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In This Issue 

This issue of Survey Methodology contains articles on a variety of topics. Kott, Amhrein and 
Hicks tackle the problem of multi-purpose surveys. For such surveys, it would be desirable to be able 
to sti-atify the target population in various ways in order to improve the precision of the estimates of 
interest. The authors present four sampling methods for the selection of samples through various 
stratifications while reducing die overall size of the sample. These strategies are then evaluated using 
data taken from an agriculture survey. The authors then show how a calibration estimator can 
improve the relative efficiency. 

Singh, Horn and Yu examine the problem of estimating the variance of the general linear regression 
estimator. They carry out calibration at two distinct levels. The higher-level calibration thus defined uses 
the known total and variance of the auxiliary variables. The authors show that this method covers a 
broader range of estimators dian die lower-level calibration method, which uses only the known total of 
the auxiliary variables. An empirical study is presented to assess the efficiency of die proposed sti-ategies. 

Hidiroglou and Sarndal concern themselves with the use of auxiliary data in two-phase sampling. 
They explain how diese data are converted into calibration weight, in two phases, in order to create 
efficient estimators of a population total. The authors show that the calibration estimator, using the 
generalized least squares function, can be expressed as a perfectly equivalent two-phase regression 
estimator, Uiat is, an estimator diat is the product of two successive regression fits. They examine forms 
of the two-phase calibration estimator when the auxiliary data are for population subsets known as 
"calibration groups." They also discuss the estimation of domains of interest and the estimation of 
variance. 

Byczkowski, Levy and Sweeney consider survey frames having a many-to-many structure, diat is, any 
unit in the frame may be associated with multiple target population elements and any target population 
element may be associated with multiple frame units. This problem is motivated by a building 
characteristics survey in which the target population consists of commercial buildings, but the frame 
consists of a list of sti-eet addresses (which in turn correspond to either single buildings, multiple 
buildings or parts of buildings). Under this setting, estimators of totals and means and their variances 
using simple and stiatified random sampling without replacement are developed. 

Yansaneh and Fuller present a recursive regression estimation procedure to reduce the compiitational 
complexity associated wiUi best linear unbiased estimation in the context of a repeated survey with partial 
overlap. They use data from the U.S. Current Population Survey (CPS) to compare variances of their 
recursive regression estimator to some alternative estimators including the current CPS composite 
estimator. The proposed estimator seems to be very competitive for estimates of both level and change. 
They also estimate variances under various rotation patterns and find that the current 4-8-4 rotation 
pattern is superior to continuous rotation for current level and long-period averages, but inferior for short 
period changes. 

Lehtonen and Veijanen bring together two well-known ideas, generalized regression (GREG) and 
pseudo maximum likelihood estimation, to develop a new methodology for estimating the population total 
of a categorical survey variable, given a vector of known auxiliary variables. The values of the categorical 
variable are modeled as realizations from a multinomial logistic and the corresponding unknown 
parameters are estimated through pseudo maximum likelihood. Then, the pcipulation frequencies of 
interest are estimated via a modified GREG estimator which uses these estimated parameters. Variance 
estimates of the frequencies are given Uyough Taylor linearization, and some empirical results based on 
Finnish Labour Force Survey data are provided. 

Casady, Dorfman and Wang consider the constiTJction of confidence intervals for domain parameters 
in the case where the domain sample size is not fixed by the design. They condition on the observed 
domain sample size and show how, under certain assumptions about the population, conditional /-based 
confidence intervals can be obtained. In an empirical study using data from the U.S. Bureau of Labor 
Statistics Occupational Compensation survey, they demonstiate that the proposed conditional intervals 
have better coverage probabilities than standard marginal intervals. 



In This Issue 

Montanari compares two well-known estimators of a finite population mean: the GREG and the 
design-optimal regression estimator obtained from the difference estimator. While the former can be 
inefficient if the underlying model is misspecified, the latter, although model-free, is vulnerable to 
sampling fluctuations. An efficiency measure, which provides a criterion for choosing between the two 
estimators, is given. The results of an empirical study, which investigates the behaviour of both estimators 
under a variety of tnisspecified and correct models, are discussed. 

Haines and Pollock provide a fresh examination of estimating totals with multiple frames. Estimators 
are developed when information is only available from list frames and, in addition, when information is 
also provided from an area frame. A simulation shows that the best estimator depends on the known, or 
assumed, dependence of die frames. They also study the situation when observations are either available 
for all units or only available for a sub-sample from each frame. Again, the preferred estimator changes 
when the dependence between frames is considered. 

Bates and Gerber analyze the dynamics of a difficult problem: how temporary mobility of an 
individual contributes to wiUiin-household coverage error. They develop a two dimensional typology to 
characterize temporary mobiUty, Uien using data from die Living Situation Survey, conducted in the U.S. 
in 1993, they identify four temporary mobility patterns. Two of these traits are found to be useful 
predictors of persons missed from censuses or surveys. 

The Editor 



Survey Methodology, June 1998 
Vol. 24, No. 1, pp. 3-9 
Statistics Canada 

Sampling and Estimation From Multiple List Frames 

PHILLIP S. KOTT, JOHN F. AMRHEIN and SUSAN D. HICKS' 

ABSTRACT 

Many economic and agricultural surveys are multi-purpose. It would be convenient if one could stratify the target 
population of such a survey in a number of different ways to satisfy a number of different purposes and then combine the 
samples for enumeration. We explore four different sampling methods that select similar samples across all stratifications 
thereby reducing the overall sample size. Data from an agriculture survey is used to evaluate the effectiveness of these 
alternative sampling strategies. We then show how a calibration (i.e., reweighted) estimator can increase statistical efficiency 
by capturing what is known about the original stratum sizes in the estimation. Raking, which has been suggested in the 
literature for this purpose, is simply one method of calibration. 

KEY WORDS: Calibration; Collocated sampling; Permanent random numbers; Poisson sampling; Systematic probability 
proportional to size sampling. 

1. INTRODUCTION 

Many of the list frame surveys conducted by the National 
Agricultural Statistics Service (NASS) are integrated in the 
sense that data on a range of heterogenous items, such as 
planted crop acres and grain stock inventories, are collected 
in a single survey rather than through a number of indepen­
dent surveys. Bankier (1986), Skinner (1991), and Skinner, 
Holmes and Holt (1994) have shown how an old method of 
combining independently drawn stratified simple random 
samples - where each sample comes from a (list) frame 
with a different stratification scheme - can be made more 
efficient; that is, the variances resulting from such a 
combined estimation strategy would not be as large as those 
from the independent surveys summarized by themselves. 

Even more appealing for many applications would be a 
sampling design that tends to select the same units from 
every frame, tiiereby reducing both the cost and respondent 
burden of an integrated survey. This paper explores several 
such designs. Three make use of permanent random 
numbers. The fourth uses a variation of systematic proba­
bility proportional to size sampling. The goal for each is to 
meet or exceed - at least on average - a particular set of 
sample size targets. 

The paper shows how a calibration {i.e., reweighted) 
estimator can provide relative efficiency by capturing what 
we know about the original stratum sizes in the estimation. 
A final section points out that the use of a calibration tech­
nique can do more than simply reflect original stratum sizes. 

An alternative strategy for burden reduction is to use 
separate instmments for different survey targets and to 
select distinct samples for each instmment. This increases 
the number of units selected over all, but reduces die burden 
per selected unit. NASS is using that approach in its 
Agricultural Resources Management Study (see Kott and 
Fetter 1997), but it is not the approach to be discussed here. 

2. INDEPENDENT SAMPLING AND UNBLVSED 
ESTIMATION 

Suppose we have F independent frames; for example, a 
sorghum frame, an oats frame, and a general grain stocks 
frame. Each frame is stratified independentiy, and without 
replacement simple random samples are drawn from each 
stratum of every frame. Frame / (say, the oats frame) 
contains Hf strata; stratum h (large oats operations) in 
frame/ has /^^ population units, out of which n„ units are 
selected. The union of the F frames must cover the entire 
(list) population, but no single frame need be complete. 
The frames may overlap. 

. One unbiased estimator for a population total T = £,gp>', 
is the simple multiplicity estimator suggested by Skinner 
(1991): 

'M = E,e;>:>',«(,y^["(/)l' (1) 

here P denotes the entire population, and «(,) is the number 
of times unit / is selected for the sample from any frame. 
Observe that n̂  .̂  = 0 for the population units not in the 
sample. In the great majority of applications, «(/) will be 
one for most sampled units, but «(,.j > 1 is a possibility with 
this design. 

The expected number of times unit / will be selected for 
the sample is E[n^.^ = YfPify where p-j-is tiie probability of 
selecting unit i in the stratified simple random sample from 
frame F; that is, p.j. = nj-JNj.^, where unit / is in stratum h of 
frame/ 

There is also a Horvitz-Thompson estimator for T under 
the design, namely ty^.^ = Y.iesyi^''^i' where S denotes the 
sample and 7i. = 1 - (1 - p.,) (1 - p.-j) - (1 - p.^). See 
Bankier (1986) for further discussion of this approach. 

Phillip S. Kott, Research Division; John F. Amrhein, Survey Sampling Branch; and Susan D. Hicks, Estimates Division, National Agricultural Statistics 
Service, USDA. 
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Simulated Probabilities of Selection 
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Figure 2. Simulated probabilities of selection for the fixed-sample-
size method-California 

6. CALIBRATION 

The problem with both /^ and tp (or / ^ ) is that they are 
often not very good estimators for T in term of precision 
(variance). One of the properties of single-frame, stratified 
simple random sampling is that the conventional expansion 
estimator estimates the stratum population size perfectly 
{i.e., with zero variance). In our multiple frame set up, 
however, neither tj^ nor tp will estimate the N„ perfectly 
in most applications. 

Let us define w° = «(,•)/£'[«(,)] as the original sampling 
weight of unit /in tj^. Similarly, w° = l/ma\j.[p.j.] in tp 
and 1 /TI, more generally for a Horvitz-Thompson estimator. 
Bankier (1986) proposed raking to create a set of adjusted 
weights such that 

ieS, 
'fh 

'/!• 
(2) 

for each stratum h in every frame/ where Sj.^ is that part of 
the sample that is in stratum h of frame/regardless of the 
frame(s) from which the units were selected. 

Deville and Sarndal (1992) call (2) a calibration equa­
tion. They point out that there are a number of ways to 
compute the calibration weights, the wf-, so that equa­
tion (2) is satisfied and wf-lwf is in some sense close to 1 
for all /. One method is raking as suggested by Bankier 
(1986). Another method, discussed at length by Deville and 
Samdal (1992), uses least squares. Either way, the resulting 
estimator 

k = E,r- •̂•' •/leS Yi^ 

where S denotes the entire sample, will be nearly design 
unbiased because w, /w, is close to 1 for all /. 

The estimator t^ is also unbiased under the model: 

', = Po ^ E E d^p, P//. * ̂ z' (3) 

where the dummy variable, d.„, is 1 when unit /' is in 
stratum h of frame/(sampled or not) and zero otherwise, 
while e,. is a random variable with a mean of zero. The PQ 
and the Pyv, are unknown constants (PQ represents the mean 
>'-value for a unit in the first stratum of every frame; that is 
why die second sum excludes h = 1). The same dip, values 
apply to every survey item {y) of interest, while the P 
values change with die survey item. For many survey items, 
P„ values will be zero when frame/(say, grain stocks) is 
irrelevant to the item (say, planted oat acres). 

Isaki and Fuller (1982) call the model expectation of the 
design mean squared error of tc the "anticipated mean 
squared error" of the estimator. This value is of most use at 
the planning stage of a sample survey. 

If the model in equation (3) holds, and the e. are uncor-
related, then the anticipated mean squared error of t^. is 

E^[MSE^{t^)] EAE^\L. c 
^i Yr TpYi)'^) 

^^oi^Adls^i^yrllpy)'^) 

= ̂ o{^J(E.>^/ ' 'e , -Epe,)^]} 

= EoiTs K^,'')' - 2w,^]£,(ef)} + Yp E,{e^) 

= E / > ( l ^ - l ) ^ e ( e / ) . 

(4) 

/ = ! A=2 

since w, = I/TI.. It is of some interest to note that using 
Poisson, collocated, and systematic PPS sampling result in 
estimators with approximately equal anticipated mean 
squared errors asymptotically. This surprising result is in 
part due to the nature of a calibrated estimator, but it is also 
a repercussion of the fact that when we take the design 
expectation of the approximate model variance in the last 
line of eqiiation (4), we average over all possible samples 
and remove the biggest source of variation among the three 
sampling designs. 

Now suppose we had used stratified simple random 
sampling and selected unit i with probability Pij- ̂  n., 
where/is the frame relevant to y. It is not hard to show 
that the anticipated variance of the simple expansion 
estimator would have been Y^p {'ilPif- l)E^{s]), which is 
at least as large as the right hand side of equation (4). Thus, 
there are gains - in large samples, at least - from 
"integrating" the samples from various frames as we have 
effectively done. How large the samples must be in practice 
for the asymptotic results to be relevant is unclear. At the 
very least, the sample size must be many times the number 
of model parameters in equation (3). 

A few words on mean squared error estimation for t^ are 
in order. The mean squared error estimator advocated by 
Deville and Samdal (1992) - an estimator with both good 
design and model-based properties - can not be implemented 
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unless the joint selection probability {K.J) for every pair of 
sample units (/ and j) is known. Among the designs we 
have discussed, these probabilities are easily calculated 
only for the Poisson variant of PRN (where n.. = n.n). 

As we have observed in equation (4), the anticipated 
mean squared error of the calibration estimator is the same 
under Poisson PRN, collocated PRN, and systematic PPS 
sampling. This suggests that the Poisson mean squared 
error estimator may be reasonable under each of the three 
designs. A stronger model-driven argument exists for this 
contention, but will not be made here. 

7. DISCUSSION 

In the last section, it was pointed out that if calibration 
weights were designed to satisfy equation (2), the resulting 
estimator would be unbiased under the model in equa­
tion (3). Tn many applications, there may be a more 
appropriate model on which to base caUbration than the one 
in equation (3). For example, if there was a continuous 
control variable used to stratify a particular frame, it makes 
more sense to use that variable directiy in the model rather 
than indirectly through frame/stratum identifiers. 

Raking is a form of calibration under a particular model. 
With that in mind, it makes sense to use the most reasonable 
model available. Least squares has the advantage over 
raking that it can easily be applied to continuous control 
variables. Singh and Mohl (1996) provide an extensive 
review of alternative calibration algorithms including an 
extension of raking to continuous variables. An intriguing 
least-squares variant missed by Singh and Mohl (1996) can 
be found in Brewer (1994). 

Many economic and agricultural surveys employ rotating 
sample designs. This has proved an effective way to 
balance cost and burden considerations. Although our 
empirical findings demonstrated an advantage of the sys­
tematic PPS methodology in terms of meeting target sample 
sizes, the three PRN designs are much more conducive to 
sample rotation. See, for example, Ohlsson (1995) on this 
topic. Moreover, with the PRN methods, one can integrate 
different frames at different times of the year (with systema­
tic PPS there is no easy way to allocate the sample back to 
the frame of origin). This is a particularly useful property 
for agricultural surveys because different crops have 
different growing seasons. 

In summary, the fixed-sample-size PRN sample design 
is excellent for meeting target sample sizes but is hard to 
use in practice because selection probabilities are usually 
unknown and must be simulated. The systematic PPS 
design is very good at meeting target sample sizes but is 
difficult to incorporate into a sample rotation scheme. 
Moreover, mean squared error estimation requires invoca­
tion of model assumptions. Our empirical example shows 
that collocated sampling may only be slightiy better than 
Poisson at meeting target sample sizes. It should be recog­
nized, however, that other configurations of the frames, 

strata, and sampling fractions may produce different results. 
Moreover, collocated sampling is conducive to rotation 
schemes, like Poisson sampling. On the other hand, like 
PPS sampling, it requires the assumption of a model to 
estimate mean squared error. 

Finally, setting p.. or «., targets is a popular, but indirect, 
means of controlling the variance of the estimator t^ 
associated with each frame. These targets lead to our ad hoc 
decision to set 7t. equal to maxy[p..). A more direct 
strategy would be to set (asymptotic) anticipated variance 
targets for each frame estimator using equation (4) and 
postulated values for the E^ (ef). One could then choose, 
say, the set of n. that minimizes the expected sample size 
yet satisfy these variance targets. A similar approach is 
taken by Amrhein, Fleming, and Bailey (1997) who use 
Chromy's algorithm in a manner analogous to Sigman and 
Monsour (1995). Poisson PRN, collocated PRN, and 
systematic PPS sampling remain three viable alternatives 
for selecting the sample once optimal it. are determined. 
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Use of Auxiliary Information for Two-phase Sampling 
M.A. HIDIROGLOU and C.-E. SARNDAL' 

ABSTRACT 

Two-phase sampling designs offer a variety of possibilities for use of auxiliary information. We begin by reviewing the 
different forms that auxiliary information may take in two-phase surveys. We then set up the procedure by which this 
information is transformed into calibrated weights, which we use to construct efficient estimators of a population total. The 
calibration is done in two steps: (i) at the population level; (ii) at the level of the first-phase sample. We go on to show that 
the resulting calibration estimators are also derivable via regression fitting in two steps. We examine these estimators for 
a special case of interest, namely, when auxiliary information is available for population subgroups called calibration 
groups. Poststrata are the simplest example of such groups. Estimation for domains of interest and variance estimation are 
also discussed. These results are illustrated by applying them to two important two-phase designs at Statistics Canada. The 
general theory for using auxiliary information in two-phase sampling is being incorporated into Statistics Canada's 
Generalized Estimation System. 

KEY WORDS: Generalized regression; Two-phase sampling; Model assisted approach; Domain estimation; Calibration 
factors. 

1. INTRODUCTION 

Two-phase sampling is a powerful and cost-effective 
technique. It was first proposed by Neyman (1938). In 
Cochran's (1977) book, and in its two earlier editions dated 
1953 and 1963, one finds basic results for two-phase 
sampling, including the simplest regression estimators for 
such designs. This paper takes a broader outlook and 
proposes a general approach to the use of auxiliary 
information in two-phase survey designs. Our main 
references are Samdal and Swensson (1987), Samdal, 
Swensson and Wretman (1992) and Dupont (1995). Recent 
related work includes Breidt and Fuller (1993), who 
presented computationally efficient estimation procedures 
for three-phase sampling in the presence of auxiliary 
information. Chaudhuri and Roy (1994) studied optimality 
properties of the well-known simpler regression estimators 
for two-phase sampling. Binder (1996) described a simple 
linearization procedure to estimate variances of nonlinear 
estimators. His procedure can be applied to any sampling 
design, including two-phase-samphng. Throughout this 
paper, we assume arbitrary sampling designs for each of 
the two phases. 

Single-phase sampling involves the use of one layer of 
information for estimation. In two-phase sampling, how­
ever, one has to consider two layers of information. This 
complicates matters, and it is not clear-cut how best to 
exploit the combined information from the two sources. 
Two approaches are considered in this paper for building 
estimators based on auxiliary information. These are the 
calibration approach and the generalized regression 
approach. We show that the generalized regression 
approach can be viewed as a special case of the calibration 

approach. The two approaches are examined under a 
common stmcture for the auxiliary information. It assumes 
that information exists about an auxiliary vector x^ for the 
units of the entire population, and about a second auxiliary 
vector x.^ for the units of the first phase sample. 
Consequently, at the level of the first phase sample, there is 
information about both vectors, Xj and x^. 

The generalized regression approach, as applied to two-
phase sampling, is discussed in Samdal et al. (1992). These 
authors develop the general regression estimator for two-
phase sampling, assuming arbitrary sampling designs in 
each of the two phases. Two regression fits are carried out. 
A "bottom level" regression is fitted to produce predicted 
values up to the level of the first phase sample, using the 
auxiliary information available for this step. Next, a "top 
level" regression is fitted to produce predicted values up to 
the entire population level, using the information 
appropriate for this step. The two sets of predicted values 
are used to build a generalized regression estimator. 

The calibration approach focuses on the weights given 
to the units for purposes of estimation. Calibration implies 
that a set of starting weights (usually the sampling design 
weights) are transformed into a set of new weights, called 
calibrated weights. The calibrated weight of a unit is the 
product of its initial weight and a caUbration factor. The 
calibration factors are obtained by minimizing a function 
measuring the distance between the initial weights and the 
calibrated weights, subject to the constraint that the cali­
brated weights yield exact estimates of the known auxiliary 
population totals. In two-phase sampling the two levels of 
information imply two consecutive calibrations. The first 
phase of calibration uses the auxiliary information available 
(at least population counts) at the level of the entire 

' M.A. Hidiroglou, Business Survey Methods Division, Statistics Canada, Tunney's Pasture, Ottawa, Ontario, KIA 0T6; and C.-E. Samdal, University of 
Montreal, and Statistics Canada. 
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for kts.,, and 

J ^ y - '^ik'^ikXkX',^ 
(3.12) 

' 2 * 

Again, some gl may be zero or negative, but always 
positive gj* can be ascertained by adding to (3.8) the 
inequality constraints w^ > 0 for kts.^. 

Having determined die overall weights w\by equation 
(3.9), the estimator of 7is given by 

^=E. w kYk (3.13) 

Remark 3.1 A potential problem with the above approach 
is that some of the gj^'s may be negative or even zero. If 
this occurs, (3.7) is not a proper distance measure. Some of 
the important appUcations, such as poststatification, do not 
have this problem as their associated g,^'s are always 
greater tiian zero. If all die g,^'s are greater than zero, then 
the minimization criterion given by (3.7) is acceptable. 
Otiierwise, we have to modify it. One possible modification 
is to impose on the above-mentioned constraints that the 
Wĵ 's are positive for ^ e 5,. Anotiier possible modification 
is to replace Ĉ .̂ in (3.7) by 

C'=C ^ 
^2k ^2k • 

^Ik 

Then 

r* 
^2k 

'2k 

which is always positive. The resulting g'J-factors in (3.9) 
can be shown to be g^ = g^^ + g2i ~ 1 > where g,^ is given 
as before by (3.5), and ĝ ^ by (3.11) provided that we 
instead define T̂  as 

7-2 = E . 
^A ^ i ^ ' i 

c 2k 

It is our opinion tiiat in most applications the choice 
between^ the multiplicative g '̂ = gikS2k "̂<̂  ^^^ additive 
form g/ = g,̂  + g2i - 1 would have littie effect on the 
resulting estimates. That is, we believe the two point 
estimates would be very close, and so would be their 
associated estimates of variance. 
Remark 3.2: Bounding the weights ordinarily has negli­
gible impact on the estimates. Recent experience with 
caUbration for single phase designs, Stukel, Hidiroglou, and 
Samdal (1996), has shown that mildly different sets of 
g-weights lead to point estimates that differ very little. 
Some recently developed computer software for calibration, 
for example, the software described in DeviUe et al. (1993), 
minimizes a distance function such that the resulting 

g-factors are guaranteed to be bounded from above and 
from below. 

Remark 3.3: The auxiliary data in Table 1 can be used in 
several ways for two-phase calibration. Considering in 
particular the second-phase calibration equation defined by 
(3.8), three different specifications of tiie vector x^ are: (i) 
^* = K*'^2*)'; (») x,=x^,; and (iii) x^^x^^. We 
comment on these possibilities, assuming for each of these 
that a first-phase calibration has been carried out, resulting 
in the first-phase calibrated weights (3.4). 

The case (i) specification x,^ = (x/^, jc '̂̂ )', recommended 
in Samdal et al. (1992), capitalizes on all the available 
information. Thus, in tiiis respect case (i) is ideal. Cases (ii) 
and (iii) disregard some available information. Case (ii) is 
sometimes of interest, despite some loss of information; an 
example is given in Section 7.1. Case (iii) implies that the 
data {ATĴ  : i e S, } are observed, but not used: we do not 
further consider this case. We call x^ = (A:/̂  , A:^^)' the full 
vector and A:̂  = Xĵ  the reduced vector. 

Second-phase calibration on the reduced vector x,^ = x.^i^ 
can be carried out witiiout significant loss of information if x^^. 
is a good substitute for J:,J., as also observed by Dupont 
(1995). However, if A:,̂  complements Xj ,̂ then the fuU 
vector Xi^ = {xl^,x^i^)' should clearly be used in the 
caUbration defined by (3.7). Otherwise, significant loss of 
information and increased variance may result. 

Remark 3.4: Both the fuU and the reduced x^-vectors lead 
to overall weights w\ caUbrated on x.^ from 2̂ to 5,. This 
means that Z^ji^i^2A = L , *it^2i' because (3.8) holds, 
and Xĵ  is contained in i^. However, there exists a 
difference between the full and reduced vector specifica­
tions witii respect to die calibration on x,^. If the full vector 
specification is used in phase two, the resulting overall 
weights w\are calibrated on Xĵ  from s.^tos^, and from 5, 
to U. This means tiiat Z,^ w^x,^ = £,, w^.x,, = ^yX,^. In 
contrast, if the reduced vector specification is used, the 
resulting overall weights w\ are calibrated on x,^ from 5, 
to U by virtue of the first-phase calibration. That is 
^s.'^ik^ik'T.u^ik- However, they are not calibrated 
from 2̂ to 5j, because Xĵ . is not present in the second-
phase calibration. Hence, Z^ *A ^ u ' ' Z ^ ^ u ^u = 
ZyX,^. Thus if the survey requires a weight system that 
will reproduce the known Zc/^u' then the full vector 
specification must be used. 

So far, we have focused on the general framework for 
calibration with two levels of auxiliary information. This 
framework does not reveal the many interesting forms that 
the estimator Y given by (3.13) may take for specific cases 
of auxiliary information. Some illustrations are given in 
Section 7. We first address tiiree issues that are of practical 
interest in virtually every major survey: (i) poststratifica-
tion or, more generally, the presence of auxiliary informa­
tion for population subgroups (Section 5), (ii) estimation for 
domains of interest (Section 6), and (iii) the construction of 
variance estimates (Section 6). 
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4. THE TWO-PHASE CALIBRATION 
ESTIMATOR VIEWED AS A REGRESSION 

ESTIMATOR 

An alternative expression for the calibration estimator 
(3.13) is given by formula (4.1) below. This expression 
links it exactiy with the regression estimator for two-phase 
designs introduced in Samdal et al. (1992, chapter 9). 

Theorem 4.1: When the overall calibrated weights w'^ are 
determined by (3.9), the calibration estimator (3.13) is 
identical to the two-phase regression estimator given by 

^ = E t / Yik -^E,, ^ikiy2k-yik) +E. , ^k(yk -y2k) (^-i) 

where j?,̂  and y^i^ are successive regression predictions 
such that 

j ? , * = ^ ; * ^ i (4.2) 

with 

«,-r,-'k^^'E."'''"'e^'-'"M(«) 
'Ik 'Ik 

where T. is given by (3.6), and 

y2k = * * ^ 2 

with 

B, = T; 
^ik'^2kXkyk 

(4.4) 

(4.5) 
• - 2 * 

where J j is given by (3.12). 
The proof for Theorem 4.1 uses some tedious but 

straightforward algebra and is not presented here. 
We now show that (4.1) can be constructed via 

regression estimation in two steps. For the first step, 
suppose that the variable of interest ;v̂  were observed for 
the full first-phase sample 5,. The auxiUary information on x,^ 
is available for kes^ and the population total Zfy-̂ î* '̂  
known. The resulting regression estimator of Y = Y^uyk 
would then be given by 

y-Huyik-^Z.-'iki^k-yik) 

= E. w Ik Yk MEC/^^A-E. w Ik • Yik (4.6) 

In the last expression, the first term represents the 
(hypothetical) first-phase Horvitz-Thompson estimator of 
Y. The second and third terms represent' a regression 
adjustment, where j?°̂  is the predictor of jv̂  based on the 
fitted regression of y,^ on x,^ for kes^. That is, 
yik=x;,Bl,witb 

B'l T^-L.. 
c Ik 

AO 
Note tiiat Zy Yik = CLu -^i/t)' -̂ t ^^ere Zy Ĵ u is known. 
However, none of the terms in (4.6) can be computed 
directly, because y,^ is only observed for the second-phase 
sample. A second step of regression estimation is thus 
necessary. It is carried out by replacing the unknown 
Zi ^ikYk i" (̂ -̂ ^ ̂ y '̂ ^ conditional regression estimator 

E . ^iky2k ^ E . w* (yk-y2k) (4.7) 

where jpĵ  = -̂ ^ ^2 ' ^ ' ^ ^2 8'^^" ̂ y (^•^)' '̂  '^e predictor 
of 7^ based on thejegression of yj^ on x^, known up to j , . 
Next, the vector 5 , required for computing yi;^ contains a 
known matrix T, and an unknown vector 

y - ^ik XikYk 

^Ik 

Using a regression estimator for this unknown vector, we 
obtain 5 , given by (4.3) as a replacement for B^. These 
two substitutions in (4.6) lead to the two-phase regression 
estimator given by (4.1), which is identical to the 
calibration estimator (3.13). 
Remark 4.1: A more direct alternative to 5 , in (4.3) 
would be to use only die second-phase sample. This would 
have produced 

B I, alt 

W, • " • l * - ^ ! * 

•'2k 

W^ Mt Yk 

'2k 

The resulting predictions .yu.ait "̂ -"̂ lA-̂ i.ait would be 
replacing j?,̂  in (4.1). However, the resulting regression 
estimator is not identical to (3.13) and is a less efficient 
alternative, because B, ^^ uses less x,^-information than 
B,. 

5. CALIBRATION GROUPS 

In this Section we apply the resuks of Sections 3 and 4 
to the important case where the auxiliary data in Table 1 
include information about mutually exclusive and 
exhaustive subsets of the population U, and of the first-
phase sample 5,. The population subsets are denoted by 
U.,i = I, ...,I, and the first-phase subsets by Sy,j = 
I,...,J. Such subsets are called calibration groups, for 
reasons that will become clear later in this Section. Simple 
examples of calibration groups are poststrata. 

Two vectors denoted A,̂  and Aĵ  will be used to specify 
the membership of a given unit k in the calibration groups U. 
and Sy, respectively. These group identifiers are 

(8 l i t ' 
,6,,^,..., 8,,.)' l/i-' (5.1) 
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with 

^lik 

\l if keU. 

0 otherwise 
for /• = 1,...,/ 

and 

with 
^2k = (^2lk'-'^2jk'-'^2Jky 

1 if kes.. 
5^^= / forj = l,...,J 

0 otherwise 

(5.2) 

(5.3) 

(5.4) 

Besides the group membership information, which is 
qualitative and specified by Aĵ  and A.^, there may exist 
information for the unit k about quantitative (continuous or 
discrete) variables. We call them supplementary auxiliary 
variables. For example, categorical information about a 
unit (enterprise) in a business survey may consist of an 
industry code or a geographical location code. In addition, 
quantitative variable information may also be available 
concerning the number of employees or the gross business 
income of the unit. Some of these supplementary auxiliary 
variables may be known up to the level of the population, 
and others up to the level of the first-phase sample. 

We assume in this Section that the vector Xj ,̂ used in 
calculating the first-phase g-factors, has the structure 

"^1* A' (8>7' (5.5) 

where z,̂  of dimension Q^ is the vector of supplementary 
auxiliary variables available for the first-phase sample. The 
information requirements in Table 1 apply to the vector 
x,j . This implies that we must know either the group 
membership specified by A,̂  and (be value of Zĵ  for every 
ke U, or the total Zy ^u separately for each group, 
i = l,...,I. 

When x,^ has the form given by (5.5), tiie first-phase g-
factors g,^ in (3.5) can be obtained by a group by group 
calculation. The T^ matrix to be inverted, given by (3.6), is 
block diagonal and of dimension / g , by / g , . The typical 
diagonal block, denoted as T^. of dimension gj by g , , is 
given by 

Tii-Es 
^lA ^Ikhk 

c 
(5.6) 

Ik 

for / = 1,...,/. The resuking inverse of Jj is also block 
diagonal with diagonal matrices 7,"/. The off diagonal 
blocks of the inverse of Tj are zero matrices. So we obtain 
from (3.6) 

^u = 1 + (Et/, Zu - E . , ^ik^ik)' T'l- - ^ (5.7) 

for kes^., i = 1,...,/, where 7,. is given by (5.6). Note that 
the resulting weights vi>ĵ . are tiie same as tiiose obtained by 
carrying out the first-phase calibration group by group, 
caUbrating for group / on the known total Zy z,̂ - That is, 
Z,,.*^uZu = Zy.^ii for ' = 1. -J- kis thus'fitting to caU 
the groups U. first-phase calibration groups. 

Now consider the second-phase g-factors gj^ given by 
(3.11). They are based on the auxiliary vectors x^, 
required to be known for the units kes^. We assume that 
x^ contains information about the second-phase groups so 
that 

^'k =A'2,<8'Z', (5.8) 

where Aĵ  is the second-phase group identifier, and z,^ is 
the value of a vector of supplementary auxiliary variables 
available for k6s^. Since the requirements in Table 1 
apply, it follows that Aĵ  (the second-phase group 
membership) and the value of ẑ  (the supplementary 
auxiliary vector) must be known for every kes^ Here ẑ . 
may contain some or all of the information in x,^ given by 
(5.5), and any other information available for the units 
kesy 

When x,̂  has the stmcture (5.8), the factors gj^ can also 
be obtained through a group by group calculation. This 
simplification is a result of the fact that the matrix to be 
inverted in (3.11) is block diagonal. We obtain 

^2t = 1 + (E.,. ^Ikh - E . . . ^lk^2kh)' Ty - ^ (5.9) 
^2k 

for kes.^. = s.^ns..,j = 1, ...,J, where "2] "2' '•'ij 

2̂. = E . '^lk^2k^k^k 

c. 
(5.10) 

2k 

The resulting overall weights -W/^ = w^ g/ where g^ = 
SikS2k ̂ re the same as those obtained by carrying out the 
second-phase calibration group by group, calibrating for 
group j on the known quantity Ly^lk' k- That is. 
Z.'j/^t ^k = Z.,,̂ ,̂̂ ^z^ fory = 1,..., y.'The groups 5,̂ . are 
called second-phase calibration groups. We now have a 
procedure for computing g,^ and gj,̂  group by group using 
(5.7) and (5.9). The total 7 is still estimated according to 
(3.13). 

6. DOMAIN ESTIMATION AND VARIANCE 
ESTIMATION 

The preceding sections dealt with estimation of the total 
ofy at the entire population level. In most surveys, there is 
also a need to provide estimates for various subpopulations 
or domains of interest. Requests for domain estimates can 
be made either before or after the sampling stage of the 
survey. Auxiliary information is essential for domains. A 



Survey Methodology, June 1998 17 

precise domain estimate may be obtained (even for small 
domains) if: (i) calibration groups and domains of interest 
agree closely, and (ii) the auxiliary variables exhibit a strong 
regression relationship with the variable(s) of interest. 

Denote by Uj{Uj c f/) any domain of the population 
U for which an estimate is required. The >'-total for the 
domain U^ is defined by Y{d) = Y^u^y^ = Z[/3't(<^) ^i^^ 
y^{d) =y^ifkzU^ and y^ {d)=Oifk$ U^. 

The estimator of Y{d) is 

y(d) = Ts,^kyk(d) (6.1) 

where the overall calibrated weights vv/ = w^ g/ may be 
calculated group by group as described in Section 5. The 
calibration factors g,^ and g^^ are calculated using all 
relevant available auxiliary information, specified as in 
Table 1. So in this sense, the resulting overall calibrated 
weights w/ are the best possible ones. Note that these 
weights are independent of the particular domains requiring 
estimation in the survey. 

The estimator of the variance for the domain total 
estimator Y{d) is obtained using a design-based approach. 
This means that the variance is interpreted with reference to 
repeated draws of samples 5, and ^ j . Details for the 
derivation of this variance are given in Samdal et al. (1992) 
(Result 9.7.1, p. 362). The first order and second order 
inclusion probabilities enter into the weights used in the 
variance formula. The weights associated with the first-
phase sample are ^1^ = 1/tit ^"d Wjy = l/7t,^ with 
iiji^=P{k and ies^). The weights ^2^ = 1/̂ 2* ^'^ 
^2W"'^'^« with n2i^=P{k and lles.^\s^) denote their 
second phase counterparts. Two sets of regression residuals, 
one for each phase, are also required. The estimator of the 
variance of Y{d) is given by 

v{Y{d)} = 

E E >^2«(^i*^ir ^iw)(^u^u('^)) <^Sueii{d)) + 
kes^ tetj (6.2) 

EE^lt^H(^2*^2r^2«)(^2*^2*(^))(^2pS(^)) 

= { we have w,^ = w,^, and 1̂ 2̂  ^ 2 * 1 " Note that for k 
(6.2). We now specify the regression residuals in (6.2) 
assuming that there are first-phase calibration groups 
U.,i = l / , and second-phase calibration groups 
s^ .,j = 1,..., J, as explained in Section 5. We denote the 
associated sample subsets as follows: 52/ = ^̂2 "̂  ^i' 

The required residuals in (6.2) are, for ••s.^nsij. 

kE{s^.(^U^), 

^ik(d)=y,{d) ^'ik^iiid) 

and, for ke {s^j n U^) 

^2kid)=yk(d)-z'J,j{d) 

(6.3) 

(6.4) 

The estimated regression vectors B^. {d) and B^j {d) are 

Bii{d) = T[l 

fy- '^ikhky2k(^d) ^k Zi,{y,{d)-y^,{d))\ 

P" c„ ^̂^ c,, J • 
where J,,, is given by (5.6), and 

«,«') = ^^E.. ' '• '^''^'"^' (6.6, 
-2k 

with T2J given by (5.10), and 

y^,{d)=ziBy{d) for ke{s.Jr^U,). 

Remark 6.1: Note that for each new domain of interest, the 
variance estimator (6.2) requires two new sets of domain 
dependent residuals, e,̂ .(c/) and ^^.k^d). Moreover, these 
are required for all of the units k in the second-phase 
sample ^2, including units outside the domain. Variance 
estimation for domains can therefore be cumbersome. 

Remark 6.2: In practice the computation of estimated 
variances is seldom carried out as a double sum. For some 
important designs, the double sums reduce, after some 
algebraic manipulation, to single sum expressions. 
Examples of this occur for single sampling and for stratified 
single random sampling in both phases. Explicit algebraic 
developments for the variances have been given the former 
case by Samdal et al. (1992), and in the later case by 
Hidiroglou (1995), and Binder, Babyak, Brodeur, 
Hidiroglou and Jocelyn (1997). 

7. APPLICATIONS WITH 
POSTSTRATIFICATION AT THE FIRST PHASE 

7.1 The Case of the Tax Sample at 
Statistics Canada 

An application of the calibration group approach in 
section 5 has been in use at Statistics Canada, in the two-
phase design for sampling of tax records. The example is 
important because it provides the extension to two-phase 
designs of the tiaditional postratification technique as used 
in a single phase design. The sampling procedure, the post-
stratification criteria, and the estimators are described in 
Armstrong and St-Jean (1994). We now show how these 
estimators are obtained as special case of the technique in 
section 5. The sampling design, in each phase, is stratified 
Bemouilli, carried out with the permanent random number 
technique. The two stratifications are based on different 
criteria. The realized sample sizes are random at each phase 
on account of the Bemouilli sampling. To offset the 
resulting tendency toward an increased variance, poststrati-
fication is carried out at both phases of sampling. The two 




