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In This Issue

This issue of Survey Methodology contains articles on a variety of topics. Kott, Amhrein and
Hicks tackle the problem of multi-purpose surveys. For such surveys, it would be desirabie to be able
to stratify the target population in various ways in order to improve the précision of the estimates of
interest. The authors present four sampling methods for the selection of samples through various
stratifications while reducing the overall size of the sample. These strategies are then evaluated using
data taken from an agriculture survey. The authors then show how a calibration estimator can
improve the relative efficiency.

Singh, Homn and Yu examine the problem of estimating the variance of the general linear regression
estimator. They carry out calibration at two distinct levels. The higher-level calibration thus defined uses
the known total and variance of the auxiliary variables. The authors show that this method covers a
broader range of estimators than the lower-level calibration method, which uses only the known total of
the auxiliary variables. An empirical study is presented to assess the efficiency of the proposed strategies.

Hidiroglou and Sirndal concern themselves with the use of auxiliary data in two-phase sampling.
They explain how these data are converted into calibration weight, in two phases, in order to create
efficient estimators of a population total. The authors show that the calibration estimator, using the
generalized least squares function, can be expressed as a perfectly equivalent two-phase regression
estimator, that is, an estimator that is the product of two successive regression fits. They examine forms
of the two-phase calibration estimator when the auxiliary data are for population subsets known as
“calibratton groups.” They also discuss the estimation of domains of interest and the estimation of
variance. '

Byczkowski, Levy and Sweeney consider survey frames having a many-to-many structure, that is, any
unit in the frame may be associated with multiple target population elements and any target population
element may be associated with multiple frame units. This problem is motivated by a building
characteristics survey in which the target population consists of commercial buildings, but the frame
consists of a list of street addresses (which in turn correspond to either single buildings, multiple
buildings or parts of buildings). Under this setting, estimators of totals and means and their variances
using simple and stratified random sampling without replacement are developed.

Yansaneh and Fuller present a recursive regression estimation procedure to reduce the compitational
complexity associated with best linear unbiased estimation in the context of a repeated survey with partial
overlap. They use data from the U.S. Current Population Survey (CPS) to compare variances of their
recursive regression estimator to some alternative estimators including the current CPS composite
estimator. The proposed estimator seems to be very competitive for estimates of both level and change.
They also estimate variances under various rotation patterns and find that the current 4-8-4 rotation
pattern is superior to continuous rotation for current level and long-period averages, but inferior for short
period changes. :

Lehtonen and Veijanen bring together two well-known ideas, generalized regression (GREG) and
pseudo maximum likelihood estimation, to develop a new methodology for estimating the population total
of a categorical survey variable, given a vector of known auxiliary variables. The values of the categorical

. variable are modeled as realizations from a multinomial logistic and the corresponding urknown
parameters are estimated through pseudo maximum tikelihood. Then, the pépulation frequencies of
interest are estimated via a modified GREG estimator which uses these estimated parameters. Variance
estimates of the frequencies are given through Taylor linearization, and some empirical results based on
Finnish Labour Force Survey data are provided.

Casady, Dorfman and Wang consider the construction of confidence intervals for domain parameters
in the case where the domain sample size is not fixed by the design. They condition on the observed
domain sample size and show how, under certain assumptions about the population, conditional #-based
confidence intervals can be obtained. In an empirical study using data from the U.S, Bureau of Labor
Statistics Occupational Compensation survey, they demonstrate that the proposed conditional intervals
have better coverage probabilities than standard marginal intervals.



In This Issue

Montanari compares two well-known estimators of a finite population mean: the GREG and the
design-optimal regression estimator obtained from the difference estimator. While the former can be
inefficient if the underlying model is misspecified, the latter, aithough model-free, is vulnerable to
sampling fluctuations. An efficiency measure, which provides a criterion for choosing between the two
estimators, is given. The results of an empirical study, which investigates the behaviour of both estimators
under a variety of misspecified and correct models, are discussed.

Haines and Pollock provide a fresh examination of estimating totals with multiple frames. Estimators
are developed when information is only available from list frames and, in addition, when information is
also provided from an area frame. A simulation shows that the best estimator depends on the known, or
assumed, dependence of the frames. They also study the situation when observations are either available
for all units or only available for a sub-sample from each frame. Again, the preferred estimator changes
when the dependence between frames is considered.

Bates and Gerber analyze the dynamics of a difficult problem: how temporary mobility of an
individual contributes to within-household coverage error. They develop a two dimensional typology to
characterize temporary mobility, then using data from the Living Situation Survey, conducted in the U.S.
in 1993, they identify four temporary mobility patterns. Two of these traits are found to be useful
predictors of persons missed from censuses or surveys.

The Editor
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Sampling and Estimation From Multiple List Frames

PHILLIP S. KOTT, JOHN F. AMRHEIN and SUSAN D. HI-CKS1

ABSTRACT

Many economic and agricultural surveys are multi-purpose. It would be convenient if one could stratify the target
population of such a survey in a number of different ways to satisfy a number of different purposes and then combine the
samples for enumeration. We explore four different sampling metheds that select similar samples across all stratifications
thereby reducing the overall sample size. Data from an agriculture survey is used to evaluate the effectiveness of these
alternative sampling strategies. We then show how a calibration (i e., reweighted) estimator can increase statistical efficiency
by capturing what is known about the original stratum sizes in the estimation. Raking, which has been suggested in the

literature for this purpose, is simply one method of calibration.

KEY WORDS: Calibration; Collocated sampling; Permanent random numbers; Poisson sampling; Systematic probability

proportional to size sampling.

1. INTRODUCTION

Many of the list frame surveys conducted by the National
Agricultural Statistics Service (NASS) are integrated in the
sense that data on a range of heterogenous items, such as
planted crop acres and grain stock inventories, are collected
in a single survey rather than through a number of indepen-
dent surveys. Bankier (1986), Skinner (1991), and Skinner,
Holmes and Holt (1994) have shown how an old method of
combining independently drawn stratified simple random
samples — where each sample comes from a (list) frame
with a different stratification scheme — can be made more
efficient; that is, the variances resulting from such a
combined estimation strategy would not be as large as those
from the independent surveys summarized by themselves,

Even more appealing for many applications would be a
sampling design that tends to select the same units from
every frame, thereby reducing both the cost and respondent
burden of an integrated survey. This paper explores several
such designs. Three make use of permanent random
nurmbers. The fourth vses a variation of systematic proba-
bility proportional to size sampling. The goal for each is to
meet or exceed — at least on average — a particular set of
sample size targets.

The paper shows how a calibration (i.e., reweighted)
estimator can provide relative efficiency by capturing what
we know about the original stratum sizes in the estimation.
A final section points out that the use of a calibration tech-
nique can do more than simply reflect original stratum sizes,

An alternative strategy for burden reduction is to use
separate instruments for different survey targets and to
select distinct samples for each instrument. This increases
the number of units selected over all, but reduces the burden
per selected vnit. NASS is using that approach in its
Agricultural Resources Management Study (see Kott and
Fetter 1997), but it is not the approach to be discussed here.

i
Service, USDA.

2. INDEPENDENT SAMPLING AND UNBIASED
ESTIMATION

Suppose we have F independent frames; for example, a
sorghum frame, an oats frame, and a general grain stocks
frame. Each frame is stratified independently, and without
replacement simple random samples are drawn from each
straturmn of every frame. Frame f (say, the oats frame)
contains Hj strata; stratum # (large oats operations} in
frame / has N population units, out of which n, units are
selected. The union of the F frames must cover the entire
(list) population, but no single frame need be complete.
The frames may overlap.

. One unbiased estimator for a populationtotal 7=} .y,
is the simple muitiplicity estimator suggested by Skinner
(1991):

T = 2uiep Yy Elngy), n

here P denotes the entire population, and g, is the number
of times unit { is selected for the sample from any frame.
Observe that n,,, =0 for the population units not in the
sample. In the great majority of applications, »;, will be
one for most sampled units, but #,,, > 1 is a possibility with
this design.

The expected number of times unit i will be selected for
the sample is E[n ) = }.'p;r, where p, is the probability of
selecting unit / in ll?)e stratified simple random sample from
frame F; thatis, p,, = n, /N, , where unit / is in stratum h of
frame f- .

There is also a Horvitz-Thompson estimator for 7" under
the design, namely £, =Y .v,/m, where S denotes the
sample and m=1-(1-p)(1-p,)(1-ps). See
Bankier (1986) for further discussion of this approach.

Phillip 5. Kott, Research Division; John F, Amrhein, Survey Sampling Branch; and Susan D. Hicks, Estimates Division, National Agricultural Statistics
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Figure 2. Simulated probabilities of selection for the fixed-sample-
size method-California

6. CALIBRATION

The problem with both ¢, and ¢, (or #,,) is that they are
often not very good estimators for T in term of precision
(variance). One of the properties of single-frame, stratified
simple random sampling is that the conventional expansion
estimator estimates the stratum population size perfectly
(i.e., with zero variance). In our multiple frame set up,
however, neither #,, nor ¢, will estimate the N, perfectly
in most applications.

Let us define w0 = niy/E[ngy) as the original sampling
weight of unit i in #,,. Similarly, wh = l/max {p,} in ¢,
and 1/m, more generally for a Horvitz-Thompson estimator.
Bankier (1986) proposed raking to create a set of adjusted
weights such that

C
E W, =N,
iES,rh ' & (2)

for each stratum 4 in every frame f, where S, is that part of
the sample that is in stratum A of frame fregardless of the
frame(s) from which the units were selected.

Deville and Simdal (1992) call (2) a calibration equa-
tion. They point out that there are a number of ways to
compute the calibration weights, the wf, so that equa-
tion (2) is satisfied and w/w? is in some sense close to 1
for all i One method is raking as suggested by Bankier
(1986). Another method, discussed at length by Deville and
Sarndal (1992), uses least squares. Either way, the resulting
estimator

c
le=Dies Wi Vin
where § denotes the entire sample, will be nearly design

unbiased because w,.cl w, is close to 1 for all i,
The estimator /. is also unbiased under the model:

F H
y.~=ﬂu+2 idi B * €5 €))
il L

7

where the dummy variable, d,,, is 1 when unit { is in
stratum & of frame f (sampled or not) and zero otherwise,
while €, is a random variable with a mean of zero. The §,
and the B, are unknown constants (B, represents the mean
y-value for a unit in the first stratum of every frame; that is
why the second sum excludes £ = 1). The same djg values
apply to every survey item (y) of interest, while the p
values change with the survey item. For many survey items,
B, values will be zero when frame f (say, grain stocks) is
irrelevant to the item (say, planted oat acres).

Isaki and Fuller (1982) call the model expectation of the
design mean squared error of #- the “anticipated mean
squared error” of the estimator. This value is of most use at
the planning stage of a sample survey.

If the model in equation (3) holds, and the €, are uncor-
related, then the anticipated mean squared error of /. is

EMSE (1] = EAEL Y w Sy, - X, y))
=EE [, w -3, » I}

=E,{E (X, w €-X, €1}

=Y, [0, - 2w IE(eD) + X, Ee€D)

= Ep(Y, () - 2m)E(eD} + Y, EAeD)

=Y, (U, - DEE, @

since w,-C = I/x,. It is of some interest to note that using
Poisson, collocated, and systematic PPS sampling result in
estimators with approximately equal anticipated mean
squared errors asymptotically. This surprising result is in
part due to the nature of a calibrated estimator, but it is also
a repercussion of the fact that when we take the design
expectation of the approximate model variance in the last
line of equation (4), we average over all possible samples
and remove the biggest source of variation among the three
sampling designs.

Now suppose we had used stratified simple random
sampling and selected unit i with probability p;;<m,,
where f'is the frame relevant to y. It is not hard to show
that the anticipated variance of the simple expansion
estimator would have been Y, (I/p,,- l)EE(ef), which is
at least as large as the right hand side of equation (4). Thus,
there are gains - in large samples, at least —~ from
“integrating” the samples from various frames as we have
effectively done. How large the samples must be in practice
for the asymptotic results to be relevant is unclear. At the
very least, the sample size must be many times the number
of model parameters in equation (3).

A few words on mean squared error estimation for t. are
in order. The mean squared error estimator advocated by
Deville and Sdrndal (1992) — an estimator with both good
design and model-based properties — can not be implemented
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unless the joint selection probability (n;) for every pair of
sample units (i and 7} is known. Among the designs we
have discussed, these probabilities are easily calculated
only for the Poisson variant of PRN (where n, = n1t).

As we have observed in equation (4), the anticipated
mean squared error of the calibration estimator is the same
under Poisson PRN, collocated PRN, and systematic PPS
sampling. This suggests that the Poisson mean squared
error estimator may be reasonable under each of the three
designs. A stronger model-driven argument exists for this
contention, but will not be made here.

7. DISCUSSION

In the last section, it was pointed out that if calibration
weights were designed to satisfy equation (2), the resulting
estimator would be unbiased under the model in equa-
tion (3). ‘In many applications, there may be a more
appropriate model on which to base calibration than the one
in equation (3). For example, if there was a continuous
control variable used to stratify a particular frame, it makes
more sense to use that variable directly in the model rather
than indirectly through frame/stratum identifiers.

" Raking is a form of calibration under a particular model.
With that in mind, it makes sense to use the most reasonable
model available. Least squares has the advantage over
raking that it can easily be applied to continuous control
variables. Singh and Mohl (1996) provide an extensive
review of alternative calibration algorithms including an
extension of raking to continuous variables. An intriguing
least-squares variant missed by Singh and Mohl {(1996) can
be found in Brewer {1994).

Many economic and agricultural surveys employ rotating
sample designs. This has proved an effective way to
balance cost and burden considerations. Although our
empirical findings demonstrated an advantage of the sys-
tematic PPS methodology in terms of meeting target sample
sizes, the three PRN designs are much more conducive to
sample rotation. See, for example, Ohlsson (1995) on this
topic. Moreaver, with the PRN methods, one can integrate
different frames at different times of the year (with systema-
* tic PPS there is no easy way to allocate the sample back to
the frame of origin). This is a particularly useful property
for agricultural surveys because different crops have
different growing seasons.

In summary, the fixed-sample-size PRN sample design
is excellent for meeting target sample sizes but is hard to
use in practice because selection probabilities are usually
unknown and must be simulated. The systematic PPS
design is very good at meeting target sample sizes but is
difficult to incorporate into a sample rotation scheme.
Moreover, mean squared error estimation requires invoca-
tion of model] assumptions. Our empirical example shows
that collocated sampling may only be slightly better than
Poisson at meeting target sample sizes. It should be recog-
nized, however, that other configurations of the frames,

strata, and sampling fractions may produce different results.
Moreover, collocated sampling is conducive to rotation
schemes, like Poisson sampling. On the other hand, like
PPS sampling, it requires the assumption of a model to
estimate mean squared error.

Finaily, setting P Or n targets is a popular, but indirect,
means of controlling the variance of the estimator 7.
associated with each frame. These targets lead to our ad Aoc
decision .to set m; equal to max,{p }. A more direct
strategy would be to set (asymptotic) anticipated variance
targets for each frame estlmator using equation (4) and
postulated values for the E_ (€7). One could then choose,
say, the set of =, that minimizes the expected sample size
yet satisfy these variance targets. A similar approach is
taken by Amrhein, Fleming, and Bailey (1997} who use
Chromy’s algorithm in a manner analogous to Sigman and
Monsour (1995). Poisson PRN, collocated PRN, and
systematic PPS sampling remain three viable alternatives
for selecting the sample once optimal =, are determined.
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Use of Auxiliary Information for Two-phase Sampling

M.A. HIDIROGLOU and C.-E. SARNDAL'

ABSTRACT

Two-phase sampling designs offer a variety of possibilities for use of auxiliary information. We begin by reviewing the
different forms that auxiliary information may take in two-phase surveys. We then set up the procedure by which this
information is transformed into calibrated weights, which we use to construct efficient estimators of a population total, The
calibration is done in two steps: (i} at the population level; (i) at the level of the first-phase sample. We go on to show that
the resulting calibration estimators are also derivable via regression fitting in two steps. We examine these estimators for
a special case of interest, namely, when auxiliary information is available for population subgroups called calibration
groups. Poststrata are the simplest example of such groups. Estimation for domains of interest and variance estimation are
also discussed. These results are illustrated by applying them to two important iwo-phase designs at Statistics Canada. The
general theory for using auxiliary information in two-phase sampling is being incorporated into Statistics Canada's
Generalized Estimation System,

KEY WORDS: Generalized regression; Two-phase sampling; Model assisted approach; Domain estimation; Calibration

factors.

1. INTRODUCTION

Two-phase sampling is a powerful and cost-effective
technique. It was first proposed by Neyman (1938). In
Cochran’s (1977) book, and in its two earlier editions dated
1953 and 1963, one finds basic results for two-phase
sampling, including the simplest regression estimators for
such designs. This paper takes a broader outlook and
proposes a general approach to the use of auxiliary
information in two-phase survey designs. Our main
references are Sdrndal and Swensson (1987), Sarndal,
Swensson and Wretman (1992) and Dupont (1995). Recent
related work includes Breidt and Fuller (1993), who
presented computationally efficient estimation procedures
for three-phase sampling in the presence of auxiliary
information. Chaudhuri and Roy (1994) studied optimality
properties of the well-known simpler regression estimators
for two-phase sampling. Binder {1996) described a simple
linearization procedure to estimate variances of nonlinear
estimators, His procedure can be applied to any sampling
design, including two-phase-sampling. Throughout this
paper, we assume arbitrary sampling designs for each of
the two phases.

Single-phase sampling involves the use of one layer of
information for estimation. In two-phase sampling, how-
ever, one has to consider two layers of information. This
complicates matters, and it is not clear-cut how best to
exploit the combined information from the two sources.
Two approaches are considered in this paper for building
estimators based on auxiliary information. These are the
calibration approach and the generalized regression
approach. We show that the generalized regression
approach can be viewed as a special case of the calibration

approach. The two approaches are examined under a
common structure for the auxiliary information. It assumes
that information exists about an auxiliary vector x, for the
units of the entire population, and about a second auxiliary
vector x, for the units of the first phase sample.
Consequently, at the level of the first phase sample, there is
information about both vectors, x; and x,.

The generalized regression approach, as applied to two-
phase sampling, is discussed in Sarndal ef al. (1992). These
authors develop the general regression estimator for two-
phase sampling, assuming arbitrary sampling designs in
each of the two phases. Two regression fits are carried out.
A “bottom level” regression is fitted to produce predicted
values up to the level of the first phase sample, using the
auxiliary information available for this step. Next, a “top
level” regression is fitted to produce predicted values up to
the entire population level, using the information
appropriate for this step. The two sets of predicted values
are used to build a generalized regression estimator.

The calibration approach focuses on the weights given
to the units for purposes of estimation, Calibration implies
that a set of starting weights (usually the sampling design
weights) are transformed into a set of new weights, called
calibrated weights. The calibrated weight of a unit is the
product of its initial weight and a calibration factor. The
calibration factors are obtained by minimizing a function
measuring the distance between the initial weights and the
calibrated weights, subject to the constraint that the cali-
brated weights yield exact estimates of the known auxiliary
population totals. In two-phase sampling the two levels of
information imply two consecutive calibrations. The first
phase of calibration uses the auxiliary information available
(at least population counts) at the level of the entire

b MLA. Hidiroglou, Business Survey Methods Division, Statistics Canada, Tunney’s Pasture, Ottawa, Ontario, K1A 0T6; and C.-E. Sirndal, University of

Montreal, and Statistics Canada.
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for lcesz, and

= !
WipWy X, X'

TZ = £ Czk

(3.12)

Again, some g,: may be zero or negative, but always
positive g, can be ascertained by adding to (3.8) the
inequality constraints w, >0 for kes,.

Having determined the overall weights 1%, by equation
(3.9), the estimator of Y is given by

f}:Es W;ryk

2

(3.13)

Remark 3.1 A potential problem with the above approach
is that some of the g;,’s may be negative or even zero. If
this occurs, (3.7) is not a proper distance measure. Some of
the important applications, such as poststatification, do not
have this problem as their associated g,,’s are always
greater than zero. If all the g, ’s are greater than zero, then
the minimization criterion given by (3.7) is acceptable.
Otherwise, we have to modify it. One possible modification
is to impose on the above-mentioned constraints that the
w,, s are positive for k€5, . Another possible modification
is to replace C,, in (3.7) by

W
* 1k
Coie = Cop—
1k

Then

“u _Cu

- * ?
WieWa  w,

which is always positive. The resulting g, -factors in (3.9)
can be showntobe g;’ =g, +g,, - 1, where g,, is given
as before by (3.5), and g,, by (3.11) provided that we
instead define T, as

Wy X, X',

T2=Z,1 C
%

It is our opinion that in most applications the choice
between the multiplicative g, =g, # &2 and the additive
form g, =g, + g, -1 would have little effect on the
resulting estimates. That is, we believe the two point
estimates would be very close, and so would be their
associated estimates of variance.

Remark 3.2: Bounding the weights ordinarily has negli-
gible impact on the estimates. Recent experience with
calibration for single phase designs, Stukel, Hidiroglou, and
Sdrndal (1996), has shown that mildly different sets of
g-weights lead to point estimates that differ very little.
Some recently developed computer software for calibration,
for example, the software described in Deville et al. (1 993),
minimizes a distance function such that the resulting

g-factors are guaranteed to be bounded from above and
from below.

Remark 3.3: The auxiliary data in Table 1 can be used in
several ways for two-phase calibration. Considering in
particular the second-phase calibration equation defined by
(3.8), three different specifications of the vector x ¢ are: (i)
X, = (e, xy)'s (i) x, =Xy and (i) x, =x,. We
comment on these possibilities, assuming for each of these
that a first-phase calibration has been carried out, resulting
in the first-phase calibrated weights (3.4),

The case (i) specification x, = (x;,, x;,)’, recommended
in Sdrndal et al. (1992), capitalizes on all the available
information. Thus, in this respect case (i) is ideal. Cases (ii}
and (iii) disregard some available information. Case (ii) is
sometimes of interest, despite some loss of information; an
example is given in Section 7.1. Case (iii) implies that the
data {x,, :kes,} are observed, but not used: we do not
further consider this case. We call x 2 = (X[, X5,) the full
vector and x, = x,, the reduced vector.

Second-phase calibration on the reduced vector x & =Xy
can be carried out without significant loss of information if Xy,
is a good substitute for x,, as also observed by Dupont
(1995). However, if x,, complements x,,, then the full
vector x, =(x,,,x,,)" should clearly be used in the
calibration defined by (3.7). Otherwise, significant loss of
information and increased variance may result.

Remark 3.4: Both the full and the reduced x-vectors lead
to overall weights 17} calibrated on x,, from s, to 5, . This
means that Exzv'ﬁ 5%y = Z-H W, Xy, bDecause (3.8) holds,
and x,, is contained in x,. However, there exists a
difference between the full and reduced vector specifica-
tions with respect to the calibration on x, . If the full vector
specification is used in phase two, the resulting overall
weights 17, are calibrated on x,, from s, to s, and from s,
to U. This means that ¥ WX = Yo WX, =Y, x, In
contrast, if the reduced vector specification is used, the
resulting overall weights % , are calibrated on x,, from 5
to U by virtue of the first-phase calibration. That is
o, WXy = Y, x,,- However, they are not calibrated
from s, to 5,, because x,, is not present in the second-
phase calibration. Hence, ¥ W, x,»Y W,k x =
Y% Thus if the survey requires a weight System that
will reproduce the known ¥ x,,, then the full vector
specification must be used. ‘

So far, we have focused on the general framework for
calibration with two levels of auxiliary information. This
framework does not reveal the many interesting forms that
the estimator ¥ given by (3.13) may take for specific cases
of auxiliary information. Some illustrations are given in
Section 7. We first address three issues that are of practical
interest in virtually every major survey: (i) poststratifica-
tion or, more generally, the presence of auxiliary informa-
tion for population subgroups (Section 5), (ii) estimation for
domains of interest (Section 6), and (iii) the construction of
variance estimates {Section 6).
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4. THE TWO-PHASE CALIBRATION
ESTIMATOR VIEWED AS A REGRESSION
ESTIMATOR

An alternative expression for the calibration estimator
(3.13) is given by formula (4.1) below. This expression
links it exactly with the regression estimator for two-phase
designs introduced in Sirndal ef al. (1992, chapter 9).

Theorem 4.1: When the overall calibrated weights W, are
determined by (3.9), the calibration estimator (3.13) is
identical to the two-phase regression estimator given by

F=30 0 +Es| Wy (P = P1) *Esz we (7 = Do) (A1)

where 7, and J,, are successive regression predictions
such that

Py =x1, B, (4.2)
with
B =71 Z W Xy Vg +E wy X, 0V, ~Py) 4.3)
N % C @
Ik 1k
where T, is given by (3.6), and
Pox =X ﬁz 4.4)
with
u . W, W, X
B-T;' Yy L ERR £ (4.5)
2 Cy

where T, is given by (3. 12).

The proof for Theorem 4.1 uses some tedious but
straightforward algebra and is not presented here.

We now show that (4.1) can be constructed via
regression estimation in two steps. For the first step,
suppose that the variable of interest y, were observed for
the full first-phase sample s, . The auxiliary information on xy
is available for k€s, and the population total Y X is
known. The resulting regression estimator of Y=Yy,
would then be given by

r=3, Pk * E Wu:(y ﬁlk)
=Es, Wi Vi +(EU ﬁ&'zﬁ Wik ﬁl°k) (4.6

In the last expression, the first term represents the
(hypothetical) first-phase Horvitz-Thompson estimator of
Y. The second and third terms represent' a regression
adjustment, where yluk is the predictor of y, based on the
fitted regressmn of y, on x, for kes . That is,

.0
}’u“xmB with

15

50 _ ol Wik Xix Yx
B =T T
Lk
Notethat )’ ; Po = (Y, x,) B B where Y.,; X, is known.
However, none of the terms 1n (4.6) can be computed
directly, because y, is only observed for the second-phase
sample. A second step of regression estimation is thus
necessary. It is carried out by replacing the unknown
Esl Wy, ¥, in (4.6) by its conditional regression estimator
2.\“[ Wiy * Z,z wy (=) @7

where §,, =x, B with B given by (4.5), is the predictor
of y, based on theﬁxl;egressmn of y, on x,, knownupto s,.
Next, the vector B| required for computing y,, contains a
known matrix 7, and an unknown vector

E Wik Xy
B Ci

Using a regression estimator for this unknown vector, we
obtain B given by (4.3} as a replacement for B These
two subst:tutlons in (4.6) lead to the two-phase regresswn
estimator given by (4.1), which is identical to the
calibration estimator (3.13).

Remark 4.1: A more direct alternative to Bl in (4.3)
would be to use only the second-phase sample. This would
have produced

» -1 *
E_-T Wy Xy Xpp ) We X bi
alk — 5 C 55 C
2% 2%
The r.esulting. predictions Y, ., = X}, ﬁwh would .be
replacing j,, in (4.1). However, the resulting regression
estimator is not identical to (3.13) and is a less efficient
altemative, because B ,, uses less x,,-information than
B ,
.

5. CALIBRATION GROUPS

In this Section we apply the results of Sections 3 and 4
to the important case where the auxiliary data in Table 1
include information about mutually exclusive and
exhaustive subsets of the population U, and of the first-
phase sample s,. The population subsets are denoted by
U,i=1,..,1, and the first-phase subsets by s,,;=
i,. J Such subsets are called calibration groups for
reasens that will become clear later in this Section. Simple
examples of calibration groups are poststrata.

Two vectors denoted A, and A, will be used to specify
the membership of a given unit & in the calibration groups U,
and 5, , respectively. These group identifiers are

Ay =B e B -

By (5.1}
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with
1 if keU,
&= fori=1,..,1 {5.2)
0  otherwise
and
A, =(8, 0 szk, e By p)’ (5.3)
with
1 if kes,,
Oy = 4 forj=1,..J 5.4)
4 0 otherwise

Besides the -group membership information, which is
qualitative and specified by A,, and A,,, there may exist
information for the unit & about quantitative (continuous or
discrete) variables. We call them supplementary auxiliary
variables. For example, categorical information about a
unit (enterprise) in a business survey may consist of an
industry code or a geographical location code. In addition,
quantitative variable information may also be available
concerning the number of employees or the gross business
income of the unit. Some of these supplementary auxiliary
variables may be known up to the level of the population,
and others up to the level of the first-phase sample.

We assume in this Section that the vector x,,, used in
calculating the first-phase g-factors, has the structure

X =8, O, (5.5

where z,, of dimension @, is the vector of supplementary
auxiliary variables available for the first-phase sample. The
information requirements in Table 1 apply to the vector
x,,- This implies that we must know either the group
membership specified by A, and the value of z;, forevery
ke U, or the total Eu, z,, separately for each group,
i=1,..,1

When x,, has the form given by (5.5), the first-phase g-
factors g,, in (3.5) can be obtained by a group by group
calculation. The 7T, matrix to be inverted, given by (3.6), is
block diagonal and of dimension 7Q, by 7Q,. The typical
diagonal block, denoted as T, of dimension O, by Q,, is
given by

Wz, 2
T = lk “lk “1k (5 6)
i »
f Sll Clk

for i=1,..,1. The resulting inverse of T, is also block
diagonal with diagonal matrices 7, . The off diagonal
blocks of the inverse of 7| are zero matrices. So we obtain
from (3.6)

- T
gy =1 +(ZU, zlk_Es" wlkzlk) T, <.
1k

(5.7}

for kes, i=1, .., 1, where T, is given by (5.6). Note that
the resulting weights v, are the same as those obtained by
carrying out the first-phase calibration group by group,
calibrating for group 7 on the known total Y. %, Thatis,
X, Wiy =Ly 2y for i =1, ., 1 Ttis thusfitting to call
the groups U/, first-phase calibration groups.

Now consider the second-phase g-factors g,, given by
(3.11). They are based on the auxiliary vectors x o
required to be known for the units £€s,. We assume that
X, contains information about the second-phase groups so
that

X'y =40, 87, (5.8)
where A,, is the second-phase group identifier, and z, s
the value of a vector of supplementary auxiliary variables -
available for kes,. Since the requirements in Table 1
apply, it follows that A, (the second-phase group
membership) and the value of z, (the supplementary
auxiliary vector) must be known for every kes,. Here z,
may contain some or all of the information in x,, given by
(5.5), and any other information available for the units
kes,.

V\}hen x, has the structure (5.8), the factors g, can also
be obtained through a group by group calculation. This
simplification is a result of the fact that the matrix to be
inverted in (3.11) is block diagonal. We obtain

g2k=1+(

8y

- - o) i
Wik 2y 'ESU wlszkzk) y o 59
2

for kESzj =szns]j,j =1,...,J, where

W Wy 2,2,
Ty=X,, — o (5.10)
%
The resulting overall weights W, =w, g~ where g, =
811 &2 are the same as those obtained by carrying out the
second-phase calibration group by group, calibrating for
group j on the known gquantity Eslj W, 2,. That is,
Yo, W 2, =%, W, z, for j=1,..,J. The groups 3, are
called second-phase calibration groups. We now have a
procedure for computing g,, and g,, group by group using
(5.7) and (5.9). The total ¥ is still estimated according to
(3.13).

6. DOMAIN ESTIMATION AND VARIANCE
ESTIMATION

The preceding sections dealt with estimation of the total
of y at the entire population level. In most surveys, there is
also a need to provide estimates for various subpopulations
or domains of interest. Requests for domain estimates can
be made cither before or after the sampling stage of the
survey. Auxiliary information is essential for domains. A
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precise domain estimate may be obtained (even for small
domains) if: (1) calibration groups.and domains of interest

agree closely, and (ii) the auxiliary variables exhibit a strong

regression relationship with the variable(s) of interest.
Denote by U, (U, < U) any domain of the population
U for which an estimate is required. The y-total for the
domain U, is defined by Y(d) = Y v, », = Y., (d) with
v (d)=y, ifkeU,and y, (d)=0if ke U,
The estimator of ¥ (d) is

Py =3, Wy (d) ®.1)

where the overall calibrated weights W, =w, g, may be
calculated group by group as described in Section 5. The
calibration factors g, and g, are calculated using all
relevant available auxiliary information, specified as in
Table 1. So in this sense, the resulting overall calibrated
weights W, are the best possible ones. Note that these
weights are independent of the particular domains requiring
estimation in the survey.

The estimator of the variance for the domain total
estimator ¥ () is obtained using a design-based approach.
This means that the variance is interpreted with reference to
repeated draws of samples s, and s,. Details for the
derivation of this variance are given in Sirndal et al. (1992)
(Result 9.7.1, p. 362). The first order and second order
inclusion probabilities enter into the weights used in the
variance formula. The weights associated with the first-
phase sample are w,, =1/x, and w,=1/m, with
T, =P(kand tes,)). The weights wy,=1/m, and
Wy =1/1,,, with @, = P(k and 0€s,[s,) denote their
second phase counterparts. Two sets of regression residuals,
one for each phase, are also required. The estimator of the
variance of Y (d) is given by

v{? (@)} -
E E Wop W W = W) (81481, (D)) (848, (4)) +

kes, les,

k%: ?: Wi (Wa Woy = W) (85,85, (d)) (8348 ()

(6.2)

Note that for k =¢ we have w,,, =w ., and w,,, =w,, in
(6.2). We now specify the regression residuals in {6.2)
assuming that there are first-phase calibration groups
U,i=1,..,1, and second-phase calibration groups
S j=1,..,J, as explained in Section 5. We denote the
associated sample subsets as follows: s, =s,NU;
Sy = 5,0 8y The required residuals in (6.2) are, for
ke(sy,nl,),

e, (d) =y, (d) -z}, B, (d) (6.3)
and, for ke(szjn U,
ey (d) =y, (d) - ', B, (d) (6.4)

17

The estimated regression vectors B ;i (d) and ﬁzj {d) are

ﬁu(d) = Tl-l'l

Y “-’nszzk(d) 3 wy 2, (5 (d)- 9y (d) 6.5)
" Clk b1l C]k
where T, is given by (5.6), and
. i} W, w, 2,y (d)
sz (d) = szl Esy _._15__..%:"_}_ (6.6)

2k

with sz given by (5.10), and
Pyuld) =z, B, (d) for ke(s,nU,).

Remark 6.1: Note that for each new domain of interest, the
variance estimator (6.2) requires two new sets of domain
dependent residuals, ¢,, (d) and e,, (d). Moreover, these
are required for all of the units & in the second-phase
sample s,, including units outside the domain. Variance
estimation for domains can therefore be cumbersome.

Remark 6.2: In practice the computation of estimated
variances is seldom carried out as a double sum. For some
important designs, the double sums reduce, after some
algebraic manipulation, to single sum expressions.
Examples of this occur for single sampling and for stratified
single random sampling in both phases. Explicit algebraic
developments for the variances have been given the former
case by Sidrndal ef al (1992), and in the later case by
Hidiroglon (1995), and Binder, Babyak, Brodeur,
Hidiroglou and Jocelyn (1997).

7. APPLICATIONS WITH
POSTSTRATIFICATION AT THE FIRST PHASE

7.1 The Case of the Tax Sample at
Statistics Canada

An application of the calibration group approach in
section 5 has been in use at Statistics Canada, in the two-
phase design for sampling of tax records. The example is
important because it provides the extension to two-phase
designs of the traditional postratification technique as used
in a single phase design. The sampling procedure, the post-
stratification criteria, and the estimators are described in
Armstrong and St-Jean (1994). We now show how these
estimators are obtained as special case of the technique in
section 5. The sampling design, in each phase, is stratified
Bemouilli, carried out with the permanent random number
technique. The two stratifications are based on different
criteria. The realized sample sizes are random at each phase
on account of the Bernouilli sampling. To offset the
resulting tendency toward an increased variance, poststrati-
fication is carried out at both phases of sampling. The two
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poststratification criteria are different. We have in effect
two crossing poststratifications. In the terminology of
section 5, the first phase poststrata are the first-phase
calibration groups. They are denoted as U/, ;i =1, ..., /, and
the group membership of a unit £ is indicated by the vector
by A, given by (5.1). The second phase poststrata are the
second phase calibration groups. They are denoted as
Sy Jj=1,...,J and the cormresponding membership of a unit
k 1s indicated by the vector A,, given by (5.3).

The first-phase calibration is carried out using the
information about the first-phase poststrata sizes, ¥.. In this
survey design, there is no supplementary information, so
z), =1 for all k in (5.5), yielding x,, = A,,. Specifying
C,, =1 for all £ we obtain from (5.7) that

8y = N/ Ny, (7.1
for all k€s,; where N, =¥, W), estimates the known
first-phase poststratum count N and §,; =s,Nn U, denotes
the part of the first-phase sample s, that falls in the first-
phase poststratum U,.

We arrive at the estimator of Armstrong and St-Jean
(1994) by carrying out the second-phase calibration with
x, =A,,, thatis, we have z, =1 for all £in (5.8). This is
areduced x, -vector specification since it does not involve x, .
Specitying C,, =1 for all kes,,, and using (5.9} and
(3.10), we obtain the overall calibrated weights

NN,
& T/ — (7.2)
Nli N’Zj
for all k“zu, where
N T(NY . . L N Y.
= —L NuN:E[ ]N
1y 4 ~ i ¥y T & - 24 (7.3)
= | Ny =LLN,
w1thN =Y, wyand N, =Y w/. Here,s,, szﬂs

denotes ‘the parf of the second- phaée sample s, that falls i in
the second-phase poststratum s, and s, = U, ﬂs T
=5,NUN 5);- Itfollows that the estimatot. of the total
(d) for a given domain U, is given by ) =
Y. wk g ¥,(d), orequivalently as

wk‘ y(d).

MCIEDY Z ’f

Saiy
N, N, ;

The estimated variance requires two types of residuals
that are easily obtained from the general expressions given
in Section 6.

Alternatives exist to the reduced vector specification
x, = A, used for this design. We therefore examine what
the estimator would look like under a [ull vector
specification. For the first-phase calibration, as earlier, let
X, =4, corresponding to z,, =1 for all kin (5.8). The
first-phase g-factors g,, are then given by (7.1). In this

survey, information is available for assigning every unit
kes, to one of the 7x J cells formed by cross-classifying
the two poststratification criteria. Therefore, the vector x,
for the second-phase calibration can be taken as

X, =A 84 (7.4)

This is a full vector specification in that it includes the
first-phase information carrier A .. Let us also specify
C,, =1 for all k. Since (7.4) is of the form (5.8), the
second-phase g-factors g, are obtainable group-by-group
from (5.9) with z, = A,,. The overall calibration factors
are given by

N N
gk. =— #
N, N,

2ij

(7.5

for all kEsz . Here, N is defined in (7.1), and N and
N are as in (7.3). These overall calibration factors are the
product of two poststratified calibration factors. They are
all positive and well defined, provided all sample cells Sy

are non-empty. Collapsing of small cells §y;; With relatwely
large non-empty cells is recommended for stable estimation.

As pointed out in Remark 3.4, the overall weights obtained
from (7.5) reproduce the known first-phase postrata sizes
N,, whereas those obtained from (7.2) do not.

Remark 7.1: Let us compare the calibration factors (7.2)
and (7.5), resulting, respectively, from the reduced form
x, = 4,, and from the full form (7.4). Both factors are a
product of two terms. The only difference lies in the second
term. In both cases, the computation of the second term
requires cross-classification information. That is, forevery ke s, ,
we need to identify the cross-classification cell ij to which
k belongs. In the case of the reduced vector, the cell
information is pooled across the first-phase groups. For the
full vector, the cell information is kept separate, and one
would expect the resulting weights to be more efficient,

Remark 7.2: For the second-phase calibration, an
alternative to (7.4} that also captures the information about .
the first-phase poststrata is to use
X4 = (Afk' Aik)' (7.6)
Note that with this specification, there is only one

calibration group in the second phase, namely the whole
first-phase sample s,.

7.2 The Case of the Canadian Survey Employment,
Payrolls and Hours

The Survey on Employment Payrolls, and Hours (SEPH)
covers all sectors of Canadian industry, and collects data
on four principal variables: (i} salaries and payments to
employees (denoted as z,; called payrolls); (ii) number of
employees (z,; employment); (iii) hours worked by
employees (y,;hours); and (iv) summarized earnings
(y,; earnings).
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SEPH (1994) uses a stratified two-phase sampling
design. In the first phase, a sample of payroll deduction
accounts is selected using a stratified Bernoulli sampling
design with sampling rates within strata ranging from 10%
to 100%. The strata are defined by region. A region is
made up of one or more Canadian provinces. We describe
the estimation for SEPH by considering one specific region.

For units selected in the first-phase sample, two variables
are transcribed, namely, payrolls (z,) and number of
employees (z,). In the second-phase, a simple random
sample is drawn. Data on the two variables of interest, y,
and y,, are collected for respondents in this sample. In
addition, classification by industry and province is recorded
for sampled units. The first-phase sample is poststratified
by employment size groups. These are used as first-phase
calibration groups and denoted U;i = 1, ..., /. Their sizes
denoted as N, for i=1,..,1 are assumed known. The
vector x,, used for a first-phase calibration is of the form
(5.5), where A, is given by (5.1) and z,, = 1 forall k. We
choose C|, = 1 forall £ It follows from (5. 7) that the first-
phase g-factors are

g = NN, (7.7)

forall kes,, =s,NU,, where N, =Ysw,,i=1,..1

We now turn to second-phase cahbranon It is carried out
using calibration groups s,,, / = 1, ..., J, identified by the
vector A, given by (5.3). These groups are based on a
province by industry classification. They are constructed so
that: (i) there is a strong regression relationship between y,
and the two z-variables, and that (i) there are at least 30
observations within each group. The J({J + 2) dimensional
x . -vector for the second-phase calibration is given by

=y ® (D), 2y Z3y) (7.8)

This specification requires (see Table 1) that every k€ s,
can be classified into one of the 7 by J cells formed by
crossing the calibration groups in the two phases. Let
S35 =855 (Vsy 5 8y, =5y jN Ui sy, =5,MNs,, . Also, the quan-
titative variable values z,, (payrolls) and z,, (number of
employees) must be known for k€s,. The x, -vector
specification given by (7.8) is full, because it incorporates
x;, =4, A reduced vector, ignoring the first-phase
groups, would be x, = A), ®(z,,,2,,).

As in. Example 7.1, we have two crossing sets of
calibration groups.

Since the x, -vector (7.8) has the structure defined by
(5.8), we used (5.9) to derive the second-phase g-factors for
each group j=1,.., J. Itfollows from (7.8) that we are
fitting, within each second-phase calibration group, a
separate regression of y, on §, =(z,,,2,)" with an
intercept that varies with the first-phase calibration group.

Spemfymg C,, = | forallk, and using the additive form,
8 =8 * 8o~ |, for the overall calibration factors, we
obtain after some algebra
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= G, Gyy + BT} (6~ T, )

for all kesw, where

with
- w, b - w, G .
15>k k ok
L, L, N2, Wik
W Sl o Sy S 0 Lij 5 1k
i Nl:'j J N2fj i
and N

N
2ij Z.twwk -

It foll(}ws }haE we can write the estimator (6.1) as
Y{d) = zf=]Zj=1Y,'j(d) with

@+, -, )Bd)

S S

Y(d) G N ¥

52—'1'

where

;Syj(d) = E;zuwk‘yk(d)/ﬁmj

and Bj(d) T 'Zm X, i (Ck 4 )J’k(d)

The form of ? (d) is easy to understand It is composed
of I x J cell estimates 1" (d), each reflecting the regression
of yk(d) on ,. Note that the two-dimensional slope vector
B j(d) is obtained by pooling data across the first-phase
groups. This is because the specification (7.8) of x, allows
the intercept, but not the two regression slopes, to vary with
the first-phase groups.

8. CONCLUSIONS

Two-phase designs have the advantage of being both
economical and efficient. The present paper has provided
a general theory for such designs when auxiliary
information is present in each phase.

Qur goal is to incorporate this two-phase survey method-
ology into Statistics Canada’s Generalized Estimation
System (GES) described in Estevao et al. (1995). The GES
is a general purpose program that currently handles domain
estimation for arbitrary single phase designs and incor-
porates auxiliary information in its estimation process. In
this paper we have extended the basic principles of the
GES, including the important idea of calibration groups, to
two-phase designs.
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We have illustrated the theory by showing its use in two
current surveys at Statistics Canada. Given its generality,
the theory has potential application to any two-phase
sample design that uses auxiliary information.
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Estimation in Sample Surveys Using Frames With a
Many-to-Many Structure

TERRI L. BYCZKOWSKI, MARTIN S. LEVY and DENNIS J. SWEENEY'

ABSTRACT

In sample surveys, the units contained in the sampling frame ideally have a one-to-one correspondence with the elements

in the target-population under study.

In many cases, however, the frame has a many-to-many structure, That is, a unit in

the frame may be associated with multiple target population elements and a target population element may be associated
with multiple frame units. Such was the case in a building characteristics survey in which the frame was a list of street
addresses, but the target population was commercial buildings. The frame was messy because a street address corresponded
either to a single building, multiple buildings, or part of a building. In this paper, we develop estimators and formulas for
their variances in both simple and stratified random sampling designs when the frame has a many-to-many structure.

KEY WORDS: Imperfect frames; Correspondence errors; Building characteristics survey; Weighting; Simple random

sampling; Stratified random sampling.

1. INTRODUCTION

This research was motivated by a study that was
conducted for a utility company to estimate various popu-
lation characteristics of the commercial buildings located in
their service area. Budgetary constraints prohibited the
development of a list of commercial buildings using
canvassing techniques. However, a sampling frame consis-
ting of street addresses (i.e., addresses at which a utility
meter was located) was available. A drawback of this
frame was that it had a many-to-many relationship with the
target population of commercial buildings. That is, some
units in the frame were associated with multiple target
population elements, and some target population elements
were associated with multiple frame units. In fact, several
of the relationships between street addresses and com-
mercial buildings were relatively complex.

An advantage of this frame, however, was that total
annual electrical usage was available for each street
address, This resulted in a variable upon which the frame
of street addresses could be effectively stratified. One of
the important characteristics to be measured was the total
commercial square footage. Studies conducted in the
United States have shown that energy consumption is
associated with both building size and building activity.
For example, consumption is higher for buildings used for
health care or food sales, and lower for buildings used for
religious worship or public assembly. Also, energy
consumption is correlated with building size even if the
activity of the building is not known, as was the case here
(U.S. Department of Energy 1992).

There is a vast amount of literature dealing with
imperfect sampling frames. Comprehensive summaries of
this literature can be found in Kish (1965), Wright and Tsao

(1983), and Lesster and Kalsbeek (1992). Another body of
literature addresses multiplicity sampling in which the
frame is constructed with a many-to-many structure by
design. Here, frame imperfections are introduced in order
to gather information more efficiently on rare occurrences
in a population (Bimbaum and Sirken 1965, Sirken
1972a,b, and Casady and Sirken 1980). Hansen, Hurwitz
and Madow (1953a,b) present an estimator for use with
sampling frames that have a many-to-one structure;
population elements are represented multiple times in the
frame. This estimator has also been adopted for use by
National Agricultural Statistics Service (NASS) surveys
(Musser 1993) with respect to the many-to-one frame.
Bandyopadhyay and Adhikari (1993) developed estimators
for a ratio, population mean, and population total when an
unknown amount of duplication is present in the frame.
But, these estimators are restricted to the simple random
sampling case and the many-to-one frame.

Two methods for estimating population characteristics
using a frame with a many-to-many structure appear in the
literature. First, the Horvitz-Thompson estimator (1952)
provides unbiased estimates of population means and totals
when varying probabilities of selection are present. Musser
(1993) shows how to compute the correct inclusion
probabilities for the population elements. selected in simple
random sampling from a many-to-one frame. However,
Musser’s method can be extended to obtain inclusion
probabilities for population elements in a simple random
sample from the many-to-many frame as well. Second,
Lavallée (1995) adapted the Weight Share Method, applied
to longitudinal surveys, to the use of frames with a
many-to-many structure. '

The purpose of this paper is to develop an alternative
methodology for estimating population totals, counts, and

! Terri L. Byczkowski, Institute for Policy Research, Martin 5. Levy and Dennis J. Sweeney, Department of Quantitative Analysis and Operations Management,

University of Cincinnati, Cincinnati, OH 45221, U.S.A.
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means when using sampling frames with a many-to-many
structure under simple and stratified random sampling
designs. Also, expressions for the variance of those
estimators are derived. The resuits which we develop are
not only of intrinsic interest, but expressions for the
variance of the estimators are essential for the exploration
of the effects of correspondence imperfections inherent in
many-to-many sampling frames on the precision of these
estimates.

In section 2 we present these estimates in the simple
random sampling without replacement (SRSWOR) case.
We also describe the sampling methodology under which
these estimators are applicable, state a result on bias, and
develop expressions for their variance.

In section 3 some of the results are extended to the case
of stratified random sampling. In section 4 we develop
conclusions, discuss limitations and make suggestions for
future research.

2. MANY-TO-MANY FRAMES FOR SIMPLE
RANDOM SAMPLING

It is useful to think of the relationship between the frame
and the target population as a graph. The sampling units in
the frame and the elements of the target population are the
two sets of nodes; arcs link the sampling units to elements
of the target population. These arcs reveal the structure of
the relationship between the frame and the target popu-
lation. Figure 2.1 shows an example of a frame and target
population with a many-to-many relationship. There are
7 sampling units in the frame, 6 elements in the target
population and 10 links (arcs) between the sampling units
and the elements of the population. Thus, a graph with
13 nodes and 10 arcs represents this many-to-many
structure. In this paper we assume that each population
element is linked to the set of frame units by at least one arc
and that each frame unit is linked to the set of population
elements by at least one arc as well.

Let us fix some notation. We find it convenient to iden-
tify both frame units and population elements with their
respective indices. Let F = {1,2, ..., N} denote the set of
indices for N sampling units, and let 7= {1,2,..., M}
denote the set of indices for the M target population
elements. An arc can be represented as an ordered pair; the
first element of which comes from F, and the second from

T. A population element £ in T is said to be represented by

sampling unit 7 in F, if it is linked to it by an arc denoted
(jk). This means that when j is in the sample there is a
nonzero probability of collecting data from population
element &. We will denote by y, the measurement of
interest on target population element k in T,

We now describe the sampling methodology under
which the estimators developed herein are appropriate.
Assume a SRSWOR of size n frame units is selected from
F. The number of population elements included in the
sample and measured, however, depends upon the nature of

the association between the frame units and the population
elements.

Under SRSWOR, one of four scenarios can occur when
a frame unit is selected. In the first scenario, a frame unit
corresponds to one and only one population element (a
one-to-one structure). Here the surveyor would simply
collect the information conceming the single population
element corresponding to the selected frame unit (see frame
unit 1 of Figure 2.1).

Sampling Target Population
Frame Population Element
Value
1 1 10
2
L
3
3 f———— 10
4 <
4 15
5 5 10
6 6 20
7

Figure2.1. An example of the correspondence between the
sampling frame and the target population

In the second scenario, several frame units correspond to
one population element (a many-to-one structure). For
example, in Figure 2.1, fratne units 2 and 3 correspend to
the single population element 2. In this case, if frame
units 2 andfor 3 are included in the sample, information on
population element 2 is collected. Thus, it is possible that
population element 2 could appear in the sample, and as a
record in the data set used to develop the estimates, up to
two times.

In the third scenario, one frame unit corresponds to more
than one population element (a one-to-many structure). For
example, in Figure 2.1 frame unit 4 corresponds to
population elements 3 and 4. Here, only one population
element (3 or 4} is selected using a randomization indepen-
dent of the choice of frame units. Economics dictated this
policy because data collection entailed lengthy personal
interviews conducted by individuals with technical back-
grounds. In this paper we assume that these randomizations
are conducted using equal probabilities. But, any probabili-
ties could be used (e.g., probability propertional to size)
provided they are non-zero.
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"In the fourth scenario, a many-to-many structure exists,
This is illustrated by frame units 3, 6 and 7 and population
elements 5 and 6 in Figure 2.1, Since these complex cases
are combinations of scenarios 2 and 3 above, the same
sampling rules apply. For example, if frame unit 5 is
selected, population element 3 is measured. If frame unit 6
is selected, only one of population elements 5 and 6 is
randomly selected and measured.

2.1 Population Totals

2.1.1 Estimator for a Population Total

A many-to-many frame results in varying probabilities of
selection. The estimators developed here involve a method of
weighting, which is an extension of the estimator presented
by Hansen et al. (1953a pp. 62-64). Their estimators and
formulas for the variance of those estimators are restricted to
the many-to-one frame structure. We extend those estimators
to the many-to-many frame structure.

For a SRSWOR of size », let J,, ..., J, denote random
variables such that J, = j if the i-th draw results in the
selection of unit j from F. Hence Pr(J, = j) = I/N forj in
Fandi=1,..,n. letK,.., K, denote random variables
such that K, = k if the i-th draw from F is followed by the
selection of & from 7. We can now think of drawing a
random sample of arcs {(J, X)), ..., (/,K)} which has a
joint probability distribution determined by both the
SRSWOR sampling design and the subsequent randomiza-
tion (if required) to choose an element in 7. In particular,
(/;K,) has marginal probability given by Pr{(/,K,)=
(Jk)} = (1/N)s 4+ in which s is the conditional probability
given by, s %
tional probablllty of selecting population element & in T
given that frame unit j in F is selected. These conditional
probabilities will be referred to as arc probabilities and are
illustrated for Figure 2.1 in Table 2.1.

Table 2.1
Arc Probabilities for Figure 2.1

Arcgk 1,1 22 32 43 44 55 65 66 15 76

8,

'k | 1 l 12 12 1 V- B Vo R T A Vi

For kin T, let U, denote the set of units in F that have
arcs with a destination at k in 7. Let 5, =}, e, Sy Using
the language in Hansen et al. (1953a pp. 62 6’4) which
motivated our development, we call s, the weight for
population element & in T. These weights for Figure 2.1
appear in Table 2.2.

Table 2.2
Calculation of the Population Element Weights(s,) for Figure 2.1

k 1 2 3 4 5 6

(s,) 1 2 12 1/2 2 1

Arc probabilities and weights are used to compute the
marginal probabilities of the K, namely, Pr(K, =k) =

r(K,=k|J, =j). Thatis, s, is the condi-,
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Ejeuk(llN)s =(1/N)s,, wherekisinT,and i = 1,
Clearly, computing the arc probabilities is the key step in
developing the correct weights for the data collected. It
depends on properly ascertaining the graph structure for
each sampling unit selected: a maximally connected (MC)
subgraph. A connected subgraph is a subset of the nodes
which are connected by a sequence of arcs. Maximal
means that no node ocutside the subset is connected to a
node belonging to the subset. There are 4 MC subgraphs in
Figure 2.1. Each represents a different frame — population
structure, namely, one-to-one, many-to-one, one-to-many,
and many-to-many structure.

To develop the estimators it is not necessary to know the
structure for the entire graph. It is only necessary to know
the structure of the MC subgraphs to which sampled frame
units belong.

We make the following observations about s, and
s, (i)s, = W indicates that population element k has W
times the probability of being selected on the i-th draw as
that of a population element with a weight of one;
(i)O<s, s N k=1,., M, (iii) 0< Sy < 1, jeU, and
k=1,..,M; (iv) with respect to the one-to-many frame
srructure S5 = 8 (v} with respect to the many-to-one frame
structure, s, = 1 forall k;and (vi) ¥, ,Zj’, sy =N.

Now, let X,, ..., X, denote the weighted values associated
with the mdlces in T. Thatis, let x, = y,/s,. Define random
variables Xpp oens X s associated with draws 1 through n
from F, respectively, so that Xy takes the value x, if
K, = k. Notice that we can write,

2.1

M
y 2 =X
k=l

M .
E(xc) =Y x,Pr(K,=k)=
ok

2=
z |~

where ¥ =¥ ¥, is the true population total. We take as
our estimator of the population total based upon a
SRSWOR from a sampling frame with many-to-many
structure,

(2.2)

Using (2.1) it follows that,

Ex!(] = NZ E(xx) 'E

- Y
E(Y)=E —
) n N

We thus obtain,
Theorem 2-1: The estimator (2.2} for a population total
used in SRSWOR is unbiased.

Using Figure 2.1, we now give a simple example of the
use of this estimator. Suppose a simple random sample of
four frame units was selected from the frame depicted in
Figure 2.1 (2, 3, 4, and 7) which ultimately resulted in the
selection of population elements 2, 4, and 5. The estimator
of the population total,
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}A’=

x|z

ZA: Xy, has value 1 E«LE +--—15 +E =&_
=l 412 2 1/2) 2 4

The above estimator can also be used for a population
count. We could estimate the size of the target population
by letting y, =1 for all £. In addition, we could estimate
the number of population elements that possess some
characteristic by letting y, =1 for those population
elements with the characteristic of interest and y, =0 for
those without the characteristic.

2.1.2 Variance of the Estimator for a Population
Total

First, some additional terminology and notation used in
this section must be defined. Let P represent the set of all
unordered pairs of arcs. We shall define an unordered pair
of arcs as inadmissible if they cannot both be included in a
sample. Formally let 0 = { j in F: more than one arc
emerges from j }. Then R’ = {{jk, jk']: je Q and k= &'}
is the set of unordered inadmissible pairs of arcs. Also, the
set of unordered admissible pairs of arcs is the complemen-
tary set R* = P\R".

To illustrate, consider Figure 2.1. The sampling metho-
dology we employ requires that if frame unit 4 is selected,
only one of population elements 3 and 4 can be included in
the sample. Thus, {[4,3][4,4]} is an unordered inadmissible
pair of arcs. The other unordered inadmissible pairs of arcs
in Figure 2.1 are {[6.5](6,6]} and {[7,5][7,6]}. Thus, R’ =
{[4.3](4.4]. [6.5](6,6], [7,51(7,61}.

Theorem 2-2: The variance of the estimator (2.2) is,

2
s N[& ¥ ., @m-1
vy =Ly 07
n g 5y (N-l)Z
Vil YirSp _YY, @23
wieers \ e Se /|

where the double sum is over all unordered admissible pairs
of arcs [jk,j'k'].

Proof:
n 2
V(f)=E [ﬁz xK] - y?
ni=r !
v [ )
=__E [E xKJ - Y2 (2.4)
n? =1 !
Now,
n 2
E [§ foJ = Z; E(JCKZ",)-F ZE(E Z (thxK’ )} (2.5)

One can write

Blxi)- 3 [prck -] S A2 LS )

k=1 k=l g

As mentioned in Section 2.1, we can think of selecting
a sample of arcs which ultimately leads to the selection of
population elements. Each arc (jk) is associated with a
value x, =y, /s, of the population element £ at its destina-
tion. Thus, we can rewrite the double summation in (2.5)
as a summation over admissible unordered pairs of arcs,
R".

2E(; ) écKixKr)) -

5.2

Uk kleR"

(2%, )Pr(K, =k, K, = k)] 2-7)

Now, by virtue of the independence of the randomization
and the choice of frame units;

Pr(select[ jk,7'%'] in R ") = Pr(select{j, j'} in F)

I e

Pr(select{jk, j'k'lin R* | select{ j, ' }in F) =

Substituting into (2.7) results in,

nn-1Y, Y

1
_\Sjksj'k' =
Uk K)ER" N

(x,x.)
3

2nin-1) E 2 [M yk'sj'k']]_ (2.8)

NN -1) UkjkleR" | k I3
Now substituting (2.6) and (2.8) into (2.5) yields,

(£

E

2(n-1) D) (2.9)

YiSi Yl
-1 Ukjk'1eR”

Sy Spe

Finally substituting (2.9} into (2.4) gives the result (2.3).

Equation (2.3} is a generalization of the formula
developed by Bandyopadhyay and Adhikari (1993) for the
variance of the estimate of a population total in the case of
the many-to-many frame structure., It can be shown that
(2.3) reduces to their formula when the sampling frame is
restricted to a many-to-one structure.
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Corollary 2-1: An alternative form of the variance formula
in Theorem 2-2 is:

M2
V(P _N Yy Ye , D)

nlest S, - s,

2
Yy
Y _ksjk} -

2
Yy YiSa Vi S "
> —sj,,] 5 MDIEC R |
Uk jk R’ :

&\ S 5, S
Proof’
Write,
V.8 2 ¥, 8 2
[ 3.2 . &%k

> E.yz_m Y 5 3 VS YeSw
k

Uk kIR Sy Uk EIER" S Se
It follows that:

5
PeSe YoSpw _ 1 YiSu| _
>y ekl 2_[2 —]

Uk HIER" S w5

2
1 )3 IS | _ D> VS Ve S
2 [ Sy UkJKIER" S Sy

Substituting the above expression into (2.3) provides the
result. o
This formula is computationally simpler. Note that (2.3)

requires that the term
YiSie Yo Sie
5, S,

be summed over all unordered admissible pairs of arcs
(R '), whereas this alternative formula only requires a
summation over pairs of arcs that are inadmissible (R'). In
most practical scenarios the number of admissible pairs of
arcs will be far greater than the number of inadmissible
pairs of arcs.

2.2 Population Means
2.2.1 Estimator for a Population Mean

The estimator for a population mean presented here
extends the estimator presented by Hansen et af. (1953a) to
the many-to-many frame structure.

Associated with the # draws from F, define random
variables S, and Zp = /s k50 that s %, takes value s, if
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K, =kfori=1,.,nand k=1,.., M Theestimator for a
population mean,

Mz

= 1
¥=— .
YR~

-
"

1

when using SRSWOR and a many-to-many frame is:

n
. E"x,
y=-11

n

(2.10)

z
s
2.2.2 Mean-Square Error (MSE) of the Estimator
for a Population Mean

The estimator for a population mean is biased because it
is a ratio estimator. But, it is well known that this bias
becomes negligible for large samples and the bias is of
order 1/n {Cochran 1977, p. 160).

Qur approximation of the MSE requires a summation
over R ", the set of all ordered admissible pairs of arcs.
Thus, if [jk j'&'1eR”, then both [jk, j'4'1eR"" and
[j'&, jkleR"".

To approximate the mean square error of the estimator
{2.10), we use

oM
f:i]l

MSE (¥) =

nN
k=] sk

2 )
l[ Ve 2(n- 1) Y ¥ YiSi YeSiw
k=1

s, WN-D pieler” Sk Sy

A
ViSy S

vkik1er” Sk S )

y .
sy L. 28Dy 5

S Siwe
esmers Sk Se )| @D

Because }_:' is a ratio of two estimates, the well known
approximation for the mean square error (Cochran 1977,
pp- 32-33) can be used:
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MSE(Y) = E(

|
il
Nl
N
)

H

[es]
p——
N =2
g
e
[ &)

1l

%[E(fz)- 2 PE(zE) + P°E(52)] =

,, 2
i=1

The first expéctation in (2.12) is simply (2.9). Next,
using (2.1) on the middle term in (2.12) results in

(2.12)

{ n n n
E[ Y x> Zr] =E[ Xy i] +
; i’ i i=1 f

Using (2.7) and (2.9) yields,

[rilj ,Ex,( ] =nn- 1)E(xK'$] -

[hdd

nin-1)
Gk KR

2 E {ﬁi]Pr[xK =Z-'5,_1-=i] -

Y 1
JCEDVIND DD PR [mﬂ”k]=

Gkg'k1er™ . Se Sp

nn-1) E Eykjk _,uk
NNV - l)uk\;k]eR Sy

Note that the double sum is over all admissible ordered
pairs of arcs. Therefore,
n
E| Y x,—|+E sz L
i=1 fSK, i=l =

it K

nz yk n(n- D E E ykSJk S_,lk -
Nt 5 e D prgwrer Sg
&% (-1 VS

o E_+' E Trjk Jk
N1 s, (N_I)D'kJ’k']GR" S, S

Finally, similar to (2.1),

E(gz"f]:E[girz

[Z 1 2(}1 1)2 E

k=18, (N-1) Vkj')eR"

S Spe

S Sy
Substituting these expectations into equation (2.12} yields
(2.11).

3. ESTIMATORS FOR MANY-TO-MANY
FRAMES UNDER STRATIFIED
RANDOM SAMPLING

3.1 Introduction

In this section we develop the estimators for a population
count, mean, and total in the many-to-many frame case,
when stratified random sampling is used. First, however, it
is necessary to describe the sampling methodology under
which these estimates are appropriate. Figure 3.1 provides
an example that will be used throughout this section.

3.2 The Sampling Methodology

The same scenarios that were described in SRSWOR
occur with respect to stratified random sampling. However,
there are some additional problems that can arise in this
case.

Consider the building characteristics study that moti-
vated this research. Assume that the population element
value in Figure 3.1 is the building size, and the stratification
variable is electrical usage associated with the street
address. Because the frame of street addresses had a
many-to-many correspondence with the target population of
commercial buildings, the following problems arose in
addition to those mentioned in Section 2,1:

1. Mis-stratification: For example, frame unit (street
address) 2 in stratum 1 appeared to be a large building
because of the large electrical usage associated with it,
and as a result, it was placed in the first stratum, The
data collection revealed that the street address actually
corresponded to two small buildings (population
elements 2 and 3). In another example, frame units 5
and 6 in stratum 2 appeared to be two small buildings in
the frame, and were placed in the second stratum. But,
the corresponding population element 7 is one large
building with two street addresses.

2. Crossover: Forexample, frame units 3 and 4 in stratum 1,
and frame units 1 and 2 in stratum 2 each have a
different street address and, as a result, appear in the
frame to be two small and two large buildings. But, data
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collection revealed that all four street addresses
corresponded to only one building (e.g., a strip mall). In
this case, not only is mis-stratification a problem, but not
all the frame units associated with a single building are
included in the same strata. That is, one population
element (i.e., building) “crosses over” multiple strata.

27

In the next section we develop estimators for population
totals and counts and show that these estimators are unbiased
despite mis-stratification and crossover. As is usually the
case, however, mis-stratification increases the variance of the
estimates. Also, insofar as crossover induces mis-
stratification, it too increases the variances of the estimates.

Stratification Sampling Target Population
Variable Value Frame Population  Element Value
1
Stratum 30 | I 30
2 — 15
20 —| 2 <
3 — 5
g —1 3
25 — 4 4
—— 65
Strat 2
ratum 5 ———d 4
5 2
5 3 5 10
10 4 6 5
10— 5
> 7 p——120
10 — 6

Note: Frame units were placed in stratum 1 if the
Otherwise, the frame units were placed in stratum 2

value of the stratification variable was 20 or more.

Figure 3.1.  An example of the correspondence between the frame and the target population in stratified random sampling

Tabl

edl

Arc Probabilities for Figure 3.1

Archik  LLL 122 123 134 144 . 214 224 235 245 246 257 267
S 1 112 172 1 1 1 1 1 12 112 1 1
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3.3 Population Totals and Counts
3.3.1 Estimator for a Population Total

The estimator developed here involves a method of
weighting which extends the estimator presented in
Hansen et al. (1953a, pp. 62-64) to stratified random
sampling when using a many-to-many frame.

Assume that F has been partiticned into L mutually
exclusive and exhaustive strata F, ..., F, of size N}, ..., N,
respectively. Units in F, will be denoted hj where
Jj=4.,N,and h=1, .., L Also, assume that a stratified
random sample (without replacement) of size n=n,
+ ... + n, hasbeen drawn, where », is the sample size from
F,. let hJ,..,hJ denote random variables such that
h J hjif the !-T.h draw from F, results in the selection of 4.
Let hK,, hKrl denote randorn variables such that
hK =k 1f the i‘th draw from F, is followed by the
selectlon ofkfrom7T. If Ajk denotes the arc that originates
at frame unit // in F, and terminates at k in 7, the marginal
probability of the random arc (AJ,, AK)) is given by,

Pr{(hJ, hK,) = (hjB) = le,,,.,,,

in which s, = Pr(h K, = k| hJ, = hj) is an arc probability.
Note that s, is the condmonal probability of selecting
population efement & in 7 given that frame unit 4/ has been
chosen. Assuming equal randomization probabilities,
Table 3.1 shows the arc probabilities for Figure 3.1.

Let W, denote the set of frame units %7 in F that have
arcs with a destination at £ in 7. For example, ¥, = {(1, 3),
(1,4), (2, 1}, (2, 2)}. Also, define the population element
weight s, = Z;,,Ewt

Table 3.2 contains dle weights (s,) for all the population
elements in Figure 3.1. The same observations concerning
arc weights {shjk) and population element weights (s,)
made in section 2.3.1 apply here.

Table 3.2
Population Element Weights (s, ) for Figure 3.1
k 1 2 3 4 5 6 7
5. 1 172 172 1+1+1+1=4 1+1/2=3/2 172 1+1=2
Foreachh=1,..,Landi=1,. s Py let Xug, be random

variables such that Xnk, = ViS5, 1f lc in 7 is selected as a
result of the selection of some hjin F,.

The estimator of a population total for stratified random .

sampling, when using a sampling frame with a many-
to-many structure is:

L

Y, =

t

Y,, where ¥, = —E Xhi,*
h=1 R, =1

3.1)
3.3.2 Variance of the Estimator for a Population
Total

Priorto developing the variance of estimator (3.1}, some
additional terminology must be defined. Let g,, denote the

“stratum element weight”. This additional weight is
necessary because of the potential of crossover. Let U,
denote the set of frame units in F, that have arcs with a
destination at population element £&. For example, U,,
(2, 1), (2,2)). Thendefine g,, = Ypeu,, Spju- TO 1llustrate
recall in Figure 3.1 population element 4is represented by
two frame units in stratum 2, so g,, = szeuusg =2

The weight g,, plays the role of s, when selection is
restricted 10 F,. In fact, g,, =5, when there is no cross-
over. The probability of selecting any frame unit from F,
on step i outof n, is 1/N, . But, the probability of selecting
a population element & represented by a frame unit in F, is
PrthK, =k)=q,/N,, foralli=1,..,n,.

In order to develop the proof in this section, we
introduce the term “apportioned stratum total” denoted by ¥, .
In effect, the values of the population elements that are
represented by frame units in multiple strata are apportioned
among those strata. Let ¥, denote the set of population
elements associated with frame units in /7, . In our example

V,={1,2,3,4} and ¥, = {4,5,6,7). Let

¥, = Zkev,, Vel 'S4

where y, is the value of population element
k k=1,2,.., M When crossover is present, use of the
weights g,, and s, apportion the measure y, among the
strata in which population element & is represented. We can
think of the use of these weights as distributing the
population element value among the strata depending upon
the number of times the population element is represented
in a stratum relative to the total number of times it is
represented in the frame. For example in thure 317,
and Y, are calculated as follows:

yr =30, 15(172) | 501/2) | 65Q2) _g,
1 1/2 172 4

vy - 85@) , 10G72)  53/2)  20Q) 75
4 w2 12 2

Note that Z‘L, ¥, =¥ whether or not crossover exists.

Theorem 3-1: The estimator for a population total (3.1) is
unbiased. :

Proof:
From (3.1),
L h Ry
E(7.)- 2 3 Bl ) (32)
h=1 nh i=1
Foreach i=1,..,n,,
Efcy,)= Y Zeprnk, = k) =
! kEVh Sk
Ve Qw1 Yelwe 1 o+
ok = —Y, . (3.3)
"62‘;:. e N, Nhkfz:% 5 N, ’
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Substituting (3.3) into equation (3.2) yields E( Y J=7Y.

In the main resoit below we need the followmg notatlon
Let R, and R, be the set of admissible and inadmissible
unordered pairs of arcs originating in F,, respectively.
Definitions of the above are identical to the corresponding
concepts for the SRSWOR case, but restricted now to strata.
Theorem 3-2: The variance of (3.1)is:

[
v(r,)- 2 S, 3.4)
=1
where,
N, %)’ 20, -1)
Sy = — E Tk 22—
ny lkev, 5, N,-D
2
2 [ Pulnn YeSw J - [ ¥ Y kqhk] (3.5
wikaikter, U Sk Se ke, 5,

Proof: First write,

f’}") EYY) (3.6)

The last two terms cancel because f’h and f’h, are
independent. This follows since apportionment creates a
new siratified population containing no crossover and
samples chosen within different strata are independent.

Thus, with
(- (. V)52 -
> (1 -3 6l)-tnf) -3 52
Now,
(7, - .’Y_E[ 5 ] i
n,’ i=l

E E(“hx) * ZE( E *uk XhK, ) ] (3.7

i=]

Foreachi=1,..., n,,

Exhx)=

2 2
Y[ 2] ek =n|=- 3 || 22| I 58
kv, |\ 5, kv, |\ 5,/ N, '
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Then, using equation (2.7) and (2.8),

n
2E( > *uk X hk, ) = 2( ;] E(xhx,xhx,.) =

i»i’

Y 2k =k kK, < k) =

thikhk 1R, Sk Sk

-1
Y || N
[_k _k] [ h] Sjksj',t"z
5, Sp 2

n(n,-1)

m(n, - I)E E

{hjk by k)R,

2n,(n, - E E YiSow ViSpw
NN, - s, s (3.9
Uik k' 1€R, k &'

Equation (3. 5) now follows from (3.8), (3.9), and the
definition of ¥,,.

Using the method of Corollary 21 (3.5} can be
simplified for computing purposes as follows:

2 A
N, y n, -1 VS,
2_ Yy
Sh=_2qhk[_"J +"__{",§‘1 TEhEL
YREA,

R, | %y, Sy W,- 1 5 )

, )

) YeSwe | 2 Y YiSuix Ve Smwe | ||
hiked, 5, thik, hjk'1€R, 8y S ]

2
E Vel ne
iy, 5

where 4, denotes the set of arcs that originate at frame
units in &, .

~

3.4 Population Means
3.4.1 Estimator for a Population Mean

The estimator developed here for a population mean for
stratified random sampling extends the estimator presented
by Hansen ef al. 1953a (pp. 62-64) to the case of a stratified
random sample from a many-to-many frame.

The estimator for a population mean when using
stratified random sampling and a many-to-many frame is:

Ay
= L N -y 2 Z:th"i
Y E —2¥,, where Y, = =l (3.10)
= N iy, 1 .
=l Spp,

As in the SRSWOR case, the estimator for a population
mean is biased because it is a ratio estimator.
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4. CONCLUSIONS

In this paper we have developed estimators for
population totals, counts and means that are appropriate
when the sampling frame has a many-to-many structure.
We have focused on simple random sampling and stratified
randorm sampling designs.

We used the method of weighting described in this paper
in a study of commercial buildings for which a stratified
random sample was employed. In this study, for which the
sampling frame consisted of street addresses, interviewers
recorded any additional street addresses that pertained to
the selected building. It was then determined whether or
not these additional street addresses were listed in the
sampling frame, and whether or not they were connected to
other population elements {(commercial buildings). In more
complex scenarios, the interviewers sometimes resorted to
schematic sketches of the buildings and labelling all the
pertinent addresses. This allowed us to determine the
structure of all MC subgraphs in our sample and to develop
the appropriate weights s, .

In addition, we developed formulas for the variance of
some of the estimators presented in this paper. It should be
noted that these variance formulas are population para-
meters and do not translate readily into corresponding
sample estimates. In fact, the authors are unaware of any
optimal method for estimating the variances discussed in
this paper. However, there are many computer intensive
methods (balanced repeated replication, bootstrapping, efc.)
for estimating variances in complex sample surveys (Wolter
1985). It should be emphasized that when using our estima-
tors, each of these variance estimation schemes aims at a
common target: the variance formulas we have developed.

Nevertheless, the usefulness of these variance formulas
is in their application to the task of exploring the effects of
frame imperfections, along with population characteristics,
on the precision of estimation. Such an exploration,
another future area of research, should result in recommen-
dations and guidelines for the survey researcher on how to
manage a frame with a many-to-many structure. That is,
based upon frame and population characteristics, the survey
researcher would be able to make strategic decisions
concerning the options available: canvassing a population
to remove comespondence imperfections, or using the
estimators described herein.

Another area of future research is a comparison of the
precisionof cur estimators to that of other estimators, such as
the Horvitz-Thompson estimator. Asnotedinthe introduction
the Horvitz-Thompson estimator can be applied to sampling
involving amany-to-many frame structure. Anadvantage of
the Horvitz-Thompson estimator is that with properly
identified first and second order inclusion probabilities, one
can obtain both an estimate of a population characteristic and
anunbiased estimate of its variance. Inaddition, the first order
inclusion probabilities can be derived in a manner similar to
Musser (1993) based only upon information from the MC
subgraphs. However, these probabilities are very difficult to

compute in acomplex many-to-many frame structure such as
ours. Itis, however, relatively easy to calculate the necessary
weights for our estimators.
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Optimal Recursive Estimation for Repeated Surveys.

IBRAHIM S. YANSANEH and WAYNE A. FULLER'

ABSTRACT

Least squares estimation for repeated surveys is addressed, Several estimators of current level, change in level and average
level for multiple time periods are developed. The Recursive Regression Estimator, a recursive computational form of the
best linear unbiased estitator based on all periods of the survey, is presented. It is shown that the regursive regression
procedure converges; and that the dimension of the estimation problem is bounded as the number of periods increases
indefinitely, The recursive procedure ‘effers a solution to the problem of computational complexity associated with
minimum variance unbiased estimation’in repeated surveys. Data from the U.S. Current Population Survey are used to
compare alternative estimators under two types of rotation designs: the intermittent rotation design used in the U.S. Current

Population Survey, and two continuous rotation designs.

KEY WORDS: Recursive regression estimation; Composite estimation; Rotation designs; Rotation groups.

1. INTRODUCTION

We consider least squares' estimation for surveys
conducted on repeated occasions with partial overlap of
sampling units. See Duncan and Kalton (1987) for a
general discussion of different types of surveys and the
objectives of such surveys. In this paper, we shall be
concerned with rotating panel surveys, in which repeated
determinations are made on some sampling units but not
every unit appears in the sample at every time point.

Theoretical foundations for the design and estimation for
repeated surveys based on generalized least squares proce-
dures were laid down by Patterson (1950), following initial
work by Cochran (1942) and Jessen (1942). Least squares
procedures have been considered further by several other
authors. See, for instance, Fuller (1990), and the references
cited therein. Least squares estimation for a fairly general
class of repeated surveys was considered by Yansaneh
(1992). Composite estimation is a proceture of estimation
for repeated surveys which makes use of the observations
from the current and preceding periods, and the estimator of
level from the preceding period. Breau and Emst (1983)
compared various alternative estimators to a composite
estimator for the U.S. Current Population Survey (CPS).
Kumar and Lee (1983) did similar work using data from
the Canadian Labor Force Survey (LFS). Wolter (1979)
provided a general composite estimation strategy for
two-level rotation schemes such as the one used in the U.S.
Census Bureau's Retail Trade Survey. Singh (1996) has
proposed an alternative class of composite estimators.
These authors assumed the unknown quantities on each
occasion to be fixed parameters. Other authors, such as
Scott, Smith, and Jones (1977), Jones (1980), Binder and
Dick (1989), Bell and Hillmer (1990), and Pfeffermann
(1991) considered estimation for repeated ‘surveys under the

assumption that the underlying true values constitute a
realization of a time series. ' .

In ‘this paper, we discuss estimation procedures for
repeated surveys, under the assumption that the unknown
true values are fixed parameters. The estimators are
compared to the method of composite estimation currently
used in the CPS. The paper is organized as follows: In-
section 2, we state some basic assumptions regarding the
general class of repeated surveys considered in this paper.
A description of the CPS method of composite estimation
is given in section 3. The method of best linear unbiased
estimation is discussed in section 4." In section 5, we
present a recursive regression estimation procedure
designed to reduce the computational complexity associated
with best linear unbiased estimation. Section 6 is devoted
to an application to data from the CPS. Alternative
estimators and rotation designs are compared.

2. BASIC ASSUMPTIONS

In this section, we describe surveys of the type we will
study. A rotation group is a set of individuals selected for
the sample and observed for a fixed number of periods and
in a fixed pattern over time. Assume that in each period of
the survey, s rotation groups are included in the sample,
where s> 1 is fixed. Assume that the basic data from the
survey can be crganized in a set of elementary estimators
(such as simple sample means and estimated totals) of the -
parameters of interest (such as population means and
totals), where a set of elementary estimators is associated
with each rotation group. For computational convenience,
the data for p periods can be arranged in a pxs data
matrix, denoted by H, in such a way that the observations
on a rotation group appear in only one colurnn. The total

! Ibrahim 8. Yansaneh, Statistical Group, Westat, Inc., 1650 Research Boulevard, Rockville, MD 20850; and Wayne A. Fuller, Department of Statistics, lowa

State University, Ames, LA 50011 U.S.A.
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number of elementary estimators is # = p x s. Wecall the
columns of H streams. Several rotation groups can appear
in a stream. Assume that:

(1) A given rotation group in a stream is observed over a
period of total length m + 1, and the observation
pattern for rotation groups is fixed and is the same for
all groups.

(2) The design is balanced on time-in-sample. That is, of
the s rotation groups included in the sample at a given
time, one group is being observed for the first time, one
is being observed for the second time, ..., one is being
observed for the last time, where the last time is
separated by m periods from the first observation.

These assumptions are satisfied by surveys such as the CPS
and the Canadian Labor Force Survey. See Yansanch
(1997) for an illustration of the 4-8-4 rotation scheme used
in the CPS.

3. THE CPS COMPOSITE ESTIMATOR

In general, composite estimators combine recent esti-
mator(s} and data from the current and preceding period(s)
to form an estimator for the current period. With the CPS,
six of the eight rotation groups observed at time ¢ were
observed attime ¢ - 1. We shalil refer to these six rotation
groups as continuing rotation groups, and the remaining
two as incoming rotation groups.

The composite estimator currently in use is determined
by two parameters. The estimator is

O, =(L- nl)J—":_ 0, +0,,.)+ m,8, e))
where, for the estimator currently used, m, =04 and
n, =0.2, y,, is the elementary estimate of level obtained
from the rotation group which is in its k-th time in sample
attime #,y, = 8~ lzk 1¥, 1 i the basic estimator, defined as
the mean of the elementary estimates based on the eight
rotation groups observed at time ¢, B, Le is the composite
estimator for time £ - 1, 6, (-1 18 an estimate of change in
level, based on the six continuing rotation groups at time ¢,
and S, is the difference between the averages of the two
incoming rotation groups and the six continuing rotation
groups. Thus,

= 64% (}’:,k - yf-l,k-l)’

and

-I(E Yir~ 3-12 yr.k) ’
kel keS

where T={1,5} and § = {2, 3,4, 6,7, 8). The composite
estimator used until 1985 contained only the first two terms
on the right of (1). The third term was introduced for the

purpose of reducing the time-in-sample effects appearing in
the original estimator. The incoming rotation groups
produce larger estimates of unemployed than do the
continuing rotation groups. Therefore, the direct differ-
ence 5, .- is influenced by the fact that the rotation group
in its first time-in-sample has a larger expected value than
that of the second time-in-sample. The time-in-sample
effects do not cancel out in the difference estimate. The
third term is an adjustment term which has the effect of
reducing beth the variance of the original composite
estimator and the bias associated with time-in-sample
effects. See Bailar (1975) or Brean and Ernst (1983) fora
discussion of the bias of the pre-1985 composite estimator
due to time-in-sample effects. We shall refer to the three-
term composite estirator currently used in the CPS as the
CPS Composite Estimator. This estimator has a variance
close to that of the best linear unbiased estimator for
monthly estimates of unemployment level. Let y, ,
i=1,2,..,s, bethe elementary estimator of the parameter
of interest obtained from the rotation group which is in
stream 7 at time ¢. The CPS composite estimator can be
written as

8 ]
) le: O x6.0Yie * X; Oy ginVirm1 TMO (D)
= i=

where k(, t) = k defines the time-in-sample of observa-
tion (i#) as a function of the stream (/) and time (¢). If
A, =18 and X, =-1/6, and &, = 1/3, then o, , = 4,,
and

(1-m)h,~mA,-m,A A, for ke$§
@ =

T -a ) for keT
Let
= (ml.k(l.l)’ Dy rz iy o D) s, ,))',
Py = (coz' k(1,0 mz. k@, 0 0)2, k(3, r))"
and y' = (yl',lyzlp ---‘;ys’,)i Then,
O, =PV PV v MO, . 3)

Substituting in (3) recursively, we have, for an estimator
initiated at time zero,

t
B -1
Sc=piyr 2 m
£

(pz + “J’;)’J’;-l (4)

Equation (4) is an expression of 6 . as a linear function of
current and past observations, where the weight of an
observation declines as its distance from the current period
increases.
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4. BEST LINEAR UNBIASED ESTIMATION

Suppose @ =(0,,0,....8, )‘ is the px1 vector of
parameters of mteresl where 9 =1,2,..,p, isthe level
of the parameter of interest at tlme t. Thus at time j, 8, is
the current level of the parameter of interest. For example,
in the context of the CPS, 6, might represent the population
mean or proportion of unemployed at time /. Our objective
is to construct efficient estimators of the current level of the
parameters. The change in level and average level over
multiple periods-of time are also of interest.

The best linear unbiased estimator (BLUE) of the current
level is defined to be the minimum-variance unbiased linear
combination of the elementary estimators from the rotation
groups available for estimation. It is possible in the process
of computing the BLUE for the current level, to also
compute the BLUESs for all periods using data available at
the current time.

Suppose that a repeated survey has been in operation for
P periods and that s streams of data collected over p periods
are available for estimation. Let y, = (y, |, ¥, 5 - Vi, p)’ be
the vector of p observations in the i-th stream at time . Let ¥
be the data vector formed by the streams or columns of the p x 5
data matrix £, arranged chronologically. Thus, ¥ »=
(y, , yz, - }g) is an nx 1 vector of observations, where

n=sxp LetX= Jsxl®‘[ be the nx p design matrix
which relates the estimates'in ¥ to their expected values
in ®p where J__, isthe s x 1 vector of ones, /., is the
identity matrix of order p, and & denotes the Kronecker
product. The linear model for ¥, » is

Y,=X0,+U, ()

where U_ is the vector of error terms satisfying the
assumptions E(U,) =0 and E(U U ‘) V where Vp is
assumed to be a known symmetnc Fand posntlve definite
matrix. By the Gauss-Markov Theorem, the BLUE of ©,
is
= (Y' vl wvy-l v ! .
©, =XV, X)XV, ¥,

The covariance matrix of @P isY,=X'V, x0T,

5. RECURSIVE REGRESSION ESTIMATION

Recursive estimation techniques have been found useful
in situations where data do not all become available at the
same time but rather accumulate over time, and the
computation of optimal estimates based on all available data
is impractical. See, for example, Odell and Lewis (1971),
Sallas and Harville (1981) and references cited therein, for
recursive algorithms for best linear unbiased estimation.
Tiller (1989) presented a Kalman-filter approach to
estimation of labor force characteristics using survey data.

As described in Section 4, the direct computation of the
BLUE becomes progressively more complicated as the
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number of periods increases. We develop -a recursive
regression estimation procedure for repeated surveys that
uses a judiciously chosen set of initial estimates, new
observations of the current level, and the previous
observations on the currently observed rotation groups to
produce the BLUE of current level.

51 Transformed Elementary Estimates and
a Proposed Estimator

Suppose a survey has been in operation for at least m
periods and assume:

(3) The rotation groups are independent. )
(4) The covariance structure of the observations is knov:vh

(5) The covariance structure of the observations’ in ‘a
stream is constant over time, and it is the same, for all
streams.

These assumptions are used in the construction o‘f a linear
estimator.  Assumption (3) will be relaxed for the
computation of the variance of the estimator. Under
assumptions (1) and (3), observations that are more than m
periods apart are independent. At the current time, denoted
by ¢, where ¢ >m, a set of s elementary estimates of the
parameter 8, are observed. To-construct the generalized
least squares estimator, the s current observations are
transformed so that they are uncorrelated with previous
observations. After transformation, the expected values of
the transformed observations are functions of §; and the
parameters for the m preceding periods. Assume thai the
BLUE of the vector of parameters for the previous m
periods, and the mxm covariance matrix of these
estimators, are available. Thus at tlme ¢, we have: (i) m
initial esnmates @c l(m 0, - 6,.,); (ii) the covari-
ance matrix c 1 Gm) O 1m)® and (iii) s independent
observations on the s streams at the current time. Let the

transformed observations, denoted by z,.,i=1,2,..,s, be

m

Zie=Vie™ E bk(i.c).jyr', e=f )

J=1

where b, iey,y, AT€ the coefficients such that z, he is
uncorrelated with Y, .. forall j>0. By assumptions (4)
and (5), the coefficients by o, ; are fixed over time. By
assumption (3), z, _is uncorrela[ed with all earlier observa-
tions. The expected value of z, _ is 6, - Zj,l rie, ;8
i=1,2,.

c-y?

5.2 The Recursive Regression Estimator

Let 8, (1), # < t, denote the least squares estimator of the
(scalar) parameter 6, constructed using data through time
t; and let @, m (B Y € § Npoo 9(1‘))’ denote the least
squares estimator of the vector of m parameters
9,_,,.(» - 6,, attime  constructed using data through time
t. Our objective is to construct the minimum variance



34 Yansaneh and Fuller; Optimal Recursive Estimation for Repeated Surveys

estimator for 8,, the current level of the parameter of
interest using all data available at time ¢. A linear model
for data available at the current time is

Z =Wwe

e(m+1)

+U, (7}

where
W= I, 0
) X21 Js ’

S =6 1y 2 8 =@ 2, and X, is an s xXm
matnx whose entnes are constant over time, and are
funcuons of the coefficients b, = of (6). If Var{z .} =

=1,2,..,s and ,, isthe dragonal matrix with 02 as
the diagona] entnes, then the covariance matrix of Z is

V, = blockdiag{} Q,}. It is assumed that e,?,

c-1(m)*

i=1,2,..,s, are posmve
The recursive regression estimator (RRE) of @, (m+1)
defined to be the least squares estimator of @, ., based on
model (7). Thus the RRE of ®c(m+l} is
(:)c(md) = (W’ V(‘:'l W)_I W V(:lzc (8)

and the covariance matrix of ®c(m+l) is Q@ =
wv'wyl

The utility of the estimator (8) is its computational
simplicity. At any fixed time f in a repeated survey, all the
information relevant to the problem of estimating
6,,8, ;... 8, , can be obtained from a set of m recursive
least squares estimates and the current observations.

We now describe more fully the recursive regression
procedure. At time ¢, we have @, o1y the RRE of ®
and its (m+ 1)x(m+1) covariance matrix
Partition Y,

tim+1)
t(m+1)’
((m+1y 88

¥

E _| Ve 12,1
tom+1) V]'2I Zr(m) '

where v, , is the variance of 0, m(th Eiom m is the
covariance matrix of (9r me1C8)s -0 8,(2)), and ¥, 12,0 is the
covariance between these two quantmes Observe that if
9,_,, is retained in the parameter vector and 9 1 18 TEtAINEd
in the data vector, the estimator of 6, ., is unchanged (the
estimator of 8,_, would, in general, be changed). This is
because the estimator of the original parameter vector of a
least squares problem is not changed if an observation
whose expectation is equal to a single new parameter is
added to the problem. Thus, to update the RRE for the next
period, we drop the initial estimate for the earliest period,
é‘_m (t), from the data vector, and drop the corresponding
parameter 8, from the parameter vector. The parameter 9,

is then added to the parameter vector. In this way, the
dimension of the basic model matrix W of the estimation
problem is kept constant over time. Thus in the class of
repeated surveys considered in this paper, there is an upper
bound on the computational effort required for the BLUE
of the vector of parameters of interest.

The model at time ¢ + 1 may be written as model (7),
with ¢c=¢++1,Z (E)r a1 () 9, () 8 (0. 2.),

0., Loty = (9 cepr 80 0,,0), and the covariance matrix
of Z_,is ¥, —blockdlag{Erm ,£,,}. The BLUE of
® and its covariance mamx are then obtained from

the lgrsulz)ﬂ least squares formulas. The least squares
estimators of the last m elements of @, ., are then used
as the initial estimates in the model for the next iteration.

The following theorem states that the covariance matrix
of the vector of recursive least squares estimators converges
to a positive definite matrix as the number of periods in the
survey increases indefinitely. A proof is given in the
appendix.

Theorem: At any time ¢, let the vector of recursive least
squares estimators ®( m = (A Y €3 P - I 5 X 9 (r)) be
the BLUE of the vector of parameters
®,_pyeyr 9,1, 8) basedondatathrough timet. Let f
be the covanance matrix of G) . Let the assumptlons
through (5) hold. Also assume that the elements of ¥, ! are
bounded for all n, where ¥_ is the covariance matrix of any
n observations. Then, the covariance matrix Z,(m)
converges as f-«; and the limit is an mxm positive

' definite matrix.

6. APPLICATION TO THE U.S. CURRENT
POPULATION SURVEY

6.1 The CPS Design

The CPS is a monthly household survey conducted by
the United States Census Bureau in cooperation with the
Bureau of Labor Statistics for the purpose of providing
national estimates of labor force characteristics such as the
number employed, unemployed, and in the civilian labor
force; and other characteristics of the non-institutionalized
civilian population. The sample design of the CPS contains
a rotation scheme that includes the replacement of a fraction
of the households in the sample each month. For any given
month, the sample consists of eight time-in-sample panels

‘or rotation groups, of which one is being interviewed for the

first time, one is being interviewed for the second time,...,
and one is being interviewed for the eighth time. In other
words, the interview scheme is balanced on time-in-sample.
Households in a rotation group are interviewed for four
consecutive months, dropped for the next eight succeeding
months, and then interviewed for another four consecutive
months. They are then dropped from the sample entirely.
This system of interviewing is called the 4-8-4 rotation
scheme, and is a special case of schemes described by Rao
and Graham (1964).
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6.2 Estimation and Variance Estimation Procedures

We use estimates of the covariance structure of data

from the CPS to compare alternative estimators and rotation
designs. See Adam and Fuller (1992) and Fuller, Adam and
Yansaneh (1993) for a detailed description of the con-
struction of the model, the estimation of its parameters, and
the estimation of the covariance structure of observations
within a given rotation group for various characteristics of
interest. Because the rotation groups come from the same
set of primary sampling units, they are not independent and
a component is included in the covariances to reflect the
fact that the primary sampling units do not change. The
RRE is computed with the eight current.simple estimators
and the 15 estimators for the 15 preceding periods. In
computing the RRE, the covariances are used to create eight
linear combinations of the current and the preceding fifteen
observations that are uncorrelated with the preceding fifteen
observations. Because of the primary sampling unit effect,
these linear combinations are correlated with observations
more than 15 periods in the past and in the same stream.
Hence, they are correlated with the preceding estimators.
The correlations with earlier estimators, 9, ,,i =1, .., 15,
are included in the covariance matrix when the estimator of 6,
is constructed. However, because only the most recent 15
observations are used, the resultant estimator of 8, is not the
BLUE for current level. The calculated covariance matrix
of (@,_]5, s ét_], é;)' is correct and, because the primary
sampling unit effect is modest, it is felt that the estimator
has efficiency close to that of the BLUE.

We shall restrict attention to the estimation of various
parameters for two characteristics of interest: Employed
and Unemployed. For each characteristic, the parameters
of interest are the current level and period-to-period change
for. up to 12 periods. The estimators considered for
comparison are the CPS composite estimator; the RRE; and
the BLUESs using 2, 3, 12, 16, and 24 periods, where the
BLUE for p periods at time ¢ is the least squares estimator
constructed using data from time ¢ - p + 1 through time 1.
Results are reported for BLUES based on 12 and 16 periods.
In following the practice of the U.S. Bureau of Labor
Statistics for CPS estimators, the estimators are not
modified as new data become available. Thus the estimator
of change in level of a characteristic of interest between
times ¢ -.1 and ¢ is not the best possible estimator given all
available data. It is the difference between the best
estimator at time ¢ based on data through time ¢ and the best
estimator at time ¢ ~ 1 based on data through time ¢ - 1.

We do not consider seasonal adjustment in this
discussion. However, the estimation procedures presented
can be extended to include seasonal adjustments. To
compute the variance of a given estimator at a given time,
the estimator is first expressed as a linear combination of
all the observations available at that time. The variance of
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the estimator is then computed as a function of the
coefficients of the linear combination and the entries of the
covariance matrix.

6.3 Numerical Results and Discussion

6.3.1 Comparison of Alternative Estimators

The variances of the alternative estimators relative to the
variance of the basic estimator of current level, for each of
the characteristics of interest, are presented in Table 1.
Recall that the basic estimator of the current level, denoted
by y, is the simple mean of the eight elementary estimators
obtained from the eight rotation groups observed at time ¢,
That is, =8, and Var(y,).= c¥/8, where
6% = Var( y, ) forally and k. The basic estimator of change
between two periods is the difference between the simple
means for the two periods.

The BLUE procedure based on 3 periods or more
produces more efficient estimators of current level than the
CPS composite estimator. In general, the best linear
unbiased estimation procedure becomes more statistically
efficient as the number of periods increases. For both
characteristics, the results reveal that the best linear
unbiased procedure based on 12 periods is uniformly more
efficient than the CPS composite estimator for all
parameters, except one-period change in unemployed.
Recall that the estimator of change is not BLUE because the
estimator is the difference of estimators constructed at time
¢ and at time ¢~ 1. Thus, the estimator called “BLUE?” is
best only for current level using the stated amount of data.
The difference between the variance of the composite
estimator of one-period change :and the variance of the
12-period BLUE of one-period change in unemployed is
less than one percent. The gain in precision of the best
linear unbiased estimation procedure for employed relative
to the CPS composite estimator for current level is 22% for
the BLUE for 12 periods, 28% for the BLUE for 16
periods, 30% for the BLUE for 24 periods, and 33% for the
RRE. The corresponding gains for unemployed are 2%,
3%, and 3%. These results are a reflection of the nature of
the autocorrelation functions of the characteristics. The
autocorrelation function for unemployed declines much
faster than that for employed.

With the exception of one-period change in employed,
there is an improvement in the efficiency of the estimation
of change from using the alternative estimators instead of
the CPS composite estimator. The gain in precision
increases as the number of periods increases, reaching a
maximum value at five-period change for both charac-
teristics. The gain then decreases slightly. In the case of
the RRE, the maximum gain in efficiency for estimated
change is 64% for employed and 5% for unemployed.

73
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- Table 1
Variances of alternative estimators relative to the variance of the basic estimator of current level
Employed Unemployed

Parameter CPS BLUE: for BLUE. for  Recursive Regression CPS BLU]':': for BLUE: for Recursiv? Regression

Comp. 12 periods 16 periods Estimator Comp. 12 Periods 16 periods Estimator

) 2) (3 4) &) 6 )] (8) &)

Current
Level 0.862 0.704 0.672 0.650 0.947 0.924 0.918 0918
1-period
change 0.511 0.457 0.437 0432 1.070 1.077 1.073 1.073
2-period
change 0.813 0.646 0.613 0.604 1.361 1.345 1.338 1.338
3-period .
change 1.065 0.763 0.724 0.711 1.528 1.481 1.473 1.473
4-period
change 1.279 0.830 0.800 0.784 1.645 1.569 1.563 1.562
5-period
change 1.363 0.880 0.847 0.829 1.691 1.614 1.607 1.606
6-period
change 1.390 0.910 0.873 0.855 1.708 1.637 1.628 1.628
7-period
change 1.388 0.930 0.884 0.865 1.710 1.646 1.637 1.636
§-period
change 1.353 0.932 0.884 0.860 1.701 1.645 1.635 1.634
9-period ‘
change 1.255 0.912 0.854 0.832 1.671 1.624 1.614 1.614
10-period
change 1.154 0.895 0.824 0.806 1.641 1.606 1.595 1.595
11-period
change 1.061 0.883 0.795 0.782 1.614 1.590 1.578 1.578
12-period

0.992 0.883 0.767 0.761 1.593 1.577 1.563 1.563

change

6.3.2 Comparison of Alternative Estimators and
Rotation Designs

The variances of alternative estimators under various
rotation designs are givenin Table 2. All variances arerelative
tothe variance of the basic estimator of current level under that
design. The efficiencies of alternative estimators of current
level, change in level, and average level for multiple time
periods are compared under the intermittent 4-8-4 rotation
design and twocontinuous rotation designs. The continuous
rotation designs are the 6-continuous scheme and the 8-
continuous scheme. The 6-continuous scheme is the rotation
schemeused in the Canadian Labor Force Survey conducted
by Statistics Canada. Foreach period of the survey, the sample
consists of six rotation groups, one rotation group in its first
time-in-sample, ..., and one rotation groupinits sixth time-in-
sample. A givenrotation group remains inthe sample for six
consecutive periods and then permanently drops out of the
sample. See Kumar and Lee (1983) for more details about the
design of the Canadian Labor Force Survey. In the
8-continuous scheme, there are 8 rotation groups inthe sample
foreach period. A givenrotation group remains in the sample
foreight consecutive periods and then permanently drops out
of the sample.

We compare the performance under the various rotation
designs using the BLUE of current level based on 36 periods. .
We call this estimator the “best estimator” because its
efficiency is vitually the same as that of the RRE. For all
rotation schemes under consideration, there are some
improvements in the precision of the estimators of current
level from using the best estimator relative to the CPS
compositeestimator. Asseenin Table 2, the gain is highest for
employed where, under the 4-8-4 rotation scheme, the
variance of the best estimator of current level is only 76% of
that of the CPS composite estimator.

The precision of the estimators of change relative to the
precision of the CPS composite estimator depends on the
rotation design. From Table 2, we see that under the 4-84
rotation scheme, there is some gain in precision, which
increases as the lag increases. For employed, the variance
of the least squares estimator is 85% of the variance of the
CPS composite estimator for one-period change, 61% of the
variance of the CPS composite estimator for six-period
change, and 76% of the variance of the CPS composite
estimator for 12-period change. (Compare columns (2) and
(3) of Table 2.)
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Table 2
Variances of alternative estimators and rotation designs; the variance of the basic estimator of current level under each design equals one
Employed Unemployed
Best Est. Best Est. Best Est. Best Est. Best Est, Best Est.
Pacameter  CPSComp. (4 g4y (8 Cont) (6 Cont) CPS Comp. (4-8-4) (8 Cont) (6 Cont)
(1) (2) (3) (4) (5) (6} (7} (8) 9
Current
Level 0.862 0.653 0.761 0.759 (.947 0918 (.944 0.938
1-pedod
change 0.511 0.432 0.395 0.434 1.070 © 1073 1.003 1.051
2-period
change 0.813 0.604 0.559 0.619 1.361 1.338 1.250 1.312
3-period
change 1.065 0.710 0.669 0.747 1.528 1.473 1.372 1.443
4-period
change 1.279 0.783 0.731 0.829 1.645 1.562 1473 1.543
5-period
change 1.363 0.328 0.782 0.501 1.691 1.606 1.533 1.607
6-period
change 1.390 0.854 0.828 0.970 1.708 1.628 1.577 1.655
T-period
change 1.388 0.863 0.874 1.026 1.710 1.636 1.612 £.686
8-pericd
change 1.353 0.858 0.828 0.960 1.701 1.934 1.642 1.705
9.period
change 1.255 0.830 0.960 1.108 1.671 1.614 1.663 1.719
10-period
change 1.154 0.803 0.993 1.139 1.641 1.595 1.678 1.727
11-period : :
change 1.061 0.779 1.021 1.165 1.614 1.578 1.688 1.733
12-period
change 0.992 0.758 1.046 1.186 1.593 1.564 1.696 © 1737
12-period -
average 0.369 0.326 0.440 0.394 0.255 0.249 0.301 0.266
12-change
in averages (.248 0.162 0.365 0.403 0.273 0.262 0.372 0.359

For estimating 12-period averages in employed using the
4-8-4 design, the CPS composite estimator is about 13%
less efficient than the least squares estimator and, for
estimating change in 12-period averages, it is about 53%
less efficient, as can be seen by comparing the second and
third columns of Table 2. For unemployed and the 4-8-4
design, there are only modest gains in precision from using
the least squares estimator relative to the CPS composite
estimator, as shown in the sixth and seventh columns of
Table 2.

For estimation of 12-period change, 12-period average
and change in 12-period averages, the 4-8-4 design is much
superior to both continuous rotation designs for both
characteristics. The continuous designs are generally
supertior for period-to-period changes for short periods.

6.3.3 Internal Consistency

In our analysis, we have constructed the best estimator of
employed using only the past history of employed and the
best estimator of unemployed using only the past history of

unemployed. There is no formal reason not to include the
past history of both employed and unemployed in the
construction of the estimators. However, Fuller et al, {1993)
state that the estimated cross correlations are less than 0.10,
suggesting that there is little gain from such inclusion.

A 'method of constructing estimates of multiple
characteristics that are internally consistent was suggested
by Fuller (1990). In this procedure, estimates of employed,
unemployed, and not-in-the-labor-force are constructed.
Then these estimates are used as controls in a regression
procedure to construct weights for the current observations.
The weights -can then be used to construct internally
consistent estimates of any parameter of interest. The
estimation procedure, including estimates of subdivisions
of the labor force, is planned for implementation-in 1998 for
the CPS. See Lent, Miller and Cantwell (1996).

6.4 Conclusions

The main conclusions emerging form the variance
computations in this section can be summarized as follows:
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1. For all rotation designs and all characteristics under
consideration, there are alternative estimation proce-
dures with a variance of the current level smaller than
that of the CPS composite estimator.

2. For estimation of change under the 4-8-4 rotation
design, the gain in precision of the alternative estimators
relative to the CPS composite estimator increases as the
lag increases, and peaks around the lag of minimum
overlap.

" 3. The intermittent 4-8-4 rotation design is inferior to the
continuous rotation designs for short-period changes,
but superior for current level, long-pertod averages, and
changes in long-period averages.

4. The CPS composite estimator is comparable to the RRE
for unemployed for the estimation of one-period change
and 12-period change. However, the recursive regres-
sion estimation procedure is superior to the CPS
composite estimator for other measures of change.

5. The RRE is more efficient in estimating change in level
at lags for which the CPS composite estimator is not
targeted, for instance, lags of four months to six months.
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APPENDIX

Lemma 1. Let the assumptions of the theorem hold.
Then the variance of the estimator of current level 6,
converges to a positive number as the number of periods
increases.

Proof. If[ﬂe means 8,_,,0,_,,..,0,_,, were known,
then g, ,i=1,2, ..., s areunbiased estimators of 0,, where
8l M .o' 8 =Vre ™ UnWacnr ™ cl);" 'a"dgs.::ysc_
): _lbsj(y”_ 8,.)- Furthermore, g, ,i=1,2,...,5 are
mdependent with variances c;,i=1, 2 . 5. Wc may
write the linear model: '

g=J0 e (A1)
where g = (g, o 8acr - - &) J, isthe s x 1 column vector
of ones, and e is the sx 1 vecztor of errors with E(e) =0,
and E(ee’) =V _= Dlag{cl,cz,. - O } ThustheBLUEof
8, for model (Al) has variance (2, 16,51, By assump-

tion, the variances 0? i=1,2,...,s are bounded below and
the quantity (};_,c,)" is a positive lower bound for the
variance of the estimator of 6, [see Lemma 4.2.3 of
Yansaneh (1992)]. The variance of the estimator of 8, is
non-increasing as the number of observations increases, and
hence, the variance converges to a positive

number.

Lemma 2. Let the assumptions of the theorem hold.
Then the variance of the least squares estimator of each of
the parameters 0,_,,9,_ ..., 0,_;, based on data through
time ¢, converges to a positive number as ¢ increases.

Proof. First, suppose at a fixed time T, at least m
periods of observations are available both prior to 1 and
after 1. Define a transformation of the following form for
the observations in each of the s streams at time 17:

rr _yl T zj=-mbk(f 1), J'yl T Where bk @, 1),0 =0 and u
uncorrelated with  all observanons preceding and
succeedmg Y, inthe i-th stream. Let the variance of u,
be 7\. =1, 2, ....s. These variances are bounded below by
assumptlon. We conclude, as before, that there is a positive
lower bound for the diagonal elements of the covariance
matrix of the vector of recursive least squares estimators.

Now, assume that at time ¢, we begin the sequence of
estimation with the vector of recursive least squares
estimators G')r L) (E)I e .0 0,_,)" based on data for the
preceding m penods, and the vector of transformed
observations z, =(z,,, ..., 2,,). Thus the linear model for
the data at time ¢ is given by (7), with ¢ replaced by ¢. The
data vector Z, is of fixed dimension. Therefore, the
covariance matrix of the BLUE of the vector of parameters
a1y = By o0 B, v 8,)" is Er(rm-l) W'V, W)y For
computational convenience, we express W as ( I .MY,
where I is the identity matrix of order m + 1, and M is
an (s- 1yx (m +1) matrix which is constant over time.
Thus we have

-1 y vl g
E:(mn) = (€2 nery * M Qo M) !
=0

1-1(m+1)

L (A2)
- Qr-l(m-a-l)M'Dl MQ

t-1(m+1)

where

Q. ope) = blockdlag{z, 1(m),csl} Qo = diag {a},..., cz}
and D =Q,, Q,_l( M. Smce the second term on
the rlght hand s:de of (A2) is positive definite, we conclude
that the first m diagonal elements of }, |, are less than or
equal to the original diagona! elements of },_, . This
means that as ¢ increases, the variances of the estimators of
9, .. 8,_50,  arenon-increasing. Since these variances
are bounded below by a positive quantity, we conclude that
the variances of the estimators of 8 _,5-0_,0
converge to positive numbers as ¢ increases.

Lemma 3. Let the assumptions of the theorem hold.
Then, the variance of the least squares estimator of each of
the parameters ©,_,9,_,.., - 9,_,, -, 0, - ,_,, based on data
through time ¢, converges to a positive number as !/
increases.

-1
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Proof. First, we show that variance of the least squares
estimator of §_- 9__, (where denotes the current period)
converges as the number of periods increases by mimicking
the arguments in the proof of Lemma 1. Also, arguments
similar to those in the proof of Lemma 2 can be used to
show that the variances of the least squares estimators of the
parameters 8,__,0, ., -9, ...0-0 all converge as
the number of periods increases

Proof of theorem. Since E‘ (m 18 & submatrix of the
covariance matrix ):, (ms1y Of the least squares estimators of
the full set of parameters 8,_,,8,,.1,...,8,.,,0,, at time ¢,
it is enough te show that X,(m, converges to a positive
definite matrix as £~ e, From Lemma 1 and Lemma 2,
each of the diagonal elements of Zr(rml converges 1o a
positive number as ¢ - e, From Lemma 3, the variance of

=17

the least squares estimator of each of the parameters

B @t ~ @y 9, 8,_,, converges to a positive
number as ¢ ~ . It follows that for each f, 1 <j < m, the
covariance between the least squares estimators of 8, and B
converges as ¢ - e and hence the covariance matrix Y
converges as f - o,

Next, we prove that the limiting covariance matrix is
positive definite. Let lim ¥ =¥ .. Itisenough to
show that the variance of any non-trivial imear combination
of the recursive least squares estimators 9 (t),
f=1,2, .., m, isbounded below by a positive quantlty Let
V... bethe lower bound of every linear combination of the
observations with one of the coefficients equal to one. The
bound is positive by the assumption that the elements of
V' are bounded.

Now, every estimator of the parameter 6, ,
j=0,1,..,m is a linear combination of all observations
such that the sum of the coefficients for the observations in
the s streams at time #-j is one, and the sum of the
coefficients for the observations in the s streams at any
other time is zero. This is a condition for the unbiasedness
of the estimator for time ¢-j. For the sum of the
coefficients of the s observations at time 1 — j to be equal to
one, at least one of the coefficients must be greater than or
equal to s *. The minimum variance of any linear combi-
nation with first coefficient equal to s7' is 5%y
Therefore, for j =0, 1, ..., m, Var{@,_ A0} 2 sy .

Now, consider an arbrtrary,

l(m+l)

mm”

non-trivial linear
combination of the recursive least squares estimators
9 S0, 5=0,1,...m, given by ):j o'yB (1), where,
wrthout loss of generalrty, Yo = 1. This lmear combination
can be expressed as

,-Z.; 1,8.(0) =8, }Z}J v,8,,0
(A3)
Z E Co¥in* E ¥ Z Z ffh(r-_,l)yrh

i=1 hel f=l l=l k=1

s 1-1 m
“E Cir E Vi _})l-yr r+E ["m +E Yilwa-p|”

J=
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where ¢,,i=1,2..
and f;,(r_”, =1,

s, are the coefficients of y, , in 6,(1),
,m, are the coefficients of y” in
9!1( L= ., m, respectwely Therefore, 2,, =1,
and ¥.,f,;=0 for j=1,.,m Thus E,,l[c"
}:j 1 f'r(u)] I. That is, in the lrnear combination (A3),
the sum of the coefficients for the observations y, ,
i=1,2,..,s, attime tis one. Therefore, at least one of the
coefﬁments is greater than or equal to s°'. Hence,
Var{Y -07,91- ()} 25 %v__, and we conclude that Z(m) is
posmve definite.
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Estimation of Variance of General Regression Estimator:
Higher Level Calibration Approach

SARJINDER SINGH, STEPHEN HORN and FRANK YU'

ABSTRACT

In the present investigation, the problem of estimation of variance of the general linear regression estimator has been
considered. It has been shown that the efficiency of the low tevel calibration approach adopted by Sarndal (1996) is less
than or equal to that of a class of estimators proposed by Deng and Wu (1987). A higher level calibration approach has also
been suggested. The efficiency of higher level calibration approach is shown to improve on the original approach. Several
estimators are shown to be the special cases of this proposed higher level calibration approach. An idea to find a non —
negative estimate of variance of the GREG has been suggested. Results have been extended to a stratified random sampling
design. An empirical study has also been carried out to study the performance of the proposed strategies. The well known
statistical package GES, developed at Statistics Canada can further be impréved fo obtain better estimates of variance of
GREG using the proposed higher level calibration approach under certain circumstances discussed in this paper. -

KEY WORDS: Calibration; Estimation of variance; Auxiliary information; Ratio and regression type estimators; Model

assisted approach.

1. INTRODUCTION

The statisticians are often interested in the precision of
survey estimates. The most commonly used estimator of
population total/mean is the generalized linear regression
(GREG) estimator. Let us consider the simplest case of
the GREG where information on only one auxiliary variable
is available. Consider a population = {1, 2, ..., N}, from
which a probability sample s(s < ) is drawn with a given
sampling design, p(.). The inclusion probabilities =, =
Pr(ies) and m; € Pr(i and j€s) are assumed to be strictly
positive and known. Let y, be the value of the variable of
interest, y, for the i-th population element, with which also
is associated an auxiliary variable x,. For the elements,
ies, we observe (y,x;). The populanon total of the
auxiliary variable x, X= Y¥, %, is assumed to be

accurately known. The objectlve is to estimate 'the
population total ¥ =Y y,. Deville and Sirndal (1992)
used calibration on known population x-total to modify the
basic sampling design weights, d, = 1/x,, that appear in the
Horvitz-Thompson (1952} estimator

Yyr i Edy‘

ial =1

(1.1)

A new estimator, ‘

n

?DS = E w, Y

=]

(1.2)

was proposed by Deville and Samdal (1992), with weights w,
as close as possible in an average sense for a given metric
to the d;, while respecting the calibration equation

Y wx =X

il

(1.3)

A simple case considered by Deville and Siirndal (1992) is
the minimization of chi-square type distance function given
by '

(W‘. - di)z

1.4
- T dq (1.4)

where ¢, are suitably chosen weights. In most of the
situations, the value of ¢, =1. The form of the estimator
depends upon the choice of ¢,. By minimizing (1.4) subject
to calibration equation (1.3) we obtain weights

d,q,x,

wo=d+—11 [X de)
| Edq,l i=1

Substitution of the value of w, from (1.5) in (1.2) leads to
the traditional regression estimator of total given by

(1.5)

"
s=2 dy, +————
i=1 Edqr‘

i=]

E d,qxy,( .
[X de] (1.6)

fal

In this paper, the problem of estimation of variance of the
regression estimator {1.6) has been considered at two
different levels of calibration. The higher level calibration
approach covers a greater variety of estimators than the low

‘level calibration approach adopted by Simdal (1996).

! Sarjinder Singh, Research Officer, Stephen Homn, Senior Research Officer and Frank Yu, Director, Methodology Division, The Australian Bureau of Statistics,
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Higher level calibration approach makes use of known total
as well as known variance of the auxiliary character,
whereas low level calibration utilizes only known totat of
auxiliary character.

The section 4 has been devoted to study the stratified
sampling design. The original stratum weights are calibra-
ted which results in combined regression and combined
ratio estimators in stratified sampling. The estimators of
variance of combined regression and combined ratio esti-
mators proposed by Wu (1985) are shown to be the special
cases of the low level calibration approach. The higher level
calibration approach has been shown to apply to a broader
variety of estimators.

2. ESTIMATOR OF VARIANCE OF THE GREG:
THE LOW LEVEL CALIBRATION
APPROACH

Following model assisted survey sampling approach of
Sérndal, Swensson and Wretman (1989, 1992), the Yates-
Grundy (1953) form of estimator of variance of the
estimator (1.6) is given by

. . 1 &= & )
VYG(YDS)z‘EE E Dy(wiel_ wjej)

i=1 j=1

2.1

where D, =.(1|:‘. - ’_Tij)/“y' i#jande, =¥ - Bx, .have their
usual meanings. This estimator can gasily be written as

n

A . 1 wd
VYG(YDS) = 5 El z]: Dy (dfej _djej)z +
i=l  j=
n 2
¥ [X_ < dr'xiJ +"l\"z[X' 2:: dr'xr] @2
= . -
where
o 1
L a—
> diqixl'z
=1
n n
Z]: Ek D,de,~die)daxe-dapxe) (23)
i=l j=
and
. 1 n n
¥, = D, (dqxe,- dgxe) (2.4)

o a. L=
23 dax
i=l

The estimator at (2.1) has been discussed by Sédrndal et al.
(1989, 1992, 1996) on different occasions and covers a
variety of estimators as discussed below:

For simplicity, let us consider simple random sampling and
without replacement (SRSWOR) design i.e., n, = 7, = n/N
and T, = nn-1)/NN-1). Then we have foflowing
cases:

Case 2.1: If g, = 1, then (1.6} reduces to the usual regres-
sion estimator of total, Ygreg (say). Now if w, =d, in (2.1),
it reduces to

)- NN

nn-1) =1

Y GREG

T

YG( (2.5)

where f=n/N and e, =y, - Bx,. Thus (2.5) denotes the
usual estimator of variance of the regression estimator (1.6).

Case2.2:If g, = 1/x, then the estimator (1.6) reduces to the
ratio estimator of total, Yrario (5ay). The estimator (2.1)
reduces to an estimator of variance of the estimator
Yramio, given by

5 (s N(-H& 2[x)]>
VYG(Y RATIO)=_( f)zez{};} (2.6)

r(n-1) i f
where
N n
n

i=1

X;.

f=y,.—[¥]x‘. and X =
x

The estimator at (2.6) is a special case of a class of estima-
tors of variance of the ratio estimator proposed by Wu

(1982} as
5 5 N2(1-fi ¢ X|¢
)-SR e
forg=2.

Case 2.3: Ifg, = 1 and w, is given by (1.5) then (2.2) and
hence (2.1) becomes

I}YG(?GREG)=
MADS 2 0q, (x-R) + 4, (x-2F @8)
n(n-1) g
where
¥ = (N-n) g ; (e,-e)(x,e,-xe) (2.9)
[ xiz] n{n-1)
i=1
and
9, = (N-n) Y ¥ (xe,- xfej)z. (2.10)

no, 251 =1
2N(n-1)| Y x
i=l
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Deng and Wu (1987) have defined a general class of
estimators of the variance of the regression estimator as

I}w:(f’nw) N NAa-f) E €; {}}g

nin-1
where e, =y, - Gx,.. The linear form of the class of
estimators (2.11) takes the form as

(2.11)

NY1-f) 2~ 2
pro e I

2
b's 2 X ‘

which is again similar to (2,8). Thus the low level calibra-
tion approach considers estimators of variance of estimators
of total /.e., both ratio and regression methods of estimation.
It is rerarkable that there is no choice of g, which reduces
(1.6) to the product method of estimation considered by
Cochran (1963). Hence the estimation of variance of
product estimator has not been considered. To look at the
efficiency of such estimators, we consider an analogue of
the general class of estimators for estimating variance of
GREG by following Srivastava (1971) as

I?YG(PDW)=

P N1 - X
VS(YGREG) [ n(i_lj;)g e ]H[;] (2.13)

where H(.) is a parametric function such that H(1) =1
and satisfies certain regularity conditions. Following
Srivastava (1971), it is easy to see that analogues of the
general class of estimators (2.13) attain the minimum
variance of the class of estimaters proposed by Deng and
Wu (1987) for regression estimator and Wu(1982) ratio
estimator, We want to say here that if we will attach any
function of the ratio X7.X to the usual estimator of variance
given by

N-N
1) 2 %

the asymptotic variance of the resultant estimator remains
the same. In other words, the efficiency of the estimators of
variance of regression estimator (GREG) of total obtained
through low level calibration remains less than or equal to
the class of estimators proposed by Wu (1982} and Deng
and Wu (1987). The weights w, used to construct estimator
of variance of GREG at (2.1) were obtained while estima-
ting the population total and hence named as low level
calibration weights for variance estimation. The next
section is devated to the higher level calibration approach
where variance of auxiliary character is known. Several

43

new estimators are shown as special cases of the proposed
higher level calibration approach.

3. IMPROVED ESTIMATOR OF VARIANCE OF
THE GREG: THE HIGHER LEVEL
CALIBRATION APPROACH

Here we apply the calibration approach to estimate the
variance of GREG estimator at (1.6). The weights Dy. of
Yates and Grundy (1953) for an estimator of variance given
at (2.1} are calibrated such that the estimator of variance for
the auxiliary variable has the exact variance. We consider
an estimator of variance of GREG

I}s ( GREG)- _E E Q,(we, - wjej)z

(3.1)
i=1 j=1 .
where Q, are the modified weights attached to the
quadratic expression by Yates and Grundy (1953) form of
estimator and are as close as possible in an average sense
for a given measure to the D, with respect to the calibration
equation

=

E Q, (d;x; - a:'.xj)z =Vyg (XHT)

(3.2)
£ .

1
2

where

( )'_22(““ “JI,J,)(a’JC*dJc)2

l']_f'

denotes the known variance of the estimator of the auxiliary
total X (=Y, x,} given by X, = Y1, d,x,. To compute
the right hand side of (3.2) we need either information on
every unit of the auxiliary character in the population, ot
only Vyq (X‘HT) obtained from a past survey or pilot survey.
The examples of a situation where information on every
unit of the auxiliary character is known are the establish-
ment turnover recorded from census or administrative
records or Business Register (BR) or Australian Taxation
Office (ATO). Known variance of the auxiliary character
has also been used by Das and Tripathi (1978), Singh and
Srivastava (1980}, Srivastava and Jhajj (1980, 1981), Isaki
(1983), Singh and Singh (1988), Swain and Mishra
(1992), Shah and Patel (1996) and Garcia and Cebrian
(1996). Singh, Mangat and Mahajan (1995) have reviewed
classes of estimators of unknown population parameters
making use of the known variance of an auxiliary character.
The idea of adjusting D, weights has also been discussed
by Fuller (1970} through a regression type estimation
procedure. For simplicity we restrict ourselves to the two
dimensional Chi-Square (CS) type distance, D, between
two nxn grids formed by the weights Q and D for
i, j=1,2,..,n givenby
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(3.3)

In most of the situations Q, =1 but other types of weights
can also be used. We will show that the ratio type
adjustment using known variance of auxiliary character is
a special case for a particular choice of Q.. Minimization
of (3.3) subject to (3.2) leads to modified optimal weights
given by

Dy.Q..(d‘x. - d,x)2

Q:‘;‘=ij+

EED (dx,-dx )| (34)

r]_,']

for the optimal choice of Lagrange Multiplier A, given by

Veo (i) - 22; Y D,(d,x,- d,x)

A = i=1 =1 _ (3.5)

—'E Z D, Qy(d,.x,.—a;.%)“

1111

Its proof is given in the Appendix. Substitution of Q from
(3.4) in (3.1) leads to the following regressmn type
estimator,

PesPorsc ) =
Vv Tos) * B[ Vea (i)~ P} 6
where
R AL

=2 (say) (3.7)
o4

Vyg Kigr) = 2):, { L Dyldix, —dx) and Py ()
is given in (2.1). Regressmn coeff1c1ent B makes use of
the known total X of the auxiliary variable and hence can be
treated as an improved estimator of regression coefficient
by following Singh and Singh (1988). Under the higher
level calibration approach, we have the following cases:

Case 3.1: Under SRSWOR sampling design if g, = x, o
and Q =(dx; - ) are the weights attached at low
level and hlgher level calibration approach, respectively,
then the proposed strategy reduces to

I?ss (? Rau'n) =

W, 1 g il x)(s
n (n-0yid '\ ¥ 2

X

(3.8)

where sf =(n-1"! ¥ (x,-x )? is an unbiased estimator
of 87 =(N- 1)'TN, (x, - X)*.
Case3.2:If g, =1 and Q,=1Vi & j, then we have

Y

VYG(?GREG) N0 f)Ee

nn-1) o w0, (- %)«

o, (0- 2P gy (s2- 52} 39)

where ¥, and ¥, are given by (2.9) and (2.10),
respectively, and

201 -
g, = N-(1-5)

n fl

n 2 (x,.-xj)4
i=1 j=1
N 2
non X-X)x,~x)*
2 > (xrxj)(e,--e,)+( ) (3.10)
f: J=

n
2 xiz

i=1

Without loss of generality, the estimators of variance of
GREG given at (3.8) and (3.9) are neither members of a low
level calibration approach nor of the class of estimators by
Deng and Wu (1987). These estimators are members of the
analogues of classes of estimators for estimating variance
of GREG given by Srivastava and Jhajj (1981} as

s NE(1-f) x S
VSI(YGREG) [ n{n-1) ; ]H },';:2'

(3.11)

where H(.,.) is a parametric function such that A(1,1) =1
and which satisfies certain regularity conditions defined by

" them. Following Srivastava and Jhajj (1981) and Deng and

Wu (1987), it is a class room exercise to see that the class
of estimators at (3.11) remains better than the class of
estimators defined at (2.11) and hence (2.13).

A difficult issue in using (3.1) is how to get non-negative
estimates of variance using calibration. The simplest way is
to optimize the CS distance function (3.3) subject to
calibration constraint (3.2) along with the conditions
Q. >0Vi j=1,2,.,n. While it is difficult to develop a
SO{UIIOI‘I to this problem theoretically, well known quadratic
programming techniques can yield useful numerical results.
Straightforward extension to using other distance functions,
as discussed by Deville and Sédrndal (1992) for instance, to
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the two dimensional problem due to the indeterminate
nature of the D,}. weights is not possible. It is open to others
to propose new distance functions which guarantee the
non-negativity of the weights.

4, STRATIFIED SAMPLING DESIGN

Suppose the population consists of L strata with N,
units in the h-th stratum from which a simple random
sample of size n, is taken without replacement. The total
population size N = Zh | ¥, and sample size n = E,, 1 1y,
Associated with the i-th unit of the A-th stratum there are
two values Yh, and X, with x, > 0 being the covariate. For
the h-th stratum, let W =N, '/N be the stratum weights,
f, =n,/N, the sample fractlon Vi X s th , the y-
and x - sample and population means respectwely Assume
X z,,.l W, X, is known. The purpose is to estimate
Y =Y W Y 4+ Possibly by incorporating the covariate
mfonnauonx The usual estimator of population mean ¥ is
givenby

L
F,= Y Wy, (4.1
h=l
We are considering a new estimator, given by
L
Z Y (4.2)
he

with new weights W, . The new weights W,  are chosen
such that chi-square type distance, given by

ZL:!W -w,f

(4.3)
o Wya,
is minimum subject to the condition
L —
> W, x, =X 4.4
hel

Minimization of (4.3) subject to calibration equation (4.4)
leads to the combined regression type estimator given by

?:1 Wy 44X, ¥
YS: ZE W,y,*

E qhxh

for the optimum chmce of weights given by

W.q X . &
+~—hqh A [X—Ethh]
h=1
2 qhxh

L

X-3
h=1

W,,f,,] 4.5)

w, =W, {4.6)
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Ifg,=x, ! then estimator (4.5) reduces to the well known
combined ratio estimator in stratified sampling. The well
known estimator of variance of combined regression
estimator is given by

V_') z‘r‘: Wh[l fh)

h=1 h

52 @7

where
Ay
= _ 1y 2
S =(n, - 1) Eem
i=1

is the A-th stratum Sample variance and e,“ =Yuj Vi-
b(x, - x,) and b = Tt Wi 857 1 %4/ Lyt W, 4, %), have
their usual meaning. The lower level calibration approach
yields an estimator of variance of the combined regression
estimator as

L D, W,
N AT h 2
Vc(ySr)=E 5 Sen (4.8)
bl W,
where
Wi (1-1£)

"
and W is givenby (4.6).If ¢, = X ,',1 then (4.8) reduces to
an estimator given by

.V(ys,)mno [xs] E__"z_f__)

4.9)

which is a special case of a class of estimators for estima-
ting the variance of combined ratio estimator gwen by Wu
(1985) as

(5, [] > %

for g =2. The properties of variance estimators of the
combined ratio estimator are also studied by Saxena,
Nigham and Shukla (1995). In higher level calibration, a
new estimator is given by

LAIA S

ny,

(4.10)

L o W.z
(GREG) E W: Sen @.11)
h h

where Q, are suitably chosen weights such that Chi-Square
distance function given by
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¢ ooy

X} (“.12)

is minimum subject to higher level calibration equation
defined as

L
f\;; Q,5p = V(%)

(4.13)
where,
I
V( Sr) E th
ny
is assumed to be known and s = (n,~ 1) E;V (xh, j;,)
is an unbiased estimator of S2 =(N, - 1)™!
This procedure leads to a new estimator for the vanance of
the combined regression estimator given by

PP )og = 7o (Pores) * BoV(Es)- P(54)] a19)

wl-f)
Q},hxé}:/z ikt 4

k=1 n, iy

denotes the combined improved estimator of regression
coefficient in stratified sampling and

(1 ‘f;,) Skzx

ny

L
P(Eg) ,,E Wy
=1

is an unbiased estimator of V(Xg,). If g, = 1/x b and
&, = lls,u , then estimator (4.14) reduces to a new estimator
of variance of the combined ratio estimator given by

(Amo)=ZL: M 2[ )_{Jz{ﬂf_&)] (4.15)

éh
St

which is a ratio type estimator proposed by Wu (1985) for
estimating variance of the combined ratio estimator but
makes use of extra knowledge of the known variance of the
auxiliary variable at the estimation stage. Several more new
estimators can be constructed for new choices of weights

g, and Q,.

5. A WIDER CLASS OF ESTIMATORS

If we define u =X/Y_ d,x, and v = V (X, ) / ¥ (X,
then a wider class of estimators has been defmed as

1 L) n

D (de —de)z}H(uv) .1y

where H (u,v) is a parametric function of « and v such
that H(1,1) =1 and which satisfies certain regularity
conditions. Then all estimators obtained from the following
functions,

1 +a(u-1)
1+Bv-1)

Huvy=1+au-1)+pHv-1)

Huv)=u®vb, Huv) =

and H(u,v) = {1 +afu- 1) + B(v - 1)} are special cases
of the higher level calibration approach, where o and B are
unknown parameters involved in the function H(u,v).
Repiacing these parameters with their respective consistent
estimators in the class of estimators at (5.1) leads to the
same asymptotic variance as shown by Srivastava and Jhajj
(1983), Singh and Singh (1984) and Mahajan and Singh
(1996). The extension of present investigation to two phase
sampling following Hidiroglou and Sdrndal (1995) is in
progress.

The next section has been devoted to studying the
performance of the higher order calibration approach
through simulation.

6. SIMULATION STUDY

Under the simulation study, we have considered compa-
risons of estimators of variance of ratio estimator as well as
that of regression estimator. To avoid any kind of confu--
sion, we have redefined the estimators considered for
comparison as follows:

6.1 Ratio Estimator

We have compared the estimators of the variance of the
ratio estimator, given by
2
[ ] (6.1.1)

N(1-Hv

nn-1) ,Xl:
Nl o s?
VZ(YRATIO)=V1(YRATIO) _x{ ‘

~

Vi (Y mmo)
with the estimator, given by

(6.1.2)

6.2 Regression Estimator

We have also compared the estimators of the variance of
the regression estimator, given by

I}1 (? GREG) =

Nl(l-f)Ee s (x- X)+¢2(X—

212
nn-1) i X) 6.2.1)
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with the estimator, given by

-~

Vs ('?GREG) = I}l (]}GREG) + (sz - sz)

where §,,i =
earlier.

We have considered two types of populations viz. finite
populations as well as infinite populations to cover almost
all practical situations.

(6.2.2)

1,2,3 have the same meaning as defined

6.3 Finite Populations

In case of finite populations, we have taken a population
consisting of N =20 units from Horvitz and Thompson
(1952). The study variable, y, is the number of house-
holds on i-th block and known auxiliary character, x, is the
eye-estimated number of households on the i~th block. All
possible samples of size n = 5 were selected by SRSWOR
which results in

[ N] = 15,504
n

samples. From the k-th sample, the estimator

5 | x . N
Y =¥| —=|, with Y =— ;
RaTIO |1 [)?] " lyr

was computed. Empirical mean squared error of this
estimator was computed as

w5 (o)) St

kel

(6.3.1)

For the k-th sample, the ratio type estimators of variance

= ?2,

7 (Femo)lis

given by {(6.1.1) and (6.1.2) respectively, for estimating the
variance of the ratio estimator were also obtained. The bias
in the A-th ratio type estimator of variance was computed as

8{7,(Faamo)} -

AL

( 2{] & I?h(PRAﬂo)ik - MSE(?RATIO)

6.3.2)

and mean squared error was computed as

47

MSE {7 (ramo) | =

)

[N] E [V( ""‘“O)i* MSE( Rmo)]2~ (6.3.3)

4—-...

n

_ The percent relative efficiency of the estimator
(YRM-IO) with respect to V (YR,mO) was calculated as

MSE {7, (Pemio) } % 100/MSE {7, (Prsmio}}. (6.3.4)

The coverage by 95% confidence intervals

e {AI AN

for 2 =1,2 were calculated for A-th ratio type estimator of
variance by counting the number of times the true
population total, ¥, falls between the limits defined as
Fentio e ¥ £yonet @V Pramo (6.3.5)

These results were also obtained from all possible samples
of size 6 and 7 and have been presented in Table 1.

The same process was repeated for the regression
estimator

?GREGIkz P*[;x;yf/g xiz] (X'f)

of total obtained from (1.6) under a SRSWOR design. The
biases, relative efficiency and CCI were obtained by using
h-th estimator of variance of the regression estimator,
Py (Poreo) |« for h=1,2, given by (6.2.1) and (6.2.2),
respectively. The results obtained have been presented in
Table 2. In addition, it was observed that for
n=5, 0.020% estimates of variance obtained from the
estimator Vl (}’ reg) and 0.022% estimates obtained from -
the estimator Vz (YGREG) were negative. Similar results
were observed for more natural populations given by
Cochran (1963) and Sukhatme and Sukhatme (1970). Qver
all, second order calibration estimators perform better than
first order calibration in case of the finite populations.

In real life sitvations, the study variable and auxiliary
variables may follow certain kinds of distributions like
normal, beta or gamma efc. In order to see the performance
of the proposed strategies under such circumstances, we
generated artificial populations and considered the problem
of estimation of finite population mean through simulation
as follows.
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Table 1
Comparison of ¥, |7, ( 110) with ¥, ( RM.[O) for finite populations

n B[V ( R.mo)] B[V ( RATIO)} RE CCI[f}l (f}m‘rlo)] CCI[V ( RATIO)]
5 -211.33 217.01 166.57 0.93 0.95
6 -141.92 102.00 115.06 0.91 0.92
7 -99.34 58.60 109.23 0.90 0.90
Table 2
Comparison of P, ( cnsc) and P, [ GREG) for finite populations
n B[7, (Ponec)| A . RE QI ?, (e CCI{7, (Parec)|
5 -328.49 -194.78 112.04 0.92 0.96
6 -223.92 -136.34 103.02 0.90 093
7 -157.88 -94.38 101.21 0.91 0.94

6.4 Infinite Populations

The size N of these populations is unknown. We genera-
ted » independent pairs of random numbers y,” and x;’
(say), i=1,2,..,n, from a subroutine VNORM with
PHI =0.7, seed(y)=8987878 and seed(x) = 2348789
following Bratley, Fox and Schrage (1983). For fixed

S, % - 50 and S =50, we generated transformed variables,
y,=30+ WZSJ? (1-p2)y +pS,x/ (6.4.1)

and
x,=40+8 x; (6.4.2)

for different values of the correlation coefficient p. For the
k-th sample, the estimator

was computed. Empirical mean squared error of this
estimator was computed as

1
1 5,000

MSE (y
v 15,000 :}-_‘:

(6.4.3)

RATIO) = [J_;RAT[OIA—_ I?]2'

For the &-th sample, the ratio type estimators of variance

I}h (J_;RATIO)Ik’ h=112,

obtained from (6.1.1) and {6.1.2) respectively, for estima-
ting the variance of the ratio estimator of population mean
were also derived. The bias in the A-th ratio type estimator
of variance was computed as

{3‘3)}

15,000

15, 000 k=1

A ( yRAm) MSE( y}mo) (6.4.4)

and mean squared error was computed as

MSE {V (yRATIO)}
1 15,000 .
15000 17 (Framo) s

- MSE($m0) [ (6.4.5)

The percent relative efficiency of the estimator
7, (yRATIO) with respect to ¥, (ymmo) was calculated as

RE =

MSE {7, (Framio) } % 100/ MSE {7, (Fumo)} (6.4.6)
The coverage by 95% confidence intervals
CC1|7, (Framio)] for h=1,2

was calculated for /-th ratio type estimator of variance by
counting the number of times the true population mean, ¥,
falls between the limits defined as

Yramio 5 ¥ 1.96 YV (;RATIO)lk'

These results were obtained for samples of sizen = 60,
80 and 100 for different values of correlation coefficient as
presented in Table 3.

64.7)
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The same process was repeated for the regression estimator

J_:'Ggsc;lk =y + B(j"f)

of mean obtained from (1.6) under a SRSWR design. The
biases, relative efficiency and CCI were obtained by using
h-th estimator of variance of the regression estimator,

I?h (J_;GREG) |, for A=1,2,

derived from (6.2.1) and (6.2.2), respectively. The results
obtained have been presénted in Table 4. We acknowledge
that it is worth while studying the proposed strdtegy through
simulation in more detail and its application in actual
practice. The empirical study was carried out in
FORTRAN-77 using a PENTIUM-120.

BROTARTR T el e
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7. CONCLUSION

Higher level calibration approach can be used if variance
of the auxiliary character is known in addition to the known
total of that character. The statistical package GES
developed by Statistics Canada can be modified to obtain
better estimators of the variance of GREG, useful for
surveys where information on variance of auxiliary charac-
ters is available or can be calculated.
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Table .’:
Comparison of V, (ﬁnxno) with 7, (}R mo) for infinite populations
n p 87, (Faano)]  B[%(Framol] RE  CO[P(amo)]  CCI[%: (Frumo)]
0.1 13.02 10.33 188.7 0.96 ' 095
0.3 8.07 6.35 192.6 0.97 095
60 0.5 433 3.37 195.9 0.96 0.96
0.7 1.77 1.37 197.9 0.97 0.97
0.9 0.33 0.26 197.7 0.99 0.98
0.1 327 2.91 123.2 0.54 0.93
0.3 : 2.06 1.84 123.0 0.94 0.94
80 0.5 1.13 1.01 1227 0.95 0.95
0.7 047 0.42 122.0 0.97 0.96
0.9 0.08 0.08 119.1 0.8 0.97
0.1 0.76 0.77 106.1 0.94 0.93
0.3 0.49 0.49 105.8 0.94 0.94
100 0.5 0.27 0.27 105.3 0.95 095
0.7 0.12 0.12 104.4 0.96 0.95
0.9 0.02 0.02 102.2 0.97 0.95
) Table 4
Comparison of 7, (fGREG) with 7, ﬁc-m—:c) for infinite populations
n P 8 [V! (¥ cm)] B [Vz (¥ GREG)] RE CCI[VI (?GREO)] CCI[VI (PGREG)]
0.1 10.12 8.42 1776 0.98 0.95
0.3 5.06 433 161.5 0.97 0.95
60 0.5 3.32 2.36 152.5 0.95 0.96
0.7 0.72 0.38 151.9 0.97 0.95
0.9 0.13 0.10 147.7 0.59 0.97
0.1 1.23 1.11 153.9 0.96 0.95
0.3 1.03 1.01 143.5 0.98 0.94
80 0.5 0.13 0.11 132.8 0.97 0.95
0.7 0.07 0.06 121.6 0.97 0.95
0.9 0.02 0.03 117.1 0.96 0.96
0.1 0.65 0.57 136.1 0.95 0.94
0.3 0.39 0.32 135.1 0.94 0.94
100 0.5 0.13 0.13 129.6 0.95 0.95
0.7 0.02 0.02 114.4 0.96 0.95
0.9 0.01 0.01 112.2 0.97 0.96
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APPENDIX

This appendix has been devoted to deriving the optimum
value of £, as given in (3.4). The Lagrange's function is
given by

L:li 3 Q&'—Dij)z_
25 = D"J'Q{}'
] v~ w -
2 5 i=1 j=1 Q‘j(d’.xj - dij)z - VYG (XHT) . (Al)

On differentiating (A.1) with respect to Qy and equating to
zero, we get

Q, =D, +4D,0,(dx,-dx). (A2)
On putting (A.2) in (3.2), we get
. l 4] n .
£ (XHT) -2 X D, (d;x, - d;x;)*
2 = 251 =1
= (o : - (A3
25 S D, Qy.(d,x, - dx)

On substituting (A.3) in (A.2), we get the optimum value
of Qy. as given in (3.4).
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Logistic Generalized Regression Estimators

RISTO LEHTONEN and ARI VEIJANEN!

ABSTRACT

In this paper we study the model-assisted estimation of class frequencies of a discrete response variable by a new survey
estimation method, which is closely related to generalized regression estimation. In generalized regression estimation the
available auxiliary data are incorporated in the estimation procedure by a linear model fit. Instead of using a linear model
for the class indicators, we describe the joint distribution of the class indicators by a multinomial logistic, model. Logistic
generalized regression estimators are introduced for class frequencies in a population and domains. Monte Carlo
experiments were carried eul for simulated data.and for real data taken from the Labour Force Survey conducted monthly
by Statistics Finland. The logistic generalized regression estimation yielded better results than the ordinary regression
estimation for small domains and particularly for small class frequencies.

KEY WORDS: Auxiliary information; Class frequencies; Generalized linear models; Labour force survey; Model-assisted

estimation; Regression estimators.

1. INTRODUCTION

Consider the estimation of class frequencies of a discrete
response variable in a sample survey. The number of
individuals in a class equals the class indicator’s sum over
the population, the total of the indicator. Therefore, the
problem can be solved by methods designed for the
estimation of population totals. To improve the accuracy of
the estimation, a-survey statistician often makes use of the
available auxiliary data. If the expectation of the response
variable can be assumed to depend linearly on the auxiliary
variables as can be the case for continuous response varia-
bles, it is advisable to use the generalized regression
estimator (Sdmdal, Swensson and Wretman 1992; Estevao,
Hidiroglou and Sidrndal 1995). Generalized regression
estimation can improve the efficiency and reduce the bias

“due to unit nonresponse if the auxiliary variables correlate
strongly with the response variable.

From a -modeler’s perspective, a linear model is quite
restrictive and might not be the best choice for binary
response variables, such as employment status of a person
(employed, unemployed), or more generally for discrete
response variables, such as a person’s status in the labour
market (employed, unemployed, not in labour force). For
such variables we introduce a class of logistic generalized
regression estimators based on a multinomial logistic model
describing the joint distribution of the class indicators. The
motivation for the selection of this specific model type thus
is similar to that used in the context of generalized linear
models (McCullagh and Nelder 1989}

The parameters of the logistic model are here estimated
by maximizing a sample-based weighted loglikelihood, the
Horvitz-Thompson estimator of the population loglikeli-
hood function (Godambe and Thompson 1986; Nordberg

1989; Skinner, Holt and Smith 1989; Sirndal ef al. 1992,
p. 517).
.As an application, we consider the estimation of the

-inemployment rate in the Labour Force Survey conducted

monthly by Statistics Finland. Administrative records
indicating whether a person is registered jobseeker in local
employment office are available as register-based auxiltary
data, and these records were merged with the survey data on
individual basis using personal identification numbers which
are unique in both data sources. The corresponding auxiliary
variable correlates strongly with the survey measurement on
person’s unemployment. Thus, improvement in efficiency
and reduction of bias can be expected by making use of these
administrative data in the estimation procedure. Additional
auxiliary data (sex, age, regional data) were gathered fromthe
Population Register. Also these auxiliary data were merged
with the survey dataon individual basis.

The properties of the generalized.regression estimators
were studied by Monte Carlo simulation methods where
SRSWOR samples were repeatedly drawn froma population
constructed from the Labour Force Survey data. We use
incomplete poststratification or raking based on a main
effects ANOV A model. The experiments indicate that the
logistic formulation yields better results than the linear
formulation for small domains. We obtained good results
also when there was. only one continuous auxiliary variable.

This paper is organized as follows. Section 2 defines the
multinomial logistic model and basic concepts used. In
Section 3 we introduce generalized regression estimators of
class frequencies in.a population and domains, and discuss
the estimation of the model parameters by weighted
loglikelihood. Variance estimators are presented. Monte
Carlo experiments are discussed in Section 4. Conclusions
are drawn in Section 5.

! Risto Lehtonen and Ari Veijanen, Statistics Finland, P.O. Box 5A, FIN-00022 Statistics Finland, Finland.
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2. MODEL

Consider discrete m-valued random variables Yk
associated with &V elements & in a finite population I/, We
observe their realized values y, only in a sample sc¥ of
size n. Our goal is to estimate the frequency distribution of
the y,’s in the population; in classification problems, we
estimate the class proportions. Suppose we know the vector
of auxiliary variables x, for every element in the
population, We impose a multinomial logistic model

exp{xB,)

P{Y=i} =
1
> exp{x/B,}
r=1
and assume that the Y. ’s are conditionally independent
given the x,’s. In the binary case, this is the model used in
logistic regression. The parameter vector B is composed of
vectors B,(i=1,2,...,m) with components B;(j=1,
2, ..., q}. The parameters are assumed identifiable, that is,
no two parameter values yield identical probabilities (1) for
every k. This implies that the auxiliary variables
x,;(j=1,2,..,q) are linearly independent. To avoid
identifiability problems, we set B, = 0. It is straightforward
to generalize (1} so that different auxiliary variables can be
assigned for the m classes (Lehtonen and Veijanen 1998).

The sampling design specifies the inclusion probabilities
of population elements. The k-th element is drawn with
inclusion probability =, and elements & and p are simul-
taneously in the sample s with probability n, >0 (t,, = m,).
As usual, the sample membership indicators /, = I{kes) are
assumed conditionally independent of the Y, ’s given the
x,’s, but the inclusion probabilities may correlate with the
auxiliary variables.

Under unit nonresponse, if element & responds with
probability 8, independently of the / sand ¥,,’s (pe U),
then we substltute 7,0, for m,. Correspondmgly, m,, s
replaced by n, 8 Bp when the elements respond indepen-
dently of each other.

3. LOGISTIC GENERALIZED REGRESSION
‘ ESTIMATION

3.1 Definition of LGREG

To estimate the frequency distribution of the y,’s, we
define class indicators Z,, =I{Y; =i} with realizations
z,; and estimate the totals ¢,=3,.,,z.. The Horvitz-
Thompson (HT) estimator of ¢, is ﬂ;‘T = Ekﬁ a,z,. where
the sampling weights are a, = 1/x,. Generalized regression
estlmanon (GREG) is assisted by a regression model

Z,=x, ﬂ, + g, with Var(e,) = o2, (Sdrndal e al. 1992;
Estevao ef al. 1995). The parameter B¢ is estimated by

=1,2,..,m (2}

O kes ka

wleg) )

and the fitted values 7, =x, ﬁ,.Gare incorporated in the
GREG estimator
~G

=Y i,+Y, az,-%) (=12,..,m). @)
el kes

The selection of a linear model for a GREG estimator (3)
is fully justified for a continuous response variable. For
binary measurements Z,;, a linear model might be un-
realistic. Ordinarily, we would prefer a logistic model to a
linear one. In the logistic formulation, the predicted value
always lies in [0,1], whereas in the linear formulation, the
predicted value can exceed these natural limits. If the
probability of Z,, = 1 is close to 0 or 1, then the two models
vield different results. Moreover, when there are m> 2
classes, it appears sensible to describe the joint distribution
of the Z,’s (i=1,2,..,m) by the multinomial logistic
model (1). To apply the model (1) in generalized regression
estimation, we estimate the expectations p,, = E(Z,1x,; p)
=P{Y, =ilx,;B} by

A, =P Y, =ilx,;B} = "':P{xéﬂfl ,
1+ exp{x;B,}

ra2

which depend nonlinearly on the auxiliary variables. We
define a logistic generalized regression {LGREG) estimator
by

f=Y A, + Y alz,- ) (=1,2,.,m. @
kelU kes

The GREG and LGREG estimators (3) and (4) include
a sum of predicted values over the population. However, it
is not actually necessary (o have information about the x,'s
for every element in the populaticn /. In GREG (3), it is
enough to know the auxiliary totals }, ., x;, because (3)
can also be expressed in the form rG = tHT +
YretrXe = Lres % X0) ‘8. Forthe special caseofcomplete
poststratification, the information required in LGREG is
similar to that needed in GREG. For other cases, such as
incomplete poststratification, we cannot compute Y, ., fi,;
in (4) without knowing the frequency of each value of x,
in the population. For example, if we have two discrete
auxiliary variables, then in GREG we need the marginal
frequencies, but in LGREG we need the cell frequencies.

In addition to estimates for the whole population,
estimates are usually calculated for subpopulations. The
population U is partitioned into domains U, ,, < U of size
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N,y The set 5 of respondents is composed of corres-
ponding subsets s, ,, =sn U, with n elements. As in
tSﬁmdal el al. 1992), we apply LGREG

GREG estimation
estimator
L = E P+ E a, (2, - By)- (3)
kEUM ke.rm

These estimators are additive: ), r”[ ayi =Ny 1If we
combine two nonoverlapping domains &, and d,, the
LGREG estimate for d=d, ud, 18 1), =1,y * 4,
Hence, Y. tgy = 1; for nonoverlapping domains and
Y.ti=N.

In generalized regression estimation, an estimate (3} or
(4) can be negative, when negative residuals coincide with
large values of a,. Negative GREG estimates become more
common, as the number of auxiliary variables increases
(Chambers 1996). In LGREG estimation, in contrast, this is
not 50, because [i,; is bounded by the model formulation. In
our experiments, LGREG estimates were negative only for
small domains in certain cases. In many cases, LGREG
estimate equals the'sum of estimated expectations and then
it is always positive (see Section 3.2}.

If the model (1) includes an auxiliary indicator variable,
its total over the population is exactly estimated by
LGREG. This calibration property is desirable in many
applications.

3.2 ML Estimation by n-Weighted Loglikelihood

We estimate the parameter B in the model (1) by'

maximizing a n-weighted loglikelihood

LB, ...B,) =

; u;'{f{ Y,=1} log( 1~22 p,“,] + )j‘{ I{¥,=i}log p,‘,.}
s i= i= .

(Godambe and Thompson 1986; Nordberg 1989; Sérndal
etal. 1992, p. 517). In general, we maximize the likelihood
function numerically by appropriate numerical methods
such as a Newton-Raphson algorithm.,

It can be shown that for complete poststratification, the
fitted values Z,; in GREG are equal to the estimates fl,; in
LGREG. Thus, when there are no missing cells in complete
poststratification, the GREG and LGREG estimators are
identical (Lehtonen and Veijanen 1998). This does not
hold for other models such as incomplete poststratification.

The LGREG estimator (4) has two parts: a sum of esti-
mated expectations over the population and an adjustment
term Y, a/z, - A,). It can be shown that if the model
contains an intercept, the adjustment term vanishes and the
frequency ¢ is estimated by Y, .0, (Lehtonen and
Veijanen 1998).
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_In our experiments, we apply a ratio estimator
R=tjl(t,.+tj). Its variance is estimated by Taylor
linearization techniques (Sdrndal et al. 1992, p. 179):

1

V(R =
@+ 1)

[(1 -RPC,2R@B-1)C, +ﬁzéﬂ]: )

where C,, the covariance of 7, and t:, is estimated by

> : )

k,pes Ttkp T[k Kp

6 -y Sululy

In(7), e, =2, - i, and A, =Cov{f,[)=m -m.=,.
Similar derivations hold for the corresponding domain
estimators.

4. EXPERIMENTS

4.1 Details of Simulation Studies

In all the simulation experiments, X = 1,000 samples
were drawn from a population with simple random
sampling without replacement (SRSWOR). Monte Carlo
means and standard errors of the estimates were calculated
from the simulated samples. The design effect for an
estimator {,, was calculated as a ratio of estimated

: e ated, Jaho O
variances: eff (t[ d},.) =V, (r( a‘}i)l Ve (t( d]i), where

V. lj;,.) denotes the Monte Carlo variance estimate of
the Hgl‘ estimator (Lehtonen and Pahkinen 1996). We
measured.the overall accuracy of domain estimates by the
mean absolute relative domain error over D domains and K

samples s;:

..!. _1.. ZK: lool-t("P)f(sf) - t(dp)il
D p=1 K F=1 t(dp),.

) In the GREG estimates (2), the variance was a constant
o= 0%, which cancelled out. For LGREG, domain
frequencies were estimated by (5) and variances by (7). For
GREG and HT, see Sirndal e al (1992, p. 401).
Confidence intervals for the frequencies were computed as
if the class indicators were independent. At the nominal
significance level of 95%, an acceptable coverage rate lies
in [93.65%, 96.35%] for K = 1,000 simulated sampies.

'MARDE(;) =

4.2 An Experiment With Simulated Data

To compare LGREG with GREG, we simulated a data
set, in which the auxiliary variable X was a continuous
random variable uniformly distributed in (-3,3). The
variable of interest, ¥, representing three classes followed
distribution (1) specified by x,B, =0, x/ B, =3X,- 1, and
x, B, = -2X, for N = 10,000 elements (k=1,2,..,N). A
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thousand samples of size n = 1,000 were independently
drawn with SRSWOR. X, and X} were used as auxiliary
variables. All the estimators appeared unbiased (Table 1).
The variance estimates had empirical bias smaller than 3%
and standard deviation smaller than 5%.

Table 1

The design effects (Deff) for class frequency estimators and the
empirical coverage rates (CR) (%) of 95% confidence intervals for

classes 1=1,2,3
Deff CR
Method - y - - ~ -
r] t2 t3 tl t2 t3
HT 1 1 1 952 953 94.7
GREG 0.93 0.55 0.57 95.0 94.3 95.6

LGREG 0.89 0.45 0.50 949 937 95.3

The best results were obtained by LGREG, probably due
to the fact that the proportional frequencies of classes varied
greatly over the range of the auxiliary variable. The
probability of each class was such a function of the
continuous auxiliary variable that a linear regression model
did not fit the data well.

4.3 An Experiment With the Finnish Labour Force
Survey Data

4.3.1 Constructed Population

We studied the estimation of the unemployment rate
using the Finnish Labour Force Survey (LFS) data of three
consecutive months of the year 1994. The constructed
population consisted of 33,329 individuals. From the
Population Register we obtained, for each population
member, age class (15-24, 25-34, 35-44, 45-54, and 55-64
years), sex and region (three areas). A jobseeker indicator
was obtained from the register maintained by Ministry of
Labour showing which individuals were registered as
unemployed jobseekers. The time lag in this administrative
data source is about two weeks. It can thus be expected that
the proportion of persons with changes in the actual labour
market status is small within this short time interval. It
should be noticed that the register-based jobseeker status is
defined differently from the employment status measured in
the Labour Force Survey. The survey measurement is based
on a standard International Labour Office (ILO) definition.
All these auxiliary data were merged with the survey data
on individual basis.

The nonresponse rate varied by jobseeker status so that
among registered jobseekers the rate was 11.4% whereas for
the others the rate was 7.6%. The probability of nonresponse
was modeled by a logistic ANOVA model and the ML
estimates of nonresponse rates (ranging from 2.9% t0 22.8%)
were used as a nonresponse model in simulations.

For simulation experiments, we constructed an artificial
population consisting of N = 30,835 persons. Employment
status was defined by three classes: “employed”,
“unemployed”, and *“not in labour force™ with population
frequencies r, =17,373, 1,=4,433, and ¢, =9,029,
respectively. The unemployment rate was defined by
R=41(f,+ 1,) =20.33%. As domains we used the cells in
the crosstabulation of age classes, sex, and the register-
based unemployment status.

From the artificial population, X = 1,000 independent
random samples of size n = 1,000 persons were drawn with
simple random sampling without replacement. In each
sample, nonresponse was simulated by the nenresponse
model fitted to the original population. The response
probabilities were then estimated from each sample by
logistic regression with the same ANOVA model as in the
nonresponse model. We multiplied each probability m, by
the estimated response probability.

Three models were used to compare LGREG with
GREG. The components of x, were dummies correspond-
ing to age (5 classes), sex, region (3 areas) and jobseeker
sfatus, In incomplete poststratification, or raking, a main
effects ANOV A model was based on classified auxiliary
variables. We compared models with and without the
jobseeker indicator. The third model also included a fourth-
order polynomial of age.

43.2 Results

Incorporating no auxiliary information, HT estimators
had usually larger variance than the generalized regression
estimators (Table 2). Both generalized regression estimators
based on a raking model with age, sex, and region yielded
some improvement over the HT estimates. Much better
results were obtained by models including the jobseeker
indicator, which correlates more strongly (» = 0.83) with
the ILO unemployment indicator than the other auxiliary
variables. Thus these auxiliary data improve the efficiency
of estimation (¢f. Djerf 1997).

Table 2
Properties of unemployment rate estimates (}@(%)) for the raking
model (R) and the model including age poiynomial (P), with (E)
or without (N) the jobseeker indicator. SD denotes the standard
deviation and CR (%) denotes the coverage rate of 95%

confidence intervals
Model Method R Biass SD  Deff CR MARDE
HT 2032 -00081 1461 1 957  35.28
RN  GREG 2030 -00262 1450 0995 953 4603
RN  LGREG 2031 -00229 1454 0995 953 4593
RE GREG 2030 -00244 0895 0612 960 3574
RE  LGREG 2029 -00419 0301 0617 948 3480
PE  GREG 2030 -00259 0.887 0607 956 3541
PE  LGREG 2029 -00421 0896 0613 950 3476
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Table 3
Mean absolute relative domain errors (MARDE) and mean
coverage rates (CR) (%) of 95% confidence intervals
for estimated class frequencies in domains with true frequency
L (i =1, 2, 3) (a) smaller than 100, and (b} at least 100,
The model included the age polynomial

MARDE CR

Method —= ry - - = r
fan_ Lap  fay tan fap fay
@) GREG 9692 6736 12195 882 778 846
LGREG 8028 6720 10405 839 765 517

(b) GREG 695 1231 1435 94 859 93.7

LGREG 6.88 1234 1429 919 854 93.3

The differences between GREG and LGREG were small
at the population level (Table 2). LGREG was never
inferior to GREG. Domain totals, especially in small
domains, were more accurately estimated by LGREG than
by GREG (Table 3). When the model included the age as a
continuous auxiliary variable, the standard deviation of the
unemployment rate estimate was smaller for LGREG than
for GREG in 19 of 20 domains. Unfortunately, the
confidence intervals obtained by LGREG were often too
narrow due to small variance estimates (Table 3).

5. SUMMARY

We introduce a new approach to the model-assisted
estimation of population class frequencies of a discrete
response variable in survey sampling. Our logistic general-
ized regression estimation (LGREG) is based on a multino-
mial logistic model, which might be more realistic for class
indicators than the linear model normally used in general-
ized regression estimation (GREG). LGREG and GREG
estimators yield identical results for complete poststratifi-
cation, but differ for other models such as raking. As
compared with GREG, LGREG usually requires more
auxiliary information, not only the auxiliary totals. Never-
theless, LGREG appears preferable to GREG when the
class probabilities vary greatly over the range of continuous
auxiliary variables and when we need estimates for small

55

domains, particularly in the presence of small class
frequencies.
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Confidence Intervals for Domain Parameters When
the Domain Sample Size is Random

ROBERT J. CASADY, ALAN H. DORFMAN and SUOJIN WANG'

" ABSTRACT

Let A be a population domain of interest and assume that the elements of 4 cannot be identified on the sampling frame and
the number of elements in A4 is not known. Further assume that a sample of fixed size (say r) is selected from the entire
frame and the resulting domain sample size (say n, } is random. The problem addressed is the construction of a confidence
interval for a domain parameter such as the domain aggregate 7,= ¥, ,x,. The usual approach to this problem is to redefine
x,, by setting x; = 0 if i ¢ A. Thus, the construction of a confidence interval for the domain total is recast as the construction
of a confidence interval for a population total which can be addressed (at least asymptotically in #) by normal theory. As
an altemative, we condition on n, and construct confidence intervals which have approximately nominal coverage under
certain assumptions regarding the domain population. We evaluate the new approach empirically using artificial
populations and data from the Bureau of Labor Statistics (BLS) Occupational Compensation Survey.

KEY WORDS: Bayes method; Conditioning; Establishment surveys; Simple random sampling; Stratification; Survey

methods.

1. INTRODUCTION

In sampling from a finite population, we often are
interested in the estimation of totals, means, or other
quantities, for parts of that population, usually referred to as
‘domains. Such domains are not explicitly listed in the
frame, the number of items that will occur in the survey is
not known in advance, and often enough, we da not even
know the number of their elements in the population. For
example, we might sample schoolchildren for certain
. medical problems, and then wish to know the mean blood
pressure of those children who are underweight. The class
of underweight children would constitute a domain. The
only information we have as to whether or not a child is
underweight is likely to be among the sampled children; if
so, then this would be a case where the domain is not
explicitly listed on the frame.

An essential part of the inference process is the estimation
of the precision of our estimators; this is typically given by
an estimated standard deviation, coefficient of variation, or
confidence interval. The notion of a valid confidence
interval underlies whatever measure of precision we use. All
confidence intervals have, by construction, a stated
“nominal” confidence level. A valid confidence interval is
a confidence interval with actual coverage matching the
nominal coverage. The actual coverage may be determined
theoretically or by empirical work mimicking the practical
circumstances in which the confidence interval would be
used. If a standard deviation is not such as to giveriseto a
valid confidence interval, then the standard deviation needs
to be regarded as misleading.

In the case of estimates for domains, confidence intervals
constructed along traditional lines can lead to serious under-
coverage, a fact not always appreciated in the literature.
We refer to this as the domain problem. The present paper
addresses this problem by a somewhat complex methodolo-
gy involving Bayesian ideas, which, however, leads to a
rather simple practical solution, improving on current
methodology. The main change in method lies in replacing
the standard normal statistic used in the construction of
confidence intervals, with a Student’s #-statistic having
degrees of freedom that depend on the number and
configuration of the domain itéms in the sample.

We shall focus on domain totals and domain means for the
two common cases of simple random sampling and stratified
random sampling. In the case of simple random sampling, it
tumns out that standard methods are satisfactory for the mean;
however, for the total, coverage can be lower than nominal
but not usually worrisome. For stratified random sampling,
confidence intervals for both the mean and the total pose
serious difficulties with regard to coverage level. Inthis case,
the new methodology is augmented by use of a well known
approximation due to Satterthwaite (1946). Alternate
approaches to ours, also using this approximation, may be
found in Johnson and Rust (1993) and Kott (1994).

An outline of the paper is as follows: In Section 2, to
introduce ideas, we consider the case of the total in simple
random sampling, using it to ilHustrate the standard -
approach for domain estimation, the coverage problem to
which this gives rise, and the approach here taken to rectify
the difficulty. Section 3 describes the extension to stratified
random sampling. Section 4 states our conclusions.

! Robert J. Casady and Alan H. Dorfman, U.S. Bureau of Labor Statistics, 2 Massachusetts Ave. N.E., Washington D.C., 20212-0001, U.5.A.; Sugjin Wang,
Department of Statistics, Texas A&M University, College Station, TX 77843, US.A.
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2. THE CASE OF SIMPLE RANDOM SAMPLING

2.1 Standard Method

The standard approach to domain estimation is well
described in S#érndal, Swensson, and Wretman (1992);
Sections 3.3, 5.8, and Chapter 10) (henceforth SSW). Their
approach is general. Here we paraphrase it for the case of
simple random sampling, and, by mild extension, for
stratified random sampling as well, and focus on the
domain total.

Let x; be the value of the characteristic of interest for the
i-th (i = 1,2, ..., N) element of the population and let 4 be
a domain of interest. We shalt consider only the case where
the elements of A cannot be identified on the frame and the
number N, of elements in 4 is not known; the case where N,
is known is fully treated in SSW. It is assumed that any
element of 4 included in a sample can be identified. The
problem is to construct a confidence interval for the domain
total, T, = E,.e (X based on a sample of n elements selected
from the entire frame.

Explicitly (as in SSW, Section 3.3) or implicitly (as in
SSW, Section 10.3) the standard approach to this problem
is to redefine x,, by setting x, = 0 if i¢4, which forces the
population total T = Eﬁlx,. to be equal to 7,. Thus, the
construction of a confidence interval for the domain total is
recast as the construction of a confidence interval for a
population total. In what follows it is assurned that the x;s
have been redefined as above. We shall also assume, here
and throughout this paper, that » is sufficiently large and
n/N sufficiently small that second order terms can be
ignored. Define the additional population parameters,

X = TIN = population mean, .

§% =YV, (x,- X)*/N = population variance, and

p, =N, /N = proportion of population in 4.

Then

(1) Ta=im) ¥ %, =Y, x/n=T,/Ns?=
Y&, =xY/(n-1), and p, = n /n (where n, is the
number of sample elements in A) are unbiased for the
corresponding population parameters,

@ Efy) =1,
() var(T,) = N?5%n,
@ yn(f, - T, NS)—NQO, 1), and
(5) s? is consistent for S

Tt follows that n (T, - T, }/(Ns) — N(0, 1), so, when
n is “sufficiently large”, appropriate values from the normal
distribution can be used to construct confidence intervals
for 7,, as noted by SSW, p. 391.

The proportion of the populationin 4 € is 1 - p, and
x;=0 for ie4°; therefore, when p, is small and the

values of the x,’s for i€ A are concentrated away from zero,
the convergence in distribution in (4) can be slow.

Consequently, the distribution of ﬁ (TA - T,)/Ns can
deviate from normal even for what are usually considered
to be moderate to large values of n. The simulation study
in Section 2.5 illustrates this.

For the case of stratified random sampling, confidence
interval coverage for domain quantities using standard
methods can be poor. Dorfman and Valliant (1993) noted
the problem in their study of wage distributions for domains
consisting of workers in specific occupational groups.
Preliminary empirical work by the authors indicated that
supposed 95% confidence intervals for total workers and
total wages for occupation based domains typically
provided only 75% to 85% coverage even for a large total
sample size (n =353 establishments). - These results are
verified as part of the empirical work described in
Section 3. Furthermore, their work indicated that the
distribution of T 4~ T, was strongly dependent on the
realized value of »n,, which suggested that some type of
“conditional” confidence interval should be considered. It
seems desirable to establish methodology for the construc-
tion of conditional (on »n, or equivalently 5,) confidence
intervals for T, which provide nominal, or near nominal,
coverage regardless of the realized value of the domain
sample size. Inference conditional on sample size is
discussed in SSW, Section 10.4, but only for the case of
known N, ; we are concerned throughout this paper with
the case of unknown N,.

2.2 Definitions and Notation

We define the following parameters and estimators:

Domain parameters:

M4 =T /N, = domain mean,

o2 =Y., (x,-u,2IN, = variance of population ele-

ments in A.
Domain estimators:

N A= ﬁA N,

f4=Y4x,/n, =T/N, (only defined for n, > 1), and

84 = ¥4 (x,- 1)*(n, - 1) (only defined for n, > 2).
In what follows it is understood that n, > 2 (or equivalently
B, = 2/n) unless specifically stated otherwise. At n, =1 or
0, it is preferable to supply an “insufficient information”

tag, rather than attempt inference. The relationships given
below follow directly from the definitions:

Ty=Np,p and T, =Np fi,,

)?=pApA and x =5, [,

§%=p,(1-pOHg + PO
and

np,-1 ,

n . " 2
st =P, (1 - P)a + — 8 (1)

n-1
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Also, it is straightforward to verify that-
WriN)T, - 7)) =van,(6, - 2)+ fBaos2. @

where Z=fnp, (i, - p /o, Thus, conditionally on
B4, 7T, isbiased for T, and if, for example, we assume an
underlying normality, and standardize (ﬁIN )1¢3 4~ T,) by
the corresponding conditional variance, we will get a
non-central f-distribution with unknown non-centrality
parameter proportional to \/r_zp 4(B4 - py) providing little
basis for (conditional) sound inference. This is the problem
which the discussions in the next sections attempt to
address.

We remark that in estimating the mean p , by fi , the
bias is zero, and the problem of the preceding paragraph
does not arise. This is the reason that, in simple random
sampling, standard inference for means is sound, at least
when the domain variates are normally distributed.

2.3 General Methodology for Confidence Intervals -

Let 8 = (T, - T sz, where s% is an estimator (to be
specified) of the (conditional or unconditional) variance of
the total. Assume that thenform of the conditional {on §,)
distribution function of 8, say H(-|p‘A;pA, [TPN oi), is
known where p, 4, and o, represent unknown parame-
ters. In order to construct a conditional equal tailed
(1 - o) x 100% confidence interval (CI } for T,, we define
an upper critical value

¢, =¢ (. pyp,) =~ inf{x| Hlx|5,ip,)2 al2} =
-H0/2,,:p,)

where p, is considered fixed and the dependence on p,
and of, is temporarily suppressed; a lower critical value, say
¢,, 15 defined in a similar manner. A conditional, equal
tailed (1 -a)x100% CI for T, is then given by
CI(1 - a) = (8, u), where

u="T

PR’ and { = f'A * €87, &)
At this point the obvious practical problem is that the
critical values ¢, and ¢, depend not only on g, but also on
the unknown parameter p . One approach to this problem
is to take a Bayesian tack and assume the parameter p, is
the realization of a random variable. Adjusting the notation
to reflect the assumption that p, is stochastic, we replace
H(x|p,,p,} by H(x|p,, p,) and have that

Pe{d < x| 5} = F(X| 5,)
1
h(,}

f H{x{ B2/ (Ba |pA)g (Pﬁ)dpm G

. the x, are distributed N(u,,q2).
' assumption may not be met.. Nonetheless, it leads to
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where 4(5) = {f(p,|lp,)g(p,)dp, and g(p,) is the
density of p,. It should be noted that as a consequence of
our sampling scheme the distribution of np,, conditional
on p,, is Binomial (n,p,) so that f(p,|p,) is known.
Under the Bayesian approach, the critical values are ¢, =
¢, (@p)=-F ' ar2|p,) and ¢, =¢, (0, p,) =~ F!
(1- a/2|p,) so the upper and lower limits for a
conditional (1 - a) x 100% Clfor T, are

u="T, + ¢, sy and €= T+ ¢ 8, (5)

For the purposes of our current research, we assume that the
prior distribution g(p,) is N( K, -,G;A) with M, and ":,.
to be specified; with the understanding that o'; is
sufficiently small that p, lies between 0 and 1 with near
certainty. The normality assumption is made for mathe-
matical convenience. It also captures notions we may have
of degrees of closeness to, and symmetry about, p o For an
empirical Bayes approach, we use Hp, = P,; we consider
several possible alternatives for o> discussed in detail
below. Our experience indicates “that the normality
assumption is not crucial; rather, it is primarily a matter of
convenience.

2.4 Confidence Intervals Under Normal
Assumptions

To proceed further we assume that within the domain 4
In practice, this

suggested modifications that will not at any rate give lower
coverage of confidence intervals than the standard
approach. Combining this assumption with earlier results,
in particular equation (2), and ignoring lower order terms,
we have
(@ Wn(,-T)in|p,.p,] isdistributed
NGnp, (B~ ) B4%%),
N U PP
(b) (BB, - 1)—2|P,4’1""4.I is distributed ¢“(np, - 1), and
Oy
(c) the conditional random variable in (b) is stochastically
independent of the conditional random variable in (a).
Consider 8, = (T, - T,)/ (N8B, //n), which utilizes
the conditional variance of T, as the standardizing term. It
follows immediately from (a), (b} and (c) that, conditional
on (p,,p,) the random variable 0, is distributed as a
non-central f with ng, - 1 =n, - 1 degrees of freedom and
non-centrality parameter

A =ﬁ’yA(ﬁA -PA)/J[S_A; ’
with

Yy =Hy00,
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Thus, we have specified the conditional distribution
function H(*|5,,p,) of 8,. As f(5,|p,) and g(p,)
have been previously specified, it follows that F(-| p,) in
(4) is well-defined although extremely cumbersome to
calculate. The dependence on p, and o?, through v 40
should be noted.

Although F(-|p,) as given above can be used to
determine the critical values, they are extremely difficult to
calculate. A relatively simple approach, given in the next
paragraph, provides a close approximation to the critical
values. We have verified the closeness of the approxi-
mation by computing the exact values for selected cases
using large scale simulations.

Adoption of a locally uniform prior onr p, leads to the
approximate posterior distribution p, ~ N(p o var(p,))
and we could approximate var(p A) by p,(1-p, )ln We
adopt the slightly more flexible prior p, ~ N(qu, U ) and
empirically choose p =p,, with several possnblhtles for
o, that will be specified below. It follows from Appendix
A that (A} A,] is distributed appr0x1mately as a normal
with mean zero and variance }'A(l -p /(1 +vy,), where

- . 2
Ve =B,(1-Py)no, .

Then, from the result in Appendix B, conditional on g,

(TA B TA)

is distributed as a central ¢ with n, - 1 degrees of freedom.
Let ¢ a2, 1 be the (1 - a/2)100% percentile of this
distribution. The upper confidence limit , defined in (5),
is given (approximately) by

U= f‘A + NﬁA‘/mx
((Ti(l _ﬁA) ML WA)/(I * wA))%tl-aﬂ,nA—l' (6)

As &% is conditionally unbiased for ci and pilf, - Gjln,,
is condltlonally unbiased for pi, we use 'ﬁ
(@ 4= cA/ n,)/8, to estimate YA Substituting ?A for v in
{(6) vields

is defined in (1).

+ (Nstyn) x
. A2 “
1+ &;%‘J /(1 + ‘VA)] ! artny -1 ™

s

where 5?2

It remains to choose y,. We note that @
decreasing as y, increases and

is strictly

a-T, + 25,

A l-0/2,n, -1
Vn

= as becomes small,
A

1%
o[ 1 o
=Ly T -5 Hwrzn, 1 S TOF Y =1,
R .
and
" p, &
i~ A+& i A] foon -1 =8
‘/E s -0/2,n,- 3

as y, becomes large. ®

In each case the lower critical value can be dealt with in an
analogous manner resulting in three competing confidence
intervals; namely, CI (1 - a) = (5,., “),i=1,2,3, with 5,.
defined similarly to &, in (8) with 1 argng -1 replaced by
Yoz, -1 The competing confidence intervals are labeled in
order of decreasing length.

The first case is equivalent to assuming that c is large
relative to var (p ) and leads to using the usual
unconditional variance but with degrees of freedom equal
to n, >, 1. In most practical problems this seems reasonable
since o, is an unknown constant and var(5,) is 0(p,/n).
The second interval corresponds to adoption of a normal
prior as noted above, with GPA =p,(1-p,)In. The last
confidence interval is based on the assumption that p, is
essentially degenerate at j,.

2.5 Empirical Study for SRS

We compared the several confidence intervals of
Section 2.4 in a small empirical study, using artificial
populations, for which the domain variable was normal. In
all cases the population size V was 1,000, and the sample
size n was 100 or 300. The parameters p, and vy, varied
from population to population. Letting M, be the number
of runs with »n, > 2, we allowed the run size M to vary to
give M, =10,000. Table 1 gives coverage results. CI,
represents the confidence interval based on the standard
normal methodology. The results for CI, closely approxi-
mated the results for CI, and are excluded. The value of M
is included to indicate how many trials fell into the
“insufficient information” pile, at a given setting of the
parameters. Several conclusions seem warranted:

1. Standard confidence intervals using the usual variance
estimate and normal quantiles can give low coverage.
This occurs for several values of p, when vy, =1/2 or
Y=2, however, the under-coverage is not (oo severe
if the domain variable is normal. The case where
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Y, =2 or takes even larger values is probably more
likely in practice. Thus if the domain variable is normal,
the use of standard confidence intervals under simple
random sampling case is not particularly worrisorme.

2. The strictly conditional intervals (i.e., CI,) using the
conditional variance can give abominable coverage,
when v, is large. That is, confidence intervals based on
“large” values of y, gave very poor.results.

3. The use of the standard variance estimate but replacing
the standard normal quantile with a #-quantile having
degrees of freedom based on the number of sample units
in the domain (i.e., CI, ) gives approximately nominal or
conservative coverage regardless of the value of vy A.

Table 1
Coverage of 95% Confidence Intervals for Domain Total
for Artificial Populations with
Domain Variate Normally Distnibuted*

Coverage
P, n M Cl, CI, Cl,
y=112

.0 100 38774 100.0 100.0 91.2
300 11773 933 100.0 83.2

.02 100 16327 91.t 994 95.0
300 10078 88.6 95.5 93.9

05 100 10303 88.7 97.8 93.5
300 10000 923 94.4 925

10 100 10001 %09 94.8 925
300 10000 94.0 95.0 923

y=2
.01 100 37749 999 100.0 835

300 11740 94.4 100.0 89.1

02 190 16348 99.0 100.0 88.4
300 10075 91.4 9895 74.7
05 100 10312 90.5 99.5 176
300 10000 93.8 95.8 66.6

A0 100 10000 91.7 86.5 67.9
300 10000 | 940 952 65.0

* See Equation (8) and accompanying text for definition of C1,
and CI,. ClI, is the standard normal confidence interval.

As a minor observation on the results, we note the
counter-intuitive increases in coverage for smaller p, and
n. We believe this is due to the fact that, at very small
values of p, and n, j, is constrained to be positive, and so
cannot deviate much below p,. Were intervals calculable
for n, =0, there would be a serious drop in coverage in
these cases. Note that the coverage rises unexpectedly only
where M is large.

3. THE CASE OF STRATIFIED RANDOM
SAMPLING
3.1 Definitions and Notation

Assume there are X strata and, where appropriate, terms
previously defined have corresponding stratum level
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definitions. For example, n, is the sample size and n,,
is the number of sample elements in A for the 4-th stratum.
Thus, a natural estimator for the domain total

Ty=Lket Liea®s = Lot NiBax M ar 18
Ty= Eksﬂl Ty = Eksa, NeBar By

where 8, = nyilny, L, = 1L ]xk,lnAkandB ={eln, 21
and | <k < K}. As g, = 0 for keB,, itis straightforward
to verify that

E[(TA -T) |ﬁA’pA] =3 N(Bg~ Pl =H, (9)

and

A 2,2 2
var[(TA -T) |ﬁA,P,,] = Ekea, Ny BaiSard Mgy =
2.2 2 =2
Ekegl N Byl n = 8y,

whete f, = [By1 By BuglsP 4 =[P4 Pgy - Pyi). Thus,
as in the simple random sampling case, there is a

conditional bias fi ;, which needs to be taken into account.

3.2 A Methodology for Confidence Intervals

The general methodology for confidence intervals of
Section 2.3 for simple random sampling holds here as well.
One need only reinterpret scalars as vectors; for example,
replace p, by p,=(P,, . B,). In particular,-
H(x{p,.p,)=Pr| 0 < x|pp,) will be the conditional
distribution function of 8 = (7, - 7,)/&,, where 6 is a
re-scaling factor to be speciﬁed.

Let B, ={k|n, 22 and 1 <k <K} and, for keB,,
define 6%, = Tif(xb. -,)%(n,, - 1). Under normality,
(n,, - 1085165 ~ X2 (n,- 1), so if (d,|keB,} are
non-negative constants with Y, 5 d, >0, then by the usual
Satterthwaite (1946) two moment approximation, the
conditional random variable

[(IIC)EJ:EB, dy (g - l)(ﬁiklo.ik) |1?A’PA]
is distributed approximately as a x> (v), where
€= EkEBz dy (- 1)/2.&582 dny - 1)
and
V= (Eke.ﬂz dylny, - ]))Z/EkeBz di (g~ 1)

This suggests that we restrict our attention to expressions of
the general form -

o2 1, 2
G4 =Zkeﬂ, d(ng - D8 Ioy,
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with choice of the dk to be specified. Note that when
B, =B, and d, NkPAkUAk/nk(nAk 1), 62 =8, = Lres,
dk(",u 1)6 « 64 1s an unbiased estimator for the
conditional variance csi However, as in the simple random
sampling case, this estimator will tend to be too small. We
use the more general expression to develop a family of
t-statistics when we “uncondition” on p . Each of these
will involve unknown parameters, and, as in the simple
random sampling case (transition of equation (6) to
equation (7)), estimation of these unknowns will be
necessary. Thus the net result will be several rival “near
t-statistics” which we may then compare empirically.
Because the samples are selected mdependently from
each stratum we have f(f,|p,) = I'lk 1ol Byl D) and,
as a consequence of our within straturri sampling scheme,

n,p,, has a binomial distribution B(n,,p,,). We assume

that the { pA (| 1<k <K} are jointly independent so
g(p,) = I g.(p,,) which implies

F(B P e(py= Hk=l FAG I INT-AC Y

and
h(B) =i [flarl Pa)glPar)dpy

In what fo]lows, we assume that the prior distributionof p,,
is N (|.|‘p . cr ) and for the empirical Bayes approach, we
use u, = p .« and, analogously to the case of simple
random samplmg, we define

. 2
Vi =Bl - By)mo, .-

It is straightforward to extend the result in Appendix A
to the case of stratified random sampling and it then follows
that, for [i, deﬁned by 9, [[,/6,1p,] is dlstnbuted
N(O, var (i, | £ ,)/83), where “var(i, | B ,) = Ve Ne
WaeBa (1 - B/ (1 + ). Using the result in Appendlx
B, it follows that, conditional on § 4» the random variable

52 (TA— TA)/JVM(ﬁAlﬁA)*'Gj _
\/aﬁfcv
('f'A - TA}/\/var(ﬁA B+ cﬁ
| \Izkeal d(nyy - 1)(6ik/0§k)/2k531 ding,-1)

is distributed approximately as a central ¢ with v degrees of
freedom. .
Letting © = var(fi, | ,) + &5, with
2 2,2
Yax = Mael O gy

and assuming the y,, are near zero we have

2

Nlp,o
@=Y A A -5+ D).
ke, "

Thus, the upper bound on the CT would be (approximately)

2 2
‘.4 . ‘/Ekeaz dy(ny, = D84/ 040 oy
JZ PCACTERY)

where ¢, stands for the critical values of the ¢, distribution.
Unfortunately the bound depends not only on cur ch01ce of
the d,, but also on the unknown parameters p,, and o
It is mot hard to show that v < ¥ s (n,, - 1) = v, and,
if we set d, =1 (or any constant for that matter) then
v=v_ .. Wereferto v specifically as the unweighted
degrees of freedom. In this case the upper bound on the CI

would be

(10)

u=

T 32
Jzkeﬂz dylng, = 1) (84,1 04s) %

Vzkeaz("u‘ 1 -

Another approach is to attempt to finesse the problem of
estimating © (at least when B, = B,) by a judicious choice
of the 4,. To that end let us assume that B, = B, and let

u=TA+

NZs o
d, - & ParCai (Tik(l

“Bg)t D
nk(nAk- 1) ak

$0 that ):ksa d,(n,, - 1) = © and © cancels out in (10). We

then have

B+ D,

where v, is the degrees of freedom associated with this
second choice of the d4,. More generally (ie., when
B, # B,), we have

Nk Py adk
\ Ekesz W =B+ 1)
S &
u= TA + ®”rvl.
Ny p"x "”‘ 2 .
\ EkeBz n_k(TAk(] Byt 1)

In any event, we are still faced with the problem of
estimating the population parameters and we have the
additional problem of estimating the degrees of freedom.
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A third possnblhtg which we have already mentioned, is
to let d N,‘ pAkoMlnk(nM— 1) so that when B, = B,,
6 = O'A E*EB d(n,, - 1)6MIGM is a condltlonally
unbnased estimator for 3. In this case we have

7. 3
T \/Zkea N B8yl n, o

\/Ekes Nk pkoﬂklnk

where v, is the degrees of freedom associated with this
third choice of the ¢,. As in the second case, we are faced

with the problem of estimating the populatlon parameters .

and the degrees of freedom.

Now, it should be noted that if we estimate o> i With BA k
for k€ B, and let ® be a yet to be specified estimator of ®
then the (es'umaled}‘l upper bounds above are u = T +
& fyoor U =7, +@ Ay and u="T, + 6" 4, respecuvely
The degrees of freedom are estimated by substituting
estimates of the population parameters into the two
respective choices of the d,. Both v, and v, are smaller
than v__ . so, for any reahzed value of ®, the confidence
interval using v___ will be the shortest. There is no general
relationship between the sizes of ¥, and v,. Empirical
evidence indicates that there is little to choose between the
second and third approach.

Addressing the problem of estimating ®, we can write

0= % N Laluirll - ) o)/ e
keB,-B,

k§ NkzﬁAk{Pik(l - ﬁAk) * C‘ik)/nk'

For k€ B, - B, the estimator Ly "¢+ 15 not defined, however,
it 1s stralghtforwa:d to verlfy that (1 - PAk)E[ﬂAkinAk] <
o5+ (- B,,) s ElQ%,|n,,). Tt follows that

, 2 . 2
s: = kg Ny By (1 = By )0l ny +
1

Y N BBl + 1iny = 1iny)in,
keB,

will tend to underestimate ®, and

2 2. 24 A yal
5= 2 NkpAknAk/nk+§ NeB,, (1 ‘Pu)ﬂu/"k*
EB)

:'«5}3‘-.!:12
Y N B8l + Uin - Un,)in,
keB,

will tend to overestimate @. Clearly, sf < sf with equality
only when B, = B,.

It can also be verified that in the case of stratified
sampling, the standard variance estimator for estimated
population totals is

63
2. 2.2 2 4 - 2
Swa = 2 Nicsy /"k =Y Ny Byl 'PAk)pAk/(”k -1
keB, keB,

+ YNBSS - Un ) (n - 1),
keB,

This looks like a satisfactory estimator of @, if the », are -
not small.

These results imply that Cls of the form (T 100 Sy g, )
will provide the highest level of coverage; but ClIs of the
form (T *Seatian, - } andevenperhaps (T 5.4l -ar2, g, )
have obvious computatlonal advantages. Several of these
competing forms of Cl are evaluated empirically in Section
3.3. Theseresultscaneasilybeextended to ratio estimators by

the standard linearization approach.

3.3 Empirical Investigation for Stratified Random
Sampling: the BLS Wage Data

With a view toimproving estimation of precision on wage
data produced by the U.S. Bureau of Labor Statlst:cs we
investigated coverage and interval length in two simulation
studies on populations constructed from a test sample of the
Occupational Compensation Survey Program (OCSP)
conducted in 1991. The OCSP consisted of establishment
surveys in several metropolitan areas, aimed at estimating
wages levels for a select group of occupations. The surveys
were carried out by stratified simple random sampling, with
establishments stratified by employment size and industrial
classification.

One population (the “Small Population™) took the test
sample itself as the population, with six non-certainty strata,
and one certainty stratum of 12 establishinents. Five hundred
stratified random samples were taken from this population
at sizes n = 36 and 60, corresponding to the choices n, = 4
and n, =8, reflecting relative sample sizes of sampling
from the original population. The secend population (the
“Large Population”) was constructed by expanding the
sample data through replication (by simple random sampling
with replacement, within each Small Population stratum) of
establishments to achieve a population the size of the original
population; again there were six noncertainty and one certain-
ty strata; foreach stratum sample sizes were the same as inthe
actual sample. Domains are defined by the different occupa-
tions of interest; only a fraction of establishments have
workers in a particular occupation, and lie in the cerrespon-
ding domain. Table 2 gives the number of establishments
having workers in the selected occupations for the small
population.

In both cases sampling was without replacement, so
finite population correction factors were included (as
appropriate) in the construction of the Cls. Also, the study
was limited to a concern with 95% coverage.
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Table 2 3) Two occupations (1122, 4021) yield seriously low
Number of Establishments in Given Domain {Occupation), coverage for totals even with the improved procedures.
by Stratum for Small Population Investigation of these particular occupations suggests
stratum a strong viclation of the normality assumption. In 4021,
Occupation 1 2 3 4 5 6 7 |toal for example, two units in stratum $ have a number of
‘:?i: g ; :: 'g : 12 ; Z: workers, and hence total wages, an order of magnitude
1122 0 3 B 13 18 12 6 56 higher than the other establishments in this stratum and
3180 0 11 5 25 0 4 5 80 indeed in the population. Furthermore, the wage rate of
2911 L0 3 14 2 13 17 7 56 these two outliers is markedly lower than the great bulk
1142 2 8 15 9 15 19 9 7 of establishments: with just these two excluded from
1180 17 20 5 61 31 3 1 138 the population, the overall population average wage
1403 12 16 22 28 25 27 9 13% would be $9.68/hour; with them in, it is $8.28. Since
All Estabs 35 35 33 136 66 36 12 35 there are 66 establishments in stratum 5, it is easy for
. . lishments to escape being in a sample of
Small Population: Table 3 gives coverage and median tlllese two establis s ape g1 P
o . - size 8; the consequence is a serious overestimate of the
relative interval length for total wages, at two sample sizes n, = 4 .
. mean wage or underestimate of total wage. At the
and n, =8, for 8 occupations, and three methods of confi- . . .
3 . , . same time, wages for the establishments that are in the
dence interval construction: the standard variance estimator, . : .
2 . \ . sample are relatively homogeneous, so the variance
S4q» With the standard normal z-quantile, the unweighted . .
s ) estimate will tend to be too low. The presence of
degrees of freedom v__, and the weighted degrees of . . h .
, max ; . several smaller establishments in the domain contribute
freedom v,. Occupations are ordered by increasing values .
L . to enlarging the degrees of freedom, and so the
of the average value, over runs, of the unweighted degrees - . : .
t-adjustment is unable to compensate fully. It is hard to
of freedom. We note; .
. _ . see how to guard against such a problem short of
1) Almost u.mversally, coverage using the standard vari- having prior information, and allotting such outliers to
ance estimator and the standard normal quantiles a certainty stratum. Even so, the adjusted intervals are
(infinite df'} is poor. a significant improvement on the naive normal
2) Coverage for the other interval types is far more distribution based interval.
satisfactory. In general, the coverage is near the nominal Interval lengths are taken relative to 2xz ;. = 4 times
95%, or slightly conservative, for weighted degrees of the root mean square error of 7, calculated over runs.
freedom; as expected, intervals based on unweighted We report the median of these standardized lengths
degrees of freedom tend to yield coverage a few points (across runs). When the distribution of TA is actually
below those based on weighted degrees of freedom. normal, the median length is close to 1.
Table 3
Estimated degrees of freedom, coverage, and relative median length of Cls for total wages of workers in occupation,
for the small population
Four Sample Establishments Per Stratum Eight Sample Establishments Per Stratom
Occupation 4021 1141 1122 3180 2911 1142 1180 1403 1141 4021 1122 3180 2911 1142 1180 1403
df = v, 1.5 16 1.6 20 23 28 43 6.1 37 38 39 56 60 80 123 1646
df =9, 13 13 1.4 1.5 1.7 19 23 35 20 23 23 31 35 43 54 97
Coverage
PETME 47 6 51 .15 73 85 89 87 74 49 65 79 18 86 88 92
P, 0, 89 92 9 9 95 96 97 92 87 65 75 89 .8 90 90 .94
Tyt 5040, 92 93 95 99 96 96 98 95 91 74 80 94 89 95 96 96
Median Relative Length
‘A 5,42 053 075 059 070 074 085 090 088 087 063 066 080 083 088 092 09
‘A E X 265 367 280 260 220 198 150 114 1.63 1.09 113 110 110 1.06 102 1.04
Tyes,d, 330 432 319 340 308 306 270 158 308 240 238 200 174 138 138 1.3
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4) The relative interval length of the standard interval

tends to be too small, that is, it tends to be less than 1.

Interval length among the other vanance-degrees of
freedom combinations is largest for Ssm with ¥, and
smallest for s:;d with v, .. These differences can be
appreciable; there is a tradeoff between coverage and
interval size.

For a given interval type, the relative interval length
tends to 1 as v___ increases. The conclusions from a

max
study of mean wages are similar.

5)

6)

Large Population: Table 4 gives coverage and interval
length for total wages for five interval types, and a wider
range of occupations, ordered by average v , . The
interval types iticlude the three used previously for the small
population. The two new intervals utilize the weighted
degrees of freedom together with s, and s, respectively.
Results are based on 5,000 runs.

1) The results are consistent with those for the Small
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3) There can be marked differences in interval length for
the different interval types; however, all ratios of
interval length to 4 x root mean square error tend to 1,
as v, gets large.

4) Little difference results fromusing s, 5, , or 5, with £, .
1

Again, the results for mean wages, while differing in detail,

lead to the same overall conclusions, and are omitted.

4. SUMMARY AND CONCLUSIONS

From our theoretical investigation and simulation work,
we draw the following conclusions:

1. Standard 95% confidence intervals for domam means or
totals, when based on the standard normal distribution and
standard methods of variance estimation, tend to yield less
than actual 95% coverage. Theextent of the deviation will
vary with domain {occupation in the wage study), butcan
be quite considerable even when the sample size is large.

Population, in terms of the relative coverage and interval 2, New nonstandard methods offer a sharp improvement,
sizes of the several interval types. The standard normal giving intervals with better coverage, typically at or
is unsatisfactory for many occupations. close to the nominal 95% coverage. These intervals tend
2) The coverage for intervals using the weighted degrees of to be longer than the standard intervals. The increase in
freedom, ¥,, is less than 90% for only a small fraction length will vary with domain, and will depend on the
of cases. particular method for CI construction that is adopted.
Table 4

Estimated degrees of freedom, coverage, and relative median length of Cls for total wages of workers in occupation,
for the large population

Occupation

1718 1604 18021716 2911 2052 1332 1141 4021 1232 2853 3020 1122 11421714 1514 3180 4030 1063 1403 1180

df=v_. 297 345 444 119 12.4 13.1 153 169 16.8 17.3 20.6 249 28.0 28.6 29.1 34.8 415 599 776 719 128
df=1, 2.67 2.34 2.35 5.97 5.90 4.25 11.4 9.00 6.32 15.5 13.5 104 15.2 9.67 153 18.0 252 143 274 28.5 90.0
Coverage
AA:tst 89 60 B85 B7 87 8% 93 93 89 92 92 92 88 8% 85 93 92 81 94 94 94
'Aﬂ:.vm,rv'm 96 83 94 B9 88 91 95 95 91 94 94 93 88 90 B 93 52 Bl 95 94 95
AA*""a'ol 97 88 94 91 89 97 96 96 91 94 94 95 89 91 8 94 93 83 95 94 .95
T 4% Sl 97 89 94 92 90 97 96 91 94 94 95 B85 .89 91 8 94 53 83 95 95 .95
f‘Atsbta 97 89 97 92 90 97 96 9 91 95 94 95 89 9] 87 95 93 83 95 94 95
Median Relative Length
f‘A:tss,dz 099 0.78 0.92 0.97 0.95 0.96 0.99 0.98 0.96 0.97 098 98 0.95 096 0.93 0.58 1.00 091 1.00 1.00 1.01
f‘Atsﬂd'vM 2.14 147 1.40 1.08 1.06 1.06 1.08 1.06 1.04 1.04 1.04 1.03 0.99 1.00 098 1.01 1.03 093 1.01 1.01 1.02
A“:t:s;u.r‘,I 232 224 246 1.37 1.37 1.59 1.12 1.15 1.34 1.05 1.11 1.16 1.04 1.19 1.04 1.04 105 1.07 1.09 1.04 102
fdtsmr,: 234 227 248 1.37 1.39 1.60 1.13 1.18 1.34 1.05 1.13 1.18 1.04 1.20 1.04 1.04 1.06 1.07 1.10 1.05 1.02
T, x5, 247 233 279 1.39 1.38 1.61 1.14 1.20 1.35 1.07 1.13 1.18 1.04 1.19 1.05 1.05 1.06 1.07 1.10 1.04 1.02
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For domains which yield large samples, there will be
little difference from standard intervals.

3. The instances where coverage fell below nominal, even
using the t-adjusted intervals, may be ascribed to severe
violation of the normality assumption for the domain data.
Thus the r-adjustment is not a cure-all. Nonetheless, even
in such cases there is a good deal of improvement in
coverage over the use of the standard normal interval.

4. The key idea behind these intervals is to condition on
the amount of information on the particular occupation,
which, roughly speaking, is measured in terms of the
number of units in the sample that belong to the dormain.
The fraction of such units within each stratum is
unknown, and to handle this fact we put a prior
distribution on this unknown, reflective of the degree of
our ignorance of it, an idea we borrow from the
Bayesians. However, in the final analysis, it is the
realized coverage probabilities that determine the merit
of the approach.

5. The principal effect of these ideas is the abandonment,
for purposes of CI construction, of the standard normal
quantiles (+1.96 for 95% coverage). These are re-
placed by quantiles from the Student’s (-distribution,
with degrees of freedom determined from the sample
and varying with domain. If because of publication
requirements or for other reasons, there is need to report
standard deviations rather than confidence intervals,
then we recommend reporting an effective standard
deviation given by the length of the proposed ¢-based
95% confidence interval divided by twice 1.96.

6. The standard estimate of variance seems acceptable for
estimating the variance, when accompanying the new
t-quantile. In most instances this combination should be
quite satisfactory, so that the only change from standard
methodology will be the introduction of adjusted
degrees of freedom. However, in some instances, the
alternative standard deviations may improve coverage or
reduce the length of confidence intervals.

7. An open question concerns what degree and type of
collapsing of strata (if any) should be used in the
estimation of variances and of the degrees of freedom
for the purpose of confidence interval construction. In
general, there will be a tradeoff: as strata are reduced in
number, the estimate of variance will tend to increase,
but so will the degrees of freedom (reducing the size of
f, O f;. ) The answer to this question may be

populatlon specific, and experience from past surveys

useful.

y=(g,(]
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APPENDIX A
From the discussion in Section 2.2 we know that np,
has a binomial distribution Bin(n, p,), hence, for p, =0,

1/n,2/n,..,1,

F(r+1) T@®+2)
+2Cmp + IR -p) +1)

f(ﬁ,q IPA)= r,(

(npy+1)-1 N(1-f,)+1)-1
7 1 (1 _pA)( (1-,)+1) =kﬁ4(p*4),(n +1).

For each (fixed) value of §,, the function k ( p,) isthe
pdf of a Beta distribution with parameters @, = n p, + 1 and
o, =n(l-5,}+1. Asboth o, and w, will be larger than
unity with high probability (at least in most real world
situations), it is reagsonable to approximate kﬁ‘( p,4) with a
normal pdf having equivalent mean and variance, which are
approximately p, and p,(1 - ,)/n respectively.

Assuming that p, -~ N(pu,o?), it follows that the
posterior distribution is

Wyl =1 Byl eer ]

_l( (P,q'ﬁ,q}z (PA H)z]
[ RPAlpE P = e TNAEN S

where ¢ is the normalizing constant.
Under the “empirical Bayes” assumption that p = §, and
ol =p,(1-p,)/n wehave
f et
1 e 2\ Pal-AI2 ‘

V2r[p, (1~ p,)/2n

If we drop the specific assumption regarding o2, and let
_ﬁA)/n)/oz then [PA |ﬁ,4] - N(ﬁA:ﬁA(] =
B+ y)n).

h(p | B,)=
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APPENDIX B

Result: Assume W is distributed N(0, ¢?) and, conditional
on W =w,_ the random variable T is distributed as a
non-central £ with v degrees of freedom and non- centrality
parameter w. Then, the unconditional distribution of
T/yc? + 1 is central ¢ with v degrees of freedom.

Proof: First notice that T can be written as T = (X +
WIS 27y, where Xis distributed as N(0, 1), S2 is distri-
buted as >, and X, W, and S? are mutually independent.
Therefore, X* = (X + W)/{1 + ¢? is distributed as N(0, 1).
As X" and S? are independent, it follows by definition that
T' = Tifl + 2 = X"/{S2/v is distributed as ¢,
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On Regression Estimation of Finite Population Means

GIORGIO E. MONTANARI'

ABSTRACT

This paper examines the main properties of the generalized regression estimator of a finite population mean and those of
the regression estitator obtained from the optimal difference estimator. Given that the latter can be more efficient than the
former, conditions allowing this to happen are established, and a criterion for choosing between the two types of regression
estimators follows. A simulation study illustrates their finite sample performances.

KEY WORDS: Generalized regression estimator; Difference estimator; Auxiliary information.

1. INTRODUCTION

Regression estimation is an effective technique for
estimating survey variable finite population means or totals
when the population means or totals of a set of auxiliary
variables are known. The problem can be stated as follows.
Consider a finite population & = {a,,a,, ..., ay} consisting
of Nunits labelled 1,2, ..., N. Let Y, be the value of umt a;
of a survey variable y whose populatlon mean ¥ = ):l Y, /N
has to be estimated by means of a sample drawn from ®.
To this end let us suppose that the population mean
X= Z, x,/N of a g-dimensional auxiliary variable vector,
having x; = (x;;, X5 . X, ;)' as its value for unit ¢, is
known, for example frorn administrative registers or a
census. The entries of x, can be quantitative as well as
indicator variables denoting the membership of the unit to
given subpopulations. Let s be the set of sample unit labels
obtained from a sampling design having first order
inclusion probabilities ,,i = 1,2, ..., NV, strictly positive.
Then, a regression estimator can be written as follows

Po=Fe®-X), 0]

where ¥ = Ve, Yi/Nm and X = ¥, x /Nn, are the Horvitz-
Thompson unbiased estimators of ¥ and X respectively,
and P is a vector of regression coefficients, given by some
function of sample data {(Y,x,’), i€s). Briefl)i, ?r is
obtained by adding to the unbiased estimator ¥ terms
proportional to the difference between the true means of
the auxiliary variables, X, 21 x, /N k=1,2,..,q, and
the corresponding estlmates X =¥, esXki N T

‘This paper discusses the two chief methods of
constructing the vector f and the properties of the
corresponding regression estimators. A criterion based on
a first order approximation analysis is then given for
selecting one of the two alternatives. Finally, the results of
two empirical studies, carried out to explore the finite

sample performances of the examined estimators, are

reported. All unsubscripted expectations and variances are

taken with respect to a sample design. When calculations
are made with respect to a model a subscript.m will be
used.

2, MAIN PROPERTIES OF THE REGRESSION
ESTIMATOR

Mild restrictions on the second order inclusion proba-
bilities of the sampling design and on the limiting pop-
ulation moments of ¥, and x, are sufficient to ensure that
the estimator ¥ _ can be approximated by the difference
estimator

~

Y,=Y+X-X)p, )

where f is the limit in probability of the vector f, when
both the sample size and the population size go to infinity,
and the limit is defined as in Isaki and Fuller (1992): Wright
(1983); Montanari (1987). Then, the large sample perfor-
mance of the regression estimator can be studied by means
of its linear approximation (2). As a consequence, the
regression estirnator Y is approximately unbiased, because
Y, is unbiased. The' sampling variance of Y can be
approximated by that of Yr given by

- .

V(P)=v(T) +F V) p-2§CX 1), 3)

where V(¥) is the variance of ¥, V(X) is the g¢xg
dimensional variance matrix of X, and C(X, ¥) is the ¢
dimensional covariance vector between X and Y. Since
Y, can be rewritten

}:;r=l—"ﬁ+2 —,

! Giorgio E. Montanari, Dipartimento di Scienze Statistiche, Universith di Perugia, Via A. Pascoli - 06100 Perugia, Italy.
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where U, = ¥,- x,' B, then

a N 1-m NN L. — .7
viE) =3 Ul e 30 Y U U
i Nig 31 ja Nign

An approximately unbiased estimator of V(IF_;'_) is given by
the Horvitz-Thompson formula

A R ' LN
V(Yr) = Z -+ E Z i 2—1‘
i€s N2 ;r|;‘_ ies  jei Nem, i Ry

where U =Y -x p. Alternatively, when the sample size
is fixed, the Yates-Grundy variance estimator is available,

ie.
(mm, - 7) U, (?jz
nom)

i N m

*ﬂl!

%

! J

>

b

3. THE GENERALIZED REGRESSION
ESTIMATOR

Two methods are generally used for constructing the
vector f. The first one has been developed within the
framework of the model assisted approach to survey
sampling inference, as it is described in Sirndal, Swensson
and Wretman (1992; sec. 6.4) and Estevao, Hidiroglou and
Sarndal (1995). Letting ¥, be either a random variable or
an observation of it, consider the following linear
regression superpopulation model

E (Y)=x/B i=1,2,..N,
V,¥)=c"v,
C,¥, 1) =0, i+], @

where £, ¥ and C,, denote expected value, vanance and
covariance with respect to the model; B and o° are
unknown model parameters; v, is 2 known function of x,.
The vector

N Ry

y XX x,Y,
i=1 V; i=1 v,

’31=

is the census least squares estimator of f. Under general
conditions, such as those quoted in the referenced papers,

;!
xrxJ E for , 7 (5)

i€x nl' V,' l ies n,’ v,

A

B, =

Henceforth V(Y ) will be called asymptotic variance of

is a consistent estimator of [-31 and when replaced in (1)
gives the generalized regression (GREG) estimator

7, =F+(X- X)B, 6)

In addition to those stated in section 2, this estimator has the
following properties: (i} the means of the auxiliary variables
estimated through GREG equal the corresponding known
population means, ie. X, =X; (i) the model expected
value of the asymptotic samplmg variance, i.e. E, V( YD,
is a minimum among all asymptotically design- unb:ased
estimators of ¥ (Wright 1983). Consequently, if the model
is well specified, no other asymptotically unbiased
estimator exists that is on the average {with respect to the
model) more efficient than ¥, .

Well known estimators currently used in practice, such
as the ratio and post-stratified estimator, belong to the class
of GREG estimators. Furthermore, such a class has recently
been extended by means of the calibration technique
(Deville and Sdrndal 1992) to better control the variability
of the final observation weights.

4. THE OPTIMAL ESTIMATOR

For constructing an alternative regression estimator
based on the same auxiliary variable x, a second approach
considers the vector B that rmnmuzes the asymptotic
variance (3) of the difference estimator (2). Assuming
V(X) non singular, i.e. there are no linear combinations of
the entries of X with a zero sampling variance, the
minimum variance vector is given by

=[x CX, 7).

Now, consider the unbiased estimators ¥(X) and C(X, ¥)
of V(X) and C(X,Y), respectively, that exist provided
that the second order inclusion probabilities of the sample
design are all positive. They are given by the Horvitz-
Thompson formula or the Yates-Grundy formula when
applicable. For example, using the former we have the
estimated ¢ovariance vector

A 2 oA - LR
C(X,Y)=Zx}’ +22x L
fes N 'E,- ies i N TLfTIa. Tt,j

"

Using 17()? } and C(X, 4 ) we get the alternative regression

estimator

¥+ ®-X) B,

where fi, = [r?()?)]" G(X,¥). It was studied by
Montanari (1987) and called by Rao (1994) the optimal
estimator. When V(X)} is singular and its rank is ¢' < ¢, to
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define the optimal estimator it is understood that one or
more entries of x,, hence of X have to be dropped in such
a wayas to obtain a ¢'xg' non singular variance matrix.

Using the expression for Bz, the asymptotic variance of Y
simplifies to

V(F)=P) -ck Py vdrick, . M

The properties of the optimal estimator are: (i} asympto-
tically, the efficiency of Y is not inferior to that of ¥,

ie, V(¥ ) S 1404 )i (n) the means of the auxlhary
variables estimated through the optimal estimator equal the
corresponding known population means, i.e. X =X. As
for the case of the GREG estimator, when thel;e is more
than one survey variable, the optimal estimator }_’,2 can be
expressed as a simple weighted estimator with the same
weights applying to all variables of interest. For example,
using the Horvitz-Thompson formula for variance and
covariance estimators, we can write }_’,2 = LES Y.w, where

L -
W — (X -X) v
(I
x,.]_u'+ " g~ .
NZ?T? Jei JNZ‘ETBEJ
Jfes

A similar result can be achieved with the Yates-Grundy
formula. .

Note that the asymptotic optimality of }_’r2 is a strictly
design based property, achieved conditionally on the
realized finite population (hence, within the fixed popula-
tion approach to the finite population inference). On the
contrary, the asymptotic optimality of ¥,, requires the
model to be true, and concerns the average asymptotic
variance over the finite populations that can be generated
under the model,

Because of these results, Y would seem preferable to Y
However, ﬂl is a function of population total csnmators
and ]32 is a function of variance and covariance estimators.
As a consequence, the former is more vulnerable to model
misspecification, and the latter is more vulnerable to
sampling fluctuations. In a finite size sample, Y o 18
generally less stable and more complex to compute and its
variahce can be greater than that of ¥, ; see Casady and
Valliant (1993). However, if an adequate number, g, of
degrees of freedom arg available for estimating: f,, the
instability problem of Y can be overcome. For example,
for standard complex samplmg designs having with-
replacement sampling at the first stage, g can be roughly
taken as the number of sample clusters minus the number of
strata (Lehtonen and Pahkinen 1995; p. 181; see Eltinge
and Jang 1996, for more elaboration on this topic). A stable B,
can be expected when g is large enough relative to the
dimension ¢ of the auxiliary variable x,. Since with
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modern computers the computation of }—"r2 is less
problematic, it becomes interesting to develop a criterion
for recognizing when such an estimator is truly
advantageous.

5 A CRITERION FOR CHOOSING BETWEEN
Y AND Y

Consider the follgwing theorem:
Theorem: Let V(Y ) and V(¥ ,») be the asymptotic
variances of the general regression estimator Y and the
optimal estimator er, respectively. Then

V(E)- V(Y,)=CX EYIVEOICX,F). 8

Proof: Using (3) and (7), the difference in variances is

VF) - ViF,) =B VR - 28 CX, Py +

a

CX, ¥y (VX CX, P).

-

Since fi, = [F(X)]"' C(X, 7) and B' C(X, ¥) = p V()

we have

V¥, - V(Y ) =B - By VOO - B,)-
But, C(X, ¥ P C(X - V(X)ﬁ V(X)(ﬂz B) and (8)
follows.

Note that the right hand side of (8) is a positive definite
quadratic forin and it is equal to zero if and only if
C(X, Y.} = 0. Therefore, the smaller the absolute values of
the entnes of CX, ¥ .) are, the smaller the difference
V(Y y- V(¥ 12) 8. The main conclusion the theorem pro-
vides us is that an efficient use of any known auxiliary
variable population mean requires us to adopt estimators
that are uncorrelated with the auxiliary variable mean
estimator,

Applying the theorem to the GREG estimator, let us
consider the -th entry of C(X, 7)) that can be written

where U, = ¥, - x/B,. If the superpopulation model (4) is
well spec:ﬁed it follows that £ (U, )= 0 for all i, and
E_ [C(X .1)] =0. Therefore, CX o ]) must be
approx;mately zeroforall k=1, 2, ..., g, being proportional
to a weighted average of N uncorrelated random variables
with expected values zero. Consequently the difference
V(Y Y- V(Y ,) must be negligable. The result suggests
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using the more practical Y The conclusion is that the
estimator Y _can achieve substantral gains in efficiency
compared to Y if the superpopulation model upon which
the latter is based is not good ¢nough. This can happen
because of the specification of the linear superpopulation
model is being confined to regressors with a known
population mean.

Since the following quantity

MP,. F) = CR T, Y PN CR T, )1V (T,
gives the asymptotic rela[rve gain in efficiency that can be
achieved with ¥, , compared to Y ,1» WE propose it as an
indicator of a model inadequacy for extracting all
information from the sample. When ?L(}_’ - ¥,,) is greater
than 10% or 15%, say, the optimal estimator should be
‘adopted. Provided that the second order inclusion proba-
bilities are all positive, under general conditions A (Y, Y 2)
can be consistently estimated from sample data. Then, the
information offered by the estimate A(¥_, ¥ ,) can be used
for shifting from ¥, to ¥, in the next repetition of a
periodic survey, or, as we suggest in section 6, within the
same survey, choosing between ¥, and ¥, at the
estimation stage.

This section concludes with a few examples.
Example 1. Consider a simple random sample of » units
and the linear regression model through the origin
E (Y)=xB.V, () =06x,C, (¥, ¥,)=0,i+}, assuming
X known. In this case the GREG is the ratio estimator of
the mean, i.e., ¥, = X¥/x, where y and % are the sample
means of y and x, respectwely The linear approximation is

=XR+Y . Uln where U = Y,- Rx, and R = YIX.

Then, the covariance of ¥ and Y

2
x

S_xy-R
s?

CF Y,

' &)

where S is the population covariance between y and x and
52 is the population varlance of x. If the model is well
specified; then Sy /S = R and expression (9) must be
approximately zero. Otherw1se the greater the absolute
value of an intercept in a census linear regression of y on x,
the more Y, is asymptotically efficient than Y, The
result is not new {for example, see Cochran 1977; sec 7.5),
but it is achieved within the framework of a general theory.
Note that A(¥,,, ¥,,) = [S,,/S? - RI*S}/SZ, whete § is

the population variance of U is a constant wrth respect to
the sample size. When M?rv 7 ,) is not negligable, ¥,
should be chosen as regression estimator, or, alternatively,
an intercept plugged into the model in order to use the
corresponding GREG estimator I_’ However, for simple
random sampling both solutions grve the same estimator,
ie., Y er, but in general they are different, even for
elf—werghtmg designs.

Example 2. Consider a stratified random sample and the
linear homoscedastrc regression model E_(Y,) =a +x,B,

v,(Y)= o?, C, (Y, Y) 0, iwj. Assumethaterknown
and that mdrvrdual x,;’s are known only for sample units
and not for the nonsampled units. Now, the auxiliary
information is given by x; = (1, x,)’ and the corresponding
GREG estimator can be wntten Y =7« + (X - X)ﬁl, where

G _ (Eie_r Yix/Nm) ‘XY
1 At
(ZiEs xr'lenr) - X?

and where the estimated a cancels out. Because B,

i 2 =S,/8;
and U, =Y,- ¥ - B,(x; - X), we have

I

il N(N n) 2

nEe>

)? th (Bh] - El), (IO)

Ry

where the submdex h denotes stratum quantities and
BM =8 !S,,Jr The right hand side of (10) is a function of
the dtfferences between each within-stratum regression
coefficient and the coefficient for the whole population. If
the model is well specified, the differences Bhl B, must
be negligible. Otherwise, C (X Y +1) can take non negligible
absolute values and, since only X is known, the estimator Y
appears to extract better all the information from the sample
value of X

Tt is interesting to note that when the allocation of the
sample is proportional, i.¢., iy, = N,, ignoring terms of order
1/N, relative to unity, Y, is equal to the GREG estimator
based on the auxiliary varlable x;=(d,; dy;, .- sy %)
and v, =1, where 4, is an indrcator variable of the
membership of unit i to stratum £ = 1, 2, ..., . This model
fits different regression lines with a common slope within
the strata.
Example 3. Consider a complex sampling design and
suppose that the population can be partitioned into A post-
strata of known sizes. Assume the superpopulation model
E. (¥)=ByyV,¥)= ol,and C, (¥, 1) = 0,1 # J, where
the subindex A(i) denotes the post-stratum to which the
i-th unit belongs. Denoting by d,. the indicator variable of
the i-th unit membership to post—stratum h, and with D, its
known population mean, putting X, = (&,,,d,, ..., dy) and

7=1, in (§), we get the post—straufled estimator,

):1 D,Z, lD where Z and D, are the Horvitz-

Thompson mean estimators of the variables z,, = Yidp and
cjﬁf, respectively. The linear approximation is Y, =
Y + (X - X)'B,, where ﬁ] —(RI,RZ, B, R, =Z,1D,
(i,e., the mean value of y in the A- th post- stratum), and
X= (D],Dz, wyDy). Since U, =Y, - Er R.d,. the
covariance of D and Y,_1 is

-

-~ - H "
»Dy=Cc.D,) 2 c®,b,). v

P

cF,
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Under the superpopulation model upon which f’rl is
based on, we haye £ _[C(¥,,,D,)] =0 and a negligible
value of C(Y,,, D,) is expected for all 4. It can be easily

seen that for simple random sampling, formula.(i1) is

identically zero. But in complex sampling schemes such
covariances might take non negligible values, for example,
when in a multistage sampling scheme a linear regression
of the primary unit totals of z;; on the totals of 4, yields a
non negligible intercept for some 4. See Casady and
Valliant (1993) for a case study.

6. EMPIRICAL STUDIES

The above analysis is based on first order approxi-
mations. In the following empirical studies the finite sample
performances of ¥, and Y,, will be explored within the
framework of example 2.

6.1 The First Empirical Study

In this first empirical study we consider a population of
infinite size subdivided into two strata of equal weights and
a proportional stratified random sampling design to estimate
the mean of a survey variable y. To this end, let us suppose
that there exists a scalar variable x that was not available for
stratification but with a known population mean X and
unknown stratum means (i.e., the x values are not available
for nonsampled units).

Since only the population mean of x is assumed known,
a reasonable superpopulation model that can be assumed to
identify a GREG estimator is the linear regression one, with
homoscedastic errors, i.e., £, (¥)=a +x,B, ¥ (¥,) =%,
C,(&, }3.) =0, i # j. The auxiliary variable plugged into (5)
is x, = (1,x,)" and the corresponding GREG estimator can
be written

Y, =5+X- f)syzlsf,

where y and X are the sample means of y and x, 8y is the
sample covariance between y and x, and s? is the sample
variance of x. The linear approximation is

e

¥, =5 +(X-%)8,/8,

wﬁpere Syx and Sf are the population analogues of 5, and
5,

Dropping the first component of x, =(1,x,)’, whose
mean is estimated without error, the optimal estimator
based on the same auxiliary variable is given by
Y,=5+X-0CF 31 IF),

where X is the population mean of x, ¢ (¥,x) and 17(37)
are the standard unbiased estimators of the covariance
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between y and x and the variance of X, respectively. The
corresponding linear approximation is

Y, =5+ X -0)C@EVV(E),

where C(y,X) and V(X) are the true covariance and
variance.

In this case, the expression of l(f’r

. )_A’rz) simplifies to

Y Sy S,
Y Sk 2

and it can be estimated replacing the population variances
and covariances with the sample analogues,

Four simulations were performed. In the first two, the
sample values of x were drawn from a uniform distribution
on [30-70] in the first stratum and [50-90] in the second
one. The sample values of y, given x, were drawn from a
normal distribution with expected values 1,26x in the first
stratum and 0.82x in the second. The conditional variance
was 8x in both strata in the first simulation and 3x in the
second one. In the third and fourth simulation, the sample
values of x were drawn from a linearly transformed gamma
random variable with parameters chosen to achieve the first
two simulation stratur means and variances for x and y and
an asymmetry index for x (given by the ratio between the:
third central moment and the third power of the standard
deviation) equal to 2.5. This allows studying the effects of
a strong asymmetry in the marginal distributions of y and x.

The populations were constructed to have A(Y,, ¥ ;) =
8.19 when V(Y |x) = 8x, and A(Y,, Y ,)=18.6%, when
V(Y| x) = 3x. Note that the GREG estimator based on the
true model is the separate ratio estimator; however, its use
would require the knowledge of the stratum means of x, but
they are assumed unknown.

In each simulation we drew 10,000 samples of size 20
(ten units per stratum), and 5,000 of size 40 (twenty units
per stratum). For each sample we computed the values of
the Horvitz-Thompsgn estimator ¥ =3, and of ¥, ¥,,,
Y, s ¥, and A(Y,, ¥ ). Wealso computed an estimator
¥,3, defined to take the, value of ¥,,, wheg'l(l’rl, Y)s
8%, and the value of Y,, otherwise. So, Y , is a sample
dependent type estimator, constructed choosing between
¥, and ¥ , according to the estimated value of A(Y,, ¥,.).
Here, 8% is an arbitrarily chosen threshold, over which
shifting from ¥ o to I_’rz is thought to be convenient.

Table 1 reports for each simulation the empirical results
achieved with reference to the percent relative bias of
estimators {(RB) and the mean squared error (MSE), in the
latter case having set that of the Horvitz-Thompson
estimators equal to 100 by multiplying the MSE values by
100/MSE(y). As we can see, the biases are all negligible
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(the biggest absolute value is less than 0.6% and all biases
are less than 10% of the corresponding standard errors) and
contribute to the MSE in a negligible manner. The MSE
reductign percentages that can be achieved shifting from
Y to Y are apgrommately equal to the fixed in advance
values of IX¢4 Y ,), ie, 8.1% and 18.6%. The effective
MSE values of Y and Y are greater than the corres-
ponding asymptotlc values in particular when the
population is asymmietric and the estimator is the optimal
one. For example, in the third simulation, when n = 20, the
MSE of Y shows a 5.1% relative increase compared to
that of Y whlle the corresponding value for ¥ .y 18 10.7%.
Doubling the sample size, those relative values decrease to
2.8% and 3.6%, respectively. As we observed in example
2, when the sample allocation is proportional, ¥,, is equal
to the GREG estimator based on a homoscedastic linear
model that fits two parallel regression lines in the two
strata. So, the greater loss in efficiency percentage of Y, 2
with respect to its asymptotic variance can be explained by
the added parameter to be estimated in the model.

The performance of Y is also interesting; this estimator
is approximately unblased and its MSE is lower than that of
Y, the more often Y is selected. Table 1 reports for each
snmula’uon the percqntages of samples for_ which
MY, ¥,,)>8% and ¥, was selected instead of ¥,,. The
hlgher is the theoric value of A(Y,, Y,,), the more often
¥ ., is chosen over Y

Obviously, the performance of Y depends on_the
sampling distribution of the sample statlstlcs 1¥¢4 Y..7.,)
Table 2 reports the means, the standard deviatigns, and
some guantiles of the empirical distributions of K(Y e 43a)
for the gamma populations, which are the more problematic
ones. As it can be seen, the distributions of A (¥ i r2) were
in all cases positively skewed and highly variable. This
means that larger sample sizes than thos¢ considered here
are needed to get reliable estimates of A(Y,, ¥,,). Clearly,
the less the variance of X(Y e 4 .»)» the higher is the gain in
efficiency of Y, over le when the true value of AT,

¥,,) is over the threshold for (T 1»¥,,) chosen to shift
from Y to ¥,

Table 1
Empirical percent relative bias (RB) and Mean Squa:ed Error (MSE) of ¥, le, }’rz, ¥ Y and }’

rn?

and percentage of samples for which 1(¥,,, Y,z) > 8% in the first empirical study

Uniform populations

V(¥|x)=8x V(¥|x)=3x

n=20 n =40 n=20 n =40
Estimator RB (%) MSE RB (%) MSE RB (%) MSE RB (%) MSE
7 -0.06 100.0 -0.08 100.0 0.12 100.0 -0.10 100.0
7, -0.05 83.8 -0.06 84.1 0.10 69.4 -0.05 68.8
7, -0.03 773 . -004 777 0.07 562 - 0.01 55.8
¥, 0.07 87.7 -0.01 86.2 0.22 73.4 -0.00 70.5
;” -0.05 82.4 -0.04 80.1 0.05 59.8 -0.00 573
¥, -0.06 85.0 -0.05 83.1 0.03 61.0 -0.01 57.9

Freq (A > 8%) 53.5% 53.6% 88.6% 93.5%

Gamma populations
V(Y|x)=8x V({Y|x)=13x

n=20 n=40 n=20 n=40
Estimator RB(%) MSE RB(%) MSE RB(%) MSE RB(%) MSE
y 0.07 100.0 -0.01 100.0 0.02 100.0 -0.03 100.0
7, 0.08 84.1 0.02 84.3 0.06 69.8 -0.03 69.9
Y., 0.09 775 0.05 78.1 0.10 57.1 -0.02 56.9
¥, -0.58 88.4 -0.30 86.7 -0.60 75.5 -036 728
¥, 0.03 85.8 0.03- 80.9 0.12 63.5 -0.02 59.1
7, -0.05 87.9 0.07 86.2 0.06 654 -0.04 60.8

Freq (A > 8%) 50.6% 50.3% 86.9% 91.7%
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Table 2

Selected characteristics of the empirical distributions of

1.( i 2} for gamma populations (first empirical study)
Gamma‘ Mean ‘Star.\de.rd N_le- Quantiles
Populations deviation dian 10% 90%
V(Y|x)=8x, n=20 10.7 98 87T 13 249
V(¥|x)=8%, n=d0 92 6.3 83 25 19.1
V{¥|x)=3x, n=20 21.6 12.3 192 69 407
V{V|x)=3x, n=40 19.0 9.5 189 94 342

6.2 The Second Empirical Study

In the second empirical study, we consider a finite
population subdivided into eight strata each of size 100,
according to an auxiliary variable x whose values are
assumed known for each unit of the population. In order to
simulate a stratification based on x, the values of x were
assigned through the monotonic function of & and

hi-1
X, =495 +5) j+hi,
ie
where hi is the label of the unit i = 1, 2,
stratmm 2=1,2, ..., 8.
. A finite population of y values, given x, was generaled
using the model

Yhf = 20 + me + 0.0thzf + E}": ’ xhi r

...» 100 within the

where €,. is a standard normal random variable. The
realized values of the mean, standard deviation and
asymmetry index of y are 618.2, 676.0, and 1.21,
respectively. The correlation between y and x is 0.96.

A proportional stratified random sampling without re-
placement design was used to select 5,000 samples of size
n =40 (five units per stratum) and 2,500 samples of size 80
(ten units per stratum). For each sample we computed the
following quantities:

— the unbiased estimator of the population mean Y, ie.,
»

— the ratio estimator 7 e based on the model £, (¥,,) =
Px, and V,_(¥,,) = 6%x,,, and obtained from (5) and (6)
putting x,, =x,. and vp =x,,;

— the optimal estimator Ym, based on the same aux:hary
variable used for Y,“,

- the GREG estimator F,,, based on the model
E, (Y,)=a+px, and ¥ (¥,) = c’x, , and obtained
from (5) and (6) putting x,=(Lx,) and v, =x,;

- the optimal estimator ¥, .3, Dased on the same auxiliary
variables used for ¥,,s; .

- the GREG estimator er based on the model

E (Y,)=a+px, +'yxh, and V,_(¥,) = d® x," (the true
model), and obtalned from (5) and (6) putting
=(1, x,",x,") and v, =x,;
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the optimal estimator i3 23 Dased on the same auxiliary

variables used for ¥ 3

the lingar approx1mat|ons er Ym, Ym, and }’r23 of

Ym, les- ¥,5,, and Y,-zsv respectively;

- the statistics A(Y Yo Yo for k=1,2,3;

- the sample dependent estimators 4 e k=1,2,3)
defined to take the value of ¥ . when AT

r&) 5 8%, and the value of 12 2t otherwnse

We do not consider separate regression estimation
because sample sizes within strata are small. The finite
population is such Lhat ¢4 W1 m) 0.22, A(F v m) =
0.16, and l(Y s ¥p3) = 0.00. Naote thgt because of the
sample design considered we have ¥, = ¥, and therefore
we omit Y

Table 3 reports the empmcal results achleved with
reference to the percent relative bias of estimators (RB) and
the Mean Squared Error (MSE), in the latter case having set
that of the Horvitz-Thompson estimators equal to 100. The
results are separated:according to the sample size.

Again, the biases are all negligible. The MSE reduction
percentage that can be achieved with respect to the sample
mean increases with the number of auxiliary variables used.
However, as expected Y yand ¥ , are less efficient than
the optimal estimator Y,n based on the same auxlhary
variables. The statistics 1(}”“, m) and l(}’rlz, r22)
take values above the 8% threshold most of the time,
especially when the sample size is 80. The sample
dependent estimators Y , and ¥ »35 are both more efficient
than Y , and Y,,12 The res:ult is due to the inadequacy of
the models upon which ¥, and ¥, 1 are based for
extracting all information from the sample On the other
hand, ¥ ,, is more efficient than g 123 because it is based on
the true model. Most of the time the statistic i(Y 13 m)
is below the threshold, especially when the sample size is
80, and the sample dependent estimator Y, ,, is almost as
efficientas ¥, ,.

Looking at the linear approximations, first we gbserve .
that the MSE's of the GREG estimators ¥ pand ¥, . are
almost equal to.those of y 1o and ¥, 113 10 thig second study.
This is not true for the optimal estimators Y 97 and era
The losses in efﬁcxency with respect to their linear
approximations ?r and Yr23 are greater, but they diminish
rapidly when the sample size increases. The MSE’s of the
linear approximations confirm that given a certain amount
of auxiliary information, a negligible gain in efficiency can
be achieved through the gptimal estimator, even with very
large samples (compare ¥,,, with ¥,,,), when the model
upon which the GREG is based holds true. Substantial
gains in efficiency can be achieved if the model is not
adequate, such as those upon which Y ., and. ¥, are
based (compare lez with ¥ ,,,). Table 4 reports the means,
standard deviationg and_some quantiles of the empirical
distributions of IL(Y,],‘,YH) k=1,2,3.

[

rik?
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Table 3
Empirical percent relative bias (RB) and Mean Squared Error {MSE) of estimators and percentage of samples for which

MY, ¥,,.)> 8% in the second empirical study
Auxiliary . Sample size 40 Sample size 80
Estimator
used RB(%) MSE (h>8%) RB(%) MSE (A>8%)
none y 0.01 100.0 - 0.01 100.0 -
0 Y., -0.01 55.2 82.6% 0.00 54.3 85.0%
(x) ¥, -0.05 48.4 - -0.02 438 -
(1,x) Y, -0.01 51.7 72.7% 0.00 50.8 83.2%
(1,xy Y, -0.05 47.4 - -0.01 433 -
a,xy 7, -0.05 483 - -0.02 438 -
(1.x) ¥, 0.02 51.6 - 0.01 50.7 -
a,x) ¥, 0.02 443 - 0.00 423 -
(1,x,x3)’ I -0.01 35.1 28.9% 0.02 335 10.5%
(1, x x2’ ¥, -0.10 38.0 - -0.03 347 -
(L,x,xb’ 't 004 37.0 - -0.01 338 -
(1,xx9 ¥, 0.01 349 - 0.03 33.5 -
(,xx2’ ¥ 0.01 34.7 - 0.03 332 -
Tabled |
Selected characteristics of the empirical distributions of A(¥, . ¥,..), & = 1, 2, 3 (second empirical study)
Sample size 40 Sample size 80
S ean dovintion  Median o ooy, Mean devinion  Medion 0w o0m
AF,,, Y, 024 005 0.23 0.04 0.45 0.23 0.10 0.23 0.07 0.35
AF, p o) 019 0.14 0.17 0.02 0.38 0.18 0.09 0.17 0.04 0.30
AP, 7, 0.06 0.08 0.03 0.00 0.18 0.03 0.04 0.01 0.00 0.08

7. DISCUSSION

The optimal estimator can be an efficient alternative to
the generalized regression estimator based on misspecified
superpopulation models when the sample size is large
enough. This efficiency can be measured by means of the
sample statistic, A(¥ , ¥,), Ihat captures the asymptotic
relative gain in efficiency of ¥, over ¥, given a certain
amount of auxiliary information. The performance of the
optimal estimator appears to be good, even in finite size
samples, and its use profitable, provided that the value of
A(Y . Y,,) is big enough to compensate for its greater
instability. In fact, the empirical results confirm a greater
instability in the optimal estimator, especially with
asymmetric populations. Further empirical evidence is
needed to evaluate its stability when the auxiliary variable
is multivariate and to establish when a sample is large
enough to overcome the problem. L.

In order to use the information provided by A(¥,,, ¥,,)
within the same survey, the distributional properties of this
sample statistic and of the sample dependent regression

estimator, which seems to perform well in the empirical
study, have to be studied in more detail. In particular, the
distribution of (¥, ¥,,) when its true value is zero will
be useful for choosing the threshold over which shifting
from ¥, to ¥, is truly profitable. Besides working with
larger sample sizes, the instability problem of this statistic
can be addressed by looking for more stable, consistent
estimatgrs of the variances and covariances appearing in
A(¥,, ¥.,). Furthermore, since in most practical situations
there is more than one variable of interest, in order to apply
the same weights to all variable, the optimal estimator
should be chosen on the grounds of an averaged A-measure
across the main survey variables, and such an average is

more stable than single A-measures.
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Combining Multiple Frames to Estimate Population Size
and Totals

DAWN E. HAINES and KENNETH H. POLLOCK'

ABSTRACT

Efficient estimates of population size and totals based on information from multiple list frames and an independent area
frame are considered. This work is an extension of the methodology proposed by Hartley (1962) which considers two
general frames. A main disadvantage of list frames is that they are typically incomplete. In this paper, we propose several
methods to address frame deficiencies. A joint list-area sampling design incorporates multiple frames and achieves full
coverage of the target population. For each combination of frames, we present the appropriate notation, likelihood function,
and parameter estimators, Results from a simulation study that compares the various properties of the proposed estimators

are also presented.

KEY WORDS: Incomplete frame; Capture-recapture sampting; Screening estimator: Dual frame methodology; Multiple

frame cstimation.

1. INTRODUCTION

In classical sampling theory, it is assumed that a complete
frame exists. In practice, however, this assumption is often
violated. Frame imperfections such as omissions, duplica-
tions, and inaccurate recordings are almost inevitable in any
large data collection operation (Hansen, Hurwitz and
Madow 1953}. Information collected from list and area
frames is used to obtain estimates of the unknown popula-
tion size and totals. For example, an ecologist or wildlife
biologist may use one list and one area frame sample to
estimate the number of bald eagle nests in a given region.
The U.S. Bureau of the Census uses dual system estimation
to' measure decennial census undercounts. Darroch,
Fienberg, Glonek and Junker (1993) describe a three-
sample multiple-capture approach to estimating population
size when inclusion probabilities are heterogeneous. In
addition, state agriculture officials may be interested in
estimating the number of hog farms and the total number of
hogs in North Carolina. Typically, information from
multiple information sources is combined to estimate
population sizes and totals.

List frames are physical listings of sampling units in the
target population. These are constructed over the years
using information from scientists as well as city, county,
state, and federal agencies. Tterns found on a list frame can
include, but are not limited to, names, addresses, telephone
numbers, social security numbers, or physical descriptions
of location. These and other miscellaneous stratification
variables are used to identify persons, animals, businesses,
or other establishments. When estimating the number of
bald eagle nests in a region, we construct this year’s list
frame using information from last year’s list frame. With

the addition of new eagle nests, last year’s list frame
becomes quickly outdated and incomplete. Because of this
incompleteness, estimates based solely on list frames typi-
cally underestimate the true population size. Supplemen-
ting available information with an area frame sample may
provide an efficient estimation of the population size and
totals.

An area frame is a collection of geographical areas
defined by identifiable boundaries. The entire area in
which data are collected is divided into mutually exclusive
and exhaustive sampling units called segments. The
segments are usually stratified according to a characteristic
of interest. Once a stratified random sample of segments is
drawn, enumerators visit the sampled segments and record
measurements on all reporting units contained therein.

The National Agricultural Statistics Service (NASS)
currently employs a multi-frame approach for its sampling
and estimation of numerous agricultural commodities.
Fecso, Tortora and Vogel (1986) provide a review of
sampling frames for the agricultural sector of the United
States while Nealon (1984} details the multiple and area
frame estimators used by the U.S. Department of
Agriculture. Kott and Vogel (1995) provide a general
overview of multiple frame surveys.

In Section 2, we consider estimation based on infor-
mation from two or more independent list frames. We
show how these methods are related to capture-recapture
methods. In Section 3, we consider more efficient estima-
tors of population size and totals when information from an
independent area frame sample is available. We extend
these methods to the case of dependent list frames in
Section 4. Results from a simulation study that compare
different estimators are summarized in Section 5. Finally,

! Dawn E. Haines, U.S. Bureau of the Census, Washington, DC 20233; Kenneth H. Pollock, North Carolina State University, Department of Statistics, Box

8203, Raleigh, NC 27695-8203, U.S.A.



80 Haines and Pollock: Combining Multiple Frames to Estimate Population Size and Totals

Section 6 summarizes our results and discusses future
directions for research.

2. MULTIPLE LIST FRAMES

2.1 Population Size Estimation

List frames used to estimate population size are usually
incomplete and do not cover the entire population. One
solution to the incomplete list frame problem is to merge
two or more incomplete list frames. Combining multiple
list frames may result in improved coverage of the target
population, and thus, may provide better estimators. In the
case of multiple list frames, it is commonly assumed that
each element in the population has the same probability of
being included on a given list frame. Hence, the list frame
elements themselves constitute our “samples.”” For
example, individuals may decide independently whether or
not to list their telephone numbers in the telephone
directory with equal probability. In the case of bald eagle
nests, this year’s list frame is constructed based on last
year’s nest sightings. If we assume that the probability of
a nest being sighted is the same for all nests, then the above
assumption is valid. Finally, the assumption is also valid in
capture-recapture experiments where the first list frame
consists of all animals captured on the first sampling
occasion and the second list frame consists of all animals
captured on the second sampling occasion. This scenario
comresponds to Medel M, in the capture-recapture literature.
See Otis, Bumnham, White and Anderson (1978) for details.
Model M, assumes all animals in the population are equally
at risk to capture on each sampling occasion, but this
probability can vary over different sampling occasions.

To begin, we consider the case of two independent list
frames, B, and B,. Suppose B, has size Ny and B, has
size Ny . Let domam b,(b,) consnst of those N, (N )
elements that belong only to frame B,(8,) and domam
b, b, contain N, 5, units that belong to both frames. The
ﬁnal domain includes existing target population elements
that are not included on either list frame. Its size is
N-N, -N, - Nyp, Domain notation for list frames B,
and B, 'is presented in Table 1. Note that every element i m
every frame must be categorized into a domain without
error. Errors in domain determination are serious and
cannot be corrected at a later time. These errors are not
considered in the estimation phase and thus are regarded as
nonsampling errors. Nealon (1984) claims that domain
determination is the single largest source of nonsampling
error in multiple frame designs (Kott and Vogel 19953).

Let the probability that a population element is included
on frame B, (B,) be Pg, (pB ). Since list frames B, and B,
are assumed to be mdependent the probab111ty of an
element belonging to domain b, is Py, =Ps, (1 - ps,). The
remaining domain probabllmes are defmed similarly. The
population size N and the inclusion probabilities Py, and

Py, are unknown parameters. The likelihood function is
gwen by

- N
Lpg, Py NI Nys Ny Noyo,) '[ N, .N,,,Nbb] *
1 2 172

P pa -pp) -pg) s D
Table 1
Domain Notation for List Frames 8, and B,
Domain Size Domain Probability
N, Py =pPp (1~ Pg,)
Ny, Py, = (1-pg )Pg,
N3, Pob, = Pg Pp,

N- Nbl - Nbl - Nbl by 1 -pbl_sz-Pblb2=(l _pgl)(l —pgz)

Maximum likelihocod estimators (MLEs) of the frame
inclusion probabilities are obtained by maximizing the
logarithm of the likelihood (1). This procedure yields

~ NBI ~ NB:
Py and pp =— 2

where the MLE N is substituted for N. Rather than
differentiating the log-likelihood function to approximate
the value of N, we employ the “ratio method” of
maximizing the likelihood which equates Z(N) to
9 (N - 1) (Darroch 1958). This process accounts for the
discrete parameter N and yields the equation

~

PN _ N
LN-1) (N~ N, = Ny = Nyw,)

3

(1 _ﬁgl)(l _ﬁgz) =1 (3)
Here we assume that N is large so that

Ny N, . Ny, N,

N-1 N N-1 N

Substituting the estimators in (2) into (3) yields
N, B, N, 8,
Nblbl

~

=N:

@)

Sekar and Deming (1949) derive an estimate of the variance
of (4), given by
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SuBstituting (4) into (2} yields the MLEs of Py and Pp,
Nblbz

N

B, 8,

The estimator ]\7] of N in (4) is called the Lincoln-
Petersen estimator in closed population capture-recapture
models. The elements on list frame B, may be considered
as the units captured in the first sampling occasion and the
elements on list frame B, may be viewed as the units
captured in the second sampling occasion. The elements in
domain b b, correspond to recaptured elements. With this
‘correspondence, it is easy to.see that-the likelihood for the
population size and capture prebabilities for two occasions
will be the same as that given in (1). Hence, the MLEs
derived for two independent list frames will be the same as
the corresponding MLEs for the capture—recapture model
with two sampling occasions.

Extending these ideas, we contend that combining k
independent list frames is directly related to having &
sampling occasions under Model M, in closed population
capture-recapture models, where ¢ = k (Otis ef al. 1978).
The general likelihood function for k& independent list
frames, B,, B,, ..., B,, has the form

gg(p&' ""pBg’ NI N Y ".,Nbl'"bk) =

N-Ng

]Hps,a'( -pg) (8

N
Ny s Ny

which has exactly the same structure as the likelihood
introduced by Darroch (1958} and is discussed in great
detail by Otis e al. (1978) and Seber (1982). The form of
the estimated frame inclusion probabilities is

N B
Bg=— =1,k ©)

Values of N are obtained by numerically solving the
(k - 1) degree polynomial in & resulting from the equality

S2(N) N

= *
gWN-1) (]\7_ Nb, - Nbl--. 5)

(1-p,)=1. (7)

We then select as AV as the root that maximizes the value of
the likelihood function (5). Substituting this root into (6)
yields MLEs of the & frame inclusion probabilities,

(1 _p“Bl) s

2.2 Population Total Estimation

Suppose the measured y, values are available for all
units on the & independent list frames. The estimated
probability that the first element is included on at least one
of the k list frames is

81

ﬂ:l =ﬁ[uf=le]= 1-da ‘ﬁB])(l _pABz)m(l -ﬁB.t),

where gy = Ny /N and N is the MLE of N obtained from
(7). From equatlon M,
S— a-%)=1
(N-N, =~ Ny,
which simplifies to
Nb o+ N,

b,..b
_ 1 1 Oy
7, = - :
N

An estimated Horvitz and Thompson (1952) estimator of
the population total is

f— ¥ y=NY,
N R Nb]...b‘ EBLUB,

where ¥ ;, is the mean of distinct elements on the list
frames. Thus, for £ independent list frames, the estimated
Horvitz-Thompson estimator coincides with the population
total estimator proposed by Pollock, Tumer and Brown
(1994).

In some situations, values of the variable of interest, y,,
are not available for all units on the list frames.  If the list
frames are large in size, random samples are selected from
each list frame and data are collected on those subsampled
elements. If there are # list frames, it is possible to define 2*
domains. We consider an extension of Lund’s (1968)
estimator for the total of all units on the list frames,

. 21
Yo .= 121: Ny,

which is a weighted sum of 2¥ - 1 domain means, ¥y, The
weights are given by the domain snzes Further, - the
population total estimator is ‘

ry

J} AT YL.L

oty
=1 Ny

3. MULTIPLE LISTS PLUS AN AREA FRAME

3.1 Population Size Estimation

Joining multiple, individual list frames with an area
frame sample is a solution to overcoming list frame defi-
ciencies. Assume that the geographical area of interest is
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subdivided into U, segments. Also, assume that a simple
random sample of u, segments is selected from U,
segments that cover the entire population. Therefore, the
" probability of a segment being selected is p, =u,/U,. In
some surveys, it is possible to subdivide the region into
approximately equally-sized segments. In such cases the
segment selection probability corresponds approximately to
the proportion of area sampled. The inclusion of an area
frame provides completeness of the target population
(Hartley 1962). We assume that each reporting unit belongs
to exactly one segment. Once a segment is selected, all
reporting units within the segment are observed. For
example, when estimating the number of bald eagle nests,
each nest belongs to one and only one segment. However,
this assumption is not always valid. Consider the case where
a hog farm crosses segment boundaries. In this case,
population elements may be associated with more than one
segment. To address this problem, association rules linking
population elements to segments are established at the
estimation stage. See Faulkenberry and Garoui (1991) for
more detail. The National Agricultural Statistics Service
implements three correspondence rules that map elements in

the population to sampled segments. The open, closed, and -

weighted segment estimators are described in Nealon
(1984). Another related reference is Sirken (1970).

Consider the case of k independent list frames plus an
area frame. The population size, N, and the list frame
inclusion probabilities, pg , i = 1, ..., k, are unknown para-
meters. The area frame inclusion probablllty p,=uJU, is
known. The likelihood function has the form

L@g,s - Ppy N|pyngng s Pa,.bx Ny s Ny 8,

N My N-n

= P -p) ™
PTRTERE ’nabl...bk’Nbl’f"’ by,

k N-N,
’I}p;s,(l “Py)

where 7, is the total number of elements in the u, sampled
area segments and », is the number of elements in the u
sampled area segments which do not belong to any list
frames. Similarly, 7, .. Hap, . b Ny s Nb 5, are
defined as the sizes of different domains. 1[t is 1mportant to
emphasize that the inclusion of an area frame may cause the
value of Nb to change. N, now corresponds to the

number of elements on list frame B, which are not in the -

u, selected area segments and not on any other list frame.
The MLEs of the parameters are given by p 5, =N, /N
where N is a solution to the k-th degree polynomjal

N1 -p)(1-py)..(1-Py) =

(N-m,-ngy = =Ny b~ Ny, == Ny o) ®)

Numerical methods are essential for solving (8) for the
MLE N of N. Among the & roots of (8), we select N that
maximizes the likelihood.

Applying this methodology to one list frame and one
area frame, we obtain

. n
N=Ng +—. 9
5 p, 9)

This estimator is also known as the screening estimator
(Kott and Vogel 1995). The screening estimator catego-
rizes elements into two distinct groups. The first group
contains elements which belong to both the list and area
frames and is called the overlap domain. Since it is
assumed that all elements on a list frame belong to the area
frame, the size of the overlap domain coincides with the
number of elements on frame B, and has the value N .
The second group contains elements in the area frame not
included on the list frame(s) and is referred to as the
nonoverlap domain. The size of the nonoverlap domain is
an unobserved random quantity, N,. The term #, is the
number of elements found in the u, area segments which
are not included on the list frame(s) following a specific
association rule. An estimated value of N, is n,/p,
Hence, an estimate of the population size is given by N in
(9). The resulting MLE of Pg, is

W, + e
1 pA
When multiple list frames are available, it is possible to

combine them into a single list frame and use the above

eéstimator to obtain an estimate of N. That is, consider the
screening estimator

N N_ Bu.. uBt +ka+

na’
=N+
bl
Py

nﬂ'
Nyp, * =+ Ny 5, *—- (10
Py
Note that the screening estimator ﬁz is appropriate even
when the list frames are not independent of each other. We
discuss this further in Section 4.
Using this methodology for one area and two
independent list frames yields the likelihood

Q(PB],PBZ, N'P,, 2By Nbl, szs nabl’ nabz’ Nblbzv nab,bz) =

N p”A pN51 Na,
4 Ps, Lp,
(" Nbl' sz’ nab,’ nabz’ Nblbz’ Agb b,

- N-N N-N,
(-p) A -pp) U-py)
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The MLE of Nis
N, =N=(p,)" «

[(NBI * NB; )pf' * (na - Nb]b‘.l - nabl bz)] *(ZF.’A)-

— (11)
J[(NB, Ny )yt (n,~Ny =1y >]2 +4p,(1-p )Ny Ny,

where n,, ; denotes the number of elements included in
the u, sampled area segments that belong to both list
frames. An estimate of the variance of N may be obtained
using the Taylor series approxnmat:on of (11} and the
asymptotic distribution of (N, , N, ,n_, Ny s, Mo, ).

3.2 Population Total Estimation

When y,’s are available for all elements on & indepen-
dent list frames and for a sample of segments from an area
frame, we consider an estimated Horvitz-Thompson estima-
tor to estimate the population total. Recall that we assume
the following:

1. The probability that a unit is included on the i-th list
frame, ' Pys 1s the same for all units.

2. The event that a unit is included on one frame is
independent of its inclusion on another frame.

3. The probability that a unit is included in the area frame
sample of u, segmentsis p, =u,/U,.

Since we consider the case where population units belong

to exactly one area segment and all units ‘within a sampled

segment are observed, the third assumption is valid. Hence,

the probability the i-th element is on at least one of the & list

frames and/or the area frame sample is

=1-(1-p)( =P )1 =Py} (1= Pp) =
Py gy + o+ Ny,
ﬁ .

The estimated Horvitz-Thompson population total estimator
is

v 2 Y = NJ’L.

Yor = e+ N
n,+ nab, + b,..b, i€ sample

where y, is the mean of the distinct elements on list frames
B, ..., B, and the elements in the area frame sample.

We can also use the screening estimator to estimate the
population total. The known overlap domain total is
combined with an estimator of the nonoverlap domain
(NOL) total to yield ¥, = Y, *¥YinoLYi/p,- The NOL
domain consists of elements on the area frame that are not
on any of the list frames and ¥, = ¥, Bu..uBy is the total of the
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distinct units on the & list frames, In the subsampling case,
we may replace Y, in Y by Lund’s estimator, given by

YL =Nb,Pbl *

N,

b,{fbk +h

Ny s, Voo, * byoaby Vb,

4. DEPENDENT LIST FRAMES

We now consider the case where dependencies exist
among list frames but where area and list frames remain
independent.  In capture-recapture experiments, for
example, the probability an animal is captured on the
second sampling occasion may depend on whether it was
captured on the first sampling occasion. See Fienberg
(1972), Cormack (1989), Wolter (1990), Pollock, Hines,
and Nichols (1984), Huggins (1989), and Alho (1990) for
specific examples.

We consider the case where we have two list frames, B,
and B,, that are dependent. Let p,, denote the probability
of being included on both list frames. If B, and B, .are
independent, then p,, =Py Ps, where Py, and by are
inclusion probabilities for B and B, respectwely Define
Pro(Py) as the probab:hty of being included on frame
B,(B,) but not on frame B,(B,). The probability of
exclusion from both list frames is denoted by py, =1 -
Pa, ~ Pa, * Dy

The likelihood function is given by

L@y, Py P11 NP1, Ny Ny o Moy Ny g0 Pipp, )

N ay N-n,
= 2y (] 'p,q)
[ Ry Ny s Ny o1y Pasys Ny ny nablbz]

Ny, Ny n Noto* b
(P,Bl -y l(pa Py " “-":p I "
N-N, -N, -n,-n,-N,, 6 -n
1 _pﬁl -PB, *P”) Ty Taby Taby Ty by Vot (12)

Maximizing (12) with respect to Py Pay Py and Vleads to
the approximate solution

n
bb, -,

N=Nb,+Nb2+"a 5, * s
Dy

+Nbb th

which coincides with the screening estimator 1\72. Thatis, N
is also the estimator that is obtained by pooling the two list
frames into a single list frame where the duplications are
eliminated and the nonoverlap domain size is estimated
using the area frame sample. Also, it can be shown that the
two-stage maximum likelihood procedure of Sanathanan
(1972) leads to:

v



84 Haines and Pollock: Combining Multiple Frames to Estimate Population Size and Totals

na * NB]uB2

=
I

NTBIUB2

Py (1 _'PA)
2
%,

Thus, the maximum likelihood estimator and Sanathanan’s
estimator both coincide with the screening estimator. If
information from two dependent list frames is available and
the nature of the dependency is unknown, then we cannot
estimate the individual parameters. When information from
an independent area frame is available, all parameters are
estimable. However, for estimating N, N, 5,08 is sufficient
and no additional information is gained from ?VBI, NB:’ and
Nb b

Methods are available for modeling the dependence
among k list frames when estimating population size and
totals. Additional population information or information
from an independent area frame is needed to accurately
model the dependence. Fienberg (1972) and Cormack
{1989) consider constrained log-linear models to model the
dependence. On the other hand, Wolter (1950) uses
external constraints such as a known sex ratio to estimate
the population size in the dependence case. Another
technique used is to model the inclusion probabilities as a
function of the covariates. Alho, Mulry, Wurdeman and
Kim (1993) use a conditional logistic regression model to
estimate the probability of being enumerated in a census
and apply the model to the 1990 Post-Enumeration Survey.
The role of auxiliary variables in capture-recapture
experiments with unequal capture probabilities is addressed
in Pollock et al. (1984), Huggins (1989), and Alho (1990).

5. SIMULATION STUDY

We conduct a simulation study to assess the overall
efficiency of different population size estimators for the
special case of two list frames plus an area frame. This is
the most feasible combination of sampling frames for real
survey problems. '

5.1 Design of the Study

In order to study both dependent and independent cases,
we define the parameter © that reflects the dependence
structure between list frames B, and B,. It has the same
form as the odds ratio and is written formally as

_ PooPn
Fo1Pro

In the case of two list frames, the value of 8 determines a
unique solution for p,,. Our study varies the following
factors:

]

Factor Levels Definition
N 500, 5000 Population size
P, 0.05,0.10, 0.20 Inclusion probability for area
frame A
Ps(=pp) Inclusion probability for list
1 2 0.7,0.9 frame B,(B,)
o 0.5,1.0,1.5,2.0 Odds ratio

For each parametric combination, we generate data (n,,
Nbl’_Nb}‘.’ P s Moy s N, 5 Mab. b, ). One thousa_nd MonFe C'arlo
replications are generated for eéach parametric combinatien.

5.2 Estimators

We compare four population size estimators, ]\7}, ]\72, 1\7’3,
and N,. N, isthe Lincoln-Petersen estimator which does
not incorporate area frame information. The estimator v,
18 suitable when the list frames are independent. Since the
estimator ignores information from the area frame sample,
it is expected to be inefficient when information from an
area frame is available. The screening estimator, N, sums
the overlap and nonoverlap domain estimates and is
particularly suitable for the dependent list frame case. The
third estimator, 1\73, is derived from the full, independent
sampling frame likelihood function. This estimator exploits
the information contained in the area and list frames and the
fact that the list frames are independent (8 = 1).

We expect Ng to be the best estimator when list frames B,
and B, are independent whereas we expect N, to be the
best estimator in the dependent case. As a result, we also
consider a pre-test estimator that tests for independence of
the list frames. We define ]\74 to be ]\72 if there is strong
evidence to believe that frames B, and B, are not
independent. Otherwise, we take N, = ¥,. Formally,

» | N, if GOF >y} o5 = 3.84
N, -0

Jfg otherwise,

where GOF is the chi-square goodness-of-fit test statistic
for testing Hy: ® =1 and is derived from the following
two-way table.

In B, NotIn B,

In B, Fab, b, b, Ping,
NotIn B, s, n, Mynp;
M ins, Pang; ny
Figure 1. Classification of Sampled Area Frame Elements

Figure 1 categorizes the n, elements according to their
presence on or absence from list frames B, and B,.
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5.3 Comparing the Estimators

Tables 2 and 3 display the percent relative bias and the

percent relatlve l‘OOt mean square error of the estimates .

N N N and N for population sizes of 500 and 5000,
respectwely We scale the bias and the root mean square
error by N in order to directly compare estimators based on
different population sizes. A comparison of Nl with N3
shows the benefit of drawing an area frame sample. In
practice, these benefits depend on the relative cost of the
area frame sample. In this study, we do not take sampling
costs into account. The probability of being included on
both list frames, p,,, is given in parentheses in the 8
column. When p, =p.. = .9, p,, must lic between .8 and .9.
However, for 8 ranging from .5 to 2, p,, varied only from
.806 to .817.

The estimator N is unbiased for & and has the smallest
percent relative blas The estimators N and N are
asymptotically consistent for V and yield blases close to0
when 6 = 1. On the other hand, N, and N have large
biases when 8 = 1. The percent relatnve blas of N is
smaller than that of N but it is not close to zero. The hlas
does not change sngmfrcantly as p, increases from .05 to
.10 to .20.

When N =500 and py = p.=.9, N has the smallest
percent relative root mean square error (% RRMSE). This
is partly due to the fact that the limited range of p,, values
is similar to the p,, value for the independence case (.810).
The % RRMSE for N 15 40 - 50 % smaller than that of N
On the other hand, the % RRMSE of N isonly 15 - 30 %
smaller than that of N Therefore, when the list frames
have very high 1nclu51on probabilities, both N and N are
much better than N Additionally, if area frame samplmg
costs are high, N may be a reasonable alternative estimator
to N,. When N=500andp, =p.. = .7, N, has the smallest
% RRMSE for the independence case. When 0=2, N has
- the smallest % RRMSE. If N = 5000 and p, = .7, N has
the smallest % RRMSE for only 6 = 1. For all other 0
values, N, yields the smallest % RRMSE. In all cases, N,
has very small variance and most of the % RRMSE is due
to the bias in N Foro<l, N tends to have positive bias
while for &> 1 N has negatwe bias. For the case of N =
5000 and p, = .9, N has the smallest % RRMSE for9 =1,
N has the srnallest % RRMSE for 6 =.5 and 2. For
0 =15, there is no best estimator with respect to
% RRMSE.

As expected, the percent relative root mean square errors
of Nz, N, and N decrease as the value of p 'y increases.
Thus, as the area frame information increases, the
% RRMSE decreases. Also, as the population size
increases from 500 to 5000, the % RRMSE decreases.
Since the values of p, in our simulation are small, N, has
a large variance. On the other hand, even though ¥, is
biased, it has a very small standard error and results in a
smaller % RRMSE. The estimator N4 reduces the bias of N3
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but has a large standard error. Hence, N4 is not a
particularly beneficial estimator. For larger values of 6and p
we expect N to perform better than N For the values of
6 and p, we comudered we recommend N over other
estimators.

The value of % RRMSE for N is between that of N
and N in most cases. We write the estimator N as N =
BN + ( 1 -'8)N,, where & =0 or 1 based on the results of
the goodness-of f1t test. The % RRMSE and % RBias of
N need not be between those of N and N because & is
not independent of N and N

5.4 Limitations of the Study

The goal of our study is to compare the bias, standard
error, and mean square error of four population size
estimators. We assume that inclusion probabilities for both
list frames are identical. Future studies may include
unequal inclusion probabilities as well as larger values of 8.
Clearly the benefit of N over N depends on the cost of
sampling from an area frame Our paper considers only
small values of p,. Small p, values are associated with a
high area frame sampling cost. Even in this case, we
observe a significant reduction in % RRMSE and % RBias,
thereby justifying the use of N, over N,. We do not
consider an objective function which incorporates sampling
costs, % RRMSE, and % RBias.

Throughout this paper, we assume that all units have the
same probability of being included on a given list frame.
Haines (1997) considers the case where the inclusion
probabilities are modeled as a function of a covariate.
When inclusion probabilities are heterogeneous, larger units
may have a higher list frame inclusion probability than
smaller units. Heterogeneous inclusion probabilities play
an important role in estimating population totals when the
response variable has a highly skewed distribution or has
rare values. Haines (1997) also presents two stratification
procedures that are useful when area and list frames are
stratified on the same variable. These results will be
presented in future publications.

6. DISCUSSION

The primary focus of this paper is population size
estimation based on several sampling frames. Information
from area and/or list frame(s) is collected and combined to
obtain various estimators. We derive population size
estimators when information is available only on &
independent list frames and also when information is
available on an area frame sample in addition to the list
frames. We conduct a simulation study to compare the
performance of the estimators in the special case of two list
frames plus an area frame. Based on our simulation study,
we recommend the estimator derived from the full,
independent likelihood, N3, for the case where the list
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Table 2

Simulation Results for & = 500

Py
05 10 20

Py ] % RBias % RRMSE % RBias % RRMSE % RBias % RRMSE
7 5 N, 62.30 66.01 60.64 64.04 63.26 66.81
(462) v, 0.30 49.07 -0.75 3237 0.85 22.58
V, 55.52 58.95 48.15 51.15 40.53 43.32
v, 48.15 58.38 37.88 49.25 24.95 38.80
1 v, 0.47 19.26 1.01 19.08 -0.11 19.45
(490) v, 0.45 57.34 0.34 39.61 0.88 27.25
A 0.43 18.21 0.83 1693 0.14 1575
vV, 2.40 27.57 1.39 22.94 0.29 17.96
1.5 W, -35.60 40.06 -36.48 40.58 -35.69 40.26
(:308) v, 3.11 66.43 -5.08 41.96 0.30 28.79
v, -32.07 36.79 -31.01 35.28 -24.04 28.88
v, -22.74 47.62 -26.21 37.57 -17.06 3038
2 N -60.07 62.91 -61.31 64.06 -60.41 63.28
(322) v, -6.12 66.59 -1.15 46.68 1.67 30.99
v, -55.36 58.35 -51.21 54.19 -40.89 43.99
v, -41.39 63.79 -34.79 55.45 -18.60 4135
9 5 N 5.37 6.79 5.27 6.63 5.59 6.97
(:806) v, 0.08 14.78 -0.06 10.17 -0.06 6.55
v, 5.04 6.44 4.62 593 4.24 5.53
v, 5.94 9.48 5.03 7.0 4.34 572
1 N 0.30 5.01 0.17 5.01 0.25 4.94
(810) v, 0.78 20.72 0.41 14.06 -0.06 9.03
A 0.33 4.83 0.20 4.68 0.17 4.24
v, 3.23 13.79 1.88 9.35 1.00 5.98
1.5 W -4.29 7.07 -4.39 7.32 -4.55 7.37
(8149 A -0.65 21.52 0.35 15.88 0.002 10.27
vV, -4.07 6.78 -3.83 6.73 -3.49 6.15
A -0.43 13.77 -1.18 10.92 -143 8.20
2 N -8.28 10.27 -8.40 10.36 -8.33 10.32
(817) vV, -0.29 25.59 0.39 17.66 0.35 11.41
V, -7.80 9.82 -7.35 9.38 -6.30 8.20
N, -2.52 17.96 -3.10 14.02 -2.73 10.33
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‘ Table 3
Simulation Results for & = 5000
P
.05 Jo 20

Pa 9 %RBiss %RRMSE  %RBias %RRMSE  %RBias  %RRMSE
7 5 N 61.47 61.82 61.39 61.76 61.69 62.04
(462) v, -0.18 15.78 0.26 10.65 -0.15 6.72
v, 54.84 55.17 49.06 49.38 39.38 39.65
v, 19.73 38.12 4.77 19.52 -0.01 7.21
1 N, -0.28 6.14 -0.13 5.99 035 6.15
(490) A 0.43 18.14 0.47 12.85 -0.20 8.34
v, -0.22 5.82 -0.03 5.35 0.16 4.88
‘ v, 0.26 9.82 -0.04 7.44 0.11 595
15 W, -36.21 36.68 -36.29 36.78 -35.90 36.38
(:308) A 0.41 20.39 -0.16 14.21 039 9.55
V, -32.87 3337 -29.97 30.49 -24.13 24.66
v, -19.11 3115 -11.51° 23.92 -3.12 14.03
2 A -61.04 61.3 -60.53 | 60.81 -60.64 60.92
¢322) A 0.40 20.09 0.60 15.43 0.31 9.67
A -55.69 55.96 -50.24 50.55 -41.46 41.76
v, -14.10 36.31 -2.34 20.96 0.26 9.84
9 05 N 5.56 5.70 5.52 5.67 5.54 5.68
(:806) v, -0.12 455 0.11 3.19 -0.03 2.08
v, 521 5.35 4.86 5.01 4.22 435
N, 497 5.41 3.64 4.88 2.26 3.79
1N, -0.02 1.58 0.08 1.55 0.01 1.57
(810) N, -0.09 6.16 -0.17 4.08 -0.14 2.79
A -0.03 1.53 0.05 1.48 -0.02 1.35
v, 0.37 3.19 0.11 2.18 0.09 1.89
15 N -4.66 5.00 -4.52 4.85 -4.61 4.90
(819 v, -025 7.54 0.11 4.95 -0.09 3.14
v, -4.39 4.73 -3.96 4.32 -3.55 3.85
V, -2.50 631 -2.26 5.02 184 382
2 N, -8.45 8.68 -8.38 8.60 -8.46 8.69
(817 w, -0.21 7.86 -0.06 5.29 0.01 3.73
N, -7.95 8.18 -7.39 7.61 -6.49 6.73
N, -3.76 8.80 -2.77 6.99 -1.25 4.97
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frames are independent or nearly independent. For the
moderate to strong dependence cases, we recommend the
screening estimator, N,

We also study population total estimation. We consider
two scenarios for estimating population totals. In the first
case, we assume that observations are available on all units
that comprise the list frames. In contrast, the second case
assumes that information is available only on subsamples
from each of the list frames. We consider an estimated
Horvitz-Thompson estimator if list frames are independent
and a screening estimator to estimate the population total if
the list frames are dependent.

In this paper, our focus is on population size estimation.
In practice, one may be interested in estimating population
totals for several characteristics based on multi-stage
samples involving unequal inclusion probabilities.
Relevant papers on this topic include Bankier (1986),
Skinner (1991), and Skinner, Holmes, and Holt (1994).
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Temporary Moblllty and Reporting of Usual Residence

NANCY BATES and ELEANORR. GERBERl

ABSTRACT

Temporary mobility is hypothesized to contribute toward within-household coverage error since it may affect an individual’s
determination of “usual residence” - a concept commonly applied when listing persons as part of a houschold-based survey
or census, This paper explores a typology of terporary mobility patterns and how they relate to the identification of usual
residence. Temporary mobility is defined by the pattern of movement away from, but usually back to a single residence over
a two-three month reference period. The typology is constructed using two dimensions: the variety of places visited and
the frequency of visits made. Using data from the U.S. Living Siwation Survey (LS8} conducted in 1993, four types of
temporary mobility patterns are identified. In particular, two groups exhibiting patterns of repeat visit behavior were found
to contain more of the types of people who tend to be missed during censuses and surveys. Log-linear modeling indicates
that temporary mobility patterns are a significant predictor of usual residence, even when controiling for the amount of nme

spent away and demographic characteristics.

KEY WORDS: Temporary mobility; Usual residence; Household rosters; Coverage.

1. INTRODUCTION

The fundamental challenge in any census of population
is the accurate and complete count of every person within
that population. Consequently, the extent to which people
are missed or undercounted during a census is arguably the
most important measure by which it is evaluated. Most
censuses and household-based surveys begin with a roster
question designed to list all “usual residents” of a
household.

Research evaluating the quality of census data suggests
that coverage error is a problem. In 1990, the 11.S. Post
Enumeration Survey (PES) and demographic analyses
estimated that the net national undercount was
approximately 2% (Hogan 1993; Robinson, Ahmed, Das
Gupta and Woodrow 1993). Other research suggests that
coverage error in current surveys (such as the U.S. Current
Population Survey) is even larger than undercoverage
occurring during decennial censuses (Shapiro; Diffendal,
Cantor 1993; Chakrabarty 1992; Pennie 1990; Hainer,
Hines, Martin and Shapiro 1988). Research by Fein and
West (1988) and Shapiro et al. {1993) suggest that failure
to count all persons within a housing unit is a larger
component of total coverage error than failure to count
persoris as a result of missing a housing unit. Others report
that within-household omissions account for about one-
third of all census omissions (Ellis 1994; Fay 1989a).

Coverage research also indicates that persons who are
undercounted are not randomly distributed among the
population. For example, blacks and Hispanics are
undercounted at a higher rate than non-Hispanic whites
(4.6% and 4.0%, respectively, compared to 0.7%; Hogan
1993), Persons who reside in multi-unit structures (such as
apartments) and those who reat are also more likely to be

missed (Griffin and Moriarity 1992; Moriarity and Childers

1993; Ellis 1993).

This paper concentrates on a dimension long hypo-
thesized to contribute to within-household coverage error.
This dimension focuses on temporary mobility into and out
of a residence over a period of time. Specifically, we
examine movement in terms of the number of places a
person may visit, the number of visits he/she makes and the
amount of time he/she spends there. This analysis examines
whether or not mobility may be a factor influencing
coverage and indeed be a good indicator of, household
attachment. We hypothesize that a person’s level of
mobility tends to influence a household respondent's
decision when defining that person as a usual resident and,
consequently, someone hefshe would or would not include
on a census report.

2. BACKGROUND

The movement from one geographical location to another
is usually signified by a change of address, movement of
possessions and so on. This type of mobility is commonly
referred to as geographic mobility. In addition to

"geographic mobility, there exists a more subtle form of

mobility that is not so clearly defined — temporary mobility.
Defined here, temporary mobility refers to the temporary
and sometimes patterned movement away from a residence
and encompasses both long and short, frequent and
infrequent overnight stays. This type of mobility has been
described as “one of the key features of irregular and
complex households” (de la Puente 1993). One example of
this is found in Haitian immigrant communities where
typical household structure consists of a relatively

! Nancy Bates, Office of the Director, U.S. Burcau of the Census, Room 2031, Federal Building 3, Washington, DC 20233, and Eleanor R. Gerber, Center for
Survey Methods Research, U.S. Bureau of the Census, Room 3133, Federal Building 4, Washington, DC 20233 U.S.A.
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permanent ‘“‘nuclear core” and a more mobile “fluid
periphery.” The fluid periphery consists of related and non-
related newcomers, staying for short periods of time, and
members of the household who visit Haiti on a regular basis
and can be away weeks or months at a time (Wingerd 1992).

Temporary mobility is not limited to special commu-
nities. Many examples can be found in the wider commu-
nity, including mobility associated with long term business
or vacation travel, attendance at college, custody situations,
and persons who maintain a presence in one or more
households over a given period of time. This mobility in
the fluid periphery, or temporary mobility, differs from
geographic mobility because it consists of movements away
from, but usually back to, a single residence over time.
Members of this fluid periphery present conceptual
difficulties for respondents in identifying which members
to include in a census or survey. Movement of these
persons may not invelve a permanent change in address,
and thus can blur the concept of who is defined as living or
staying at a given address.

Given that there is little literature on temporary mobility,
studies on geographic mobility and household structure
provide a good starting point for forming our hypotheses
about temporary mobility. According to the March 1994
Current Population Survey, young adults between 20-24 are
reported to have the highest rates of geographic mobility,
with one-third having moved between March 1993 and
March 1994. Differences by race are also evident with a
higher rate of mobility among blacks and Hispanics (19.6%
and 22.4%, respectively) compared to whites (16.0%, see
Hansen, 1994). Finally, tenure is also closely correlated
with geographic mobility — renters were four times more
likely than homeowners to have moved between 1993 and
1594, Obviously, these geographic movers share many of
the same characteristics as some undercounted populations.

The kind of mobility with which we are concemed may
also be a reflection of sociceconomic status. Temporary
mobility, transitory situations, and peripheral connection to
households can represent a means of adjusting for a lack of
resources (Lipton and Estrada 1993). Hudgins and Holmes
(1993) suggests that the undercounting of young black
males is a result of their social and economic marginality
evidenced in part by a lack of stable residences and
relatively permanent mailing addresses. One facet of this
may involve temporary movement to extended families or
“kin” networks in order to receive family or financial
assistance. This phenomenon of extended or kin networking
among blacks has also been documented extensively by
ethnographic studies (Martin and Martin 1985; Stack 1974;
Hainer et al. 1938). These living arrangements suggest
nontraditional (or at least non-nuclear) household forma-
tions which could contribute to coverage error, especially
if a person participates in kin networks by moving back and
forth among them.

Finally, Montoya (1992) describes a very different
household composition that is characteristic of some recent

Hispanic immigrant communities. Like kin-network house-
holds, they contain people who come and go, however, the
members are “loosely tied, ephemeral, and alienated” and
often composed of young migrant men who work and sleep
in different shifts and have virtually no social ties with one
another. Several other ethnographers have identified
stmilar households in other Hispanic communities across
the United States (Velasco 1992; Mahler 1993; Romero
1992.) They found that census coverage in such households
was often restricted to those individuals who were actually
present when the enumerator arrived.

3. METHODOLOGY

Data for this analysis come from the Living Situation
Survey (LSS), a survey specifically designed to gather
information about household membership, social attach-
ments, mobility and the assignment of usual residence. The
LSS was a voluntary survey conducted by the Research
Triangle Institute (RTT) and sponsored by the U.S. Census
Bureau between May and September of 1993. The sample
was stratified to oversample for high and medium minority
areas {i.e., greater than 80% black or Hispanic, between
40% and 80% black or Hispanic} and areas containing
renters (i.e., greater than 40% renters). To increase the
efficiency of the sample design, RTI used housing unit data

~ previously collected from a multistage probability sample

used in the 1992 National Household Survey on Drug
Abuse (NHSDA). :
The first portion of the LSS interview was conducted in-
person with the most knowledgeable household respondent,
in most cases, the householder (by U.S. Census Bureau
definition, this refers to the person in whose name the house
is owned or rented). These householders provided a roster
and then answered demographic questions for themselves
as well as all other listed persons. Through a series of
13 extensive roster probes, the questionnaire rostered
“core” household residents but also included many persons
having a less permanent presence. Persons with a more
tenuous attachment were brought in by asking probes about
who had spent the night there during the reference period,
who was considered a household member even if they were
staying elsewhere, and who considered the residence their
permanent address or a place they received mail or phone
messages (see Sweet 1994). (The length of the reference
period varied depending upon the date of the interview.
References periods began on the first day of the month two
months prior to the interview month and ended on the day
of the interview. Accordingly, interviews conducted toward
the end of the month had a longer reference period than
interviews conducted near the begining). In total, 999
households were interviewed nationwide. Using the broad
rostering technique, a total of 3,549 peaple were listed.
The next step in the survey was to weed out rostered
individuals determined to be only “casual visitors” to the
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household. Individuals were defined as casual visitors if:
1) their usual residence was considered by the housecholder
10 be someplace other than the sample housing unit and 2)
they had stayed at the household for one week or less
during the reference period. This screening process
identified persens from the broad rostering technique who
had only a casual attachment to the household. Of the
3,549 persons rostered, 712 were considered to be casual
visitors. (Of the 712 casual visitors, 77% were related to
the household respondent, 93% were non-Hispanic, 84%
were white and 58% were female). For several reasons,
casual visitors were ineligible for the remainder of the
questionnaire. First, we assumed that casual visitors do not
meet the Census Bureau definition of a usual resident at the
interview household and second, excluding this group from
the bulk of the questionnaire greatly reduced the time and
resources required to carry out the survey.

After follow-up for converting refusals and other non-
interviews, the final response rate for the household-level
portion of the interview was 79.5%. (Follow-up actions
included sending refusal conversion letters, having field
supervisors call directly, make repeat visits, and re-assign
interviewers. Respondents were contacted an average of 1.9
times; nonrespondents an average of 5.9 times). Consider-
ing the population, this was considered to be an acceptable
rate of response. Nonetheless, since we suspect that nonre-
sponse is highly related to coverage issues such as mobility,
itis likely that this level of nonresponse has some effect upon
our estimates. More discussion on this is included in the
description of the individual questionnaire below.

The next part of the survey was a self-reported
individual-level questionnaire. This part of the survey
contained questions about temporary mobility as well as
self-reported demographics. Respondents were asked if
they had stayed ovemnight at any other place beside the
interview household during the reference period. If so,
interviewers used a calendar to record each place and the
dates stayed. Interviewers also gathered information about
the type of each place stayed, the individual’s attachment to
each place, and the reason(s) for going there.

Each of the householders answered the individual-level
questionnaire for himself/herself. Additionally, all rostered
persons who had stayed away for eight or more nights
during the reference period answered the individual-level
questionnaire. All persons identified as college students
and persons with no usual residence were also eligible for
an individual interview. Finally, the individual question-
naire was also given to a simple random 10% sample of
LSS households. Within these households, individual
interviews were attempted with each person on the roster,
with the exception of casual visitors. This somewhat
complex selection criterion resulted in a base of persons
representing people with a greater-than-casual association
to the interview households, all of whom are included in the

analyses reported below (¥ = 1,451).
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The individual-level portion of the questionnaire had a
response rate of 85.3%. The majority of individual inter-
views were conducted in-person (96%) and most of the
adult interviews (89%) were self-reported while all inter-
views with children were conducted by a knowledgable
proxy. Because the householders answered basic living
situation questions and demographic questions for all
rostered individuals, we had some means for examining the
characteristics of the approximately 15% who were selected
for the individual questionnaire but did not respond. We
found no significant sex or age differences between
nonrespondents and respondents but we found that a
disproportionate percentage of nonrespondents were black.
We also found that nonrespondents were more likely to
have spent more than one week away from the interview
household than respondents. These findings shed some
light on how representative our individual sample is both
demographically and with respect to temporary mobility.
Because nonrespondents were reported to be away more
than respondents, we suspect the potential ‘selectivity’ bias
may have underestimated our mobility measures.

Household and individual-level weights were applied to
adjust for the oversampling, the selection criteria for the
individual-level survey and for nonresponse (see Lynch,
Witt, Branson and Ardini 1993). All analyses were
conducted using Contingency Table Analysis for Complex
Sample Designs (CPLX), a computer variance estimation
program designed to adjust for the LSS's complex sample
design effecis (see Fay 1989b; 1985).

3.1 Typology of Temporary Mobility

The typology which we present is empirically based.
That is, the particular groupings of visits and destinations
was derived analytically and not theoretically. Therefore,
the categories we identify do not represent groups of persons
with identical characteristics or in identical circumstances.
Rather the typology should be regarded as an attempt to
represent the complex underlying reality involved in mobile
living situations. It is our hypothesis that such mobility has
an affect on the strength of the social tie between an
individual and a particular household, and that these ties
influence the judgment of the household respondent in
deciding who is a usual resident of the household. Time
away, number of visits and number of destinations are an
indirect measure of the strength of such ties.

Qur typology of temporary mobility was created using
two dimensions of overnight movement outside the
interview household. The first dimension taps into the
variety of places a person visited over the reference period.
This provides some idea of how many places other than the
interview household that a person might have attachments
to. The second dimension taps the frequency of movements
outside the interview household by counting the number of
times a person left for a period of one or more nights.
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The use of these factors as a measure of the strength of
attachment to a household is confirmed by ethnographic
deseriptions of highly mobile living siteations. The pattern
of movement represented in our typology reflects many
different social processes, such as dispersed attachment to
extended kin households (Stack 1974; Dressler, Hoeppner
and Pitts 1985), immigration patterns (Wingerd 1992), and
adaptation to poverty (Hainer 1987; Valentine and
Valentine 1971). '

The LSS included several exploratory open-ended
questions designed to examine respondents perception of
the reasons for their mobility. The questions asked the
reasons for going and reasons for return for particular trips.
We had hoped that these questions would provide us with
a more direct assessment of the underlying social patterns
that cause temporary mobility. Unfortunately the answers
to these open ended questions were difficult to code without
making unwarranted assumptions, largely as a result of the
way in which they were expressed. As a result, we did not
incorporate these reasons when formulating the typology.

Each “move” was defined as a stay made outside the
interview household for at least one night. For example, if
a person left to spend three days at a girlfriend's, then
moved from there to a relative’s for one night before
retuming to the interview household that person would be
assigned as having two total places with two total visits
{one visit apiece). Conversely, if a person left to stay
overnight at a friend's then returned to the household and
then two weeks later returned to the same friend’s home for
a second visit, that person would be assigned one place with
two total visits (two repeat visits). The first example
exemplifies a potential bias in this method, that of counting
each unique place visited during one extended trip outside
the interview household as an independent move (such as
a vacation with multiple destinations). On the other hand,
this method also captures the movement of “floaters™ by
counting each separate place visited during one move away
from the household as a separate move.

A single mobility measure using various combinations of
the number of places and number of moves was
constructed. In all, five categories were created with efforts
made to identify different patterns of movement by
separating out those making repeat visits to the same places.
Our first category-depicts persons who stayed all nights of
the reference period at the interview household and
represents persons with no temporary mobility (the “Non-
mobile”). The second category consists of persons who,
according to the calendar, reported only one visit to one
place (the “1-shots™). The “Boomerangs” reflect persons
making repeat visits to one place only. The “No-repeats”
are characterized as persons who traveled to more than one
place, but never the same place twice. And finally, the
“Floaters™ stayed overnight at several different places,
making repeat visits back to at least one of these places (see
table 1).

Table 1
Temporary Mobility Typology

Number Number of Visits
of Places
Visited 0 1 2 3 4
Non- E
O mobile

Floaters

Floaters

B W N =

4. CHARACTERISTICS OF MOBILITY TYPES

Table 2 presents the weighted frequencies for the
mobility typology. Slightly more than half of the persons
administered the individual questionnaire reported no
mobility outside the interview household during the
reference period. The largest concentration of persons who
were mobile fell into the 1-shot category, that is, they
reported making only one move outside the interview:
household to one place (26%, overall). Eleven percent
comprised the Boomerang category reporting a more
repetitive pattern of two or more visits to a single place
while 7% reported the less patterned, yet highly mobile “No
repeat” category. The Floaters comprised the smallest
group with 4%.

Table 2
Typology of temporary Mobility by Sex and Hard-To-Enumerate
(HTE)* Status {Weighted 9% and standard errors)

Total SEX HTE STATUS
MOBILITY “;""rig:ﬁd
TYPE erce
{se.in MATE FEMALE NON-HTE HTE
paren.)
Non-mobile 52% 0% 67% 53% 38%
40) (37 (136) (14.3) (7.8)
1-Shots 26% 35%  16% 27% 6%
(104 (139  (7.0) {10.6) (2.9)
Boomerangs 11% 15% 6% 10% 21%
(4.0 G 29 @.1) ©.1)
No Repeats % 6% 8% % 6%
(2.9 Q4 @3 (3.0) (5.4)
Floaters 4% 4% 3% 3% 29%
(1.0) 3 13 (0.9) (9.9)
Unweighted N 1,451 653 798 1,375 76
X? for distribution ex-
Jackknife X?=2.03,p<.05, cluding non-mobile
chi-square** _ category =2.14,
df.=4 p<.05df=4

* The hard-to-enumeraie group includes black and Hispanic males
aged 18-29.

**See Fay 1985 for documentation of Jackknife chi-square test for
complex samples.
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Tables 2 also illustrates selected demographics for-the
five mobility categories including gender breakouts which
illustrate a higher mobility propensity for males than
females. Approximately 60% of the males reported at least
one visit outside the interview household, which was
significantly higher than females at approximately 33%.
This gender difference in temporary mobility is much more
pronounced than in geographic mobility where the
difference between the male and female move rate is only
around 1% (17% of the male population moved between
1993 and 1994 compared to 16% for females, see Hansen
1994). This suggests that temporary mobility is more
common than geographic mobility and that the demo-
graphic characteristics associated with it are different as
well. Military travel could explain the gender differences
in temporary mobility, as could travel for business with
males having a higher active-duty/population ratio and
employment/population ratio compared to females (U.S.
Department of Labor 1994).

The right side of Table 2 integrates several demographic
characteristics to create a subgroup known to have high
rates of undercount in previous censuses. This group is
comprised of males between 18 and 29 who are black or
Hispanic. This subgroup is sometimes referred to as the
“hard-to-enumerate” or HTE population. Only a small
percentage of the LSS sample met the HTE criteria, but an
examination of this group’s mobility reveals very different
patterns compared to the non-HTE group.

First, the HTE group appears more mobile to begin with —
over 60% indicated spending at least one night someplace
other than the interview household compared to less than
50% for non-HTEs. Second, the distribution of mobile
categories differs significantly by HTE status. The majority
of non-HTEs whoare mobile are concentrated in the 1-shot
category whereas the HTEs who are mobile are more
concentrated in the repeat movement categories (Boomer-
angs and Floaters with 21% and 29%, respectively).

We also examined the distributions for temporary
mobility by race (white, black, Hispanic, and other) and age
(0-17, 18-29, 30-49, 50+). Overall, temporary mobility did
not vary significantly by either, yet some interesting trends
were noticeable. A relatively large concentration of
Hispanics were found in the No-Repeat category (19%) and
blacks in the Floater group (9%). A higher percentage of
blacks were Non-mobile (66%) compared to whites (52%),
in spite of the fact that blacks have higher rates of
geographic mobility than whites. Finally, young adults
between 18 and 29 appeared more mobile than other age
groups (close to 70% of this age group spent at least one
night away from the interview household) and a dispro-
portionate percentage of this group were Floaters (14%).
The lack of statistical significance among some of these
trends may be an artifact of sample size. Alternatively,
temporary mobility may be sufficiently different from
geographic mobility such that it dees not share the same
characteristics of traditional ‘movers’.
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Another important variable hypothesized to correlate
with the pattém of temporary mobility is the amount of time
spent away on visits. The U.S. Census Bureau residence
rules vary in the uwse of time as a criterion for usual
residence. Forexample, persons who work in another city
during the week but return home on weekends are to be
counted at the place where they “live and sleep” the
majority of the time — in this case, at the place they live
during the week. However, a child living away at boarding
school is to be counted at the parent's residence even though
he/she probably spends the majority of time at the school.
Likewise, a person staying at a group quarters on Census
Day (e.g., a college dorm or a jail) is counted at that place,
regardless of their living situation the rest of the year.
Gerber (1994) found that respondents also use time to
varying degrees when defining household rosters - in
certain situations, she found no clear relationship between
being rostered and the amount of time spent at a place.
Instead, things like household membership and relationship
seemed to factor more heavily in the decision-making
process.

Nonetheless, it makes intuitive sense that the amount of
time spent away plays some part in the householder’s
determination of where to count someone. In order to see
how our mobility categories varied in term of length of time
spent away, the sum of the total number of nights spent
away during all visits in the reference period was divided by
the total number of nights in the reference period and then
expressed as a percentage. Table 3 presents this time
measure expressed in terms of being away more or less than
half of the reference period.

Table 3
Time Spent Away from the Interview Household during the
Reference Period (Weighted % and standard errors}

Away 50% of
time or more?

1-Shots Boomerangs No Repeats Floaters Total

No 94% 73% 98% 63% 88%
(4.4) (11.5) (1.4)  (103) (3.6)
Yes 6% 27% 2% 3%  12%
(4.4) (11.5) (1.4) (103) (3.6)
Unweighted N~ 314 186 101 134 735

Jackknife chi-square = 1.71, p< .05, 4. =3

Both the Boomerangs and Floaters were more likely than
other groups to spend half or more of the reference period
someplace other than the interview household. This
supports the notion that the repeat visit patterns underlying
these two groups are associated with an increase in total
time spent away. It also suggests a higher degree of resi-
dential ambiguity especially for the Floaters. Since
members of this group report visits to at least two places in
addition to the interview household, it is unclear whether
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those away more than half the time are spending a majority
of time at any one place. If time spent at each place is
roughly equal, it is easy to imagine Floaters not being
rostered at any of them or at more than one of them.
Conversely, by definition we can assume the Boomerangs
who were away more than half the reference period spent
the majority of their time at the only other place they
reported visiting. Assuming time plays a role in defining a
sense of household membership, then presumably, the
Boomerangs have a better chance of being counted because
the majority of their time is being spent at the other place.

5. USUAL RESIDENCE AND MOBILITY

We next explored whether temporary mobility has an
impact on the household respondent’s determination of a
person as a “usual resident”. On the 1990 U.S. census
form, respondents were instructed to list persons at the
place where the person lives or sleeps most of the time.

The LSS asked household respondents whether they

considered the interview household to be the *usual
residence, that is the place where [you/NAME] live(s) and
sleep(s) most of the time”. They were also asked to report
whether “[you/NAME)] have a usual residence somewhere
else?” While this method is not a perfect replication of a
census roster it provides an approximation of who, out of all
those rostered during the LSS, the householder might
naturally have included or excluded on a census form or
current survey.

Table 4 presents a cross-classification of usual residence
assignment by mobility status. A combination of the usual
residence questions resulted in four classification
possibilities: usual residence at the interview household
only, usual residence at someplace other than the interview
household only, usual residence at both the interview
household and another place, and usual residence at no
place. (The category of “no place” was extremely small
(less than 1%) and was combined into the category of
“other place”). Assuming that answers of “other place”
equate to being left off the census form, we see that overall,
only around 4% of persons with a greater-than-casual
association to the interview households might have been
left off. Overall, the distribution of usual resident classifi-
cations significantly differed according to mobility type.

As might be expected, nearly all of the persons who
spent every night at the interview household during the
reference period were considered usual residents there
{rounded to 100%). The most obvious deviation among
categories is noticeable for the Boomerangs and Floaters.
Between 20-25% of the people in these two groups were
characterized by household respondents as usual residents
someplace other than the interview household. This looks
very different from both the 1-shots and No-repeat groups,
where only 2% and 5%, respectively, were considered usual

residents someplace else. These results suggest that the
latter two groups typify mobility associated with pleasure or
business but for persons with a firm tie to the household
while the Boomerangs and the Floaters are more likely to
include persons with a less-established association to the
household. For this reason, and the fact that a sizable
percentage of the HTE population were found in these two
categories, the Boomerangs and Floaters arguably have the
more interesting coverage implications and raise several
questions. For example, do these persons get counted at
one place, all places or no place? Additionally, where
should they be counted?

Table 4
Where Does Household Respondent Consider Persontobea
“Usual Resident” 7 (Weighted % and standard errors)

Where Usual Non No
Resident 2 Mobile 1-Shots Boomerangs Repeat Floaters Total
Interview HH  10% %7% 71% 95% T0% 95%
Only 02) 20 {12.1) @42 (100 AN
Some Other 0% 2% 25% 5% 20% 4%
Place {-} (1.8) (11.0) “4.2) 9.4) (1.5)
0% 1% 4% 0% 10% 1%
Both Places = 04 Q@D @ 23 05
Unweighted N 716 314 186 101 134 1,451

Jackknife chi-square =2.79, p< .05, df =8

That a relatively large percentage of the Boomerangs and
Floaters are considered residents some place other than the
interview household suggests the potential for undercount-
ing. On the other hand, 10% of the Floaters are defined as
usual residents at both the interview household and another
place suggests potential for overcoverage. The weighted
number of Boomerangs and Floaters in these uncertain
residency situations (usual residents elsewhere or at both
places) represent approximately 4% of the total population.
From this more global perspective, it seems that a non-
trivial segment of the population is at risk of some type of
COVErage error.

6. MODELING OF USUAL RESIDENCE
AND MOBILITY

Our final section statistically models the household
respondent’s determination of usual residence. This analysis
goes beyond the descriptive findings of the typology to
explore whether mobility impacts the householder’s
conceptualization of residence. The assignment of usual
residence by the householder served as the dependent
variable in a series of models. The dependent variable
consisted of two categories: 1) usual resident at the inter-
view household and 2) not a usual resident at the interview
household. Persons considered to have a usual residence at
both the interview household and another place were put
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into the first category. Predictor variables included age,
sex, race, time away, and the mobility typology. The final
models reported in Table 5, all of which include terms for
the interaction of the independent variables, are equivitent
to logit models for usual residence.

The first model tested mobility as a dichotomous
measure: those with no mobility (the Non-mobile) and those
having spent at least one night away from the interview
household (the 1-shot, No-Repeat, Boomerang and Floater
categories combined). This model established first whether
temporary mobility was a significant predictor of residency
status regardless of the mobility pattern exhibited. This
“first-cut” was necessary because approximately 50% of the
sample fell into the Non-mobile category and second,
because the Non-mobile group was extremely skewed
toward the usual resident category of the dependent
variable. Consequently, models that attempted to include
all five categories of the mobility typology were misspeci-
fied due to a large number of zero fitted cells. '
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Results from the model with the dichotomous mobility
measure and sex yielded a relatively good “fit” of the data
(Jackknife X? for overall goodness of fit = .28, df. =2,

. p=.27. Neither race nor age improved the fit. Parameter
estimates indicated that persons in the Non-mobile category
were more likely to be classified as usual residents than
those having some mobility (not shown).

Having established that mobility was significantly
related to residency status, we next explored whether the
pattern of temporary mobility was a predictor. First, we
tested an independence baseline model to predict wsual
residence (U). The predictors consisted of a mobikty
variable (M), sex (S), and the amount of time spent away
(T). The mobility variable was comprised of the four
mobile categories (1-Shots, No-Repeats, Boomerangs, and
Floaters). Amount of time spent away was split into two
categories: less than half the reference period and half or
more of the reference period. Race and age were excluded
since neither improved the fit of the data.

Table 5
Goodness-of-Fit Tests and Parameter Estimates for Log-Linear Models of the Effect of Sex (8), Temporary Mobility (M), and
Length of Time Away (T) on Determination of Usual Residence Status (U)

A. Goodness of Fit Test

(U) Usual Residence Status

Model df Chi-square * P
1. U, SMT 15 4.79 .00
2. US, UM, UT, SMT 10 1.06 A2
3. UTM, USM, SMT 4 0.78 16
B. Parameter Estimates, Model 3 '
beta s.e std. value
(M) MOBILITY:
1-Shots 1.08 .40 2.71°
Boomerangs -1.54 .39 -3.94°
No-Repeats B3 S8 1.43
Floaters -.38 47 -.80
(S8) SEX:
(Males) 39 27 1.44
(T) TIME AWAY:
(> Y2 ref., period) -1.78 27 -6.527
(UY*(S)*(M) INTERACTION (Males)
1-Shots -.64 43 -1.48
Boomerangs .69 58 1.18
No-Repeats 85 .62 1.37
Floaters -.50 42 -2.14°
(UY*(M)*(T) INTERACTION (> ¥ ref. period)
1-Shots -.72 48 -1.50
Boomerangs -1.20 .54 -2.26
No-Repeats 1.57 74 2.12"
Floaters 36 41 0.88

* Jackknife Pearson chi-square for overall fit.
" Significant at the .05 level.
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The baseline model (U, SMT) did not fit the data well so
we rejected the null hypothesis that assignment of usual
residence is independent of mobility pattern, sex, and
amount of time spent away (Jackknife X overall goodness
of fit=4.79, df. = 15, p= .00, see Table 5). We then fitted
a main effects model (2) which includes the additive effects
of §, M and T upon U (US, UM, UT, SMT). This model
yielded a good fit (Jackknife X2 overall goodness of fit =
1.06, d.f = 10, p. =..12). Lastly, a model (3) including two
interaction terms was also fitted (UTM, USM, SMT). This
model assumes interactive effects of T*M and of S*M on
U. A comparison between the main effects and interaction
model suggested that several interactions were significant
and should be retained (comparison Jackknife X% = 1.99,
df. =6, p=.02). Table 5 contains the overall goodness of
fit tests along with the parameter estimates from the best
fitting interaction model (UTM, USM, SMT - Jackknife
X? overall goodness of fit=0.78, df =4, p=.16.)

The parameter estimates from Table 5 illustrate that
temporary mobility has a significant main effect on
assignment of usual residence in model 3 which controls for
sex, amount of time spent away, and several interactions.
Two of the mobility categories had significant beta
coefficients albeit the directions were opposite. The 1-Shots
were significantly more likely to be defined as usual resi-
dents (b= +1.08). Conversely, the Boomerangs had a
negative parameter estimate (b = -1.54) meaning that the
odds of being defined a usual resident were significantly
decreased for this group.

Time spent away from the interview household had by
far the largest effect on predicting usual residence with a
strong negative association (b = -1.78). This means that
for our temporarily mobile population, those away half or
more of the reference period were significantly less likely
to be considered usual residents than those away less than
half of the time. Sex did not have a significant main effect,
but was involved in a significant interaction. The inter-
action appears in the Floater group where male Floaters
were less likely to be categorized as usual residents than
female Floaters (b = -.90), Further investigation revealed
few clues to explain this finding. Male and female Floaters
differed -little in the types of places they visited, their
reasons for visiting, and the relation to the householder of
places they visited {(relative versus non-relative). Perhaps
the interaction reflects differences in other social attach-
ments such as presence of children, personal belongings,
and/or contribution of resources.

The bottom of table 5 indicates that the interaction
between usual residence, mobility and amount of time spent
away is rather complex. The amount of time spent away
appears to affect usual residence status for some types of
mobility but not for others. The interaction coefficient is
significant and negative for the Boomerangs (b = -1.20).
Thus, the odds of being defined a usual resident are even
lower for Boomerangs away haif or more of the reference
period compared to other groups away for a similar amount

of time. This suggests that persons who “boomerang” back
and forth between two households will be considered usual
residents at the place they spend the majority of time.
However, for the No-repeats, the coefticient is significant
and positive, essentially canceling out time away’s negative
main effect (1.57 + -1.78 = -0.21). For this group, the
amount of time spent away appears to have no association
with usual residence assignment. Apparently, factors other
than time may be more important in the cognitive process of
determining where these persons “reside.” One hypothesis
is that No-repeaters are persons who must travel for a living
and who, despite their frequent mobility and long periods
away, clearly “belong” to a stable residence. This notion
supports findings from a vignette study that found
respondents did not require a stated rule to be able to
correctly identify the usual residence of persons described as
being away on business travel. Such persons were
“intuitively” perceived to be part of the households from
which they were away (Gerber, Wellens and Keeley 1996).

7. CONCLUSIONS

Temporary mobility, as defined in our research, involves
long and short, frequent and infrequent, patterned and
unpatterned movement away from, but often back to, a
single residence. Such mobility has long been hypothesized
to contribute toward census and survey coverage error by
blurring the concept of who exactly lives or stays at a
particular household.

Our sample of persons having a more-than-casual
association to households indicated a fair amount of tempo-
rary mobility over a two-three month period. Interesting
demographic differences were noted in the level of mobility
as well as the pattern of mobility reported. The “hard to
enumerate” (HTE) group (black/Hispanic males between 18
and 29) were found to cluster in the Boomerang and Floater
groups, suggesting a repeat pattern of temporary mobility.
We suspect these groups include persons having strong
attachments to multiple households, for example an adult
son who splits time between a parent and girlfriend’s or a
young mother who stays pericdically at different kin-
network households to receive assistance with child care.

Besides the inclusion of the types of persons who tend to
be missed in censuses and surveys, other considerations
point to the Boomerang and Floaters as being of particular
interest. First, compared to the other mobility categories,
these groups spent a longer time away from the households
in which they were “found” and second, were more often
classified as having a usual residence someplace other than
the household in which they were found. It is difficult to
estimate how much this type of mobility contributes toward
undercounting. However, it is very noteworthy that half the
HTE population fall in either the Boomerang or Floater
group. It seems more than a coincidence that such a large
segment of this population belong to one of the two mobility
groups most easily labeled “residentially ambiguous.”
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The log-linear analysis suggests that there is not a
clearcut, simple relationship between temporary mobility
and assignment of usual residence. We do not find that the
greater the amount of temporary mobility the less the
chance of being defined a usual resident. Instead, the
relationship seems more driven by the pattern of movement.
For example, the traveling salesman or truck driver who
reports the greatest. variety of places visited and the largest
number of visits may, nonetheless, have less residential
ambiguity than a person visiting only one other place but
making many repeat visits. And, in fact, this proved to be
the case for the No-Repeats for whom the amount of time
spent away had essentially no relation to usual residence
assignment.

Our exploration of temporary mobility represents a new
research direction for the study of within-household census
and survey coverage error. Two recommendations for
improving census and survey coverage are offered. First,
survey organizations should explore the possibility of
directly measuring the association between temporary
mobility and incidents of census and survey undercoverage.
This could be accomplished by adding questions about
mobility to post-census coverage interviews used to esti-
mate the number of people missed or counted in error. If
the correlation between coverage error and mobility is
significant, then survey methods and procedures could be
adjusted to try and reduce it. For example, new roster
probes could be added to census forms and nonresponse
follow-up interviews, the aim being to find more of the
Boomerangs and Floaters. Measures of temporary mobility
might also prove to be a powerful predictor variable when
statistically modeling the undercount, While admittedly in
the early stages, temporary mobility looks promising as an
avenue to better understanding household coverage error.
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