with an abstract consisting of one paragraph followed by three to six key words. Avoid 
mathematical expressions in the abstract. 

3. Style 

3.1 Avoid footnotes, abbreviations, and acronyms. 
3.2 Mathematical symbols will be italicized unless specified otherwise except for functional symbols such as "exp(-)" and 

"log(0", etc. 
3.3 Short fonnulae should be left in the text but everything in the text should fit in single spacing. Long and important equations 

should be separated from the text and numbered consecutively with arabic numerals on the right if they are to be referred 
to later. 

3.4 Write fractions in the text using a solidus. 
3.5 Distinguish between ambiguous characters, (e.g., w, co; o, O, 0; 1, 1). 
3.6 Italics are used for emphasis. Indicate italics by underlining on the manuscript. 

4. Figures and Tables 

4.1 All figures and tables should be numbered consecutively with arabic numerals, with titles which are as nearly self 
explanatory as possible, at the bottom for figures and at the top for tables. 

4.2 They should be put on separate pages with an indication of their appropriate placement in the text. (Normally they should 
appear near where they are first referred to). 

5. References 

5.1 References in the text should be cited with authors' names and the date of publication. If part of a reference is cited, indicate 
after the reference, e.g., Cochran (1977, p. 164). 

5.2 The list of references at the end of the manuscript should be arranged alphabetically and for the same author chronologically. 
Distinguish publications of the same author in the same year by attaching a, b, c to the year of publication. Journal tities 
should not be abbreviated. Follow the same format used in recent issues. 




