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In This Issue 

This issue of Survey Methodology begins with a special section entitled "Longitudinal Surveys 
and Analysis" which contains six of the papers presented at the lASS/IAOS Satellite Meeting on 
Longitudinal Studies held in Jerusalem in 1997. One or two other papers from that conference, 
which were not ready on time for this issue, may appear in future issues of the journal. I am very 
grateful to Gad Nathan and Christopher Skinner who were the Coordinating Editors for this special 
section. Without their persistence and hard work it would not have been possible. 

The first paper in the special section, by Binder, introduces the topic by reviewing the current 
status and challenges for longitudinal studies as compared to cross-sectional studies. The discussion 
is divided into four parts, reviewing in turn the special issues and challenges encountered in the 
design, implementation, evaluation, and analysis of longitudinal surveys. 

Bassi, "Torelli and Trivellato consider the problem of estimation of gross flows among labour 
force states when there are classification errors in the data. They first review various strategies for 
the collection of longitudinal labour force data, and their lUcely implications for classification errors. 
They then present a general modeling framework and a modified LISREL model for adjusting gross 
flows estimates to correct for classification errors. The methods are illustrated by two case studies 
using data from tiie U.S. Survey of Income and Program Participation and the French Labour Force 
Survey. 

Clarke and Chambers consider the impact of household level non-response on estimates of labour 
force gross flows. They propose a class of models for nonignorable household-level nonresponse. 
They then use simulations to demonstrate that labour force gross flows estimates can be biased in 
the presence of this nonignorable household level nonresponse, and that estimates using household 
level nonresponse models can reduce this bias. If the household level nonresponse mechanism is 
correctly specified then this source of bias is removed completely; however, even incorrectly 
specified household nonresponse models can reduce the bias. 

Salamin considers the problem of estimating a change in proportion for a small area. He shows 
how a general multivariate logistic regression model can be used to describe the longitudinal data 
obtained from a rotating panel design. He also considers how the parameters of this model may be 
restricted to describe various types of dependance among the repeated observations, leading to 
alternative model based estimates of change. The method is illustrated by estimating changes in 
probability of being employed for a Canton in Switzerland using data from the Swiss Labour Force 
Survey. Compared to simple differences of estimated proportions of employed persons, the model 
based estimates have smaller standard errors. 

Dorfman, in his paper, attempts to treat consumer price indices from a statistical point of view. 
He first reviews price index theory in general, including the stochastic approach and objections to 
it. He then proposes a modification to the stochastic approach, based on state space modeling, which 
circumvents the major criticism of it. The approach is illustrated using price and quantity data for 
canned tuna. 

In the last paper in the special section, Tambay, §chiopu-Kratina, Mayda, Stukel and Nation 
describe the treatment of nonresponse in the Canadian National Population Health Survey. Data 
collected at tiie first cycle of the survey are considered as potential predictors of nonresponse to the 
second cycle. A CHAID (Chi-square Automatic Interaction Detection) algorithm is used to 
determine weighting classes for nonresponse adjustment at the second cycle. The paper also briefly 
describes the sample design and other steps in the derivation of the estimation weights. 

Sinclair and Gastwirth study the problem of misclassification error of labour force status in the 
Curtent Population Survey of the U.S. Bureau of the Census. To do so, they extend the method of 
Hui and Walter, which is appropriate for dichotomous data using reinterview data, to the 
trichotomous case. Unlike other methods, this metiiod does not assume that reinterview data is error 
free, but rather assumes an error in both the original interview and the reinterview data. They make 
an empirical assessment by comparing the estimated error rates generated by their method as 
opposed to other existing methods such as that of Poterba and Summers, and find that the degree 
of underestimation of the error tends to be higher when the true unemployment rate is in fact high. 
Finally, rather than assuming a constant error rate throughout, they attempt an analysis assuming that 
the error rates are constant only within time groupings having differing levels of unemployment. 
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Renssen considers the problem of combining information on variables collected from two 
different large surveys, using auxiliary information from a smaller third survey collecting all of the 
variables. Using ideas from statistical matching and from calibration, he proposes methods for the 
production of two-way tables, for the production of microdata files, and for the estimation of 
correlations. For the production of two-way tables his development leads to consideration of two 
different sets of caUbration constiaints, one termed incomplete two-way sti-atification and the second 
termed synthetic two-way sttatification. In a simulation study using data from a pilot study for the 
Dutch Household Survey on Living Conditions, the calibration based on synthetic two-way 
stratification is shown to be much better. 

Amab considers different strategies for sampling on two occasions. The sample at the second 
occasion is assumed to be a combination of a subsample of the first sample and a new, unmatched 
sample. Different strategies for subsampling the first sample and estimating a total at the second 
occasion are compared. He reviews strategies already existing in the literature, and proposes two 
new ones. Efficiencies of various strategies are compared analytically and empirically. 

Finally, Kom and Graubard consider the problem of generating confitlence intervals for 
proportions having a small expected number of positive counts. Noting that the Clopper-Pearson 
binomial intervals traditionaUy used in tiie non-survey setting are inappropriate for use with complex 
survey data, they propose a modification of these intervals. Via simulation, they then compare the 
proposed intervals to others commonly used such as: logit-transform intervals, Breeze (1990) 
intervals based on a Poisson approximation, and normality-based linear intervals. They also illustrate 
the proposed and three alternative methods with applications using data from both the National 
Health and Nutrition Examination Survey and the Hispanic Health and Nutrition Examination 
Survey. 

The Editor 
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Longitudinal Surveys: Why Are These Surveys Different 
From All Other Surveys? 

DAVID A. BINDER' 

ABSTRACT 

We review the current status of various aspects of the design and analysis of studies where the same units are investigated 
at several points in time. These studies include longitudinal surveys, and longitudinal analyses of retrospective studies and 
of administrative or census data. The major focus is the special problems posed by the longitudinal nature of the study. 
We discuss four of the major components of longitudinal studies in general; namely. Design, Implementation, Evaluation 
and Analysis. Each of these components requires special considerations when planning a longitudinal study. Some issues 
relating to the longitudinal nature of the studies are: concepts and definitions, frames, sampling, data collection, nonresponse 
treatment, imputation, estimation, data validation, data analysis and dissemination. Assuming familiarity with the basic 
requirements for conducting a cross-sectional survey, we highlight the issues and problems that become apparent for many 
longitudinal studies. 

KEY WORDS: Frames; Administrative data; Data collection; Nonresponse; Imputation; Estimation; Data analysis. 

1. REASONS FOR LONGITUDINAL STUDIES 

Each year around the world various statistical agencies 
conduct thousands of surveys. Usually, these surveys 
obtain information required for decision or policy making. 
These surveys are not conducted just for historical 
purposes, but also to have information on what measures 
may be taken to assist with making various policy changes. 
Most surveys are based on cross-sectional data, where a 
survey is taken of a particular population at a given point in 
time. Various summaries are taken about the population 
under consideration at the time of the survey. However, 
very often the interest is not so much in what actually 
happened when the survey was taken, but what would be 
the impact of making various changes. Alternatively, a 
planned change in policy may be forthcoming and 
monitoring the effect of this change is desirable. What is 
most important is the time element. For example, when 
trying to leam about certain phenomena such as health 
status or education attainment, one is interested in the 
various determinants related to these outcomes. Some
times, the actual temporal relationship is not even clear in 
terms of what are the causes that precede the effects. These 
could be measured if, instead of taking a cross-sectional 
survey, surveys are conducted over time, either as a series 
of cross-sectional surveys or, alternatively, using the same 
panel of respondents from one occasion to another. This 
common sense notion has led to the desire to conduct more 
longitudinal studies. This also has the benefit that the 
effects of unobserved variables may be less important when 
the same respondents are used to compare differences over 
time. 

One of the factors contributing to the increase in the 
number of longitudinal studies is that administrative data 

sources can now be used more effectively, thus making 
certain longitudinal studies feasible. Administrative data 
are becoming increasingly available. These data are often 
routinely collected for the same individuals over a period of 
time. Even if the data collected from the administrative 
sources is not ideal for the survey-taker, they may provide 
a good proxy for the information. 

The advantage of designing a study as longitudinal is 
that a common methodology can be used for each of the 
various waves of the survey. This may lead to more valid 
conclusions. Often, when trying to understand various 
patterns of social and economic change, conducting surveys 
of the same respondents on a number of occasions is best. 
Less desirable, but possibly satisfactory, is simply to repeat 
the survey from one occasion to another witiiout necessarily 
returning to the same respondents. TTiis may be less costly. 
The main point is that to understand certain phenomena 
over time, collecting the information on more than one 
occasion is necessary. 

When making decisions on the nature of a new 
longitiidinal study, a number of cost considerations need to 
be accounted for. Obviously, one needs to consider the 
benefits against these various costs. Issues that longitudinal 
studies could address cover many subject-matter areas. We 
enumerate just a few of them. In the area of health status, 
one is interested in changes to health status and the 
determinants that lead to these changes. In other words, 
what are the health risks, and what, in fact, is the effect of 
these health risks on health status in the long term? By 
collecting the data from the same individuals over a period 
of time, one can assess these factors, not just on small scale 
studies typical of clinical trials, but on large-scale 
nationally-based population health surveys. However, the 
type of information that can be obtained from a nationally-

David A. Binder, Business Survey Methods Division, Statistics Canada, R.H. Coats Building, Tunney's Pasture, Ottawa, Ontario, Canada, KIA 0T6. 
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based longitudinal survey would be very different from that 
which is obtainable in a clinical trial. 

Another topic where there is interest in observations over 
time is in the area of labour and income. For example, it is 
not enough to have information on the net change to labour 
force status and labour force participation rate over time. It 
is also of interest to know which individuals move from say, 
being unemployed to working or to not being in the labour 
force. In recent times, employment patterns have changed. 
More women are working and part-time work is more 
common. Frequency of job changes is also changing. To 
understand these phenomena, longitudinal surveys can 
answer many important questions. 'The characteristics, for 
example, of entry level jobs taken by those who were 
previously unemployed may be of interest, as well as 
effectiveness of different job search strategies by individ
uals or the effectiveness of various government training 
schemes. 

Length of spells in poverty is of increasing interest. For 
example, for persons with low income, how long does one 
remain in that situation? What are the various factors that 
will determine whether this is a long-term situation? How 
important are education and other factors with respect to 
poverty and the length of poverty spells? 

In the field of education, an interesting aspect is the 
school-to-work transition at the time when people finish 
full-time school and decide to join the labour force. This 
behaviour may be measured more easily through a 
longitudinal study than through other types of surveys. 
Another education-related example is the effectiveness of 
various types of education such as vocational training and 
adult training programs. 

In justice and victimization, there are many examples 
where observing the same individuals over time can be 
beneficial. Persons who have been victimized could be 
followed up to assess the long-term implications. As well, 
persons who have been involved with the judicial system 
may be observed over time to determine the subsequent 
patterns of behaviour and the determinants for these 
pattems. 

Studies of consumer behaviour are of great interest to 
marketers and others. This would include purchasing 
pattems for consumers. Event histories for consumer 
purchasing would be very useful to many researchers. 

Studies on the effects of government transfer payments 
to individuals over time can be important to policy makers. 
A longitudinal study can determine how long individuals 
may be dependent on such government payments, whether 
or not habits are created because of the existence of some 
of these payments, what are the characteristics of the 
individuals and what are the long-term effects of partici
pation in various assistance programs. 

On the economic side, the longitudinal characteristics of 
various businesses are of great interest. One can measure 
how efficient these businesses are, what the use of 
technology is in these businesses, what is the long-term 

effect of this use and how productivity is changing over 
time. Various interesting questions on business demo
graphics could be asked; for example, what are the 
characteristics of businesses that result in failure, what are 
the economic conditions under which businesses are 
created. As well, mergers and amalgamations are of 
interest with respect to the conditions under which these 
occur. Through longitudinal studies these phenomena can 
be more easily measured. 

There have been various structural changes to many 
businesses over the last few years and it is only through 
longitudinal studies that one can observe some of these 
structural changes at the micro level. Many measures can 
be estimated only when the respondents are measured on 
more than one occasion. 

Another area of interest is in agriculture, where the 
nature of farming is undergoing transition. Of interest is 
how farms are changing, both in terms of the products that 
are being produced and the size of the farms. Changes in 
the characteristics of who is running the operation are also 
of interest. 

As we have discussed, there are many applications and 
many facets to longitudinal studies. Also, there are many 
dimensions to their design and analysis. In the following 
sections we summarize these issues around Four Questions: 
design issues, implementation issues, evaluation issues and 
analysis issues. Many of these issues have been discussed 
in Kasprzyk, Duncan, Kalton and Singh (1989) and in 
Armstrong, Darcovich and Lavallee (1993). Some design 
issues and time series methods are reviewed in Binder and 
Hidiroglou (1988). We include a few more recent 
references. 

QUESTION 1: DESIGN ISSUES 

When designing a longitudinal study, advance planning 
is vital to the success of the study. For example, one must 
ensure that only relevant and accurate information is being 
collected from the respondents so that the potential benefit 
of the longitudinal survey is maximized. This implies that 
the longitudinal analyses to be undertaken from the survey 
should be planned from the outset to ensure that the 
relevant data are obtained. Duncan and Kalton (1987) give 
an excellent summary of many of the issues. Webber 
(1994) describes the testing strategy used in the planning of 
the Survey on Labour and Income Dynamics. Huggins and 
Fischer (1994) discuss the plans for the redesign of the 
Survey of Income and Program Participation based on their 
experiences. Longitudinal studies can be more expensive 
than a series of cross-sectional studies. Therefore, the 
benefits of collecting these data must be even greater since 
the costs themselves are higher. As well, ensuring that 
funding for a longitudinal study can be assured is important 
since the fruits from the longitudinal nature of the study 
may not be borne until at least the second or third wave of 
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the study. There is a difference, of course, between 
planning for a study to be longitudinal from the beginning 
as opposed to taking a series of cross-sectional data and 
trying to merge them into a longitudinal database. Obvi
ously, the former is more desirable but often, because of the 
history of the survey-taking organization, a series of cross-
sectional data already exists so that merging these would be 
a reasonable alternative; see Hughes and Hinkins (1995). 

In general, careful attention needs to be paid to the 
design of the database for any longitudinal survey where the 
analysis includes longitudinal measures such as the study of 
episodes and spells. For some statistical agencies and 
organizations, the survey program is now in transition from 
cross-sectional surveys to longitudinal surveys. The change 
from a series of cross-sectional surveys to longitudinal 
surveys requires careful planning. When conducting 
longitudinal surveys, the databases need to be maintained 
and updated in ways that are very different from cross-
sectional surveys. There may be many infrastructure and 
organizational issues within the agency that become 
apparent as more longitudinal surveys are being conducted, 
particularly with respect to the maintenance of the data
bases and the survey operations. The impact of such 
changes on the statistical organization may be substantial. 

An important issue to consider when planning for a 
longitudinal survey is whether or not the users will also be 
requiring cross-sectional estimates. Is there a requirement 
to have information about the respondents who are in the 
survey over a period of time, and also being able to produce 
estimates for a single point in time as if it were a cross-
sectional survey? If this is the case, there are major 
implications on the way the survey is designed and 
implemented; see Lavall6e (1995). This concern would 
also be present if the variables of interest include comparing 
cross-sectional estimates over time, as opposed to true 
longitudinal measures such as studying autocorrelations for 
common units in a business survey. 

Concepts and the definitions used in longitudinal surveys 
are usually obtained through consultations with the data 
users. Even the definition of the longitudinal unit to be 
observed over time may need clarification for dynamic 
populations. This is the case for both household surveys 
and for business surveys. Understanding the user re
quirements and discussing what can be measured over time 
with appropriate quality is important. During the survey 
planning, these requirements must be carefully weighed 
against what is operationally feasible in an actual survey 
context. Given the eventual costs of these studies, 
conducting thorough tests is often worthwhile, particulariy 
on the survey questionnaires. A point that deserves more 
attention is the need for more standard longitudinal 
measures that are common across countries. This would 
permit governments and researchers to make better 
international comparisons. 

Another major component for designing longitudinal 
studies is the creation, use and maintenance of sampling 

frames over time in ways that facilitate the implementation 
of the study. For example, an establishment panel survey 
may be based on a business register that can be highly 
dynamic with respect to births, deaths, mergers and 
amalgamations. It is important that the definitions of which 
units are to be included in these panels over time are clear 
under these conditions. 

One reason that longitudinal surveys have become more 
prevalent in recent years is the fact that there are more 
administrative data files available now that can be used as 
frames for conducting the longitudinal studies. The 
administrative files themselves may also contain useful data 
information besides just being useful as frames per se. 
Some data manipulation of the administrative data is 
usually required to make these data useful for the statistical 
purpose of the longitudinal study, however. In general, the 
impact of frame changes to the study must be carefully 
considered at the design stages. 

A common practice is to take a number of different 
administrative files and to match them to create a sampling 
frame. As well, some longitudinal studies are based solely 
on the information contained in various administrative files. 
The difficulty, of course, is that over time these administra
tive files will change. This may imply a change to the 
samples that are being taken from these files, and therefore 
special measures will need to be taken to keep the analyses 
relevant. 

Often a longitudinal study is based on an existing survey 
or census conducted at a point in time in the past, and this 
then becomes the basis for the sampling frame for following 
up respondents over time. One disadvantage of this is that 
it becomes difficult to obtain cross-sectional estimates when 
births to the population are excluded from the frame. 
Record linkage techniques may be necessary for main
taining the frame and such techniques are usually error-
prone. 

For rare populations, it is often advantageous to use not 
just a single frame but to use multiple frame methods. This 
ensures that there is adequate representation from the 
populations of interest that might be underrepresented in a 
single frame, but this may also require the use of record 
linkage and complex weighting techniques. 

An important design issue is the method of sampling 
from the frame once it has been established. In Kalton and 
Citro (1993), a number of different types of longitudinal 
surveys were enumerated. These were repeated surveys, 
that is, a series of cross-sectional surveys; panel surveys, 
where certain respondents are selected and followed up 
over time; repeated panel surveys, where new panel surveys 
are selected at different points in time; rotating panel 
surveys, where on each occasion a panel is dropped from 
the study and a new panel is added; overlapping surveys, 
where there are common respondents from one occasion to 
the other, but not necessarily through a fixed panel sample 
design; split panel surveys that can be a combination of 
panel surveys and repeated or rotating panel surveys. The 
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sample design must ensure that there is a sufficient sample 
from the population of interest as well from any of the 
control groups. Administrative data have proven to be very 
useful when designing a sample for many of these surveys 
as they often provide a suitable frame. 

As a referee pointed out, a key issue at the design stage 
is the sti-ategy for dealing with sample loss though attrition, 
due to nonresponse, leaving the target population, etc. 
Possibilities include topping up the sample in subsequent 
waves, but such a strategy can distort the representativity of 
the cohort. Another strategy would be to start with a larger 
sample and not replace lost units; see, for example Singh, 
Petroni and Allen (1994). 

When deciding on a particular sample design, considera
tion must be given to the related weighting and estimation 
issues. As well, the periodicity or frequency of the survey 
must be established. Obviously, when the variables of 
interest change more rapidly, having the survey conducted 
more frequentiy would be more desirable. On the one hand, 
more frequent surveys lead to increased cost and respondent 
burden; on the other hand, less frequent surveys can lead to 
larger recall biases. These cost-quality tradeoffs are usually 
difficult to quantify. 

Very often, if both cross-sectional and longitudinal 
estimates are required, ensuring that there will be valid 
cross-sectional estimates may be necessary to select supple
mentary samples. This is because there may be members of 
the population in the cross-sectional estimates who were not 
in the sampling frame on previous waves and, therefore, 
would not be represented in the sample. Czajka (1994) 
studies this for the case of estimating income. 

Designing some evaluation samples is also worthwhile 
at the planning stage. There are a number of sources of bias 
in longitudinal surveys. Some of these biases can occur 
simply because the same respondent has been surveyed on 
a number of occasions. Therefore, consideration should be 
given to adding additional samples for evaluation purposes 
only, in order to be able to measure some of these impacts. 
These samples would include individuals in the target 
population that were not in the longitudinal survey. They 
are most useful for evaluating cross-sectional measures. 

QUESTION 2: IMPLEMENTATION ISSUES 

The second main issue we discuss is related to the 
implementation of a longitudinal study. First, one has 
various choices of modes of data collection. Recently, 
computer-assisted interviewing has gained popularity. With 
computer-assisted interviewing, more choices of survey 
instruments are available. For example, using dependent 
interviewing where the respondent or the interviewer has 
access to the responses from previous occasions is easier. 
This may increase or decrease certain biases. Hill (1994) 
asseses this in the context of Survey of Income and Program 
Participation. 

Of course, since we are going back to the same 
respondents on a number of occasions, the question of 
response burden is even more crucial than in a single cross-
sectional survey. We do not want to overload the res
pondent since this could result in higher refusal rates at later 
waves of the survey. Michaud, Dolson, Adams and Renaud 
(1995) suggest respondent burden can be reduced by 
making more use of administiative data. Reducing attrition 
due to nonresponse is an important goal in longitudinal 
surveys and consideration may be given to the use of 
monetary or other incentives to help keep the integrity of 
the sample over time; see Lengacher, Sullivan, Couper and 
Groves (1995). Another means of reducing attrition is to 
collect information to aid in the tracing efforts and to keep 
in contact with the respondents over time; McGuigan, 
Ellickson, Hays and Bell (1995) studies alternatives of 
tracing, reweighting and sample selection modelling, to 
cope with attrition problems. 

In some longitudinal surveys, some data are collected 
retrospectively; that is, questions are asked which refer to 
previous points in time as well as the current point in time. 
This could lead to what is known as seam effects. As a 
resuU, the observed changes over the reference periods may 
depend on which periods contain data obtained retro
spectively. 

Administrative records may be useful to enrich the 
database so that not all data need to be collected directly 
from the respondent; see Michaud et al. (1995). Of course, 
this could depend on the quality of the administrative data, 
its availability, and what the interplay is between the 
information from the administrative records and the survey 
variables; see Steams, Kovar, Hayes and Koch (1996) for 
an example that studies this relationship. When dealing 
with administrative data or merged sample files, there may 
be data gaps in these various files and how to handle these 
data gaps becomes an issue. 

In general, changes to the frame stmcture can result in 
difficulties when performing the longitudinal analyses. 
Some key characteristics of the respondents could also be 
changing over time. For example, in a business register, if 
the industrial classification information changes because of 
the fact that businesses change the nature of the products 
that they are producing over time, being able to keep track 
of this changing classification on the database to ensure that 
the longitudinal analyses are as useful as possible is 
important. This can also complicate the analysis. 

Many issues arise when the database is obtained by 
combining the samples from a series of individual surveys. 
Integrating this information may present a challenge 
because different surveys may have used different method
ologies. This could result in some inconsistencies in the 
quality of the information from one database to another. 

Important issues for many longitudinal surveys are those 
related to record linkage. Record linkage is used in many 
processing steps. In some cases, the longitudinal studies 
may be based solely on these linked files. Record linkage 
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is common for creating and maintaining the survey frames, 
including linking administrative files over time, linking 
administrative files and survey frames and linking separate 
survey frames. For example, for surveys of establishments, 
we may wish to create longitudinal composite records for 
the establishments that are based on several independent 
repeated surveys, since many of the establishments are 
surveyed on each occasion. Record linkage is often used to 
find which units correspond to the same establishments. 
Record linkage is also used to identify births to a frame. Of 
course, the errors due to the record linkage can be important 
in the analysis; see Scheuren and Winkler (1993). 

In some cases, in fact, no real respondents are being 
followed over time. Instead record linkage is used to create 
artificial populations through statistical matching. These 
populations are then analysed as if they were real. 

Another implementation issue is that of handling non-
response. It is known that nonresponse to longitudinal 
surveys does not occur completely at random. There tends 
to be differential nonresponse among different subpopu-
lations. Therefore, special attention needs to be placed on 
how the imputations or reweighting will be performed; see, 
for example, Tambay, §chiopu-Kratina, Mayda, Stukel and 
Nation (1998). When using administrative data as the basis 
for the longitudinal study, there may be missing admin
istrative data and special procedures will be necessary to 
handle this situation. 

For missing data, there are generally two methods of 
treatment: imputation and reweighting. Reweighting is 
common for situations where there is wave nonresponse. 
Imputation is more frequently used when there is partial 
nonresponse within a given wave of the survey. There can 
be advantages to longitudinal imputation as opposed to 
cross-sectional. For longitudinal imputation, the longitu
dinal information from the same individual on the database 
is used as the basis for doing the imputation, as opposed to 
using other individuals at the same point in time. For 
attrition and wave nonresponse, one may wish to model the 
attrition rates and use these models to compensate for the 
nonresponse through weight adjustments. A variety of 
weight adjustments were researched for the Survey of 
Income and Program Participation and the results were 
presented in Rizzo, Kalton and Brick (1994), Folsom and 
Witt (1994), and An, Breidt and Fuller (1994). Singh, Wu 
and Boyer (1995) study this problem for the difficult case 
of estimating gross flows. 

There are many complexities that may be intioduced into 
the derivation of the weights. There are various approaches 
and techniques available to calculate both cross-sectional 
weights and longitudinal weights. Cross-sectional weights 
are used for measures of the population at a single point in 
time, whereas the longitudinal weights are necessary when 
data from individuals over more than one occasion are 
included. The analyst may wish to have person-level 
weights that are different from the household-level weights; 
Kalton and Brick (1995). For example, for some variables 

such as household income, using household-level weights 
would be preferable to the individual person-level weights. 
Weighting becomes more complex with the use of multiple 
frames. Effective use of administrative data may imply 
even more complexities in the weighting scheme itself; see, 
for example Steams et al. (1996). 

There are many causes for the samples to become 
unrepresentative. For example, lack of representativity 
could be due to problems of coverage due to immigration 
into the population. Some undercoverage may be due to 
attrition. Some overcoverage could be due to including 
some non-sampled co-habitants of a household, thus 
implying that those individuals could be included in the 
sample by living with an originally sampled person; see 
Lavallee (1995) and Kalton and Brick (1995). Other types 
of systemic overcoverage are also possible. Ensuring that 
no biases are introduced requires special weighting 
treatments. For longitudinal surveys in particular, this may 
become quite complex. Administrative data can be used 
both to assess whether or not the sample is representative 
and to provide information for making the appropriate 
adjustments. 

Since much of the estimation for longitudinal study will 
be associated with measuring change as opposed to 
measuring the phenomena at a single point in time, there 
will be questions about how to develop the variances for 
these estimates of measures of change. Some new 
procedures may need to be developed for this situation. In 
general, variance estimates can become quite complicated 
when the statistics are complex functions of the longitudinal 
observations. For example, income class boundaries may 
change over time and studying the transitions of individuals 
from one class to another is of interest. 

Another complexity of estimation may be the desire to 
include information from ongoing cross-sectional surveys 
to produce new integrated measures, using all the 
information that is available from the various available 
sources. 

QUESTION 3: EVALUATION ISSUES 

The third set of issues we discuss is related to the 
evaluation of the information and methods. Even though 
the evaluations may be conducted separately from the 
implementation, the results of such evaluations should 
impact on the survey itself, either by altering the estimation 
methods or by changing the way the survey is designed and 
implemented in future waves. 

There are many sources of biases that could be studied. 
Biases may be due to dependent interviewing by giving the 
respondent and the interviewer information that could refer 
to a previous occasion of the survey. Seam effects can arise 
from retrospective studies; see, for example Murray, 
Michaud, Egan and Lemaitre (1991). Other sources of bias 
could occur when the nonresponse is informative; that is. 
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when the nonresponse propensity is related to the variable 
of interest. An example would be when household level 
nonresponse is correlated with gross flows within the 
household, where gross flows are the changes in the indi
vidual's classification; see Clarke and Chambers (1989). 
Other biases could be due to measurement or classification 
errors; see, for example, Bassi, Torelli and Trivellato 
(1998). Conditioning bias could arise from the fact that 
since we have been asking the respondents about infor
mation, such as labour dynamics, they may have become 
more sensitized to some of these issues so that their 
behaviour could change because of the fact that they are 
included in the survey. 

The effect of response errors and interviewer errors on 
the analysis should be evaluated. Different individual 
interviewer methods may lead to different error rates. The 
stability or instability of the turnover of interviewing staff 
could affect some analyses. Questions such as whether or 
not the information was collected by proxy can also be 
relevant. 

Other evaluations could be performed to measure the 
effect of attrition and to evaluate various imputation 
methodologies and other nonresponse handling strategies; 
see Tin (1996) for an evaluation of attrition using econo
metric methods. Schejbal and Lavrakas (1995) study the 
effect of panel attrition in a dual-frame local telephone 
survey. Corder, Manton and Woodbury (1994) study ways 
to improve coverage and reduce attrition in the context of 
the National Long Term Care Survey. Panel attrition could 
be the result of non-traceable or refusal cases, the impact of 
which can be quite different from cross-sectional surveys, 
and these differences should be studied. Allen and Petroni 
(1994) discuss the problem of adjusting for movers. 

There is a need to develop quality studies that take into 
account the special features of longitudinal surveys. Many 
quality control studies are available in the conduct of 
longitudinal surveys besides the usual ones for cross-
sectional surveys, since the repeated nature of the study can 
lead to a more efficient identification of error-prone cases. 
Since for longitudinal studies, the stability of the data over 
time is an issue, methodological changes in the study could 
have an impact on the longitudinal measures that are of 
interest and these should be evaluated. Administrative data 
can provide useful evaluations since some of the data can 
help validate some of the results. 

QUESTION 4: ANALYSIS ISSUES 

Analysis concerns are the last set of issues we discuss. 
It is the potential analysis of the longitudinal study that is its 
most important facet. The causes or determinants of 
various outcomes are of major interest to the data users. 
However, the modelling of these causes can be complex, 
particularly if the survey itself is of a complex nature. 
Many of these issues are discussed in Singh and Whitridge 
(1990) and in Hidiroglou and Michaud (1998). 

Examples of the kinds of analyses that are common 
would be measures of gross flows or other measures of 
gross change. Gross flows refers to the change of an 
individual from one category to another. In other words, it 
is the flow from category A to category B between two 
points in time, as opposed to net flow that is the change in 
the margins over time. There are difficult questions about 
the impact of measurement error on the measurement of 
gross flows. If fairly large measurement errors are present 
on each occasion, there will be a significant impact on the 
bias of the estimates of the gross flows, even if the net flows 
themselves are not as adversely affected. Sometimes, 
sample rotation will aggravate this problem, since 
accounting for sample rotation properly when measuring 
gross flows can be problematic. Special treatment is 
needed for those panels that are entering the sample on a 
given occasion and for those panels that have left the 
sample on the previous occasion to get good estimates of 
these flows. The changes to the population when gross 
flows are being measured need to be sorted out from the 
gross flows themselves. In other words, the change from 
one occasion to another is a combination of the changes in 
size of the population and the individual changes within the 
population. The situation can become even more complex 
when the gross flows are themselves analysed with respect 
to other information such as income dynamics. 

As a referee pointed out, an important issue is the need 
for educating users on how longitudinal data can be 
analysed effectively. The recent increase in the number of 
longitudinal surveys raises many opportunities for new 
types of analysis, but many analysts who have been 
studying only cross-sectional surveys may not be aware of 
the most appropriate techniques. 

For the many surveys that use frames based on admin
istrative data, accounting for the frame changes in the 
analysis may be necessary, since inclusion on the frame can 
be subject to changes in administrative procedures, as well 
as changing conditions for the individuals. For example a 
file of unemployment insurance beneficiaries would be 
subject to changing eligibility criteria, as well as changing 
personal situations. 

The measurement of change can often be decomposed 
into various components. For example, the movement of 
units in the sample from one domain to another can be 
sorted out from the changes of the data for units within the 
same domain. Holt and Skinner (1989) contains an 
interesting discussion on various components of change. 

For more complex analyses, such as modelling of time 
series, most classical time series models do not account for 
the fact that the information is derived from a sample 
survey. Therefore, the sampling errors resulting from the 
sample survey are not properly taken into account in the 
time series modelling. 

In the analysis, some measures may depend on other 
cross-sectional surveys. For example, it may be another 
cross-sectional survey that determines the income class 
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boundaries to be used in the analysis of the longitudinal 
survey. This may add to the complexity of the analysis 
since the boundaries can change over time. 

Whether and how to use the sampling weights have 
created difficulties for many analysts, since many of the 
classical models for analysis of data over time do not use 
the sampling weights. Procedures need to be developed 
that incorporate the survey weights in the analysis properly. 
For large-scale surveys, using the weights is often prefer
able as this provides some protection against model 
misspecification. 

Errors resulting from the processing, such as the record 
linkage operation, may need to be incorporated in the 
analysis or at least some studies need to be taken to 
understand the impact of these kinds of errors; see, for 
example Dorinski and Huang (1994). 

Often administrative data are used as part of the analysis 
since these data may be available more readily than collect
ed information. However, since there may be conceptual or 
other difficulties with the administrative data, special 
analytical methods may need to be developed to use the 
administrative data effectively. 

Finally, we mention the difficulties associated with the 
data dissemination. Longitudinal summary measures need 
to be developed for many phenomena. Often these are not 
suitable for the usual tabular displays that are commonly 
used in cross-sectional studies. Many analyses require 
access to the microdata. This could create problems with 
respect to protecting the confidentiality of the respondents. 
The usual measures that one takes when releasing micro-
data files on cross-sectional surveys may not be sufficient 
when releasing surveys which are longitudinal in nature, 
because the databases are so much richer so that the risk of 
being able to identify an individual on such databases 
becomes much greater. Protecting the respondents' 
confidentiality is of paramount importance, so a conserva
tive approach that may not fulfill all the users' requirements 
may be necessary. 

SUMMARY 

We have briefly discussed many of the questions and 
issues that are now being investigated by researchers 
concerned with the design and analysis of longitudinal 
studies. Based on our discussion, we see that many 
questions need to be further investigated. As we gain more 
experience with longitudinal surveys, many of these issues 
will be better understood and many new issues will arise. 
The opportunities for important research and investigation 
are numerous. 
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Data and Modelling Strategies in Estimating Labour Force Gross Flows 
Affected by ClassiHcation Errors 

FRANCESCA BASSI, NICOLA TORELLI and UGO TRIVELLATO' 

ABSTRACT 

Gross flows among labour force states are of great importance in understanding labour market dynamics. Observed flows 
are typically subject to classification errors, which may induce serious bias. In this paper, some of the most common 
strategies, used to collect longitudinal information about labour force condition are reviewed, jointly with the modelling 
approaches developed to correct gross flows, when affected by classification errors. A general framework for estimating 
gross flows is outlined. Examples are given of different model specifications, applied to data collected with different 
strategies. Specifically, two cases are considered, i.e., gross flows from (i) the U.S. Survey of Income and Program 
Participation and (ii) the French Labour Force Survey, a yearly survey collecting retrospective monthly information. 

KEY WORDS: Correlated classification errors; Latent class models; Longitudinal data; Recall errors; Seam effect. 

1. INTRODUCTION 

Gross flows among labour force states, are a powerful 
tool to analyse labour market dynamics. Gross flows regard 
changes at individual level, and therefore their estimation 
rests on the availability of longitudinal data. 

The effects of erroneous classification of units with 
respect to their position in the labour market, can cause 
spurious transitions. Even if one might assume that these 
errors cancel out when estimating net flows, they cannot be 
ignored when estimating gross flows. 

Various strategies can be adopted, in order to correct 
gross flows for classification errors. Basically, they depend 
on: 

(a) assumptions about the classification error mecha
nism, following from 
(al) the survey design (panel surveys - possibly with 

a rotating scheme, retrospective surveys, some 
mixture of retrospective and panel surveys, etc.), 
and/or; 

(a2)the content and structure of the questionnaire 
(availa-bility of one or more indicators of the 
variable of interest, format of the questions -
episode based or event based, etc.); 

(b) assumptions about the generating process of the 
transitions among labour force states. 

In this paper, some of the most common strategies used 
to collect longitudinal information about labour force 
condition are reviewed, jointly with modelling approaches 
developed to correct gross flows when affected by classifi
cation errors. It is shown that most of the usual specifica
tions proposed in the literature, can be seen as special cases 
of a general formulation, which allows to elucidate advan
tages and disadvantages of each specification, and makes it 
possible to consider a common estimation strategy. 

The focus of the paper is on sound applications of this 
general modelling approach, for estimating gross flows 
from survey data collected with different strategies. Two 
cases are considered: (i) the U.S. Survey of Income and 
Program Participation and (ii) the French Labour Force 
Survey, a yearly rotating panel survey with retrospective 
monthly information. 

The organization of the paper is as follows. Section 2 
briefly discusses various strategies for collecting longitu
dinal data on labour force participation, and their likely 
implications for classification errors, as they emerge from 
the survey methodology literature. In section 3, a fairly 
general approach for modelling gross flows affected by 
classification errors, i.e., for jointly estimating true gross 
flows and conditional response probabilities, is outiined. 
Examples are also given on how some well known models 
for correcting observed gross flows, can be specified as 
special cases of this approach (section 3.1). Attention is 
then devoted to a convenient framework for formulating the 
above models, provided by latent class models and, more 
specifically, by the so-called "modified LISREL model" 
proposed by Hagenaars (1990), a general tool to describe 
causal relationships among observed and unobserved 
categorical variables (section 3.2). 

The final, and main part of the paper (section 4), is 
devoted to a detailed presentation of the two case-studies. 
The modelling approach is common: a priori information 
on the measurement characteristics of the survey (and 
possibly on the true process), is combined with specifi
cation searches, in order to obtain parsimonious and 
(hopefully) sensible models. As already noted, the two 
case-studies are reasonably different, chiefly in terms of the 
design of the surveys: this diversification turns out to be 
useful for illustrating different model specifications, and 
various strategies for reaching/testing the final formulation. 
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From the two case-studies, the following overall evi
dence can be drawn: 

(a) the modified LISREL model has proved to be a set
up, flexible enough for modelling the error mecha
nism in longitudinal data collected with different 
survey designs, as well as the generating process of 
true labour force transitions; 

(b) specifically, in the measurement part of the model, 
we were able to incorporate the pattem and the 
effects of correlated classification errors, which are 
particularly important in surveys with retrospective 
features; 

(c) observed transitions are corrected towards the 
direction expected, on the basis of theoretical and 
empirical evidence on measurement errors effects, 
(not mechanically towards mobility, as strategies 
based on the assumption of independent classifica
tion errors do). 

2. THE ROLE OF DATA COLLECTION 
STRATEGIES 

Information for labour gross flows estimation comes 
from longitudinal data, i.e., observations on the same units 
pertaining to different time points. Recently, there have 
been increasing efforts in collecting longitudinal data. This 
is true also for surveys, whose main goal is to measure the 
labour force condition of individuals in a given population. 
On the other side, this focus on collecting, and using 
longitudinal data, raised new questions about the origin and 
pattem of measurement {= classification) errors, as well as 
their possible effects on estimates of the quantities of 
interest. General references about sources of classification 
errors for longitudinal data, collected by surveys across 
time, are Duncan and Kalton (1987) and Kalton and Citro 
(1993). In this section, some main impUcations of classi
fication errors on modelling strategies, to correct gross 
flows are briefly discussed. 

A typical argument about the effect of measurement 
error in estimating gross flows, is that it leads to over-
estimation of changes. This is true when one assumes that 
measurement errors are not correlated over time. This 
assumption is not realistic in many cases (see Skinner and 
ToreUi 1993; Singh and Rao 1995; van de Pol and 
Langeheine 1997), and should be reconsidered taking 
carefully into account, the data collection strategy actually 
adopted. Broadly speaking, if longitudinal data are (at least 
partly) collected by retrospective interrogation, one can 
argue that memory inaccuracy leads to correlated errors. 

Specific assumptions about classification errors can be 
successfully introduced in appropriate statistical models, 
only if additional information is available in the form of 
plausible a priori knowledge about the error generating 
mechanism and/or supplementary data about the labour 
force state. 

Modelling strategies to correct gross flows for classifi
cation errors, should then take into account the measure
ment process actually used, in the sense that the amount of 
classification errors and the direction of possible bias, are 
related to the strategy adopted to collect longitudinal data. 

As it is well known, longitudinal data can be obtained by 
different survey strategies. It is convenient to distinguish at 
least between (i) panel surveys and (ii) retrospective 
surveys. In addition, the availability of multiple indicators 
deserves specific attention. 

Panel surveys are the most natural ways of collecting 
longitudinal information. Among these, rotating panel 
surveys play a prominent role. In fact, this is the scheme 
adopted in most national Labour Force Surveys (LFSs), 
whose primary goal is estimation of labour force stocks. For 
LFSs with a rotating sampling design, longitudinal informa
tion on the (usually short) sequence of states, can be easily 
obtained by matching data on individuals participating in 
two or more successive surveys. In LFSs, the reference 
period, concepts and definitions for classifying people, are 
typically consistent with the International Labour Office 
(ILO) recommendations (Hussmanns, Mehran and Verma 
1990): this makes measures of labour force conditions 
reasonably accurate and comparable over space and time. 
Data on labour force participation are collected also 
through general purpose household surveys. In this case, 
attention to labour force condition is less prominent than in 
the preceding type of surveys, and reference periods, 
concepts and definitions, might be less consistent with ILO 
recommendations. 

Alternatively, longitudinal information can be collected 
by retrospective surveys. Cross-sectional surveys can 
include retrospective questions, to get information on the 
sequence of labour force states experienced by sampled 
individuals. In this case, the interrogation strategy is crucial 
to reduce errors due to memory (recall errors, telescoping, 
etc.). Procedures to improve accurate reporting in retro
spective surveys, rely upon contributions from cognitive 
psychology and survey methodology (for a review, see 
O'Muircheartaigh 1996). Besides, evidence on the amount 
and the direction of bias due to memory inaccuracy, is 
found in many empirical studies. It is worth adding, that in 
retrospective surveys, factors related to length of recall 
period, salience of events considered, and/or difficulty in 
retrieving data on past events, usually lead to a simplified 
format of questions, not consistent with ILO conventions on 
labour force condition. 

Interesting opportunities for estimating gross labour 
flows in the presence of classification errors, come from the 
widespread practise of using a mixture of the panel and the 
retrospective strategies. Panel surveys use retrospective 
questions, at least on a limited number of topics, to cover 
the period between two successive waves (this is the case of 
the Survey of Income and Program Participation, as will be 
seen in section 4.2). The main characteristics of the 
measurement process when such a mixed strategy is used. 
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have to be carefully considered, as they might have a 
considerable impact in formulating reasonable models for 
classification errors. More specific traits of the measure
ment process emerge also from consideration of the pecu
liarities of the survey design. 

From a different perspective, an important opportunity 
for modelling classification errors is given by the avail
ability of multiple measurements of labour force state, /. e., 
data on the labour market condition of an individual at a 
given time, provided by two or more different sources. This 
information is of great importance in general, and par
ticularly when fairly complicated pattems of cortelated 
classification errors are to be considered. Multiple indica
tors on labour force state can be collected (i) in the same 
interview or (ii) in different interviews {e.g., in different 
waves of a panel survey). 

The first case is not very common, but sometimes 
questions regarding labour force condition are asked in 
different contexts, and in different ways. For instance, first, 
a self-classification of the individual with respect to labour 
force condition is asked; then, in a different section of the 
questionnaire, a sequence of questions are put forward that 
allow to classify the respondent according to standard 
labour force definitions. (For a different example, see the 
case of the Survey of Income and Program Participation in 
section 4.2.) 

The second case covers several situations. At least two 
of them are worth considering: 

(a) data from reinterview studies, often collected speci
fically to get information on classification errors prob
abilities (in such a case, the common practice is to 
assimilate reinterview data to validation data: for 
classical procedures to correct gross flows based on 
reinterview data, see Abowd and Zellner 1985, 
Poterba and Summers 1986, and Chua and Fuller 
1987); 

(b) data collected retrospectively in panel surveys, but 
referring to a time point already covered by the 
preceding interview, or collected in a supplementary 
survey carried out occasionally and covering the 
reference period(s) of the current panel survey. It is 
obvious that, in this case different measures of the 
same variable(s) of interest can be polluted by 
classification errors with largely different 
characteristics. 

Many of the points raised here will be clarified in the 
case-studies presented in section 4, where the joint presence 
of panel and retrospective information and of multiple 
indicators of the same latent variable is exploited in order 
to get parsimonious models. 

3. ESTIMATING GROSS FLOWS AFFECTED BY 
CLASSIFICATION ERRORS 

3.1 A General Framework 

Specification of statistical models to adjust labour force 
gross flows for classification errors, should allow one to 
take into account, the nature of available data (as reviewed 
in the previous section), and substantial assumptions on the 
generating process of (i) transitions among labour force 
states (e.g., Markov chain stmctures) and (ii) measurement 
errors (e.g., uncorrelated vs. correlated measurement errors). 

In the simplest case, we consider panel data, where at 
each time period t=l,...,T, a discrete variable Y^ is 
observed for a generic unit, in a random sample of size n. In 
our case-studies, the units will be individuals, and the time 
periods, months or quarters. 7, takes one among r possible 
distinct values or states. 7, is an imperfect measure of y^, 
which denotes the true state of a generic unit at time /. In 
general, it is not necessary to assume, that y^ varies over the 
same set of states 1, 2,..., r, but for simplicity, and without 
loss of generality, we will consider here the same set of 
states as for Y^. 

Strategies for estimating gross flows, rely upon an 
appropriate specification of the joint probability of the true 
and the observed process P{Yy ..., Yj,yy ...,yj.). Statistical 
analysis is then based on marginalization with respect to 
unobserved quantities: 

^Y, y ^ ) = E - E P(Yi Y^,yy...y^). (3.1) 

Models are based on parsimonious specifications of the 
joint probability function P{Yy ..., Yj.,yy ... y^.). Essen
tially this can be obtained by decomposing it into a product 
of conditional probabilities, following from an appropriate 
set of assumptions about the dependence structure among 
the components Yy ..., Yj.,yy ...,yj.. 

For our purposes, a convenient starting point for model 
specification, comes from assumptions (i) about the struc
ture of tiie generating process of the true transitions among 
labour force states and (ii) about the measurement process 
(exploiting, for instance, substantial knowledge or empirical 
evidence from the data collection strategy adopted). 

In a model aimed at distinguishing between tme and 
observed turnover in the labour market, a typical example 
that exploits this idea, is provided by Latent Class Markov 
(LCM) models (van de Pol and Langeheine 1990). For a 
generic unit, the following probabilities are specified: 

',/ 
qr-PiY,=i,\y,=j,) t=l,...,T (3.2) 



112 Bassi, Torelli and Trivellato: Data and Modelling Strategies 

J,J,- P{y,-j,\y,-i=j,.i) t = 2 T (3.3) 

ni=P(yi=Ji) (3.4) 

Conditional probabilities (3.2) represent the relationship 
between true and observed states, i.e., the probability of 
reporting at time t, state /,, while the true state is y,. 
Clearly, this specification implies the local independence 
assumption. I.e., Yy ..., 7 .̂ are independent, given >>,, ...,yj. 
Conditional probabilities (3.3) describe the dynamics in the 
labour market, i.e., the probability that a tiansition from 7,_, 
to y, occurs, when moving from time ^ - 1 to /: according 
to (3.3), the trae transition process evolves following a first 
order Markov chain. Finally, probabiUties (3.4) describe the 
initial condition for the Markov process. 

The marginal probability for the observed sequence (3.1) 
is then given by: 

p{Y,=iy...Y,=i,) = Y: . . . E ^lU^: 
>, = 1 A = l (=2 

(3.5) 

For four measurement points, model (3.5) is equivalently 
represented by the path diagram in Figure I, where arrows 
indicate direct effects between variables. 

yry2^y3^y4 
1 1 1 1 
Y Y Y Y 
/ , / j ^3 ^4 

Figure 1. Path Diagram of a LCM Model for Four Measurement 
Points 

It is worth observing, that the assumption of local 
independence is equivalent to the Independent Classifica
tion Errors (ICE) assumption. As noted in the previous 
section, the ICE assumption has been severely criticised, 
and seems definitely unreasonable when longitudinal data 
are collected by retrospective questions. 

As another example, for T = 2, classical strategies to 
correct gross flows based on reinterview studies, can be 
represented within the framework outiined above. In this 
case, additional information is used, in the sense that the q^ 
parameters are exogenously estimated from the reinterview 
study, and are plugged in (3.5) in order to obtain directly 

P{yvy2)-
The same framework can be used, to encompass more 

general assumptions on both the latent and measurement 
processes, up to include serially correlated classification 
errors. As an interesting case, we consider the model by 
Pfeffermann, Skinner and Humphreys (1998). Ignoring here 
initial conditions, they reformulate conditional response 
probabilities as follows: 

q';'' = P{Y, = l,\y, =j,, Y,_, = /,.,) / = 2,..., T, (3.6) 

thus overcoming the ICE assumption. 

A similar formulation, aimed at introducing, at least 
partially, dependence between the observed state at time / 
and the sequence of true states at times t and / - 1, has been 
suggested by van de Pol and Langeheine (1992), who 
extend the model to allow also for a second order Markov 
chain, for the true transition process. 

The modelling strategy for estimating true flows can be 
further extended in various directions, namely: 
(a) It is straightforward to extend the model, to exploit the 

availability of multiple indicators of the same unob
served true state. This implies that response probabi
lities, as those in (3.2), are defined for one or more 
additional observed variables, treated as imperfect 
measures of the same latent state y^. As an example, a 
LCM model for two indicators per latent variable, and 
four points in time, is represented in Figure 2. In this 
model, each couple of indicators referring to a given 
point in time, is assumed to be independent, condition
ally on the corresponding latent variable, in the sense 
that the cortelation between them, is completely 
explained by their relation with y^. 

(b) Observed heterogeneity at the individual level, in the 
transition and/or the measurement processes, can be 
introduced by conditioning on a set of covariates X^. 
An example is given in Pfeffermann et al. (1998). They 
use covariate information at the unit level and model 
their impact on labour market condition by multinomial 
logit. 

(c) Unobserved heterogeneity can also be considered, 
which leads to mixed latent class models (van de Pol 
and Langeheine 1990). A simple case is the movers/ 
stayers model, where a different behaviour, at the latent 
level, is assumed for groups of units, while the group 
membership of the units cannot be directly observed. 

W^ W^ W^ W^ 

t T t I 

Yi^ 3^2- 3 ^ 3 - y ^ 
1 I I I 
Y Y Y Y 
'l ^2 ^3 ^4 

Figure 2. Path Diagram of a LCM Model for Four Measurement 
Points and Two Indicators for Each Latent Variable 

3.2 Latent Class and Related Models as a Tool for 
Estimating Gross Flows With Measurement 
Errors 

A special case of the general model formulation outlined 
in the above section, are latent class models, where the true 
state in the labour market plays the role of the latent 
variable, and the observed state acts as its indicator. Some 
of the specifications outiined in the previous section, 
include dependence among classification errors. A general 
and convenient approach for handling it, which includes 
standard latent class models with correlated classification 
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errors, is the so called modified LISREL model proposed by 
Hagenaars (1990). 

The modified LISREL approach consists of an extension 
of Goodman's (1973) path analysis, which is a tool to 
describe causal relationships among observed categorical 
variables, through a system of logit equations. Basically, the 
extension incorporates latent variables. Thus, a modified 
LISREL model combines a measurement sub-model, which 
specifies the dependence of the indicators on latent 
variables, and a structural sub-model, which specifies 
ordered relations among latent and possible external 
variables. As the name itself suggests, it can also be viewed 
as the analogue for discrete variables, of the well known 
LISREL model for continuous variables (Joreskog and 
Sorbom 1988). 

Modified LISREL models, allow to introduce serially 
correlated classification errors, by inserting direct effects 
between the indicators (Hagenaars 1988). The presence of 
direct effects implies, that the association among observed 
variables, is not completely explained by the effects of the 
latent variables on their indicators, but that there exists a 
source of additional association among the indicators, over 
and above the part that is explained by their relation with 
the latent variables. 

Once a reasonable model has been specified, identifi
cation should be ascertained. The model involves many 
unobservables, and identification of all parameters is not 
automatically assured. 

Reasonable opportunities to achieve identification, rest 
on two strategies, possibly used in combination: (i) 
imposition of plausible equality restrictions among the set 
of parameters and (ii) availability of multiple indicators of 
the unobserved true state. The latent class Markov model 
represented in Figure 1, for example, is not identified 
without extra restrictions on its parameters. If the latent 
chain is assumed to be time homogeneous, or response 
probabilities are restricted to be equal across time, the 
model can be shown to be identified (Lazarsfeld and Henry 
1968). Availability of multiple indicators for the unob
served true state, can also help identification of complex 
measurement models. Identification criteria for some very 
special specifications, have been proven (for example, the 
model in Figure 2 can be shown to be identified), but no 
general rules have been provided yet to ascertain global 
identification. It is advisable to check at least local 
identification, i.e., identifiability of the unknown para
meters in a neighbourhood of the maximum likelihood 
solution. Goodman (1974) stated that a sufficient condition 
for local identifiability of a latent class model, is that the 
Information matrix be full of rank. Goodman's condition 
may be computationally difficult to check. Moreover, with 
some data sets, it may happen that the Information matrix is 
not of full rank, simply because some estimates are very 
close to the boundaries of the parameter space. An 
alternative, empirical way to check identifiability, is to 
estimate the model using different sets of starting values. If 

different sets of starting values result in the same value for 
the log-likelihood function but in different parameter 
estimates, then the model is not identifiable. 

As for estimation, modified LISREL models may be 
treated as directed loglinear models with latent variables 
(Hagenaars 1997). A directed loglinear model results in a 
sequence of parsimonious multinomial logit models, 
possibly with latent variables, which are estimated stepwise. 
At each step, one dependent variable is considered, and a 
multinomial logit model is estimated on a contingency 
table, which has been collapsed over the variables, that do 
not directly influence the dependent variable in the causal 
order. Estimates obtained at each step are, at the end, 
combined in order to obtain estimated parameters for the 
full model. Directed loglinear modelling yields exactly the 
same parameter estimates, standard errors and test statistics 
as the Goodman standard procedure, but using simpler 
marginal tables. If the causal model contains one or more 
latent variables, an appropriate estimation technique must 
be used, e.g., an implementation of the EM algorithm 
(Meng and Rubin 1993). 

The empirical validity of the complete causal model may 
be tested, comparing the estimated expected frequencies 
with the observed ones in the complete table, by means of 
the likelihood ratio L^ and the Pearson X^ statistics. 
However, the structure of the observed data on labour 
market transitions, is such that many cells show very low 
observed frequencies. For this reason, the usual X^ and L ̂  
criteria must be used only as a general indication of fit, 
since their asymptotic X̂  distribution is no longer 
guaranteed, due to the sparse and unbalanced pattem of the 
contingency table. 

Various strategies can be adopted to extend and improve 
model evaluation, and three of them are worth mentioning 
in this context: 

(i) A restricted model nested within a larger one, can be 
tested with the conditional test, i.e., considering the 
difference in the L ̂  values of the two models, which is 
asymptotically distributed as x̂  under weaker condi
tions (Goodman 1981, and Haberman 1978). 

(ii) In general, using multiple criteria can be a sensible 
strategy. Indices based on the information criterion, 
such as AIC or BIC, can be useful to compare alterna
tive non-nested models. Another advantage of AIC and 
BIC is that, in the selection procedure, they weight the 
goodness of fit of a model against its parsimony, 
considering the model degrees of freedom and the 
sample size. (AIC = L^ -2x degrees of freedom. BIC 
= Z,̂  -ln(N-i-l) X degrees of freedom.) The model that 
is preferred, in this context, is the one with the lowest 
value of AIC or BIC. 

(iii) Monte Carlo resampling techniques can be implemented 
to simulate the asymptotic distribution of X^ and L ^ 
(Langeheine, Pannekoek and van de Pol 1995). 
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4. TWO CASE-STUDIES 

4.1 The General Set Up 

In this section we present two applications of the 
modified LISREL approach to correct observed gross flows 
in the labour market. Data come from surveys with partly 
different designs: 

(1) the U.S. Survey of Income and Program Participation 
(SIPP), a multi panel household survey, which collects 
retrospective information on the between waves 
working history; 

(2) the French Labour Force Survey (FLFS), a yearly 
retrospective survey, with one month overlapping 
reference periods. 

For each case-study, a model is specified on the basis of 
a priori information on both the tme transition process and 
the error generating mechanism. A priori information is 
crucial for model specification, in order to obtain parsi
monious and plausible models. 

All the models are written in the form of a modified 
LISREL model, and estimated by the EM algorithm. 
Actually, we used the /EM program (Vermunt 1993) and 
checked all the models for local maxima. 

The two final models turn out to be rather complex, since 
they incorporate correlation among classification errors, 
and specific assumptions on respondent's behaviour. This 
fact, together with the sparse and unbalanced pattem of the 
observed contingency table, typical of labour force 
transitions, demands for goodness of fit evaluation criteria, 
other than L ̂  and X^. In the first case-study, alternative 
models have been judged by means of the BIC index, and 
on the basis on substantive knowledge on the labour market 
in the U.S.. In the second case, alternative models have 
been compared by means of the conditional test. 

In the following sections, models are presented in a 
logical and verbal form, while the mathematical formulation 
for the final model is given in the relevant Appendix. 

4.2 The SIPP Data 
SIPP is a multi panel household survey conducted by the 

U.S. Bureau of the Census, in order to collect information 
on topics such as employment, income, participation in 
social programs, etc. The reference population is the U.S. 
noninstitutionalized individuals over 14. 

The survey started in 1984, and is a continuing one: as a 
general pattem, each year a new sample of households, 
called "panel", has been selected for the survey and 
followed for two and half years (for a detailed description 
of SIPP, see U.S. Department of Commerce 1991, and Citio 
and Kalton (1993)). 

Each panel is randomly divided into four "rotation 
groups" and interviewed at 4-months intervals for eight 
times. For practical reasons, each rotation group is 
interviewed in each of four consecutive months, and 
retrospective questions collect information with reference 
to the 4-months period elapsing between subsequent 
interviews. Each set of interviews with the full sample is 
termed a "wave". 

We will refer to the 1986 panel, which started in 
Febmary 1986 and ended in August 1988. We will consider 
the intermediate period from January 1986 to January 1987, 
over which we have information from all four rotation 
groups. Figure 3 represents the survey design witii regard to 
our sample. 

Information on labour force participation, is collected 
mainly in the "Labour Force and Recipiency" section of the 
questionnaire (for an additional piece of information, 
collected in another section of the questionnaire, see 
below), where each respondent is asked to report on a 
weekly basis his/her labour market history in the preceding 
four months (18 weeks), by going through a series of 
filtered questions. The respondent is first asked whether 
he/she had a job or a business, at any point in time during 
the reference period. If the respondent gives a negative 
answer, he/she is asked whether he/she spent any time 
looking for work, or was in layoff, and, if so, in exactly 
which weeks. On the other hand, if the answer to the 
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Figure 3. Rotation Plan for the 1986 SIPP Panel (First 2 Waves) 
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starting question is positive {i.e., he/she worked some time), 
and the respondent declared a job or a business with 
continuity during tiie reference period, he/she will move to 
the following section of the questionnaire. The respondent 
not declaring a stable situation in the labour market, is 
asked a long series of questions in order to establish the 
labour force state occupied, in each single week of the 
reference period. 

The weekly based information is usually recorded, to 
obtain a monthly classification based on the usual three 
categories: Employed (E), Unemployed (U) and Not in the 
labour force (N). For individuals covering different 
positions during one month, the monthly labour force state 
is the one identified by the "modal" category with regard to 
the weeks of that month (Martini 1989). 

Observed gross flows between two generic calendar 
months are then obtained as follows: 

(a) For individuals belonging to three rotation groups, on 
the basis of retrospective data collected in the same 
interview. These observed flows will be called "within 
wave" (WW) transitions. 

(b) For individuals in the fourth rotation group, by 
combining information collected in two different 
interviews, four months apart. These observed flows 
are termed "between waves" (BW) transitions. 

When estimating monthly changes, a peculiar problem 
with SIPP data, is the so called "seam effect" (Young 
1989): more changes are observed when data for two 
adjacent months are collected in two different waves - the 
transition covers the seam of the waves - than when they 
come from the same interview. The seam effect is pervasive 
in the survey: evidence of it for several variables of interest, 
is reported in Martini (1988), Marquis and Moore (1989), 
Kalton and Miller (1991). 

Table 1 illustrates this phenomenon for our 1986 SIPP 
panel sample. Row 4^ 1 contains average BW transition 
rates; rows 1-2, 2-3 and 3-4 contain average WW 
transition rates, pertaining to the position of the two 
relevant reference months in each wave (for example, row 
1-2 contains transition rates between the first two reference 
months in each wave). From Table 1, there is clear evidence 
that observed WW transitions describe a more stable labour 
market than BW ones. Moreover, WW stability increases, 
moving backwards in the wave (from 3-4 to 1-2). 

One reasonable explanation for the seam effect, and for 
the systematic pattem of observed transitions throughout a 
wave, is the different role of measurement errors, for data 
obtained under the BW. and WW strategies respectively. 
Specifically, it is likely that classification errors have a 
different degree of correlation for WW and B W observed 
flows: the higher stability documented by WW transitions 
may be induced by highly correlated classification errors. 
Indeed, if errors were uncorrelated, specifically for WW 
transitions, no evidence of seam effect would be expected. 

A variety of plausible causes of correlated errors, is 
suggested by the cognitive psychology and the survey 
methodology literature on memory effect and recall errors 
(see, Bernard, Killworth, Kronenfeld and Sailer 1984, and 
O'Muircheartaigh 1996), among which a "conditioning" 
effect: respondents tend to give the same answer going 
backwards within the wave, and in extreme cases, they 
mechanically repeat the same answer for all four months. 

Table 1 
Observed Monthly Transition Rates (xlOO) for the 1986 

SIPP Panel, January 1986 to January 1987 

Type EE EU EN UE UU UN NE NU NN 

1-2 WW 98.27 1.04 0.69 15.46 79.63 4.91 1.15 1.42 97.43 

2-3 WW 97.91 1.13 0.96 17.34 75.96 6.70 1.38 1.71 96.91 

3-4 WW 97.85 1.20 0.95 19.23 73.25 7.52 1.28 1.69 97.03 

4-1 BW 94.03 2.10 3.87 26.81 42.20 30.99 5.65 3.77 90.58 

Abundant empirical literature shows, that this sort of 
conditioning effect is the main source of classification 
errors in SIPP data. Other potential sources of error, typical 
of panel surveys, do not affect SIPP data dramatically. 
Administrative record check studies find little, if any, 
evidence of time-in-sample effect (Chakrabartry and 
Williams 1989; McCormick, Butler and Singh 1992). As a 
general consideration, we may say that in SIPP data, the 
seam effect dominates over other sources of error, that 
potentially bias gross flows estimates. 

Summing up, a model-based approach to obtain unbiased 
gross flows from SIPP data, is justified by two arguments: 

(a) the patent presence of correlated classification errors; 
(b) a priori information on the data generating mecha

nism, drawn from two sources: 
(bl) specific evidences emerging from SIPP ob

served gross flows, such as the seam effect, 
and the increase in stability going backwards 
within the wave, just documented; 

(b2) general hints provided by the social survey 
literature on respondent behaviour. 

In order to correct SIPP observed labour force gross 
flows from classification errors, a model has been built, 
based on the following assumptions/information: 

(a) the tme transition process follows a first order Markov 
chain; 

(b) WW data transitions are affected by correlated classi
fication errors, according to a pattem that will be 
specified in the sequel; 

(c) for BW, the standard ICE assumption holds; 
(d) rotation groups are equivalent samples also for model

ling purposes, i.e., respondents behave in the same way 
in all four rotation groups; 

(e) SIPP data provide two indications on the monthly labour 
force state of each individual: the detailed information 
collected in the "Labour Force and Recipiency" section 
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of the questionnaire, just presented, and the 
additional information collected in the "Earnings 
and Employment" section, where the respondent is 
asked if he/she did/did not have a job in the 
reference period, on a weekly basis. 

W^-W^-W^- W^ 
t I T r 

Yi^ y2^ y^^ y^ 
1 1 1 1 
Y - Y - Y - Y 
^l ^2 ^3 ^4 

Figure 4. Path Diagram of a Modified lisrel Model for Four Measurement 
Points and Two Indicators for Each Latent Variable (for the 
Meaning of Symbols, See Main Text) 

Figure 4 contains the path diagram of a simplified 
version of the model {i.e., a version that does not aim at 
representing in detail, the pattem of correlated classification 
errors, nor at taking into account the fact that we are dealing 
with four rotation groups) for four points in time, i.e., for 
four consecutive calendar months. Here y^{t= 1,2, 3,4) 
represents latent variables; Y^ and W^ represent indicators; 
arrows indicate direct effects between pairs of variables. 
Indicator 7, refers to the reported labour force state, 
described by the usual three categories (E, U and N), while 
W^ refers to the binary variable Job/No Job. Since 
information is collected in two different sections of the 
questionnaire, and with different interviewing procedures, 
y, and W^ can be assumed to be independent given y^. On 
the other hand, direct effects between the indicators, 
account for correlated classification errors over time: the 
response given for time t + I affects that given for time t. 
Note also, tiiat an additional variable G with four categories 
should be added to the diagram, to account for rotation 
group membership. All indicators depend on G, since units 
in different groups are interviewed in different calendar 
months. 

The basic equation of the model, decomposes the 
proportion in the generic cell of the 9-way contingency 
table, in the product of the conditional probabilities re
ported in Appendix A, equations (Al) to (A7). A prelimi
nary version of the model has been proposed in Bassi, 
Croon, Hagenaars and Vermunt (1995). 

Equation (Al) defines the probability of belonging to 
one of the four rotation groups. Equations (A2) and (A3) 
define the initial condition, and the transition probabilities, 
of the latent first order Markov chain respectively. 
Equations (A4) and (A5) define the response probabilities 
for indicator Y^; equations (A6) and (A7) the analogous 
probabilities for the dichotomous indicator W^. The 
response probabilities are defined in such a way that the 
answer given for a certain month, depends jointly on the 
current true state {y^) and on the "past" true and "past" 
reported states {y^^i and 7,^,). The term "past" refers to 
the way respondents think, while answering retrospective 
questions: they start recalling from the moment of time 

nearest to the interview, and go backwards up to the end of 
the reference period. 

A complex set of constraints has been imposed on 
response probabilities of (A4), (A5), (A6) and (A7), to 
account for (i) the conditioning effect, and (ii) the fact that 
the four rotation groups are equivalent samples in terms of 
the error generating mechanism. 

These consti-aints are formulated in detail in Appendix 
A. Basically, they incorporate a priori knowledge on 
respondent's behaviour, and allow us to specify a parsimo
nious model. Specifically, equations (A8) to (A 14) corres
pond to the foUowing statements: 

(a) With regard to WW classification errors, following 
Hubble and Judkins (1989), it is assumed that: 
(al)a respondent who reports wrongly his/her labour 

force state for a certain month, continues to 
repeat this same answer also for the adjacent 
month, going backwards within the wave (A8); 

(a2) if, however, the status at time ? + I is correctly 
reported, the response probability for the adja
cent month depends only on the current true 
state (A9); 

(a3)the same error generating mechanism operates 
for both indicators. For W^, we state that a 
correct answer is given when the true state is E 
and 'Job' is reported and when the true state is U 
or N and 'No Job' is reported, (AID) and (All). 

(b) Response probabilities are set equal across rotation 
groups, (A 12) to (A 15). As an example, equalities in 
(A 12) mean that response probabilities for individ
uals in rotation group 1 for the month of April, are 
equal to response probabilities for individuals in 
group 4 for the month of March, to those for 
individuals in group 3 for the month of Febmary, and 
to those for individuals in group 2 for the month of 
January. (They are set to be equal, since they all refer 
to the answer given for the last month of the wave.) 

The model has been estimated to correct observed 
monthly gross flows for the quarter January to April 1986 
(Table 2). The comparison between observed and estimated 
flows, highlights that the model reduces the seam effect: 
WW transitions are corrected towards a more dynamic 
labour market; BW transitions are corrected in the opposite 
direction. It is worth noting, that effects of model correction 
are more evident for flows from unemployment, which are 
characterised by higher mobility. 

The goodness of fit of the model has been judged by 
multiple criteria such as the BIC index and the conditional 
test for nested models, together with estimate inter-
pretability and consistency, with substantive knowledge of 
the dynamics of the U.S. labour market in '80s. 

4.3 The French Labour Force Survey Data 
The second case-study refers to the flows in the labour 

market, observed with the French Labour Force Survey 
(FLFS) conducted yearly by INSEE in France. 



Survey Methodology, December 1998 117 

Table 2 
SIPP Observed and Estimated Monthly Transition Rates 

(xlOO), January to April 1986 

J-F 

F-M 

M-A 

WW 

BW 

Estimated 

WW 

BW 

Estimated 

WW 

BW 

Estimated 

EE 

98.11 

94.08 

97.25 

98.66 

94.88 

97.83 

98.71 

95.59 

98.11 

EU 

1.17 

2.17 

1.47 

0.92 

1.91 

1.20 

0.64 

1.52 

0.95 

EN 

0.72 

3.75 

1.28 

0.42 

3.21 

0.97 

0.65 

2.89 

0.94 

UE 

14.53 

23.58 

16.08 

16.06 

21.90 

19.40 

20.76 

30.48 

26.42 

UU 

80.16 

44.30 

77.16 

78.67 

48.54 

74.01 

71.74 

34.92 

65.75 

UN 

5.31 

32.12 

6.76 

5.27 

29.56 

6.59 

7.50 

34.60 

7.83 

NE 

0.90 

5.62 

1.59 

0.64 

499 

1.21 

1.47 

6.34 

2.17 

NU 

1.57 

3.45 

1.32 

1.65 

4.11 

1.50 

1.05 

3.78 

0.71 

NN 

97.53 

90.93 

97.09 

97.71 

90.90 

97.29 

97.48 

89.88 

97.12 

The reference population of the FLFS are all members of 
French households, who are above 15 in the year in which 
the interview is planned. The survey has a rotating design: 
each year, one third of the sample is renewed. 

Information on labour force participation is collected 
with retrospective questions, having as a reference period 
the 13 months preceding the interview. Each respondent is 
asked to recall his/her position in the labour market on a 
monthly basis, by filling in a grid in which he/she can 
classify himself/herself, for each month, over eight 
categories: self-employed, employed on a fixed term basis, 
permanently employed, unemployed, on training, student, 
serving in the Army, other (retired, housewife, etc.). 

For our analysis, we aggregated the eight categories in 
the usual three states E, U and N. We consider 'Employed' 
respondents who classify themselves in the first three 
categories, 'Unemployed' those who classify themselves in 
the fourth category and 'Not in the labour force' the 
remaining ones. 

We analyze the information collected in the two 
consecutive waves of March 1991 and March 1992, on a 
subsample of individuals: those who answered to three 
consecutive interviews (January 1990, March 1991 and 
March 1992) and who were 18 to 29 years old in 1992, for 
a total of 5,427 individuals. The reference periods of the 
two waves considered, overiap in March 1991. We have, 
then, two pieces of information on the labour force state for 
this month: one collected in March 1991, and the other one 
collected with a retrospective question 12 months afterwards. 

The pattem of observed monthly transitions in our FLFS 
sample shows some interesting evidence, largely dictated by 
the characteristics of the subsample - young people. 

Transitions exhibit a moderate degree of seasonal 
variation, related to the school calendar. From June to July, 
for example, we observe a proportion of people who enter 
the labour market as employed, greater than the average; on 
the contrary, from August to September, a proportion 
greater than the average leaves employment (presumably to 
education). 

The marginal distribution of the three states from March 
1990 to March 1992, shows that the individuals in our 
sample progressively enter the labour market: in March 
1990, 44% are observed to be Employed or Unemployed, 
whereas by March 1992, this proportion has risen to 54%. 

The double information for March 1991, provides some 
cmde evidence on response error in the data: 8% of respon
dents declare a different state in the two interviews. For the 
period from February to April 1991, two types of flows may 
be observed: a within wave (WW) one, i.e., information 
about the labour force state is collected in the same 
interview, and a between waves (BW) one, i.e., information 
is collected in two different interviews (Table 3). 

Table 3 
FLFS Observed Monthly Transition Rates (xlOO) from 

February to April 1991 

EE EU EN UE UU UN NE NU NN 

F-M WW 98.19 1.67 0.14 9.11 90.65 0.24 0.28 0.11 99.61 

BW 93.17 3.58 3.25 25.18 65.23 9.59 3.75 1.96 94.29 

M-A WW 98.60 1.04 0.36 8.89 90.37 0.74 0.24 0.29 99.47 

BW 93.24 3.33 3.43 25.90 63.79 10.31 3.79 2.07 94.14 

As expected, WW transitions describe a more stable 
labour market than the BW ones. This can be considered as 
an indication of correlated classification errors in the data. 
Pattems and causes of errors correlation in retrospective 
surveys, have been extensively discussed in the two 
previous sections, and the above considerations can largely 
be extended to the FLFS data. 

In general, we expect that, in a retiospective survey with 
such a long recall period, lack of memory results in the 
major cause of classification errors. We also expect that the 
probability of answering incorrectly, increases as the 
distance between the reference month and the interview 
month gets longer. This may be considered as the major 
source of correlation among classification errors, together 
with telescoping and conditioning effects, which possibly 
affect FLFS data as well (see Magnac and Visser 1995). 
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The overall effect of correlated classification errors, 
reasonably results in an underestimation of mobility in the 
French labour market. 

Moving from these considerations, we specified a model 
to correct observed quarterly gross flows, from measure
ment error (Table 4). The last column of Table 4 contains 
the percentage of individuals who are observed to change 
state, between the two months considered (OM = observed 
mobility). On the average over the five WW transitions, 
6.122% of mobility between two consecutive months is 
observed. 

As in the previous case-studies, let us denote with 
y,{t = 1,2,3,4,5,6) true labour force states, and with 
upper case letters their indicators: Y^{t = 2,3,4,5,6) 
represents labour force states observed in March 1992 
(referring to March, June, September, December 1991 and 
March 1992); W^{t = 1,2) represents labour force states 
observed in March 1991 (referring to December and March 
1991). As usual, y^, Y^ and W^ distribute over the three 
categories of E, U and N. 

The model is specified by decomposing the proportion 
in the generic cell of the 7-way contingency table as in 
Appendix B, equations (Bl) to (B6). 

Since we observe two indicators only for one month, a 
model which assumes direct effects between the indicators, 
would be under identified. Thus, we can not explicitly 
model dependencies between observed states. The only way 
to account for correlated classification errors in FLFS data, 
is to let observed states depend on latent transitions. By the 
way, this seems to be a sensible assumption in retrospective 
surveys. Indeed, flows between two different states may 
easily undergo wrong placements in time, because in some 
situations, events might truly be difficult to place exactly. 
As an example, employees who loose their job or retire 
(flows EU and EN), will generally use the holidays they are 
entitled to, and may not clearly know when they exactly left 
employment. The moment people entered the labour force, 
may also be hard to recall, especially when they left school 
(flows NU and NE) (van de Pol and Langeheine 1997). 

The modified LISREL model, formulated in mathe
matical terms in Appendix B, is based on the following 
substantive assumptions. 

At the latent level, transitions follow a first order non 
stationary Markov chain (equations (Bl) and (B2)). Indeed, 
the evidence on seasonality in observed transitions, suggest 
avoiding the imposition of stationarity of any order, on the 
latent Markov chain. 

Response probabilities for data collected in both waves, 
depend on the latent transition occurring between / and / + 1 
(equations (B3) and (B4) refer to data collected in March 
1992, equations (B5) and (B6) to data collected in March 
1991). 

In order to describe the error generating mechanism in 
detail, and specify a more parsimonious model, the 
following constraints have been imposed on response 
probabilities: 

(a) response probabilities referring to the same month of 
subsequent years (December and March) are set equal; 

(b) response probabilities at time t, given that the true 
state has not changed between time / and time / + 1, 
are set constant over time; 

(c) response probabilities are set equal for June and 
September 1991; 

(d) in general, respondents who move between month t 
and / + 1 (transitions EU, EN, UE, UN and NU), at 
time /, report either the true state occupied at time t, or 
the true state occupied at time / + I, i.e., they, do not 
report a state they have not been moved from/to; 

(e) if however, the latent transition occurs between states 
N and E, we admit all three answers at time t, i.e., we 
consider that people who find a job may confuse their 
previous position (at time /), and be uncertain between 
U and N. 

Constraint (c) is imposed mainly for reasons of model 
parsimony. It captures the notion that response probabilities 
for months that are placed more or less in the central part of 
the reference period, do not vary too much. 

Constraints (b) and (d) reflect the fact that response 
probabilities depend on latent transitions. We expect that 
these probabilities do not vary too much over time when 
there is no latent change (constraint (b)), whereas we expect 
that the probability of misplacing change, especially in 
ambiguous situations, increases with the length of the recall 

Table 4 
FLFS Observed Quarteriy Transition Rates (xlOO), December 1990 to March 1992 

(OM = Observed Mobility) 

D90-M91 

M91-J91 

J91-S91 

S91-D91 

D91-M92 

WW 

BW 

WW 

BW 

WW 

WW 

WW 

EE 

94.77 

91.50 

96.03 

91.48 

94.29 

93.73 

93.90 

EU 

4.25 

4.86 

3.02 

4.63 

3.94 

4.48 

4.80 

EN 

0.98 

3.64 

0.95 

3.89 

1.77 

1.79 

1.30 

UE 

24.53 

31.60 

23.21 

35.01 

20.93 

23.63 

21.67 

UU 

72.40 

56.84 

74.32 

54.20 

78.29 

74.89 

76.74 

UN 

3.07 

11.56 

2.47 

10.79 

0.78 

1.48 

1.59 

NE 

0.98 

4.40 

1.28 

4.84 

4.71 

3.22 

1.70 

NU 

0.66 

2.10 

0.68 

2.14 

2.95 

1.65 

0.59 

NN 

98.36 

93.50 

98.04 

93.02 

92.34 

95.13 

97.71 

OM 

5.08 

10.16 

4.54 

12.04 

7.85 

7.23 

5.91 
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period. Constraints under (d) aim at catching the tele
scoping effect. 

Figure 5 gives the path diagram of the estimated model. 

W^ W^ 

y r y2- y^- YA^ Ys- 3̂ 6 
1 ^ 1 - - I y i ^ 1 
Y Y Y Y Y 

Figures. Path Diagram of a Modified Lisrel Model for Six 
Measurement Points and Two Indicators for One Latent 
Variable 

Table B.l in Appendix B reports the pattem of 
restrictions on response probabilities, (a) to (e); it shows 
which parameters are set equal, and which are fixed to 0, in 
order to introduce into the basic model, as defined by 
equations (Bl) to (B6), the above constraints. 

The final model has been selected after comparing a 
sequence of models, as can be seen from Table 5. 

MODEL 

A 
Al 
A2 

Table 5 
Model Selection (EM = Estimated Mobility) 

I ^ df 

2509.5759 2124 
3450.1716 2154 
3849.9470 2178 

cond. test 

940.5957 0 
399.7754 0 

EM 

5.424 
4.918 
5.798 

B 
Bl 
B2 
B3 

816.1620 
855.2282 
864.9657 
879.5996 

2076 
2094 
2106 
2121 

39.0662 
9.7375 

146339 

0.01 
0.40 
0.10 

5.888 
5.818 
5.906 
6.252 

We started the analysis by estimating a model based on 
the ICE assumption (model A in the table), which, as 
expected, shows a bad fit. 

The following models (Al and A2) are based on the 
work by Magnac and Visser (1995). These authors consider 
monthly transitions over a period longer than ours (from 
January 1989 to March 1992), but on the same sample of 
individuals. They assume that the labour force state in the 
interview month is correctly reported, while the probability 
of making mistakes increases with the distance between the 

reference month and the time of interview, according to a 
deterministic function of time. Response probabilities are 
assumed to be constant over the survey waves, and true 
transitions are assumed to follow a first order stationary 
Markov chain. Our model Al is a less restricted version of 
Visser and Magnac's model - no stationarity assumption is 
made, appUed to quarterly transitions from December 1990 
to March 1992. Our model A2 adds to model Al, the 
hypothesis of first order stationarity at the latent level. Both 
models perform quite badly, and (from column EM), we see 
that, on average, they correct the observed labour market 
towards stability: a result which contiadicts the evidence on 
the effects of classification errors in retrospective surveys. 

Model B introduces correlation among classification 
errors, by letting each indicator to depend on the true 
transition that occurred between times / and r + 1; 
moreover, it encompasses constraint (a). The fit increases 
dramatically (see L^). All subsequent models are nested in 
model B, and additional restrictions may be evaluated by a 
conditional test. Model B1 intioduces constiaints under (b); 
model B2 the additional constraints under (c); and model 
B3 is our final model. 

Table 6 presents estimated transition rates with our best 
fitting model. The French labour market is corrected 
towards a greater mobility. The average estimated mobility 
amounts to 6.252%. Moreover, estimated response 
probabilities show a pattem consistent with the notion, that 
the probability of making mistakes gets bigger, the longer 
the recall period. 
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Table 6 
FLFS Estimated Quarteriy Transition Rates (xlOO), December 1990 to March 1992 

(EM = Estimated Mobility) 

D90-M91 

M9I-J9I 

J91-S91 

S91-D91 

D91-M92 

EE 

94.85 

95.65 

93.71 

98.32 

93.23 

EU 

4.48 

1.37 

425 

1.67 

5.02 

EN 

0.67 

2.98 

2.04 

0.01 

1.75 

UE 

12.70 

28.43 

14.88 

15.42 

9.99 

UU 

66.28 

62.35 

82.50 

83.75 

88.65 

UN 

21.02 

9.22 

2.62 

0.83 

1.36 

NE 

1.09 

3.61 

4.11 

3.80 

2.07 

NU 

1.55 

1.48 

3.49 

0.47 

1.28 

NN 

97.36 

9491 

92.40 

95.73 

96.65 

EM 

6.27 

7.49 

7.70 

4.24 

5.56 
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APPENDIX A ">„d,'",.\J,.ig 

Final Model Specification for the SIPP Data, in Terms 
of Conditional Probabilities 

(1) Basic model decomposition 
^g = P{G=g) 

A=Piyi=Ji) 

(Al) 

(A2) 

= P{ W, = m,^, \y,=j,, W,^, =m,^yy,^, =j,^y G=g) = l 

for w,,,*y„, and / = 1,2,3 (A 10) 

'w,/,m,^, i,^,s 

(Im =PiW, = m,\y,=j,,G=g) 

for /w,,i =j,,i and r= 1,2, 3 (Al l ) 

J, JI 
K =P<<y,=J.\y,-i=J.-i) t = 2,3,4 (A3) 

P(Y, = l,\y,=f,Y,^,=l,^yy,^^=j,^yG=g) 

t = 1,2,3 (A4) 

qy:''' = P{Y, = l,\y,=j„G=g) 

'",j,'",.j„\g 
1w, 

(A5) 

= P(W, = m,\y, =y„ W,^i=m,^yy,^^ =f.vG=g) 

1=1,1,3 (A6) 

g = i = g=4 g=3 g=2 
11=4 1t = 3 1l=2 1t = l 

yr=4 9(=3 ?/=2 Vr=l 

g = 3 ^ g = 2 g-l ^ g = 4 
^/ = 4 ^/ = 3 ?( = 2 9r = l 

g = 4 g = 3 ^ g = 2 g = l 
Vr=4 ^(=3 Vr=2 9(=1 

(A12) 

(A 13) 

(A14) 

(A 15) 

APPENDIX B 

Final Model Specification for the FLFS Data, in 
Terms of Basic Model Decomposition and Pattern of 
Restrictions on Parameters 

(I) B asic model decomposition 

q„4 =PiW^=m^\y^=j^,G=g) (A7) 

g varies over I, 2, 3 and 4; /, and _/,, t = 1, 2, 3,4, vary 
over the categories E, U and N, /«, , / = 1,2, 3,4, vary over 
the categories 'Job' and 'No Job'. 

(2) Constraints on conditional probabilities 

'i.\Ji>,.J,.\g 

=nY, = l,^i\y,=j„Y,^,= l,^^,y,^^=j,^^,G = g)=l 

f o r / , „ ^ y „ , ? = l , 2 , 3 ( A 8 ) 

% =PiY, = l,\y^=j^,G=g) 

for ^/ . i=7,. iand /= 1,2,3 (A9) 

K=P{y,=j,) 

^, =Piy,-j,\y,.i=j,-i) 

1 = 2,3,4,5 

9yi =P(Y, = l,\y,=j,,y,^^=j,^^) 

1 = 2,3,4,5 

^^ =P(Y, = l,\y,=j,) 

diJi 
iwt =P(^i="'i\yi=Jvy2=J2) 

"ih 
q^2 =P(^2'^'"2\y2=J2) 

ji, /, and /M, vary over E, U and N. 

(Bl) 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 
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(2) Pattem of restrictions on response probabilities 

Table B.l 
Month of Observation 

Probability of 
observing a state 
given a latent 
transition 
Eee 
ulee 
Niee 
Eleu 
uleu 
Nieu 
EJen 
Ulen 
Nien 
EJue 
Ulue 
Nbe 
Euu 
uluu 
NIUU 

Elun 
Ulun 
N U 
Erne 
Ulne 
Nine 
Einu 
Uinu 
Ninu 
Einn 
Uinn 
Ninn 

March 91 

1 
2 
3 
F 
F 
* 
F 
* 
F 
F 
F 
* 
4 
5 
6 
* 
F 
F 
F 
F 
F 
« 
F 
F 
7 
8 
9 

June 91 & 
Sept. 91 

1 
2 
3 
F 
F 
* 
F 
* 
F 
F 
F 
* 
4 
5 
6 
* 
F 
F 
F 
F 
F 
* 
F 
F 
7 
8 
9 

Dec. 90 & 
Dec. 91 

1 
2 
3 
F 
F 
* 
F 
* 
F 
F 
F 
* 
4 
5 
6 
* 
F 
F 
F 
F 
F 
* 
F 
F 
7 
8 
9 

Equal numbers indicate response probabilities fixed to be equal. 
* indicates a probability fixed to 0. 
F indicates a free parameter. 

REFERENCES 

ABOWD, J.M., and ZELLNER A. (1985). Estimating gross labour 
force flows. Journal of Business and Economics Slatislics, 3, 
254-283. 

BASSI, R, CROON, M., HAGENAARS, J., and VERMUNT, J. 
(1995). Estimating Latent Turnover Tables When Data are 
Affected by Correlated and Uncorrelated Classification Errors. 
WORC PAPER 95.12.25/7, Tilburg University. 

BERNARD, H.R., KILLWORTH, P., KRONENFELD, D., and 
SAILER, L. (1984). The problem of informant accuracy: The 
validity of retrospective data. Annual Review of Anthropology, 13, 
495-517. 

CHAKRABARTRY, R.P., and WILLIAMS, T.R. (1989). 
Time-in-sample biases in the Survey of Income and Program 
Participation. Proceedings of the Section on Survey Research 
Methods. American Slalislical Association, 309-314. 

CHUA, T.C., and FULLER, W.A. (1987). A model for multinomial 
response error applied to labor flows. Journal of the American 
Statistical Association, 82,46-51. 

CITRO, C.F., and KALTON, G. (1993). The Future of the SIPP. 
Washington, D.C.: National Academy Press. 

DUNCAN, G., and KALTON, G. (1987). Issues of design and 
analysis of surveys across time. International Statislical Review, 
55,97-117. 

GOODMAN, L.A. (1973). The analysis of a multidimensional 
contingency table when some variables are posterior to the others. 
Biomelrika, 60, 179-192. 

GOODMAN, L.A. (1974). Exploratory latent structure analysis using 
both identifiable and unidentifiable models. Biomelrika, 79, 
1178-1259. 

GOODMAN, L.A. (1981). Three elementary views of log-linear 
models for the analysis of cross-classifications having ordered 
categories. In Sociological Methodology, (Ed. S.Leinhardt), 
193-293. San Francisco: Jossey Bass. 

HABERMAN, S.J. (1978). Analysis of Qualilative Data Vol I. 
Introductory Topics. New York: Academic Press. 

HAGENAARS, J.A. (1988). Latent structure models with direct 
effects between the indicators, local dependence models. 
Sociological Methods and Research, 16, 379-405. 

HAGENAARS, J.A. (1990). Categorical Longitudinal Data: 
Log-linear, Panel, Trend and Cohort Analysis. Newbury Park: 
Sage. 

HAGENAARS, J.A. (1997). Categorical Causal Modeling: Directed 
Loglinear Models With Latent Variables. WORC PAPER 
97.04.002/7, Tilburg University. 

HUBBLE, D.L., and JUDKINS, D.R. (1989). Measuring the Bias in 
Gross Flows in the Presence of Autocorrelated Response Errors. 
SIPP Working Paper No. 8712, U.S. Bureau of the Census. 

HUSSMAN, R., MEHRAN, R, and VERMA, M. (1990). Surveys of 
Economically Active Population, Employment and 
Underemployment: an ILO Manual on Concepts and Definitions. 
Geneva: ILO. 

J O R E S K O G , K.G., and SORBOM, D. (1988). Lisrel 7: A Guide to 
ihe Program and Applications. Chicago: SPSS INC. 

KALTON, G., and CITRO, C.R (1993). Panel surveys: adding the 
fourth dimension. Survey Methodology, 19, 205-215. 

KALTON, G., and MILLER, M.W. (1991). The seam effect with 
social security income in the SIPP. Journal of Official Statistics, 
1, 235-245. 

LANGEHEINE, R., PANNEKOEK, J., and van de POL, F. (1995). 
Bootstrapping goodness-of-fit measures in categorical data 
analysis. Sociological Methods and Research, 24, 492-516. 

LAZARSFELD, P.P., and HENRY, N.W. (1968). Latent Structure 
Analysis. New York: Houghton Mufflin. 

MAGNAC, T , and VISSER, M. (1995). Transition Models With 
Measurement Errors. Working Paper, Institut National de la 
Recherche Agronomique (INRA), Paris. 

MARQUIS, K.H., and MOORE, J.C. (1989). Some response errors 
in SIPP with thoughts about their effects and remedies. 
Proceedings of the Section on Survey Research Methods, 
American Statistical Association, 381-386. 



122 Bassi, Torelli and Trivellato: Data and Modelling Strategies 

MARTINI, A. (1988). Retrospective versus panel data in estimating 
labour force gross flows: comparing SIPP and CPS. Proceedings 
of the Social Science Section, American Statistical Association, 
109-114. 

MARTINI, A. (1989). Seam effect, recall bias, and the estimation of 
labour force transition rates from SIPP. Proceedings of the Section 
on Survey Research Methods, American Statistical Association, 
387-392. 

MENG, X.L., and RUBIN, D.B. (1993). Maximum likelihood 
estimation via ECM algorithm: a general framework. Biomelrika, 
80, 267-278. 

McCORMlCK, M., BUTLER, D., and SINGH, R. (1992). 
Investigating time-in-sample effects for the Survey of Income and 
Program Participation. Proceedings of the Section on Survey 
Research Methods, American Statistical Association, 554-559. 

O'MUIRCHEARTAIGH, C. (1996). Measurement errors in panel 
surveys: implications for survey design and for survey 
instruments. Proceedings of the Scientific Reunion of the Italian 
Statistical Society, 1, 207-218. Rimini: Maggioli. 

PFEFFERMAN, D., SKINNER, C.J., and HUMPHREYS, K. (1998). 
The estimation of gross flows in the presence of measurement 
error using auxiliary variables. Journal of Ihe Royal Slatistical 
Society, Series A, 161, 13-32. 

POTERBA, J.M., and SUMMERS, L.H. (1986). Reporting errors and 
labor market dynamics. Econometrica, 54,1319-1338. 

SINGH, A.C., and RAO, J.N.K. (1995). On the adjustment of gross 
flows estimates for classification errors with application to data 
from the Canadian Labor Force Survey. Journal of the American 
Statistical Association, 90, 1-11. 

SKINNER, C.J., and TORELLI, N. (1993). Measurement error and 
the estimation of gross flows from longitudinal economic data. 
Statistica, 3, 391-405. 

U.S. DEPARTMENT OF COMMERCE (1991). SIPP User's Guide. 
Washington D.C. 

van de POL, F., and LANGEHEINE, R. (1990). Mixed Markov latent 
class models. In Sociological Methodology, (Ed. C.CIogg), 
213-247. Oxford: Blackwell. 

van de POL, F., and LANGEHEINE, R. (1992). Analysing 
Measurement Error in Quasi-experimental Data: An Application 
of Latent Class Models to Labour Market Data. Working Paper of 
the European Scientific Network on household Panel Studies, 57, 
Colchester, University of Essex. 

van de POL, F., and LANGEHEINE, R. (1997). Separating change 
and measurement error in panel surveys with an application to 
labour market data. In Survey Measurement and Process Quality, 
(Ed. L.Lyberg et al), 671-688. New York: Wiley. 

VERMUNT, J.K. (1993). Log-linear and event history analysis with 
missing data using the EM algorithm. WORC PAPER 
93.09.015/7, Tilburg University. 

YOUNG, N. (1989). Wave seam effects in the SIPP. Proceedings of 
the Section on Survey Research Methods, American Statistical 
Association, 393-398. 



Sun/ey Methodology, December 1998 
Vol. 24, No. 2, pp. 123-129 
Statistics Canada 

123 

Estimating Labour Force Gross Flows From Surveys Subject 
to Household-level Nonignorable Nonresponse 

PAUL S. CLARKE and RAY L. CHAMBERS' 

ABSTRACT 

Measurement of gross flows in labour force status is an important objective of the continuing labour force surveys carried 
out by many national statistics agencies. However, it is well known that estimation of these flows can be complicated by 
nonresponse, measurement errors, sample rotation and complex design effects. Motivated by nonresponse pattems in 
household-based surveys, this paper focuses on estimation of labour force gross flows, while simultaneously adjusting for 
nonignorable nonresponse. Previous model-based approaches to gross flows estimation have assumed nonresponse to be 
an individual-level process. We propose a class of models that allow for nonignorable household-level nonresponse. A 
simulation study is used to show, that individual-level labour force gross flows estimates from household-based survey data, 
may be biased and that estimates using household-level models can offer a reduction in this bias. 

KEY WORDS: Gross flows; Household-based surveys; Nonignorable nonresponse. 

1. INTRODUCTION 

Labour force gross flows are typically defined as 
transitions over time between the three major labour force 
states, employed, unemployed and economically inactive. 
Gross flows estimates are an important tool in the study of 
labour force dynamics (for example, see Vanski 1985). 
Large-scale on-going surveys such as the British Labour 
Force Survey and the U.S. Current Population Survey, 
provide data for gross flows estimation. However, non-
response, measurement error, sample rotation and complex 
design effects, affect gross flows estimation from these 
surveys. A discussion of these and other factors affecting 
gross flows estimation, is given in Hogue (1985). Here we 
focus on the problem of nonresponse. 

We assume that a nonresponse mechanism leads to the 
observed data being incomplete. If the probability of not 
responding depends on the missing data, then the non-
response mechanism is nonignorable (Rubin 1976). The 
model-based approach to analysing incomplete survey data, 
is detailed in Littie (1982). Model-based approaches to the 
estimation of labour force gross flows, involve modelling 
both the labour force flows and the nonresponse 
mechanism, and simultaneously fitting both models to the 
incomplete data. Examples of such models are given in 
Stasny and Fienberg (1985), Stasny (1986) and, for 
nonignorable nonresponse, in Little (1985). We call these 
individual-level models, because individuals are modelled 
as responding or not responding, independently of other 
sampled individuals. 

Both the Labour Force Survey and the Current 
Population Survey, are examples of household-based 
surveys, that is, surveys based on a random sample of 
households, rather than individuals. Household-based 
surveys can lead to correlated nonresponse behaviour 

within households. For example, in the Current Population 
Survey, a single household member (usually the head-of-
household) acts as a proxy for the other household mem
bers; thus, if the chosen household member is a non-
respondent, so are other household members. It follows 
that, due to correlated within-household nonresponse 
behaviour, individual-level nonresponse models are 
unsuitable for the estimation of labour force gross flows, 
using household-based survey data. 

In this paper, we propose a class of models for 
individual-level labour force flows, and household-level 
nonresponse, that account for correlated within-household 
nonresponse behaviour. A number of plausible nonresponse 
models that are estimable from the observed data, both 
ignorable and nonignorable, are also presented. We then 
simulate household-based survey data, using these house
hold-level models, to demonstiate the potential utility of our 
approach: first, individual-level labour force gross flows 
estimates are shown to be biased, when fitted to household-
based survey data; and second, the bias of individual-level 
and household-level gross flows estimates are compared, to 
show the advantages of fitting household-level models to 
household-based survey data. To conclude, we summarise 
the findings of our simulation studies and discuss ideas for 
further research in this area. 

2. A MODEL FOR HOUSEHOLD-LEVEL 
NONRESPONSE 

2.1 The Data 

A gross flow is the probability or frequency of 
individuals in the population, making a state transition 
between two points in time, /, and /^('i < '2)- Labour force 
gross flows refer to transitions between the three main 
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labour force states: 1 = 'employed', 2 = 'unemployed' and 
3 = 'not in labour force', where the last category refers to 
economically inactive individuals, such as retired indi
viduals and students. Let S denote a simple random sample 
of households, indexed by h. Within household h, there are «^ 
eligible individuals, of which n^{ab) have labour force 
flow {a, b) between t^ and t^, where X^ b "h^"^) = "A- ̂ "*̂  
a, b = 1,2,3. We refer to {«^ {ab) ] as the complete data, 
that is, the frequencies that would be observed in the 
absence of nonresponse. 

Table 1 shows the complete labour force flows data for 
household /t as a 3 x 3 contingency table. If h responds at 
both times, the observed data are the cells of this 2-way 
table. However, if the household does not respond at r, or t^, 
the observed data correspond to the margins of the table: 
«;,(! +), «;,(2+), "^,(3+) are the observed data ifh responds 
at ^ j , but does not respond at t.^; and «;,( + !), 
«^(+2), «^(+3) are the observed data ifh responds at t.^ but 
does not respond at t^. (An index replaced by ' +' denotes 
summation over all levels of that index.) Furthermore, if h 
does not respond at both t^ and t^, the observed data is the 
household size, «^, which we take to be known and fixed 
between /j and t^. 

Complet 

Status 

1 

t, 2 

3 

Table 1 
e Labour Force Flows Data for Househo 

1 

«/,(ll) 

",(21) 

",(31) 

" . ( -1) 

'2 

2 • 

",(12) 

",(22) 

",(32) 

",(+2) 

3 

«*(13) 

",(23) 

",(33) 

".(^3) 

Id A 

«/,(!-) 

«.(2-) 

"bO-) 

"H 

2.2 Model Specification 

It is inappropriate to treat the nonresponse behaviour of 
individuals within a household as independent, in house
hold-based surveys. In the Labour Force Survey, for 
example, one eligible household member determines 
whether the household can be interviewed. Therefore, if no 
eligible individual can be contacted, each household indi
vidual is a nonrespondent. To construct a model for 
household-level nonresponse, we take the ideas behind 
individual-level nonresponse and extend them to the 
household, by considering a household to be an entity with 
its own nonresponse flow between t^ and tj. To allow for 
nonignorable nonresponse, the probability of a household 
nonresponse flow is modelled as a function of its individual 
labour force flows, as shall now be described. 

Let iV^ = (A^^(II),Af^(2I),...,A^^(33)) be the random 
vector of labour force flows frequencies for household h, 
where Nf^{ab) is the random variable, whose outcome 
corresponds to the number of individuals with labour force 
flow {a, b),a,b=l, 2, 3. Further, denote the random vector 

for the nonresponse flow of household h by 

^h=(^hl'^h2)' "^^^^^ 

^ = 
11, if household responds at t. 

0, otherwise 

is the nonresponse status random variable for h at 
tj, j = 1,2. The realisations of these random quantities are 
oenoted by /i^ and r^. We now assume that n^ and r^ are 
known, and write the joint probability of N^^ and /f̂  as 

Pr{N,=n„R,=r,)=Pr{N,=n,)Pr{R, = r,\N,=n,), 

where Pr(A^;, - f^h) is the labour force flows model, and 
Pr{Rf^= rf^\Nf^= Hf^) is called the nonresponse flows 
model. 

The labour force flows model is taken to be multinomial, 
with probability function 

Pr{N,=n,;fo)=n,\Yl CO {ab)' 
nAab) 

a,b n.{ab)l (1) 

where co {ab) > 0 is the probability of an individual having 
labour force flow {a, b) and Y,a b^^^^) ^ ^ • ^ ^ vector of 
labour force flows parameters is denoted by o) = (co(l 1), 
a)(21),..., (0(33)), of which 8 are free. The assumption of 
multinomial sampling in (1), implies that individuals' 
labour force flows behaviour, is independent within 
households, and that households are homogeneous with 
respect to their labour force flows behaviour. These 
assumptions are unrealistic, but (1) can easily be extended 
to a more realistic model for the labour force flows, as we 
discuss in Section 4. 

The probabiUty of household h having nonresponse flow 
(M, v), is taken to be 

7i(Mv I« , ) = Pr(/?, = (M, V) |iV, = «^; tt/) 

= — Yl n^{ab)y^{uv\ab), 
"ho-b 

(2) 

for w, V = 0, I, namely, a weighted average of the non-
response model parameters. By setting n^ = l, it can be 
seen tiiat \\/{uv \ab)>0 is the probability of a household of 
size one {i.e., an individual) having nonresponse flow 
(M, v), given it has labour force flow {a, b). Thus, 
i:„,,vf (wv I a i ) = 1 and t|/= (v|/(ll | 11), v(/(01 | II), . . . , 
v)/(00|33)) is the vector of nonresponse parameters, of 
which 27 are free. 

Before defining the likelihood function for the complete 
data, partition S into 4 mutually exclusive and exhaustive 
subsets 

S = S,,US,,\JS,,\JS^, 
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where 5̂ ^ = {/J : r^ = (M, V)} is the subset of households 
with nonresponse flow {u, v). Thus, since 5 is a simple 
random sample of households, the likelihood function for 
the complete data is 

L{(ii,\\i;{n^,r^})=Yl Yl L^{(ii,\]i\n^,{u,v)), (3) 

where Z,̂  (co, V|/;« ̂ , (u, v)) is the contribution of household 
heS^^ to the likelihood, the product of (1) and (2). 

2.3 Model Fitting 

2.3.1 Maximum Likelihood Estimation 

Since the complete data are unavailable, (3) must be 
modified to give the likelihood based on the observed data. 
Denote the observed data by {n J,}. As discussed in Section 
2.1, the observed data for households that respond at /, and 
t^, is the full cross-classification in Table I, namely, 
rtj, =/i^. Similarly, if heS^^ then n^ = («^(I+),/j^(2+), 
«^(3+)); if Ae^oi then «; = (n^(+l),«^(+2),/7^(+3)); and 
if/le^oQ, then nl = n^. 

The contribution of household heS^^ to the observed 
data likelihood, is obtained by summing Z^ (co, \|/;« ̂ , (M, V)) 
over all possible values that the full 3 x 3 cross-
classification of labour force flows can take, given the 
observed margin. Representing this set of tables by /i^ : n^, 
the observed data likelihood for S is 

Z,(co,v)/;{/i;,rJ)=n I I Y, L^{(x),\\i;nf^,{u,v)). {4) 

Model fitting requires calculating (4) at each stage of an 
iterative optimization process. This is computationally 
intensive, because the complete data likelihood function 
must be summed explicitiy over the missing data. For 
example, the observed data for heSi^ is nj, = («;,(1+), 
M (̂2+), M (̂3+)) and the likelihood contribution of this 
household to the observed data likelihood is 

Y^ Z,^(co,vi/;/i^,(l,0)). 

To explicitly calculate this contribution, each 3 x 3 
complete data table «^ for fixed nj, is generated and 
Z,̂  (o), V);; /I ̂ , (1,0)) evaluated for each. For household size 
n^ = 5, there are at least 21 and at most 108 possible tables, 
depending on the values in the fixed margin; for «^ = 15, a 
very large household size, the respective numbers are 136 
and 9,261. A similar procedure is used for heS^y except 
here /ij, = («^(+l), n^{-*-2), «;,(+3)) is the fixed margin. If 
heS^Q, then no data about labour force status are observed, 
only the household size «^. So each 3 x 3 table with total «^ 
must be generated, and the likelihood function calculated 
for each: for «,, = 5 there are 1,287 tables and for «;, = 15 
there are 490,314. It is not infeasible, in terms of computer 
run-time, to calculate such sums directly. The number of 

explicit calculations can be reduced, by recognising that 
each household is defined only by its observed labour force 
flows frequencies and nonresponse flow. Thus, summation 
over the missing data need only be performed once for a 
household with a particular nonresponse flow and labour 
force flows frequencies; the contribution of this household 
to the likelihood is then raised to the power of the number 
of similarly defined households in S. 

2.3.2 Parameter Estimability 

If we fix n^ = I for all h, the complete data have no 
household structure, and form a 4-way table cross-classified 
by labour force status and nonresponse status at ?, and t^. 
The observed data log-likelihood (4) is now equivalent to 
that of the individual-level models in Stasny and Fienberg 
(1985), Little (1985) and Stasny (1986). For these models, 
estimability requires that the number of model parameters 
does not exceed 15 (one for each observed table cell, less 
one for the multinomial sampling constraint). Hence, 
(co, vj/) are inestimable because there are 8 + 27 = 35 free 
parameters. Since interest is focused on the labour force 
gross flows probabilities, co, it is neccessary to constrain \\i 
to ensure estimability. 

When «;,> I, determining parameter estimability is more 
difficult, because (4) has a complicated closed-form 
expression. Fitzmaurice, Laird and Zahner (1996) use a 
numerical method to determine estimability, that involves 
showing that the information matrix is non-singular in the 
neighbourhood of the maximum likelihood estimate. 
However, not only is this impractical for problems of a high 
dimension, but evaluating the information matrix for the 
household-level model, is particularly difficult in this case. 
Instead, we adopt a pragmatic approach for determining 
parameter estimability: first, we restrict attention to models 
that satisfy the necessary condition for estimability when 
«;, = 1; and second, different starting values are used to for 
each fit. If the different starting values reveal a non-unique 
maximum likelihood estimate, or any parameter estimate is 
unchanged from its starting value then the model 
parameters are taken to be inestimable. 

2.4 Nonresponse Models 

To enable parameter estimates to be obtained from the 
observed data, 9 and \\i must be constiained in accordance 
with assumptions about the nonresponse mechanism. The 
nonresponse parameters are interpreted as individual 
nonresponse probabilities, but within the household frame
work established thus far, it is inappropriate to taUc about 
individuals not responding. However, in reality, it is 
individuals within households that determine a household's 
nonresponse flow, not the household itself Therefore, 
constraints are placed on the nonresponse parameters at the 
individual level, that apply at the household level through 
the functional dependence of ii{uv\n^) on \|A in (2). For 
example, if the nonresponse parameters are constrained 
such that v|i (MV | ab) = v|/ {uv) for all a, b, then the household 
nonresponse mechanism is ignorable, because household 
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nonresponse flows are independent of the labour force 
flows. 

We now present four models for the nonresponse 
mechanism, two of which are ignorable, and two 
nonignorable. 

- Ignorable models. 
- Model /^: Constant nonresponse probability, 

v|/(Mv|ai) =>.i-"(I - X)"xX^-''{l - Xy, 

which has 1 parameter, X, the probability of an 
individual not responding; 

- Model Ig: Independent of labour force status, but 
different nonresponse probabilities, at t^ and /j, 

\\i{uv I ab) = X^-"{1 - X)" X 0'-"(I - 0)^ 

which has 2 parameters, X,Q, the probabilities of 
nonresponse at /, and ^j, respectively. 

- Nonignorable models. 
- Model N^: The nonresponse distiibutions at /, and t^ 

are independent but depend on labour force status at t^ 
and t^, respectively, 

\V{uv\ab)=X{a)^-"{l - X{a))"xQ{by-'{l - Q{b)y 

which has 6 parameters, X = {X{1), X{2), X{3)) and 
e = (6(1), 0(2), 9(3)), where X{a) is the probabUity 
of not responding at /,, given labour force status aatty 
and 0{b) that at t^, given labour force status b at t^; 

- Model Ng: The nonresponse distributions at t^ and /j 
depend on labour force status at t^ and 2̂ re
spectively, /. e., a first-order Markov process. UnUke N^, 
the nonresponse distributions at ?, and ^̂  ^^ 
dependent: if the nonresponse status at /, is 1, then 
the nonresponse distribution at t^ is the same as at 
t^; but if the nonresponse status at t^ is 0, the 
nonresponse distributions are distinct, 

\|/(Mv|aft)=^(a)'-"(l -X{a)y 

if '(1 - Ub)) 

• (1 - Q{b)y, if 

u = l, 

u = 0. 

for a, 6 = 1,2, 3 and M, v = 0,1. Under model /^, there are 
a total of 8 + 1 = 9 free parameters, satisfying the necessary 
condition for estimability of an individual-level model. 
Models Ig, N^ and Ng have 10,14 and 14 free parameters, 
respectively, and so also satisfy the necessary condition for 
estimability. 

3. SIMULATION STUDY 

3.1 Simulation Procedure 

We used a simulation study to investigate the conse
quences of failing to account for the household stracture of 

household-based survey data, and to compare labour force 
gross flows estimates for individual-level and household-
level models. For this purpose, household-based survey 
data was generated using Monte Carlo sampling. Each 
sample data set consisted of 10,000 individuals arranged 
into households of size «/, = ^ for all h. Within each 
household, labour force flows were generated from (I), and 
the nonresponse flow was generated from (2), under one of 
models N^ or iV .̂ The data were made incomplete by 
collapsing each complete labour force flows data table, to 
be consistent with the household nonresponse flow. In 
total, 1,000 independent data sets were generated in this 
way. 

The population parameters used to generate the labour 
force flows are shown in the following table: 

(>)(ab) 

1 

a 2 

3 

1 

0.43 

0.02 

0.015 

b 

2 

0.245 

0.160 

0.035 

3 

0.035 

0.01 

0.05 

This is clearly a population in recession, since the 
probabihty of moving from being employed to unemployed 
is very large (a)(12) = 0.245). Under models A'̂  and Â ,̂ 
the population parameters are 

Hi) 
0(0 

1 

0.2 

0.5 

i 

2 

0.8 

0.2 

3 

0.5 

0.8 

It should be noted that these parameter values do not 
represent realistic nonresponse flows behaviour, they were 
chosen for the purpose of illustrating this methodology. 
However, this does not affect the general conclusions of the 
paper, which are also relevant for realistic values of the true 
nonresponse probabilities. 

3.2 Simulation Results 

Estimates for individual-level models are obtained by 
fitting (4) with «^ = 1 to each incomplete data set. Figure 1 
summarises the sampling distributions of the individual-
level maximum likelihood estimate of co(I2), 6(12), for 
nonresponse models 7^, Ig, N^ and Ng (estimates for 
ignorable models /^ and Ig are included together, because 
both yield the same estimates of the labour force flows). 
The vertical lines represent the intervals between the 
2.5-percentile and the 97.5-percentile of each estimate's 
sampling distribution, and the bold point represents its 
median. There are three distributions obtained for each 
individual-level estimate: the left-most distribution is that 
when the household size is k = I, i.e., the simulated data 
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have no household structure; and reading from left to right, 
the next two distributions are those obtained when the 
household size is ^ = 2 and k = 5, respectively. The solid 
horizontal line denotes the true flow probability, co(I2) = 
0.0245. The behaviour of the sampling distribution of 
(J) (12) in this study, reflects that of the other labour force 
gross flows estimates. 

Figure la summarises the sampling distributions when 
A'̂  is the true model. If the fitted individual-level model is 
/^, Ig or Ng, the labour force gross flows estimates have 
large biases, whatever the household size. As would be 
expected, the median estimate for correct model A'̂ , is 
unbiased if ^ = 1 and a small bias is apparent for A: = 2 and 
k = 5 (although this bias is smaller for A: = 5 than k = 2). 
Bias reduction with increasing k is also apparent for 
individual-level estimates /^, Ig and Ng. This behaviour 
is unexpected, since it seems natural to expect the bias of 
the individual-level estimates, to increase with the house
hold size. The results are slighUy different in Figure lb 
when Ng is true. Here the estimate for individual-level 
model Ng, becomes more biased as A-increases, but the bias 
decreases for mis-specified individual-level models 7^, Ig 
and A'̂ . Furthermore, tiie misspecified estimates for 7̂  and 
Ig have a small bias, when compared to those for 

misspecified model A''̂ . 
Section 3.3. 

These results are discussed in 

Figure 1. Sampling Distribution of (S(I2)for Individual-Level 
Models IA ,IB,NA and NB When the True Nonresponse 
Model is a) A''̂  and b) Ng and the Household Size is 
k= 1 ,2,5. 

A comparison of the median estimates of co (12) for the 
fitted individual-level and household-level models when 
Ng is true, is presented in Figure 2. There are four sampling 
distributions associated with each model: the first two 
represent those from fitting an individual-level nonresponse 
model, and a household-level nonresponse model, when the 
household size is k = 2; and similarly, the next two 
distributions are those when the household size is 5. 

For a particular pair of individual-level and household-
level sampling distributions, it can be seen that the 
household-level estimate is less biased than its equivalent 
individual-level estimate, and the spread of each household-
level sampling distribution, is narrower. The exception to 
this, is when fitting model 7^, where the household-level 
and individual-level distributions are identical. This 
equality occurs because the observed data lUcelihood for the 
individual-level and household-level models, are equivalent 
when the nonresponse model is ignorable. Another feature 
is that, if the nonresponse model is correctiy specified, the 
household-level estimates are unbiased. 

indWhirri h/h 

1 1 
IBS 
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~ F ^ 

: T 
I I 
• F 
; I 

; 1 

1 li'h W 

NB 

Figure 2. Sampling Distributions of (2) (12) for Individual-Level 
and Household-Level Models7^,/g,iV^ and Ng When 
the True Nonresponse Model is Ng and the Household 
Size is k = 1,5. 

3.3 Summary 

The estimates of the labour force gross flows under 
individual-level models, are never less biased than those of 
household-level models, when fitted to household-based 
survey data in our study. It should be noted, that if the true 
model is ignorable, it is unnecessary to utilise a household-
level nonresponse model, because the individual-level and 
household-level models are equivalent. For example, if 7̂  
is true, (2) reduces to r'*'(l - XY'"'", and (4) factorizes 
into two components, dependent on to only and X only; the 
factor dependent on to can be shown to be equivalent to 
that for the individual-level model, and thus the labour force 
flows estimates are the same. 

It appears, as the household size increases, that the bias 
of the labour force flows estimates decreases, if the tme 
model is nonignorable. In fact, this result arises because we 
use (1) to generate the labour force flows, and not because 
the model estimates are unbiased for large n^. To see why, 
consider the household formation process, used to generate 
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each Monte Carlo sample: as /î  increases, each household 
frequency tends to the same value, i.e., n^{ab) converges to 
n^(ii{ab); hence, 

7i(in'|n^) - — 5 ^ «^co(a, fe)\|/ {uv\ab) 
"h ".* 

= Yi (a{ab)\\/{uv\ab), 
a.b 

which is independent of /i^, that is, the simulated 
household nonresponse mechanism is ignorable. Therefore, 
the labour force flows estimates are unbiased, because 
fitting the nonignorable models to the simulated data, yields 
parameter estimates that are consistent with ignorable 
nonresponse. To generate nonignorable household-level 
nonresponse, it is necessary to prevent n^{ab) - nf^(i>{ab), 
by extending (1), to allow for differential labour force flows 
between households. Such extensions to the labour force 
flows model are discussed in Section 4. 

Figure lb) shows two anomalous results that contradict 
the above explanation, when A'̂  is the true model. First, 
the bias of individual-level model A'^'s estimate, increases 
as «^ increases. However, further simulations with 
household size «^ = 10, revealed that the individual-level 
estimate bias is zero. Thus, asymptotic ignorable non-
response is also evident when A'̂  is true, but «^ must be 
large before its effect becomes apparent for individual-level 
model Ng. Second, the bias of the ignorable individual-
level model estimates is small, almost zero, when Ng is 
tme. This small bias reduces even further as «^ increases, 
in line with asymptotic ignorability, but we have yet to 
arrive at a satisfactory explanation as to why the ignorable 
models perform so well in this situation. Further study is 
necessary to investigate this finding. 

4. DISCUSSION 

In Sections 3 and 4, it is demonstrated by means of a 
simulation based study, that modelling household-level 
nonignorable nonresponse, when estimating labour force 
gross flows from household-based surveys, leads to reduced 
bias in the flows estimates, compared to those from 
individual-level models. If the nonresponse model is 
ignorable, it is unnecessary to use household-level models, 
because the individual-level and household-level models 
are equivalent. Furthermore, it is shown that controlling for 
household-level nonresponse does not necessarily remove 
all bias from the estimates of the labour force flows. 
Correct specification of the nonresponse model is still seen 
to be imperative, although taking the household structure of 
the data into account, may lead to a refinement of the flows 
estimates if the nonresponse model is misspecified. In 
particular, we show that household-level estimates are less 
biased than their equivalent individual-level estimates. 

Our nonresponse model is an extension of the idea that 
nonresponse can depend upon the characteristics of a unit, 
in this case, the labour force flows of household members. 
Nonresponse in household-based surveys can occur for 
more than one reason, e.g., refusal, non-contact, moving 
house or sample rotation. The current model can easily be 
extended to model more complex nonresponse pattems, by 
specifying the nonresponse indicator as a polytomous 
variable, and parameterizing the nonresponse model in 
accordance with the complex nonresponse pattems. It 
should also be noted, that we do not assume that the 
household-level model is an accurate representation of 
household nonresponse behaviour; rather, we assume that 
the household-level model, offers an approximation of 
within-household nonresponse dynamics. 

An important problem, highlighted by the results from 
the simulation study, is our assumption that individual 
labour force flows behaviour is homogeneous within 
households. Clearly, this is an unrealistic assumption. The 
model is easily extended, by specifying the labour force 
flows and nonresponse flows probabilities, as regression 
models to accommodate individual-level, household-level, 
or higher level covariate information. For example, the 
labour force flows probabilities could be specified as a 
multinomial-logistic regression: 

log 
(iif,^{ab) 

I^MODJ =pr-pr-.-. 

where vi^.{ab) denotes the probability of individual / in 
household h, making labour force flow {a, b), x^. is a (row) 
vector of covariates, and (PQ" , |3, )̂ are the regression 
coefficients for multinomial-logit {a, b). However, fitting 
these models requires conditional independence assump
tions to be made, about the relationship between the 
distributions of the covariates, the labour force flows and 
the nonresponse flows, because the covariate information 
may be missing for nonresponding households. An 
alternative solution, is to allow for heterogeneous between 
household labour force flows, using random effects, by 
making assumptions about the distribution of between 
household differences. Fitting these models is also 
complicated and would require, for example, a Markov 
chain Monte Carlo procedure to perform the necessary 
integration. If S is not a simple random sample, auxiliary 
design variables can be incorporated into the fitting process, 
using the regression framework just described. 
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Longitudinal Analysis of Swiss Labour Force Survey Data 
by Multivariate Logistic Regression 

PAUL-ANDRE SALAMIN' 

ABSTRACT 

In longimdinal surveys, simple estimates of change, such as differences of percentages may not always be efficient enough 
to detect changes of practical relevance, especially in sub-populations. The use of models, which can represent the 
dependence structure of the longitudinal survey, can help to solve this problem. One of the main characteristics observed 
by the Swiss Labour Force Survey (SLFS) is the employment status. As the survey is designed as a rotating panel, the data 
from the SLFS are multivariate categorical data, where a large proportion of the response profiles are missing by design. 
The multivariate logistic model, introduced by Glonek and McCullagh (1995) as a generalisation of logistic regression, is 
attractive in this context, since it allows for dependent repeated observations and incomplete response profiles. We show 
that, using multivariate logistic regression, we can represent the complex dependence structure of the SLFS by a small 
number of parameters, and obtain more efficient estimates of change. 

KEY WORDS: Longitudinal binary data; Multivariate logistic model; Labour force survey. 

1. INTRODUCTION 

One of the main objectives of the Swiss Labour Force 
Survey (SLFS), is to produce estimates of change for the 
percentages of the population in different employment 
statuses. Typically, simple estimates of change, such as the 
difference of the percentages of employed individuals 
between two years, are calculated for the whole population, 
and for a large number of sub-populations. In general, this 
is unsatisfactory, as the estimates for the sub-populations 
may not always be efficient enough to detect changes of 
practical relevance. The work presented here was motivated 
by the question, whether the use of models, which can 
represent the dependence structure of the survey, could help 
to solve this problem. 

As the SLFS is designed as a rotating panel, we are 
dealing with longitudinal categorical data, for which a fairly 
large proportion of the response profiles, are incomplete by 
design. The focus of interest is on modelling marginal 
probabilities, namely, the probabilities to be in a given 
employment status, as a function of time and other 
covariates that define sub-populations. If the repeated 
observations of the employment status were independent, a 
natural approach would be to use logistic regression. The 
multivariate logistic model, introduced by Glonek and 
McCullagh (1995) as a generalisation of logistic regression, 
is attractive in this context, since it allows for dependent 
repeated observations and incomplete response profiles. 

The aim of this paper is to show that, the ability of 
multivariate logistic regression to model the complex 
dependence structure of the SLFS data, leads to more 
efficient estimators of change. Although we illustrate the 
method using the SLFS data only, it is clearly of wider 
applicability. 

There are a number of important issues that are not dealt 
with in this paper. As the SLFS data come from a complex 
survey, it can be argued that any analysis should take the 
sampling weights into account (Pfeffermann 1993). Here 
we use the unweighted data only. However, it can be 
shown, using the pseudo-likelihood approach of Binder 
(1983), that multivariate logistic regression can be extended 
to that situation (Salamin 1998). Non-response is always 
of great concern in sample surveys. Here, we consider only 
the incomplete response profiles that arise through the 
rotation of the panel, in which case, the hypothesis of 
missing completely at random, is reasonable. Note 
however, that multivariate logistic regression, is flexible 
enough to incorporate extra parameters for the incomplete 
profiles, arising from panel, attrition. Thus, the individuals 
which dropped out of the panel, could also have been 
included into the analysis. Finally, it is well known that 
classification errors may introduce large biases in the 
observed response profile probabilities, see e.g., 
Pfeffermann, Skinner and Keith (1998). It would certainly 
be desirable to investigate how these biases affect the 
parameter estimates of multivariate logistic regression, 
which have interpretations in terms of marginal moments. 

Log-linear models and marginal models are closely 
related to multivariate logistic regression, and are further 
discussed in Section 3. Here we discuss briefly transition 
models, random effects models, and survival analysis, in tiie 
context of the SLFS. Under a transition model, see e.g., 
Diggle, Liang and Zeger (1994, Ch. 10) or Zeger and Liang 
(1992), the repeated observations of the employment status 
are correlated, because past employment statuses influence 
the present employment status. The focus of interest, are 
the transition probabilities between the different 
employment statuses, e.g., the probability of being 
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employed, conditional on being unemployed in the past. In 
the regression setting, the past responses are treated as 
additional explanatory variables. An important issue, is the 
determination of the number of past responses to include as 
predictors. If the model for the transition probabilities is 
correctly specified, we can treat the repeated transitions for 
an individual as independent events, and use standard 
statistical methods, such as logistic regression. Under a 
random effect model, see e.g., Diggle et al. (1994, Ch. 9), 
the probability of being in a given employment status, is a 
function of explanatory variables, where the regression 
coefficients vary from one individual to the next. This 
variability of the regression coefficients, reflects the natural 
heterogeneity of the individuals, due to unmeasured factors. 
Given the regression coefficients, the repeated observations 
of the employment status, are assumed to be independent. 
The correlation among the repeated observations, arises 
solely because we are unable to observe the true regression 
coefficients. This approach is most useful, when inference 
about individuals rather than population averages, is the 
focus of interest. In survival analysis, also called event 
history analysis in the econometric literature (Lancaster 
1990), the focus is on modelling the transitions between 
employment statuses over time, as a function of explanatory 
variables. Here, the exact time at which a transition takes 
place, is important. In the SLFS, the employment status is 
observed once a year. The changes in employment status, 
that took place during the year preceding the interview, can 
be reconstructed. However, since this reconstruction is 
based on the self-assessment of the subjects, there may be 
some imprecision as regards prior status, and time of 
change of status. An analysis of the SLFS data based on this 
approach can be found in Gerfin (1996). 

The article is organized as follows. We begin in Section 
2 by describing the data, a subset of about 5000 individuals 
from the SLFS, which are used in the examples of Sections 
4 and 5. In Section 3, we discuss multivariate logistic 
regression, and contrast it with the log-linear and marginal 
models. In Section 4, we illustrate the ability of multivariate 
logistic regression, to represent the complex dependence 
structure of the SLFS data, by a small number of para
meters. In Section 5, we compare multivariate logistic 
regression with a simple estimator of change. It is shown 
that, using multivariate logistic regression, results in a gain 
in efficiency. Finally, we present in Section 6 our 
conclusions, and give directions for further work. 

quarter of 1991, a sample of about 16,000 persons are 
interviewed each year. The survey is designed as a rotating 
panel, with a time-in-sample of 5 years. During the start-up 
phase, i.e., from 1992 to 1996, approximately one fifth of 
the original sample was rotated out each year, and replaced 
by a renewal sample. The units in the renewal samples then 
stayed in the panel for a full period of 5 years. 

In the examples of Sections 4 and 5, we use the obser
vations of the employment status, for the years 1992 to 
1995, obtained from the individuals in the sample, of the 
canton of Vaud. The structure of the data, as well as the 
longitudinal and cross-sectional sample sizes, are shown in 
Table 1. Due to the sampling design, some of the response 
profiles are incomplete. For example, for the individuals 
that were selected in 1991 and rotated out of the sample in 
1994, the period of observation, denoted (1)234, goes from 
1991 to 1994. We use the notation (1)234, to emphasise tiie 
fact, that we do not use the observations taken in 1991. 

Table 1 
Structure of the Data, Longitudinal and Cross-sectional Sample 

Sizes Canton of Vaud, 1992-1995 

First year 
in sample 

91 

92 
93 
94 
95 

Observation times for various 
parts of the sampl 

92 
92 
92 
92 
92 

2,654 

93 
93 
93 
93 
93 

2,754 

94 
94 
94 
94 
94 

3,070 

e 

95 
95 
95 
95 
95 

3,420 

Period of 
observation 

(1)2 
(1)23 

(1)234 
(1)2345 

2345 
345 
45 

5 

622 
412 
527 
481 
612 
722 
728 
877 

4,981 

Employment status is a nominal variable with three 
categories, defined as "employed", "unemployed" and "out 
of the labour force". In the examples of Section 4 and 5, we 
work with a binary variable, taking the value 1 if an 
individual is employed, and 2 if an individual is 
unemployed or out of the labour force. This is done solely 
to simplify the presentation of the multivariate logistic 
models. As the method can handle an arbitrary number of 
categories, it would be preferable, not to collapse the 
statuses in a real analysis. Caution must be exercised, if it 
is nevertheless necessary to combine some of the statuses, 
as heterogeneity of the statuses may introduce bias. 

2. SWISS LABOUR FORCE SURVEY DATA 

A detailed description of the sampling design and 
weighting procedure of the SLFS, can be found in HuUiger, 
Ries, Comment and Bender (1997). Here, we just recall 
some of the relevant aspects of this survey. The SLFS 
collects information on the employment of resident persons 
of age 15 or more in Switzerland. Starting in the second 

3. MULTIVARIATE LOGISTIC MODELS 

The multivariate logistic model, introduced by Glonek 
and McCullagh (1995), can handle multivariate responses 
of either nominal or ordinal types, and either discrete or 
continuous explanatory variables. Here, we consider only 
multivariate binary responses and discrete predictors. The 
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multivariate logistic model, is an example of a generalized 
linear model, see McCullagh and Nelder (1989). Its link 
function, also called the multivariate logistic transforma
tion, expresses the joint distribution of the response 
profiles, in terms of marginal moments of increasing order, 
the first two being marginal logits, and marginal log odds 
ratios. The link function has the property, termed 
reproducibility, that a multivariate logistic model, applies to 
any subset of the response vector. This property ensures 
that, the interpretations of the parameters are the same, 
regardless of the number of response variables, and whether 
or not higher order parameters are included. This makes 
multivariate logistic regression, especially attractive for the 
analysis of longitudinal data, where the repeated observa
tions of an outcome arise on an equal footing, and where 
the number of repeated observations may vary from one 
individual to the next. Reproducibility is also the key to the 
ability of the model, to accommodate observations with 
incomplete responses. Note however, that we need to 
assume, that the data are missing completely at random, if 
the same parameters are to be used to model the complete 
and incomplete response profiles. The parameter estimates 
are found by maximum likelihood. A key step, is the 
inversion of the multivariate logistic transformation. For 
more than three responses, this may not always be possible, 
as tiiere are then constraints among the parameters (Glonek 
and McCullagh 1995, Liang, Zeger and Qaqish 1992). 
Also, the presence of empty cells, may limit the order of tiie 
parameters that can be fitted. 

The log-linear model is widely used to model multi
variate binary data. In the saturated log-linear model, see 
e.g., Liang et al. (1992), the canonical parameter associated 
with a subset of the variables, has an interpretation in terms 
of conditional probabilities given the rest of the variables, 
e.g., the first and second order parameters are logits and log 
odds ratios, conditional on all the other responses. It follows 
that, the log-linear model is not reproducible, which makes 
it less preferable than multivariate logistic regression, for 
the analysis of longitudinal data. It is nevertheless possible, 
to build log-linear models that, as in the multivariate 
logistic model, have marginal logits as parameters. This 
leads to the marginal models (Diggle e/a/. 1994, Ch. 8). 
In these models, the dependence of the marginal proba
bilities on explanatory variables, is modelled separately 
from within-unit correlation. Under this approach, the 
parameters are not estimated by maximum likelihood. 
Rather, only the structure of the correlation, between the 
repeated observations of an outcome is specified, and the 
parameters are estimated by solving generalized estimating 
equations (GEE), a multivariate analogue of quasi-
likelihood (McCullagh and Nelder 1989). A number of 
specifications of the correlation structure have been 
proposed, for example Liang et al. (1992) use the marginal 
log odds ratios, as in Glonek and McCullagh (1995). We 
have made some comparisons between multivariate logistic 
regression and PROC GENMOD of SAS (release 6.12). 

This procedure has the ability to fit correlated response 
models by the GEE method. We found very similar 
estimates of the marginal logits. The GEE method appeared 
to be slightly less efficient than multivariate logistic 
regression. A limitation of the GEE method is that, it cannot 
yield estimates of the response profile probabilities, but 
only of the marginal probabilities. By contrast, the multi
variate logistic model does not have this limitation, since its 
parameters are estimated by maximum likelihood. 

Following Glonek and McCullagh (1995), we discuss in 
Section 3.1 the multivariate logistic transformation, and we 
give, in Section 3.2, the algorithm for maximum lUcelihood. 

3.1 Multivariate Logistic Transformation 

Let Yy Y^,..., Yj be d repeated observations, taken at 
<tj, of the same binary variable, and let times ', < ̂ 2 < 

\i,...irP(yi=h'Y2 = i2'-'Y,-i,), 

where /,, / j . •••> ij are all either I or 2, be the joint proba
bilities of the random variables Y^,Y.^, ...,Yj. In the 
multivariate logistic model, the joint probabilities of 
Yy Y^,..., Yj are parameterized in terms of marginal logits, 
marginal log odds ratios, and contrasts of marginal log odds 
ratios. This parameterization can be written as T| = 
C ^ log (Z,7i), where % is the vector of dimension q =2'' 

n = {n ll...ll''^11...12 ' '^2. . .21' '^2. . .22^ ' 

and where, the matrices L and C are tensor products of 
suitably chosen marginal indicator and contrast matrices 
respectively. The matrices L and C, which depend on the 
length d of the observation period, are defined recursively, 
beginning with IQ = CQ = I, as 

L,.i^L 

and 

c,= 
""d-l 

0 c d-l 

0 

®c 

where I2 = (1, I), L is the two by two identity matrix, and 
C = (1, -1)^ (Glonek and McCullagh 1994). 

To illustrate matters, we consider periods of observation 
of length 6? = 1,2, 3,4. For <i = 1, 71 = (71,, n.^Y and r\ = 
(rig, r\^ f = (logTt ,̂ logit 7, f, where the plus subscript 
indicates summation, and logit y, is defined as 

logit Y. = log 
P{Yi = I) 

P{Y,=2) 
= log 

I - 7 C , 
= log-^. 
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In that case the multivariate logistic transformation is 
equivalent to the usual logistic transformation. Note that, 
although the parameter r]^ = log;i^ =0 is strictly super
fluous, it is convenient to retain it, as a means of ensuring 
that the mapping n - T| is of full rank, and also expressing 
the requirement that Jî  = 1. 

For d = 2,n = {n^y Jtj^, n^y HJ^I)^ and 

Tl=(%Tlpr i2,n,2)^ = 

(log 7i,„ logit Yy logit Y^, log OR{Yy Y^)f 

where 

OR{Yy Y^) = 

P{Y, = l,Y^ = l)P{Y,=2,Y^=2) n,,K^^ 

P{Y, = 1, r^ = 2 )P(7 , =2,Y^ = I) n^^Ti. 21 

is the odds ratio, a quantity measuring the association 
between the variables Y^ and Y.^. The parameters T), and T]^ 
are the marginal logits at times t^ and / j . for example 

71. 

ri, = logit r . =log 
(1-",J 

For d = 3,n = (n,,,, Trj,^,..., 7t22i' ̂ 2̂22)̂  ^^^ 

T) = {%< \< ^2' ^12' ^ 3 ' ^13 ' ^23 ' ^123)^-

The parameters T Ĵ, TĴ  and T̂ J are the marginal logits at 
times ty t^ and t^. The parameters TIJJ, 11,3 and r]^^ are the 
log odds ratios of the corresponding two-dimensional 
marginal tables, for example 

1123 = log Oi?(r2,r3) = log " . 1 1 ^^.22 

" . 1 2 ^ * 2 1 

The parameter T1J23 is a contrast of log odds ratios given by 

11,23 = log07?(7,, 72 I Tj = 1) - logOR{Yy Y^\Y^= 2) 

log 
7t, , ,71221 

log 
7I,,27t222 

71,22 JI212 

For d = 4,n = (TCnu.itnn. -..,712221,712222)̂ ^"'̂  

Tl = (% flp TI2' \2' ^3' •ni3' ^ 3 ' ^123' 

TI4, TI14, T|24' ^124' ̂ 34' ^134' ̂ 234' ̂ 1234^ " 

The parameters TĴ ., r|.. and r|..^, where 1 <.i<j<k<.4, are 
defined as above, using the appropriate marginal tables. The 
parameter 11,234 is a contrast of log odds ratios given by 

11,234 =10gC»/?(7,,y2|l'3 = l '^4 = l) 

-logO/?(7,,y2|I '3 = l , i ; = 2 ) 

- logO/?( r , ,72 |73 = 2,74 = l) 

+ log 0/?(7,, 72 1̂ 3̂ =2,^4 = 2). 

A key step in maximum likelihood estimation is the 
computation of the inverse of the multivariate logistic 
transformation. To ensure that 71 > 0 , we work with 
71 = expv, i.e., we seek to solve for v in the equation 
11 = C ^log(Z,exp v). In general, no explicit solution is 
available, so an iterative method must be used. In particular, 
the Newton-Raphson iterations can be applied as described 
below. For clarity, we define the two functions (p(7r) = 
C ^log(£7c) and \|/(v) = (p(expv). 

(i) Begin with an initial approximation v .̂ 
(ii) Then take v^ ,̂ = v^-[D\|/(v^)]"'((p(expv^) - 11), 

where Z>v(v) is the Jacobian matrix of the function 
\|/(v), and iterate until convergence. 

The Jacobian matrices of the function <p (71) and v|/ (v) are 
given respectively by £)(p(7r) = C ^(diagZ7c)"'£ and 
£) \|/ (v) = Z) <p (exp v) • diag (exp v). 

3.2 Maximum Likelihood Estimation 

For a binary response variable observed at d time points, 
there are 9 = 2'' possible response profiles / = (/,,..., if), 
where /•,, i^,..., i^ are all either 1 or 2. For each profile 
/ = (/,,..., /^) , we define the indicator variable Y/ , , which 
is equal to I if the profile / has been observed, and 0 
otherwise. We then have 

^(^ . . . , , = l )=^(>' .=^.• • • .^ . = '.) = ̂ ...,y 

Defining the g'-dimensional vectors 

Y = (Y Y Y 7 / 
•" '-•' I I . . . I I ' -' 11...12' •••' • '22 . . .2I ' • '22 . . .22' ' 

and 

" ~ ('^U.^ll' ''•11...12' —' ''•22...21' '̂ 22...22) ' 

we may then write Y ~ M{l,n), i.e., Y is a multinomial 
vector with q =2'' categories, whose probabilities are given 
by the vector 7t. 

The multivariate logistic regression models, are then 
defined to be those of the form r\ =X^ where Xis a ^ x p 
matrixof explanatory variables, P is a/j-dimensional vector 
of unknown parameters, and 11 = C ^log(£7i) = (p(7i). 

If we let y be one observation of the random vector Y, 
then we may write the kernel of the log likelihood function 
as l{^;y) =y^logK{^) where, using the inverse of the 
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multivariate logistic transformation, we can express the 
joint probabilities TI as a function of the unknown para
meter |3, as 7i(P) = tp"' (XP). The score vector is given by 

s{^) = s{^,y,X) = DK{^)'' {diagn{^))-'y, 

where Dn{^), the Jacobian matrix of the function n(p), 
relating the parameter p to the vector of probabilities TI, is 
given by D7i(P) = [Z)(p((p"' (XP))]"'X, and where D(p(7i) = 
C^(diagl7t)"'l, is the Jacobian matrix of the Unk 
function. The information matrix is defined as S(P) = 
Es{^)s{^)^. Now it follows from the assumption on the 
distribution of Y, that E{YY^) =diag7t, from which we 
may deduce that 

S(P) =S(P,JO =^7t(P)''(diag7i(P))-'£)7c(P). 

If we have n independent observations >'^~M(l,7i^), 
k = l,...,n, where T|̂  = C^ log (iTt^) =A'̂ P, then the score 
vector and the information matrix are given by 5(P) = 
HiS{^,y,,X,) and W)=Him,^,)-

The maximum likelihood estimator of p is the solution 
of 5(P) = 0, that can be found by using the Fisher scoring 
algorithm which, starting from some initial value pg, 
iterates the sequence P„,i + P„ + S„ ' (PJs(PJ untU 
convergence. 

Incomplete response profiles can readily be incorporated 
into the analysis. In particular, if some subset of the 
response variables 7,, K ,̂..., Y^ is recorded for a particular 
unit, then the probability distribution on that c-dimensional 
marginal table is multinomial, and, as a consequence of the 
reproducibility of the multivariate logistic transformation, 
a multivariate logistic regression model applies to the table 
of probabilities. Furthermore, the design matrix relating the 
marginal probabilities to p, is constructed by selecting the 
appropriate rows of the full design matrix, that would be 
used if complete data were available for that unit. 

Similarly, the indices for the higher order parameters run 
from 2 to 5. For model 1 we take a saturated model for the 
longitudinal dependence, i.e., we have one parameter for 
each of the interactions of order 2,3 or 4 within each period 
of observation. For the models 2 to 5, we assume that the 
interactions of order 3 and 4, are all equal to zero. The 
longitudinal dependence is then described in terms of log 
odds ratios only. For model 2, we take a saturated model for 
the log odds ratios. In model 3 we drop the covariate period 
of observation, i.e., we suppose that the log odds ratios are 
the same for all the periods of observation. In model 4, we 
use stationary log odds ratios, i.e., log odds ratios which 
depend only on the difference between times of obser
vation. Note that the parameter y, in model 4, corresponds 
to the constiaint P23 = P34 = P45 on the parameters of model 
3, and similarly for YJ and y^. In model 5, a linear model 
for the stationary log odds ratios is assumed. In model 6, 
finally, we assume that the observations taken at different 
times, are independent. Note that, in that case, multivariate 
logistic regression is equivalent to ordinary logistic 
regression. 

Table 2 
Six Models for Longitudinal Dependence 

Parameters 

Model 
Marginal Log odds 

logits ratios 
3'" and 4"̂  

order parameters 

1/ ~ ri \ij ry\period 'ijk t^y^t,period ' hjkl rjjicl,period 

n, = P, n,, = Pi,,period V = ̂ 'V = ^ 

n, = P, % = P/, v = °'V' = ° 
i , = P/ % = y\i-j\ V = °'V = ° 
n, = P, Ti/, = 5 + Y-l'-y| v = ° ' V = ° 

n, = P, \ = o V = o . V = o 

4. MODELS FOR LONGITUDINAL 
DEPENDENCE 

In this section we illustrate, using the SLFS data of 
Section 2, how multivariate logistic regression can be 
applied to describe the dependence between the repeated 
observations of the employment status. We do not intend to 
carry out an exhaustive search for a best model, but rather 
to demonstrate the ability of the method, to represent a 
complex dependence structure by a small number of 
parameters. 

We consider 6 models of decreasing complexity, see 
Table 2. For all 6 models, we have one parameter for each 
of the marginal logits corresponding to a given observation 
time. Symbolically, this is denoted by ij. = p.. Since the 
observation times are the 2nd quarter of the years 1992 to 
1995, we take / = 2, 3,4, 5. Thus pj, say, corresponds to 
the logit of the probability of being employed in 1993. 

The parameter estimates for the models 2 to 6, are given 
in Table 3. The number of parameters and the values of the 
log likelihood function at the maximum likelihood esti
mates, can be found in Table 4 where, for comparison, we 
also included the log likelihood for the fully saturated 
model. 

Overall, we notice that the assumed form of the 
longitudinal dependence, appears to have littie effect on the 
estimates of the marginal logits. This is a desirable 
property, as the marginal logits would typically be the 
parameters of interest. The standard errors of the marginal 
logits, are almost the same for the models that take into 
account the longitudinal dependence, but are inflated by 
about 15% for ordinary logistic regression (model 6). It can 
also be shown that the estimates of the marginal logits are 
positively correlated under the models that assume a 
longitudinal dependence, and uncorrelated for ordinary 
logistic regression. For the example considered here, the 
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correlation was found to lie between 0.4 and 0.8. Thus, 
modelUng the longitudinal dependence, leads also to more 
efficient estimates of the difference of marginal logits. 

It can be seen from the fit of model I, that the interaction 
parameters of order 3 and 4, are not significantly different 
from 0. This suggests that the longitudinal dependence can 
be described by the log odds ratios only. This hypothesis is 
corroborated by the incremental deviance of model 2 with 
respect to model 1, which is found to be 7.9, on 12 degrees 
of freedom. Further, all the parameters of model 2 are 
significantly different from 0, and an examination of the 
standardised residuals for the fitted probabilities of the 
response profiles, does not reveal any anomaly. For 
applications in official statistics, model 2 would be the 
preferred model, since it is based on as few assumptions as 
possible, while still allowing a substantial reduction in the 
number of parameters, thus rendering less acute the danger 

of sparse tables when longer periods of observation and 
models with more covariates are considered. 

The models 3, 4 and 5 show that, it would nevertheless 
be possible to greaUy simplify the description of the 
longitudinal dependence, without losing too much infor
mation. In going from model 2 to model 5, we observe that 
the deviance from the fully saturated model, does not 
increase much, see Table 4. Further, an examination of the 
residuals shows that, the models 3, 4 and 5 fit the data 
almost as well as model 2. On the other hand, while model 
2 requires 20 parameters to describe the longitudinal 
dependence, model 5 needs only 2 parameters. This must be 
contrasted with model 6, which assumes independence 
between observations taken at different times: the log 
likelihood is much smaller than for the fully saturated 
model, see Table 4, and the fit to the data is poor. 

Table 3 
Parameter Estimates and Standard Errors 

Parameter Period Model 2 Model 3 Model 4 Model 5 Model 6 
logit 92 
logit 93 
logit 94 
logit 95 

0.6348 (0.0350) 
0.5555 (0.0335) 
0.5440 (0.0324) 
0.4699(0.0317) 

0.6360 (0.0352) 
0.5570 (0.0338) 
0.5407 (0.0325) 
0.4711(0.0320) 

0.6348 (0.0352) 
0.5597 (0.0335) 
0.5402 (0.0326) 
0.4710(0.0320) 

0.6347 (0.0352) 
0.5601 (0.0335) 
0.5397 (0.0325) 
0.4712(0.0320) 

0.6471 (0.0409) 
0.5509 (0.0396) 
0.5377 (0.0374) 
0.4705(0.0351) 

P23 

P34 

P45 

P24 

P35 

P25 

Yi 

T2 

r3 
5 

y 

(1)23 

(1)234 

(1)2345 

2345 

(1)234 

(1)2345 

2345 

345 

(1)2345 

2345 

345 

45 

(1)234 

(1)2345 

2345 

(1)2345 

2345 

345 

(1)2345 

2345 

42563(0.3311) 

4.2003 (0.2894) 

4.0859 (0.2954) 

44830(0.2841) 

4.0894 (0.2794) 

3.9611(0.2840) 

4.0989 (0.2600) 

4.2490 (0.2468) 

5.3992 (0.3854) 

3.9779 (0.2544) 

4.7288 (0.2735) 

4.5069 (0.2600) 

3.7168(0.2641) 

4.2560 (0.3059) 

3.5330 (0.2370) 

4.4000 (0.3098) 

3.6493 (0.2396) 

3.6116(0.2192) 

4.3984(0.3173) 

3.2209 (0.2256) 

42579(0.1465) 

41111(0.1310) 

45561(0.1389) 

3.8371 (0.1442) 

3.7913(0.1334) 

3.5774(0.1530) 

4.3260 (0.0928) 

3.8519(0.1050) 

3.5340(0.1495) 

4.7341 (0.1266) 

-0.4191 (0.0653) 



Survey Methodology, December 1998 137 

Table 4 
Number of Parameters and Value of the Log Likelihood 

Function at the Maximum Likelihood Estimates 

Model 

Full Model 
1 
2 
3 
4 
5 
6 

Number of parameters of 
order 

1 2 3 4 

20 
4 
4 

4 
4 
4 
4 

20 
20 
20 

6 
3 
2 
0 

10 
10 
0 
0 
0 
0 
0 

2 
2 
0 
0 
0 
0 
0 

Total 

52 
36 
24 
10 
7 
6 
4 

Log 
likelihood 

-5342.7 
-5345.4 
-5349.4 
-5365.2 
-5368.9 
-5369.5 
-7815.3 

5. COMPARISON WITH SIMPLE ESTIMATE 
OF CHANGE 

In this section we concentrate on the estimation of the 
difference of the probabilities of being employed between 
any two given years. We show that, estimates based on 
multivariate logistic regression, are more efficient than 
simple estimates defined as the difference of the propor
tions of employed individuals. 

The model considered here, is the model 2 of Section 4, 
with sex as an additional explanatory variable. We have, for 
each sex, one parameter for each of the marginal logits 
corresponding to a given year. The longitudinal dependence 
is accounted for by a saturated model for the log odds 
ratios. The third and fourth order parameters are set to 0. 
This model has therefore 8 parameters for the marginal 
logits, and 40 parameters for the log odds ratios: 2 sexes 
X 20 odds ratios within periods of observation, see Table 3. 
By inverting the multivariate logistic transformation, 
estimates of the probability of being employed, and of their 
differences between any two given years, can also be 
computed. 

A simple estimator of change is given by the difference 
of the proportions of employed individuals between any two 
given years. Its variance, which takes into account the 
overlap of the two samples, is given by 

7t,,(l - 7 C , J + n^ , ( l -71^,) 
n + r n •*• c 

{n + r){n + c) 
(71,, - 7 1 , ^ 7 1 ^ , ) , 

where n is the number of cases for which observations are 
available for both years, r and c are the number of cases for 
which observations are available for only one year, 7c,, is 
the probability of being employed during both years, and 
71,̂  and 7t̂ , are the marginal probabilities of being 
employed. 

Tables 5 shows, for the SLFS data of Section 2, the 
estimates of the difference of the probability of being 

employed under both methods. Note that both methods 
yield similar estimates of change. The standard errors of the 
simple estimates, are on the average, 30% larger than for 
multivariate logistic regression. The corresponding mean 
relative efficiency of multivariate logistic regression, with 
respect to the simple estimates, is 1.7. By comparison, the 
mean relative efficiency of multivariate logistic regression 
with respect to ordinary logistic regression, is 3.2. 

Table 5 
Change in the Probability of Being Employed 

Canton of Vaud, 1992-1995 

Comparison 
Multivariate 

logistic 
regression 

Simple estimate 

Woman 92 vs. 93 
92 vs. 94 
92 vs. 95 
93 vs. 94 
93 vs. 95 
94 vs 95 

0.0138 
0.0184 
0.0375 
0.0047 
0.0238 
0.0191 

(0.0090) 
(0.0102) 
(0.0109) 
(0.0087) 
(0.0095) 
(0.0076) 

0.0136 
0.0168 
0.0356 
0.0031 
0.0219 
0.0188 

(0.0115) 
(0.0134) 
(0.0149) 
(0.0107) 
(0.0128) 
(0.0100) 

Men 92 vs. 93 
92 vs. 94 
92 vs. 95 
93 vs. 94 
93 vs. 95 
94 vs. 95 

0.0220 
0.0245 
0.0387 
0.0024 
0.0167 
0.0143 

(0.0095) 
(0.0102) 
(0.0106) 
(0.0092) 
(0.0098) 
(0.0080) 

0.0283 
0.0334 
0.0452 
0.0052 
0.0169 
0.0117 

(0.0116) 
(0.0133) 
(0.0144) 
(0.0111) 
(0.0130) 
(0.0102) 

6. CONCLUSIONS 

The analyses of the SLFS data presented here, have 
shown the usefulness of multivariate logistic regression. 
Modelling the longitudinal dependence is necessary, in 
order to obtain a satisfactory fit of the observed response 
profile probabilities. Ignoring the longitudinal dependence, 
we still obtain acceptable point estimates of the marginal 
logits, but the information on the detailed structure of the 
data is lost. Modelling the longitudinal dependence leads 
also to more efficient estimates of the marginal parameters 
and of change, when compared with ordinary logistic 
regression, and a simple estimator of change. Finally, the 
ability of multivariate logistic regression to represent a 
complex dependence structure, by a small number of 
parameters, has also been illustrated. 

Using the results of Glonek and McCullagh (1995), it is 
possible to extend the examples presented here, to 
multivariate responses of either nominal or ordinal types, 
with either discrete or continuous explanatory variables. 
The method can also be extended, to take the sampling 
weights into account (Salamin 1998). For the SLFS, it was 
found that the sampling weights have little effect on the 
parameter estimates of the multivariate logistic model. The 
standard error of the parameter estimates, was inflated by 
about 15%. This moderate increase of the variability of the 
parameter estimates due to the sampling weights, is plausible. 
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Indeed, as in the SLFS, only one person per household is 
selected, a large cluster effect was not expected. 

Apart from the sort of analyses presented here, multi
variate logistic regression may also be used for modelling 
non-response probabilities in longitudinal studies. Such 
models may be useful when the sampling weights need to 
be adjusted for non-response. The ability of multivariate 
logistic regression to give a parsimonious model of the data, 
may also be of interest in small-area estimation. In partic
ular, estimators for a given geographical region could be 
based on models for an appropriately chosen larger region. 

Although we did not encounter serious problems in the 
examples presented here, further work may need to be done 
on the problem of sparse tables. A critical step, when there 
are a large number of empty cells, is the inversion of the 
multivariate logistic transformation. The approach of Lang 
(1996), where the inversion of the link function is avoided, 
by specifying the models through constraints, may be of 
interest in this context. Another area of investigation is the 
influence of the classification errors on the parameter 
estimates of the multivariate logistic model. 

ACKNOWLEDGEMENTS 

This paper benefited from discussions with colleagues at 
the Swiss Federal Statistical Office, among which Beat 
HuUiger and Philippe Eichenberger deserve special 
mention. The help of Ariane Bender, from the Section 
responsible for the Swiss Labour Force Survey, in preparing 
and understanding the data, was extremely valuable. The 
author also thanks the editor and two referees for their 
excellent suggestions that have led to a significant 
improvement of this paper. 

REFERENCES 

BINDER, D.A. (1983). On the variances of asymptotically normal 
estimators from complex surveys. International Statistical Review, 
51,279-292. 

DIGGLE, P.J., LIANG, K.-Y., and ZEGER, S.L. (1994). Analysis of 
Longitudinal Data. Oxford: Oxford University Press. 

GERFIN, M. (1996). Entwicklung von okonometrischen Modellen 
zur Analyse der Dynamik aufdem schweizerischen Arbeilsmarkt. 
SLFS-News, Swiss Federal Statistical Office, Berne. 

GLONEK, G.F.V., and McCULLAGH, P. (1994). Multivariate 
Logistic Models. Technical Report 94-31, School of Information 
Science and Technology, Flinders University of South Australia, 
Adelaide. 

GLONEK, G.RV., and McCULLAGH, P. (1995). Multivariate 
logistic models. Journal of the Royal Statistical Society, B, 57, 
533-546. 

HULLIGER, B., RIES, A., COMMENT, T., and BENDER, A. 
(1997). Weighting the Swiss Labour Force Survey. (Eds. 
C. Malaguerra, S. Morgenthaler and E. Ronchetti). In Conference 
on Statistical Science Honoring the Bicentennial of Slefano 
Franscini 's Birth, Monte Verita, Swilerland, Basel: Birkhauser 
Verlag. 

LANCASTER, T. (1990). The Econometric Analysis of Transition 
Data. Cambridge: Cambridge University Press. 

LANG, J.B. (1996). Maximum likelihood methods for a generalized 
class of log-linear models. Annals of Statistics, 24, 726-752. 

LIANG, K.-Y., ZEGER, S.L., and QAQISH, B. (1992). Multivariate 
Regression Analysis for Categorical Data. Journal of the Royal 
Statislical Society, B, 54, 3-40. 

McCULLAGH, P., and NELDER, J.A. (1989). Generalized Linear 
Models, (2nd edn.). London: Chapman and Hall. 

PFEFFERMANN, D. (1993). The role of sampling weights when 
modeling survey data. International Statistical Review, 61, 
317-337. 

PFEFFERMANN, D., SKINNER, C , and KEITH, H. (1998). The 
estimation of gross flows in the presence of measurement error 
using auxiliary variables. Journal of the Royal Statislical Society, 
A, 161, Parti , 13-32. 

SALAMIN, P.-A. (1998). Multivariate logistic regression for data 
from complex surveys. To appear Proceedings: Symposium '98, 
Longitudinal Anlysis for Complex Surveys, Statistics Canada, May 
1998. 

ZEGER, S.L., and LIANG, K.-Y. (1992). An overview of methods 
for the analysis of longitudinal data. Statistics in Medicine, 11, 
1825-1839. 



Survey Methodology, December 1998 
Vol. 24, No. 2, pp. 139-145 
Statistics Canada 

139 

Price Index Surveys as Quasi-Longitudinal Studies 
ALAN H. DORFMAN' 

ABSTRACT 

To calculate price indexes, data on "the same item" (actually a collection of items narrowly defined) must be collected across 
time periods. The question arises whether such "quasi-longimdinal" data can be modeled in such a way as to shed light on 
what a price index is. Leading thinkers on price indexes have questioned the feasibility of using statistical modeling at all 
for characterizing price indexes. This paper suggests a simple state space model of price data, yielding a consumer price 
index that is given in terms of the parameters of the model. 

KEY WORDS: Random walk plus noise model; State space model; Laspeyres index; Paasche index; Geometric price index. 

1. INTRODUCTION 

Survey sampling for calculation of a consumer price 
index is characterized by following a given item across time 
to determine its prices at a succession of times. Only it is 
not, typically, exactiy the same item that is followed - it is 
not this particular can of Brand Y Tomato Soup at Outlet Z 
the price of which is repeatedly ascertained, for this 
particular can is likely to have been sold and consumed, by 
the time of the next visit of the survey sampler - but rather 
a succession of items, each fitting the same description 
("Brand Y 8 oz. Can of Tomato Soup with Herring, sold at 
Outlet Z"), the price of which is collected at different times. 
In other words, it is essentially a group of items fitting a 
narrow description which is followed across time. For this 
reason consumer price index surveys may be termed 
"quasi-longitudinal" as opposed to longitudinal surveys, 
which would follow individual items across time. 
Nonetheless, it is reasonable to hope that, having repeated 
measurements across time might lead to estimation 
procedures which could capitalize on the time series aspect 
of such surveys. 

In the light of that hope, this paper considers a question 
which has by and large been ignored by statisticians and 
economists, or, when not ignored, been answered in the 
negative: Can a consumer price index (CPI) be treated from 
a statistical point of view? That is, can the parameter, which 
characterizes the "change in the cost of living" from one 
period to another, and which price index surveys attempt to 
estimate, be defined in terms of a stochastic model? 

Aldrich (1992) gives an historic interpretation of early 
attempts by Jevons and especially Edgeworth, to 
incorporate distributional assumptions into the CPI. Recent 
papers on stochastic modeling of the CPI, are those by BaUc 
(1980), Clements and Izan (1981,1987), Bryan and Cechetti 
(1993), Kott (1984) and Selvanathan and Rao (1994). 
Diewert (1995) reviews and criticizes these attempts, taking 
an argument of Keynes (1930) as decisive grounds for 
rejecting the stochastic approach. 

In this paper, a specific approach to modeling the price 
index using state space models is suggested, and a specific 
state space model tentatively suggested. This model is 
applied to scanner data to demonstrate the feasibility of an 
index based on it. The approach we contemplate, circum
vents the Keynesian criticism in fundamental ways, and 
offers the prospect of the many advantages that sound 
statistical modeling can bring, including, possibly, simpli
fications of the survey sampling process. 

In what follows, we first briefly review the definition of 
a price index, and the two (non-stochastic approaches) 
which have dominated consideration of choice of index 
(Section 2). We review the Bryan and Cecchetti (1993) 
example of a statistical model for the price index, and 
Diewert's formulation of Keynes' objection (Section 3). 
We then introduce an approach to modeling a consumer 
price index, that circumvents the Keynes-Diewert 
difficulties, and that leads naturally to the use of state space 
models (Section 4). We present results of applying a rela
tively simple random waUc plus noise model to scanner data 
from the A.C. Nielsen Academic Data Base (section 5). 
We assess the new index in Section 6, mentioning further 
research that might be useful. 

2. BACKGROUND 

What is meant by a Consumer Price Index (CPI) is a 
single number indicating how the purchasing power of the 
consumer has changed from one period /' to another /. Its 
raw ingredients consist of prices for the variety of available 
items at (at least) the two time periods 

P, = {p,v->P^\-^ = t',t 

as well as quantities of the items sold 

Alan H. Dorfman, U.S. Bureau of Labor Statistics, Room 4915,2 Massachusetts Ave. N.E., Washington, D.C, 20212-0001, U.S.A.; e-mail: dorfman_a@bls.gov. 
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(Often however in practice quantity data from the periods 
in question are unavailable, and one makes do with some 
form of surrogate.) The CPI is derived from a "formula" 
that uses these raw ingredients: 

^,;=f{PrP,'1,"1,)' 

where /(•) is a function of one of many possible forms. 
Most such forms have a long history, and have been 
extensively discussed in the index literature. 

As examples, we mention here the Laspeyres index 

Ln 

N 

E InPii 
-iii =V f,r, 

E (InPn 

N 

E 
(=1 

(=1 

with f,,. = q,,jP,.fY.i=i g,.iP,'i the "relative expenditures", 
and r,,. =pjp,.j the "price relatives". The Laspeyres index 
uses the quantities from the earlier time period, as a fixed 
basis of comparison of the earlier and later prices. The 
Laspeyres index (or a close variant) has tended to be the 
index most targeted by governments, because of its 
simplicity and intelligibility to the layperson. 

The natural counterpart to the Laspeyres is the Paasche 
index 

P.,.= 

N 

I 
( = 1 

E luPii 

N 

1 
( = 1 

E g,iPn 

which standardizes the prices by the later period quantities. 
Most indices following other formulas will tend to fall 
between the Paasche and Laspeyres. 

For later reference in this paper, we mention an index 
based on the geometric mean, with fixed non-negative 
weights f., adding to I: 

N 

G,i-U 
(=1 

fi 

This is sometimes referred to as the "Geomean". 
Fisher (1922) discusses these and many other index 

formulae. He introduces what has come to be called the 
"Test Approach", for deciding among the variety of 
candidates for the formula /(•): this approach lays out 
properties ("tests"), which a reasonable index would seem 
to require, and then examines to what extent each index 
formula satisfies them. 

One of the tests is the Time Reversal Test: I^,^I^^. = I. 
Two indices which continue to exercise their sway in the 

world, but fail this test are, the Carli-Sauerbach index 
C,., = E M fiPu'Pn and a geomean G,,, = n!!, ^PjPv^^'' 
which employs first period expenditures instead of fixed 
weights. One readily shows that C,,, C,,, s 1, using the 
Cauchy-Schwartz inequality, suggesting that this index will 
run too high. 

If an increase in prices on item / tends to give an increase 
in expenditure share, then G,,, G,,, :s I, so that under such 
conditions, the first-period-geomean tends to run too low. 
If an increase in prices on item i tends to give a decrease in 
expenditure share, then G,,, runs too high. In general, we 
can expect this to be a rather erratic index. 

This suggests the following maxim: price indices of the 
form of a geometric mean, should not have weights tied to 
prices at one of the periods being compared; those of the 
form of an arithmetic mean should not have weights 
independent of those prices. 

By contrast with G,,,, the geomean G,,, = Vti^i^PjPvi) 
which has fixed weights, is the unique index which satisfies 
the five axioms on price indices in BaUc (1995), and the 
'circularity test", which says that, for t'<t'<t, /,,, = 

^r. Time reversal is an immediate consequence. 
Indices which pass most of the tests, tend to be ones 

incorporating quantity information from both periods; for 
example, the Fisher index 

and the Tomqvist index 

1/2 

N 
Pli_ 

. P''>> 

with f.^. = {f^,. +/,)/2. The Fisher and Tomqvist are 
frequentiy practically indistinguishable. Further discussion 
of the test approach, may be found in Balk (1995), Diewert 
(1987), and Eichhom and Voeller (1976). 

The second approach to assessing index formulas is the 
"economic" approach. This defines a generic index of the 
form 

In 
C{P,'^) 
C(p,„U)' 

where U = U{qy ..., qjf) is a well-defined "utiUty function", 
and C{p^,U) is the minimal cost at prices /?,, of achieving 
the standard of living, or "utility" U. For a particular utility 
function U, one inquires whether a particular formula can 
be regarded as a good approximation to the corresponding 
cost of living index. Like the test approach, this tends to 
yield indexes incorporating quantity information from both 
periods. See Diewert (1987) for further elaboration. 
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3. THE STOCHASTIC APPROACH 

Aldrich (1992) gives the early history of attempts to 
model price relatives or logarithms of price relatives, using 
a common parameter that represents the overall rate of 
growth in prices. A basic theme of his paper is, that the 
stochastic approach to price indices, while being an early 
example of the application of statistics to econonriic 
concerns, died a natural death. Diewert (1995) also discusses 
these, as well as more recent examples of the statistical 
modeling of price relatives. The difficulty which, following 
Keynes (1930), Diewert finds with such use of models is 
exemplified by a model of Clements and Izan (1987). 

The period from /' to / is divided into equi-temporal 
pieces, giving relatively short intervals generically 
represented as being from / - 1 to /. The logarithm of the 
price relatives for such a "micro-period", is given by 

log P,i 

\P<-
n + 3 +e,. (1) 

1 . ' / 

with e,. ~ (0, a, If^). In their model, the f.'s are the average 
expenditure share of the /-th item over the period /' to t. 
For the sake of identifiability, it is assumed that 
E,=i/JP,=0. These assumptions lead to a maximum 
likelihood estimator 

ft. 
N 

Ey;iog 
/ = i 

Pii 

\Pn 

giving an MLE of the price short period price trend as 

exp(ft,) = n 
N 

[I 
( = 1 

Pli 

[Pn) 

f, 

that is, based on their stochastic model, one derives a 
geometric index, with weights f., akin to that for the 
Tomqvist. 

Estimates of the p. and of ô  can also be derived, as well 
as estimates of precision, for example, of the variance of ft. 
Thus, a new statistical foundation seems to be put under an 
old estimator. 

Diewert (1995) raises several objections, none of which 
can be taken lightiy. The chief of these is 

"... the fundamental objection of Keynes 
(Keynes 1930, p. 78): 'The hypothetical 
change in the price level [exp(7i,)] which 
should have occurred if there had been no 
changes in relative prices, is no longer 
relevant if relative prices have in fact 
changed - for the change in relative prices 
has in itself affected the price level'." 

If, say, the price of bread relative to the price of 
automobiles changes, then by that very fact, the overall 
price level changes. 

Keynes' objection is not entirely clear. Why can't there 
be two aspects of price change, one overall, and the other 
particular? However, it is not hard to agree that the indi
vidual price trends are primary; an overall price trend can 
only be some weighted sum of these. Diewert offers the 
following translation into terms of a model, of Keynes' 
objection. Since we must have the overall price trend of the 
form 

<=iimi' 
(=1 

the model (I) needs to be replaced by 

log Pli 
(2) ^, + P,/ + hi' 

\Pi-i,i) 

with p,. = 7c, - p,* and ^,=1/ P„ = 0- Th^ cracial difference 
between this and (1) is that now the item parameters P,,. are 
indexed by time. But "then the resulting model has too 
many parameters to be identified." This would suffice to 
nullify the approach. 

Diewert (1995) does not discuss the much more 
complicated time-series model of Bryan and Cecchetti 
(1993). Of preceding papers, it is probably the closest to 
our present paper, involving a complicated state space 
model and use of the Kalman Filter. Like the other papers 
Diewert reviews, it is subject to Keynes' objection. 

4. PRICE INDEXES RECONSIDERED 

4.1 Common Presuppositions 

The stochastic modeling of price behavior given in the 
last section, whether embodied in equation (1) or (2), or 
some similar model, has three notable characteristics; the 
modeling is: 
1. Comprehensive in the sense that it aims straight for an 

overall "inflation rate" encompassing all items. 
2. Atomistic: every item is modelled individually, having 

its "private" parameter, its own rate of inflation 
[exp(7c, + P̂ .)], apart from all other items. 

3. Time isolated: price relatives modeling for period t - I 
to / is disjoint from that for period t - 2 to t - I etc. 
It is the combination of these suppositions that yields 

Diewert's "over-parameterized" argument. The primary 
thrust of Keynes' criticism is against I: an overall inflation 
rate or rise/fall in the cost of living has to be a weighted 
mixture of several price trends. This may be granted 
without going so far as to embrace item 2. Item 2 is tacitly 
accepted in almost all (non-stochastic) constructions of 
price indices. However, it is not at all clear that every 
single item has its unique price trend. Different items (for 
example. Brand X ice cream at several supermarkets) are 
likely to have a tendency to rise and fall together (at least in 
the long run). There are degrees of homogeneity between 
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items. In any case, none of these assumptions is a necessary 
component of a stochastic view of price indices. 

4.2 An Elementary State Space Model 

We divide the time period /' to t into sub-periods t', 
t' + 1,..., / - 1, /, and the collection of heterogeneous items 
into homogeneous sub-groups g, where the defining 
characteristic of homogeneity is a tendency to similarity of 
price change behavior. We make two assumptions: 
1. /,,j is a mixture of "homogeneous" indices / ,,; 

2. I ,j can be attained through chaining: /,., = Hi -̂  - i t ' 
where x = t' + I, ...,t. 

We focus on a single group index / ,,, dropping the 
subscript g for simplicity of notation. Thus, for the 
remainder of this paper, we focus on the "sub-index" 

^,v g'''' 
We proceed to develop an elementary state space model 

(Harvey 1990, Chapter 3) for the logarithms of the 
within-group price relatives. Suppose the group contains n 
items. For / = I,..., n, let r^. = p,jlp,_ij be the micro-period 
price relatives, and y^. = log (pjp,_ ^.) = log (/?„.) -
log(;?,_,.), their logs. The reason for using logs is that 
considerable empirical work, beginning with Edgeworth 
(see Diewert (1995)), suggests that the logs of price 
relatives will be much closer to having a normal distribution 
than the price relatives themselves, which can be 
considerably skewed. Normal distribution of errors is a 
standard assumption in state space models. Let 
Yt " ^Ytv —'ytn) and 1 be a vector of ones of length n. 

Consider the multivariate random walk plus noise 
(RWPN) model 

j , = lp , + e„e , ~MVN(0,i:ee) 

(3) 

with Ê , T|̂ , xe (̂ ', t' + I,..., ^ - 1 , /) mutually independent. 
The model impUes that the amount that overall group prices 
are rising (or falling) in one micro-period, tends to hover 
around the amount they tended to rise (or fall) in the 
previous micro-period. This is a matter of common 
observation: if the price rise in one month tends to be high 
(low), then in the next month it tends to be correspondingly 
high (low). Since we are considering a homogeneous set of 
items, it makes sense that their log price relatives have a 
common mean. We leave for later work, the question of 
how to join sub-indices into an overall index. 

The model (3) implies the simpler univariate RWPN 
model 

> ,̂ = M, + e,, e, ~ A^(0,o--) 

M, = M,-,+11,. 11, ~ ^ ( 0 . ^ n ) (4) 

with :>̂ , = «-M>^,e, = n ' ' l ' e , , and Oee=" ^'Eeel-
Some information is thrown away in using (4); on the other 
hand, the normality assumption is even more likely to hold. 
For convenience, calculations in the study described in 
Section 5, were based on the univariate model. 

The Kalman Filter (Harvey 1990, Section 3.2) can be 
used to give estimates u , and 6--,6„„ of the state 

c r -x' e E ' 1111 

parameters p^ and the variances o--, o respectively. 
Then we define f,, = E{G,,,\S,), where G,,, = 

n,(/'„//',',) is a geomean dependent on fixed shares f., 
and 5, represents the totaUty of state parameters p^ through 
time t, and also the "hyperparameters" o--, o . In other 
words, we condition on what we take to be the underlying 
process through time t. Then 

,̂-, = exp M, + M,-,+-M,-. 
1 

+ —v 
2 

(5) 

where v = (/ - t')Y^.Y,j.o..,f.f.,, with o.., the covariance of 
e,. and e,., typically of lower order than the state para-

The natural estimator of /,,, is /,,, = meters p^.. 
exp(A,+ A,-i + -M,'.i); then 

£(/,,,|S,) = exp p, + p , . i + - M , , , , + l v (6) 

where v, given in the Appendbc, does not in general equal v, 
but is frequently close, and in any case is of the same order 
of magnitude. The difference A (v) = v - v can be 
estimated, by say A (v), yielding a bias-corrected estimator 
I,,^ = I^.i exp(- l/2A(v)). Expressions for v and v, and a 
suggestion for a maximal A (v), are given in the Appendix. 
It may be noted that A(v), and hence I^,^, depends on the 
weights f., but that f.^ does not. 

5. EMPIRICAL STUDY 

To determine the feasibility of the calculation of price 
indices using the RWPN model and gain some idea of the 
behavior of the RWPN index, a small empirical study was 
made, using price and quantity data for Canned Tuna in the 
A.C. Nielsen Academic Data Base. Canned tuna has 
somewhat volatile price and quantity behavior, due to 
frequent sales, at sometimes very marked discount. 

The study covered the Northeast USA and the 104 weeks 
of the years 1992-1993. The original data set was rather 
large. To make the investigation manageable, weekly data 
was combined into 4-week periods, giving a total of 26 
periods over two years. Thus for purposes of this study, the 
data were cumulative quantities and quantity-weighted 
average prices over four week periods. 

The homogeneous groups were defined by brand and 
type, as follows: 3 brands here labeled A, B, C of 
"premium" tuna in water, the same three brands of "light" 
tuna in oil, and again the same three brands of "light" in 
water, making 9 groups in all. 
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The study focused on 83 outiets which had positive 
quantities over most of the 4 week periods, for each of the 
9 distinct groups. 

The RWPN based index /,,, and the adjusted RWPN 
based index I^,^ were calculated for four time intervals. In 
each case, the final period / = 26, and the early period was 
taken successively as /' = 3,6, 10,14. For the purpose of 
comparison, we also calculated the corresponding Laspeyres 
and Paasche Indices. These two standard indices provide 
also a basis of indirect comparison to the Fisher and 
Tomqvist, which will be about halfway between them. 

Figures 1 and 2, for premium and light tuna respectively, 
give the values of the four indices for the four time 
intervals, the points representing the state space indices, the 
lines used to indicate the Laspeyres and Paasche. The 
adjusted RWPN I^.^ is invariably larger than the unadjusted 
RWPN /,,,. Note that, since it is the first period that we are 
varying, where the path of indices is monotone up, this 
would suggest a downward trend in the cost of the 
particular tuna group (and vice versa). 

We observe that the new indices are not out of line with 
the traditional indices, frequently lying between the 
Laspeyres and Paasche, but they tend to be considerably 
more stable as /' changes, suggesting possibly that the 
traditional indices are reacting to "noise" in the data, and 
that, in fact, basically very little change is going on in this 

two year period. It may also be observed in Figure 2, that 
Light in Oil and Light in Water have similar within brand 
behavior, suggesting that we might have taken a broader 
"homogeneous" grouping. 

6. FURTHER WORK 

The investigation described in this paper suggests several 
topics for further research. 

Measures of precision and estimates of the RWPN 
indices, in terms of variances or confidence intervals based 
on the state space model, need to be worked out. Even 
those who are dubious about the viability of a stochastic 
methodology in price indices, find the possibility of having 
a measure of precision appeaUng (Diewert 1995). It would 
also be of interest to get measures of precision of more 
standard indices, based on the state space model. 

Empirical work is desirable that investigates more 
closely what groups of items might best be considered 
"homogeneous". Also, models possibly more elaborate 
than the simple RWPN model require investigation. In this 
respect, the use of scanner data will be a great help, 
supplying as it does, quantity data as well as prices, in great 
detail. 

Brand A, Premium in Water 
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9 '""•••• . . « 

3:2e 
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6:26 

6:26 
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Brand B, Premium in Water 

Brand C, Premium in Water 
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— paucne 

1026 

14:26 

0 

14:26 
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Figure 1. Four Price Indexes for Four Time Intervals, Premium Tuna 
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Brand A, Ughl In 01! 

Brand B, Light in Oil 

02B 1020 

Brand C, Ught in Oil 

14:2« 32« 

143a 326 

Brand A, Light In Water 

1026 

Brand B, Light in Water 

Brand C, Light in Water 

0 , . . - - • • ' " j ^ 

___j:,^ 

0 

3:26 620 14£e 32fl 

Figure 2. Four Price Indexes for Four Time Intervals, Light Tuna 

The state space methodology has methods of handling 
missing data (Harvey 1990, Section 3.4.7). A point of 
major concern is how weU these models will handle missing 
data in estimating price indices. In particular, since in 
practice most data for calculating price indices is based on 
a small sample of items available, we need to know the 
robustness of state space indices to the absence of data. 

Algorithms for smoothing and forecasting of state space 
models, are well known. Their use in revising and 
forecasting indices, might be of great interest. 

Finally, in this paper we have focussed only on getting 
an index for a single homogeneous group. It would be of 
interest to develop a state space model that combines 
groups and enables us to get an overall measure of 
purchasing power. 
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APPENDIX 

Details of expressions (5) and (6). 

We have that 

Gri-Vii 
Pli Pt-i,i Pf*i,i 

[Pl-l,i Pt-2,i Pfi ) 

Uiti'-.-ij-r.^i/', 

and letting 

H,, = log{G,,)=Y,ifi^og{p,lp,,), 

we have that 

= 12ji{y,i^y,.i,i*-yr.i,,) 
and also that 

/,,, = E{G,,) = exp(£(//,,,) + 1/2 var{H,,)), 
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where the moments are calculated conditional on the state 
5,, as in Section 4.3. Let v = var(//,,,). Then 

E{H,,)^E{H,,\S,) = 

E , /;(M, -̂  M,-, + - M,..i) = M, + M,-, + - M,.., 

and 

v = var(//,,,)3var(//,,,|5,) 

var E E/;ej5, 
t = / ' + i /' 

it-nY.Y,^Mr' 

where o., is the covariance of e,, and e,.,. We note that 
^ -0- t')l^jfi Ojg, in the special case that the errors e,, 
are independent and identically distributed at each time 
period. 

Wenowconsiderestimator/,,, = exp(P, + p,_j+ — p,.,.,). 
We find that £(/,,,) = exp(p, + |i,.i + •" M,'.i + 1/2v), 
where 

V = var EPJ5, E Y X var(JJ,|5,) + 
l''+i 

Y;'var(P,|5,)= E Y t - Y / ' V i k 
r ' * l 

with 

and 

where 

Y. = Ar,(l- E n 0 - * „ ) ) 
V=t+1 U=T+1 

y,*= E n (i-^J. 
v=,' + l u=/' + l 

* , = / ' T | T - I / ( / ' X | T - 1 + 1 ) ' 

and P, IT-1. /'T are the mean square errors of p^ given data 
up to T - 1, T respectively, and are estimated using the 
Kalman Filter. 

This result follows from the equations used in estimating 

p,=*J, + (l-*,)P,., 

P,.,=*,-,J^,-,+(1-^,-1 )P,-2 

P,'.. =^,'.i3^,'.i+(l-*,'.i)P,' 

{cf. Harvey 1990, equation 3.2.8), by expressing each p^ in 
termsofy^,y^_y...,y,.^^,\k,.. 

In comparing v and v, we find, empirically that 
t 

We here consider the simple case where var(e,,) = a and 
cov(e,., e,.,) = po^j., with p ^ 0, for ;' * i, that is where not 
only variances, but all covariances are equal and 
non-negative. It then can be shown that 

TE^r^EEo,.y;y;,.«EA ec' 

where n is the number of items in the group. The lower 
bound is achieved in the case f. = lln, and the upper in the 
case p = 0. In the first case, no bias adjustment is 
necessary; in the second, we would take A(v) = v - ^, 
wheie^ = {t- t')nl/^d,, and^ = { Z;..,y'n,-V,..,)&,,-
These correspond respectively to /,,, and .̂ ,,. 
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Treatment of Nonresponse in Cycle Two of the National Population 
Health Survey 
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ABSTRACT 

The National Population Health Survey (NPHS) is one of Statistics Canada's three major longitudinal household surveys 
providing an extensive coverage of the Canadian population. A panel of approximately 17,000 people are being followed 
up every two years for up to twenty years. The survey data are used for longitudinal analyses, although an important 
objective is the production of cross-sectional estimates. Each cycle panel respondents provide detailed health information 
(H) while, to augment the cross-sectional sample, general socio-demographic and health information (G) are collected from 
all members of their households. This particular collection strategy presents several observable response pattems for Panel 
Members after two cycles: GH-GH, GH-G*, GH-**, G*-GH, G*-G* and G*-**, where "*" denotes a nrtissing portion ofdata. 
The article presents the methodology developed to deal with these types of longitudinal nonresponse as well as with 
nonresponse from a cross-sectional perspective. The use of weight adjustments for nonresponse and the creation of 
adjustment cells for weighting using a CHAID algorithm are discussed. 

KEY WORDS: Longitudinal surveys; Treatment of nonresponse; CHAID algorithms. 

1. INTRODUCTION 

In 1996-97, Statistics Canada completed data collection 
for Cycle 2 of the National Population Health Survey 
(NPHS). This longitudinal survey was launched in 1994 to 
provide comprehensive information on the health status of 
the Canadian population and on the determinants of health. 
The in-scope population covers residents of households and 
health institutions throughout the country. In the provinces 
the household questionnaire has two main components 
which are administered using computer-assisted inter
viewing. TheGeneralcomponentcollects socio-demographic 
and basic health information for each member of the 
household. The Health component obtains more detailed 
health information about the household member selected to 
participate in the longitudinal panel. 

Although the NPHS is a longitudinal survey, its objec
tives also include the production of periodic cross-sectional 
estimates (Catlin and Will 1992). The data collection 
methodology reflects both longitudinal and cross-sectional 
needs. Panel Members, chosen in Cycle 1, are foUowed-up 
every two years for up to 20 years. Persons residing with 
the Panel Members at those times provide General compo
nent information for use in cross-sectional estimation. As 
the cross-sectional coverage of the sample deteriorates over 
time, the sample needs to be "topped-up" periodically. The 
first top-up is planned for Cycle 3, in 1998. 

This paper presents the methodology developed in Cycle 
2 to deal with nonresponse at the household and person 
levels (flagging will be used for item nonresponse). The 
methodology is based on reweighting respondents within 

sub-populations called weighting cells to account for 
nonresponse. Reweighting is a common approach for the 
treatment of item nonresponse. The bias and variance of 
this approach have been considered by Thomsen (1973), Oh 
and Scheuren (1983), Kalton and Kasprzyk (1986) and 
Little (1986), among others. If weighting cells are defined 
such tiiat nonresponse occurs almost completely at random 
within each cell then the bias due to nonresponse can 
become negligible. In a similar vein David, Little, Samuhel 
and Triest (1983) extended to nonresponse the theory 
developed by Rosenbaum and Rubin (1983) in the context 
of propensity score matching in observational studies. 
Their results imply that reweighting can adjust for 
nonresponse bias when the weighting cells are formed 
based on the propensity to respond. 

An overview of the NPHS sample design and outputs for 
the first two Cycles is given in Section 2. Section 3 
presents the nonresponse treatment strategies and their 
results. Concluding remarks are given in Section 4. Note 
that the methodology presented pertains to the provincial 
household samples; it does not cover the samples in the 
territories and in institutions. 

2. OVERVIEW OF THE NPHS DESIGN AND 
OUTPUTS 

2.1 Cycle 1 Sample Design 

The initial sample of households was selected in 1994 
using the sample selection vehicle built for the Canadian 
Labour Force Survey (LFS), and, in the province of Quebec, 
using dwellings that had participated in a health survey 

Jean-l^uis Tambay, loana $chiopu-ICratina, Jacqueline Mayda, Diana Stukel and Sylvain Nadon, Household Survey Methods Division, Statistics Canada, 
16"" floor, R.H. Coats Building, Tunney's Pasture, Ottawa, Ontario, Canada, KIA 0T6. 
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conducted by Sante Quebec the previous year. In both cases 
the households or dwellings were selected at random within 
stratified samples of clusters selected using probability 
proportional to size. The clusters were organized into 
replicates and collection period to capture seasonality and 
for variance estimation purposes. There were two 
"summer" collection periods (June and August) and two 
"winter" collection periods (November and March, 1995). 

Figure I illustrates the Panel selection mechanism 
applied outside the province of Quebec. Sample house
holds were randomly designated as "Adult" or "Children" 
households, and as eligible for screening or not, prior to 
collection. Screening increased the presence in the panel of 
inhabitants of larger households who would be under-
represented with the selection of only one member per 
household, particularly children and youths. Households 
eligible for screening were rejected from the sample if they 
had no member aged under 25. Screening was not used in 
Quebec as information from the provincial health survey 
allowed the application of different sub-sampling rates by 
household type and size. 

Sample Unit 
Type 

"Children" 
household 
EUgible for 
Screening 
(EFS) 

"Children" 
household 
not EFS 

"Adult" hhld 

Household 
Characteristic 

No member under 25 

No children, some 
members under 25 

Children present 

No children present 

Children present 

All 

Panel selection 
restricted to: 

N/A - hhld rejected 

Any member 

Child members 

Any member 

Child members 

Members over 12 

Figure 1. Panel Selection Mechanism Outside Quebec 

The classification into "Adult" and "Children" house
holds was done for an operational reason: the Health 
questionnaire for children, would not be available before 
the winter collection periods. In "Adult" households, which 
could be interviewed any time, children under 12 were not 
eUgible for the panel. "Children" households, even those in 
"summer" clusters, were interviewed in a winter collection 
period. If children were present in those households then 
the panel selection was restricted to them. To diminish the 
seasonal distortions to the data collection workload and the 
panel representability brought about by these procedures, 
fewer households were classified as "Children" households 
in summer clusters, and, with one minor exception, 
screening was applied only to "Children" households. 

Provinces wishing to improve sub-provincial estimates 
could fund additional sample sizes. In three provinces this 
was done by augmenting the sample size in targeted 
regions. In British Columbia an additional sample of about 

800 households was selected in a local health unit using 
Random Digit Dialling (RDD). The expected total sample 
size in the provinces was approximately 23,000 households 
after screening. 

The above gives a general indication of the 1994 sample 
design which is sufficient for the needs of this paper. 
Readers wishing a more precise presentation of the 1994 
sample should see Tambay and Catiin (1995), or Statistics 
Canada (1995). 

2.2 Cycle 1 Weighting and Outputs 

The major output of the NPHS consists of person-level 
anonymized Public Use Microdata Files (PUMFs) of survey 
responses (internal versions of those files that include 
information suppressed for confidentiality reasons are also 
created). For 1994 a General PUMF (58,400 records) and 
a Health PUMF (17,600 records) were released containing 
the General and Health information collected from every 
household member and from the selected non-child Panel 
Members, respectively (Statistics Canada 1995). 

The sample weights attached to every record on the 
PUMF were calculated by applying a series of adjustments 
to a basic weight representing the household inverse 
sampling rates (ISR). The ISRs are calculated by multi
plying the weights of the original LFS or Sant6 Quebec 
samples by the inverse of the sub-sampling rates applied by 
the NPHS. For the sake of brevity we will only describe the 
main adjustments used outside of Quebec. 

Adjustments to the weights for the General PUMF 
include: (1) a household nonresponse adjustment; (2) an 
adjustment for the rejective method; (3) an adjustment for 
person nonresponse [within responding households] and, 
finally; (4) a simple post-stratification adjustment. 
Adjustment (2) was applied only to households with no 
member under 25. It was 1/(1 - r^), where r^ was the sub-
sampling rate for the screening applied in the stratum. The 
post-stratification adjustment was done separately for each 
province-age group-sex cross-class. Weights resulting from 
all earlier steps are multiplied by the ratio of known to 
estimated population sizes within the cross-class. The known 
population sizes are in fact Census-based projections. 

The adjustments for household and person level 
nonresponse (at 11.3% and 1.4%, respectively) were 
applied to respondent units as the nonrespondents were 
excluded from the PUMFs. If w. is the sample weight of a 
unit /, the nonresponse-adjusted weight, -w^^.. is defined as 
^adj,/= ^, (Sail ̂ ,)/(Eresp^/)'where the Slims are taken 
over all sample units and all respondent units, respectively, 
within nonresponse adjustment weighting cells. Due to a 
lack of information on nonrespondent households the 
weighting cells for household level nonresponse were 
simply cross-classes of NPHS strata and season {i.e., 
"summer" vs. "winter" clusters). Weighting cells for the 
person level nonresponse, which was very low, were the 
province-age-sex cross-classes that were used for the post-
stratification adjustment. 
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Adjustments to the weights for the Health PUMF 
included: (1) a household nonresponse adjustment; (2) an 
adjustment for the rejective method; (3) an adjustment for 
the "Adult/Children" household sub-sampling; (4) an 
adjustment for tiie longitudinal Panel Member selection; (5) 
an adjustment for Panel Member nonresponse; and (6) a 
post-stratification adjustment. The first two adjustments 
were exactly those for the General PUMF. As the Health 
PUMF did not include Panel Members who were children, 
adjustment (3) compensated for those sample households 
where non-children were ineligible for panel membership. 
The adjustment thus applied only to households with 
children and was equal to 1 /r, where r was the proportion 
of "Adult" households in the sample. Adjustment (4) was 
the inverse of the probability of having selected the Panel 
Member. The adjustments for Panel Member nonresponse 
(at 3.9%) and for post-stratification were similar to those for 
the General PUMF, and used the same province-age-sex 
cross-classes. Although child Panel Members were not 
included in the Health PUMF, for longitudinal purposes 
their sample weights were obtained as above using 
1 /(I -/-) instead of 1 Ir in step (3). 

2.3 Cycle 2 Sample Design 

In Cycle 2 the focus of the survey was more on 
longitudinal estimation: no sample "top-up" was planned 
until the following cycle. The "Core" sample thus 
consisted of about 11,(XX) Panel Members and their current 
households. Panel Members were traced and administered 
the General and Health questionnaire components, while 
other members of their household were administered the 
General component only. No follow-up was done for 1994 
nonresponding households. In Alberta, Manitoba and 
Ontario large (non-Core) additipnal samples were obtained, 
using RDD, to allow the production of cross-sectional 
estimates at sub-provincial levels. In every RDD household 
one member aged over 12 was selected to complete the 
Health component. In Alberta and Manitoba, RDD 
households with children also had a child selected to 
complete the Health component. 

We note that, for cross-sectional purposes, the Core 
sample does not cover very well arrivals in the population 
such as newborns and recent immigrants. The population 
administered the General questionnaire consists of residents 
of households where at least one member was in-scope in 
Cycle I; households made up entirely of recent immigrants 
(and their newborns) are thus missed. The population 
administered the Health questionnaire consists of persons 
who were in-scope in Cycle 1: recent immigrants and 
children under 2 years-old are excluded from the Core 
target population (they are included in the RDD target 
population). For both the General and the Health 
questionnaires post-stratification is done using population 
figures that do not exclude the recent immigrants. The 
result is that the population of recent immigrants is 
implicitly being estimated for by the population of non

immigrants because the latter's Core weights are adjusted 
upwards to account for the former's numbers. This is a 
limitation that is acknowledged in the PUMF documen
tation. Alternative methods would have been to post-sti^tify 
using only non-immigrant population projections or to 
somehow adjust only the weights of less recent immigrants 
(who are covered) to account for the more recent immigrants 
(who are not). These methods would have been difficult to 
apply where, for the General questionnaire, a distinction 
between immigrants in immigrant-only households and 
immigrants in mixed households would have been required. 

2.4 Cycle 2 Weighting and Outputs 

Figure 2 summarizes the survey's three major outputs 
planned for Cycle 2: a Longitudinal PUMF; a Health Cross-
Sectional PUMF and a General Cross-Sectional PUMF. 
The planned Longitudinal PUMF contains General and 
Health information for both Cycles for the 17,000 Panel 
respondents [note: confidentiality requirements may prevent 
the release of a longitudinal PUMF - in which case only an 
internal microdata file will be produced]. The Health 
Cross-Sectional PUMF contains 1996 General and Health 
information for about 70,000 Panel Members and RDD 
Selected Members. The General Cross-Sectional PUMF 
contains 1996 General information for about 220,000 
members of the Core and RDD samples. The weighting 
processes involved for each PUMF, presented below for the 
Core sample, are described in more detail in Stukel, Mohl 
and Tambay (1997). 

Output 
File 

Contents 

Samples 

Units 

Size 

Weighting 
Strategy 
(for Core 
Sample) 

LONGITUDINAL HEALTH CROSS-
PUMF SECTIONAL PUMF 

General & Health 

Core only 

Panel Member 
(PM) 

= 17,0(X) records 

I.Base Year 
Weight 

2.PM Nonresp. 
Adjustment 

3.Post-
stratiflcation 

General & Health 

Core& 
RDD (3 provs.) 

PM/RDD Sel. Mem. 

= 70,000 records 

l.Base Year Weight 
2.PM Nonresp. Adj. 
3.Core/RDD 

integration 
4.Post-stratification 

GENERAL CROSS-
SECTIONAL PUMF 

General only 

Core& 
RDD (3 provs.) 

All Hhld. Members 

= 220,000 records 

1 .Base Year Weight 
2.Hhld. Nonresp. 

Adj. 
3.Weight Share Adj. 
4.Hhld. Mem. NR 

Adj. 
5.Core/RDD 

integration 
6.Post-stratifi cation 

Figure 2. Description of Output Files for Cycle 2 

Respondent survey weights on the Longitudinal PUMF 
are obtained by adjusting a base year weight first for 1996 
panel nonresponse and then for post-stratification. The 
base year weight represents the inverse sampling rate for 
1994 including all Health PUMF adjustments described in 
section 2.2 up to adjustment (4) for panel selection (a 
correction is needed for the "removal" of the 1994 
provincial sample additions). The weight adjustment for 
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nonresponse is the focus of the following section and will 
be described there. Post-stratification is done to reproduce 
1994 provincial population counts by age-sex categories. 

For the Health Cross-Sectional PUMF, the weighting 
process for (Core) Panel Members involves three or four 
steps. Usually, the base year weight is adjusted for Panel 
Member nonresponse, as explained in the following section, 
and for post-stratification (to match 1996 provincial or 
regional population counts by age-sex categories). In prov
inces with RDD samples the extra step is the integration 
with the RDD sample. The integrated estimate is obtained 
by a somewhat degenerate adaptation of the Skinner-Rao 
dual frame estimator (Skinner and Rao 1996). 

For the General Cross-Sectional PUMF, the weighting 
process for the core sample involves five or six steps. First, 
once more, is the calculation of the base year weight. Then 
comes an adjustment for nonresponse at the household 
level, discussed in the following section. The next step is 
the application of the "weight share method". The method 
was described by Emst (1989) and developed further by 
Lavallee (1995). The Panel Member's weight, divided by 
the number of persons in his/her household who were in-
scope in Cycle I, is assigned to all household members 
including those who were not in-scope in Cycle 1 {e.g., 
births, immigrants). The method is unbiased for estimates 
of totals for tiie population of households where at least one 
member was in-scope in Cycle I. The next step is a house
hold member nonresponse adjustment. In RDD provinces 
this is followed by integration of the Core sample with the 
RDD sample (this time for all ages). Post-stratification is 
done in a similar fashion to that for the Health Cross-
Sectional PUMF. 

3. CYCLE 2 CORE SAMPLE NONRESPONSE 
STRATEGY 

This section presents the strategy adopted for the 
treatment of Cycle 2 nonresponse in the Core (non-RDD) 
sample. Adjusting for nonresponse was done once again 
using the weighting cell approach except that, this time, 
Cycle 1 data were available to create weighting ceUs that 
are more homogeneous with respect to the propensity to 
respond, and thus more apt to remove nonresponse bias. 
Section 3.1 identifies nonrespondents in the NPHS. 
Section 3.2 discusses two general approaches for the 
creation of weighting cells, giving the one chosen for the 
NPHS. The sti-ategy for the adjustment for nonresponse is 
explained in section 3.3 while section 3.4 describes the 
creation of the nonresponse weighting cells. 

3.1 Definitions of Nonrespondent and Out-of-scope 
Units 

The first step in the treatment of nonresponse consisted 
of its definition or identification. In Cycle 2, questionnaires 
were fully completed for 89% of the Core sample and 

partially completed for another 3%. The rest of the sample 
consisted of refusals (3.1%), of cases where the Panel 
Member could not be traced (1.7%), had died (1.7%), had 
left Canada (0.5%), or was institutionalized (0.4%), and of 
other types of nonresponse such as temporary absences and 
special circumstances (0.7%). Within responding house
holds person level nonresponse was very low: 1.8% for the 
General questionnaire and 1.1% for the Health question
naire. We first identify cases that are not nonresponses for 
longitudinal and cross-sectional purposes. 

For longitudinal purposes a death is considered a valid 
survey response. Panel Members who had died before 
Cycle 2 had their status recorded as such and the 1996 
portion of their data coded as "Not Applicable" on the 
Longitudinal microdata file. Panel Members who moved to 
an institution or to the Territories were foUowed-up and 
their responses were used for longitudinal purposes. Panel 
Members who left the country were not foUowed-up but 
were treated as longitudinal nonrespondents even though it 
would have been more accurate for some analyses to have 
considered them as having left the scope of the study. This 
tieatment was chosen because such persons would fall back 
in-scope should they move back to Canada. 

For cross-sectional purposes aU the cases presented in the 
preceding paragraph were treated as out-of-scope situations. 
This was acceptable because the separate Institutional and 
Territorial survey vehicles assumed the cross-sectional 
coverage of these particular in-scope populations. Out-of-
scope units were not on the PUMFs but, as they represented 
other such units, they were treated for weighting purposes 
like respondents in all the weight adjustment steps except 
the integration and post-stratification steps. 

Refusals and cases where questionnaires were missing for 
reasons other than those given in the preceding paragraphs 
were defined as nonresponses. As wiU be seen, a distinction 
was later made between "full" and "partial" longitudinal 
nonrespondents to accommodate different users. 

3.2 Approach for Creating Nonresponse 
Adjustment Weighting Cells 

Two statistical approaches for creating response weighting 
cells involve segmentation modelling and logistic regression. 
An example of the latter is given in Czajka, Hirabayashi, Little 
and Rubin (1992). The authors obtained advance taxation 
estimates from early tax filer returns using adjustment 
weighting cells that were based on ranges of propensities to 
file early. Logistic regression was used to estimate tax filers' 
propensitiestofileearly.Thelongitudinal Survey of Labour 
and Income Dynamics (SLID) provides another example 
involving logistic regression (Grondin 1996). Sample units' 
response indicators were regressed on known (dichotomous) 
characteristics. Adjustment cells for nonresponse were 
generated by cross-classifying the sample units using all the 
significant covariates. In order to respect minimum cell sizes 
and response rates some collapsing was done starting with 
cells sharing all but the least significant covariates. 
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In the segmentation modelling approach a decision tree 
stiaicture is generated from the data by successively splitting 
the data set such that, at each node, the most significant 
predictor for the response variable is used to define the 
following split. The splitting continues until one cannot 
find any significant variable for the split or minimum cell 
size requirements cannot be respected. An early application 
of segmentation modelling for nonresponse adjustment was 
with respect to the Panel Study of Income Dynamics 
(Institute for Social Research 1979). Because of its advan
tages, given below, the NPHS adopted the segmentation 
modelling approach using the CHAID algorithm developed 
by Kass (1980). The CHAID (Chi-square Automatic Inter
action Detection) algorithm uses X̂  tests to define splits for 
categorical predictors and retains the most significant split 
at each stage. The splitting, into two or more categories, is 
done differently for ordered and unordered predictors. 
CHAID was applied using the Knowledge Seeker software 
program (ANGOSS Software 1995). Note that Knowledge 
Seeker applies CHAID to continuous predictors by first 
transforming them into ordered discrete variables. 

Advantages and disadvantages of the logistic and 
CHAED approaches are known and documented (for 
example see Kalton and Kasprzyk 1986). The logistic 
regression approach is based on theory familiar to many 
analysts, and can be programmed using a number of 
standard statistical packages. It also provides individual 
estimates of response propensity that can be used directiy to 
adjust the weights of respondents. However, to ensure 
reasonable program execution times the number of variable 
and interaction terms used must usually be limited. 
Collapsing cells can also become complicated, as in the 
case of SLID above. The CHAID algorithm offers the 
advantages of accepting a large number of covariates and, 
by its decision tree structure, easily accommodating 
interactions among them. Moreover, minimum cell size 
requirements can easily be incorporated as program execu
tion parameters. Its main disadvantages are a less familiar 
theoretical underpinning (Knowledge Seeker is advertised 
as a "data mining" tool) and the limited documentation and 
software available for its implementation. It should also be 
mentioned that, while some statistical packages such as 
SUDAAN and PC CARP can incorporate the sample 
design when fitting logistic models to survey data, this is 
not the case with CHAID. The NPHS tried to address this 
limitation by including as predictor variables characteristics 
that were related to the sample design (see Section 3.4). 

Two empirical studies comparing the logistic and 
CHAID approaches for the treatment of nonresponse 
obtained different results. Rizzo, Kalton and Brick (1996) 
did not find much of a difference between the two 
approaches for the Survey of Income and Program 
Participation. On the other hand Dufour, Gagnon, Morin, 
Renaud and Samdal (1998), in a simulation study for SLID, 
obtained a lower bias after nonresponse adjustment with the 
CHAID approach. 

3.3 Adjusting for Nonresponse in the Core Sample 
Nonresponse adjustments had to be developed for each 

PUMF: Longitudinal, General (Cross-Sectional) and Health 
(Cross-Sectional). We will deal with the General PUMF 
first. 

As Figure 2 showed, the weighting strategy for the 
General PUMF required separate adjustments for non-
response at the household and at the person levels. In 
creating adjustment cells for household level nonresponse, 
characteristics of the Panel Member as well as those of the 
household were considered as nonresponse predictors. This 
was done for three reasons. Firstly, as the Panel Member 
was the link to the household in Cycle 2, his or her 
characteristics may be related to finding the household and 
obtaining a response (the first contact will ofteti be through 
him or her). Secondly, a few personal characteristics of the 
Panel Member, such as race, are in some sense household 
characteristics. Finally, using Panel Member characteristics 
was not incompatible with our need to use a variety of 
information for the construction of weighting cells. If Panel 
Member characteristics are not significant, then CHAID 
simply does not retain them. 

Person level nonresponse to the General component 
occurred when the information was available for some but 
not all of the household members, perhaps due to members' 
refusals or temporary absences. Given the low 1.8% 
nonresponse rate at the person level, it was felt that the 
creation of weighting cells based on province-age-sex 
categories (as in Cycle 1) would be sufficient for our needs. 

In contrast to the General PUMF, the adjustments for 
household and person level nonresponse for both the 
Longitudinal and the Health PUMFs could be combined 
into a single adjustment as they concerned only one 
person - the Panel Member. A single set of adjustment 
cells thus needed to be created. 

For the Longitudinal PUMF it was noted that the data 
items came from both the General and Health components 
but that response rates for the two components were 
different. This difference produced data with different 
Cycle 1-Cycle 2 reporting pattems: GH-GH, GH-G*, 
G*-GH, G*-G*, not to mention longitudinal nonresponse 
pattems GH-** and G*-**, where the letters stand for the 
component reported each Cycle ("*" if not reported). To 
maximize the utility of the data it was decided to do two 
adjustments for longitudinal nonresponse. One adjustment 
would be for the "Full Longitudinal Response" pattem GH-
GH. In other words, all other response pattems would be 
considered as nonresponses. The other adjustment would 
be for the "Partial Longitudinal Response" pattem which 
included cases where, at minimum, General information 
was available for each cycle (pattems GH-GH, GH-G*, 
G*-GH and G*-G*). The Full Response data set could be 
used by researchers who would like to analyse a full longi
tudinal data set covering the entire questionnaire contents. 
The Partial Response data set could be of use to researchers 
primarily interested in the types of variables that are on the 
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General questionnaire. As the counts in Table I below show, 
the Partial Longitudinal Response data set is only about 3% 
larger than the Full Longitudinal Response data set. 

Table 1 
Longitudinal Response Pattems 

Response Type 

Full Partial 

• • 
• 
• 
• 

Cycle 1-2 
Response 

Pattem 

GH-GH 
GH-G* 
G*-GH 
G*-G* 
GH-** 
G*-** 

Total 

Number 
of records 

15,670 
110 
366 

22 
1,014 

94 

17,276 

Based upon the above, adjustment ceUs must be buiU for 
five types of responses (or nonresponses) in Cycle 2: 

• General PUMF - household response 
• General PUMF - person response 
• Health PUMF - combined response 
• Longitudinal PUMF - full response 
• Longitudinal PUMF - partial response 

Only three sets of adjustment ceUs were created for those 
response types. Adjustment cells created for the General 
PUMF household level responses were also used for the 
Longitudinal PUMF partial responses because getting a 
response from a household led almost always to obtaining 
a partial response for the longitudinal member (there were 
53 exceptions). Likewise, adjustment cells generated for 
full respondents on the Longitudinal PUMF were used for 
the Health PUMF responses. Although there were 366 
more cases of responses of the latter type (pattem G*-GH) 
it was considered that the same response mechanism was at 
work in both instances. The third set of adjustment cells 
was for person level responses on the General PUMF. 
Province-age-sex categories were used, as was done in 
Cycle 1. 

Note that, although the same adjustment cells would 
serve for different data sets, the nonresponse weight 
adjustments would be calculated separately for each data set 
type. Thus, the 366 records with response pattem G*-GH 
would be treated as respondents when adjusting weights for 
the Health PUMF, but as nonrespondents when adjusting 
weights for full respondents on the Longitudinal PUMF. 

3.4 Creation of Weighting Adjustment Cells 

Separate sets of weighting adjustment cells were created 
for each province. The first step consisted of identifying 
the variables to consider. With CHAID the number of 
variables that could be considered was not really an issue, 
and different types were considered. Characteristics of the 
household, or dwelling, as well as personal characteristics 
of the Panel Member would of course be considered. In an 
effort to incorporate the design of the survey into the 

analysis some characteristics that were related to the design 
of the survey or to the sampling weight were also consi
dered. These included geographical variables such as the 
Census Metropolitan Area code or the Urban/Rural 
indicator, special Cycle I design variables such as the flag 
identifying households for screening and the "Adult/ 
Children" household type, and characteristics related to the 
application of those design variables, such as the presence 
in the household of a member aged under 25 or of a child. 
The household size was used as it was a household charac
teristic and was also related to the sample weight. From 
experience, it was also decided to include, in addition to the 
household income characteristic, a dummy characteristic 
that identified if household income had been reported in 
Cycle 1 or not. As a change of address can lead to an 
unable-to-trace nonresponse situation we would have liked 
to use a change-of-address identifier. However, in some 
nonresponse and no contact situations it was difficult to 
ascertain whether the Panel Member had indeed moved. In 
the end a "Mover" variable, which identified whether the 
Panel Member had changed provinces between Cycles, was 
used in the analysis even though this was far from ideal 
because the default value would be "no". Personal charac
teristics from the Health questionnaire component such as 
Smoker/Drinker status, Health Index Level and Mental 
Health/Distress Scale were not used because they were not 
available for almost 500 Panel Members. 

The variables used are listed below. The nonresponse 
indicator, which was the dependent variable, had its values 
assigned according to the definition of nonresponse being 
used. 

DESIGN/GEOGRAPHICAL VARIABLES 

PROVINCE The analysis was done at the provincial level 
CMA Census Metropolitan Area {0 if not a CMA) 
URBAN Urban/Rural Indicator 
REJECT Flag if the unit (household) was eligible for 

screening 
ACFLAG "Adult/Children" design classification for 

the unit 

DWELLING/HOUSEHOLD CHARACTERISTICS 

DWELL Dwelling type (10 categories) 
OWNER Owner/Renter Indicator 
FAMTYP Family Type (unattached individual, single 

parent hhld., married couple hhld., other) 
INC Household Income Adequacy (5 levels) 
INCNR Nonresponse flag for INC 
INCSRC Main source of income (6 categories) 
*HHSIZE Household size 
UND25 Indicator of members under 25 years old 
KIDS Indicator of children under 12 years old 
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PERSONAL CHARACTERISTICS OF PANEL 
MEMBER 

SEX 
AGE 
AGE 16 
MARIT 
FAMID 
RACE 
BORN 

AGIMM 
*MOVED 
*EDUC 
*STUDNT 
MACT 
*NUMJOB 
RESTR 
•CAUSE 
CONSUL 

INHOSP 
*CHRONIC 

Sex 
Age in years 
Indicator if aged 16 or older 
Marital Status 
Family Identifier within household (A, B, C,...) 
White, Black, Aboriginal or Other 
Place of birth (Canada, USA/Mexico, 
S. America/Africa, Europe/Austialia, Asia) 
Age at immigration (for immigrants) 
Changed province indicator (see text) 
Highest level of education (12 categories) 
Student Indicator 
Main Activity (8 categories) 
Number of jobs held last year (in Cycle 1) 
Restriction of Activity Flag 
Main Cause of Restriction (12 categories) 
Number of consultations with a Medical 
Doctor 
Overnight Hospital Patient Flag 
Number of Chronic Conditions 

* Indicates Uie variable was never significant when forming 
classes. 

Figure 3 presents the variables chosen by CHAID to 
build nonresponse adjustment cells for Household Level 
Response and for the Full Longitudinal Response in each 
province. For reasons of confidentiality detail is not given 
on the individual cell sizes and response rates (some of the 
variables used are considered sensitive and are not on the 
PUMFs). However, summary information on the cell 
construction is given in Tables 2 and 3. 

Table 2 
Response Adjustment Cell Characteristics 

(for Household Level Response) 

Prov. 

Nfld. 
P.E.I. 
N.S. 
N.B. 
Que. 
Ont. 
Man. 
Sask. 
Alta. 
B.C. 

#Units 

1,082 
1,037 
1,085 
1,125 
3,000 
4,307 
1,205 
1,168 
1,544 
1,723 

#NR 

40 
51 
55 
59 

133 
315 

50 
59 

116 
149 

Cell Sizes 

min. 

354 
81 
46 
32 

123 
44 

1,205 
37 
32 
82 

max. 

728 
478 
374 
986 

2363 
1,038 
1,205 

626 
837 
678 

avg. 

541 
259 
217 
281 
750 
308 

1,205 
167 
221 
246 

Cell % NR rates 

mm. 

1.4 
3.0 
0.7 
2.6 
1.8 
0.9 
4.1 
1.6 
3.9 
5.2 

max. 

4 8 
13.6 
10.9 
344 
12.1 
25.8 
41 

35.3 
36.7 
29.0 

avg. 

3.7 
4 9 
5.1 
5.2 
4.4 
7.3 
4.1 
5.1 
7.5 
8.6 

on household-level response Manitoba has only one cell, 
and 88% of New Bmnswick's sample is located in one cell. 
Likewise, in Table 3 almost all of Newfoundland's sample 
is placed in one of its two cells. Cell nonresponse rates 
approaching 40% are observed in a few provinces. 

Table 3 
Response Adjustment Cell Characteristics 

(for Full Longitudinal Response) 

Prov. 

Nfld. 
P.E.I. 
N.S. 
N.B. 
Que. 
Ont. 
Man. 
Sask. 
Alta. 
B.C. 

#Units 

1,082 
1,037 
1,085 
1,125 
3,000 
4,307 
1,205 
1,168 
1,544 
1,723 

#NR 

73 
80 
96 
86 

211 
470 

91 
83 

148 
192 

Cell Sizes 

min. 

35 
41 

236 
59 
42 
34 

186 
90 
41 
33 

max. 

1,047 
453 
555 
819 

2,202 
619 
763 
339 
866 
408 

avg. 

541 
207 
362 
281 
375 
196 
402 
195 
172 
191 

Cell % NR rates 

mm. 

6.2 
4.1 
6.5 
4 8 
2.5 
0.0 
5.6 
0.0 
1.1 
4.5 

max. 

22.9 
26.8 
143 
16.8 
37.8 
38.0 
15.1 
28.9 
39.0 
37.3 

avg. 

6.7 
7.7 
8.8 
7.6 
7.0 

10.9 
7.6 
7.1 
9.6 

11.1 

The results vary by province. As expected, provinces 
with larger sample sizes such as Ontario, Quebec, British 
Columbia and Alberta yield "richer" decision trees. Cell 
sizes and response rates also vary considerably. In Table 2 

Figure 3 shows a variety in the characteristics of 
weighting classes both between provinces and between the 
two types of nonresponse within provinces. In all provinces 
except Alberta the CHAID algorithm uses different 
characteristics for the two nonresponse types as early as at 
the first or second level of branching. A few characteristics 
figure prominentiy in the early stages of branching in many 
of the trees for both types of nonresponse. They are: 
household income adequacy level (INCNR), income non-
response flag (INCNR), Race (RACE) and Place of Birth 
(BORN). 

In Figure 3a household income and its related variables 
(INCNR and INCSRC), Owner/Renter status (OWNER), 
Race, Place of Birth and Dwelling Type (DWELL) all were 
used three or more times in forming weighting classes for 
Household Level nonresponse. It is also remarked that in 
five out of nine provinces a personal characteristic of the 
Panel Member was selected at the first stage of branching 
by CHAID. This supports the decision to consider personal 
characteristics when adjusting for household level 
nonresponse. 

In Figure 3b for Full Longitudinal nonresponse Census 
Metropolitan Area (CMA), Marital Status (MARIT) and 
SEX, although not as important at first as Income, Race and 
Place of Birth, were used the most often (5 times each). 

As mentioned earlier, design variables such as the 
rejection flag (REJECT) and the "Adult/Children" flag 
(ACFLAG) were considered in an attempt to incorporate 
the sample design in the CHAID analyses. Although 
these variables were selected only once each, household 
characteristics used by the design, such as the presence of 
children (KIDS) and under 25 year-olds (UND25) did get 
selected occasionally. Household size was not used but 
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Family Type (FAMTYP), which is related to the household 
size, did get selected twice. 

The adjustment cells produced by CHAED were 
reviewed but only in rare cases were they manually altered. 
Within each cell, the weights of responding units were 
prorated to add up to the total weight for responding and 
nonresponding units. The magnitude of the nonresponse 
weight adjustments never exceeded 1.83. 

4. CONCLUSION 

This paper presented the strategy developed for the 
treatment of both longitudinal and cross-sectional non-
response to Cycle 2 of the NPHS. The approach adopted 
took into account practical considerations such as the need 
for an easy-to-use, yet statistically valid, way of defining 
weight adjustment cells and the need to provide a more 
useful data set (by having separate adjustments for "Full" 
and "Partial" Longitudinal Responses) while keeping the 
additional effort required at a reasonable level {e.g., by 
using weight adjustment cells for more than one purpose). 
Having chosen the CHAID algorithm approach rather than 
logistic regression allowed us more freedom in the number 
and choice of variables to consider: many design variables 
and personal variables could thus easily be considered -
and some were retained. This did seem to offer some 
promise about the usefulness of those characteristics in the 
treatment of nonresponse. 

On the other hand, a tight production schedule meant 
that some analysis that we wished to have carried out was 
not performed. It would have been interesting to pursue the 
possibilities offered by the CHADD algorithm, for example, 
as CHAID allows the use of a categorical response variable 
we could have classified sample units into three groups: live 
respondents, dead or out-of-scope units, and nonrespon
dents. We would have liked to do our own comparison of 
CHAID with a logistic regression approach. We could also 
have attempted to use Health questionnaire variables such 
as the Health Index or Smoker/Drinker status in defining 
weight adjustment cells, although their usefulness would 
have been reduced by the fact that they were not present for 
all units (they are missing in response pattems G*-GH, 
G*-G* and G*-**). Decisions to use the same weight 
adjustment cells for different types of nonresponse should 
be revisited. For example, could the adjustment cells built 
for household level response have been more suitable for 
the Health cross-sectional nonresponse? An attempt to 
compare the efficiency of various nonresponse adjustment 
strategies would involve evaluating their impact on the 
variance of estimators. We could also evaluate the impact 
of our Cycle 2 nonresponse adjustment on the nonresponse 
bias by using the Cycle 1 data available for all panel 
members. Estimates using the full sample would be 
compared to nonresponse-adjusted estimates generated 
from the responding units. 

Cycle 3 itself will present new problems. A global 
sample "top-up" is planned in that year, which will have an 
impact on our cross-sectional estimation strategy and 
therefore on the treatment of nonresponse. As longitudinal 
nonresponse is increasing we will have to consider side 
effects of the weighting adjustment such as the possible 
creation of outiier weights. Providing sets of weights for 
different types of longitudinal analyses will become 
cumbersome as the number of "partial" response pattems 
will increase. How many pattems can reasonably be 
tieated, and which ones? The choice of additional informa
tion, such as Mover status, for the treatment of nonresponse 
should be reconsidered. Some imputation for nonresponse 
will likely be used in Cycle 3: the question is how to 
reconcile imputation with the weight adjustment approach 
to nonresponse. As can be seen, a lot of work remains to be 
done for the NPHS. One hopes that we will have time to 
investigate many of those issues before Cycle 3 processing 
is finished. 
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Estimates of the Errors in Classification in the Labour Force Survey 
and Their Effect on the Reported Unemployment Rate 

MICHAEL D. SINCLAIR and JOSEPH L. GASTWIRTH' 

ABSTRACT 

This paper shidies response errors in the Current Population Survey of the U.S. Bureau of the Census and assesses their 
impact on the unemployment rates published by the Bureau of Labour Statistics. The measurement of these error rates is 
obtained from reinterview data, using an extension of the Hui and Walter (1980) procedure for the evaluation of diagnostic 
tests. Unlike prior studies which assumed that the reconciled reinterview yields the true status, the method estimates the 
error rates in both interviews. Using these estimated error rates, we show that the misclassification in the original survey 
creates a cyclical effect on the reported estimated unemployment rates. In particular, the degree of underestimation increases 
when true unemployment is high. As there was insufficient data to distinguish between a model assuming that the 
misclassification rates are the same throughout the business cycle, and one that allows the error rates to differ in periods 
of low, moderate and high unemployment, our findings should be regarded as preliminary. Nonetheless, they indicated that 
the relationship between the models used to assess the accuracy of diagnostic tests, and those measuring misclassification 
rates of survey data, deserves further study. 

KEY WORDS: Misclassification errors; Unemployment rates; Diagnostic tests; Reconciliation; Reinterview surveys; 
Response errors. 

1. INTRODUCTION 

Several articles, Poterba and Summers (1986 and 1995) 
and Abowd and Zellner (1985) used the data from the U.S. 
Bureau of the Census' reinterview program to estimate the 
misclassification rates of the Current Population Survey 
(CPS) and assessed their impact on estimates of labour 
market tiansition rates. The estimated misclassification rates 
were based on the assumption, that a particular reinterview 
method, reconciliation, yields the "truth." Biemer and 
Forsman (1992), Forsman and Schreiner (1991) and 
unpublished research of the U.S. Bureau of the Census 
(1963), have questioned this assumption. The purpose of 
this paper, is to provide estimates of the misclassification 
rates, from response ertors in all interviews and reinterviews 
and to explore their impact on the reported unemployment 
rates. In contrast to the earlier papers that were concerned 
with gross flow, we emphasize the accuracy of the labour 
force estimates themselves. Our approach is based on 
extending the Hui and Walter (1980) paradigm, for 
estimating ertor rates of medical diagnostic tests to trinomial 
classifications. An advantage of this method is that, no 
single interview needs to be considered as perfect. 

Under certain assumptions, Hui and Walter (1980) 
developed a method for estimating the error rates associated 
with a new diagnostic screening test, using a confirmatory 
test with an unknown low error rate. By treating the 
reinterview as the confirmatory test, and the original survey 
as the screening test, this methodology can be used to esti
mate the error rates in the original survey, and the reinter
view and the prevalence rates of tiie trait screened for. The 

Hui and Walter (1980) method requires two subpopulations 
with different prevalence rates of the characteristic. While 
the two tests may have different error rates, the error rates 
for each test are assumed equal in the two subpopulations. 
Furthermore, the model (described in more detail in the 
appendix) assumes that the errors from the two tests 
conditioned on the subject's true status, are independent. 

The Hui and Walter method was developed for dicho
tomous test outcomes, and was adapted by Sinclair and 
Gastwirtii (1996) to study misclassification of labour force 
participation rates. Here, we extend the approach to account 
for three classifications: unemployed, employed and not in 
the labour force (NLF), and assess tiie effect of the misclas
sification on the reported unemployment rates. The basic 
model is presented in section two. The reinterview program 
data, to which the model will be fitted, are described in 
section three. The resulting error rates are given in section 
four, along with the "adjusted" unemployment rates, which 
account for the estimated classification errors. In addition, 
a measure of accuracy, the predictive value, used in the 
medical screening literature, is applied to the unemploy
ment rate in section four. It shows that the probability an 
individual classified as unemployed in the CPS is actually 
unemployed, varies with the true level of unemployment. 

2. THE DATA AND THE MODEL 

Labour force reinterview data consists of trinomial 
responses from both the original survey and a subsequent 
reinterview. This data for a given subpopulation and year. 

Michael D. Sinclair, Senior Statistician, Mathematical Policy Research, 101 Morgan Lane, Plainsboro, N.J. 08536, U.S.A.; Joseph L. Gastwirth, Professor 
of Statistics and Economics, George Washington University, 2201 G Street Rm. 315, Washington, D.C. 20052, U.S.A. 
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is summarized in a 3 x 3 table, where the observed frequen
cy counts of persons in the table, is denoted by, « . . . With 
this notation: 

- y denotes the year; 
- g denotes subpopulation membership, g = I or 2; 
- / denotes the subject's classification by the original 

survey, / = I for unemployed, / = 2 for employed and 
/ = 3 for NLF; and 

- j denotes the same subject's classification by the 
reinterview, y = 1,2 and 3. 

We denote the true prevalence rate for each labour force 
status, r = 1, 2 and 3, by 7t ., for subpopulation g and year 
y. Throughout this paper, we will use the term prevalence 
rate, to refer to the proportion of persons in one of the three 
labour force categories {e.g., Tiyg,). Note that the fraction, 
n̂ g3 of the population in the NLF category equals 
(1 - 7C , - n 2), and that the true unemployment rate in year 

y for subpopulation g, is equal to n , divided by 
(rtygl +7lyg2)-

Each classification rate, P^gry, is defined as the probabil
ity that the r-th data collection process, r = l for the original 
survey, and r = 2 for the reinterview, will classify a person 
in year y from subpopulation g, to be in category i, 
i = l, 2 and 3when the true status of the individual is 
category7. For example, P,,j3j denotes the probability that 
in the first year {y = 1), a person from the first subpopula
tion (g = 1), was classified by the original survey {r = l)as 
NLF (/ = 3) when the person's true status is unemployed 
{j = 1). The classification rates can be divided into two 
groups, corresponding to those associated with a correct 
classification, and those associated with an erroneous 
classification. For each y, g and r, the probability that 
survey method r, classifies a truly unemployed person in 
year y from subpopulation g correctly as unemployed, is 

equal to p (1 " Pver2i " Pv,.r3i)- ^hc coH-esponding 
probabilities for employed ana NLF are respectively, 
P;'gr22 = (1 " P>'grl2 ~ P^grSl). and P^gr33 = ( 1 - P>.grl3 " %gr2i)-

With conditional independence of the original survey and 
the reinterview classification rates, the expected observed 
frequencies, as expressed in terms of the given notation, for 
each of the nine cells associated with a particular year y 
and subpopulation g are: 

£("^,2) = «^.. (t^, {^-Kni'Ki-^i^ P..«22i ^ V Km 

* (1-P^^212-PW " ( 1 - V - V ) Km P,̂ 223) 

E{nygii) = n^ (n^^ (l"P«12l""P>.yl3l) P̂ 2̂31 "̂  '^ygl P;-gll2P;'̂ 232 

^ (^-'̂ ..^r V > Km (i-P^g2i3-PW> 

£ ( V i ) = "yg: Kl Km (̂ -P>.g22rP,̂ 23i) 

"" V (l-P>«112-P^«132)P>.g212 -̂  ( ' -",gl-">y2) P;«123 ^yg2l3> 

^KIT) = "yg.. Kl K "ygl2' - "yg.. "-"-ygl H>gI21 ^yglll *'^ygl^^ P>'gll2""P;'gl32) 

P>'g212"P>.g232 * (l-Pv;.212-PvW •" ( 1 - V " V ) P « I 2 3 P>^23) 

^^"yg23> - "yg.. Kl P.)'̂ 121 P>»231 '*' ^ygl (l"P>yll2 P^132) P;!g232 

^ ( 1 - W P,g.23 (1-P;^13-P,^23)) 

£("^3 | ) = V.(VP>»13l(l-P>^21-P^g23l) 

•̂  VP.V«132P,.g212 ^ ( 1 - W ) ( ' ~ P « I 2 3 - P ^ n 3 ) P ^ B ) 

£("^32) = "yg.. K Km P,.g221 -̂  V P>gl32(l-P>y212-P;»232) 

^ ( 1 - W ) (l-P>gl23-P^gU3) P^23) 

• '^v?2Pv?132Pvi ^K^^ ~ ^yg-.^^ygi^ygmK'^^i ' '>g2K^gi32K'̂ 32 

"•ygi '^yg'i^'^'^ ^(l-W2)(l-P«123-P^U3)(l-P^213-P^g223 )). 

where, the total sample size for year>^ and subpopulation g 
is denoted by n 

yg" 
The model has 14 parameters (six error rates for the 

original survey, r = 1, six error rates for the reinterview, 
r = 2, and two unique prevalence rates) for each 
subpopulation and year. On the other hand, the 3 x 3 table 
for a given year and subpopulation has only 8 independent 
frequencies, or degrees of freedom. As a result, the model 
is overparameterized and the number of parameters must be 
reduced for estimation purposes. The Hui and Walter 
paradigm enables us to accomplish this. 

3. APPLICATION OF THE MODEL AND THE 
CPS REINTERVIEW PROGRAM 

The U.S. Bureau of the Census' Current Population 
Survey Reinterview Program (U.S. Bureau of the Census 
1963) is conducted approximately two weeks after the 
initial survey, to measure response errors, and to evaluate 
interviewer performance. The sample design for the 
reinterview, consists of the self-weighting random sample 
of households (Levy and Lemeshow 1980) among the 
selected interviewer assignments. The sample size is about 
1/18 of the monthly CPS sample of 50,000 to 60,000 
household interviews. Two reinterview procedures are 
conducted. Three-fourths to four-fifths of the sample cases 
participate in a response-bias study. Here, an initial 
reinterview is conducted and after this interview is 
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completed, the reinterviewer reconciles disagreements with 
the respondent, between the original and the initial 
reinterview responses. Hence, in the response-bias study, 
up to two reinterview responses may be obtained from each 
subject; the first unreconciled reinterview response and a 
reconciled reinterview response. The remaining one-fifth to 
one-fourth of the sample households receive a reinterview 
without reconciliation. 

In tiie response bias study, the reinterviewer is instructed 
not to look at the original survey responses until the initial 
reinterview is completed. Forsman and Schreiner (1991) 
and Schreiner (1980) suggested that the reinterviewers may 
change the initial reinterview responses to match the 
original response, as they observed that the rate of 
disagreement between the original responses and the initial 
reinterview responses were greater in the unreconciled 
sample. Sinclair (1994) and Sinclair and Gastwirth (1996) 
showed that these differences were statistically significant. 
As a result, the reconciliation process creates a correlation 
between the original and unreconciled reinterview re
sponses, in the reconciled sample. Hence, we decided to 
limit our analysis to the original and unreconciled rein
terview data from the unreconciled study sample. For the 
purposes of this study, we will assume that in the unrec
onciled sample, the errors from the original survey and the 
unreconciled reinterview conditioned on the respondent's 
true status, are independent. 

To apply the Hui and Walter approach, one needs two 
subpopulations with different prevalence rates. As males 
and females are known to have different labour force partici
pation rates, we use them. We also need to assume, that the 
classification error rates are equal in the two subpopulations, 
males and females, i.e., P , .. = p - ... At this stage, we 
assume that the classification error rates for the original 
survey and the unreconciled reinterview, may be different, 
and that they may differ by year. With this reduction, for the 
two subpopulations, in a given year, we now have a total of 
12 error rate parameters and 4 prevalence rates, yielding 16 
parameters. Since two 3 x 3 tables contain a total of 16 
degrees of freedom, estimation is possible. In tiiis paper, we 
have analyzed the CPS unreconciled reinterview sample 
data for the period 1981 through 1990. Complete yearly 
data for 1987 as well as more recent data, were not available 
from the U.S. Bureau of the Census. 

The CPS estimates of the unemployment rate are 
published regularly by the Bureau of Labour Statistics (BLS) 
(seeBureauof Labour Statistics 1992). Since the reinterview 
is a sub-sample of the full CPS sample, the original survey 
estimates of the unemployment rate from the reinterview 
sample, will differ from the BLS published results. Data 
processing procedures are used on the full sample CPS, that 
are not applied to the reinterview data. For example, the full 
CPS sample is weighted, based on the sample selection 
probabilities, and nonresponse adjustment factors are applied 
to the data. Given these differences, the estimated preva
lences from our model, based solely on the reinterview data. 

are not directly comparable to the BLS reported values. We 
have used the CPS reinterview data, primarily to estimate 
the ertor rates in the original survey. Furthermore, we have 
tieated the unreconciled reinterview data as a simple random 
sample of the population, for analysis and hypothesis testing 
purposes, throughout this paper. Using these error rate 
estimates, we estimate adjusted Bureau of Labour Statistics 
(BLS) unemployment rates, where tiie term adjusted, means 
that the reported values have been modified to account for 
the misclassification in the survey. The formula for esti
mating the true unemployment rate as a function of the 
reported BLS prevalences from the full CPS sample, and the 
estimated classification error rates as obtained from the 
unreconciled reinterview data, is given in the appendix. 

4. DATA ANALYSIS AND RESULTS 

The first step in preparing our final estimates, was to 
obtain the parameter estimates, for each of nine yearly data 
tables, using the SAS NLIN procedure with the Gauss-
Newton weighted least squares method. As the reinterview 
procedures remained constant during the period, we decided 
to test the hypothesis, that each of the ertor rates remained 
equal across the years studied, i.e., ^ =P , . for aU 

ygf'ij "y gfij 
years y^y'.Jn conjunction with the baste assumption, that 
the error rates for males and females are equal, i.e., 
^yirij = ^y2rij' ^his implics, p̂ ĝ .̂ = ^y^.^.j for all y*y' and 

From the two sets of results, we conducted a likelihood 
ratio test under the assumption, that the reinterview sample 
is a simple random sample of the population, to test the 
assumption that each of the error rates was the same for all 
years. The likelihood ratio statistic, - 2 log A, with 96 
degrees of freedom (144 parameters in tiie full model less 48 
parameters in the reduced model) yielded a value of 84.06 
witii ap-\alue of 0.8027. Hence, the data is consistent with 
the reduced model, enabling us to use the reduced model 
estimates and to simplify the notation. We will now use p 
to denote p̂ g„7 foraUgandj'. 

The estimated error rates for the original survey and for 
the unreconciled reinterview, are presented in Tables I and 
2, respectively, with their estimated standard ertors. The 
estimated reinterview error rates in Table 2, are similar to 
corresponding error rate estimates for the original survey. 
This similarity indicates that the U.S. Bureau of the Census 
unreconciled reinterview serves as an effective replication. 
The error rate estimates show that the CPS survey 
procedures are able to classify the employed, and those not 
in the labour force, quite accurately. On the other hand, 
these procedures do not perform well for classifying the 
unemployed, as the proportion of truly unemployed persons 
who are classified as unemployed, (1 - p,2, - P13,), is only 
0.8397. 

For comparative purposes we conducted an analysis of 
the 75% sample reconciled reinterview data, for the same 

"J 
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I98I-I990 period, under the assumption that the reconciled 
responses were error-free. We created a 3 x 3 table for the 
number of persons classified by the original interview, in 
each labour force category, by the number of persons 
classified by the reconciled reinterview, in each labour force 
category. The data is given in Table 3. The table frequencies 
report aggregate data, by year and sex, so that the error rates 
derived from this table, are comparable to our model. Using 
the column status, as the true status, one computes an 
estimate ofthe error rates. For example, tiie estimate of Pjj,, 
the probabiUty that an unemployed person will be classified 
in the original survey as employed, is 332/17,681 = 0.0188. 
These error rates are presented in Table I, to illustrate how 
the estimated error rates from our method, based on the 
unreconciled data, differ from those relying on the 
assumption that the reconciled reinterview is perfect. 

Table I also presents the estimates ofthe original survey 
error rates, as obtained by Poterba and Summers (1986), 
using reinterview data (combined for both sexes) for the first 
half of 1981. The Poterba and Summers' method uses both 
the data from the unreconciled and reconciled samples to 
estimate the error rates. These authors assume that in the 
reconciled sample, the interviewers use the original survey 
data provided, to influence the initial reinterview response. 
As a result, they assume that a reconciled value is only 
obtained for a portion of persons, that should have had a 

discrepancy between the original survey and the initial 
reinterview. When a reconciled value is obtained, Poterba 
and Summer assume that the reconciled data is error-free. 
With these assumptions, they use the unreconciled sample to 
estimate the incidence ofthe error, and the reconciled data to 
provide the information on the true labour force status. In 
summary, both the Poterba and Summers method, and the 
reconciled reinterview estimates, rely on the reconciled 
reinterview data being perfect. 

Table 4 presents the reported BLS yearly unemployment 
rates among those in the labour force, for males and females 
combined, in comparison to the estimated adjusted unem
ployment rates based on: (1) our error rate estimates, (2) 
Poterba and Summers (1986) error rates, and (3) error rates 
assuming the reconciled reinterview is perfect. If the results 
in Table 4, are sorted by the value of the BLS reported un
employment rate, an apparent ti-end is observed in the bias in 
the original CPS estimates. Figure 1 shows that the reported 
values, tend to overestimate the actual unemployment rate of 
persons in the labour force in low unemployment years 
(1989,1988 and 1990), and to underestimate the unemploy
ment rate in high unemployment years (1982-1983). 
Furthermore, the bias associated with our method is shifted 
upward from the two other approaches. All three methods 
indicate cyclical effect, the smallest of which is obtained 
when the reconciled reinterview is assumed perfect. 

Table 1 
Estimated Error Rates in the Original CPS Estimates 

Error Rate 
Parameter 

Description Estimated Value p 

Classified as True Status Our Method P&S(1986) 
Recon. Reint. 

Perfect 

Estimated 
Standard Error 

Our Method 

P.2. 

Pl31 

P.12 

P.32 

P..3 

P.23 

Employed 

NLF 

Unemployed 

NLF 

Unemployed 

Employed 

Unemployed 

Unemployed 

Employed 

Employed 

NLF 

NLF 

0.0407 

0.1196 

0.0049 

0.0100 

0.0110 

0.0205 

0.0378 

0.1146 

0.0054 

0.0172 

0.0064 

0.0116 

0.0188 

0.0838 

0.0017 

0.0098 

0.0034 

0.0053 

0.01892 

0.01463 

0.00124 

0.00154 

0.00155 

0.00247 

Table 2 
Estimated Error Rates in the Unreconciled Reinterview CPS Estimates 

Error Rate 
Parameter 

P22. 

P23. 

P212 

P232 

P2.3 

P223 

Description 

Classified as 

Employed 

NLF 

Unemployed 

NLF 

Unemployed 

Employed 

True Status 

Unemployed 

Unemployed 

Employed 

Employed 

NLF 

NLF 

Estimated Value 
Our Method 

P2// 
0.0333 

0.1128 

0.0057 

0.0145 

0.0157 

0.0248 

Estimated 
Standard Error 

0.01772 

0.01360 

0.00135 

0.00160 

0.00171 

0.00238 
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Table 3 
Cross-tabulation of the Aggregated 1981 -1990 Original/Reconciled Reinterview Responses 

75% Reconciled CPS Reinterview Data 

Survey Result 

Original CPS 

Unemployed 

Employed 

NLF 

Total 

Unemployed 

15,868 

332 

1,481 

17,681 

Reconciled Reinterview 

Employed 

372 

213,987 

2,123 

215,482 

NLF 

480 

744 

138,077 

139,301 

Total 

16,720 

215,063 

141,681 

373,464 

Table 4 
Implications ofthe Error Rate Estimates 

Yeary 

1990 

1989 

1988 

1986 

1985 

1984 

1983 

1982 

1981 

BLS Reported 
Unemployment Rate 

UE^^^ 

5.44% 

5.20% 

5.43% 

6.89% 

7.09% 

741% 

9.47% 

9.54% 

7.50% 

0.20% -

-0.20% • 

-0.40% • 

-0.60% -

-0.80% • 

-1.00% • 

-1.20% -

-1.40% -

-1.60% • 

-1.80% -

5.0 

Prob. Unemp. 
Given 

Classified 
Unemp. 

.8135 

.8052 

.8113 

.8503 

.8531 

.8581 

.8894 

.8902 

.8581 

Adjusted Estimate of BLS Reported 
Unemployment Rate A UE^ 

Our Method Poterba and Reconciled Data 
Summers (1981-1990) 

(1986) Perfect 

5.27% 

4.99% 

5.25% 

6.97% 

7.20% 

7.56% 

9.99% 

10.08% 

7.66% 

5.36% 

5.09% 

5.35% 

7.04% 

7.27% 

7.63% 

10.00% 

10.09% 

7.72% 

5.63% 

5.37% 

5.62% 

7.22% 

7.44% 

7.79% 

10.04% 

10.12% 

7.88% 

Difference 
in Reported 
v.r. Adjusted 

Our Method 

0.17% 

0.21% 

0.18% 

-0.08% 

-0.11% 

-0.15% 

-0.52% 

-0.54% 

-0.16% 

Estimated 
Standard 
Error in 

Difference 

Our Method 

.27% 

.26% 

.27% 

.33% 

.34% 

.36% 

.48% 

.49% 

.36% 

tr̂ i::-:::::;;̂  

1989 

D% 

19 

1988 

5.50% 

90 

6.00% 

-*- Eq 

1986 

1984 

985 1981 

6.50% 7.00% 7.50% 

ual Error Rate 

8.00% 8.50% 9.00% 

- " - P&S 1986 - * - 8 1 - 9 0 Recon. 

'^saaalSi' 

1983 

9.50% 

Figure 1. A Comparison of the Bias in the Reported Unemployment Rates as Computed Using Three Methods 
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In the screening test literature (Gastwirth 1987), the 
fraction of positive classifications which are correct, called 
the predictive value of a positive test, is known to vary 
directly with the prevalence of the characteristic. This is 
why, quite accurate diagnostic tests can have unacceptably 
high misclassification rates when populations with a low 
prevalence of a disease, are screened with them. The analog 
of this measure in our context, is the proportion of indi
viduals classified as unemployed who are tmly unemployed. 
This proportion is given in the third column of Table 4. Even 
though the range of reported unemployment rates is fairly 
narrow, a similar relationship with the unemployment rate 
can be seen. 

While the results ofthe lUcelihood ratio test indicated, that 
the ertor rates were constant throughout the period, the 
referees suggested a ftirtiier analysis to explore this assump
tion. We divided each of the nine survey years into three 
groups, according to the year's reported unemployment rate. 
Survey years, 1990,1989 and 1988 were classified as having 
low unemployment, with reported rates from 5.20% to 
5.44%. Similarly, survey years 1982 and 1983 were 
classified as having high unemployment, with reported rates 
of 9.54% and 9.47%, respectively. The remaining years with 
rates ranging from 6.89% to 7.5%, were classified as having 
moderate unemployment rates. With this three group 
structure, we developed an alternative model that assumed 
tiiat the ertor rates were constant within each of the three rate 
size groups, but allowed each of these groups to have 

different error rates. The estimated error rates for the 
original interview are presented in Table 5. The error rates 
from Table I, using the equal error rate model, are presented 
for comparative purposes. 

We conducted a likelihood ratio test, to test the 
assumption that each of the error rates was the same, within 
each of these three groups, in comparison to the initial nine 
year model. The lUcelihood ratio statistic, - 2 log X with 72 
degrees of freedom (144 parameters in the fuU model less 72 
parameters in the three-group model), yielded a value of 
69.25 with a/?-value of 0.5697. 

In general, the error rate estimates for the three un
employment rate classes, appear to be similar. Because the 
standard errors of the estimated error rates are quite large, a 
formal homogeneity test would have insufficient power to 
detect any variation in an error rate over the three periods. 

To assess the sensitivity of the adjusted unemployment 
rate estimates in Table 4, we recomputed them using the 
error rates from the three-group model. The resuUs are given 
in Table 6, which also provides the standard error of the 
unemployment rate estimates, ranging from a low of about 
1.4% to a high of about 2.6%. 

Figure 2 presents a graph of the bias in the unemployment 
using the three group model, and for comparison, the 
original equal error rate model. The results in Figure 2 are 
quite interesting. While the cyclical effect is still apparent, 
the estimated bias is shifted downward and shows a 
consistent negative bias throughout the business cycle. 

Tables 
Error Rates in the Original CPS Data Estimated for Three Unemployment Rate Classes 

Error Rate 
Parameter 

Description Error Rate Estimates 

Classified as True Status 

Model in 
Table 1 Assumes 
Constant Error 
Rates Across 

Years 

Estimates Using Three Group Model 

Low Years 
1990,1989, & 1988 

Moderate Years 
1981,1984-1986 

High Years 
1982,1983 

Est. STE Est. STE Est. STE Est. STE 

P.2. 

P.3. 

P.12 

Pl32 

Pl.3 

Pl23 

Employed 

NLF 

Unemployed 

NLF 

Unemployed 

Employed 

Unemployed 

Unemployed 

Employed 

Employed 

NLF 

NLF 

0.0407 

0.1196 

0.0049 

0.0100 

0.0110 

0.0205 

0.0189 

0.0146 

0.0012 

0.0015 

0.0015 

0.0025 

0.0635 

0.1680 

0.0000 

0.0080 

0.0096 

0.0187 

0.1061 

0.0538 

0.0047 

0.0038 

0.0040 

0.0065 

0.1113 

0.1000 

0.0000 

0.0096 

0.0109 

0.0202 

0.1258 

0.0246 

0.0098 

0.0025 

0.0024 

0.0034 

0.0974 

0.1084 

0.0000 

0.0096 

0.0103 

0.0227 

0.0717 

0.0221 

0.0069 

0.0031 

0.0029 

0.0044 
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Table 6 
Implications ofthe Error Rate Estimates Using Three Group Model 

Year^* 

1990 

1989 

1988 

1986 

1985 

1984 

1983 

1982 

1981 

BLS 
Reported 

Unemploy
ment Rate 

5.44% 

5.20% 

5.43% 

6.89% 

7.09% 

7.41% 

9.47% 

9.54% 

7.50% 

Prob 
Unemp. 
Given 

Classified 
Unemp. 

Three Group 

0.9124 

0.9088 

0.9105 

0.9170 

0.9178 

0.9199 

0.9400 

0.9404 

0.9191 

Adjusted Estimate of BLS 
Reported Unemployment Rate 

Original Equal Three 
Error Rate Model Group 

Model 

5.27% 

4.99% 

5.25% 

6.97% 

7.20% 

7.56% 

9.99% 

10.08% 

7.66% 

6.43% 

6.12% 

641% 

8.01% 

8.25% 

8.64% 

11.18% 

11.27% 

8.74% 

Difference in Reported 

Original Three 
Equal Error Group 
Rate Model Model 

0.17% 

0.21% 

0.18% 

-0.08% 

-0.11% 

-0.15% 

-0.52% 

-0.54% 

-0.16% 

-0.99% 

-0.93% 

-0.98% 

-1.12% 

-1.16% 

-1.23% 

-1.71% 

-1.73% 

-1.24% 

vs. Adjusted 

Estimate Standard 
Error of the 

Difference Three 
Group Method 

1.40% 

1.35% 

1.41% 

2.35% 

2.42% 

2.53% 

2.05% 

2.08% 

2.56% 

0.20% 

5.00% 5.50% 6.00% 6.50% 7.00% 7.50% 8.00% 8.50% 9.00% 9.50% 

Three Group Model Equal Error Rate 

Figure 2. A Comparison of the Bias in the Reported Unemployment Rates as Computed Using the Equal Error Rate Model 
and the Three Group Model 
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5. IMPLICATIONS OF THE ADJUSTED 
ESTIMATES 

The results in Figure I and 2 show that, all methods for 
adjusting the unemployment rate for misclassification error, 
indicate that the degree of bias in the reported rate varies 
over the business cycle. Given the differences in the 
estimated bias yielded by the two approaches, it is difficult 
to determine the magnitude ofthe bias. Unfortunately, the 
estimates are sensitive to the model specification, due to the 
smaU unreconciled reinterview sample size. This is reflected 
in the large standard errors of the estimated error rates, and 
consequendy, the estimated bias. 

Our approach using the assumption that the error rates 
remained constant throughout, suggests that bias in the 
survey estimates is small in years when the unemployment 
rate is between 5.5% and 7.5%. With this model, the 
reported unemployment rate appears to be unbiased when 
the true unemployment rate is around 6.3%, and yields an 
underestimate when the true rate is above this level, and an 
overestimate when the true rate is below it. The underesti
mation bias becomes quite noticeable when unemployment 
reaches 9%, while the overestimation bias could be 
meaningful when unemployment is less than 5%. 

Using the three-group model results, implies that the 
reported unemployment rates are underestimates. If the 
finding is accurate, these results show that the bias in low 
unemployment years is still about -0.7%, but can be as high 
as -1.7% in high unemployment years. This contrasts the 
results obtained from the equal error rate model. 

The fact that both the magnitude and direction of the bias 
in the reported unemployment rate change over the business 
cycle, may affect the use of that rate in studies ofthe "natural 
rate" of unemployment, and the trade-off between inflation 
and unemployment. Specifically, our results indicate that 
the range of the true unemployment rate over the business 
cycle, is larger than the range of the reported rate (see 
Table 4). Hughes and Perlman (1984) survey the literature 
on the "natural rate" of unemployment, and the trade-off 
between inflation and unemployment, as well as the role of 
search theory in explaining why unemployment is not that 
low at "fuU" employment. McKenna (1985) provides a more 
advanced treatment of job search theory, and its relationship 
to the duration of unemployment, and the degree to which 
unemployment is voluntary. Resolving the issue of which 
model underUes the misclassification error rates in the CPS 
survey, has important economic implications. If the equal 
error rate model were correct, in periods of low unemploy
ment, the reported rate would be a sUght overestimate. Hence, 
there would be less true unemployment to explain, by job 
search and related theories. On the other hand, if the three 
group model is the correct one, then even at low levels of 
reported unemployment, there are more persons really 
unemployed. 

6. DISCUSSION 

In this paper, we have presented an alternative metiiod for 
estimating the error rates in the CPS survey. Our study 
differs from prior work, as we follow the Hui and Walter 
(1980) approach to estimate the error rates, by assuming that 
males and females wiU have the same error rates, and that the 
errors in the original survey are independent of those in the 
unreconciled reinterview. While the ertors could be slightly 
correlated, the assumption of independence is standard in 
data analysis of this type, (see Bailar 1968, Chua and Fuller 
1987, and Singh and Rao 1995). A discussion of the bias in 
the H&W method with dependent errors is given in Vacek 
(1985). As for the equal error rate assumption, several of the 
authors cited in this paper (e.g., Poterba and Summers 1986), 
have noted minor to moderate differences in the error rates 
between males and females, under the assumption that the 
reconciled reinterview is perfect. However, this assumption 
has been questioned. For example, consider the estimate of 
P,2i, the probability that an unemployed person, will be 
classified in the original survey as employed. From Table 3, 
we estimate this value under the assumption that the 
reconciled reinterview is unbiased, by dividing n^y divided 
by «., (332/17,681 = 0.0188), where n.j is defined pre
viously, withy now corresponding to the classification status 
in the reconciled reinterview. Using the expected value of 
these two frequencies from section 2, we can write an 
expression for the expectation of the estimate in large 
samples as follows: 

E{"2i'n.i) 

_' ' lPl2l( l -P221-P23.)^"2( l -Pl .2-P.32)P212^( l- ' ' l -^2)Pl23p213 

^i^^-hirhii^^^iKi^^^-^1-^2)^213 

71, (1-P, „ -P,3 , ) 
^Pl2.-P. 

T t . d - p j j , - P j 3 , ) + n jp2, j + (1-n,-; t2)P2,3 

' t2( l -P.12-Pl32)p212^( l- t . - t2)Pl23P2.3 

J l , ( l - p 2 j , -Pj3,) +7t2p2,2 + (1 -7t, -7t2)p2,3 
(1) 

From (I) it follows that, if the reconciled reinterview 
error rates, ^^y "̂"̂  equal to zero, that this estimator is 
unbiased. However, if the reconciled reinterview is not 
perfect, then the bias in the estimator depends on the 
prevalence rates in the population studied. As a result, if the 
actual original survey error rates are in fact equal in the two 
subpopulations studied, and the reconciled survey classi
fications are not perfect, the estimated original survey 
error rates for the two populations will differ. Therefore, 
one cannot use the similarities or differences in the 
estimated error rates for males and females from earlier 
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papers, to justify or to contradict the assumptions used 
here. 

We have also conducted a sensitivity analysis ofthe Hui 
and Walter (1980) method for dichotomous responses 
(Sinclair 1994), that indicates that the procedure is sensitive 
to a violation in the equal error rate assumption, in some 
circumstances, but the procedure is quite robust in others. 
Further research is needed to develop reinterview procedures 
and analytical techniques, to relax the restrictive 
assumptions currently required in the analysis of the 
reinterview data. 

It should be noted that Chua and Fuller (1987) also 
obtained estimates of the 3-outcome classification errors in 
the 1977-1980 CPS 25% sample reinterview data. Analo
gous to our results, their study found that the largest error 
rates were associated with classifying the truly unemployed. 
Poterba and Summers (1995) and Singh and Rao (1995) also 
found this group to be the hardest to classify. Because all 
models examined, indicated that the overall misclassification 
rate of an unemployed individual is around 20%, future 
reinterviews might focus on understanding why these rates 
are so high. Hopefully, this will lead to an improved survey. 

A potential use ofthe "adjusted" estimates in Table 4, is 
in a sensitivity analysis of the literature (e.g., Abowd and 
Zellner 1985; Poterba and Summers 1995) on gross flows, 
and labour market dynamics, which assumed that the 
reconciled interview was perfect. This is equivalent to their 
adoption of the estimates in the next to the last column of 
Table 3. Similarly, estimates ofthe classification errors may 
be incorporated in procedures, for estimating probit and logit 
models with misclassified response variables (Hausman and 
Morton 1994), and in the development of formal statistical 
procedures for survey data (Rao and Thomas 1991). It 
should be emphasized, that all the estimates adjusting for 
misclassification, are still in the research phase, and that the 
ertor rates are not yet estimated with sufficient accuracy, to 
adjust the regular survey data, especially as a new question
naire and new interviewing procedures were introduced as 
of January 1994 (Bureau of Labour Statistics 1993). 
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TECHNICAL APPENDIX A 

A Review ofthe Hui and Waiter Method 

The Hui and Walter method was developed for the 
evaluation of diagnostic tests. The advantage of the 
technique is that, it allows the researcher to measure the error 

rate in a given test, without requiring the comparison test to 
be error-free. To accomplish this task, the procedure uses 
two populations (or subpopulations) with different preva
lences, to estimate the parameters. The data from such a 
study, can be summarized in a 2 x 2 table as given in Figure 
A below. This Table for a specific subpopulation, is indexed 
by the letter g. We will denote the frequency of cases from 
subpopulation g, that have a classification from the first test, 
of status /•(/• = 1 for those having the trait, and / = 2 for 
those not having the trait), and from the second test of status 
y (/ = I or 2), by n... Let TC denote the true unknown preva
lence rate ofthe trait, and let â  and p^ denote the unknown 
false positive and false negative rates. These error rates are 
indexed by the letter r, where r = I corresponds to the 
outcome from the first test, and r = 2 for the second test, 
(which, in our context, r = I corresponds to the original 
interview, and r = 2 to a reinterview). The false positive 
rate, â  refers to the probability, that the evaluation from the 
r-th test, will classify the person as positive when in tioith the 
person should have been classified as negative. Similarly, 
the false negative rate, p^, is the probabiUty that evaluation 
from the r-th test will classify the case as negative, when the 
case has the trait. One (1) minus each of these parameters, 
reflects to the specificity and sensitivity of the test (or 
survey) classification procedures, respectively. 

Test 1 Outcome 
(Original Survey) 

Positive 

Negative 

Total 

Positive 

CeUl 

Cen2 

"•. 

Test 2 Outcome 
(Reinterview) 

Negative 

CeUS 

Cen4 

"•2 

Total 

" . • 

"2-

n„ 

Figure A. Cross-classification of Test 1 and Test 2 Outcomes 

Assuming the errors of the first and second tests are 
independent of each other (given the true state), the expected 
probabilities, denoted by P.j associated with the cell 
frequencies given in Figure A, for a given subpopulation g 
are as follows: 

For 

Cell 1 P^„ = ;t̂ (I -p, p(I -p, p . (1 -V(a,,.,a2,P 

Cell 2 P^,, = VPuXl-P2,g) ^ (1 - \ ) (1 -«i.g)(«2.g) 

Cell 3 /'g,3 = K^{1 -p, p p,^ . (I -V(«,.P(1 -Hg) 

CeU4 /'g22 = VP..gP2,g)*(l-V(l-°.,g)(l-°2,g)- (A.I) 

From (A.I), we observe that we have a total of five 
parameters, but only three independent cell entries (or 
degrees of freedom), from which to estimate them. 
Therefore, the number of parameters must be reduced. 
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the estimators, derived from the estimated asymptotic 
information matrix, are given in Hui and Walter's (1980) 
paper. 

To reduce the parameters, Hui and Walter first, assume 
that, the proportion of cases with the trait, differs by 
subpopulation, which implies that, ti^^n^. Secondly, they 
require that two subpopulations can be found, such that the 
error rates for each test are the same for both subpopulations. 
The error rates associated with the two tests are allowed to 
differ. For two subpopulations, this implies that in (A.I), 
Pr ~ Pr,i ~ Pr,2' ^^^ °r " '*r,i""r.2' ^'^^ Pi ' 'P2' ^"'̂  Adjusting the Reported Unemployment Ratcs 

TECHNICAL APPENDIX B 

a, * a^. Under these conditions, the number of parameters 
reduces to six, (two prevalence rates, one for each 
subpopulation, and two error rates each for test 1 and test 2). 
Given that the two 2 x 2 tables contain six degrees of 
freedom, estimation is possible. Notice that if 7i, = Jij, and 
the ertor rates were the same in both subpopulations, then the 
probabilities in (A.I) would be the same for both 
subpopulations, so we would really have one table, and 
estimation would not be possible. Weighted nonlinear least 
squares estimates under the Hui and Walter model, can be 
computed using the Gauss Newton algorithm from the SAS 
Nonlinear Regression (NLIN) procedure. With this 
approach, one can express the observed frequencies, n.., in 
terms of the total sample size, «.., multiplied by the 
probabilities in expression (A.I). Hui and Walter also 
present the closed formed estimators given in (A.2), 
expressed in terms ofthe observed ceU probabiUties denoted 
by A 

gij 

a. = 

Pr = 

(PrlPM-PrlP-rl-*P2ll-Plll^D) 

2E^ 

(Pr-2Pf2- -PnPf-2 ^Pl22 - P222 ̂  ^) 

2E. 
(A.2) 

where, 

' ' = 2 i f r = l, '= = I i f r = 2 

2 2 

Pg'j ~ ^Pgij ' Pg'' - ^Pgij ' 
/=! ]=l 

. _ I ^ t;^gl.(PM -P21) ^PgMl -P21) ^P2ll -Plll^ 

^ 2 2D 

where, 

with, 

D= ± [{P11.P21. -Pi.iPui ^Piii -P2ii)^ 

^1 =P2l -Pll' ^2=P2l. -Pll.-

To evaluate the implications of the estimated error rates, 
we needed an expression for estimating the actual 
prevalence rates (the four n parameters), in terms of the 
estimated error rates and the observed prevalence rates (or 
sample frequencies), from a given survey. In this section, we 
present the formula for these computations. With this 
expression, we can use the BLS reported unemployed and 
employed prevalence rates, as the observed values to 
estimate the adjusted BLS prevalence rates. Such an 
expression is given in (B.l). 

Note that in expression (B.l), we have deleted the g-th 
subscript from the n parameters, so that the expression 
represents the prevalence rates among the general popu
lation, males and females combined. Note that, in this study, 
we have assumed that the estimated error rates are equal for 
males and females. 

Vi 

'•y^. 

1-P121-P13.-P113 P112-P1.3 

P.2.-P 123 1-Pn2-Pi32-P 123 

Vi. 

V. 

-Pn3 

-J^-P 123 (B.l) 

In this paper, we have three sets of observed values. We 
have two observed prevalence rates from the reinterview 
sample (which is a sub-sample of the full CPS sample), 
including the unreconciled reinterview sample data, and the 
reconciled reinterview data, from the response-bias study 
sample, and BLS reported prevalence rates, as observed 
from the full CPS original survey. We will concentrate our 
efforts on the first and last of these three sets of statistics, the 
unreconciled reinterview sample data, and the published 
BLS estimates. To keep these two sets separate, we will 
define. 

u; "yi-

Note that two distinct points exist in the solution set, for 
either a positive or a negative value ofD; however, only one 
ofthe values will yield reasonable estimates. Variances for 

^ / = '•y2. 
(B.2) 
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as the observed unemployed and employed prevalence rates, 
obtained from the CPS unreconciled reinterview sample 
data. The corresponding BLS reported prevalence rates 
based on the full CPS original survey weighted data, are 
defined by Uy and Ey . 

Similarly, the observed unemployment rate among those 
in the labour force, from the unreconciled reinterview 
sample data, is denoted by UEy , equal to Uy divided by 
{U •*• E^), and the observed BLS reported unemployment 
rate, is defined as UEy . 

Simplifying expression (B.I) in terms of the observed 
reinterview prevalence rates, Uy and Ey we find: 

ft,l = K''-P.13-Pu2^/-Pl13Pn2-P,13Pl32 

- P „ 3 t / ; - P , „ £ / ^ P „ 3 P „ 3 ^ P . , 3 £ / } 

(l-Pll2-Pl32-Pl23-Pl2l(l-Pl32-Pl23^Pl.3) 

-P.3l(Pll2^^.32-l)-Pn3(P..2^P.32-l)^Pl23p..2} 

ft,2=(-P.2.t^/-Pl2lPll3-P.23f^/-V-Pl23-Pl2lV 

4.22Pl23-Pl31-g/"P.3.Pl23-Pl23-g/} 

{l-Pll2-Pl32-^.23-P.2l(l-^Pl32^P.23^Pll3) 

-^13.(Pll2+Pl32-l)-Pn3(P.12^Pl32-l)+Pl23P..2}- (B.3) 

with error rate estimates, which are based on the small 
unreconciled reinterview sample sizes. In summary, once 
the substitution of Uy^ for Uy , and E for Ey into 
expression(B.4)iscompleted,weassuinethat tl^^ and Ey 
are fixed known values in this equation. Finally, the 
sampling variance associated with the difference between 
the adjusted value and the published value, which defines the 
bias in the original estimate, is computed from the sum ofthe 
variances. Hence, by assuming the published value is 
sampling variance-free, the sampling variability associated 
with the difference or bias, is simply equal to the sampling 
variability associated with the adjusted value. 

TECHNICAL APPENDIX C 

Estimating Standard Errors ofthe Adjusted 
Unemployment Rates 

For a complex function of several estimated parameters, 
the estimates ofthe variances associated with this function, 
can be computed using a Taylor series approximation as 
discussed by Wolter (1985). Suppose that the population 
parameter of interest is 7 = G(0). Where 0 represents a n 
dimensional vector of population parameters, 0 = 
{0,,..., G }̂. If G possesses continuous second derivatives, in 
an admissible range for 0 and 0-hat, then Wolter (1985) 
presents the relationship: 

Using expression (B.3), we can compute estimates ofthe 
adjusted unemployment rate among those in the labour force 
from the reinterview survey, denoted by A UEy equal to ft^gj 
divided by (ft ,+ft j)- Note the/IC/£y can be expressed 
as follows: 

/ ( ( ; £ ; = { - « ^ p , „ ( f / ; - p „ 3 < ) 

-P.32(<-P.13)-P.23(t^/-Pl.2)-P.13£/1 

{<4ll3(l*Pl.2-P.21-P.23)^Pn2(^/<-P..3) 

.p , „ ( [ / / .£ / -p„3) -£ ; /^p„34,3 , ( i / / -P„3) } . (B.4) 

Y-Y = A +R{@,@) 

Finally, to obtain the adjusted estimate of the BLS 
unemployment rate, denoted by, A UEy , we substitute the 
values of U^^ for Uy^ and Ey ^ for E^, into expression 
(B.4). Note that the estimated stanclard errors of the 

BLS 

estimates for AUEy , presented in section four, were 
computed using a Taylor series approximation method, 
(Wolter 1985). As a first step in this process, we assumed 
the variance in the published estimates of Uy and Ey 
were negligible. While this is not true, this assumption 
greatiy simplifies the computation of the variances, and 
captures the majority ofthe total variation. This assumption 
is supported by the fact, that the size of the variance of these 
estimates, given the large full CPS yearly sample sizes is 
negligible in comparison to the sampling error associated 

where. 

Ai^{%-%) 
k'l O^ii 

m e ) = ±±{II2\)^^{Q, - e,)(e, - 0,) 

e ^ A ^ e . (C.l) 

The remainder term is often regarded of littie conse
quence, and is eliminated from the relationship. Given the 
first order approximation, Wolter (1985) presents, 

MSE(7) = E[G{e) - G{e)f 

= War {A) 

dG{e) dG{e) 

UU ae^ 30, =EE Cov(0^,0.) 

=dZ,d-' (C.2) 
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d -
"k 

dG{Q) 

. ^^* . 

where disa row vector of dimension n with the elements. 

(C.3) 

Wolter calls this estimator, the first order approximation 
to the mean square error (equal to the sampling variance -i-
the bias of the estimator squared). Higher order approxi
mations can be developed, by retaining additional terms in 
the expansion. For purposes of variance estimation, we 
substitute the estimated covariance matrix for £g, and 
evaluate d at the estimated values of 0. Specifically, in our 
problem, we wish to estimate the variance associated with 
the function of the estimates in expression (C.4), given 
below. 

G(e)=G(P,„,p,3,,p,„,p,3„p„3,p,,3,(/; '-^£/")= 

{-f/;'^<'^.p„,(c/;'-^-p„3.£/'^) 

4.32(^r-Pl.3)^Pl23(<'^-P.12)-P.13gr} 

K'^^Pll3(l4n2-Pl21-P.23)^Pl.2(f/r<'^-P.13) 

4,2l(f/r<'^-Pl23)-'E^/'^^Pl234,3l(f^r-Pl23)} ^^.4) 

To create the estimates, we have assumed that the values 
D i e Df C 

of Uy and Ey are fixed {i.e., have a negligible 
sampling variance). Taking the partial derivatives of 
equation (C.4) with respect to the six error rates, and 
evaluating these expressions at the estimated values of the 
error rates, yield a vector (i which depends on the values of 
the error rate estimates and the published BLS unemployed 
and employed proportions for each year of the study. With 
our original model, that assumes the error rates are fixed 
across each year, this (i vector for the period of study, only 
varies from year-to-year for the published values. For 
illustrative purposes the estimated vector (3? for 1989 using 
the BLS published unemployed and employed prevalence 
rates of .0347 and .6329 is equal to: 

3 = 

121 

Pl31 

.07851 

.07558 

P„2 -1.2918 

p,32 -.04813 

P„3 -.64214 

123 .03884 

The estimated covariance matrix from our SAS NLIN 
analysis, which, based on the original model that assumes 
the error rates are fixed by year, and as such, is the same for 
all years under study, is given below. 

pi2l pl31 p l l2 pl32 piI3 pi 23 

1̂ 12. 

Pl3. 
Pn2 

P.32 

Pll3 

P>23 

0.000358 -4.7E-05 -3.5E-07 -2.6E-08 -3.9E-07 2.9E-07 

-4.7E-05 0.000214 -1.7E-07 -5.2E-07 -1.4E-06 -2.8E-07 

-3.5E-07 -1.7E-07 1.54E-06 2.14E-07 -2.3E-08 9.9E-10 

-2.6E-08 -5.2E-07 2.14E-07 2.37E-06 -1.5E-08 -6.1E-08 

-3.9E-07 -1.4E-06 -2.3E-08 -1.5E-08 2.4E-06 -8E-08 

2.9E-07 -2.8E-07 9.9E-10 -6.1E-08 -8.0E-08 6.1E-06 

Pre and post multiplying the vector d, by the estimated 
covariance matrix, yields an estimated variance for A UE ^^ 
for 1989 of 6.72 E-6 and a standard error of the estimate 
equal to .0026 (.26%) as given in Table 4. 
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Use of Statistical Matching Techniques 
in Calibration Estimation 

ROBBERT H. RENSSEN' 

ABSTRACT 

This article deals with an attempt to cross-tabulate two categorical variables, which were separately collected from two large 
independent samples, and jointly collected from one small sample. It was assumed that the large samples have a large set 
of common variables. The proposed estimation technique can be considered a mix between calibration techniques and 
statistical matching. Through calibration techniques, it is possible to incorporate the complex designs ofthe samples in the 
estimation procedure, to fiilfill some consistency requirements between estimates from various sources, and to obtain fairly 
unbiased estimates for the two-way table. Through the statistical matching techniques, it is possible to incorporate a 
relatively large set of common variables in the calibration estimation, by means of which the precision ofthe estimated 
two-way table can be improved. The estimation technique enables us to gain insight into the bias generally obtained, in 
estimating the two-way table, by sole use ofthe large samples. It is shown how the estimation technique can be useful to 
impute values ofthe one large sample (donor source) into the other large sample (host source). Although the technique is 
principally developed for categorical variables Y and Z, with a minor modification, it is also applicable for continuous 
variables yandZ. 

KEY WORDS: Consistency between estimates; General regression estimator; Imputation; Multivariate auxiliary 
information; Two-way table. 

1. INTRODUCTION 

Most statistical surveys are conducted to obtain estimates 
of simple descriptive finite population parameters. The 
estimates are often presented in tabular form, with cells 
containing estimates of population totals or subgroup totals. 
Often, data are collected on an extensive set of variables, 
producing numerous results for these variables and their 
relationships. In order to save resources and decrease 
response burden, statistical bureaus wish to reduce sample 
sizes and shorten questionnaires. They resort to adminis
trative data sources and existing large-scale sample surveys, 
or applying splitting questionnaire survey designs (see 
Raghunathan and Grizzle 1995). As a consequence, meth
ods for combining distinct data sources have become a 
popular tool in the production of statistics. Combining data 
sources can be done in many different ways; two well-
known techniques in survey sampling are statistical 
matching and calibration estimation. 

Singh, Mantel, Kinack and Rowe (1993) describe statis
tical matching as a special case of imputation in which there 
are two distinct micro-data sources containing different 
information on different units. One data source serves as a 
host or recipient file to which new information is imputed 
for each record, using data from the other source, which is 
the donor file. More specifically, they consider a host file 
A, containing information on variables {X, Y) and a donor 
file B containing information on variables {X, Z). The 
common variable Jf can be used to identify similar units in 
the two files. In general, statistical matching deals with the 

problem of completing the records in file A, by imputing 
values for Z using the information on the {X, Z) relation
ship in file B. These imputed Z-values suffer from a serious 
limitation in that, the real relationship between y and Z may 
be completely lost in the enriched host file. This limitation 
amounts to the so-called assumption of conditional inde
pendence between Y and Z given X. In order to get rid of 
this conditional independence assumption, Singh et al. 
(1993) consider a third data set (file C) representing 
auxiliary information about the full set {X, Y, Z). For 
example, this data set could come from a small-scale 
specially conducted survey. They discuss several imputa
tion methods to complete file A, by adding Z from file B 
using information from A, B, and C, on the joint relation
ships of Jf, Y, and Z. Singh et al. (1993) give many relevant 
references on statistical matching techniques. We only 
mention Rodgers (1984), Rubin (1986) and Paass (1986). 

In DeviUe and Samdal (1992), calibration estimation is 
derived as a general technique to weight sample surveys, 
taking into account the complex design of the sample and 
auxiliary information obtained from external sources (see 
also DeviUe, Samdal, and Sautory 1993). The use of 
auxiliary information, i.e., control variables, primarily aim 
at three goals: namely, reducing sampling variance, 
reducing bias due to non-response, and ensuring 
consistency between estimates from various sources with 
respect to the used control variables. There is an extensive 
body of literature on weighting methods in sample surveys. 
We refer to Bethlehem and Keller (1987), Alexander 
(1987), Lemaitie and Dufour (1987), and Zieschang (1990). 

Robbert H. Renssen, Department of Statistical Methods, Statistics Netherlands, P.O. Box 4481,6401 CZ Heerlen, Netherlands. 
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This article deals with the specific problem of how to 
estimate the cross-product between Y and Z {e.g., the 
two-way table between 7 and Z in case these variables are 
categorical or the covariance between 7 and Z in case these 
variables are continuous), using statistical matching tech
niques as well as calibration estimation. We assume that 
two data files A and B represent two large-scale sample 
surveys, possibly both obtained by a complex design. In 
order to weight the specially conducted small sample 
(file C), auxiliary information is derived from these large 
samples. It might be difficult to judge whether the large 
samples should be considered as suppliers of auxiliary 
information for the smaU sample, or vice versa. Through the 
statistical matching, it is possible to incorporate a large set 
of ^variables in the estimation procedure, despite the 
sample size of the small sample. The use of calibration 
estimation makes it possible to take account of the complex 
design of all samples in the estimation procedure, and to 
fulfiU some consistency requirements. Most of the article is 
devoted to categorical Y and Z, because of the specific 
properties of these variables. For example, it is shown that 
the marginal counts of the estimated 7Z-table, always 
coincide with estimates for the population totals of 7 and Z, 
when the ordinary calibration estimator is applied with the 
X-variables as control variables, on the first and second 
large sample respectively. Nevertheless, the proposed 
method is also applicable for continuous Y and Z. 
Throughout this article it will be assumed that X may 
consist of several variables, which may be categorical 
and/or continuous. It is argued that when the X-variables are 
highly correlated with either Y or Z, then our estimation 
method gives relatively precise estimates for the cross-
product between 7and Z, e.g., for the complete KZ-table 
when Y and Z are categorical. 

The proposed estimation procedure closely resembles a 
method presented in Singh et al. (1993, Section 2) to 
estimate a correlation coefficient between Y and Z. These 
variables are assumed to be univariate in this article. Our 
method, however, differs from theirs in that it incorporates 
the complex designs of all data sources in the estimation 
procedure and that it uses the large data sources more 
efficientiy in estimating population parameters from the 
small data source. When 7 and Z are categorical, and there 
is no Unear correlation between X and 7 as well as between 
X and Z, then our method corresponds to incomplete 
post-stratification (DeviUe and Samdal 1992, Bethlehem 
and Keller 1987). On the other hand, if 7 is perfectly 
correlated with X, then our method gives an estimated 
two-way table between 7 and Z which corresponds to an 
estimated two-way table that would have been obtained 
from file B if first the 7-values were imputed. A similar 
result holds if Z and X are perfectly correlated. 

Although combining distinct data sources across 
common variables may be fruitful from a theoretical point 
of view, in practice, complications may arise because 
common variables in the strict sense are not easily found. 

mainly due to discrepancies between definitions, methods 
of observation, and reference period. These complications 
may be reduced if the survey processes involved, are 
harmonized at an early stage. A promising application of 
the use of common variables, lies in integrated survey 
designs, such as the Dutch Household Survey on Living 
Conditions, see van Tuinen (1995), Bakker and Winkels 
(1998), Winkels and Everaers (1998), and Hofmans (1998). 
The questionnaire design of this survey has a three-shell 
stmcture. The first shell contains questions on demographic 
and socioeconomic issues, and level of education. The 
second shell contains a few easy to answer core questions, 
on every relevant aspect of living conditions. The questions 
in the third shell also concern Uving conditions, but they are 
more exhaustive than the questions in the second shell. In 
order to shorten the time it takes to answer, the third sheU 
questionnaire is split. Each respondent has to fill in the 
complete questionnaire ofthe first and second shell and one 
sub-questionnaire of tiie third sheU. On account of the third 
shell, the sample is split into sub- samples associated with 
each sub-questionnaire. The sampling design of each 
sub-sample can be described as two-phase sampling for the 
general regression estimator. 

The organization of this article is as follows. The 
theoretical framework is developed in Section 2. For this 
purpose it is convenient to discuss a calibration estimator 
for the small sample, obtaining auxiliary information from 
two distinct registrations instead of two distinct large 
samples. One registration contains values on X and 7 and 
the other registration on X and Z. Sections 2.1 to 2.4 deal 
with categorical 7- and Z-variables. In Section 2.1, the 
registrations are used to obtain a first synthetic estimate of 
the 7Z-table by regression methods of imputation. It is 
shown that this synthetic two-way table has some inter
esting properties. In Section 2.2 we propose a set of 
calibration equations to weight the small sample, based on 
these properties. We briefly discuss its relationship to 
complete and incomplete post-stratification. A numerical 
iUustration is given in Section 2.3. The linkage to statistical 
matching techniques as discussed in Singh etal. (1993) is 
given in Section 2.4. The treatment of categorical 7 and Z 
is unnecessary and restrictive. In Section 2.5, it is shown 
that the proposed weighting technique is also appUcable for 
continuous 7 and Z or for continuous 7 and categorical Z. 
In Section 3, the technique is modified, using auxiliary 
information from two distinct large samples instead of two 
registrations. By means of a simulation study, the modified 
weighting method is compared to the ttaditional incomplete 
two-way stratification. Finally, Section 4 contains some 
concluding remarks. 

2. COMBINING REGISTRATIONS ACROSS 
COMMON VARIABLES 

Consider a finite population fi = {1,..., A'̂ } of A'̂ persons 
and suppose there are two registrations available of these 
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persons. The first registration contains of each person k, a 
record with scores y,^ and x^ of the variables 7 and X re
spectively, and the second registration of each person k, a 
record with scores ẑ  and x̂ . of the variables Z and X 
respectively, k = I, ...,N. Obviously, the variable X is 
present in both registiations. We note that the records from 
both registiations correspond to the same finite population. 
The process of merging these registrations, would be like 
exact matching if X is used to compare the records in the 
one registration with those in the other registi-ation, in an 
effort to determine which pairs of records relate to the same 
population unit (see Fellegi and Sunter 1969). In this article 
we will proceed differently. 

2.1 Formulating the Synthetic Population Totals 

Let 7 denote education with p categories and Z denote 
employment with q categories. Then j^^ is a vector of order 
p, representing p dummy variables. Each dummy variable 
corresponds to a specific category; it equals 1 if person k 
belongs to that category, otherwise it equals 0. Analogously 
defined, ẑ  is a vector of order q. Further, X may be the 
result of a complete or incomplete crossing (stratification) 
of a number of characteristics {e.g., sex, age, region, marital 
status, etc.). The scores x̂  are vector valued, of order r. In 
case Xconsists of a complete stratification, x̂  represents r 
dummy variables. In the remaining of this article, r should 
be considered large in comparison with py.q. The popu
lation totals for 7 and Z are the marginal frequency distri
butions with respect to education and employment. Using 
the common variable X, predictions for 7 and Z can be 
defined with a multiple linear regression model: 

and 

y^ = B'xi^, k=l,...,N, 

Zi^=A'xi^, k= l,...,N, 

where B and A are the ordinary least squares regression 
coefficients satisfying the normal equations 

*=! j k=l 
(1) 

and 

1 N 

E 
U=i 

^k 

\ 
/ 

H ) 

N 

E 
A = l 

^ = E ^ * 2 i ' - (2) 

The superscript '/' denotes transposition. This model is 
called a linear probability model, (see Maddala 1983, 
chap. 2). There are more elegant models, such as probit and 
logit models, to predict binary variables. However, we are 
not interested in the predictions themselves, but in the 

synthetic population totals of these predictions. These totals 
appear to have nice properties if the linear prediction model 
is used, and for this reason the model can be justified. Note 
tiiat B is calculated from the first registi-ation and^ from the 
second one. By means of the common variable X and the 
regression coefficients B and A, we construct a synthetic 
registiation, which contains a record of each person k with 
scores x^,B'xi^, and A'x,^. In fact, either y^ or ẑ . may be 
added to this registration, but for our purposes this addition 
appears to be superfluous (see next paragraph). If there 
exists a vector a of order r of fixed numbers such that 
a 'xj. = 1 for all k, then the population totals of the new 
variables B 'x^ and A 'x^ equal the population totals of the 
corresponding original variables (see e.g., Bethlehem and 
Keller 1987). This can be shown easily by first pre-
multiplying the normal equations (1) and (2) by a' and 
subsequently substituting a 'x^ = 1 into the resulting 
equations. 

From the synthetic registiation, a synthetic two-way table 
can be defined by 'Lti{B'x^){A'x^)'. This synthetic 
two-way table can be considered as an approximation of the 
(simultaneous) frequency distribution YJH^iYk^k- Using the 
normal equations (1) and (2), the following identities can be 
derived: 

t(B\)(A'x,y = tyk(A\)' 
k=l k=l 

=EiB'x,)z:-
k=l 

Clearly, the crossings between 5'x^ and A 'x^, j^^ and 
A 'xj, or B 'xj^ and z ,̂ all result in identical synthetic two-
way tables. Therefore, it suffices to consider only 
T.k=i(B'Xj^){A'xi^)', and delete either j^^ or ẑ  in the 
synthetic registration. The difference between the real 
frequency distribution between 7 and Z and its synthetic 
"approximation", can be obtained from the following 
decomposition 

tyk^k=f:iB'x,){A'x,)'^ 
k=l k=l 

N 

i:iyk-B'x,){z,-A\)'. 
k=l 

(3) 

Note the strong resemblance with the ordinary variance 
decomposition in regression analysis (see e.g., Searle 1971). 
If either B 'x^ = jv̂  or ^ 'x^ = ẑ  for all k, then the two-way 
table derived from the synthetic registration, equals the real 
simultaneous frequency distribution between 7 and Z. 

Let / be a vector of appropriate order consisting of ones, 
and note that l'y^ = l and / 'ẑ ^ = 1 for all k. If there exists 
a constant a such that a'x. = l for all k, then we also have 
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l'y, = VB'x, = V Y^Yk^ E V . ' 
\k=i ) \ t=i 

^ / ' N 

2^ ^i^t 2^ ^k^k 
V t=i A *=i 

-1 

x^ = a 'x^=l 

for all k, and similarly l'zi^ = I 'A 'x^ = 1 for all k. It follows 
that 

I't {B'x,){A\y = f:(A'x,)' = t^k (4) 
i=l A=l k=l 

To be specific, let G be a real valued function as defined 
in DeviUe et al. (1993) and consider the following 
weighting type estimator for our 7Z-table: 

E ^k(y> 
*=i 

k^k ')' (6) 

ĵ  is a scalar, representing a weight assigned to where w 
person kes. Denote c?̂  = %'. A calibration estimator for 
the 7Z-table uses weights which are obtained by mini
mizing Yl^i'^k^^^J'^k) ^'^^ respect to w^ subject to a set 
of constraints on w^ for any particular sample 5. We first 
consider the following set of constraints: 

and E ^kYk = E Yk and E ^k'^k (I) 
it=i t= i t= i *=i 

-£ {B -x,) {A 'x, )'l = J2 {B \ ) =Yy,. (5) 
k=l k=l k=l 

So, the row and column totals of the synthetic two-way 
table, equal the corresponding marginal population counts 
with respect to 7 and Z. 

What remains to consider, is the condition a 'x^ = 1 for 
all k, for some constant a. This condition is satisfied if X 
represents a categorical variable. More generally, the 
condition is always satisfied if the vector X can be parti
tioned into two sub-vectors, one of which represents a 
categorical variable. 

2.2 Formulating the Constraints in Calibration 
Estimation 

Suppose a probability sample s of size n is drawn from 
the finite population O = {1,..., Â } according to a sampling 
design p{s) such that the first and second order inclusion 
probabilities Pr(Ar65) = TÎ^ and Pr{k, les) =njj are strictly 
positive. For each kes the vector of scores (x^,>'^,z^) is 
observed. Two distinct registi-ations are available to provide 
auxiliary information. The first registration contains for 
each keD., records with scores on x̂^ and y^, the second 
registration contains for each keD., scores on x̂  and Zj^. 
The objective is to estimate the YZ- table from the sample s, 
using auxiliary information from both registrations. There 
exists a wide range of weighting type estimators in the 
presence of multivariate auxiliary information. In Samdal, 
Swensson and Wretman (1992), the general regression 
estimator is extensively discussed. It implicidy defines 
sample weights, which reproduce the known population 
totals ofthe auxiUary variables, used as control variables in 
the estimator. Such a consistency property is attractive if the 
auxiliary information is used both for publication and for 
weighting. As a generalization of the general regression 
estimator, the calibration estimator is developed (DeviUe 
and Samdal 1992 and DeviUe et al. 1993). 

This (first) set of constiaints only uses the (marginal) counts 
with respect to 7 and Z. No use is made of the common 
variable X. One of the p •>• q equations is redundant, so to 
solve the minimization problem, one equation can be 
deleted. For G{wjdi^) = {'wjdf^ - 1)^, theresuUing calibra
tion estimator corresponds to incomplete two-way strati
fication as defined in Bethlehem and Keller (1987). By 
taking G(w^/Jj) = 1 + H'̂ ./(î (log(Wj./c?ĵ ) - 1), the classical 
raking ratio estimator is obtained (see e.g.. Oh and 
Scheuren 1987). Copeland, Peitzmeier and Hoy (1987) 
have compared these methods, based on data of the Current 
Population Survey. They conclude that the estimates 
produced by the two methods are very similar. In DeviUe 
et al. (1993), two other distance functions are discussed, 
which are especially interesting in view of the problem of 
extreme weights. Estimating two-way tables with con
straints on the marginal counts, is frequently performed in 
sample surveys. Often, the constraints on the marginal 
counts are required for two reasons. The first reason is to 
reduce sampling error and sampling bias, and the second 
reason is to meet consistency requirements with published 
population counts. 

Suppose that x̂  is categorical with r categories. Since 
population information about the crossings between 7 and 
X, and the crossings between Z and Xare available, we may 
also consider the following set of constraints: 

Y,^k^yk^k)=Y,yk^k and 
k=l *=1 

N 

E^t(^*^*') = E^i^A'-
k=l A=l 

The number of non-redundant constraints in this set equals 
r{p -^ q-l). For large r, this set may be not feasible 
because it contains too many constraints in comparison with 
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the sample size. Only if r is small, the set may be of 
practical interest. In the remaining of this article, this set of 
constraints will be disregarded. 

In view of incorporating a large set of common variables 
in the weighting procedure, we consider a set of constraints, 
which exploits the bivariate population information that we 
have in the synthetic table: 

Y. w,{B 'x,){A -x,)' = J2 (B 'x,){A 'xj. (H) 
k=l k=l 

This (second) set of constraints is a straightforward 
application of the theory of calibration estimators. 
Population totals of the crossing between B 'x̂ ^ and A 'x^ 
are known, so these crossings are taken as auxiliary 
variables to formulate the set of constraints. Evidently, for 
large r, the number of non-redundant constraints remains 
bounded by pxq. A major disadvantage of the resulting 
calibration weights is that, they do not necessarily 
reproduce the (marginal) population counts with respect to 
7 and Z, when applying these weights to yj^ and ẑ  
respectively. In other words, the resulting calibration 
weights do not necessarily satisfy the first set of constraints. 
Especially, if this set of constiaints is formulated in view of 
consistency requirements, this is a serious drawback. 

Therefore, as an alternative, we consider a third set of 
constraints: 

E 4 
i=l 

3' t^ / - ( r*-f i '^ i ) (2t-^^ y)-

Y(B'x,){A'x,)' 
*=i 

(ffl) 

Assuming that there exists a constant a, such that a 'x^ = I 
for all k, this set of constraints meets the consistency 
objective. Let / denote a vector of ones of appropriate order 
and recall that l'y, = l'B 'x, = l'z,=l'A 'x, = 1 for all k, 
^ Lk-iXk = Lk^iyk' and ^ T*=i^i = Zt=i^r By pre-
multiplying the third set of equations on both sides with / ' , 
we obtain the first set of constraints with respect to Z, and 
post-multiplying the third set on both sides with / gives the 
first set of constraints with respect to 7. The resulting 
calibration estimator can be expressed as 

T = t^k(yk^k) = i:(B'x,){A'x,)'. 
i=l *=1 

t^kiyk-B\){z,-A'x,y. 
k'l 

Clearly, this estimator obeys the decomposition given by 
(3). It equals the synthetically defined two-way table plus an 
adjustment term. This adjustment term is a calibration 
estimate for the difference between the real frequency 

distribution between 7 and Z and the synthetically defined 
two-way table. Similarly to tiie second set of constraints, the 
number of non-redundant consti-aints in the third set is 
bounded by pxq. 

An important special case is G{Wi^ldi^) = {yvjdj^ - 1)̂ . 
Then each estimated cell is a general regression estimate 
witii (>'^z^), vec(5'x^x/^), and \ec{y^zl- {y,^- B'x^) 
{zi^-A'x^)') as control variables in case of the first, 
second, and third set of constiaints respectively. Analytical 
formulas for the design variance ofthe general regression 
estimator, are given in e.g., Samdal et al. (1992, chap. 6). 
In fact, these formulas are approximations for large sample 
sizes. In DeviUe and Samdal (1992), sufficient conditions 
are given under which these approximations are valid for 
calibration estimators in general. 

In DeviUe et al. (1993), complete post-stratification is 
described as a calibration method for which all population 
counts with respect to the cross-classifications, are used in 
the set of constraints. An elaboration of complete post-
stratification, results in the ordinary post-stratification 
estimator, regardless of the distance function G. As an 
alternative, incomplete post-stratification is described as a 
calibration method, in which less detailed than a complete 
knowledge of all cell counts, is used in the constraint set. 
The calibration estimator defined under the first set of 
constraints, is a commonly used example of incomplete 
post-stratification. Several cases are discussed, in which 
incomplete post-stratification is preferable to complete 
post-stratification. Two of them are, lack of population 
information and, some zero or extremely small cell counts 
(see also Oh and Scheuren 1987). The calibration estimator 
defined under the second and third set of constraints, 
corresponds to complete post-stratification in the sense that, 
all crossings are used as auxiliary information. Except when 
a perfect linear relationship exists either between 7 and X, 
or between Z and X, the method differs from complete 
post-stratification in using synthetic population totals 
instead of real population counts. Complete post-stratifi
cation gives unstable results, if some sample cells have only 
few observations. In such situations, incomplete post-strati
fication is of practical interest. Similarly, the calibration 
estimator under the second and third set of constraints may 
be unstable. Analogously to incomplete post-stratification, 
one might consider using an incomplete crossing in the 
constraints instead. 

2.3 A Numerical Illustration 

We illustrate the calibration estimator under the three 
different sets of constraints by means of a hypothetical 
example. The example is based on real data from a sample 
on behalf of tiie Dutch National Travel Survey (1994). The 
sampling design is roughly a self-weighted cluster sample 
of addresses. All persons living in a selected address, are 
included in the sample. The net sample size is approx
imately 80,000 persons within 34,000 addresses. From this 
sample, two hypothetical registrations of approximately 



176 Renssen: Use of Statistical Matching Techniques 

A'̂  = 80,000 persons are constracted. In the one registration, 
age is registered (in six categories), and in the other 
registration, car ownership (in two categories). The 
common variable between the registrations is a key number 
for addresses, resuUing in r = 34,000 categories for the 
X-variable. For this particular example the synthetic 
two-way table simplifies to 

Y:(B\)iA\)' = YNjyj~^j' 
*=i 7 = 1 

where A'̂  denotes the size of they-th address, yj the mean 
ofthe six age categories of they-th address, and z the mean 
of the two car ownership categories of tbej-th address. 

In order to calculate the synthetic two-way table, both 
registrations are combined as foUows. Firstly, they are 
sorted according to the key number for addresses. Secondly, 
the address counts of the six age categories and the two car 
ownership categories are calculated. Thirdly, each address 
count of age, is hnked with its cortesponding address count 
of car ownership. By means of this synthetic registration of 
r = 34,000 addresses, the synthetic two-way table can be 
calculated. The result is shown in Table 1. This table can be 
considered as a first approximation of the real frequency 
distribution between age and car ownership. A sufficient 
condition for a close approximation, is homogeneity with 
respect to either age or car ownership within all addresses, 
i.e., all persons at the same address should either be in the 
same age category or in the same car ownership category. 
For most (multiple) person addresses, this seems to be an 
unlikely proposition. It follows from equations (4) and (5) 
that the row and column totals in table 1 coincide with the 
real (marginal) population counts of age and car ownership 
respectively. 

By means of a simple random sample of « = 1000 per
sons, the population cell counts are estimated using a 
general regression estimator. Three sets of auxiliary 
variables are used, in accordance with the three sets of 
constraints mentioned in the previous section. The estimated 
tables are given below (for convenience we have taken the 
quadratic distance measure: G(w /̂fl?̂ ) = {w^ldj^- l)^). The 
corresponding estimated standard deviations are within 
parenthesis. These estimates are.based on the usual variance 
formulas of the general regression estimator, see Samdal 
e/a/. (1992, chap. 6). 

Table 1 
Synthetic Population Totals for Crossings Between Age 

and Car Ownership 

yes 

no 

total 

1 

3461 

9827 

13288 

2 

1659 

4692 

6351 

3 

5739 

7902 

13641 

4 

10770 

17102 

27872 

5 

6536 

6424 

12960 

6 

3334 

5389 

8723 

total 

31499 

51336 

82835 

Table 2 
Estimated Population Totals for Crossings Between Age and 

Car Ownership, Satisfying the First Set of Constraints 

1 2 3 

yes 0,0, 0,0, 4968,423, 

no 13288,0, 635 l,o, 8673 ,,23, 

total 13288 6351 13641 

4 

15414 ,„„ 

12458 ,„3, 

27872 

5 

7518,45,, 

5422 ,45gj 

12960 

6 total 

3599,3,5, 31499 

5124,3,5, 51336 

8723 82835 

Table 3 
Estimated Population Totals for Crossings Between Age and 

Car Ownership, Satisfying the Second Set of Constraints 

1 total 

yes 0,0, 0,0, 4791,.,,, 13826„,„ 6887,4^, 3421 ,,2,, 28923„„„„ 

no 14385„„, 7012,5,5, 8118,5.3, 12893,™,, 5853 ,4„, 5654 ,,„., 53912 „„„5, 

total 14385„„, 7012,555, 12908 ,„„ 26718 ,,5,, 12739,4,,, 9074 „„, 82835 

Table 4 
Estimated Population Totals for Crossings Between Age and 

Car Ownership, Satisfying the Third Set of Constraints 

yes 

no 

total 

1 

0,0, 

13288 ,0, 

13288 

2 

0,0, 

6351 ,0, 

6351 

3 

5501,:», 

8139,226, 

13641 

4 

15647,22,, 

12224 (227, 

27872 

5 

6898 „„, 

6062,„„ 

12960 

6 

3453,,,, 

5270,,,, 

8723 

total 

31499 

51336 

82835 

In Table 2 the population counts are estimated according 
to the ordinary incomplete two-way stratification 
(Bethlehem and Keller 1987). There are no young people 
(age category 1 and 2) owning a car, observed in the 
sample, which is likely to be representative for the popu
lation, so these cells are estimated by zero. Due to the 
consistency requirements, i.e., the first set of constraints, it 
follows that the estimated cell counts of young people 
without a car equal the corresponding marginal cell counts. 
An attempt to improve Table 2, is to use the common 
variable address in the weighting procedure. In Table 3, the 
cell estimates are given according to the second set of 
constraints. As already mentioned in the previous section, 
the estimated row and column totals may differ from the 
real population counts. A comparison between Table 2 and 
Table 3 shows that these differences can be considerable. In 
addition, almost all estimated cell counts in Table 2 have 
smaller estimated standard deviations than the correspon
ding estimated cell counts in Table 3. So, the second set of 
constraints gives quite unsatisfactory results. The third set 
of constraints covers the first set of constiaints. This implies 
1) consistency of the estimated marginal cell counts with 
respect to the cortesponding known population cell counts, 
and 2) smaller asymptotic variances of all estimated cell 
counts. The results are shown in Table 4. Indeed, the 
estimated marginal cell counts are consistent, and the 
estimated standard deviations are at most half of the 
corresponding standard estimates given in Table 2. 
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2.4 Imputing Values of the one Registration into the 
Other Registration 

Until now, we have developed a weighting method to 
estimate a two-way table between two variables, which are 
registered in two distinct registrations. Often, one is in
terested not only in estimated two-way tables, or more 
generally, estimated linear relations, but in complete 
registrations in which both variables are simultaneously 
registered. Users of statistics find such complete data-bases 
easy to analyze. The creation of such enriched registrations 
can be seen as a special case of imputation. One registration 
serves as a host or recipient source, and the other as a donor 
source. Assuming the second registration to be the donor 
source, the problem is imputing Z-values from the second 
registration, into the first registration using the estimated 
two-way table discussed in Section 2.2, as auxiliary 
information. Statistical matching problems using data from 
a third data source, have already been considered by Rubin 
(1986) and Paass (1986). Singh et al. (1993) gives a review 
of their methods. In addition, they propose some modifica
tions to Rubin's (1986) and Paass's (1986) methods. Our 
imputation method is based on the regression method 
suggested by Rubin (1986) and Singh etal. (1993). 

After having defined predictors for the Z-variables by 
means of the regression model 

z^=A'x,^, k= l,...,N, 

where y4 is given by (2), we define new predictions for these 
variables by means of the enlarged regression model 

«'i^* ^^Yk' ^= 1 . - . ^ . 

with 

/ \ a, 

a, 
V 2) 

= 

/ 
N 

E 
i»l 

V 

^k^k ^kYk 

{Yk^k YkYk) 

-I 
N 

E 
i=l [Yk' 

Using well-known results about partial regression 
coefficients in the general linear model (see e.g., Seber 
1977), a, and a^ can be expressed as 

.4-502 

and 

E(yk-s'^k)(yk-s'x,y 

t(yk-B'x,){z,-A-x,)' 

where B and A are given by (1) and (2) respectively. They 
can be calculated from the first and second registiation. The 
partial regression coefficients should be estimated from the 
third source. We suggest 

and 

^2 

a, =A-Bd.^ 

E(yk-s'x,){y,-B\)' 
A = l 

J:^k(yk-B\){z,-A\y 
*=i 

where w^ are calibration weights which are discussed in 
Section 2.2. Based on these estimates we define new 
predictions for the Z-values: 

^k = ̂ 'i^k^^Yk^^ %*^{yk-B'^k) ' *=1'••• '^- ^'^) 

These new predictions equal the old predictions (see 
Section 2.1) plus an adjustment term. This adjustment term 
depends on the difference between the 7-value and its (old) 
prediction. It can be viewed as an attempt to improve the 
prediction for Z, however, and more important, it is a means 
to reconstruct the weighting type estimator under the third 
set of constraints (Section 2.2). Indeed, the following 
equality holds: 

tyk^"k=t(B'x,){A\y^ 
k=l k=l 

t^k(yk-B\){z,-A\y. 
k=l 

This is just the weighting type estimator under the third set 
of constiaints, if the corresponding calibration weights are 
used to estimate a^. It is easy to show that 

N , N N 

E t̂̂ 'It =E^*^/ = E^*z;. 
A = l A = l k=l 

So, also the^YZ-table can be reconstructed. At the beginning 
of this section, we assumed the second registiation to be tiie 
donor source. This choice was arbitrary. If the 7-values 
were imputed instead of the Z-values, we would have 
obtained an identical estimate for the 7Z-table. In addition, 
the AT-table could have been reconstmcted. 

The new predictions for the Z-values can be used for 
imputation. Singh et al. (1993) give algorithms for impu
tation using regression models. These Z-values can be 
imputed in the first registration in two steps. In the first 
step, the predictions given by (7) are calculated for each 
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^^k'Yk) '" ^^^ '̂̂ ^̂  registration. We have shown that the 
crossings between the 7-values and these predicted 
Z-values, can be considered as weighting type estimators. 
However, the calculated predictions have in general no 
reaUstic values, and therefore the first step is followed by a 
second step. In the second step, each predicted Z-value in 
the first registration is replaced by a live Z-value from the 
second registration, which is nearest under some Euclidean 
distance in {X, Z). 

2.5 Estimating Cross-Products for Continuous 
Y- and Z-Variables 

The consistency property of the third set of constraints 
(Section 2.2) also hold with respect to continuous 7- and 
Z-variables, provided that there exist constants a and a^ of 
proper order, such that a'y/^ = 1 and a/z^ = I for all k. To 
see this, we slightly extend the results of Section 2.1. First 
note that 

a'B'x^ = a'Y Yk^k 
k=l 

N 

Ê --̂  k-^k 

N IN ^ -1 

«'E^t^/ E^t^t 
A=l V k=l 

x^ = a'x^ = l 

(it is still assumed that there exists a constant a such that 
a 'x^ = I for all k). Similarly, it holds that a^A 'x^ = I. The 
equivalent equations of (4) and (5) for the continuous case 
are readily obtained. Consequently, pre-multiplying both 
sides of (in) with Oy gives Y!k=i'^k^k 'Y^^i^k and 
post-multiplying both sides of (III) with a^ yields 
Et=i ̂ i>'i = Y,k=iyk- ^° ' ^^^ '•'̂ '̂'d set of constraints meets 
the consistency objective, i.e., the calibration equation of 
the first set of constraints, for quite general 7- and Z-
variables. We will give two examples. 

In the first example we take >'i = (l,>'2t)' ^nd 
ẑ . = (l.Zj;^)', where both yjt ^"d z^/^ are assumed to be 
continuous. By taking a =a^ = (l,0)' we see that 
Oyy = a^z = I for all k. The cross-product between 7 and Z 
equals 

Y^Yk^i! 
k=l 

N "2* 
A = l 

N N 

^y2k E>'2t^: 
V t= l k=l 

2k 

from which the covariance between j^j* ^nd ẑ ^ is easily 
derived. This cross-product can be estimated using the third 
set of constraints. An elaboration of this set gives the 
following four constraints for this particular example: 

n n N n N 

E n=-^ ' E >^*>'2t=E y2k' E ^^22*=E ^2*. 

and 

E ^k'<y2k^2k - (>'2* - ^ 2 ^*) (^2* - A^X^)) 
k=l 

k=l 

where the regression coefficients are given by 

5, E ^••^ 
k=l 

k-^k E ^ky2k 
t=l 

and 

E ^••^ 
k=l 

k^k X.Z. 

t=l 
k'-U-

If one is specially interested in the correlation coefficient 
between y.^i^ and z.^^., then following constraints may be 
considered in addition: 

n N n N 

E ^kYlk = E ylk and Y ^k^k = E 4k-
i=l i=l t=l k=l 

In the second example, we suppose that y^^ = (l,>'2t)'' 
where y^i^ may be continuous, and ẑ  is categorical with q 
categories. By taking a = (1,0)' and a^ = I, where / is a 
vector of ones of proper order, we see that Oy y/^ = a^ ẑ  = 1 
for all k. The cross-product between 7 and Z is 

N 

E 
k=l 

Y.yk4 = 
N, K I - "2 

E y2k E y2k 
^ AeC, teC2 

E3'2i 
k€C„ 

t= l k=l k=l k=l i= l 

where C^ denotes the set of population elements belonging 
to the h-th category of Z, and Â^ the size of C^. It is 
ensured that the calibration weights according to the third 
set of constraints, satisfy the 'marginal' calibration equa
tions T!'k-i^k^k = T!l!-ih = (^i - ^g)' and T!l-.iW^y^,^ = 
Y,k=iy2k' which both may be of interest in view of 
consistency requirements. 

3. COMBINING INDEPENDENT SAMPLES 
ACROSS COMMON VARIABLES 

In the previous section, we have presented a method for 
combining two registrations across common variables, 
using auxiliary information from a small sample. In this 
section, the method is adjusted by combining two inde
pendent samples. We consider a complete registration of 
persons, two large-scale sample surveys, and a small-scale 
sample survey. The registration contains a limited set of 
variables such as sex, age, region, and marital status. These 
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variables are denoted by X. In the one large sample, the 
variables 7, U, and A'are observed, and in the other large 
sample, the variables Z, U, and X. In the small sample all 
variables, i.e., Y, Z, U, and X, are observed. The small 
sample could come from a specially conducted small-scale 
survey, or from sample overlap of the large-scale surveys. 
In Figure I, the data sources are schematically given. For 
convenience, it is assumed that all samples correspond to 
different units, i.e., it is assumed that there is no sample 
overlap. 

regiitration 

X, V.J 

x.v.z 

fint .irge lunple 

tmi.. lunple 

•ocond Iij|o lunplo 

Figure 1. Overview of the Several Data Sources 

The common variables X and U are partitioned into 
C = {X U), where A'denotes the set of common variables 
with known population totals, and U denotes the set of 
common variables with unknown population totals. All 
samples may be drawn by some complex sampling design. 
Both 7and Z are assumed to be categorical, however, as in 
Section 2.5, the suggested weighting methods are also 
applicable for continuous 7 and Z. The purpose is to 
estimate the two-way table between 7 and Z. We consider 
two estimators. One estimator is based on incomplete 
two-way stratification (analogous to the first set of 
constiaints of Section 2.2), and tiie other estimator is based 
on a mix between statistical matching and calibration 
(analogous to the third set of constraints of Section 2.2). 

3.1 Incomplete Two-Way Stratification 

First the population totals of 7 and Z are estimated by 
means of the first and second (large) sample respectively. 
These population totals are estimated in two phases. In the 
first phase, both (large) samples are weighted using A'as a 
set of control variables. This implies that both (large) 
samples are weighted such that they reproduce the known 
population totals of X, which are denoted by t^. Based on 
these weights, a pooled estimate for tiie population totals of 
Uis 

the second phase, both samples are reweighted using 
simultaneously X and U as control variables. Let v̂ ^ and 
Vjĵ  denote these second phase calibration weights. The 
resulting estimators for the population totals of 7 and Z can 
be considered as calibration estimators in two phases (see 
Renssen and Nieuwenbroek 1997, Section 6). These 
estimators are denoted by / and t^ respectively: 

^ = E ^ikYk and C = E V2kh-
ken^ ken^ 

We note that both estimators are based on a similar set of 
control variables. If the common set of variables is large, 
one may consider using a smaller subset to weight both 
samples. In general, the subset to weight the first sample 
may differ from the subset to weight the second sample. 
However, we shall assume in the sequel that both (large) 
samples are weighted according to the same set of control 
variables. 

The two-way table between 7 and Z can be estimated by 
weighting the (small) third sample, using simultaneously 7 
and Zas control variables, i.e., 

^=E ^n^k4)' 
ken^ 

where the calibration weights Wĵ  satisfy the constraints 

E M'3*J'* = ^and Y. ^3kh = fr-
ken. ken. 

This is incomplete two-way stratification, where the 
unknown population totals of 7 and Z are replaced by their 
estimates. These sets of constraints ensure precisely 
estimated marginal counts of the 7Z-table if the common 
variables C are highly cortelated with 7 and Z. 

3.2 Synthetic Two-Way Stratification 

In this section, we consider an alternative estimator for 
the 7Z-table, which also uses the (large) samples as a source 
of auxiliary information. However, instead of using 
estimated marginal counts as auxiliary information, esti
mated synthetic cell counts are used. Let B denote the 
population regression coefficient between 7 and C, which 
is estimated by the first (large) sample: 

B E ît'̂ iC*') T E vuCtyt'i-

^E 
ken, 

^u"* * (1 )̂E 
ken. 

Similarly, let A denote the population regression 
coefficient between Z and C, which is estimated by the 
second (large) sample: 

where w,̂  and Wĵ  denote the (first phase) calibration 
weights of the first and second sample, and Xe [0, 1]. In 

^ -1 

ken. 
^2k^k^k E V2k' 

ken. 
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Note that these estimated regression coefficients are based 
on the second phase calibration weights instead of the 
inclusion weights. If there exists a constant a, such that 
a'c^ = l for aUk, then we stUI have / 'B 'c^ = / ' J 'c^ = 1 
for ail k. Now, inspired by the decomposition given by (3), 
I.e., 

N N 

Y.yk4 = B'Y,i^k^l)^* 
t=l i=l 

N 

lliYk 
A = l 

B'c,){z,-A'c,y, 

we suggest estimating the two-way table in two steps. In the 
first step the first term on the right-hand side is estimated by 
substituting the population regression coefficients B and A 
by their estimates B and A. Furthermore, we suggest to 
estimate Y,c ~ Y^k^i^k^k ''y ^be pooled estimate: 

^TE V ^ 
ken, 

. ' ) - ( ! Y)E 
ken. 

'2k (c*c/). 

where Vĵ  and Vĵ  denote the (second phase) weights of the 
first and second sample and ye [0,1]. Eventually, the first 
term is estimated by B''^^A. Until now, no use of the 
third (small) sample has been made. If desired, estimates for 
B, A, and Y,c '̂ an be improved slightiy by also using the 
small sample. 

In the second step, the complete two-way table between 
7 and Z is estimated by weighting the third (small) sample 
according to the calibration estimator subject to the third set 
of constraints (see Section 2.2), where B, A, and Y,c ar^ 
replaced by their estimates B, A, and £^. The resulting 
estimator equals 

Y^,^yk<)=^'YcA-
k=l 

E>*'3*(>'* 
*=1 

B'c,){z,-A Ck)'-
(8) 

The first term on the right-hand side is an estimate for 
the synthetic two-way table. This estimate is approximately 
unbiased for the 7?-table, if the conditional independence 
assumption holds. We note that, this type of estimator is 
essentially obtained by applying the constrained statistical 
matching method (see e.g., Barr and Tumer 1980, 
Rodgers 1984, or Rubin 1986). The second term is an 
adjustment term to obtain an approximately unbiased 
estimate for the 7?-table, without this assumption. If there 
exists a constant a such that a 'c^ = I for all sampled 
elements, then we obtain by pre-multiplying both sides of 
(8) with /', the following estimator for the population total 
ofZ: 

E >̂ 3*̂ t'=| Y E ^1*^*' + (1 - Y)E ^2* /̂1 ^ = 
kenj I ten, Aenj 

E V2ic; I i = a 'I E v2iC,tc; I A=;/. 
yken^ ) y ken^ ) 

Similarly, we have by post-multiplying both sides with /, an 
estimator for the population total of 7: 

E ^ikYk = ^ 'f Y E ^uc* + (1 - Y) E VztC,] = 
I ten, ASflj I ken 

B Y E vik'^k] B E v,iC4^i|a = f 
V * ^ " i 

It follows that the marginal cell counts of the estimated 
two-way table, are the two-phase calibration estimators for 
the population totals of 7and Z as defined Section 3.1. 

3.3 A Simulation Study; Integration of Household 
Surveys 

In this subsection, we wish to compare the weighting 
techniques incomplete two-way stratification as discussed 
in subsection 3.1, and synthetic two-way stratification as 
discussed in subsection 3.2, by means of a simulation study. 
To that purpose, we use a data set, which stems from a pilot 
study ofthe Dutch Household Survey on Living Conditions, 
(see van Tuinen 1995). The data set consists of 1,085 
records of which the following variables are observed: age 
(six categories: 15-24, 25-34, 35-44, 45-54, 55-64, 65-I-), 
sex (two categories: male or female), ownership of house 
(two categories: yes or no), occupation (five categories: 
work, housekeeping, education, voluntary, other), and 
health (two categories: yes or no). On behalf of the simu
lation study, this data set is considered as a finite 
population. The population totals of age and sex are 
assumed to be known. 

In order to simulate the weighting techniques, we have 
carried out a Monte Carlo algorithm. Namely, we have 
drawn 500 samples, independently of each other, according 
to a two-phase sampling design. In the first phase, a simple 
random sample of size 20,500 is drawn with replacement. 
In this sample, age, sex, and ownership of house, are 
observed. In the second phase, the (first phase) sample is 
randomly divided into two large sub-samples of sizes 
10,000 and one small sub-sample of size 500; in the one 
large sub-sample, occupation is observed (denoted by Y), in 
the other large sub-sample, health (denoted by Z), and in the 
small sub-sample, both occupation and health are observed. 
At each run, we have estimated the two-way table between 
7 and Z, according to four weighting methods which are 
discussed next. 
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The first phase sample is weighted with a crossing 
between sex and age as control variables. This is just 
post-stratification with twelve post-strata. Based on these 
weights, population totals can be estimated for all observed 
variables in the first phase sample, and for crossings 
between them. In particular, we may reproduce the popu
lation totals for the crossing between age and sex, and 
obtain estimated population totals for the crossings between 
age, sex, and ownership of house. Now, we distinguish two 
sets of common variables to weight the large sub-samples, 
as well as to obtain an estimate for the synthetic two-way 
table between 7 and Z. The first set is a crossing between 
age and sex (12 categories) and the second set is a crossing 
between age, sex, and ownership (24 categories). For each 
simulation, this gives two different estimates for the 
marginal counts, i.e. two different estimates for the 
population totals of 7 and Z - note that both estimates are 
based on post-stratification - and two different estimates for 
the synthetic two-way table. In order to weight the small 
sub-sample, we distinguish between the weighting method 
based on incomplete two-way stratification, and the 
weighting method based on synthetic two-way strati
fication. Since two different sets of common variables are 
used to weight the large sub-samples, as well as for 
statistical matching, we obtain four sets of calibration 
weights for each simulation run with respect to the small 
sub-sample, which in turn gives for each simulation run, 
four different estimated two-way tables between 7 and Z. 
For the ease of computation, we have used the quadratic 
distance measure in the calibration estimation, implying that 
each estimated cell corresponds to a general regression 
estimate. Finally, we have taken the averages and variances 
of these two-way tables over the 500 simulations. The 
results are shown in tables 5 to 8. 

The averages over the 500 simulations are almost 
identical for the four types of estimators, as can be seen 
from these tables. Note that the given cell counts are 
rounded off. We have also calculated the real 7Z-table from 
the finite population. The real counts equal exactiy the 
averages, which are given in Table 5 (or 6). For this 
particular simulation study, we conclude that all estimators 
have a very small bias. 

The variances over these 500 simulations are given 
within the brackets. The variances ofthe estimated marginal 
counts of Tables 5 and 7 coincide, because these estimates 
are based on the same estimator. For the same reason it 
holds that the variances of the estimated marginal counts in 
tables 6 and 8 coincide. Note that the variances of the 
estimated marginal counts in tables 6 and 8 are slightly 
smaller than the variances of the estimated marginal counts 
in Tables 5 and 7, due to the larger set of common 
variables. However, for most estimated marginal counts this 
variance reduction can be considered negligible. 

Tables 5 and 6 give identical variances with respect to all 
estimated cell counts. The variances for most estimated cell 
counts in Table 7, are plainly smaller than those in tables 5 

and 6. In Table 8, this variance reduction is even greater. 
For this particular example, we conclude that the use of the 
larger set of common variables, in combination with the 
first weighting method, shghtiy reduces the variances of the 
estimated marginal counts, but leaves the variances of the 
estimated cell counts unaffected. Naturally, using the larger 
set of common variables in combination with the second 
weighting method, also shghtiy reduces the variances of the 
marginal cell counts. Finally, given a set of common vari
ables, the weighting method based on synthetic matching, 
results in smaller variances for the estimated cell counts, 
than the weighting method based on incomplete two-way 
stratification. 

Table 5 
Incomplete Two-way Stratification Combined with the First Set of 

Common Variables 

1 total 

yes 447,, 

no 

total 508,2 

232,, 

336,, 

89,2 

11(2 

100,, 

25,2 

11(1 

36,3 

59,4 

46,4 

105,, 

852,, 

233,, 

1085 

Table 6 
Incomplete Two-way Stratification Combined with the Second Set 

of Common Variables 

1 total 

yes 

no 

total 

447,, 

61„ 

508,2 

232,, 

104,, 

336,, 

89,, 

11(2 

100,, 

25,2 

36,3 

59(4 

46,4 

105,, 

852,, 

233,, 

1085 

Table 7 
Synthetic Two-way Stratitication Combined with the First Set of 

Common Variables 

1 total 

yes 

no 

total 

447,, 

61,5 

508,2 

231,, 

105,e 

336,, 

89„ 

•1(1 

100,, 

25,2 

11,1 

36,3 

59(4 

46,3 

105,, 

851,, 

234,, 

1085 

Table 8 
Synthetic Two-way Stratification Combined with the Second Set of 

Common Variables 

1 total 

yes 

no 

total 

'"'ao) 

61(52) 

508,23, 

231ao) 

105,«„ 

336,,,, 

89,,, 

11(. 

100,, 

25,, 

11(. 

36,3 

59,4 

46,3 

105,, 

851,, 

234,, 

1085 

3.4 Imputing Values of the one Large Sample into 
the Other Large Sample 

By means ofthe two large samples and the small sample, 
one may construct a synthetic sample in which the real 
7-values and predicted Z-values, and/or the predicted 
7-values and the real Z-values are simultaneously recorded. 
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We define predictions for the Y- and Z-values analogously 
to (7), namely 

A = B'c,^^' {z,-A'c,),k=l,...,n,, (9) 

and 

with 

P2 

/ , = A 'c^ + a '̂ {y^ - B 'c^), k = 1,...,«,, (10) 

"2 ^ ^ 

^''2k(h-^'^k)(h-^'Ck)' 

"3 ^ ^ 

E>^3t(>'A- '8 'Ci)(z^-i 'c ,) ' 
i= l 

and 

E^ikiyk-B'c,){y,-B'c,y 
*=1 

E>^3i(>'*-'^'ct)(z,-i'cJ 
k=l 

For each (c^,>'j) the Z-values can be imputed in the first 
large sample by means of (10), k=l,...,«,, and similarly 
for each {Ci^,Zi^) the 7-values can be imputed in the second 
large sample by means of (9), k = I,..., n^. Based on these 
imputed values, we may define the following estimates for 
the two-way table between 7 and Z: 

Jl^ikYk^'k = ' 8 ' E v i ^ c ^ c ; i + 
*=i *=i 

i:W3,(>;,- i 'c,)(z,- iV (II) 
k=l 

and 

i=l k=l 

t^3k(yk-B'c,){z,-A'c,y. (12) 
k=l 

One estimate is based on the first synthetic sample, the 
other on the second synthetic sample. By pooling the 
synthetic samples, one obtains a pooled synthetic sample of 
size «, +«2. from which a pooled estimated for the 
two-way table can be constructed. This pooled estimate 
shows a close resemblance to (8). Note that if C and Z are 
perfectly correlated, then the left-hand side of (11) reduces 
^^ UkU'^ikYk^k' '•^•' oui" estimated two-way table corres

ponds to a weighted estimated two-way table based on the 
first sample, as if the real values of Z were imputed in this 
sample. Similarly, if C and 7 are perfectiy correlated, then 
(12) reduces to TZi^2kyk^ii-

An important special case to consider, is when c is 
categorical. Then the following equalities hold true: 

E ^ i i C c ^ c / ) = E v j i C C i c / ) = diag 
ken, ken. 

^ t^ 

y'u, 

so ( I I ) and (12) coincide. Furthermore, we have for 
categorical c: 

Ev, 
ken. 

E ^2k'^kH 
ken. 

and 

E ^2kh'^l = E ^ikYk'^il-
ken^ ken^ 

Obviously, if c is categorical, then it suffices to create a 
synthetic sample, which is based on either the first synthetic 
sample or the second synthetic sample. In either case, the 
weighting type estimates for the CZ-table, the C7-table, and 
the 7Z-table, can be reconstructed. Finally, we note that the 
imputed values in all synthetic samples may be unrealistic. 
As described in Section 2.4, the calculated predictions may 
be replaced by live values according to some algorithm. 

4. SUMMARY 

In this article we presented a weighting procedure to 
combine information from distinct sample surveys. The 
linking pin between these surveys, is a set of common 
variables, (see Figure I). It is argued that these samples 
should be weighted according to a sequential structure. 
First, both large samples were weighted using ̂ a s control 
variables. Based on these weighted samples, we could 
obtain a pooled estimate for the population total of U. Then 
both large samples were reweighted using simultaneously 
Xand C/as control variables. This gave an estimate for the 
population total of 7 and Z. 

Using statistical matching techniques with X and U as 
common variables, we may also obtain an estimate for a 
synthetic two-way table between 7 and Z. Eventually, the 
small sample was weighted according to two different sets 
of control variables. The first set of control variables 
corresponded to the estimated population totals of 7 and Z, 
and the second set of control variables to the estimated 
synthetic two-way table. Using the first set of control 
variables, is strongly related to incomplete two-way 
stratification. The theoretical framework needed to develop 
the second weighting method, was discussed all through 
this article. By means of both weighting methods, the 
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7Z-table can be estimated (it is tacitiy assumed that 7 and 
Z are categorical). The marginal counts of the 7Z-table 
corresponding to the first weighting method, equal by 
definition of the calibration equations, the estimated 
population totals of 7 (which is based on the first large 
sample) and Z (which is based on the second large sample). 
It was shown, that this consistency property also holds for 
the second weighting method. A numerical study was 
conducted to evaluate the performance of the weighting 
methods with respect to the cell counts. It was found that 
both weighting fnethods yielded nearly (design) unbiased 
estimated two-way tables. The simulated (design) variances 
of the second weighting method, appeared to be smaller 
than the corresponding (design) variances of the first 
weighting method, with respect to all estimated cell counts. 
In principle, the 7- and Z-variables were assumed to be 
categorical, however, it was argued that the ideas presented 
were also applicable for continuous 7 and Z or for 
continuous 7and categorical Z. 
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Sampling on Two Occasions: Estimation of Population Total 
RAGHUNATH ARNAB' 

ABSTRACT 

Two sampling strategies have been proposed for estimating the finite population total for the most recent occasion, based 
on the samples selected over two occasions involving varying probability sampling schemes. Attempts have been made to 
utilize the data collected on a study variable, in the first occasion, as a measure of size and a stratification variable for 
selection of the matched-sample on the second occasion. Relative efficiencies of the proposed strategies have been 
compared with suitable alternatives. 

KEY WORDS: Composite estimator; Matched-sample; Sampling schemes; Sampling strategies; Varying probability 
sampling schemes. 

1. INTRODUCTION 

We very often survey the same population at regular time 
intervals to estimate the same population characteristics 
which change over time. For example, many countries 
collect data to estimate total number of unemployed 
persons, HIV infected people, immigrants etc., on an annual 
or quarterly basis. In this article, we consider a finite 
population U = {Uy ..., U.,..., U^f) of A'̂ identifiable units, 
which is supposed to be sampled over two occasions, to 
estimate the population total of a variable under study for 
the current (second) occasion. In successive sampling, one 
utilizes data collected on the previous (first) occasion 
effectively, to get an efficient strategy in consideration of 
cost, and providing an efficient estimator of the population 
total for the curtent occasion. Extensive literature is now 
available for this purpose. Singh (1967), and Avadhani and 
Sukhatme (1970) utilized information, collected on tiie first 
occasion as a measure of size, for the selection of the 
matched sample on the second occasion; while Amab 
(1991) utilized such information as a stiatification variable, 
as well as the measure of size, for selection of the sample 
on the second occasion. Recently, Prasad and Graham 
(1994) modified Raj's (1965) and Chotai's (1974) 
sampling strategies, by using information of the first 
occasion as a measure of size, for the selection of the 
matched sample in the second occasion. They found 
empirically, that one of their proposed stiategies fares better 
than that given by Chotai (1974). In this article, two 
alternative strategies are proposed. One of them utilizes 
information in the first occasion as a measure of size, and 
the other utilizes information as a measure of size and also 
as a stratification variable for selection of the matched 
sample in the second occasion. In this paper, it is shown 
that one of the proposed strategies is better than that given 
by Prasad and Graham (1994) and for the other, we do not 
have any definite theoretical conclusion. However, 
empirical evidence shows that the latter is more efficient 

than that described by Prasad and Graham (1994), as well 
as the former proposed strategy. This is possible because it 
utilizes first occasion values in all possible stages viz., 
stratification, estimation and selection of the matched 
sample in the second occasion. 

The general methods of selection of samples and 
estimation over two occasions are described below. 

1.1 Sampling Schemes 

On tiie first occasion, a sample 5,, of size n, is selected 
by some suitable sampling design, say P,, and the data 
y^. itSy is obtained where 3'i,(>'2)) '̂  ^̂ ^ value of the 
variate>' under study, for the /-th unit on the first (second) 
occasion. On the second occasion, a matched sample 
(sub-sample) s^ of size m{ = nX, assumed to be an 
integer, 0 ^ X ^ 1) is selected from J, by some suitable 
sampling scheme P^, and it is supplemented by an 
un-matched sample s^ of size u{ = n}i = n- m,\i = l -X) 
either from the entire population Uor from C//5,, the set of 
units not selected in the first occasion, by some suitable 
sampling design P^, and information y2j{i^^m' '^^u) ^" 
the second occasion is obtained. It is obvious that the cost 
of survey for the matched sampled units is expected to be 
much lower than that of the un-matched units, but for the 
sake of simplicity, we assume that the cost of the survey 
remains the same for all the units in the second occasion. 

1.2 Method of Estimation 

From the data y,., itSy and 72,. '^^m collected through 
the initial sample 5,, and the matched sample s^, an 
unbiased estimator T̂m ^^'' ̂ 2 > ^^^ population total for the 
second occasion, is formed by treating the >'i,'s, iesy as 
auxiliary information. Thus 7^^ is normally a difference, 
ratio or regression estimator. From the un-matched sample 
s^, an unbiased estimator T̂ ^ is also constructed for Tj. 
Finally, a composite estimator, a combination of 7^^ and 

Raghunath Amab, Department of Statistics, University of Durban-Westville, Private Bag-X54001, Durban-'4000, South Africa. 
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i^^, is obtained by using a suitable weight of cp (0 s 9 s 1), 
as 

72 = cp72„ + ( l -(p)72„- (1) 

The optimum value of (p = (p{X) is obtained by 
minimizing ^(y^). the variance of 7^ with respect to 9 , 
for a given value of m {i.e., X). The expressions for 9 {X) 
and V{Y.^IX), the variance of Y.^ with 9 = 9(X) are 
obtained as follows, when Y.^^ and Y.^^ are independent: 

^{'^) = {^ivj[iiv^^iivj-\ 

V{Y^IX) = [IIV^^IIVJ\ 

where V^ and V^ are variances of Tj^ and 72u 
respectively. The optimum proportion of matched sample 
X = XQ, is obtained by minimizing V{Y.^IX) with respect 
to "X. Finally, putting X = XQ in the expression for 
V{Y^IX), the minimum variance of 7^ is obtained, and it 
wiU be denoted by V^^^{Y^) = V{Y.^IXQ). Our object is to 
find a suitable strategy, which is a combination of 
P ='{Pi,P„,Pu) and f j , to control the magnitude of 
V.( 7,) to a minimum. 

1.3 A Few Sampling Strategies 

1.3.1 Avadhani and Sukhatme (1970) 

On the first occasion, the initial sample s^ of size n was 
selected by simple random sampling without replacement 
(SRSWOR) method, assuming that no auxiliary information 
is available prior to this survey. On the second occasion, the 
matched sample s^ of size m was selected from s^ by the 
Rao, Hartley and Cochran (RHC, in brief, 1962) sampling 
scheme using >',; as a measure of size for the /-th unit itSy 
assuming >'j/s are positive. Under the RHC sampling 
scheme, the selected n units of Sy are divided at random 
into m groups, each of size n/m, which is assumed to be an 
integer. From each of the selected groups, one unit is 
selected independently with probability proportional to the 
measure of size. Thus if the /-th unit, U., belongs to the 
y-th group Gj{j = I,...,m) then U. will be selected with 
the probability ^,*(/e5j) =>'i,/Z,e5 Yir The un-matched 
sample 5̂^ was selected from Uls^'hy SRSWOR. 

1.3.2 Chotai (1 

On the first occasion, the initial sample i , of size n was 
selected by the RHC scheme of samphng (assuming N/n is 
an integer), as described above with probability propor
tional to z., the size measure for the /-th unit which is, 
assumed to be positive and known for every ieU. Let 
^j = HkcGjPk' the sum of ;7^ ( = Zj^lZ, Z = E;,yZ.) values 
that belong to the random group G. (7 = 1,..., n), which is 
formed in selecting the sample 5, by the RHC method. The 
matched sample 5^ was selected from s^ by the RHC 

scheme, with normed size measure A., for the /-th unit 
/e5, (X,„ A,. = 1) assuming n/m is an integer. The 
un-matched sample, s^ was selected by the RHC sampling 
scheme with normed size measure p. for the /-th unit 
assuming N/u is an integer. Let P* {Pp = total of the 
A, {Pj) values associated with those units that belong to 
the random group from which the/-th unit was selected in 
Sm {^u) by the RHC sampling scheme with Y^ies Pj* = 1 
( ! , . / ; = !)• 

The composite estimator for 72 is given by 

Y,=tfY,^ HI-<?)¥, 
2u 

where 

^2 .=E(v / ' , ) ^ ; -

EiyufPi)Pi*-E(yii/p>)^]' 

Y2U = E (y2i'Pi)P: (2) 
;es„ 

where y is a suitably chosen constant to minimize variance 
of Tj^. Chotai (1974) derived the expression for the 
minimum variance of Tj as 

^mi„(^2) =-^[1 - / + ^ ( 1 - 5-2)] 0^/2 = K^(say) (3) 

where 

k = NI{n{N- l)},f=nlN, 

^i-EPi(yM-Y,)\t= 1,2 
itU 

Y,=l:y,r'=^'2 
itU 

(4) 
5* = E P / ( V P / - ^̂ 2) {yu/PrYi)i{<^iO,). 

ieU 

1.3.3 Arnab (1991) 

Amab (1991) presented several strategies where the 
initial sample s^ was selected by probability proportional 
to size with replacement (PPSWR) using normed size 
measure p. = z.lZ for the /-th unit. Utilizing the ascertain 
values >',.'s {izs^ on the basis of certain criteria, the n 
sample units are assigned to a suitable number of L strata. 
Let 5j^ be the sample of size «^, belonging to the h-th 
stratum (5, = U^^s,^^ and X/,"A = ")• Here, it is assumed 
that n is large enough to ensure that «^ is positive for every 
h in practice. On the second occasion, sub-samples i^^'s 
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of size ffi^'s (= v̂  "/,> /̂, is a predetermined fraction and w^ 
is assumed to be an integer) are selected from 5,^'s 
independendy, by suitable sampling schemes involving 
yij's, /ej, in the selection of matched samples 5^^'s. The 
unmatched sample s^ is selected by PPSWR method from 
the entire population U using z! as measure of size. 

1.3.4 Prasad and Graham (1994) 

Here the initial sample s, is selected by the RHC scheme 
of sampling similar to Chotai (1974) with normed size 
measure p. =z.lZ for the /-th unit. The matched sample s^ 
is selected from 5, by the RHC scheme with 

Pi =^yii^i'Pi)'Y.ia:Syii^i'Pi) ^°^ ^^^ ^'^^ ""•^' '^•^1' 
where A. is the sum of the D. values for the group 
containing the /-th unit, formed in selecting s^ by the RHC 
sampling scheme of sampling. The un-matched sample, s^ 
was selected from the entire population U by the RHC 
scheme similar to that presented by Chotai (1974). Here 
also N/n, n/m and N/u are assumed to be integers. Prasad 
and Graham (1994) proposed the following composite 
estimator for 7^: 

Y,=i?Y^H\-'9)Y, 2u 

Where 72„ = LesJy2i/Pi')Pr' K = E,«„(y2,//',)^/; 
y-2i=y2i^i'Pi'Pi(Pi')= tot^l of *^ Pi'(Pi) values 
associated with those units that belong to the random group 
from which the /-th unit was selected in s^{s^). The 
expression for minimum variance of Tj, is obtained as: 

^™„(^2) =*•(!- /WC)o^/2 = Fp.(say) (5) 

where 

C = Oj/Oj, G3 = Yi,u 9/(->'2//?/ - Y2 f' Ii = YiJYi; (6) 

k,f,02 and 7, are defined in (4). 
In Prasad and Graham's (1994) expression for V^^^ (7^), 

the divisor 2 was omitted and is obviously a typographical 
error. 

Remark 1.1 

From the strategies described in section 1.3, we note that 
the Avadhani and Sukhatme (1970) scheme does not 
require information on size measures in the whole frame, 
and hence is less demanding than the others. Chotai (1974) 
used the original size measures p. in selection, but the first 
survey values j ' l / s , /e^, were used additionally in 
estimation only. The use of additional information, p.'s, for 
the selection of the initial sample 5, will make Chotai's 
(1974) strategy more efficient than that of Avadhani and 
Suhkatme (1970). But to use the optimal estimator 7̂  for 
the Avadhani and Sukhatme (1970) strategy, one needs to 
estimate 9, the only unknown parameter. However, in 
Chotai's (1974) strategy, both the parameters 9 and y have 

to be estimated in order to use the optimum 72 • Prasad 
and Graham (1994) used both these variables in the 
selection of tiie matched sample (hence automatically in the 
estimation) and showed empirically that their strategy fares 
better than that of Chotai (1974). In addition, to gain in 
efficiency, Prasad and Graham's (1994) strategy can be 
used in practice, because 72 involves only one unknown 
parameter, 9. It should be noted that Amab (1991) first 
introduced the principle of stiatification using _y(/s, /es, as 
a stratification variable. This should always be done in 
practice whenever the necessary information is available, 
particularly in the selection of large units with marked size 
differences of the type considered in the numerical 
examples in section 3. Amab's (1991) strategy is expected 
to be more efficient than the preceding strategies, since it 
utiUzes first occasion values for stratification in addition to 
estimation. However, the optimal estimator 7̂  contains the 
several unknown parameters (for details see Amab 1991) 
which may hinder the application of the strategy especially 
when the sample size is not large enough. 

2. PROPOSED STRATEGIES 

Here two sampUng stiategies have been proposed which 
are modifications of strategies proposed by Prasad and 
Graham (1994) and Amab (1991), respectively. 

2.1 Strategy 1 

The sampling scheme for this stiategy is the same as was 
considered by Prasad and Graham (1994), and described in 
section 1.3.4. Here, only the estimator based on the 
matched sample s^, has been modified by introducing the 
original size measure into the estimation. The proposed 
modified estimator Y^ and the composite estimators for Y^ 
are as follows: 

^ 2 ; = E ( 3 ' 2 > ; ) ^ " - p E(V/A*)̂ VZ 

where z,* = z. A,. I p., y^ = y^. A. I p. ,/•,.*= r. A. I p., r. = 
y^j - P z. and P is a suitably chosen constant to minimize 
variance of 72*̂ ; Pj, P, and A,, are as described in the 
section 1.3.4; 

72 = 9 7 2 X 1 - 9 ) 4 
where 72̂  is given in (2). 

Denoting E^{V^) as unconditional expectation 
(variance) over selection ofthe sample J, , and £2 (^2) 'he 
conditional expectation (variance) over s^ when s is fixed, 
one gets the variance of Y^^ for a given value of P, as 

V{Ylm=E, V,{Ylm + V,E,{Ylm-
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Following Prasad and Graham (1994), we obtain 

EiV2(Y;j^)=k,c;\^) 

and 

where 

V,E,{Y;j=k{l-f)ol 

k. =N{n-m)l{nm{N- 1)}; 

^tm=Y9iirfqrRf 
itU 

V^JY2)=k{l-f^^C,')cll2=M,{say) (8) 

Remark 2.1 

The estimator T̂ *̂ , described in (1) is usable in practice 
when the optimum value of P = PQ is known, or a good 
guess value of PQ is available from some previous surveys. 
If instead of the regression estimator Y^^ described above, 
one uses the difference estimator Tj'J = £,^ {YV^P' )Pi ~ 
[E,cj ^^*lp')Pi- ^] based on the matched sample, the 
expression for the minimum variance of 7̂  would be as 
follows: 

^mi„(^2) =*(! - / W Q o ^ / 2 =M (say) 

= 03 + P^Oo-2pOoa35; with 

R = Y R, = Y2-^Z,^ = oJ{o^o,), 
ieU 

oo=E?,(V^/-2)2, 

ieU 

O03=E? , (V9 , - ^2 ) (V9 , -Z ) ieU 

(7) 

2 2 

O2, k and O3, q. are as in (4) and (6), respectively. The 
optimum value of p that minimizes V{Y2m^^) comes out 
as, opt p = pp = 503/00. 

Putting the optimum value of P = PQ in the expression 
of V{Y^^/p), we get the optimum value of 

v{Yim = v{Y;j^^)=k[{i -/) + (i -x)(:ix-\o\ 

where (,* = {I - ??•) C,; k, f and ^ are defined in (4) and (6) 
respectively. 

The optimum variance of Y.^ for a given value of X is 
obtained by minimizing the variance of T̂  with respect to 9 
when P = Po, and is given by 

yo,iiY,IX) = [llV{Yll%).ll{Y,^)Y' 

-1 2 [ll{k{l-f)Hl-X)(:iX}^Vil[k{l-fvi)}Vo. 

C = ( 1 + T 2 - 2 T 5 ) C , t = ao/a3 

2.1.1 Variance Estimation 

To get approximate unbiased estimators for '̂o t (^2)' 
we first present the following theorems without proof: 

Theorem 1 

V{Y^J = {kl{l-k)} \Y(y2i^/pf)PM'-Y 2m 1 
-{k2'k)YPi\r-;ip;-YPin^p: 

is an unbiased estimator of ^^(Tj*^), when PQ is known, 
k = {N-n)l{n{N- I)} and k2 = {n-m)I{m{n- I)}. 

Theorem 2 

^ i ^ 2 E , „ / ' > r ] =N{n-m)l[nm{N- I)} [o] ^ol-2o^^] 
can be estfmated unbiasedly by 

{(« - m)ln{m - 1)}Y iK'Pi ' E K'Pif Pi 

* 2 2 

where r, = f. A.I p., f. = 3̂ 2, - Z/; O3, OQ and O03 are given in 
(4) and (7) respectively. 

From the Theorem 2 we note that 

Finally, minimizing V^^^ {Y.^IX) with respect to X, the op
timum proportion of the matched sample and minimum 
variance of i^ are obtained respectively as 

optX = ô = N/^7(l+N/^') 

and 

. ^ 2 -

6o=^E VA'-E^,-P7/ '; 

^l-dY{y2,ip:-Y.y2iPiipf 

Pi' 

Pi 

and 
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630 = ^ E l^i/Pi'-i: ^iPi'Pi' 

ly2i'Pi'-Y:y2iPi'Pi']Pi 

are unbiased estimators of OQ, O3 and OJQ, respectively 
where £/= 7w(Â  - I)/(Af(OT - I ) ) . 

Estimator for K„p, (Y ÎX) 

Thus for a given value of m {i.e., X), we can suggest an 
approximate unbiased estimator of l̂ op, (7A) as, 

V,^,{YIX) = {llV^^llVJ-\ 

where V^ = ^ (T^ '^ /PQ) and V^ = an unbiased estimator of 
F(72„) = {(A -̂ u)IN{u - 1)} E , „ / ; {y,^lp^ - Y,j\ 

Estimator for K„,„( #2) 

Putting suitable estimators for A,,̂ ' and a\ in the 
expression for V^^^^ (7,) . we get an approximate unbiased 
estimator for V . {Y.) as. 

where 

Ki^Y2)=k[l-fH\-'x)KlUl^l, 

r = ( i - S ' ) ; , l = v/c*/(i W^), 

5= 603/(6^ 6 ^ ) " ^ ^ * = d ^ / d ^ 

d2=ld2(/«) + (! - l )d2(M) 

2 2 

62 (ffl) = an approximate unbiased estimator of 02 based 
on the rnatched sample s^ = lLits„^yl^,lP^PilPi ' 
{Tj*̂  - V^], d2(w) = an approximate unbiased estimator 
of O2 based on the un-matched sample 5 =u{N-l)l 
{A (̂" - 1)} Lcs/'i (YvPi'Pi - Kuf' k and/are as in (4). 

Remark 2.2 

Ideally one should estimate O2 through the optimum 
combination of d (̂»7)and b\u) and in this case, the 
optimum combination will involve unknown parameters. 
To avoid this complexity, the simpler estimator (d^) of o^ 
has been suggested above. 

2.2. Strategy 2 

The population is supposed to consist of Z, stiata with Â^ 
as the unknown size of the h-tb stratum (/? = l,...,L; 
Y,h ̂ h - ^) stipulating that one can identify the stratum to 
which a unit belongs, as soon as its value is observed on the 
first occasion. On the first occasion, the initial sample 5, of 
size n was selected by PPSWR method with normed size p. 

attached to the /-th unit. Let «̂  units of 5,, falling in the 
h-th stratum, be denoted as 5,^. Let yij{h),y2,{h) be 
respectively the value of the variate under study, of the /-th 
unit of the h-tb stratum for the first and second occasions, 
and z.{h) be the corresponding size measure. On the 
second occasion, independent samples s^^^'s of sizes 
ntf^^mn^^In (assumed an integer for every h), keeping 
Yjh^h-^ ^^ fixed, are selected by the RHC sampling 
scheme with normed size q^^ = [yij{h)l z.{h)]l 
I^ies [>'i, (A)/z,( A)] for the/-th unit of/j-th Stratum. The 
unmatched sample s^ was selected from the entire 
population by the RHC metiiod with normed size measure p. 
for the /-th unit as in strategy 1. The proposed estimators 
for 72, based on the matched-sample s^, and the 
un-matched sample 5̂^ are respectively as follows: 

Y2n,=i: ^bY^W; 72„ = E ^y2ilPi)P'i (9) 
h s.. 

where 

4 ( ^ ) = E r,{h)QJ{n,,p,^q;,.c,Y ^jih)l 

("ihPhj)'^h = "ih'"'Phj=^jWZ' 

r^{h)=y2,{h)-c,y,.{h), 

Q^. = sum of q^j for the group containing /-th unit of the 
h-tb stratum, that was formed for selection of the matched 
sample 5^̂  by RHC method, ĉ  's are constants chosen to 
minimize variance of 72m (^)- Following Amab (1991), 
the expression for variance of T̂m is obtained as: 

nY,j = 2̂ E E ibj ('•bj% - Rbfipw * <hi" 
h j=l 

Where 2̂ = (" "'")/«.?/,, =yijWlyi{h),Y,{h)= 1% 
yy{h),N^= population size of the h-tb stratum, 
P{h)=ZJZ,Z=Y!ltiZj{h). 

The optimum value of c^ that ininimizes V {Y^^) and the 
corresponding value of VIY^^) comes out respectively as 

opt c^ = c^{0) = 5„ = 5^ q^j.a^jP/,/(o^o0^3) 
7 = 1 

and [1 + («-ffi)0/ffj] Oj/". where 

% =y2jWlg,j - Y,{h), ^,j=z,.lq,j - Z„ 

E 
n -- n •' n 

o« = E %%' Ow = E ^hj?'lj'Y2W = E YyW 
y=i 7=1 

ande = i:,(l-5,^)a^3/{^.c^2}-
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The proposed composite estimator for 7^, the optimum 
proportion of matched sample and the expression for the 
minimum variance of the composite estimator 7̂  are given 
respectively by 

72 = 9 7 2 ^ ^ ( 1 - 9 ) 4 

optx = XQ = [0 - (1 -/)^ev//*]/[e +/^ev//- -1] 

= M2 (say) 

where 4 and T̂ ^ are given in (9), / ' =NI{N- I), 
PQ = 1 -XQ] k,f and O2 are given in (4). 

3. EFFICIENCIES OF THE PROPOSED 
STRATEGIES 

The proposed Strategy I is more efficient than the 
strategy proposed by Prasad and Graham (1994) in the 
sense of yielding smaller minimum variance, as 5^^ 1. 
Efficiency of the Strategy 1 increases as 6, the correlation 
between ^^2;/^/ and z.lq. increases. The efficiency of the 
Strategy 1 and Prasad and Graham's (1994) strategy 
increases as ^ decreases. The value of C = O3/O2 depends 
on the magnitudes of O3 and O2. O3 will be smaller 
(greater) than 02 if the proportionality of y.^. on y^. is 
higher (lower) than that of >'2, on z.. Obviously, Strategy 
1 can be used in practice when a good guess value of P is 
available from the past surveys. If the difference estimator 
is used in Strategy 1 instead of the regression estimator 
mentioned in Remark 2.1, then the proposed Strategy 1 
fares better than that of Prasad and Graham (1994) 
whenever 5>y20Q/o3. Strategy 1 fares better or worse 
than Chotai's (1974) strategy according to t^' ={l - 5^)C,< 
or > (1 - 6*). Here, 6* may be regarded as a correlation 
coefficient between >'2,//?̂  andy^.lp.. Inparticular, if z.'s, 
are constant, then 5' becomes the simple cortelation 
coefficient between ^'j.'s and y2j's- The expression for the 
minimum variance M2for Strategy 2 is complex and does 
not yield any simple comparison with the other strategies 
described here. However, we note that the efficiency of the 
Strategy 2 increases as the stratum correlation 6̂ 3 
increases. Following numerical examples based on the live 
data reveals that the proposed Strategy 2 fares better than 
Strategy 1 and also the altematives proposed by Prasad and 
Graham (1994) ah^ Chotai (1974). 

For numerical comparisons, three data sets are 
considered. One of them (will be called Population 1) was 
considered by Prasad and Graham (1994) which relates to 
the area under wheat in 1937 (3^2)and 1936 {y^) and 
cultivated area (z) for a set of 34 villages in India, 
compiled by Sukhatme and Sukhatme (1970). The 
population 1 is stratified in two strata in accordance with 

area under wheat in 1936 less than or more than 200 acres. 
Parameters for this population are: Â  = 34, TV, = 20, 
Â2 = 14, 5* = .7635, 5 = .3638, C, = .3811, 6 = .2436. The 
Population 2 comprises of production of cereals in South 
America for the years 1980 (z), 1988 {y^) and 1989 {y^), 
compiled from The Statistical year book. United Nations 
(1988/89). The population is stratified in two strata 
considering 1988 production of more or less than 570 
(thousand metric tons). The parameters for this popula
tion 2 are: N = 19, Â , =7, Â2 = 12,8* = -.6939, 
5 = .7666, ^ = 1.1478, 9 = .3681. The population 3 
compiled by Singh and Chaudhuri (1986) relates to the area 
under wheat in hector during 1979-80 (>'2)and 1978-79 
(jv, )and total cultivated area in 1978-79 (z) of 16 viUages 
of Meemt District. The parameters for the population 3 are: 
N = 16, Â i = 9, Â2 = 7, 5* = .7729, 5 = .1057, ^ = -3965, 
e = .2827. 

The following table shows relative efficiencies of the 
proposed Strategies 1, 2 and the one proposed by Prasad 
and Graham (1994) with respect to Chotai (1974) which are 
respectively denoted by .£, = K, /Af,, E2 = V^ IM^ and 

E, = VJV,^. 

Table 1 
Efficiencies of the Strategies 

/ 
Population 1 Population 2 Population 3 

£ , E^ £3 E^ E^ £3 £ , E^ E^ 

.05 1.0463 1.1033 1.0181 1.0196 1.0850 .8262 1.0053 1.0864 1.0030 

.10 1.0479 1.0895 1.0187 1.0202 1.0711 .8212 1.0055 1.0711 1.0031 

.15 1.0496 1.0776 1.0194 1.0209 1.0579 .8172 1.0057 1.0577 .0033 

.20 1.0514 1.0683 1.0200 1.0216 1.0519 .8123 1.0058 1.0469 1.0034 

.25 1.0533 1.0622 1.0208 1.0224 1.0490 .8071 1.0061 1.0396 1.0035 

.30 1.0554 1.0604 1.0216 1.0232 1.0530 .8017 1.0063 1.0368 1.0036 

From the above table, we note that in all the three 
populations, Sti-ategy 2 fares better than the others. It is also 
worth noting that both the proposed strategies fare better 
than those of Chotai (1974) and Prasad and Graham (1994). 
For the population I, ^ = .3811 which is quite favourable for 
Prasad and Graham's (1994) strategy, hence for the 
proposed Strategy I. Both Prasad and Graham's strategy 
and Strategy 1, performed better than Chotai's (1974) 
sti-ategy. For the population 2, ^ = 1.1478 which is high 
and unfavourable for Prasad and Graham's (1994) strategy, 
but 5 = .7666 is quite favourable to Sti-ategy 1. Hence, for 
the population 2, Prasad and Graham's strategy becomes 
less efficient than that of Chotai (1974), but the proposed 
Strategy 1 remains better. For the population 3, ^ = .3965 
which is quite favourable for Prasad and Graham (1994) but 
at the same time 5' = .7729 and this (5') favours Chotai 
(1974). In fact Chotai's (1974) strategy is marginally 
inferior to Prasad and Graham's (1994) strategy but the 
proposed Stiategy 2 remains better than both. It should be 
noted that the examples shown here are quite unusual in the 
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sense that they present low correlation between y^ and z 
(in example 1,5 = .3638 and in example 3, 5 = .1057) and 
there is a negative cortelation between y^ and y^ 
(5* = -.6939) in example 2. The correlations 5 and 8' 
are expected to be high and positive. Hence, further 
investigation is needed to compare the performances of the 
present strategies with suitable data. 

Table 2 
Sensitivity of Efficiency E- = V^IM^ 

\v\ 

0 

.2 

.4 

.6 

.8 

1.0 

1.2 

1.4 

0 

.2 

.4 

.6 

.8 

1.0 

1.2 

1.4 

0 

.2 

.4 

.6 

.8 

1.0 

1.2 

1.4 

.05 

1.028 

1.027 

1.023 

1.017 

1.010 

1.000 

.989 

.976 

1.234 

1.219 

1.180 

1.125 

1.063 

1.000 

.939 

.883 

1.002 

1.002 

1.002 

1.001 

1.001 

1.000 

.999 

.998 

.10 

1.029 

1.027 

1.024 

1.108 

1.010 

1.000 

.988 

.976 

1.241 

1.227 

1.186 

1.128 

1.065 

1.000 

.938 

.880 

1.002 

1.002 

1.002 

1.002 

1.001 

1.000 

.999 

.997 

/ 
.15 

Population 1 

1.030 

1.028 

1.027 

1.019 

1.010 

1.000 

.988 

.975 

Population 2 

1.249 

1.233 

1.191 

1.133 

1.067 

1.000 

.936 

.877 

Population 3 

1.004 

1.002 

1.002 

1.002 

1.001 

1.000 

.999 

.998 

.20 

1.031 

1.029 

1.026 

1.019 

1.011 

1.000 

.988 

.974 

1.257 

1.241 

1.197 

1.137 

1.068 

1.000 

.935 

.875 

1.003 

1.002 

1.002 

1.002 

1.001 

1.000 

.999 

.998 

.25 

1.032 

1.031 

1.027 

1.020 

1.011 

1.000 

.988 

.973 

1.266 

1.249 

1.204 

1.141 

1.070 

1.000 

.933 

.871 

1.003 

1.003 

1.002 

1.002 

1.001 

1.000 

.999 

.998 

.30 

1.033 

1.032 

1.028 

1.021 

1.011 

1.000 

.987 

.972 

1.278 

1.258 

1.211 

1.146 

1.073 

1.000 

.931 

.869 

1.003 

1.002 

1.002 

1.001 

1.001 

1.000 

.999 

.998 

To study the effect of departure of the optimum value of 
P = PQ when some guess value of P is used in Strategy I, 
one may consider sensitivity of efficiency of T̂  for the 
Strategy 1 for different choices of p, following Prasad and 
Srivenkataramana (1980). The minimum variance of 7̂  for 
the Strategy 1 when some guess value of PQ = p is used, 
produces 

^^,•„(^2lP)='t0-/+^/C••)O2/2 Mi 
P (9) 

where (;••= [1 - (1 - v2)82] C and v = I -p/pQ. 
From (9), we note that the proposed Strategy 1 with 

the guess value p fares better or worse than Prasad and 

Graham's (1994) strategy according to I v I < I or I v I > 1. 
Similarly, the proposed Strategy 1 with P = p performs 
better or worse than Chotai' s (1974) strategy according to v̂  
>or<(I - 1/8^)(1 - I /Q. Table 2 proceeds sensitivity £ • 
of the estimator 72 compared to Prasad and Graham's 
(1994) Sti-ategy where £* = V^IM-^. From tiie Table 2, die 
loss with v > I is lUcely to be more than the gain with v < 1 
for population I and population 3 but the situation is 
reverse for population 2. 

CONCLUSION 

In sampling over two occasions, one should utilize data 
collected on the first occasion to get an efficient estimator 
for the population total on the second occasion. Chotai 
(1974) used data collected on the first occasion at the stage 
of estimation, while Prasad and Graham did so at the stage 
of selection (and hence estimation) of the matched sample. 
In this article, two strategies have been proposed. The first 
one utilizes data collected at the first occasion for the 
selection of the matched sample similar to Prasad and 
Graham and formation of a regression estimator as 
determined by Chotai (1974). These make Stiategy I more 
efficient than that of Prasad and Graham. The proposed 
Strategy 2 utilized first occasion values as a stratification 
variable, measure of size for the selection of the matched 
sample for the second occasion, and formation of a 
regression type estimator involving auxiliary variable (z), 
available on the first occasion. Intuitively one should 
expect the proposed Strategy 2 to perform better than the 
others mentioned here, but no theoretical result was 
established due to the complexity of the expression for the 
minimum variance of the proposed estimator. However, 
superiority of the Strategy 2 was established through 
numerical data. 
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Confidence Intervals for Proportions With Small Expected Number 
of Positive Counts Estimated From Survey Data 

EDWARD L. KORN and BARRY I. GRAUBARD' 

ABSTRACT 

In the nonsurvey setting, "exact" confidence intervals for proportions calculated using the binomial distribution are 
frequently used instead of intervals based on approximate normality when the number of positive counts is small. With 
complex survey data, the binomial intervals are not applicable, so intervals based on the assumed approximate normality 
of the sample-weighted proportion are used, even if the number of positive counts is small. We propose a simple 
modification ofthe binomial intervals to be used in this situation. Limited simulations are presented that show the coverage 
probability of the proposed intervals is superior to that of the normality-based intervals, logit-transform intervals, and 
intervals based on a Poisson approximation. Apphcations are given involving die prevalence of Human Immunodeficiency 
Virus (HIV) based on data from the third National Health and Nutrition Examination Survey, and the proportion of users 
of cocaine based on data from the Hispanic Health and Nutrition Examination Survey. 

KEY WORDS: Binomial confidence interval; Exact confidence interval; 
interval. 

Logit transformation; Poisson confidence 

1. INTRODUCTION 

With complex survey data, the typical construction of a 
1 - a level confidence interval for a proportion of positive 
counts for a 0-1 variable is 

p±t,{l-oJ2)[vMp)] 1/2 (I.I) 

where p is tiie sample-weighted estimator ofthe proportion, 
var(^) is the variance estimator of p, and /^(l - a/2) is 
the I - a/2 quantile of a / distribution with d degrees of 
freedom. The estimator var(p) is computed using lineari
zation or a replication method to reflect the sample design, 
including the fact that p is a sample-weighted estimator. 
By complex survey data, we mean data obtained from a 
multistage design with stratified selection of clusters at the 
first stage. For such a sample design, d is usually taken to 
be equal to the number of sampled clusters minus the 
number of strata (Kom and Graubard 1990). The 
confidence interval (1.1), which we shall refer to as the 
"linear interval", is based on the assumption that p is 
approximately normally distributed. Under various 
reasonable asymptotics, this is known to be true (Krewski 
and Rao 1981). The use of the / quantile rather than a 
normal-distribution quantile in (1.1) is based on empirical 
evidence (Frankel I97I, ch. 7), and it can also be formally 
justified using strong assumptions (Kom and Graubard 
1990). 

When the expected number of positive counts is small, 
the approximate normality of p breaks down (Cochran 
1977, p. 58). For a simple random sample (or in the 
nonsurvey setting), one can avoid the normality assumption 

by using the Clopper and Pearson (1934) confidence 
interval based on the binomial distribution; see VoUset 
(1993) for a complete discussion of confidence intervals for 
proportions in the nonsurvey setting. When x positive 
responses are seen in a simple random sample of size n, the 
Clopper-Pearson I - a level confidence interval 
{Pi^{x,n), py{x,n)) can be expressed as (Johnson, Kotz 
andKempI993,p. 130): 

v.F,_,,/a/2) 
Pi^{x,n)-

Pu(^'") 

^2^^i\4^'2-) 

^ 3 ^ , v / l - « / 2 ) 

^4-^3^,^^^(1-0/2) (1.2) 

where v, =2x,V2 = 2 («-x +I),V3=2(x + 1), V4 = 2 {n-x) 
and Fj^ j (P) is the P quantile of an F distiibution with J, 
and 0̂2 degrees of freedom. For one-sided confidence 
bounds, a is used instead of a/2 in the above expressions. 
For a simple random sample, these intervals are known to 
have coverage probability greater than or equal to their 
nominal level, regardless of the expected number of 
positive counts. They are sometimes referred to as "exact" 
confidence intervals; we shall refer to them as the "binomial 
intervals". 

In this paper we suggest a simple modification to the 
binomial intervals to make them applicable for a proportion 
estimated from complex survey data. We are especially 
interested in the situation when the expected number of 
positive counts is small. Many survey analysts would not 

Edward L. Kom, BiomeUic Research Branch, EPN-739, National Cancer Institute, Bethesda, MD 20892, U.S.A.; Bany I. Graubard, Biostatistics Branch, 
National Cancer Institute, Bethesda, MD 20892, U.S.A. 
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present estimated proportions in this situation, since they 
are unreUable. For example, applying the relative-standard-
error criterion for presenting proportions in the 1996 
National Household Survey on Drug Abuse (SAMHSA 
1998), the estimated proportion of women using cocaine in 
Table 7 would not be presented. We believe such 
proportions can provide valuable information, but that their 
lack of precision needs to be explicitly stated by presenting 
confidence intervals. In section 2, we define our proposed 
confidence intervals and define intervals based on a logit 
transformation and the Poisson distribution that have been 
suggested in the hterature. Simulation results are presented 
in section 3 that compare the intervals. We find that the 
proposed intervals behave well in terms of coverage 
probability of the true proportion and in terms of their 
average width. Two applications are given in section 4 
involving large surveys, but where the number of positive 
counts is expected to be small. We end with a discussion of 
some related work that constructs confidence intervals that 
are guaranteed to attain their nominal coverage probability 
regardless of the population configuration of counts. 

2. PROPOSED AND OTHER CONFIDENCE 
LIMITS 

For a 1 - a level confidence interval based on a sample 
of size n, first define the effective sample size by 

^(1 -P) 
v^{p) 

and the degrees-of-freedom adjusted effective sample size 

by 

• ' < / / • 

^(1 -P) 
v^{p) 

t„.i{l-0il2) 

[ tAl-o.l2)j 
(2.2) 

Both n * and nj^ are set equal to n when p = 0. The 
proposed Umits substitute njj- for n, and pnjj- for x in (1.2), 
viz. Pi^{pnjj, njf) and Py{pnjj, njj). (When n is large, tiie 
I - a/2 quantile of a normal distribution can be used in 
place of /„.,(1 - a/2) in (2.2).) For estimating a confi
dence interval for a proportion on a subdomain of the 
population, the sample size n is taken to be equal to the 
sample size restricted to the subdomain. 

A heuristic justification for this procedure is as follows. 
The effective sample size (2.1) is n divided by an estimator 
of the design effect of the survey. This seems to be a 
reasonable way to incorporate the additional variability of p 
due to the complex sampling. For confidence interval 
construction, the variability ofthe variance estimator is also 
important. The second fraction in (2.2) takes into account 
the fact that var(p) will typically be more variable than a 
variance estimator that would be used for simple random 
sampling. If d is large, then this factor is close to one and 
unneeded. For small d and large n and pn^p we would like 

the proposed interval to be close to the interval (I.I), which 
is appropriate in this situation. Using the fact that 
F|̂  ^(P) s 1 + z(P) yj2{llu^llw) for large u and w (Johnson 
and Kotz 1970, p. 81), this is true, i.e., p -p^fpn^^n^j) ^ 
Pu(P"df'"df) -P - tA^ -a /2)[var(p)]"2. 

A procedure closely related to the proposed procedure 
was developed by Breeze (1990) for use in the U.K. 
General Household Survey. This procedure is based on the 
simple-random-sampling 1 - a confidence interval 
{po^ {x),po^{x)) for a Poisson random variablex, which 
can be expressed as (Johnson et al. 1993, p. 171): 

po,{x) = 0.5 Xv, (a/2) and po^(x) = 0.5 x', (1 -a /2) 

where Vj = 2x, V2 = 2 (x + 1), and Xv (P) is the p quantile of 
a X̂  distiibution with v degrees of freedom. With complex 
survey data, the confidence interval is taken to be 
{po^pn *)/« ',pOy{pn*)ln'). 

A third procedure for confidence interval constmction is 
based on a logit transform. For a I - a level confidence 
interval, the interval is 

1 
l̂  I + exp (-LLOGIT) 1 + exp (- ULOGIT) 

where 

LLOGrr = log 
ftMl/2 

l-p 
t,{l-al2) [ v ^ ( p ) ] 

P ( l -P) 

(2.1) and 

ftMl/2 
ULOGIT = l o g - 2 _ . t,{\ - a /2 ) - t ^ ^ ^ l l ^ 

''l-p "' p{l-p) 

(2.3) 

(2.4) 

These intervals, with a normal-distribution quantile instead 
of a / distribution quantile, were suggested for use with the 
1996 National Household Survey on Drug Abuse 
(SAMHSA 1998). When p = 0, in the nonsurvey setting 
one might add a small constant to the observed number of 
events and nonevents, e.g., 1/2, to be able to calculate the 
logit-transform confidence interval (Agresti 1990, pp. 249-
250). In the present setting, when p = 0, we set the 
confidence interval equal to the binomial interval 
{pAO,n),p^{0,n)). 

In applications where it is known before sampling that 
the (true) design effect will be greater than 1, various 
modifications ofthe above procedures are possible. For our 
proposal, we recommend in this situation truncating the 
degrees-of-freedom adjusted effective sample size at n. 
That is, if njj- is greater than n, we set its value to «, and 
define the lower and upper confidence limits to be 
Pi^{pn, n) and Py{pn, n). For the Breeze intervals, one 
could set « * to be « if « * > n. For the linear or logit 
intervals, one can use the simple-random-sampling variance 
estimator p ( l -p)l n in place of \^r{p) in (1.1), (2.3) and 
(2.4) if n * > « ; see SAMHSA (1998) for additional 
tmncation suggestions. The justification of these truncation 
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procedures is that the design effect may be estimated to be 
less tiian one because of instability of the variance estimator 
v^(p). This type of instability may be especially large 
because p is small (SAMHSA 1998). The effect of these 
truncation procedures is to make the confidence intervals 
wider and more conservative. In theory, one could also 
adjust the estimated effective sample sizes when it is known 
before the sampling tiiat the (true) design effect is less than 
one. However, to be conservative, we do not recommend 
doing this. 

Our focus in this paper is on confidence intervals for the 
"superpopulation" probability that the outcome Y = 1 rather 
that the finite-population proportion. That is, the target 
parameter i^ P = 'Y1.IPJ^ rather than /* = X^',, YJN, 
where Y^ has a Bernoulli distribution with parameter p^, 
and A'̂  is the population size. The simulated coverage 
probabilities given in the next section therefore refer to 
coverage of p. With this target parameter in mind, we do 
not use finite-population cortection factors when estimating 
vhr{p) for use in (2.2); additional adjustments to the 
design-based variance v'kr{p) for superpopulation inference 
are not pursued here (Kom and Graubard 1998). A referee 
suggests the possibility of a model-based approach to 
estimating a confidence interval for p. However, in our 
limited experience, such approaches yield estimators similar 
to weighted estimators and offer no advantages for 

inference (Pfeffermann and LaVange 1989; Graubard and 
Kom 1996). 

If one were interested in a confidence interval forP, we 
would recommend using the proposed intervals but with 
var(j$) in (2.2) containing the finite-population correction 
factors. A confidence interval for Y!^^^ Y^ could be 
obtained by multiplying the ends of the confidence interval 
for P by Â , if known, or by an estimator N of Â , if not 
known. (In theory, one could account for the variabiUty of N, 
but this additional variability wiU be small.) An alternative 
approach for estimating a confidence interval for P would 
be to modify the usual limits (Guenther 1983) appropriate 
for a simple random sample (based on the hypergeometric 
disti-ibution) similarly to the way the proposed intervals 
modify the binomial intervals. 

3. SIMULATIONS 

The main simulation results are presented in Tables 1-5. 
Table I presents the results of simulations in which datasets 
of 32 clusters, each with sample size 100, were simulated. 
Within cluster /, the number of positive events was 
simulated with a binomial distribution with probability 
parameter p.. In Table 1, we refer to the {p ,̂ / = I,..., 32} 
as the cluster probabilities. For the top third of the table, the 
cluster probabiUties are taken to be the constant/? = . 1, .02, 

Table 1 
Simulated Lack of Coverage (Percent) of Upper and Lower One-sided 95% Confidence Bounds for Sample Design of 

32 Clusters and 100 Observations Per Cluster; Sample Weights are 1 Or 10 with Probability 1/2 
(Noninformative Sample Weights) 

Distribution of 
cluster 
proportions' 

(1) 
.1 

.02 

.01 

.0025 

(1/2,1/2) 

.05, .15 

.01,.03 

.005, .015 

.00125, .00375 

(3/4, 1/4) 

.05, .25 

.01,.05 

.005, .025 

.00125, .00625 

Overall 
proportion 

.1 

.02 

.01 

.0025 

.1 

.02 

.01 

.0025 

.1 

.02 

.01 

.0025 

Expected 
number 
positive 

320 

64 

32 

8 

320 

64 

32 

8 

320 

64 

32 

8 

Linear 

Lower 

4.6 

3.4 

2.9 
1.6 

4.3 

3.1 

2.7 

1.5 

3.1 

2.7 

2.2 

1.3 

Upper 

5.5 

7.1 

8.0 

9.5 

5.8 

7.5 

8.6 

9.9 

7.8 

8.6 

9.8 

10.7 

Method of calculating confidence bounds 

Logit Breeze 

Lower 

5.3 

5.2 

5.4 

5.5 

5.5 

5.2 

5.2 
5.4 

4.7 

5.1 

5.0 

5.3 

Upper 

4.6 

4.6 

4.5 

1.8 

4.3 

4.8 

4.7 

2.0 

5.6 

5.3 
5.3 

2.2 

Lower 

4.5 

4.5 
4.4 

3.6 

4.3 

4.3 

4.1 

3.4 

3.4 

4.0 

3.7 

3.3 

Upper 

4.1 

4.7 

4.5 

2.2 

3.8 

4.8 

4.9 

2.3 

5.0 

54 

5.5 

2.5 

Proposed 

Lower 

4.8 
4.2 

4.0 

3.3 

4.7 

4.0 

3.7 

3.1 

3.6 

3.7 

3.3 

3.0 

Upper 

4.4 

4.4 

4.1 

1.8 

4.1 

4.5 

4.4 

2.0 

5.3 

5.0 

5.0 

2.2 

(a) Fractions in parentheses are the probabilities that the cluster proportions have the stated value. 
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Table 2 
Simulated Lack of Coverage (Percent) of Upper and Lower One-sided 95% Confidence Bounds for Sample Design of 

32 Clusters and 100 Observations Per Cluster; Informative Sample Weights are 1 or 10 (See Text) 

Distribution of 
cluster 
proportions' 

(1) 
.1 
.02 
.01 

.0025 

(1/2,1/2) 

.05, .15 

.01,.03 

.005, .015 

.00125, .00375 

(3/4,1/4) 
.05, .25 
.01,.05 
.005, .025 

.00125, .00625 

Overall 
weighted 

proportion 

.1 

.02 

.01 

.0025 

.1 

.02 

.01 

.0025 

.1 

.02 

.01 

.0025 

Expected 
number 
positive 

191.0 
36.9 
18.4 

4.6 

191.0 

36.9 
18.4 
4.6 

191.0 
36.9 
18.4 

4.6 

Linear 

Lower 

4.3 
3.3 

2.8 

1.3 

5.0 

3.0 
2.5 
1.3 

4.7 
2.6 

2.1 

1.2 

Upper 

5.9 
7.3 
8.7 

18.7 

5.0 

7.9 
9.2 

19.0 

5.7 
8.9 

10.1 
19.8 

Method of calculating confidence bounds 

Lower 

5.1 
5.3 
5.5 

6.1 

6.4 

5.4 
5.4 
6.1 

7.1 
5.2 

5.3 

5.9 

Logit 

Upper 

4.9 
4.3 

4.0 

4.8 

3.7 

4.5 
4.2 
4.9 

4.1 
5.2 

4.8 
5.3 

Breeze 

Lower 

4.2 
4.4 

4.3 

3.2 

5.1 

4.3 
4.1 
3.2 

5.1 
4.0 

3.8 
3.2 

Upper 

4.4 
4.4 

4.3 

4.8 

3.2 

4.6 
4.4 

4.9 

3.6 
5.3 

5.1 

5.3 

Proposed 

Lower 

4.6 
4.1 

3.9 

2.8 

5 4 

4.0 
3.7 
2.8 

5.5 
3.7 
3.4 

2.8 

Upper 

4.6 
4.1 

3.7 

4.8 

3.4 

4.3 
3.9 
4.9 

3.8 
4.9 

4.5 

5.3 

(a) Fractions in parentheses are the probabilities that the cluster weighted proportions have the stated value. 

Table 3 
Simulated Lack of Coverage (Percent) of Upper and Lower One-sided 95% Confidence Bounds for Sample Design of 

32 Clusters and 100 Observations Per Cluster; Unweighted Analyses 

Distribution of 
cluster 
proportions' 

(1) 
.1 

.02 

.01 

.0025 

(1/2,1/2) 

.05,.15 

.01,.03 

.005, .015 

.00125, .00375 

(3/4,1/4) 

.05, .25 

.01,.05 

.005, .025 

.00125, .00625 

Overall 
proportion 

.1 

.02 

.01 

.0025 

.1 

.02 

.01 

.0025 

.1 

.02 

.01 

.0025 

Expected 
number 
positive 

320 
64 

32 

8 

320 
64 
32 

8 

320 
64 
32 

8 

Linear 

Lower 

5.0 

3.8 

3.5 

2.5 

4.5 
3.4 

3.0 
2.2 

3.3 

2.9 
2.5 

2.0 

Upper 

4.9 

6.3 

6.8 

8.8 

5.6 

7.0 
7.6 
9.2 

7.7 

8.1 
9.2 

10.4 

Method of calculating confidence bounds 

Logit Breeze 

Lower 

5.7 

5.2 

5.6 

5.6 

5.6 

5.1 
5.2 

5.4 

4.8 
5.1 

4.9 
5.3 

Upper 

4.2 

4.5 
4.4 

3.8 

4.2 

4.8 
4.8 

4.3 

5.6 
5.2 

5.6 
5.1 

Lower 

4.9 

4.7 

4.7 
4.1 

4 5 

4.5 
4.4 

3.8 

3.5 
4.1 

3.9 

3.8 

Upper 

3.8 

4.8 
4.4 

3.9 

3.7 

4.9 

4.8 

4.3 

5.1 
5.3 
5.6 

5.1 

Proposed 

Lower 

5.2 
4.4 

4.3 

3.9 

4.8 
4.1 

3.9 

3.5 

3.7 
3.8 

3.5 
3.3 

Upper 

4.1 

4.4 

4.0 

3.9 

4.0 

4.6 
4.4 

4.3 

5.3 

4.9 
5.2 
5.1 

(a) Fractions in parentheses are the probabilities that the cluster proportions have the stated value. 
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Table 4 
Simulated Lack of Coverage (Percent) of Upper and Lower One-sided 95% Confidence Bounds for Sample Design of 32 

Clusters and 10 Observations Per Cluster; Sample Weights are 1 or 10 with Probability 1/2 
(Noninformative Sample Weights) 

Distribution of 
cluster 
proportions' 

(1) 
.2 
.1 

.025 

(1/2, 1/2) 

.1,.3 

.05,. 15 

.0125, .0375 

(3/4,1/4) 

.1,.5 

.05, .25 

.0125, .0625 

Overall 
proportion 

.2 

.1 

.025 

.2 

.1 

.025 

.2 

.1 

.025 

Expected 
number 
positive 

64 

32 

8 

64 

32 
8 

64 
32 

8 

Linear 

Lower 

4.0 

3.2 
1.7 

3.6 

3.0 
1.6 

3.1 

2.5 
1.5 

Upper 

6.6 

7.8 
10.2 

7.0 

8.1 
10.6 

7.8 
9.2 

11.5 

Method of calculating confidence bounds 

Logit Breeze 

Lower 

5.2 

5.3 
5.5 

5.0 

5.1 
5.4 

4.6 

4.8 
5.3 

Upper 

4.7 
4.4 

2.1 

4.9 

4.6 
2.1 

5.3 
5.2 
2.4 

Lower 

3.1 

3.6 
3.4 

2.8 

3.4 
3.3 

2.4 

3.0 
3.2 

Upper 

4.7 

3.8 
2.1 

3.4 

4.0 
2.1 

3.9 
4.6 
3.5 

Proposed 

Lower 

4.2 

3.9 
3.2 

3.9 

3.7 
3.1 

3.3 
3.3 
3.0 

Upper 

4.3 

4.0 
2.4 

4.4 

4.2 
2.5 

4.8 
4.8 
2.8 

(a) Fractions in parentheses are the probabilities that the cluster proportions have the stated value. 

Table 5 
Simulated Lack of Coverage (Percent) of Upper and Lower One-sided 95% Confidence Bounds for Sample Design of 32 
Clusters and 10 or 100 Observations Per Cluster with Probability 1/2; Sample Weights are 1 or 10 with Probability 1/2 

(Noninformative Sample Weights) 

Distribution of 
cluster 
proportions' 

(1) 
.1818 
.0364 

.0182 

.0045 

(1/2, 1/2) 

.0909, .2727 

.0182, .0545 

.0091,.0273 

.0023, .0068 

(3/4, 1/4) 

.0909, .4545 

.0182, .0909 

.0091,.0455 

.0023, .0114 

Overall 
proportion 

.1818 

.0364 

.0182 

.0045 

.1818 

.0364 

.0182 

.0045 

.1818 

.0364 

.0182 

.0045 

Expected 
number 
positive 

320 
64 

32 

8 

320 
64 

32 
8 

320 
64 

32 

8 

Linear 

Lower 

5.1 
4.1 

3.4 

2.0 

5.0 

3.9 
3.1 
1.8 

3.1 

2.8 
2.4 

1.6 

Upper 

6.0 
7.6 
8.5 

12.7 

6.4 

8.1 
9.3 

13.2 

9.9 

10.9 

11.5 
14.5 

Method of calculating confidence bounds 

Logit Breeze 

Lower 

5.7 
5.7 
5.7 

5.9 

6.1 
6.0 
5.8 

5.9 

4.6 

5.3 

5.4 
5.7 

Upper 

5.2 
5.2 

5.0 

3.4 

4.8 
5.1 
5.2 

3.6 

7.6 

7.3 

6.8 
4.0 

Lower 

4.2 

5.0 
4.7 

4.0 

4.2 

4.9 
4.5 

3.9 

2.5 

3.9 

3.9 
3.7 

Upper 

4.1 

5.2 

5.1 

4.3 

3.6 
5.0 

5.3 
4.5 

6.3 

7.3 

6.9 
5.0 

Proposed 

Lower 

5.2 

4.8 
4.4 

3.6 

5.2 

4.7 
4.2 
3.5 

3.3 

3.7 

3.6 
3.3 

Upper 

5.0 
4.9 

4.7 

3.8 

4.4 

4.8 
4.9 
4.0 

7.1 

7.0 

6.5 
4.4 

(a) Fractions in parentheses are the probabilities that the cluster weighted proportions have the stated value. 
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.01, or .0025, corresponding to an expected number of 
positive events equal to 320, 64, 32, or 8 out of the sample 
size of 3200. For the middle third of the table, the cluster 
probabilities are taken to be/7/2 with probabiUty 1/2 or 3pl2 
with probabiUty 1/2, with p as in the first third of the table. 
Varying the p. across the clusters induces an intracluster 
cortelation among the observations. For the middle third of 
the table, these cortelations (ignoring the sample weights) 
are .00278, .0051, .0025 and .0006 corresponding to the 
expected number of positive events being 320,64. 32, or 8, 
respectively. For the bottom third of the table, the cluster 
probabilities are taken to be pl2 with probability 3/4 or 
5/?/2 with probability 1/4, cortesponding to intraclass 
cortelations of .0833, .0153, .0076 and .0019. For all 
simulations in Table I, sample weights of I or 10 are 
randomly assigned with probability 1/2 to each observation 
(noninformative weights). 

The results presented in Table 1 are appropriate for one
sided 95% upper and lower confidence limits; ideally the 
lack-of-coverage percentages in the table should be less 
than or equal to the nominal value of 5.0. The results are 
also relevant for two-sided 90% confidence intervals, for 
which ideally both the upper and lower values in the table 
should both be <. 5.0 (Jennings 1987). For each line of the 
table, 100,000 datasets were simulated using the random 
number generator in SAS (1990, p. 631) to estimate the 
probabilities of noncoverage of the confidence limits. 

For the linear confidence bounds, the upper confidence 
limit falls below the true value more than the 5% nominal 
level. Somewhat surprisingly, this is tioie even with as large 
as an expected 320 positive counts, especially with positive 
intracluster correlation (middle and bottom third of the 
table). For the logit-transform confidence bounds, the 
noncoverage appears slightly higher than the nominal level, 
especially for the lower limits. Both the Breeze and pro
posed confidence bounds appear generally conservative. 
Simple-random-sampling binomial limits are not appro
priate for the cases simulated in Table I because of the 
sample weights and the intracluster cortelation (in the 
bon;om two-thirds of the table). This can be demonstrated 
by noting that the lack of coverage for both the upper and 
lower binomial bounds are greater than 8% for all the cases 
considered in the table (results not shown). 

As it is slightly complicated to discuss confidence 
interval "lengths" for one-sided bounds, we restrict 
discussion to the lengths of the two-sided 90% confidence 
intervals. Over aU the simulations presented in Table 1, the 
Breeze and proposed intervals are 3.3% and 4.9% wider on 
average than the logit-transform intervals. 

Table 2 presents simulation results for the same setup as 
Table 1 except that the sample weights were taken to be 
informative. This was done by setting the sample weight to 
be 10 with probability 2/3 if the event was positive and with 
probability 1/3 if the event was not positive, otherwise the 
weight was set to 1. The probability that an event was positive 
in each cluster was adjusted downwards so that the overall 

weighted proportions were the same as in Table 1. The 
results in Table 2 look similar to those in Table 1 except the 
linear and logit intervals tend to have worse coverage 
probabilities. 

Table 3 presents simulation results for the same setup as 
Table 1 except the analysis is unweighted. The results are 
very similar to the Table 1 results. Since the top third of 
Table 3 cortesponds to no intracluster cortelation, one 
could also use the simple-random-sampling binomial limits 
there. Averaging over the four situations in this third of the 
table, the proposed limits are 2.5% wider that the binomial 
limits (results not shown). As the true design effect is 1.0 
in the top third of Table 3, these simulations can be used to 
examine the effect of truncation of njj- in the proposed 
procedure. (Truncation is uncommon in the simulations in 
Table I, since the true design effects there are all >1.) 
Simulation using the proposed procedure with truncation 
lead to wider more conservative intervals than for the 
proposed intervals in the top third of Table 3. Averaging 
over the four situations considered, the proposed limits with 
tmncation are 4.0% wider than the proposed limits (results 
not shown for truncated limits). 

Table 4 presents simulation resuUs for the same setup as 
Table 1 except 10 rather than 100 observations are 
simulated within each cluster. The results are very similar 
to Table I when one compares simulations with the same 
expected number of positive events. The one exception is 
the increased conservativeness of the Breeze intervals as 
compared to the proposed method. This is because the 
overall proportions are higher in Table 4 than Table I for a 
given expected number of positive events (since the sample 
size is smaller in Table 4). The Poisson intervals of Breeze 
do not work well with proportions that are not small. For 
example, we performed a simulation cortesponding to the 
top third of Table 1 except that the overall proportion/? = .5 
with 1600 expected number of positive events. The 
simulated lower and upper lack-of-coverage percentages for 
the Breeze bounds were 1.2% and 1.3%, compared to 4.6% 
and 4.7% for the proposed method. The Breeze intervals 
were on average 37% wider than the proposed intervals. 

The Breeze intervals also do not work well when the 
number of clusters is very small, since they do not account 
for degrees of freedom of the variance estimation. For 
example, we performed a simulation cortesponding to the 
top third of Table I except that data from only 8 clusters 
were simulated (with 100 observations per cluster), and 
p.= .1 so that the expected number of positive events was 
80. The simulated lower and upper lack-of-coverage 
percentages for the Breeze bounds were 6.1% and 5.4%, 
compared to 4.7% and 4.0% for the proposed method. 

Table 5 presents simulation results for the same setup as 
Table I except the cluster sizes were taken to be 10 or 100 
with probability 1/2. The lack-of-coverage probabilities are 
larger than the nominal 5% in the bottom third of the table 
for aU the methods. The logit intervals also do not behave 
as well as in Table 1 for the top two-thirds of the table. 
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An additional set of simulations was done in which two 
clusters (each of sample size 50) were simulated from each 
32 strata. The expected numbers of positive event were 
taken as in Table 1, the weights were randomly set to 1 or 
10, and the probability of a positive event was taken to be 
different in the different strata to simulate an intracluster 
correlation. The results (not shown) were very similar to 
the results given in Table I. 

4. APPLICATIONS 

In this section we consider two applications in which the 
numbers of positive counts are small. In the first applica
tion, involving estimating HIV positivity in an unselected 
population, the numbers of positive counts are small 
because the rates of HIV infection are small. In the second 
application, involving estimating whether individuals have 
ever used cocaine, the rates are not small but the numbers 
of positive counts are small because we restrict the analyses 
to relatively small subdomains. For both applications, 
SUDAAN (Shah, Barnwell and Bieler 1995) was used to 
calculate the (design-based) standard errors of the 
proportions, and the function "FINV" in SAS (1990, 
p. 547) was used to calculate the quantiles of the F 
distribution in (1.2). 

4.1 Seroprevalence of HIV Estimated From the 
Third National Health and Nutrition 
Examination Survey (NHANES III) 

NHANES m was a survey conducted in 1988-1994 of 
the civilian noninstitutionalized population ages 2 months 
or older of the United States (National Center for Health 

Statistics 1994). An HIV test was performed on partici
pating individuals 18 years of age or older. McCJuillan, 
Khare, Karon, Schable and Vlahov (1997) studied the 
seroprevalence of HIV for individuals under the age of 60 
years and various subgroups, some of which are displayed 
in Table 6. Of the 11,202 individuals tested, 59 were 
infected. The estimated prevalence in Table 6,0.32%, is far 
from the unweighted proportion, 0.53% = 59/11202, 
because the estimated prevalence is a weighted proportion 
utilizing the sample weights. Because the testing for HIV 
was anonymous, for these analyses the sample weights were 
derived from the original NHANES HI sample weights of 
all individuals in the same stand (survey location), 
race/ethnicity group, sex, and age group (18-39 V5. 40-59) 
of the tested individual (M. Khare, personal communica
tion). The pseudo-design for variance estimation was the 
sampling of 2 pseudo-PSU's from each of 23 strata (M. 
Khare, personal communication), which is not the pseudo-
design typically used for NHANES HI variance estimation. 

The linear 90% confidence intervals for prevalence for 
the various groups in Table 6 are shifted to the left and 
shorter than the other intervals, which are similar to each 
other. The proposed intervals are very slightly wider than 
the Breeze or logit intervals. The effective sample sizes 
calculated in (2.1) are markedly smaller than the sample 
sizes because of the design effects of the survey; the 
confidence intervals based on the truncated procedures will 
therefore be identical to the ones given in Table 6. The 
differences between n ' and njj- are relatively minor. For 
this relatively rare outcome, the simulations given in section 
3 suggest that the Breeze and proposed confidence intervals 
may maintain their nominal 90% coverage probabilities 
better than the other intervals. 

Table 6 
Seroprevalence of HIV Among Adults Aged 18-59 Years Based on the Third National Health and 

Nutrition Examination Survey 

Sample size 

Number infected 

Prevalence (%) + SE 

Effective sample size 

n' 

"df 
Linear 90% con. int. 

Logit 90% con. int. 

Breeze 90% con. int. 

Proposed 90% con. int. 

Total 

11202 

59 

0.320 ±0.076 

5588 

5148 

(0.19,0.45) 

(0.21,0.48) 

(0.21,0.48) 

(0.20,0.48) 

Sex 

Male Female 

5142 

44 

0.519±0.I30 

3056 

2816 

(0.30, 0.74) 

(0.34,0.80) 

(0.32,0.79) 

(0.32,0.80) 

6060 

15 

0.127 ±0.053 

4433 

4084 

(0.04,0.22) 

(0.06,0.26) 

(0.05,0.26) 

(0.05, 0.26) 

White 

4128 

9 

0.203 ±0.071 

3976 

3664 

(0.08,0.33) 

(0.11,0.37) 

(0.10,0.37) 

(0.10,0.37) 

Race/ethnicity 

Black 

3579 

38 

1.100 ±0.247 

1779 

1640 

(0.68, 1.52) 

(0.75, 1.62) 

(0.73,1.61) 

(0.71, 1.63) 

Mex. - Amer. 

3495 

12 

0.368 ±0.134 

2039 

1880 

(0.14,0.60) 

(0.20,0.69) 

(0.18,0.68) 

(0.17,0.69) 
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Table 7 
"Ever Users" of Cocaine Among Adults Ages 12-44 Years Based on Individuals with 16 or More Years of Education 

Sampled in Hispanic Health and Nutrition Examination Survey 

Total 
Sex 

Male Female 

Sample size 

Ever-users 

Proportion (%) + SE 

Effective sample size 

«* 

Linear 90% confidence int. 

Logit 90% confidence int. 

Breeze 90% confidence int. 

Proposed 90% confidence int. 

123 

13 

11.6 ±2.5 

167.1 

132.8 

(7.0,16.2) 

(7.8.17.1) 

(7.7,17.0) 

(7.4.17.2) 

69 

10 

14.3 ±3.4 

105.0 

84.4 

(8.0, 20.7) 

(9.1,21.9) 

(8.3, 23.2) 

(8.5, 22.1) 

54 

3 

7.0 ±4.8 

28.2 

22.9 

(-1.9', 15.9) 

(1.9,22.8) 

(0.9, 24.8) 

(0.9, 22.7) 

Truncated Procedures 

Linear 90% confidence int. 

Logit 90% confidence int. 

Breeze 90% confidence int. 

Proposed 90% confidence int. 

(6.3, 17.0) 

(7.2,18.2) 

(7.1,18.1) 

(7.2, 17.5) 

(6.5, 22.2) 

(8.1,24.1) 

(7.7, 24.4) 

(8.0, 23.2) 

same as above 

(a) In practice, this interval would be presented as (0,15.9) since negative proportions are impossible. 

4.2 Use of Cocaine Among College-educated 
Individuals Sampled in the Hispanic Health and 
Nutrition Examination Survey (HHANES) 

HHANES was a survey conducted in 1982-1983 of tiiree 
Hispanic groups living in the United States (National 
Center for Health Statistics 1985). We restrict attention 
here to the Mexican-American sample. Individuals ages 
12-44 years were asked "About how old were you the first 
time you tried cocaine?". The possible answers were the 
age of the individual (in years) when he first tried cocaine, 
a "never used" category, and a "don't know" category. We 
consider estimating the proportion of "ever-users" among 
individuals who completed 16 or more years of education 
(for which there were no "don't know" responses). 

There were 13 ever-users among 123 sampled indivi
duals, with the sample-weighted proportion being 11.6% 
(Table 7). The design-based standard ertor, 2.5%, is 
estimated with only 8 degrees of freedom since the 
sampling design of HHANES can be approximated by the 
sampling of 2 PSU's from each of 8 strata (Kovar and 
Johnson 1986). The effective sample sizes are 
«* = 167.1 and «^̂ = 132.8, which are both greater than 
the sample size. This is because the estimated design effect 
is .736, so that n ' = 123/.736 = 167.1. (The second factor 
in (2.2) is 0.794.) Despite the stratification, we think that 
the true design effect is greater than I for this survey 
because of the clustering and the sample weighting. (The 
estimated design effect is estimated poorly because of the 
limited degrees of freedom.) We therefore think that the 
truncated procedures are reasonable for this application. 

Because of the limited degrees of freedom, and because 
the outcome is not rare, there are more differences between 
the logit. Breeze and proposed confidence intervals 
displayed in Table 7. Based on the simulations given in 
section 3, we recommend the proposed (truncated) 
confidence intervals. 

Our approach may appear slightly inconsistent for this 
survey in that we accept poorly-estimated effective sample 
sizes less than the sample size but tmncate those greater. 
We believe that this is a reasonable conservative approach 
to use when it is thought that the true design effect is 
probably greater than I. 

5. DISCUSSION 

Although the confidence intervals proposed here had 
adequate coverage probability for almost all the simulations 
performed, this is not guaranteed for all possible config
urations of the population, e.g., see the bottom third of 
Table 5. An example with a more serious lack of coverage 
can also easily be constructed: Suppose that the population 
consists of clusters of size 100, and that 10% ofthe clusters 
have all positive units and the remaining 90% have all zero 
units. If we sample 10 clusters as a simple random sample, 
and subsample all the units in the sampled clusters, then 
35% (= (1-.1)'°) of the time we will observe no positive 
units in the sample size of 1000. In this situation, our 
proposed intervals reduce to the usual binomial ones, so 
that, e.g., the upper 95% confidence limit for the population 
proportion is given by .003 (= l-.05""^). This implies that 
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the upper 95% confidence interval is less that the true value 
of. 10 at least 35% of the time, a serious undercoverage. 

It is possible in simple sampling situations to construct 
confidence intervals that are guaranteed to have at least 
their nominal coverage probability by considering all 
possible configurations ofthe population, and using a least-
favorable configuration for the coverage probability. For 
the hypothetical single-stage cluster sample mentioned 
above, for example, an upper 95% confidence limit could 
be given by the binomial limit based on 0 positive units out 
of 10, i.e., .26 (=l-.05""'). Such confidence intervals, which 
can become computationally intensive to calculate, have 
been studied by Gross and Frankel (1991), who also suggest 
some less computationally intensive approximations. 

The advantages of our proposed intervals over such 
approaches are (I) they are easy to calculate, (2) they 
accommodate any complex sampling design, including 
nonresponse and postsratification adjustments to the sample 
weights, (3) they will generally maintain their nominal 
coverage probability, (4) they will be less conservative than 
intervals that are guaranteed to maintain their nominal 
coverage probability for all population configurations, and 
(5) they have better properties than the linear intervals, 
logit-transform or Breeze intervals. Conclusions (2) and (5) 
are based on our simulation results, which of course do not 
cover all possible situations. More research would be 
useful in this regard. 
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4.2 They should be put on separate pages witii an indication of their appropriate placement in the text. (Normally they should 
appear near where they are first referred to). 

5. References 

5.1 References in the text should be cited with authors' names and the date of publication. If part of a reference is cited, indicate 
after the reference, e.g., Cochran (1977, p. 164). 

5.2 The list of references at Uie end of die manuscript should be arranged alphabetically and for the same author chronologically. 
Distinguish publications of the same author in the same year by attaching a, b, c to the year of publication. Journal tities 
should not be abbreviated. Follow the same format used in recent issues. 




