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In This Issue 

Dear Readers, 

I would like to share with you good news on two fronts. First, the upcoming December issue will 
mark the 25* anniversary of Survey Methodology. This issue of the joumal will be slightly larger 
than usual and will contain papers from some very prominent statisticians of our time. Second, we 
are looking into producing an electronic version of the Joumal. Our current plan is to make the 
December 1999 issue available on a special Web site. All curtent subscribers will be able to 
download the Joumal free of charge. Based on the response to this trial we will see if it is feasible 
to offer the Joumal in that medium instead of or in addition to the curtent paper version . Watch for 
further information in the next issue. As usual your comments and suggestions are always welcome. 

This issue covers a variety of topics - three papers on small area estimation, four papers on 
general estimation issues and two each on new sampling designs and data analysis. 

Kroger, Samdal and Teikari they introduce a new family of sampling designs, called Poisson 
Mixture Sampling, which comprises of a weighted mixture of Poisson and Bernoulli sampling. 
Through a Monte Carlo study using Finnish data, they empirically show that, for a variety of point 
estimators, Poisson Mixture Sampling is more efficient than the usual Poisson sampling. 

Bell and Kramer deal with the long standing problem of estimating the variance of X-11 
estimators. Each month, statistical bureaus throughout the world publish the raw estimates of 
variables along with a corresponding measure of ertor, usually a standard ertor or a coefficient of 
variation. However, the corresponding seasonally adjusted or trend estimates, obtained by 
application of the X-11 method, do not have such an associated measure of error. Bell and Kramer 
present an interesting approach that offers a practical solution to this problem. They calculate two 
sources of ertor: one resulting from the sampling error and the other resulting from the use of 
ARIMA extrapolations at the two ends of the series. 

De Haan, Opperdoes and Schut discuss sampling the items in a commodity group for input to the 
Consumer Price Index using scanner data. While most statistical offices curtently use a judgmental 
selection procedure, this naturally leads to biased estimates. The authors address the question of 
whether probability sampling would lead to better results in terms of mean square ertor, with 
interesting results. 

Pierre Duchesne considers a new class of robust calibration estimators used to obtain constrained 
weights at given intervals. The process involves changing carefully selected robust default weights 
into calibrated weights. In a brief empirical study, the new estimators are illustrated and compared 
to. estimators which have already been proposed. 

Tille investigates a repeated sampling approach which takes into account auxiliary information. 
First he generalizes the use of conditional inclusion probabilities for use with any sampling design. 
He then constructs estimators that can be viewed as optimal linear estimators, and compares them 
with the GREG-estimator. He contrasts all of the estimators via a set of simulations. Finally he 
discusses the problem of interaction between the design and the auxiliary variables. 

Prasad and Rao consider the problem of small area estimation through the use of a random 
effects model. While traditional methods rely on model-based methods to obtain estimates of small 
area means, Prasad and Rao obtain design-based (model-assisted) estimates by integrating survey 
weights. Cortesponding model-based estimators of the mean squared ertors (MSE) of the small aiea 
estimates are also derived. Through simulation results, they show that their MSE estimator has low 
bias and is quite stable. 

In their paper on small area estimation, Moura and Holt focus on multilevel models, which make 
use of auxiliary information at both the unit and the small area levels, and allow small area random 
effects for both the intercepts and the regression slopes. The fixed and random effects parameters 
are estimated using restricted iterative generalized least squares. The mean square ertor is 
approximated. Simulations show that the model can lead to better small area estimators than those 
based on simpler models, that overspecification of the model does not lead to a serious loss of 
efficiency, and that the MSE approximation and associated MSE estimator work well. 



In This Issue 

Chattopadhyay, Lahiri, Larsen and Reimnitz consider estimation of proportions for rare events 
in small areas. Their method is illustrated and compared to other approaches using data from a 
telephone survey of alcohol and drug use. Their proposed estimator combines 
census-based demographic estimates of population within age/sex/county groups with survey-based 
empirical Bayes estimates of proportions within those groups. A jackknife estimator of mean square 
error is proposed which captures variability due to estimation of model parameters. 

The problem of estimating longitudinal low income proportions from a longitudinal survey having 
a complex design is studied in Rubin-Bleuer and Kovacevic. Two design-based estimators are 
considered: one based on both the longitudinal and cross-sectional sample, called the "mixed 
estimator", and one based entirely on the longitudinal sample. Through simulation, the two 
estimators are compared in the presence of attrition using models of compensation that assume 
"missing at random" and "completely missing at random" underlying mechanisms. The results are 
illustrated using data from two longitudinal sueveys. 

Tate considers linking data on the same individuals from subsequent quarters of the British 
Labour Force Survey, a rotating panel survey in which one fifth of the sample is renewed at each 
occasion. She analyzes the various factors which can introduce bias into analyses derived from such 
linked data. In particular, she studies the possible effects of sample attrition, respondent ertors and 
proxy respondents. She also considers various approaches to adjusting for these biases. 

Finally, in a short note, Gabler, Haeder and Lahiri present a model-based justification for Kish's 
well known formula for design effects. They show that the result is actually a conservative value 
for the actual design effect. 

The Editor 
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Poisson Mixture Sampling: A Family of Designs for 
Coordinated Selection Using Permanent Random Numbers 

HANNU KROGER, CARL-ERIK SARNDAL and ISMO TEIKARI' 

ABSTRACT 

This paper introduces Poisson Mixture sampling, a family of sampling designs so named because each member of the family 
is a mixture of two Poisson sampling designs, Poisson Tips sampling and Bernoulli sampling. These two designs are at 
opposite ends of a continuous spectrum, indexed by a continuous parameter. Poisson Mixture sampling is conceived for 
use with the highly skewed populations often arising in business surveys. It gives the statistician a range of different options 
for the extent of the sample coordination and the control of response burden. Some Poisson Mixture sampling designs give 
considerably more precise estimates than the usual Poisson Tips sampling. This result is noteworthy, because Poisson Tips 
is in itself highly efficient, assuming it is based on a strong measure of size. 

KEY WORDS: Business surveys; Skewed populations; Response burden; Regression estimators. 

1. THE OBJECTIVES OF POISSON 
MIXTURE SAMPLING 

Poisson Mixture (Pomix) sampling is a family of 
sampling designs suitable for business surveys with its often 
highly skewed populations. The Pomix family contains the 
traditional Bernoulli sampling and Poisson Tcps sampling 
designs as two special cases, situated at the two extiemes of 
a range of possibilities indexed by a continuous parameter. 
This parameter, called the Bernoulli width and denoted B, 
satisfies 0 ^ B ^/^, where/^ is the predetermined expected 
sampling fraction in the "take-some" portion of the popu
lation, that is, the portion where randomized selection is 
applied. 

Random numbers, in the form of independent realiza
tions of the Unif (0,1) random variable, are commonly used 
in modem computerized sample selection. Fan, Muller and 
Rezucha (1962) introduced several sequential (unit by unit) 
drawing mechanisms based on random numbers. Now, 
Pomix sampling is based on the Permanent Random 
Number (PRN) technique, which calls for assigning at birth 
a random number to each unit in the frame (the business 
register, in the case of a business survey). The random 
number is permanent in the sense of remaining attached to 
the unit during its entire lifetime. The PRN technique 
makes it easy to achieve coordination of samples and 
control of response burden. Early references to sampling 
with the aid of PRN's are Brewer, Early and Joyce (1972) 
and Atmer, Thulin and Backlund (1975). A recent review 
of different PRN techniques, and important extensions, are 
given in Ohlsson (1995). 

Poisson 7q)s sampling has the desirable feature of 
selecting large units with relatively greater probability than 
small units, whose contribution to estimated population 
totals will in any case be relatively minor. Coordination of 

Poisson jrps samples with the aid of PRN's was introduced 
by Brewer et at., (1972) and is discussed subsequently by 
several authors, including Sunter (1977) and Ohlsson 
(1995). 

Similarly as in Poisson Ttps, Pomix sampling allows 
control of the response burden, as explained in the next 
section. Larger enterprises will be selected relatively more 
often than smaller ones. The selection is controlled through 
rotation so as to distribute the response burden. Another 
objective of Pomix sampling is for all (or a substantial 
portion) of the population units to be included in sample 
(therefore observed, so that their basic data can be updated) 
with regularity over a period of time. The objective can be, 
for example, that every enterprise should be in sample at 
least once during a ten or twelve year period. 

2. THE SELECTION PROCEDURE UNDER 
POISSON MIXTURE SAMPLING 

Denote the finite population as U = {l,...,k, ...,N], 
where the integer k represents the k-th population unit. 
Denote by y the variable of interest and by ŷ  its value for 
unit k; y^, is unknown before sample selection and 
observation. With the unit ke U is also associated a known 
positive size measure Xj^. Its role in Pomix sampling is to 
bring about a more frequent selection of the larger units; in 
addition, the size variable should be used as an auxiliary 
variable at the estimation stage. 

A sample, s, is realized from the population U. The size 
of s may be random; its expected size, denoted n, is a 
number fixed in advance. We allow s to consist of two 
nonoverlapping parts, s = s^^usj^, where s^. is called the 
certainty part of s and s^ the randomization part of s. The 
part S(., consisting of very large units selected with 

Hannu Kroger and Ismo Teikari, P.O. Box 3A, Fin-00022, Statistics Finland, Finland; Carl-Erik Samdal, 11th floor, R.H. Coats Bldg., Statistics Canada, 
Ottawa, Ontario, KIA 0T6, Canada. 
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probability one, is designated in a preliminary step, with the 
aid of the known size measures x^. One procedure for this 
is given in section 3. Depending on the population charac
teristics, it could happen that iio certainty part is designated, 
so that s^ is the empty set, but this eventuality is rather 
exceptional with the highly skewed populations usually 
occurring in business surveys. 

A frequently used synonymous term for the certainty part 
is take-all stratum. If the take-all stratum is denoted U^., a 
probabilistic description is to say that 5^ is drawn from the 
take-all stratum U^ so that s^ = U^ with probability one. 
We denote the size of s^ = U^ by n^.. 

Next, the randomization sample, s^, is selected from the 
rest of the population, Ujf = U - U^, of size N^= N - n^. 
It consists of units with inclusion probability 71̂  strictiy less 
than unity. In this paper, 5^ is drawn by Pomix sampling 
(thus it uses the PRN technique). The size of Sj^ is random; 
its expected size, denoted n^, is fixed by the equation 

In this paper, we use the term Poisson sampling for 
selection cortesponding to independent unit by unit 
Bernoulli trials with any inclusion probabilities n^. More 
specifically, by Poisson Ttps we mean Poisson sampling 
with 71̂  directiy proportional to a measure of size. Bernoulli 
sampling is the special case of Poisson sampling where all 
7t, are equal. 

For Pomix sampling, we need some more notation. For 

"R=" 

unit keUj^, define the relative size measure 

\=^R''k/jlu,''k- (2.1) 

We can from now on assume that A^ < 1 for all ke U^^, 
because if y4̂ < 1 had not been true for certain units keU^, 
then the procedure in section 3 for constructing the certainty 
part of the sample would in effect have assigned those units 
to the certainty part s^. 

We now define Pomix sampling with the aid of a two-
dimensional diagram. On the horizontal axis, a unit's PRN 
is plotted. On the vertical axis, a size-related measure, (2 ,̂ 
is plotted. At each survey occasion, a new sampling selec
tion region is designated by rotation in this diagram, and 
sample coordination is realized in the manner that we now 
describe. 

Pomix sampling is characterized by two parameters, B 
and fg, where /^ such that 0 </^ = nj^lNj^ < 1 denotes the 
fixed expected sampling rate in Uj^ = U - U^. The para
meter B, called tiie Bernoulli widtii, is such that 0 <.B <.f,^. 
For every unit k€ U^, define 

Qk 
U-P h _^-PlfR 
1 -B X, I -B 

(2.2) 

where Xy -Y,U/^J^R- ^° ' ' ^ " 0 , we have Qi^=Ai^, 
which is the size measure for the usual Poisson Ttps sam
pling. At the other extreme, B =/^, we have fi^^ = 0 for all 
keU„; in this case, size will play no role in the selection 

from Ujf, which will be seen to reduce to Bernoulli 
sampling. The measures Qj^ are used in Pomix selection of 
coordinated samples, as we now describe. 

Start with a plot of the points (r̂ ,̂ g/t) for A: e f/j,, where 
r̂  denotes the PRN attached at birth to unit k, and (2̂  is 
given by (2.2). With reference to Figure I, Pomix sampling 
is defined as follows: Include in the randomization sample, 5^, 
all units having PRN's r̂  falling in the (0, B] interval, and 
also include some units having PRN's r̂  in the {B, 1] 
interval, namely, those for which (2̂  is at least equal to a 
threshold value situated on the line joining the points {B, 0) 
and (1, 1). The selection area is thus the shaded part of 
Figure 1. Note that since Â  < 1 for all ke U^, •we have by 
(2.2) that Q^<{1 - Blf^)l{l - B) <.l for all A: e f/„, when 

For Poisson Tips sampling, the inclusion probability of 
unit ̂  is 7t̂  = A^ given by (2.1). Coordination of PRN-based 
Poisson samples was introduced by Brewer et al, (1972) 
using a graphical representation cortesponding to fi = 0 in 
Figures 1 and 2. At each occasion, the selection area is then 
a triangle; the unit's PRN on the horizontal axis is plotted 
against the unit's size measure, Â ,̂ on the vertical axis. 
Coordination is obtained by "moving the selection area 
over" to the right. Coordination of Pomix samples is 
realized in a similar fashion. 

Q A 

B 1 r 

Fig 1. Sampling at time 1 

D B 1 r 

Fig 2. Sampling at time 2 

Figures 1 and 2 illustrate how coordinated Pomix sam
pling from Uj^ = U - U^ can be carried out at two consec
utive survey occasions. In each of the two figures, the 
sample is defined as the set of units for which the point 
{''i^,Qi^) falls in the shaded area. The "starting point" on the 
PRN axis is the point to the right of which we start to count 
units for inclusion in the sample. At time 1 (Figure 1), the 
starting point is 0; at time 2 (Figure 2), the starting point is 
D. (In general, the starting point can be a randomly selected 
point in the unit interval; in other words, the sample iden
tified in Figure 2 is also the one that would be selected at 
time t = I if at that time the randomly selected starting 
point on the PRN axis had been equal to D.) 

A convenient way to achieve sample rotation is through 
the constant shift method, which implies that the starting 
point is moved over to the right by a fixed amount at every 
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new occasion of sampling; see Ohlsson (1995). The con
stant D is called the constant shift. The starting point at time 
3 would thus be 2D, and so on. 

In the following we examine Pomix sampling and esti
mation at a single occasion, and we can concentrate on 
Figure 1 (time 1), with starting point 0 on the PRN axis. 
The algorithm for Pomix sampling with parameters B and 
/^, and starting point 0, is thus as follows: From Figure 1, 
unit k is included in the randomization part, 5^, (i) if 
0<r^^fi,or(ii)iffi<r^^ 1 and Ĝ  ^ ( r^ - f i ) / (1 -B). 

Consequentiy, k is included in s^ if 

0 < r , ^ 5 + e^(l -B). 

Because r̂  ~ Unif (0,1), the first order inclusion probabili
ties under Pomix sampling are 

\ = ' 
P-'Qki^ -P) for keU^ 

for keU, 
(2.3) 

c-

It is easy to see that the inclusion probabilities satisfy the 
necessary requirement that their sum must equal the 
expected sample size fixed in advance: 

E '̂̂ . = E^, i-E^,{5-e,(i-B)} = «c-". = «-

We now note two extreme cases of the family of Pomix 
sampling schemes: Bernoulli sampling is obtained if B =f^ 
in the Pomix algorithm, because then Qi^ = 0 for all ke U^, 
and the algorithm becomes: Include unit /: e f/̂  in 5^ if 
0<r^^ /^ , which is Bernoulli sampling. Poisson Trps 
sampling is obtained if fi = 0 in the Pomix algorithm, 
because then the algorithm becomes: Include unif ke U^ 
in 5^ if 0 < r̂  < A ,̂ where Â  is given by (2.1). But this is 
Poisson Ttps sampling from f/̂ , the inclusion probability 
being TÎ  = A^, that is, directly proportional to the size 
measure x^. 

Pomix sampling is a mixture of Poisson Ttps and 
Bernoulli in that the Pomix inclusion probability, 
Tĉ  =fi + (2^(1 -B), equals a linear combination of the 
inclusion probabilities that apply under the two extreme 
designs, weighted by the relative Bernoulli width. A, =fi//^, 
such that 0 ^X<. 1. Wehave TÎ  =A,TL +(1 -X)^K^^, where 
Tî  =/yj for all k (Bernoulli) and nf' = A^ (Poisson ;tps). 

The character of Pomix sampling is determined by its 
two parameters, B and/^. To illustrate, we note from (2.1) 
and (2.3) that the inclusion probability of unit keUj^ is 
Tt̂  = 5 + (1 - Blf^Aj^. Thus, for a unit k that is large (but 
not large enough to quahfy for s^ = U^), so that Â  is near 
unity, we have, to close approximation, TÎ  = B + 1 - Blfj^. 
By contrast, for a unit that is small, so that its value A^^ is 
very near zero, we have, to close approximation, Tt̂  = B, 
independentiy of the size. For example, with /^ = 10%, the 
following Table 1 shows how the inclusion probability TÎ  
varies with B, where B = 0 is Poisson Ttps, and 
B=/„ = 0.10 is Bernoulli. 

Table 1 
Values of the Inclusion Probability 71̂̂  as a Function 

of the Parameter B and the Relative Size /l̂  
When the Fixed Expected Sampling Rate, /^j, is 0.1 

Values of Jt̂  

Value of B 

i4j = 0 (small unit) 

Aj = 1 (large unit) 

0 

0 

1 

0.03 

0.03 

0.73 

0.05 

0.05 

0.55 

0.07 

0.07 

0.37 

0.10 

0.10 

0.10 

This illustrates that for a Pomix sampling design close to 
Bernoulli {B near 0.10), the inclusion probabilities of large 
and small units alike lie near the fixed expected sampling 
rate, 0.10. By contrast, in a Pomix design close to Poisson 
Ttps {B near 0), a small unit is practically certain not to be in 
sample, and a large unit is practically sure to be in sample. 
The table also illustrates how Pomix sampling with an inter
mediate value of B will modify the inclusion probabilities: 
a small unit's chances to appear in the sample are decreased 
somewhat compared to Bernoulli, and the selection of a 
large unit becomes less probable than under Poisson Ttps. 

The implications for response burden are: The total 
response burden on the population rests the same for all 
values of B; an expected total of n = n^ + n^. units are 
always asked to report. Compared to Poisson Ttps (B = 0), 
the fixing of a value B in the interior of the interval [0, /^] 
will have the effect of shifting some of the response burden 
from larger onto smaller units; at the same time the preci
sion of the estimates is increased in many cases (see 
sections 5 and 6). 

Finally, we need to mention the second order inclusion 
probabilities under Pomix sampling, because they are 
required for the design-based variance calculation. They are 
simple. If Tt̂ , denotes the probability that units k and / are 
both in the sample, then 

^Tt^Ttj (2.4) 

for k*leU = U^uUc, because the PRN's r̂  are 
independent realizations of the Unif(0,1) random variable. 
For k = 1,'we have TÎ , = Tt̂^ = 7t̂ . The multiphcative feature 
(2.4) of the Jt̂ , gready simplifies the design-based variance 
calculation. We get a simple, single-sum variance estimator, 
as in (4.2) below. 

3. DETERMINING THE CERTAINTY 
PART OF THE SAMPLE 

If the population is highly skewed, a set of units (the 
certainty part of the sample, s^) will be sampled with 
probability one, and Pomix sampling can be used for 
randomized selection in the remaining part of the popula
tion, f/̂ . Several procedures could be considered for the 
construction of the certainty set; here we give one that is 
reasonable (though not necessarily optimal) and used in the 
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Monte Carlo simulation reported later in section 5. The 
certainty set is designated with the aid of the known posi
tive size measures x̂  through the following procedure in 
one or more steps. An expected sample size, n, is fixed for 
the whole sample, 5 = j ^ u 5^. In step one, compute the 
relative size measures Â -̂j. = nx^/ J^^x^ for k£ U. Those 
units k, if any, for which A^,j. ^ 1 are assigned to the 
certainty part. They form a set denoted t /„j . ; let its size be 
«P(î . The procedure is then repeated to see if additional 
units should be assigned to the certainty part. In step two, 
calculate the relative size measures A 

k{2) ( « - « C ( l ) ) 

xjY^x^ where the summation extends over the set 
^ ~ ^c(i) - ^ ^k(2) *-1 for all ^ e [/ - f/̂ ,̂̂ , the procedure 
stops, and the final certainty part is s^ = U^,^y But if 
Aĵ ,2) ̂  1 for some units, then these are also assigned to the 
certainty part, and so on until a step / is reached where all 
intermediate relative size measures Â^̂.̂  are less than unity. 
The ultimate certainty part s^ will contain, say, n^ units, 
and we then have A^< 1 for all keU-s^, where 
^k ^ "R-'^J'L^k ^^* "R"^" - "c ^"^ ̂ ^ ^"™extends over 
U-s, 

'c-

4. ESTIMATION FOLLOWING POMIX 
SAMPLING 

Although the auxiliary variable serves a useful purpose 
at the sampling stage, we advocate using it also at the esti
mation stage. To estimate the population total, Y = X^y î-
consider the generalized regression (GREG) estimator 

'GREG Hs'^kSkYk (4-1) 
where â  = 1 /TI^ is the sampling weight and the second 
weight, the g-weight, is given by 

8=iHX-xyT: Xkl(^k 

where x^ denotes the auxiliary vector value for unit k, 
X = Y.s'^k^k' ^"'̂  ^s = Y^s^k^k^'J^k- "̂ h^ auxiliary infor
mation requirement is that the vector total X = Y^^JX^ must 
be known from a reliable source. The unidimensional size 
variable x̂  used for computing the Q̂ . in the Pomix 
sampling scheme can be one of the components of jĉ  or it 
can a linear combination of the components of x:̂ . In the 
empirical study reported in section 5, JĈ  is unidimensional, 
and Xi^=Xi^. The constants c^, specified by the user, 
provide a means of weighing the data, in addition to the 
survey weights a^^. An often used choice is ĉ  = 1 for all k. 

A commonly used estimator of the variance of the 
GREG estimator (see Samdal, Swensson and Wretman 
1992, Ch. 6) is given as a quadratic form in g^^e^^j^ where ĉ  
is the regression residual ê^ = ŷ  - A:̂  b, where 

* = 'Ps^Hs'^k^kYk^^k- ^^^ '^^ ̂ ^^ advantages of Pomix 
sampling is that the cortesponding variance estimation is 
simple. This is because the PRN's r̂^ are independent 
realizations from the Unif(0,l) distribution. Hence equation 

(2.4) applies, and all product terms of the quadratic form 
are zero. With only the squared terms left, the variance 

2 2 
estimator becomes simply V = Y,s^k'<'^k ~ ^)Sk ^k - Finally, 
because â  - 1 = 0 for all ke s^., we get the variance 
estimator used in the Monte Carlo study reported later in 
section 5, namely, 

2 2 
^ = E , «*(«*-!)?*« (4.2) 

5. A MONTE CARLO STUDY OF POMIX 
SAMPLING USING FINNISH DATA 

To illustrate various aspects of Pomix sampling, we 
conducted a Monte Carlo study involving four different 
estimators of the population total Y. The experiment 
involved repeated draws of samples as well as repeated 
assignments of the set of Â  PRN's to the population units. 
Note that since every assignment of the Â  PRN's to the 
population units is a random outcome, a proper Monte 
Carlo study also requires repetitions of the PRN assign
ments. Therefore, after the first assignment of the N 
PRN's, we selected 100 Pomix samples, using a fixed 
value of the Bernoulli width B. (Each sample was realized 
using a new, randomly selected starting point on the PRN 
axis). Then a new set of N PRN's were assigned, 100 
additional samples were drawn, and so on, until we had 
reached 100 x 100 = 10,000 PRN/sample pairs, for the 
given value of B. For each of the 10,000 pairs, we 
computed the four point estimators, the cortesponding four 
variance estimators, and the cortesponding four confidence 
intervals. With 10,000 repetitions, we expect the Monte 
Carlo error to be rather small. 

The four estimators used in the Monte Carlo study have 
the following expressions, where â  = 1 /TI^ is the sampling 
weight of unit k, and 7t̂  is given by (2.3): 

1. TheHorvitz-Thompson estimator, 

i ^ i=E , «it>'i = E( /^3 ' , + E . , «A3'r 

2. The (combined) ratio estimator. 

Y2=Xb2 

where X = X(/^i and ^2 = L « t V L ^ * ^ r ^̂  »s a 
special case of (4.1) such that x^ = ^̂^ = c,^. 

3. The GREG estimator 

Y3 = E y , Yk * E . , ^kYk + ^^R - E . , ^k^k) 

where X^ = X y / i and b^ =Zs,^^("k-'^)yk^k''Ls^ 
Uft^a^^ -l)x^. It is a special case of (4.1) such that 
x^ =x^ and ĉ  = {a^ - 1)"'. 
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4. The (separate) ratio estimator, 

Y.-Yu^Yk-^RK 

where X^ = J^^jX^ and b^ = l,a^yjl,a^x^-

For Poisson Ttps sampling (B = 0), we have b^ = 
CLs yJ^k)^"s' where n^ is the random size of 5^; the 
corresponding estirriator Y^ was considered by Brewer 
etal, (1972). Now Y^^ and Y^ differ in that the regression 
slope is calculated in Kj on the pooled sample s, but in Y^ 
the slope is calculated separately for the randomization 
sample j ^ . Finally, fj differs from Kj and Y^ in that it 
uses the weighting a (̂a^ - 1), instead of just a^^. Note that 
all of Y2, and fj and Y^ are members of the GREG family 
of estimators given by (4.1). By equating K̂ . ^3 and Y^ to 
(4.1), we find the g-weights implied by each of the three 
estimators. These weights are required for the variance 
estimation. We can expect the simulation to show that Y2, Y.^ 
and Y^, which use the auxiliary variable both at the design 
stage and at the estimation stage, will improve on (have 
smaller variance than) the HT estimator Yy which uses the 
auxiliary information only at the sampling stage, but the 
extent of the improvement is unpredictable and interesting 
to observe. 

We used a real data population for the Monte Carlo 
simulation. This population consists of Â  = 1,000 Finnish 
enterprises. For enterprise k,k = l,..., 1,000, ŷ  is number 
of employees (full time equivalents) x 10, and x^ is the 
wages paid by the enterprise to its employees, in thousands 
of FIM (Finnish Marks). The auxiliary information (wages 
paid) comes from the Finnish tax authority's VAT register. 
The employment variable is the one requiring estimation. 
The 1,000 units were selected (in an essentially random 
manner) from an original larger population of Finnish 
enterprises. Units with a value of zero either on ŷ  or on x^. 
were eliminated so that tiie simulation results would not be 
disturbed by extraneous factors. Consequently, as for the 
values ŷ  and x̂ ,̂ the population used in the simulation is 
a natural one, but because of the elimination of units, its 
features (mean, standard deviation, skewness, etc.) differ 
from those of the original larger population. 

The population y-total to be estimated is Y = Y,uy^^ = 
169,168. We fixed the expected sample size for the total 
sample, s = S(.v> s,^, asn = 100. The procedure described 
in section 3 was used to determine the certainty part s^ of 
the sample. This resulted in a certainty part s^. consisting 
of the largest 29 = n^ units. The rest of the population, 
Uj^ = U - s^ has the following descriptive characteristics: 
Its size is N,^ = 1,000 - 29 = 971; the total of y is Y^ = 
46,138 (which equals 27% of the entire population total Y 
= 169,168); the coefficient of variation (standard deviation 

divided by mean) is 1.78 for the variable y and 1.94 for 
the variable x; the coefficient of cortelation between x and 
y is 0.965. The randomization part s^, of expected size n^ 
= 100 - 29 = 71 units, is realized, in the simulation, by 
repeated Pomix sample selection from C/̂ . A plot of 
(x^, y^) for the units k in I/^ is shown in the Appendix. 

To see the effect of the Bernoulli width, we carried out 
the simulation for a range of different B-values: B = 0,0.OI, 
..., 0.07, and, in addition, B =f^ = n^lN^ = 71/971 = 0.073 
(which gives Bernoulli). For each value of B, 100 x 100 = 
10,000 PRN/sample pairs were realized, and the results 
were used to calculate, for each of the four point estimators, 
five Monte Carlo summary statistics. These are as follows, 
if y denotes one of the four point estimators, V the corte
sponding variance estimator obtained from (4.2), and 
(y'-z,_^/2^^'^'^^i-a/2^^)*^ corresponding confidence 
interval for Y at the nominal confidence level I- a, where 

is the standard normal score, z, „„ = 1.960 for -1 -a /2 
a = 5%, and z 1 -a/2 = 1.645 for a = 10%: 

(1) MCEy= the Monte Carlo expectation of the point 
estimator Y, that is, the arithmetic mean of the 10,000 
point estimates; 

(2) MCV Y = the Monte Carlo variance of the point 
estimator Y, that is, the variance of the 10,000 point 
estimates; 

(3) MCE V = the Monte Carlo expectation of the variance 
estimator V, that is, the arithmetic mean of the 10,000 
variance estimates; 

(4) MCRTE95 = Monte Carlo coverage rate for nominal 
95% confidence intervals, that is, the number of times 
that the target parameter Y is contained in the 
confidence interval, divided by 10,000, and expressed 
in per cent; 

(5) MCRTE90 = Monte Carlo coverage rate for nominal 
90% confidence intervals; its definition is analogous to 
thatofMCRTE95. 

The simulation results are shown in Table 2 (Average 
sample size, Monte Carlo variance; Monte Carlo expecta
tion of variance estimator) and in Table 3 (Monte Carlo 
coverage rates). The tables do not show MCE Y, because 
in all cases this quantity was very close to the target para
meter value Y= 169,168, confirming that all estimators are 
essentially unbiased. The deviation of MCE Y from Y was 
in all cases less than 0.14%, in most cases considerably 
less. The average sample size over the 10,000 repetitions is 
seen to be very close to n = 100, as it should. 
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Table 2 
Results of Simulation Study for Different Bernoulli Widths B: Average Sample Size, MCV Y and MCE V; 

est.j Refers to Estimator K .̂;;= 1, ...,4. (Values in the Last Eight Columns to be Multiplied by 10*.) 
Bernoulli 

width B 

0.000 

0.010 

0.020 

0.025 

0.030 

0.040 

0.050 

0.060 

0.070 

0.073 

Average 

sample size 

99.95 

100.05 

100.04 

100.09 

100.06 

99.86 

100.02 

99.99 

100.05 

100.02 

est. 1 

24.56 

22.74 

24.75 

25.51 

28.03 

35.17 

42.25 

56.08 

90.73 

119.13 

MCV? 

est. 2 

3.63 

1.96 

1.82 

1.82 

1.83 

2.01 

2.56 

3.42 

4.80 

6.06 

est. 3 

3.43 

1.84 

1.77 

1.78 

1.80 

2.03 

2.64 

3.65 

5.47 

7.09 

est. 4 

3.46 

1.85 

1.78 

1.79 

1.81 

2.06 

2.67 

3.67 

5.59 

7.43 

est. 1 

24.92 

23.53 

25.37 

26.86 

28.58 

33.54 

41.42 

55.70 

91.28 

116.27 

MCEV 

est. 2 

3.67 

1.98 

1.85 

1.87 

1.91 

2.11 

2.48 

3.20 

4.89 

6.00 

est. 3 

3.43 

1.86 

1.77 

1.81 

1.87 

2.11 

2.51 

3.24 

4.72 

5.34 

est. 4 

3.46 

1.87 

1.78 

1.82 

1.88 

2.15 

2.59 

3.44 

5.37 

6.49 

Table 3 
Results of Simulation Study for Different Bernoulli Widths B 

90% Confidence Intervals, MCRTE95 and MCRTE90; 
: Coverage Rates in % of Nominal 95% and 
est.; Refers to Estimator y.;y = 1, ...,4 

Bernoulli 

width B 

0.000 

0.010 

0.020 

0.025 

0.030 

0.040 

0.050 

0.060 

0.070 

0.073 

nominal 95% confidence level 

est. 1 

94.50 

95.20 

95.06 

95.06 

94.63 

93.84 

93.97 

93.54 

92.93 

91.03 

est. 2 

92.03 

93.13 

94.23 

93.73 

94.12 

94.44 

94.38 

93.57 

94.99 

95.02 

est. 3 

92.75 

93.47 

93.88 

94.56 

94.09 

94.47 

93.76 

92.12 

90.67 

88.03 

est. 4 

92.48 

93.52 

93.88 

94.70 

94.19 

94.64 

93.82 

92.69 

92.03 

90.46 

nominal 90% confidence level 

est. 1 

89.70 

90.43 

90.36 

90.64 

89.85 

88.77 

88.67 

89.10 

88.40 

86.53 

est. 2 

86.36 

88.06 

89.36 

89.15 

89.06 

89.60 

88.67 

87.57 

88.62 

88.62 

est. 3 

87.35 

87.93 

88.49 

89.73 

88.70 

89.41 

88.08 

85.99 

84.27 

81.26 

est. 4 

86.74 

88.02 

88.55 

89.72 

88.86 

89.60 

88.53 

87.27 

86.11 

83.86 

Tables 2 and 3 generate these comments: 

1. Let us begin the examination of Table 2 by a comparison 
of Monte Carlo variances across estimators, for a fixed 
Bernoulli width B. This shows that, for every value of 
B, there is little to choose between Y2, Y^ and Y^, in 
terms of variance. By contrast, the HT estimator 9^ has 
considerably greater variance. To illustrate, the ratio 
MCV fj/MCV 9^ equals 3.43/24.56 = 0.140 for B = 0 
(Poisson Ttps), 1.80/28.03 = 0.064 for B = 0.03, and 
7.09/119.13 = 0.060 for B = 0.073 (Bernoulli). This 
confirms that the HT estimator is a poor choice 
compared to an alternative that uses the strongly corte-
lated auxiliary variable. This is tine, not surprisingly, for 
Bernoulli, but also for B-values near the lower end of the 
[0,/^] interval, which shows that the sampling design 
alone does not extract all the power of the auxiliary 
variable, even though with B near zero, we are close to 
a strict Ttps selection (thus supposedly highly efficient). 
Part of the reason that the HT estimator has a 

comparatively large variance is that the randomness of 
the sample size under Pomix sampling penaUzes the HT 
estimator (but not the GREG estimators). Since the HT 
estimator is inefficient, we do not further discuss it. 

2. Examining the small differences between 2̂» ̂ 3 and ^4-
we note in Table 2: As measured by the Monte Carlo 
variance, l̂ j is better than f^ for all Bernoulli widths B, 
but only marginally so. Also, f^ and f̂  are better than ^2 
at the lower end of the range of B-values, possibly 
because of the fact that in ^2 we allow the certainty part 
the sample to contribute to the slope estimate, somewhat 
inappropriately, since there is only an estimation 
problem for the randomization part. But at the upper 
end, the relation is reversed and for the upper extreme 
B = 0.073 (Bernoulli), ^2 is clearly better than ^3. 
That the differences between fj. ^3 and 9^ are so small 
is not surprising, because all are varieties of the GREG 
estimator (4.1) using essentially the same auxiliary 
information. 
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3. Table 2 confirms that the proposed variance estimator ^ 
works well, as we would expect; MCE V is with few 
exceptions very close to the target that ^ aims at 
estimating, that is, the variance of f, measured here by 
MCV f. This holds for all estimators and all values of 
B, with a few notable exceptions, namely, in the case of fj 
and ?4 when B is close to the upper extreme (Bernoulli). 
Then the variance estimator underestimates the variance. 

4. The most interesting result in Table 2 we consider to be 
the fact that the variance of fj or ^3 or f^, when 
viewed as a function of the Bernoulli width B, does not 
attain its minimum at B = 0 (Poisson Ttps), as one might 
have initially guessed, but rather for a value of B 
somewhere between 0.02 and 0.03. Moreover, the 
improvement of the case B = 0.02 over the case B = 0 is 
substantial for all of f̂ ' ^3 and f̂ . Measuring this 
improvement by MCV(f I B = 0.02) divided by 
MCV( y I B = 0), we find that this ratio is only about 
50% for all of Y2, 1̂3 and f^. More precisely, for ?2 the 
ratio is 1.82/3.63 = 0.501, for Y^ it is 1.77/3.43 = 0.516, 
and for f̂  it is 1.78/3.46 = 0.514. In view of these 
results, we added a simulation for B = 0.025, a value not 
examined in the original round of simulations. The 
results, also displayed in Table 1, confirm that a 
minimum variance is obtained, for all tiiree estimators, f̂ . ^̂3 
and 9^, at a point in the vicinity of B = 0.025. One 
possible explanation of why it is considerably better to 
take B to be a value distinctly greater than B = 0 (which 
gives Poisson Ttps) is the following: When B is 0 (or 
very near 0), the units with the smallest x-values, when 
selected, will have unduly large weights, which induces 
high variability. This is avoided by choosing B clearly 
away from zero. 

5. The Monte Carlo results in Table 3 concerning the cove
rage rates show that the variance estimation and the 
confidence interval procedure function to satisfaction. 
As tiieory leads us to expect, MCRTE95 and MCRTE90 
are close, for all four estimators, to their theoretical 
values, 95% and 90%, respectively. Only for and l̂ j 
and ^4, when B gets close to the upper extreme 
(Bernoulli), do we notice any marked tendency for the 
MCRTE to drop below the nominal value, resulting in 
part from the underestimation of variance mentioned 
earlier. 

6. FURTHER EVIDENCE THAT POMIX 
SAMPLING IS MORE EFFICIENT THAN 

POISSON Tips SAMPLING 

Initially we had no strong reason to believe that Pomix 
sampling combined with a GREG estimator would be more 
efficient for some Bernoulli widths B in the interior of 
[0,/^] than for Poisson Ttps (B =0). The strong improve
ment - a variance reduction of around 50% for our 

particular population - was rather surprising. For other 
populations, the variance reduction can be more or less than 
the 50% we found. Because our finding is data dependent, 
it is desirable to provide some more general evidence in 
support of the proposition that Pomix sampling with a 
B-value well into the interior of [0,/^] is better than 
Poisson Ttps sampling (B = 0). We now present some 
evidence of this kind. 

We examined the Taylor variance of f (that is, the 
variance of the Taylor linearized statistic). It is given by 
(see Samdal et al, 1992, Ch. 6) V -̂̂ Y = Et/ («* " 1)^*^ 
where E^^ is the population analogue of the sample based 
residual ê  used in the variance estimator (4.2). For 
example, for the estimator ^3, the residual in question is 

Pk=yk -h^kwith ^3 = luS^k- ^)yk^kil^u, («* - I K ' ; 
for y ,̂ b^ = Xy^y^/Ly/,replaces by 

It is reasonable to model the squared residual as 
£^ = o^x/(l + 5^), where/p satisfies Q <p ^2, and 5̂  is 
near zero. This corresponds to assuming a superpopulation 
model ŷ . = JÎ A' P + e '̂ where the ê  are independent errors 
with model expected value zero for every k, and ê  has 
model variance o^x^. Using the approximation Ej^ ~ o^ 
x/, and that â . = 1 /Tt̂  with Tt̂  given by (2.3), we have 

where H{B,p) =x^JYl 

l )x / o^{H{B,p)-T{p)} 

^ -̂  . , _ . , - ^ / [ ^ ^ t / , - C 4 - f i ) ^ J - ' and 
T{ P) = Lu x[. Now consider a fixed value ofp such that 
0 ^ p ^ 2. We want to find out if H{B, p) has a smaller 
value for some B in the interior of the interval [0, / ^ ] , 
compared to its value at B = 0, which is //(O, p). To this 
end, let us examine if the derivative H'{B,p) = 
dH{B, p)ldB is negative at B = 0. We find 

H'{B,p) =x,^Yu, ^k^k -^u,)[P^u, - (fR-P)^k]-'-

Its valueatB = 0is H'{0,p) = {xylf^)l^j^xr\x, -x^J. 
The sign of H'{0,p) is tne same as that of 
Y,y x[' (x̂  -Xy ). But this quantity equals, apart from the 
factor 1 / (Â ^ - 1), the covariance in (/^ between x^''^ and 
Xj^-Xy (note that x̂  -Xj^ has zero mean). When p 
satisfies 0 <, p <2, this covariance is negative: when x̂  
increases, x^-Xy increases steadily, and jcjf" decreases 
steadily (and remains always positive). The sign of 
H'{0,p) is therefore negative; consequently, it is not at 
B = 0 that H{B, p) attains its minimum value, but for some 
B in tiie interior of [0, f^]. Now forp = 2, H'(0, p) = 0, and 
H{B, p) has a minimum at B = 0. 

These considerations raise the question whether the 
population used for our simulation in section 5 cortesponds 
to a value of p e [0,2], but distinctly less than 2, so that we 
can expect significant gains from Pomix sampling. To 
obtain an answer, we estimated p by fitting the logarithmic 
version of the model E,^ = a^x^{l +5^) to the data avail
able for Ui^ = U - U^. That is, we fitted ŵ^ = a + pz^, 
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where ŵ  = log E^; E^=y^- b^ x^ with b^ = Y^^^y^ I ^^^ 
Xĵ ; Zj^ = log x^, and a is an intercept term. We obtained the 
value p = 1.45, by treating p as a linear regression slope 
estimated as p = 'iy{w^-Wy){z,-Zu)l)iy^{z^-Zuf. 
Since this p-value is considerably less than 2, our Monte 
Carlo population is indeed one where one can expect 
significant gains from the use of Pomix sampling with a 
value of B in the interior of [0, / ^ ] . 

7. CONCLUDING DISCUSSION AND 
TENTATIVE RECOMMENDATIONS 

The survey sampler will ask: If I consider using Pomix 
sampling for my survey, combined with a GREG estimator, 
what is an appropriate choice for B? Recall that in this 
paper we found, for one particular population, that a large 
efficiency gain (roughly 50% variance reduction compared 
to Poisson Ttps) is realized by fixing the Pomix parameter 
B at around 30% of /^. We were led to suspect that the 
variance gain is related to residual ertor characteristics, and 
this was confirmed in Section 6 which presented evidence 
that when the squared residual pattern conforms to 
Ef^ = o^x/, where p satisfies 0 ^ p < 2, as is the case in 
many business survey populations, then Pomix sampling 
with B in the interior of the interval [0, /^] may well be 

advantageous. However, the present paper does not address 
the question of the optimal choice of B. A difficulty is that 
in practice the value of B must be fixed at the design stage, 
and that the optimal B depends on unknown population 
characteristics. Prior knowledge of the population, notably 
about its residual variance structure, can guide the choice of 
B. 

Our tentative recommendations based on this paper are: 
If prior information suggests a squared residual pattern 
conforming to o^x/ with p < 2, then use Pomix sampling 
with B = 0.3 /^. On the other hand, if in reality the 
unknown p is such that p > 2, then, although the best choice 
in this case might be B = 0 (Poisson Ttps), little harm would 
probably be done to use B = 0.3 /^, because the variance 
viewed as a function of B is likely to increase at a gentle 
rate. Therefore, B = 0.3 /^, seems a reasonable all-purpose 
suggestion. These recommendations are tentative; the 
question merits a further study that lies beyond the scope of 
this paper. 
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APPENDIX 

I , 

SCATTER PIJOT OF X AND Y 

3000 4G00 5000 

X (yaariy wagss in 1000 HM) 

Figure 3. Scatter plot of x (yearly wages) against y (employment) for the portion f/̂  of the Monte Carlo population of 1,000 Finnish 
enterprises. 
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Toward Variances for X-11 Seasonal Adjustments 
WILLIAM R. BELL and MATTHEW KRAMER' 

ABSTRACT 

We develop an approach to estimating variances for X-11 seasonal adjustments that recognizes the effects of sampling error 
and errors from forecast extension. In our approach, seasonal adjustment error in the central values of a sufficiently long 
series results only from the effect of the X-11 filtering on the sampling errors. Towards either end of the series, we also 
recognize the contribution to seasonal adjustment error from forecast and backcast errors. We extend the approach to 
produce variances of errors in X-11 trend estimates, and to recognize error in estimation of regression coefficients used to 
model, e.g., calendar effects. In empirical results, the contribution of sampling error often dominated the seasonal 
adjustment variances. Trend estimate variances, however, showed large increases at the ends of series due to the effects 
of fore/backcast error. Nonstationarities in the sampling errors produced striking patterns in the seasonal adjustment and 
trend estimate variances. 

KEY WORDS: Sampling error; Forecast error; Trading-day; ARIMA model. 

1. INTRODUCTION 

The problem of how to obtain variances for seasonally 
adjusted data is long-standing (President's Committee to 
Appraise Employment and Unemployment Statistics 1962). 
Model-based methods of seasonal adjustment (see Bell and 
Hillmer 1984, for a discussion) use results from signal 
extraction theory to produce estimates and associated error 
variances of the seasonal and nonseasonal components. 
Most official seasonal adjustments, however, are made 
using empirical methods, most notably X-11 (Shishkin, 
Young and Musgrave 1967) or X-11-ARIMA (Dagum 
1975). These methods are based on fixed filters, not 
models, and so it is not obvious how to calculate variances 
of the seasonal adjustment ertors. Various approaches for 
obtaining variances for X-11 seasonal adjustments have 
been proposed, as summarized below. 

Wolter and Monsour (1981) suggested two approaches. 
They recognized that many time series that are seasonally 
adjusted are estimates from repeated sample surveys, and 
thus are subject to sampling ertor. Their first approach 
accounts only for the effect of sampling ertor on the 
variance associated with seasonal adjustments. Their 
second approach tries to also reflect uncertainty due to 
stochastic time series variation in the seasonal adjustment 
variances. However, this second approach assumes that, 
apart from regression terms, the time series is stationary. 
This type of model is now seldom used for seasonal time 
series. Also, their second approach contains a conceptual 
crtor: it produces the variance of the seasonally adjusted 
estimate, instead of the desired variance of the ertor in the 
seasonally adjusted estimate. 

Burridge and Wallis (1985) investigated use of the 
steady-state Kalman filter for calculation of model-based 
seasonal adjustment variances, and apphed this approach to 

a model they obtained previously (Burtidge and Wallis 
1984) for approximating the X-11 filters. They suggested 
that this approach could be used to, "provide measures of 
the variability of the X-11 method when it is applied to data 
for which it is optimal," (p. 551), but cautioned against 
doing this when the X-11 filter would be suboptimal {i.e., 
very different from the optimal model-based filter). 
Hausman and Watson (1985) suggested an approach to 
estimating the mean squared error for X-11 when it is used 
in suboptimal situations. Bell and Hillmer (1984, section 
4.3.4) pointed out a problem with the use of model-based 
approximations to X-11 for calculating seasonal adjustment 
variances. The problem is that X-11 filters (or any seasonal 
adjustment filter, for that matter) are not sufficient to 
uniquely determine models for the observed series and its 
components. 

Pfeffermann (1994) developed an approach that 
recognizes the contributions of sampling ertor and irtegular 
variation (time series variation in the irregular component) 
to X-11 seasonal adjustment variances. The properties of 
the combined ertor (sampling error plus irtegular) are 
estimated using the X-11 estimated irtegular. These 
properties are then used to estimate two types of seasonal 
adjustment variances. A drawback to this approach is that 
it relies on an assumption that the X-11 adjustment filter 
annihilates the seasonal component and reproduces the 
trend component. (Note Pfeffermann (1994, p. 90), 
discussion surtounding equation (2.7).) Violations of this 
assumption in practice compromise the approach to an 
extent which appears difficult to assess. Thus, this 
assumption seems to us highly questionable and also, in any 
particular case, uncheckable. A second drawback is that 
one of the variance types proposed by Pfeffermann assumes 
that the X-11 seasonally adjusted series, rather than the 
trend estimate, is taken as an estimate of the trend. Breidt 
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(1992) and Pfeffermann, Morry and Wong (1993) further 
develop Pfeffermann's general approach. 

The goal of this paper is the development and application 
of an approach to obtaining variances for X-11 seasonal 
adjustments accounting for two sources of ertor. The first 
error source is sampling ertor. The second is ertor that 
arises from the need to extend the time series with forecasts 
and backcasts before applying the symmetric X-11 filters. 
These latter errors lead to seasonal adjustment revisions 
(Pierce 1980). Note that revisions eventually vanish as 
sufficient data beyond the time point being adjusted become 
available. Also note that a seasonally adjusted series will 
not contain sampling ertor if the cortesponding unadjusted 
series does not. This is the case for certain economic time 
series, e.g., export and import statistics for most countries. 

Our approach assumes that the X-II seasonal adjustment 
target (what we assume application of X-11 is intended to 
estimate) is what would result from application of the 
symmetric linear X-I 1 filter (with no forecast and backcast 
extension required) if the series contained no sampling 
ertor. While this definition of target might be criticized for 
ignoring time series variation in the underlying seasonal 
and nonseasonal components, we think this may be 
appropriate for typical users of X-11 seasonally adjusted 
data. Such users are most likely to be concerned about 
uncertainty reflected in differences between initial adjust
ments and final adjustments, i.e., in revisions. Some of 
these users will also be aware that the unadjusted series 
consists of sample-based estimates of the true underlying 
population quantities, and will realize that the effects of 
sampling error on adjustments should also be reflected in 
seasonal adjustment variances. 

Our development is based on use of the symmetric linear 
X-11 filters. We assume that the symmetric filters are 
applied to the series extended with minimum mean squared 
error forecasts and backcasts. In practice, the forecasts and 
backcasts are obtained from a fitted time series model. This 
is in the spirit of the X-11-ARIMA method of Dagum 
(1975), but with full forecast and backcast extension, as 
recommended by Geweke (1978), Pierce (1980), and 
Bobbitt and Otto (1990). Our results apply directly to the 
use of additive or log-additive X-11 (with forecast and 
backcast extension), and the log-additive results are 
assumed to apply approximately (Young 1968) to 
multiplicative X-11. 

Section 2 of this paper develops our approach, which 
builds on the first approach of Wolter and Monsour (1981). 
The differences between the two approaches are discussed 
in section 2.4. Section 3 then discusses three extensions to 
the results of section 2. The first is to note that our approach 
works equally well with seasonal, trend, or irregular 
estimates, and that more generality is easily accommodated 
by allowing different filter choices for different months. 
The second extension produces variances of estimates of 
month-to-month or year-to-year change. Finally, when 
seasonal adjustment involves estimation of regression 

effects {e.g., for trading-day or holiday variation), the 
results are extended to allow for additional variance due to 
crtor in estimating the regression parameters. 

Section 4 then presents several examples illustrating the 
basic approach and the extensions given in section 3. One 
thing evident from the examples is that for time series with 
sampling error, our seasonal adjustment variances will often 
be dominated by the contribution of the sampling ertor. In 
the center of the series, our results effectively reduce to the 
first approach results of Wolter and Monsour. Our results 
do differ from those of Wolter and Monsour near the end of 
the series. This is important since the most recent 
seasonally adjusted values receive the most scrutiny. Also, 
the contribution of forecast and backcast error to trend 
estimate variances can be very large at the ends of a time 
series. Other results of particular interest are the effects of 
certain nonstationarities in the sampling ertors. The 
examples of section 4 show that nonstationarities such as 
sampUng ertor variances that change over time, or periodic 
independent redrawings of the sample, can yield striking 
changes in the pattern of the variances of seasonally 
adjusted data or trend estimates over time. 

Section 5 provides concluding remarks. 

2. METHODOLOGY 

Define the observed unadjusted time series as y^ for 
t = I, ...,n. Time series that are seasonally adjusted are 
often estimates obtained from repeated (monthly or quar
terly) sample surveys, and thus can be viewed as composed 
of a tme underlying time series Y^, and a series of sampling 
errors e^ assumed uncortelated with Yy (See Bell and 
Hillmer 1990.) In vector notation, Yo = Y^ + e^, where the 
subscript a indicates that the time span of these vectors is 
the set of observed time points I,..., n. In certain cases y^ 
may arise from repeated censuses (as is typically the case 
for national export and import statistics, for example), in 
which case there is no sampling error, i.e., e^ = 0. 

The development that follows assumes that both Y^ and e^ 
follow known time series models. The model for F, will 
generally involve differencing, as in ARIMA (auto-
regressive-integrated-moving average) and ARIMA com
ponent (structural) models. The model for Y^ may be 
extended to include regression terms. (This will be consi
dered in section 3.3.) The series e, is assumed to not 
require differencing, but it may nonetheless exhibit certain 
nonstationarities, such as variances that change over time. 
Any such nonstationarities are assumed to be accounted for 
in the model for e^ In practice, the models will be devel
oped from observed data, as is discussed by, e.g.. Bell and 
Hillmer (1990, submitted). Binder and Dick (1989, 1990), 
and Tiller (1992). 

In applying a symmetiic X-11 filter of length 2m + I for 
seasonal adjustment with full forecast and backcast 
extension, the vector y^ needs to be augmented by m 
backcasts and m forecasts. The vector holding the m values 
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of y, prior to the observed data, and the cortesponding 
m X I vectors for Y^, and e^, are denoted y^, Y^, and e^. 
The analogous vectors of ttie m future values of y^Yy and e, 
are denoted y ̂ , Y,, and e,. Thus, 

yfc 

Yo = + 

(2.1) 

The full vectors in (2.1), hereafter denoted as y, Y, and e, 
have length n + 2m. 

The backcasts and forecasts used to augment y^ are 
assumed to be minimum mean squared ertor (MMSE) 
linear predictions of y^ and y, (using y^) obtained from 
the known time series model. (In practice, the model will 
be fitted to the data y^.) Under normality, the backcasts 
and forecasts are £(y^ I y^) and E{yAyJ. The vector of 
observed data augmented with the backcasts and forecasts 
is denoted y = (yfc'.yo'.y/)'. where y^ =E{y^\y^) and 
y, = £ ( y , I y ̂ ). To simplify notation, from now on we will 
taike expressions such as (y^, y^, y<-) to mean the column 
vector ( y ; , y ; , y p ' . 

Let the linear symmetric X-11 seasonal adjustment filter 
be written ©(B) = YT-m ^j P'' where B is the backshift 
operator and the co. are the filter weights (co. = co .). 
Calculation of the to. is discussed by Young (1968) and 
WaUis (1982). Results of Bell and Monsell (1992) were 
used here. Apptication of (o(B) to the forecast and back-
cast extended series can be written as fiy, where fl is a 
matrix of dimension nx(n + 2m). Each row of £1 contains 
the filter weights ((B_ ,̂...,(jaQ,...,co^), preceded and 
followed by the appropriate number of zeroes such that the 
center weight of the X-11 filter (COQ) multiplies the obser
vation being adjusted. Thus, in the first row of ft there are 
no preceding zeroes and n - I traiUng zeroes, in the second 
row there is one preceding zero and n -2 trailing zeroes, 
etc. For the default X-11 filter, m = 84. Choice of alter
native seasonal or trend moving averages in X-11 changes 
the value of m from a low of 70 to a high of 149. 

The question arises as to what ily is estimating. As 
noted in the introduction, we define the "target" of the 
seasonal adjustment as the adjusted series that would result 
if there were no sampling ertor and there were sufficient 
data before and after all time points of interest for the 
symmetric filter to be applied. The target is thus (ii{B)Yy 
or in vector notation ilY, and the seasonal adjustment ertor 
vector is v = £1(Y - y). We are interested in the variance-
covariance matrix var(v) = ilvar(Y - y)ft'- This can be 
easily computed once var (Y - y) is obtained. From here 
through section 2.3 we discuss the calculation of 
va r (Y-y) . 

We start by writing Y - y = (y - e) - y = (b, 0, f) - e, 
where b = ŷ , - y^ is the mx 1 vector of backcast ertors, 
and f = y, - y, is the m x I vector of forecast errors. 
Given the models for 7, and e^ we calculate var(Y - y) 
by separately computing var(e), var(b,0,f), and 

cov [ (b, 0, f), e], as discussed in sections 2.1 to 2.3. Then, 
var(Y -y) easily follows as var(b,0,f) + var(e)-cov 
[(b,0,f),e] -cov[(b,0,f) ,e] ' . Thus, 

var(v) = Si [ var(b, 0, f) + var(e) - cov [ (b, 0, f) ,e] -

cov[(b,0,f),e]'}fl'. 

Example-U.S. 5-t- Unit Housing Starts. As the computa
tions for each piece of var( Y -y) are explained, we illus-
ti-ate the results graphically for an example series: housing 
starts in the U.S. for buildings of five or more units from 
January 1975 through November 1988 (167 observations). 
The original series, seasonally adjusted series, and esti
mated trend are shown in Figure I. In practice, seasonal 
adjustment at the Census Bureau of this series uses a multi
plicative decomposition with a 3 x 9 seasonal moving 
average and a I3-term Henderson trend filter. The 
following model for this series was developed in Bell and 
Hillmer (submitted): 

y =1 ' +e 

(1 -B)(I -B>^)y, = (1 -0.67B+0.36B2)(1 -.8753B'2)a,, 

a] = 0.0I9I 

e, = (I -0.llB-0.lOB^)byol=0.001l4 (2.2) 

Original series 

1D75 igS1 1983 
year 

X-11 SDasonaiiy adjusted series 

and trend est imate 

1081 1083 
yoar 

Figure 1. U.S. Housing Starts with Five or more Units. The top panel gives 
the original series from January 1975 through November 1988. The strong 
seasonality of the series is apparent from the yearly dips that typically occur 
during the winter months. The bottom panel gives the X-11 seasonally 
adjusted series (solid line) and trend estimate (dotted line) for the same period. 
The seasonal adjustment is multiplicative using a 3 x 9 seasonal moving 
average and 13-term Henderson trend filter. 
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Here, y, denotes the logarithms of the original time series {e ^'), 
so that (2.2) implies a multiplicative decomposition for the 
original series {e^' = e ' e *')• 

2.1 Computation of Var(e) 

If Cj follows a stationary ARMA model, then var(e) can 
be computed from standard results, e.g., McLeod (1975, 
1977), Wilson (1979). If var(e,) changes over time, we 
write ej = h^ey where h, =var(e,), and e^ has variance 
one and the same autocorrelation function as e,. (See Bell 
and Hillmer submitted.) Then, writing e = He, where H = 
diag{h^_^,...,h^^J, we have var(e) =Hvar(e)H'. 
Var(e) is the autocorrelation matrix of e, and it can be 
computed as just noted using the model for iy 

If the sample is independently redrawn at certain times, 
then var (e) will be block diagonal, with blocks cortespon
ding to the time points when each distinct sample is in 
effect. Each diagonal block of var (e) be computed as just 
discussed. These two types of nonstationarities in e-
variance changing over time and "covariance breaks" due 
to independent redrawings of the sample - are those that 
arise in the examples of section 4. 

Example-U.S. 5-i- Unit Housing Starts (continued). Auto-
covariances for the MA(2) model for e, given in (2.2) are 
easily computed. The resulting var (e) is a band matrix, with 
var(e^)= 0.007298 on the diagonal, co\{eye^ .^) = 
-0.00()707 on the first sub- and super-diagonals, and 
cov(e,, e^_2) = -0.000714 on the second sub- and super-
diagonals. The rest of var (e) is zero. Following pre- and 
post multiplication by the seasonal adjustment filter 
matrices SI and SI' the contribution of the sampling ertor 
to the variance of the seasonally adjusted series is constant 
for each observation (Figure 2). This occurs because the 
result of a time invariant Hnear filter applied to a stationary 
series (©(B)^^) is a stationary series, which has a constant 
variance. 

thus Wj = ?>{B)Y^ + 8{B)ey We introduce the matrix A, 
cortesponding to 8(B), defined such that Ay = w is the 
vector of differenced y. The vector w = (w^,w^,w,), 
which is of length n + 2m - rf, is partitioned so that ŵ  and w, 
are m x 1 vectors, and w^ is the n - d vector of differ
enced observed data. Thus, A has dimensions 
(n+2m-c?)x (n + 2m). Note that, because c/ observations 
are lost in differencing, w^ and w^ start d time points later 
than y^and y^, respectively. That is, yj,and y^ start at 
time points 1 - m and 1, but w ̂  and w^ start at time points 
I - m + d and d + 1. 

(>: 
o.ooa ' 

e.eoa — 

( b ) C o n t r i b u t i o n ^T • a m p l l n a o r r o r (o> 

( c ) C o n t r i b u t i o n o f f o r o / b a i c l c c « « t o r r o r ( b O f ) 
0 .004 -

2.2 Computation of Var (b, 0, f) 

The central n rows and n columns of var(b, 0, f) are all 
zeroes. We require computation of var(b), var(f), and 
cov(b, f) for the comer blocks of var(b, 0, f). Although 
computation of variances of forecast (or backcast) ertors for 
given models is standard in time series analysis, it is 
complicated here by the component representation of 
y, asy,+ €,, and by differencing in the model for Yy 
Although computations for such models are often handled 
by the Kalman filter (Bell and Hillmer submitted; Binder 
and Dick 1989,1990; Tiller 1992), this is inconvenient here 
since we require covariances of all distinct pairs of random 
variables from among the m forecast and m backcast ertors. 
We instead use a direct matrix approach due to Bell and 
Hillmer (1988). 

Assume that the differencing operator required to render Y^ 
stationary is 5(B), which is of degree d. Since e, is 
assumed not to require differencing, 6(B) is also the 
differencing operator required by y,. Define 5(B)y^ = w .̂ 

Cd) C o n t 
0.003 

( b O f> 

Figure 2. U.S. 5+ Units Housing Starts: Variance Decomposition after X-11 
Seasonal Adjustment. The top panel gives the variance of the seasonally 
adjusted series as the total of the three components. The second panel give the 
contribution of sampling error (e), which is the largest component and 
constant across the series. The third panel gives the contribution of 
back/forecast error (b 01), which is zero in the middle of the series, where no 
back/forecasts are needed, but increases towards either end of the series as 
more back/forecasts are used. The bottom panel is the sum of the two 
covariance terms (cov(e, (b 0 f)) + cov( (b 0 f), e)), which tend to offset the 
contribution from back/forecast error. 
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Define u = (w,_„^j, •••, «„^„)' = AY. The time series u, 
is stationary. Since w = u + Ae, with u and e uncortelated 
with each other, var(w) = var(u) + Avar(e)A'. We parti
tion var (w) as 

var(w) •^21 

'12 

•^22 •^23 

^^31 -"32 -^33/ 

where E,j is var(w^), L,2 is cov(w^,w^), etc. 
Since y, when differenced to w using 5(B), has lost d 

data values, y cannot be obtained from w without also 
knowing a sequence of d "starting values". Consider 
obtaining ŷ^ from w, and starting values y^ = 
iyn^i-d'—'Yn)'- Theorem 1 in Bell (1984a) can be used to 
show that 

y, = Ay, +Cw (2.3) 

var(f), var(b), and cov(f, b) can be computed using the 
Cholesky decomposition of L22. (See App)endix A.) 

Example-U.S. 5-t- Unit Housing Starts (continued). The 
contribution to seasonal adjustment variance from var(b, 0, 
f) is shown in Figure 2. This is zero or essentially zero for 
observations in the middle of the series, where no or few 
fore/backcasts need be made to apply the symmetric 
adjustment filter. Towards the ends of the series, the 
contribution of fore/backcast ertor becomes more substan
tial since an increasing number of observations need to be 
fore/backcast to apply the filter. The jumps in the graph 
occur when an additional fo^e^ackcasted observation is 
multiplied by a weight in the adjustment filter that is a 
multiple of the seasonal period, since these weights have 
the greatest magnitude (Bell and Monsell 1992). Note that 
the contributions from var(b, 0, f) at the very ends of the 
series are smaller than the contributions from var(e), but are 
not negligible. 

for matrices A and C determined by 6(B). The rows of the 
mxm matrix C consist of the coefficients of ^(B) = 
1 + L B + ^ - B 2 + . . . = 6 ( B ) - ' inthefomi 

0 o"! 
0 0 

0 0 

1 0 

2.3 Computation of Cov[(b 0 f), e] 

1 

^1 

^ 

0 
1 

^l 

^m-l ^n. ^l 1 

A is an m X ^ matrix which accounts for the effect of the d 
starting values in y, on y .̂ The exact form of A is given in 
Bell (1984a) and, since it will exactly cancel in our appli
cation, it will not be given here. In (2.3) y, is known since 
it is part of y^, the observed data. Thus, from (2.3) the 
MMSE forecast of y, is y, = Ay, + Cw,, where w, is the 
MMSE forecast of w,. Therefore, f = y^-y^ = Ay, + Cwy 
-(Ay, +Cwp =C(w^-w ),andvar(f) = Cvar(w^-wpC'. 

Under Assumption A of Bell (1984a), which leads to tiie 
standard results for forecasting nonstationary series (as in, 
e.g.. Box and Jenkins 1976, Chapter 5), w, = E32E22W0-
Note that this uses only the differenced data w^ in 
forecasting yi^. Then, from standard results on linear pre-

2 - L 'L'.l'L' 
33 -^32 22 •^32-

Thus, var(f) diction, var(w - - w,) 
C(L33 - 232222^32)^'-

To obtain var (b) and cov (b, f) we note that results 
obtained by Bell (1984a, p. 651) imply similar calculations 
hold for the backcast ertors b. In fact, it can be shown tiiat 
b = (-I)'^C'(Wj - Wj), where w^ is the MMSE backcast 
of Wj, and r is the number of times (1 - B) appears in the 
polynomial 5(B). (The appearance of C' in tiiis expression 
instead of C stems from the indexing of w^ and w^forward 
through time although the backcasting process proceeds 
backwards through time.) Thus, var(b) = C'var(vt'^ - w^) 
C = C ' (2„ - T.12'^21 ^(2)^- Similarly cov (f, b) = (-1)" 
C{'L^i -£32222^12)^- ^ practice, to avoid inverting Z22, 

To compute cov(f, e), we first note from results of the 
preceding section that f = y , - y , = C(w, -w, )=C 
(W^-S3222>o)=C[0| -2:322:2̂ 11 JW=C[0| -2:322:2̂ 1:11 J 
Ay. Since cov(y,e) = cov(Y + e,e) = 0 + var(e), we see 
that cov(f,e) = C[0| -2:322:2"2|I JAvar(e). Cov (b, e) is 
computed in an analogous fashion by noting that, 
b=(-l)^C'(w-w,)=(-I)X'(w,-2:,2222W„) =(-!)'•€' 
[1^1-2,2 2:2210] Ay, so that cov(b,e) = (-l)^C' 
[I^|-2:,22:22^|0]Avar(e). 

Example-U.S. 5+ Unit Housing Starts (continued). Figure 
2 shows that the contribution of cov[(b, 0, f), e] is zero or 
near zero in the middle of the series, but it becomes increas
ingly negative towards the ends of the series, in a pattern 
similar, though opposite in sign and of smaller magnitude, 
to that of var(b, 0, f). At the very ends of the series, how
ever, the pattern reverses and the covariance increases. The 
elements of cov[(b, 0, f) e], are mainly positive, so its 
contribution to the seasonal adjustment variance is negative 
because cov[(b, 0, f), e] and its transpose are subtracted 
fromvar(e) -1- var(b, 0, f). The net effect is that subtracting 
il{cov[(b,0,f),e] +cov[(b,0,f), e\'}Si' tends to offset tiie 
effect of adding Qvar(b,0,f)fi', except near the very ends 
of the series. Thus, the graph of the variances of the season
ally adjusted series in Figure 2 is very similar to the graph 
of the contribution of var(e), except near the very ends of 
the series. We observed this type of "cancellation effect" in 
several other examples, including those of section 4. 

2.4 Comparison with the First Approach of Wolter 
and Monsour 

The first approach of Wolter and Monsour (1981) pro
posed use of Sl^^yar{eg)SiJ^ as the variance-covariance 
matrix of the X-11 seasonal adjustment errors, where SI 
is an n + n matrix whose rows contain the X-11 linear filter 
weights, both symmetric and asymmetric. That is, the 
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middle rows (rows t such that m <t <n- m -¥ I, assuining 
n > 2m) of Sl^^ contain the X-11 symmetiic filter weights, 
but the first and last m rows of SI contain X-ll's 
asymmetric filter weights. The middle rows of Sl^^ and SI 
thus contain the same filter weights, but the first and last m 
rows do not. This means that our approach will give the 
same results as that of Wolter and Monsour for m < / < w -
m -I-1, that is, for time points at which the symmetric filter 
is being used. The results of the two approaches will differ 
for the first and last m time points. Since the most recent 
seasonally adjusted data receive the most attention, this 
difference is potentially important. 

Wolter and Monsour also considered use of a matrix SI* 
instead of Sl^^ where SI* is (n -H 12) X (n -h 12) to include 
12 additional rows of weights corresponding to year-ahead 
seasonal adjustment filters. Though year-ahead adjustment 
was the common practice through the early 1980s, it has 
now mostiy been replaced in the United States by 
concurrent adjustment (McKenzie 1984). 

The differences between our approach and that of Wolter 
and Monsour can be viewed in two ways. One view is that 
since Wolter and Monsour did not consider forecast and 
backcast extension, their approach ignores the contribution 
of forecast and backcast ertors to seasonal adjustment error. 
This contribution affects results for the first and last m time 
points, although the examples of section 4 show that this 
contiibution is often small. However, in some cases it is not 
small, including those time series not subject to sampling 
error. For such series Wolter and Monsour's approach 
would assign zero variance to the adjustments, even though 
initial adjustments would be revised as new data became 
available. 

The other way to view the differences between the 
approaches centers on the difference in "targets". The 
seasonal adjustment error under Wolter and Monsour's 
approach can be thought of as Sl^^{Y ^-yj = -Sl^^e^. 
Since this results in zero error for series with no sampUng 
ertor (Y^ = y ̂ ), Wolter and Monsour impUcitiy define the 
seasonal adjustment target to be SI ̂ ^Y ̂ . This definition of 
target has the undesirable property that the target value for 
a given time point changes as additional data are acquired, 
since the rows of SI contain different filter weights. Our 
target value for any given time point t is always a)(B)y,. 

Example-U.S. 5+ Unit Housing Starts (continued). We 
compared results using our methodology with that of 
Wolter and Monsour's using the default X-11 seasonal 
adjustment filter although, as noted earlier, this example 
series is adjusted using the optional 3 x 9 seasonal moving 
average filter. This comparison used the default filter for 
convenience: asymmetric X-11 filter weights are needed to 
obtain results for the Wolter-Monsour approach and we 
were given a computer program by Nash Monsour that 
produced them only for the default filter. Figure 3 gives the 
results for both approaches. The non-constant variances 
over time from the Wolter-Monsour approach result from 
applying different filters at different time points. An 

interesting consequence of this is that, despite the station-
arity of the sampling ertor, the Wolter-Monsour seasonal 
adjustment variance is noticeably higher in the middle of 
the series than for many time points toward (but not close 
to) either end of the series. This carries the implausible 
implication that use of less data produces estimators with 
lower variance. Similar behavior can be observed in several 
examples presented by Pfeffermann (1994). 
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Figure 3. U.S. 5+ Units Housing Starts: Comparison with Approach of Wolter 
and Monsour (1981). The panel descriptions are as for Figure 2. The Wolter 
and Monsour approach (dotted lines) uses the asynunetric X-11 filters for the 
ends of the series and accounts only for sampling error. Our approaches agree 
in the middle of the series where there is no contribution from back/forecast 
error. The Wolter and Monsour variances inappropriately decrease near the 
ends of the series, suggesting that use of less data produces estimates with 
lower variances. The results here, in contrast to Figures 1, 2,4, 5, and 6, use 
defauh X-11 filters. (See text.) 
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The results from using the default X-11 seasonal adjust
ment filter with our approach are also useful for comparing 
with the 3 X 9 seasonal moving average filter, for which 
results are given in Figure 2. Differences between results 
from using the two filters are not great. The contiibution of 
the sampling ertor is somewhat lower and that of the 
fore/backcast error somewhat higher when using the default 
seasonal adjustment filter. 

3. EXTENSIONS TO THE METHODOLOGY 

This section discusses three extensions to the general 
methodology of section 2. The first two extensions are 
straightforward, the third more involved. 

3.1 Variances for Seasonal, Trend, and Irregular 
Estimates; Variances with Time-Varying 
Filters 

The only way the nonseasonal (seasonally adjusted) 
component is distinguished in the derivation of section 2 is 
through the filter weights placed in the matrix SI. There
fore, corresponding variances for X-11 estimates of the 
seasonal, trend, and irregular components follow from the 
same expressions simply by changing the matrix SI to 
contain the desired filter weights. This also changes the 
dimension of SI, since the length of the seasonal adjust
ment, trend, and irtegular filters (for given options) differs, 
and the filter length determines the size of SI. 

A similar extension handles the case of different 
seasonal moving averages (MAs) selected for different 
months (or quarters), an option allowed by X-11. This 
changes the seasonal adjustment (and seasonal, trend, and 
irtegular) filters applied in the different months. The results 
of section 2 also accommodate this extension through a 
simple modification of Si. Since the rows of SI cortespond 
to the time points being adjusted, we simply define row t of 
Si to contain the weights (along with sufficient zeroes) from 
whatever filter is being applied in month t. Some care must 
be taken to dimension Si appropriately if the longest 
selected MA is not used in the first and last months of the 
series. 

Example-U.S. 5-i- Unit Housing Starts (continued). Figure 
4 shows the variance of die X-11 tijcnd estimate, using the 3 x 9 
seasonal MA and 13-term Henderson. The most obvious 
difference from the seasonal adjustment results is the 
substantial effect of fore/backcast ertor at the very ends of 
the series. This occurs because the largest weights of the 
trend filter ((B^^(B)) are the center weight {(o'p) and the 

(•f) (T) (T) ^ u ' 

adjacent weights (co, ,0)2 ,(03) that are applied to data 
immediately before and after the observation being 
adjusted (Bell and Monsell 1992). At the very ends of the 
series, the weights (co, ,0)2 ,©3 ) apply to fore/ back-
casted observations, which results in large increases in the 
contribution of fore/backcast ertor there. The result is that 
uncertainty about the trend increases sharply at the ends of 

the series. In the center of the series, however, the trend 
variances of Figure 4 are substantially lower than the 
seasonal adjustment variances of Figure 3, due to the 
smoothing of the sampling error by the trend filter. 
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Figure 4. U.S. 5+ Units Housing Starts: Variance Decomposition of the 
Trend Estimate. The panel descriptions are as for Rgure 2. Note the large 
jump in trend estimate variances at the ends of the series due to the 
contribution of back/forecast error (third panel). 

3.2 Variances for Seasonally Adjusted 
Month-to-Month and Year-to-Year Changes 

The variances of the ertors of the seasonally adjusted 
estimates of month-to-month change are the quantities 
var(Vj - Vj ,), f = 2,..., n. Given var(v), the complete ertor 
covariance matrix for the seasonally adjusted month-to-
month changes can be calculated as A, var(v) A,', where 
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\ = 
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is of dimension (w -1) x n. The ertor covariance matrix for 
the seasonally adjusted year-to-year changes in a quarterly 
series is calculated similarly as A4var(v) A ,̂ where 
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is of dimension (n - 4) x n. The cortesponding {n- I2)xn 
matrix A ,2 for monthly series follows a similar pattern with 
additional zeroes. 

Variances of month-to-month or year-to-year changes in 
the trend are also easily obtained, as can be seen from this 
discussion and that of section 3.1. 

Example-U.S. 5-i- Unit Housing Starts (continued). We 
produced the standard errors for seasonally adjusted month-
to-month and year-to-year changes for this series (Figure 5). 
Since this time series has been log transformed, standard 
ertors can be approximately interpreted as percentages on 
the original (unlogged) scale. Compared to the standard 
ertors for the seasonally adjusted series, there are slight 
increases in the standard ertors of the month-to-month 
changes near the ends of the series, but the standard ertors 
of the year-to-year changes show almost no such increase. 
Thus, for this series and filter, the uncertainty about month-
to-month and year-to-year percent change in the seasonally 
adjusted data is almost constant across the series. The 
standard errors of the month-to-month and year-to-year 
changes are both about 50 percent higher than those for the 
seasonally adjusted series. 

3.3 Variances of X-11 Seasonal Adjustments with 
Estimated Regression Effects 

Seasonal adjustment often involves the estimation of 
certain regression effects to account for such things as 
calendar variation, known interventions, and outliers 
(Young 1965; Cleveland and Devhn 1982; Hillmer, Bell, 
and Tiao 1983; Findley, Monsell, Bell, Otto, and Chen 
submitted). (Outlier effects are often estimated in the same 
way as known interventions even though inference about 
outliers should ideally take account of the fact that the 
series was searched for the most "significant" outliers.) This 
section shows how the results already obtained can be 
extended to include the contiibution to seasonal adjustment 
error of error in estimating regression parameters. We still 
assume the other model parameters, which determine the 
covariance structures of Y and e, are known. In practice 
these .other model parameters will also be estimated, but 

accounting for error in estimating them is much more 
difficult. A Bayesian approach for doing so in the context 
of model-based seasonal adjustment is investigated by Bell 
and Otto (submitted). 
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Figure 5. U.S. 5+ Units Housing Starts: Standard Errors. These panels 
contrast the standard errors (not variances, as in previous figures) of the 
seasonally adjusted data (top panel) with the larger standard errors of 
seasonally adjusted month-to-month (middle panel) and year-to-year (bottom 
panel) change estimates. 

We extend the model for Y^ to include regression terms 
by writing Y^ = \l b -^ Zy where x, is the vector of 
regression variables at time t, p is the vector of regression 
parameters, and Z, is the series of tme population quantities 
with regression effects removed. Extending our matrix-
vector notation, we write Y = Xp + Z, Y^ = X^ p + Z^, 
etc. The regression matrix X can be partitioned by its rows 
cortesponding to the backcast, observation, and forecast 
periods: X = (X^|X^|X')'. We assume e, has mean zero, 
so its model does not involve any regression effects. We 
then have y = Y + e = (XP + Z)+e , with the usual parti
tioning applying. Letting z, denote the series y, with the 
regression effects removed, we have z = y - X p = Z + e. 

An additional partition is needed of the matrix X and 
vector p. This is because some ofthe regression effects in x,' P 
may be assigned to the nonseasonal component while 
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others, such as trading-day or holiday effects, may be 
removed as part of the seasonal adjustment. See Bell 
(1984b) for a discussion. Partition x̂  as (x^'Jx^^) where 
X;v, represents the regression variables assigned to the non-
seasonal and X5, the variables whose effects are to be 
removed in the seasonal adjustment. Cortespondingly par
tition p so x ;p=x; ,p , + x^p^ and Xp=X,p5 + X^p^ 
= (X^ I X^)(Pj' I P^)'. (x^, P̂  is assigned to the "com
bined" seasonal component.) The matrix X can thus be 
partitioned two ways: by seasonal versus nonseasonal 
regression effects, and by the backcast, observation, and 
forecast periods. Thus we write 

^Sb ^Nb 

^So ^No 

^Sf ^Nf 

If p were known we could compute z ^ = y ^ - X ^ p = Z ^ 
+ e^,forecast and backcast extend this series (call the 

extended series z), adjust z by X-I I (Siz), and add back 
the required regression effects X^^P^^. The target of the 
seasonal adjustment would be X^^ p^^ + SiZ = X̂ ^̂  p^^ 
+ Si(Y - XP), and the seasonal adjustment error would 
then be (X^^p^^ + SiZ) - (X^„P^^ + Siz) = S i (Z-z) . 
Thus, if the regression parameters were known they would 
not contribute to the seasonal adjustment ertor, and the 
results already given could be used to compute 
var(Si(Z-z)). 

In practice, p will be estimated as part of the model 
fitting, say by maximum likelihood assuming normality. 
Given the estimates of the other model parameters, and 
taking these parameters as if they were known, the maxi
mum likelihood estimate of p and its variance are given by 

P = [X'A'E2"2A X ] - ' X ' A ' 2 2 " ' A y (3.1) 

var(P) = [X;A;E22A.XJ-' , (3.2) 

where A„ is of dimension {n-d)xn, containing that part of 
the larger matrix A which differences the observed series y .̂ 
The expressions (3.1) and (3.2) are generalized least 
squares results using the regression equation for the differ
enced data, w^=Ay^ = (AX^)P + (u^ + Ae^), where the 
crtorterm, u +Ae , has covariance matrix var (w )=2„ , 

' 0 0 ' ^ o^ 22' 

which is determined by the other model parameters. 
Given the estimated regression parameters p, the 

seasonally adjusted series would be obtained by subtracting 
the estimated regression effects from the data (call the 
resulting series z ^ = y ^ - X ^ P ) , extending this series with 
forecasts and backcasts using the model (denote this 
extended series I = [1^,1^,1,]), applying X-11 to the 
extended series (Sil), and adding back the estimated 
regression effects assigned to the nonseasonal component 
(Sii+X^^P^^). The target ofthe seasonal adjustment is still 
^No Pwo ̂  ' ^^ ' discussed above. The seasonal adjustment 

error is then v = (X^„ p^„ + SiZ) - (Si£ + X^„ P^J = 

^No^ho-ho)^^^'^-^)-
The expression for v can be simplified by rewriting I. 

First, let G = [B' | I |F '] ' , where F is the matrix that 
produces forecasts y, from y„ and B is the corresponding 
matrix that produces backcasts y^from y„. We will not 
need explicit expressions for F or B. G applied to z„ 
produces z while G applied to i produces I. Therefore, I = z -
( z - | ) = z - [ G ( y „ - X „ P ) - G ( y ^ - X j ) ] = z + GX„ 
(P - P). Note that GX„ is obtained by applying the proce
dure for forecast and backcast extension (from the model 
for z,) to each column of X„. The approach we used to do 
this is described in Appendix B. Continuing, we have 

v = X^„(P^„-P^„) + S i [ (Z -z ) -GX„ (P-p ) ] 

= Si(Z - z) + {[0|X^J - SiGX„}(p - P). 

Now, Z - z = z - e - z = [b|0|f] - e. Note that [b|0|f], 
the ertor vector from projecting z on z„ or y„, is orthogonal 
to (uncortelated with) P - P, since P is a linear function of 
the data y„. Therefore, letting K = [0|X^J - SiGX^, we 
have the variance-covariance matrix of the seasonal 
adjustment ertor allowing for ertor in estimating p: 

var(v) = Sivar(Z - z)Si' + Kvar(P)K' 

+ Sicov(e, p)K' + Kcov(P, e)Si' (3.3) 

where var(P) is given by (3.2). In (3.3) Sivar(Z - z)Si' is 
computed by the results of section 2, and computation of 
Kvar(P)K' is straightforward once GX„ has been 
computed. To compute the other two terms requires 

cov(P,e) 

= cov([X'A'2:"2A X ] " ' X ' A ' Z : ' A y ,e) 

= cov([X'A'E2"2A XJ-'X'A'Ej'jLu +A e ],e) 
•̂̂  o o 2.1 o o-* o o II*- 0 00^^' 

= [X 'A ' E J ' A X ] - ' X 'A T : ' A [0 11 
'- o o 22. o o^ o o 21. o'- nxmi nxn 

|0„^ Jvar(e). 

Notethat[0„,„|I„^jO„,Jvar(e) = [cov(e^,e,)|var(eJ| 
cov(e^,ep] is the middles rows of var(e). Using (3.4) and 
the aforementioned results, (3.3) can be computed. We can 
compare the resulting diagonal elements of var(v) with 
those of the sum of the last three terms in (3.3), to see if 
allowing for the ertor due to estimating the regression 
parameters is important. 

There is an important qualification to make about the 
results of this section. Since tiie first term on the right hand 
side of (3.3), Sivar(Z - z)Si', is the seasonal adjustment 
variance we would get by ignoring ertor in estimating the 
regression parameters, it is tempting to interpret the sum of 
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the last three terms in (3.3) as the contribution to seasonal 
adjustment variance of ertor due to estimating regression 
parameters. Unfortunately, this sum is not itself a variance 
(it can in fact be written as var(Kp + Sie) - var(Sie)), and 
so it can actually be negative. When this happens the 
seasonal adjustment variances that allow for error due to 
estimating regression parameters are actually lower than 
those that ignore this error. We were in fact able to achieve 
such a result by artificially modifying model parameters in 
the following example with trading-day variables (though, 
as in tiie results shown, the effects were quite small). This 
situation contrasts with comparable results for model-based 
approaches which express the seasonal adjustment ertor as 
the sum of two orthogonal terms: the ertor when all para
meters are known, plus the contribution to ertor from esti
mating regression parameters. The seasonal adjustment 
variance in this case is thus the sum of the variances of 
these two terms, and so the "regression contribution" is 
always nonnegative. This result is analogous to 
Sivar(Z -z)Si' +K var(P)K'in (3.3). The problem in 
(3.3) is that the X-11 estimate Siz is not an optimal 
(MMSE) estimator of the target SiZ, hence the ertor 
Si(Z - z) is cortelated with p through the sampling error 
e, leading to the two covariance terms in (3.3). This 
situation results partly from our choice of target 
(Xp + SiZ) and partly from the fact that X-11 cannot be 
assumed to produce an optimal estimator of anything (note 
comments related to this in the Introduction). 

Example-U.S. 5-1- Unit Housing Starts (continued). We use 
the same example to illustrate the contribution to seasonal 
adjustment ertor of adding trading-day variables (Bell and 
Hillmer 1983), although the cortesponding regression coef
ficients were not statistically significant when estimated 
with this series. Figure 6a shows the results. In this illus
tration, the lowest line is the "contribution" to the seasonal 
adjustment variance from estimating the trading-day effects 
(but see remarks above). When added to the original esti
mate of variance (dotted line), we obtain the variance of the 
seasonally and trading-day adjusted series, allowing for 
ertor in estimating the trading-day coefficients (top sohd 
line). We see that, for this example, the increase in variance 
due to including estimated trading-day effects in the model 
is slight. Figure 6b gives results for the trend filter. Here 
the contribution to trend uncertainty due to estimating the 
trading-day coefficients is certainly negligible. 

The contribution to seasonal adjustment variance of 
adding three additive outlier variables and one level shift 
variable is illustrated in Figure 6c. These regression 
variables were identified as potential outlier effects using 
the Regarima program (produced by the Time Series Staff 
at the U.S. Census Bureau) with a critical r-statistic of 2.5. 
Regarima uses an outlier detection methodology similar to 
those discussed in Bell (1983) and Chang, Tiao, and Chen 
(1988). The contributions ofthe additive outliers appear as 
three spikes while that of the level shift is a single smaller 
hump in the middle of the series. In comparison to the 

trading-day regression variables, the effect of these outlier 
variables is mainly local but much sti-onger. In particular, 
there is additional uncertainty about seasonal adjustments 
for observations considered additive outliers. 
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Figure 6. U.S. 5+ Units Housing Starts: Including the "Contiibution" from 
Regression Effects in the Variance Estimates. The top panel shows both the 
original variances from die first panel of Figure 2 (dotted curve) and die 
variances allowing for additional uncertainty due to estimating trading-day 
regression effects (top solid curve). The regression contribution is also shown 
(bottom solid curve). The second panel shows the corresponding results for 
die variances of the trend estimates. Note that the regression contribution to 
the seasonal adjusOnent variances is small, and to the trend estimate variances 
it is essentially zero. The third and fourth panels show analogous results when 
die trading-day regression effects are replaced by three additive ouUiers and 
a level shift. Notice that these have important local effects on the seasonal 
adjustment and trend estimate variances. 
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Results for the trend filter (Figure 6d) differ in that 
uncertainty is much greater around the observation where 
a level shift was detected, which approaches the level of 
uncertainty at the ends of the series. A level shift is 
considered part of the trend, so an estimated level shift 
effect would first be subtracted from the series (in XP), and 
then added back following application of the X-Il trend 
filter. (This is analogous to the treatment of regression 
effects assigned to the nonseasonal or seasonal components 
in seasonal adjustment as discussed above.) In contrast, 
since both additive outiiers and level shifts are considered 
part of the nonseasonal component, all four effects were 
added back as part of the seasonal adjustment when 
producing results for Figures 6a and 6b. 

Actually, these sorts of results for outliers should only be 
regarded as crade approximations, since they treat the time 
of occurtence and types of outliers as known, leaving only 
the magnitude of the effects to be estimated. Ideally, one 
would like to recognize that the series was searched for 
significant outliers, but this is much more difficult. 

is the sets of small downward projecting spikes that occur 
one year apart in triplets. These occur at non-leap year 
Februaries, for which there is no trading-day effect (the 
trading-day regression variables are all zero). There is still 
a small regression contribution to seasonal adjustment ertor 
at these time points since the adjustment averages in these 
contributions from adjacent time points. (Dips at non-leap 
year Februaries are also visible on close inspection of 
Figure 6a.) In addition, for some years, the ertor in esti
mating the Easter effect produces a noticeable upward 
projecting spike involving the two months March and April. 

o.ooe 
Mr/o raoraaalon varlablaa 

4. EXAMPLES 

We illustrate our approach using several additional 
economic time series whose sampling errors follow differ
ent models. The models used for these example series are 
taken from previous work as noted. 

4,1 Retail Sales of Department Stores 

Department store sales are estimated in the Census 
Bureau's monthly retail trade survey. Essentially all sales 
come from department store chains, all of which are 
included in the survey, hence, there is virtually no sampling 
error in the estimates. Thus, the variance of the X-11 
seasonal adjustment comes only from fore/backcast ertor 
and from error in estimating regression effects. (Note that 
the Wolter-Monsour seasonal adjustment variance would be 
zero for this series.) The model used for this series (Bell 
and Wilcox 1993), for the period August 1972 through 
March 1989 for the logs of the observations, is 
( I - f i^ ( l -B '2 ) [y - x ; p ] = ( l -0.53B)(1 -0.52B^^)a^ 
with a^ = 4.32 X10", where x, includes variables to account 
for ti-ading-day and Easter hohday effects, and Y^ = y^ is the 
log of the original series divided by length-of-month 
factors. In adjusting the series at the (Census Bureau, the 
default X-11 adjustment filter and 13-term Henderson trend 
filter are used. 

Figure 7a shows the standard ertors for the seasonally 
adjusted data over time, with and without the contribution 
of regression effects. Unlike the 5-t- units housing starts 
series, there are marked increases in the standard ertors of 
seasonally adjusted data at the ends of series, due entirely 
to fore/backcast ertor. The contribution to the standard ertor 
due to estimating regression effects is also more pro
nounced for this series. An interesting feature in Figure 7 

Cb> S t a n d a r d o r r o r o f m o n t h - t o - m o r a t H e h a n g o 

i 
1 
1 

O.OOB -

0.007 -

O.oos -

O.oos — 

0.001 — 

-o.ooi — 

/^ 

1 
n ̂fJ 

..... 

UvX̂  

. 

1 f 
4-^^ffnM-im 

( c ) S t a i 

§ 
i 
1 

Figure 7. U.S. Department Stores, with Trading-Day and Easter Effects. This 
series has no sampUng error. The four panels give standard errors with and 
without the contribution from estimating regression effects. For the seasonally 
adjusted data and corresponding month-to-month and year-to-year changes 
(first three panels), the "contribution" from estimating regression effects is 
substantial and erratic in the middle of the series (where it is the sole 
contributor) but, at either end, diminishes for reasons explained in the text. 
The regression contribution to the trend estimate standard errors is small. 
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The regression relative contribution to the seasonal 
adjustment standard ertors diminishes towards the ends of 
the series. This results from two factors: (1) the magnitude 
of the regression contribution to var(v,) decreases somewhat 
towards the ends of the series, and, more importantly, (2) 
var(Z, - Z,) increases dramatically towards the ends of the 
series, diminishing the relative contribution to var(v,) due 
to regression (and this is further accentuated when square 
roots are taken). 

The pattern ofthe standard errors of seasonally adjusted 
month-to-month changes (Figure 7b) is similar to that for 
the standard error of the seasonally adjusted data (Figure 
7a). The regression contribution is slightiy larger than it is 
for the seasonally adjusted data. Standard errors of year-to-
year changes (Figure 7c) follow similar patterns but the 
regression contribution is considerably larger than it is for 
the month-to-month changes, and it remains important at 
the ends of the series. 

A similar set of calculations was performed using the 
default X-11 trend filter, and results for the standard errors 
of the trend estimates, with and without the regression 
contribution, are depicted in Figure 7d. The patterns over 
time of these standard ertors are similar to the cortespon
ding figures for the 5-i- units housing starts series, but the 
standard ertors are much smaller due to the absence of 
sampling error. The regression contribution is small. 

The standard errors for all plots in Figure 7 are small 
-none exceed 0.8 percent. For this series, the regression 
contribution is small and probably ignorable near the very 
ends of the series, for all but the year-to-year changes. 
However, in the middle of the series, the sole contributor to 
standard errors is that due to the regression effects. 

4.2 Teenage Unemployment 

The Bureau of Labor Statistics (BLS) publishes the 
monthly time series of number of U.S. unemployed teen
agers estimated from the Current Population Survey (CPS). 
Data from January 1972 to December 1983 ((n = 144) 
were used by Bell and Hillmer (submitted) to develop a 
model for this series. The sampling ertor variance /z, 
changes over time, so is nonstationary. The sampling ertor 
model they developed is 

V, where (I - 0.6B)e, = (1 - 0.35)^,, (4.1) 

with â  = 0.87671 so that var(ej) = 1. CPS sampling error 
variances can be approximated by generalized variance 
functions (Wolter 1985, Chapter 5; Hanson 1968). The 
generalized variance function Bell and Hillmer used for the 
teenage unemployment series is 

V = l-971y,-(1.53xlO-=)y;, (4.2) 

where y^ is the estimate of the number in thousands of 
unemployed teenagers at time t. The estimated model for 
the signal component Y^ is 

(1 - B){1 - B'^)Y, = (1 - 0.275)(1 - 0.68B'2)a,, (4.3) 

with (T^ = 4294. There are no regression effects in the 
model and the series is not transformed. BLS uses the 
default X-11 seasonal adjustment filter (so m = 84). 

In applying the methods of this paper to this example, 
problems arise from the fact that the (estimated) sampling 
error variance h^ depends on the estimate y^ through the 
generalized variance function (4.2). In the backcast and 
forecast periods y, is unknown. To obtain h, in these 
periods we forecast and backcast y^ using a simple 
ARIMA(0 1 1)(0 I 1),2 model for y, (not for Yy as in 
(4.3)). The resulting 84 forecasts and backcasts were then 
used in (4.2) to produce h, in the forecast and backcast 
periods. More refined tteatments are possible, such as using 
the component model given by (4.1) and (4.3) to forecast 
y,-

Ca) variance of seasonally adjusted series 

Ct) contribution of sampfing en-or (e) 

c O contribution of fore/backcast error (b 0 f) 

20 40 60 100 120 

C^) contribution of covariances of e and (b 0 f) 

0, o 

.is <M 

60 80 

observation number 

Figure 8. Teenage Unemployment, widi Default X-11 Options. The panel 
descriptions are as for Figure 2. The seasonal pattern of the sampling error 
variance contribution (second panel) results from its dependence on the level 
ofthe series through a generalized variance function (see text). 

The seasonal adjustment variance for this series (Figure 
8a) is dominated at most times t by the sampling error 
contiibution (Figure 8b). This is because, while the contri
bution of var(b, 0, f) is substantial for this series (Figure 
8c), it tends to be offset by the contribution of cov[(b,0,f), 
e] + cov[(b,0,f), e]' (Figure 8d), except at the first and last 
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few time points. The patterns of variances of seasonally 
adjusted month-to-month changes and year-to-year changes 
(not shown) are similar to that of Figure 8a. The variances 
of the month-to-month changes are slightly larger than 
those of the adjusted series, those of the year-to-year 
changes are larger still. 

4.3 Retail Sales of Drinking Places 

Retail sales of drinking places are estimated in the 
Census Bureau's monthly retail trade survey. In this 
survey, (noncertainty) sample cases are independently 
redrawn approximately every 5 years, so the covariance 
matrix of the sampling errors is block diagonal. Bell and 
Hillmer (1990) developed the following model for the 
sampling ertor of the logged series within a given sample: 

(1 - 0.15B - 0.665^ + 0.50B^){1 - 0.71B'2)e, 

= (1 + 0.135)^,, (4.4) 

with cTj = 9.301 X 10'^. For time points t andj in different 
samples, cov{eyej) =0. Bell and Hillmer developed a 
model for the signal component of the logged series using 
unbenchmarked estimates from September 1977 to 
December 1986. We shall instead use the following model 
fit by Bell and Wilcox (1993) using additional data through 
October 1989: 

(1 - B){1 - B^^)[Y, - X;b] = (1 - 0.23fi) 

{I-O.S8B^^)ay 

where X, contains trading-day regression variables, and 
o-f =4 .16x10^ 

In seasonally adjusting this series, the default X-11 filters 
are used. The contribution of ertor due to estimating 
regression parameters is small for this series, and so is not 
included in the results to follow. Since the contribution of 
sampling ertor overwhelms the contributions from fore/ 
backcast ertor and cov[(b, 0, f), e] + cov[(b, 0, f), e] ' , we 
also do not illustrate these separate variance contributions. 
Figure 9a gives the standard ertor ofthe seasonally adjusted 
data (shown over 232 observations to better illustrate the 
pattern, with vertical lines indicating sample redraws) and 
Figure 9b the standard ertor of seasonally adjusted month 
-to-month changes. 

Note the strong pattern in Figure 9a, b due to the 
redrawing ofthe sample every five years. In particular, this 
produces a large spike in the standard ertor of seasonally 
adjusted month-to-month changes (Figure 9b) when the 
sample is redrawn. Similar jumps in standard deviations of 
year-to-year changes occur for the first year of a new 
sample. We also found similar patterns for other series from 
the retail ti-ade survey using models from Bell and Wilcox 
(1993). 

The preceding discussion and results ignored certain 
aspects of how estimation for the retail trade survey is 
actually carried out. In fact, to avoid large increases in 

variances of change estimates around the sample redraw, 
such as those reflected in Figure 9b, simple modifications 
are made to estimates in a newly introduced sample to make 
their level consistent with that from the old sample. The 
simplest version of the modification is as follows. Let 
(̂oid)t( '̂ ^^P(^(oid)t)) denote estimates from the old sample, 

and Z(nĝ ,̂), unmodified estimates from the new sample. 
Assume that the old sample provides estimates for t ^ r, 
and that the new sample is to provide estimates for t>T. 
To provide overlap data for the modification, the new 
sample is begun one month early, so that both z. y. and 
(̂new)T ^̂ ^ available. The modified new sample estimates 

are defined as z^'„,^^, = Z(„ew)t(̂ (oid)r/2(„ew)r) for ' ^ -̂ This 
modification is carried out each time a new sample is 
introduced. In terms of the cortesponding logged estimates 
v., the modification is y,' ,.= y, ^ + (y, ,.,, —y, . ). 
- ' ' ' .'(new)t ''(new)t ''.'(old)r .'(new)r'' 

Since the modification to y, is linear, it is easy to account for 
its effects on the seasonal adjustment variance calculations 
here. The month-to-month change at time r -t- 1 before the 
modification (and without seasonal adjustment) is 
>'(new)T.i ">'(o!d)r- ^ote that this change has a large 
variance since y(„g„)j ^, and y^^ .̂ come from different, 
independent samples. After modification, this change is 
(̂new)r +1 ~ >'(new)r' which has a much lower variance due to 

strong positive correlation between ŷ ^̂ ^̂ ^ ^ ^ and y , . 
(arising from the the sampling ertor model (4.4)). 
Unadjusted month-to-month change estimates for time 
points other than r + I are unaltered by the modification. 

Figure 9d shows that modifying new sample estimates 
eliminates the large increases in the standard deviation of 
seasonally adjusted month-to-month changes at the transi
tions to new samples. Similar effects were seen for year-to-
year changes over a one year period. The price paid for this 
improvement is a steadily increasing error in the level 
estimates (Figure 9c) following introduction of new 
samples. This occurs because the modification introduces 
a transient error into the level estimates that persists 
throughout the new sample. Thus, the modification trades 
off worse accuracy of level estimates for improvements in 
change estimates. (Figure 9c shows no increase for the first 
five years because we assume the estimates there are not 
modified to agree with those from a previous sample.) 
Moreover, the strong patterns in Figure 9a occur because 
the sampling ertors from unmodified estimates in adjacent 
samples are uncortelated. On the other hand, sampling 
ertors in the modified estimates are fairly strongly 
cortelated between adjacent samples. The effect of this, 
after applying the seasonal adjustment filter, is a much 
different pattem (almost no pattern) in the first five years of 
Figure 9c, and slight oscillations around the linear increase 
thereafter. 

The standard ertors for the X-11 trend estimates and 
changes (not shown) look like smoothed versions of those 
shown in Figure 9. 

In practice, final estimates from the retail trade survey 
are even more complicated than what was just described 
and illustrated. First, more than one month of overlapping 



26 Bell and Kramer: Toward Variances for X-11 Seasonal Adjustments 

o. ia -

i 

1 

o — 

a d j u w t o d d a t a . o r i g i n a l o a t l m a t s 

ob««rv« t lon n u m b e r 

thus alleviate the problem of level variances increasing over 
time seen in Figure 9c. However, since benchmarking 
imposes linear sum constraints on the original (unlogged) 
estimates, its effects on seasonal adjustment variances are 
difficult to investigate under the approach developed here, 
and we have not done so. (We have used a model for 
unbenchmarked data to avoid this problem.) Durbin and 
Quenneville (1995) develop a model-based approach to 
benchmarking that accounts for the nonlinearities that such 
benchmark constraints impose on logged data. 
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Figure 9. Retail Sales of Drinking Places: Samples Redrawn Every 
Five Years. The top panel shows the standard error of the seasonally 
adjusted data and the second panel the standard error of the 
corresponding month-to-month changes. The strong pattem results 
from independently drawing a new sample every five years (at the 
dotted vertical lines). For month-to-month changes, this produces 
large increases in standard errors at the time ofthe sample redraw. To 
eliminate this problem, a new sample is drawn to overlap with the 
previous sample for one or more months and the new sample's 
estimates are modified using data from the overlap to make them 
consistent in level with estimates from the previous sample (see text). 
This eliminates the increases in standard errors of change estimates 
when the sample is redrawn (fourth panel), but introduces a transient 
error into the modified level estimates, whose effects accumulate over 
time (third panel). 

data are collected and may be used to modify level esti
mates when a new sample is introduced. More importantly, 
monthly estimates are benchmarked to agree with annual 
totals obtained from the more accurate annual retail trade 
survey or five year economic census. Benchmarking should 

5. CONCLUSIONS 

This paper presented an approach to the long-standing 
problem of obtaining variances for X-I I seasonal adjust
ments. Our goal was the development and application of an 
approach to obtain variances accounting for two sources of 
ertor. The first ertor source is sampling error (e,), which 
arises because we do not observe the true series, Yy but 
instead observe estimates y, = i', + e^ from a repeated 
survey. The second ertor source results from the need to 
extend the observed series with forecasts and backcasts to 
apply the symmetric X-I I filters. This second ertor source 
leads to seasonal adjustment revisions. To account for 
these two sources of ertor, we defined the seasonal 
adjustment variance as the variance of the ertor in using the 
X-11 adjustment to estimate a specific target. This target, 
a)(fi)y,, is what would result from applying the symmetric, 
linear X-I 1 filter, co(fi), to the tme series if its values were 
available far enough into the future and past for the 
symmetric filter to be used. (The application to additive 
X-Il with fore/backcast extension is immediate, and 
log-additive X-11 is taken as an approximation to multipli
cative X-Il.) 

Our approach was also applied to produce variances of 
X-I I ti:end estimates, and to produce variances of month-to-
month and year-to-year changes in both the seasonally 
adjusted data and trend estimates. A further extension was 
made to allow for ertor in estimating regression parameters 
(e.g., to model calendar effects), though this was more 
involved and had some limitations. 

The variances we obtain ignore uncertainty due to time 
series variation in the seasonal and nonseasonal com
ponents. We argued in section 2 that this may be 
appropriate for typical users of X-I 1 seasonally adjusted 
data. EF one desires to account for this time series variation, 
however, we suggest that consideration be given to 
model-based approaches to seasonal adjustment, since time 
series models provide a means to explicitly account for 
variation in all the components. Alternatively, Pfeffermann 
(1994) developed an approach to X-II seasonal adjust
ments that attempts to account for irtegular variation and 
sampling error. 

Our approach builds on the first approach suggested by 
Wolter and Monsour (1981), by accounting for the contri
bution of forecast and backcast error that was ignored by 
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them. An alternative view of the difference between our 
approach and theirs is that we define a consistent seasonal 
adjustment target, whereas, in using X-ll's asymmetric 
filters, Wolter and Monsour impUcitly used targets that 
change over time. Because of this, our approach avoids the 
unrealistic feature of seasonal adjustment variances that 
decrease towards the ends of the series, which can be seen 
in results of Wolter and Monsour, and also of Pfeffermann. 

In the empirical results presented, the contribution of 
sampling ertor often dominated the seasonal adjustment 
variances. This is partly because sampling crtor was often 
large relative to fore/backcast ertor, and partly because the 
contribution of fore^ackcast ertor tended to be offset by the 
contribution of the covariance of fore/backcast ertor with 
the sampUng ertor. On the other hand, empirical results for 
trend estimate variances showed large increases at the ends 
of series due to the effects of fore/backcast ertor. Since the 
largest contribution of fore/backcast ertor occurs at the ends 
of the series, and variances for the most recent seasonal 
adjustments and ti-end estimates are of the most interest, one 
should not ignore the contribution of fore/backcast ertor. 

The relative contribution to our variances of error in 
estimating trading-day or hoUday regression coefficients 
tended to be small, unless the series had no sampUng error. 
Ertor due to estimating additive outUer and level shift 
effects was substantial around the time point of the outUer. 
The effects of AOs were large on seasonal adjustment 
variances; tiie effects of LSs were large on trend estimate 
variances. 

Nonstationarities in the sampUng ertors produced inter
esting patterns in the seasonal adjustment and trend 
estimate variances. Two types of sampUng ertor nonstation
arities were examined. Seasonal patterns in sampUng ertor 
variances produced cortesponding seasonal patterns in 
seasonal adjustment variances. Independent redrawdngs of 
the sample, which yield sampUng crtors cortelated within 
but not across samples, produced erratic patterns in 
seasonal adjustment and trend estimate variances over time 
within a sample. These patterns approximately repeat 
across different samples if the samples remain in force for 
approximately equal time spans. 

Computations for the examples shown (given the fitted 
models, which were obtained from the references cited) 
were done by programming the expressions of Sections 2 
and 3 in the S-i- programming statistical language. The 
resulting computer code is available on request. 
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APPENDIX A 

Several expressions to be calculated in tliis paper are of 
the general form 

AE-'B (A.1) 

where E is a positive definite matrix, and A and B are 
conformable to E. Let E = LL' be the Cholesky decom
position of E. Then AE'^B = A(L -')'L "̂ B and (A.1) can 
be computed as follows: 

(1) Solve LQ, = B for Q, 
(2) Solve LQ2 = A' for Qj 

(3) Compute AE-'B = QjQ,. 

(1) and (2) can be solved efficiently since L is lower 
triangular. 

APPENDIX B 

Two steps are required to obtain GX ,̂ used in section 
3.3. The first step produces "forecast" and "backcast" ex
tension of the differenced regression variables. The second 
step uses these results and the difference equation to 
produce forecast and backcast extension of the original 
(undifferenced) regression variables. 

Let R = A X , where A is that part of the matrix A 
which differences the observed series y ̂ . Analogous to the 
computation of w, and w^ in section 2.2, forecast ex
tensions of the differenced regression variables are calcu
lated as R, = E32E22R0 and backcast extensions as R^ = 
E j2 E22R0. Rj and R^ are of the form (A. 1) and can be 
computed by the technique given above. 

For the second step, let x, denote any one of the 
regression variables in X. Let the required forecast 
extensions be denoted x^^, for / = 1, 2, ..., m. Let the 
differencing operator in the model be 5(fi) == 1 - 5jB -... -
5^B'', and let r̂  ^ ̂  be the forecast extension of 5(fl)x, = r, 
at time n + / (r ^, is an element of R )̂. The x , are 
calculated iteratively as 

\ . i = Vnw-i + - + ^d\.i-d + ^«.(' for ^ = 1 . - ' ' " ' 

where x„^^.=x„,^. if 7^0 . 
The required backcast extensions of x, are denoted Xj _ ̂  

for / = 1,..., m. These are also obtained recursively from 
the difference equation b{B)x^ = r^ by solving for JC, _̂  in 
the expression 

and substituting previously computed backcasts as needed. 
Thus, 

^l-l - "d ^^d*l-l - "f^d-/~ — ~ °d-l-'^2-l - ^d*l-l)' 

for I = l,...,m. 

where x 1 - ; 
•• X, . f o r / ^ 0 . 

1 -J J 
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Item Selection in the Consumer Price Index: 
Cut-off Versus Probability Sampling 

JAN DE HAAN, EDDY OPPERDOES and CECILE M. SCHUT' 

ABSTRACT 

Most statistical offices select the sample of commodities of which prices are collected for their Consumer Price Indexes with 
non-probabihty techniques. In the Netherlands, and in many other countries as well, those judgemental sampling methods 
come close to some kind of cut-off selection, in which a large part of the population (usually the items with the lowest 
expenditures) is deliberately left unobserved. This method obviously yields biased price index numbers. The question arises 
whether probability sampling would lead to better results in terms of the mean square error. We have considered simple 
random sampling, stratified sampling and systematic sampling proportional to expenditure. Monte Carlo simulations using 
scanner data on coffee, baby's napkins and toilet paper were carried out to assess the performance of the four sampling 
designs. Surprisingly perhaps, cut-off selection is shown to be a succesful strategy for item sampling in the consumer price 
index. 

KEY WORDS: Laspeyres price index; Monte Carlo simulation; Sampling; Scanner data; Substitution bias. 

1. INTRODUCTION 

Outsiders may think that measuring inflation is an easy 
job: just visit shops, collect a lot of prices and average 
them. However, statisticians engaged in the compilation of 
the Consumer Price Index (CPI), which is the most widely 
used measure of inflation, face many theoretical and 
practical problems. In most countries the CPI is essentially 
a Laspeyres price index. This index weights the partial price 
indexes of the various commodities by expenditure shares 
that are fixed at base period levels. Sampling procedures are 
needed to estimate the population value. Ideally, the mean 
square ertor of the estimator would be minimized. Even 
though the Laspeyres index formula is extremely simple, 
the estimation procedures applied to the CPI make it a 
rather complex statistic. Described in a stylized way, the 
estimation involves three different kinds of samples. A 
sample of households taking part in an expenditure survey 
is used to estimate the commodity group expenditure 
weights. From each commodity group a sample of 
commodities (items for short) is selected. The prices of 
these items are collected in a sample of outlets. 

In this paper we focus on the sampling of items. Only a 
few statistical agencies, e.g., the U.S. Bureau of Labor 
Statistics, use probability sampling to select items to be 
priced. Most others, for instance Statistics Netherlands, rely 
on the judgements of experts working at the central office 
for determining which items should represent the commo
dity group. In the past this method could be defended by 
referring to the lack of appropriate sampUng frames. Due to 
the rapidly increasing automation of the retail industry, 
registers of consumer goods become more and more 
available, and probabiUty sampling of items comes in sight. 
Before changing over to a new sampUng sti-ategy, however. 

it seems worthwile to experiment with alternative strategies 
in order to assess their impact on the accuracy of the esti
mated price index numbers. The question to be answered is 
whether curtent non-probabilistic selection practices per
form worse, in terms of the mean square error, than proba
bility techniques. This is the main topic of the present 
paper. Simulation studies were carried out for three commo
dity groups, i.e., coffee, disposable baby's napkins and 
toilet paper. 

Not so long ago, empirical price index number research 
was hampered by the fact that highly disaggregated expen
diture and quantity information at the individual outlet level 
was lacking or at best available for small samples. Now
adays, some market research firms have managed to set up 
vast micro data bases on sales of consumer goods, espe
cially in the field of fast moving consumer goods. These are 
derived from electronic scanning by bar-code reader or the 
associated bar-code typed in at the cashier's desk. Bradley, 
Cook, Leaver and Moulton (1997) give an overview of 
potential uses of scanner data in CPI constniction. Proces
sing large scanner data bases is a rather time-consuming 
task. For CPI compilation as such, this could prevent an 
extensive use in the near future. But scanner data certainly 
provide a rich source of information for empirical analysis. 
In addition to studies into sampling, scanner data also 
enable us to calculate price index numbers according to 
different index formulas. The (fixed weight) Laspeyres 
price index does not take the households' reactions to 
relative price changes into account. We therefore examined 
to what extent tiie Laspeyres population price indexes ofthe 
three commodity groups are biased with respect to the 
Fisher price index, an index that does account for 
commodity substitution. 
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Section 2 gives an overview of the scanner data that we 
used. Section 3 addresses four different commodity 
sampling designs. Three of these {i.e., simple random 
sampling, stratified sampling, and sampling proportional to 
size) are probability techniques, whereas the fourth (cut-off 
sampUng) is a judgemental one that mimics official 
practices in the Netherlands. Section 4 describes Monte 
Carlo experiments we performed to determine the accuracy 
of the estimated commodity group price indexes under the 
various sampling designs mentioned. Section 5 deals with 
the use of Fisher indexes at the item level and the item 
group level, respectively. The within-group substitution 
bias of the Laspeyres commodity group price indexes is 
shown. Section 6 summarizes and discusses the findings. 

2. BAR-CODE SCANNING DATA 

2.1 An Overview 

Scannable products are defined in Europe by the 
European Article Number (EAN). Manufacturers should 
assign one and only one EAN to every variety, size, type of 
packaging, etc. of a product. This has two implications. In 
the first place, EANs sometimes change very rapidly, for 
instance because of a new packaging. Clearly, this makes it 
difficult to follow a specific item over time. Secondly, some 
EANs have negligible expenditures. It seems that the 
system of classification is too detailed; what is really one 
item has been classified as a multitude of items. In a test 
study using scanner data on coffee, Reinsdorf (1995) also 
found that "items that are, for all practical purposes, the 
same may occasionally have different UPC's" (the US 
Universal Product Code). Some aggregation over EANs is 
required. Fortunately, several product characteristics such 
as brandname and subname are included in the scanner data 
sets. We will treat EANs having the same product charac
teristics as identical items. If the number of characteristics 
is insufficient, there will of course be a danger of over-
aggregation, that is of putting heterogeneous items together. 

From A.C. Nielsen (Nederland) B.V. we received 
scanner data sets containing weekly supermarket sales on 
coffee, disposable baby's napkins and toilet paper. The 
initial data sets contained 320,569 and 294 different EANs, 
respectively. For each EAN, the number of packages sold 
and the cortesponding value is included, together with 
several product and outlet characteristics. Prices are not 
included; average prices (unit values) must be calculati'.d 
from the values and quantities. The coffee data relate to 
sales over a period of two and a half years, beginning with 
week 1 of 1994 and ending in week 24 of 1996, in a sample 
of 20 supermarkets located in a Dutch urban area unknown 
to us. The data on the other two item groups refer to a 
sample of 149 shops spread over the whole country, and 
cover a period of two years, beginning with week 1 of 1995 
and ending with week 52 of 1996. 

For reasons of convenience we deleted the minor brands. 
In the case of coffee, only the 15 brands with the highest 
turnover during the entire observation period were selected 
from the 55 brands actually sold. After aggregating over 
EANs with identical product characteristics, we further 
limited the population to those items that were sold in the 
base year 1994 and every month thereafter in order to have 
a complete data set for each month. We ended up with a 
total of 68 items (excluding coffee beans), among which 40 
items of ground coffee (including decaffeinated coffee) and 
28 items of instant coffee. These account for 94.5% of total 
base year coffee expenditure in the initial data set. For 
napkins and toilet paper (leaving out moist toilet paper), the 
brands with a turnover share of less than 1% were removed. 
Next, only those items were selected that were sold in the 
base year 1995 and at least eight months thereafter. This 
resulted in 58 napkins items and 70 toilet paper items, 
accounting for 90% and 86% of total 1995 expenditure in 
the initial data sets. 

2.2 Descriptive Statistics 

The most striking feature of the item expenditures is the 
skewness ofthe distiibution. Figure 1 shows the inequality 
of the base period expenditures in our adjusted data sets by 
means of so-called Lorenz curves. The vertical axis depicts 
the cumulative expenditure total, the horizontal axis the 
cumulative number of items, both expressed as percentages. 
The items are sorted in increasing order of expenditure. In 
case of equal expenditures, the Lorenz curve would lie on 
the diagonal. The more unequal the distribution becomes, 
the lower its position will be. Coffee item expenditures are 
distributed extremely unequal, with the three largest items 
accounting for over half of total base year (1994) coffee 
expenditure. For baby's napkins and toilet paper the largest 
six and eight items, respectively, account for nearly half of 
total base year (1995) expenditure. 

Figure 2 shows unit value index numbers, that is the 
change in the value per package, irtespective of quantity, 
brandname, type etc., taken over all outlets. This gives a 
first impression ofthe change in "prices" during the period 
under study. For coffee, there was a remarkable decrease in 
the second half of 1995 foUowing large price rises in 1994 
due to bad harvests in Brazil. Coffee prices are largely 
determined by world market prices for coffee beans. We did 
not find evidence of significant differences in price changes 
between outlets. Baby's napkins differ in this respect. A 
heavy competition was going on between the various 
producers (which may have caused the decline of the unit 
values during 1996), while discounts and other kinds of 
special actions were offered frequently. Hence, the unit 
value taken over aU items and outlets gives an inaccurate 
picture ofthe aggregate price change of baby's napkins. 
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Figure 1. Distribution of base period item expenditures 

Figure 2. Unit value index numbers (1994=100 for 

3, ESTIMATING LASPEYRES-TYPE 
PRICE INDEXES 

We start this section by introducing some notation. Let 
commodity group A consist of a finite number, say N, of 
commodities (items); geA means that item g belongs to 
group A. We assume that A is fixed during time. In real life 
this is not true: some products disappear from the market, 
while new products enter. In the short run, however, the 
constant item group assumption seems reasonable. Note 
that we adjusted our initial data set accordingly. The reason 
behind this is that we want to concentrate solely on the 
sampUng aspect. The Laspeyres (fixed weight) price index 
of commodity group A in period t is 

^-^ g g 
g£A 

geA 

geA 

W P (1) 

coffee, 1995=100 for baby's napkins and toilet paper) 

where P'^ denotes the price index of item g, e° the 
expenditure on g during base period 0 and w the corte
sponding expenditure share ofg within item group A. In the 
base period a sample A with fixed size n is taken from A. 
Because A is supposed to be fixed during time, it seems 
natural to keep A fixed as well. 

3.1 Simple Random Sampling 

Probability sampling refers to situations in which all 
possible samples have a known probability of selection. 
Under simple random sampling (without replacement), all 
possible samples have equal selection probabilities. The 
Horvitz-Thompson estimator P'A = {Nln)Y^^w'^P' is 
unbiased for P', that is E{P\) = P' where the expectation 
E{.) denotes the mean over all possible samples under a 
given sampling design, in this particular^ case simple 
random sampling. Despite its unbiasedness, P\ will not be 
used in practice because of two undesirable properties. 
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Firstly, if the price indexes of all sampled items are equal, 
the estimated item group index differs from that value, 
unless the population and sample means of expenditures 
coincide. Price index makers probably dislike this feature. 
Secondly, and more importantiy, P\ is bound to exhibit 
extraordinary large sampling variance. To overcome both 
difficulties, P' is estimated by taking unbiased estimators 
of the numerator and denominator: 

P' = 

Opt 
g g {Nln)Y e;P 

geA 

{Nln)Y^, 
geA 

Z<p'g^ 
geA 

(2) 

..0 
where w is the expenditure share of item g in the sample. 
Using a first-order Taylor linearization (Samdal, Swensson 
and Wretman 1992, pp. 172-176), the variance of P^ can 
be written as 

V{P'B) - ^P'A) - {P ')'(2p'p' - l)(o°)^ 
where o° denotes the coefficient of variation or relative 
standard error of the sample mean of base period expendi
tures, p' is the ratio of the relative standard ertors of the 
average base period expenditures expressed in prices of 
period t and 0, and p' is the cortelation coefficient between 
the average base period expenditures in prices of t and 0 
(which is exgected to have a positive sign). The choice for Pg 
instead of P\ can thus be elucidated by the fact that the 
former exploits the panel character of the sample; with 
p' > l/(2p'). a substantial reduction in variance is expected. 
An alternative expression for the variance of Pg is: 

V{P's) ~~ - ^ # 7 E K)^(/ ' ; - P 'f' (3) 
n N -I geA 

which can be estimated using sample data provided that the 
sampling fraction f=nlN is known. This formula, earlier 
mentioned by Balk (1989), shows that the variance depends 
on the within-group dispersion of the item price indexes. 
Hence, the variance could be lowered either by constructing 
item groups made up of items having similar price changes 
or by enlarging the sample. Samdal et al, (1992, p. 176) 
caution that "the Taylor linearization method has a 
tendency to lead to underestimated variances in not so large 
samples". The CPI item samples are generally quite small. 
For some item groups there may even be only one or two 
representative items. Thus, besides being unstable (having 
a large variance itself), the variance will probably also be 
underestimated when based on (3). 

We note that estimator P'g, being a ratio, suffers from 
smaU sample bias of approximately o(l/«). It can easily be 
verified that its absolute value \B{P'g)\ ̂ f'JV{P'g). If G° 
is small, say less than 0.1, the bias of P^ may safely be 
regarded as negligible in relation to its standard ertor. 
However, with a small item sample and a large variability 
of base period expenditures, o° could easily exceed 0.1 by 
far. We add that tiie all items CPI is unlikely to be biased to 

a large extent on this account, since the bias is a (weighted) 
average of positive and negative biases of the various item 
group indexes. 

3.2 Sampling Proportional to Size 

Sampling proportional to size has the advantage that the 
most important items have a big chance of being sampled. 
We will restrict ourselves to fixed size sampling without 
replacement, since this seems most likely to be chosen in 
case of item sampUng proportional to size (see for example 
the Swedish case described by Dalen and Ohlsson 1995). 
Base period expenditure acts as our measure of size, and the 
required first-order inclusion probability for item g is 
•Kg =negle° =nwg, where e° =ZgeA^g- ^̂  follows that 
£ gyi Pg/'' is an unbiased estimator of P'. 

Sampling proportional to size without replacement, 
combined with the Horvitz-Thompson or n estimator, is 
sometimes called Tips sampling. Most existing schemes for 
fixed-size Ttps sampling are draw-sequential and rather 
complicated. We wiU therefore use systematic Tips selection 
instead. This scheme can be described by imagining the 
expenditures e {geA) as cumulatively laid out on a 
horizontal axis, starting at the origin and ending at e °. A 
real number is randomly chosen in the interval {0,e'^ln], 
and we proceed systematically by taking the items g 
identified by points at the constant distance e^ln apart. 
This method yields exactiy the desired sample size. For 
commodity groups with large variation in base period 
expenditures, it may not always be possible to select an item 
sample strictly proportional to expenditure. Obviously, 
7t <. I must be satisfied for all g. If « > 1 and some e^ 
values are extremely large, it may be true for some items 
that ne°le°> 1, contradicting the requirement t^ ^ 1- The 
conflict will be deaU with as foUows. The N items are 
ordered according to descending expenditures. First, if 
ei>e^ln, weset Ji, = 1. Next, if Cj >(^° - ^ i ) / ( " " 1). 
we also set 7I2 = 1. The procedure is repeated until the 
requirement for sampUng proportional to base period 
expenditure is met for all remaining items. Our recursive 
approach differs somewhat from the method proposed by 
Samdal et al (1992, p. 90). They suggest to set 71 = 1 for 
all g with e >e°ln. In our data sets this would lead to 
unnecessary large numbers of items with 7t = 1. The 
subgroup Afj of items with the highest base period 
expenditures which is selected with certainty will be called 
the self-selecting part of the sample. From the remaining 
low-expenditure subgroup A^ a sample A^ with size «^ is 
drawn strictly proportional to expenditure. The resulting 
unbiased estimator is an expenditure weighted average of 
P '{H), the population Laspeyres price index of A^, and 
E eA P'g^'^L' *̂ ^ estimated price index of A .̂ 

3.3 StratiHed Sampling 

The obvious advantage of simple random sampling as 
opposed to sampling proportional to expenditure is that. 
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apart from a register of items serving as a sampling frame, 
no other data are required. See also Balk (1994). With very 
unequaUy distributed item expenditures chances are big that 
the rnarket leaders fall outside the sample, a situation that 
seems intuitively unappealing. We will argue that it would 
indeed be preferable if they were selected. Recall that the 
variance ofthe item group price index under simple random 
sampling depends on the within-group dispersion of the 
item price indexes. A variance reduction could be achieved 
if it were possible to stratify the item group into homoge
neous subgroups according to their price changes. How
ever, a priori knowledge of item price changes is not avail
able. Another way to lower the variance might be to stratify 
the item group into two subgroups, one (A^) with high 
base period expenditures which is observed entirely and the 
other one (A,) with low expenditures from which a ran
dom sample A^ is taken. The new item group price index 
estimator is an expenditure weighted average of P'g{L), 
the Laspeyres index of the low-expenditure subgroup, esti
mated in accordance with (2), and P'{H). Its sampling 
variance is (1 - T^)^ V[P'g{L)], where x^ is the expendi
ture share of A^ within A. This method does not necessarily 
reduce the variance of the estimated price index, but it is 
likely to do so under certain conditions. The variance of the 
new estimator will be smaller than the variance of Pg when 

l-x„< 
se(P^) 

se[P;,(L)]' 
(4) 

where se(.) denotes standard error. Inequality (4) is 
expected to hold if the item expenditures are distributed 
extremely unequal, since 1 - x^ will then become much 
smaller than 1. Stratification may be especially productive 
as the overall sample size n increases. 

The choice of x^ and thus of the size N^ of the "take-
all" stratum A^ is a bit of a problem. Preferably we would 
have some optimality criterion in order to minimize the 
variance. But since a priori knowledge of item price 
changes is lacking and past trends do not forecast future 
price changes very accurately, the optimal size of A^ can 
hardly be computed in practice. In the empirical analysis we 
will try two different relative sample sizes X^ = N^^ln of 
Afj, namely X,̂  = 1/3 and A.̂  = 2/3. These values suffice 
to give a clear indication of the performance. 

3.4 Cut-off Sampling 

When the sample size is very small it seems rather likely 
that stratification with X^ = 2/3 leads to a larger standard 
ertor of the estimated price index than with X^ = 1/3. But 
what happens if A^ is not observed at all, so that A,̂  = 1 
and thus n=Nj^l We would then be using (a special type 
of) cut-off sampling. The item group price index is 
estimated simply by PQ- P '{H). AU gsA^j now have an 
inclusion probability of 1, whereas all geA^ have zero 
inclusion probability (Samdal et ai, 1992, pp. 531-533). 
Since we know exactly which items will be selected there 

is no randomness involved and the sampling variance of the 
P'c is zero by definition. The bias equals the actual ertor, 
i.e., the difference between the estimated value and the true 
population index 

P ' c - P ' = ( l - x ^ ) [ P ' ( / / ) - P ' ( L ) ] . (5) 

With an extremely unequal distribution of item expen
ditures, even a small sample size would cause a large value 
for x^. In that case cut-off estimation may outperform 
stratification, in terms of the mean square error. We may 
either fix the cut-off rate x^, so that the sample size n is 
determined by x^, or fix the sample size, in which case x^ 
depends on the choice of n. The latter option was chosen by 
us since fixed size sampling designs are common practice 
in selecting CPI items, and because this allows a suitable 
comparison with other fixed size designs. 

The use of cut-off procedures can be justified on the 
grounds that i) the costs prohibit the construction of a 
reliable sampling frame for the whole population, and ii) 
the bias is deemed negligible. Assumption ii) cannot be 
verified in general, of course. The deliberate exclusion of 
part of the target population from sample selection may 
nevertheless give satisfactory results when appropriate 
corrections are made. Statistics Netherlands makes use of 
cut-off sampling in various other business surveys, for 
instance in production and foreign trade statistics where 
very small enterprises are left unobserved. In the Dutch 
National Accounts, that use production and foreign trade 
data as important inputs, explicit estimates are being made 
for small firms. The cut-off method for CPI item selection, 
on the other hand, does not cortect for the excluded items. 
In addition to cost-considerations, this method is sometimes 
defended by the belief that, at least in the longer run, the 
price changes of less important items will not differ much 
from those of the market leaders within the same product 
category because of similar production cost structures. 

4. EMPIRICAL ESTIMATION 

4.1 Monte Carlo Simulation 

With the exception of cut-off selection it is difficult to 
find reliable measures of the sampling distributions based 
on a single sample. Under simple random sampling the 
estimator P'(. has an unknown bias whereas variance esti
mation based on Taylor linearization techniques gives 
inaccurate results because CPI item samples are generaUy 
very small. Systematic reps sampling raises the question of 
how to estimate the variance of the estimator since the 
second-order inclusion probabilities are unknown. To 
obtain the exact sampling distribution we would have to 
consider all samples A that are possible under a certain 
sampling design. For every A the probability of drawing A 
and the estimated value of the commodity group price index 
must be known in order to calculate the exact values of the 
expected value, the bias and the variance of the estimator. 
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This is virtually impossible because of the extremely large 
number of possible samples. To describe the sampling 
distiibution, we will therefore carry out Monte Carlo simu
lations. A large number of samples, say K, is drawn from 
the (same) population A according to the given design and 
for each sample the estimate is calculated. If K is large 
enough, the distribution of the K estimates will closely 
approximate the exact sampUng distribution. Let P\ denote 
the result for the ^-th sample under a certain sampling 
design. Then 

A t = 1 
is an unbiased estimate of the expected value E{P'). We 
will calculate 

P' -P', 
which is an unbiased estimate of the bias B{P'); 

S^ = dp - I •YiP'k-P')\ 
K-U-i 

which is an unbiased estimate ofthe variance V{P'); and 

^{P' - P')' + sl 

which is an approximately unbiased estimate of the root 
mean square error (rmse) of P'. Samdal et al (1992, 
p. 280), remark that "the imperfection caused by the finite 
number of repetitions is more keenly felt in the case of a 
variance measure... than in the case of measures calculated 
as means". 

4.2 Results 
Monte Carlo simulations were carried out with three 

different sample sizes: n=3, n=6 and rt=12. The number of 
repetitions {K) per experiment was set to 500,000. Table 1 
shows the results for coffee in January 1995 (1994=100), 
tables 2 and 3 those for baby's napkins and toilet paper, 
respectively, in January 1996 (1995=100). The choice of 
the formula with which individual price observations are 
aggregated into a single item price index is discussed in the 
Appendix. Throughout this section all item price indexes 
are calculated as unit value indexes over all outlets. Simple 
random sampling performs particularly bad. For example, 
with n=3 the tme (laspeyres) coffee price increase of 
17.2% is understated by 1.4%-points. Together with a 
standard ertor of 5.1%-points, the rmse amounts to 
5.3%-points, that is almost one third of the true price 
increase. Even with n=I2, so that the sampUng fraction is 
0.18 (which would be unusually large in practical 
situations), the rmse still remains considerably high. Notice 
that, as expected, the small sample bias is halved when the 
sample size is doubled. Stratification works reasonably well 
with larger sample sizes but gives disappointing results with 
n=3. In the latter case, stratification increases the rmse 
compared to simple random sampling for baby's napkins 
and toilet paper when Nfj = 2 (that is, when A.̂  = 2/3). Our 
favourite probabilistic design would be systematic sampling 
proportional to expenditure because the estimates are 
unbiased and their standard errors relatively low. The most 
surprising finding perhaps is the good performance of 
cut-off selection. Except for n=3 and n=6 in case of baby's 
napkins, this method produces the best results. 

Table 1 
Estimated Laspeyres Price Index Numbers for Coffee (1994=100), January 1995 (N=6S) 

Sampling 
scheme 

S.R. *) 

Ttps 

Stratified 

X„ = 1/3 

X„ = 2I3 

Cut-off 

*)Si 

Sampling 
scheme 

S.R. 

Ttps 

Stratified 

X^ = 1/3 

X„ = 2/3 

Cut-off 

exp. value 

115.7 

117.2 

116.4 

115.6 

117.0 

imple randoi 

n --

se 

5.1 

2.2 

3.9 

4.5 

0 

Tl 

= 3 

bias 

-1.4 

0 

-0.7 

-1.5 

-0.2 

rmse 

5.3 

2.2 

4.0 

4.7 

0.2 

exp. value 

116.4 

117.2 

116.6 

116.4 

117.2 

n = 

se 

3.4 

1.3 

2.3 

2.5 

0 

Table 2 
Estimated Laspeyres Price Index Numbers for Baby's 

exp. value 

99.4 

97.2 

98.9 

98.3 

92.0 

n = 

se 

5.0 

2.8 

5.0 

5.8 

0 

3 

bias 

2.3 

0 

1.8 

1.1 

-5.1 

rmse 

5.5 

2.8 

5.3 

5.9 

5.1 

exp. value 

98.7 

97.2 

98.1 

97.4 

93.4 

n=6 

se 

3.9 

1.6 

3.3 

3.3 

0 

6 

bias 

-0.7 

0 

-0.5 

-0.7 

0.0 

Napkins 

bias 

1.5 

0 

1.0 

0.3 

-3.8 

rmse 

3.5 

1.3 

2.3 

2.6 

0.0 

exp. value 

116.7 

117.2 

117.0 

117.0 

117.5 

71 = 12 

se 

2.3 

0.7 

1.2 

1.1 

0 

(1995=100), January 1996 (/V=58) 

rmse 

4.2 

1.6 

3.4 

3.3 

3.8 

exp. value 

97.9 

97.2 

97.4 

97.0 

95.5 

n = l2 

se 

2.9 

1.5 

1.7 

1.6 

0 

bias 

-0.4 

0 

-0.1 

-0.2 

0.3 

bias 

0.8 

0 

0.2 

-0.2 

-1.6 

rmse 

2.3 

0.7 

1.2 

1.1 

0.3 

rmse 

3.0 

1.5 

1.7 

1.6 

1.6 
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Table 3 
Estimated Laspeyres Price Index Numbers for Toilet Paper (1995=100), January 1996 (A'=70) 

Sampling 

scheme 

S.R. 

Tips 

Stratified 

X„ = 1/3 

X„ = 2/3 

Cut-off 

exp. value 

103.9 

103.9 

103.5 

103.7 

105.0 

n = 

se 

4.5 

3.4 

4.3 

4.6 

0 

3 

bias 

0.1 

0 

-0.3 

-0.2 

1.1 

rmse 

4.5 

3.4 

4.3 

4.6 

1.1 

exp. value 

103.9 

103.9 

103.7 

104.2 

104.0 

n 

se 

3.5 

1.8 

3.2 

3.4 

0 

= 6 

bias 

-0.1 

0 

-0.1 

0.4 

0.1 

rmse 

3.5 

1.8 

3.2 

3.4 

0.1 

exp. value 

103.9 

103.9 

104.0 

103.9 

104.0 

n = 

se 

2.6 

1.2 

2.1 

1.6 

0 

12 

bias 

0.1 

0 

0.1 

0.0 

0.1 

rmse 

2.6 

1.2 

2.1 

1.6 

0.1 

For coffee we also tried another form of stratified 
sampUng. The entire population of items was subdivided 
into ground coffee and instant coffee, and we took random 
samples from each stratum. Although the price changes of 
instant coffee are smoothed and lag behind as compared to 
ground coffee, Monte Carlo results using stratified 
sampling were similar to those using unstratified sampling 
for all four sampling methods. This contradicts earlier 
findings (see De Haan and Opperdoes 1997a). The reason 
is that we deleted some instant coffee items for this study to 
have a complete data set for each month, and ended up with 
a minor fraction (8%) of instant coffee in total base year 
coffee expenditures. 

It would be hazardous to draw conclusions about the 
performance of the various sampling designs based on 
simulations for one particular month since it is likely that 
the outcomes depend on the frequency distribution of the 
item price indexes. Figure 3 shows these distributions for 
coffee and baby's napkins in two months. Both distribu
tions move to the left, indicating that the unweighted mean 
has declined. Apart from that, the frequency distribution for 
coffee remains quite stable. The shape of the curve for 

napkins, on the other hand, changes dramatically; the 
variance of the item indexes has grown. 

Monte Carlo experiments were run for each month of the 
period under study. Figure 4 shows the rmse with n = 3. 
The pattem that emerges for coffee and toilet paper is 
surprisingly robust: cut-off selection always comes out as 
best. Apparentiy, if sample sizes are small, the exclusion of 
the smaller items does not seem to matter much. This is 
what many statistical offices have been appreciating for a 
long time, without being able to test it empirically before. 
The reason why cut-off selection perfomis better than 
sampling proportional to expenditure is in case of toilet 
paper partly caused by the fact that there is no self-selecting 
part under the latter sampUng scheme. With larger samples 
the results under cut-off selection and sampling propor
tional to size are very much alike. For baby's napkins the 
outcomes differ somewhat. Because of the high volatility of 
the item indexes, the rmse under cut-off selection varies 
considerably; it seems to meander around the rmse resulting 
from systematic sampling proportional to expenditure. The 
high variability of the ertor can be considered a drawback 
of cut-off selection. 

Coffee (1994=100) Baby's napkins (1995=100) 

Figure 3. Frequency distribution of item price index numbers 
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Coffee 

. . . A - -

X— 

* -

- S R S 

-Cut-off 

- RPS 

- Stratified, 
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NH=2 

9503 9505 9507 9509 9511 9601 9603 9605 

Baby's Napkins 

-«—stratified, 
NhfeZ 

9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 

Toilet paper 

-^— Stratified, 
NH=1 

-SK— Stratified, 
NH=2 

9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 

Figure 4. Rmse of estimated Laspeyres price indexes («=3) 

5. THE USE OF FISHER INDEXES 

5.1 Unit Value Versus Fisher Item Indexes 

In section 4 the item price indexes were calculated as 
unit value indexes over all outlets. To assess the impact of 
the choice of the item index formula on the outcomes of the 
simulation study, Table 4 compares Monte Carlo results 
with n=3 based on unit value item index numbers (as in 
tables 1-3) and Fisher item price index numbers; see the 
Appendix for details. For coffee, we notice hardly any 
differences. For napkins and toilet paper, on the other hand. 

the rmse decreases when Fisher index numbers are used 
instead, especiaUy in case of simple random sampUng. This 
is caused by the fact that unit value indexes tend to show a 
more ertatic pattem. If physically identical types of napkins 
or toilet paper are deemed heterogeneous across outlets, so 
that the Fisher formula would be more appropriate, the use 
of unit value indexes overstates the price variability of 
particularly small items and exaggerates the poor perfor
mance of simple random sampUng. Nevertheless, we would 
still have to conclude that simple random sampling does not 
work very well. 
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5.2 Within-group Substitution Bias 

Many statistical agencies and users are of the opinion 
that the CPI should be an approximation to the tme cost of 
living index. This theoretical concept is derived from 
microeconomics and measures the change in the minimum 
costs for a representative consumer, or household, neces
sary to retain the same standard of living or utility. Since 
utiUty cannot be measured, a feasible index formula should 
be chosen that closely approximates the concept. Diewert 
(1976) showed that (what he calls) superlative indexes 
provide second order approximations to the cost of living 
index. The most important feature of superlative price 
indexes is that they take account of consumers' substitution 
towards goods and services exhibiting relatively smaU price 
increases. These index formulas make use of expenditure 
data relating to both the base period 0 and the curtent 
period t. In practice it takes some time before expenditure 
data are known, so that superlative indexes cannot be 
compiled in real time. For the sake of timeliness most 
national statistical offices adopt the Laspeyres (fixed 
weight) formula for constmcting their CPIs. 

The Fisher index is one of the best-known superlative 
indexes. When applied to the item group level, the diffe
rence between the population price indexes calculated 
according to the Laspeyres and the Fisher formula can be 
interpreted as within-group item substitution bias 
(Figure 5). For coffee it is less than I %-point per year. For 
toilet paper and particularly for napkins the biases are very 
large, about 1.5-3%-points per year. Within-group substi
tution bias is generally positive and increases over time. 
Notice, however, that for baby's napkins in a few months of 
the first half of 1996 the Laspeyres index numbers are lower 
than tiie Fisher index numbers. This unexpected effect, and 
possibly also the large magnitude of the positive bias in 
other months, may be due to a deficiency of the data set 
which only contains supermarkets. It is well-known that 
baby's napkins are bought in the Netherlands also in other 
kinds of shops such as dmgstores that do not make use of 
bar-code scanning. Substitution between the included and 
excluded outlets in the data base may damage our popu
lation index numbers as accurate approximations of the tme 
values. We are convinced though that it does not seriously 
affect the assessment of the sampling methods presented in 
section 4. 

Table 4 
Estimated Laspeyres Price Index Numbers Using Alternative Item Indexes (n=3) 

Sampling 

scheme 

S.R. *) 

Ttps 

Stratified 

X„ = 1/3 

X„ = 2/3 

Cut-off 

Coffee, 

(1) 

exp. 
value 

115.7 

117.2 

116.4 

115.6 

117.0 

January 1995(1994= 

rmse 

5.3 

2.2 

4.0 

4.7 

0.2 

(2) 

exp. 
value 

115.8 

117.2 

116.5 

115.6 

117.0 

100) 

rmse 

5.3 

2.2 

4.0 

4.8 

0.2 

Napkins, January 1996 (1995= 

(1) 

exp. 
value 

99.4 

97.2 

98.9 

98.3 

92.0 

rmse 

5.5 

2.8 

5.3 

5.9 

5.1 

(2) 

exp. 
value 

100.4 

98.6 

100.1 

99.5 

94.8 

=100) 

rmse 

4.2 

2.1 

4.1 

4.6 

3.8 

Toilet paper 

(1) 

exp. 
value 

103.9 

103.9 

103.5 

103.7 

105.5 

, January 1996(1995: 

rmse 

4.5 

3.4 

4.3 

4.6 

1.1 

(2) 

exp. 
value 

104.0 

104.3 

103.3 

103.2 

104.7 

=100) 

rmse 

3.5 

3.6 

3.6 

3.9 

1.0 

(1) Based on unit value item index numbers 
(2) Based on Fisher item index numbers 
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Figure 5. Difference between Laspeyres and Fisher population price index numbers 
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6. DISCUSSION 

Although bar-code scanning data have some defi
ciencies, they provide an excellent opportunity to undertake 
empirical research into various sampUng issues concerning 
CPIs. Our simulations show that, for coffee, disposable 
baby's napkins and toilet paper at least, simple random 
sampling of items should be advised against. We believe 
that this recommendation can be extended to all item groups 
where the distribution of expenditures is very skewed. If 
statistical offices want to apply probability sampling, they 
would do a better job using sampling proportional to 
expenditure. However, cut-off selection might be a good or 
even better altemative for those item groups where the 
various item price changes are not too volatile. As a matter 
of fact, as far as we are aware this is the first study to supply 
empirical evidence in support of cut-off CPI item selection 
methods. Aggregated scanner data - that is, scanner data 
aggregated over outiets - should give a clear indication of 
the required cut-off rate. Statistics Netherlands already 
made use of aggregated Nielsen data on a range of 
commodity groups in the past in order to select items for the 
CPI sample. 

Cut-off methods are applied extensively in the 
Netherlands and many other European countries (Boon 
1997). Ui the Netherlands the actual item selection is a little 
more complex than the situation described above. First, a 
number of item subgroups instead of specific items are 
chosen using the cut-off method. Next, a number of specific 
items are selected from each subgroup through so-called 
judgemental sampling. The selection of these representative 
items is based on the judgement of experts working at the 
central office who should have a firm knowledge of the 
consumer market in question. Usually the most frequently 
bought items or those with the highest tumover will be 
selected, so that the entire sampling scheme is a two-stage 
cut-off procedure. It is unlikely that such a two-stage 
method would yield results much different from the 
single-stage procedure we have used in this paper. 

In some other European countries, e.g., the United 
Kingdom, cut-off selection does not take place at the central 
office but by field staff at the outlets where prices are 
measured. To illustrate this method, we choose one item per 
outiet, namely the item with the highest base period sales in 
the outlet. For coffee, baby's napkins and toilet paper this 
yields 2, 12 and 24 different items, respectively. The 
Laspeyres item group index is estimated in accordance with 
expression (2), where the item price indexes are calculated 
as outlet-specific unit value indexes and weighted by 
outlet-specific weights. Figure 6 shows the rmse resulting 
from this method. If we compare this with Figure 4 (cut-off 
selection done at the central office for n=3), the accuracy of 
both cut-off selection methods seems "on average" to be of 
the same order of magnitude, although the pattem is sUghtiy 
more ertatic under selection at the outlets. But such a 
comparison is quite arbitrary. Why not compare cut-off 

selection at the outlets with cut-off selection at the central 
office for n=6, or «=12, or indeed for any other sample 
size? Another problem is that we treated the item price 
indexes as if they were known with certainty. In reality they 
will be based on a sample of outlets, so that our results are 
conditional on this sample. For a proper assessment of both 
cut-off selection procedures we need to take both the 
sampUng of items and the sampling of outlets into account. 
However, that is beyond the scope of this paper. 

Scanner data not only offer challenging perspectives for 
statistical research in the field of CPI sampling issues, they 
also enable us to compile all sorts of index numbers, 
including superlative indexes, using real and highly disag
gregated data at the individual outlet level. We demon
strated that the Laspeyres item group price indexes used by 
statistical agencies can be biased by more than -hi%-point 
on a yearly basis with respect to the (superlative) Fisher 
price index that accounts for item substitution. A related 
type of bias, caused by neglecting products that are intro
duced after the base period (see e.g., Boskin, Dulberger, 
Gordon, Griliches and Jorgenson 1996), was not addressed 
by us. Scanner data do provide a good opportunity to 
investigate this new goods bias. 

Figure 6. Rmse resulting from cut-off selection at the outiets 
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APPENDIX: THE CHOICE OF THE 
ITEM INDEX FORMULA 

To perform sampling simulations we need item index 
numbers. What index formula should be chosen? Statistical 
offices are generally forced to calculate indexes at the 
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lowest level of aggregation based on price data alone 
because quantity or expenditure data is lacking. See Szulc 
(1987), Dalen (1991), BaUc (1994), and Diewert (1995) for 
a comprehensive treatment of this subject. With scanner 
microdata at hand, we are in the unique position to 
constmct genuine price indexes (Silver 1995, Hawkes 
1997). Consider a set of outlets B , assumed fixed during 
time, where item g can be bought; beB means that g can 
be bought in outlet b. The price of g at outlet b in period s 
{s = 0,0 and the cortesponding quantity sold are denoted 
Pi and xl, respectively. The item will be taken as the 
lowest aggregation level where price indexes are 
constmcted. As a start we restrict ourselves to item indexes 
that can be written as ratios of weighted arithmetic mean 
prices in period t and period 0: 

E-ip; 
P' = 'j^ 

"gb ' gb 

E u r)0 
"^gbPgb 

beB, 

(6) 

where ŵ^̂  = x^^ /HbeB ^gb denotes the share of outlet b in 
the total quantity sold^of item g in period z(z = s,u). If 
M = 0 and s = t, the prices in period 0 and period t are 
weighted by the corresponding relative quantities. The ave
rage prices are called unit values, and P'^ is a unit value 
index. De Haan and Opperdoes (1997b) and Balk (1998) 
discuss its merits. Adding up quantities makes sense only if 
item g can be conceived of as being homogeneous, that is 
identical across all beB . Unit values then yield the appro
priate average transaction prices and the unit value index is 
the appropriate item price index. 

The problem, of course, is to define homogeneity. It can 
be argued that physically identical products sold in different 
outiets are not identical items because of different services 
that accompany the transactions, so that homogeneity 
across outiets never occurs. Another index formula should 
then be chosen. If M = j in expression (6), P'^ can be called 
a fixed quantity price index with u acting as the quantity 
reference period. For u = s = 0, P^ tums into the Laspeyres 
price index, and for M = 5 = r, P is the Paasche price 
index. On theoretical grounds we cannot favour either one. 
For reasons of symmetry it seems natural to take the 
(unweighted) geometric average of the Paasche and the 
Laspeyres index, which is the Fisher (ideal) price index. 
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Robust Calibration Estimators 
PIERRE DUCHESNE' 

ABSTRACT 

We consider the use of calibration estimators when outiiers occur. An extension is obtained for the class of Deville and 
Samdal (1992) calibration estimators based on Wright (1983) QR estimators. It is also obtained by minimizing a general 
metric subject to constraints on the calibration variables and weights. As an apptication, this class of estimators helps us 
consider robust calibration estimators by choosing parameters carefully. This makes it possible, e.g., for cosmetic reasons, 
to limit robust weights to a predetermined interval. The use of robust estimators with a high breakdown point is also 
considered. In the specific case of the mean square metric, the estimator proposed by the author is a generalization of a Lee 
(1991) proposition. The new methodology is illustrated by means of a short simulation study. 

KEY WORDS: Calibration estimator; Regression estimator; Range restrictions; Robustness. 

1. INTRODUCTION 

The problem of outliers is an important one in all 
branches of statistics. In sampUng theory, the background 
is different from that of parametric statistics since the 
objective is often to estimate the total of a variable of 
interest y. An outlier may have its full weight within the 
population total. Moreover, methodologists may assume, 
at the estimation stage, that the values of units are recorded 
without error, since the gathered units are often processed 
within an editing system (Samdal, Swensson and Wretman 
1992, section 1.7). This step is part ofthe sampling proce
dure in large statistical agencies such as Statistics Canada. 
Lee (1995) has provided an overview of robustness 
developments within sampling theory. 

Nevertheless, since populations for economic surveys are 
often asymmetric, some units might be extreme as compared 
to others, as was discussed by Kish (1965). The complete 
elimination of such units would lead to biased estimates, 
while maintaining them with their fuU weight might make an 
estimator such as the generalized regression (GREG) 
estimator highly variable. This would suggest a compromise 
between bias and variance. When outliers occur, the 
challenge is to propose robust estimators of the total that are 
little affected by certain units that deviate sharply from 
others. Such estimators should have littie bias and a small 
mean square ertor. Traditionally, sampUng theory has been 
deeply involved in the development of unbiased or 
asymptotically design unbiased (ADU) estimators. See for 
example Samdal etal., (1992, Section 7.12). However, this 
ADU property is perhaps undesirable within the context of 
outiiers. This was discussed by Chambers and Kokic (1993), 
who showed the conflict between the ADU property and the 
robustness of an estimator. 

We consider the Horvitz-Thompson (HT) estimator 
defined ^Y fiji = Y d y , where dj^=Til , TÎ  being the 
inclusion probabiUty (If A is a set of units. A c t / , then Y,A 

is a notation signifying X Ê/t)- Let us assume a positive 
variable of interest y and an asymmetric population. As the 
HT estimator is a mean weighted by the d ,̂ it is vulnerable 
to large values of y. A unit with a high weight d,^ may also 
have a considerable impact on the estimation step by 
including variable estimates. Lee (1995) defined these units 
as influential. An extreme unit is not necessiuily influential 
if its weight d^. is sufficiently small. TraditionaUy, metho
dologists have sought to Umit the impact of influential units 
when they are known prior to sampling, by assigning for 
example sampling weights close to 1 to extreme units. 
Gambino (1987) and Lee (1995) have nevertheless 
discussed situations in which this cannot be done. In a 
major article, Hidiroglou and Srinath (1981) considered 
changing the sampling weights when outliers occur. Their 
approach gave much legitimacy to weight modification 
within sampling procedures. 

Many of the first robust alternatives to the total were 
based on M estimators and GM-estimators. Nevertheless, 
much interest has been shown recently for estimators that 
also provide good overall robustness, as measured by the 
breakdown point of an estimator. These concepts are 
discussed for example in Donoho and Huber (1983), 
Hampel, Ronchetti, Rousseeuw and Stahel (1986) and 
Rousseeuw and Leroy (1987). The breakdown point mea
sures the percentage of outiiers within the sample that the 
estimator can tolerate while providing nonetheless a good 
estimate of a given characteristic of the population. Lee, 
Ghangurde, Mach and Yung (1992) required estimators of 
the total that were based on robust estimators with a high 
breakdown point. 

We will be considering calibration estimators of the total 
T written as Yjs^kYk- These estimators were developed 
for example in Deville and Samdal (1992). We are looking 
for weights ŵ  that are as close as possible to sampling 
weights di^=nl , while meeting benchmark constraints, 
denoted CE (also known as calibration constraints), 

Pierre Duchesne, Departement de Mathematiques et de Statistique, University de Montreal, C.P. 6128, succursale centre-ville, Montr6al, Quebec, H3C 3J7. 



44 Duchesne: Robust Calibration Estimators 

2>, w*^t = ^x' (1.1) 

where x̂  is a vector of dimension m that corresponds to the 
available auxiliary information of known total T^ = Ly -̂ jt • 
These estimators are popular as they are easily interpreted, 
since methodologists are used to assigning weights ŵ  to 
units y .̂ Several metrics are studied to measure the proxi
mity between <î  and w .̂ The GREG estimator is an 
important example with w^=J^(I + {T^-T^.^^)' M^ ^J^^k)' 
where M^ = Yjsd^Xi^x'JCi^. It is obtained by minimizing the 
mean square metric Y.s^k^'^k ~ ^k)^^^k- Constants ĉ  are 
weighting factors which can take into account problems of 
heteroscedasticity (for example). Samdal (1996) discussed 
the selection of these constants. However, since the g-
weights gi^ = wjdj^ of the GREG estimator are not gene
rally restricted, other metrics are proposed as a means of 
limiting them so that they might meet certain constraints 
applicable to the range of values (CARV). Specifically, 
this makes it possible to avoid undesirable negative weights 
w .̂ See Deville and Samdal (1992), Singh and Mohl 
(1996) and Stukel, Hidiroglou and Samdal (1996). 

As was noted by Fuller, Loughin and Baker (1994, 
p. 81), there is a link between calibration estimators and 
robust methods. However, it is wrong to assume that 
calibration estimators necessarily have good properties of 
robustness, given that all the calibration estimators 
considered by Deville and Samdal (1992) were asympto
tically equivalent to the GREG estimator, which, being 
ADU, is not robust. Moreover, a traditional calibration 
estimator is not robust as it depends linearly on w ,̂ and ŵ  
and does not take into account y^.. 

The purpose of this paper is to build estimators in the 
form of Yjs'^kyk where the weights ŵ  provide robustness 
while meeting constraints on the calibration variables and 
the weights w .̂ The starting point of our approach is the 
class of Wright (1983) estimators QR. Let us assume we 
have available constants {(^ ,̂ r^), ^^ > 0, r̂^ ^ 0, V^e [/}, 

such that Y.u'^klk^k^'k ^ ^ "̂"̂  T^s^k^k^k > ^' ^^- (^'^ '^ 
a symmetric matrix, A >0means that A is definite as 
positive.) The QR estimators are defined on the basis of ^^ 
and r̂  by the relation 

•yQR T'B + 
X q 

.s hh' 

where B assumes a form weighted by the ^^ 

and 

Pq^^s 'ik^kKYT.s Ik^kYk' 

^k=yk-^'kP, 

(1.2) 

(1.3) 

(1.4) 

It will be shown in section 2 that the QR estimators are 
calibration estimators, and a new class of estimators, 
denoted RQR, wiU be inti-oduced, also based on the choice 
of constants ^^ and r^. It generalizes to a certain extent 
the QR estimators as well as the class of Deville and 
Samdal (1992) estimators. The RQR class is interesting in 

that it makes it possible to obtain weights ŵ  that are 
limited to a given interval, say [L, U]. Some of the 
properties of classes QR and RQR are provided in 
section 2. 

Section 3 describes applications of the RQR class in the 
building of robust calibration estimators. The main goal is 
to modify robust default weights so that they meet 
calibration constraints. Section 3.1 discusses the choice of 
constants ^^ and r̂  using arguments suited to calibration 
estimators. This is a new and unifying approach, and in 
section 3.2 it guides our choice of q^ and r̂  when there is 
auxiliary information. One important element is the use of 
a robust estimator allowing for the weighted form (1.3), 
providing the ^^. Note that this is the case for GM-
estimators. Usually, estimators with a high breakdown 
point do not have a weighted form. Consideration is given 
to reweighting these estimators, allowing the breakdown 
point to be kept under control and making it possible to 
have estimators written in the form (1.3). See Rousseeuw 
and Leroy (1987) and Simpson and Chang (1997). We then 
discuss the choice of q,^ and r^, so as to calculate an RQR 
estimator and obtain a robust calibration estimator with 
restricted weights. Various robust estimators, including the 
Lee (1991) estimator and the Chambers (1986) estimator, 
are compared in section 4 with RQR estimators as well as 
with the GREG estimator and one calibration estimator 
considered in Deville and Samdal (1992) whose weights 
are Umited. The Lee (1991) estimator can be considered a 
specific case of our approach. It allows us to also consider 
a new estimator with restricted weights. Four populations 
that have already been studied in the literature are 
considered. It will be noted that estimators free of weight 
constraints are subject to negative weighting problems. 
With the RQR class of estimators, robust estimators having 
positive weights can be obtained, and they compare well 
with estimators free of weight constraints. Finally, 
conclusions are drawn in section 5. Appendix B contains 
a list of abbreviations, and Appendix C contains a Ust of the 
various constants found in this paper, with definitions. 

2. RQR CLASS ESTIMATORS 

Consider a finite population U = [1,2, ...,N} of size N 
whose total T = ]C(/>'t ^^ ^'^h to estimate for a variable of 
interest y that is positive. A sample s of size n^ is drawn 
foUowing a sampling design p(s}. The inclusion probability 
of a unit k is denoted Jî , and the second-order inclusion 
probabilities are denoted Jtĵ ,. We assume that the auxiliary 
information x̂  is of unit value, i.e., x^^ is known from a 
reliable source V^e U. 

Wright (1983) introduced a class of QR estimators 
written in the form (1.2) with the primary objective of 
unifying a large number of common estimators. We find 
the best linear unbiased prediction (BLUP) estimator of 
Royall (1970) derived from the model-based theory, 
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obtained by assuming (^j^, r^) = (1/c^, 1), and the GREG 
estimator of Cassel, Samdal and Wretman (1976) by 
considering the choice {q,^, r^) = {d^^lc,^, d,^). Altemately, 
(1.2) can be written as 

•'j'QR ^ l^s "•kSkYk' 

where ^^g^ satisfies 

dkSk = h ^ (L - P.r)'(Es <lk^k^kY^k^k' (2-1) 

with T^^ = Y^j^Xj^. Assuming ri^=dj^, ĝ  corresponds to 
the g-weight ofthe GREG estimator. 

The QR estimators are calibration estimators, obtained 
by minimizing the mean square metric subject to the CEs 

™ n ^ E . K - rkfl<ik' as of Ys '^k^'k = ^.- (2.2) 

recourse for the practitioner, then, is to relax the constraints 
by reducing the dimension of the number of auxiliary 
variables. See also the discussion in Fuller et al., (1994). 
As for the calibration estimators considered in Deville and 
Samdal (1992), it was shown, in resuU 1, that there is a 
solution with a probability approaching one. Under certain 
conditions, this result can be adapted to class RQR 
estimators. 

The metric on which we will focus our attention so that 
the weights may satisfy the CARVs is a sUght modification 
of case No. 7 in Deville and Samdal (1992). We caU it the 
restricted mean square metric. The G-function that corres
ponds to the choice of this metric is 

G(w,;9,,r,) 
{w^-r^)Vq^ if w^e[L,U], 

otherwise, 

The weights ŵ^ are chosen as close as possible to the r̂  
and the ^^ are weighting factors. In other words, the 
starting weights r̂  are transformed into caUbration weights w .̂ 
The solution to problem (2.2) is ŵ  = <î g ,̂ where df^gj^ is 
given by the formula (2.1). 

Nothing, however, guarantees that the weights ŵ  of the 
QR estimator are positive, which might be undesirable in 
practice. See Brewer (1994), who formalized the interpre
tation of weights. To limit the weights ŵ^ in [L, U], we 
wish to resolve 

whereas the /i-function is 

min5^^G(w,;^,,r,), 

as ofYs k k -T and W.E[L,U]- (2.3) 

The calibration estimator of the total is 

^vROR 2.^5 ^kYk' (2.4) 

where the w^ are obtained by resolving problem (2.3). It is 
assumed that function G{w,q,r) is strictly convex and can 
be derived in w for fixed r and q. We denote g{u;q,r) = 
G'{u; q, r) and h{u; q,r)=g"'(«; q, r). Moreover, it is 
assumed that /i(0; q,r) = r and h' (0; q, r) = 9.The 
resulting estimators are caUed QR (RQR) restricted caUbra
tion estimators. 

Fuller et al, (1994) favoured regression estimators 
having reasonable invariance properties. It can be shown 
that RQR estimators are regression equivariant and to scale 
when constants q,^ and r̂  are transformation invariant. 
Useful definitions may be found in Bolfarine and Zacks 
(1992). 

There is no guarantee that there is a solution to problem 
(2.3). We refer to the simulation study in Stukel et al, 
(1996). There may, for example, be realizations of the 
sample for which even the CEs cannot be satisfied (1.1). 
Thus, the sample is so imbalanced that it is impossible for 
the weighted sum of the components for each dimension to 
provide the corresponding population total. The only 

h{x'X;q.,r.) 

L r̂  + ^^x '̂ X<L, 

r^^ + q^x^X r^+ q^x;^Xe[L,U], 

U r^^q^xlX>U. 

Given this modification, it is the weight ŵ  that is con
strained and not only w /̂(î  as for case No. 7 in Deville and 
Samdal (1992). In our situation, ŵ  can "cortect" an initial 
weight that is an outlier. It will be noted that, as it is 
formulated, the Deville and Samdal metric (1992) subtly 
inserts the constraints on the ŵ  in the G-function. In order 
to calculate the estimator (2.4) according to this metiic, it is 
sufficient to follow the same approach as Deville and 
Samdal (1992), which leads us to a solution, using 
Newton's method, for the following equation in X 

Ysh{x;,X;q,^,r^)Xi^ = T^ (2.5) 

The final estimator is TJ.RQR = E,^('^t^„; ^k' ''4))'^. where X^ 
is the solution to equation (2.5). 

It is interesting to know whether the weight constraint 
changes the properties ofthe estimator as compared to a QR 
estimator that is free of weight constraints. The following 
result (as proven in the Appendix) shows that, under certain 
conditions, the two estimators are asymptotically equi
valent. In practice, using the restricted mean square metric, 
we have not observed any significant deviations. 

Proposition 1. According to hypotheses C, and Cj given 
in the Appendix, 

N-^\T yQR T I Op{n -1/2 
) • 

(2.6) 

This result can possibly be obtained using the approach 
leading to resuU No. 5 in Deville and Samdal (1992) 
dealing with the asymptotic equivalence between the 
GREG and calibration estimators considered by the authors. 
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However, proposition 1 is of some use to understand the 
type of conditions needed to reach the result described in 
our situation. 

Since (1.2) shows the same asymptotic behaviour as 
quantity T^B + L^jt^i- where Ei^=y^-xlB^ and B^ = 
('Lu'^k^k^k^k)'^Lu\^k^kyk' ^^^^ w°"l'^ suggest as 
vanance estimator 

L̂ = E E , ^wK«t)(>^/^/)' (2.7) 

perhaps be reduced. In order to satisfy the CEs, this means 
finding weights ŵ  that come closest to the sampling 
weights di^ for units which are not outliers but come as 
close as possible to a reduction factor r for outlier units, 
where r is chosen by the statistician. Specifically, we denote 
J =5, U52. where s^ of cardinaUty n^ represents those 
units that are not reported as outliers, whereas S2= s - s^ of 
cardinaUty /ij = " ~ "i represents the outiier units ofs. The 
reduction factor r wiU typically satisfy r <.d^,yk£ jj- For 
example, consider the estimator (3.1) with qi, = r,^ = 
B,. = dJi^^ + r{l - /ji), where /^, is the variable indicating 
affiliation to 5,. In this way, constants q,^ and r̂^ are 
reduced for units of 2̂ so as to reflect the fad 
are extreme. The estimator (3.1) becomes 

•>.QR Cs(P)('Esi hYk ^ ' ' E .2 >-*)• 

where A ,̂ = TĈ , - TÎ TI,, A^̂ , = A^/TC^, and e^ are given by 
(1.4). See Samdal etal, (1989) and Samdal etal, (1992, 
p. 234). It can be shown that the asymptotic bias of a QR 
estimator is given under general conditions by 

V^vQR-^P=E^(V.-!)£,. 

Then, a possible bias estimator is b = Yjs'^k^Vk ~ ^)^k' 
which can be used in conjunction with formula (2.7) to 
build an estimator of the mean square ertor for a QR and 
RQR estimator, using proposition 1. 

RQR estimators make it possible to obtain calibration 
estimators with constrained weights. Given set q^, and r̂ ,̂ where f g = NlnY,,^ Yk "̂  ''Sj2>'t ŝ the Bershad (1960) 

estimator discussed in Lee (1995). Other methods based on 

In the case of simple random sampling, cf̂  = NIn and we 
obtain 

TyQR-CSB)f^g, 

it is sufficient to resolve problem (2.3). In the sections 
which follow, the RQR class is applied within a context of 
robustness. We will show how to direct the selection of 
constants 9̂  and r^, chosen in practice using sample s. 

3. BUILDING ROBUST AND CALIBRATED 
ESTIMATORS 

3.1 Methods Based on Weight Reduction and Value 
Modiflcation 

Lee (1995) discussed various propositions based on the 
weight reduction method for simple random sampling. 
Once outlier observations have been detected, these 
methods consist in reducing the weight of extreme obser
vations. These methods are to be preferted to those which 
eliminate doubtful observations entirely, since all the 
observations in the sample are legitimate, as was discussed 
by Lee CM/., (1992). 

With respect to caUbration estimators, we begin by 
considering the situation in which there is no auxiliary 
information available and the only constraint is Y^s'^k ~ ^• 
This case will guide our path. Consider the QR estimator 
with qi^ = ff^. For the sake of our discussion, we consider 
constants r^, known and fixed. The weights minimizing 

~ are ŵ  = C^C'')'"^. where 
becomes 

weight reduction have been discussed in Lee (1995), who 
also discussed the choice of r. 

One disadvantage of methods based on weight reduction 
is that the analyst must identify the outlier units. Methods 
based on value modification avoid this difficulty by 
providing gradual weight reduction for units that are more 
extreme. We consider a case of simple random sampling. 
We assume 

m{y^\ t,a,b)=b + {a -b) min (1, tly^). (3.2) 

Thus, this function assigns a starting weight of value a for 
the ŷ  < r, and graduaUy reduces this to a final weight b, as ŷ^ 
becomes extreme. Value t is called the threshold. The 
constants a, b and t are chosen by the statistician. Several 
values for a and b have been considered in the literature. 
Thus, instead of assigning a fixed reduction factor to the 
units of ^2, we select 9;̂  = '•;fc = ̂ ^ = '"()'*' '̂ ^^" JNIn), 
where/is a constant between 0 and 1. The estimator (3.1) 
becomes 

TyQK = c,mY..y/kyk 

= C,{W)f^^. 

(2.2) subject to Ys^k "^ 
Cfr)= NlYr^, so that T yQR 

'PyQR = Cs(r)Ys'-kyk- (3.1) 

Whenever an observation is extreme, it might represent few 
units like itself within the population, and its weight should 

The estimator f ^ has been discussed in Gross, Taylor and 
Lloyd-Smith (1986) as well as in Chambers and Kokic 
(1993), who called it the winsorized estimator. This is a 
special case of the approach used by Chambers (1982, 
1986). When / = 0, the estimator (3.1) becomes 
T'.QR = C^{W,)f^„, witii q, = r, = W„ = m{y,; t, NIn, 0), 
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where 7,^, = Af/"(Ej,yt + "2')' denoting the part of s 
containing units that satisfy ŷ^ < t. The estimator 7"«,, has 
been discussed in Lee (1995), as well as in Gross et al, 
(1986), who called it the type I winsorized estimator. When 
f=nlN, Gross et al, (1986) called it the type II winsorized 
estimator. It has also been discussed in Brace (1991). 

In a design Tips, Dalen (1987) inserted the design by 
assuming D^ = /"(y^ ;̂ it/, dj^, I). Thus, if k and / are two 
extreme observations such that y;̂  = y ,̂ then the observation 
whose sampling weight is largest wiU have a higher weight 
D^. Selecting r̂  = ^^ = D^ makes it possible to obtain 
essentially the Dalen estimator, ^ 'Q^ = C^(D)^jDj^yj^. 
The estimator T [) = Jis^kyk ^^ ^^^^ studied for example 
inTambay(198l). 

Table 3.1 
Estimator (3.1) Based on Weight Reduction and 

Value Modification 

Estimator Value of q. = r. 

Bershad 

Winsorised 

Winsorised, type 1 

Winsorised, type 11 

Dalen 

B, = d,I,,-r{l-I,,) 

Wi^ = m{yi^;t,Nln,fNln) 

W,^ = m(y^;t,Nln,0) 

W,„=m(y,;t,Nln,l) 

^* = '"(>'*;'^*''''*'l) 

Note: mCv̂ ; t, a, b) = b + {a - b) min(l, f/y^). 

The approach used in this section suggests that we may 
occasionally seek estimators whose weights are close to r̂  
rather than the sampling weights c?̂ . The constants r̂^ will 
themselves be chosen close to d̂  for the proper units, but 
will be reduced once a unit is declared extreme. The QR 
estimators allow the weight reduction and value modifi
cation methods to be unified. Methods based on value 
modification help us choose weights that are adapted to the 
specific sample 5 chosen. As was noted in Chambers and 
Kokic (1993), this is not surprising since the problem of 
outliers occurs after the selection of sample s. We must use 
the sample at our disposal to overcome the problem. These 
methods are generaUzed in the foUowing section using 
auxiliary information. 

3.2 Estimators of the Total Based on Robust 
Statistics 

One of the first attempts to obtain robust alternatives to 
population totals using auxiliary information can be found 
in Chambers (1982, 1986), who proposed a robust ratio 
estimator based on BLUP estimator decomposition. One 
recent extension of the work carried out by Chambers can 
be found in Welsh and Ronchetti (1998). Gwet and Rivest 
(1992) also proposed a robust version ofthe ratio estimator 
using an approach based on the design in simple random 
sampling. Rivest and RouiUard (1991) carried out a compa
rative study of several robust estimators, and examined 
several estimators of the mean square ertor. For designs 

with unequal probabilities, HulUger (1995) considered 
robustifying the HT estimator when inclusion probabilities 
are obtained using auxiliary information. Gwet and Rivest 
(1992) and HulUger (1995) considered a version of the 
influence function for finite populations, emphasizing the 
need for procedures having good properties of local robust
ness and the use of estimators having limited influence 
functions. Influence functions were discussed generally in 
Hampel ef a/., (1986). 

The following sections will deal with building robust 
estimators having constrained weights. The building of 
such estimators is based on the following steps: 

- Identifying the constants ^^ and r^; this provides a QR 
estimator. 

- Resolving the problem (2.3) so as to provide an RQR 
estimator. 

In terms of robustness, the coefficients q,^ are selected such 
that B is a robust estimator. Thus, the first part of the QR 
estimator, T'B , provides a good predicted value for the 
entire population. The second part of the QR estimator, 
Y,s''k^k' corrects the first part for the ŷ  observed in the 
sample. The constants r̂  ensure that with this cortection, 
the outliers in the sample will not retum with full weight. 

3.2.1. Choice of q^ Based on a GM-Estimator 

Consider the estimator (1.2) in which B is replaced by 
a robust estimator of a regression coefficient. Such esti
mators have been discussed for example in Huber (1981) 
and Hampel et al, (1986). We thus obtain 

P:P. E.r,{y,-x^B^). (3.3) 

The estimator (3.3) does not have the form of QR 
estimators unless B assumes a weighted form. This is the 
case if B is a GM-estimator defined by the equation 

E . d,h,x,yv({y, - x'.B)/[cshlf,]) / f , = 0, (3.4) 

since the solution to (3.4) can be expressed as 

Pg = ( E . d,hl ""M,X,X;/C,)"' YS ^k^l ""^k^kYkl^'k' 

where 

^ _^[^yk-^'kPg)I^^Kfk)) 

^yk-^lPg)li^Kfk) ' 

The properties of GM-estimators have been discussed in 
Simpson and Chang (1997). To simplify our discussion, a 
is assumed to be known, and the role of ĉ  is the same as in 
the case of the GREG estimator. The function \|i is 
determined by the analyst. A current example would be the 
Huber function 
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VH„i(^;c) = ' 
c if X > c, 
x if Ixl ̂  c, 

-c if x< -c. 
(3.5) 

A value of c around 2 is often used in calculating GM-
estimators. See for example Hampel et al, (1986), Gwet 
and Rivest (1992) and HulUger (1995). 

The choice of /î  makes it possible to limit the influence 
of auxiUary information that is too extreme. The constant a = 0 
leads to the choice of Mallows whereas a = 1 makes it 
possible to obtain the Schweppe version. The Schweppe 
version is sometimes preferted. See Coakley and 
Hettmansperger (1993) and Hampel et al, (1986, p. 322). 
When there is minimal auxiliary information, Le., when we 
only have available a real variable Xi^,\/keU, a possible 
choice for function /ẑ  is 

mm 1, 
x^/med(x^)^ 

(3.6) 

For a design Ttps, a modification of /î  following Dalen 
(1987) so as to take various sampling weights into 
consideration would perhaps be desirable. The constant / 
must be specified by the statistician. A value of t around 
1.5 is found in the applications. See for example Rivest and 
Rouillard (1991), who also provide other choices for 
functions /i^. 

Writing B as a weighted estimator makes it possible to 
write estimator (3.3) as a QR estimator with 

(^k' '•*) = ( ^ t ^ "k'^^k' h)-

The choice of constants r̂  is discussed in section 3.2.3. 

3.2.2 Choice of q,^ Based on a High-Breaking-Point 
Estimator 

The choice of a GM-estimator is only a first step towards 
obtaining a very robust estimator of the total. In fact, 
although the influence function of GM-estimators is 
restricted, the fact remains that such estimators do not have 
a high breakdown point, which usually diminishes 
according to the dimension of the auxiliary information 
(Rousseeuw and Leroy 1987, p. 13). This section wiU 
explain how to build robust calibration estimators based on 
high breakdown point estimators. As such estimators do 
not usually assume a weighted form, we will consider 
reweighting them. This will allow us to obtain, as in the 
previous section, the constants ^̂^ needed to compute the 
RQR estimator metric. SpecificaUy, tiie following weights iĴ  
are considered: 

. _^((yk-^kPo)/(^Kfk))^ 

iyk-KPo)h^Kfk) ' 
(3.7) 

where B^ is an equivariant estimator with a high break
down point meeting certain regularity conditions. The 
reweighted estimator is 

B. ••^s^kh^ 
I - 0 

^k^k^k'^ .)-
(3.8) 

dkK"'^k''kyk'''k-
The asymptotic properties of this type of estimator have 
been studied in Simpson and Chang (1997). 

The estimator B^ that is considered is the one-step GM-
estimator of Coakley and Hettmansperger (1993). This 
estimator has a high breakdown point. It is obtained as the 
first iteration of the Newton formula in equation (3.4), 
where the Schweppe version is used, assuming a = 1. 
Other robust estimators could have been chosen. However, 
the efficiency and robust properties of the Coakley and 
Hettmansperger (1993) estimator make it a good choice. 
Thus, the proposed constant q^ is 

with B„ 

Ik 

PQH'PCH 

dX'^uJc^, 

denoting the Coakley and 
Hettmansperger (1993) estimator. 

3.2.3 Choice of r^. 

Once the constants ^^, have been determined, the 
constants r̂  must be selected. If J^ = r̂ , then under general 
conditions, the QR estimator is an ADU estimator. How
ever, such a choice of r̂  yields an estimator that is sensitive 
to outiiers. Altemately, choosing r̂  = 0 provides a robust 
estimator that might be very biased as was emphasized in 
Gwet and Rivest (1992, p. 1180). Lee (1991) suggested 
choosing r̂  = 0^^, where 0G[O, I ]. The asymptotic bias 
becomes under general conditions (0 - 1 )Xl(/^t, where E^^ 
represents the residuals obtained by adjusting a robust 
estimator for the entire population. Choosing 9 makes it 
possible to control estimator bias. The discussion in 
section 3 leads us to suggest constants r̂  that are close to 
the dj^ for good units, and reduced gradually for doubtful 
observations. We suggest choosing 

where 

r, = d,u:, (3.9) 

A^yk-KPr)/i<fk)) 

(yk-^kPr)/«fk) 

The function \|/* which we will be considering is a 
modification of the Huber function 

V|/*(X) 

X if Ixl ^ a, 
a sign(x) if lxl>a and \x\<alb, 
bx if \x\>alb. (3.10) 
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We choose a = 9,b= 1/4. The reason for this modification 
is that we do not want the outliers comprising large 
residuals or extreme auxiliary information to have weights 
that are too reduced. In this way, the sampling weight is 
fully maintained when the argument for M̂ *̂ is between -9 
and 9, and reduced gradually to one quarter. If the weight 
of large residuals is reduced too much, then the bias 
becomes too great, leading to the choice of y ' . The choice 
of constants r̂  has been done empirically, and seems to 
work well in practice. 

Thus, we will consider the choice of constants qj^ and r̂  
following 

i^k'h) = (dk^k '''^J^^k'^X) (3.11) 

We suggest a generalization ofthe Lee proposition (1991), 
since instead of considering ri^ = di^Q where 0 is fixed, 
r̂  = dj^ u^ will adapt automatically (or adaptively) to the 
sample. Having this choice of constants ^^ and r̂  at our 
disposal, and with the usual mean square metric, we obtain 
a QR estimator, but it is subject to negative weighting 
problems. However, with the constants (3.11), we can 
consider the restricted mean square metric, solve the 
problem (2.3) and obtain a robust estimator meeting the 
CEs and the CARVs. 

There are in proposition 1 possible solutions for the 
asymptotic behaviour of the resulting RQR estimator as 
compared to the QR estimator free of weight constraints. 
However, since the constants (3.11) depend on .y in a 
complex way, there can be no automatic conclusion about 
asymptotic equivalence. Nevertiieless, the simulation study 
in section 4 seems to suggest a very comparable behaviour 
for the estimator with and without constraint on the 
weights, with respect to the Monte Carlo mean square error. 
Thus, empirical evidence shows that if the ^^ and r̂  are 
chosen in such a way that the estimator without constraint 
on the weights is robust, then the version with constraints 
on the weights will also be robust. 

Finally, the following is a summary of the steps in the 
proposed method used to obtain a robust RQR estimator. 

1. Choice of constants ^^ and r^. We suggest the 
constants found in equation (3.11). For this step, it is 
necessary to compute Bf.^^. 

2. Choice of metric. If need be, choice of constants L and 
U. These constants are chosen such that 
L^ri^^U, ykes. 

3. Solution using Newton's method for equation (2.5). 

4. Assume Wi^= h{x^Xj,qi^,r^) for X^ solution to step 3. 

5. Assume f = Ys ^kYv which is the proposed RQR 
estimator. 

The procedure requires a certain number of constants. 
The constants a, / and c are found in the calculation of ^^ 
and r^. The choice of these values is nevertheless justifieti 
using robustness theory, which helps guide the practitioner. 

Thus, the value for c in the Huber function can be obtained 
by taking into account efficiency concems under normal 
errors. See Hampel et al, (1986, p. 333) and Gwet and 
Rivest (1992). Constants a and b are also found; they are 
more directly linked to the proposed estimators. Constant 
b represents the maximum weight reduction that can be 
allowed when specifying the default weights r^, and for 
this reason there is a link with the suggestion made by Lee 
(1991). The constant which it is most important to specify 
is possibly the value of a. We suggest here a =9. However, 
in our simulations, a value of a between 6 and 12 yielded 
relatively comparable results. The choice of limits L and U 
rests on cosmetic considerations, so that the weights may be 
limited to one interval. This last consideration is perhaps 
secondary for the practitioner. As a result, it would seem 
that the most important aspect is to choose a value of r^ that, 
is close to d^ for the proper values, then reduced as an 
observation is deemed extreme, and that is the goal which 
has guided our choice of r̂  in this section. Nevertheless, 
it would be useful to make a choice of r̂  that satisfies a 
certain optimality criterion. 

3.3 Chambers Model-Assisted Estimator 

Another approach is based on a decomposition proposed 
by Chambers (1982, 1986) which we now apply to QR 
estimators. Note that a QR estimator can always be written 
in the form 

T^yQR=T.s hYk^CPx-^^'P^Hs h^k^k-KP)' 

where z, = {T^- tj' {Ls^,x,x;^)~'x,^,, f^^ = Ys'-k^'k 
and B are arbitrary. Chambers (1986) had considered the 
specific case (^^, r^) = ( l /o^, 1) for the ratio estimator. In 
order to limit the influence of outlier units. Chambers 
proposed 

Esh\{sl^k(yk-KP))- (3.12) 

The function \)/ helps limit the influence of large residuals. 
The choice for B is a robust estimator, e.g., B . One 
function \)/ considered in Chambers (1986) was 

y^{t) = texp{-Q.25{\t\-6f). (3.13) 

It is interesting to note that (3.12) can be written as 

'>CHAM T:P-YsihHd,g,-r,)X,)e,{B), 

where e^(B) =yĵ  -xl.B,gi^ is defined in formula (2.1) 
calculated using ^^ and r^, and 

^k^Yk-KP) 
(3.14) 
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Thus, the residuals «;̂ (B) are weighted using a relation 
referring to formula (3.2). If A,̂  = 1, then d̂ ^̂  is applied to 
residuals eĵ (B) and it is easy to verify that we have the 
estimator 7" „^. Altemately, if X^. = 0, we obtain (3.3) if we 
assume B =B . If in (3.12) we assume {q^., r^) = (l/Cj^,l) 
and B=B , then the Chambers estimator represents a 
compromise between the BLUP and a robust estimator 
based on a GM-estimator. Note that formally (3.12) is a 
QR estimator with 

{q^K) [dk^l~''''kl''k' h + K^t - h)\)-

However, since r '̂ is not necessarily positive, it is not 
always possible to undertake a change of metric in this case. 

4. EMPIRICAL STUDY 

To study the performance of robust calibration 
estimators, we carried out a Monte Carlo simulation study. 
We considered four populations comprising data from 
readily available works on sampling theory. For each 
population, /iC=2000 samples were drawn using simple 

random sampling for various sample sizes. Our main objec
tive was to determine whether it is possible to obtain esti
mators having good empirical properties (bias, mean square 
ertor) while satisfying the CEs and the CARVs. Note that 
all the programs were written in S-PLUS (Statistical 
Sciences 1991) and are available from the author. 

4.1 Populations Under Study 
The population graphs can be found in Figure (4.1). The 

first population, comprising 51 units, can be found in 
Mosteller and Tukey (1977, p. 560). It consists of the 
U.S. population in 1960 and in 1970 for each of the 
50 states and the federal district of Columbia. It is called 
POPUSA. Looking at the scattergram of the 1970 popii-
lation in terms of the 1960 population, we notice that all 
units seem to be on the same straight line, with some good 
leverage points. An example of a good leverage point is the 
point surtounded in this population. The second population, 
with 34 units, can be found in Singh and Chaudhary (1986, 
p. 177). It deals with the area of fields sown in 1971 and in 
1974. This population is called AREA. There is a bad 
leverage point (see the surtounded point) in this population 
since the point (4170.99) does not respect the linear trend 

POPUSA AREA 

5000 10000 
POPULATION (M THOUSANDS). 1M0 

MU284 

1000 2000 3000 

AREA uroen WVEAT <t4 ACRES), 1971 

MU281 

eo so 
TOTAL NUMBER OF SEATS N MUNICPAL COUNCL 

0 2000 4000 KOO (000 10000 12000 
REAL ESTATE VALUES ACCORDtt«a TO 1M4 ASSESSMENT (M MLLK3NS OF KRONOR) 

Figure 4.1. The four populations under study 
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of the majority of units. Samples of size 10 and 15 are 
drawn from POPUSA and AREA. The third population, 
i.e. tiie MU284 in Samdal et al, (1992), comprises tiie 284 
municipalities of Sweden. We considered variables x = 582 
conceming the total number of seats in the municipal 
council, and y = P85 representing the population of Sweden 
in 1985. There are vertical outliers {e.g., the surtounded 
point) and one bad leverage point. Finally, we considered 
population made up of MU28I made up of MU284 from 
which the three largest municipalities were excluded. The 
variables considered were x = REV84 representing the 
values of landed property based on the 1984 assessment, 
and y = RMT85 representing municipal tax revenues in 
1985. The unit of measurement was one milUon kronor for 
both variables. It seems this population has several bad 
leverage points. Samples of size n = 30 and « = 60 were 
drawn from MU284 and MU281. Table (4.1) contains 
totals for various populations. 

Table 4.1 
Totals for Various Populations and Totals Known From 

Auxiliary Information 

Population 

POPUSA 
AREA 
MU284 
MU281 

T 

179,972 
29,118 
13,500 

757,246 

T 

203,923 
6,781 
8,339 

53,124 

N 

51 
34 

284 
281 

4.2 Description of the Estimators 

The two basic estimators were the GREG estimator and 
the estimator obtained by considering case No. 7 in Deville 
and Samdal (1992), i.e., a GREG estimator with restricted 
weights. These estimators were denoted GREGAJ and 

GREG/R respectively. We selected ĉ  = 1 for populations 
POPUSA and AREA, and chose ĉ  = x̂  for populations 
MU284 and MU281. Our choice for the ĉ  was motivated 
by the relationship between these constants and the hete
roscedasticity of the superpopulation model. Of the robust 
estimators, we studied the Chambers (1986) estimator by 
considering 

i^k' h) = (d,ii,{B^^)lc,, I + {d,g, - l)X,{B^)), 

where in the formula (2.1) ((9^, r^) = (l/c^^, 1), denoted 
CHAM, based on B^. The constants "^^(B^^) were 
obtained from formula (3.7). Selection a = I was used 
throughout the simulation. Huber's function \(/ was used 
with the constant c = 1.345 for B^. The functions X,̂  are 
those given by formula (3.6), where we selected t = 1.46. 
The function \ is defined by equation (3.14). The function 
v|/ considered was that given by equation (3.13). The scale 
was estimated as in Coakley and Hettmansperger (1993). 
We also considered the model-assisted BLUP estimator in 
which the generalized least squares estimator was replaced 
by estimator B^, which we called MODEL. Moreover, we 
considered the Lee (1991) estimator on the basis of B^ 
where r̂  = 0,25d^, using the mean square metric. We also 
studied an extension of the Lee (1991) estimator by consi
dering the limited mean square metric. These estimators 
were denoted by LEE25Aj and LEE25/R respectively. 
Finally, we considered the new method in section 3.2.3, 
selecting (^^, r^) as given by equation (3.11) in accordance 
with the mean square metric and the limited mean square 
metiic. They were denoted by QRROB/U and QRROB/R 
respectively. The choice of function y* was given by 
formula (3.10). 

Table 4.2 
Monte Carlo Results for Sampling From the POPUSA Population 

Estimators 

n = lO 

n = 1 5 

GREG/U 
GREG/R 

CHAM 
MODEL 

LEE25/U 
LEE25/R 

QRROB/U 
QRROB/R 

GREG/U 
GREG/R 

CHAM 
MODEL 

LEE25/U 
LEE25/R 

QRROBAJ 
QRROB/R 

V A R M 

34.90 
35.29 
32.43 
27.66 
27.48 
28.67 
27.40 
28.33 

21.90 
22.12 
18.11 
15.43 
15.44 
15.72 
14.68 
14.85 

M S E M 

34.92 
35.30 
33.75 
30.69 
30.07 
30.90 
28.40 
29.18 

21.95 
22.15 
20.14 
19.03 
19.54 
19.68 
16.44 

16.56 

C V M 

2.90 
2.91 
2.85 
2.72 
2.69 
2.73 

2.61 
2.65 

2.30 
2.31 
2.20 
2.14 
2.17 
2.18 
1.99 
2.00 

B R M 

-0.07 
-0.04 
-0.56 
-0.85 
-0.79 
-0.'^3 
-0.49 
-0.45 

-0.10 
-0.09 
-0.70 
-0.93 
-0.99 
-0.98 
-0.65 
-0.64 

MIN 

-6.24 
0.20 

-19.61 
-19.71 
-19.38 

0.20 

-15.68 
0.20 

-3.13 
0.20 

-5.79 
-6.09 
-6.19 
0.20 

-4.48 
0.20 

MAX 

26.75 
32.00 
40.96 
40.86 
39.64 
32.00 
40.10 
32.00 

15.32 
16.00 
16.44 
16.92 

17.06 
16.00 
16.41 
16.00 

CARV' 

86.7 
100.0 
84.0 
82.8 
83.2 

100.0 
83.2 

100.0 

94.7 
100.0 
92.4 
91.0 
90.8 

100.0 
90.9 

100.0 

CONV 

98.4 

98.4 

98.4 

99.5 

99.5 

99.5 

The limits for the CARVs are [0.20, 32] for n = 10 and [0.20, 16] for n=l5. 
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4.3 Frequency Measurements 

The eight estimators in Section (4.2) were calculated for 
each sample. The results can be found in Tables 4.2, 4.3, 
4.4 and 4.5. Since one asset of the new methods is the 
CARVs, statistics were calculated' on these weights. 
Columns MIN and MAX in the tables of results contain the 
minimum and maximum values of weights calculated 
during the simulation for each estimator. Also shown is the 
percentage of samples for which the weights are within the 
CARVs in the CARV column in the tables of resuUs. We 
also considered the percentage of samples for which there 
were convergent limited estimators in the CONV column. 
The intervals used [L, f/] for the limited intervals are 
specified in the different tables. In all cases, the various 
statistics were calculated using samples for which all 
estimators were convergent. 

Another significant feature is related to the bias and 
efficiency of the proposed methods. Let T denote an 
estimator of the total T. Assume T. is the estimator of the 
total calculated using sample /, i = I,..., K. The relative 
Monte Carlo bias BR^, the mean value f^ and the 
variance V^ are given by the usual formulas, Le., 

^^M = {pM(T)-T^)lT^.xm,E^{f) 

K 
ll-if, and V^ = -jLf-i(frpM(T)f-

Our main criterion for efficiency will be the Monte Carlo 
mean square ertor defined by MSE ,̂̂  = 1 IK^i^i (^, ~ "Py)^-

calculated in The coefficients of variation CV^ are 
accordance with JMSE^^IT,. The variance and mean 
square ertor are expressed in millions. The coefficient of 
variation, the relative bias, the CARVs and the convergence 
of limited versions are expressed as percentages. 

4.4 Discussion 

The POPUSA population had no outiiers that did not 
satisfy the linear model. During sampling, the coefficients 
of variation of the estimators were small, which could be 
expected given the trend of the population. Columns MSE 
and VAR are very similar, indicating that bias is not a 
problem for this population. AU relative bias was less than 
1 %. The QRROB/XJ estimator provided a reduction in 
variance as compared to GREG/U that exceeded 21% for 
«= 10 and 30% for «= 15. 

The size of the AREA population was small. This 
population had a bad leverage point leading to very high 
empirical relative bias for all the estimators. The GREG/U 
estimator had a relative bias of more than 7% in spite of a 
44% sampUng for this population. The robust estimators 
had the most significant bias, though it was relatively 
comparable to the bias of the GREG/U estimator. The most 

significant reduction in variance was achieved for the. 
QRROB/U estimator, but at the cost of a relative bias of 
about 10%. 

Population MU284 had a vertical outlier and bad 
leverage points. Robust estimators reduced the variance 
radically, since they were not affected by the three extreme 
units in y which were clearly moving away from the linear 
trend. The CHAM, QRROB/R and QRROB/U estimators 
were more than four times less variable than the GREG/U 
estimator. However, this led to a much higher negative 
bias. All the robust estimators were severely biased. The 
MODEL estimator showed a negative bias of more than 
13%, whereas QRROB/U had a negative bias of the order 
of 11%. As for QRROB, a better choice of constants in 
function t)/' might help reduce a larger part of the bias at 
the cost of a lower variance reduction. Increasing the 
sample size to n = 60 made it possible to reduce the bias 
below the 10% ofthe CHAM and QRROB estimators, but 
the other robust estimators remained more biased. 

Population MU281 contained a fairly large number of 
bad leverage points. The variance dominated the MSE 
share of this population. The LEE25 estimator was the least 
variable, with a reduction of more than 35% as compared to 
GREG/U. However, although 0 = 0.25 functions well for 
this population, our study shows that it is not always the 
best choice. 

Note that all the robust estimators were more efficient 
than the GREG or its limited version. As was confirmed by 
the results of Deville and Samdal (1992), the limited 
version of the GREG estimator showed essentially the same 
behaviour as the GREG in terms of both bias and Monte 
Carlo variance for each population. Of all the estimators 
that were considered, GREG/U and GREG/R were the least 
biased. The robust versions all exhibited greater bias. 
However, this is more than offset by the reduction in 
variance so that the efficiency of robust estimators is always 
greater than that of GREG/U or of GREG/R estimators. 

Conceming the constraints on the weights, it will be 
noted that the GREG/U, CHAM, MODEL, LEE25 and 
QRROB/U estimators are all subject to problems of 
negative weighting, as can be seen in column MIN. This 
problem is avoided with limited estimators. The CARV 
column shows that the constraints were not met relatively 
frequently, depending on population and sample size, 
varying between 5% and 60%. The general behaviour of 
the two limited robust estimators was comparable to that of 
their non-limited versions. Moreover, QRROB/R, in 
addition to meeting the CARVs, provided interesting 
properties of efficiency, as compared to other robust 
estimators. Limited versions were not as prone to 
convergence problems when sample sizes were greater. 
Note that we had to use wider bands in the case of 
POPUSA in order to obtain satisfactory convergence rates. 
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Table 4.3 
Monte Cario Results for Sampling From the AREA Population 

Estimators 

n=lO 

GREG/U 

GREG/R 

CHAM 

MODEL 

LEE25/U 

LEE25/R 

QRROB/U 

QRROB/R 

n = 1 5 

GREG/U 

GREG/R 

CHAM 

MODEL 

LEE25/U 

LEE25/R 

QRROB/U 

QRROB/R 

V A R M 

1.334 

1.295 

1.187 

1.291 

1.279 

1.284 

1.026 

1.028 

0.940 

0.928 

0.708 

0.757 

0.672 

0.671 

0.485 

0,485 

M S E M 

1.700 

1.629 

1.541 

1.580 

1.593 

1.596 

1.440 

1.437 

1.178 

1.154 

0.989 

0.997 

1.059 

1.056 

0.990 

0.986 

C V M 

19.23 

18.82 

18.30 

18.54 

18.61 

18.63 

17.70 

17.68 

16.00 

15.85 

14.67 

14.73 

15.18 

15.15 

14.68 

14.64 

B R M 

8.92 

8.53 

8.77 

7.93 

8.26 

8.24 

9.50 

9.43 

7.18 

7.01 

7.82 

7.22 

9.18 

9.15 

10.48 

10.44 

MIN 

-3.35 

0.20 

-4.09 

-5.23 

-5.28 

0.20 

-4.74 

0.20 

-1.40 

0.20 

-1.52 

-1.66 

-1.68 

0.20 

-1.59 

0.20 

MAX 

14.94 

14.00 

14.90 

16.75 

16.89 

14.00 

15.38 

14.00 

7.03 

6.00 

7.92 

8.39 

9.40 

6.00 

8.90 

6.00 

CARV 

86.6 

100.0 

87.2 

86.8 

86.6 

100.0 

87.6 

100.0 

93.0 

100.0 

93.7 

93.1 

92.0 

100.0 

93.9 

100.0 

CONV 

99.0 

99.0 

99.0 

99.8 

99.8 

99.8 

' The limits for the CARVs are [0.20,14] for n = 10 and [0.20, 6] for n = 15. 

Table 4.4 
Monte Carlo Results for Sampling From the MU284 Population 

Estimators 

« = 30 

GREG/U 

GREG/R 

CHAM 

MODEL 

LEE25/U 

LEE25/R 

QRROB/U 

QRROB/R 

n = 60 

GREG/U 

GREG/R 

CHAM 

MODEL 

LEE25/U 

LEE25/R 

QRROB/U 

QRROB/R 

V A R M 

2.833 

2.813 

0.645 

0.709 

0.887 . 

0.871 

0.719 

0.720 

1.473 

1.467 

0.357 

0.380 

0.403 

0.396 

0.308 

0.308 

M S E M 

2.925 

2.910 

1.639 

2.037 

1.877 

1.847 

1.532 

1.525 

1.489 

1.484 

0.990 

1.255 

1.201 

1.203 

0.976 

0.979 

C V M 

20.51 

20.46 

15.35 

17.11 

16.43 

16.30 

14.84 

14.81 

14.63 

14.61 

11.93 

13.43 

13.14 

13.16 

11.85 

11.87 

B R M 

-3.64 

-3.73 

-11.95 

-13.82 

-11.93 

-11.85 

-10.81 

-10.76 

-1.49 

-1.57 

-9.54 

-11.22 

-10.72 

-10.78 

-9.80 

-9.82 

MIN 

-6.83 

0.20 

-11.80 

-12.06 

-11.06 

0.20 

-9.46 

0.20 

-1.19 

0.20 

-2.53 

-4.93 

-4.80 

0.20 

-2.36 

0.20 

MAX 

23.90 

16.00 

31.26 

31.91 

30.93 

26.00 

25.84 

16.00 

10.03 

7.00 

15.59 

14.52 

14.20 

7.00 

10.99 

7.00 

C A R V 

89.8 

100.0 

77.0 

68.40 

73.5 

100.0 

86.5 

100.0 

90.1 

100.0 

69.8 

58.1 

60.3 

100.0 

86.1 

100.0 

CONV 

99.2 

99.2 

99.2 

99.7 

99.7 

99.7 

The limits for the CARVs are [0.20,16] for n = 30 and [0.20, 7] for n = 60. 
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Table 4.5 
Monte Carlo Results for Sampling From the MU281 Population 

Estimators 

« = 30 

GREG/U 

GREG/R 

CHAM 

MODEL 

LEE25/U 

LEE25/R 

QRROB/U 

QRROB/R 

n = 60 

GREG/U 

GREG/R 

CHAM 

MODEL 

LEE25/U 

LEE25/R 

QRROB/U 

QRROB/R 

V A R M 

17,33 

17,40 

13,23 

11,30 

11,21 

11,26 

12,92 

12,94 

7,57 

7,58 

5,85 

4,53 

4,55 

4,50 

5,40 

5,39 

M S E M 

17,35 

17,41 

13,26 

11,91 

11,60 

11,73 

13,29 

13,34 

7,57 

7,58 

5,90 

5,23 

5,18 

5,21 

6,16 

6,17 

C V M 

7,84 

7,86 

6,86 

6,50 

6,41 

6,45 

6,86 

6,88 

5,18 

5,18 

4,57 

4,30 

4,28 

4,30 

4,67 

4,67 

B R M 

-0,26 

-0,24 

-0,33 

1,47 

1,17 

1,29 

1,15 

1,20 

-0,10 

-0,09 

-0,43 

1,57 

1,49 

1,58 

1,64 

1,66 

MIN 

-38,97 

0,20 

-47,09 

-66,22 

-59,75 

0,20 

-54,14 

0,20 

-12,77 

0,20 

-22,97 

-24,02 

-23,74 

0,20 

-21,08 

0,20 

MAX 

34,56 

25,00 

39,08 

41,43 

37,03 

25,00 

39,73 

25,00 

15,34 

9,00 

11,49 

14,58 

14,41 

9,00 

21,07 

9,00 

C A R V 

86,0 

100,0 

56,9 

47,9 

53,3 

100,0 

70,8 

100,0 

86,4 

100,0 

51,4 

38,7 

41,2 

100,0 

68,6 

100,0 

CONV 

99,8 

99,8 

99,8 

99,9 

99,9 

99,9 

The limits for the CARVs are [0.20, 25] for n = 30 and [0.20, 9] for n = 60. 

5. CONCLUSION 

The goal of this paper has been to introduce calibration 
estimators having good properties of robustness. Tradi
tional calibration estimators are easy to use, since it is 
sufficient to have a set of starting weights, usually the 
sampling weights J^, which are transformed into calibrated 
weights. The steps used in this paper have been the same, 
Le., the robust default weights r̂  have been transformed 
into calibrated weights, and the constants q^. have been 
chosen such that B is a robust estimator. The proposed 
choice of r̂  is given by the formula (3.9), with a = 9, 
^ = 1/4. There remains to develop a theory for the optimal 
choice of r^. The suggestion is made for applications to 
vary constant a, between say 6 and 12, in order to determine 
the influence of the constant on the estimation. The limits 
L and U can be used to limit the weights, e.g., to make them 
all positive. We suggest the general use of L = 0.2, 
U = kNIn, where k is about 3. 

Note that robust calibration estimators are not meant to 
replace the GREG estimator, but to be used in conjunction 
with it. Thus, if the robust estimator and the GREG esti
mator are very different, a more in-depth analysis might 
help determine the reason. The proposed estimators could 
be useful as diagnostic tools. 

It would be interesting to pursue the empirical studies of 
section 4, by examining for example the effect of sampling 
design on the proposed procedures. Another important area 

of development is the estimation of variance. Multipurpose 
surveys are yet another area of interest. In fact, for appli
cations, there is rarely a single variable of interest, and 
methodologists would like to use a single set of weights for 
all the variables of interest. In terms of robustness, a 
solution has been proposed in the conclusion of a paper by 
Gwet and Rivest (1992), where robust weights were 
calculated for each variable of interest y'''\i = I, ...,I. For 
one unit, the final weight cortesponds to the minimum 
weight among the weights obtained. Altemately, to obtain 
robust and calibrated estimators, we could calculate robust 
default weights for each variable of interest, providing a set 
of '•^(y*'^), and assume r̂  = min r^.(y*'^), where the 
minimum is on / = 1,..., /. These weights could then be 
transformed into calibrated weights. This procedure should 
be assessed in greater detail. 
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APPENDIX A 
PROOF OF PROPOSITION 1 

Let A^{u;q, r) = r -i- qu - h{u;q, r) and ẑ  be a variable 
of interest. We assume the following conditions 

c,-N-^Ys^kh = Opin 

C2-N-^Ys\(KK'qk'rk)h = 0pin-"'), 
where X^ is a solution to equation (2.5). 

Note that Zs^^k^9k^k\)^k"Px' '̂̂ '̂"^ ^i "" 
-(ls^kVk)''(Pxr-Px)' and also that IMKK' 
^k' ''k)-''k ~ ̂ x- Thus, in using Cj, we find that 

N-'Es9kVk(\-K)-o^{n-'''), 

X^ -X^= o {n'^'^), and therefore using C,, with 
h - -"-k^k • ^^ '^ also easily shown that 

^ (•'QR ~ • 'RQR) 

= N-'Ys irk-'ik^k\)yk-N''Y.s hix;Xj,q„r,)y, 

=N-'Ys^kKyki\-K)-N-'Ys\^KK-'qk'rk)y, 

APPENDIX B 
LIST OF ABBREVIATIONS 

ADU: Asymptotically Design Unbiased. 
BLUP: Best Linear Unbiased Predictor (Royall 1970). 

CARV: Constraints applicable to the range of values for 
the weights w ,̂ by requiring for example that all 
the w^e[L, [/]. 

CE: Calibration constraints, Y,s^k^k ~ ̂ x' where 
Px = I t / ^ r 

CH: Robust estimator proposed by Coakley and 
Hettmansperger (1993), a single-step GM-
estimator that is robust and efficient. 

CHAM: Robust Chambers (1982, 1986) estimator. 

GM: Generalized M estimators, derived from robustness 
theory (see for example Hampel et al, 1986). 

GREG: Generalized regression estimator proposed by 
Cassel ef a/., (1976). 

HT: Horvitz-Thompson estimator Y.s'^kYk' where 
dk = Th-

QR: Wri|ht (1983) estimators, in the form 
T'B +y r.e.. 

X q '-•s k k 

RQR: Generalization of tiie Wright (1983) estimators, 
obtained using a general metric as well as 
constraints on the weights. 

Sk 

h,. 

1 1 , . , Tl 

APPENDIX C 
LIST OF THE PRINCIPAL CONSTANTS 

Factor capable of accounting for heteroscedasticity 
problems. 

Sampling weights. 
g-weight defined by wjdi^. 

Quantity used to reduce the influence of outUer 
auxiUary information in B . 
Inclusion probabilities of first and second order, 
respectively. 

Quantities defining an estimator QR. The ^^ are 
used to build the regression coefficients involved 
in the first part, T^B the r^ are used for the 

kl-

u^,u t'"ifc-

w it-

second part, Ys''k^k-
Weights used to build B in a robust way. 

Weights used to consider a robust correction factor 

Lh^k-
Calibrated weight attributed to y^. to form 
L'^kYk-
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Estimation in Surveys Using Conditional Inclusion Probabilities: 
Complex Design 

YVES TILLE' 

ABSTRACT 

This paper investigates a repeated sampling approach to take into account auxiliary information in order to improve the 
precision of estimators. The objective is to build an estimator with a small conditional bias by weighting the observed 
values by the inverses ofthe conditional inclusion probabilities. A general approximation is proposed in cases when the 
auxiliary statistic is a vector of Horvitz-Thompson estimators. This approximation is quite close to the optimal estimator 
discussed by Fuller and Isaki (1981), Montanari (1987, 1997), Deville (1992) and Rao (1994, 1997). Next, the optimal 
estimator is applied to a stratified sampling design and it is shown that the optimal estimator can be viewed as an generalised 
regression estimator for which the stratification indicator variables are also used at the estimation stage. Finally, the 
application field of this estimator is discussed in the general context ofthe use of auxiliary information. 

KEY WORDS: Conditional estimation; Weighted observation; Generalised regression estimator; Complex survey. 

1. INTRODUCTION 

At the estimation stage, practitioners of survey sampling 
often have auxiliary information available. This infor
mation can be the knowledge of a set of population means 
or totals. Sometimes, the available information is detailed, 
for instance when the values taken by a variable on all the 
units ofthe population are known. This information can be 
used to improve the precision of the estimators. 

Our aim is to dealt with the use of auxiliary information 
based on a conditional principle. Conditional inference has 
been largely studied in the survey sampling literature. 
Indeed, the optimal estimator was discussed by Fuller and 
Isaki (1981), Montanari (1987, 1997), Deville (1992) and 
Rao (1994, 1997). The conditional properties of the post-
stratified estimators has been studied by Casady and 
ValUant (1993). hi an eariier paper (Tille 1998), a general 
technique that allows to build a mean or total estimator that 
has a small conditional bias has been proposed for simple 
random sampling. This technique is based on the use of 
conditional inclusion probabilities and allows one to take 
into account auxiliary information without any reference to 
a superpopulation model. 

In this paper the use of conditional inclusion probabi
lities is generalised to any sampling design. It is shown that 
this technique allows to construct an estimator very similar 
to the optimal estimator discussed by Montanari (1987), 
Deville (1992) and Rao (1994). This family of estimators 
provides a vaUd conditional inference and can also be 
viewed as the optimal linear estimator. Next, these esti
mators are applied in the stratification case and are 
compared to the GREG-estimator. The GREG-estimator is 
generally conditionally biased. Nevertheless, it is shown 
that, in regression, the optimal estimator is a particularly 

case of the GREG-estimator. Indeed, when the sttatification 
variables are re-used as auxiliary variables in the GREG-
estimator, it is equal to the optimal estimator. Next, a set 
of simulations is given that shows the interest ofthe optimal 
estimator in stratification. The gain of precision can be very 
important when the stratification variables are very corte
lated to the interest variable. Finally we discuss the general 
estimation problem in survey sampling that can be viewed 
as a third-order problem where three sets of variables 
interact: the planning variables, the calibration variables 
and the interest variables. 

The paper is organised as follows. In section 2 the nota
tion is defined. In section 3, the problem of conditional 
inference is presented. In section 4, an approximation ofthe 
SCW-estimator is given for complex designs under 
technical hypotheses. These hypotheses are discussed in 
section 5. In section 6 the optimal estimator and the SCW-
estimator are compared to the generalised regression 
(GREG) estimator in the stratification framework. It is 
shown that the optimal estimator can be viewed as a 
GREG-estimator for which the stratification indicator 
variables are also used a posteriori. Next a set of 
simulations is presented in section 7 in order to compare the 
discussed estimators. Finally, the problem of interaction 
between the design and the auxiliary variables is discussed 
in section 8. 

2. PROBLEM AND NOTATION 

Consider a finite population U = {l,...,k,...,N] and 
suppose that a random sample 5 is drawn without replace
ment from this population foUowing a sampling design p{.). 
The probabiUty of selecting the sample s is Pr{S =s) =p{s), 
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for aU sc U. The indicator variables /^ take the value 1 if 
unit k is in the sample and 0 otherwise, for all ke U. The 
inclusion probabiUty of unit fc is 7î  = £'(/^), where symbol 
E{.) is the expectation with respect to the sampling design. 
The joint inclusion probability for unit k and / is TÎ , = 
E{IJi). Let ŷ  denote the value of the variable y for the 
k-th unit of the population. The aim is to estimate the 
population mean of y: 

y^-^Yk-
N keu 

If 7i^>0,for all k€ U the Horvitz-Thompson estimator 
(1952) given by 

N keS 7t̂  

provides an unbiased estimator of y. 
Let T be a statistic. The objective is to estimate y with 

a conditional bias as small as possible with respect to 
statistic T. Define the first-order conditional inclusion 
probabilities to be Jij^ir" Pi^k\T) for aU keU and the 
conditional joint inclusion probabilities to be 7tjt,|7- = 
E{IJiIT) for all keU,leU,k* I. The simple conditionally 
weighted estimator (SCW) is defined by 

'\T 
_ I y yk 

Nkes Tt^ir 
(2.1) 

This estimator is not exactly conditionally unbiased. Indeed, 
a conditionally unbiased estimator exists if and only if 
7t̂ Î > 0 for all keU. For this reason, it is useful to enlarge 
the definition of conditional unbiasedness: an estimator is 
said to be virtually conditionally unbiased (VCU) if the 
conditional bias only depends on the units having null 
conditional inclusion probabilities. The SCW-estimator is 
VCU, indeed: 

B{y^^\T)=E{y^.p\T)-y Tf ^ *̂-

This estimator generalises some classic results (see Tille 
1998) like post-stratification. Moreover, it allows us to 
build an original estimator for a contingency table when the 
population marginal totals are known. Unfortunately, the 
computation ofthe TI^,^ becomes very difficult in complex 
sampling designs. A general approximation for the SCW-
estimator will however be given when using a vector of 
Horvitz-Thompson estimators as auxiliary statistic. 

USE OF A COMPLEX AUXILIARY 
STATISTIC 

Suppose that the auxiliary information is represented by 
:.., ...,Xi^j)' of values taken by the J the vector x^ = {Xi^y...,Xi^;,...,x 

supposed that the x^ are known for each unit of the 
population. Later, it will be considered the more restrictive 
case where only one function ofthe x^ such as 

Ntu * 
is known. Consider also the Horvitz-Thompson estimator of 
X given by 

i =JLyli 
" Nts n, 

If 7t^>0, for all keU,x^ is an unbiased estimator of x 

£(x„) = i . (3.2) 

The variance of x̂^ is given by 

2=Var(x„) = - L i : x , ^ ( l - 7 t , ) . 
N^ leu 71/ 

-|̂ EE^(-.-,-J-
Â "̂  leU meU JC, Jt^ 

m*l 
(3.3) 

Suppose now that vector {y^ x^^)' has a multinormal 
distribution. Under this hypothesis, it can be derived a 
conditional unbiased estimator (see for instance, Deville 
1992). First the conditional bias is computed: 

P(yn\K) = P(yn\K)-y = (K -x)Var(x„)-' Cov(x„,y„). 

If an estimator of B{yJXj^) is available, the Horvitz-
Thompson estimator can be cortected in the foUowing way: 

yc=y.-P(yn\K) 

= ^« + (^ - \) Var (xj-i Cov(x„, y„). 

This estimator is related to the optimal Unear estimator 
discussed by Fuller and Isaki (1981), Montanari (1987) and 
Rao (1994). Indeed, Montanari showed that the best 
estimator in the sense of the smallest mean square ertor 
(MSE)ofthefomi 

3'p=)'n + (^-\P (3.4) 

auxiliary variables on the k-th unit of U. In a first step, it is 

occurs when p takes the value: 

Popr =S-'Cov(i„,?„). 

The optimal linear estimator presented by Montanari 
leads thus to a very similar result to the conditional 
approach, although Montanari did not start with a condi
tional point of view. In Montanari's approach, the optimal 
estimator is found in a class of linear estimators defined by 
(3.4) without any reference to conditional properties. 
Nevertheless, Rao (1994) has pointed out that this estimator 
leads to valid conditional inference. The general problem 



Survey Methodology, June 1999 59 

of the optimal estimator is that PQ^J. is not known and must 
thus be estimated. By estimating POPT> the optimal 
properties of the estimator are lost. ^ 

In order to estimate PQPT' (or ^(ynlx^)) two cases can 
be distinguished. In the first one, the values taken by the 
auxiUary variable on all the units of the population are 
known. In this case, Y. is thus known and 

N^ keu \ 

r^EE ^3', 

A^'' keU leU Tt^t, 
( % - '^t'^/) 

-Y (X| ,-x)y, 
N keU 

can be unbiasedly estimated by 

C«̂ >K'̂ n) = T;E 
N 

(3.5) 

PQPP is thus estimated by (E is supposed non singular) 

PoFr = ^"'Cov2(x„,y„). 

By estimating Popp. another asymptotically optimal 
(AOPT) estimator can be given: 

3 ' A 0 F n " 3 ^ n + { ' ^ n - x ) ' P : OPT- (3.8) 

The difference between the AOPTl and A0PT2 estimator 
is die way we estimate Cov (x^, ŷ )̂ and £ . However, the 
AOPTI-estimator needs more complete auxiliary 
information. 

The generalised regression (GREG) estimator defined by 
Cassel, Samdal and Wretman (1976), Wright (1983), 
Samdal, Swensson and Wretman (1992, p. 225) is also an 
estimator of the linear class given by expression (3.4). For 
the GREG-estimator P is defined by 

-1 

P, GREG 
keS 

^k^k 

keU 
E 
keU 

t ^ t 

where 

^\k-E[K\k^s) = ]-Y ""l^kl 

N , ,, 71,71, n.N 
leU k I k 

(3.6) 

and can be estimated by 

-'GREG 

" i X , 

keS Jt^C^ kes n^c^ 

By using (3.5), a first asymptotically optimal estimator can 
be constructed 

^ l * - x 
kovri =y.-(^- K)^''jX ^ ^ ^ r (3-7) 

N keS \ 

In the second case, only the population mean x is 
known, E must thus be estimated and Cov(x^, y^) can not 
be estimated using (3.5). Montanari proposes to estimate E 
and Cov(Xjj, ŷ j) by the classic Horvitz-Thompson 
estimator: 

^--X ''k'^k 

N' kes n{ 
{l-n,)^ 

1 V - V - X,X, 7t,,-7l,7t, 

N^ kes teS T^k^l 
l*k 

••kl 

and 

N^ kes nl 

N^ keS leS TĈ Tl, 7t^, 

where quantities c^>0,^e [/, are weights defined for all tiie 
population units. TTie GREG-estimator does not have good 
conditional properties. It is generally conditionally biased 
(Rao 1994). 

4. APPROXIMATION OF THE 
SCW-ESTIMATOR 

Another way to construct a conditionally unbiased 
estimator is to find an approximation ofthe SCW-estimator 
given in (2.1). Indeed this estimator has good unbiasedness 
properties because it is VCU. If x̂ ^ is used as an auxiliary 
statistic, we shall seek an approximation of 

\\T E(h\U 

If the random vector x̂^ takes for instance the value z, we 
get by Bayes's theorem that 

E(l,\i^ = z)=Pr(keS\x^=z)=K, 
Pr{i^=z\k€S) 

Pr(x„ = z) : 

In order to compute the conditional inclusion probabi
lities, it is thus necessary to know the probability distri
bution of Xjj unconditionally and conditionally on the 
presence of each unit in the sample. Except for some 
particular case, this probability distribution is very complex; 
for this reason an approximation will be constructed. 
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It is possible to derive the means and variances of x^ 
unconditionally and conditionally on the presence of each 
unit in the sample. Indeed £'(x„) is given in (3.2 ), 
Var(x„) in {3.3 ),E{\^\keS) in (3.6), and 

E, = War(^J kes) 

X;X,7l^, 

Â  leu K.n, 
l*k k I 

7C, 

7t,. 

\ 

5. DISCUSSION ABOUT THE HYPOTHESES 

These three hypotheses are verified for simple random 
sampling without replacement when only one auxiliary 
variable is available. Indeed, in this case, we have 7 = 1, 
x ,=x , ,x=x , i | ^=X|^x„=x„ . Weget 

n n n- I , n n- I n -2 
7c^ = — , 71^; = a n d 71, 

Â  "' NN-l 
By (3.6), (3.3), (4.9), 

•klm 
N N-l N-2 

X ; X „ — E E 
N'^ leu melJ Jt^Jt/Tt^ 

l*k m * ' 
m*k 

^ki^km 
'•klm 

(4.9) 
X | ^ = X + 

N - n ^k •"• 

N-l n 
(5.11) 

where 7t̂ ,̂  is the third-order inclusion probability. Matrixes 
E and Ê ^ are assumed to be non singular^ 

As the probability distribution of x^ is generally 
unknown, the following three assumptions will be used to 
construct an approximation of conditional inclusion 
probabilities. 

(i) If the sample size n is large, x^ has a multivariate 
normal distribution unconditionally and conditionally 
on the presence of each unit in the sample. 

(ii) R-' 
EV 

-R ' 
-1/2 

-Oj^j{n-^) for aU keU where R=\-^'^ 
R,=V-"2^ ij:^Y-m ,V denotesaJxJdiagonal 

matrix having the elements of the diagonal of E on its 
diagonal and Oj^j {n"") denotes a matrix of quantities 
that when multiplied by « ° remains bounded as n - «>. 

(iii) Ŷ  = V-''2(X|^ -x) = Oj{n '^'^) where Oj {n "°) denotes 
a vector of quantities that when multiplied by n° 
remains bounded as n - «>. 

These three hypotheses are made on the sample size. It 
is thus supposed that when n increases, Â  increases at least 
as quickly as n. Nevertheless, no hypothesis are made on 
/ = nIN. Assuming that the hypotheses given in section 3 
are verified, the following result gives an approximation of 
the SCW-estimator: 

Result 1: Assuining (i), (ii) and (iii), and if the auxiliary 
statistic used is x_, then 

V=?. *(^-\)'2:'' 
N keS 

^ l * - ' ' 
yk 

*Op{n-)^y^Q^y (4 10) 

where n x O (n"') is a quantity bounded in probability. 
Proof of Result 1 is given in the appendix. 

Var(x„) N-n ^ 
N-l n 

(5.12) 

V a r ( t | f c e 5 ) = ^ M z i O ( - l I ] , ? - . ^ f i : ^ l ( 5 . 1 3 ) 

where 

{N-2){N-l)n' 

<^l-^X(-k-^)'-

N-l 

N keU 

Now, consider the three hypotheses for this particular 
case. 
- Hypothesis (i) was proved by Madow (1948) under 

some conditions. 
- Hypothesis (ii) becomes 

Varf;c„ IkeS) 
^-^ ^ - 1 =0{n' 

Var(x„) 
(«-•). 

By (5.12) and (5.13), we get 

Var(x„ \kES) _N{n-l) 

Var(xJ " (Â  - 2)n 

{x,-x)^ 

{N - Do," 

^ _l_jN-2n ^N{n-l) (x^-x)^ 

n \{N-2) {N-2) (N-l)ol 
I 

= 1 + 0 

- Hypothesis (iii) becomes 

^\k ^ _ /^/ •„ l /2^ 

\/y^{\) 

0{n"'). 
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By (5.11) (5.12), we get 

1k = 

where 

^/N^X^-X 
O 

In simple random sampUng, these hypotheses can better 
be interpreted. Hypothesis (i) is the classic assumption of 
normality that was also needed for the construction of the 
optimal estimator. In simple random sampling, it is easy to 
verify that Hypothesis (iii) implies hypothesis (ii). Both 
technical hypotheses simply imply that a particular unit 
cannot take a |x^ - x | value much more important than the 
other ones. 

The three hypotheses are thus valid under simple random 
sampling when only one variable is available. This result 
can also be extended to stratified sampling when the 
number of strata is fixed and the sample size within each 
stratum is large. In cluster sampling, when the number of 
clusters is large and the clusters are selected with a simple 
random sampling design, these hypotheses are still 
applicable. Hypothesis (i) was also partially showed by 
Rosen (1972) for sampling with unequal probabilities. 
Actually, the proof of Rosen is restricted to a rejective 
sampling design. 

The proposed hypotheses, are generally less restrictive 
than a superpopulation model. Indeed, a superpopulation 
model is a set of hypotheses on the interest variables while 
the three hypotheses presented only affect the auxiliary 
variables. In a superpopulation model, the relation between 
the interest variable and the auxiliary variables are the most 
extensive contribution of the model. In the conditional 
approach, no hypothesis is made on the interest variable. If 
the hypotheses presented are debatable, it is thus clear that 
a superpopulation model is a set of hypotheses much more 
restrictive than those used in the conditional approach. 

6. APPLICATION TO STRATIFIED SAMPLING 

6.1 The Problem 

In stratification, auxiUary information is used it a priori 
to improve the estimation. In this case, three sets of 
variables interact: the stratification variables, the auxiliary 
variables used a posteriori and the interest variable. 
Suppose that the population is partitioned into H strata 
Uf^,h = \,...,H, of size Nf^,h = l,...,H. The population 
means of the strata are denoted y^ =Â ;," Hkeu yk ^^^ 
Xf^=Nf^ Ejtey x^. A simple random sample 5^ of fixed 

size Wy, (2!A=I "A ~ ") ^̂  selected without replacement inde
pendently in each stratum. From the general theory of strati
fication (see for instance Samdal, Swensson and Wretman 
1992, p. 100), we get 

3'„ = T : E ^hYh and x„ = - J ] A^,x, 

- E 3't a n d i , = — 5 ^ ^ r 

Moreover, we have that 

Cov(x„,y„) = 

-^t^b'~^' ' ,E(x.-x,)(y,-n)' 
N^ h-i n, N,-l keu, 

and 

1 " 

N'^ /i=i 

1 - / . 1 
n, N^-l keu, 

where/^ =nJNf^,h = l,...,H. 

6.2 AOPTl-estimator 

E ( X t - x , ) ( x , - x , ) ' 

If keU^, by extending expression (3.6) to stratified 
sampUng, we get 

X|̂  = E{xjk€ S) =x + 
A „̂̂  l - / a 

N{N^-i) \ 
(x*-x„) 

and 

A^ kes Ttj, 

I ^ NI l-f, I 
- T E T;^— E (x*-x,)y,. 
N^h-i N^-l n, n^kes, 

From (3.7) the AOPTl-estimator of can be derived as 

W i = i + (x-x„)' 

-1 

E (Xi-x,)(x,-x,) ' 
H 

EN, 

H 

xE 

2 W . 1 
n 

Nb 1 -fb 1 

''=1 " A ^ A ~ 1 keU, 

E (Xt-x,)y,. 
H-.i N^-l «, n^kes, 

The use of this estimator requires the knowledge of very 
substantial auxiUary information. The population means x ̂  
of the auxiliary variables must be known for each stratum as 
weU as the stratum sizes Â .̂ Moreover, the values taken by 
the auxiliary variables must be known for each unit of U. 

N A = l N t: A = l 
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However yAOPri ^^^ i" stratification an important 
drawback: it is not calibrated on the strata size N^^ Le., 
when the objective consists in estimating the strata sizes 
Nf^, generally ^AOiTt '' ^A- ^^^^ drawback can easily be 
overcome by centring the interest variable. We thus get: 

^ ^ ^ ' ' ^ T T ^ ^ K - X A ) ( X . - X , ) ' L=i n, N^-l keu, 

^ Nb 1 - / A 1 

H-i N^-l « , n^kes. 

6.3 AOPT2-Estimator 

E (x , -x , ) (> ' , -y , ) . 

The AOPT2-estimator can also be used in stratification. 
In this case, from (3.8) we get 

yAot^=k*(^-K)' 

2^-h E -̂ 1 E (x,-x,)(x,-X;,)' 
A=l " A " A " 1 kes. 

-1 

XN, 
A = l 

2^-f, 

" A " A - 1 *e5, 

1 

1 . - 1 
E (X,-XA)(>'t-3'A)-

The AOPT2-estimator only needs the knowledge of the 
population mean vector x and of the stratum sizes N^. It 
has however a drawback, the x^ are estimated and thus 
JxH degrees of freedom are lost. If the number of strata is 
large, this loss of degrees of freedom could increase the 
instability of this estimator when 7 x / / is large. 

6.4 GREG-Estimator 

The GREG-estimator does not take into account the joint 
inclusion probabilities. It is given by 

) ' G R E G = > ' . * ( X - X „ ) ' • 
'̂  A^ X X ' 
Y^E ^^^ 
h-l n^ kes, 

Y —Y 
A=i n^ kes, q 

x*)-* 

Although this estimator is more stable, it is conditionally 
biased. Moreover, if we want to estimate the stratum sizes Â^ 
by the GREG-estimator, we do not find exactly N^. 
Indeed, if ŷ  = 1 when keU^ and ŷ  = 0 when k$U^, 
then 

' 'GREG ' ^ ^ G R E G 

= N,„.A^(x-i„)' \ 
" N X x ' 
y^ ^ y^ **** 
A=i «A kes. 

1-1 

X E-^E 
cYk 

A=l n^ kes, C^ 

Since, in stratified sampling, N,^^ '^H' ^® ^^^ 

N. 
N. 

GREG ••N,-N{i-ij E — E x^x, 
| A = I «A kes, c^ 

" N X 

A=i n^ kes, q (6.14) 

Expression (6.14) shows that generally ^GREG^'^A-
Thus, the GREG-estimator destroys the stratification effect 
because it does not take the stratification into account. 
Indeed, the stratification is represented by the joint 
inclusion probabilities. In the GREG-estimator, only the 
first-order inclusion probabilities are used. On the other 
hand, it is easy to verify that the AOPTl and AOPT2-
estimator of Â^ are exactly equal to Â .̂ The AOPT-
estimators is thus calibrated on the N^. 

We propose to use the GREG-estimator in the following 
cases: when the sample size is small or if the number of 
strata is large and when the stratification gives poor 
auxiliary information on the interest variable. Indeed, in 
this case, the loss of precision due to the loss of degrees of 
freedom, wiU be more important than the precision benefit 
due to the optimality of the estimator. An interesting 
analysis of the benefit due to the optimal estimator is also 
given in Montanari (1998). 

6.5 GREG-Estimator With use of the Stratification 
Variables 

A variant of use of the GREG-estimator consists in 
re-using the stratification variables at the estimation stage. 
Consider the column vector 

w. iz, kl- -'^kh'—'Z, •km ^jt X / ) ' 

where z kh 1 ifkeUf^ and 0 if not. This vector is thus 
composed of the values taken by the indicator variables of 
the presence of unit kin the H strata and of the values taken 
by the x-auxiliary variables. 

Now if w denotes the population mean of vectors w^ 
and Wjj its Horvitz-Thompson estimator, the GREG-
estimator using the auxiliary information w is given by 
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>'GREGW=3'„ + ( W - W J ' 

A=l n. keS, c. 

" N^ w. yk Y —E • 
A=i n. kes, c. (6.15) 

The presentation of expression (6.15) can be simplified. 
Indeed, the foUowing result was proved by Tille (1994) and 
generalised by Samdal (1996): 

Result 2: 

When the stratification variables are re-used at the 
estimation stage, and if the c,^ are equal into the strata 
{c^. = Cf^,k€Ui^) the GREG-estimator can be written 

^ G R E G W 

i - ( x - x , ) ' E — E (x,-x,)(x,-x,) ' 
A=l n^C^keS, 

-I 

The populations are generated by means of the following 
models: T*,:Xĵ  = aĵ ,y^ = e^.^et/, (total independence), 
'^r^k-^k'Yk-^-'^k'^ ^k'^^(/, (dependencebetweenXand 
y), 5*3: x̂  = â ,ŷ ^ = Xĵ  + 2h{k) + ei^,keU, (dependencebe
tween x, y and the strata), J*̂ : Jĉ  = â .ŷ ^ = exp(10 + 2x^ 
(+ I0h{k)-^e^,ks [/, non-linearity and dependence between 
X, y and the strata), T^ x̂  = a^,y^ = exp(e^ + 3xĵ ) + 3h{k), 
k€U, (non-linearity and dependence between x,y and the 
strata), 7*̂ : x̂  = a^, ŷ  = 3h{k) + ê ,̂ /: 6 (/, (strong de
pendence between y and the strata), J*.j:Xĵ  = aĵ ,ŷ  = 
50h{k) + ei^,keU, (very strong dependence between y and 
the strata), where â^ and ê^ are independent normal 
variable with mean equal to 0 and variance equal to 1, and 
h{k) is the number of the stratum of unit k. Results of the 
simulations is given in Table 1. 

Table 1 
Results of 10,000 Simulations 

•P, T, •P. v. y. y. y. 
" N ^ ^ 

x E — ^ E (Xt-x^)Cy^-y^). (6.16) M, 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
A = l n^Ci^kes, 

A proof of Result 2 is given in the Appendix. Note that 
expression (6.16) is equal to the AOPT2-estimator when 

n, I - lln. 
c.=C^ ^, 

" ^A 1 - / A 

for /i = 1,..., H, where C>0 isaconstant. Whenthe/^ are 
small and the «^ are large and proportional to the Â^ both 
estimators are equivalent. This result shows that with the 
conditional approach, the fact that the sampling design is 
stratified is automatically taken into account in the esti
mation method. The GREG-estimator does not take into 
account the stratification effect and thus it is necessary to 
reintroduce the stratification variables at the estimation 
stage so as not to lose the stratification effect. 

M2 1.0070 0.0906 0.5180 0.9261 0.9263 1.1047 38.5104 

M^ 1.0069 0.0906 0.4835 0.9277 0.9269 1.0015 1.0123 

M^ 1.0060 0.0936 0.4850 0.9257 0.9239 1.0006 1.0111 

Table 1 shows that the GREG-estimator provides a good 
estimation when the stratification variables are not 
cortelated to the interest variable. Nevertheless, the more is 
the dependence between the stratification variable and the 
interest variable, the more is the gain of precision of 
>'AotTic ^^^ ÂOPT2- ^ ^ '°^^ of degrees of freedom ofthe 
optimal estimator does not seem to affect the precision for 
this sample size. Moreover, the gain obtained by the 
knowledge of the population stratum is not significant for 
this sample size. For aU these cases, the optimal estimator 
is thus clearly preferable to the GREG-estimator. 

7. SIMULATIONS 

A set of simulations was carried out in order to compare 
the four following estimators: y„,>'Aopric, >'AOFn, 
y^^Q.The population is made up of 4 strata of 250 units 
(N= 1,000). A stratified sampling design is applied with 
proportional allocation. For each simulation, 10,000 
samples of size n =100 are selected and the foUowing ratios 
has been estimated: 

M, =MSE(y„)/MSE(y„)=l, 

M 2 = M S E ( | G ^ O ) / M S E ( ^ „ ) , 

M3 = MSE(^A0Pric)/MSE(y„), 

M,=MSE(y^oj^/MSE(yJ. 

8. A THIRD-ORDER PROBLEM 

The complexity of determining the conditional weights 
is not a specific problem of the SCW-estimator. It is due to 
the general problem of estimation with auxiUary infor
mation used a posteriori when an auxiliary variable is 
already used a priori in the sampling design. This problem 
can be presented as a third-order interaction problem among 

- the interest variables; 

- the sampling design and thus the auxiliary variables 
used a priori; 

- the auxiliary variables used a posteriori. 



64 Tille: Estimation in Surveys Using Conditional Inclusion Probabilities 

Indeed, the use of auxiliary information at the estimation 
stage leads to the following problem: how do these 
auxiliary variables used a posteriori interact with the 
interest variable through a given sampling design? The 
problem being complex, we have to take into account the 
relationships between each set of variables above as well as 
the third-order interactions among these three sets of 
variables. 

It is very difficult to find a really operational estimator 
which uses the three second-order interactions and the 
tiiird-order interaction. For this reason, one can attempt to 
simplify the problem. The neutraUsation of one of the 
aspects of this problem significantly simplifies the research 
of an estimator. Most of the possible simplifications have 
already been studied. We can cite some of these: 

- If no auxiliary information is used a posteriori (except 
the population size N ) v/e can only construct the 
Horvitz-Thompson estimator or Hajek's ratio (1971). 

- Searching general solutions using auxiliary information 
for simple random sampling does not pose major 
problems. In this case, no auxiUary information is used 
a priori. 

- Using a superpopulation model allows one to fix a 
relation existing between the interest variable and the 
auxiliary variables used a posteriori. In this case, it is 
possible to determine the optimal estimator (under the 
model). 

- For the GREG-estimator and also for the calibration 
methods see Deville and Samdal 1992), in the design-
based inference framework,only the first-order probabi
lities are retained from the sampling design. A simple 
random sampling is thus treated in the same way as a 
stratified design for which the first-order inclusion 
probabilities are all equal. For this reason, a regression 
estimator applied to a stratified design generally 
destroys the calibration on the stratum frequencies 
given by the a priori stratification. In this case, the 
simpUfication arises because aU the contiibutions of the 
auxiliary variables used a priori to the sampling design 
can be described only by the first-order probabilities. 

- Finally, for the optimal linear estimator, it is implicitly 
supposed that the dependence between Horvitz-
Thompson estimators ofthe variables x and y is linear. 
Obviously, these estimators neglect the non-linear 
dependence between the estimators. Nevertheless, it 
takes into account the joint inclusion probabilities. 
When the sampling design is stratified, the estimator 
remains calibrated on the population stratum 
frequencies. 

The CW-estimator takes into account this third-order 
interaction. Moreover, in this case, auxiliary information 
does not necessarily intervene in a linear way. The weights 
depend on both the sampUng design and the auxiliary 
statistic. These weights appUed to the values taken by the 

interest variable take into account all the interactions 
between the three variable groups. 

The methods using conditional inclusion probabilities 
are interesting for different reasons: they give a general 
frameallowing to search and conceive estimators using 
auxiliary information without reference to a superpopu
lation model and lead to valid conditional inference. They 
bring into prominence all the complexity of the estimation 
problem with auxiliary nformation. According to the known 
auxiliary information, we can find either known results (as 
for example post-stratification) or very complex and not 
really operational estimators. However, a first approxi
mation leads to a known result, Le. the optimal linear 
estimator. 
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APPENDIX: PROOF OF RESULT 1 AND 2 

Lemma 1 will be used in the proof of Result 1. 

Lemma 1 If R^' - R' ' =0^xy(n"'), then | R J - ' | R | = 
1 + 0{n"'), where R and R^ are defined as in hypothesis 
(ii). 

Proof 

[ R ; ' - R - ' ] R = Oj^j{n-')R 

and thus 

| R , ' R | = | / + 0 , , , ( n - ' ) R | = 

[1 +0(n-')]^ + 0(n-') = l +0(n- ' ) 

where I is a 7x7 identity matrix. Thus, 

R, 1 = 1 +0(n" ' ) . 
|R| l + 0 ( « - ' ) 

Note that lemma 1 is a consequence of hypothesis (ii) 

Proof of Result 1 

If we define 

A^Tl, 

by hypothesis (i), we get: 

d, = - ^ , for an keU. 

«i(x„) 
«Pr(x„) / (xJ 

Tt.î A^ Nn^Pr{xJkeS) Vi(x„) 
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where/(resp. /^) is the density function of a multivariate 
normal variable with mean x (resp. x,^) and variance-
covariance matrix E (resp. E^).Thus, 

- l -exp- l ( i „ -x- ) 'E- (x„-x- ) 

c, = d,[l . 0( /z- ' ) f e x p | l i : ' 0 , , / « - > ) ^ „ j 

= ^41. O/n-')]. 

«t(x„)=^/i 
1 -exp--(x„-X|,) 'E; '(i„-X|,) 

(8.17) 
(8.21) 

If we also note 

R=V-''^EV-''^, 

R,=V-'^E^V-'^, 

x : = V- ' ' ^ ( i„ - i ) , 

and 

By (8.20) and (8.21), we get 

«(x„) =rfj 1-0^-'(«-')] 

{l-T*K'-0.,.(n-'))i%0^(«-')) 

= c/,{i-Y;R-'i;.o^(n-')} 

= ^ . { l - ( x - x „ ) ' E ' ' ( X | , - x ) . 0 ^ ( n . , ) } . 

Finally, we get 

c, = ^ , ^^^exp-^ -x : ' (R" ' -R- • )x„^ (8.18) V = " E ^^(xjyi 
IRI''^ 2 ^ ' '^keS 

we get 

' ' t(x„)=^t-

=?.^(x--x„)'E-'iE^^^^^^o>-
1 -c D-lC^<^ |Rr ' ^exp- -^x ;R- 'x 

R j - - ' ^ e x p - l ( l ; - Y , ) ' R - ; ( i ; - Y , ) 

^texp-Y,R-'(7,-2x„^). (8.19) 

By using a Taylor development for the vector ŷ  of (8.19), 
we get 

«.(x„)=c,(l-Y,R^'x„^)+/?(Yr). (8.20) 

where 

R(yT)-Ck exp |YrR; ' (y f -2x : ) 

N keS 71. 

Proof of Result 2 

In Samdal (1980), we see that the GREG-estimator 
presented in (6.15) can also be written: 

^GREG.= i -^ - ' ( i ; vW^- l5n5 'W5) ' 

(w;c-;n-;w,)->w^^c,'n-;y, 
where l^(resp. 1 )̂ is a column vector composed of Â  
(resp. n) ones, 11^ (resp. 11^) is a diagonal matrix having 
the inclusion probabilities of the population (resp. sample) 
units on its diagonal, C^ is a diagonal matiix having the ĉ  
of the sample units on its diagonal, y^ is a column vector 
composed of the values taken by the interest variable y in 
the sample. 

xy;K(yr-x:)][R^'(Yf-x:)]'-Ri')Y. w = 
,.(0) and Yt is a vector whose elements are included between 

the cortespondent elements of ŷ  and 0. By hypothesis (iii), 
we directly get 

R(yf^) = o(n-'). 

On the other hand, we have by hypothesis (ii), lemma 1 and 
(8.18) that 

^w 

Z-IH Xj 

Z-NH X/v 

and W^ is a n X ( ^ + 7) matrix composed ofthe n rows of 
W^ cortesponding to the units selected in the sample. 

The matrix to invert can be partitioned into four parts: 

(w;c-;n-'w,) A D 
D' B 
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where A is an / /x H matrix having N^ICf^,h = 1,..., H, on 
its diagonal, 

B = E^Ex,x; 

and 

D' 
N,x, A^^x^ 

By using the technique of matiix inversion by partition, we 
get 

( A - D B ' D ' ) i -A 'DQ 
-QD'A • Q 

where Q = (B - D'A"'D)"'. Since 

i r r - l i 

(w;c-'n,w,) 

r - l l 
0. 

x „ - x (i;w;.-i;n;w,) 

where 0^ is a column vector composed of H zeros, we get 

(i;w^-i;n-'w,)'(w.;c-'n-;w,)-' 

= ( i„ -x) 'Q[-D 'A->I( , , , ) ] 

where Ly^y) is a 7x7 identity matrix. Since 

Q = E—E(x , -x , ) (x , - i , ) ' [ , 
A = l n^c^kes, 

and 

[-DA-' I^j^j^] = [-x ... - x ^ J(y^,)] 

^5^1 

w;c-;ni'y,^ ^ H ^ H 

H M 

Y^Yx.yk 
*=1 n^c^kes, (8.23) 

we get Result 2 by multiplication of (8.22) and (8.23). 
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On Robust Small Area Estimation Using a Simple 
Random Effects Model 
N.G.N. PRASAD and J.N.K. RAO' 

ABSTRACT 

Robust small area estimation is studied under a simple random effects model consisting of a basic (or fixed effects) model 
and a linking model that treats the fixed effects as realizations of a random variable. Under this model a model-assisted 
estimator of a small area mean is obtained. This estimator depends on the survey weights and remains design-consistent. 
A model-based estimator of its mean squared error (MSE) is also obtained. Simulation results suggest that the proposed 
estimator and Kott's (1989) model-assisted estimator are equally efficient, and that the proposed MSE estimator is often 
much more stable than Kott's MSE estimator, even under moderate deviations ofthe linking model. The method is also 
extended to nested error regression models. 

KEY WORDS: Design consistent; Linking model; Mean squared error; Survey weights. 

1. INTRODUCTION 

Unit-level random effects models are often used in small 
area estimation to obtain efficient model-based estimators 
of small area means. Such estimators typically do not make 
use ofthe survey weights {e.g., Ghosh and Meeden 1986; 
Battese, Harter and Fuller 1988; Prasad and Rao 1990). As 
a result, the estimators are not design consistent unless the 
sampling design is self-weighting within areas. We refer the 
reader to Ghosh and Rao (1994) for an appraisal of small 
area estimation methods. 

Kott (1989) advocated the use of design-consistent 
model-based estimators {Le., model assisted estimators) 
because such estimators provide protection against model 
failure as the small area sample size increases. He derived 
a design-consistent estimator of a small area mean under a 
simple random effects model. This model has two compo
nents: the basic (or fixed effects) model and the linking 
model. The basic model is given by 

Yij = Q, •" ^ij' 7 = 1,2,..., N.; 1 = 1,2,..., m (1) 

where the y. are the population values and the e.. are 
y " 2 

uncortelated random ertors with mean zero and variance o, 
for each small area i{= 1,2, .„,m). For simplicity, we 
take 8 as the smaU area mean F = y.y. / Â ., where Â . is 
the number of population units in the i-th area. Note that 
Y. = Q. + E. and E. = Y,je.jlN. = 0 if Â ,. is large. 

The linking model assumes that 9, is a realization of a 
random variable satisfying the model 

0. = M + V. (2) 

where the v. are uncortelated random variables with mean 
zero and variance ô ,. Further, {v̂ .} and {e..} are assumed 
to be uncortelated. 

Assuming that the model (1) also holds for the sample 
{y. ,7 = 1,2, ...,n:, i = l,2, ...,m} and combining the sample 
model with the linking model, Kott (1989) obtained the 
familiar unit-level random effects model 

+ V. + e..,i 
I ij'-' 

1,2, . . . , « • / = 1,2, . . . ,m, (3) 

also called tiie components-of-variance model. It is custom
ary to assume equal variances a, = a ,̂ although the case of 
random error variances has also been studied (Kleffe and 
Rao 1992; Arora and Lahiri 1997). 

2 9 

Assuming a, =a , Kott (1989) derived an efficient 
estimator Q^^ of 9,. which is both model-unbiased under (3) 
and design-consistent. He also proposed an estimator of its 
mean squared ertor (MSE) which is model unbiased under 
the basic model (1) as well as design-consistent. But this 
MSE estimator can be quite unstable and can even take 
negative values, as noted by Kott (1989) in his empirical 
example. Kott (1989) used his MSE estimators mainly to 
compare the overall reduction in MSE from using Q-^r in 
place of a direct design-based estimator y .^ given by (4) 
below. He remarked that more stable MSE estimators are 
needed. 

The main purpose of this paper is to obtain a pseudo 
empirical best linear unbiased prediction (EBLUP) estimator 
of 9; which depends on the survey weights and is design-
consistent (section 2). A stable model-based MSE estimator 
is also obtained (section 3). Results of a simulation study in 
section 4 show that the proposed MSE estimator is often 
much more stable than the MSE estimator of Kott, as 
measured by their coefficient of variation, even under 
moderate deviations of the linking model (2). Results under 
the simple model (3) are also extended to a nested ertor 
regression model (section 5). 

N.G.N. Prasad, Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, T6G 201; J.N.K. Rao, Department of Mathematics and 
Statistics, Carleton University, Ottawa, Ontario, KIS 5B6. 
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2. PSEUDO EBLUP ESTIMATOR 

Suppose w.. denotes the basic design weight attached to 
the y-th sample unit {j = l,2,...,n.) in the i-th area 
(/ = 1,2,..., m). A direct design-based estimator of 9,. is 
then given by the ratio estimator 

yi.-Ej^yyjEj^o = Ej^yyii (4) 

where w.. = vv../ ̂ .vv... The direct estimator y .^ is design-
consistent but fails to borrow sti-ength from the other areas. 

To get a more efficient estimator, we consider the 
following reduced model obtained from the combined 
model (3) with o, = o :̂ 

(5) 

where the e. are uncortelated random variables with mean 
zero and variance 5̂  = o V ̂ ,7 • The reduced model (5) is 
an area-level model similar to the well-known Fay-Herriot 
model (Fay and Herriot 1979). It now follows from the 
standard best linear unbiased prediction (BLUP) theory 
{e.g., Prasad and Rao 1990) that the BLUP estimator of 
0. = |i + V; for the reduced model (5) is given by 

0 , = M, + V . (6) 

where 

tiw^^iw ^w' 

with pi =y.Y y / ^ y - and Y =Ov/(o„+5.). Note 
that 9,. is different from tiie BLUJ* estimator under the full 
model (3). We therefore denote 0 . as a pseudo-BLUP esti
mator. The estimator (6) may also be written as a convex 
combination of the direct estimator y. and jl : 

0 .=Y . V. + ( 1 - Y ) M - (7) 

The estimator 9. will be referred to as pseudo-EBLUP 
estimator. We use standard estimators of oJ and o ,̂ based 
on the within-area sums of squares 

TT \ 2 !2., = E E (Yij-Yi) 
• J 

and the between-area sums of squares 

Qb = En,{yry)"' 
i 

where y = £^«,y, / Y^i^t is the overall sample mean. We have 

o' = Q./{Enrm^ 

and 6^ = ma\{6^, 0) where 

with 

o, = [Q,-{m-l)c']ln* 

«*=E",-E"//E",-

The estimator 0_. depends on the parameters a^ and â  
which are generally unknown in practice. We therefore 
replace oJ and o^ in (7) by model-consistent estimators 6^ 
and 6^ under the original unit-level model (3) to obtain the 
estimator 

It may be noted that o^ and o^ are either not estimable or 
poorly estimated from the reduced model (5) due to identi-
fiability problems. Following Kackar and Harville (1984), 
it can be shown that the pseudo-EBLUP estimator 9,. is 
model-unbiased for 9̂  under the original model (3) for 
symmetricaUy distributed errors {v̂ .} and {e.j}, not neces
sarily normal. It is also design consistent, assuming that 
n .£ .w| is bounded as n. increases, because Y,,̂  converges 
in probability to 1 as «,-«> regardless ofthe validity ofthe 
model (3), assuming a^ and 6^ converge in probability to 
some values, say, 6* and o'^. 

Kott's (1989) model-based estimator of 9, is obtained by 
taking a weighted combination of y.,^ and Y.i*i^i' Y p ^^^^ 
is, 

/;.(a.,c«) = ( l -a , . )y , , +a ,E^/">^/ . 
l*i 

and then minimizing the model mean squared ertor (MSE) 
of/j.(a., c '̂̂ ) with respect to a. and c/' ' subject to model-
unbiasedness condition: X/*,^/ ~ 1- This leads to 

9,^=/;.(ct.,a('>) (9) 

with 

where 

and 

0 .=Y V + ( 1 - Y ) M , 
I ' m-' iw ^ ' iw' " w' 

r* w ^-^i * iw y iw f I-^i » iw' 

(8) «,= 

w. ;/JE»',j*Ef',7",*( •*!:«';•"](»'.'#) 
and 

A(') i<f^)-nr]/E 
' h*i 

(d:/d^) + «; ' 
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The estimator 0̂ .̂^ is also model-unbiased and design-
consistent. In a previous version of this paper, we proposed 
an estimator similar to (9). It uses the best estimators of \i 
under the unit-level model, based on the unweighted means y., 
rather than fi^, the best estimator of \i under the reduced 
model (4), based on the survey-weighted means y. . 

3. ESTIMATORS OF MSE 

It is straightforward to derive the MSE of the pseudo-
BLUP estimator 9 . under the unit level model (3). We 
have 

-2 

,2 „ 2 N ,2 „2^ 
MSE(9 .) =£(9 r%)-gii«' ^') ^82i«' ^ ) (10) 

with 

and 

g2,(o^a2) = o^(l-Y.^)2/5;^.Y,v 
.2 „2^ The leading term, ^1,(0,,, o ) is of order 0(1), while the 

second term, g2i(^v' ^^)' due to estimation of \i is of order 
0 ( / M " ' ) for large m. 

A naive MSE estimator of the pseudo-EBLUP estimator 
9. is obtained by estimating MSE(9j.) given by (10): 

msef^(9,.) = g,,.(a ,̂, 6^) + g2i{ol,6^). (11) 

But (11) could lead to significant underestimation of 
MSE (9 ) because it ignores the uncertainty associated with 
a„ and o^. Note that 

MSE(9,.) = MSE(9,.) + E{Q. -Qf (12) 

under normaUty of the ertors {y,} and [ey] so that 
MSE(§,.) is always smaller tiian MSE(0 j); see Kackar and 
Harville (1984). 

To get a "cortect" estimator of MSE(9(), we first 
approximate the second order term J?(9. - 9 .)^in (12) for 
large m, assuming that {v,} and {eij} are normally distri
buted. Following Prasad and Rao (1990), we have 

where the neglected terms are of lower order than m"', and 

{V{dl)-2{ollo^)Cov{dl,e^)^ 

2/„2\2\r„^rA2\\. 

see Appendix 1. The variances and covariances of a^ and 
6^ are also given in the Appendix 1. It can be shown that 
g^.{6^,,6^) + gj.{a^,6^) is approximately unbiased for 
g^i{ol,a^) in the sense that its bias is of lower order than 
m"' (see Appendix 2). Similarly, g2^{al,6^) and 
^3,.(6J,,6^) are approximately unbiased for ^^/(Ov.o^) 
and g^.{al,a^), respectively. It now follows that an approxi
mately model-unbiased estimator of MSE(9j.) is given by 

'-^2 -2 .̂ 2 -2> :;2 ; ; 2 . mse(9,.) = g„.(a;, 6^) + ^^..(a;, 6^) + 2g,.{6l 6^). (15) 

For the estimator 9 .ĵ  given by (9), Kott (1989) proposed an 
estimator of MSE as 

mse(9.j,) = ( l -2d, . )v ' (y ,J + at y,, + «;[: -E^ ( 0 - \ 2 
/ y i \ 

(16) 

(a:/a^)^Var(6^)}; (14) 

where v *(y .̂ )̂ is both a design-consistent estimator ofthe 
design-MSE of y .^ and a model-unbiased estimator of the 
model-variance of y .^ under the basic model (1). Since d. 
converges in probability to zero as n.^°°, it follows from 
(16) that mse(9j.ĵ .) is also both design-consistent and model 
unbiased assuming only the basic model (1). However, 
mse(0j.^) is unstable and can even take negative values 
when d; exceeds 0.5, as noted by Kott (1989). 

Note that our MSE estimator, mse(0|.) is based on the full 
model (3) obtained by combining the basic model (1) with 
the linking model (2). However, our simulation results in 
section 4 show that it may perform well even under moderate 
deviations from the Unking model. 

4. SIMULATION STUDY 

We conducted a limited simulation study to evaluate the 
performances ofthe proposed estimator 9̂ ., given by (8), and 
its estimator of MSE, given by (15), relative to Kott's 
estimator 9 .^, given by (9), and its estimator of MSE, given 
by (16). We studied the performances under two different 
approaches: (i) For each simulation run, a finite population 
of m = 30 small areas with Â .̂ = 200 population units in each 
area is generated from the assumed unit-level model and then 
a PPS (probability proportional to size) sample within each 
small area is drawn independently, using n. = 20. (ii) A 
fixed finite population is first generated from the assumed 
unit-level model and then for each simulation run a PPS 
sample within each small area is drawn independently, 
employing the fixed finite population. Approach (i) refers 
to both the design and the linking model whereas approach 
(ii) is design-based in the sense that it refers only to the 
design. The ertors {v,.} and {e..} are assumed to be 
normally distributed in generating the finite populations 
{y.., i = l,2,..., 30; j = 1,2,..., 200}. We considered two 
cases: (1) The linking model (2) is true with |i = 50. (2) The 
linking model is violated by letting |i vary across areas: 
|i,. = 50,/ = l,2,..., 10; 1̂,. = 55, J = 11,12, ...,20; n,. = 60, 
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J = 21, 22,..., 30. To implement PPS sampling within 
each area, size measures z..(/ = l,2,...,30;y = l,2,...,200) 
were generated from an exponential distribution with mean 
200. Using these z-values, we computed selection 
probabilities py = Zy I £ Zy for each area i and then used 
them to select PPS with replacement samples of sizes 
n. = n,hy taking n = 20, and the associated sample values 
{y..} were observed. 

The basic design weights are given by w ..=n"' Pjj so 
that w.. = Py"' / X Py'• Using these weights and the asso
ciated sample values y.. we computed estimates 9̂ . and 9̂ .̂^ 
and associated estimates of MSE, and also the ratio estimate 
y . for each simulation run; tiie formula for v * (y.,) under 
PPS sampling is given in Appendix 3. This process was 
repeated R = 10,000 times to get from each run 
r{=l,2,...,R)Q.{r) and 9,.j^(r) and associated MSE esti
mates msej(9j.(r)) and msej(9.j^.(r)) and also the direct 
estimate yj^{r). Using these values, empirical relative 
efficiencies (RE) of Q. and 9̂ .̂  over y .^ were computed as 

and 

RE(9,.)=MSE,(y,„)/MSE.(9.) 

RE(9,„)=MSE.(y. ) /MSE,(9.A 

where MSE. denotes the MSE over R_= 10,000 runs. For 
example, MSE,(9;) = £^ [9,.(r) - Y.{r)flR, where 
Y.{r) is the i-th area population mean for the r-th run. 
Note that Y .{r) remains the same over the runs r under the 
design-based approach because the finite population is 
fixed over the simulation runs. 

Similarly, the relative biases of the MSE estimators were 
computed as 

RB[mse(9,.)] =[MSE.(0,.) -£.mse(9,.)]/MSE.(9,.) 

and 

RB[mse(9,.j(.)] =[MSE.(9,.jf) -£.mse(9,.j^)]/ 

MSE, (9,.^), 

where £ , denotes the expectation over R = 10,000 runs. 
For example, £,mse(0;) =£^mse(0,.(r))//?. Finally, the 
empirical coefficient of variation (CV) of the MSE 
estimators were computed as 

CV[mse(0,.)]=[MSE.{mse(0,.)}y'2/MSE.(0,.) 

and 

CV[mse(0,.jf)] = [MSE. {mse(9,.j,,) }]"2/MSE.(9,.j^). 

Note that MSE,[mse(9,.)] =Xjmse(9,(r))-MSE,(9,.)f/^ 
and a similar expression for MSE,[mse(9;^)]. 

Table 1 reports summary measures of the values of 
percent RE, IRBI and CV for cases (1) and (2) under 
approach (i). Summary measures under approach (ii) are 
reported in Table 2. Summary measures considered are the 
mean and the median (med) over the smaU areas 
/ = 1,2,...,30. 

Table 1 
Relative Efficiency (RE) of Estimators, Absolute Relative Bias 

(IRBI) and Coefficient of Variation (CV) of MSE 
estimators (0=5.0, n=20): Approach (i) 

RE% IRBI% CV% 

148 
148 
48 
48 
35 
35 

39 
38 
39 
37 
37 
36 

25 
25 
8 
8 
6 
6 

6 
5 
6 
6 
5 
6 

Q.^ 0,. mse(9,.jj.) mse(9() mse(9,.jf) mse(9;) 

Case 1 

1 Mean 190 177 15.3 3.5 

Med 190 182 14.8 2.6 

2 Mean 126 123 5.1 3.2 

Med 127 124 5.6 2.9 

3 Mean 113 111 3.5 2.7 

Med 112 111 3.2 3.0 

Case 2 

1 Mean 108 103 10.4 7.9 

Med 108 104 11.1 7.7 

2 Mean 108 104 13.3 8.9 

Med 108 104 13.6 7.9 

3 Mean 104 103 11.5 7.2 

Med 105 105 13.1 8.0 
Casel: |i,.=50, i=l,2,...,30;Case2: n,.=50, i=l,2,...,10; 
|a,.=55,i=ll,12,...,20; n,. =60,1=21,22,...,30. 

It is clear from Tables 1 and 2 that 9,.̂ ^ and 9,. perform 
similarly with respect to RE which decreases as a^la 
increases. Under approach (ii), RE is large for both cases 1 
and 2 when o,^l o ^0.4, whereas it decreases significantly 
under approach (i) if the linking model is violated (case 2); 
the direct estimator y .^ is quite unstable under approach (u). 

Turning to the peiformance of MSE estirnators under 
approach (i), Table 1 shows that IRBI of mse(9,.) is negUg-
ible (<4%) when the linking model holds (Case 1) and that 
it is small (<10%) even when the linking model is violated, 
although it increases. The estimator mse(9,.ĵ ) has a larger 
IRBI but it is less tiian 15%_. The CV of mse(9.) is much 
smaller than the CV of mse (9 ̂ j^) for both Cases 1 and 2. For 
example, when the model holds (Case 1) the median CV is 
25% for mse(9;) compared to 148% for mse(0,.j^) when 
ô ,= 1; the median CV decreases to 8% for mse(9,) 
compared to 48% for mse(0,.^) when a^ = 2. This pattem 
is retained when the model is violated (Case 2). It may be 
noted that the probability of inse(9,j5 )̂ taking a negative 
value is quite large (>0.3) when a^l a ^ 0.4. 

Under approach (ii). Table 2 shows that IRBI of mse (9,.) 
is larger than the value under approach (i) and ranges from 
15% to 25%. On tiie otiier hand, IRBI of mse (9,.j,,) is smaUer 
and ranges from 4% to 15%. The CV of mse (9,.^), how-
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ever, is much larger than under approach (i). For example, 
the median CV for Case 1 is 295% compared to 38% for 
mse(9.) when o^ = 1 which decreases to 122% compared 
to 23% when o^ = 2. A similar pattem holds for case 2 
where the fixed finite population is generated from the 
model with varying means. 

Table 2 
Relative Efficiency (RE) of Estimators, Absolute Relative Bias 

(IRBI) and Coefficient of Variation (CV) of MSE 
estimators (a=5.0, n=20): Approach (ii) 

The pseudo-EBLUP of 0,. = X! p + v. is given by 

RE% IRBI% CV% 

9̂ .̂  9. mse(9,.^) mse(9j.) mse(9,.^) mse(9;) 

Case 1 

1 Mean 

Med 
2 Mean 

Med 
3 Mean 

Med 

1 Mean 

Med 
2 Mean 

Med 
3 Mean 

Med 
Case 1: H. 
M,=55, ,=] 

283 281 

275 279 

180182 

177 181 

129 129 

129 128 

278 276 

271 275 

175 177 

173 177 

124 124 

125 124 
=50,z=l,2,. 
1,12,...,20; 

14.2 

15.0 

7.3 
6.9 
4.8 
4.2 

25.4 

24.7 

19.2 

18.7 

14.8 

13.9 

Case 2 

15.7 

16.6 

8.8 
8.5 
6.3 
6.8 

26.8 

26.2 

20.7 

20.3 

16.2 

15.5 

289 
295 

115 
122 
68 
65 

291 
297 
117 
124 
70 
67 

..,30; Case 2: |J.=50, i=l,2,.... 
H,. =60, 1=21,22,. .,30. 

39 
38 
24 
23 
24 
24 

41 
40 
26 
25 
25 
26 

10; 

To reduce IRBI of mse(9^) under approach (ii), one 
could combine it with mse (9.^) by taking a weighted 
average, but it appears difficult to chose the appropriate 
weights. The weighted average will be more stable than 
mse(9,.jf). 

5. NESTED ERROR REGRESSION MODEL 

The results in sections 2 and 3 can be extended to nested 
ertor regression models 

(17) Yy = -̂ 0 P * ̂ , + ^ij' 7 =1' 2, - , n.; i = l,2,..., m 

using the results of Prasad and Rao (1990), where x.j is a 
/7-vector of auxiUary variables with known population mean 
Xj and related to y.., and P is the p-vector of regression 
coefficients. The reduced model is given by 

>',V=^/wP + V. + e . (18) 

withx.' =Y.w..x... Model-consistent estimates a„ and o^ 
tw i-n ij ij V 

are obtained from the unit-level model (17), employing 
either the method of fitting constants (Prasad and Rao 
1990) or REML (restricted maximum UkeUhood) estimation 
(Datta and Lahiri 1997). 

where 

9.=Y y. +(1 -Y- )X'.Q 

Pw [Z^i yiw-'^iw-'^iwl [2.^1 yiw-'^iwYiw}-

(19) 

An approximate model-unbiased estimator of MSE(9j.) is 
givenby (15) with 

/^2 ^ 2 \ / I " \ "2 

gi,(Ov>oO = (i -yj<^v 
as before, 

^2,(°v'0 ) = 

Ov(^,- -yiJiJ'lEi r ,V^,w^/w)" '(^,-Y,vVnv) 

and ^3,(d,,, d^), obtained from (14), involves the estimated 
variances and covariances of d ^ and 6 .̂ The latter can be 
obtained from Prasad and Rao (1990) for the method of 
fitting constants and from Datta and Lahiri (1997) for 
REML. 

6. CONCLUSION 

We have proposed a model-assisted estimator of a smaU 
area mean under a simple unit-level random effects model. 
This estimator depends on the survey weights and is design-
consistent. We have also obtained a model-based MSE 
estimator. Results of our simulation study have shown that 
the proposed MSE estimator performs well, even under 
moderate deviations of the linking model. The proposed 
approach is also extended to a nested ertor regression model. 
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APPENDIX 1 

Proof of (13): 

From general results (Prasad and Rao 1990) we have 

E{Q.-Q f '^ tr A.{al,c^)B.{al,a^) 

~2 
where B.{a^, o ) is the 2 x 2 covariance matrix of a j, and 
6^, and A.{al, o^) is the 2 x 2 covariance matrix of 

dol' da^ 
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Now, noting that 

dQ; ay. 

da., da.. 

39,* dv. 

Y,v(l -Y,w) 

Y,v(i -yJ 

da^ da'^ 

and V{y .J = a^ + 5,. = oJ / y.^, we get 

A.{al,a^)= j.^{l -yj^a;^ 
I 

y iw' 

-alia' 

-at I a' {a'jaf 

and hence the result (14). 

Covariance matrix of d ^ and d^: 

Under normality, we have 

V(d2) = 2 a V p . « . - / n ) , 

V{al)=2n:^ 

a'*{m- l){E"i- 0 ( E « , - ' " ) " ' +2«,o^o^+«,.o^ 

and 

Cov{a\al) = -{m - l)n:'V{6'), 

where 

n„-Enf-2Ynf/Yn^^En^f/(Enf; 

see Searle, Casella and McCulloch (1992, p. 428). 

APPENDIX 2 

Proof of £ [ g , . ( ^ t , ^ ) ^g,i(ol,S')]^g,,{ffl,<f'): 

APPENDIX 3 

The design-based estimator of variance of y.^ under PPS 
sampling is given by 

v(y ) = y^ vv;, (y. - v. ) ' . 
^•^ iw' _ I i-^ I] ^I] J iw' 

Kott (1989) model-assisted variance estimator is 

v*( J , J={V(y , J /£v(y , . j }v (y , J 

f E %J j E ̂ l {y--y- ) 
^•'1} •' iw' 

By a Taylor expansion of g,;(a^, o^) around {a^,r^) to 
second order and noting that £ ' (6^-o^)=0 and 
£^(Ov-Ov) = 0, we get 

,^2 ' 2 \ / 2 2\1 
g l , ( 0 v . 0 ' ) - g „ ( 0 v , 0 2 ) J 

~~Ur 
2 

D.{a\,a'')B.<,a\,a'') 

,2 „2 where D^{a^, o ) is the 2 x 2 matrix of second order deriv
atives of gy^{a^, cp-) with respect to a^ and c?. It is easy 
to verify that 

'-tr 
2 

D.{al,a')B.{al,a'-\ = g^^{al,a''). 

Now, noting that £[^3,(0^, a^)] = ^3,(0^, a^) we get tiie 
desired result. 

E w,J[ 1 - 2ŵ - + E >̂ ,J] 

where .E and V denote expectation and variance with respect 
to the basic model (1). 
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Small Area Estimation Using Multilevel Models 
FERNANDO A.S. MOURA and DAVID HOLT* 

ABSTRACT 

In this paper a general multilevel model framework is used to provide estimates for small areas using survey data. This class 
of models allows for variation between areas because of: (i) differences in the distributions of unit level variables between 
areas, (ii) differences in the distribution of area level variables between areas and (iii) area specific components of variance 
which make provision for additional local variation which cannot be explained by unit-level or area-level covariates. Small 
area estimators are derived for this multilevel model formulation and an approximation to the mean square error (MSE) of 
each small area estimate for this general class of mixed models is provided together with an estimator of this MSE. Both 
the approximations to the MSE and the estimator of MSE take into account three sources of variation: (i) the prediction 
MSE assuming that both the fixed and components of variance terms in the multilevel model are known, (ii) the additional 
component due to the fact that the fixed coefficients must be estimated, and (iii) the fiirther component due to the fact that 
the components of variance in the model must be estimated. The proposed methods are estimated using a large data set as 
a basis for numerical investigation. The results confirm that the extra components of variance contained in multilevel models 
as well as small area covariates can improve small area estimates and that the MSE approximation and estimator are 
satisfactory. 

KEY WORDS: Small area estimation; Mixed models; Multilevel models; EBLUE. 

1. INTRODUCTION 

The need for small area (and small domain) estimates 
from survey data has long been recognized. The difficulty 
with the production of such estimates is that for most, if not 
all, small areas, the sample size achieved by a survey 
designed for national purposes is too smaU for direct esti
mates to be made witii acceptable precision. Early attempts 
to tackle this problem using methods such as synthetic 
estimation (Gonzalez 1973) involved the use of auxiliary 
information and the pooling of information across small 
areas. An excellent review and bibliography are given by 
Ghosh and Rao (1994). 

Empirical studies show that such methods made too little 
provision for local variation and consequently the resulting 
small area estimates were shmnk too far towards a pre
dicted mean. More recent approaches {e.g., Battese and 
Fuller 1981 and Battese, Harter and Fuller 1988) use some 
components of variance model, or equivalent, to provide for 
local variation. Empirical studies show the superiority of 
this approach {e.g., Prasad and Rao 1990). 

This paper proposes a general multilevel model frame
work for small area estimation. This involves the potential 
to use auxiUary information at both the unit and small area 
level. In addition any of the regression parameters, rather 
than just the intercept as proposed by Battese and Fuller 
(1981), may be treated as varying randomly between small 
areas. The local variation is provided for by using diffe
rences between the means of unit level auxiliary variables, 
the small area level variables, and the various components 
of variance which allow variation between areas. 

For this general model, the small area predictor is 
obtained. In addition, an approximation to the mean square 
ertor (MSE) of each separate small area prediction and an 
estimator of this MSE are developed. 

The numerical study, based on a large data set from 
Brazil shows that such models may be useful for predicting 
small area estimates. The robustness of the approach to mis-
specification of the variance-covariance matiix of the small 
area random effects and misspecification of small area 
covariates are also investigated. Further numerical results 
demonsti-ate the success of the MSE approximation and its 
estimator. 

2. THE MULTILEVEL MODEL FRAMEWORK 

2.1 Introduction 

We consider the following multilevel model for 
predicting the small area means: 

y,. = x,p,.e, 

P,=^J"'^ / = l,...,m (2.1) 

where Y. is the vector of length n. for the characteristic of 
interest for the sample units in tiie i-th small area, 
/ = 1 m;X. is the matrix of explanatory variables at 
sample unit level; Z. is the design matrix of small area 
variables; y is the vector of length q of fixed coefficients 
and Vj. = {ViQ,—,v.)^ is the vector of length (p + 1) of 
random effects for the i-th small area. We assume the 

Fernando A.S. Moura, Instihito de Matem t̂ica, UFRJ, Rio de Janeiro, Brazil, CP: 68530, CEP: 21941-590, e-mail: fmoura@dme.ufrj.br; David Holt, Office 
for National Statistics, 1 Drummond Gate, London, SWIP 2QQ, e-mail: tholt@ons.go.uk. 
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following about the distribution of the random vectors: (a) 
the V. are independent between small areas and have a joint 
distribution within each small area with £(Vj.) = 0 and (b) 
V(v.) = n (b) The e.,s and v.,s are independent and 
V{e')=a'l. 

For the whole population (2.1) appUes with n. replaced 
by N., the small area population sizes. 

The set of m equations in (2.1) can be concisely written 
by stacking them as 

Y = XZ^ + Xv^E. (2.2) 

It is worth noting that the random intercept model (see 
section 2.3) can be regarded as a special case of the model 
(2.1) where Z. is equal to the identity matiix for each small 
area and Q has all terms constrained to be zero except the 
one cortesponding to the variance of the intercept term. 
Other intermediate models exist, for instance, when Q. is 
diagonal so that the small area regression coefficients are 
random but uncortelated between covariates. 

Holt (in Ghosh 1994, page 82) observes that the advan
tage of the model (2.1) over other competitors is that it 
effectively integrates the use of unit level and area level 
covariates into a single model. Besides the use of extra 
random effects for the regression coefficients gives greater 
flexibility in sitiiations where it is not appropriate to assume 
the same slope coefficients apply for aU small areas. 

2.2 Fixed and Component of Variance Parameter 
Estimates 

The fixed and components of variance parameters in the 
model (2.1) are y and 0 = ([Vech(i^)]^, a')^ respectively. 
Various methods for estimating these model parameters in 
the case of a general mixed linear model are available. Most 
of them, based on iterative algorithms, lead to the maximum 
UkeUhood estimator (MLE) or the restricted maximum like
lihood estimator (RMLE) under certain regularity conditions. 

Goldstein (1986) shows how consistent estimators can 
be obtained by applying iterative generalised least squares 
procedures (IGLS). He also proved its equivalence to the 
maximum likelihood estimator under normality. Later 
Goldstein (1989) proposed a sUght modification of his algo
rithm (namely, restricted iterative generalised least squares 
(RIGLS)) which is equivalent to RMLE under normality. 
Unlike the IGLS estimates, the RIGLS estimation proce
dures provide unbiased estimates of the component of 
variance parameters by taking into account the loss in 
degrees of freedom resulting from estimating the fixed 
parameters. 

This work is confined to the RIGLS approach as in 
Goldstein (1989). The RIGLS procedure is described in 
details in Appendix A. 

2.3 The Estimator of the Small Area Mean 

Assuming the model (2.1) and considering that the 
population size N^ in the i-th small area is large, we can 
write the mean for the j-th small area as 

ix.=xjz.y^xjv. (2.3) 

where X. is the {p + l) population mean vector for the i-th 
small area. 

An estimator of |i, may be obtained by plugging the 
RIGLS estimators of y and 0 in the respective terms of 
equation (2.3), where the predictor of the i-th small area 
random effect v. is given by v^ = ClX^ V. {Y. -X.Z.y) 

where V, ' = 6"' / - d"̂  X.. Q. G.. X; and 
{I + a-'XiX.Q.)-\ 

This estimator of \i. is known as Empirical Best Linear 
Unbiased Estimator (EBLUE) 

M. = xfZ,Y-xfv,.. (2.4) 

Battese etal, {19SI, 1988) propose and apply a random 
intercept model to provide small area estimates. In this 
case, the Empirical Best Linear Unbiased Estimator is 

M,(Ri)=^rP+v.o. 

We use the label (RI) to imply a random intercept model 
since only the intercept of each small area is random while 
the other components of P remain fixed. 

2.4 Approximation to the Mean Square Error 
(MSE) 

Kackar and Harville (1984) show that, if 0 is a trans
lation invariant estimator of 9 and the random terms are 
normally distiibuted, the mean square ertor of a predictor of 
a linear combination of a fixed and random effect can be 
decomposed into two terms. The first one is due to the 
variability in estimating the fixed parameters when the 
components of variance are known, the second term comes 
from estimating the components of variance. 

Since under normality the RIGLS estimator is equivalent 
to the RMLE estimator and the RMLE is translation-
invariant, Kackar and Harville's (1984) results can be 
applied to the smaU area means estimators (iy i=l,..., m: 

MSE(p,.) = £[M, - M,.]' = £[|I, - H,]' + £[A,,- M,]' (2.5) 

where jl̂ . is the BLUE of \i.y 
The first term of (2.5), that is MSE[(i,.], can be obtained 

by direct calculation as 

v^rn'\T I MSE(p.) = x ; ( G , - y n x , . + 

\Tr 

a'x,{Gryz. Y ZIG:'XIX;Z, 
1=1 

Z^G;'X. (2.6) 

where G,. = / + o^ X^ X. CI. Kackar and Harville (1984) 
point out that the second term of (2.6) is not tractable, 
except for special cases, and propose an approximation to 
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it. Prasad and Rao (1990) propose an approximation to this 
second term and work out the details of their approximation 
for three particular cases: the random intercept model, 
random regression coefficient model and the Fay-Herriot 
model. They also give some regularity conditions for their 
approximation to be of the second order, and prove that 
their MSE approximation for the Fay-Herriot model is of 
the second order. Nevertheless, it seems to be more difficult 
to give general conditions for more complex models such as 
model (2.1). 

Applying Prasad and Rao's approach, an approximation 
to the second term of (2.5) is developed in Appendix B. 

It is worth noting that the MSE approximation of (ft̂ .) 
can be decomposed into three terms: 

MSE(M,.) - r, + r^ + Tj (2.7) 

where T^ and T2 are respectively the first and the second 
term of equation (2.6) and T^ is described in Appendix B. 

The term T^ is the variability of \x. when all parameters 
are known, the second term 7^ is due to estimating the 
fixed effects and the third term T̂  comes from estimating 
the components of variance. 

When sampling fractions are not negligible, estimators 
of the small area means can be built in tiie spirit of the finite 
population approach by predicting specifically for the non-
sampled units: 

^F p;=/;)',^(^,-/;^,)'(z,Y-v,.) (2.8) 

where the superscript F indicates that a cortection for the 
finite population sampling fraction f. was used; x. is the 
(p + l) vector of sample means. 

The MSE(|Li,) can be obtained by noting that 

Harville and Jeske 1992) argue that this procedure tends to 
underestimate the MSE. Prasad and Rao (1990) reported a 
simulation study which showed that the use of this "naive" 
estimator leads to severe downwards bias. They also 
showed for the Fay-Herriot model (a special case of the 
model (2.1)), using "truncated Henderson" estimates for the 
variance components, that 

E{T,) Tj - Tj + o{m ');E{T2) = T2^o{m-'); 

E{f,)= T^*o{tn-\ 

HarviUe and Jeske (1992) establish some conditions for 
the unbiasedness of Prasad and Rao's mean square error 
estimator. However, considering the more general model 
(2.1), again it seems more difficult to give general 
conditions for which the order of bias of Prasad and Rao's 
estimator is o{m"'), especially if iterative procedures as 
RIGLS are used to obtain the parameter estimates. 

Nevertiieless, motivated by the simulation study summa
rised in Section 3.4 and an extensive simulation study 
described in Moura (1994), we propose to use an estimator 
similar to Prasad and Rao's for MSE((1|.): 

MSE = r , + P2- 2T. 3- (2.10) 

Where f. are obtained from (2.5) by replacing a' and Q by 
their respective RIGLS estimators. 

From equation (2.9) we can also obtain an estimator for 
MSE((i,) as follows: 

MSE(Af)= (1 -y;.)nMSE*(A,.)+A^:'(i-/;.)-• 6 ]̂ (2.11) 

where MSE *(|i.) is the equation (2.10) with X. replaced by 

xf. 

>^,=(i-/i)FfrM-Y)-v,-v,-8f) 
3. A MODEL-BASED NUMERICAL 

INVESTIGATION 
c . where X, = (1 -/j.) (X̂ . -/jx^.) and ê . is the mean of ê .. 

for the non-sampled units in the i-th small area. Therefore 3,1 Comparison of the Estimators 

/'.F\ 1 ^2 MSE(A[) = (1 -y;y M S E -(p.) + N:\I -f)-' a (2.9) 

where MSE *(A,) is the equation (2.7) with X̂ . replaced by 

xf. 
2.5 Estimation of Mean Square Error 

It is common practice to estimate the MSE of a linear 
combination of the fixed and random effects in a mixed 
model as in (2.1) by replacing estimates ofthe components 
of variance respectively in the expression of MSE. This 
estimator ignores the contribution to MSE due to estimating 
the components of variance parameters. Several studies (see 
for example Singh, Stukel and Pfeffermann 1998 or 

In order to investigate the properties of altemative 
estimators, data was used from 38,740 households in the 
enumeration districts in one county in Brazil. The Head of 
Household's income was ti-eated as the dependent variable. 
Two unit level independent variables were identified as the 
educational attainment of the Head of Household (ordinal 
scale of 0-5) and the number of rooms in the household 
(1-11-h). 

The assumed model is 

^ij = ^io^^iiW^i2^2ij^h '• = 1'- 'm;j = l,...,N^ 

P.0 = Voo + ^o; P/t = Yio * ^a; K = Y20 * v,2 3̂ J ̂  

where Xj and X2 respectively represent tiie number of 
rooms and the educational attainment of the head of the 
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household (centred about their respective population 
means). 

The parameter values for the fit model and their 
respective standard ertors are 

Yoo= 8.456(0.108) YIO= 1.223(0.046) Y2O= 2.596(0.086) 

Ooo= 1.385(0.194) OQ, =0.354(0.66) Oo2=0.492(0.117) 

0,2=0.333(0.054) o,, =0.234(0.35) 022=0.926(0.124) 

0^=47.74(0.345) 

To carry out numerical investigations within the 
model-based framework a simulation was carried out 
keeping the enumeration district identifiers and the values 
ofthe two explanatory variables (X) fixed. Initially the area 
population means X,,. and Xj, were calculated for the 
whole data set and a randomly selected subsample of 10% 
of records from each small area was identified. This same 
subset was retained throughout the simulations (the 
Simulation subset). 

The data generation for the simulations was cartied out 
in two stages using a data generation model which was the 
General Model (G), the Diagonal Model (D), the Random 
Intercept Model (RI) as appropriate. In the first case the 
parameter values were taken from the estimates mentioned 
earlier. In the second case the off-diagonal terms were set 
to zero, in the third case only OQ̂  = 1.385 was non-zero. 

The first stage of the data simulation process was to 
generate the level 2 random terms (that is, the non-zero 
elements of v.^ and v̂ ., and v,.2) depending on the choice of 
the data generation model. These random terms were 
Normally distributed (jointly Normal in the case of the 
General Data Generation Model and the Diagonal Data 
Generation Model). At this stage the expected value of the 
mean for the i-th area conditional on the area level random 
effects generated by the model m, = G, D, RI in the r-th 
simulation could be obtained: 

. ( < • ) 

1^,=^. P̂ t? ^ t P ^ X 
2r 

At the second stage of the data simulation process, unit 
values {Y.) were created for each of the data generation 
models. Having generated the data for the simulation subset 
under one of the data generation models, all three of the 
estimation models (G, D and RI) could be fitted to the 
simulated data to obtain parameter estimates and predictors 
for the small area means. 

For each data generation model m, = G, D, RI the whole 
simulation process was repeated R = 5000 times to yield a 
set of smaU area means |i|̂ ^ and predicted means 
M/m m , A" = 1....,/? for each snrnU area,/, / = l,...,/n andfor 
the three estimation models: /Wj = G, D, RI. For each small 
area and for data generated under model m, = G, D, RI, the 
Mean Square Ertor (MSE) of the prediction process for 
each estimation model /Wj may be defined as 

MSE[M,„,.^]=/?-'E(Ali^-Ml2| 
r=l 

and the absolute relative ertor (ARE) by 

ARE[M,„„„^]=/?-'ElMl;^„m,-<l<-

For comparative purposes we contrast the properties of 
each estimator with those of the estimator which is the same 
as the data generation model. Hence we define the Ratio of 
Mean Square Error (RMSE): 

RMSE_ ni2,tnj 

EMSE[P,„_„;J/|:MSE[(1,.„_„_] xlOO 

and the Ratio of Absolute Relative Ertor (RARE): 

RARE_ 
m2,ni | 

E ARE[M,„_,„̂ ] / | : ARE[p,.„_,„ ]̂|xlOO. 

It will be seen that when the data are generated from a 
simpler model {e.g., RI) the more complex estimation 
procedures do not suffer any appreciable worsening of effi
ciency or bias. On the other hand when the data are gene
rated from a more complex model the simpler estimators 
have inferior properties. However the difference between 
the Diagonal and General estimators is much less than 
between these and the Random Intercept Estimator. From 
Table 1 one would conclude that it is worth introducing 
additional random coefficients of some kind, beyond the 
simple Random Intercept model assumptions, but not 
necessarily the full General Model. 

Table 1 
Ratios of Mean Square Errors and Ratios 

of Absolute Relative Errors (in parentheses) for the three 
Estimators and Three Data Generation Models 

Estimator 

General (G) 

Diagonal (D) 

R. Intercept (RI) 

Data Generation Model 

G D RI 

100.0 
(100.0) 

108.8 
(82.6) 

131.9 
(176.9) 

101.8 
(100.9) 

100.0 
(100.0) 

109.1 
(105.6) 

101.2 
(100.6) 

100.2 
(100.1) 

100.0 
(100.0) 

The summary measures in Table 1 are average properties 
over all small areas. A careful analysis of the MSE perfor
mance of the estimators for each small area shows that there 
is a modest increase in the MSE for the Diagonal Estimator 
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compared to the General Estimator for all areas, whereas 
for the Random Intercept estimator a relatively small 
number of areas exhibit a substantial increase in MSE. A 
sinular pattem occurs between the Diagonal and Random 
Intercept estimator when the Diagonal Data Generation 
Model is used. 

3.2 Introducing a Small-Area Level Covariate 

In this section an attempt is made to investigate the 
impact on small area estimates of introducing an area cova
riate Z. Unfortunately for the data set used, it was not 
possible to identify a single contextual area level covariate 
which had a substantial effect on the multilevel models. 
Nevertheless, the number of cars per household in each 
small area was a useful covariate for the random coeffi
cients for the individual level random slopes coefficients for 
"Room" and "Edu", but not for the random intercept term. 
This was observed after some preUminary model fit analysis 
on the real data. Although the "numbers of cars" was the 
best small area level covariate found to explain between 
area variation, it was not as powerful at the individual level 
as "Room" and "Edu", the individual level covariates 
chosen. 

The model above with the small area covariate Z can be 
written as 

Yy = P/o^P,î t(,+P/2^2y+e,̂  '• = 1'-'m;j = l,...,N. 

P,o=Yoo+V P,i=rion„z,+v,.,; P,7 =720+̂ 212/+v,-2- (3.2) 

The small area random effects were assumed uncorte
lated in order to avoid convergence failure in the simulation 
study. 

Table 2 reports the parameter estimates and their respec
tive standard ertors obtained by fitting the Diagonal Model 
with the Z covariate (3.2) and witiiout the Z covariate (2.1). 
It is worth noting the significant reduction of all the 
components of variance estimates, except a^^ and a', after 
introducing the explanatory area covariate Z. 

In order to investigate the effect of misspecification of 
the Z variable, the model based simulation procedure 
described in section 3.1 was applied to the two models 
above, where the data generation was done according to the 
parameters presented in Table 2. Table 3 summarises the 
simulation results. 

It is worth noting that in both cases there is a significant 
loss of efficiency by using an unsuitable estimator. It can 
also be seen from an individual analysis of MSE for each 
small area that a considerable gain in efficiency is achieved 
with the introduction of a small area covariate Z over the 
diagonal model. For many small areas the MSE of the 
Diagonal with Z is significantly less than the MSE of the 
cortesponding estimator without Z. Even for those few 
areas in which the MSE of the Diagonal with Z is 
unchanged or even sUghtly increased by the introduction of 
Z, the difference is not appreciable. 

Table 2 
Parameter Estimates and Standard Errors for General Model 

with Area Level Covariate: Demographic Data 

Parameter 

Too 

Vio 

^20 

Yii 

Y22 

"00 

^'n 

^12 

^ 

Diagonal 
Model with Z 

8.442(0.112) 

0.451(0.179) 

0.744(0.272) 

3.779(0.507) 

1.659(0.323) 

0.745(0.308) 

0.237(0.083) 

0.700(0.197) 

44.00(1.05) 

Diagonal Model 

8.688(0.136) 

1.321(0.085) 

2.636(0.134) 

-

-

0.637(0.303) 

0.471(0.116) 

1.472(0.295) 

44.01(1.05) 

Table 3 
Ratios of Mean Square Errors and Ratios of Absolute Relative 

Errors (in parentheses) for the Diagonal and the Diagonal with Z 
Estimators Under the Two Respective Data Generation Models 

Estimator 
Data Generation Model 

Diagonal Diagonal with Z 

Diagonal 

Diagonal with Z 

100.0 
(100.0) 

126.2 
(107.5) 

110.3 
(125.4) 

100.0 
(100.0) 

3.3 Comparisons with Regression Estimator 

One essential advantage of the multilevel models over 
regression models is to recognize that groups (here the 
small areas) share common features; they are not comple
tely independent as could be assumed, for example by using 
separate linear regression model for each small area. 
Nevertheless, the relatively small intraclass cortelation 
observed for the data set used plus the fact that each small 
area has on average 28 units, could make one think that in 
this case the use of the multilevel model would not result in 
great improvement in the smaU area estimators. However, 
it is gratifying to know that even in these circumstances the 
multilevel model small area estimator performs on average 
better than the synthetic separate regression estimator, 
under either the multilevel model or even under the 
regression model. Table 4 illustrates this finding. 

The multilevel data generation model used was the 
General one with the parameters given in section 3.1. The 
parameters used in the data generation regression model 
were obtained by fitting a separate regression for each small 
area. 

It can be seen from Table 4 that the Separate Regression 
estimator which does not explore the difference of small 
areas through small area random effects shows substantial 
loss of efficiency when compared with the General estimator. 
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Table 4 
Ratios of Mean Square Errors and Ratios of Absolute Relative 

Errors (in parentheses) for the General and the Separate Regression 
Estimators Under the Two Respective Data Generation Models 

Estimator 
Data Generation Model 

General Separate Regression 

General 

Separated 
Regression 

100.0 
(100.0) 

247.6 
(154.7) 

88.1 
(83.1) 

100.0 
(100.0) 

Figure 1 illustrates this fact by showing a plot ofthe ratio 
of mean square error between the General estimator and the 
Separate Regression estimator for each small area. To 
demonsti-ate the effect of the small area sample size on the 
efficiency, the ratio of the MSEs is plotted against the 
sample size for each small area. It is clear from Figure 1 
that the gain in efficiency tends to decrease as the sample 
size increases. 
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Figure 1. Model-based efficiencies of the general estimator 
compared with the separate regression estimator for each 
small area 

3.4 An Evaluation of the MSE Approximation and 
the MSE Estimator 

From the simulation results we may investigate the 
properties of the MSE approximation (2.7). If we consider 
the General estimator when the General Data Generation 
model is used the MSE approximation appears to be very 
good. The average underestimation of the MSE approxi
mation was 0.31% of tiie MSE value with a range from the 
largest underestimate of 5.4% of tiie MSE value through to 
a largest overestimate of 4.8% of the MSE value. For the 
situation considered here 7, contiibuted on average 94.6% 
of the total variation and Tj a further 4.3%. Given die large 
component of variance due to a', these results are not 
unexpected. For individual areas the component T^ varied 
between 87.4% to 99.1 % of tiie total and T^ varied between 

0.7% and 10.5% of the total. The component Tj "ever 
contributed more than 2.2% of the total MSE for any area. 

We also investigated the performance of the MSE 
estimator represented by equation (2.10) against the "naive" 
estimator ofthe MSE, which does not consider the last term 
of (2.10). The average Root Mean Squared Ertor of the 
proposed MSE estimator is 17.5% ranging from 4.7% to 
32.3%, while for the naive estimator the average is 20.9% 
ranging from 5.2% to 47.5%. The MSE estimator is on 
average unbiased while the naive MSE estimator 
underestimates the MSE on average by 9.1%, its relative 
bias ranging from -23.5% to -0.9%. Our results agree with 
others, see Singh, Stukel and Pfeffermann (1998) and 
Prasad and Rao (1990), which show tiiat the naive estimator 
can exhibit severe bias. 

4. DISCUSSION 

Prasad and Rao (1990) and Battese etal, (1981, 1988) 
have demonstrated that models which include small area 
specific components of variance can provide greatly 
improved small area estimators. Some of the numerical 
results in this paper show that within the model-based 
simulation framework even better estimators can be 
obtained by allowing the small area slopes as well as the 
intercept to be random. 

The overall conclusions from this investigation for this 
set of parameter values are that: a component of variance 
model more complex than the Random Intercept estimator 
is beneficial; overspecification ofthe model {e.g., using the 
General estimator with data generated under the Random 
Intercept Model) does not lead to serious loss of efficiency; 
the use of small area covariates can also improve the small 
area estimates; and the use of multilevel models should be 
preferted rather than the Separate Regression Model. The 
simulation study confirms that the MSE approximation 
appears to be precise and the MSE estimation is approxi
mately unbiased, reflecting the variation in MSE between 
areas, but further theoretical investigation about the exact 
order of the approximation should be done. 

Clearly model fitting and diagnostics are crucial. If we 
apply a general mixed model in circumstances where it is 
only a poor fit to the data, then the results may be 
disappointing. Considerably more investigation is needed 
to understand what characteristics of specific small areas 
are likely to provide efficiency gains if general mixed 
models are used rather than simpler models. 
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APPENDIX A: RESTRICTED ITERATIVE 
GENERALIZED PROCEDURE 

The generaUzed least squares estimator of y in the model 
(2.1) is given by 

Y= (Z 'X 'V - 'XZ) " ' (Z 'X 'V - ' y ) = 

Ez,'x,V,-'x,z, YZ'X,'V-'Y^ 
,=1 ; \i=i 

(A.1) 

where V = Diag (V,,..., VJ and V. = o^ / + X '"fiX is the 
covariance matrix of y., / = 1,..., m. 

However, V is assumed to be a function of unknown 
parameters, thus y cannot be estimated using (A.1). On the 
other hand, if y is known then 

Y * = vech [{Y - XZy) {Y - XZyf] (A.2) 

is an unbiased estimator of vech( V). Furthermore vech( V) 
is a linear function of 0. Then we can consider the 
following linear model: 

y* = F e + ^. (A.3) 

Where F = 3vech( V)/39 and ^ is a random variable with 
mean O = (0,..., 0) and the covariance of ^ is given by 
V, = 2(p (̂V®V)<p„. The matrix tp^ is any linear transforma
tion of vec(A) into vech(A), and A is any n x n matrix such 
that vech(A) = {p^vec(A), see Fuller(1987) for further 
details. Then, assuming that F has full rank and V. is 
known and non-singular, it may be shown that the 
GeneraUzed Least Square Estimator of 0 is given by 

^ .^ , f avec(V)'i^ G = cov (0 „) ^^—L 
"{ 30 j 

where 

12 
l v - '®V-Mvec(yy^ ) (A .4 ) 

cov(0^) = 

and 

[ avec(V)' 

.1 30 , 

Tl 

2 

' 3vec(V)'\ 

. 30 J 

Y= Y- XZy. 

Note that 0^ depends on 0 and y, so both may be 
iteratively estimated. The IGLS procedure starts with an 
initial estimate of V (that is, setting initial values of 0) 
which produces an estimate of y. Hence replacing the initial 
estimate of V together with the estimate of y in (A.1) 
provides an improved estimate of 0. In most cases 
convergence is achieved after a few iterations between 
equations (A.1) and (A.4), although it is not always 
guaranteed. 

The RIGLS approach is based on the fact that if y is 
estimated by using generalised least squares with V known 
then 

£:[(y-xzY)(y-xz^)^]=v-xz(z ̂ x ̂ v "'xz)-'z ̂ x ̂ . 

The equation above suggests that we use 

(y-XZY)(y-XZY)' '+XZ(Z'"X^V-'XZ)- 'Z^X^ ( A . 5 ) 

instead of (y-XZY)(y-XZY)^ at each iteration cycle 
described above in order to obtain an approximately 
unbiased estimator of V and consequently of 0. 

As pointed out by Goldstein (1986, 1989), if we start 
with a consistent estimate of y, say the ordinary least 
squares estimator, then the final estimates wiU be consistent 
providing finite fourth moments exist. 

It is worth noting that it is possible for the above 
procedure to yield negative estimates of variances. This 
problem can be avoided by imposing constraints at each 
iteration. For further details on this issue see Goldstein 
(1986). 

APPENDIX B: AN APPROXIMATION 
TO £[A, - Mj ' 

Prasad and Rao (1990), based on Kachar and Harville 
(1984), developed a second order approximation to the 
second term of (2.5) under some regularity conditions: 

tr 

L\ 

dd, 

39 > 

' dd} ' 
dQ) 

* - e ) ( e - e ) 1 
(B.l) 

where, for the model (2.1), d.=xjK.{I<sa)X^V'\ 
K. = [0,...,/,...0], is the (p + l)x(p + l)/n matrix with the 
identity matrix / of order p +1 in the i-th position and 0 as 
the null matrix of order p +1, and 0 is any translation-
invariant estimator of 0 = (0j,...,0^) where 0j = o^ and 
0^;^ = l,...,.y -1 are the distinct elements of Q. Goldstein 
(1989) proves that under normality of the random terms of 
model (2.1), the RIGLS estimator of 0 is equivalent to the 
Restricted Maximum Likelihood Estimator (RMLE), which 
is translation invariant. 

Let us approximate E[{Q - 0)(0 - 0)̂ J to the asymptotic 
covariance matrix of the RMLE estimator {B). The jk-th 
element of fi'' is given by(see Harville (1977)) 

b; = T,\ YP.^P.-^ 
,=1 ' 30 .̂ ' 30^^ 

r - l for j and k = l,...,s where P. = v : - V,."'X.Z. 
{T:.iZ.''x,:'vr'x.Z) z/x,.^v,-'. l^t bj, he jk-th 
element of B. After some matrix algebra, it can be shown 
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that 

r3=xf(G:y 
j - l s-l 

EEbjkAjCAl 

2X]{G['f 

( ; = i k=i 
Gr'x,-

s-l 

Yb A. OT /?,nX, + ̂ „X;Q5,i^X, (B.2) 

where C, = a'' G,."' x / x . ; R, = o"'* G,."^x/x,; 
5. = o-*G; X/X.; and 

A 3 Q , , , 
A . = — — A : = l , . . . , . y - 1 

3 ^ 

is the s-l square derivative matrix with respect to 
Q^;k = l,...,s-l. 
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Composite Estimation of Drug Prevalences 
for Sub-State Areas 

MANAS CHATTOPADHYAY, PARTHA LAHIRI, MICHAEL LARSEN and JOHN REIMNITZ' 

ABSTRACT 

The Gallup Organization has been conducting household surveys to study state-wide prevalences of alcohol and drug {e.g., 
cocaine, marijuana, etc.) use. Traditional design-based survey estimates of use and dependence for counties and select 
demographic groups have unacceptably large standard errors because sample sizes in sub-state groups are too small. 
Synthetic estimation incorporates demographic information and social indicators in estimates of prevalence through an 
implicit regression model. Synthetic estimates tend to have smaller variances than design-based estimates, but can be very 
homogeneous across counties when auxiliary variables are homogeneous. Composite estimates for small areas are weighted 
averages of design-based survey estimates and synthetic estimates. A second problem generally not encountered at the state 
level but present for sub-state areas and groups concems estimating standard errors of estimated prevalences that are close 
to zero. This difficulty affects not only telephone household survey estimates, but also composite estimates. A hierarchical 
model is proposed to address this problem. Empirical Bayes composite estimators, which incorporate survey weights, of 
prevalences and jackknife estimators of their mean squared errors are presented and illustrated. 

KEY WORDS: Alcohol abuse; Drug abuse; Empirical Bayes; Jackknife; Mean squared error; Small area estimation; 
Synthetic estimation. 

1. INTRODUCTION 

The Gallup Organization has been conducting a series of 
household surveys for different states to study state-wide 
prevalences ofthe use of alcohol and drugs {e.g., cocaine, 
marijuana) among civilian, non-institutionalized adults and 
adolescents. The common goal of these surveys is to esti
mate the use and dependence prevalences for alcohol and 
drugs and, on that basis, to project the treatment needs of 
dependent users. For planning and resource allocation, 
states need precise estimates of prevalences for certain 
subgroups of the target population. For example, it is of 
interest to estimate prevalences for sub-state planning 
regions and counties in demographic subpopulations {e.g., 
older white males). 

Traditional design-based procedures to estimate use and 
dependence for subpopulations have two drawbacks. First, 
if the traditional design-based survey estimate for a sub
group is positive, but sample size is small, then the cortes
ponding standard ertor is unacceptably large. Second, since 
the problem is to estimate the proportion of a rare event, it 
is possible that the design-based procedure produces an 
estimate of zero and standard ertor estimation formulas for 
a particular subgroup, if appUed, would give a false impres
sion of the true underlying variability. 

To improve on the traditional design-based estimators, 
one can use certain supplementary information usually 
available from administrative records in conjunction with 
the telephone survey data. This generaUy is done by using 
either imphcit or explicit models that "bortow strength" or 
incorporate additional information that relates the various 

groups, counties, and planning regions to one another. The 
method proposed here combines information across 
counties in order to deal with problem of zero estimates in 
some counties. It is derived from a model that bounds the 
proportions away from 1, which is reasonable in an applica
tion with proportions expected to be very small, and esti
mates parameters using empirical Bayes methods. The 
procedure also incorporates the survey sampling weights in 
estimation. 

For a detailed account of small-area estimation methods, 
see Ghosh and Rao (1994). Other recent references can be 
found in Fartell, MacGibbon and Tomberlin (1997) and 
Malec, Sedransk, Moriarity and Leclere (1997). Farrell 
et al, (1997) propose estimating small-area proportions 
with empirical Bayes procedures. They model the 
proportions via a logistic regression that relates expected 
proportions to respondent variables and includes random 
effects for the small areas. Malec et al, (1997) use 
hierarchical Bayes models. They use logistic regression 
models to relate individual characteristics to probabilities of 
an outcome and then use a linear regression model to relate 
coefficients across small areas. Most existing methods, 
including those of Fartell et al, (1997) and Malec et al, 
(1997) do not directly use survey sampling weights in 
estimation. 

The survey design used by Gallup is described in 
section 2. In section 3, notations used in the paper are 
introduced. A direct design-based estimator and two 
synthetic estimators are presented in section 4. In section 5, 
several composite estimators of prevalences of alcohol and 
drug use and dependence are given. In this section, certain 

Manas Chattopadhyay, The Gallup Organization; Partha Lahiri, University of Nebraska/Lincoln; Michael Larsen, Harvard University, [)epartment of Statistics, 
Science Center, One Oxford Street, Cambridge, MA 02138, U.S.A.; John Reimnitz, The Gallup Organization. 
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empirical Bayes estimators and jackknife estimators of their 
mean squared ertors (MSE) are proposed. In section 6, 
estimators presented in sections 4 and 5 are applied to a 
data set from a particular state. The focus of the analysis in 
this study is taken to be county level estimates. Sample size 
planning considerations originally were concerned with 
larger sub-state planning areas. 

2. SURVEY 

For sampling purposes, the state is divided into a few 
planning regions and samples are collected independently 
for each planning region using a truncated stratified random 
digit dialing (RDD) method of Casady and Lepkowski 
(1993). This design stratifies the Bellcore (BCR) frame 
into two strata: a high density stratum consisting of 100-
banks with one or more listed residential numbers and a low 
density stratum consisting of all the remaining nufnbers in 
the BCR frame. About 52 percent of the numbers in the 
high-density stratum are estimated to be working residential 
numbers whereas in the low-density stratum, the corres
ponding percentage is only about 2 percent. The Casady-
Lepkowski procedure exploits the significant difference in 
the cost of sampling between the two strata by optimally 
determining the sample size in each stratum. In the 
truncated version of the procedure, sampling is done only 
from the high-density stratum. 

Sample size in the original study was determined in order 
to estimate statewide prevalence with a desired degree of 
accuracy. Sample sizes were allocated to the planning 
regions using an optimal allocation scheme. Data on drug 
treatment admissions for the adult population in each 
county were used to compute the index prevalence (rate of 
admissions) percent in every planning region. These indices 
were then used to calculate the optimum sample size for 
each planning region. As a result of optimal allocation, 
relatively larger sample sizes were allocated to planning 
regions with higher index prevalences. The optimal alloca
tion also minimizes the variance of the estimators. Gallup 
also oversampled the 18-45 age group by planning region, 
because it is the age group with relatively higher rates of 
illicit drug use. Due to optimal allocation (which may be 
disproportional), the age oversampling and the complex 
design, weighting was needed to compute estimates from 
the sample data. The necessary weights, commonly known 
as sampling weights, were computed using curtent 
estimates of the population based on census data. 

Due to budgetary constraints, it is not possible to 
increase sample size for all sub-state regions and groups in 
order to achieve the desired accuracy. To estimate alcohol 
and drug prevalences, we consider empirical Bayes proce
dures (see Efron and Morris 1973, Fay and Herriot 1979, 
Ghosh and Lahiri 1987, among others) to improve on usual 
design-based estimates of drug prevalences by taking 
advantage of demographic measurements and social 
indicator data. 

Other variables that possibly are related to use and 
dependence prevalence by county and that are available 
from Census include the percent of population that is over 
65, under 30, white, male, married, and renters. Local 
governments can provide data by county on social 
indicators, such as DUI (Driving Under the Influence) rate, 
mortality rate, per capita liquor licenses, and drug and 
alcohol treatment admission rates. The more closely auxi
liary variables relate to use and dependence prevalence, the 
more likely it is tiiat methods that "bortow strength" across 
areas and groups, such as the empirical Bayes methods 
presented here, can be employed to meet the desired 
accuracy levels for sub-state areas. 

3. NOTATIONS 

Let n. be the sample size allocated to the i-th planning 
region, i = I, ...,I{n = £| , , n.). Samples are drawn inde
pendently in each planning region using RDD telephone 
surveys. After the sample is observed, suppose each region 
is post-stratified into AT demographic groups. These groups 
are formed by cross-classifying gender (Male, Female) and 
age(18-24, 25-44,45-64,65-H),resultinginK = 2x4 = % 
groups. Suppose there are J. counties in the i-th planning 
region (/ = 1,...,/) and /i^ observations within the /:-th 
demographic group in they-th county belonging to the j-th 
planning region (i = 1,...,l;j = l,...,/,; k = I,..., K). 
Since typically n..^ is small, there is a good chance that 
some ofthe k demographic groups are not represented in a 
particular county. Let 5̂ .. be the set of demographic groups 
in they-th county within the i-th stratum {i = l,...,I;j = l, 
..., J.) for which individuals have completed surveys. 

Let y..|^^ be the l-th observation (0 or 1) for the k-th 
demographic group in the j-th county belonging to the i-th 
planning area (/ = 1,...,/; j = I,...,J.; keSy, l = l,...,n.ji^). 
Let w-.j^i be the cortesponding sampling weight available 
from the survey. The goal is to estimate n^.,the true 
prevalence of substance use or dependence for the ;"-th 
county within i-th planning area (/ = 1,...,/; j = 1,...,./,). 

4. DIRECT SURVEY ESTIMATOR AND 
SYNTHETIC ESTIMATORS 

The direct sample survey estimator of 7t.. is given by 

EE W yklYijkl 

Ef ^ y H 
keS,, / = ! 

The sample size available from a county could be very 
small (sometimes as small as 3 or 4). Thus, the estimator 
is highly unreliable. Other direct survey estimators are 
defined similarly. For example, the direct survey estimator 
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of 71 .̂ , the true prevalence in the ̂ -tii demographic group in 
the i-th planning region is 

E i - , 
j:keS.. / = t 

ijkl-Tykl 

lit 
EE 

r.keS-jl'l 

w yki 

where the notation j:ke S.. means that the summation is 
y 

over counties j in which demographic group k is observed. 
Additional problems arise when estimating the pro

portion of rare events. It is quite Ukely that all observations 
in a county may be zero, resulting in a zero estimate for a 
county. If usual estimates of standard ertor were appUed, 
an estimated zero standard crtor of tiie estimate would give 
a false impression of the uncertainty of the estimate. Thus, 
it is very important to improve on the direct survey 
estimator. 

Synthetic estimators bortow strength from related 
counties through implicit modeling of supplementary data 
from the U.S. Census Bureau along with the telephone 
survey data. A synthetic estimator, which has been used in 
the past to estimate alcohol prevalence at the county level, 
is given by 

where TI,.̂  is a direct survey estimator of 7t^, the 
prevalence for alcohol or dmg use for the ^-tii demographic 
group in the i-th planning region. It is impUcitly assumed 
that the prevalences in the k-th group are the same (or 
nearly the same) for all the counties in a planning region. 
This assumption is more "regional" or less restrictive than 
the one made in proposing n.. ^^. A similar direct survey 
estimator T C " ^ for the A:-th demographic group within a 
specific county 7 in region i may be defined by restricting 
the sample to county j only. As compared to TI..̂  ^, the 
estimator TÎ .̂  ^ wiU have relatively lower variance although 
it may have some bias since it does not distinguish the 
counties. T C " " , on the other hand, may be based on a very 
small sample size and hence may be significantly less 
reliable in terms of its variability. 

The above synthetic estimators achieve reductions in 
variances at the cost of increasing bias. The synthetic esti
mators distinguish counties only through an indirect 
variable a..^. obtained from the census, whereas the direct 
estimator treats each county separately. 

COMPOSITE ESTIMATORS OF TI.. 
USING TELEPHONE 

SURVEY AND CENSUS DATA 
>.51 = E^ 

* = i 
yk'^k 

where TÎ  is the statewide direct survey estimator of 
prevalence of alcohol for the ^-th demographic group and a p 
is the proportion of individuals belonging to the /c-th 
demographic group in the j-th county within the i-th 
planning area (i = 1,...,/; j = I,...,J.; k = I, ...,K). The 
value a..i^ is available from curtent census estimates. For 
the household survey reported in this paper, the a^ values 
were obtained from database vendors like Clantas Data 
Services of Ithaca, New York. Based on latest available 
census data, the a,..̂  values are typically estimated using 
projection models. In practice, therefore, the a. ̂  values are 
not true proportions but are curtent census estimates of 
reasonable precision. Outdated or inaccurate a..̂  values 
cause the estimators using them to be biased. If population 
projections are used to calculate poststratification weighting 
adjustments in the survey, the direct survey estimator also 
suffers from this source of bias. It is beyond the scope of 
this paper to study the iiripact of alternate population 
projections. In proposing 7t.. •̂ ', it is implicitly assumed 
that the prevalences for alcohol and drug use for the k-th 
group in all the counties are the same (or nearly the same). 

A less restrictive synthetic estimator of prevalence of 
alcohol and drug use is given by 

^ ' 
k = l 

^ijk^ik 

A compromise between a direct survey estimator and a 
synthetic estimator is a composite estimator. A number of 
different composite estimators are proposed here based on 
the following identity: 

-rX 
keS„ 

^yk^ijk^ E (iyk'^yk' 
kfS,, 

where TI..̂  is the prevalence for alcohol and drug use and 
a..J,, as defined above, is the proportion of individuals 
belonging to the k-th demographic group in the 7-th county 
within the i-th planning area {i = l,...,r,j = l,...,Jf, 
k = l,...,K). 

A simple composite estimator of iiy is obtained when, 
for keS..,Ti.ji^ is estimated by T O ^ , the direct survey 
estimator of 7t..ĵ , and for k C S.., n..i^ is estimated by 71̂  °. 
The estimator is then given by 

"y =E w ^E 
keS:, k SS,, 

"yk^iic 

In the above formula, TI^ {ke S.) is estimated using a small 
sample and thus there is the possibility for improving on 
Ttj^^ (and, hence, on 'TC^) by bortowing strength from 
relevant resources. To this end, an empirical Bayes 
estimate of 71.. is proposed based on the foUowing model. 

Model 

1. Given the TC^'S, the y^ / s are uncortelated with one 
another with E(y ITI ) =n and Var(y ..̂ IT: )=7t 
(l-7ip) for i = l,...,I;j = l,...,J.;k = i,...,k;l = i, 

...,n yk-
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2. The 71. 's are uncorrelated with E(7r..,) = u.,; 
Ilk -, ^ Ilk' r-|jt' 

Var(7t..j = dvil (i = 1,...,/; j = I,..., J- k = 1,..., K). 
If 7ip - Uniform (0, 2n,^), then in statement (2) d= 1/3. 
Thus, unlike the implicit assumption made in the synthetic 
estimator TI^'^^ (i.e., n.-i^ = p,^), some variabiUty of propor
tions across counties within a region for a particular 
demographic group is allowed. 

The first assumption ofthe model implies that given 7t;.̂ , 
's are uncortelated with one another, JC... the 

E(7^ 
where 
k 
model and squared ertor loss function, is given by 

^c,k = L = .wi/(Lf,Wp,)2fori = l,...,I;j = l,...,J-
1,..., K. The Unear Bayes estimator of 7i.., under the 

MSE(7i;p ) = MSE(7i;;^)+E(7tp -^c^f. 

It is necessary to estimate MSE(7c^^*) since it contains 
the unknown parameter p.̂ .̂ The first term MSE(7tp"*) 
can be estimated by 

B ^ ^ 

msej{n.. ) = mse(7ĉ . ) -

./ , - 1 ^ / B B V 
- - — 2 . (mse(.„)(7t,̂  )-mse(7t,^ )), 

J i «= 1 

where 

^y * = E «yt (Pyk 'tp "̂  + (1 - Pyk) M/J + E ^yk M,*-
keS:, ktS,, 

B ( 

mse(7t.. )=d EaU'^-Pyk)\^ik +E«i^*/t 
2\ 

V keS,j kiS:, 

where B..^ =d\i.J{dp,., + c^ (p,.̂  - (d + 1) [x-^)). 
Since the Bayes estimator involves the unknown 

parameter p̂ .̂ , it cannot be used in practice. The following 
empirical Bayes estimator of Tiy is obtained when p .̂  is re
placed by an estimator, say p ^ , of p̂ ^̂ : 

keS,, 

E«„iM 
keS,, 

yk t^ik 

where By^ =rfp,.ĵ  /(^M,* + ^ H . * - {d + l)p,;t ^)). 
The weight or shrinkage factor By^ is a ratio of the vari
ance of 7tp in the model to the (unconditional) variance of 
T T ^ . The estimator of p̂ ^ is taken to be p ]^ = T I ^ ^ . 

Mean Square Errors 

The mean squared ertor (MSE) of the Bayes estimator 
n^^ is defined as MSE {n^^) = E (7tT^* - 7t,p^ where 
(unconditional) expectation is taken with respect to the 
model. It can be checked that 

MSE(7r")=Var(7r" ^y) 
R B 

= Var(7ip) + Var(7t,p -2Cov(7ijJ^, n.j) 

and 

mse(.„)(7t,̂  ) = 
/ 2 21. 

d\ E 4 ( ^ -Pijki-u^^'ik^-u) •" E 4M«( -U) ' 

with 

A- "ijk I h "ijk 

l^ik(-u)^ l-> 2^ ^ijklYykl / 2^ 2^ 
i*ul=l ' j*u1=1 

W ijkl' 

and 

(^\h^u^ ^Cp(l^;^) - ('̂  + 1 )\'1^u)))-

See Jiang, Lahiri, and Wan (1998) for comment on these 
estimators. The second term E (T^^^ -'^^)^ ^^^ ^^ 
estimated with the following jackknife estimator: 

-EB < ' ^ £ f i \ 2 

Ji «= 1 

= Var(7t,p-Var(7t,^. ) 

=d 
keS:, kiS,, 

It is customary to take MSE(7r^*) as the MSE of the 
empirical Bayes estimator TT^^*. However, MSE(7i.. *) 
will underestimate the MSE of TC'^* since it does not 
incorporate the uncertainty due to the estimation of the 
parameter p̂ .̂ .̂ See Prasad and Rao (1990) and Lahiri and 
Rao (1995) in this context. Using a standard Bayesian 
argument, it can be shown that 

where 

-EB 
"•iK-u) E ^yk (Pijk(-u)'^p "̂  + (1 - Pijk(-u))i^ik(-u)) 

tei. 

2L> ^Uk^ik(-u 
kiS,, 

yk r*(•*(-«)• 

Thus MSE(7c^^*) is estimated by 

mse(j^'")=msej(n;;')^Ej(j^'' -iT^'f. 

Jackknife methods are reviewed in the recent text by Shao 
and Tu (1995). 
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6. AN EXAMPLE 

In this study, the primary objective is to provide informa
tion about treatment need. Anyone who meets the criteria 
for lifetime dependence or abuse as defined by the National 
Technical Center's DSM-EU-R criteria, is considered a 
member ofthe group of respondents who may have needed 
treatment during the last year. Several indicator variables 
were created in the dataset to identify respondents with a 
diagnosis for substance dependence or abuse for alcohol or 
drugs. For the purpose of numerical calculations, these 
indicator variables with 0 and 1 as possible values were 
treated as response variables (yp,) • 

In order to save space, results are presented for the 
outcome variable Alcohol Dependence only. Results on 

other response variables can be obtained from the authors. 
In order to preserve confidentiality, results for only 40 
counties, identified as counties 1 through 40, are reported. 
Table 1 contains five different estimates of prevalence for 
alcohol dependence. In general, the direct estimates are 
highly variable and are often zero. The first synthetic esti
mator (SI) is the most stable, producing no zero estimates 
and estimates with little variability. The second synthetic 
estimator (S2) is similar to S1, but not as restrictive. The 
first synthetic estimates are very homogeneous, while the 
second synthetic estimates are homogeneous within the 
four planning areas. The estimates produced by the 
composite estimator are more variable than the other 
estimates. The empirical Bayes estimator produces 
estimates very similar to those of S2. In the model leading 

Table 1 
Five Estimators of Alcohol Dependence Prevalence Expressed as Percents for Forty Counties. 

Estimated Standard Errors for Direct (Est.se) and Square Root of Estimated Mean Square Error for Empirical Bayes 

County 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40, 

v° 
1.7 
4.4 
0.0 
0.0 
9.4 
1.6 
9.3 
0.0 
0.0 
1.5 
0.0 
7.0 
5.7 
0.0 
2.4 
4.1 
2.8 
3.9 
0.0 
3.1 
2.7 
4.2 
9.7 
0.0 
7.8 
0.0 
2.2 

10.5 
0.0 
0.0 
4.6 
8.4 
2.5 
2.9 
0.0 
0.0 
4.2 
0.0 
0.0 
5.3 

Direct 

(Est.se) 

(2.4) 
(2.0) 
(0.0) 
(0.0) 
(4.8) 
(1.1) 
(5.8) 
(0.0) 
(0.0) 
(1.3) 
(0.0) 
(6.8) 
(3.8) 
(0.0) 
(1.4) 
(3.5) 
(2.4) 

0-1) 
(0.0) 
(3.9) 
(1.6) 
(1.8) 
(2.7) 
(0.0) 
(4.7) 
(0.0) 
(1.8) 

(13.7) 
(0.0) 
(0.0) 
(3.2) 
(3.8) 
(1.3) 
(2.4) 
(0.0) 
(0.0) 
(4.0) 
(0.0) 
(0.0) 
(1.9) 

Synthetic 

3.4 
3.8 
3.6 
3.3 
3.3 
3.4 
3.4 
3.6 
3.4 
3.4 
3.3 
3.5 
3.3 
3.5 
3.3 
3.3 
3.8 
3.4 
3.4 
3.6 
3.3 
3.3 
4.3 
3.3 
3.3 
3.5 
3.2 
3.4 
3.5 
3.2 
3.5 
3.7 
3.4 
3.6 
3.3 
3.4 
3.0 
3.4 
3.5 
3.4 

(^Est.mse) Estimates in Parentheses Also as 

Estimator 
1 Synthetic 2 Composite 

1.6 
1.8 
3.3 
5.6 
5.6 
3.0 
3.1 
3.2 
5.8 
2.1 
1.6 
1.7 
5.5 
1.7 
5.6 
3.0 
1.8 
3.0 
5.7 
3.2 
5.6 
2.1 
8.0 
2.0 
1.6 
1.7 
5.6 
1.6 
3.1 
1.5 
5.9 
3.4 
2.2 
1.7 
3.0 
3.1 
2.0 
5.8 
3.1 
3.1 

0.9 
7.2 
0.0 
1.6 

14.1 
1.7 
9.9 
0.4 
5.6 
0.7 
0.0 
5.0 

12.9 
0.8 
2.0 
2.5 
1.3 
3.2 
3.7 

14.9 
4.1 
1.8 

11.8 
0.2 
2.8 
0.0 
1.6 

14.2 
1.8 
0.0 

17.0 
8.4 
2.5 
1.3 
0.0 
0.3 
3.4 
3.7 
0.6 
2.9 

Emp 

1.6 
2.1 
3.0 
5.3 
6.9 
2.7 
3.1 
3.1 
5.8 
1.9 
1.5 
1.8 
6.4 
1.6 
4.4 
3.0 
1.8 
3.2 
5.7 
3.2 
5.8 
2.2 
8.8 
1.9 
1.8 
1.6 
4.9 
1.7 
3.0 
1.5 
5.8 
4.1 
2.1 
1.7 
2.8 
2.9 
2.1 
5.7 
3.0 
3.5 

Percents 

irical Bayes 

(v/Est.mse) 

(0.33) 
(0.35) 
(0.85) 
(1.79) 
(1.78) 
(0.67) 
(0.81) 
(0.84) 
(1.93) 
(0.54) 
(0.33) 
(0.35) 
(1.75) 
(0.33) 
(1.56) 
(0.77) 
(0.37) 
(0.60) 
(1.95) 
(0.82) 
(1.50) 
(0.42) 
(2.11) 
(0.54) 
(0.33) 
(0.37) 
(1-74) 
(0.35) 
(0.81) 
(0.33) 
(1.87) 
(0.84) 
(0.50) 
(0.35) 
(0.77) 
(0.82) 
(0.54) 
(1.97) 
(0.81) 
(0.69) 

Sample Size 

30 
111 
36 

6 
37 

136 
25 
20 

3 
81 
58 
14 
37 
12 

120 
32 
48 

316 
19 
20 

102 
124 
121 
22 
32 
28 
63 

5 
12 
11 
44 
52 

144 
49 
22 
17 
26 
16 
10 

144 

Number of 
Groups 

Observed in 
County 

8 
8 
8 
5 
8 
8 
6 
7 
3 
8 
8 
6 
8 
4 
8 
7 
8 
8 
5 
6 
8 
8 
8 
6 
6 
7 
8 
5 
5 
6 
8 
8 
8 
7 
8 
6 
6 
6 
6 
8 

http://Est.se
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Table 2 
Summary of Five Estimators of Alcohol Dependence Prevalence for All Counties. Results Expressed as Percents. 

Estimator 

Direct 

Synthetic 1 

Synthetic 2 
Composite 

Empirical Bayes 

minimum 

0.0 
3.0 

1.5 
0.0 

1.5 

l"quartile 

0.0 

3.3 

1.8 
0.4 

1.8 

median 

2.2 
3.4 

3.0 
1.7 

2.8 

3"" quartile 

4.3 

3.5 

4.4 
4.6 

4.2 

maximum 

10.5 

4.3 

8.0 
17.5 

8.8 

mean 

2.8 
3.5 

3.2 

3.7 

3.2 

standard deviation 

3.2 

0.2 

1.7 
4.8 

4.8 

to the empirical Bayes estimator, d was chosen to be one 
third. 

Table 1 also displays the estimated standard ertors of the 
direct estimates and the square root of the estimated mean 
squared errors (see section 4) of the empirical Bayes 
estimates. The standard ertors of the direct estimates, 
which are calculated as 

{-r"''(l -^'^)ln.. , 
y ^ IJ ^ IJ ' 

are often (incortectly) estimated to be zero and are quite 
variable. The square roots of the estimated MSE of the 
empirical Bayes estimates are relatively stable and always 
below .025. 

Table 2 summarizes alcohol dependence estimates in the 
previous table for all counties in the state. The means of the 
synthetic and composite estimates are higher than the mean 
of the direct estimates, because there are fewer zero esti
mates and the means in the summary tables are unweighted. 

7. CONCLUSION 

We have proposed simple empirical Bayes estimators to 
estimate county level prevalences. Empirical Bayes esti
mators are found to be very effective when sample sizes for 
the counties are small and when prevalences are extremely 
small. We have introduced a measure of uncertainty of the 
proposed empirical Bayes estimator based on the jackknife 
method. The proposed measure incorporates additional 
sources of variability due to estimation of various model 
parameters. In our model, presented in this paper, we have 
implicitly assumed that the selection probabilities are 
unrelated to yp,. In the household study reported in this 
paper, the selection probabiUties were unequal and depended 
on several factors like number of telephone lines and number 
of adult household members in the household. None of these 
variables were related to yp,. The sample allocation to 
different regions, however, was done based on the number 
of "treatment admissions" in each region. Hence, the 
selection probabilities might be indirectly related to ŷ ..̂ ,. In 
this paper, we have not addressed the issue of sample 
selection bias, which can be handled appropriately by 
foUowing procedures discussed in Pfeffermann (1993). 

In this paper, we have not considered the use of auxi
liary variables in the model to relate small areas to one 
another and to facilitate improved estimation. The use of 
available auxiliary data from the U.S. Census and other 

administrative records may be a sensible use of resources 
that can be used to improve planning for treatment of drug 
and alcohol abuse and dependence. We plan to do further 
work in this area with an actual example in a future paper. 
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Some Issues in the Estimation of Income Dynamics 
SUSANA RUBIN BLEUER and MILORAD KOVACEVIC' 

ABSTRACT 

Two design-based estimators of gross flows and transition rates are considered. One makes use of the cross-so^tional 
samples for the estimation of the income class boundaries at each time period and the longitudinal sample for the estimation 
of counts of units in the longitudinal population (longitudinal counts); this is the mixed estimator. The other one is entirely 
based on the longitudinal sample, both for the estimation of the class boundaries and the longitudinal counts; this is the 
longitudinal estimator. We compare the two estimators in the presence of large attrition rates, by means of a simulation. 
We find that under a less than peifect model of compensation for attrition, the mixed estimator is usually more sensitive to 
model bias than the longitudinal estimator. Furthermore, we find that for the mixed estimator, the magnitude of this bias 
overshadows the small gain in precision when compared to the longitudinal estimator. The results are illustrated with data 
from the Survey of Labour and Income Dynamics and the Longimdinal Administrative Database of Statistics Canada. 

KEY WORDS: Attrition; Gross flows; Transition rates; Longitudinal weighting; Cross-sectional weighting; Bootstrap 
variance estimator. 

1. INTRODUCTION 

Gross flows are counts of transitions from one time point 
to the other between a number of states for individuals in a 
population. Related parameters are longitudinal proportions 
and transition rates. Longitudinal proportions are relative 
gross flows, while transition rates are relative gross flows 
conditional on the initial transition state. Estimates of these 
parameters for transitions between different income classes 
are required in studies of income dynamics and can be 
obtained from longitudinal surveys. The boundaries of the 
income classes often have to be estimated from the survey 
as weU. An example is the low income measure defined as 
half of the median income, where income is adjusted for 
family size. Thus, in this case, estimators of counts of tran
sitions to and from "low income state" require the estima
tion of the income medians at the time period of interest. 

The income class boundaries usually refer to the 
respective cross-sectional populations and have to be esti
mated from the cross-sectional samples to obtain unbiased 
estimators. If the change in population from one wave to 
the other (that is the number of "births" and "deaths") is 
negligible, a longitudinal sample may represent the respec
tive populations at both time points, and we may estimate 
the income class boundaries from the longitudinal sample. 
Otherwise, estimation of income class boundaries from the 
longitudinal sample may yield biased estimates. By 
"deaths" we mean real deaths and/or emigration; similarly, 
"births" means real births and/or immigration. 

Two design-based approaches are considered for esti
mation of longitudinal parameters involving two waves. 
One approach is based on the cross-sectional samples for 
the estimation of the class boundaries at each time period 
and on the longitudinal sample for the estimation of counts 

of units in the longitudinal population (longitudinal counts). 
This results in an estimator that we term the mixed esti
mator. The other approach uses an estimator based on the 
longitudinal sample for both the class boundaries and the 
longitudinal counts, and we call it the longitudinal esti
mator. The main objective of this study is to compare the 
two approaches in terms of their performance under 
different attrition adjustment models. 

In order to make the comparison we address two related 
issues: the impact of attrition on the considered estimators 
and the estimation of their variance. Attrition refers to the 
type of non-response that occurs from a certain wave on, 
until the end of the period of observation. The real issue 
with attrition is that non-respondents cumulate over time, 
and the longer the study lasts, the greater is the non-re
sponse. In some surveys like SIPP (Survey of Income 
Program Participation), attrition reached 20% by the time 
ofthe third wave (Rizzo, Kalton, and Brick 1996). Even if 
extra care is taken in the development of adjustments to 
compensate for the missing data, the resulting estimators 
may still be sensitive to a less-than-perfect model of 
compensation. We investigate empirically the sensitivity to 
attrition of the estimators considered. 

Variance estimation is also an issue because the para
meters of interest are non-linear functions of the observa
tions and are dependent on the income class boundaries. 
The problem of variance estimation of low income propor
tions, and other measures of income inequality from com
plex cross-sectional samples was studied by Shao and Rao 
(1993), Binder and KovaCevic (1995) and Kovacevic and 
Yung (1997), among others. In the longitudinal situation, 
changes in the population over time imply the need to 
combine different samples and different systems of weights, 
which complicate variance estimation. The ultimate units 
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in a longitudinal sample may belong to different primary 
sampling units (PSU's) at different waves, some PSU's in 
the sample at one wave may not belong to the sample at 
another wave, etc. In this study, we develop an appropriate 
bootstrap variance estimator for estimators of income 
dynamics and for the complex design used in the example. 

The data used for illustration come from Statistics 
Canada's Survey of Labour and Income Dynamics (SLID) 
and Longitudinal Administiative Database (LAD); both are 
sources with quite accurate longitudinal income data 
obtained from income tax returns. At the time of the study, 
SLID had response data from only two waves and the 
attrition rate was about 10%. 

Section 2 outiines the general assumptions for the popu
lation under study and for the design. In section 3 we deal 
with the issue of estimation of longitudinal low income 
proportion and the impact of attrition on it by means of a 
small simulation study performed on an artificial data set 
created assuming the log-normal distribution. Section 4 
deals with the bootstrap variance estimation for longitudinal 
complex surveys. A more extensive simulation of various 
attrition models, using different adjustment methods and 
data from a complex design, is described in section 5, and 
the results are presented and discussed in section 6. 

2. LONGITUDINAL POPULATION, 
SAMPLE, AND WEIGHTING 

Let UQ represent the population at time 0 and (/, 
represent the population at time 1. In this study we only 
consider parameters involving two periods of time, and 
therefore, the longitudinal population is defined in terms of 
two waves by f/̂ , where U^ = UQ f) Uy 

"Deaths" and "births" from one time period to the next 
cause a change in the population. If we denote by U^ the 
set of individuals who belong to the population UQ at time r = 0 
and do not belong to the population (/, at t = l due to 
"death", and by U^ the set of "births" from time 0 to 1, then 
the longitudinal population can be expressed as f/̂  = 
U,\U^ = U^\U^. 

Similarly, we denote hy SQ, a representative sample of 
UQ, hy S^, a representative sample of U^ and by Sj and 5̂  
the respective subsamples of individuals in s^ who "died" 
between t = 0 and t = l, and of individuals in 5, "bom" 
between / = 0 and / = 1. Hence, the longitudinal sample, 
representing U^, is defined by 5^ = ^QDJ, = s^s^ = s^\Sy 

Non-respondents to the initial wave at / = 0 exist but they 
are relatively few compared to non-respondents in later 
waves. For the sake of simplicity, assume that s^ is the 
sample without the initial non-response and with the asso
ciated weights already adjusted for it. Attrition from wave 
0 to wave 1 wiU be represented by a subset of individuals in 
5Q denoted by s^. Hence, the longitudinal sample affected 
by attrition can be expressed by .ŷ  = SQ\{S^ U S^). 

Note that for some parameters of interest s^ should 
remain in the longitudinal sample for weighting purposes 

(Tambay, Schiopu-Kratina, Mayda, Stukel and Nation 
1997). The parameters considered in this paper refer to the 
longitudinal population U^, and therefore units that "die" 
from one wave to another are out of scope. 

Large scale surveys often employ stratified multistage 
designs with a large number of strata and relatively few 
clusters or primary sampling units (PSU) sampled within 
each stratum. The selected PSU's are subsampled in one or 
more stages until the ultimate units are obtained. Here we 
assume that the number of strata and clusters within strata 
does not change from one wave to the other. 

We assume that the cross-sectional samples s^ consist of 
n^ sampled PSU's with replacement within stratum h and 
m^j units sampled within the i-th PSU in stratum h, for 
r = 0, l,/i = l,...,//and/ = l,...,/i^.Let{w4},; = l,2,..., m^^ 
be the set of survey weights cortesponding to the cross-
sectional sample s^. We assume that the survey weights 
provide approximately unbiased estimators of population 
totals so that E (T,^ w^y) ~ N', where A '̂ is the size of 
Uy for f = 0,1. Here E is the expectation with respect to 
the design p{s). When the set s^ of attritors is large, the 
original weights w^y have to be adjusted to account for the 
missing units and the adjusted weights should add up, in 
average, to the size Â^ ofthe longitudinal population: 

E E 
p " 

w 
•̂ o t̂̂ rfUî ) 

Ay N, L-

Here the expectation E^ is taken with respect to the model 
m assumed for the probability of response. 

Examples: 

1. In the Survey of Labour and Income Dynamics (SLID), 
every wave has an added component that consists of 
"cohabitants", Le., individuals who live in the house
holds of the longitudinal individuals (Lavallee and 
Hunter 1992). SLID has a stratified two-stage design 
with approximately H = 400 strata at each wave. The 
number of clusters within stratum h may change if 
there is growth in it. The number of sampled clusters 
is usually 2 or 3. When a new panel is selected or an 
old one is replaced from time r = 0 to time t = l, then 
the number of sample clusters per stratum may vary. 

2. The Longitudinal Administrative Database (LAD) of 
Statistics Canada is a longitudinal sample obtained 
from administrative data files and is a representative 
sample of the income-tax-ftUng population at any year. 
The LAD is a collection of many panels since a panel 
is "bom" at each wave (year). Here non-response is 
approximately 5% of the cross-sectional sample every 
year. Longitudinal administrative samples, like LAD, 
do not have attrition, but are subject to wave non-
response caused usually by late filing (Rubin Bleuer 
1996). The design for LAD is non-stratified and single 
stage. We use LAD as a base for a simulation of 
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attrition because its data are representative of the Canadian 
income population at every wave. 

3. ESTIMATION UNDER ATTRITION 

Without loss of generality (wlog), in the following we 
define and explain the two estimation methods in terms of 
longitudinal low income proportions. In section 6 results on 
the impact of attrition are given for other two-wave para
meters like gross-flows and transition rates. We also assume 
a negligible amount of "births" and "deaths" in the finite 
population, relative to the attrition rate. In fact, we assume 
that UQ = i/j and that though the units are the same at both 
time points, the incomes attached to the units can vary. 

Let yly be the value of the characteristic of interest 
(family income adjusted for family size) for they-th ultimate 
unit in tiie J-th PSU of sti-atum/i, j=l,...,M^., i=l,...,N^, 
h = l,...,H, and t = 0, I. Then the longitudinal proportion 
of individuals with income less than or equal to x at r = 0 
and income less than or equal to y at r = 1 is given by 

This result is easily extended to the longitudinal situation 
for the estimator 

e = F{MJ2,M.I2) (3.3) 

under the assumptions of no change in the population from 
r = 0 to r = 1 and of no attrition. 

Let Mj denote the estimator of the median income at 
time t based on the cross-sectional sample s^ and corte
sponding cross-sectional weights {w^y}, for r = 0, 1 

M, = inf{y-yes,\F,(y'^p^ll2], 

where 

p, (y) = Es, "^hy^iyhy ^ y)/Es, Ky 

and let M^ denote the estimator of the median income at 
time t based on the longitudinal sample 5̂  and the longitu
dinal weights {vv̂ y}: 

M. , = inf[ylyes^\F,{yl,)>lll\, 
where 

"̂ '̂ ^ = i S S ^ ''''^''' ''^'^ '̂-'̂  (̂̂ > - Es:<^iyl,-y)/Es,^^-
where, since the two populations coincide, M ,̂ = M ,̂, and 

H l^h 

Nj^-E E M, 
h=l 1=1 

coincides with the size of the original population C/Q. / is 
the indicator function of the incomes smaller than or equal 
to X and y respectively. F{x, y) is the bivariate distribution 
function of incomes at times 0 and 1. Let us now denote by 
A/Q 12, half the median income at time t = Q, and by M, 12 
half the median income at r = 1. Then the longitudinal low 
income proportion is defined by 

e=f(M„/2,M,/2). (3.2) 

Under complete response, and f/g = f/j, 0 is the bivariate 
version of the cross-sectional low income proportion which 
was studied, among others, by Shao and Rao (1993). Under 
a framework for the development of asymptotic theory in 
the design space and under certain regularity conditions on 
the design and the income distributions, Shao and Rao 
proved that the estimator of the cross-sectional low income 
proportion F,(M,/2) is consistent (as the number of 
PSU's, A p̂su' approaches infinity) for general stratified 
multistage designs where the PSU's are selected with repla
cement. The framework assumes: (i) the existence of a 
sequence of finite populations with either increasing 
number Â pĝ  of PSU's or increasing number of inde
pendent units if the population is not clustered, and (ii) the 
existence of a cortesponding sequence of probability 
designs with the first stage sample size n^^^ increasing to 
infinity as Â p̂ ^ -* °°. 

Then, there are two possible ways to estimate the 
longitudinal parameter (3.2): 

E ^by l[yty^MJ2) l[yly^M,l2)/Y ^y (3.4) 

and 

Y ^4 l[yly ̂  M0/2) l[yly . M,I2)IY ^bij- (3.5) 

The first estimator is termed "mixed" because it com
bines longitudinal and cross-sectional samples. The second 
is only based on the longitudinal sample. Note that when 
there are no "births" or "deaths" from one wave to the next, 
the median at r = 1 can only be estimated from the longitu
dinal sample and thus we use M, in the definition of the 
mixed estimator. 

Under attrition, most of the missing data may correspond 
to individuals who are different from the rest of the popu
lation, and failure to account for this may result in biased 
estimates. Hence, weights are adjusted to compensate for 
the missing information according to a model. The esti
mates wiU become more sensitive to model misspecification 
as attrition increases. Thus, estimators that are robust to the 
choice of the model for non-response adjustments are 
desirable. 
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In order to compare estimators (3.4) and (3.5) regarding 
their robustness against incortect non-response adjustments 
we made a simple simulation study to empirically estimate 
the expected (with respect to the design and the attrition 
model) values of 9̂ ;̂ ^̂  and Q^ when the adjustment model 
was both the cortect one and an incortect one. 

As we already pointed out, if there is no change in the 
population from one wave to the next, and thus no new 
sample is selected in the second wave to represent the 
change, the estimation ofthe median in the second wave can 
only be based on the longitudinal sample. Thus the only 
difference between the two estimators lies in the estimation 
of the low income measure in the first wave. Hence, 
wlog, we consider for our simulation the parameter 
9 = F{MJ2, °o). In that case, 0 coincides with the cross-
sectional low income proportion, and the estimator of 0 
under complete response, 9̂ ,̂ ^̂^ =FQ(MQ/2), is consistent 
(and thus asymptotically unbiased) as N^^^ tends to infinity. 

The simulation study, described in detail in Appendix A, 
consisted in simulating 1,000 samples of size 1,000 from a 
log-normal income population similar to the Canadian 
income population. We first selected a simple random 
sample without replacement (SRSWOR) from a large finite 
population of incomes and then we simulated attrition in that 
sample. Here we call a model missing at random (MAR) if 
the probability of non-response in the second wave is 
constant within response classes; and we call a model of 
attrition missing completely at random (MCAR) if the 
probability of non-response in the second wave is constant 
in the whole population. The attrition was simulated 
following a missing at random model where the non-
response was induced in a low income class. The boundary 
of the low income class was the first quintile of the finite 
population, known apriori. For every sample, wecalculated 0„î j.jj, 
0,„„„ and 0 „ with adjustments under both the cortect 

long cross J 

(MAR) and a MCAR attrition model. The arithmetic mean 
of the estimates approximates the double expectation (with 
respect to the model and the design) of the first two 
estimators and approximates the expectation of Q^^^^^ with 
respect to the design. This last expectation approximates, in 
turn, the parameter 0, since Q„^^ is asymptotically unbiased 
as npgy - OO. When the weight adjustments are calculated 
under the MCAR (incortect) attrition model, the following 
relationship is empirically found: 

\EE {Q . A-Q\>\E E 
I p m ^ mixed-' I \ p n 

.(^long) 61 

where m refers to the simulated attrition model and p refers 
to the design under SRSWOR. Note that attrition from low 
income individuals wiU always bias upwards the estimator of 
the median and thus we will always obtain Q^^.^^^ ^ 0, . 

The somewhat surprising result is that the estimator which 
utilises less information is, in average, nearer the tme 
parameter, meaning that more information, if it is not used 
well, does not improve the estimator. Similarly, when 0̂  is 
the proportion of incomes higher than the income category 

boundary estimated from the sample, and attrition is heavier 
in the lower income categories, we will always have the 
inequality 

0 < 0 
long. mixed.' 

and as with the low income proportion 0, the estimator of 
0̂  using less information is, in average, nearer the tmth. 
The description of the simulation and the numerical results 
are in Appendix A. 

The question now is if the bias caused by model mis
specification is larger than the increase in variance caused 
by the attrition. In sections 5 and 6 we tackle this issue by 
simulating attrition on data from SLID and LAD, calcu
lating 0, given by (3.3), 0^;^^ and 0,̂ ,̂ ,̂ and calculating 
the design variance of the estimators as well. 

4. BOOTSTRAP VARIANCE ESTIMATION 
FOR LONGITUDINAL SAMPLES 

In order to compare the two approaches to estimation we 
need to study them in terms of variance and bias under 
different attrition situations. The estimators Ô ĵ ej and Q^ 
defined in section 3 are nonUnear functions of the obser
vations; in addition, the income data come from complex 
surveys. The variances of these estimators cannot be ex
pressed in simple terms, and we have to rely on approximate 
variance estimation techniques. We seek a method that is 
easy to apply to many different complex parameters, and 
under different designs. We would like to evaluate the two 
estimation approaches for any parameter, using the same 
criteria and a consistent method of variance estimation. We 
concentrate on developing a bootstrap variance estimator 
that can be applied to a stratified multistage longitudinal 
design. It is important to emphasize that only the primary 
sampling units are resampled, not the units within them. 

Kovacevic and Yung (1997) compared several resam
pling methods and the Taylor linearization method for 
variance estimation of cross-sectional estimators of income 
inequality under a complex survey design. They found, by 
means of a simulation study, that the best method (in terms 
of relative bias, coverage properties, stability, robustness 
against assumptions, etc.) is the Taylor linearization method 
via the estimating equation approach, and that the next best 
is the bootstrap method. 

In the calculation of the number of individuals in one 
income class at time 0 and another income class at time 1, 
the units in the longimdinal sample 5̂  are involved, and the 
bootstrap sampUng scheme must ensure the selection of 
units in s^. However, if we are confined only to the 
resampling of units in 5 ,̂ we would not allow enough 
variability for the consistent estimation of the variance of 
the cross-sectional quantile estimators M^ and My 
Therefore, the bootstrap sample should contain as well 
elements from s^Xsy 5̂  and s^Xs^^ at each iteration. 
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We assume a stratified two-stage design, and we assume 
that the primary sampUng units (PSU's) are exactly the same 
at both f=0 and f = l, that is there are no "deaths" or 
"births" of PSU's from one wave to the next. 

This is the case of the first and second waves of SLID. 
The "births" and cohabitants that appear in the second wave 
live in dwellings with individuals who were selected in the 
first wave. Every unit u in s^ or s^ is assigned to a PSU that 
was selected in the first wave: 

if i< 6 jp n Sj, tiien we assign u to the PSU corresponding to 
its original dwelling at time r =0; 

if M 6 s^Xsy then we assign u to the PSU it belonged to at 
t = 0; 

if M e 5, \ 5Q and u Uves with v e Sg fl 5,, then we assign u to 
the PSU of V. 

In this way we reduce the problem to a cross-sectional 
situation. Then we perform the following steps: 

Suppose that the original weights of an individual are 
^hy ^bij' ^hij-

1. We select a simple random sample with replacement 
(SRSWR) of PSU's of size n^-l, independently in each 
stratum. A union of such samples is denoted by s^^. It 
contains a subsample So'boot ^f ""'^^ f™™ •̂o ^^^ ^^ ^^^ 
in 5,, a subsample .̂'̂ oo, of units from s^ that are not in s^ 
and a subsample 5̂ 0̂01 ^^ ""'^^ "̂ hat are in both, s^ and 
Sy 

2. Let m^j be the number of times the hi-th PSU is 
selected; the bootstrap modifications ofthe weights are 

w 
•(0) 

by 
n, - l 

b » 0 
f^hi w^y; 

^by 
(1) 'b .„ • . .1 

w, •a) 
by 

.(1) 

n, - l 

«. - ! 

f^hi ^by' 

r^hi ^hy-

and w (L) are obtained from the The weights w^y «..^ .y^y 
original weights by multiplying by an attrition adjustment 
factor. The adjustment factors are the inverses of the 
response probabilities (assumed different for each response 
class). These probabilities are estimated from the original 
data set. The process of estimation of the response probabi
lities and subsequent adjustment is imitated in the bootstrap 
resampling: for each bootstrap sample s^^^ the adjustments 
are recalculated, to produce new vv̂ y and w^y. 

Then the estimate Q^^y^,^ computed from a bootstrap 
sample s^^ is 

e:.=E <!l'Ay-i-M;i2]i[yi,.M:i2\/Y ^S"-

where 

^r- = inf i)'^ ^ *'boot U L̂boo. IP," (YhiP ^ 1/2} 

and 

;̂o'):= E <'/(y4^3')/E-.J'.' = o,i. 
^iboM ^ ^Lboot 

The estimate 0, computed from ŝ 'boot is 

where the medians M.' are estimated from the longitudinal 
sample j^oof 
3. Repeat steps 1 and 2 a large number of times, say B. A 

Monte Carlo estimate of the variance is obtained as 

^B^^mixed) = T 5 ^ î mfc " ^^ixed) 
B 

and 

where 

^B^^long) =^1^[^lb-^long) ' 

0 mixed B and 0 long EKJP-
By resampling the original PSU's, we reduce the 

problem of variance estimation in a longitudinal survey to 
that of a cross-sectional framework. This is an extension of 
the bootstrap variance estimator developed by Rao and Wu 
(1988) and later Kovacevic and Yung (1997) for variance 
estimation of cross-sectional income inequality measures 
from a stratified multistage sample survey. 

In order to accommodate attrition, we look at the original 
data set as a set of longitudinal records. Then, attrition can 
be viewed as item non-response and accordingly the weight 
adjustment for attrition can be considered as ratio 
imputation (Hajek-ratio). 

Indeed, recaUing that s^ = s^us^, let us denote by ŷ ?̂ * 
{hijesj the ratio-imputed value of wave one information, 
based on the observed data in the longitudinal sample; and 
let us denote by yj,y' {hijesj the ratio-imputed value of 
wave zero information based on the longitudinal sample 
(5^). Note that the values yL- {hijesj are not missing, but 
we need yL to represent the weight adjustment in the 
longitudinal sample. 
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The estimation of 0 with weight adjustments for attrition 
is equivalent to estimation on a "complete" imputed data set 
weighted by wj^'y', {hijes^). The set 

^ mi.e,=\(yS'ylS)'^^es^{yl^,yl^'),hijesJ^, 

is used to calculate Q^^^^ and the set 

2> ,ong=te4^)./«y^^.(yir'>'ir)'''y^^.}' 

RESPONDENTS 

Responded in the first wave 1, 
not in the second 

« = 0 

X 

1) 10% attrition. We select a subsample at random of 
individuals with low income {>' ; , -^MQ/2} at time 
t = 0, and make them non-respondents. In order to 
have 10% of the overall sample missing at time r = 1, 
we convert 50% of low income individuals into non-
respondents in the second wave. 

is used to calculate 0. „„. 
long 

We noted above that adjustment due to attrition is 
equivalent to ratio imputation for item non response. Hence 
the variance estimator proposed here has the same properties 
as the cross-sectional variance estimators for imputed survey 
data: consistency now follows from the consistency of the 
bootstrap variance for imputed survey data (Shao and Sitter 
1996) and good coverage properties and small relative bias, 
as documented by Kovacevic and Yung (1997). In the case 
of small number of PSU's per stratum (SLID has two or 
three PSU's per stratum) Kovar, Rao and Wu (1988) 
showed empirically that the bootstrap variance estimate 
overestimates the tme variance by no more than 10%. 

5. EMPIRICAL STUDY 

In order to compare the two approaches to estimation, we 
now consider two real longitudinal surveys, SLID and LAD, 
and simulate different attrition situations. The study begins 
with a sample of complete respondents in two waves. The 
response pattem of the individuals in this sample can be 
presented as 

RESPONDENTS 1 = 0 t=l 

Responded in both waves 

Here X means that the response is available for the indivi
dual at the cortesponding wave, and 0 means the opposite. 
We omitted "births" and "deatiis" from botii SLID and LAD. 

The respondents in the first wave are divided into two 
response classes, low income class and else. The boundary 
is given by M^ 12, where M^ is the estimate of the median 
income at time t = 0, based on all respondents in the first 
wave. The size of the SLID sample (Ontario) is approxi
mately 10,000, from which 2,000 were low income 
individuals. 

We simulate three different attrition situations. In all of 
them we select a subsample of the complete respondents 
with pattem XX and convert them into the following pattem 

2) 20% attrition. We select 70% of individuals from 
{y"y <. M(/2} and 7.5% from [yly>M^I2} at random 
and convert them into non-respondents at the second 
wave. This results in 20% overall attrition for SLID. 

3) 30% attrition. We select 80% of individuals from 
{y'^y^M^n] and 17.5% from {y'^y>M^I2} at ran
dom and convert them into non-respondents at the 
second wave. This results into 30% attrition for SLID. 

We then consider two different adjustment models for 
each situation: 

Model 1: The non-respondents are missing completely at 
random (MCAR). This model is the worst 
possible model that we might use given that 
attrition is usually experienced by the group of 
low income individuals. 

Model 2: The non-respondents are missing at random 
from the low-income class. We allow for a 
small increase of the upper boundary for the 
low-income class, so that the response classes 
are defined as {y^y<,MQl2 + M^/IO} and 
{yly>MQl2 + MQ/IO}. We assume that this 
model as one of the best possible models under 
our setup, since it recognizes the response 
classes as separated by low income boundaries. 

We chose these two models of adjustment because they 
represent the two extremes. In practice, we may only be 
able to choose a model between these two. 

Let /, denote the low income measure defined as half 
the median: /, = MJ2, t = 0,1. Several longitudinal para
meters were studied. We define some of them in Table 5.1. 
The values of the estimates are presented in Tables B1 to 
B3. The standard ertors were obtained using the bootstrap 
method described in section 4 assuming that the cortespon
ding adjusted weights are known a priori and do not change 
for each bootstrap sample. 
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Table 5.1 
Some Longitudinal Parameters Evaluated 

in the Empirical Study 

Proportions 
The proportion of individuals with income 
(adjusted fainily income) below /, at r = 0,1. 
The proportion of individuals with income 
below /Q at / = 0 and above /,' = (11/10)Z, at 
t = 1; the factor 11/10 is used to be able to 
detect true transitions from one state to the 
other. 

The proportion of individuals with income 
above IQ ={l 1/10)/̂  at / = 0 and below /, at 
t=l. 

The proportion of individuals with income 
above IQ and 
respectively. 
above IQ and /,' at times 0 and 1 

p{yo^k<yi^h^ 

PO'o^'o'J'i^'r) 

PCyo^'o*'>'i^'i) 

pCyo^'o'')'i^'i') 

Conditional Rates 
The probability of an individual having low 
income at the second wave (second year), 
given that he or she had low income in the 
first wave. 

The probability of not having low income at 
the second wave, given that the individual 
had low income at the first wave. 

p(y,s/,|yoS/(,) 

PO'I>VJ)'O^'O) 

6. RESULTS AND DISCUSSION 

The empirical study shows that attrition does affect 
estimates adversely, but different outcomes result depending 
on whether the parameter of interest is cross-sectional or 
longitudinal. In the estimation of later-wave cross-sectional 
parameters, estimators based on the actual longitudinal 
sample are more biased than estimators based on the cross-
sectional sample whether the model of adjustment is sound 
or not, (see for example the estimates of the median att = 0 
in Tables B.1-B.3.) However, in the estimation of 
longitudinal parameters, longitudinal estimators (based 
entirely on the longitudinal sample) are less biased than 
mixed estimators (based on the three samples.) 

Tables 6.1a and 6.1b present gross flows estimated from 
SLID and LAD data, respectively. The estimates are 
calculated with the complete data set and after 20% non-
response is simulated in the second wave. For the complete 
data set the longitudinal and the mixed estimators coincide 
(this is the no-attrition situation). As explained in the 
previous section, 20% of non-response was simulated by 
eUminating 70% ofthe responses from individuals who were 
low-income and 7.5% of individuals with income higher than 
/Q in the first wave. The adjustment for non-response was 
done assuming that the individuals were missing completely 
at random. 

The appUed adjustment model means that the original 
survey weights were adjusted with a factor of 1.25 
(representing 20% attrition) across the sample, whereas the 
cortect adjustment should have been with a factor of 3.33 

(representing 70% attrition) in the domain of individuals 
who were low income in the first wave (1993), and with a 
factor of 1.08 (representing 7.5% attrition) in the domain of 
individuals who had an income higher than the LIM in 
1993. Thus, by adjusting with an incortect model, we incur 
in a much greater ertor in the estimation of one domain 
{y^ <. M(,/2) than in the estimation ofthe other (y^> MJ2). 

We see from these tables that both the mixed and 
longitudinal estimates seriously underestimate the para
meter of interest in the first column and overestimate it in 
the second colunih, assuming that estimation based on the 
complete data set results in reasonable and acceptably good 
estimates. It is obvious that the mixed estimates are more 
affected by the wrong adjustment, verifying the inequality 
stated in section 3. 

Table 6.1 
Gross Flows Estimated From SLID and LAD 20% Attrition 

(70% ofthe Low Income Missing) 

a. SLID, Ontario 

1994 
1993 

y„.M„/2 y>M,l2 

y,sM,/2 

y,>l . lM,/2 

1,602,000 

425,000 

710,000 

70,000 

15,000 

30,000 

113,000 

152,000 

125,700 

8,080,000 

8,975,000 

8,870,000 

No attrition 

Mixed 

Longitudinal 

No attrition 

Mixed 

Longitudinal 

b. LAD, Sub-Area from Toronto 

1992 
1991 

yo^M,l2 y>l.lM,l2 

y ,sM, /2 

y ,> l . lM, /2 

2,700 

1,100 

1,500 

580 

190 

380 

640 

800 

740 

10,420 

12,150 

11,650 

No attrition 

Mixed 

Longitudinal 

No attrition 

Mixed 

Longitudinal 

Tables B.l to B.3, given in Appendix B, show the results 
for SLID at three different attrition levels: 10%, 20% and 
30%. For each parameter the estimates and their corte
sponding bootstrap standard ertors were calculated using 
both the longitudinal and mixed estimators. First, we 
calculated them for the ideal longitudinal "no attrition" 
sample, and then for the reduced sample adjusted under the 
two non-response models described in section 5. We 
provide the estimate of the model bias as the difference A 
between the estimate obtained under the model and the "no 
attrition" estimate. 

The numbers in Tables B.l to B.3 repeat the same 
pattem that was shown for gross flows in Tables 6.1a and 
6.1b, Le., the estimates obtained using the longitudinal 
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estimators are "less sensitive" to a choice of the non-re
sponse adjustment model. At the same time, there is almost 
no difference between the corresponding standard errors 
(given in parentheses). Overall, we found that the estimates 
ofthe standard errors of Q^^^^^^ are sUghtiy smaUer tiian for Q^ , 
and that this negligible difference in favour of Ô ĵ gj is not 
enough to compensate for the larger bias affecting 0^1^^ ,̂ 
induced by the wrong adjustment for non-response. 

There is no difference between Ô î gd and Q^ when the 
second (best) adjustment for non-response is used. This is 
tine for most parameters except for the conditional rates: for 
example, in Table B.l (10% attrition) the empirical bias of 
the mixed estimate of the conditional rate of remaining low 
income in 1994 was found statistically significant, whereas 
the empirical biases of the longitudinal estimates of the two 
conditional rates were found non-significant (see Appendix 
C). Of course the "perfect" model for adjustment (not shown 
here) yields exactly the same numbers from the two 
estimation methods, and Q^^,^^^ is approximately equal to 
l̂ons ̂ ^^ ^ y parameter considered, but their variances differ. 

We introduce a single "sensitivity measure" that com
bines information on sampling standard error and model bias 
caused by the applied attrition adjustment model: 

5(0 mixed ) = 
\ 

Cxed-9o)'^s.e.^(0^,,,J 

s.e.\%) 
(6.1) 

^A 
Here, 0Q and 9̂^̂;,̂ ^̂ , (A = MCAR or MAR) denote estimates 
obtained under "no attrition" and under an attrition adjust
ment model respectively, and s.e.(.) stands for the standard 
ertor due to sampUng. Similarly, we define 5(9, ). If an 
attrition adjustment does not change by much the value of an 
estimator and its standard ertor (compared with the estimate 
obtained using another attrition adjustment), we say that the 
estimator is relatively insensitive to the applied attrition 
model. The ratios ofthe two sensitivity measures of the two 
applied adjustment models are defined by 

ratio mixed 

/sMCAR 
\ mixed )/4'rJl and 

ratio, long (cr)/»(i SMAR) 
long /• (6.2) 

Values of the ratio for different attrition scenarios are 
presented in Charts B.l-B.3 in Appendix B. 

From Charts B.1-B.3 it is evident that the ratio of the 
sensitivity measures (6.2) is systematically lower for the 
longitudinal estimator. This further means that the sensitivity 
measure of longitudinal estimator under applied adjustment 
models are more alike than those of the mixed estimator. The 
longitudinal estimator seems to be more insensitive on the 
appUed adjustment models. We refer to this as "robustness". 
Regarding the simulated attrition rates, the charts show that 
as the attrition rate increases the sensitivity measures ratio 
approaches 1. This means that both models of adjustment 
perform alike for higher attrition rates, and then the choice 

of the estimators becomes more important than the model 
used in the adjustments. 

We summarize our findings as following 

1) In the estimation of later wave cross-sectional 
parameters, estimators based on the actual longitudinal 
sample are more biased than estimators based on the 
cross-sectional sample. 

2) In the estimation of longitudinal parameters, both the 
mixed and longitudinal estimators are considerably 
biased if the wrong model of attrition adjustment is 
used. 

3) The longitudinal estimator is more robust against the 
inappropriate adjustment for attrition than the mixed 
estimator. Under the perfect adjustment model, these 
two estimators perform alike. 

4) In general, the sampling variance of the mixed 
estimator is smaller than the variance of the longitu
dinal estimator. This relationship remains steady over 
different attrition rates and different adjustment 
models. 

5) For the mixed estimators, the magnitude of the bias 
coming from inappropriate non-response adjustments 
overshadows the small gain in precision when 
compared to the longitudinal estimates. 

6) Different models of adjustment perform alike for 
higher attrition rates. In this case the choice of the 
estimator is more important than the efforts at model 
improvement. 
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APPENDIX A 

Description of Simulation for Section 3. 

The simulation consisted of the following steps. 

1. Let X be a log-normal random variable, X~ exp {N 
(p = 10.3,02=0.64)}. These parameters cortespond 
to a median similar to that of the SLID estimate for 
1992, and a spread similar to that of the Canadian 
population. The low income boundary was set to the 
first quintile of the income population. The first 
quintile 9, was estimated from a simulated sample of 
size 50,000. The value obtained was ^i =14,901. 

2. From this infinite population, 1,000 independent 
random samples of size 1,000 were selected. 

3. To simulate attiition, from each sample, 50% of the 
units with income below g, were selected at random 
and dropped from the sample for the calculations 
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4. 

5. 

pertinent to the second wave. Thus 10% attrition from 
the low income class was simulated (MAR model). 
For each sample i, the low income proportion estimators 
^mixed(') ^"d ©longC') ^̂ ""6 estimated with weights 
adjusted under both the cortect attrition model (MAR) 
and under the incorrect assumption of units missing 
completely at random (MCAR). 

Also, for each sample i, we calculated the cross-sec
tional estimator under complete response, ^^^^^^{i), 
which is entirely based on the sample before attrition. 

For each type of adjustment, the expectation with 
respect to design and the attrition model of 0 mixed' 0 long 

and Q^^^^^ was estimated by their respective arithmetic 
means over 1,000 samples with the incortect adjustment, 
and over 539 samples for the cortect adjustment. 

Result of the Simulation 

The next two tables show that under the incorrect specifi
cation, the longitudinal estimator has less bias than the 
mixed estimator, and under the cortect specification for the 
adjustment, both estimators are unbiased (with respect to the 
model and the design). 

The arithmetic mean of 0„„„ over the 1,000 different 
cross ' 

values was 0.193, and the standard deviation of the 1,000 

values was 0.012. This implies that for a SRSWOR sample 
of size 1,000, the estimate Q^^^^^ is quite stable and its 
expectation can be used as surtogate for 0. The expected 
values of Q^^^^^ and 0, are estimated by 0.109 and 0.145, 
with standard deviations of 0.011 and 0.013 respectively. 

Expected Values Under Mis-Specification 
of the Adjustment Model 

Estimator 

mixed 

long 

e 
cross 

Expected 
value 

0.109 

0.145 

0.193 

Standard 
deviation 

0.011 

0.013 

0.012 

Number of 
samples 

1,000 

1,000 

1,000 

Expected Values Under the Correct Adjustment 
ofthe Attrition Model 

Estimator 

mixed 

long 

e 
cross 

Expected 
value 

0.193 

0.193 

0.194 

Standard 
deviation 

0.016 

0.014 

0.012 

Number of 
samples 

539 

539 

539 

We see from the table above that both estimators approx
imate the tme value of the parameter if the adjustment 
model is correct. 

APPENDIX B 
Table B.l 

Estimates of Different Population Characteristics and Their Standard Errors Obtained From 
the Complete Data Set and Under 10% Attrition in the Second Wave 

Parameter Type of Estimator No Attrition 

e s.e. e 

Attrition Adjustment Model 
MCAR 

s.e. A e 
MAR 
s.e. A 

Quantiles 

Afg (median, t=0) 

Af, (median, r=l) 

M 
L 
M 
L 

29,300 
29,300 
28,600 
28,600 

(1,000) 
(1,000) 
(1,100) 
(1,000) 

29,300 
30,900 
30,400 
30,400 

(1,000) 
(1,000) 
(900) 

(1,000) 

0 
-1,600 
-1,800 
-1,800 

29,300 
29,300 
28,600 
28,600 

(1,100) 
(1,200) 
(1,100) 
(1,200) 

0 
0 
0 
0 

Proportions 

PCyo^'o-yi^'i) 

P(yo^'o'>'i^'i ') 

pCyo^'o'.yi^'i) 

P(>o^C>'i^'i ') 

M 
L 
M 
L 
M 
L 
M 
L 

0.156 
0.156 
0.007 
0.007 
0.011 
0.011 
0.790 
0.790 

(0.010) 
(0.010) 
(0.002) 
(0.002) 
(0.002) 
(0.002) 
(0.040) 
(0.040) 

0.092 
0.111 
0.003 
0.004 
0.013 
0.011 
0.840 
0.831 

(0.008) 
(0.008) 
(0.001) 
(0.001) 
(0.003) 
(0.003) 
(0.040) 
(0.042) 

0.064 
0.045 
0.004 
0.003 
-0.002 
0.000 
-0.050 
-0.041 

0.124 
0.124 
0.005 
0.005 
0.012 
0.012 
0.804 
0.804 

(0.009) 
(0.009) 
(0.002) 
(0.002) 
(0.002) 
(0.002) 
(0.042) 
(0.043) 

0.032 
0.032 
0.002 
0.002 
0.001 
-0.001 
-0.005 
-0.005 

Conditional Rates 

/'()'i^M>'o^'o) 

p{yi>K\yo^k) 

M 
L 
M 
L 

0.923 
0.923 
0.040 
0.040 

(0.023) 
(0.023) 
(0.010) 
(0.010) 

0.546 
0.926 
0.018 
0.036 

(0.025) 
(0.030) 
(0.006) 
(0.010) 

0.377 
-0.003 
0.022 
0.004 

0.734 
0.921 
0.030 
0.038 

(0.033) 
(0.031) 
(0.009) 
(0.012) 

0.189 
0.002 
0.010 
0.002 

/,' = (11/10)/,.; /,.* is used to identify true transitions from one wave to the next. 
M denotes Mixed (6) and L denotes Longitudinal (0) estimates. 

9 is the estimate, s.e. denotes the standard error ofthe estimate, and A is the difference between the corresponding estimates 
obtained using the attrition adjustment model and assuming no attrition. 
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Table B.2 
Estimates of Different Population Characteristics and Their Standard Errors Obtained From 

the Complete Data Set and Under 20% Attrition in the Second Wave 

Parameter Type of Estimator 
No Attrition 

e s.e. e 

Attrition Adjustment Model 
MCAR 

s.e. A e 
MAR 
s.e. A 

Quantiles 
MQ (median, r=0) 

M^ (median, t = 1) 

M 

L 

M 

L 

29,300 

29,300 

28,600 

28,600 

(1,000) 

(1,000) 

(1,100) 

(1,000) 

29,300 

31,800 

31,100 
31,100 

(1,000) 

(1,100) 

(800) 

(900) 

0 

-2500 

-2500 

-2500 

29,300 

29,300 

28,600 

28,600 

(1,000) 

(1,000) 

(1,000) 

(1,000) 

0 

0 

0 
0 

Proportions 

p{yo^'o'yi^'0 

p{yo^k'yi^K) 

/ ' (>'o^'o 'J ' i^ ' i) 

/ ' ( y o ^ C ^ i ^ ' i * ) 

M 

L 

M 

L 

M 

L 

M 

L 

0.156 

0.156 

0.007 

0.007 

0.011 

0.011 

0.790 

0.790 

(0.010) 

(0.010) 

(0.002) 

(0.002) 

(0.002) 

(0.002) 

(0.040) 

(0.040) 

0.055 

0.080 

0.001 

0.003 

0.014 

0.012 
0.864 

0.855 

(0.008) 

(0.006) 

(0.001) 

(0.001) 

(0.003) 

(0.002) 
(0.041) 

(0.042) 

0.101 

0.076 

0.006 

0.004 

-0.003 

-0.002 

-0.074 

-0.065 

0.096 

0.096 
0.004 

0.004 

0.012 

0.012 

0.820 

0.820 

(0.012) 

(0.013) 

(0.002) 

(0.002) 

(0.002) 

(0.002) 

(0.049) 

(0.048) 

0.060 

0.060 

0.003 

0.003 

-0.001 

-0.001 
-0.030 

-0.030 
Conditional Rates 

/7(y, i / J y o S / o ) 

/'(>'i>'ri>'o^'o) 

M 

L 

M 

L 

0.923 

0.923 

0.040 

0.040 

(0.023) 

(0.023) 

(0.010) 

(0.010) 

0.323 

0.914 

0.007 

0.030 

(0.051) 

(0.040) 

(0.005) 

(0.012) 

0.600 

0.009 

0.033 

0.010 

0.570 

0.928 

0.026 

0.042 

(0.057) 

(0.058) 

(0.010) 

(0.014) 

0.353 

-0.005 

0.014 

-0.002 

Table B.3 
Estimates of Different Population Characteristics and Their Standard Errors Obtained From 

the Complete Data Set and Under 30% Attrition in the Second Wave 

Parameter Type of Estimator No Attrition 

e s.e. e 
MCAR 

s.e. 

Attrition. 

A 

Adjustment 

9 
MAR 
s.e. A 

Quantiles 

MQ (median, t = 

A/j (median, t = 

^0) 

^1) 

M 

L 

M 

L 

29,300 

29,300 

28,600 

28,600 

(1,000) 

(1,000) 

(1,100) 

(1,000) 

29,300 

32,000 

31,200 

31,300 

(1,000) 

(900) 

(800) 

(900) 

0 

-2,700 

-2,600 

-2,700 

29,300 

29,300 

28,600 

28,600 

(1,000) 

(1,000) 

(1,000) 

(1,100) 

0 

0 

0 

0 

Proportions 

P(yo^lo'yi^' 

/'(>'o^'o'>'i^'i 

piyo^io^yi^i 

p{yo^K'yi^h 

.) 

' ) 

.) 

,') 

M 

L 

M 

L 

M 

L 

M 

L 

0.156 

0.156 

0.007 

0.007 

0.011 

0.011 

0.790 

0.790 

(0.01) 

(0.01) 

(0.002) 

(0.002) 

(0.002) 

(0.002) 

(0.04) 

(0.04) 

0.04 

0.07 

0.001 

0.003 

0.015 

0.012 

0.874 

0.864 

(0.011) 

(0.006) 

(0.001) 

(0.001) 

(0.003) 

(0.003) 

(0.037) 

(0.038) 

0.116 

0.086 

0.006 

0.004 

-0.005 

-0.001 

-0.084 

-0.074 

0.080 

0.080 

0.004 

0.004 

0.013 

0.013 

0.829 

0.828 

(0.014) 

(0.016) 

(0.002) 

(0.002) 

(0.002) 

(0.002) 

(0.049) 

(0.051) 

0.076 

0.076 

0.003 

0.003 

-0.002 

-0.002 

-0.039 

-0.038 

Conditional Rates 

p{y\^h l > ' o ^ ' 

p{yi>K l ^o^ ' 

'o) 

'o) 

M 

L 

M 

L 

0.923 

0.923 

0.040 

0.040 

(0.023) 

(0.023) 

(0.010) 

(0.010) 

0.245 

0.885 

0.008 

0.037 

(0.045) 

(0.045) 

(0.006) 

(0.016) 

0.678 

0.038 

0.032 

0.003 

0.465 

0.930 

0.022 

0.044 

(0.071) 

(0.099) 

(0.012) 

(0.017) 

0.458 

-0.007 

0.018 

-0.004 
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Charts B 
Sensitivity Measures Ratio of the Mixed and Longitudinal Estimators 
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APPENDIX C 

We found the empirical bias of the mixed estimates 
(under a MAR adjustment model) of tiie conditional rate of 
remaining low income in 1994 given that the individual was 
low income in 1993, statistically significant when 
performing a conservative test of the form 

(% - ê ixed) / ^ar(0^i,^,) + var(0o). 

We found the empirical bias of the mixed estimates of 
the conditional rate of having an income higher than the 
LIM in 1994 given that the individual'was low income in 
1993, (under a MAR adjustment model) non-significant 
when performing a "radical" test of the form 

\% "^mixed) / S-e.(0n,i,,d). 

Similarly, we found the empirical bias ofthe longitudinal 
estimates (under a MAR adjustment model) of both 
conditional rates, non-significant when performing the 
same type of "radical" test as above, Le., when assuming 
that the estimate under no attrition is non-stochastic. 

These results hold for 10%, 20% and 30% attrition rates. 
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Utilising Longitudinally Linked Data from 
the British Labour Force Survey 

PAM F. TATE' 

ABSTRACT 

The British Labour Force Survey (LFS) uses a rotating sample design, with each sample household retained for five 
consecutive quarters. Linking together the information on the same persons across quarters produces a potentially very rich 
source of longitudinal data. There are however serious risks of distortion in the results from such longitudinal linking, 
mainly arising from sample attrition, and from response errors, which can produce spurious flows between economic activity 
states. This paper describes the initial results of investigations by the Office for National Statistics (ONS) into the nature 
and extent of the problems. 

KEY WORDS: Longitudinal data; Labour Force Survey; Economic activity; Attrition bias; Response error. 

1. INTRODUCTION 

The British Labour Force Survey (LFS) is a household 
survey, gathering information on a wide range of labour 
force characteristics and related topics. Since 1992 it has 
been conducted on a quarterly basis, with each sample 
household retained for five consecutive quarters, and a fifth 
of the sample replaced each quarter. 

The survey is designed to produce cross-sectional data, 
but in recent years it has been recognised that linking 
together data on each individual across quarters could 
produce a rich source of longitudinal data, the uses of 
which include estimation of labour force gross flows. 

The process of linking information on the same individ
ual from different quarters in the LFS is relatively straight
forward. However, there are methodological problems 
which pose serious risks of distortion in the results from this 
new, hitherto untested use of LFS data. Similar problems 
have been identified in other countries' labour force 
surveys, but there are as yet no generally accepted methods 
of dealing with them. The Office for National Statistics 
(ONS) has therefore undertaken a programme of work to 
address this issue. 

This paper describes the results so far of investigations 
into the nature and extent of tiie problems, and the proposed 
methods of dealing with them. The issues fall into two main 
groups: biases arising from sample attrition and related 
factors; and biases arising from response ertors, particularly 
their effects in producing spurious flows between economic 
activity states. These are considered in turn. 

2. SAMPLE ATTRITION AND ITS BIASING 
EFFECTS 

Some sample members are lost at the initial stage, 
because of nonresponse in the first interview, either because 
it has not been possible for them to be contacted during the 

narrow time window available, or because they have 
refused to be interviewed. After that, further sample 
members are lost from each successive quarterly interview 
round, either because they have moved house (the basic 
sampling unit for this survey being the dwelling), or 
because it proves impossible to contact them or they refuse 
to continue. All these groups of people are, in different 
ways, atypical of the population as a whole, so their loss 
from the sample can introduce biases. 

Some of these biases are compensated for in the course 
of applying the normal LFS weighting procedure, which 
produces population level estimates which are consistent 
with census-based control totals by sex, age group and 
region. This process wiU compensate for biases arising, at all 
stages ofthe survey, from differential attrition by sex, age and 
region. However, biases in other characteristics which are not 
themselves used in the weighting procedure will not be 
compensated for (and may even be increased) in that process, 
except when they are related to age, sex or region, in such a 
way that the bias is caused entirely by the under- or over-
representation of particular age, sex or region categories. 

Work on this subject therefore looked first at what 
characteristics are more or less represented in the LFS 
sample than the whole population, and in different waves of 
the LFS sample. (Each quarter, the sample is made up of 
five waves, the people in the first wave having their first 
interview, those in the second wave their second interview, 
and so on.) It then examined whether and to what extent 
these characteristics are related to each other, and whether 
it is possible to define a set of variables which characterise 
those people who are likely to be under-represented. 

3. CHARACTERISTICS OF 
NON-RESPONDENTS 

Analysis ofthe proportions which could not be linked to 
the next quarter, by wave, for key demographic and 

Pam F. Tate, Office for National Statistics, Room RG/11, 1 Drummond Gate, I.x)ndon SWIV 2QQ, United Kingdom. 
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economic variables (Table I gives an illustration for broad 
age/sex groups), showed that, consistently across all waves, 
there is a greater propensity to be under-represented for 
young people aged 18 to 29 (and especially 18 to 24), single 
people, those living in London, people in rented accommo
dation (especially privately rented), the unemployed, and 
those in temporary employment. Most of tiiese characteris
tics have also been found (by Foster (1994) in a study which 
linked data from the 1991 Census with non-responding LFS 
sample households) to be associated with high non response 
at the first interview, particularly young adults, single 
people, one person households, and those Uving in London. 

Table 1 
Percentage of Unlinked Cases by 

Sex and Age Group by Wave 

Variable & 
category 

All persons 

AGE & SEX 

Male 

15-17 

18-29 

30-44 

45-64 

Female 

15-17 

18-29 

30-44 

45-59 

Unlinked 
Wavel 

8.6 

8.6 

6.8 

13.8 

6.8 

7.2 

8.7 

5.9 

13.9 

6.3 

7.5 

percentage 
Wave 4 

4.8 

4.9 

4.9 

10.2 

4.1 

2.5 

4.7 

3.0 

10.9 

2.8 

2.2 

Note: More detailed analyses are available from the author. 

Several of the characteristics of those who are lost to the 
sample appear likely to be related, and this was investigated 
in the first instance using logistic regression. The variables 
identified as being independently associated with whether 
the cases were lost from the sample, were found to be 
largely consistent for the four waves. In each case they 
included age group, marital status, tenure, {Le. whether the 
accommodation was owned, rented from a private landlord, 
or rented from a local authority or housing association), 
quaUfication level, and a combined economic activity 
variable incorporating broad economic activity (employed, 
unemployed or inactive), and, for the employed, employ
ment status, part-time/full-time and temporary/permanent. 
Region was found to be independently associated in only 
two of the four waves, and sex in none. 

For the five variables consistently appearing for all 
waves, there was a good degree of consistency conceming 
which categories were associated with sample attrition. 
Table 2 gives the multiplying factors for the odds ratio for 
aU categories with a consistent association with increasing 
attrition. Being in the younger age groups, between 18 and 

29 (and especially 18 to 24), has a particularly strong effect, 
as does being in privately rented accommodation. Being 
single {Le., never married and not cohabiting) has a 
moderate association. There are no consistent associations 
with particular categories of economic activity or qualifica
tion level, except for a slight one with full-time, temporary 
employees. The effect of region is not consistent even for 
the two waves in which it appears. 

Table 2 
Multiplying Factors for Odds Ratios -

Categories Associated with High Attrition 

Multiplying factor for odds ratio 

Variable Category Wave 1 Wave 2 Wave 3 Wave 4 

AgeGroup 18-19 1.89 2.56 2.86 1.92 

20-24 1.79 2.08 2.10 2.83 

25-29 1.17 1.30 1.44 1.55 

Tenure Privately 2.12 1.52 1.86 2.29 
rented 

Marital 
Status Single 1.25 (1.12) 1.27 1.49 

Economic Employee, 
activity/ fiiUtime, (1.12) (1.36) (1.13) 1.75 
status temp 

Note: () indicates coefficient is not significant at 5% level. 

The logistic regression analysis performed did not allow 
for interactions between the variables, and to investigate 
this possibility a further analysis was performed, using the 
CHAID module of SPSS to produce a segmentation of the 
data set into groups which have as great a variation as 
possible with respect to the proportion of unlinked cases. 
The results of this were however very similar to those of the 
logistic regression analysis. Overall, the main characteris
tics independently associated with a high proportion of 
sample loss were the younger adult age groups (18 to 29, 
especially 18 to 24) and living in privately rented accommo
dation, with some relatively minor additional effects of 
being in temporary employment for the youngest age 
groups. Separate analyses of the characteristics of those 
sample members who had been lost through moving away, 
and those lost through non-contact (or, more rarely, refusal) 
produced similar results. 

4. COMPENSATING FOR ATTRITION BIAS 

The analysis so far has been directed at the biasing effect 
of sample attrition on the cross-sectional characteristics of 
the longitudinal sample, and has identified the charac
teristics independently associated with greater nonresponse. 
A possible approach to compensating for the bias arising 
from this is to incorporate tenure as well as age into the 
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weighting procedure for the longitudinal data. This is being 
explored, using a calibration approach with CALMAR 
software, and including prior weights derived from the 
work described above to compensate for differential 
nonresponse by tenure. 

However, there may be a problem which would limit the 
effectiveness of this approach. The propensity to not 
respond may be directly dependent on the unobserved 
labour force status of the individual, and possibly independ
entiy of their observed characteristics. Nonresponse of this 
kind is an example of non-ignorable nonresponse (Rubin 
1976), and its presence would imply that estimates of the 
important measures of labour force gross flows would be 
biased even after the application of a weighting process of 
the type being explored. 

There are two indirect approaches which give some 
indication of whether non-ignorable nonresponse might be 
a problem for longitudinal LFS data. One is to investigate 
whether the proportion of the gross flows in the sample 
which are transitions between different economic activity 
states systematically decrease (or increase) from wave 1-2 
to wave 4-5; if so, this would suggest that people changing 
from one state to another are more (or less) likely to be 
nonrespondents than those in a stable state. However, 
Table 3 shows that there is no consistent systematic pattem 
across waves - though this does not exclude the possibility 
of other patterns of differential nonresponse by labour force 
flows category. 

Table 3 
Percentage of Transitions Between Different Economic 
Activity States by Wave for Pairs of Adjacent Quarters 

Percentages 

Data Set wave Wave Wave Wave 
1-2 2-3 3-4 4-5 

Summer/autumn 1995 

Autumn 1995/ 
winter 1995-1996 

Summer/autumn 1996 

Autumn 1996/ 
winter 1996-1997 

Another possibility is that people moving addresses (and 
thereby lost to the LFS sample) may have a different pattem 
of labour force flows than the rest of the population. We do 
not have any information on the people who have moved 
away, but we do know something about the people who 
have moved into the sample addresses from elsewhere. 
These movers-in can reasonably be taken to represent the 
movers-out, since they are equaUy samples from the same 
population of movers (ignoring the possible effects of the 
smaU proportion of intemational moves). Table 4 shows 
the distribution of the linked sample (all adults whose 
records were able to be matched) and of the identifiable 

8.0 

7.2 

7.6 

6.8 

7.3 

6.7 

7.0 

6.5 

7.3 

6.5 

7.3 

6.2 

7.1 

6.5 

7.5 

6.5 

movers-in for a pair of adjacent quarters in 1995. (It should 
however be noted that the fiows categories are not strictly 
comparable, since the previous economic activity state for 
the movers-in is obtained by retrospective reporting.) It is 
clear that the sample of movers does differ, with a lower 
proportion in stable inactivity, and a higher proportion in all 
the other flows categories, and in particular a greater 
proportion of people changing their economic activity state; 
but that the movers make up such a smaU proportion overall 
that the effect on the whole sample is negligible. 

Table 4 
Gross Flows for Movers - in Compared with Linked Sample 

Activity states 

EE 

EU 

EN 

UE 

UU 

UN 

NE 

NU 

NN 

All transitions 

TOTAL (no.) 

Linked sample 
(%) 

55.1 

0.8 

1.1 

1.0 

2.9 

0.7 

1.2 

1.0 

36.2 

5.9 

80,664 

Movers-in 
(%) 

56.9 

1.5 

1.6 

1.7 

6.5 

1.1 

2.5 

2.3 

26.0 

10.6 

1,790 

Linked + movers 
(%) 

55.1 

0.8 

1.1 

1.0 

3.0 

0.7 

1.3 

1.1 

35.9 

6.0 

82,454 

Note: E represents in employment 
U represents ILO unemployed 
N represents economically inactive 

hence EE represents in employment at both quarters 
EU represents in employment then ILO unemployed etc. 

These indirect approaches do not indicate any very 
strong effect of non-ignorable nonresponse, but they do not 
mle it out. This possibility is therefore being investigated 
by work involving the modelling of nonresponse in the 
LFS. 

5. RESPONSE ERROR AND ITS BIASING 
EFFECTS 

AU surveys in general, and household surveys in particu
lar, are subject to response ertor, when the information 
given by the respondent is not an accurate reflection of the 
actuality. This may occur for a variety of reasons - the 
respondent may misunderstand the question; the interviewer 
may misunderstand or misrecord the response; the respon
dent may not know or remember the cortecl;̂  answer; or the 
respondent may knowingly give an incortect answer for 
reasons of embartassment, prestige, fear 'of breach of 
confidentiality or a wish to give the "expected" answer. 
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In the field of labour force surveys it has generally been 
found (for an overview see Lemaitre 1994) that, for 
cross-sectional data, there is no particular tendency for the 
errors to be systematic, so that on average they tend to 
cancel out. However, for longitudinal data produced by 
linking together data collected on the same person at 
different points in time, this cancellation may not occur. 

In particular, this is likely to be the case for data on gross 
flows between economic activity states. The numbers of 
people who move from one state (in employment, unem
ployed, economically inactive) to another during the relati
vely short period usually considered (a month, a quarter, or 
perhaps a year) are small compared with the numbers of 
people who remain in the same state. A response ertor at 
one point of time is much more likely to lead to an apparent 
change of state when the tme situation is one of stability, 
than the reverse. Thus response ertors are likely to have a 
very disproportionate effect in upwardly biasing flows 
between reported states. In the LFS, they may arise from 
the use of proxy respondents, where one person answers 
questions on behalf of someone else in the same household; 
and from respondent errors. We will consider these in tum. 

6. THE EFFECT OF PROXY RESPONDENTS 

To investigate the effect of proxy respondents, we need 
to look at the distribution of activity states at the two 
quarters according to whether the first quarter's interview 
was in person or by proxy, and whether the second quarter's 
interview was in person or by proxy. Very young adults 
under 20 are both exceptionally likely to be represented by 
proxies and also likely to be particularly volatile in terms of 
their economic activity category, and so may distort any 
relationship between these two factors. Table 5 therefore 
shows the distribution of activity states at the two quarters, 
for men aged 20 to 64 and women aged 20 to 59. There is 
a higher proportion of transitions for personal followed by 
proxy interviews than for personal at both quarters, but 
proxy followed by personal interviews show only a very 
slightly higher proportion than personal at both quarters. 
Thus switching between proxy and personal interviews 
does not show a consistently greater proportion of 
transitions. Cases with both interviews by proxy have the 
lowest proportion of transitions of all, and the inclusion of 
these brings the overall proportion to a level consistent with 
that for personal interviews at both quarters. Thus there do 
appear to be differences between the various combinations 
of interview types, which merit further investigation, but in 
the LFS the use of proxy respondents does not of itself 
produce an exaggerated estimate of gross flows. 

Table 5 
Percentage of Transitions by Interview Type 

Interview 
type 

Personal/ 
personal 

Personal/ 
proxy 

Proxy/ 
personal 

Proxy/ 
proxy 

All 

Men (20-64) 
Sample no. 

14,527 

2,044 

2,214 

8,602 

27,387 

% trans. 

5.2 

7.0 

5.4 

4.7 

5.2 

Women (20-59) 
Sample no. 

19,582 

1,597 

1,632 

4,206 

27,017 

% trans. 

7.3 

8.3 

7.6 

5.4 

7.1 

7. RESPONDENT ERRORS 

By their nature, respondent ertors are impossible to 
identify directly, (except perhaps by re-interview, and even 
then there may be doubt about what is the correct answer). 
It is however sometimes possible to identify intemal incon
sistencies in the survey data, which may indicate response 
ertor. In the LFS, respondents who are in employment, and 
respondents who are unemployed, are asked how long they 
have been in that state. If the period is greater than three 
months, but they stated in the previous quarter that they 
were in a different state, there is an inconsistency which 
may indicate a false transition between economic activity 
states. 

Table 6 shows the percentage of inconsistencies for 
various kinds of transitions - these are high throughout. 
Transitions from economic inactivity produce the highest 
percentages, especially when the transition is into unem
ployment. (There are no large or consistent differences 
between the different subcategories of the inactive.) Sepa
rating those in employment into part-time and full-time 
shows that there is a consistent pattem of a greater 
proportion of inconsistencies for part time employment, and 
similar but less pronounced results were found for the 
self-employed. 

Table 6 
Percentage of Inconsistencies by Transition Type 

Percentage of inconsistencies 
Transition Type All Fulltime Part time 

(%) (%) (%) 
Unempl. to Employment 8.7 
Inactive to Employment 26.2 
Employment to Unemployment 18.7 
Inactive to Unemployment 49.5 
All 23.9 

7.8 

18.1 

14.7 

12.2 

30.4 

23.3 
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It is possible that the inconsistencies may have arisen 
through ertors in the reported length of time in the econo
mic activity state at the second quarter, rather than in the 
initial state at the first quarter. The distribution of the length 
of time does not however show heaping at around four to 
five months (as would be expected in the case of ertors in 
the duration data). Also, the duration data reported in 
consecutive quarters for people in a stable state were found 
to be very consistent. These findings tend to suggest, 
though the evidence is indirect and by no means conclusive, 
that the ertors are more likely to be in the reporting of 
economic activity at one or other of the interviews. This is 
not the only possibility - for example, it may be that some 
respondents have correct transition data, but incorrect 
duration data through using an interpretation of their past 
economic activity which is not consistent with the standard 
definitions applied to the reporting of their curtent state -
but the findings so far suggest that it is likely to be the most 
common. 

Some light on which of the inconsistent categories is 
cortect may emerge by looking at the pattem of responses 
over three interviews. Table 7 shows the proportions of 
each group of inconsistent transitions from one quarter to 
the next which are followed by each economic activity 
category in the third quarter. (All relevant waves are 
combined in order to obtain reasonable sample sizes.) It is 
clear that of the transitions into eiriployment in the second 
quarter, the great majority remain in that category in the 
third quarter. The transitions^into unemployment show a 
much more mixed pattem, with a little over half remaining 
in unemployment, but a substantial group of about 30 to 40 
per cent reverting to the state reported in the first quarter. 
It is noteworthy that scarcely any of the transitions from the 
second to the third quarter for this group were found to have 
a repeated inconsistency between the transition and the 
reported duration data. The results so far suggest that, in 
the case of an inconsistent transition into employment, that 
is likely to be the correct state, but more investigation is 
needed to achieve further clarification. 

Table 7 
Percentages of Inconsistent Transitions 

by Economic Activity at Following Quarter 

Transition Total Activity state in next quarter 
type inconsis- Employed Unempl. Inactive 

tent (%) (%) (%) 

Unempl. to 
Employment 

Inactive to 
Employment 

Employment 
to Unempl. 

Inactive to 
Unempl. 

60 

159 

87 

229 

90 

79 

39 

17 

7 

4 

53 

55 

3 

17 

8 

28 

8. ADJUSTING FOR RESPONSE ERROR BIAS 

It is clear from the above that there is likely to be a 
substantial level of response ertor affecting the raw data on 
gross flows. Work on adjusting for such ertors has so far 
been largely confined to the USA and Canada. A review of 
three methods proposed for USA data is given by Haim and 
Hogue (1985), and a later proposal for Canadian data is 
given in Singh and Rao (1995), but to date, to the author's 
knowledge no official adjusted gross flows data are being 
published, though several countries are publishing unad
justed data while drawing attention to their Umitations. The 
adjustment methods so far proposed all rely on assumptions 
about the nature of the errors which seem unlikely to be met 
in practice - either full independence of the classification 
ertors or very limited departures from that assumption. 
(See Lemaitre 1994 for a review of problems with these 
adjustment methods.) 

It seems worthwhile to explore different routes to the 
development of methods of adjustment or compensation 
for response error bias. As a first stage, work is continuing 
on the investigation ofthe characteristics and circumstances 
of cases of inconsistency, and of other possible ways of 
identifying false transitions. It is also proposed to investi
gate the circumstances of people giving inconsistent 
responses of the kind analysed above, by means of more 
detailed follow-up interviews. This should provide better 
indications of the extent to which the inconsistencies do 
represent response ertor, and may provide results useful for 
both reducing, and adjusting for, response ertor. Both these 
strands will provide inputs to a third element of the forward 
programme, in which it is proposed to develop models of 
classification ertor in reporting economic activity. 
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A Model Based Justification of Kish's Formula for 
Design Effects for Weighting and Clustering 
SIEGFRIED GABLER, SABINE HAEDER and PARTHA LAHIRI' 

ABSTRACT 

In this short note, we demonstrate that the well-known formula for the design effect intuitively proposed by Kish has a 
model-based justification. The formula can be interpreted as a conservative value for the actual design effect. 

KEY WORDS: Cluster size; Intraclass correlation coefficient; Selection probabitities. 

1. INTRODUCTION 

We consider multistage, clustered, sample designs where 
each observation belongs to a weighting class. For example, 
the clusters are blocks which are selected proportional to 
the number of its households. Within each block the same 
number of households is selected with equal probabilities. 
A randomly chosen person of the household has to be inter
viewed. Then, the household sizes determine the weighting 
classes. Kish (1987) proposed the following formula for 
determining the design effect in order to incorporate the 
effects due to both weighting needed to counter unequal 
selection probabilities, and clustered selection: 

E ^ff^i 
deffKish='"7 

1 = 1 
[ l + ( * - l ) p ] , 

E ^if^i 

where m. and w. denote the number of observations and 
the weight attached to the i-th weighting class (/ = 1,...,/), 
m = Y,Uifny the total sample size, b is the average cluster 
size and p is the intraclass correlation coefficient. Kish's 
formula is very intuitive and novel, but he said that his 
"treatment may be incomplete and imperfect." 

Kish's formula is now used by many survey samplers. In 
fact, the above formula will be used in the sample size 
determination in the European Social Surveys to be 
conducted by its member countries. The purpose of this 
note is to provide a model-based justification for using 
Kish's formula. 

(/ = 1,..., /; c = 1,..., C). Then m. = ^^ = I'Wjc. the number 
of observations in the I-th weighting class. Let b = 
X, = 1 nt.^, the number of observations in the c-th cluster 
(/ = l,...,/;c = l, ..., C) so tiiat Z7 =C-'i;f,,Z;^. Let y,j 
and w. be the observation and the weight for the j-th 
sampling unit in the c-th cluster (c = 1,..., C;j = 1,..., b ) . 
The usual design-based estimator for the population mean 
is defined as 

c K 
E E ^ciYcj 

— _ c = 1 j = 1 

c K 
E E ^cj 
c=l j=l 

To justify Kish's formula, we assume the following 
model: 

Var(y^.)=o^ for c = 1,..., C;; = 1,..., fc^ 

Cov(y cj'Yc'j'' I Q 
c = c';j*f 

otherwise. (1) 

The above model is appropriate to account for the cluster 
effect and was used earlier by others (see, e.g.. Skinner, 
Holt and Smith 1989). We shall then define design effect 
as deff = Var,(y^)/Var2(y), where Var,(y^) is the 
variance of y^ under model (1) and Var2(y) is the 
variance of the overall sample mean y, defined as 
Ef= lE/= 1 Yc/"^' computed under the following model: 

Var(y^.)=a^ for c = 1,..., C;; = 1, ...,^^ 

2. A MODEL BASED JUSTIFICATION 
OF KISH'S FORMULA 

Cov(y<,.,y,.p = 0 for all {c,j) * {c',r). (2) 

Note that model (2) is appropriate under simple random 
Let m.^ be the number of observations in the c-th sampUng and provides the usual formula a^lm for 

sampled cluster belonging to the I-th weighting class Var2(y). 
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Now, turning our attention to Var, (y^) , first note that 

Var, 
c fcc 

E E ^cjYcj 
\c = i i = i 

= EVar E w .y • 
C]-' CJ 

c 

-E 
c = l 

2 
E ^cj^^iycj) + E '^cj'^cr^ov{y^j,y^j.) 

J*J 

c^i [j=i j*r J 

= o 2< 
/ C I 

2 
1 = 1 c = l 
E ^ / ' " , + P E E^*','",C -PE»^, '",[ (3) 

( = 1 1 = 1 

since Y.^_^, ^ - l , w .̂ = ^ [ ^ , wf m,. and 

C 6c 

E E %^cy- = E • 
c = l J * / 

C 

E 
c = 1 

C 

=E1 
c = l 

E w.m 
I , 

* c 

- E >v̂ -

E W, m. 
<• = 1 

/ 

= E E ^i"^ic\ -E wfff^r 
c = 1 V ' = 1 / ' = 1 

Noting that Xc = i 1,/= i % = Z; = i *^,'",-. we have 

Var,(yJ 

Var, 
C *c 

E E %3'c; 
c = 1 > = 1 

E m.w. 
I I 

1 = 1 

c ( I V I 
a^\Y w, m.-^pY E ^i"^ic - P E ^, '", 

|l = l c = l V 1 = 1 1 = 1 

E ^i"^i 
( = 1 

so that 

E >̂ ''", 
deff = m- 1 = 1 — [ I + ( Z ; - - I ) p ] , 

1 = 1 

wm. 
I I 

(4) 

where b* =Yfc-i(Zj= IM ' , ' " ,C )^ /E '= i ^ ' ' " , -
Using the Cauchy-Schwarz inequality, we get 

E ^i^i. = fc: 
m... E "-ic w.-— 

< = i o <̂  / 

, 2 V ^ 2'"ic 

, = 1 0 , 

^c E "^f^ic 
1 = 1 

SO that 

fc'^ 

c / 
E ^cE w,̂ '"/c 
C = 1 1 = 1 

C / 

E E w/'",c 
^ w ' say. (5) 

C = 1 ( = 1 

Thus (4) and (5) yield 

E '^i^'", 
deff ^ m- 1 = 1 

/ 

E 
V ' = i 

w.m. 
I 

[ l + ( ^ ^ - l ) p ] . (6) 

Note that b ^ can be interpreted as an average (weighted) 
cluster size. If fc ̂ ,̂ is equal to b, e.g., if all b^ are equal, tiie 
upper bound of deff is simply Kish's formula. Thus Kish's 
formula serves as a conservative value for the actual design 
effect. 
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