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In This Issue 

This issue of Survey Methodology continues the celebration of 25 successful years that was 
marked by the publication of the December 1999 issue. The first seven papers of this issue, by 
prominent statisticians working in survey methods, were invited to help mark this occasion but were 
not included in the December issue due to space limitations. I would like to extend a special word 
of thanks to all of the authors who helped to make these two celebration issues so special and 
memorable. 

To start off this special issue Kalton reviews developments in survey research over the past 25 
years since Survey Methodology first started publishing. He first describes developments in survey 
taking as a profession, specifically the rise of specialist journals and professional associations for 
survey methodologists, as well as the international and multidisciplinary aspects of the profession. 
He then reviews developments in survey methods including questionnaire design, data collection, 
non-sampling errors, sampling methods and estimation. Finally he discusses the rise in importance 
of panel surveys and international surveys, administrative data sources and analysis of survey data. 

Bellhouse traces the parallel developments in survey taking and computing over the twentieth 
century. He first describes the interaction between census taking and the early development of 
computing machines and digital computers. Later, developments in scientific computation lead to 
the use of more sophisticated statistical methods and models. He concludes his story with 
discussions of the development of statistical software for surveys and of model-related methods. 

Bailar discusses the role of statistics in census taking, with particular emphasis on errors in census 
counts due to census errors of various sorts and adjustment of census counts using sample based 
estimates of net undercount. The various sources of errors in censuses are described. Use of 
statistical methods for census evaluation, quality control in census processing, and imputation is also 
discussed. Using a model for census bias and variance, the potential efficacy of census adjustment 
procedures is illustrated. 

Isaki, Tsay and Fuller consider estimation of census adjustment factors using data from the 1990 
post enumeration survey. Their estimators are based on a components of variance model with a 
fixed linear predictor and a random effect describing the unknown true adjustment factor for each 
of 336 post-strata. They consider alternatives based on using an estimate of the full variance-
covariance matrix of the direct survey errors of the post-stratum adjustment factors versus using only 
the diagonal elements. Use of the diagonal elements only can reduce the effects of instability in the 
estimate of the full variance-covariance matrix. In an empirical comparison they find that a 
compromise between these two extremes works best. They also restrict the model based adjustment 
factors so that the estimate of total population matches that obtained from the direct survey estimates 
of these adjustment factors. 

Lachapelle and Kerr present an innovative use of a coverage study to examine the demographic 
estimates of population. Their approach decomposes the results from Statistics Canada's Reverse 
Record Check (RRC) to provide an additional source of data that can be compared to the more 
traditional administrative record based estimates of the components of growth. The objective of this 
comparison is to identify major sources of error in either the administrative record based or the RRC 
estimates. They also show how the error of closure can be decomposed into two parts: differences 
between the RRC and the Census estimates of enumerated population and differences between the 
RRC and administrative record based estimates of growth. 

In their paper Feder, Nathan and Pfeffermann consider repeated sampling from a hierarchical 
population. At each fixed time point the population can be described by a two level model; first and 
second level random effects are then allowed to evolve stochastically over time. In particular, the 
case where second level units remain in the sample for only a few occasions, as for example in many 
labour force surveys, is considered. A two step estimation procedure is proposed. In the first step 
the two-level model is fit to each time point independently to obtain estimates of the fixed effects. 
Time series parameters are estimated in the second step. Sampling weights can be incorporated into 
both steps to account for possibly informative sampling. 

Rivest and Belmonte propose measurement of the mean square error of small area estimators 
conditionally on the realized smoothing model. They propose a natural estimator for this MSE; 
however, the estimator can be quite unstable when there is a lot of smoothing. They also propose 
a correction for bias in the case that the distributions of the direct estimators are skewed. Finally 
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they investigate the properties of their estimator in an Empirical Bayesian context and illustrate their 
method using undercoverage data from the 1991 Canadian Census. 

Shao addresses an important topic - the evaluation of cold deck imputation methods. Since 
computer technology continues to make it easier to store and access data from previous and related 
surveys, imputation methods that make use of this auxiliary data will become increasingly important. 
As a result, Shao takes the first steps in evaluating how various cold deck imputation methods will 
perform relative to other imputation methods. 

Thompson and Frank discuss model based estimation for link-tracing designs. In link-tracing 
designs, links are followed from one respondent to another. Network sampling and snowball 
sampling are just two examples. After a general introduction to the area, they present several link-
tracing designs. They then present a graphical model for the linked population. Finally they develop 
likelihood based inference procedures for such populations using data from link-tracing designs. 

Theberge attempts to solve the problem of extreme weights due to the calibration estimator by 
relaxing somewhat the calibration equation requirements. In fact, the problem is one of 
minimization similar to that encountered in ridge regression. He also reviews other means of 
restricting weights. He discusses the asymptotic properties of calibrated weights, and provides 
necessary and sufficient conditions for the existence of restricted weights satisfying the calibration 
equation. He also outlines a way of formulating the estimation problem by controlling the 
significance given to the calibration equation, and describes various means of restricting weights that 
do not rely on the use of a specific distance. Finally, he suggests an estimator having restricted 
weights that is useful for small domains, and deals with outliers by developing a method similar to 
that used to handle extreme weights. 

Two short notes conclude this issue. Losinger, Garber, Wagner and Hill present a case study in 
the care that must be taken when adjusting for non response in different waves of a survey. Finally, 
Shaffer looks at the estimation of regression coefficients using survey data when the assumption of 
fixed auxiliary variables is relaxed. 

You may recall that the December issue of Survey Methodology was made available, on an 
experimental basis, in an electronic format on the Statistics Canada web site. There was also a web 
based survey to guage your reactions and preferences with respect to an electronic version of the 
joumal. Although there was quite a bit of interest in an electronic version, it seems that the time is 
not yet ripe for publishing electronically on a regular basis. We will certainly be reconsidering this 
option in the near future, and your responses to the survey will help to improve any future electronic 
version. In the meantime, we will continue to publish a print version of the joumal for the 
foreseeable future. 

M.P. Singh 
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Developments in Survey Research in the Past 25 Years 

GRAHAM KALTON' 

ABSTRACT 

In recognition of Survey Methodology's silver anniversary, this paper reviews the major advances in survey research that 
have taken place in the past 25 years. It provides a general overview of developments in: the survey research profession; 
survey methodology - questionnaire design, data collection methods, handling missing data, survey sampling, and total 
survey error; and survey applications - panel surveys, international surveys, and secondary analysis. It also attempts to 
forecast some future developments in these areas. 

KEY WORDS; Survey research profession; Survey methodology; Survey applications; Questionnaire design; International 
surveys. 

1. INTRODUCTION 

Survey Methodology is celebrating its silver anniversary 
this year. In recognition of this milestone, this paper aims 
to review the major developments in survey research over 
the past 25 years. I should note, however, that for several 
reasons I shall be somewhat lax in my dating of events. 
First, there was, of course, no watershed in survey research 
in 1975. Rather, many of the major developments over the 
past quarter century built on the foundations laid by earlier 
work. Second, it takes time for many advances in method­
ology to be fully accepted and adopted. Third, I am using 
as my benchmark a text on survey methodology that Sir 
Claus Moser and I published in the United Kingdom in 
1971 (the second edition of Survey Methods in Social 
Investigation, hereafter referred to as Survey Methods), so 
that my time frame actually extends over 30 years or so. 

The paper reviews the developments in survey methodol­
ogy, including questionnaire design, survey sampling, data 
collection methods, data processing, and survey analysis. 
Computers will feature prominently in the discussion since 
they have had a major impact on many, but not all, method­
ological developments. The paper also reviews the effects 
of these methodological developments on the practice of 
survey research, including the growth in panel surveys, 
international surveys, and secondary analysis. The main 
emphasis is on population surveys, but some references are 
also made to establishment surveys. Also, in reflecting my 
experience, the paper will no doubt have a slant toward 
work done in the United States. Before turning to develop­
ments in survey methods and practice, I will first describe 
the great expansion that has taken place in the number of 
surveys being conducted and the emergence of a clearly 
identified survey research profession. 

2. THE SURVEY RESEARCH PROFESSION 

Most of the history of survey research is contained in the 
twentieth century. The field began to take off in the 1930's, 

grew considerably during the Second World War, and has 
grown at a substantial rate ever since. By 1975, surveys of 
both households and establishments were well established as 
the means to meet the needs for statistical data of policy­
makers and researchers on a wide range of subjects, such as 
manufacturing and trade, agriculture, employment and un­
employment, family expenditure, nutrition, health, educa­
tion, travel, aging, and crime. In addition, surveys conducted 
by academic and other researchers in sociology, economics, 
political science, psychology, education, social work and 
public health, public opinion and election polls, and market 
research have flourished. The field has continued to expand 
at a rapid rate in the past 25 years, particularly as more 
policymakers have learned to appreciate the value of survey 
data and as advances in survey methods have enhanced the 
ability of survey researchers to respond to the demands for 
statistical data. The continuing demand of policymakers for 
more and more sophisticated data has prompted advances in 
survey methodology and has also led to the solidification of 
a broadly based survey research profession. 

The rapid growth in survey research has come about in 
part because of an expansion in the range of topics that are 
considered suitable for study using survey methods. Adven­
turesome researchers have constantly and successfully 
challenged the conventional wisdom of their times about the 
subject matters that surveys could cover. These challenges 
have continued during the past 25 years so that there are now 
very few subjects that are ruled out for study in surveys 
based on valid probability samples. Some of the new 
subjects of study are sensitive ones, such as sexual behavior 
and illicit drug use, for which the application of survey 
methods has required the development of special data 
collection techniques. Other new subjects have required the 
incorporation of additional data collection methods, such as 
medical examinations for sampled individuals, videotaping 
of teacher-student interactions in classrooms, and placing 
environmental monitoring equipment in sampled house­
holds. Tackling more difficult subject matters has been a 
constant stimulus to methodological research. 
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Prior to 1975 there were no widely distributed specialist 
journals in survey methodology. Refereed papers on survey 
methodology were published in a variety of journals. 
Statistical journals published, and continue to publish, 
papers mainly on the more statistical aspects of survey 
research, particularly survey sampling. Journals like Public 
Opinion Quarterly published, and continue to publish, 
papers on survey methodology. Market research journals 
publish papers on survey methodology relevant to market 
research. Journals in various subject-matter disciplines in 
the social sciences, public health, etc., sometimes publish 
papers on survey methods relevant to their disciplines. This 
situation was not ideal since there was no natural outlet for 
some good papers on survey research methods and because 
the literature was widely scattered. The introduction of 
Survey Methodology in 1975 and the Journal of Official 
Statistics in 1985, both now well-established journals, has 
remedied this situation. 

Another notable development has been the establishment 
of professional associations for survey methodologists. For 
example, the International Association of Survey Statis­
ticians (LASS) was founded in 1975 as a section of the 
International Statistical Institute; the Section on Survey 
Research Methods of the American Statistical Association 
was established in 1978, after being a subsection of the 
Social Statistics Section from 1974 to 1977; and the Social 
Statistics Section of the Royal Statistical Society was formed 
in 1976, initially as the Social Statistics and Survey 
Methodology Study Group. 

In recent years, several of these associations, sometimes 
together with other associations (particularly the American 
Association for Public Opinion Research), have collabo­
rated to run international conferences on specific topics in 
survey methodology. A special feature of these conferences 
is that many of them have been structured to cover their 
chosen topics in a comprehensive manner so that they could 
generate well-rounded texts. This feature was introduced to 
address the shortage of literature on survey methodology 
that resulted from the fact that survey methodologists are 
practitioners with little time to publish. The result has been 
the production of edited volumes on such topics as panel 
surveys, telephone surveys, business surveys, measurement 
errors in surveys, survey quality, and computer-assisted 
survey information collection. 

Many other conferences on survey methodology have 
also been held in recent years. Some have been organized 
by government agencies, such as Statistics Canada, the U.S. 
Census Bureau and the U.S. Federal Committee on 
Statistical Methodology (also founded in 1975). Others 
have been organized by professional associations, such as 
the lASS and the Association for Survey Computing. The 
proceedings from these conferences, and those of the 
Section on Survey Research Methods of the American 
Statistical Association, contribute greatly to the growth in 
the literature on survey methodology. 

Two other aspects of the development of the survey pro­
fession deserve comment. One is its internationalism. The 
international conferences described above have led to publi­
cations with authors from many different countries. 
Although there are cultural differences between countries 
that need to be taken into account in data collection, 
research on survey methodology shares a good deal in com­
mon across countries. In addition, international surveys are 
becoming more prevalent, with the need to standardize 
procedures across countries (see the discussion below). In 
general, international cooperation in survey research is pro­
gressing well, but there is one area where much more could 
be done. Like the developed countries, the developing and 
transition countries need statistical data from surveys. 
However, they often lack the necessary expertise. The 
lASS, international agencies like the U.N. Statistical Office, 
a number of government statistical agencies, and a number 
of other bodies make valuable contributions to training 
survey researchers from developing and transition coun­
tries, but the level of support currently available for this 
training falls far short of what is needed. 

Another noteworthy aspect of the development of the 
survey research profession is its multidisciplinary nature. 
As survey research has become established as a profession, 
it has developed a number of subdisciplines. Thirty or so 
years ago, a survey methodologist might expect to cover all 
aspects of the subject, but that is no longer possible at the 
highest technical level. The statistical level of the tech­
niques of survey sampling and survey analysis used by 
survey statisticians has advanced greatly, survey methodol­
ogists are increasingly using theories and techniques from 
sociology, psychology, and anthropology, and computer 
specialists now need to use much more sophisticated 
methods for data capture and processing than in the past. 
This inevitable segmentation of survey methodology as the 
field progresses puts at risk a unified professional identifi­
cation, particularly since the subdisciplines are each also 
associated with their own different fields. Given the 
importance of interdisciplinary collaboration in survey 
research, mechanisms to foster that collaboration may be 
needed in the future (see also section 5). 

As with the developing and transition countries, the 
developed countries face a shortage of well-trained survey 
statisticians and methodologists. There is the need both to 
attract more people into the profession and to provide more 
training opportunities for them. There are a few graduate 
programs at universities and some faculty who specialize in 
the field, but the numbers are inadequate given the needs. 
The multidisciplinary collaboration involved in constructing 
and conducting a survey implies that the training should 
have a multidisciplinary component, so that the various 
specialists can communicate effectively with one another. 
Moreover, the instructors should include persons with 
practical survey experience. These specifications make it 
even more difficult for a graduate program in survey 
methodology to be mounted in most universities. An 
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alternative approach is that adopted by the Joint Program in 
Survey Methodology (JPSM) at the University of 
Maryland, a program set up with U.S. government funds to 
address the shortage of trained survey researchers in the 
federal government. The JPSM is built on a collaboration 
of two universities (the University of Maryland and the 
University of Michigan) and a private survey research 
organization (Westat), with important contributions from 
experts in survey methodology in the government, other 
organizations, and other universities to support its various 
graduate programs. In a related approach, the Department 
of Social Statistics at the University of Southampton and 
the U.K. Office for National Statistics have recently jointly 
developed a master's degree program in official statistics, 
with significant teaching contributions in both survey 
methodology and other aspects of official statistics being 
made by government statisticians. The Department is also 
collaborating with an independent survey research organi­
zation (the National Centre for Social Research) in the 
Centre for Applied Social Surveys, one activity of which is 
to run short courses in survey methodology. 

3. DEVELOPMENTS IN SURVEY METHODS 

The computer revolution that began to have a significant 
impact on survey analysis in the 1960's has been the domi­
nating force behind the advancement of survey methodol­
ogy over the past 25 to 30 years. The ability to process and 
analyze survey data much more readily than in the past has 
supported the use of more advanced statistical methods. It 
has also contributed greatly to more sophisticated demands 
from survey data users, stimulating the development of 
improved methodology for all aspects of the survey process. 

The chapter on processing survey data in Survey 
Methods contains a description of punch cards that were 
widely used 30 years ago for the analysis of survey data, 
together with a description of unit record equipment 
(counter-sorters and tabulators) and computers. At that time 
computers were well on the way to replacing unit record 
equipment, but they were not routinely available to survey 
researchers. The computers of the day were large main­
frame machines and punch cards were the usual input 
medium for survey data. Programs for survey analysis were 
limited in number and in scope. Today, the situation is, of 
course, totally different, and the impact of this change on 
survey research is hard to overstate. 

It is against this backdrop of the computing explosion 
that the advances in other aspects of survey methodology 
should be assessed. The rest of this section briefly outlines 
what I view to be the significant advances that have been 
made in the past quarter century in the areas of question­
naire design, data collection, missing data, survey sampling, 
and total survey error. 

Questionnaire design. The critical role of questionnaire 
design in achieving high-quality survey data has been well 

recognized from the early days. While some first-rate 
research was being conducted on improving questionnaire 
design in the 1960's and 1970's, the number of researchers 
involved in tackling this extremely challenging area was 
very limited. This situation has improved subsequently in 
large part due to what has become known as the Cognitive 
Aspects of Survey Methodology (CASM) movement. The 
CASM movement aims to attract researchers from the 
cognitive and social sciences to address the difficult 
problems of formulating survey questions that produce 
appropriate responses. The attention generated by this 
movement has created renewed interest in this field. 

The CASM movement has not identified ready-made 
solutions to the problems of response errors in surveys. It 
would have been unrealistic to expect that all that was 
needed was the importation of existing theories from 
cognitive psychology and other disciplines into question­
naire design. What the movement has achieved is greater 
efforts to tackle the subject from a theoretical perspective. 
Also, the CASM movement has contributed greatly to more 
rigorous pretesting of survey questionnaires. Some of the 
pretesting techniques that have been developed in the past 
25 years occurred independently of the CASM movement, 
but the sustained attention that pretesting now receives 
owes a great deal to that movement. A direct effect of the 
CASM movement has been the creation of the so-called 
"cognitive laboratories" that are now widely used for 
pretesting questionnaires, using such techniques as "think 
alouds" and extensive probing. Focus groups - which have 
a long history in questionnaire design, particularly in 
market research - are also much more widely used than in 
the past. In addition, behavior coding is now used widely 
in pretesting. 

An associated development in the past few years has 
been a more theoretical approach to the design of forms that 
are to be completed by survey respondents. This research 
takes account of theories that indicate how individuals 
approach documents and how they most naturally work 
their way through them. This important subject received 
little attention for many years. The current research holds 
considerable promise for making survey forms much more 
user friendly, with the hope that this may improve both the 
quality of the data collected and response rates. 

Data collection. Survey Methods contains two main 
chapters on data collection methods, one on mail question­
naires and one on face-to-face interviewing (there is also a 
chapter on documents and observation). There are only a 
few minor references to telephone interviewing, in part 
because of the low level of telephone penetration in the 
United Kingdom at that time. However, even in the United 
States where telephone penetration was much higher, back 
in 1975 many survey researchers had serious doubts about 
the collection of data for household surveys by telephone, 
at least for government surveys with major policy implica­
tions. That situation has changed considerably. Today, 
many U.S. government surveys are conducted by telephone. 
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One concern about telephone surveys is the noncoverage 
of households without telephones. With telephone cover­
age in the U.S. currently around 95 percent, the noncover­
age of nontelephone households may be considered accept­
able for surveys of the general population. However, a siz­
able number of surveys focus on subpopulations with lower 
telephone coverage rates, such as the poor; for such sur­
veys telephone noncoverage is a serious concern. Another 
concern is nonresponse. Nonresponse rates for telephone 
surveys are appreciably higher than for comparable face-to-
face interview surveys, and the gap appears to be widening. 
In making a choice between telephone and face-to-face 
modes of data collection, the large cost savings that accrue 
from the use of telephone interviewing often override the 
higher response rates achievable with face-to-face inter­
viewing. Nevertheless, the risk of appreciable bias that is 
associated with high levels of nonresponse in telephone 
surveys (frequently as high as 40 percent or more, even with 
determined follow-up efforts) is a serious and often under­
rated concern. The likelihood of increasing nonresponse 
rates to telephone surveys raises questions about the role of 
telephone data collecdon in the future. 

An important advance in data collection methods in 
recent years has been the introduction of computer-assisted 
methods, such as computer-assisted personal interviewing 
(CAPI) and computer-assisted telephone interviewing 
(CATI). These methods facilitate more complex skip 
patterns, prevent interviewers from deviating from the 
specified question sequence, provide for easy insertion of 
responses from earlier questions {e.g., if a son's name is 
recorded as "Peter" in answer to one question, "Peter" can 
be inserted in the wording of a subsequent question), and 
enable edit checks to be carried out as the interview 
progresses and corrections made as necessary. By entering 
the data directly into a computer file, they also permit more 
timely processing. The development of general purpose 
programs for CAPI or CATI data collections, including 
sampling and scheduling, is a complex operation. Several 
programs are now available for this purpose. Future devel­
opments should see more flexible programs and authoring 
systems that are simpler to apply. 

In the past few years, another form of computer-assisted 
survey information collection has emerged. This is 
computer-assisted self-interviewing (CASI), of which there 
are several variants: video-CASI, in which the respondent 
reads the questions on the computer screen and enters the 
answers on the keyboard; audio-CASI, in which the 
respondent listens to questions on headphones connected to 
a laptop computer and enters the answers on a keyboard; 
and telephone audio-CASI in which the audio-CASI inter­
view is conducted by telephone, either with the respondent 
calling into the computer or with the respondent being 
transferred to the computer interview once the call has been 
established by a telephone interviewer. All these versions 
of CASI avoid the respondent-interviewer interactions that 
apply with other interviewing methods, and may therefore 

be particularly useful for collecting data on sensitive issues. 
They can also be developed in different languages if neces­
sary. The audio variants avoid the requirement that the 
respondent is literate. These methods have appeared only 
recently and their use may be expected to expand appre­
ciably in the future. 

Some business surveys are now conducted using audio-
CASI methods. An advantage to respondents is that they 
can call in to a toll-free number at a time convenient to 
them. They then listen to voice-digitized survey questions 
and enter responses on the keypad of a touchtone telephone. 
A variant of this methodology is for the respondents to an­
swer verbally, with the responses interpreted using voice 
recognition techniques. The use of this methodology may 
increase in the future as voice recognition methods 
improve. 

Another recent development has been the collection of 
survey data over the Internet. This methodology is particu­
larly attractive for some types of establishment surveys and 
for surveys of populations of individuals who have access 
to the Internet and experience in using it. One approach is 
to send the questionnaire by email, which may be suitable 
for individuals who have known email addresses {e.g., the 
employees of a firm with its own network). Another 
approach is to post the questionnaire at a web site, with 
respondents using a password to gain access to it. At this 
time, the Internet is not appropriate for use in surveys of the 
general population because of the high proportion of 
persons without ready access to it, the lack of a sampling 
frame, and likely low response rates. The temptation to 
collect a large sample of Internet responses to a survey 
questionnaire in an uncontrolled fashion should be avoided. 
This approach would simply replicate the errors made with 
the infamous 1936 Literary Digest Poll. 

Missing data. Missing data occur in surveys through total 
nonresponse, item nonresponse, and noncoverage. During 
the past 25 years and even earlier, there has been increasing 
concern that total nonresponse rates have been rising. This 
trend is hard to document and indeed analyses of trend data 
from different surveys have led to different conclusions 
about the existence of a trend. Yet there is common agree­
ment among survey practitioners that it has become more 
difficult over time to obtain cooperation. Various reasons 
have been suggested, such as less novelty in participating in 
a survey, more working people with less leisure time, fear 
of crime in face-to-face surveys, and the negative effects of 
telemarketing in telephone surveys, but there are no defini­
tive explanations. Whatever the reasons, greater efforts 
now need to be made to achieve a high response rate than 
was the case in earlier times. These efforts include 
increased numbers of calls to contact respondents, greater 
efforts in refusal conversion, and the greater use of incen­
tives. In the past decade, a sizeable number of experimental 
studies have been conducted in face-to-face and telephone 
interview surveys to test the effects on response rates of 
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various monetary and nonmonetary incentives and the level 
of monetary incentives, thus replicating in an interview 
setting the kinds of studies that were conducted with mail 
questionnaires in earlier decades. 

Noncoverage is a recognized concern in telephone 
surveys, but it has received less attention in face-to-face 
interview surveys, and certainly less attention than the pro­
blem of nonresponse. Yet the level of noncoverage in face-
to-face interview surveys among certain segments of the 
population {e.g., young black males in the United States) can 
be high. Moreover, little is known about those not covered, 
except that they can be expected to be different in many ways 
from those covered. It is a source of survey error that would 
benefit from greater attention in the future. Noncoverage is 
often especially severe when a survey of a rare population 
{e.g., teenagers) is conducted with sample members being 
identified through a large-scale screening survey. Given the 
increasing interest in surveying rare populations, this type of 
noncoverage warrants particular attention. 

Twenty-five years ago, item nonresponse was generally 
handled by simply dropping the cases from the analysis in 
question, for example computing percentage distributions 
for the subset of cases with acceptable responses. In 
essence, the implicit assumption being made was that the 
item nonresponses were missing completely at random 
(MCAR). Although that practice is still applied in many 
surveys, increasingly some form of imputation is being used 
to assign values for the missing responses in a manner that 
takes account of responses to other survey questions. This 
process replaces the often untenable MCAR assumption by 
a missing at random (MAR) assumption, that is that the 
item nonresponses are missing at random conditional on the 
auxiliary variables used in the imputation. Although impu­
tation methods were occasionally used 25 years ago, most 
of the substantial literature on the subject has appeared 
since 1975. Current methods rely heavily on the computer 
power that is now available. Imputation remains an area of 
active research with two main foci: the development of 
imputation methods that maintain the covariance structure 
of the survey data set, taking into account that nearly all of 
the survey variables may be subject to item nonresponse; 
and the computation of variance estimates for survey esti­
mates that are based on data some of which are imputed 
(see the discussion below). 

Data editing is closely related to imputation. It has also 
experienced significant advances in recent years, taking 
advantage of increased computing power to develop more 
complex editing procedures than could have been employed 
in the past. Like imputation, editing is the subject of much 
current research interest and further developments can be 
expected. 

The growth in computing power is also a major factor in 
the development and widespread use of weighting adjust­
ments for nonresponse and noncoverage. Weighting class 
adjustments for nonresponse and noncoverage (poststratifi-
cation) were applied when unit record equipment was used 

for survey analysis, but the methods were necessarily 
relatively simple. Now, more complex weighting class 
methods and calibration methods incorporating numerous 
auxiliary variables are widely used, often after exploratory 
analyses have been conducted to identify appropriate 
auxiliary variables. 

Survey sampling. The main methods of sample design 
{e.g., stratification, multistage sampling, sampling with 
unequal probabilities) were developed in the early years and 
were described in textbooks that appeared in the 1950's. 
The developments in the past quarter century have been 
refinements and extensions of these methods, for example 
to random digit dialing (RDD) sampling for telephone 
surveys. Here again, the ability of the computer to process 
large volumes of data in census files and other large 
sampling frames has enabled survey statisticians to con­
struct more efficient sample designs than in the past. 

One area of research in recent years has been on methods 
for sampling rare populations, either in a special survey or 
by oversampling in a general survey. This interest is part of 
the extension of survey demands to provide results for many 
different domains, including small domains such as racial 
and ethnic minorities, children in poverty, age/sex groups, 
and geographical subdivisions (see also the reference to 
small area estimation below). The aim of the research is to 
develop efficient sample designs and data collection 
methods for sampling such domains in situations where 
special frames for those domains are unavailable. Since the 
demands for domain results continue to grow, ways to 
survey rare populations in a cost-effective manner will 
continue to be sought. 

In the 1970's, the design-based mode of inference that is 
generally adopted with sample surveys was strongly chal­
lenged by those who argued that it should be replaced by 
the model-dependent methods used in the rest of statistics. 
That debate has waned, and the design-based framework 
remains in place (see the further discussion below). In this 
context, the terminology should be clarified: from early on, 
the design-based mode of inference incorporated the use of 
models in improving the precision of survey estimates {e.g., 
regression estimates), but the estimates remained consistent 
under that mode of inference irrespective of the validity of 
the model. Thus, the procedures are model-assisted as 
distinct from model-dependent. The suitability of model-
dependent estimates depends on the validity of the model 
(or the robustness of the estimates to model failure). The 
computing developments of recent years have facilitated the 
greater use of models, and of more complex models, within 
the design-based model-assisted framework of inference. 

These remarks should not be interpreted to imply that 
model-dependent methods have no place in survey research. 
On the contrary, the methods for handling missing data 
described above are necessarily model-dependent. Model-
dependent methods are also used increasingly in producing 
estimates for small domains (generally small geographic 
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areas). Such methods are needed when the sample sizes in 
the domains are too small (they may often be zero) to 
produce design-based estimates of adequate precision. In 
this situation, small area estimates may be produced by 
bortowing strength from survey data for other areas or time 
periods through a statistical model that relates the survey 
data to other, generally administrative, data. The rapid 
growth in social programs that distribute funds to small 
geographic entities has led to a substantial demand for up-
to-date small area estimates. As a result, small area esri-
mation has become a major area of research activity in 
recent years, and is likely to remain so in the years to come. 

Variance estimation for estimates from complex sample 
designs has been another major area of development in the 
past quarter century. Methods based on Taylor's series 
approximations and replication methods were being used in 
the 1960's, but they were not routinely applied and were 
largely confined to research studies. This situation has 
changed dramatically as a result of the increases in com­
puting power and the development of a number of computer 
packages for the computation of sampling errors for 
estimates from complex (typically stratified multistage) 
sample designs. It is now fairly common practice to com­
pute sampling errors routinely in analyzing survey data. 

A notable development in recent years has occurred in 
the area of the application of analytic models to survey data. 
This area is one where there remains a debate about the 
choice between a design-based and model-dependent mode 
of inference. Within the design-based framework, there 
have been both theoretical advances in the application of 
regression models, categorical models, survival models, 
multilevel models, etc., with survey data and in software for 
computing variances for these models. At present, survey 
analysts often conduct their exploratory analyses using the 
greater flexibility of standard statistical packages, and com­
pute the design-based variances using survey sampling 
variance estimation software only at the final stages of their 
analyses. In the future, survey sampling variance estima­
tion procedures should become more fully integrated into 
standard packages. 

An area of much current research activity is the compu­
tation of variance estimates for survey estimates that are 
based on responses some of which are imputed. One 
approach is the application of multiple imputation proce­
dures to complex sample designs, an application that makes 
strong use of current computing power. Other methods are 
being developed under the standard design-based mode of 
inference (necessarily with model assumptions). The future 
may see the incorporation of these methods into the survey 
sampling variance estimation programs so that they can be 
readily applied. 

Total survey error. The preceding discussion has treated 
the various components of the survey process individually. 
A well-designed survey, however, is the blending together 
of the components into an effective package taking cost 
considerations into account. The last 25 years have seen a 

firmer recognition of the issue, with heightened attention to 
the concepts of total survey error and total survey design. 
With constrained resources, a survey design reflects trade­
offs between, for example, sample size, the extent of non-
response conversion undertaken, questionnaire length, and 
the quality of data obtained by different modes of data 
collection. In analyzing survey data, the quality of the 
estimates should properly be assessed in terms of the total 
survey error from all sources, not just sampling error. For 
both design and analysis, detailed information is needed on 
the various sources of error and their effects on the survey 
estimates. Moreover, since surveys are multipurpose 
studies, with many different analytic goals, the information 
requirements are extensive. The rapidly growing literature 
on survey errors from different sources is helpful for 
addressing total survey error and total survey design within 
cost constraints, but more studies are still needed. 

The total survey error and total survey design concepts 
are most readily applied to repeated surveys. Information 
on error sources can be accumulated from one round to the 
next and can then be used to determine priorities for where 
improvements in the survey methods are most needed. One 
use of the quality profiles that provide integrated accounts 
of what is known about the error sources in a survey (see 
the discussion below) is to guide the choice of priorities for 
methodological improvements. 

4. OTHER DEVELOPMENTS 

This section reviews a number of areas of survey 
research in which important developments have occurred in 
the past 25 years, other than the strictly methodological 
areas discussed in section 3. The set is not intended to be 
an exhaustive one. It includes only areas that I consider to 
have undergone major change. 

Panel surveys. The benefits of longitudinal data obtained 
from panel surveys have long been recognized, and panel 
surveys were being conducted in the 1940's and 1950's. At 
that time, however, the complexities of creating longitudinal 
data sets, combining the data collected in different waves, 
were severe. Panel surveys were often mostly analyzed only 
cross-sectionally, and this was a major source of criticism of 
the method. Today, the advances in computing and also in 
techniques for longitudinal analysis have changed the situa­
tion dramatically. Nevertheless, the complexities of longitu­
dinal data, especially the problem of missing data, remain. 
Longitudinal methods of analysis are now widely used, 
although many panel surveys are still analyzed mostly cross-
sectionally, with too little attention to the wide range of 
issues that their longitudinal data could illuminate. 

There has been an enormous growth in panel surveys in 
the past 20 years, covering a wide range of subjects, 
including education, labor force transitions, health, and 
voting behavior. Panel surveys of household economics, 
modeled on the University of Michigan's Panel Study of 
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Income Dynamics that began in 1968, have become popular 
and are now being conducted in a sizeable number of 
countries. There are also panels like Statistics Canada's 
Survey of Labour and Income Dynamics and the U.S. 
Census Bureau's Survey of Income and Program 
Participation that use similar approaches. 

It seems likely that the use of panel designs will increase 
even more in the future. The challenge is to make full use 
of the longitudinal data produced, since the analytic poten­
tial of a panel survey increases exponentially with the 
number of waves of data it collects. In addition, the signifi­
cant advances in techniques for longitudinal analysis being 
made by biostatisticians and others provide the tools for 
more sophisticated analyses than in the past. Many skilled 
analysts are needed if the data collected in a panel survey 
are to be fully analyzed. The growth of secondary analysis 
(see the discussion below) holds promise for fuller use of 
panel survey data in the future. 

International surveys. The last 25 years have seen the 
emergence of international surveys of various kinds, 
ranging from surveys promoted by intemational agencies to 
the coordination of independent country surveys to provide 
cross-national comparisons. A major breakthrough in this 
area came with the World Fertility Survey (WFS), which 
conducted surveys in 42 developing countries and 20 
developed countries during the period 1974-1982. The 
WFS not only collected valuable data on fertility, but in 
many countries it also provided technical assistance in 
survey research that helped to develop an infrastructure of 
survey taking. The ongoing Demographic and Health 
Survey began shortly after the end of the WFS and to date 
has conducted surveys in more than 50 countries. 

Education has been the subject of a number of intema­
tional surveys including, for example, the Third Inter­
national Mathematics and Science Study (41 countries in 
1995) and its replication (40 countries in 1999); the 
Programme for Intemational Student Assessment (about 30 
countries in 2000); the Second Civics in Education Study 
(about 20 countries in 1999); the lEA Reading Literacy 
Study (about 30 countries in 1991). The ongoing 
International Adult Reading Literacy Survey is collecting 
comparable information about literacy levels of adults in a 
number of countries around the world. Two examples of 
other internationally organized survey designs are the 
Multiple Indicator Cluster Survey from UNICEF and the 
Social Dimensions of Adjustment Integrated Survey from 
the World Bank. A related activity is the coordination of 
surveys in the European Union by Eurostat. An example of 
cross-national collaboration on surveys is provided by the 
Intemational Social Survey Programme, a continuing 
annua! survey program on social science topics that now 
has 33 member countries. 

The development of intemational survey programs has 
occurred for two separate reasons. One is the growing 
interest in the comparison of survey results across countries. 

The other is to assist countries, particularly developing and 
transition countries with limited survey experience, in the 
conduct of surveys that will provide important data for plan­
ning purposes. Considerable expansion in intemational 
survey activity can be expected in the future for both of 
these reasons. 

Linkages to administrative data. The increases in 
computing power and the resultant ability to conduct more 
sophisticated analyses have led to a demand for more data 
on the sampled units. Analysts want to answer more 
complex questions than was the case in the past and some 
of the data they need may not be readily collectable in a 
survey, at least with the required level of quality. Even if 
the data were collectable, the collection could create exces­
sive respondent burden. This situation has led to the search 
for alternative sources for the data, with data taken from 
those sources then being linked to the survey responses. 
Thus, for example, tax records might provide valuable 
earnings histories for sampled individuals over a timespan 
for which the respondents could not provide the data, or 
medical records might provide the amounts of medical 
expenses paid directly by insurers that are unknown to the 
respondents. These kinds of linkages have been made 
much more feasible by the significant expansion in the 
number of administrative record systems now available in 
electronic form. 

There has been considerable interest in linking admini­
strative record data to social survey data in recent years and 
a number of surveys have made such linkages. However, 
there are generally significant problems to overcome in 
gaining access to administrative data and serious concerns 
about protecting the survey respondents' privacy. These 
issues have severely limited the use of administrative record 
linkages in household surveys to date. Despite the substan­
tial potential benefits of such linkages, it is not clear to what 
extent these barriers can be overcome. 

In contrast, administrative data have become a key 
element in the conduct of economic surveys and censuses 
and, in a number of cases, they have replaced the data that 
used to be collected from respondents. The result has been 
a substantial decrease in respondent burden, improved data 
quality, more timely reporting, and reduced costs. 

Secondary analysis. The increases in compufing power, 
the increasing numbers of surveys being conducted, and the 
increased sophistication of the data collected in surveys 
have all stimulated a major growth in the secondary analysis 
of survey data. Public-use files are now more routinely 
made available, sometimes through survey data archives, to 
enable secondary analysts to conduct their own analyses, 
thus permitting survey data to be more thoroughly analyzed. 
Associated with this activity, increased attention has been 
needed to protect the survey respondents' confidentiality 
and to ensure that data files released to secondary analysts 
are not used to breach confidentiality. With secondary 
analysis undoubtedly continuing to expand in the future. 
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continued attention will need to be given to ways to release 
survey data in a manner that protects respondents but does 
not seriously curtail the range of analyses that can be 
conducted. 

Survey quality. Increasing attention is being given to 
different aspects of survey quality. In the past few years, a 
number of survey organizations have become interested in 
survey process quality, applying the ideas of total quality 
management to survey processes. Greater attention than in 
the past is being given to quality taken in the broad sense to 
include the accuracy of the estimates produced, relevance, 
timeliness, accessibility and cost-efficiency and in the 
narrower sense of accuracy alone. Users of survey esti­
mates and secondary analysts of survey data need to be 
informed about the overall quality of the survey data, 
including sampling errors, nonresponse and noncoverage, 
response errors and processing errors. While this need has 
long been recognized, current practice in reporting survey 
quality is often seriously deficient. There are signs that 
more attention is now being given to this area. The 
introduction of quality profiles that provide full and inte­
grated reports on the quality of the data in ongoing surveys 
is an important contribution. 

5. CONCLUDING REMARKS 

This section attempts to predict some major considera­
tions for survey research in the next 10 to 20 years. The 
computer revolution that has transformed the nature of 
survey research over the past 25 years is still in progress, 
and further developments can be expected in many aspects 
of collecting, processing, and analyzing survey data. The 
telecommunications industry is also in a state of rapid inno­
vation, and the changes are likely to affect the ways that 
survey data are collected. It seems likely that greater use 
will be made in the future of mixed-mode designs, taking 
advantage of new modes for respondents with access to 
them {e.g., the Internet) and using conventional modes for 
other respondents. Thus the effect of mode on survey 
responses will continue to be an important concern. 

In general, it seems probable that the demand for survey 
data will continue to grow rapidly as more policy analysts 
leam to take advantage of survey data. Increasingly, survey 
estimates will be needed for small domains, especially small 
geographic domains, as policymakers target their programs 

to special population subgroups. Currently, most of the 
demand for survey data comes from central governments; 
in the future the demand from provincial and local govern­
ments may expand. The difficulty here is that surveys cost 
almost as much for small populations as for large ones. 
Local governments may therefore often be unable to afford 
the cost of a survey unless inexpensive methods can be 
found. 

The major concern for the future of survey research is 
that respondents' willingness to participate in surveys may 
continue to decline, and that increased efforts in data collec­
don will not fully counteract this effect. Thus, response 
rates will fall. This comment is of particular salience for 
telephone surveys, where nonresponse rates are already 
high. A significant increase in telephone nonresponse rates 
could even lead to the demise of telephone data collection 
for household surveys. 

Finally, the next decade or so may well see the 
emergence of a new and different professional society for 
survey researchers that more broadly represents the interests 
of all members of the profession. Since survey sampling 
was at the forefront of the developments of survey research 
in the early years, survey research has strong ties with 
statistical societies. However, those ties tend to concentrate 
on survey statistics. There are also ties with societies for 
public opinion research, market research, and various sub­
ject matter disciplines, such as sociology and psychology, 
primarily for survey researchers who deal with the 
nonsampling aspects of survey research. Similady, there 
are ties with computing societies for those working on 
survey computing. As yet, however, there is no society that 
aims to bring survey researchers of all disciplines together. 
The years to come may see the creation of such a society to 
promote exchanges across the different disciplines and 
thereby help to advance the field. Were such a society to be 
formed, it would not affect the need for the current ties that 
survey researchers have with statistical and other societies. 
Survey researchers need to keep in touch both with the 
developments taking place in survey research broadly and 
also with the developments in their own disciplines. 

ACKNOWLEDGEMENTS 

I am grateful to Joe Waksberg and Dan Levine for 
helpful suggestions in the preparafion of this paper. 



Survey Methodology, June 2000 
Vol.26, No. 1,pp. 11-20 
Statistics Canada 

11 

Survey Sampling Theory Over the Twentieth Century 
and its Relation to Computing Technology 
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ABSTRACT 

Computation is an integral part of statistical analysis in general and survey sampling in particular. What kinds of analyses 
can be carried out will depend upon what kind of computational power is available. The general development of sampling 
theory is traced in connection with technological developments in computation. What is possible in theory is only 
practicable with the proper computing technology. At the same time new developments in technology can motivate new 
areas of theory to investigate. One hundred years ago, it was the requirements of statisticians that spurred on technological 
development. Although theoretical developments in sampling theory have often run ahead of computational capabilities, 
it is now the case that survey statisticians are now followers of computing technology that has been motivated by others 
instead of acting as the catalyst that leads to technological change. 

KEY WORDS: Analysis of survey data; Digital computers; Punch cards; Scientific programming; Statistical software; 
Survey data analysis; Survey estimation. 

1. INTRODUCTION 

There are several ways to approach the history of survey 
sampling. Two are very tempting, but will not be followed 
here. The first is to examine sampling in the context of the 
history of ideas - who formulated them and then how and 
why they are formulated, promoted, defended and discarded 
or supplanted. With respect to the personalities, it is not 
necessarily the one who espouses the idea first who is given 
prominence but the one who promotes it the best or the one 
who can best put the idea into practice. The approach of the 
history of ideas has been followed to a certain extent by 
Kruskal and Mosteller (1980) and Bellhouse (1988) who 
examined the progression of ideas beginning with the 
espousal of the representative method by Kaier (1897) over 
censuses combined with the use of randomization in 
surveys by Bowley (1906). The whole story of the debates 
over the foundations of sampling falls directly under this 
approach. From this debate, which was initiated by 
Godambe (1955), has emerged the continuing question of 
when to use models in sampling design and estimation. A 
second way to approach the history of sampling is to look 
at sampling theory as a branch of mathematics and then to 
fit this development into the general pattern of how research 
in mathematics evolves. Complicating this is that there are 
several approaches to how mathematics evolves, as discus­
sed in Gillies (1992). One approach is to note that periodi­
cally there are results which seem to open up new areas of 
research while other areas become seemingly complete or 
"fished out" for new research ideas. Emerging areas of 
research often attract several talented researchers to work 
on these new problems and away from other potential 
research problems. This has its parallels in sampling. 
Hansen and Hurwitz (1943) obtained results on sampling 

with probability proportional to size and with replacement. 
Then Horvitz and Thompson (1952) extended this idea to 
sampling without replacement. The basic problem in 
unequal probability sampling without replacement is to find 
a sampling design that yields the desired inclusion probabil­
ities. This resulted in several papers on the subject culmina­
ting in the review monograph by Brewer and Hanif (1983). 
Lately, very few papers are written to promote new without 
replacement sampling designs that result in inclusion proba-
bilifies proportional to a size variable. However, statistics 
and survey sampling cannot be equated to pure mathemat­
ics. Much of statistical research is motivated by practical 
problems in data interpretation and analysis not by abstract 
ideas. 

In view of the explosion of technology over the 20th 
century, I chose another approach. This is to view the 
history of sampling over the 20th century as the history of 
the interplay between ideas that have been put into practice 
and computing technology that has defined the limits of 
practice or that has encouraged ideas for new developments 
in practice. The development of sampling methods may be 
categorized by the intersection of two strands: the use of 
surveys for descriptive and analytic purposes, and whether 
or not hypothetical models should be used. 

2. BEGINNINGS: THE FIRST HALF OF THE 
TWENTIETH CENTURY 

The first two major breakthroughs for survey sampling, 
one in the formulation of a statistical concept and the other 
in the development of technology, occurred at the end of the 
nineteenth century. Both breakthroughs faced some initial 
opposition or apathy, the idea more so than the technology. 
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but both prevailed and were developed further. These 
breakthroughs were: (1) Kaier's (1895/6, 1897, 1905) 
espousal of sampling through a "representative method" 
over attempts at complete enumeration for social surveys, 
and (2) the development of punch card machines for data 
processing by Hollerith (1894). Both breakthroughs were 
directly related to survey or census work. This was the first 
and last time that survey or census issues inspired major 
technological innovation. From then on, survey sampling 
has adapted itself to the available technology. 

Kaier's idea was to get a sample that was an approximate 
miniature of the population. Through sampling, more de­
tailed information could be obtained and more specialized 
studies could be carried out, all at a fraction of the cost of 
a census. The idea initially met with opposition and it took 
upwards of a decade for his ideas to be accepted. 

The development of machinery by Herman Hollerith for 
data processing came directiy out of the needs of the U.S. 
Bureau of the Census and the encouragement of the 
Bureau's Director of Vital Statistics, John Shaw Billings. 
The events that led to this development are described by 
Willcox (1926): 

"While the returns of the Tenth Census [1880] were 
being tabulated at Washington, Billings was 
walking with a companion through the office in 
which hundreds of clerks were engaged in labori­
ously transferring items of information from 
schedules to the record sheets by the slow and heart­
breaking method of hand tallying. As they were 
watching the clerks he said to his companion, 
'There ought to be some mechanical way of doing 
this job, something on the principle of the Jacquard 
loom, perhaps, whereby holes on a card regulate the 
pattern to be woven.' The seed fell on good ground. 
His companion was a young talented engineer in the 
office who first convinced himself that the idea was 
practicable and then that Billings had no desire to 
claim or use it. Thereafter he devoted the bulk of his 
life with great ultimate profit for himself and the 
world to ripening the invention and securing its 
adoption. I have no need to describe or eulogize 
Hollerith machines." 

A full description of the development and use of these 
machines for surveys is given in Mandeville (1946). 
Hollerith's machine was applied to processing the 1890 
U.S. census. While the 1880 census took over seven years 
to complete, the 1890 census was finished by early 1895. 
The Bureau used 180 tons of cards that were processed at 
a speed of 6,900 cards per 6V2-hour day. Not only did the 
machine save time, it also significantly reduced tabulation 
errors. The punched card machine was used to process the 
1891 Census of Canada, but it did not see early use in the 
censuses of the United Kingdom and the rest of the British 
Empire. It was felt that the level of detail required in these 

censuses did not justify the use of a Hollerith machine since 
the time saved by the machine would be balanced by the 
time taken to punch the card (Hooker 1894). In a paper on 
census taking Baines (1900) expressed a preference for 
manual over machine tabulation, especially when labour 
was cheap. Despite these initial misgivings, improvements 
to the machine continued and the use of the Hollerith 
machine for statistics became highly developed by mid-
century. Hartiey (1946) demonstrated the most sophisti­
cated use of these punched card machines for statistical 
analysis. This included the calculation of moving averages 
and serial correlations as well as the solution of simulta­
neous equations on Hollerith machines. 

After these near simultaneous and unrelated innovations 
in ideas and technology, theory ran ahead of practice for the 
next 50 or 60 years. Theoretical developments in sampling 
continued through the first half of the century. Out of dis­
cussions over the path to follow in the "representative 
method," Bowley (1926) put together a monograph 
describing all the known theoretical results in sampling 
under random selection and under purposive selection. In 
addition, he developed the theory for stratified sampling 
under proportional allocation. The triumph of randomiza­
tion over purposive selection was due to Neyman (1934) 
who showed why randomization gave a more reasonable 
solution to sampling problems than purposive selection. 
Although not the first to do so, he also developed optimal 
allocation strategies for stratified sampling. Prior to the 
middle of the century the last major development, in terms 
of sampling design with accompanying estimates and vari­
ance estimates, was the concept of unequal probability 
sampling introduced by Hansen and Hurwitz (1943). 

The practical implementation of these theoretical results 
was limited to relatively small-scale surveys. The analyses 
for most surveys used calculators, either electric ones such 
as those manufactured by Friden, Marchant or Monroe, or 
hand calculators operated by turning a crank such as the 
Brunsviga used by Pearson and the Millionaire used by 
Fisher. Since the labour in the analysis increased signifi­
cantly with the sample size, standard errors were seldom 
calculated, and when calculated the correct formulas were 
seldom applied. Bowley (1936) describes a typical situation 
showing the infrequency of standard error calculations: 

"Tabulation is usually a dull and tedious job, but 
there is a certain interest in watching the entries ac­
cumulating in a cross table and seeing the gradual 
growth of continuity out of randomness. When the 
results take the form of a frequency curve, and espe­
cially if we have reason to expect a normal curve 
and find it, we have good reason to suppose that we 
have measured satisfactorily a real entity. Thus the 
distribution of price changes or their logarithms on 
a normal scale gives a great deal of support to the 
validity of an index number. In such cases the 
computation of standard error is reasonable." 
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Box and Thomas (1944) describe a survey of approximately 
4,500 respondents stratified by the industry in which they 
worked. The standard errors, when presented, were calcu­
lated using the formula for simple random sampling. A 
decade later Deming (1956) noted: 

"Although the possibility of showing a valid stan­
dard error is by definition a feature of any probability 
sample, it is a fact that results of probability samples 
have too often appeared in the past without standard 
errors because of the sheer labor of computation." 

It is within this context that Mahalanobis (1946) sug­
gested the technique of interpenetrating subsamples. This 
technique, which Mahalanobis developed at the Indian 
Statistical Institute in the 1930's (Murthy 1967 and Deming 
1956), is very simple: two or more independent subsamples 
are chosen according to the same sampling design. Then the 
variation between the subsample estimates of the population 
total provides an unbiased estimate of the variance of the 
final estimator of the total. Computationally, the method has 
distinct advantages in the punch card environment where 
sums are easier to obtain than variances. With interpene­
trating subsamples the main computational effort is in 
finding the subsample estimates that are based on sums 
only. The Indian Statistical Institute obtained its first 
Hollerith machine in 1944. Prior to that time, tabulations 
and other calculations were done by hand. The Institute's 
Annual Report for 1945-46 published in Sankhyd shows the 
initial unease that always greets technological change and 
the eventual positive benefits to change. With respect to the 
introduction of these machines, the report states: 

"Contrary to apprehensions among certain sections 
of workers that the Hollerith machine would to a 
large extent eliminate manual computations, it was 
found that new and detailed studies which could not 
be formerly undertaken could now be handled with­
out difficulty so that the demand for trained com­
puters in the later stages was on the increase. In 
addition to routine projects undertaken from time to 
time, special studies such as mechanical solution of 
determinants, construction of tables, fitting of ortho­
gonal polynomials, etc. were conducted." 

In the United States, Deming (1956), for example, picked 
up on the general idea and put forward methods of repli­
cated sampling. The U.S. Bureau of the Census used this 
method for variance estimation. At the Bureau this idea 
evolved into pseudo-replication, or eventually balanced re­
peated replication, for variance estimation (McCarthy 
1969). 

3. THE ADVENT OF THE DIGITAL 
COMPUTER 

The initial development of the digital computer was for 
military purposes during the Second World War (Ceruzzi 
1998). For some years after the war the military continued 
to play a central role in the advancement of computing. By 
the 1950's commercial uses were developed for the 
computer, and this is where sampling practice begins to 
catch up with sampling theory. The first generation of com­
mercial computers included the UNIVAC followed by the 
IBM 700 series. These computers contained thousands of 
vacuum tubes as internal memory. The tubes for the IBM 
machine were about three inches in diameter and held 1,024 
bits of information. The UNIVAC ran at 2.25 MHz and 
could carry out 465 multiplications per second. For both 
machines, data were input via punched cards and stored 
data was on magnetic tape rather than continued use of the 
punched cards. The 1961 census in the United Kingdom 
underscores the continuing central role of the military in 
computing at this point in time. The census was processed 
on an IBM 705 computer (Benjamin 1961). The computer 
belonged to the War Office and was used by the Royal 
Army Pay Corps. The census workers were able to use the 
computer when not in use by the army. Information was 
input via cards punched in one location and then taken to 
the computer in another location. 

Although it was not at the forefront of the development 
of the computer as it had been with the Hollerith equipment, 
the U.S. Bureau of the Census was central in the initial 
commercial development of the digital computer. Not only 
did the Bureau receive the first UNIVAC that was pro­
duced, but also some of its employees participated in design 
decisions for its construction (Ceruzzi 1998 and Hansen 
1987). The computer was delivered in March of 1951 and 
was used for processing the 1950 census. It ran 24 hours a 
day all week until the task was completed. Once the census 
work was completed, the computer was used for other 
censuses and surveys including the Current Population 
Survey. Technology was now catching up to theory; the 
computer was now used for better calculation of variance 
estimates. It also opened up new possibilities, in particular 
imputation of missing values. With respect to variance 
estimates Hansen, Hurwitz, Nisselson and Sternberg (1955) 
comment: 

"Until the acquisition of a high-speed electronic 
computer, the UNIVAC, extensive approximations 
were introduced into the estimates of variances to 
avoid computations that would be exceedingly time 
consuming with the available equipment. The avail­
ability of the UNIVAC makes it possible to avoid 
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most of these approximations. Even with the 
electronic computer, however, the work of making 
variance computations would be extremely heavy if 
variances were computed for all items directly. 
Approximate methods will continue to be used in 
the future, but they will be evaluated by more exact 
computations than have been feasible in the past." 

Other statistical organizations followed but at a slower 
pace. The slow pace in Canada was perhaps due in part to 
the American experience. A 1956 report to the Dominion 
Statistician at the Dominion Bureau of Statistics in Canada 
on the subject of computing at the Bureau of the Census 
(reported and quoted by Worton 1998) states: 

"Subject-matter people ... are not entirely con­
vinced that the UNIVAC system has given them the 
results which might be expected from a computer 
system. Undoubtedly UNIVAC has given a great 
deal of trouble - much of it probably not the fault of 
UNIVAC at all. Factors such as poor programming, 
inadequate analysis of the job, inexperienced oper­
ating staff, maintenance problems, and even friction 
between the three operating groups, i.e., the subject 
matter staffs, the Central Operations Group, and the 
Central Electronics Unit are reflected in the perfor­
mance of the UNIVAC system." 

The Dominion Bureau of Statistics, now Statistics Canada, 
obtained its first computer in 1960, an IBM 705. The com­
puter was used to process the 1961 census. As noted 
already, the British used an army-owned computer to pro­
cess their 1961 census. In the late 1940's, Mahalanobis was 
on a list showing interest in obtaining one of the first 
UNIVACs (Ceruzzi 1998). However, the annual reports of 
the Indian Statistical Institute published in Sankhyd show 
that the Institute did not obtain a computer until 1956 at 
which time it received an HEC-2M. 

Variance estimation for survey estimates of means, totals 
and proportions was now feasible for large-scale surveys. 
Widespread use of this technology now depended on two 
things - access to a computer, which was an expensive item 
to buy, and appropriate software to carry out the calcula­
tions. 

4. SCIENTIFIC PROGRAMMING 

Certain kinds of research, and the application of these 
research results, are possible only with computing. These 
possibilities expand not only with the expansion in com­
puting power, but also with easier access to the computer's 
power through programming languages or packaged pro­
grams. For several years the most popular scientific 
programming language was FORTRAN (FORmula 
TRANslation). This was introduced in 1957 by IBM for its 

704 computer. Part of what popularized FORTRAN was 
the development of the WATFOR (WATerloo FORtran) 
compiler at the University of Waterloo in 1965. This 
popular compiler, which was used for teaching purposes, 
combined with the dominance of IBM in the marketplace 
made FORTRAN accessible to many students and subse­
quently to researchers (Ceruzzi 1998). In reporting on the 
development of his own computer programs for survey 
research, Yates (1973) shows how pervasive FORTRAN 
had become over the 1960's. Yates's programs for the 
computer at Rothamsted Experimental Station were origi­
nally written in the late I950's with code specific to the 
computer they had. In the mid-1960's the code was written 
in Extended Mercury Autocode. By the end of the 1960's 
this code had to be translated into FORTRAN using a 
machine translator; otherwise it was not usable at any other 
computer location. The earliest use of FORTRAN in 
sampling that I can find is in Fan, Muller and Rezucha 
(1962). These three individuals, all of who worked at IBM, 
developed algorithms and accompanying FORTRAN code 
to select simple random samples by computer. 

There were two different paths that were followed in the 
application of FORTRAN programming to survey samp­
ling. One was among statistical agencies or survey research 
centres and the other was among individual academic 
researchers. The kind of work followed along each path is 
strongly correlated with the evolving power of the computer 
and the dominance of IBM (and hence FORTRAN) in the 
market. By the end of the 1960's, many institutions had new 
and more powerful mainframe computers, often one of the 
IBM 360 series that was originally announced in 1964. 
Moreover, the software (FORTRAN in particular) remained 
compatible with machine changes and upgrades, especially 
for machines in the IBM 360 series (Ceruzzi 1998). The 
Dominion Bureau of Statistics obtained its first IBM 360 in 
1969, while for example the Universities of Manitoba, 
Toronto and Waterloo obtained their first machines in the 
years 1966-67 (Day 1971). At the agencies and research 
centres, various formulae and procedures necessary to 
survey design and analysis were computerized. For 
example, Fellegi, Gray and Platek (1967) report that when 
the Canadian Labour Force Survey was redesigned over 
1964-65, sample selection by Fellegi's (1963) method of 
unequal probability sampling was coded into a FORTRAN 
routine. From the University of Michigan Survey Research 
Center, Kish and Frankel (1970) report that they had 
FORTRAN code for obtaining variance estimates for a 
variety of statistics including regression coefficients using 
balanced repeated replication. By the mid-1960's academic 
researchers began to use the computer via FORTRAN 
programming to study, numerically or empirically, the 
sampling theory that they or others had derived. One of the 
first was Sedransk (1965) who carried out some efficiency 
comparisons in FORTRAN on an IBM 7074 (marketed by 
IBM in 1964) for a double sampling scheme. In particular, 
efficiency comparisons were made between optimal values 
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for the first and second phase sample sizes and an approxi­
mation to the optimal values. The computations involved 
taking expected values over a trinomial distribution in 
which several conditions had been imposed. The use of the 
computer here was to obtain a numerical comparison 
between exact methods and approximate ones. By the end 
of the decade a new kind of computer-based research 
process emerged. Rao and Bayless (1969) and Bayless and 
Rao (1970) compared several unequal probability sampling 
schemes by generating all possible samples and calculating 
the exact finite population mean square error for several 
real and constructed populations. It then became the norm 
to carry out extensive empirical studies on any newly pro­
posed estimator or design. 

The past 30 years have seen remarkable changes in com­
puting technology. Modem computers are much faster, 
physioaHy smaller and have much greater storage capacity. 
The stSady inefeaSe in computing power and the availability 
of standard programming languages has allowed survey 
researchers to expand as well into survey data analysis. This 
technological change is reflected in developments in samp­
ling theory for variance estimation. From the 1960's to the 
1980's there were three basic computerized approaches to 
variance estimation of complex survey statistics: Taylor 
linearization (see Woodruff 1971, for early references to its 
usage), jackknife (first proposed in sampling by Durbin 
1959) and balanced repeated replication (McCarthy 1969). 
The rise of computing power saw a new technique, Efron's 
(1982) bootstrap, for variance estimation. This new 
statistical technique, which was contemporaneous with the 
development of networked RISC (Reduced Instruction Set 
Computing) workstations running under a UNIX operating 
system, is highly computer intensive. Over the 1980's RISC 
workstations gradually replaced most mainframes in 
research organizations. Near the end of this transition away 
from mainframes, Rao and Wu (1987) extended bootstrap 
methodology to variance estimation for smooth statistics 
under stratified multistage designs. 

The most recent software to have an effect on statistical 
research is the development of computer algebra packages. 
Although computer algebra has been in existence for some 
time, it is only in the last decade that it has progressed to the 
point that it is accessible to many researchers. With com­
puter algebra many complex manipulations can be done 
automatically and much quicker than by hand and without 
risk of error. Similar to several other areas of statistics, 
many of the algebraic manipulations in sampling theory are 
related to algorithms that generate partitions. Based on the 
computer algorithms developed by Andrews and Stafford 
(1993) and Stafford and Andrews (1993), Stafford and 
Bellhouse (1997) have extended computer algebra techni­
ques to survey sampling theory. Using their methodology, 
most of the results of so-called classical sampling theory, 
either existing in the literature or yet to be obtained, can be 
derived automatically. 

5. ANALYSIS OF SURVEY DATA 

While steady and substantial progress had been made in 
research on problems of survey estimation or enumerative 
surveys over the 20th century, by 1970 little had been 
accomplished on the analytical aspects of surveys. The 
terms "enumerative" and "analytical" surveys were coined 
by Deming in 1950 (Deming 1953). In the same article he 
also gives a succinct definition: 

"Briefly, the enumerative question is how many? 
The analytic question is why? is there a difference 
between two classes, and if so, how big are the 
differences?" 

There is an implication in this quotation that the purpose of 
analytical surveys was for comparisons of domain means. 
Certainly, throughout the 1960's the understanding of what 
constituted an analytical survey was often limited to this. 
Cochran (1963) states: 

"In an analytical survey, comparisons are made bet­
ween different subgroups of a population, in order 
to discover whether differences exist among them 
that may enable us to form or to verify hypotheses 
about the forces at work in the population." 

Yates (1960) also focused mainly on domain comparisons 
in his discussion of analytic surveys. He did, however, 
discuss regression analysis and the problem of attenuation, 
but not the problem of general survey weights. Skinner, 
Holt and Smith (1989) attribute the pioneering work in 
analytical surveys to social scientists, Paul Lazarsfeld in 
particular. I will use the theoretical development of 
regression analysis in complex surveys to illustrate these 
connections to social science, in this case economics. 

One of the earliest studies to take into account the survey 
weights in regression analysis was by Klein and Morgan 
(1951). At the time both were at the University of 
Michigan; Morgan was in the Survey Research Center. At 
the outset of their paper they state: 

"The sample design, the methods of collecting the 
data, and underlying economic behavior will all 
contribute to the formulation of the model. The 
study of data collected in consumer surveys has 
convinced us that one cannot proceed simply by the 
application of conventional statistical methods in 
the estimation of economic relationships because of 
the existence of some basic difficulties which we 
classify as follows: (1) weighting of observations, 
(2) heteroscedasticity, (3) nonlinearities, (4) the 
choice of alternative economic concepts, (5) errors 
of observation." 

They addressed the first four "basic difficulties" but not the 
fifth. In their analysis of the approximately 2,300 responses 
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to the Survey of Consumer Finances, which was a multi­
stage sample, Klein and Morgan used the survey weights 
through weighted least squares estimation of the regression 
parameters but ignored the clustering effect when it came to 
variance estimation. They noted that in many cases the use 
of the survey weights had little effect on the estimates of the 
regression coefficient estimates but noted that there was a 
reduction in the estimated variance for the model error. 
Though Klein went elsewhere, Morgan remained at the 
Michigan Survey Research Center. Twenty years later, he 
and another (Lansing and Morgan 1971) gave an overview 
of the state of the art for the analysis of economic survey 
data. Not much had changed in terms of the incorporation 
of the survey design into the analysis. The same is true for 
other areas of social research; in many cases not even the 
survey weights were used. In the economics literature 
debate continued for at least twenty years over whether to 
use the survey weights in regression analysis; Porter (1973) 
has several references to this debate. 

It was out of this milieu that Kish, who also worked at 
the Michigan Survey Research Center, initially put forward 
the concept of the design effect (Kish 1957), which is the 
measure of increase or decrease in variance over simple 
random sampling experienced in a survey with a design 
other than simple random sampling. Design effects have 
become central to many aspects of the analysis of complex 
survey data. With respect to regression analysis, Kish and 
Frankel (1970) studied the design effects in the estimation 
of regression coefficients. They used balanced repeated 
replication to obtain their variance estimates. It is not 
entirely clear in their presentation exactiy what regression 
coefficients they were estimating. Later, the parameters 
were explicitiy spelled out in Kish and Frankel (1974). Spe­
cifically, the finite population parameters are what would be 
obtained in least squares estimation of superpopulation 
regression parameters when the entire finite population is 
available. Estimation of these parameters has become one 
of the standard approaches to regression analysis from com­
plex surveys. Fuller (1975), using Taylor approximations to 
the variances, put the whole inference process on a solid 
theoretical foundation by providing limit theorems for the 
estimates. In addition, he addressed the one problem that 
Klein and Morgan (1951) ignored: errors in the variables or 
measurement errors in the independent variables. 

Konijn (1962) took a different approach to regression 
analysis. Under a cluster sampling design, he assumed 
different simple linear regression models within each 
cluster. The parameters of interest were weighted averages 
of regression parameters with the weights given by the 
cluster sizes. This approach is model-based in the sense that 
it is the model parameters that are of interest, not a finite 
population parameter. Konijn's approach was not followed 
for several years. However, there is now a substantial 
literature that has grown out of this model-based approach; 
Pfeffermann (1993) contains several references. 

With regard to the social science origins of survey 
analysis, there were similar experiences in categorical data 
analysis. The sociological literature from the 1960's and on 
contains many examples of categorical data analysis 
ignoring the sampling design. After Rao and Scott (1981, 
1984) developed contingency table and goodness of fit 
analyses for complex surveys, Rao and Thomas (1988) tried 
to promote this methodology among sociologists using a 
review article. A search through citation indexes shows 
that, although this work has had great impact in the statisti­
cal and medical literature, it has had little impact in the 
sociological literature. The reason for this may be due, in 
part, to lack of computer software. The most popular soft­
ware among sociologists, which is SPSS, does not at the 
moment contain any routines for the analysis of complex 
survey data. This points to a wider problem: regression, 
categorical data analysis and other techniques that have 
been proposed for complex surveys are not widely practi­
cable without the appropriate computer software. Fuller 
himself tried to respond to this need by developing a pack­
aged program for survey data analysis (Hidiroglou, Fuller 
and Hickman 1980). 

6. STATISTICAL SOFTWARE FOR 
SURVEY RESEARCH 

Frank Yates at Rothamsted Experimental Station was the 
first statistician to develop software for survey research. His 
work began in the late 1950's (Yates and Simpson 1960). 
Originally, programs were written that were specific to each 
survey. This evolved into a general-purpose program by the 
early 1960's (Simpson 1961). Although it was the first in 
the field and was available for many years, it never 
achieved widespread popularity. There are at least four 
reasons for its general lack of success, reasons that point to 
the success of other software developers. 

(1) The package was not user friendly. In his obituary of 
Yates, Dyke (1995) made allusion to this fact. He 
says: 

"Yates believed that the analyst should 
understand the relevant theory, and so be ready 
to specify in exact detail what he wanted. 
Perhaps for this reason the program was not 
excessively easy to use! But its power and 
flexibility, and uncluttered clarity of its output 
were, and are, outstanding." 

(2) It was too expensive for what it did and could not 
compete with cheaper competitors. Wolter (1985) lists 
a number of packages that were available in the 
mid-1980's. At the time the package was twice as 
expensive as SUDAAN but could do only tabulations, 
whereas SUDAAN had the additional capability of 
regression analysis and ratio estimation. 
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(3) Marketing is an important factor in the success of a 
product. Yates appeared to be more interested in 
tinkering with his product to improve it rather than 
investing time in marketing it. 

(4) Other than a manual, by 1985 there was no technical 
support for the package. 

Yates was not alone in having software that did not catch 
on. I had the same experience when I developed variance 
estimation software based on tree traversal algorithms 
(Bellhouse 1985). Other than the expense factor (mine was 
free), my package was a living example for the other three 
reasons why some software does not fly. 

By the early 1970's there were over 40 packaged 
programs and routines, written mainly in FORTRAN, that 
would do statistical analyses (Schucany, Minton and 
Shannon 1972). Of these original packages only two have 
remained popular in the marketplace, SAS first released in 
1970 and SPSS released in the late 1960's. 

The survey software that has maintained predominance 
in the market for several years is SUDAAN developed by 
B.V. Shah of the Research Triangle Institute (Shah 1978 
and 1984). It is marketed well and fully supported by its 
developer. It was originally accessed as a SAS procedure 
and has now become a stand-alone package. The tie with 
SAS was probably one of the reasons for its initial success. 
Those who were familiar with SAS could easily familiarize 
themselves with this new procedure, or equivalentiy the 
package, so that in a sense it was user friendly. Further, the 
package has continued to keep pace with survey research. 
The original program contained routines to calculate stan­
dard ertors for survey estimates including means, totals, 
proportions and ratios. This was expanded to include 
regression analysis in the late 1970's when research on 
regression in complex surveys was under way. The program 
now contains routines for regression analysis, logistic 
regression, categorical data analysis and survival analysis. 
It has also kept pace with developments in computing 
machinery. Originally developed on a mainframe computer, 
the package is now available for use on a PC. It still main­
tains its links to SAS, although SAS currentiy has its own 
survey analysis procedures under development. 

Currently, there are several other programs for survey 
analysis. The most popular among these programs, in addi­
tion to SUDAAN, are STATA and WesVarPC. While 
SUDAAN has been linked to SAS, the future development 
of WesVarPC, which was originally developed by the 
research corporation Westat, has been turned over to SPSS. 
Further, the survey routines in STATA are part of a larger 
statistical analysis package. As with mergers in the general 
business world, along with product and service integration, 
the future trend for survey data analysis packages is to 
become part of an omnibus statistical package. The deve­
lopment and maintenance of statistical packages, for survey 
research or for a wider context, is a time-consuming 

enterprise requiring a substantial capital investment. This 
can only be done by a well-financed organization. 

SUDAAN, STATA and WesVarPC, along with the 
software packages GES from Statistics Canada and another 
named CLAN, have been recently reviewed and evaluated 
in Bergdahl, Black, Bowater, Chambers, Davies, Draper, 
Elvers, Full, Holmes, Lundqvist, Lundstrom, Nordberg, 
Perry, Pont, Prestwood, Richardson, Skinner, Smith, 
Underwood and Williams (1999). SUDAAN and STATA 
have also been evaluated by Cohen (1997). Among three of 
the packages reviewed (STATA, SUDAAN and 
WesVarPC), SUDAAN appears to have the most options. 
For example, Bergdahl et al. (1999) note that SUDAAN 
carries out variance estimation for complex statistics using 
any one of Taylor linearization, jackknife and balanced 
repeated replication. WesVarPC covers jackknife and 
balanced repeated replication, while STATA relies solely 
on Taylor linearization. So far, none of the packages does 
variance estimation using the bootstrap. It may just be a 
matter of time before this technology is incorporated into 
these packages. For some of its public use sample files. 
Statistics Canada provides bootstrap variance estimation 
procedures in SAS code. These procedures, however, are 
specific to the surveys in question. 

7. MODELS IN SAMPLING 

Models have come in and out of favour among sampling 
practitioners. Due to Neyman's (1934) pioneering work, the 
paradigm of randomization and the randomization distribu­
tion was paramount until the 1960's. However, the use of 
models did not disappear during the intervening years. 
Cochran (1946), for example, used models to study certain 
sampling designs and was able to conclude that systematic 
sampling was a good design to use under certain population 
structures. The 1960's debate over models arose out of the 
questioning of the foundations of sampling initiated by 
Godambe (1955). Since then the use of models has not only 
crept back in to sampling theory but has flourished 
substantially. 

Since the 1960's the use of models in sampling has gone 
in several directions. At the same time, the practical and 
general use of models in survey estimation and analysis is 
only feasible with high speed computing and the appro­
priate software. In keeping with the theme I have been 
following here, I will take a very narrow approach to 
models by tying their usage to computing technology. 

Several model-related methodologies have been comput­
erized, either through the provision of numerical examples 
to illustrate the use of the methodology or through simula­
tion studies to examine how the methodology works. At the 
present time there is only one model-related approach that 
has matured to the point where a general package program 
is available. This is the model-assisted approach that 
C.-E. Samdal has taken over several years resulting in 
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generalized regression estimation or GREG. The bulk of the 
work is summarized in Samdal, Swensson and Wretman 
(1992). The work was initially motivated by the debates 
over the foundations of sampling. Under a model, a best, in 
some sense, estimator of a finite population parameter can 
be derived. Those on the side promoting randomization 
inference pointed out that when the model fails the 
associated estimator can perform very poorly. The solution 
propounded by Samdal was to obtain the estimate under the 
model and then to adapt it in such a way that it would 
remain consistent and perform adequately under the ran­
domization distribution. It is an attempt to obtain the best of 
both worlds. Generalized regression estimation, as well as 
several other estimators, have been programmed into GES, 
a generalized estimation system developed at Statistics 
Canada. This SAS-based software is aimed at the descrip­
tive side of surveys rather than the analytic and is described 
in Estevao, Hidiroglou and Samdal (1995). It is a package 
that could easily catch on under the right conditions. 

8. CONCLUSIONS 

Developments in sampling research are inextricably tied 
to computing and computational methods. Where research 
is headed will be guided, in part, by computer develop­
ments. What the immediate future holds for computing is 
greater speed and greater storage capacity so that packages 
can become bigger and more comprehensive. Generally 
acceptable practices in survey estimation and the analysis of 
survey data will be determined by the contents of generally 
available computer packages for survey sampling. On the 
research methodology side, new methodology will continue 
to be increasingly computer intensive. One other foresee­
able development is the explosion of the internet. As a 
result of this explosion, several complete survey datasets 
are now easily available via the web. The extensive testing 
of new methodology on a variety of real surveys prior to 
publication of the methodology may soon become the norm. 
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The Past is Prologue 
BARBARA A. BAILAR' 

ABSTRACT 

Mahalanobis provided an example of how to use statistics to enlighten and inform government policy makers. His 
pioneering work was used by the US Bureau of the Census to leam more about measurement errors in censuses and surveys. 
People have many misconceptions about censuses, among them who is to be counted and where. Errors in the census do 
occur, among them errors in coverage. Over the years, the US Bureau of the Census has developed statistical techniques, 
including sampling in the census, to increase accuracy and reduce response burden. A root-mean-square-error model was 
developed to estimate the joint effects of variance and bias in the census. The model is used in this paper to look at the joint 
effects of response variance, adjustment of the bias caused by the undercount, and the use of sampling for follow-up. 

KEY WORDS: Censuses; Mahalanobis; Root-mean-square-error model; Sampling in the census. 

1. INTRODUCTION 

Perhaps it has always been so - that statistics, as a body 
of information, does not always support the actions that 
politicians want to take. In some countries, data from 
censuses are not made public, because knowledge is power. 
However, in our society, the power of statistics is used to 
inform us about needs for action, or how well we're doing 
as a country, or as the basis of comparison among groups. 
We are used to seeing and trusting statistics on an everyday 
basis, though most of us give little attention to how they are 
produced, by whom, and at what cost. 

Over the last few decades, there have been many issues 
where statistics and politics have been in conflict. Employ­
ment and unemployment data are often used by politicians, 
especially in an election year. If the unemployment figures 
are low, the incumbents cite that figure and take the credit. 
If the employment figures show that many new jobs are 
being created, that number is cited. Either political party 
can use these data to make whatever political points seem 
salient. An attempt by the Nixon Administration to restrict 
access to these data led to new protections, such that the 
employment and unemployment data are released on the 
first Friday of every month by the Commissioner of the 
Bureau of Labor Statistics at a meeting of the Joint 
Economic Committee on Capitol Hill. 

The definition of poverty is currently under discussion. 
When the poverty measure was invented by Molly 
Orshansky, there were not the large transfer payment 
systems that exist today. Because of income received or 
benefits paid, poverty today does not mean what poverty 
did 30 years ago. However, each political administration 
watches the poverty numbers very closely. These numbers 
were used by critics of the Reagan Administration to illu­
strate the growing burden of the poor in an administration 
that was alleged to be more interested in serving the rich. 
That Administration argued that by including medical 

benefits and other transfer payments, the poor were better 
off than before. 

Probability samples of the U.S. population are now used 
to study sexual behavior. Much of our information on 
sexual behavior goes back to Kinsey. The National Opinion 
Research Center (NORC) at the University of Chicago has 
conducted two large surveys of sexual behavior in the U.S. 
One of these. Sex in America, (Michael, Gagnon, Laumann 
and Kolata 1994) reported on a national sample of persons 
aged 18-59, and was not funded by the government. The 
second researched the sexual behavior of adolescents and, 
in both cases, federal funding for these studies was 
questioned because powerful constituencies did not want 
the subject matter to be examined. The second study was 
finally funded by the government. 

Privacy issues abound. For example, there is broad con­
cern about the confidentiality of individual medical records 
and the need for researchers to access them. Privacy issues 
for groups are less widely recognized. Certain groups may 
not want to report fully in a decennial census or survey 
because they do not want to attract attention. Though 
people who are in the country illegally are supposed to be 
included in the census, many of them fear that government 
authorities looking at block statistics could use the informa­
tion to raid certain blocks. 

My last example here of issues in which politics and 
statistics are having a disagreement, is the decennial census. 
For decades, an undercount in the census and its differential 
impact on minority populations has been well-documented. 
The Census Bureau has studied this issue for years and now 
has the statistical tools and methods to represent the un­
counted individuals in the census totals. Yet this "adjust­
ment" is opposed by many politicians because of an antici­
pated effect on the drawing of election district boundaries. 
However, the uses of the census extend far beyond appor­
tionment and redistricting. The battle before the 2000 
Census has been unusually intense. 

Barbara A. Bailar, National Opinion Research Center, 1155 East 60"" Street, Chicago. Illinois. U.S.A. 
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Given these instances in which politics and statistics are 
confronting each other, it is useful to step back in time to 
review the contributions of Mahalanobis to the government 
of India. His methods were used successfully by the U.S. 
Census Bureau to leam much of what we know about errors 
in the census. I will review Mahalanobis' contributions, 
then return to a discussion of the census, the statistical tools 
currentiy used in the census, additional tools that could be 
used, and then conclude with a plea for Congress and the 
Census Bureau to follow the tradition of continuous im­
provement in the census through the use of statistical tools. 

2. THE MAHALANOBIS LEGACY 

Mahalanobis played an important role in the methodo­
logy we take for granted today. He was trained to teach 
physics, but became increasingly interested in statistical 
problems and then in building the Indian Statistical 
Institute. His work on the utilization of interpenetrated sub-
samples of the population was innovative, and gave great 
impetus to research on the effects of interviewers on survey 
and census statistics. He paid great attention to the need for 
pilot studies to test the implementation of survey tech­
niques. As time went along, he enlarged his interests from 
sampling and surveys, in which he provided much needed 
information to the government, to planning and economic 
development. He was appointed Honorary Statistical 
Advisor to the Cabinet in January, 1949 and placed in 
charge of the Central Statistical Unit in the same year. The 
central role of statistics in government planning was, no 
doubt, due to the force of the man himself as well as his 
research findings. He saw the role of statistics as a system 
to serve the cause of planned development and envisioned 
a feedback arrangement between statistics and planning 
(Rudra 1996). 

The particular contributions I wish to stress today are his 
major roles in sample surveys and in measuring error of all 
kinds - errors of observation, ertors of measurement, 
sampling errors, copying errors, printing errors. Much of his 
early work on showing the variability in statistics caused by 
interviewers was in crop statistics (Mahalanobis 1950). He 
was one of the first to say, and then show, that the overall 
error in survey statistics was not just sampling variance but 
also the variance arising from the human element. One way 
to study such errors was by the use of interpenetrated 
subsamples. In the words of Mahalanobis, 

"When two (or more) samples are drawn from the 
same population and covered according to the 
same survey design, the results based on the 
different samples are equally valid, even though 
they are derived by different operational units; and 
divergences between the different sets of estimates 
supply directly some idea of the margin of 
uncertainty." (Mahalanobis and Lahiri 1961) 

Mahalanobis demonstrated that statistics based on 
samples were at least comparable to, and often more accu­
rate than statistics based on a census, in the 1940's, when 
sampling was still not fully accepted. He believed, as many 
of us now do, that samples can be better controlled than can 
a census. He stated (Mahalanobis and Lahiri 1961) that the 
magnitude of discrepancies found in a census of jute pro­
duction made it appear that a census may not provide 
accurate estimates for small areas. The random component 
of the non-sampling error may add enough error that results 
for a large area may be no different from those obtained by 
a sample survey. What holds for a large area does not 
naturally follow for small areas. 

The U.S. Census Bureau used Mahalanobis' techniques 
to leam more about the underlying variability of census 
numbers. 

3. WHAT DO PEOPLE THINK A CENSUS IS 

To most people, taking a census means that enumerators 
go out and count everyone. There are three things that 
people seem to think about censuses. One is that everyone 
is counted. A second is that an enumerator sees everyone. 
A third is that the census is without error. Let's look at 
these one by one. 

Often, everyone is not supposed to be counted in a 
national census, and who should be counted varies from 
country to country, and over time within a country. For 
example, military personnel and their families located 
outside of the country could be counted or not. Civilian 
aliens temporarily in the country as seasonal workers could 
be counted or not. From these illustrations one can see that 
a primary necessity in census-taking is defining the scope 
of the census. 

So, by definition, certain groups of people are not to be 
counted in the census. This is by design of the Census 
Bureau. Other people make individual or family decisions 
not to be counted in the census. In earlier times, some 
families did not report children who suffered from some 
diseases or retardation. Some people who have had unfor­
tunate episodes with the legal system may decide not to be 
counted. These may be people who are in the country 
illegally, those who are hiding from law enforcement, and 
those who fear, for whatever reason, the consequences of 
being counted. In 1990, there were people who said they 
would not be counted because they thought the census was 
too intrusive. 

Finally, there are people missed, not by design but by 
accident. Perhaps they lived in buildings that were missed, 
perhaps they lived on the street and were missed. Perhaps 
they were away during the census period. During 1998 
there were many reports of how much harder it was to 
survey people who live in gated communities. It may be that 
some of these people are missed because of the overzealous-
ness of the community guards. In some communities good 
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maps are unavailable or not updated, so groups of people 
may be missed. 

In any case, not everyone is counted in a census and 
never was. 

The second myth to be refuted is that an enumerator sees 
everyone and knows who should be in the census or not. 
This never happened, even in the early censuses in the U.S., 
when U.S. Marshals took the census and the country was 
much smaller. In fact, early censuses were of households, 
not of individuals. This means that there were no questions 
asked of individuals but instead there was interest in how 
many people were in the household, how many were men 
and how many were women, how many were in different 
age groups, and so forth. The totals were posted in public 
places. Starting in 1880 the canvasser method of taking a 
census, where enumerators went from door to door, came 
into being. It is this kind of census that made some believe 
that an enumerator saw everyone. However, a single house­
hold member usually responded for the whole family. The 
enumerator did not see those who were sick, those at work, 
those who were away temporarily, or those who were, for 
some reason or another, not in the room when the 
enumerator visited. 

Though the enumerator-type census was an improvement 
over one taken by the marshals, research using interpene­
trated subsamples showed that census enumerators still 
added a considerable amount of error to the census 
statistics. The enumerators were influenced by their own 
expectations and by responses of others in their enumera­
tion district. Also, some did not understand the instructions 
and reported things incortectly. An experiment in the 1950 
census showed that enumerators added considerable varia­
bility to the census statistics (Hanson and Marks 1958). 
Indeed, the statistics gathered from a census had the same 
level of variability, due to enumerators, as a 25-percent 
sample. This is the main reason the Census Bureau turned 
to the use of self enumeration in the 1960 census and 
progressively expanded it in later censuses. Now, if a 
household receives the census form by mail, fills it out, and 
sends it in, and no errors require resolution, no enumerator 
will call at the household. 

The third myth is that census taking occurs without error. 
No one who now works on censuses or surveys believes 
that, but other people do. The Census Bureau encourages 
that belief by publishing data down to the last digit. For 
example, the population of the United States in 1990 was 
reported and published as 248,718,301 in the Statistical 
Abstract. 

Even some of those who have worked closely with a 
census cannot see it as a statistical process that carries with 
it a certain amount of error. Because the ertor is not 
routinely quantified and published along with the census 
numbers, some cannot believe the error exists. Some 
persons working in the Population Division of the U.S. 
Census Bureau in the 194()'s and 50's believed that the 
census was the best way to leam about any subject, and that 

sample surveys were inferior. Repeated demonstrations of 
accuracy in survey results and of bias in census data did not 
change their minds. 

Anyone who comes into regular contact with the census 
now knows that there is error in the data. First, though 
sampling variance cannot occur for items collected on a 
100-percent basis, there may still be substantial response 
variance introduced by effects of enumerators, respondents, 
and coders on census data. Second, bias affects responses 
to many census questions even when a person is correctiy 
counted. Bias also affects counts when enumerators do not 
count everyone. The Census Bureau conducts an evaluation 
program as part of every census, documents the amount of 
error, and uses those data to attempt to improve the next 
census. 

Large groups of people are affected by census error. The 
undercounting bias affects minority populations and 
children at a much higher rate than other populations 
(Edmonston and Schultze 1993). Thus, communities that 
are largely African-American, Hispanic, or American 
Indian are underrepresented in distributions of potential 
power and money, while those statistics that are based on 
children under 10 are subject to a large error. 

Over the years, the Census Bureau has reported 
numerous studies looking at the balance between cost and 
accuracy. One mentioned before is the use of self-
enumeration. At smaller levels of population, the effect of 
response variance, primarily caused by interviewers, was 
very high. Just as with sampling error, as the size of the area 
increased, and the number of enumerators who collected the 
data increased, the effect lessened. When the mail return 
rate was close to 80 percent, the response variance 
decreased to about one-quarter of that of a 25-percent 
sample (Bailar 1969). 

Thus, commonly held images of the census are not 
always tme. Also, the census is not always the same. The 
Census Bureau has made many changes in census taking 
since the first census in 1790. The number of questions, the 
kinds of questions, who is counted and where, who does the 
counting, how people are assigned to a geographic domain, 
how missing characteristics are handled, and the gradual 
increase of asking most questions of a sample have changed 
over the years. The next section shows how the use of 
statistical tools has changed the census in this century. 

4. DEVELOPMENT OF STATISTICAL 
TOOLS IN A CENSUS 

Two elements have changed the methods of the U.S. 
Decennial Census considerably since 1940: the use of com­
puters; and the use of statistical techniques. At times, the 
two elements have complemented each other, for example 
in the fast processing for imputation of missing data using 
a "hot deck" procedure. While computers have profoundly 
affected the census, the remainder of this discussion will 
focus on the statistical methodology. 
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One of the major advances starting in 1940 has been the 
use of sampling in the census. In 1940, as documented by 
Waksberg and Hanson (1965), there were three major uses 
of sampling. One was for the collection of data deemed 
supplementary to the main census questions. Questions 
such as mother tongue, veteran status, and fertility were 
asked of a 5-percent sample. A second use was for certain 
analytic studies requiring clerical transcription and coding. 
To avoid a long timespan for the transcription and coding 
to take place, a sample of census questionnaires was 
selected and the transcription and coding occurred only for 
them. A third use was for the verification of large-scale 
clerical operations such as editing, coding, key-punching, 
and so forth. Prior to 1940, all verification was on a 100-
percent basis. 

To describe the next leap forward, Waksberg and 
Hanson said: 

"A major step forward in the use of sampling in 
census work took place in the 1950 Census of 
Population and Housing. This grew out of a pro­
found change in attitude regarding the role of 
sampling. Whereas in 1940 sampling had been 
considered applicable only for items of supplemen­
tary and secondary interest, in 1950 the entire 
range of census activities was examined to deter­
mine, on a logical basis, where complete counts 
were necessary and where samples could provide 
adequate information." 

The increased use of sampling for population characte­
ristics, for sample tabulations, and for verification was 
successful and evaluations showed that, even,with the 
addition of sampling error, overall error was less than if 
earlier techniques had been used with no sampling. This 
was a reinforcement of the lesson learned earlier by 
Mahalanobis. 

During the 1950 Census, the Bureau did a great deal of 
research to leam the effect of response biases and response 
variances on census data. Waksberg and Hanson declared 
that it was misleading to assume that the census, without 
sampling, was without error. In 1950, an experiment was 
conducted to estimate the effect of census enumerators on 
census data. By using the method of interpenetrated sub-
samples introduced by Mahalanobis, pairs of adjacent 
census areas were merged and assignments to the enume­
rators were randomized. Since the assignments were over 
the same area, differences between enumerators did not 
reflect differences in the type of area. The main finding of 
the study was that a full census in which enumerators went 
door to door to collect the census information had response 
variability that made the census the equivalent of a 25-
percent sample (Hanson and Marks 1958). Using that 
result, as well as studies of biases in various census items, 
Waksberg and Hanson formulated a model in which census 
results were subject to a relative response bias of 6 percent 
and a response variance equal to the sampling variance of 
a 25-percent household sample. They used this model to 
generate Table 1 which shows the magnitude of total error 
in census data with and without sampling. 

The authors point out that for a characteristic describing 
500 individuals in an area of 2,500 people, the increase in 
the total root mean square error arising from sampling 
variability is only about 25%. For larger areas and larger 
cells, the additional error due to sampling is even smaller. 

These data were studied carefully before the decision to 
increase the use of sampling in the 1960 Census. In 
practice, sampling made even greater gains than those 
anticipated by the model. The authors state "Thus for a 
great many published statistics, the reliability was better 
with the use of sampling than would have been possible 
otherwise." (Waksberg and Hanson 1965.) 

Table 1 
Expected Root Mean Square Error (RMSE) of Estimated Cell Frequencies for Individual Items Based on a Complete Census 

and On a 25-Percent Sample of Households 

Area of 2,500 Population having 
RMSE based on 

Area of 10,000 Population having 
RMSE based on 

Area of 50,000 Population having 
RMSE based on 

Cell 
Frequency 

12 

50 

125 

500 

1,250 

Complete 
Census 

7 

14 

22 

49 

89 

25-percent 
Sample 

10 

19 

31 

62 

102 

Cell 
Frequency 

50 

200 

500 

2,000 

5,000 

Complete 
Census 

1 

30 

52 

140 

320 

25-percent 
Sample 

20 

40 

67 

160 

330 

Cell 
Frequency 

250 

1,000 

2,500 

10,000 

25,000 

Complete 
Census 

34 

85 

180 

620 

1,520 

25-percent 
Sample 

46 

105 

200 

650 

1,530 

Note 1; Computations assume a relative response bias of 6 percent and response variance equal to the sampling variance for a 25-percent 
sample. 

Note 2: The accuracy of the results (cell frequencies) is measured by a certain kind of average of the actual errors that would occur, the root 
mean square error (RMSE). A useful working rule would be to assume that approximately two-thirds of all results of a census or a 
sample would differ from their true cell frequencies by no more than their RMSE's. 
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A large-scale evaluation and research program of the 
Decennial Census program began in the 1950's and is now 
an integral part of the Census. Part of the program tests new 
methods for possible use in the following census and part of 
it focuses on the evaluation of the current census. It was as 
part of this program that the Bureau started measuring the 
undercount in the census. It was also this program in which 
the response variance due to enumerators was measured 
before and after the advent of self-enumeration. (In 1960, 
after self-enumeration was introduced, the response 
variance decreased to 1/4 of the 1950 level.) Since mail-
back rates have decreased substantially since 1980, that 
variance may have increased again, perhaps substantially. 

Other studies included research on alternative ways to 
measure the undercount, record checks to measure the 
accuracy of census data, and a study of using the Post Office 
not only to deliver census questionnaires but to notify the 
Census about missed addresses and duplicate forms. 

Sampling is now used extensively to control the quality 
of the large-scale clerical tasks associated with the census. 
In past censuses, verification was usually dependent, in 
which the verifier reviewed the coder's work and deter­
mined whether the correct codes had been assigned. The 
Bureau planted errors and found that dependent verification 
missed as many as half of the errors. This and other 
research caused the Bureau to develop independent verifi­
cation, in which records are assigned to three coders who 
do not see each other's work. A "majority rule" is used to 
determine the best code, and statistics about such errors are 
used to improve the process and to identify substandard 
performance. 

Imputation was also a necessary tool developed for use 
in the census. To keep within time and budget parameters, 
the Bureau developed a "hot-deck" imputation system, 
based on the assumption that people who live in proximity 
are likely to resemble each other for many characteristics 
such as educational attainment and income. Another kind of 
imputation was also used in 1970, 1980, and 1990 to deal 
with a small, residual set of addresses left on the mailing list 
with no information about whether or not they were 
occupied. No one answered the door, nor did neighbors 
know if anyone lived there. Thus, based on a model that 
assumed a high correlation between the characteristics of 
neighboring households, the Bureau imputed occupancy or 
vacancy status, and to those imputed as occupied, a number 
of people were imputed. In 1980, only 762,000 persons 
were imputed, about .003 of the total census count, but they 
were not spread evenly over all the States. As a result of the 
imputation, Indiana lost a Congressional seat to Florida. 
However, it should be acknowledged that doing nothing 
about the unclassified units would have been equivalent to 
imputing them all as vacant. There was information avail­
able that showed that over half of these units could be 
expected to be occupied so the data based on imputation 
were more accurate than data based on counts alone with no 
imputation. 

5. ADDITIONAL USES OF STATISTICAL 
TOOLS 

Statistical tools can be used to correct the census for the 
undercount. The Waksberg-Hanson root mean-square error 
model estimates the amount of error in the census assuming 
a relative response bias in the overall census of 2 percent. 
(The 1990 estimate was 1.6 percent.) Also assume a 
response variance in both the adjusted and unadjusted 
census equal to one-fourth the sampling variance of a 25-
percent sample. That estimate may now be too low since 
decreasing mail-back rates have driven enumerator vari­
ances higher. However, to be on the conservative side, we 
shall use the 1960 and 1970 measurements. 

The model is the simple mean-square ertor model used 
frequently by the Census Bureau. 

MSE(r)=Var(7')+5^ 

Assume Tis a cell size or a size of interest in the census in 
an area where A'' is the population size. T = NP where P is 
the proportion of the population having a certain 
characteristic. B is the bias in the census count. So, for 
example, in an area of 2,500 people, one might be 
interested in knowing the number of children under 10 
years of age. Â  = 2,500 and T = NP. 

Now the variance of an estimated proportion,/? is: 

^(p) = ^---PQ 

N-l n 

If we have a 25 percent sample, this reduces to 

4 n N 

V{T) = V{Np)=NW{p) = 3NPQ 
= 3TQ 

Relative bias = (.02) so Bias = .02T 
Now we are dealing with a census, so there is no 

sampling variance, but the response variance is equal to 1/4 
of what the sampling variance would be. So 

MSE(r) = (.027)2 ^ (.25)(3)rg 

and 

RMSE(r) = sJ{.02T)^ + {.25){3)TQ 

This formula has been used as the basis of the calculations 
in Table 2. For an unadjusted census, RMSE(r) would have 
both the bias and variance components. For an adjusted 
census, the relative bias is zero, so only the response variance 
term remains. However, this analysis presumes that the 
adjustment factors themselves are free from any kind of 
variance and bias, and that the same adjustment factors can 
be uniformly applied within the demographic groups. 
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For example. Table 2 shows that for a total of 500 in an 
area of 2,500, the RMSE for an unadjusted census is 20 
while the RMSE for an adjusted census is 17. For the unad­
justed census, the contribution from the bias term is small, 
[(.02)(500)]^=100. The contribution from the response 
variance is (.25)(3)(500)(.8)=300. So RMSE =v'400=20. 
For the adjusted census, the bias term, 100. is removed, so 
the RMSE= 7300=17. However, if one considers that the 
estimated bias term has both variance and bias, there may 
be little difference between the adjusted and unadjusted 
results for a small area. As the total, T, gets larger, the bias 
term is more dominant, and the adjustment removes more 
error. 

Table 2 shows that for a small area of 2,500 persons 
there is no gain for small totals, but a gain of 43 percent in 
accuracy for a large total of 1,500 persons. In a somewhat 
larger area of 10,000 persons, there is little reduction in 
error until a total of 1,000 is of interest, where there is a 
gain in accuracy of 21 percent and for a large total of 5,000, 
there is a gain of 61 percent. Thus, if we were talking about 
the number of men or women in an area of 10,000, a total 
that might be expected to be around half the population, 
there would be a large gain in the accuracy of the total from 
using adjusted census figures. For an area of 50,000 the bias 
term dominates the mean square error, even at smaller totals 
such as 1,000. Here the gain is 21 percent, which grows to 
81 percent for a very large total of 25,000. 

This illustration shows is that adjusting the census does 
not add to the error of the census, even for small areas and 
small cells, if one assumes that the bias term is measured 
without error. For smaller area sizes and smaller cells, the 
response variance dominates the mean square error, but the 
total error is never less than the response variance. When 

the census is adjusted, the bias term goes to zero, and the 
gains in accuracy are dramatic. 

One virtue of this model is that it was developed by the 
Census Bureau long before the current debate on adjust­
ment grew heated. It was used to disabuse people of the 
idea that the census cells have no error. It was used success­
fully to show critics that having most of the census 
questions answered by only a sample would not hurt the 
data unduly. Such a tried and true census model now shows 
the real value of adjustment. 

Table 2 used the relative response bias of 2 percent based 
on the 1990 Census overall estimate of the undercount of 1.6 
percent. However, since the undercount hits minority 
populations harder, let's look at a comparison of an adjusted 
and unadjusted census in which the relative bias is 4 percent. 
(The 1990 estimates of the undercount were 4.4 percent for 
African-Americans, 4.5 percent for American Indians, 5.0 
percent for Hispanics, and 2.3 percent for Asians.) 

Table 3 shows the RMSE for minority communities for 
the sizes 2,500,10,000 and 50,000. Though the RMSE's for 
the adjusted census stay the same, since the bias has been 
removed, the unadjusted RMSE's are considerably larger. 
The gains in accuracy from an adjustment are much larger in 
minority communities, as one would expect. For example, as 
shown above, the error in the number of males in a non-
minority community of 10,000 would be about 109 unad­
justed and 43 adjusted. In a minority community, the errors 
are 205 and 43 respectively. In a larger area of 50,000 the 
improvement is dramatic even for a small cell of 1,000. 

Now, suppose we repeal the 1976 law that specifies that 
there shall be no sampling for the apportionment numbers. 
Think about a census in which, after a certain date, the 
housing units not returning census forms are sampled. 

Table 2 
Expected Root Mean Square Error (RMSE) of Estimated Cell Frequencies for Population Estimates Based on a Census 

with No Adjustment for Undercount and with Adjustment 
Area of 2,500 Population having 

RMSE based on 

Cell 
Frequency 

15 

50 

100 

500 

750 

1,000 

1,500 

Unadjusted 
Census 

3 

6 

9 

20 

25 

29 

37 

Adjusted 
Census 

3 

6 

8 

17 

20 

21 

21 

Area of 10,000 Population having 
RMSE based on 

Cell 
Frequency 

50 

100 

200 

500 

1,000 

2,000 

5,000 

Unadjusted 
Census 

6 

9 

13 

21 

33 

53 

109 

Adjusted 
Census 

6 

9 

12 

19 

26 

35 

43 

Area of 50,000 Population having 
RMSE based on 

Cell 
Frequency 

250 

500 

1,000 

2,500 

5,000 

10,000 

25,000 

Unadjusted 
Census 

15 

22 

34 

65 

116 

214 

509 

Adjusted 
Census 

14 

19 

27 

42 

58 

77 

97 

Note: Computations assume a relative response bias of 2 percent in the unadjusted census and 0 percent in the 
adjusted census. There is a response variance in both the adjusted and unadjusted census equal to 1/4 the 
sampling variance of a 25 percent sample. 



Survey Methodology, June 2000 27 

Tables 
Expected Root Mean Square Error (RMSE) of Estimated Cell Frequencies for Population Estimates in African-American, 
American Indian, and Hispanic Communities Based on a Census with No Adjustment for Undercount and with Adjustment 

Area of 2,500 Population having 
RMSE based on 

Cell 
Frequency 

15 

50 

100 

500 

750 

1,000 

1,500 

Unadjusted 
Census 

3 

6 

9 

26 

31 

45 

64 

Adjusted 
Census 

3 

6 

8 

17 

20 

21 

21 

Area of 10,000 Population having 
RMSE based on 

Cell 
Frequency 

50 

100 

200 

500 

1,000 

2,000 

5,000 

Unadjusted 
Census 

6 

9 

15 

21 

48 

87 

205 

Adjusted 
Census 

6 

9 

12 

19 

26 

35 

43 

Area of 50,000 Population having 
RMSE based on 

Cell 
Frequency 

250 

500 

1,000 

2,500 

5,000 

10,000 

25,000 

Unadjusted 
Census 

17 

28 

48 

109 

208 

407 

1,004 

Adjusted 
Census 

14 

19 

27 

42 

58 

77 

97 

Note: Computations assume a relative response bias of 4 percent in the adjusted census and 0 percent in the 
adjusted census. The response variance in both the adjusted and unadjusted census equal to 1/4 the sampling 
variance of a 25 percent sample. 

In this model, there are two components of variance, the 
response variance and the sampling variance. The sampling 
variance is based only on the nonresponse universe. 

Let R be the nonresponse rate, and Mthe population of 
nonresponse households. Then M= RN. The total for which 
we are trying to estimate the sampling variance is 5 = PM. 
The relationship between S, the sampled part of the total, 
and T, the total, is through R. S = PM= P{RN) = RT. 

So the sampling variance = 3MPQ = 3PQRN, assuming 
a 25-percent sample of the nonrespondents. This sampling 
rate could easily be changed for a larger rate, but for 
purposes of illustration, it suffices. 

In Table 4, there are three contributors to the RMSE. 
Two of them are the terms we saw in the earlier description 
when sampling of the non-mail returns was not a conside­
ration. Now we have a third term, expressing the sampling 
variance arising from the sample of non-mail returns. In an 
adjustment, only the bias term goes to zero, while the two 
variance terms remain. Each of the variance terms gets 
smaller as the cell size gets larger, but they do not vanish. 

Table 4 shows the RMSE's for a census with no 
sampling of non-mail return households, with and without 
adjustment, for a 25 percent sample of non-mail return 
households when only half of the population mails them 
back and when 70 percent mail them back for the three 
sizes of area we have looked at before: 2,500 population, 
10,000 population, and 50,000. The no sampling case is 
what we will have in the 2000 Census because the use of 
sampling for follow-up is prohibited. Look first at Section 
A for a population of 2,5(X). Where there is no sampling of 
non-mail return households, we see the numbers from Table 
2. When half of the population mails back the census form, 
and the remaining half is sampled, the variance component 
keeps the adjusted and unadjusted RMSE's very close 
together. At maximum, there is a 20 percent reduction in 

error. There is somewhat more gain when the mailback rate 
is .70 and only 30 percent of the remaining population is 
sampled. The maximum gain in this case is 28 percent. 

Small areas, such as those of 2,500 may be greatly 
affected by sampling, especially at a 25-percent rate if the 
mailback rate is low. Whether a decrease in accuracy is 
acceptable depends on the uses for the data. Since provi­
ding small area data is an important objective of the census, 
it may be that there would need to be a much larger 
sampling rate, if not complete follow-up for small areas. 
The Census Bureau has done this before with some 
characteristics, such as income, so that there would be less 
variability in the income data for areas of 2,500 or fewer 
persons. Following that same principle, it could be specified 
that there would be no sample follow-up in places of 2,500 
persons or fewer, and variable follow-up rates depending on 
place size. Another strategy would be to use the information 
abundantly available about coverage error and to specify 
larger samples in places that have characteristics highly 
correlated with the undercount. 

For areas of 10,000 population, we see a definite impro­
vement from the adjustment for the bias, but the adjusted 
numbers with sampling are still considerably larger than the 
adjusted figures without sampling. However, if there is no 
adjustment, the sampling adds to the RMSE, but the 
unadjusted numbers are not much different. There is a 15 
percent increase in the RMSE when only half the popula­
tion returns the census form and an increase of 9 percent 
when 70 percent return it. 

Finally, when we look at an area of 50,000 we see that 
the bias dominates the RMSE for all but the smallest cell 
sizes. When the total we are trying to estimate is 5,000 or 
larger, sampling adds to the RMSE, but an adjustment, with 
sampling, is still superior to unadjusted numbers with no 
sampling. 



28 Bailar: The Past is Prologue 

Table 5 is similar, but geared to a predominantly 
minority population. As in Table 3, the relative bias is 4 
percent, reflecting an average undercount rate for mino­
rities. In this table, the RMSE's for unadjusted totals are 
much more similar, even for smaller areas, because of the 
larger effect of the bias term on the RMSE. 

The results for areas of 50,000, which exist in most large 
cities, show the devastating effects of not adjusting for the 
large minority undercount. The sampling variance for the 

larger totals has practically no effect on the RMSE, but the 
improvement from adjustment for all cases, sampling or no 
sampling is 83 percent or higher. The added error because 
of sampling is negligible. 

Unfortunately, in many minority communities, low mail-
return rates and undercounting occur together. Such 
communities have a 50 percent mail return rate or lower. It 
may be that the sample size will need to be increased in 
these areas. 

Table 4 
Expected Root Mean Square Error (RMSE) of Estimated Cell Frequencies for Population Estimates Based on an Unadjusted Census, 

an Adjusted Census, and on a 25 Percent Sample of Non-Mail Return Households 

A. Area of 2,500 population having RMSE based on 

No sampling of non-mail return HH's 25% sample and .50 mailback rate 25% sample, and .70 mailback rate 

Cell Frequency Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 
15 

50 

100 

500 

750 

1,000 

1,500 

3 

6 

9 

20 

25 

29 

37 

3 

6 

8 

17 

20 

21 

21 

6 

11 

15 

32 

38 

42 

47 

6 

11 

15 

30 

34 

37 

37 

5 

9 

13 

28 

33 

37 

43 

5 

9 

13 

26 

29 

31 

31 

B. Area of 10,000 population having RMSE based on 

No sampling of non-mail return HH's 25% sample and .50 mailback rate 

Cell Frequency Unadjusted Adjusted Unadjusted Adjusted 

25% sample, and .70 mailback rate 

Unadjusted Adjusted 

50 

100 

200 

500 

1,000 

2,000 

5,000 

6 

9 

13 

21 

33 

53 

109 

6 

9 

12 

19 

26 

35 

43 

11 

15 

21 

34 

49 

72 

125 

11 

15 

21 

33 

45 

60 

75 

9 

13 

18 

30 

43 

65 

119 

9 

13 

18 

28 

39 

51 

64 

C. Area of 50,000 population having RMSE based on 
No sampling of non-mail return HH's 25% sample and .50 mailback rate 

Cell Frequency Unadjusted Adjusted Unadjusted Adjusted 

25% sample, and .70 mailback rate 

Unadjusted Adjusted 

250 

500 

1,000 

2,500 

5,000 

10,000 

25,000 

15 

22 

34 

65 

116 

214 

509 

14 

19 

27 

42 

58 

77 

97 

24 

35 

51 

89 

142 

241 

527 

24 

33 

47 

73 

101 

134 

168 

21 

30 

45 

80 

132 

231 

520 

20 

29 

40 

63 

86 

115 

144 
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Table 5 
Expected Root Mean Square Error (RMSE) of Estimated Cell Frequencies for Population Estimates in African-American, 

American Indian, and Hispanic Communities Based on an Unadjusted Census, an Adjusted Census, 
and on a 25 Percent Sample of Non-Mail Return Households 

A. Area of 2,500 population having RMSE based on 

No sampling of non-mail return HH's 25% sample, and .50 mailback rate 25% sample, and .70 mailback rate 

Cell Frequency Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted 

15 

50 

100 

500 

750 

1,000 

1,500 

3 

6 

9 

26 

31 

45 

64 

3 

6 

8 

17 

20 

21 

21 

6 

11 

15 

36 

46 

54 

70 

6 

11 

15 

30 

34 

37 

37 

5 

9 

13 

33 

42 

51 

68 

5 

9 

13 

26 

29 

31 

31 

B. Area of 10,000 population having RMSE based on 
No sampling of non-mail return HH's 25% sample, and .50 mailback rate 

Cell Frequency Unadjusted Adjusted Unadjusted Adjusted 

25% sample, and .70 mailback rate 

Unadjusted Adjusted 

50 

100 

200 

500 

1,000 

2,000 

5,000 

6 

9 

15 

21 

48 

87 

205 

6 

9 

12 

19 

26 

35 

43 

11 

15 

22 

38 

60 

100 

214 

11 

15 

21 

33 

45 

60 

75 

9 

13 

18 

34 

56 

95 

210 

9 

13 

18 

28 

39 

51 

64 

C. Area of 50,000 population having RMSE based on 
No sampling of non-mail return HH's 25% sample, and .50 mailback rate 

Cell Frequency Unadjusted Adjusted Unadjusted Adjusted 

25% sample, and .70 mailback rate 

Unadjusted Adjusted 

250 

500 

1,000 

2,500 

5,000 

10,000 

25,000 

17 

28 

48 

109 

208 

407 

1,004 

14 

19 

27 

42 

58 

77 

97 

26 

39 

62 

124 

224 

422 

1,014 

23 

33 

47 

73 

101 

134 

168 

23 

35 

57 

118 

218 

416 

1,010 

21 

29 

40 

63 

86 

115 

144 

6. CONCLUSION 

It has been a tradition for the Census Bureau in the latter 
half of this century to use statistical techniques, where pos­
sible, to make the Decennial Census more accurate and less 
costly. Using the techniques historically used by the Census 
Bureau, namely a mean-square error model, one can see 
that adjustment does improve census totals, even for small 
areas, when one assumes even a minimal level of response 
variance. One can also see the need for precaution if samp­
ling is to be used for follow-up. It may be that there should 
be no sampling in places of 2,500 or fewer people, just as 
there is no sampling for certain population characteristics in 
these small places. 

In looking at the current census controversy, it is good to 
remember the spirit of Mahalanobis. Not only did his 
ingenious use of interpenetrated subsamples give us the 
ability to estimate the response variance in census statistics, 
but his insistence that sampling and statistics should be used 
to solve practical problems has been the hallmark of the 
U.S. Census. Some of the most fundamental practical 
problems are those faced by the government and 
Mahalanobis allocated statistical resources for the solving 
of these problems. Likewise, the U.S. Census Bureau has a 
long and rich history of offering practical, cost-efficient 
solutions to thorny census problems. 
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Estimation of Census Adjustment Factors 

C.T. ISAKI, J.H. TSAY and W.A. FULLER' 

ABSTRACT 

A components-of-variance approach and an estimated covariance error structure were used in constructing predictors of 
adjustment factors for the 1990 Decennial Census. The variability of the estimated covariance matrix is the suspected cause 
of certain anomalies that appeared in the regression estimation and in the estimated adjustment factors. We investigate 
alternative prediction methods and propose a procedure that is less influenced by variability in the estimated covariance 
matrix. The proposed methodology is applied to a data set composed of 336 adjustment factors from the 1990 Post 
Enumeration Survey. 

KEY WORDS: Components-of-variance; Small area estimation; Undercount; Decennial Census; Smoothing. 

1. INTRODUCTION 

While the objective of a population census is to record 
data for all individuals, it has long been recognized that this 
goal is not achieved in practice. Post enumeration studies 
associated with the U.S. Census of 1970 and 1980 sug­
gested that the coverage rate was different for different de­
mographic groups. See U.S. Bureau of the Census (1988). 

In 1990, a post enumeration survey (PES), using dual 
system (or capture-recapture) estimation, was used to pro­
duce estimates for 1392 subdivisions of the total population 
of the United States at the time of the 1990 Census. The 
PES sample contained approximately 377,000 persons in 
about 5200 sample blocks. Sample persons were divided 
into post-strata defined by geographic divisions of the coun­
try, tenure, size-of-place, race, sex, and age, where the two 
tenure classes are owners and renters of homes, and size-of-
place is a measure of urbanization. The subdivisions were 
called poststrata. The ratio of the PES estimate to the 
Census total, called the adjustment factor, was produced for 
each poststratum. An adjustment factor greater than one is 
associated with an estimated undercount and a factor less 
than one is associated with an estimated overcount. 

Because relatively large sampling variances were antici­
pated for individual ratios, a smoothing technique based on 
components-of-variance and a regression model was used 
to create the final estimated adjustment factors. The ele­
ments of the error covariance matrix used in the prediction 
model were estimated with a jackknife algorithm, see Fay 
(1990). 

The explanatory variables in the regression model were 
chosen using a best subsets selection algorithm. Some ex­
planatory variables were forced into the model. For exam­
ple, in the Midwest region, the ten explanatory variables 
forced into the model were Black, Hispanic, renter, age 
group 0-9, age group 10-19, age group 20-29, age group 
30-44, age group 45-64, male 10-19 and male 20-64. Most 

variables were indicator variables, but some were propor­
tions. For example, a variable "percent Black" was used 
when Black and Hispanic were grouped into a single post-
stratum. Nine other variables were selected for inclusion in 
the model based on a best subsets regression algorithm. The 
variables included mail return rate, substitution rate, type-
of-place and six race-by-age and race-by-tenure interaction 
variables. The mail retum rate is the fraction of Census 
questionnaires returned from the mail distribution, the sub­
stitution rate is the fraction of Census households that were 
entirely replaced with responding households. 

The smoothing technique was applied to poststrata ratios 
by regions of the country. The adjustment factors were 
designed to be applied to Census counts in the appropriate 
poststrata to create population estimates adjusted for under­
count or overcount. Hogan (1992) contains an overview of 
the PES. Isaki, Huang and Tsay (1991) provide a detailed 
description of the results of the smoothing of the 
poststratum ratios. 

Fay (1992) in a manuscript discussing the adjustment 
factors constructed from the 1990 PES, identified some dis­
turbing results. He noted that some of the estimated regres­
sion coefficients in the model differed considerably depen­
ding on the form of the estimated covariance matrix used to 
construct the estimated generalized least squares estimator. 
Fay conjectured that large differences in coefficients could 
arise because of an unstable estimator of the error covari­
ance matrix. Although the estimated error variances were 
smoothed, it was felt that estimated variances of linear com­
binations might still have large variances. He felt that the 
estimated variances had large variances because the direct 
estimates for many blocks were zero. 

The Secretary of Commerce ultimately decided to use 
the unadjusted counts in the Decennial Census. The possi­
ble use of adjusted counts for other purposes, such as the 
Bureau's postcensal estimation program, was left for 
additional study. 

C.T. Isaki and J.H. Tsay, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233, U.S. A; W.A. Fuller, Department of Statistics, Iowa 
State University, Ames, LA 50010, U.S.A. 
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We explore alternative smoothed estimators for the 
adjustment factors, focusing on the effect of estimating the 
covariance matrix of the vector of the estimated adjustment 
factors. In the empirical part of our study, we construct 
estimates based on the 1990 Census data. 

2. SMOOTHING MODEL 

The model chosen for the construction of predictors is 
the multivariate components-of-variance model. Closely 
related models that lead to smoothed estimators for a set of 
unknowns, have been studied by a number of authors. Fay 
and Herriot (1979) suggested the use of the model in a 
small area estimation procedure. Battese, Harter and Fuller 
(1988) applied the components-of-variance model to crop 
area estimation. Ericksen and Kadane (1985), Cressie 
(1992), and Ericksen, Kadane and Tukey (1989) suggested 
smoothing procedures for census adjustment. Singh, 
Gambino and Mantel (1994) discuss a range of small area 
procedures. Efron and Morris (1972) and Morris (1983) 
contain good discussions of some of the basic theory. 
Kackar and Harville (1984), Peixoto and Harville (1986), 
Fay (1987), Fuller and Harter (1987), Hulting and Harville 
(1991), Ghosh (1992), and Prasad and Rao (1990) discuss 
estimation and variance estimation for such procedures. 
Ghosh and Rao (1994) is a review article. 

Under the multivariate components-of-variance model, 
the vector of true values to be predicted is 

y = xp + w, (1) 

wherey is an «-dimensional column vector, X is an nxk 
matrix of observable characteristics, w is an ̂ -dimensional 
column vector of random effects and |3 is a /t-dimensional 
unknown column vector. The vector Y is observed, where 

Y = y + e, (2) 

Y is an ̂ -dimensional column vector and e is the «-dimen-
sional column vector of estimation errors. In our application 
Y is the vector of estimated adjustment factors. It is 
assumed that 

(w', e')' ~ (O, block diag [W, E^J), (3) 

where 2̂ ^ is the covariance matrix of the estimation errors, 
and o^ is the unknown variance of the random effects. 

A class of predictors of y is defined by 

y =XB + G'(Y-XB), (4) 

where B is a A:-dimensional vector and G is an « x « matrix. 
Under model (1) with 

(w' ,e ' ) ' ~A (̂0, blockdiag{lo2,2;J), (5) 

the conditional expected value of y given Y is 

£{ j ; |F}=Xp + G^;(Y-Xp), (6) 

where G„ = T.'..o^ and E.. = I^^ •*" '^ee '̂  the « x « covari­
ance matrix of z = w + e. Under the normal distribution 
model defined by (1), (2), and (5) and with the parameters o ,̂ 
2^ ,̂ p known, the minimum mean square error predictor of 
y is given by the right side of equation (6). 

Generally, some of the parameters are unknown. Con­
sider first the case in which p is unknown. Let p be an 
estimator of p, where 

(7) P = (X'M-'X)-'X'M-'Y, 

and M is an « x « matrix. If M is fixed 

y ->' = ( I - G ) X ( p - p ) - ( I - G ) w + Ge 

= ( K - I ) w + Ke, 

whereK = ( I -G ' )X(X'M- 'X)- 'X 'M- ' + G'. Thus, if 
M and G are fixed. 

\{y - J} = (K - I)(K - D'a^ + KE K'. (8) 

If model (1), (2), and (3) holds, and if X^̂  and o^ are 
known, then replacing B with 

p =(x'z:;jx)''x'2::JY 

and replacing G with 

G.. = 2::io2 

(9) 

(10) 

in (4) defines the best linear unbiased predictor of y. See 
Henderson (1950), Harville (1976), and Robinson (1991). 
If Ŝ g and o^ are also unknown, it is natural to use esti­
mators of Egg and ô  to construct an estimated best linear 
unbiased predictor. Very often, an estimator of 2̂ ^ is 
associated with the procedure used to construct the esti­
mator Y. Then o^ is estimated from model (1), (2), and (5), 
treating the estimator of 2̂ ^ as the true 2̂ .̂ 

One substitution predictor is 

y=Xp + 622- ' (Y-Xp) , (11) 

where 

P=(X'2.:'X)"'X'2^'Y (12) 

is the estimated generalized least squares estimator of p, 

K = ^^^*%e (13) 
2gg is an estimator of 2̂ ,̂ and 6̂  is an estimator of a .̂ 
The estimator of ô  can be based on likelihood or analysis 
of variance procedures. Retaining only the terms in the 
Taylor expansion of the error in (11) that are errors in the 
basic estimators, we have 

y - y = e -H ' z+H 'X (p -p ) 

^-1 + (o^-a^) H'2;;z 

-G' ( i , -2gg)2; 'z , (14) 
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where H' = 2, 2"' and G' = I - H' = 0^2:' If it is 
assumed that 2^^ is distributed as a multiple of a Wishart 
matrix with de degrees of freedom, if the covariance bet­
ween ô  and 2gg is ignored, if expectations are computed 
as if 6̂  and z are independent, and if expectations are com­
puted as if z and 2̂ ^ are independent, an approximation to 
the variance of y - y obtained from (14) is 

V{y-y}^2ggG.H'XVppX'H.r33 + r ^ , (15) 

where 

Vpp = V{p} =(X'2;'X)- * < • tr(2„' 2g4L2,gL', 

33 H'2:^HF , 

r^=d'a'*'L'l'L^X'2 
44 e Z2 ee 22 ^[<^^^\ 
L = (X'2-'X)-'X'2-' 

and V^^ = V{a^) is the variance of 0 .̂ The term "L^^G is 
the prediction covariance matrix if all parameters are 
known. The remaining three terms of (15) are the contribu­
tions to the variance due to estimating p, o ,̂ and 2^ ,̂ 
respectively. The second term in V{p} is a crude approxi­
mation for the increase in the variance of p due to using an 
estimator of 2^^ in place of 2^^ in constructing p. 

If the dimension of 2^^ is large and the degrees of 
freedom, d^, only slightly larger than the dimension, then 
the second part of the variance of p and the term T^^ can 
make important contributions to the variance. This is parti­
cularly true if ô  is small relative to the diagonal elements 
of 2gg. The Monte Carlo study of the next section demons­
trates that the contribution to variance approximated by 
these terms can be important. 

A predictor that reduces the effect of the estimation error 
in 2gg uses only diagonal elements of 2̂ ^ in the shrinkage 
component. Let 

y^ = Xp^ + a^D;j(Y-Xp,), (16) 

where 

p̂  = (x'D;'x)-'x'D;jr, 

D„ = d i a g ( t . I 6 ^ ) , 

d̂  is an estimator of ô  and diag (A) is the diagonal matiix 
composed of the diagonal elements of A. Retaining only 
the leading terms in the Taylor expansion of the error in 
(16) gives 

y , - y ^ - ( w - G ; z ) + H;x(p , -p ) 

+ (6' ^2 • ) H ; D - ' Z G ; ( I > . . - D « ) D Z ; ^ . (17) 

-1^2 G^, and where D„ = diag{2^}, G^ = D„a^ H^ = I 
Dgg = diag {2̂ cc} • If w and e are normally distributed, and 
if o^ and D̂ ^ are quadratic estimators, then ô  and D^. are 

uncorrelated with z. The /-th element of w - ô D^̂ z is 
uncorrelated with the /'-th element of z, but is not neces­
sarily uncorrelated with the vector z. If this possible cor­
relation is ignored, if it is assumed that 2̂ ^ is a Wishart 
matrix with d^ decrees of freedom, and if the correlation 
between 6̂  and 2̂ ^ is ignored, an approximation to the 
variance of y^ - y obtained from (17) is 

V{y,-y}=H;H,o2+Gj2g^G,-H;XVppX'H, 

where G^ = D^ja^ H^ = I - G^, 

(18) 

Vpp = ( X ' D ; ] X ) - ' X ' D ; J 2 „ D ; ' X ( X ' D ; ; X ) - ' , (19) 

r33.. = HjD;;2,,D;;H,F„„, 

r44.. = < G j f t G ; 

(20) 

and the //-th element of Si is 

» y = '^^l.ij^'zlii^'zljj^zzij-

The term in F^̂ ^̂  is an estimator of the contribution to the 
variance due to using 2^^ to estimate the covariance matrix. 
Expression (19) assumes that the contribution of the error 
in D^ to the variance of p can be ignored for large d^. The 
difference between (15) and (18) is that the multipliers in 
(19) and (20) do not depend on the dimension of 2^ .̂ 
Therefore, the error in estimating 2̂ ^ makes a smaller 
contribution to the variance. On the other hand, the variance 
of w - G j z , the order one term of (17), will be larger than 
the corresponding term of the error in (14), unless 2̂ ^ is 
diagonal. The first two terms on the right of (18) are the 
variance of w - Gjz. 

3. MONTE CARLO STUDY 

To examine the variability in the predictors associated 
with variability in the estimation of 2̂ ^ we conducted a 
small Monte Carlo study. The model for the study is 

Ŷ . = |jJ + w + ê ., j = l,2,...,r (21) 

w - (0, W), 

e. ~ ind(0,24 

where J is the i-dimensional column vector of ones, 
J = (1,1,..., 1)', w is the ^-dimensional vector of random 
small area effects, e is a vector of ertors, and w and e are 
independent. The model is a simplified version of the model 
defined in (1), (2), and (3). The mean is the constant func­
tion and, hence, we use ]x in place of p. To create a vector 
of correlated variables, we define, for ^ = 8, 
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'y 

'v 
'v 
4̂v 

'v 
% 

'v 
Hi 

\.3u,j 

1.5«, 

0.9«, 
0.9«3, 

1.6«4, 

l-^u,. 
1.0M,. 

2.83M 

+ 0.4M2 

+ O.9M3' 

+ 1.6M,' 

+ O.6M5 

+ 1 .6M" 

4; 

^8; 

where u.. are independent random variables. The w., 
i = 1,2,..., 8, are NI(0, 0.36) random variables, where 
NI(p, a^) denotes normal independent random variables 
with mean ji and variance a .̂ This configuration gives a 
range of error variances and a range of correlations between 
estimates. 

The estimator of ô  used in the Monte Carlo study is 

6̂  = max{(A:-l)-' 

x[(y-JM(0))'(y-JM(o))-tr{/--'tAo}],o} (22) 

where tr{ A} is the trace of the matrix A, 

Ao = I-A:- ' jJ ' 

and 

4 . = ('--l)"'E(Yy-y)(Y.-y)', 
7=1 

Ao = ^"'J'y-

(23) 

(24) 

The estimator 6̂  is a quadratic estimator closely related to 
the analysis of variance estimator. 

Two predictors were compared in the Monte Carlo study. 
Both are of the form 

where 

y = y - H ' ( y - M J ) , 

^-r-'Y^j-
7=1 

(25) 

They differ in the construction of H and ^. The first 
predictor is of the form (11) and uses the full estimated £ ̂ ^ 
in H and in the estimator of | j . The predictor is called the 
general predictor as an abbreviation for estimated general­
ized least squares predictor. The general predictor is 

(26) 

where 

y , = y - H ; ( y - M , J ) , 

H;=/--'2gg2;; , 

Mg = (j'2;,'j)-'j'2^iy, (27) 

K=r-%,-\o\ (28) 

and p is the estimated generalized least squares estimator 
of p. 

The second predictor is 

where 

yrf = y-H;(y-M</J) . 

H ' = r ' M . 6 : ' , 

(29) 

Mgg = diag2gg, D.̂  = diag2._,, and the estimated p is 

Â  = [J'D;jJ]-'j'D:^y. 

This predictor might be called the diagonal predictor 
because only the diagonal elements of 2̂ ^ are used in the 
construction. 

The entries in Table 1 are for /• = 14. Each sample is 
composed of a random selection of ys and a random sample 
of 14 e-vectors. Results are given for errors M.. ~ NI(0,2) 
and errors that are centered one-degree-of-freedom chi-
square random variables. Thus, in both cases the errors 
have zero means and variances equal to two. The mean p 
was set equal to zero. The second column of Table 1 con­
tains the variance of the sample mean as an estimator of the w.. 
Column three of Table 1 contains the ratio of the Monte 
Carlo variance of an element of y , where y is defined by 
(28), to the Monte Carlo variance of the corresponding 
element of y for normal errors. The ratios for elements one 
through four and element 7 are greater than one. The last 
two elements of Y. are uncorrelated with other elements. 
Element seven has a small variance and element eight has 
a large variance. There is a large loss for the predictor 
relative to the simple mean for element seven and a large 
gain for element eight. 

The fourth column of Table 1 contains the ratios of the 
variance of the predictor of (29) to the variance of the mean 
for normal errors. In all cases the diagonal predictor is 
superior to the general predictor defined in (28). The differ­
ence is relatively constant at about 30%. The diagonal pre­
dictor is not always superior to the simple mean but the loss 
is small for elements one, three, and seven. On the other 
hand, the gains relative to the simple mean are large for 
elements six and eight. The Monte Carlo variances for both 
predictors are larger than the approximations associated 
with equations (15) and (18) except for element 8. 

It is somewhat surprising that the diagonal procedure did 
better relative to the simple mean for chi-square errors than 
for normal errors. With the chi-square error, the estimated 
mean and estimated variance are correlated. Hence, on the 
average, the large positive mean deviations are pulled to­
ward the mean by a larger amount than the smaller negative 
deviation. The Associate Editor conjectured, and we con­
cur, that this is one reason for the superior performance of 
the diagonal predictor. On the other hand, the general 
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prediction procedure is poorer relative to the simple mean 
for chi-square errors than for normal errors. As the last 
column of Table 1 demonstrates, the diagonal predictor 
procedure uniformly dominates both the mean and the gen­
eral prediction procedure for this parametric configuration 
with chi-square errors. 

Table 1 
Monte Carlo Variance Ratios for Alternative 

Small Area Predictors 
(10,000 samples, r = 14) 

/ 

1 
2 
3 
4 
5 
6 
7 
8 

V{y,-w,] 

0.2414 
0.3445 
0.2268 
0.4771 
0.4113 
0.5121 
0.1449 
1.1214 

Normal Errors 

1>{y,-w,] 

1.277 
1.252 
1.351 
1.003 
0.926 
0.913 
1.366 
0.520 

P{y,i-^,) 
f{y,-w,) 

1.025 
0.875 
1.019 
0.735 
0.876 
0.677 
1.006 
0.384 

Chi-square Errors 

nyr»',) 
1.430 
1.371 
1.480 
1.099 
1.016 
0.975 
2.261 
0.725 

0.899 
0.768 
0.954 
0.686 
0.699 
0.618 
0.896 
0.371 

The Monte Carlo variances of Pg, pg, and p^ as esti­
mators of p are 0.150, 0.273, and 0.146 , respectively. If 
2̂ ^ and ô  are known, the variances of p^, p^, and p^ are 
0.149, 0.122, and 0.140, respectively. The use of an esti­
mated covariance matrix for p produced an estimator with 
larger variance than that of the simple mean. 

The predictors are unbiased under the model when the 
errors are normally distributed. The predictors are biased 
with chi-square errors because the sample mean is correlated 
with the sample variance. Table 2 contains the Monte Carlo 
bias divided by the Monte Carlo standard error of the mean. 
The bias of the general procedure is 20% to 50% larger than 
that of the diagonal procedure. In both cases, the squared bias 
added to the variance produces a mean square error for the 
procedure that is about 4% to 10% larger than the variance. 

This small study demonstrates that use of an estimated 
covariance matrix with large variability can lead to predic­
tors that are less efficient than the simple mean. 

Table 2 
Monte Carlo Relative Bias of Alternative 

Small Area Predictors 
(10,000 samples, r = 14, chi-square errors) 

1 
2 
3 
4 
5 
6 
7 
8 

Ave. (Sg, - w,) 

[(^{yr^M"^ 
-0.28 
-0.27 
-0.30 
-0.27 
-0.26 
-0.29 
-0.24 
-0.24 

Ave 

l<^{ 

••• {yji - w , ) 

j;,-w,)]"2 

-0.19 
-0.18 
-0.17 
-0.18 
-0.21 
-0.20 
-0.20 
-0.21 

4. APPLICATION TO PES DATA FOR 
POSTCENSAL ESTIMATION 

4.1 Postcensal Estimation 

The U.S. Bureau of the Census provides annual esti­
mates of the population of small areas based on the decen­
nial censuses and on other sources of information. To con­
sider the possible use of adjusted 1990 Census counts in the 
postcensal estimation process, the Bureau examined the 
PES data and defined a new set of 357 poststrata. 

The 357 poststrata are composed of 51 poststratum 
groups, each of which is subdivided into 7 age-sex categor­
ies. The seven age-sex categories were (1) both sexes 0-17, 
(2) males 18-29, (3) males 30-49, (4) females 18-29, (5) 
females 30-49, (6) males 50+ and (7) females 50+. The 
factors that define the 51 poststi-atum groups are race/ethni­
city (Non-Hispanic White, Black, Non-Black Hispanic, 
Asian, American Indian); tenure (owner, renter); type of 
area (urbanized area of population greater than 250,(X)0, 
other urbanized area, non-urbanized area) and region (West, 
South, Midwest, Northeast). Due to sample size limitations, 
American Indians comprised a single poststratum group and 
Asians were dichotomized into two poststratum groups -
owners and renters. Of the remaining 48 poststratum 
groups, the first 24 groups reflect a full cross classification 
of categories for Non-Hispanic White. The next 12 groups 
are for Black and provide a full cross classification of 
tenure by region for urbanized areas of population greater 
than 250,000 but otherwise do not provide regional detail. 
The same 12 poststratum groups were used for Non-Black 
Hispanics as were used for Blacks. 

A 357 X 357 covariance matrix was obtained with the 
same jackknife algorithm used for the 1392 poststrata of the 
1990 PES. We denote this raw covariance matrix by £^^. 
Hogan (1993) provides a detailed description of the 357 
poststrata and gives the motivation for their construction. 

4.2 Regression Model 

We eliminated Asian and American Indian data from the 
smoothing process. Hence, minority refers to the combina­
tion of Black and Non-Black Hispanic. The data set of 
interest contains 336 adjustment factors and their estimated 
raw covariances. The minority by age-sex interaction was 
included in the regression model after examination of the 
1990 data indicated that the net undercount differential bet­
ween Black and Non-Black varied by sex and age-group. 
The regression model (1) contains 21 explanatory variables. 
They are: 

1. XQ= intercept 

2. X = indicator variable for age-sex categories: 
j = 1,2,..., 6in the order; ages 0-17, male 18-29, male 
30-49, etc. (female 50+ is the class with no variable) 
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3. X.^ = indicator variable for renter 

4. Xg = indicator variable for Black 

5. X^= indicator variable for Non-Black Hispanic 

6. Xj = indicator variable for type of place: y" = 10, 11 for 
urbanized area 250,000+ and other urban, respectively 

7. Xj = indicator variable for region: j = 12, 13, 14 for 
Northeast, South and West, respectively 

8. XJ = indicator variable for minority by age-sex inter­
action: j = 15,..., 20 for minority 0-17, minority male 
{18-29), etc. 

and 

and X,4 were the 1990 census The variables X^.^, X^^ 
proportions of persons in the poststratum group in the parti 
cular region for the Black and Non-Black Hispanic post-
stratum groups that were combined over regions. 

A refinement was made in model (3) for the empirical 
application. On the basis of preliminary analysis, the speci­
fied error structure of w, the model error, was changed from 
2 = o^I to 

\w = KjOi + K^al, (30) 

where Kj is an « x « diagonal matrix with ones for minor­
ity poststrata and zeros elsewhere and K^ is an nxn diag­
onal matrix with ones for nonminority poststrata and zeros 
elsewhere. The estimated variances are a]= 0.000506 
(0.000140) and 02=0.000112 (0.000030), where the 
numbers in parentheses are standard errors. The standard 
error of the difference is (0.000141). Hence there is 
evidence that the variances are different for the two groups. 

In our discussion of predictors, we considered two pre­
dictors, the substitution predictor of (11) and the diagonal 
predictor of (16). It is natural to consider a compromise 
predictor of the form 

XP, + G;(Y xp,) 

:Y-H; (Y-XP^) , (31) 

where 0 ^ cp ^ I, 

: T.' T 
W W W ' 

H, = I - G , = 2 - ; 4 ( P 4 . ( 1 - ( P ) 2 J , 

2 = 2 +(pD + (I - (p)2 , 
(pep WW T * e e V *̂  Y / '^ee' 

D,, = diag{24, 

P.=(x'i;x)-'X'2,;Y, 

-ww = K , 6 ' + IC,62. 

The predictor (31) with cp = 0 is the substitution pre­
dictor and the predictor (31) with (p = 1 the diagonal pre­
dictor. There should be some (p, 0 < (p < 1, that gives a 
predictor with smaller prediction variance than either of the 
extremes. 

The PES direct estimate of the total number of persons 
is the weighted sum of the adjustment factors, where the 
weights are the census counts in the post strata. The stan­
dard error of the direct estimator of the total is relatively 
small and the direct estimator is judged to be the preferred 
estimator of the total. Therefore, the model predictors are 
constructed subject to the constraint that the weighted sum 
of the predictors is equal to the direct estimate of the total. 
Thus, the restriction is 

336 336 

E "lyi = E «,. 
( = 1 ; = 1 

:yi' 

where Y^. is PES direct estimator of the total, a. is the 
census count in the /-th post stratum, and y. is the final pre­
dictor. In the actual computations the a. were normalized 
to sum to one. Battese, Harter and Fuller (1988) made an 
adjustment in the predictions to create estimators to meet 
the restriction. Ghosh and Rao (1994) discuss such adjust­
ments. We use a procedure that permits direct estimation of 
the variance of the restricted predictions. 

We imposed the restriction on the initial predictors by a 
procedure that, approximately, constructed the best predic­
tors of 335 quantities that are estimated to be uncorrelated 
with Yj. Let 2 . . be the estimated covariance matrix of 
y = {Y^,Y^,...,Y'^JJ and define 

where 

CY - {Yj., Y^ - b^Y^,..., 3̂35 - b^^^Yj.)', 

C = B T , 

T = 
l « I335, 

a = (a , a , a „ , ) , 

B 

'335 

1 0' 

"^335 *335/ 

o'V, 
2^,a'(a2..a')-', 
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I^ is the kxk identity matrix, and 0 is a column vector 
containing all zeros. The elements of CY are uncorrelated 
with Yj.. 

If we let y be the model predictor of y, then the model 
predictor of Cy is Cy. If we use the model predictor for the 
last 335 elements of Cy and use Yj. as the estimator for the 
first element of Cy, the predictor of y is 

j ; = Y - c •ACH'(Y xp,). (32) 

where 

A = 
0 0' 
0 I335 

The estimated variance of y is 

V{y-y} 

=(I-H;)2,„(I-H;) ' . -H;2„^H^ 

+C-'AC[H;XVppX'H^-.f33+f^]C'AC-", (33) 

where H' = C ' A C H ' and Vpg, r33 and F^ are defined 
in Appendix B. The sum of the first two terms on the right 
of (33) is an estimator of the variance treating H as a fixed 
matrix. The final term on the right of (33) estimates the 
increase in variance due to estimating the variance. 

4.3 Smoothed Factors 

For the vector of 336 observations, we produced 
smoothed factors using the generalized predictor (32) for 
several values of 9. Note that cp = 0 corresponds to the sub­
stitution predictor and (p = 1 corresponds to the diagonal 
predictor. 

The estimated standard errors of the predictors were 
calculated using the crude variance approximation of 
Appendix B. The average of the ratios of the standard ertor 
of y to 7Q 5 for some selected values of (p are given in 
Table 3. The ordering of the ratios is approximately the 
same for the 48 stratum groups as for the original 336 post-
strata. A poststratum group is formed by combining the 
seven age-sex cells within a given race-by-tenure-by-urba­
nity-by-region classification. On the basis of these calcula­
tions, a 9 of 0.5 or 0.6 is the preferred estimator, although 
the estimated differences in efficiencies are not large. Any 
member of the cp-class is much superior to the original 
y-estimator. The average estimated variance efficiency is 
about 400% for the cp-predictors, relative to the original 
poststratum estimators. 

Table 3 
Average of Ratio of Standard Error of y 

and of Y to Stardard Error of y^ ̂  

Predictor 
(p = 0 
(p = 0.5 
(p = 0.6 
if) = 0.1 

(p = 0.8 
(p=1.0 
Original Y 

336 
Poststrata 
1.014 
0.995 
1.000 
1.006 
1.014 
1.046 
2.235 

48 
Poststratum groups 

1.045 
1.001 
1.000 
1.001 
1.005 
1.037 
2.294 

Table 4 presents the raw PES estimates, Y, and the y^ ̂  
estimates of net undercount for each of 48 poststratum 
groups. The net undercount is the difference between the 
estimated total population in the poststratum and the census 
count divided by the census count. 

We chose cp = 0.6 as the preferred estimator on the basis 
of the crude standard error ratios of Table 3. The predic­
tions and standard errors are very similar for (p = 0.5, 0.6 
and 0.7. A 9 greater than zero has advantages over a cp of 
zero. The accuracy of the numerical calculations should be 
better with cp greater than zero because 2 has larger 
eigenvalues with cp > 0 than with (p = 0. One could make 
a case for using (p = 1.0 because of the simplicity of the 
calculations and of the good estimated relative efficiency. 

The estimated standard errors of the predictors are con­
siderably smaller than those of the raw estimates. In addi­
tion, the set of predictors contains fewer extreme estimates. 
For example, for poststratum groups 34, 39 and 48, the jĴ g 
estimates of the percent net undercount are 6.04, 0.17 and 
7.51 while the raw estimates are 11.06, -4.14 and 18.76, 
respectively. Most smoothed estimates differ from the direct 
estimate by less than one direct estimated standard error. 
The three largest standardized differences are for Black 
Owner-Large Urban in the West, Black Renter-Large Urban 
in the Northeast, and Non-Black Hispanic Owner-Large 
Urban in the Midwest. In the three cases, the difference bet­
ween the direct estimate and the smoothed estimate divided 
by the direct standard error is about 1.8. 
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Table 4 
Estimated Percent Net Undercount by Poststratum Group 

Poststratum Group 

Non-Hispanic White Owner Large Urban 
1. N.E. 
2. South 
3. Midwest 
4. West 

Non-Hispanic White Owner Other Urban 
5. N.E. 
6. South 
7. Midwest 
8. West 

Non-Hispanic White Owner Non-Urban 
9. N.E. 
10. South 
11 Midwest 
12. West 

Non-Hispanic White Renter Large Urban 
13. N.E. 
14. South 
15. Midwest 
16. West 

Non-Hispanic White Renter Other Urban 
17. N.E. 
18. South 
19. Midwest 
20. West 

Non-Hispanic White Renter Non- Urban 
21. N.E. 
22. South 
23. Midwest 
24. West 

Black Owner Large Urban 
25. N.E. 
26. South 
27. Midwest 
28. West 

Black Owner Other Urban 
29. U.S. 

Black Owner Non- Urban 
30. U.S. 

Black Renter Large Urban 
31. N.E. 
32. South 
33. Midwest 
34. West 

Black Renter Other Urban 
35. U.S. 

Black Renter Non- Urban 
36. U.S. 

Non-Black Hispanic Owner L.arge Urban 
37. N.E. 
38. South 
39. Midwest 
40. West 

Non-Black Hispanic Owner Other Urban 
41. U.S. 

Non-Black Hispanic Owner Non-Urban 
42. U.S. 

Non-Black Hispanic Renter Large Urban 
43. N.E. 
44. South 
45. Midwest 
46. West 

Non-Black Hispanic Renter Other Urban 
47. U.S. 

Non-Black Hispanic Renter Non- Urban 
48. U.S. 

Y 

-2.08 
0.69 

-0.26 
-0.34 

-1.07 
0.52 

-0.10 
0.63 

-0.53 
0.18 

-0.70 
0.29 

1.17 
2.62 
2.39 
3.28 

3.53 
3.30 
1.24 
4.70 

6.97 
6.65 
2.93 
6.48 

1.65 
2.20 
0.82 
6.49 

1.36 

3.64 

9.13 
6.69 
6.38 

11.06 

4.33 

4.84 

0.68 
2.59 

-4.14 
2.98 

0.95 

2.80 

7.21 
10.30 
7.11 
6.29 

7.07 

18.76 

s.e.cn 
1.04 
0.72 
0.39 
0.64 

0.48 
0.43 
0.40 
0.58 

0.69 
0.69 
1.16 
0.69 

1.43 
1.56 
1.70 
1.72 

1.62 
1.86 
1.13 
1.47 

4.67 
1.93 
1.60 
2.06 

1.96 
0.94 
0.88 
2.16 

1.01 

2.03 

1.93 
2.17 
1.91 
3.35 

1.28 

5.95 

4.44 
0.95 
2.38 
0.92 

1.70 

2.83 

4.04 
3.11 
3.74 
2.09 

3.10 

7.24 

y^ 

-0.63 
0.38 

-0.13 
-0.02 

-0.73 
0.53 
0.01 
0.30 

-0.28 
0.58 
0.16 
0.38 

2.07 
3.53 
2.53 
3.10 

2.29 
3.67 
2.39 
3.20 

3.54 
3.60 
2.36 
3.48 

0.97 
2.30 
1.13 
2.54 

2.05 

2.85 

5.57 
6.42 
5.43 
6.04 

4.99 

5.90 

3.00 
2.52 
0.17 
2.89 

2.32 

2.88 

5.85 
7.35 
5.71 
6.45 

6.26 

7.51 

s-e. (Vo.e) 

0.60 
0.44 
0.31 
0.44 

0.35 
0.33 
0.31 
0.40 

0.47 
0.45 
0.64 
0.46 

0.61 
0.64 
0.60 
0.58 

0.61 
0.67 
0.53 
0.57 

0.92 
0.66 
0.66 
0.67 

0.91 
0.70 
0.67 
0.96 

0.72 

0.98 

0.96 
1.10 
1.03 
1.12 

0.82 

1.24 

1.18 
0.72 
0.97 
0.68 

0.87 

1.16 

1.27 
1.15 
1.21 
0.98 

1.09 

1.38 



Survey Methodology, June 2000 39 

APPENDIX A: Estimation of 2^^ 

The estimators of o, and ol of 2^^ are patterned after 
analysis of variance estimators. The estimation process con­
tains several steps using improved estimators from one step 
in the next step. We partition the regression problem as 

fv.l 'x, 0̂  (R ) Pi 
+ 

^l 

where (Yj,X,) contains the observations for minorities 
and(Y2, X^) contains the remaining observations. Let Y, 
be an «,-dimensional column vector and Yj be an 
«2-dimensional column vector observations. An initial 
estimator of (P.'.P,')' '̂  

^Pil f(x;i;'„Xi)' 
P2 

x;2:,,„Y, 

^ Y^.^e22^) X^^ee22^2 , 

where 

•Hel l H e 12 

•He21 ^ 6 2 2 

is partitioned to conform to the partition of Y. 
Initial estimators of o, and Oj are 

o^max{[(Y,-X,p , ) '2 ; j , (Y, -X,p , ) -gJg- / ,0) , 

for / = 1,2, where 

8ii = tr{i:,,„ (i„, - x,A^,)%;;,(i„, - x,A^,), 

S2i = tr{(I„, - X,A^,)'i;-j,.(I„,. - X,.A^,), 

^Mii = ix;i^^,.,x,| x'( 2̂ ,̂.,., 

and I^. is the «,. x n. identity matrix. 
The final estimators are 

d? = max{[(Y.-X.p,)'2;^,(Y,-X,p,)-g,,]g^',o), 

for / = 1, 2, where 

Su = t r { t , ( l „ , - X,A^,)2„Ul„, - X^A^,)) 

S2i = tr {(I„, - X,A^,)2:;.,(I„, - X,A^,)) 

2 .. = 2 ..+ o?I 
zzii ceil I ni 

P. = (x;i:;.Lx,)-'x;iL;,Y, = A;;:,,Y,. 

Estimators of the variance are 

= 2g; 
. -2 

xtr{[£„„(I„,-X,A^,)'2;,;,(I„,-X,A^„)f) 

2g2;'<' 

X tr {[2,,,(I„, - X,A^,)'2„;,(I„, - X,A^,)]'), 

for /' = 1, 2. The estimated covariance is 
..2 -2 C{d:,d^}=2tr{^^M„il.M22} 

.2<'tr{tM„tM24, 

where 

M„ = 

and 

' g2i'(I„,-X,A^n)'2:;',i(I„,-X,A^„) 0 ' 

0' 0 ; 

^ 2 2 = 

0 0' 

0 ^22' (I „3 - X 2 A^22 ) ' 2^22 ( I „̂  - X2 A^22 ) 

See Searle (1971, Chapter 2 and p. 435). 

APPENDIX B: Approximations for the 
Variance of Predictors 

Our model is 
Y = xp + w + e. (B.l) 

where Y is an «-dimensional column vector, X is an « x A: 
fixed matrix. 

/ N 
W 

. e , 
~ Â  

f 

1, 

(^^ 
0 

.0. 

/ 

k 

0 

ee j 

(B.2) 

and 2^^ is defined in (30) of the text. 

For purpose of variance estimation, we assume 2^^ is an 
unbiased estimator of 2^^ distributed as a multiple of a 
Wishart matrix with d^ degrees of freedom independent of 
(w, e). We let y be the unknown true vector to be predicted 
and write 

y = Xp + w and z = w + e. 

By a Taylor expansion 

y,-y=e-H;(Y-xp^) 

=e-H;z.H;x(p;-p)-(H;-H;)z.o/«'),(B.3) 
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where 

H,=2pi[9D,.-(l-cp)2,,] 

and H = H^ is defined in (31). The error in fi is 

P^-P=(x'2;;x)- 'X'2^;Z (B.4) 

Now 2̂ ^ is independent of z and Y - Xp is uncorrelated 
with p - p if the true 2^^ is used in place of 2 . 
Therefore 

Approximating the expectation by treating z as independent 
of 2 ^ , we obtain 

H; 
\iV{a]] A,2C{d^o^} 

[ A2,C{6^6^} A22F{6^} j 
Hp- (B.7) 

where 

= 2 * 2 2 " ' 
W z z W 

£{H^X(P~„ - P)z'(H„ - H,)} = 0, (B.5) ^he Taylor expansion of p - p is 

where HQ is constiucted using Y - Xp in the estimators of 
the elements of 2^^ defined in Appendix A and 
HQ = 2 j^ 2^^. We set the covariance between P and H 
equal to zero for all (p. Now 

H, = 2i[cpD.. + ( l - c p ) 2 j 

= [ ^ w ^ 9 l ) e e + ( l - 9 ) 2 , j - ' [ < p l ) , e - ( l - 9 ) 2 j 

and 

H, -H,=2; ; [ (p(D, , -DJ . ( I - (p) (2 , , -2 , , ) ] 

- 2 : i [ 2 „ . - 2 l . + q>(i)ee-Dee) 

.(I-cp)(2,,-2,,)]H^ 

= KM^ee-'OeeH^-^){K-^ee)K 

where G^ = I - H^. The contribution of D^̂  - D^̂  to the 
variance of H is small relative to the contribution of 
2„„ -2^„. Therefore, we omit D „̂ -D„„ in our variance 
approximation. Then the expectation 

H(^-^,)'(K-"^eeK'^'K 
(K-^ee)(i-^,)} 

= <'G;[T.^eHA^e])-^ee^ee]G,, (B.6) 

where A = 2^2^^2^ , because z is independent of 2^^. 
We also omit the term < ' G;2^^2^2^^2<;j2^^G^ in Jur 
variance approximation. 

The expectation for the term containing ( 2 ^ - 2 ) is 

^ { H ; ( 2 ^ - 2 ^ ) i ; i z z ' 2 ^ ( x : _ - 2 , JHJ, 
where 

2 - 2 
^Vw w 

1 /^2 2 \ 

« y ( O i - o , ) 

T / - 2 2 , 
I„2(02 - O2) 

p-p=(x'2; ;x)- 'x '2; ;z 

= (X'2^X)- 'X'2^z 

-(x'2<;;^x.)-'x'2<;<;(2^-2^) 

x2^X(X'2^X)- 'X'2^z 

-(X'2^X)-'X'2^ 

x(2:<p<p-V^9<P^-'R^"^"'ier. 

^-1-, = ( X ' 2 ^ X ) - ' X ' 2 ^ z 

+ L ( 2 ^ - 2 ^ ) 2 ^ Q 2 ^ z 

- L ( t < ^ - 2 ^ ) 2 : ^ 2 +Remainder (B.S) 

where Q =X(X '2_JX) - 'X ' and L = ( X ' i ^ X ) - ' X ' 2 ^ 
If ^,„^ = ^„ and if 2„ is distributed as a multiple of 1 

-1 

- w -zz zz " - nultiple of a 
Wishart with d^ degrees of freedom, independent of z, then 

E{L{i:^r^^^)i^zQKz^%lQKz 

X{kz-^zz)^') 

= j;'L[2^^tr{2;,'Q) + Q]L' 

= c/; '(x'2^'x)- '(*+i). 

Using a similar approximation 

MLf t z -S .KxLzz '2 ; , ' |2,,-2,,L') 

- 4H^ZZ-^^)^I^^^ZZKIK-^ZZ)^'} 

= 4HK-^ZZ)KIQKI^ZZ-^ZZP] 

=d:'(x%ix)-\k*i). 

On the basis of this result, we use the approximation 

P-P . ( x ' 2 i x ) - ' x ' 2 ; ; z - L ( 2 ^ ^ - 2 j 2 ; ; z . 
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We assume 2^^ is a multiple of a Wishart matrix with 
d -degrees of freedom and approximate 2 - 2 with 
(l-(p)(2^^-2J.Wehave 

(1 -(p)2£(L(t-242-;,2;..2;; ( 2 , , - 2 4 L ' ) 

= (l-(p)H"'L[2jr{2;;2X2:ee) 

2..2:!„2„2:i2jL'. "ee —(pp—Z2~"<pip"eej ~ • ( B . 9 ) 

The dominant term is that associated with the trace and we 
retain only that term in our approximation. Thus, an approx­
imation to the variance of p is 

. < • (1 -cp)^tr{2;;2,_,2^;24L2,,L' (giQ) 

Combining results (B.6), (B.7), and (B.9), a crude 
estimator of the variance of the predictor (31) is 

V{}^,)=H;twHp-^S2^,G^ 

. H ; X V p p X ' H ; . f ^ . f 3 3 , (B.Il) 

where 

Vpp = L,2^.,L;+rf;(l-(p)^ 

x t r { 2 ; ; ; i . ^ ; 2 4 L , 2 j H 5 ^ ) L ; 

L„ = (X'S ' 'X ' ) ' 'X 'S" ' 

S ' ' = (2 +5 2 \-\ 

99 V 99 9 99/ ' 

2 =2 +2 , 
WW ec' 

f 44 -d;' (1 - cp)̂ tr(i;i %xi, K] G'KG, 

r33=H; 

A„F{o^} A,2C{6^d^}^ 

[ A2,C{o^6^} A22F{6^} j 
H 9 ' 

A,, A,2 

Aj, A22 

= 2 2 2 , 
99 22 9 9 ' 

' - 2 2 F{6,},/ = 1,2, is the estimated variance of 6,, and 
A* h -^2 2 •' 2 C{6,,02} is the estimated covariance between d, and 62. 

See Appendix A. The estimator of the variance of P 
contains an adjustment for the fact that (X'2.', X)'' is a 
biased estimator of (X' 2,", X)"'. 
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Census Coverage Error: A Demographic Evaluation 
REJEAN LACHAPELLE and DON KERR' 

ABSTRACT 

The 1996 Canadian Census is adjusted for coverage error as estimated primarily through the Reverse Record Check (RRC). 
In this paper, we will show how there is a wealth of additional information from the 1996 Reverse Record Check of direct 
value to population estimation. Beyond its ability to estimate coverage error, it is possible to extend the Reverse Record 
Check classification results to obtain an alternative estimate of demographic growth - potentially decomposed by 
component. This added feature of the Reverse Record Check provides promise in the evaluation of estimated census 
coverage error as well as insight as to possible problems in the estimation of selected components in the population 
estimates program. 

KEY WORDS: Census coverage error; Population estimates; Reverse record check. 

1. INTRODUCTION 

The Reverse Record Check (RRC), in various forms, has 
been used by Statistics Canada since the 1960's to estimate 
coverage error in the Canadian Census (Fellegi 1969; 
Brackstone and Gosselin 1973; Gosselin 1976; Burgess 
1988; Carter 1990; Royce, Germain, Julien, Dick, Switzer 
and Allard 1994, Statistics Canada 1999). Using the 
Reverse Record Check, Statistics Canada has produced a 
long time series of population estimates, from 1971 through 
to the present, fully adjusted for census undercount. The 
current paper will demonstrate how there is additional 
information in the Reverse Record Check, which from a 
demographic perspective, can be exploited for the purposes 
of population estimation. 

The demographic statistics program at Statistics Canada 
uses information from vital statistics, the most recent cen­
sus, and various administrative sources in generating highly 
accurate and up to date population estimates. Information 
on births, deaths, immigration, emigration, among other 
demographic components, can be used to estimate popula­
tion growth since the previous census. With each quin­
quennial census, a cycle ends and the accuracy of these esti­
mates are put to the test (Romaniuc 1988). Systematic com­
parisons can be made between these estimates of growth 
and estimated growth as implied by comparing subsequent 
censuses (after adjustment for census coverage error). 

The resultant difference (conventionally referred to as 
the error of closure of the intercensal population estimates) 
has a far from obvious interpretation. While a large error of 
closure is suggestive of problems in the population esti­
mates, its specific nature is far from obvious (as to which 
demographic components are specifically responsible for 
the error). Furthermore, a honest appraisal of this closure 
error might suggest not only problems in the population 
estimates, but also potential problems in census coverage 

studies themselves (at the beginning and/or end of the 
intercensal period). 

The current paper will demonstrate how an alternative 
estimate of demographic growth is possible, as based expli­
citly on the RRC classification results. Additional infor­
mation is available, which assists greatiy in the interpre­
tation and decomposition of this closure error. Three alter­
native estimates of demographic growth for the intercensal 
period will be presented in the following section, including 
growth as estimated as part of the regular program of popu­
lation estimates, implicit growth as obtained in comparing 
consecutive censuses, and growth as based explicitly on 
RRC classification results. Section 3 demonstrates how this 
RRC based estimate of growth can assist in the decompo­
sition and interpretation of closure error, providing evi­
dence of (i) bias in selected components of the population 
estimates, and (ii) possible problems in the RRC results. 
Section 4 presents the results from this decomposition, 
followed by a brief discussion of its implications for both 
census coverage error measurement and the population 
estimates program. 

2. ALTERNATIVE ESTIIMATES OF 
DEMOGRAPHIC GROWTH 

2.1. Administrative Record Based Estimates of 
Growth: Post-Censal Estimates 

Statistics Canada's regular program of population esti­
mates involves the continuous registration and estimation of 
demographic events, as based on vital statistics and various 
administrative data sets. These events are added or sub­
tracted from the population documented in the previous 
census (component method). In estimating a province's 
population on Census day 1996 {Pg^^g^)'. 

Rdjean Lachapelle, Demography Division, Main Building, Tunney's Pasture, Statistics Canada, Ottawa, Ontario, KIA 0T6; Don Kerr, Department of 
Sociology, University of Western Ontario, lojndon, Ontario, N6A 5C2. 
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est96 -^91 "^-"91-96 -^^91-96 "^-^91-96 -^91-96 "*• 

ANPR„_,, + NM5,_g,. (1) 

The baseline population (P^,) for this estimate builds on 
the 1991 Census after adjustment for all forms of coverage 
error, including net census undercount as measured through 
the 1991 RRC. The postcensal estimate can be obtained by 
adding or subtracting from this baseline the number of 
births between censuses {B^^^^), the number of deaths 
(-D^.gg), immigrants (/gi.gg), emigrants (-E,,.,^), net 
interprovincial migration (NMg,_jg), and the net gain or 
loss of nonpermanent residents (ANPR^, ^g). 

Non-permanent residents (NPRs) are persons with legal 
temporary status in Canada {e.g., persons holding student or 
employment authorizations, minister's permits, refugee 
claimants, as well as their non-Canadian bom dependents). 
Unlike with interprovincial migration, net gain or net loss 
of NPRs is not estimated through "flow" data on the 
ongoing in and out-flows of non-permanent residents, but 
rather estimated by comparing over time "stock" data on the 
total number of non-permanent residents living in the 
country. Further details of methodology, data sources and 
data quality issues can be obtained from the quarterly and 
annual releases of the population estimates program 
(Statistics Canada 1999; 2000). 

2.2. Implicit Estimate of Growth 

An implicit estimate of growth can be derived using the 
1991 and 1996 Censuses, with both censuses adjusted for 
net undercount. With the exception of a small number of 
refusal Indian reserves, whose population figures are esti­
mated independently, gross undercoverage was estimated 
entirely through the RRC in 1996, whereas gross overcove-
rage was a combined estimate from three studies (the RRC, 
the Collective Dwellings Study and the Automated Match 
Study). In 1991, the RRC was used only in the estimation 
of gross undercoverage, whereas gross overcoverage was 
estimated through a smaller study, the Private Dwelling 
Study, in combination with the 1991 Collective Dwelling 
and Automated Match studies. In addition, persons missed 
on refusal Indian reserves were estimated as part of the 
1991 Reverse Record Check. 

In the early evaluation of the 1996 coverage studies, the 
implicit growth obtained with the above adjustments was 
considered unrealistic. It has since been established that 
part of the 1991 estimate of net undercount was in error, 
and would have in reality been lower had selected methodo­
logical enhancements been introduced as in 1996 
(Tourigny, Clark and Provost 1998). It has been shown that 
(i) a number of persons initially classified as missed in 1991 
was too high due to misclassification, and (ii) the 1991 
estimate of "overcount" was too low. As a result, 1991 
estimates of undercount and overcount have been revised to 
reflect the impact of these methodological changes 
('̂ "Ugy '̂ ^Og,). In addition, for reasons of consistency with 

1996, separate modeled estimates of refusal Indian reserves 
(independent of the RRC) have been added to the Census in 
1991. 

More specifically, implicit growth (A') is obtained as: 

''' -^96-^91 

{P, 96 + ^ 6 ~ < ^ 9 6 " ^ ^ ^ 9 6 M IR RRC96' 

{^. 91 'U, 91 Og.+IR, 91M IR, RRC91 > 
(2) 

where final population figures {P^^, P,,) are obtained using 
previously published census figures (Pg ,̂ P/,) adjusted for 
undercoverage (f/gg, "'"f/^j) and gross overcoverage 
(Ogg, '̂ "Ogj). In adding independently modeled estimates 
of refusal Indian reserves (IRggM- IR91M)' •' '̂  necessary to 
remove that portion of the RRC estimate of gross under­
coverage that corresponds to these reserves 
(IR^ (̂,gg, IR^(,g,). The results presented in the current 
paper take these changes into consideration. 

2.3.1. RRC Based Estimates of Growth 

The Reverse Record Check (RRC) is a record linkage 
and matching procedure that attempts to trace all persons in 
its sample, interview them to obtain a census day address, 
and match their records to individual census documents. 
This involves the construction of a sample intended to 
represent the same target population as the census being 
evaluated. This sampling frame, obtained in a manner that 
is totally independent of the census being evaluated, is 
constructed using the previous census, birth registrations 
over the intercensal period, administrative lists of inter­
censal immigrants, and an up-to-date listings of non-
permanent residents. Persons missed in the previous census 
are represented by a sample of cases classified as "missed" 
in the previous RRC, in the absence of a complete list of 
such persons. 

By working with this sample, the RRC targets all persons 
who could have potentially been part of the 1996 Census 
universe. Except for a very small sub-population of retur­
ning emigrants (Canadian citizens and landed immigrants 
who were abroad during the previous census), the RRC 
sample is complete and fully representative. The subsequent 
classification (missed, enumerated, emigrated, abroad, 
deceased or out of scope) is applied in the estimation of 
"missed" in the curtent census. At the same time, this 
classification also holds the potential for further inferences, 
i.e., an additional estimate of demographic growth for the 
intercensal period. 

To estimate demographic growth using the RRC, it is 
useful to consider the following two equations. In the first 
equation, the target population of the 1991 Census {P^\) is 
expressed in terms of all potential classification outcomes in 
1996. In the second equation, it is possible to move in the 
opposite direction - by expressing the 1996 census target 
population (P95) in terms of all possible statuses in 1991 (or 
in the case of births and immigrants, the intercensal period). 
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pT-9lpp + 9 1 » / p . 9 1 N P ^ + 9 ' P P r ) + 
^91 - -^^96 * ^ ^ 9 6 ^ ^96PP * ^ 9 6 * 

91NPn , 91PPr- . 
^ 9 6 •*• ^96FR •*• 

91NP E + 
•^96FR 

9INP1 
"96EX 

p ^ _ 91 p p + 9 1 A / P + 9 1 N P ^ , 9 1 - 9 6 p , 
-^96 - -^-^96 ^ ^ ^ 9 6 * '-96PP "̂  ^96 "̂  

where: 

91 PP. 96 

91 iVP, 96 

91NP/-
'96PP 

91PP Z), 96 

91NP A 96 

Fi?-

9IPP1 
•'96FR 

91NPr 
•'96FR 

EX-

9INP7 
"96EX 

91-96 
96 

9IEX7 
'96NP 

91EX; 
^96PP 

91FR RE, 

91EXr , 91EXr , S lhRpc' 
96PP •'O<:KID /\xi( 

91FRF 
96NP ^^^96PP 

(3) 

(4) 

Canadian citizens and landed immigrants in 
Canada in 1991, also targeted by the 1996 
census 
NPRs in Canada in 1991, also targeted by the 
1996 census as NPRs 
NPRs in Canada in 1991 who became landed 
immigrants over the intercensal period 
Canadian citizens and landed immigrants in 
Canada in 1991, who died over the inter­
censal period 
NPRs in Canada in 1991, who died over the 
intercensal period 
persons with the right to live permanently in 
Canada (citizens and landed immigrants) that 
are not in the designated census target popu­
lation 
Canadian citizens and landed immigrants in 
Canada in 1991, who are outside the 1996 
Census target population 
NPRs in Canada in 1991, who became 
landed immigrants or citizens, and are 
outside the 1996 census target population 
persons who have never been citizens or 
landed immigrants, and are not in the 
designated census target population 

NPRs in Canada in 1991, who did not 
become landed immigrants, and are outside 
the 1996 census target population 
births over the 1991-1996 period, and in the 
1996 census target population 
persons not in Canada in 1991, who arrived 
over the intercensal period, and are NPRs in 
the 1996 census target population 
immigrants who landed over the intercensal 
period, and are in the 1996 Census target 
population 

retuming emigrants, i.e., Canadian citizens 
and landed immigrants outside the census 
universe in 1991, and in the 1996 Census 
universe 

An estimate of growth (A"'*'') can be obtained by 
subtracting the former equation from the latter: 

96PP 

. R R C _ 9 1 - 9 6 p ,91EXr . 91EXr 
'96 "96PP 96NP 

91PPr) _ 91NPr) _ 91PPr- _ 91NPr. 
•'^96 ^ 9 6 •'̂ 96FR ^96FR 

91NP E + 
-^96EX 

91FR RE, 96PP-
(5) 

With the previously introduced sampling frames and 
classification outcomes, all terms (with the exception of the 
last term: retuming emigrants) can be directly estimated 
from the 1996 RRC itself. The census target population in 
1991 can be approximated through the sample drawn from 
the census and missed frames - with the identification of 
relevant classification outcomes. The census target popu­
lation in 1996 can be approximated through all persons 
classified as either enumerated or missed in 1996. TTie final 
term {i.e., retuming emigrants) can be obtained independent 
of the RRC using the 1996 Census 5-year mobility variable, 
in identifying all persons outside the country five years ago 
(excluding recent immigrants and NPRs). It is possible to 
express this same RRC based estimate of demographic 
growth at the provincial level by incorporating an estimate 
of interprovincial migration. As the RRC relied on Health 
Care Files in Canada's two northern territories (the Yukon 
and NWT) with administrative lists of addresses curtent to 
census being evaluated, this estimate of growth is not 
possible for the relatively small populations living in 
Canada's far north. 

A minor problem in the RRC design persists that poten­
tially introduces a slight bias into its classification results. 
Unfortunately it is not possible to identify all NPRs in the 
RRC sample, with the potential for an unknown amount of 
frame overlap {i.e., between the census, NPR and 
immigrant frames). As NPRs in the census can only be 
identified through the census long form (which is distri­
buted to about 20% of all households), it is possible that 
some NPRs living in Canada in 1991, selected in the census 
frame, were also selected in either the immigrant or NPR 
frames (without being identified as such). While the RRC 
attempts to adjust for this overlap by identifying all such 
persons in the immigrant and NPR frames, an unknown bias 
exists to the extent that this is unsuccessful. This difficulty 
in identifying overlap leaves the potential of too many 
immigrants and/or NPRs in the sample, or too few, if too 
many persons are removed from the aforementioned frames. 
The latter outcome can subsequentiy deflate the estimate of 
demographic growth, gross undercoverage (among other 
classification outcomes), whereas the former has the 
opposite outcome. 

2.3.2. RRC based Estimate of Growth: A More 
Detailed Decomposition 

While both the postcensal and RRC based estimates of 
demographic growth should be highly comparable, the 
specific terms within each are not meant to be directly 
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equivalent. For example, births in the postcensal estimates 
denote all intercensal births occurring to a population -
irrespective of whether such births move or die - whereas 
births in the discrete equation denote all births occurring yet 
still in Canada at the end of the intercensal period. With 
this in mind, it is possible to expand on the RRC based 
equation, to derive terms that are more comparable to those 
used in the postcensal estimates. The RRC based estimate 
of demographic growth can then be used in the evaluation 
of the components of demographic growth that enter into 
the component method. 

To expand on this equation, it is useful to begin with 
births, again expressed in terms of possible RRC classifi­
cation outcomes. As previously indicated, the birth term as 
included in equation (5) is only part of all births occurring 
over the intercensal period. More comprehensively, all 
births can be expressed as: 

B 

where: 

91-96 _ 91-96 
^ 9 6 + 

91-96S 
^ 6 - ^ 

91-96B7 
"96FR (6) 

5 " "'* = all intercensal births 
""'^^gg = all intercensal births ultimately classified as 

either enumerated or missed in 1996 
91 -96fi£)̂ ^ = deaths of intercensal births 
9i-96B£^^^_ persons outside target population in 1996 yet 

bom in Canada over the intercensal period 
Similarly, all immigrants can be expressed as: 

r91-96 _ 91EXr . 91NP, 
•'96PP ^96PP 

r ,91-961 r) ,91-961 r- , _ , 
Lo îDD + L>^^ + /io.:cr. ( 7 ) '96 ^96FR 

where: 

'̂̂ /̂ggpp = intercensal immigrants ultimately 
classified as either enumerated or missed 
in 1996 

"^^^96PP = 1̂1 NPRs in 1991 who obtain landed 
immigrant status and are ultimately 
classified as either enumerated or missed 
in 1996 

"''^'Dgg = deaths occurring to landed immigrants 
over the intercensal period 

''"'"E'ggP^ = emigrants among intercensal immigrants 
(irrespective of whether or not they were 
living in Canada as NPRs in 1991) 

In combining equations 5,6 and 7, demographic growth 
can be restated as: 

^96 -^91 

5 9 1 - 9 6 _ 91PP£,̂ _^ _ 91NPn - 91 -96Bn 
'96 '96 96 

91-961 r) . r91-96 , 9 1 F R p r _ 9 I N P ^ 
'96 

91PP •p _ 9 1 N P r _ 9 I - 9 6 B r _91-96Ir . 
•^96FR •^96FR -^96FR ^96FR ' 

91NP 
•^96EX •'96NP • (8) 

Given that the final term of (8) is equivalent to: 
" E X / =NP -NP + ' ' N P r ) +91NPC- . 

•'96NP •'^•^96 ^ -̂'̂ 91 •'''96 •'̂ 96EX ^ 

91NP(^ 91NPC-
^96PP •'̂ 96FR • 

It follows that: 

^96 -^91 

D91-96_91PPrv _ 9 1 N P n _ 9 1 - 9 6 B n _91-96Ir» 
^ -^96 -^96 -^96 -^96 

, r91 -96 , 91FR n r- 91NP/'^ 
+ 1 + I<Eg6?P~ Sepp" 

(9) 

91PPi 91NP7 91-96BI 
•^96FR -^96111 •^96FR 

91-96IC _ 9 1 N P r ' _^MD _ / - \ r D 91NP E _91NPjr. ^ p _ . w p _91NPr) . 
•^96FR -^96EX •'̂ -'̂ 96 ^•'̂ -^91 •'''96 

r _91NP/-. 9INP5' _91NP/-. _91NPr. N ( 1 0 ) 
"96EX '-96PP •^96FR'' 

or: 

•^96 -̂ 9̂1 

/91PPr. 9 1 - 9 6 B r , 9 1 - 9 6 I E - 9 1 F R p r \ , 
\ ^96FR^ • ' ^ 9 6 F R * -'^96FR ~ ^^96VVf 

(NP,,-NP,,). (11) 

This expanded version of equation (5) provides a break­
down of demographic growth at the national level, and 
allows for more meaningful comparisons with components 
estimated through administrative records. All terms, except 
for ^^^REg^pp and NP^^ can be obtained directiy from the 
1996 RRC. The aforementioned hole in the RRC sampling 
frame requires an independent estimate of retuming 
emigrants whereas the nature of the sample frame for NPRs 
explains the absence of the latter term. Rather than a listing 
of all NPRs to enter Canada over the intercensal period (as 
was the case with immigrants), the RRC relies on the most 
up to date administrative listing of NPRs in the 
establishment of its sampling frame (with no information on 
the number of NPRs living in Canada in 1991). 

Postcensal estimates document demographic growth 
through the "continuous" registration and estimation of 
demographic events over time. The RRC estimates growth 
via information on the status of individuals as identified on 
at least two "discrete" dates (at the beginning and end of the 
intercensal period). Irrespective of this minor conceptual 
distinction between "continuous" versus "discrete" estima­
tion, each term of equation 11 (within each set of paren­
thesis) roughly corresponds to a separate component as 
documented using administrative records. The first term 
identifies all intercensal births {i.e., the weighted sum of the 
birth frame), the second term includes deaths (classification 
results across the birth frame, the missed frame, the census 
frame and immigrant frame), the third term includes all 
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immigrants (i.e., the weighted sum of the immigrant frame), 
the fourth term includes emigrants (classification results 
across the birth frame, the immigrant frame, the missed 
frame and census frames, as well as the retuming emigrant 
component), and the fifth term cortesponds to net gain or 
loss of NPRs. As the number of NPRs living in Canada in 
1991 is not available in the 1996 RRC, for current 
purposes, this latter term is obtained using the 1991 census 
count, after adjustments for undercoverage. Again, it is 
possible to express this equation at the provincial level. 

With equation (11), a detailed evaluation of the post­
censal estimation program is possible. For example, if 
differences persist between RRC based estimates and post­
censal estimates, it is possible to determine how much of 
the difference in estimated growth can be traced back to 
differences in niigration (typically estimated with some 
difficulty in the postcensal estimates program) and how 
much can be traced to differences in natural increase. 
Briefly, Table 1 includes all of the aforementioned esti­
mates of growth, including implicit growth, the growth as 
based on administrative records, and the two alternate esti­
mates of growth as based on the RRC (simplified and ex­
panded equations). Slight differences exist between the 
simplified and expanded equations - yet not nearly of the 
same size as with the other estimates (implicit, postcensal). 
In explanation of the differences between the two RRC 
based estimates, the simplified equation does not require the 
same detailed classification as with the expanded equation, 
is not biased to the same extent by the aforementioned 
problem of frame ovedap, and does not rely on the 1991 
census count of NPRs. The differences observed with the 
remaining estimates are the focus of the current 
decomposition. 

Table 1 
Alternate Estimates of Growth, 1991-1996, Canada and 

Provinces/Territories 

NFU3. 
P.E.I. 
N.S. 
N.B. 
QUE. 
ONT. 
MAN. 
SASK. 

ALTA. 
B.C. 
YUKON 
N.W.T. 
Provinces 
(excl terr) 
Canada 

Implicit 
Growth 

-17,997 
5,404 

15,781 
7,714 

206,307 
659.349 

23,682 
15.953 

186,594 

505,025 
3.085 
6,837 

1,607,771 

1,617,693 

Population 
Estimates 

Administrative 
records 

-9,263 
5,483 

24,271 
13.097 

300,849 
766,568 

24,981 

11,098 
186,986 

466,611 
2,329 
5,864 

1,790,681 
1,798,874 

RRC 
simplified 

-17,897 
2,568 

17,075 
12,017 

261,357 
668,443 

7,377 
11,524 

151,944 
465,864 

N/A 
N/A 

1,580,273 
N/A 

RRC 
expanded 

-17,751 
1,583 

16,860 
11,276 

252,014 

655,572 
6.288 
9,312 

159,907 
472,342 

N/A 
N/A 

1,567,404 
N/A 

3. A DECOMPOSITION OF CLOSURE ERROR 

Implicit growth for the 1991-96 period is obtained only 
after all adjustments have been made to the censuses for 
coverage error, including revised 1991 figures on gross 
undercount and overcount and refinements for refusal 
Indian reserves. Altematively, the RRC based estimate of 
growth (simplified version) is obtained in working with 
approximations of the 1991 and 1996 target populations, 
i.e., the census and missed frames of the 1996 RRC and all 
persons classified as either missed or enumerated in this 
study. For this reason, there are minor differences between 
the two estimates that need to be more clearly identified in 
a full decomposition of closure error. In this context, it is 
useful to express implicit growth obtained with final popu­
lation figures in terms of these approximations (sampling 
frames and classification outcomes). In a similar manner, 
as the error of closure is the difference between implicit 
growth and the growth associated with the postcensal esti­
mates, the ertor of closure can also be expressed in terms of 
these approximations. 

To simplify the presentation, let 5 represent all possible 
negative growth terms in equation (5) and T| as all possible 
positive growth terms: 

( " ^ " ^ 9 6 ^ 

_ / 9 1 - 9 6 i 

91NP A ,91PPi ,91NPr 
96 "96FR "96FR 

^91NPr. X 
^96EX'' 

„ _ / y i - 9 6 p , 
^ - ( ^96 * 

91EXr . 
^96PP 

91EX; 
'96NP - ' ™ ^ 9 6 P P ) 

(12) 

(13) 

The population enumerated in both censuses can be 
represented as: 

' •^96=("^^96^"^^96-"" ' 'C, ,pp) . (14) 

Since the final population figures {P^^, P^^) used in the 
estimation of implicit growth involve separate modeled 
estimates for refusal Indian reserves, it is useful to restate 
the RRC based estimate of growth after specifically 
delineating such reserves. In designating persons living in 
refusal reserves in 1996 that were in the target population 
in 1991 as ^^IRg^, the growth of these reserves through 
either migration or birth as estimated by the RRC by rij^, 
and redefining '̂P^g to exclude all f)ersons associated with 
these two terms, it is possible to retum to equations (3)-(5) 
as: 

^91 = " ^ 9 6 - " ^ ^ 9 6 ^ 5 

96 '%,-''IRg,-^x^-^ 

^ • ^ - ^ 9 6 - ^ 9 1 = ^ ^ 1 1 IR 

(15) 

(16) 

(17) 
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In expressing implicit growth in terms of the RRC 
sampling frames and classification outcomes, it is useful to 
build on the RRC estimate of growth (equation 17) in 
defining total growth beginning with P^, rather than P^y 
In recognition that the final population estimate (/'g,) is 
equivalent to the census and missed frames (Pgj) minus 
overcoverage C^^Og,) plus refinements for refusal Indian 
reserves (//?O,M -'^^RRr9i)' it follows: 

^ 9 ! - ^91 = ^ + "iR - 5 + "^O, , + (/^^^C9. - ^ ^ 9 I M ) • (18 ) 

On the other hand, this target population (/'gg) can also be 
expressed as: 

P9e-ENg,^U,,^''^REg^pp (19) 

where EN^^ is an estimate of the number of persons 
enumerated in 1996. In recalling from equation 2 that: 

^ 9 6 = ^ 9 6 - ^ 6 0„, + {IR, 
96M • ' ^ R R C 9 6 ^ (20) 

implicit growth ( A' ) can be expressed in terms of the RRC 
based estimates of growth, as: 

^ ' = ^ 9 6 - ^ 9 1 = ( ^ 9 6 - ^ 9 6 ) ^ ^ 9 6 - ^ 9 , ) = 

{(n-5)}-{Tl,R-(/^<„M-^^RRC9.)^(^^96M-^^RRC96)}^ 

{{Pg,-EN,,-''^RE,,pp^"^0,,-0,,)}. (21) 

Implicit growth (A ' ) can be defined as the sum of (i) a 
RRC based estimate of growth (excluding refusal Indian 
reserves), (ii) a second term depending on the decision to 
estimate the refusal Indian reserves by an independent 
model, and (iii) a third term that involves a comparison of 
the RRC based estimate of enumerated and the number of 
persons actually enumerated in the 1996 census. 

This latter term (the difference on enumerated) has an 
interesting interpretation, and is considered fundamental to 
the evaluation of the RRC (Tourigny, Bureau and Clark 
1998; Royce 1993). Significant differences with this term 
can be read as implying either sampling errors and/or 
possible biases, as either classification error and/or problems 
in sample selection. To make this comparison meaningful, 
1996 overcoverage and an estimate of retuming emigrants 
are removed from the census counts - as neither can be 
included in the estimate of enumerated. Similariy, since the 
RRC selects part of its sample from the previous census, it 
inevitably carries forward some overcoverage inherent in its 
weights - which must subsequentiy be removed from its 
estimate of enumerated. These adjustments are included in 
the third term (the third set of brackets) in equation 21. 

While the estimate of enumerated is inflated by the 
weights associated with overcoverage in the 1991 Census 

frame, only a portion is directiy associated with this 
estimate - with the remainder spread across the other classi­
fication outcomes. Consequentiy, all classification results 
in the aforementioned equations are also slightly overstated. 
For the purposes of the current decomposition, this minor 
distinction is ignored. This is another reason, albeit of 
minor impact, why the RRC-based estimate of growth is 
different from the implicit estimate, as the latter is not 
biased by this overcoverage. 

From the above, the error of closure is equivalent to: 

D _ I 
^91-96 ^91-96 

D 
Ki-96-{(n-5)}-

{Tl ,R- ( / ^91M-^^RRC9l )^ ( ' ^^ . 96M " ^ R R C 9 6 ) ' l 

{me-ENg,-''^RE,,pp^^^^O,,-0,,)]]. ^^2) 

In the decomposition of closure error, the first term 
inside brackets [ ] highlights the difference between the 
postcensal estimate of growth and the combined RRC esti­
mate of growth (including refusal reserves, after refine­
ments for modeled estimates). The second term (the 
difference on enumerated) provides evidence as to possible 
difficulties in the coverage studies. Theoretically, with the 
absence of sampling and non-sampling error in the RRC, 
this latter term should be negligible. 

4.1. Decomposition Results: Closure Error 

Table 2 presents closure error after finalizing both the 
1991 and 1996 estimates of population. By adding net 
undercount to the 1996 published Census figures, along 
with independent estimates of refusal Indian reserves, 
Canada's 1996 Census day population, adjusted for cover­
age error is estimated at 29,619,539. This figure is appre­
ciably lower than the Census day estimate as generated 
through the postcensal estimates program of 29,800,720. 
The difference between the two figures - which is equiva­
lent to the aforementioned difference between implicit 
growth and growth as based on administrative records -
was higher than anticipated given past experience, at 
181,181 (or .61% of the 1991 Census Day population). 

Across provinces/territories, closure error is found to be 
particulariy pronounced in Newfoundland (1.56%), in 
Canada's north (at -2.38% in Yukon and -1.44% in the 
NWT), and somewhat surprisingly, in its three largest 
provinces (as 1.30% in Quebec, .97% in Ontario and -.99% 
in British Columbia). Regionally, closure errors larger 
than the national average are observed across eastern and 
central Canada (except for P.E.I.) while the western 
provinces have closure errors lower than the national one. 
It is specifically these errors that the current decomposition 
seek to evaluate and explain. 

Table 3 presents the results from this decomposition, 
with closure error decomposed into (i) the difference 
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between the estimate of growth based on administrative 
records and the RRC based estimate (simplified version), 
and (ii) the difference on enumerated. Also included is the 
sampling ertor associated with the RRC estimates. 

4.2. Comparisons between Estimates of Growth 
Across all provinces (with the exception of 

Saskatchewan), growth estimated on the basis of admini­
strative records is higher than the RRC based estimate. At 

the national level (excluding the territories), this discrep­
ancy on growth (210,408) appears far more important in 
explaining closure ertor than the discrepancy on enumer­
ated (-27,498). While for many provinces the difference on 
growth fell well within expectations in light of sampling 
error, selected provinces require further explanation. For 
example, the difference in growth in Ontario is large 
(98,125), which is almost one half the difference observed 

Table 2 
Coverage Study Results, Relative to Population Estimate (1996 - Census Day) 

NFLD. 

P.E.I. 

N.S. 

N.B. 

QUE. 

ONT. 

MAN. 

SASK. 

ALTA. 

B.C. 

YUKON 

N.W.T. 

Canada 

{1} 
1996 census count 

with random 
additions 

551,792 

134,557 

909,282 

738,133 

7,138,795 

10,753,573 

1,113,898 

990,237 

2,696,826 

3,724,500 

30,766 

64,402 

28,846,761 

{2} 

1996 net 
undercount 

9,424 

1,149 

20,821 

14,225 

116,750 

301,368 

18,881 

28,051 

66,327 

142,443 

1,022 

3,024 

723,485 

(3) 

Indian 
Reserves 

0 

175 

0 

518 

12,427 

20,849 

315 

586 

11,287 

3,136 

0 

0 

49,293 

{4=1+2+3} 

1996 Census 
RRC adjusted 

561,216 

135,881 

930,103 

752,876 

7,267,972 

11,075,790 

1,133,094 

1,018,874 

2,774,440 

3,870,079 

31,788 

67,426 

29,619,539 

{5} 

1996 estimate 
post-censal (i) 

569,950 

135,960 

938,593 

758,259 

7,362,514 

11,183,050 

1,134,393 

1,014,019 

2,774,832 

3,831,665 

31,032 

66,453 

29,800,720 

{6=5-4} 

Error of 
closure 

8,734 

79 

8,490 

5,383 

94,542 

107,260 

1,299 

-4,855 

392 

-38,414 

-756 

-973 

181,181 

{7=6/4*100} 

Error of 
closure (%) 

1.56 

0.06 

0.91 

0.71 

1.30 

0.97 

0.11 

-0.48 

0.01 

-0.99 

-2.38 

-1.44 

0.61 

(i) Post-Censal Estimates for May M"", obtained with final components 
Final Estimates (Sept. 24'*, 1998) of Net Undercount, 1991 an 1996. 

for intercensal estimates. 

Table 3 
Decomposition of Closure Error 

Province/Territory 

NFLD. 
P.E.I. 
N.S. 
N.B. 
QUE. 
ONT. 
MAN. 
SASK. 
ALTA. 
B.C. 
YUKON 
N.W.T. 
Canada without 
Territories 
Canada 

Error of 
Closure 

8,734 
79 

8,490 
5,383 

94,542 
107,260 

1,299 
-4,855 

392 
-38,414 

-756 
-973 

182,910 

181,181 

Difference between 

Dem. and RRC 
Estimates of Growth 

8,634 
2,915 
7,196 
1,080 

39,492 
98,125 
17,604 

-426 
35,042 

747 
N/A 
N/A 

210,408 

N/A 

S.E. of 
estimates 

4,889 
2,425 
9,011 
7,793 

25,493 
41,212 
10,108 
9,187 

19,067 
20,518 

N/A 
N/A 

43,951 

N/A 

Difference on 
enumerated 

100 
-2,836 
1,294 
4,303 

55,050 
9,135 

-16,305 
-4,429 

-34,650 
-39,161 

-108 
-284 

-27,498 

-27,890 

S.E. of 
estimates 

5,176 
2,462 
9,455 
7,918 

29,310 
51,300 
10,370 
10,200 
21,618 
22,996 

270 
464 

58,724 

58,762 
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Table 4 
Estimated Components (1991-1996) as Compiled by Demography Division and RRC Discrete (detailed) Measurement 

Births 
Demography 
RRC 
Difference 

Deaths 
Demography 
RRC 
Difference 

Immigration 
Demography 
RRC 
Difference 

Emigration 
Demography 
RRC 
Difference 

Interprovincial 
Migration 

Demography 
RRC 
Difference 

Non-permanent 
Residents 

Demography 
RRC 
Difference 

Total 
Demography 
RRC 
Difference 

NFLD 

31,748 
31,779 

-31 

-19,286 
-18,530 

-756 

3,411 
3,538 
-127 

-671 
-2,227 
1,556 

-23,074 
-32,767 

9,693 

-1,406 
455 

-1,861 

-9,263 
-17,751 

8,488 

PEl 

8,803 
8,782 

22 

-5,692 
-6,913 
1,221 

771 
820 
-49 

-206 
-455 
249 

1,643 
-886 

2,529 

164 
236 
-72 

5,483 
1,583 
3,900 

NS 

55,994 
55,984 

10 

-37,677 
-43,820 

6,143 

14,489 
14,058 

431 

-2,297 
-7334 
5,037 

-5,288 
-1,479 
-3,809 

-950 
-549 
-401 

24,271 
16,860 
7,411 

NB 

44,444 
44,444 

0 

-28,567 
-29,354 

787 

3,359 
3,614 
-255 

-2,429 
-3,889 
1,460 

-3,255 
-2,933 

-322 

-455 
-606 
151 

13,097 
11,276 

1,821 

QUE 

453,556 
454,332 

-776 

-252,628 
-273,617 

20,989 

189,905 
189,905 

0 

-15,490 
-55,766 
40,276 

-51,176 
-49,395 

-1,781 

-23,353 
-13,445 

-9,908 

300,849 
252,014 
48,835 

ONT 

730,520 
729,744 

776 

-376,760 
-400,047 

23,287 

618,869 
618,870 

-1 

-48,609 
-168,556 
119,947 

-40,850 
-37,505 

-3,345 

-116,602 
-86,934 
-29,668 

766,568 
655,572 
110,996 

MAN 

81,485 
81,485 

0 

-45,858 
-56,108 
10,250 

22,004 
22,129 

-125 

-5,684 
-10,871 

5,187 

-25,336 
-29,765 

4,429 

-1630 
-582 

-1,048 

24,981 
6,288 

18,693 

SASK 

70,382 
70,382 

0 

-40,652 
-40,143 

-509 

11,282 
11,157 

125 

-2,493 
-7,133 
4,640 

-26,644 
-25,095 

-1,549 

-777 
144 

-921 

11,098 
9,312 
1,786 

ALB 

199,484 
199,484 

0 

-75,798 
-74,640 

-1,158 

84,130 
84,130 

0 

-19,718 
-33,689 
13,971 

7,155 
-10,321 
17,476 

-8,267 
-5,057 
-3,210 

186,986 
159,907 
27,079 

BC 

229,511 
229,511 

0 

-126,935 
-138,433 

11,498 

213,506 
216,892 

-3,386 

-17,834 
-31,739 
13,905 

167,809 
191,222 
-23,413 

554 
4,890 

-4,336 

466,611 
472,343 

-5,731 

CANADA 
(without terr) 

1,905,927 
1,905,927 

0 

-1,009,853 
-1,081,605 

71,752 

1,161,726 
1,165,113 

-3,387 

-115,431 
-321,659 
206,228 

984 
1,076 

-92 

-152,722 
-101,448 

-51,274 

1,790,681 
1,567,404 

223,277 

nationally. Similarly, Newfoundland, Quebec, Alberta and 
Manitoba, together explain a large part of this difference. 

In providing some indication as to the factors responsible 
for these differences. Table 4 presents comparisons using 
equation 11 (detailed equation). Alternative estimates are 
provided on (i) birtiis, (ii) deaths, (iii) immigration, (iv) 
emigration, (v) interprovincial migration and (vi) net 
change in the number of non-permanent residents. The 
most important problems in the explanation of closure error 
are obvious in Table 4, with specific reference to emigra­
tion. As Canada does not have a complete border registra­
tion system, emigration is clearly the weakest of all the 
components to enter into the population estimate program. 
Without access to direct information on the number of 
persons leaving Canada, the RRC, with its exhaustive 
tracing, record linkage and direct interviewing procedures, 
is considered an improvement over any other data sources 
currentiy available. Although there are known problems in 
the RRC (for example, the previously mentioned frame 
overlap), the current evaluation points to an obvious error 
in the postcensal estimates, i.e., an understatement of 
population outflow from Canada. Overall, the difference as 
observed nationally (206,228) explains the bulk of the 
closure ertor documented in 1996. Similarly with Ontario, 
difficulties in the estimation of emigration appear to be 
fundamental (with a difference of fully 119,947). 

Without being decisive, the current decomposition also 
suggests other problematic components beyond emigration 
in the explanation of closure error for specific provinces. 
For example, the results suggest that estimates of inter­
provincial migration might be somewhat misstated for 
British Columbia and Newfoundland (after acknowledging 
the differences observed on these components and corre­
sponding closure errors). Overall, an acceptance of the 
RRC on these more difficult to estimate migratory flows -
would not only explain the largest part of this difference in 
growth - but also the largest part of 1996 closure error. 
With the closure error that remains, it is useful to turn to the 
observed difference on enumerated. In so doing, the 
emphasis shifts away from potential problems in the 
postcensal estimates. 

4.3. Comparisons between Estimates of 
Enumerated 

While the difference in enumerated observed nationally 
is much smaller than the difference documented on growth, 
for about half the provinces, this difference is of compa­
rable if not larger size. In interpreting this fact, it is 
recognized that the RRC was never designed to target the 
"enumerated" population. With the priority of documenting 
the number "missed" in the census, the sampling design of 
the RRC over represents "difficult to enumerate groups" 
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(for example, single young adults), while under 
representing persons easily "enumerated". Overall, the 
comparison on enumerated bears well for the accuracy of 
the RRC - with non-significant differences across all 
provinces/territories. Nevertheless, the differences observed 
in a few provinces are reason for concern, being very close 
to statistical signifi.cance at the 95% level in Quebec 
(positive difference), and approaching statistical signifi­
cance in British Columbia, Alberta and Manitoba (negative 
differences). 

In the evaluation of the 1991 coverage study results, two 
alternative hypotheses have been raised in explanation of 
differences observed for the enumerated (Royce 1993). At 
one extreme, it could be argued that all of the difference 
(for a specific province) be explained in terms of the repre­
sentativeness of the RRC sample, which implies sampling 
error or frame deficiencies of one sort or another. At the 
other extreme, it could be argued that all of the difference 
be explained due to a failure in documenting the tme ratio 
of enumerated to other classification outcomes, which 
seems to imply some sort of misclassification error or no 
trace adjustment bias. A cortection for the former of the 
two hypotheses has a relatively minor impact on the esti­
mate of missed {i.e., all classification outcomes are accor­
dingly inflated or deflated by the proportional difference on 
enumerated). A cortection for the latter could have poten­
tially quite a pronounced impact, as a failure to estimate the 
tme ratio implies that all the difference be assigned to other 
categories. 

If the latter hypothesis applies, a cortection potentially 
reduces the ertor of closure in nine out of twelve provinces/ 
territories {i.e., in all provinces under which the error of 
closure is in the same direction as the difference on enume­
rated). On the other hand, if the differences are due to 
problems in sample representativeness, a subsequent 
correction is expected to have negligible impact, if not 
slightiy inflating closure ertor across most provinces. In 
addition, the evaluation is complicated by the difficulty in 
establishing the comparable census figures. Ertor can be 
potentially introduced through various sources, including: 
the census-based estimate of retuming emigrants 
(̂ '̂̂ REg^pp), too much or too little cortection for frame 
overiap, sampling and non-sampling ertor in the estimation 
of undercoverage in 1991 and 1996, sampling and non-
sampling ertor in the estimation of overcoverage, and 
potential ertor in the classification by province of the enu­
merated. In this context, further research appears justified 
as to the true character of errors in the RRC estimate of 
enumerated. 

population estimation. Beyond the ability to estimate 
census undercount, it is possible to extend the classification 
results from these studies in order to obtain an alternative 
estimate of demographic growth - potentially decomposed 
by component. Using the most important of the coverage 
studies {i.e., the 1996 Reverse Record Check), a new 
method was presented which allows for an independent 
estimate of demographic growth for the intercensal period. 
The Reverse Record Check not only provides what are 
considered highly accurate estimates of census coverage 
error, avoiding some of the cortelation biases that have 
hindered post-enumeration studies in other countries, but 
also provides very valuable insight as to the magnitude of 
selected migratory flows of importance to population 
estimation. 

The key to the Reverse Record Check is that it begins 
with a representative sample of all persons who could have 
theoretically been in Canada on census day, with only 
minor deficiencies due to the high quality of vital statistics 
and immigration data in Canada. Through exhaustive 
tracing and interviewing procedures, valuable information 
is then obtained as to the number and characteristics of 
persons successfully enumerated, missed, counted more 
than once, as well as useful information on the numbers 
leaving the country (whether temporarily or permanently), 
the numbers dying, living in another province, and so on. 
With a relatively large sample and considerable expertise 
and effort directed toward minimizing all forms of error, the 
resultant classification results can potentially inform the 
population estimates program. This is particularly true with 
some of the more difficult to estimate migratory flows. 

In planning for the 2001 Census, the goal of minimizing 
all ertor in the census coverage measurement program 
remains a priority. As these studies have been designed 
with a primary target of estimating the population "missed" 
rather than other classification outcomes (emigrated, 
deceased, etc.), the new demographic approach presented 
in the curtent paper leads to the logical question, as to 
whether its curtent design need be reworked somewhat if 
its current usage is broadened. Of interest in this context is 
the fact that these coverage studies appear to provide an 
alternative estimate of growth which rivals that as curtently 
available through the population estimates program, and is 
likely superior with respect to selected components. 
Further research about how we might more fully exploit this 
fact appears justified, in improving the quality of the 
population estimates program. 
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Multilevel Modelling of Complex Survey Longitudinal Data 
With Time Varying Random Effects 

MOSHE FEDER, GAD NATHAN and DANNY PFEFFERMANN' 

ABSTRACT 

Longitudinal observations consist of repeated measurements on the same units over a number of occasions, with fixed or 
varying time spells between the occasions. Each vector observation can be viewed therefore as a time series, usually of short 
length. Analyzing the measurements for all the units permits the fitting of low-order time series models, despite the short 
lengths of the individual series. We illustrate this paradigm using simulated data that follow the rotation scheme of the Israel 
Labor Force Survey (LFS). This survey employs a rotating panel sampling scheme of two quarters in the sample, two 
quarters out of the sample and then two quarters in again. The model consists of two-level linear models for single time 
points that are connected by allowing the second level effects (corresponding to households) and the first level residuals 
(corresponding to individuals) to evolve stochastically over time. The likelihood of the model is easily constructed by 
employing the time series properties of the combined model. However, in view of the large number of unknown parameters, 
direct maximization of the likelihood could yield unstable estimators. Therefore, a two-stage procedure is adopted. At the 
first stage, a separate two-level model is fitted for each time point, thus yielding estimators for the fixed effects and the 
variances. At the second stage, the time series likelihood is maximized only with respect to the time series model parameters. 
This two-stage procedure has the further advantage of permitting appropriate first and second level weighting to account 
for possible informative sampling effects. Empirical results when fitting the model to data collected by the Israel LFS are 
also presented 

KEY WORDS: Informative sampling; Probability weighted IGLS; Rotating panel schemes; State-space models. 

1. INTRODUCTION 

1.1 Background and Objectives 

In recent years there has been a growing interest in 
fitting models to data collected from longitudinal surveys 
that use complex sampling designs. This interest reflects 
expansion in requirements by policy makers and social 
scientists for in-depth studies of social processes over time, 
rather than of one-time "snap-shots" provided by cross-
sectional analyses. A familiar example is the estimation of 
gross flows between social and demographic states such as 
employment states or health and education levels. For 
discussions of these issues and the problems they raise with 
respect to the design and analysis of longitudinal surveys, 
see Duncan and Kalton (1987) and Binder (1998). 

Examples of surveys we wish to consider in this paper 
are of three types: 

1. Rotating panel surveys such as labor force surveys 
carried out in many countries. These surveys were 
often designed originally for cross-sectional analysis 
of household and individual data, so as to study labor 
force and other socio-economic characteristics on a 
current basis. Complex rotating sampling schemes 
have later been introduced in order to improve 
comparisons over time. For example, the quarterly 
Israel Labor Force Survey (LFS) employs a rotating 
panel sampling scheme whereby each unit in the 

2. 

sample is interviewed for two consecutive quarters; it 
is left out of the sample for the next two quarters and 
then is interviewed again for two more consecutive 
quarters. In The U.S.A. and Brazil, a more compli­
cated sampling scheme of 4 months in the sample, 8 
months out of the sample and then 4 months in again 
is used. Australia, Canada and the U.K. employ 
sampling schemes by which sampled units are inter­
viewed over a succession of months or quarters before 
being dropped from the sample. These kinds of 
surveys are increasingly used for short-term longitu­
dinal analysis, such as the estimation of gross flows 
between labor force states or studies of social 
mobility. This has not always proved simple due to the 
complexity of the survey designs, difficulties in 
matching and response errors. 

Medium term panel surveys, such as the U.S. Survey 
of Income and Programme Participation (SIPP, 
Heniot and Kasprzyk 1984), the U.S. Panel Study of 
Income Dynamics (PSID, Survey Research Center, 
1984) and the Canadian Survey of Labor and Income 
Dynamics (SLID, Webber 1994). These surveys differ 
from labor force surveys in being specially designed 
for longitudinal analysis of economic and social 
characteristics of households and individuals. For 
example, SIPP includes an intensive investigation in 
the form of a full retrospective interview every 4 
months. It provides a complete work history for the 

' Moshe Feder, Department of Social Statistics, University of Southampton, Southampton, SOI 7 1BJ, U.K.; Gad Nathan and Danny Pfeffermann, Department 
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survey period (30-48 months) by combining the 
continuous retrospective four-month recall data with 
a reconciliation of data provided for longer periods. 

3. Longitudinal cohort studies characterized by the 
follow-up of a cohort sample over a long time period. 
For example, in the British Household Panel Survey, 
starting from a sample of addresses selected in 1991, 
data have been collected on the same households in 
subsequent annual waves for over seven years. A wide 
range of data is collected on labor force character­
istics, economic resources and health and education, 
with emphasis on longitudinal aspects. In this survey 
all members of the originally selected households 
were followed and the sample was supplemented by 
the addition of entrants to the sample households, 
including children bom to sample household 
members. Other longitudinal cohort studies such as 
the British National Child Development Sftidy and the 
British Cohort Study have surveyed a cohort of births 
over periods of up to 40 years. See Nathan (1999) for 
description and discussion of the latter three studies. 

Most of the studies associated with these surveys require 
longitudinal analysis for populations that have a complex 
hierarchical structure, based on data collected from com­
plex sampling designs. Standard analysis of longitudinal 
survey data often fails to account for the complex nature of 
the sampling design such as the use of unequal selection 
probabilities, clustering, post-stratification and other kinds 
of weighting used for the treatment of non-response. The 
effect of sampling on the analysis is due to the fact that the 
models in use typically do not incorporate all the design 
variables determining the sample selection, either because 
there may be too many of them or because they are not of 
substantive interest. However, if the design is "informative" 
in the sense that the outcome variable is cortelated with the 
design variables not included in the model, even after 
conditioning on the model covariates, standard estimates of 
the model parameters can be severely biased, leading 
possibly to false inference. Pfeffermann (1993, 1996) 
reviews many examples reported in the literature that 
illustrate the effects of ignoring the sampling process when 
fitting models to survey data and discusses methods that 
have been proposed to deal with this problem. See also the 
book edited by Skinner, Holt, and Smith (1989) and the 
more recent paper by Pfeffermann, Skinner, Goldstein, 
Holmes, and Rasbash (1998) to which we refer in more 
detail below. It should be emphasized that standard 
inference may be biased even when the original sample 
design is simple random within design strata, due to non-
response, attrition, and imperfect frames that result in 
de facto a posteriori differential inclusion probabilities. 
Special features of longitudinal studies, such as late 
additions of individuals who join panel households, can 
also lead to de facto unequal inclusion probabilities. 

In this paper we propose to deal with the problems 
arising from the hierarchical nature of the target population, 
the longitudinal aspect of the analysis and the effects of 
complex sampling designs by combining three separate 
statistical methodologies. These are multilevel modelling 
(MLM), time series modelling and methods of analysis 
under complex informative sampling. Multilevel models are 
used to deal with the hierarchical structure of many human 
populations like persons within households, pupils within 
classes, classes within schools and so forth. The models, 
extensively employed by social scientists especially in the 
field of education, account for the effects of observed 
covariates at the lower and higher levels of the structure, 
with fixed or random coefficients. Common unobservable 
random effects within the higher levels capture further 
unexplained variations. The method of Iterative 
Generalized Least Squares (IGLS) is commonly used for 
estimating the model parameters, Goldstein (1986, 1995). 

Simple state-space time series models are used to 
combine the multilevel models operating at different time 
points via a set of linear transition equations that account 
for the time series relationships of the random covariate 
coefficients and the higher level random effects. The 
Kalman filter is used for estimating the model parameters 
and predict the random effects for curtent and future time 
points. Smoothing algorithms can be used for updating past 
predictions, Harvey (1989). Methods of model fitting under 
informative sampling are employed to control the bias 
resulting from the sample selection process. Such methods 
have been investigated in recent years in the context of 
analytic inference from complex sample surveys, mostly for 
cross-sectional analysis of single-level models, cf. Skinner 
et al. (1989). In the present paper we utilize the 
methodology of sample weighting for multilevel modelling 
as developed by Pfeffermann et al. (1998). 

The aims of the present study are then to develop models 
and methods of estimation for longitudinal analysis of hier­
archically stmctured data, taking unequal sample selection 
probabilities into account. The main feature of our approach 
is that the model is fitted at the individual level but it 
contains common higher level random effects that change 
stochastically over time. The model enables to predict the 
higher and lower level random effects (like household and 
individual person effects in the present application), using 
the data for all the time points with observations. This 
should enhance model-based inference from complex 
survey data since it permits a better understanding of the 
structure and cortelation pattern of the longitudinal mea­
surements. In particular, it is bound to improve the predic­
tion of individual measurements compared to the use of 
aggregate time series models, which by their nature fail to 
separate the individual (person) effects from the common 
higher level (household) effects. These advantages are 
partly illustrated in the example of section 6 and more so in 
a related paper by Pfeffermann and Nathan (forthcoming) 
which focuses on the imputation of missing data. It is 



Survey Methodology, June 2000 55 

important to emphasize in this regard that although the 
length of each individual longitudinal record is often very 
short (4 measurements for each individual in our applica­
tion), the number of records is usually sufficiently large to 
wartant the application of classical time series estimation 
and model diagnostic procedures. In this article we only 
consider parameter estimation under a given model but the 
use of test statistics and diagnostic procedures that employ 
the empirical innovations for model identification follows 
through with minor modifications by virtue of the use of 
maximum likelihood estimation methods and the 
consistency of the parameter estimators. 

In section 2 we overview the main features of the afore­
mentioned statistical methodologies that are employed in 
subsequent sections. In section 3 we propose a model that 
addresses the longitudinal aspects discussed above. Estima­
tion procedures are discussed in section 4. Section 5 
contains the results of a simulation study carried out for 
assessing the performance of the various estimators under 
different sampling scenarios. Results obtained when fitting 
the model to real data collected by the Israel LFS are 
presented in section 6, followed by a brief summary in 
section 7 of possible model extensions and applications. 

1.2 Literature Review 
Previous work in this area deals mostly with longitudinal 

data in a non-survey context and does not consider hierar­
chically structured populations. In particular, none of the 
studies that we have come across permits the second level 
effects (common household effects in our application) to 
evolve over time. For example, Goldstein, Healy and 
Rasbash (1994) consider the analysis of repeated measure­
ments using a two-level model with individuals as second 
levels and the repeated measurements as the first levels. The 
model extends the standard two-level model by permitting 
the first level measurements to be cortelated over time. The 
authors consider several possibilities of modelling the auto-
cortelation stmcture, which include autoregressive models 
when the measurements are taken at equally spaced time 
points and autocortelation functions when the observations 
are taken at unequal time intervals. In the latter case the 
autocortelation function is linearized for estimation 
purposes. 

Several authors study the application of time series 
models for the analysis of longitudinal data. In a series of 
papers by Jones and his co-authors (Jones and Ackerson 
1990, Jones and Boadi-Boating 1991, Jones and Vecchia 
1993) and the book by Jones (1993), the authors consider 
observations taken at unequally spaced time gaps. The 
observations referring to the same subject are allowed to be 
serially cortelated by postulating continuous autoregressive 
moving average models. These models contain fixed and 
random effects, but do not have a hierarchical population 
stmcture. Weighted least squares and state space modelling 
combined with the Kalman filter are used for calculating the 
likelihood function. 

Continuous time autoregressive models for irregularly 
spaced longitudinal data are considered also by Belcher, 
Hampton and Tunnicliffe (1984), using linear stochastic 
differential equations for describing the process generating 
the data. An Empirical Bayes approach is proposed by 
Bryant and Day (1991) for the simultaneous analysis of a 
system of mixed linear models, having linked and serially 
cortelated random effects. Chi and Reinsel (1989) consider 
a score test for autocortelation between individual errors 
under a "conditional independence" random effects model. 
The authors derive a maximum likelihood estimation proce­
dure and use the estimators for predicting the random 
effects by application of Empirical Bayes. 

Diggle, Liang and 2^ger (1994) propose the use of 
generalized linear models for the analysis of longitudinal 
data. They consider a transition (Markov) model by consi­
dering past values as additional predictor variables. 
Transitional extensions of the GLM are used for maximum 
likelihood estimation under linear link functions, whereas 
for non-linear link functions the estimation is based on 
conditional score functions. Lawless (1999) uses an event 
history approach for the analysis of longitudinal data. By 
this approach, the dependent variable is the number of 
occurrences of a particular event up to a given time point t, 
with the limiting transitional probabilities being modelled 
as functions of the previous history and covariates. 
Zimmerman and Nunez-Anton (1997) propose a stmctured 
antedependence model for longitudinal data, primarily in 
the context of growth analysis. Neither of the above studies 
considers a hierarchical stmcture or a complex sampling 
design. 

Finally, Skinner and Holmes (1999) consider a model for 
longitudinal observations that consists of a "permanent" 
random effect at the individual level and autocortelated 
transitory random effects cortesponding to different waves 
of investigation. The authors study two approaches for the 
estimation of the unknown model parameters with both 
approaches accounting for sampling effects and "non 
informative" attritions. The first approach treats the 
repeated observations as cortelated multivariate outcomes 
and derives probability-weighted estimators that account for 
the cortelation structure. The second approach considers the 
model as a two-level model with "individuals" as the 
second level units and the repeated measurements as first 
level units. Estimation of the unknown parameters under 
this approach is carried out by a modification of the 
PWIGLS method of Pfeffermann et al. (1998, see section 
2.2). 

2. STATISTICAL METHODOLOGIES 
UNDERLYING THE PROPOSED APPROACH 

2.1 Multilevel Models 

In what follows we consider a two-level model for the 
response variable _y in a population consisting of 
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i = I, ...,M second level units (household, schools,...) and 
y = 1, ...,N. individuals within second level unit /. The 
model is, 

yij=^O^^^o"i^^ou^ij' i=h...,M;j = l,...,N., (2.1) 

where x.j,z.., and ZQ. are known covariate values of 
dimensions p, q and 1 respectively, P is a fixed parameter 
vector of dimension/) and p. ~ N{Q, Q) and e.. ~ N{0, o^) 
are independent random second level effects and first level 
residuals of orders/? and 1 respectively. 

The inclusion of the multipliers ẑ .. allows for first level 
heteroscedasticity whereas the common second level effects 
u. explain the (interclass) correlations between individual 
measurements corresponding to the same second level unit. 
In the simple case of the "random intercept model", 
y.j =Xy^ + u. + e.j, these cortelations take the familiar form, 
Corr(_v,̂ .,>'.̂ ) = ol/{al + o^). The random intercept model 
is often applied for small area estimation (see below). 

As stated in the introduction, models like (2.1) are 
widely used by social scientists for studying the effects of 
the covariate variables and the interrelationships between 
observations cortesponding to the same higher level unit. In 
such cases, primary interest is in the estimation of the vector 
coefficient p and the vector 0 of the distinct elements of Q 
and o .̂ Another, well-known application of the two-level 
model is for "small area estimation", in which case the 
second levels are geographical areas or other domains of 
study. In small area estimation, the target of the analysis is 
the prediction of the second level (area) means ^ ' P + Z/ u., 
where X. and Z. are the true area covariate means, and the 
estimation of the model parameters is only an intermediate 
step. See Rao (1999) for a recent review. 

Estimation of the unknown model parameters is carried 
out most conveniently by use of the Iterative Generalized 
Least Squares (IGLS) algorithm (Goldstein 1986, 1995). 
For a random sample of m second level units and n. first 
level units within second level unit /, the model holding for 
the sample data is first written in matrix form as 

y.=X.^^d., i = l...m (2.2) 

where y^ = [y^,-,yt]', X.= [x.^, ...,x.J and d.= 
[d,,,...,d.J with d^j = (z;.M + z e ). Then, d. ~ N{0, V.), 
where V. = Z. Q Z; + ô  Z^, = V. (6); Z, = [z„ ... z.„ ] ' and 
Zg. = diag[ZQ,., ...ZQ.^ J. The IGLS algorithm iterates 
between the estimation of p , with G considered known, and 
the estimation of 0, with p considered known. At each 
iteration, the estimate obtained for the other vector para­
meter on the previous iteration is used as the "known" 
parameter. This process is a special case of the EM 
algorithm and it converges to the corresponding maximum 
likelihood estimators (MLE) under the stated normality 
assumptions. It is known to provide consistent estimators 
under more general conditions. 

2.2 MLM Estimation Under Informative Sampling 

The IGLS algorithm described in section 2.1 assumes 
that the model defined by (2.2) holds for the sample data. 
This would be the case if selection of the first and second 
level units is carried out by simple random sampling. How­
ever, as discussed in the introduction, the selection of the 
sample could be informative so that the model holding for 
the sample units differs from the model holding in the popu­
lation. For example, in an educational survey, schools in 
poor areas could be sampled with higher probabilities. In a 
household survey, higher selection probabilities could be 
assigned to households in areas characterized by high 
proportions of minorities or to persons that are unemployed. 
As illustrated by Pfeffermann et al. (1998) and also in 
section 5 of the present paper, the use of the IGLS algo­
rithm in such cases could yield severely biased estimators 
for all the parameters. The authors propose therefore a 
probability weighted IGLS (PWIGLS) algorithm that 
protects against informative sampling. 

The algorithm is an adaptation of the pseudo-MLE 
method (Binder 1983, Skinner et al. 1989, Pfeffermann 
1993). Suppose that the two-level model defined by (2.1) 
holds for the target population. Had all the population 
values been observed, the IGLS would converge at the end 
of the iterative process to the census estimators, (P ,0 ). At 
each iteration, the intermediate estimators (P(,),0(,)) are 
products of matrices with elements that are functions of 
sums of the population values. When the IGLS is applied to 
sample data, the population sums are substituted by the 
cortesponding sample sums. The PWIGLS consists of 
further replacing the unweighted sample sums by weighted 
sums. Denote by n. = Pr(/65) the second level sample 
inclusion probabilities and by n...=Pr{jes\ies) the 
conditional first level inclusion probabilities. The PWIGLS 
estimators are obtained by, 1- replacing each second level 
sample sum of the general form X M ^ , ^V the weighted 
sum X"=i w.g., where w. = TC," and 2- replacing each first 
level sample sum Y^jUSij by the weighted sum Y^jlx^juSr 
with ŵ .|. = Ttyi,. Note that the weighting process requires the 
knowledge of the inclusion probabilities at both stages of 
the selection process and not just the final overall inclusion 
probabilities n.. = n.,. x n.. 

As established by Pfeffermann et al. (1998), the 
PWIGLS estimators are consistent for the model parameters 
when both the first and second level sample sizes increase, 
but the estimators of the variances are not consistent if the 
first level sample sizes are bounded. For this case, the 
authors propose appropriate scaling of the weights w ,. that 
eliminates the bias, provided that the sample selection 
within the second level units is noninformative. It is 
important to emphasize that standard weighting of the 
sample measurements by the weights w,.. = n.j\ which is 
routinely applied for single level models yields consistent 
estimators only for p. 
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2.3 State-space Models 
State-space models as considered here consist of two sets 

of equations: 

1. The measurement (observations) equation: 

3;,=X,p, + L,a, + e,; £(e,)=0, 

E{t,t;.,)=b,H„t = l,...,T (2.3) 

2. The transition (system) equation: 

E{r\,,x\l,)=?>,Q,,t = l,...,T (2-4) 

where 8̂  = 1 for Â  = 0 and 5̂^ = 0 otherwise. We also 
assume £'(e,TiP = 0 for all t and s. Note that both y^ and a, 
can be multivariate. The measurement equations relate the 
observations y, at any given time point to covariate values 
X^ with fixed (nonstochastic) vector coefficients P,, and 
linear functions Z,, of an unobservable state vector a,. The 
transition equations describe the time series relationships 
between the components of the state vector. The matrices 
X^, Z,, and G, are assumed to be nonstochastic although 
they may change over time, as is the case with the vector 
coefficients P,. Notice that the latter vectors can be 
included as part of the state vectors by taking their 
transition matrix to be the zero matrix of cortesponding 
order and defining the cortesponding residual variances in 
g, to be very large. See Sallas and Harville (1981) for 
details. 

Although not written here in its most general form, the 
state-space model defined by (2.3) and (2.4) is known to 
include as special cases many of the time series and mixed 
linear models in common use. As important examples we 
mention the family of ARIMA models and models with 
random regression coefficients. The MLM defined by (2.1) 
can also be easily structured in a state-space form. To see 
this, replace the index / by / and define I , = [A',,ZJ, 
a, = [P ; ,M;] ' , //, = O2ZO,and G, = [7^,0,] where/^and 0, 
define the identity matrix and the zero matrix of the 
appropriate orders. (The matrices Z, and X^ are defined 
below (2.2).) The vector coefficient p, is added for conve­
nience to the state vector. The covariance matrix g, is 
block diagonal with 0 and Z^CIZI as the two blocks. The 
use of the zeroes matnx 0 for the covariance of (p, - p,.,) 
guarantees that the P-coefficients are fixed over time, in 
accordance with (2.1). (The representation of the MLM in 
a state-space form is not unique.) 

For given covariance matrices {//,,2/} and assuming 
that P,,JL, and G, are known for all /, the best linear 
unbiased predictor (BLUP) of the state vector at any given 
time /, based on all the data accumulated until that time, is 
convenientiy obtained by means of the Kalman Filter. Let 
a,_, define the BLUP of a,_, based on the observations 
until time (M), with covariance matrix P,.x = 

Cov(a,_, - a,.,). The BLUP of a, at time (M) is then. 
%,-i=GA-i with covanance matnx / I / - 1 

Cov(a,|,., -a,) = GiPi^^C, + g,. When new observations >>, 
become available, the predictor a,,,,, and the correspon­
ding covariance matrix are updated as 

a = a ( I / - 1 ^?,„.,z;F;'(y,-x,p,-i,a,„.,) 
-1 

-''/ -''(K-l PtU-l^tEt ^iPfU (2.5) 

where F,= L,P,^,_^L; + H, = Vai{y, -j),,,.,) with j),,,., = 
X,p, + Z,,d,|,., defining the BLUP of y^ at time (M). The 
actual application of the Kalman filter requires a proper 
initialization for a,|Q and P^^Q which depends on the model 
under study. See section 4 for the initialization under the 
model proposed in this paper. 

The unknown model parameters (P,, elements of i/,, Q^ 
and possibly Z,, and G,) are ordinarily estimated by MLE 
with the likelihood conveniently constmcted by use of the 
"prediction ertor decomposition". Assuming that 
dim(>',) = n, the log-likelihood takes the general form, 

log{L) = -{T^ log(27i)+l5]loglF,l 
2t:T 

^\(y.-yiu-iyE-\Y,-Y„_, )).(2.6) 

For a thorough discussion of state-space models and their 
applications, see Harvey (1989). 

3. A MODEL FOR HIERARCHICAL 
LONGITUDINAL DATA 

In this section we propose a time series multilevel model 
which combines separate cross-sectional two-level models 
by modelling the evolution of the first and second level 
random effects over time. Let 5, define the sample 
available at time /, composed of m^ level 2 units with M̂  
level 1 units in level 2 unit h. The formulation of the overall 
sample in terms of the subsets S, covers situations where 
the longitudinal observations are collected at different time 
periods. The proposed model allows also for the rotation 
patterns mentioned previously and for wave non-response. 
Note that the samples observed at different time points are 
generally not disjoint and that the assumption that «̂  is 
fixed over time is not restrictive. Pfeffermann and Nathan 
(forthcoming) consider the case of temporal missing data 
for which this supposition does not hold. As long as the 
missing data are missing completely at random, generali­
zation of the present methodology to this case is straight­
forward. We assume the following two-level model to hold 
for the sample 5,: 

yhj,=Xhj,y,^^'h,^,^^hi"h,*^hj,' 

/I = 1,...,/»,,/• = 1,...,«,, (3.1) 
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where ; ' . , is the outcome for first level unity in second 
level unit h, x,., and z ,̂ are fixed known covariate vectors 
of dimensions p and q respectively, y, and v, are fixed 
(unknown) vector coefficients and M ,̂ and e .̂, are inde­
pendent second level and first level random effects. For 
given time t. The model defined by (3.1) is basically the 
same as the MLM model defined by (2.1), except that we 
assume z.., = z ,̂ for all j and /, thus distinguishing between 
first level covariates and second level covariates. We 
assume also for convenience ZQ. , = 1. The model is quite 
general in that all the covariate variables, the fixed vector 
coefficients and the random effects are allowed to vary over 
time in ways defined below. Notice that by assuming that 
(3.1) holds for the sample data, it is implicitly assumed that 
the sampling design is noninformative. See the discussion 
in section 2.2 and also section 4 below. 

As in (2.2), the model defined by (3.1) can be formulated 
in matrix form as, 

YHl=Xh,yi^^hl^l*\,\^h,*In,.^h (3.2) 

wherey„ = [>',„,...,>.,„^,]',X,, = [x,i,,...,x,„^,]', Z„ = l®z„ 
and Â, = [S/,1,, •••, S/,„ , ] ' with ® defining the Kronecker 
product. The matrix representation (3.2) can be written 
concisely as. 

Ynr^Hi^^Z^a,,, (3.3) 

w h e r e 4 = [ ^ , „ Z „ ] ; Z,, = [ Z , „ / ]; P, = [ Y ; , V ; ] ' ; a„ = 

Next we model the time series relationships of the vector 
coefficients and the random effects. We assume that the 
vectors P,, / = 1, 2... are fixed without specifying the way 
they evolve over time. This assumption is generally not 
restrictive because in practical applications the overall 
sample size in any given time point is usually sufficiently 
large to allow accurate estimation of the vector coefficients 
without having to bortow information across time. For the 
random second and first level effects we postulate first 
order autoregressive [AR(1)] relationships of the form. 

"A/=^"/, , ,- . ^Kr H, = PH,i-i^^h (3.4) 

where A is a {q><.q) matrix of fixed coefficients, p is a 
fixed scalar and 5 ,̂ - N{0^, A); e ,̂ - Af(0„ , o] I^) are 
independent white noise series. The model deftned by (3.4) 
is rather simple and as a further simplification we assume 
that A and A are diagonal, implying that the second level 
random effects are independent. It is assumed also that 
l p l < l and M ^ i < l for all A: to guarantee stationarity. 
More complex models can be considered in principle but it 
should be emphasized that unlike in classical (aggregate) 
time series analysis, longitudinal observations may only be 
taken over a very short time period in which case the use of 
models that incorporate lagged values of high order may no 
longer be operational. For example, in the quarterly Israel 

LFS described in the introduction, individuals are in the 
sample for a total of 4 quarters over a time period of 6 
quarters which clearly limits the class of time series models 
that can be postulated for the random effects. 

The AR(1) models defined by (3.4) can be written 
concisely as 

^ ; , " / , , , - i ^ % ' h = ! , . . . , /« , (3.5) 

where, 

A 0 
' \ i = J 

ti„~^(o,e,).e,= 
A 0 

0 ^II 
(3.6) 

By writing the proposed model using the equations (3.3), 
(3.5) and (3.6) and setting Z^, =Z^,, Hf^^ = 0, it is easily 
seen to belong to the class of state-space models presented 
in section 2.3, with no residual errors in the measurement 
equation. The model is defined for distinct second level 
units h but unlike in classical time series analysis where the 
data consist of a single long series, the data in our case 
consist of many independent short (longitudinal) series that 
could be observed over different time periods. Note that the 
ti-ansition matrix, G^ and the covariance matiix, g^ depend 
on h through the second level size «^ but they are time 
invariant. In situations where the second level sizes are not 
fixed over time (for example, because of missing data), 
these matrices also change accordingly. 

4. ESTIMATION OF THE MODEL 
PARAMETERS 

In principle, the likelihood function holding for the 
model defined by (3.3), (3.5) and (3.6) can be maximized to 
obtain the maximum likelihood estimators (MLE) of all the 
unknown model parameters. However, the number of esti­
mated parameters would usually be very large, which can 
intensify the computations and result in statistically un­
stable estimators. For instance, even for p = q = 2 and 
r = 10 there are already 46 unknown parameters. We 
propose therefore a two-stage estimation procedure that 
employs MLM estimation for the "cross-sectional para­
meters" and state-space model estimation for the "time 
series parameters". The use of this procedure has the further 
advantage of accommodating appropriate weighting to 
protect against informative sampling. 

The procedure starts off by fitting the MLM defined by 
(3.1) to each sample 5, separately, to obtain IGLS estimates 
of the time-dependent fixed effects p, = [y/, v/ ] ' and the 
variances of the random effects u ,̂ and e,.,. Notice that by 
(3.4), 
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Var(M„) = A - = ( / - ^ 0 - ' A ; 

yar{e^j,) = a] = {l-p^)al (4 j) 

using familiar relationships holding for AR(1) models. The 
use of this step yields estimates (P,, A*,6g,} for 
{P,,A', Oj} respectively. Under the model, the true 
variances (A*, a^) are fixed over time and assuming that 
the sample sizes at the various time points are fairly 
constant, the estimates A,' and 6̂ , can be averaged to yield 
single estimates 

A* 
- 2 :EA;/r; o^ESeVT-. (4.2) 

I'l (=1 

In the second stage the remaining parameters are 
estimated by maximizing the likelihood of the combined 
model defined by (3.3) (3.5) and (3.6), with the parameters 
estimated in the first stage held fixed at their estimated 
values. Since observations on different second level units 
are independent, the log-likelihood has the form 
log{L) =Xy,log(Z.̂ ) where I^, the contribution to the 
likelihood from second level unit h, is defined by (2.6) with 
the index h added to all the components tiius distinguishing 
between different second level units. As pointed out before, 
the number of time points for which the second level units 
are observed and the time periods over which the obser­
vations are taken may differ between units so that the 
notation T in (2.6) for the number of time points needs also 
to be changed to T^. 

When fitting the model to data obtained from rotating 
panel sampling designs as in the empirical study of the 
present paper, a further modification is required to account 
for the intermediate periods without observations. For 
example, for the Israel LFS described in the introduction, 
with rotation pattern of two quarters in the sample, two 
quarters out of the sample and two quarters in again, T';, = 4 
but the transition equations from r = 2 to / = 3(the next 
quarter with observations) have to be changed to account 
for the two quarters with missing observations. Repeated 
substitutions in (3.5) yield the following relationships: 

Ql. h3 

{A'^-*-A^+I)A 0 

0 {p'^p'-DotL 
(4.3) 

In order to apply the Kalman filter and compute the 
likelihood, it is needed to set initial values for a..f. and 

110- This is simple under the present model as 
^hi ~ ["/)'/• ^A'(]' '̂  stationary with zero mean and covariance 
matrix defined by (4.1). Thus, the filter is started by setting. 

*/i l lO -E{u' hi' , )=0; 

/',,,„ = Var[M,' , e ' ] 7 l l ' " ^ / 7 l -

= diag {{I-A^r'A,ol{l-p^)-'l„ J. (4.4) 

In the empirical study described in the next two sections we 
compare two methods regarding tiie set of parameters 
estimated in the second stage. 

Method 1: The parameters estimated in Stage 2 are the 
three AR coefficients p,A^^,A.^2 "̂"̂  '^^ cortesponding 
residual variances o^ = Var(E..,) and A = Var(6^,), (equa­
tion 3.6, three variances in total). Note that under this 
method the only estimates utilized from Stage 1 are the 
fixed parameter estimates {P, = [y,', v,']'). By (4.1), the 

Var(M. ) and ô  =Var(e..) are estimated variances A* 
as 

hjt' 

1*2 A ' = ( 1 - ^ 0 " ' A ; a: = (I-p^)- 'o; (4.5) 

Method 2: The only parameters estimated in Stage 2 are the 
AR coefficients p,^,j,.^22 (Equation 3.4). Note that with 
this method the variances A and o^ are set in the likelihood 
as, A = (/-y4^)A* and ô  = (l -p^)o] utilizing (4.1), 
where ô  and A' are defined by (4.2). 

The estimation procedures described so far assume 
implicitly noninformative sampling. As discussed in the 
introduction, complex sample surveys often involve selec­
tion with unequal probabilities that could be cortelated with 
the values of the response variable. When this is the case, 
the model holding for the sample data may differ from the 
model holding in the population. A furtiier advantage of the 
proposed two-stage estimation method is that it can be 
adapted to protect against informative sampling. This is 
done by applying the weighting procedure described in 
section 2.2 in the first stage, replacing the iterative IGLS 
algorithm by the PWIGLS procedure. Thus, for each 
sample 5,, PWIGLS is used for estimating the MLM model 
parameters instead of using the IGLS. 

Comment 1: Informative selection of the first and second 
level units does not affect the conditional distiibutions of 
the random effects as defined by (3.4). Thus, although the 
distribution of M ,̂ and e^, could be largely distorted 
because of the sample selection at time ^ = 1, this has no 
effect on the distributions of Uf^2^"hi' °^ ̂ hi^^hv '^^^ 
implication of this property is that the computation of the 
likelihood in the second stage remains the same, but care 
should be taken of a proper initialization of the Kalman 
filter. As defined by (4.4), the filter is initialized by the 
unconditional means and variances of the random effects 
under the model, but at time r = 1 the moments holding for 
units in the sample can be different because of the sampling 
effects. As is well known, for long enough series and under 
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some regularity conditions, the estimates derived from 
maximization of the likelihood are not sensitive to the 
initialization procedure but with short series, improper ini­
tialization under informative sampling could distort the 
estimation process. Nonetheless, as illustrated in section 5, 
having a moderate number of longitudinal observations 
even of very short length (at most 4 observations in our 
application) and weighting the likelihood contributions by 
the inverse of the sample inclusion probabilities (applica­
tion of the pseudo likelihood approach) yields approxi­
mately unbiased estimators for all the time series model 
parameters. 

5. SIMULATION RESULTS 

In this section we report the results of a Monte Carlo 
study carried out for assessing the performance of the 
various estimation procedures described in section 4 under 
noninformative and informative rotating sampling schemes. 

5.1 Description of Simulation Study 

A) Generation of population data and sample rotation 
scheme 

Population values have been generated for individuals 
(first level units) within households (second level 
units), using the model defined by (3.1) and (3.4) (see 
below). The number of persons n̂ , observed within 
household h was selected at random with possible 
values of 2, 3 or 4. A new panel of households has 
been generated in each of 11 quarters and a sample of 
these households has been observed following the 
Israel Labor Force Survey rotation scheme of two 
quarters in the sample, two quarters out of the sample 
and two quarters in again. As easily checked, this 
process yields a complete sample of four panels in 
each of the quarters 6-11, with one panel in each 
quarter observed for the first time, one panel observed 
for the second time, one for the third time and one for 
the fourth and last time. (In the first quarter there is 
only one panel, in the next three quarters there are two 
panels and in the fifth quarter there are 3 panels.) In 
what follows we only consider the data observed for 
quarters 6-11. 

B) Population model 

The model used for generating the ^ -̂values for a 
given household h is defined by (3.1) and (3.4) with 
^hji-^^hji^^hj2) ^"'J Â'/ = (3.2r/,2)' such that the 
covariate values are fixed over time. The x-values 
were generated independentiy from the uniform distri­
bution U[l,2]. Values z ĵ were generated from the 
uniform distribution U[l, 5]. In order to simplify the 
presentation and evaluation of the results, we also set 
the model coefficients to be time invariant such that 
T, = Y = (6, -2)' and v, = v = (1,2)'. The random error 

terms were generated independently between house­
holds using the model (3.4) with A = diag[0.5, 0.7], 
A = diag [0.8,0.5], p=0.4and ô  = 0.25. Notice from 
(4.1) that Var(w^,)=A*=diag[1.067,0.980] and 
V a r ( v ) = at = 0.298. 

C) Sample selection 

We consider two separate sampling schemes. 
CI) Noninformative sampling: 

Population values have been generated for panels of 
30 households, with all the households belonging to a 
given panel selected to the sample and observed 
following the sample rotation scheme described in A 
above. The total number of sampled households in 
each of the quarters 6-11 is therefore m= 120. All the 
individuals belonging to a given household have been 
observed, yielding an expected sample size of « = 360 
individuals for each of the quarters. This sampling 
scheme cortesponds to simple random sampling of 
households and individuals within the selected 
households. 

C2) Informative sampling 

Population values have been generated for panels of 
55 households. Households with random effects 
M;,! , < 0 (the value of the first random effect at the 
first time point) have been sampled with probability 1, 
households with random effects u., , > 0 have been 

n I, I 

sampled independently (Poisson sampling) with 
probability 0.1. All the individuals belonging to a 
sampled household have been observed. This 
sampling scheme yields an expected sample size of 
approvimately 30 households per panel and expected 
sample sizes of approximately m = 120 households 
and n = 360 individuals per quarter, similarly to the 
sampling scheme CI. 

Comment 2: It should be emphasized that even though there 
are 4 panels observed in each of the quarters 6-11, there are 
only 11 separate panels that are used for estimation of the 
model parameters. Moreover, out of the 11 panels, only the 
panel entering the sample in quarter 6 for the first time is 
observed in 4 quarters, only 2 panels are observed in 3 
quarters, 6 panels are observed in 2 quarters and 2 panels are 
observed in only one quarter. This implies a total of 13 panel 
transitions, with about 390 household transitions observed 
for estimation of the time series parameters. (By a panel 
transition we mean that the same panel is observed on two 
occasions. For 3 of these panel transitions there is a time gap 
of 2 quarters between the two observations). We refer to this 
sample structure when assessing the estimation of the time 
series model parameters. 

The whole process of generating population values and 
selecting the sample has been repeated 100 times for each 
of the two sampling schemes CI and C2, with one sample 
selected from each population. For each sample we applied 
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the two estimation procedures described in section 4. The 
simulations were run using the Gauss software package. 
Maximization of the likelihood has been carried out using 
the numerical optimization procedure, OPTMUM. 

5.2 Results 

The results of the simulation study are summarized in 
Tables 1-4 as averages over the 100 samples selected under 
the two sampling schemes. Each table contains the mean 
estimates of the model parameters, the empirical standard 
deviations (SD) of the estimators and the conventional 
/-statistics obtained by dividing the difference between the 
mean estimates and the true parameter values by the 
standard ertors (SE), computed as SD/10. Notice that the 
estimates of the fixed vector coefficients p, = (y/, v/)' are 
the same under the two estimation methods. 

Perhaps the most important outcome of this study, 
revealed from Table 1, is that under noninformative 
sampling it is indeed possible to fit successfully simple but 
nontrivial time series models to very short longitudinal 
series, provided that the number of observed series is 
sufficiently large. (The model is not trivial because even 
after subtracting the fixed effects, the dependent response 
variable is the sum of three AR(1) processes.) This 
conclusion is further strengthened by the fact that 8 out of the 
11 panels have been observed for at most 2 times, yielding a 
total of 13 panel transitions, three of which with a gap of 2 
quarters. See Comment 2 at the end of section 5.1. 

Table 1 
Means, Standard Deviations (SD) and /-Statistics of Estimators 

Under Two Estimation Methods. Noninformative Sampling 

Method 1 Method 2 

Parameter 
True 
Value 

Mean SD /-statistic Mean SD /-statistic 

" I I 

A;, 
A,', 

6.000 

-2.000 

1.000 

2.000 

0.500 

0.700 

1.067 

0.980 

0.400 

0.298 

6.002 0.03 

-2.000 0.03 

0.989 0.08 

2.008 0.08 

0.497 0.07 

0.696 0.07 

1.054 0.08 

0.991 0.10 

0.398 0.02 

0.298 0.01 

0.677 

0.078 

-1.357 

0.997 

-0.391 

-0.532 

-1.668 

1.042 

-0.937 

-0.062 

6.002 

-2.000 

0.989 

2.008 

0.491 

0.695 

1.045 

0.990 

0.397 

0.297 

0.03 

0.03 

0.08 

0.08 

0.07 

0.07 

0.08 

0.11 

0.02 

0.01 

0.677 

0.078 

-1.357 

0.997 

-1.271 

-0.820 

-2.677 

0.906 

-1.637 

-1.382 

Evaluation of the performance of the two sets of 
estimators in Table 1 shows that all the estimators under 
Method 1 are highly insignificant based on the conventional 
/-statistics and only the estimator of A,', is significant under 
Method 2. Note that even in that case the absolute relative 
bias is about 2% and considering that MLE of time series 
parameters are generally not strictly unbiased, such a small 
bias in one of 10 parameters is expected. Notice also that 
the standard ertors of the mean estimators under the two 
methods are very similar, a result observed also in the other 
tables. 

Next we consider the case of informative sampling. 
Table 2 shows the results obtained when ignoring the infor­
mative sampling process, using the same estimation proce­
dures as used for the noninformative case. As indicated 
very clearly by this table, some of the parameter estimates 
are highly significant, particularly the estimators of the 
parameters indexing the time series model of the random 
effects Uf^ „ that define the sample selection probabilities. 
Thus, we find that the absolute relative bias in estimating Vj 
is about 27%, and large absolute relative biases are also 
observed for the estimators of ^ , , and A,',. (The model 
defined by (3.1)can be rewritten as >';,̂ .,=A:̂ .̂,y, + z;,W;,', + e^j, 
where M̂,* = M ,̂ + v,, such that for v, = v as under the simu­
lation model, Vj = E{u^^,)). Note that the three biases are 
negative, which is explained by the fact that the selection 
mechanism utilized for this study oversamples individuals 
with observations that contain negative random effects 
M̂ , J. In this case again, the two estimation methods 
perfonn very similarly. 

Table 2 
Means, Standard Deviations (SD) and /-Statistics of Estimators 

Under Two Estimation Methods. Informative Sampling, 
Unweighted Estimators 

Method 1 Method 2 

Parameter 
True 
Value 

Mean SD /-statistic Mean SD /-statistic 

Y2 

^2 

A„ 

A;, 

^ ' 2 

6.000 

-2.000 

1.000 

2.000 

0.500 

0.700 

1.067 

0.980 

0.400 

0.298 

5.998 

-2.000 

0.728 

2.005 

0.438 

0.738 

0.995 

1.003 

0.407 

0.298 

0.02 

0.03 

0.09 

0.09 

0.09 

0.09 

0.09 

0.10 

0.02 

0.01 

-0.768 

0.104 

-34.385 

0.564 

-6.742 

4.078 

-7.766 

2.352 

3.184 

0.644 

5.998 

-2.000 

0.728 

2.005 

0.434 

0.735 

0.994 

0.987 

0.405 

0.296 

0.02 

0.03 

0.09 

0.09 

0.09 

0.09 

0.09 

0.10 

0.02 

0.01 

-0.768 

0.104 

-34.385 

0.564 

-7.453 

3.941 

-7.883 

0.698 

2.218 

-1.800 

Table 3 shows the results obtained when using the 
PWIGLS algorithm for the estimation of the MLM para­
meters (section 2.2) and weighting the time series likeli­
hood contributions log(Z,^) = - {I/2r^n^ log(2n) 
. 1/2L=, log \F„\^ ii2{Y„ - r „ „ . , ) ' F ; / ( y „ -f,,,,.,)) 
by the household sampling weights w^ = 1 /Pr(/iej), using 
the same 100 samples as used for Table 2. Weighting the 
likelihood contributions by the inverse of the sample inclu­
sion probabilities is an application of the pseudo likelihood 
approach that is often recommended for fitting single level 
models to cross-sectional data, see, e.g.. Binder (1983), 
Skinner et al. (1989) and Pfeffermann (1993). As revealed 
from this table, the use of the PWIGLS algorithm and 
weighting the likelihood eliminates the large biases 
observed in Table 2, despite the improper initialization of 
the Kalman filter with very short series. (See the discussion 
in Comment 1 at the end of section 4.) Here again, the two 
estimation methods perform quite similarly, yielding one 
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biased estimator in each case but with both biases being 
relatively very small. 

It is important to mention that the SD's of the weighted 
estimators shown in Table 3 are always larger than the 
cortesponding SD's of the unweighted estimators displayed 
in Table 2. As pointed out by one of the referees, this 
implies that the empirical root mean square ertors 
(RMSE's) of the unweighted estimators in Table 2 are in 
fact larger than the empirical RMSE's of the cortesponding 
estimators in Table 3. This outcome, however, is due to the 
relatively small sample sizes employed in this study. For 
larger samples (larger numbers of households and indivi­
duals within the households) die RMSE is dominated by the 
bias which, unlike the variance, is not reduced as the 
sample size increases. Thus, it is clear that as the sample 
size increases the RMSE's of the weighted estimators 
become smaller than the RMSE's of the unweighted esti­
mators. The fact that probability weighted estimators have 
larger variances than the corresponding unweighted estima­
tors is well known from many other studies, see 
Pfeffermann (1993) for discussion and references. 

Table 3 
Means, Standard Deviations (SD) and /-Statistics of Estimators 

Under Two Estimation Methods. Informative Sampling, 
Weighted Estimators 

Method 1 Method 2 

Parameter 
True 
Value Mean SD /-statistic Mean SD /-statistic 

Yi 

Y2 

"u 
A j j 

A;, 

Aa'2 

6.000 

-2.000 

1.000 

2.000 

0.500 

0.700 

1.067 

0.980 

0.400 

0.298 

5.997 

-2.000 

0.978 

2.019 

0.490 

0.699 

1.055 

1.023 

0.401 

0.297 

0.04 

0.05 

0.14 

0.14 

0.15 

0.17 

0.17 

0.19 

0.04 

0.01 

-0.607 

-0.007 

-1.518 

1.330 

-0.695 

-0.066 

-0.664 

2.199 

0.135 

-0.486 

5.997 

-2.000 

0.978 

2.019 

0.477 

0.709 

1.040 

1.010 

0.397 

0.294 

0.04 

0.05 

0.14 

0.14 

0.14 

0.16 

0.17 

0.19 

0.04 

0.01 

-0.607 

-0.007 

-1.518 

1.330 

-1.611 

0.545 

-1.560 

1.571 

-0.813 

-3.340 

As discussed in Comment I at the end of section 4, 
informative sampling distorts the cross-sectional distribu­
tion of the sample observations and the initialization of the 
Kalman filter, but does not affect the conditional distribu­
tions of the first and second level random effects defined by 
(3.4). Thus, it is interesting to test whether the use of the 
PWIGLS algorithm for estimating the cross-sectional model 
parameters but without weighting the time series likelihood 
likewise controls the bias. Table 4 shows the results 
obtained for this case with the same samples as used for 
Tables 2 and 3. The estimators of the fixed vector coeffi­
cients p, = (y/, v / ) ' are the same as in Table 3 and hence 
are not shown again. Notice that the estimators of A,*,, Ajj 
and Og under Method 2 are also the same as the correspon­
ding estimators in Table 3. 

The interesting result revealed from Table 4 is that the 
estimators of ^ , , and A.^.^ have now a non-negligible bias. 

unlike the corresponding estimators in Table 3. This result 
can be explained as follows. Under the informative 
sampling scheme, the expectation of the random effects 
w ĵ , corresponding to households h in the sample is below 
zero, E{Uf^^^ \hes)< 0, and hence the initialization of the 
Kalman filter by the population expectation (fw^, , = 0, 
Equation 4.4) yields biased estimators. On the other hand, 
by weighting the likelihood contributions Z.̂  by the inverse 
of the sample selection probabilities, the proportions of 
likelihoods Z^ corresponding to random effects that are 
below and above the model expectation is balanced to the 
population proportions and thus the use of the model 
expectation for the initialization process does not bias the 
estimation process. As noticed for the previous tables, the 
SD's of the unweighted estimators in Table 4 are much 
smaller than the SD's of the corresponding weighted 
estimators in Table 3. 

Table 4 
Means, Standard Deviations (SD) and /-Statistics of Estimators 

Under Two Estimation Methods. Informative Sampling, 
Weighted MLM, Unweighted Likelihood 

Method 1 Method 2 
True Parameter """ Mean SD /-statistic Mean SD /-statistic 

"11 

A j j 

A;, 

^2*2 

0.500 

0.700 

1.067 

0.980 

0.400 

0.298 

0.468 

0.742 

1.060 

1.008 

0.407 

0.298 

0.09 

0.11 

0.11 

0.11 

0.02 

0.01 

-3.477 

3.948 

-0.598 

2.449 

3.021 

1.013 

0.453 

0.737 

1.040 

1.010 

0.402 

0.294 

0.10 

0.11 

0.17 

0.19 

0.02 

0.01 

-4.569 

3.197 

-1.560 

1.571 

0.894 

-3.340 

6. APPLICATION OF THE MODEL 
TO LFS DATA 

We fitted the model defined by (3.1) and (3.4) to an 
empirical data set exti-acted from data collected by tiie Israel 
LFS for Jerusalem during the years 1990-1994. The data 
contain complete records for 567 individuals in 475 
households, with each individual observed in four quarters 
according to the rotation pattern described before and used 
for the simulation study. Out of the 475 households, 385 
have one individual record, 88 have 2 individual records 
and only 2 households have 3 individual records. The out­
come variable is ^̂  = number of hours worked during the 
week preceding the interview, {y = 39.8, sd {y) = 14.8; 
calculated over all individuals and all the quarters). The 
individual level auxiliary variables are x, = years of 
education, (3c, = 13.4, sd (x,) = 4.8) and Xj = gender, (41% 
females). The household level auxiliary variables are 
z, = 1 and Zj = number of employed persons in the house­
hold (Zj = 1.48, sd(z2) = 0.56). 

We estimated the model parameters using the two 
methods described in section 4. The sampling weights 
attached to these data are very similar across households 
and individuals so that we only computed the unweighted 
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estimators. The LGLS algorithm produced negative 
variance estimates for A22 in some of the quarters and these 
estimates have been set to zero when averaging the variance 
estimates under Method 2. The quarterly estimates of the 
fixed model coefficients have not been averaged as they 
change significantiy over the five years period. 

The estimates computed by the two methods for the 
variances and autoregression coefficients are shown in 
Table 5 using the same notation as in the previous tables. 
The two sets of estimates are not very far except for the 
estimator of A22 which, has already mentioned was found 
to be negative in some of the separate IGLS runs. Note in 
this respect that for most of the households there is only a 
single individual record (see above), and that for almost all 
of these households Zj = I. This complicates the estimation 
process since for such households it is impossible to 
distinguish the first (individual) level effect from the two 
household effects, which are likewise confounded. (Note 
that the sum of the latter two variances is similar under the 
two methods.) As discussed below, the estimators in Table 
5 are dominated by the observations obtained for 
households with two individual records. 

Table 5 
Estimates of Variances and Autoregression 

Coefficients Under Two Estimation Methods. 
LFS Data 

Parameter 

Method 1 

Method 2 

Au 
0.915 

0.976 

/ 4 j j 

-0.606 

-0.548 

A;, 
73.88 

56.88 

^ 2 * 2 

2.541 

14.753 

P 
0.242 

0.448 

ol 
102.306 

101.001 

Under the Israel LFS sampling design, each individual 
record consists of 4 observations taken in quarters 1,2, 5 
and 6, with quarter 1 defining the first calendar quarter / 
that the individual is in the sample. In order to assess the 
prediction power of the model, we computed for every 
individual record {h,j) the empirical innovations when 
predicting the adjusted values r^j^ = {y^ - x^j^y^ - ẑ ^ v^ 
using the household data observed for the preceding 
quarters that the individual has been in the sample. Note 
that by subti-acting the fixed effects from the original 
observations, the distribution of the adjusted values no 
longer depends on the calendar quarters. The innovation for 
quarter q is the cortesponding prediction ertor which, by 
(3.1) is computed as rf^^.^ = {r^ -z;,%i<,-;« " %i,-m) = 
'•*;,-(^4-1)'"?!?-'"'^^ 2,5,6 where &,„.„ is the 
predictor of the state vector a = {u^^, e^^j^)' using the data 
observed until quarter q-m, with m = ^ -1 for ^ = 2,6 and 
m = 3 for q = 5. The predictor a , is obtained by 
application of the Kalman filter with the cortesponding 
estimated parameters (see section 2.3 and Equations 3.5 and 
4.3). 

Table 6 shows the roots of the means of the square 
innovations (RMSI) by quarter and the number of house­
hold (HH) records, as obtained under the two estimation 
methods (using the parameter values displayed in Table 5). 

r — r 
hjq hj,q-m 

( r — r i 
hjq hi,q-m' 

• Ms 

For comparison, we also show the RMSI's of the innova­
tions obtained by predicting the adjusted value for quarter 
q by the adjusted value in the preceding quarter. The 
"naive" predictor ?.. = r,. can be interpreted as being 
the optimal predictor under the simple random walk model 

+ ertor. The means of the innovations 
) for ^ = (2, 5, 6) are (0.68, 0.24, 0.301) for 

hoijsehold's with one record, (1.24, -1.20, 0.60) for 
households with two records and (4.02, -5.82, 7.68) for 
households with 3 records but recall that the latter means 
are based on only 2 households. The cortesponding means 
of the empirical innovations computed under the model are 
smaller in absolute value in all the cases. 

Table 6 
Root Mean Square of Innovations by Number of Household 

Records and Quarter Under Two Estimation Methods 
and Naive Prediction. LFS Data 

HH 
Records 

1 

Quarter 2 5 6 2 5 6 2 5 6 
Method 1 11.54 11.16 11.62 12.26 11.71 10.88 9.61 9.98 8.94 
Method 2 11.71 11.16 11.49 12.10 11.48 10.91 9.30 9.78 7.90 
Naive Pred. 14.00 11.92 13.60 14.71 15.12 13.47 7.50 13.32 11.29 

The data analyzed in this section behave much more 
ertatically than the data used for the simulation study 
generated under the model and we cannot claim that the 
model employed yields the best possible fit (see also 
below). Nonetheless, the values displayed in Table 6 
illustrate some important features of the model. We mention 
first the generally much better performance of the model 
predictors compared to the naive predictor r. = r̂ , „.„, 
with the two estimation methods yielding similar RMSI's. 
The superiority of the model is explained by the fact that 
whereas the first order autocortelations of the two random 
household effects used for the model predictions are high in 
absolute value (very high for the first component), the 
autocortelations of the adjusted values (the "total" ertors) 
are only of moderate size. The first order autocortelations 
of the random components are the cortesponding 
autoregression coefficients, see Table 5. The empirical 
autocortelations of the adjusted values, Cort(r^^^, r̂ .̂̂ _ )̂, 
^ = 2, 5, 6; m = 1 for ^ = 2,6; m = 3 for q =5 are cbrtes-
pondingly (0.46, 0.59, 0.51) for one record households, 
(0.48, 0.36, 0.45) for two record households and (0.92, 
0.43, 0.63) for three record households (based on 6 
individual records). 

As already noted, the fact that most households have 
only one individual record introduces identifiability 
problems since for such households it is impossible to 
distinguish between the three random effects. Computation 
of the cortelations Cort(r^. ,r^. ^^), under the model 
using the parameter estimates m Table 5 shows a good fit to 
the correlations computed for two record households. This 
in turn illustrates that the estimators in Table 5 are 
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dominated by these observations and we conclude that the 
model fits best the observations obtained for the households 
with two records. Note, however, that the RMSI's obtained 
for the other household sizes are not higher than the 
RMSI's computed for the two record households (see also 
below). It is important to mention in this regard that if the 
data had been aggregated over all the individuals observed 
in a given calendar quarter, it would have been impossible 
to account for the random household effects, resulting in 
inferior predictions of the individual observations. See the 
discussion in the introduction. (Modelling the aggregate 
data is rather complicated in this case since the sample in 
each calendar quarter consists of 4 different panels as 
defined by the number of times that individuals are in the 
sample. This implies that the models holding for these 
panels are different, depending on the number of observa­
tions available for each panel.) 

Other interesting results noted in Table 6 are that the 
RMSI's under the model are generally lower for g- = 6 than 
for q = 2,as explained by the use of more observed data for 
the same individual in the prediction process (more 
observed data for estimating the random effects in the 
preceding quarter). Also, for g- = 6 the RMSI's decrease as 
the number of household records increases, as explained by 
the use of data observed for other household members. 
Finally, the RMSI's for households with 3 records are much 
lower by use of the model than the RMSI's obtained for 
households with 1 and 2 records but we mention again that 
there are only 2 households with three records. The unex­
pected results in Table 6 are that for households with one 
record the RMSI's are somewhat larger for ^ = 6 than for 
q= 5 (note the relatively high and unexplained cortelation 
of 0.59 between the adjusted values 3 quarters apart 
computed for these households), and that for g = 2 and q =5 
the RMSI's for households with 2 records are larger than 
the corresponding RMSI's for households with 1 record. 
With empirical data of relatively small size such anomalies 
are not unusual and they show up even more prominently 
with the naive predictor. (The fact that for a given number 
of household records the RMSI's by use of the model for 
q = 5 are of similar magnitude to the other RMSI's is 
reassuring given that the predictions in this case are 3 
quarters ahead.) 

7. CONCLUSIONS AND MODEL EXTENSIONS 

The results of this paper illusti-ate that it is possible to fit 
time series models to longitudinal series of very short length 
and with missing observations. The model used in the 
present study is an extension of the standard two level linear 
model by which both the first and second level random 
effects evolve stochastically over time. This kind of model 
is suitable for modelling longitudinal measurements that are 
taken for hierarchical populations. Application of the 
PWIGLS algorithm combined with standard probability 

weighting of the time series likelihood is shown to protect 
against the effects of informative sampling. 

Multilevel models are often fitted to discrete data, in 
which case the models contain nonlinear components. In 
principle, the two-stage estimation method proposed in this 
paper can be applied in this case as well, although with very 
short longitudinal series the range of models that can be 
fitted is obviously limited. Moreover, a common procedure 
for estimating the unknown model parameters in the 
discrete case consists of linearizing the nonlinear compo­
nents on each iteration of the IGLS around estimates 
obtained on the previous iteration, and then applying the 
standard IGLS for computing the revised estimates. See 
Goldstein (1995) for details. Thus, it seems feasible to 
extend the PWIGLS algorithm to the discrete case without 
major difficulties. 

In this paper we have not considered variance estimation. 
This is no problem under the standard IGLS and 
Pfeffermann et al. (1998) propose simple variance 
estimators for the PWIGLS procedure. However, estimation 
of the variances of estimators obtained from maximization 
of the time series likelihood is more problematic because of 
two reasons. First, the possibly short length of the longitu­
dinal series may no longer justify the use of the information 
matrix or permit stable estimation thereof, even with large 
number of second level units. Second, the MLM estimators 
are held fixed when maximizing the likelihood, implying 
that the MLE abstract from the sampling ertors in the 
estimation of the MLM parameters. A possible solution to 
tills problem is the use of re-sampling metiiods that allow to 
account for all sources of variation in the estimation 
process. 

Finally, we mention an important application of the 
proposed model for the imputation of missing data. In a 
recent article, Pfeffermann and Nathan (forthcoming) 
illustrate the large reductions in the imputation variance tiiat 
can be achieved under the model compared to the use of 
more standard imputation methods that ignore the common 
household effects. 
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A Conditional Mean Squared Error of Small Area Estimators 
LOUIS-PAUL RIVEST and EVE B E L M O N T E ' 

ABSTRACT 

This paper suggests estimating the conditional mean squared error of small area estimators to evaluate their accuracy. This 
mean squared error is conditional in the sense that it measures the variability with respect to the sampling design for a 
particular realization of the smoothing model underiying the small area estimators. An unbiased estimator for the conditional 
mean squared error is easily constructed using Stein's Lemma for the expectation of normal random variables. This 
estimator can be calculated for any shrinking strategy; composite and empirical Bayes estimators are considered in this 
work. It can be calculated when the small area estimators are benchmarked to coincide with direct estimators at high level 
of aggregation. It can accommodate skewness in the data and estimated variances. The conditional mean squared error 
estimator does not rely on any smoothing model. The price to pay for this property is a high variance; the new estimator 
is unstable under heavy shrinking. In these situations, it still provides useful diagnostic information about the shrinking 
model. It can also be seen as a building block for estimators of unconditional mean squared errors such as Prasad and Rao's 
(1990). Examples dealing with the estimation of the under-coverage in the Canadian Census illustrate the application of 
this new estimator. 

KEY WORDS: Census under-coverage; Diagnostics; Empirical Bayes estimation; Estimated variances; Skewness; Stein's 
lemma; Survey sampling. 

1. INTRODUCTION 

In survey sampling, the need to develop accurate meth­
ods of estimation for small areas poses challenging statis­
tical problems. For small areas, direct survey estimates 
have too large a variance to be reliable. Small area tech­
niques "improve" direct estimates by shrinking them to­
wards model based smoothed values. Simple shrinking esti­
mators are proposed by Purcell and Kish (1979). In a 
pioneering paper. Fay and Hertiot (1979) demonstrate that 
this can lead to interesting gains in precision. The review 
papers of Ghosh and Rao (1994) and of Singh, Gambino 
and Mantel (1994) provide convincing evidence of the 
vitality of this area. 

The estimation of the ertors in small area estimation is 
receiving an increasing attention, see Singh, Stukel and 
Pfeffertnann (1998) and Booth and Hobert (1998). This 
paper suggests estimating the conditional mean squared 
ertors of small area estimators. The conditional mean 
squared ertor can be estimated for all shrinking strategies, 
either empirical Bayes or decision theoretic (Purcell and 
Kish 1979). Other mean squared ertors, such as Prasad and 
Rao's (1990), and Singh, Stukel and Pfeffertnann (1998) 
frequentist proposals measure the variability with respect to 
both, the sampling design and the smoothing model. The 
mean squared ertor of this paper is conditional in the sense 
that it measures variability with respect to the sampling 
design for a particular realization of the smoothing model. 
This feature is attractive since the conditional estimator 
reflects the conditions under which the survey has been 
carried out (see Samdal, Swensson, and Wretman 1992, ch. 

7). The drawback of this property is a high variability. In 
some instances, the proposed estimator is too variable for 
practical use. 

When shrinking is important, the conditional mean 
squared error estimators are highly unstable. An uncondi­
tional assessment of the precision of small area estimators 
must be used. In this situation, the conditional estimator 
proposed in this paper still provides some useful informa­
tion. It can be looked at as a diagnostic for comparing 
smoothing models. It can also be a building block for 
constructing Monte Carlo estimates of unconditional mean 
squared errors in situations where closed form formulas, 
such as Prasad and Rao's (1990), are not available. 

The assessment of the accuracy of estimators for the 
under-coverage, at the provincial and sub-provincial levels, 
of the Canadian Census motivated this work. Alternatives 
to the direct estimates for provincial under-coverage are 
discussed by Royce (1992) and Rivest (1995). Dick (1995) 
applies empirical Bayes methods to sub-provincial under­
coverage estimates. These two examples are treated in 
section 5. 

An estimator of the conditional mean squared ertor is 
presented in section 2. Its construction relies on the multi­
variate version of Stein's Lemma for the expectation of 
normal deviates. Section 3 suggests changes to the condi­
tional estimator to accommodate skewness in the distribu­
tion of the direct estimators and estimated variances. 
Section 4 discusses the application of the new estimator to 
empirical Bayes estimators. Its relationship with Prasad and 
Rao (1990) prediction variance is highlighted. Examples 
are treated in section 5. 

Louis-Paul Rivest and Eve Belmonte. D^partement de mathdmatiques et de statistique. University de L.aval, Ste-Foy, Qudbec, Canada, GIK 7P4. 
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2. A CONDITIONAL MEAN SQUARED 
ERROR ESTIMATOR 

Suppose that there are n small areas and let 
p=(p,,...,p^)' denote the unknown population characteris­
tics for these small areas. The direct survey estimates for 
the n small areas axe y = {y^, ...,y„)' where the distribution 
of>' is N^{\i.,lL), a«-variate normal distribution with mean 
vector |i and known variance-covariance matrix X. As 
pointed out by Ghosh and Rao (1994), the normality 
assumption is likely to hold for many surveys since direct 
survey estimates are usually functions of sums of variables. 
The « X « matrix S is a design based measure of precision 
for y. For the time being, this matrix is assumed to be 
known. This assumption is relaxed in section 3.2. The 
uncertainty in y comes from the random selection of the 
sampling units. Subscript S, for sampling design, denotes 
expectations taken with respect to the distribution of >'. 

In a typical appUcation of small area techniques, one has. 

yi 

where y.j is the j^-value for fhej-th sample unit in small area 
/, W.J is its sampling weight and the sum is over all the 
sample units in small area /. In many instances, the variance 
covariance matrix S is diagonal; its (/, /) term, is o„ = 
Varg {y.y, when they are non null, the off diagonal elements 
of S are denoted by o,̂ , i,j = I,..., n. 

Several methods have been proposed to improve the 
accuracy of direct survey estimators. They involve 
shrinking y. towards some indirect estimator of p^. The 
resulting estimators can be written as 

A/=:>'/+g,(>'i,-,>'„), / = !,...,« (1) 

where the g.'s are functions depending on the shrinking 
strategy. 

In vector form, one can write (1) as p =y •*• g{y) where 
g, whose /-th component is equal to g., is a function 
defined from R" to R". We assume that for each /, the 
right partial derivative and the left partial derivative of g. 
with respect to y. exists for any yinR". When they are 
equal, dg. {y)/dyj denotes the common value; if they (differ 
dgi{y)ldyj is the average between the two values. The 
component of g{y) and their partial derivatives are 
assumed to have finite variances. A conditional assessment 
of the precision of ja as an estimator for p is given by the 
matrix of the mean product errors which is given by 

Es{{\x-Vi){\i-\x)'}=Z^E,{{y-vi)g{yy} 

^Es{g{y){y -\xy} ^ E,{g{y)g{yY] 

On the right hand side of this equality, the only quantities 
for which there are no obvious estimators are 
Eg{ {y - \i)g{y)'} and E^ {g{y) (y - M)'} • Their evaluations 

are eased by the following result which is a multivariate 
extension of Stein's lemma (Stein 1981). Its proof is given 
in the appendix together with the proofs for Propositions 2, 
3, and 4. 

PROPOSITION 1: Let>' be a Af„(p,S) random vector 
then, 

Es{{y-\^)g{yy}=^E,{Vg{y)}, 

where '^g{y) is an « x n matrix whose {i,j)-tYi element is 
given by gj{y) = dg.{y)ldyj. 

Now according to Proposition I, 'L'^g{y) is an unbiased 
estimator for E^{{y -]x)g{y)']. Thus the conditional 
estimator (index "c" stands for conditional) for the matrix 
of the mean product errors is given by 

mpe^(p) = S + I.Vg{y) + Vg{yri. + g{y)g{y)'. (2) 

The diagonal terms of (2) can be negative. Since they 
estimate mean squared errors, a better estimator for the 
mean squared ertor of p. is 

mse;(A,) = maxf 0, o.. +2o^.{g;(;;) +gf(>;)) +g,.(y)̂  

It generalizes an estimator proposed by Bilodeau and 
Srivastava (1988) for James-Stein estimator, and by Robert 
(1992 p. 292) for empirical Bayes estimators. When the 
>'.'s are independent, with a.. = 0 when / *j, then 

dg.{y) 
mse^(A,) = o,., + 2 o . . ^ *g>{y?, 

^yi 
(3) 

and msej(p.) = max{mse^(p.),0}. 
Kott's (1989) small area estimator has g.{y) = £.(7. -y.), 

where y. is a measure of location for the>''s and d. is a 
smoothing parameter. These two statistics involve variance 
estimates calculated at the "unit" level, that is using the 
y.j's. Kott's (1989) conditional mean squared error is 

v(M.)=o, ( l -2a)+ (&.(>.,-y.))l 

This is equal to (3) when both {dldy.)a.. and {dldy.)y. are 
null. Thus Kott's (1989) estimator for the conditional mean 
squared ertor does not account for the estimation for the 
variance components. This may account for the biases that 
it exhibited in the simulations reported by Prasad and Rao 
(1999). 

The estimates mse^ and mpe^ can be evaluated numeri­
cally by taking 

gi{yv-,yj.x'yj^^>yj.v-^y„) 
gg,W _ -g,{yx'-'yj-x'yj-^'yj.x^-'yn) 

dyj ~ 2e 

where e is a small positive number. Thus msê  and mpe 
can be calculated in all circumstances, even when g has no 
explicit form. 
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To illustrate the flexibility of the conditional estimator, 
consider fi* = p (2_v.) / (Sp,), an estimator bench-marked 
to agree with the direct estimator for the _v-total. One has 
M* =y "^ g'{y) where 

g'{y) = ^^:rT-g(y) , EM, 
- 1 

It might be difficult to derive an analytical formula for 
mpe .̂(jj*), however this expression is easily evaluated 
using numerical derivatives. Modifications of the condi­
tional estimator to account for non-normality in the y.'s and 
for estimated variances o,.,. are given next. 

3. SENSITIVITY ANALYSIS 

In many surveys, especially those in the business sector, 
the study variables are skewed. Some of this skewness 
might still be left in the direct estimators y.. This section 
suggests a cortection to the conditional mean squared ertor 
to account for skewness in the distribution of y. It also 
proposes ways to account for the estimation of the variances 
o.. in the mean squared error calculations. 

In practice the variances a., are estimated. Several 
authors (Dick 1995; Hogan 1992) smooth the variances 
before calculating the small area estimates. They then 
consider the smoothed variances as the tme variances in the 
small area calculations. Section 3.2 gives a condition under 
which replacing the estimated variances by their smoothed 
values yields unbiased mean squared ertor estimators. It 
also consider situations where the sampling variances are 
estimated with random groups (Wolter 1985 ch.2). This 
method consists in carrying a certain number, say k, of 
replications of the survey design. This yields, for each /, k 
estimates of p.; a., is then equal to the sampling variance 
of these k estimates divided by k. Assuming that these k 
estimates are normally distributed, one can consider that, 
suitably normalized, the distribution of 6.. is chi-squared 
with k - I degrees of freedom. A conditional mean squared 
ertor, adjusted for variances estimated with random groups, 
is proposed in this section. To keep the discussion simple, 
we assume in this section that S is a diagonal matrix; in 
other words the >'/s are assumed to be independent random 
variables. 

3.1 Non-Normality in the Distribution of y. 

In many applications of small area estimation, the distri­
butions of the >'. 's are not exactly normal. A simple adjust­
ment to (3) is proposed to deal with asymmetry in the 
distribution of the v. 's. 

3/2 
Suppose that the skewness of y., p.=Eg{{y.-[\.) ]/ 

o]- is small and non-zero. A first order Edgeworth series 
for the distribution of y. is given by (see for instance Reid 
1991): 

/(O 
exp{-(r-M.)2/(2o..)} 

{{2o„n) 

I + 
P, ' - M , ^3 

IV V ° " / 

- 3 
' - M , 

V V ° " / 

Such an expansion is used to cortect for skewness in the 
direct estimators (Bamdorff-Nielsen and Cox 1989, remark 
2 p. 92). Expansions involving additional terms are used 
for cortecting for both skewness and kurtosis; they will not 
be considered in this section. The evaluation of 
E{{yi- V^i)gi{y)) under/ needed for the construction of 
the conditional mean squared error estimator, is given in 
Proposition 2. 

PROPOSITION 2: When y. distiibuted according to f{t), 
as p. tends to 0. 

Es{{yr\'i)Siiy))-

o.. Ec 
\dg,{y) 

I syi 

3/2 
5'g,(7) 

dyf 
0(p,). 

A mean squared error estimator corrected for asymmetry 
is therefore given by mse*(p.) = max{0, mse^(M.)} where 

. . . - dg.{y) 3/2 ^g,{y) 
mse^(p,.) = o., + 2o,.,.—— + o,, p. — + g.{yf. 

^i dyt 
In practice, it might be difficult to find individual skewness 
coefficients p. for each /. A better strategy might be to 
combine all the data points to come up with a common 
p-value. 

3.2 Estimated Variances 

Consider first a survey where the o./s are estimated 
using k random groups. Assuming normality, one can 
consider that {{k -I) a.. / o.. :/ = 1,...,«} is a sequence of 
independent x\_^ random variables which is independent of 
y. Evaluating the conditional mean squared ertor (3) with 
variance estimates 6.. yields potentially biased estimators, 
since g,(>') and its derivatives depend on 6... The potential 
bias can be expressed as 

^E\^-^\-2oJ''>'''\ 
^Yi dYi 

(4) 

As shown in the Appendix, this bias is 0(1 Ik). The next 
proposition suggests a small change to (3) that reduces its 
bias (4). 

PROPOSITIONS: Replacing 6,.. hy {k - l)6../{k + l)in 
the evaluation of dg.{y)/dy. for calculating the mean 
squared ertor estimator (3) yields an estimator with an 
0{llk^)bias. 



70 Rivest and Belmonte: A Conditional Mean Squared Error 

The correction factor (A: - l ) / (A:+ l )has been proposed in 
a different context by Scott and Smith (1971). Other 
methods are available for correcting the bias for estimating 
variances, depending on the way in which o.. is estimated. 
For instance if the a., are independent N{a.., var(6..)} 
random variables distributed independently of y, then by 
Stein's lemma, (4) is equal to 2var{a..)E{d^g.{y)/dy.da..}. 

Suppose now that the variances are estimated, not 
necessarily with random groups. In surveys, such as those 
considered in Dick (1995) and Hogan (1992), explanatory 
variables are available to model estimated variances. Small 
area estimators are then calculated with the predicted 
variances a., under the smoothing model; tiiis means tiiat o,. 
enters in the calculation of g. in (1). Considering (4), the 
mean squared error estimated with the smoothed variance, 

- „~ dgi{y) ^ , 

dYi 

is unbiased provided that 

o J . ~ .^Si{y)\ -
2 ^ | ( a „ - a , ) - ^ | = 0. 

When g.{y) is calculated with smoothed variances, (4) 
should be small; the above condition holds provided that 

^ L. ~dg^{y)[ 
EA{o„-a,)-^\ = 0, (5) 

where index V refers to the model for smoothing the 
variances. One can easily test whether this condition holds 
by calculating the cortelation between the variance 
residuals and the partial derivatives of the functions g.. 
Since, as shown in Proposition 5 of the next section, 
unconditional mean squared ertors can be derived as 
expectations of mse^(p,.) testing whether (5) is tme is 
relevant even when unconditional measures of accuracy, 
such as Prasad and Rao's, are calculated. Indeed, replacing 
variances by their predicted values biases the mean squared 
ertor estimators, conditional or unconditional, when (5) is 
violated. 

MEAN SQUARED ERROR ESTIMATION 
FOR EMPIRICAL BAYES ESTIMATORS 

where p is a p x 1 vector of unknown regression parameters 
and the v.'s are independent random variables with mean 0 
and variance o„. Often the v.'s are assumed to be normally 
distributed; the marginal distribution of;'., with respect to 
both the sampling design S and the smoothing model M, is 
then A^(x,P, a.. + a^). The empirical Bayes estimators are 
obtained by shrinking the direct estimators y. towards their 
predicted values under (6). 

The extent of the shrinking depends on estimators of the 
parameters of (6) calculated from the marginal distribution 
of y.. Several methods are available for parameter estima­
tion (Cressie 1992). A popular estimator for oj (see Lahiri 
and Rao (1995)) is 

/^2 

o„ = max o,(«-p)-' E(>' ,-^:P)'-EC^„(I-^,) 
i ( = i 1=1 

where ^ = {X'X)-'X'y,h.. =xl{X'X)-'x^,andX={x^,...,xj: 
The weighted least squares estimator of P is 

k-A-x ^iYi 

'=' (o.' + o,) 

where 

A-T 
'=' K + o..) 

The empirical Bayes estimator for p. is then 
- 2 

M,=^;P. + - ^ ( V , - x , P J = 3 / , - ^ ( y , . - x ; p j . (7) 
- 2 

o+a„ 
^2 

a., + a:: 

Thus for empirical Bayes estimators, one has 

o.. 
giiy) 

^2 

a„ + a, 
(Yi-^iK)-

4.2 The Conditional Mean Squared Error Estimator 

An explicit form for (3) can be obtained from the 
following formula for the derivative of the functions g. for 
empirical Bayes estimators, 

^2 

4.1 Model Construction 

dgi{y) _ da, dg.{y) 

^i ^Yi dal - 2 

o„ + o... 

1 
X'A-': 

(Ov + o,.) 
(8) 

This section assumes that the y.'s are independent, i.e, 
that I is diagonal. In an empirical Bayes setting, the model 
(A/) for smoothing direct estimators expresses the para­
meters p. 's as random variables whose distributions depend 
on ap-variate auxiliary variable x. (Maritz and Lwin 1989, 
chapter 3), 

M,=^,'P + v.. (6) 

The partial derivatives appearing in (8) can be evaluated 
using standard methods. They are given by 

da' 

dy. {n-p) 

and 
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dg,{y) 

dal ( 6 > c j , ) ^ 
•iYi-^'ik)' 

a,: .dK 
-X,-

where 

dal ' 

(6v + o,.) 

r'-2 s2 

dal 

From (8), one has a closed form expression for mse^(p,.). 
This statistic is an estimator of mean squared ertor for the 
empirical Bayes estimator for the /-th small area with 
respect to the sampling design only. It is valid for any 
sample size n; it relies on the sole assumption that the direct 
estimators y. are normally distributed. When a„ = 0, 
p. = x\%^ and the derivatives in (8) simplify substantially. 
Since da\ I dy. = 0, one has 

mse, (p , )= ( r , -A : ;p j2 -o , + 2x ; i - ' x , . 

The properties of the conditional mean squared ertor 
estimator are best investigated in the simple situation where 
all the parameters of the smoothing model are assumed to 
be known. In this situation, dg.{y)ldy. = -a../ {a.. + ô ,) 
and the conditional mean squared ertor estimator is equal to 
mse*g(p,.) = max {(mse^(p,.), 0} where 

mse :(M,) = 
a;,a., 

o,, + o„ a,,->^a.. 

•{(y,-x,'P)^-a,-aj). 

The model based alternative to this estimator is the 
2 2 

posterior variance, aj/a, / {a^. + o„), which coincides with 
Ei^[Eg{mse^{fi.))]. This estimator is a special case of 
Prasad and Rao (1990) estimator and is denoted msep[^(p.). 
Estimator msec(p,) is highly variable when o„ is small. 
Indeed, when oj is close to 0, about 50% of the conditional 
mean squared ertor estimates are null. To further compare 
the 2 mean squared ertor estimators, conditional and uncon­
ditional, observe that when all the parameters of the 
smootiiing model are known, the conditional mean squared 
ertor of p. is 

^s{mse^(p,.)} o...a„ 

0....+0.. a,;-*-a.. 
{(M,-^;p)'-oj)-

The next proposition compares the average mean squared 
ertors of the estimators, conditional or unconditional, of 
-Ss{mse^(p.)}. 

PROPOSITION 4: When o.. = a^ for /= l,...,n and 
when the small area means are p.'s are drawn using (6), the 
efficiency of the posterior variance with respect to the con­
ditional mean squared error estimator for estimating the 
conditional mean squared ertor is 

^ J E MSEg(mse^(P,) ] /n] _ a* ^ 2a^al 

^4EMSE,{msep , (P , )} /« ] " ^^ 

where MSE^(-) denote a mean squared error taken with 
respect to the distribution of the y.'s which are independent 
A (̂p., o^) random variables. 
The above efficiency is larger than 1 provided that 
o„ /o^ < 2.41. Proposition 4 shows under heavy shrinking, 
the unconditional mean squared ertor estimator is a better 
estimator of the conditional mean squared ertor than the 
conditional estimator. This surprising result is caused by 
the large variance of the conditional estimator; when 
shrinking is extensive, it is a poor estimator. 

In some situations, such as that consider in section 5.1, 
shrinking is tight and the use of the conditional mean 
squared ertor estimator is appropriate. The conditional 
efficiency of p,. with respect to the direct estimator y. is 
given by o../ mse*(p.). This is larger than one provided 
that {y. - x'i p)̂  / (o,.,. + a^) < 2. Assuming that the 
smoothing model holds true, conditional efficiencies less 
than 1 can be expected for approximatively 16% 
{=P[N{0.1)^<2]) of the small area estimators. This per­
centage should be higher if the smoothing model is 
deficient. Conditional efficiencies less than 1 occur in 
small areas having large residuals. On the other hand, the 
unconditional efficiencies, calculated with the posterior 
variance are, in this situation, less than 1 for all small areas. 
This shows that it is practically impossible for all the con­
ditional efficiencies to be less 1; this had akeady been noted 
by Rao and Shinozaki (1978) for James-Stein estimators. 

Many of the observations made in the unrealistic situa­
tion where all the parameters are known also apply when 
parameters are estimated. The unconditional alternative to 
the conditional mean squared error estimator is Prasad and 
Rao's (1990) estimator, 

msepR(p.) = 
»2 

0//0v 
- I , a,,Var(d;) ^̂ ^ 2 ' 5 . 

"2 , '>2s2 / .<2x3 

where Nar{af) = 2 ^ (o„ + a,)^In^. To investigate the 
extent to which Proposition 4 holds when parameters are 
estimated, a small Monte Carlo study was carried out along 
the lines of the approach ii) simulation study of Prasad and 
Rao (1999). In all the simulations, « = 30 and o.,. = 1, for 
/ = 1,..., n. The smoothing model (6) was p̂ . = p + v. and 
various values of a„ were used. The results reported in 
Table 1 are based on m = 5000 Monte Carlo replications. 

The simulations used 5 sets of p.-values whose vari­
ances are reported in Table 1. For each set, y. was simu­
lated repeatedly as a A''(p., 1) random variable, / = 1,..., n. 
The empirical Bayes estimate p. was calculated for each 
small area and the mean Muared ertor for small area / was 
calculated as MSE,. = E ' ( M , ~ M,)^/'" where E * 
denotes the sum on the m Monte Carlo replications. The 
efficiency of the empirical Bayes estimator for small area / 
is 1 / MSE.. The mean and the median of the n = 30 small 
area efficiencies are given in Table 1. The 2 mean squared 
errors, conditional and unconditional, were calculated for 
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each small area in the m Monte Carlo replications; from (9), 
msep^(p,.) = (6^ + 5/«) / ( l+6^) for each small area. 
Table 1 presents the mean and the median of their absolute 
relative biases, defined as | E * (mse,(p.) - MSE.)|/ 
(WJMSE.) and of their coefficients of variation which are 
equal to ( E * (mse.(p.) - MSE.)2/w)"2/MSE.. 

Table 1 
Relative Efficiency of the Empirical Bayes Estimators (RE), 

Absolute Relative Bias (RB) and Coefficient of Variation (CV) 
of two MSE Estimators (n = 30). All Results are Expressed in 

Percentage 

I(M,-Ar/29 RE% RB.,% RBpR% CV^% CVpR% 

1.3 

2.53 

3.7 

4.24 

4.93 

mean 

median 

mean 

median 

mean 

median 

mean 

median 

mean 

median 

212 
214 

149 
163 
129 
133 
125 
131 
122 
133 

1 
1 

2 
2 
2 
1 
2 
1 
1 
1 

47 
40 
30 

31 
20 
21 

19 
22 

17 
17 

97 
100 
37 
37 
23 
24 
19 
20 
15 
13 

51 
43 

31 
32 
20 
21 
20 

22 
18 
17 

As shown in section 2, mse^(p;) is unbiased; the biases 
reported in Table 1 are caused by Monte Carlo ertors. 
When n = 30, the condition al/a^> 2.4 derived in Propo­
sition 4 for the conditional estimator to improve on the 
unconditional estimator is not sufficient; the stronger 
condition o„ / ô  > 4 is needed. Notewortiiy is the fact that 
in Table 1, for E (M, " M ) ^ / 2 9 > 2 . 5 , the CV of 
msepg(p,) is only bias. Table 1 confirms that, when oj is 
of the same order of magnitude as a., or smaller, the 
squared residual dominates the distribution of the 
conditional mean squared ertor estimator; in such cases 
Prasad and Rao (1990) unconditional estimator is a better 
estimator of conditional mean squared error. Even in 
situations when mse^(p.) cannot be recommended as an 
estimator for the conditional mean squared error, it still 
provides interesting diagnostic information: changes in the 
conditional estimators give a basis for comparing two 
smoothing models. This is illustrated in section 5.2. 

4.3 Conditional Mean Squared Error and 
Prediction Variance 

This section explores the relationship between the condi­
tional mean squared ertor proposed in this paper and the 
prediction variance which is an unconditional measure of 
accuracy. Using the rotation of (6), the prediction variance 
is MSE(p.)=£^[£5{(p.-A:/p-v.)2}]. From the 
construction of presented in section 2, one has 

£,{mse,(p, ) }=£,{ (P,-x /p-v, )2) . 

Thus we have the following result, 

PROPOSITION 5: The conditional mean squared ertor of 
empirical Bayes small area estimators satisfies, 

E^[Es{mse^{il.)}] = MSE{fi.), 

where MSE(p.) is the unconditional prediction variance. 

Proposition 5 shows that mse^(p.) can be looked at as 
an intermediate step in the evaluation of the unconditional 
mean squared error of p,.. Consider for instance the calcu­
lation of Prasad and Rao (1990) o{lln) approximation to 
MSE(P.), 

MSEp^(p.) = 
o,,o„ 

2 I A -I 

a::X,A X; o^Var(6^) 

{a..->-at)'^ {a.->-a)^ 
^11 V' ^ u v / 

where Var(6^) = 2^^ {a.. + affln"^. The standard deriva­
tion, as reviewed in section 3.2 of Singh, Stukel, and 
Pfeffermann (1998), is based on Kackar and Harville 
(1984). An alternative derivation, presented in Belmonte 
(1998, 1999), is to take the expectation of mse_,(p.), 
obtained using (8), with respect to the marginal distribution 
of the y.'s, which are independent N{x\^, a.. + oj) deviates 
and to retain only the higher order terms. 

Proposition 5 holds in situations where the small area 
estimators are bench-marked, or where corrections sug­
gested in section 3 are implemented. These are cases for 
which there are no closed form formulas for the prediction 
variances. Proposition 4 suggests a simple method for 
constructing unconditional Monte Carlo estimates. It 
suffices to generate a large number of replicates of 
{y.,i = l,...,n) where y. follows a AA(x,'p ,̂ a, + a..) and 
to calculate mse^(p.) for each one. Averaging the 
mse^(p.)'s gives a plug-in unconditional prediction 
variance, egual to the MSE of Proposition 4 evaluated at 
estimates p^, 6„ of the unknown parameters. Unfortu­
nately, this estimate is biased (this is a first order estimate 
in the terminology of Singh, Stukel and Pfeffermann 
(1998)). For the empirical Bayes estimator given by (7), 
according to (9) the bias of the Monte Cario estimate 
derived form Proposition 4 is -o^Var(dJ)/(o.. + oj)^. 
Further work is needed for constracting, using Proposition 
4, unbiased unconditional prediction variance estimators. 

5. ESTIMATING THE UNDER-COVERAGE 
IN THE 1991 CANADIAN CENSUS 

In 1991, the under-coverage of the Canadian Census was 
estimated using two surveys, the Over-coverage Study, 
which estimates the number of persons double counted or 
erroneously counted in the Census and the Reverse Record 
Check (Burgess 1988) for the persons missed in the Census. 
Combining these figures gives estimates of the under­
coverage of the Census. This section investigates several 
estimators of census under-coverage. 
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5.1 Provincial Estimations 

The 1991 under-coverage rates for the ten Canadian 
provinces and the two tertitories with their coefficients of 
variation, expressed in percentage, are given in Table 2. 
The proportion p. of the population living in each province 
(the word province is used in this section to denote the 10 
Canadian provinces and the two tertitories) is also pro­
vided. The coefficients of variation (CV) of Table 2 were 
calculated from variances estimated with 5 random groups. 
Thus, one can consider that the sampling variances have a x^ 
distribution. Throughout this section, we assume that the 
provincial under-coverage estimates and their variances are 
independent. 

Several estimators for provincial under-coverage are 
proposed by Royce (1992). Rivest (1995) proposed a 
composite estimator that shrinks the provincial under­
coverage rate towards the national rate. It is given by: 

r,.' = ar,+ (1 -a)r^, 

where r^ = ^ p.r. is the national under-coverage rate and 
the shrinking parameter a is given by: 

a = 
E 2 2 

E/'/(> -Pi)^l^T,Pin-fN 

This is the value of a that is optimal for loss functions for 
the estimation of provincial totals and of provincial shares 
of the population; see Royce (1992) and Rivest (1995) for 
details. One has r^" = r.-*- gj{r), where 

gi(r) 
E P / d -Pi)^i 

E/'/(i -Pi)^l^JlPi'-f-''N 
('•I-'-N)-

A closed form expression for the conditional mean square 
ertor estimator can be calculated easily by noting that 

dgi{r) 
dr, = ^Pi('-i-''Ny 

E A ( I -Pi)<^i 

J2PM -Pi)'h^Y.Pirf -rl 

{l-p.){l-a). 

The second partial derivative of g,(/') can also be calcu­
lated; it has the same sign as r.-r^^. Thus positive 
skewness in the under-coverage rate, that is likely when 
estimating rare events such as being missed by the census, 
increases the conditional mean squared error in provinces 
where the under-coverage is above the national rate. 

For 1991, a = .874 and the national under-coverage rate 
is r^ = 2.872%. Table 2 gives the provincial composite 
under-coverage estimates, r^ together with their efficien­
cies eff̂  = a..l mse ̂ {r^), where mse^(r,'') is calculated as 
defined in section 2, with the cortection proposed in section 
3.2 to account for estimated variances. The composite 
estimator is an improvement over the direct estimators in all 
cases except three, that cortespond to the provinces with the 
most extreme under-coverage rates. 

Table 2 also gives the empirical Bayes estimator rf 
calculated with a location smoothing model. Under model 
(M), the tme under-coverage rate 0. is assumed to be 
distributed as a A'̂ (p, o^). The parameter estimates are 
aj = 1.45 X 10"* and P^ = 2.61%. Two efficiencies with 
respect to direct estimators are presented, eff,̂  which is 
calculated with the conditional mean squared error esti­
mator for r, , including the adjustment of section 3.2 to 
account for estimated variances, and eff,pR which is 
calculated with Prasad-Rao unconditional estimator. The 
large under-coverage rate in the N.W. Territories is respon­
sible for the large estimate for o ;̂ this makes the empirical 
Bayes estimators r, much closer to the direct estimators r 
than the composite estimators. Redoing the analysis without 
the N.W. Territories and Yukon changes the empirical 
Bayes estimates drastically. 

Table 1 
Two Estimators of Provincial Under-Coverage and Their Efficiencies 

PROVINCE 
Newfoundland 

Prince Edward Island 
Nova Scotia 

New Brunswick 
Quebec 
Ontario 

Manitoba 
Saskatchewan 

Alberta 
British Columbia 

Yukon 
N.W. Territories 

P> 
2.06 
0.47 
3.26 
2.66 

25.19 
37.24 

3.96 
3.58 
9.24 

12.01 
0.10 
0.22 

'•z 

1.994 
0.931 
1.889 
3.245 
2.605 
3.641 
1.86 
1.798 
1.995 
2.733 
3.83 
5.439 

CV 
15.96 
30.00 
20.05 
13.73 
8.35 
8.46 

20.83 
18.87 
14.57 
9.86 

15.99 
11.28 

c 

2.105 
1.176 
2.013 
3.198 
2.639 
3.544 
1.987 
1.933 
2.106 
2.751 
3.709 
5.116 

eff,̂  
1.12 
0.65 
1.11 
1.29 
1.16 
0.87 
1.10 
1.04 
1.01 
1.26 
1.27 
0.96 

B 

2.038 
1.025 
1.959 
3.162 
2.605 
3.572 
1.936 
1.863 
2.032 
2.727 
3.56 
4.813 

K 
1.07 
0.93 
1.09 
1.14 
1.04 
1.02 
1.09 
1.06 
1.06 
1.07 
1.05 
0.49 

eff,PR 

1.04 
1.03 
1.06 
1.09 
1.02 
1.04 
1.06 
1.05 
1.03 
1.03 
1.17 
1.18 
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In Table 2, the composite estimator performs better than 
the empirical Bayes estimator; it provides gains in condi­
tional efficiency larger than 10% in 7 of 12 provinces. 
Three efficiencies are smaller than 1; the discussion in 
section 4.2 suggests that efficiencies less than 1 are 
unavoidable. The relatively poor precision of a. (they are 
estimated using only 4 degrees of freedom), lowers the 
conditional efficiencies of the empirical Bayes estimators. 
It does not affect the composite estimator as much since it 
uses the same shrinking parameter for all provinces. The 
conditional efficiencies capture the poor performances of 
the r,'̂  and r, in the provinces with the most extreme 
under-coverage rates. This is missed by the Prasad Rao 
efficiencies. They highlight the gains that smoothing brings 
to the two territories where the under-coverage rates are 
highly variable. The Prasad Rao efficiencies are meaningful 
only if one accepts the hypotiiesis of provincial exchangea­
bility underlying the smoothing model. This is doubtful 
since under-coverage tends to be higher in large urban 
provinces than in small rural areas. 

5.2 Sub-Provincial Estimations 

Dick (1995) considered the estimation of the adjustment 
factors for census under-coverage for age x sex categories 
within each province for the 1991 census. The adjustment 
factor for a small area is defined as F=l-i- (estimated under-
coverage)/(census count). With four age categories, 0-19, 
20-29, 30-44,45-h, and two sexes, there are 96 small areas. 
The explanatory variables are interactions between the indi­
cator variables for the 12 provinces, the 4 age groups and 
the two sexes, and the proportions of renters (R) and of 
people that do not speak either official language (L) in the 
96 small areas. In each one, the estimated variance was 
given by a.. = (under-coverage variance) / (census count)^. 

Dick (1995) regressed the log-variances on the census 
count to smooth the variance. He considered the expo­
nentials of the predicted values for the log-variances {a..) 
as the known variances. This underestimates the variability. 

Indeed, the average predicted variance o., represents 
only 68% of the average unsmoothed variance. Multiplying 
a., by exp (6^ / 2) = 1.54, where 6̂  is the residual variance 
of the smoothing model, corrects this problem. Fitting 
Dick's (1995) model using the "unbiased" smoothed vari­
ance yields a, = 0. This is a degenerate situation where 
empirical Bayes estimators are equal to linear model pre­
dicted values. Note also the correlation between the vari­
ance residuals and the partial derivatives of g., calculated 
as if 6y>0, is 0.25. This suggest that (5) is violated. 
Using 6.. exp(d^/2) in the calculation is likely to over­
estimate the precision the small area estimates. To illustrate 
the application of the conditional mean squared ertor 
estimator, these problems are ignored and the remainder of 

this section assumes that the sampling variances a are 
known and equal to their smoothed values a.,.. 

The model fitted by Dick (1995) has ten independent 
variables; the weighted least squares estimates and their 
standard ertors, given by the square roots of the elements on 
the diagonal matrix of 3̂ "', appear in Table 3. The condi­
tional mean squared ertors mse* (p.) for the 96 small areas 
can be calculated using (8). One had mse*(p.) = 0 and 
mse*(p.)>o.. for respectively 51 and 15 small areas. The 15 
small areas with large conditional mean squared ertors need 
special attention: can the prediction model be improved for 
these areas? Two systematic features among the 15 corres­
ponding residuals are noteworthy: there are 2 large positive 
residuals in the M/0-19 category and 2 large negative 
residuals in the F/45+ category. This suggests adding M/0-19 
and F/45+ as independent variables. The additional column 
to the X matrix for M/0-19 contains 1' s for the 12 small areas 
for males between 0 and 19 years old and 0 elsewhere; that 
for F/45-I- is constmcted in a similar way. Only F/45-h 
improves the fit; adding this explanatory variable gives the 
modified Dick model of Table 3. The absolute value of the 
/-statistic for F/45-i- is 3; this is clearly significant. 

It is interesting to compare the conditional mean squared 
ertors obtained with the modified Dick model with those for 
Dick's model. Using the modified model decreases mse* 
in 26 small areas and increases it in 21; showing a slight 
improvement with the modified model. 

The sub-provincial empirical Bayes adjustment factors 
can be aggregated at the provincial level. Provincial adjust­
ment factors F are given by 

Ec,^, 
F =-£-

" lie, 
p 

where C. represents the census count for the /-th small area 
and y^„ is the summation over the 8 small areas in 
provmce p. A mean squared ertor for the provincial 
adjustment factor, either conditional or unconditional, can 
be calculated using a mean product ertor matrix mpe as 

mse{Fp) 1 

V] 
:EEC,C.mpe(F,,F.). 

Conditional mean squared ertors are obtained by using 
formula (2) for mpe. Lahiri and Rao (1995) give a formula 
for the off-diagonal terms of the unconditional mean 
product ertor matrix whose diagonal is given by Prasad Rao 
(1990) mean squared ertors. 
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Table 3 
Two Linear Models for Small Area Correction Factors: 

Dick (p=U) and Modified Dick {p=l2). Parameter Estimates 
are Given With Their Standard Errors in Parentheses 

Category 

mean 

Age* Sex Interaction 

Province* Renters Interaction 

Language*Sex*Age Interaction 

Variance 

Variable 

intercept 

M / 20-29 

M / 30-44 

F/20-20 

F/45+ 

BC*R 

Ontario*R 

Qudbec*R 

N.-B*R 

Yukon*R 

NWT*R 

L*F/0-19 

Dick 

1.0076 

0.0563 

0.0207 

0.0243 

0.0436 

0.0791 

0.0253 

0.1039 

0.0633 

0.0687 

0.0802 

3.3681e-05 

(0.0018) 

(0.0038) 

(0.0036) 

(0.0038) 

-

(0.0115) 

(0.0100) 

(0.0097) 

(0.0194) 

(0.0179) 

(0.0117) 

(0.0293) 

(2.45e-05) 

modified Dick 

1.0099 

0.0541 

0.0185 

0.02223 

-0.0102 

0.0433 

0.0789 

0.0259 

0.1032 

0.0634 

0.0680 

0.0680 

2.21e-05 

(0.0018) 

(0.0037) 

(0.0035) 

(0.0037) 

(0.0037) 

(0.0110) 

(0.0102) 

(0.0090) 

(0.0186) 

(0.0175) 

(0.0285) 

(0.0285) 

(2.30e-05) 

Table 4 
Direct {Fp) and Empirical Bayes {F ) Estimates of the 

Provincial Correction Factors With Their Conditional (eff ) 
and Their Unconditional (eff p^) Efficiencies. A Conditional 

Efficiency is «> When the Conditional Mean Squared Error 
Estimator is Null 

PROVINCE 

Newfoundland 
Prince Edward Island 

Nova Scotia 
New Brunswick 

Qudbec 
Ontario 

Manitoba 
Saskatchewan 

Alberta 
British Columbia 

Yukon 
N.W. Territory 

^P 

1.0203 
1.0094 
1.0193 
1.0335 
1.0268 
1.0378 
1.0190 
1.0183 
1.0204 
1.0281 
1.0396 
1.0575 

K 
1.0176 
1.0153 
1.0171 
1.0367 
1.0262 
1.0396 
1.0176 
1.0166 
1.0187 
1.0293 
1.0400 
1.0550 

^ffpc 

6.49 
1.03 

25.3 
0.67 
1.12 
0.68 
OO 

oo 

7.37 
1.09 
1.41 
1.40 

effpPR 

2.94 
4.52 
2.59 
1.11 
0.93 
0.93 
2.46 
2.54 
1.98 
1.03 
1.17 
1.32 

Direct and empirical Bayes aggregated estimates are 
presented in Table 4 with two efficiencies. The empirical 
Bayes estimates retain much of the interprovincial diffe­
rences. This suggest that the explanatory variables of the 
smoothing model have captured most of the differences 
between the provincial under-coverage rates. A notable 
exception is Prince Edward Island's small cortection factor 
which is not accounted for by the explanatory variables. 
This is the only province for which the two efficiencies 
differ substantially. The conditional efficiencies are more 
unstable than the Prasad Rao efficiencies. Except in Prince 
Edward Island, botii tell similar stories: in New Bmnswick, 
Quebec, Ontario, and British Columbia, the aggregated 
empirical Bayes estimates do not improve much on the 
direct estimators. 

6. CONCLUSIONS 

The estimator of the conditional mean squared error 
proposed in this paper has several interesting features. It 
can be implemented with any shrinking strategy. It is con­
ditional on the realization of the smoothing model used to 
produce the small area characteristics; thus the conditional 
estimator has a large sampling variance. Simple modifi­
cations to the estimator are available to handle skewness in 
the data and estimated variances. In an empirical Bayes 
setting, it provides diagnostic information concerning the 
smoothing model. It can also be used as building blocks for 
estimators of the prediction variances when this variance 
has no closed form expression. 
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APPENDIX 

Proof of Proposition 1 

Let S"^ be a symmetric square root for S, such that 
(Z"^)^=2: and z = I.-^^{y-ii). Note that 2 has a N^{0,I) 
distribution. In terms of the random vector z,£'{(y-p) 
g{y)') =2"^£'{zg(p +E"^Z)}. NOW the conditional expec­
tation of z.g.{ii ••- '̂ "^ 
equal to 

+ r'^z) given (z,, ...,z,.,, 2. .,...,z„) is 
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f z.exp(-Z:^/2) 

yZTt 

Integrating by parts shows that the above integral is equal 
to 

I e x p ( - z ; / 2 ) dgj{]i ^ Z'"z) 

Observe that 

\l2n dz, 
dz^. 

%y(M^S'"z) " ,^ , 
-^—^ = E ^ k i gj (n + ^^)-

OZ. Ar=i 

Since S"^ is symmetric, s{; = I,!,̂ '̂ . Thus the above 
expression is the scalar product between e/s"^, the /-th 
row of S"^ (e. represents a « x 1 vector of O's except for 
the /-th component which is I), and Vg(p + 2"^z)e., the 
y-th column of Vg{y), evaluated at 3̂  = p + S"^z. We have 

E{z,gj{V^ + H'^z) I Zp...,z,.,, z.,,,...,z„} = 

e / ' l " ' ^ { ^ g ( M + Z " ' ^ ) e ; l ^ p - , V r ^ , . i - - 4 

This equality also holds unconditionally, £'{z,.g.(p +5^"^z)} 
= e, 'E"^£{Vg(p *Y!'^z))ej. In other words, 

£{zg(n +Z" '2)} =Z"^£{Vg(M + x " ' ^ ) } -

This completes the proof. 

Proof of Proposition 2 

Let E. denote the conditional expectation with respect to 
y., given (j'p ...,>',.p;'„i, . . . . y j and h{y.)=g.{y), for 
fixed values of (>',, ...,>',.i,>';.,, ...,>'„). One has 

E^{y, - |i,)A(y,)} = l^{t - ii^)h{t)f{t)dt. 

To evaluate this expression, one can integrate by parts. 
Integrating {t - p,.)exp {-(/ - iif/{2a.^)}I{2na..y'^ in the 
above integrand yields 

EA{yrli>)h{y^)}=a,E.{h'{y.)} 
1/2 

o„ P, 

^ < o { ^ ^ ^^exp{(/-p.)^/(2o, .)} _̂^ 

(27ia..) 1/2 

where /i'(/) is the derivative of h{t). Repeated integra­
tions by parts show that 

L h{t) 
{t-vi.f exp{(/-M.)2/(2cj,..)} 

o., (27ia,,) 1/2 
dt 

r exp{(/-p,.)2/(2o..)} 
= ]^{h'{t){t-\x^)^h{t)} ^' _ "'dt 

{2na..) 

\2 f exp{(r -p . )V(2o. )} 
= \Ao.,h"{t) + MO) ' ,„ " dt 

where /?"(/) is the second derivative of h{t). This yields 

E,[{yr\^i)h{y;)) = 

o,EAh-{y,)] 
3/2 

o„ p, ^,{^"( :»^,)}+o(P,)-

Taking, on both sides, the expectation with respect to the 
distribution of {y^, ...,y,.,,;',^p -,y„) completes the proof. 

Proof of Proposition 3 

Let E. denote the expectation taken with respect to the 
distribution of a.^, given all the other random quantities 
{y, Ojj,] * i).\n this context one can write {dg.{y))l{dy.) = 
h {af), where A is a function possibly depending on 
{y, a.j,j * /) . A Taylor series expansion of h gives: 

M 5 , ) = A ( o , ) . A ' ( a , ) ( d , - o , ) 

. ; , " ( a , . , . ) - ^ f i i _ ^ . 0 ( ( a , - a , ) ^ ) . 

Since {k - 1)6../a., follows a Xk-i distribution, 
E. {{a.. - a..)^} = 2aji I {k - I), and the centered moments 
of higher orders are 0{llk^). The above expansion 
reduces to, 

3 

OuE.[dg.{y)ldy.} =a..h{a..) ^h" ( o , ) - ^ + 0 ( l/k^) 
k-l 

It is clear that the bias of a..h{a^.) as an estimator of this 
expression is 0{ll k), provided that h' {a..) * 0. One has, 
neglecting 0{l Ik^) terms, 

£, d,A 
^ {k - 1)6. ^ 

k+l 

( 

o , M a , ) + ; 7 ' ( o , ) £ , | a , 

. h"{a,) 
Ei\o, 

(^-1)^ / , 
Ar+l 

' ( ^ - 1 ) 0 , , 

, k^l 
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Elementary manipulations show that, in the above formula, 
the coefficient of h'{a..) is null and 

E.)a.. 
{k - I )d. \2\ 

k+ I 
- o,.. 2——-^0{l/k^). 

k-l 

This shows that 
f / 

£,. a,A 
{k-l)a„ 

k+l 
-o..E.{dg.{y)/dy.]^0{l/k^). 

The proof is completed by noting that this equality holds for 
the unconditional expectation, taken with respect to the 
joint distribution of {y, a.., / = 1,...,«). 

Proof of Proposition 4 

The mean squared ertor of the posterior variance as an 
estimator of the conditional mean squared error has only a 
bias term. 

' n \ 2 2 , 2 

2 2 
{(P,-X;P)^-O:P. 

while the mean squared ertor of mse^(p;) has only a 
variance component which is given by 

2 2 
Var,{{y,-x;m 

2 2 
{2o;;. + 4 (p , -<P)^a^ } . 

The efficiency reported in Proposition 4 can be evaluated as 
the ratio of the 2 average mean squared ertors defined 
above. It is given by, 

2a^+4o^E(M,-^/P)'/" 

i:{(M,-^/P)^-oj}^/" • 

Taking expectations of the numerator and of the denomi­
nator with respect to model (6) yields the result. 
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Cold Deck and Ratio Imputation 

JUN SHAO' 

ABSTRACT 

Imputation is a common procedure to compensate for nonresponse in survey problems. Using auxiliary data, imputation 
may produce estimators diat are more efficient than the one constructed by ignoring nonrespondents and re-weighting. We 
study and compare the mean squared errors of survey estimators based on data imputed using three different imputation 
techniques: the commonly used ratio imputation method and two cold deck imputation methods that are frequentiy adopted 
in economic area surveys conducted by the U.S. Census Bureau and the U.S. Bureau of Labor Statistics. A cold deck method 
imputes a nonrespondent of an item by reported values from anything other than reported values for the same item in the 
current data set {e.g., values from a covariate and/or from a previous survey). Although sometimes a cold deck imputation 
method makes use of more auxiliary data than the other imputation methods, it is not always better in terms of the mean 
squared errors of the resulting survey estimators. In a simple case we compare explicitiy the mean squared errors and discuss 
situations under which one method is better than the other two. In general cases we propose to compare mean squared errors 
empirically based on some consistent estimates of mean squared errors. Estimation of mean squared errors of survey 
estimators in the presence of imputed data is itself an important problem in surveys. A numerical example related to the 
Transportation Annual Survey is presented for illustration. 

KEY WORDS: Complex survey; Mean squared error; Nonresponse; Simple random sample; Variance estimation. 

1. INTRODUCTION 

Imputation is one of the most common procedures to 
compensate for nonresponse in survey problems. In addi­
tion to many practical reasons for imputation, imputation 
using auxiliary data may produce estimators that are more 
efficient than the one constructed by ignoring nonrespon­
dents and re-weighting. Suppose that we have a sample s 
selected from a finite population J* consisting of some units 
represented by / = 1,..., M, and that we observe (y., ier] 
(respondents), res . Suppose also that we have auxiliary 
data x.'s observed for all /es and x.>0. The commonly 
used ratio imputation metiiod (see, for example, Kalton and 
Kasprzyk 1986) imputes nonrespondents as follows. First, 
we create K imputation cells P^.T'juTjU-uJ'j^ = P, 
according to a categorical auxiliary variable (which is 
observed for every /es and is typically different fromx) 
such that for every k, the following model is assumed to 
hold: 

3;. = p^x.+x, e., 
ieT,, (1) 

P(a, = l |y.,x.)=P(a,. = l | x,). 

where Pĵ  is an unknown parameter, e. is independent of x. 
with E{e.)=0 and unknown F(e.)=o^>0, a. is the 
indicator of whether y. is a respondent, and (a.,x.)'s are 
independent. Then, within imputation cell k, a 
nonrespondent y^ is imputed by P^x., where 

k-E^iYi/E w.x, (2) 

is the best linear unbiased estimator of p^ under model (1), r^ 
is r restricted to the A:-th imputation cell, and w. is the 
survey weight associated with the /-th sampled unit. Note 
that model (I) consists of a regression model between y. 
and x. (with no intercept and with ertor variance pro­
portional to Xj.) and a response model which assumes that 
the response mechanism is independent of ^̂ .' s, given x,.' s. 
This response mechanism is termed as missing at random 
by Rubin (1976) or unconfounded response mechanism by 
Lee, Rancourt and Samdal (1994). Based on the imputed 
data set, the Horvitz-Thompson (HT) estimator of Y, the 
population total of >'.'s, is 

?« = EfE>v,y,* E ̂ iK (3) 

where ŝ  is s restricted to the k-th imputation cell. The HT 
estimator of Y obtained by ignoring nonrespondents and 
re-weighting within each imputation cell is 

K-i:i: w ikYi' w,, •w, E >^,/E ^i (4) 

It can be seen that if x.= I,then the estimators in (3) and (4) 
are the same. Both estimators are unbiased if model (I) 
holds. (Throughout this paper, the bias and variance are 
with respect to model (I) and repeated sampling, unless 
otherwise specified.) Under model (I), however, 7^ is 
more efficient than 7^ if the size of r is substantially 
smaller than the size of s. Even if the regression model in 
(I) does not hold, K̂  may still be more eflficient than 7^ in 
terms of their mean squared ertors with respect to repeated 
sampling (Cochran 1977, Chapter 6) when the response 
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probability is a constant in any given imputation cell (which 
ensures that f̂  and Y^y are approximately unbiased with 
respect to repeated sampling). 

The purpose of this note is to compare the efficiency of F^ 
with other estimators of Y based on data with nonrespon­
dents imputed by using a method called cold deck. A cold 
deck method imputes a nonrespondent of >'-variable by 
reported values from anything other than ^-values (e.g., 
values from a covariate and/or from a previous survey). 
Cold deck imputation is opposite to hot deck imputation in 
which a nonrespondent is imputed by a respondent from the 
same variable in the curtent survey. The ratio imputation 
method uses both reported >'-values and auxiliary data and 
is sometimes called a "warm deck" method. The simplest 
cold deck imputes a nonrespondent y., / e s - r, by x. and 
the resulting HT estimator of Yis 

yc = T^iyi- E w.x... (5) 

compare the mean squared ertors explicitiy. One may, how­
ever, estimate the mean squared ertors of 7^, Y^ and Y^_J^ 
and make an empirical comparison. Variance or mean 
squared ertor estimation is itself an important problem, 
since it is common to report variance or mean squared error 
estimates along with the estimated totals. These are 
discussed in section 3. 

Our results can also be applied to the problem related to 
two-phase sampling or double sampling, which is often 
employed when it is cheap to take a large sample {x^ / e s} 
and expensive to obtain >'-values so that a subsample 
{y.,i£r} is taken in the second-phase, r e s . 

A numerical example is discussed in section 4 using data 
from the Transportation Annual Survey conducted by the 
U.S. Census Bureau. 

2. SRS WITH UNIFORM RESPONSE 

The use of this simple cold deck is motivated by the fact 
that under model (I), P^'s are close to 1 in many survey 
problems, especially when x.'s are>'-values from a previous 
survey. When some p^̂ 's are not equal to I, Y^ in (5) has a 
bias which does not vanish even if s = 3^ {i.e., the sample is 
a census). However, having a small bias may be paid off by 
lowering the variance so that the overall mean squared error 
mse(r^) = E{Y^ - Y)^ may still be smaller than the mean 
squaredertor mse(y^) = £(f^ - Y)^ = V{Yj^ - Y), whereE 
and r denote the expectation and variance under model (1) 
and repeated sampling. More details can be found in section 
2. The simple cold deck may be improved by another cold 
deck method, the cold deck-ratio method, which imputes a 
nonrespondent y. by x.y. Ix., where y. and x. are reported 
values from a previous survey. The cortesponding HT 
estimator of y is 

-R = E "^iY, + 
/6r 

E ^iXiYilx,. (6) 

The estimator in (6) is unbiased if model (1) holds for y. 
1/2 

and Xi {i.e., y. = p̂ x̂  + x, e.)with the same p^ as the one 
for y. and x.. These two cold deck methods are widely used 
in economic area surveys conducted by the U.S. Census 
Bureau (King and Kombau 1994) and the U.S. Bureau of 
Labor Statistics (Butani, Harter and Wolter 1998). 
Applying cold deck imputation methods does not require 
knowing the imputation cells, although model (1) is 
assumetl to ensure the unbiasedness of Y^ and r^-R • 

Although the cold deck-ratio method niakes use of more 
auxiliary data, it is not always better than the simple cold 
deck or the ratio imputation method. In section 2 we 
compare exphcitly the mean squared ertors of f̂ , Y^ and 
J^_jj in a special case where the sample s is a simple 
random sample (SRS) and the response probability is a 
constant. Situations under which one method is better than 
the others are discussed. If the sampling design or the 
response mechanism is complex, then it is not easy to 

To illustrate the idea, we start with the simplest case 
where s is an SRS (without replacement from "P but the 
sampling fraction is negligible); there is only one imputa­
tion cell so that we can drop the subscript k for imputation 
cell; and the response probability is a constant p>0 
(uniform response mechanism). 

In this case w. = NIn, where n is the size of the sample 
s and N is the size of the population [P. Since nlN~ 0 is 
assumed. 

JV2 
mse(y^)= — 

n 

I 2 

\ P 
P\ (7) 

for large n, where p^ = E{x.) and v̂  = V{x.) and, through­
out the paper, A~B means that^ is equal to 5 up to a term 
which is relatively negligible compared to A and B as all 
sample sizes in imputation cells increase to infinity. A more 
detailed derivation of result (7) is given in the Appendix. 
For Y^ in (4), it is easy to see that iv. = NIr, where r is the 
size of r, and Yyy is unbiased. Then 

mse(y^) = V{Y^ - Y) = V{Y^) = ^ 
n 

v̂. p\ 
P ) 

Hence }^ is more efficient than Y^y unless p = 1 and 
P v̂̂  = 0. The gain in using y^ is proportional to P^ and v^, 
both are measures of usefulness of the auxiliary variable x 
in explaining y through model (1). 

For the simple cold deck. 

^c = qE>',-E-.l=-fEA-PE:c,.^E-,l. 
" V/6r ;6s-r / n\ier ier ies-r ) 

where e,.'s are defined in (1). Consequently, 

V{Yc)= i^{aVM,+ (PV^l-;p)v, 

H^-\?P{\-P)\i'] (8) 
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(see the Appendix). The bias of Y^^ is 

E{Yc-Y)=Nii^{l-p){l-^) 

and, hence, 

mse{Yc) = ̂ (^c " ^) * [^(^c " ^ ) ] ' 

^V{Yc)HE{Yc-Y)f 

= —{OVM; , + ( P V + 1-/')V;, 

H^-l)H\-p)[p^n{l-p)]iil]. (9) 

Comparing (7) and (9), we obtain the following 
conclusions. 

1. When p = l (no nonresponse), mse(7^) = mse(y^). 

2. When p < 1 and P = 1 (y and x have the same mean), 
mse(y^) < mse(y^). 

3. Whenp<l andp^^l, mse(y(;)^mse(y^) if andonly if 

(P-l)2[p + «( l -p) ]p^^( l -p2)v>^ 

-o2(p + l)/p^0. (10) 

Assume that Mj>0. In most economic surveys, the 
relative variance v^/p^ is smaller than p + «(1 -p). 
Hence the left hand side of (10) is a quadratic function 
of p with a positive coefficient in the p^ term and, there­
fore, the simple cold deck is better when p is in the 
interval with limits 

\p-^n{\-p)]ii^±^v^/\il*[\p*n{l-p)]ii^-vJ\iJc^(p+\)/p 

[p+/i(l -p)]H^-v_^/^^ 

This interval contains 1 since (10) holds if P = 1. Note 
that [p + n{l -p)]M;t increases to infinity as n increases 
to infinity. Hence the interval of P's for which the 
simple cold deck is better shrinks to a single point 
(P = 1) as « - oo. 

We now consider the cold deck-ratio. Assume that 
y. = Px. + x/"e,., E{e.) = 0, V{e.) = o^ and tiiat e,., e., and 
{x.,x.) are mutually independent. Let z.=x.y.lx. and 
e,. =y. - z. = x,"^e. - e.x.Ix^'\ Then E{Yc_j^ - 7) = 0 and 

mse(yc.R) = ^ f ' p M . + P \ + o^d -p)y}, d D 

where y^ = £(x, Ix.) (see the Appendix). By (7) and (11), 

mse C?^,.„,e(r,..,.&£){i.,],,-,j(n, 

7̂  ̂  p^ and ŷ  is close to p^ if x, and x. are highly and 
positively related, in which case cold deck-ratio imputation 
can be much better than ratio imputation. 

The comparison between the simple cold deck and the 
cold deck-ratio is the same as that between the simple cold 
deck and the ratio imputation method. One only needs to 
replace (/? +1)//? in the third term of the left hand side of 
(10)byY,/M,. 

The parameters p, a, p^, v̂  and ŷ  have to be estimated 
in order to compare the efficiencies of 7^, Y^ and y^-R-
Instead, we can directiy compare estimated mean squared 
errors of y^, Y^ and y^.R. This is discussed next. 

3. STRATIFIED SAMPLING WITH 
UNCONFOUNDED RESPONSE 

We consider the following stratified sampling design 
adopted by many U.S. government survey agencies: the 
finite population T is stratified into H strata with N,^ units 
in the h-th stratum; «^ ^ 2 units are selected without repla­
cement from stratum h, according to some probability 
sampling plan; and the units are selected independently 
across the strata. 

The survey weights w.'s are constructed so that if all 
_y.'s are observed, the HT estimator Y^ies^iYi '^ unbiased 
for y under repeated sampling. 

We assume model (1). The response probability is no 
longer a constant, but independent of the >'-value. For the 
cold deck-ratio, we also assume that within the yt-th 

1/2 2 

imputation cell, y. = P x̂̂ .+x, e., E{e.) =0, V{e.) = ô . and 
e,, e., (x.,x,.) are mutually independent. 

Explicit results for the mean squared ertors such as (7), 
(9) and (11) are not easy to obtain. We may, however, make 
empirical comparisons of the efficiencies of y^, Y^ and 
Y^_^, based on their estimated mean squared errors. 
Estimation of the mean squared ertors of y^, Y^ and Y^_^, 
is in fact an important part of the sampling theory. It is well 
known that for imputed data sets, the naive method that 
applies the standard variance estimation formulas by 
treating imputed nonrespondents as observed data leads to 
underestimation. When no cortect method (for estimating 
the mean squared ertor) is available, the naive method is 
used in many survey agencies. 

We now derive estimators for V{Y) or mse(y) that are 
correctundermodel(l), where y denotes y^, Y^ or ŷ -.R-

Let E^ and V^ be the expectation and variance with 
respect to model (1) and let E^ and V^ be the expectation 
and variance with respect to repeated sampling (conditional 
on the model and response). Then 

V{Y - Y) = ElVtY)] + F„ [EXY) - T[. (13) 

and, hence, the cold deck-ratio is better than the ratio impu­
tation method if and only if Itp-^lt Y,/p,. Note that 

We first consider E^[V^{Y)], the first variance component 
in (13). It suffices to obtain an estimator of V^{Y), 
conditional on {y.,x.,a.,ie'P]{and [y^,x.,ie'P} for 
cold deck-ratio), where a. is the response indicator for y.. 
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The estimation of V^{Y^) and V^{Y^_J^) is simple 
(which is an advantage of using a cold deck method). Let 

1 - - A 
I ;€s(h) 

W 

"h ' " ( h ) 

(14) 

be the standard variance estimator for T.^wt when 
{t.,ies} is treated as an observed sample (from 
{t.,ie'P]), where s(h) is s restiicted to stratum h. Then 
K^^c) ^^^ ^^ estimated by using (14) with t. = a.y.-^ 
(I -a.)x. and V^{Y^^^) can be estimated by using (14) 
with/. = a.;V. + (I - a.)x.y^./x.. 

The estimation of V^{Y,^) is slightly more complicated 
but similar. Assume that in each imputation cell, the 
number of sampled units is large and the response 
probabilities are bounded away from 0. Note that 

h-E E>^/^//E>^,J 
/es,, /er,, I 

X E>^,(>',-Pt^/) + P t E ^ , ^ , 

E l^kE ^i^iiYi - Pi^,) + P*E ^i^i 
k /es|j /£s^ 

E^Q«,(v,-p.^,)-p,4 

where ^, =£(i:,«^>v,x,)/£(5:,,, w,x,) and ^, = ̂ , and p, = p , 
for / e s ^ . After estimating p^ by ^^ and ^̂  by 
C = Z/6»,^/^,/E/6r,^,^,' we estimate V^{Yj^) by using (14) 
with /. = ̂ .a.{y. -p.x.) + p.x., where (. = ^ and p. = p^ for 
/ e s ^ . 

Before we discuss die estimation of V^ [E^{Y) - Y],the 
second variance component in (13), it should be noted that 
yjE^{Y) -Y]/EJV^{Y)] = 0(«/iV).This is because the 
variance of E^{Y) - Y (if it is nonzero) is typically of the 
order Â , whereas tiie order of V^{Y) is typically N'^/n and 
thus the order of E^[V^{Y)] is N^In under some regu­
larity conditions. Hence, in theory, it is not necessary to 
estimate V^[E^{Y) - Y] if the sampling fraction «/A^ is 
negligible. However, the constant in 0{nlN) is unknown 
and, hence, one may still want to estimate V^{E^{Y) - Y] 
in applications even when nIN is small. 

We now consider the estimation of the second variance 
component in (13). For Y^, 

^ . ( ^ C ) - J ' = E K > ' , - ( I - « / ) ^ , ] - E ; ' , = 
/ea> iep 

-E(i-«,)(v,-^,)-
ley 

Then, under model (1), 
yn,{E(Y^)-Y] 

Eo*E(i-a,)^, 
i ^ i 

+ K_ E(i-a,)(PriK 

2 

If we estimate a^ by 
o* = E "i'^iiyi - M,)^ / E /̂> /̂̂ ,. 

then an estimator of V^[E^{YfS) - Y] is 

V = E o i E ( l - « , ) W / ^ , + 
k /ESk 

N ( \ \'^ 

H-rhH "/-—E "/ . 
h n^-tis^(H)\ n^iesiyo ) (15) 

where u. = (1 - a.){^. - 1)X; and p. = p^ for /es^. 
Fo ry C - R ' 

^.(^C-R)-^=-Ed-«.)(>'/-^,r,/^,) 
iep 

and 

^4^.(4-R)-J']= 

E o*E d -«,)̂ /-̂ E 5^E d -«,>'/:?, 
* iePt k iePt 

Hence ^„[E^{Y^_j^)-Y] can be estimated by 

V2C-R=E 
k 

where 

and 

a * E (1 -«,)>^,^, + O A E (1 -a,)w^xf/x. 

ot = E> ,̂(> ,̂-p*i,)VE>*',̂ , 

k^H^iyi/Yl^iXr 

(16) 

For y^, 

ES(YR)-Y-Y. 
k 

E^, /E« ,^ , |E« /> ' / -E :V, 

and from Taylor's expansion, 

yjE^(yR)-y> 

lE 4\H ^/E d -«,)^,1/E «,4 

It can be estimated by 

^2R = Jl^l\Y^ >̂ ,̂ ,E (1 - «/)>̂ ,̂ ,] / E ^i^i^i-(17) 

Finally, y^ and f̂ ,.̂  are unbiased but y ,̂ has a bias 

Ed-p,)£JEd-«/)4 
/eTt 
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which can be estimated by 

Ed-^,)Ed-«,>,^,-
k ies,. 

Thus, we obtain the following estimated mean squared 
errors: mse(y^) can be estimated by 

^{Y„) = v,^ + Vj^, 

where v,„ is obtained using (14) with /. = C,.a.{yi - p.x.) + 
P,x,., ̂ . = C,^ and p,. = |5̂  for /es^, and v̂ ^ is given by (17); 
mse(y(^) by 

mse(yc)=v,c + V2c + E d - P . ) E ^i^i 
k ies,, - r̂  

where v,,̂  is obtained by using (14) with t. = a^y^-^ 
(1 - a.)Xi and v̂ ,̂ is given by (15); and mse(y(,.,j) can be 
estimated by 

m ^ ( ^ C - R ) = ^IC-R * ^2C-R' 

where v,̂ _^ is obtained by using (14) with t. = a.y.-^ 
(1 -a,.)x,>',./x. and Vĵ ,.̂  is given by (16). 

Under model (1) and the asymptotic settings in Krewski 
and Rao (1981), Rao and Shao (1992) or Valliant (1993), 
the derived mean squared ertor estimators are asymptoti­
cally unbiased and consistent as all sample sizes in imputa­
tion cell increase to infinity. 

For cold deck or cold deck-ratio imputation, the first 
term {v^^ or Vj^.^) in the estimated mean squared ertor is 
the same as the one obtained by applying a standard 
formula (such as (14)) and treating imputed nonrespondents 
as observed data. For ratio imputation, applying (14) and 
treating imputed nonrespondents as observed data produces 
the following estimator of mse(y^): 

'IR 
1 ;es(h) 

W 
"h '«»<•') 

(18) 

with z,. = a^y^ + (1 - <3,)P,Xp which is different from the 
first term v,^ in our estimator mse (i^) and, hence, is not 
asymptotically valid even if n/N is negligible. 

4. AN EXAMPLE 

We consider an example using a data set from the 
Transportation Annual Survey (TAS) conducted by the U.S. 
Census Bureau. 

The TAS is a survey of firms with one or more establish­
ments that are primarily engaged in providing commercial 
motor freight transportation or public warehousing services 
in U.S. A stratified simple random sample is selected 
without replacement from employers contained in the 
Census Bureau's Standard Statistical Establishment List. 

The strata, which are also the imputation classes in this 
example, are constmcted according to company's size 
within each industry. 

There are various variables in this survey. We consider 
the estimation of the population totals of the curtent year 
annual revenue (y) in four industries. The variable y has 
nonrespondents. Three covariates without nonrespondents 
are considered: the curtent year annual payroll, the previous 
year annual revenue, and the previous year annual payroll. 
The sample size, response size for y, and the sampling 
weight in each stratum and industry are given in Table 1. 

Table 1 
Sample Sizes, Response Sizes, and Sampling Weights 

Across Industries and Strata 

Industry Stratum 

1 0 
1 
2 
3 
4 
5 
6 

2 0 
1 
2 
3 
4 
5 

3 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

4 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Sample Size 

31 
14 
11 
10 
11 
16 
18 
86 

8 
13 
11 
12 
13 
38 
14 
11 
13 
14 
16 
18 
15 
15 
40 
28 
7 

13 
10 
14 
13 
11 
17 
19 
22 

Response 
Size 

24 
6 
7 
4 
6 

12 
13 
82 
2 

10 
9 

10 
10 
30 
9 
8 

10 
13 
13 
12 
11 
14 
33 
23 

5 
6 
7 

12 
9 
7 

12 
14 
16 

Sampling 
Weight 

1.00 
12.43 
8.91 
6.10 
5.73 
2.70 
2.17 
1.00 

32.91 
9.85 

10.82 
6.08 
3.60 
1.00 

87.91 
67.39 
44.48 
25.28 
15.57 
9.80 
6.23 
4.68 
2.13 
1.00 

32.14 
16.75 
12.90 
7.00 
6.18 
4.70 
3.31 
1.89 
1.82 

First, we use the previous year annual revenue as the 
covariate x in simple cold deck imputation and ratio impu­
tation. The curtent year annual payroll and the previous 
year annual payroll are used as y and x, respectively. For 
four industries and three imputation methods, Table 2 lists 
the estimated totals, the proposed estimated MSE's for the 
estimated totals, the naive estimated MSE's for the 
estimated totals (obtained by treating imputed values as 
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observed data), and the MSE ratios (the proposed estimated 
MSE over the naive estimated MSE). Note that the pro­
posed estimated MSE is the sum of Vj and v^ for the ratio 
and cold deck-ratio methods or the sum of v,, v̂ , and the 
squared estimated bias for the simple cold deck method. 
Values of v, and v. are also included in the table. 

Table 2 
Estimated Totals and MSE's When x = the Previous Year Annual 
Revenue, y= the Current Year Payroll, and x = the Previous Year 

Annual Payroll 

Method 

Cold Deck-
Ratio Industry Estimate Cold Deck 

1 Total 

Proposed MSE 
Naive MSE 
MSE Ratio 

5.31 
7.73 
1.39 
2.30 
7.73 

ITTo^ 
X 10'* 
X 10'' 
X 10" 
X 10'* 

2.97 

5.19 X 10" 
8.46 X 10'" 
2.50 X 10" 
3.34 X 10" 
8.46 X 10'" 

3.95 

Ratio 
5.42 X 10' 
2.60 X 10" 
1.81 X 10" 
4.40 X 10" 
2.46 X 10" 

1.79 
Total 

Proposed MSE 
Naive MSE 
MSE Ratio 

1.66 
4.00 
6.03 
1.02 
4.00 

X 10'° 
X 10" 
X 10" 
X 10" 
X 10" 

2.54 

1.63 X 10'° 
4.19 X 10" 
2.88 X 10" 
3.30 X 10" 
4.19 X 10" 

7.87 

1.67 X 10'° 
5.57 X 10" 
6.54 X 10" 
6.23 X 10" 
5.58 X 10" 

1.12 
Total 

Proposed MSE 
Naive MSE 
MSE Ratio 

3.54 X 10'° 
1.32 X 10" 
5.44 X 10" 
6.97 X 10" 
1.32 X 10" 

5.27 

3.53 X 10'° 
1.80 X 10" 

X 10" 
X 10" 
X 10" 

8.62 
1.04 
1.80 

5.80 

3.59 X 10'° 
1.94 X 10" 
6.77 X 10" 
2.62 X 10" 
1.87 X 10" 

1.40 
Total 

Proposed MSE 
Naive MSE 
MSE Ratio 

1.27 X 10'° 
2.11 X 10" 
3.91 X 10" 
2.59 X 10" 
2.11 X 10" 

1.23 

1.22 xlO'° 
2.14 X 10" 
8.26 X 10" 
2.97 X 10" 
2.14 X 10" 
1.39 

1.30 
5.13 
5.06 
1.02 
5.06 
2.01 

xlO'° 
X 10" 
x l O " 
X 10" 
X 10" 

Next, to see the effect of using a wrong covariate in 
using the simple cold deck method, we repeat the previous 
computations using the curtent year annual payroll as the 
covariate x, and the previous year annual revenue and 
payroll as y and x, respectively. The results are reported in 
Table 3. 

The following is a summary of the results in Tables 2 
and 3. 

I. The simple cold deck method depends heavily on the 
choice of the covariate x. When x is the previous year 
annual revenue (Table 2), the difference among the 
estimated totals provided by three methods is negligible; 
in terms of the estimated MSE, the simple cold deck 
method is the best. However, when x is the curtent year 
annual payroll (Table 3), the estimates from the simple 
cold deck is obviously too low; in terms of the estimated 
MSE, the simple cold deck method is the worst, because 
of its large bias (shown in Table 3). 

Table 3 
Estimated Totals and MSE's When x = the Current Year Annual 

Payroll, y= the Previous Year Annual Revenue, and x = 
the Previous Year Annual Payroll 

Industry Estimate Cold Deck 

Method 

Cold Deck-
Ratio Ratio 

1 Total 
Bias 

Proposed MSE 
Naive MSE 
MSE Ratio 

4.49 X 10' 
-8.99 X 10' 
8.10 X 10'" 
1.38 X 10" 
1.03 X 10'* 
8.10 xlO'" 

12.68 

5.19 X 10' 5.39 X 10' 

8.46 X 10'" 2.85 x 10" 
2.64 X 10" 1.75 X 10" 
3.49 X 10" 4.60 X 10" 
8.46 X 10'" 2.55 x 10" 

4.12 1.81 
Total 
Bias 

Proposed MSE 
Naive MSE 
MSE Ratio 

1.59 X 10'° 
1.21 X 10' 

X 10" 
XlO" 
X 10" 
X 10" 

4.36 
8.20 
2.73 
4.36 

6.25 

1.63 xlO'° 1.71 xlO'° 

4.19 X 10" 5.74 X 10" 
1.48 X 10" 8.95 X 10" 
1.90 X 10" 6.64 X 10'* 
4.19 X 10" 5.62 X 10'* 

4.54 1.18 
Total 
Bias 

^2 

Proposed MSE 
Naive MSE 
MSE Ratio 

3.10 X 10'° 
-3.62 X 10' 
1.25 X 10'* 
4.56 X 10" 
1.89 X 10" 
1.25 X 10'* 

15.13 

3.53 X 10'° 3.47 x 10'° 

1.80 X 10'* 2.30 X 10" 
9.25 X 10'* 5.41 X 10" 
1.10 XlO" 2.84 XlO" 
1.80 x.lO'* 1.83 X 10" 

6.15 1.56 
Total 
Bias 

Proposed MSE 
Naive MSE 
MSE Ratio 

1.06 X 10'° 
-1.35 X 10' 
1.93 X 10" 
2.67 X 10" 
4.03 X 10" 
1.93 X 10" 

2.09 

1.22 X 10'° 1.20 X 10'° 

2.14 X 10'* 5.84 X 10" 
4.62 X 10" 3.07 X 10" 
2.60 X 10'* 8.92 X 10" 
2.14 X 10'* 8.92 XlO" 

1.22 1.72 

2. There is no definite conclusion on the relative perfor­
mance (in terms of the estimated MSE) of the ratio 
imputation method and the cold deck-ratio method. In 
this example, the cold deck-ratio is better for industries 
1-3, whereas the ratio imputation method is better for 
industry 4. Some scatter plots of the data (not shown) 
indicate that the cortelation between x and x in 
industries 1-3 is higher than that in industry 4, which 
might be the reason for the difference in relative perfor­
mance of the two imputation methods. See also the 
discussion after formula (12). 

3. The naive estimated MSE's are much lower than the 
proposed estimated MSE's and are too optimistic. For 
example, in Table 3, the naive MSE's for the simple 
cold deck method are always smaller than those for the 
cold deck-ratio method, although we know that the 
simple cold deck does not work well in this case. In this 
example, V2/vj is not small because of some large 
sampling fractions. Since the naive estimated MSE is 
either equal to v, (for the cold deck imputation 
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methods) or not very different from v, (for ratio 
imputation), the underestimation in using the naive 
estimated MSE is mainly due to treating imputed values 
as observed values in strata with large sampling 
fractions (and ignoring the bias of the simple cold deck 
estimators in the case of Table 3). 
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APPENDIX 

1. Proof of (7): When n/N^O, V{Y^ - y) = V{Y^). 
Then (7) follows from 

"'^•'•ShKs'r/ls-'lH^lS'' 

3. Proof of (11): Under the assumed conditions on (>",, x.) 
and {y^,x.). 

N^ 
n { p 

^ \ 

for large n, where the last approximate equality follows 
from the fact that conditioned on x.'s, 
E{'Li,,x.)=pl^^,x.. 

2. Proof of (9): Under model (1), 

F(i>c) = ̂ HEV^^^fpE:c,.^E-,]| 
n [ \ ier I \ ier ies-r ) J 

.2pcovfj:x,,j:x,'|} 
^ ier ies-r J J 

= — { O V M +P^I>V;,+P(1 -P)M^] 

*(1 -p){v^^piil)-2^p{l-p)iil] 

— {OVM^ + (P^P + 1 -p)v. 

^ ( p - l ) V d - p ) M . } -

mse (4-R)=^^fE;^,-E^,] 
n \ ier ies-r J 

n \ ier ies J 

+ 2Cow(j^e.,^z. 
\ ier ies 

= ^ {o2p(p^ + Y,) + ( P \ + o\)-2a^PY,) 

^ { O V M +P'v, + a2(l-/7)Y!. 
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Model-Based Estimation With Link-Tracing Sampling Designs 
STEVEN K. THOMPSON and OVE FRANK' 

ABSTRACT 

Samples from hidden and hard-to-access human populations are often obtained by procedures in which social links are 
followed from one respondent to another. Inference from the sample to the larger population of interest can be affected by 
the link-tracing design and the type of data it produces. The population with its social network structure can be modeled 
as a stochastic graph with a joint distribution of node values representing characteristics of individuals and arc indicators 
representing social relationships between individuals. In this paper maximum likelihood estimators of population graph 
parameters are described. Predictors of realized population graph quantities are obtained using predictive likelihood. These 
estimators and predictors are compared with conventional data summaries and illustrated with a numerical example. 

KEY WORDS: Snowball samples; Adaptive sampling; Graph sampling; Ignorable designs; Link-tracing designs; Network 
sampling; Likelihood; Predictive likelihood. 

1. INTRODUCTION 

In studies of hidden and hard-to-access human popu­
lations, link-tracing procedures, in which social links are 
followed from one respondent to another, are commonly in­
volved in obtaining the sample. For example, in a study of 
injection dmg use in relation to the spread of die HIV infec­
tion, initial respondents may he asked to identify drug-
injection or sexual partners who are then added to the 
sample. For such a study, the social links are of inherent 
importance for understanding the issues of interest while at 
the same time being useful or essential in building the 
sample. However, inference from the sample to the larger 
population or social stmcture of interest can be affected by 
the link-tracing procedures and the type of data they pro­
duce. In this paper we evaluate this inference problem in 
relation to the design and describe some inference methods 
for such studies based on maximum likelihood estimation 
and prediction. 

Human populations with social stmcture are often 
modeled as graphs, with the nodes of the graph representing 
individuals and the edges or arcs of the graph representing 
social links, relationships, or transactions. The population 
graph itself can be viewed either as a fixed stmcture or as a 
realization of a stochastic graph model. In real studies of 
human populations, particularly those that are hidden or hard 
to access, it is seldom possible to obtain data on the whole 
population or graph stmcture. Rather, data are obtained from 
a sample, and the sample may have been obtained by 
innovative and unconventional means, including methods 
taking advantage of the arcs or links from one individual to 
another. The data may contain information about 
characteristics of sample individuals, social links within the 
sample, and in some cases information about links between 
individuals in the sample and individuals outside the sample. 

In this paper we use the term "sampling design" to refer 
to the procedure by which the sample is selected, whether 
deliberate or happenstance. For many ethnographic and 
sociological studies of hidden populations, link-tracing 
designs are considered the only practical way to obtain a 
sample large enough to study. In other studies, the social 
structure is itself the object of interest and the link-tracing 
methods are used in order to obtain meaningfully stmctured 
samples to study. 

The statistical literature on design and estimation with 
link-tracing designs includes procedures variously termed 
snowball sampling, chain-refertal sampling, random walks, 
nexus sampling, network or multiplicity sampling, and 
adaptive sampling. A type of link-tracing design in which 
individuals in an initial sample were asked to identify a 
fixed number of acquaintances, who in turn were asked to 
identify tiie same number of acquaintances, and so on for a 
fixed number of stages or waves, was termed "snowball 
sampling" by Goodman (1961). A Bernoulli procedure was 
assumed for the initial sample. Snowball designs were 
developed in the graph setting with a variety of initial 
probability sampling designs and any numbers of links and 
waves by Frank (1971, 1977a,b, 1978a,b, 1979a), who 
obtained a variety of design and model based methods for 
estimating graph quantities from the sample data. Snijders 
(1992) used the same term "snowball sampling" to include 
designs in which only a subsample of links from each node 
is traced. The case in which only one of the links from a 
node is selected at random and followed to another node, 
and then one of its links selected, and so on, was called a 
"random walk" by Klovdahl 1989. Link-tracing sampling 
methods in which there is only one link from each node 
have been termed "chains" (Erickson 1979). Frank and 
Snijders (1994) consider model- and design-based 

' Steven K. Thompson, Department of Statistics, 326 Thomas Building, Pennsylvania State University, University Park, PA 16802 USA; Ove Frank, Department 
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estimation of a hidden population size, that is, the number 
of nodes in the graph, based on snowball samples. Addi­
tional practical and statistical issues in sampling from social 
networks with various types of snowball, chain-referral, and 
other link-tracing designs are discussed in Granovetter 
(1976), Morgan and Rytina (1977), Frank (1979b, 1981, 
1988), Walters and Biemacki (1989), van Meter (1990), 
Spreen (1992), Wasserman and Faust (1994), Spreen and 
Zwaagstra (1994), Karlberg (1997), Jansson (1997), Spreen 
(1998), and Robins (1998). 

Design-based estimation methods were developed 
additionally for the closely related designs of network or 
multiplicity sampling, in which social, kinship, and admini­
strative links were traced (Bimbaum and Sirken 1965, 
Kalton and Anderson 1986, Levy 1977, Levy and 
Lemeshow 1991, Sirken 1970, 1972a, b, Sirken and Levy 
1974, Sudman, Sirken, and Cowan 1988). For example, in 
a survey of a rare disease, an initial sample of households 
might be selected at random and data obtained both for 
residents of the households and for their siblings. The 
design-based estimation in these strategies is helped by the 
symmetry of the links and the encompassing of complete 
connected components in the sample, and unbiased esti­
mators have been obtained for network sampling with many 
different initial designs. 

Another link-tracing procedure for which design-based 
estimators are available is adaptive cluster sampling 
(Thompson 1990,1997, Thompson and Seber 1996), which 
has been formulated in the graph setting as well as the 
spatial setting. Following selection of an initial sample of 
nodes by any of a number of initial designs, the decision on 
whether to follow links from a node or not depends on the 
value of a variable of interest observed for the node. For 
example, in an epidemiological study of a sexually trans­
mitted disease, sexual or social links may be followed only 
from respondents who have been infected. Design-unbiased 
estimation methods have been worked out for a wide 
variety of adaptive cluster sampling strategies. 

Design-based methods of inference, such as the design-
based estimation methods of network sampling, snowball 
sampling, and adaptive cluster sampling, have the advan­
tage that properties such as design-unbiasedness or consis­
tency do not depend for their validity on any assumed 
model for the population. On the other hand, these prop­
erties do depend on the sampling design being carried out 
as specified. The model-based methods described in this 
paper, on the other hand, do depend on an assumed model 
for the population or graph. Their practical advantage is 
that they apply to a wide range of sample selection proce­
dures, and thus allow more leeway in how the sample is 
actually selected. 

In fact many real studies of hidden and hard-to-reach 
populations use sample selection procedures, including 
link-tracing, that are not readily analyzed based on idealized 
design-induced probabilities. For example, in a study to 
examine the relation of network stmcture and risk behaviors 

such as needle sharing among drug injectors in the 
Bushwick section of Brooklyn, "index" (initial) respondents 
were used as "auxiliary recruiters" to bring members of 
their networks into the study (Friedman, Neaigus, Jose, 
Curtis, Goldstein, Ildefonso, Rothenberg and Des Jariais 
1997, Neaigus, Friedman, Goldstein, Ddefonseo, Curtis and 
Jose 1995, Neaigus, Friedman, Jose, Goldstein, Curtis, 
Ildefonso and Des Jariais 1996). Only about 61% of the 
linked individuals were actually recruited, however. In a 
long-term study on the heterosexual transmission of HIV 
infection (Rothenberg, Woodhouse, Potterat, Muth, Darrow 
and Klovdahl 1995), the target population of interest 
consisted of commercial sex workers, their paying and 
nonpaying partners, persons who use injectable drugs, and 
the sexual partners of drug users in the Colorado Springs 
area. Persons in the purposively-selected initial sample 
were interviewed and, in addition to their individual charac­
teristics, identities of their sexual partners were obtained. 
Persons named by two or more respondents were also 
located and interviewed. The wide range of link-tracing 
procedures used in studies such as these has motivated the 
emphasis in this paper on model-based inference methods. 

When we compare the maximum likelihood estimators 
and predictors obtained in this paper with commonly-used 
conventional estimates or data summaries such as sample 
means and proportions of node or link values, we find that in 
most cases the conventional estimates are not the best 
estimates. Similarly, estimators that would be appropriate if 
the data included the whole graph may not be appropriate 
with data on only a sample from the graph. An implication 
of these results is that conventional estimates or unadjusted 
summaries of sample data obtained through link-tracing pro­
cedures can be misleading if viewed as pertaining to popula­
tion or whole-graph characteristics. The interpretations of 
this discrepancy provided in this paper give some insight 
into the conditions under which the best estimate would tend 
to be lower, or higher, than the conventional one. 

Notation and basic issues for design and inference in the 
graph setting are presented in section 2. In section 3, a 
wide range of link-tracing procedures, all of which can be 
analyzed using the approach presented in this paper, are 
described. In section 4, a class of graph models that we use 
to illustrate the inference methods of the paper is described. 
Estimative and predictive maximum likelihood methods for 
graph parameters and realized population values are 
described in section 5. 

2. GRAPH MODELS AND SAMPLING 
DESIGNS 

Consider a graph of A''nodes (units) labeled 1,2,..., N. 
Associated with the w-th node is a variable of interest Y^. 
We denote the full set of node labels U = [1,2,..., N] and 
the sequence of node variables by Y = (Y ,̂..., Y^). For 
two distinct nodes u and v, the indicator variable X^^ equals 
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one if there is an arc (directional link) from M to v and zero 
otherwise. The matrix of arc indicators, having X^^ as the 
element in the u-th row and v-th column, is the graph 
adjacency matrix, denoted X. For convenience we will 
assume the diagonal elements X^^ are zero. The ordered 
pair (M, V) is sometimes referted to as a dyad of type 
(y„, Y^;X^^,X„^). A graph model is given by a joint 
probabihty or density / (y , x; v|/) for outcomes y and x of Y 
and X, respectively, and it may depend on one or more 
unknown parameters \|/. 

A sample s from the graph is a subset of nodes and a 
subset of node pairs. We can write the combined sample as 
s = (5^'\5^^'), where 5 '̂̂  denotes the subset of nodes se­
lected for observation of the associated j'-values and s ̂ ^^ 
denotes the subset of node pairs selected for observation of 
the associated x-values. The data consist of the node and 
node-pair labels in the combined sample together with the 
associated node and arc-indicator values, that is <i = 
{u,{v,w),y^,x^^:ues'-^\{v,-w)€s'^^) or, more simply, 
<i = (5,y,(i),x (̂2)). Further, it is often convenient to use y^ to 
denote the ̂ -values of the nodes in the combined sample 
and X, for the x-values of the node pairs in the combined 
sample, with yj. and x- denoting the values of the un-
sampled nodes and node pairs. Often the sampling proce­
dure results in a connection between 5*'̂  and s'-^K For 
example, if all relationships from sample nodes to other 
sample nodes, and no others, are recorded, then s ̂ '̂ = 
s "'x5 ̂ '̂ . In general, however, the nodes on which_v-values 
are recorded and the node pairs on which x-values are 
recorded may be quite unrelated sets. In particular, the link-
tracing procedures considered in this paper often lead to 
data on links from nodes in s ̂ '̂  to nodes outside of s ''^ 

The sampling design is the procedure by which the 
sample is selected. This selection procedure may be con-
ti-olled by the investigators, as is the case with a deliberately 
implemented probability sampling design, or may be be­
yond the control of the investigators and determined by the 
circumstances of the situation. If the probability of se­
lecting the sample does not depend on node values >> or link 
values X or parameters y involved in the graph model, we 
refer to the design as "conventional." For a conventional 
design the probability of selecting sample 5 can be written p{s) 
or p{s;(p), where (p denotes any unknown parameters 
involved in the design (but not die model), as in a Bemoulli 
sampling with unknown inclusion probability (p for each 
node. The sampling design may depend on one or more 
auxiliary variables that are known for the whole population, 
but that dependence will be left implicit in the notation/7(5). 
Conventional designs include the classical probability 
designs such as simple random, systematic, sti-atified, multi­
stage, and unequal probability sampling, as well as model-
based purposive and balanced designs based on auxiliary 
variables. 

If the probability of selecting the sample depends on any 
yorx values, we refer to the design as "adaptive," since the 
selection procedure adapts to the realized configuration of 

node and link values in the population. In addition, the 
design can involve unknown parameters y. Thus, in 
general the sampling design in the graph setting has a 
selection probability that can be written p{s \ y, x;\|/) 
where y denotes the sequence of node values, x the matrix 
of arc indicator values, and vj/ any parameters involved. 

Likelihood-based inference, such as maximum likeli­
hood estimation or prediction and Bayes metiiods, is simpli­
fied if the design can be ignored at the inference stage. The 
fact that the sampling design does not affect the value of a 
Bayes or likelihood-based estimator in survey sampling was 
noted by Godambe (1966) for designs that do not depend on 
any values of the variable of interest and by Basu (1969) for 
designs that do not depend on values of the variable of 
interest outside the sample. Scott and Smith (1973) showed 
that the design could become relevant to inference when the 
data lacked information about the labels of the units in the 
sample. Rubin (1976) gave exact conditions for a missing 
data mechanism - of which a sampling design can be 
viewed as an example - to be relevant in frequentist and 
likelihood-based inference. For likelihood-based methods 
such as maximum likelihood and Bayes methods, the design 
is "ignorable" if the design or mechanism does not depend 
on values of the variable of interest outside the sample or on 
any parameters in the distribution of those values. For 
frequency-based inference such as design- or model-
unbiased estimation, however, the design is relevant if it 
depends on any values of the variable of interest, even in 
the sample. Scott (1977) showed that the design is relevant 
to Bayes estimation if auxiliary information used in the 
design is not available at the inference stage. Sugden and 
Smith (1984) gave general and detailed results on when the 
design is relevant in survey sampling situations. Thompson 
and Seber (1996) described adaptive designs in which the 
selection procedure deliberately takes advantage of ob­
served values of the variable of interest, and discussed the 
relevance of the design in inference from a variety of design 
and model based perspectives. Similar issues of design and 
inference arise with adaptive experimental designs, such as 
medical experiments in which ethical considerations moti­
vate adaptive treatment allocation to favor the more 
promising treatments as the study progresses {cf. Floumoy 
and Rosenberger 1995, Rosenberger 1996, Wei, Smythe, 
Lin and Park 1990). It is important to underscore that a 
design that is said to be "ignorable" for likelihood-based 
inference might not be ignorable for a frequentist-based 
inference, such as model-unbiased estimation, and that even 
though a design may be ignorable at the inference stage, in 
that for example tiie way an estimator is calculated does not 
depend on the design used, the design is still relevant a 
priori to the properties of the estimator. 

The sample data d = {s,y^,x^) are a function of the 
sample selected and of the graph values y and x. The 
likelihood can be written 

L{w,d) = X)p('yiy.x;M/)/(y.x;\|/) (1) 
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where the sum is over outcomes (y, x) consistent with the 
data d. Since the y and x values for nodes and node pairs in 
the sample are fixed by the data, the sum is over all possible 
values of the unobserved variables yj and Xj and it 
actually represents the marginal probability of the sample 
s selected and the associated observed variables v and x . 

•^ S S 

Thus, in general the likelihood function depends on both 
the design and the model. The quantity Y, .,_ / (y, x; t|/), 
based on the model only without consideration of the 
design, was termed the "face-value likelihood" by Dawid 
and Dickey (1977) because inference based on this function 
alone takes the data at face value without considering how 
the data were selected. 

For any design in which the selection of the sample 
depends on graph;v and x values only through tiiose values y^ 
and x^ included in the data, the design probability can be 
moved out of the sum and forms a separate factor in the 
likelihood. If in addition the design and model parameters 
are distinct and not related, the likelihood can be written 

L{iSf,yi/,d)=p{s\y^,x;,vf)Y, /(y,x;v|/) (2) 
y.-. »; 

where (p denotes the design parameters and y denotes the 
model parameters. The design then does not affect tiie value 
of estimators or predictors based on direct likelihood 
methods such as maximum likelihood or Bayes estimators. 
For any such "ignorable" design, the sum in the above 
likelihood, over all values of y and x leading to the given 
data value, is simply the marginal probability of the _v and 
X values associated with the sample data. This marginal 
distribution depends on what sample was selected, but does 
not depend on how that sample was selected. For likeli­
hood-based inference with a design ignorable in this sense, 
the face-value likelihood gives the cortect inference. 

3. SOME LINK-TRACING DESIGNS 

A variety of link-tracing designs are described in this 
section. Each of these designs is ignorable in the likelihood 
sense provided the initial sample is selected by an ignorable 
procedure and provided the data include all the values 
involved in the selection procedure. Since for all the 
designs described in this section, the node-pair sample s '•^^ 
has a deterministic functional relationship to the node 
sample 5 ̂  ' \ the superscript notation will be omitted and the 
final node sample 5 ̂  '̂  will be denoted simply s. 

The simple likelihood methods described in this paper 
apply to a wide range of ignorable link-tracing designs, 
including those described in this section. Further research 
is needed on methods for nonignorable designs, including 
those with nonignorable selection of the initial sample. 
Methods for dealing with nonsampling errors such as non-
response and reporting ertors with link-tracing designs are 
also in need of further development {cf., Thompson 1997). 

3.1 Single-Wave Design 

In a single-wave link-tracing design an initial sample of 
nodes is selected by any ignorable design from the popu­
lation of nodes in the graph. For each node in the sample, 
nodes adjacent from that node are added to the sample. The 
snowball procedure is assumed to stop after one wave. 
Thus, node v will be added if for some node u in the initial 
sample x^^ = l. 

Let 0̂ denote the set of nodes in the initial sample and 5, 
denote the added nodes not in tiie initial sample. The whole 
sample is 5 =5QU5J. 

The entire set of labels can be written as the union of three 
disjointsets, U = SQ{JS^US. The values y associated with the 
nodes can be correspondingly ordered as a sequence 
(y^o'̂ -'.'y^" '̂ wherey^ = (;;^:Mea) is the subsequence of y 
restricted to indices in subset act / . The adjacency matrix x 
is ordered cortespondingly and partitioned into submatrices 
'̂ .o-o' ^̂ 0̂ 1' ̂ sos and so on, where x^̂  = {x^;. u€a,veb). 
Ordering the adjacency matrix in this way facilitates the 
specification of factors in the likelihood. 

With the design above, the probability of selecting 
sample s depends only on x̂  ̂  and so can be written 
p{s I \y), where x̂ ^̂  can also be replaced by its column 
pennutation (x̂ ^̂ ,̂ x̂ ^̂ _, x^^-). That is, the probability of 
selecting the final sample s = JQ U^j depends on Hnks from 
the initial sample to other units in the graph, both in s and 
in s. The data consist of {s, y^, Xs^u). Since the design 
does not depend on any xory values outside the data or on 
model parameter values, the design is ignorable for 
likelihood-based inference. 

3.2 Multi-Wave Samples 

Consider a snowball sample with k + I waves after the 
initial sample. The sample will be denoted 5 = 5Q U j , with 
•̂0 •̂̂ 00̂ •̂ 01 '^%U•••'-'%• ^^ inJ'i^ sample s^^ is selected 
by any design that is ignorable in the likelihood sense. 
Links are followed and every node with an arc from any 
node in s^ and not already in the sample is added to form 
the first-wave sample 5^,. That is, 5Q, =[v:x^^ = l for some 
wesoQ, vf^oo}. Then links are followed in Sg, to give the 
second-wave sample 5̂ 2 = {v: x„̂  = 1 for some ues^ 
^^•^00^50, } = {v:x =1 for some ues^U s^,,v^s, 
U5o,}. Finally.the (A:+l)-wave sample, denoted simply 5 j , 
is added by following links from the ̂ -th wave sample 5Q .̂ 
That is 5, = {v: x^^ = I for some M e 5̂ , v f s^}. No links 
from jj are followed. 

If SQJ = 0 for anyj < k then sampling stops, so that tiie 
number of waves added is less than k if at some point there 
are no links leading out of the curtent sample to unsampled 
nodes. 

The data consist of sets of node labels in the different 
waves of the sample and the ordered node pairs from s^ to 
U, the sequence of node-values y^ for all nodes in the 
sample, and the link indicator variables x̂  ^ from s^ to the 
set U of nodes in the graph. Thus the data consist of the 
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subgraph data for s^, that is {SQ , ŷ  , X̂  ̂  ), together with 
the node values ŷ  for the nodes in the final-wave s^, the 
link indicators x , , from Sf, to s,, and the link indicators 

SnSf 0 1' 

x^ - from the nodes in SQ to the nodes not in the sample. 
Since the design does not depend on any y or x values 

outside tiie data nor on any of the graph model parameters, 
the design is ignorable and the structure of the data is 
exactiy tiie same with tiie {k-¥ l)-wave snowball as with the 
1-wave snowball design, and with the notation we have 
used the likelihood and estimation formulas are unchanged 
with the more general design. 

3.3 Completed-Wave Designs 

With a completed snowball sample, the procedure of 
adding waves is continued until no further links lead out of 
the sample. Then the number of completed waves Kisa 
random variable and s, Q.K* 5, is the first empty set in the 
sequence (SQC •̂ OP -)• "^^^ ^^^^ ̂ ""̂  ^ ~ (•̂ c ^ v ''•'o^^ ^^ 
equivalentiy (in. y , . x. ^. x, ^ ). Inference can tiien proceed 
with tiie same likelihood and estimation formulas but with 
die simplication tiiat the data contains no set j , for which y^ 
and X, „ are known but from which links are unknown. 

3.4 Link-Tracing Adaptive on Node Values 

Consider a design in which the decision to follow the 
links from node u depends on the node value >>„. For 
example, in a study on injection drug use, the initial sample 
may contain both users {y^ = I) and nonusers {y^ = 0). If 
the investigators choose to follow social links only from 
users, then the design depends adaptively on the node y-
values as well as the links. Similarly, in a study of sexually 
transmitted diseases, investigators may be instructed to 
follow sexual or social links more frequently from infected 
respondents than from noninfected respondents. The 
design then can be written p{s\y^,x^ y), since the 
selection procedure depends on both node and link values. 
If the data contain all values on which the design depends, 
that is, d = {s, y^, x̂  y), then the design is ignorable and 
maximum likelihood inference is simplified as described in 
the following sections. 

3.5 Tracing Only a Subsample of Sample Links 

The designs described above can be generalized to 
procedures in which only a sample of the links leading out 
from node w in SQ are followed. Examples include the 
"random walk" design of Klovdahl (1989) and the 
generalization of snowball designs described in Snijders 
(1992). In the random walk design, an initial respondent is 
asked to give the names of several social contacts. One of 
these contacts is chosen at random to be interviewed and 
asked in turn to name several contacts, one of which is 
chosen at random, and so on. In practice, dead ends can 
occur when a respondent either reports no contacts or 
reports only contacts who are already in the sample. In 
such cases investigators either backtrack and try different 

leads from previous respondents or find a new initial 
respondent. 

With these subsampling link-tracing designs, the 
procedure for selecting the sample, though complicated 
from a design-probability point of view , depends only on 
values in the sample and on links leading from the sample. 
We again assume that the initial sample is obtained by any 
ignorable procedure. Let SQ =5QQU5O,U5O2U...UJQ^ consist 
of all of the waves from which at least some links are 
followed. Thus, SQ, consists of the nodes not previously 
included obtained by following a subsample of the links 
from nodes in the initial sample S^Q , s^^ consists of the 
nodes not previously included obtained by following a 
subsample of the links from nodes in 5QQ Uigp and so on. 
No links are followed from the final wave 5,. Allowing for 
the possibility of dependence on node values, the design 
can be written p{s\y^,x^ y), so that with data d = 
{s, y^, x̂  y), the design is ignorable for likelihood-based 
inference. 

3.6 Data from Link-Tracing Designs 

With any of the single or multi-wave link-tracing designs 
described above, it is of considerable practical importance 
what data are recorded. If the data include only the sample 
node labels, the >>-values for nodes in the sample, and the 
arc indicators for pairs of units in the sample, that is, 
d = {s, y^, x^ )̂, then the design is nonignorable and must be 
integrated into the likelihood, which can complicate 
analysis. 

Consider also a study in which social links are used in 
the design, to find the sample, but only node characteristics 
(v-values), not relationships are recorded, so that the data 
aie d = {s, y^). Then the design is nonignorable. 

If on the other hand the data from the link-tracing design 
include not only the linkages within the sample but the out-
linkages (or lack thereof) from all but the last wave to the 
rest of the graph, that is, d = {s, y^, x̂  y), then the design 
depends only on graph values in the data and so factors out 
of the likelihood. 

4. A GRAPH MODEL WITH LINKS 
RELATED TO NODE VALUES 

The likelihood-based approach described in section 2 
with sample data from link-tracing designs of types des­
cribed in section 3 will be illustrated using a class of graph 
models described in this section. This class of models 
builds on conditional independence between dyads as in the 
contact models of Frank (1979a) and Wellman, Frank, 
Espinoza, Lundquist and Wilson (1991). Conditional on 
the node values, independence is assumed between dyads, 
with the distribution of links between pairs of nodes 
depending on node value. Thus, unconditionally these 
models have dependence between dyads because of the 
dependence on the node values. In the models of Holland 
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and Leinhardt (1981), dyads are assumed to be independent 
but with distributions that depend on fixed node parameters. 
Wasserman (1980) also assumed independence of dyads in 
modeling the change in a graph over time as a stochastic 
process. Bayesian extensions and stochasstic blockmodels 
of Holland, Laskey, and Leinhardt (1983), Fienberg, Meyer, 
and Wasserman (1985), Wang and Wong (1987), and Frank 
(1988) provide generalizations to joint distributions with 
dependence between node values and graph links. Models 
by Frank and Harary (1982) for randomly colored graphs 
exhibit a similar stmcture. The Markov graph models of 
Frank and Strauss (1986) provide another approach to 
dependence among dyads but present difficulties for 
maximum likelihood estimation. Review of a variety of 
graph models is found in Wasserman and Faust (1994) and 
Frank (1997). 

The maximum likelihood estimation and prediction 
methods of this paper apply equally to sample data with 
graph models other than the class of stochastic block 
models we have used. With other models, the same condi­
tions for ignorability apply. We have chosen this class of 
models because it is rich enough to encompass important 
aspects of realism such as dependence between dyads and 
between dyads and node values, and it is simple enough to 
have explicit full-graph maximum likelihood estimators for 
comparison with the estimators based on samples. With 
other classes of models such as the Markov graph models, 
estimation even with full-graph data requires numerical 
methods. 

For practical use of the model based approach it is 
important to have diagnostic tools for evaluations and 
comparisons between alternative models. For example, with 
the two-block model used here the conditional indepen­
dence of dyads could be tested by counting pairs of dyads 
of different types within and between the blocks. Within 
each block there are three types of dyads and six types of 
pairs of dyads. Between the two blocks there are four types 
of dyads and ten types of pairs of dyads. A Pearson 
goodness-of-fit statistic between observed and expected 
counts of the 22 types of pairs of dyads within and between 
the blocks is asymptotically chi-square distributed with 12 
degress of freedom under the conditional dyad indepen­
dence assumption. Goodness-of-fit testing for graph models 
is discussed by Holland and Leinhardt (1981) and Frank 
and Strauss (1986), and this direction of research needs 
further development in particular in connection with sample 
data from link-tracing designs. 

In the assumed model the node variables 7,. 7^ are 
independent, identically distributed (i.i.d.) Bemoulli 
random variables witii probabilities P{Y^ = i)=Q., for /' = 0, 
1, with 0^ + 9, = 1. Conditional on the node values 

dyads {X^^,X^^) are independent, for 
with conditional distribution given by 

P K^uv'^J = (*. 0 I J'̂  = i, n =j] = V fo"" a" combina­
tions of / = 0, l,y = 0, 1, ^ = 0, 1, and / = 0, 1. For all 
combinations of / and j , the sums over k and / are denoted 

7;,..., r^, the 
1 ^ u<v ^ N, 

hj" = E*E/^,yw and equal 1. In order to get graph proba­
bilities not depending on node identities, the following sym­
metry requirements are needed: X,, 

^1010 ^0101 ' 
• 1 y. 

"•0110' '^0010 

110 n i O l ' "-1011 
• A,nnn,, a n d A.nnn " A.^ 

"•0111' 

1001 " ' 0 1 1 0 ' " '0010 " ' 0 0 0 1 ' " " " "-lOOO '"OlOO' 

The pattern of these restrictions is illustrated in Table 1. 

Table 1 

(^„„.*v„) 

(0,0) 

(0,1) 

(1,0) 

(1,1) 

(0,0) (0,1) (1,0) (1,1) 

• • • • 

I X I 
- • • 

With these restrictions, it is convenient to introduce the 
notation 

\lUk.i, if (yW) = (0110) or (1001), 
^ijkl 

'^i*j,k*l. otherwise 

where YQO * '^loi + Y02 = 1' Yio + Y,, + Yi'i + Yn = 1- and 
Y20 + 2Y252, + Y22 = 1- We can interpret y,', and y,, as the 
probabilities of dyads with an arc from an unmarked to a 
marked node only and from a marked to an unmarked node 
only, respectively. Moreover, for (//) ' ' (11), y,.. is the pro­
bability of a dyad with j arcs on / marked and 2 - / un­
marked nodes. 

It will also be convenient to denote X... = YX ,, = a. 
/ / ! • i-il ijll -'ij 

and X.J^^ = p. . for / = 0, 1 andy = 0, 1. Here a., is the 
probability of^an arc from a node of value i to a node of 
value J, and p^ is the probability of mutual arcs between k 
marked nodes. 

Let N. denote the total number of nodes with value / in 
the graph, for / = 0, 1, so that N^-*- N^ = N. Let further 
M.ji^i denote the total number of dyads of type {ijkl), that is, 
the total number of ordered node pairs {u, v), with u<v, 
suchthat{Y^,Y^,X^^,XJ = {ijkl). 

The likelihood for the full graph under the model with 
parameters (9, X) is 

L{Q,k;y,x) 

In terms of the ys. 

ne;.' 
;=0 

M, ijkl 

V ;=o;=o t=0 /=0 
(3) 

1 1 1 M nnnnv 
,=07=0A=0/=0 

! / • " _ 

2 2 

nnyf 
/=o;=o ; 

(Y'lD 

where the Rs are dyad counts cortesponding to the pattern 
in Table 1. That is, R^ = M 00 -•oooo' R 01 M + M 

^"0001 "^0010' 

file:///lUk.i
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^02 = ^ ' 

R:, 
0011' R 10 

M + AY 
. . •'*^oiio •"^lOOP 

^21 =-'^1101 * ^ U 1 0 ' 

M + M 
•"^0100 ^*^1000' 

R, 
R 12 

/?22=M,,„. 
H i l l ^^011-

• M + AY 
• ' "o io i •'*^1010' 

^ 2 0 ^l 100' 

Note that /?,',(/?,,) is 
the number of dyads with an arc from an unmarked 
(marked) to a marked (unmarked) node only. Also note that 
except for {ij) = (11), R.j is the number of dyads on ;' 
marked nodes withy arcs. 

The maximum likelihood estimators with the whole 
graph as data are the proportions 0, =N./N, y.. = /?,//?,, 
and y;, = /?,', /^ , , where R^ = N^{N^ - 1 ) /2, Ĵ , = ]^^N[, 
and /?2 =N^{N^ - 1)12. In terms of the Xs, this means 
\ki = P'ii'^i 'f (yW) = (0110) or (1001) and l..^ = 
^/V.w^^/V otherwise. 

ijkJ 

5. INFERENCE FROM LINK-TRACING 
DESIGNS 

5.1 Estimating Graph Model Parameters 

Consider any of the link-tracing designs, for which an 
initial or multiwave sample is selected and links out from 
nodes in SQ are followed to add the set j , of nodes not in SQ 
that are adjacent after nodes in SQ. The data are d = 
(5,y ,̂x^ y), so that the design depends on y and x values 
only through those in the data and is thus ignorable. 

With the graph model described in the previous section, 
the likelihood with the sample data given by equation (2) in 
section 2 is in this case 

L{Q,X,d)=P{s\y,x^^y)Y: n^ yuy^^uv^v 

where the sum is over all values y^ and x^^ that are not 
fixed by the sample data. 

Similar to the notation for population counts in the 
previous section, let n.{a) denote the number of nodes 
u6 a with y^ = / for arbitrary subsets ac U. Let 
nty;j{a, b) be the count of pairs of nodes {u, v) such that 
uea, ve b,{y^,y^,x^^,x^^) = {ijkl), and w < v if both w 
and V belong to anb. An index replaced by a dot means 
summation over that index. For instance, according to the 
link-tracing designs described in section 3, only w..̂ . {SQ, 5,) 

O ' - ' l Sx)-is observed, not w..̂ ,(5| 
With data from any of the link-tracing designs described 

in section 3, the likelihood function is 

i(e,x;rf)=p(.|y^,x,„) ne, 
^" iW n 

ijkl 
^ijkl 

ijk 
n ^jU>;f''' 

(4) 

For the link-tracing designs in which all links, rather than 
a subsample, from the initial sample are traced, all of the 
elements in the submatrix x - are zero and /«.„, , = 
«,(5Q) for V e 5, which simplifies the likelihood function to 

L(e,X;rf)=/ '( . |y^.x,„) ne; n,(s) 

%kl 
\ijkl 

Uhi 
ijk 

tjk'iSQ.Sl) 

'ijk* Ee.nx; •ijO' 

n{s) 

(5) 
.,",W The factor fl 9,'"' gives the probability of the observed 

node values in tiie sample. The factor O A.̂ "̂'''"'̂ ''̂  gives the 
probability of the observed dyad types within s^ x s^ given 
the node values. The factor O A,,̂ *̂"*'"'''* gives the probabi­
lity of the observed dyad types in s,, x j , . Since x^^ but not x 
is observed, for M e 5Q and v e 5,, the marginal probability 
that x„„ = k given y^ = i and y^ =j is X .̂. 

The final factor of (5), with square brackets, gives the 
probability that there are no arcs from the initial sample to 
s. For a node v of the «(5") nodes outside the sample, 9 is 
the probability that y^ =j. From any of the n.{Sf^) sample 
nodes uE s^ with y^ = i, the conditional probability of no 
link to V, that is, that x^^ = 0, X..Q,. 

More formally, the bracketed term can be obtained by 
conditioning on the number « (J) of nodes of typey in s. 
Conditional on nj{s), the prooability that all the link indi­
cators from 5Q to s are zero is obtained as follows. From 
the «,(5o) nodes of type / in s^ to the nJs) nodes of type 
y in s, the probability that all links are zero is X"JQ,''^"'^'\ 
Using the binomial distribution of n^ {s) with the law of 
total probability, tiie probability that all the links from s^ to 
s are zero, given y^, is 

n(s) 

E 
n , ( J ) = 0 n.{s) ne; n/s) 

\ J 

n(f) 

• (6) 

With the completed-wave design, the above likelihood 
expressions are simplified since the terms m... , , are all 
zero, so that the factors involving these terms are all equal 
to one. We also note that X.j^, = I - a., and A...,, = a., can 
be substituted to simplify the likelihood. 

5.1.1 Estimative Likelihood Equations 

The maximum likelihood estimators for the parameters 0,, 
a.j, and P̂  are obtained as the common solutions to the 
equations 

dlogL _ dlogL _ dlogL ^ „ 
dQ. da.. dh (7) 

for / = 0, 1, y = 0, 1, A: = 0, 2. Differentiating the loga­
rithm of the likelihood (5) with respect to 9, and setting 
equal to zero gives 

dlogL ^ dlogL _ dlogL 
de, dQ, a9„ 

= 0 

where the partial derivatives are given by 

file:///ijkl
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nx ikO-

d% e. 

for;t = 0, 1. 
Moreover, 

dlogL dlogL dlogL _ 
da.j dX.j^Q aX .̂Q, 

and 

<i log Z ^ 

i*j=k 

dlogL d log L 

Ej e,n,C 

3 log Z, d logL 

d\jOO .ax,,oo 

3 log I 3 log Z, 

(8) 

(9) 

where the partial derivatives are given by 

a iogZ _%A/(V^o) , ^ijk.(^o'^i) 

dx. ijkl \jkl 

H\-k)n{s) 

'^ijk. 

%"i(^o)\o. 

E, e^ac 
It is convenient to write the likelihood equation for 9j as 

» iW f^o(s) ^n{s){p-l) _Q 

e, % e,p + 9o 
(10) 

where 

p = n 
(=0 

^'10« 

VOO' V 

=n 
;=0 

1 - a . 

1 - a ;0 

n,(io) 

Note that p = Po" ^ p" ' ' , where p,. = (I - a,., )/(l - a.,,) is 
the ratio between the probabilities of no arc from an /-node 
to a positive and a zero node, respectively. 

An interpretation of the influence of the graph structure 
on estimation of 9j is provided by considering the graph 
parameters a - and hence p - as fixed. Denote the sample 
proportion of positive nodes by 9̂  = «, {s)/n{s). This is the 
conventional or naive estimator of 9,, using the sample 
proportion of positive nodes. If p = I, then the maximum 
likelihood estimator 9, would be 9^. If p < 1, then the 
maximum likelihood estimator 0, would be less than 9^, 
and if p > 1, 9, > 9^. In particular, a., = a,o for / = 0, 1 
implies p = 1 and the maximum likelihood estimator is 

e,=e,. 
Consider for instance the case in which for any given 

value of y^, a link from node u to node v is more likely 
when y^ = 1 than when y^ = 0, so that a.,>a.o, for / = 0, 1. 
Then (1 - a ; , ) / ( l -a ,Q)< 1, for/ = 0, 1, sothatp< 1 and 
the maximum likelihood estimator 9j is less than the con­
ventional estimator 9^. One could say that the link-tracing 
design is leading investigators to an unrepresentatively high 

proportion of positive nodes, and the maximum likelihood 
estimator is adjusting for this. 

In specific cases some of the X,..y might be set to zero 
and the likelihood equations have to be modified according­
ly. Some specific cases will now be illustrated. 

5.1.2 A Symmetric Model 

Symmetric models have X. jy = 0 for A: ^ / so that arcs 
are always mutual or, equivalentiy, they can be considered 
as undirected edges. 

The full symmetric model has parameters X. ^̂  = X..̂ .̂ for 
/,y,Ar=0,1, witii X.^^ + X .̂„ = I. Here X..„ = p.,^. = â . = a,, 
and 

p = n 
;=0 

1 - Kl 

1-P , j 

"((Sfl) 

Letting m..ij{Sg,s) =r..^^,, we obtain the maximum 
likelihood estimators as the solutions to the equations 

n^{s) «o(^) „ ( j ) ( i - p ) _Q 

'02 '00 

% + p9, 

n{s)nQ{sQ)QQ 
= 0 

Po 1 - P o 

r,2 /-lo n{s 

P, 1-Pi 

''22 "̂20 

( l -po)(0o + p9,) 

•)[«,(5o)eo + «o(Vpei] 
( I -p , ) (9o + p9,) 

«(5)«,(5o)p0, _^ 

(11) 

(12) 

P2 I -P2 (l-P2)(9o + p9,) 

0 (13) 

(14) 

If the symmetric model is further simplified by assuming 
PQ = P, =0, there are only the two parameters 9, and Pj, 
and the equations to be solved are 

and 

9,p2=r22/A^«,(5o) 

N-n^{s)lQ^ 

N-no{s)/% 
(1 - P2)"'^'°'. 

For instance suppose the value y^ = I indicates injection 
drug use and x^^ = 1 indicates u and v are injection part­
ners, so that links are only possible between users and 
tracing these links can only add users to the sample. As an 
illustration, consider a population of size N = 10, 000 with 
statistics «i (SQ) = 7, «o('̂ o) = 43, n^ {s) = 47, and A-JJ = 42. 
The likelihood equations are 9, P2 = 0.0006 and (10000 -
4 7 / 9 , ) / ( I 0 0 0 0 - 43/9^) = (1 - P2)'',leading to the maxi­
mum likelihood estimators 9, =0.12 and Pj = 0.005. The 
naive estimator for 9, in this case would be the sample pro­
portion 47/90 = 0.52 and the naive estimator for P2 would 
be 
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039, 

the proportion of links between users in the sample out of 
the number possible. 

5.1.3 An Asymmetric Model 

A specific asymmetiic model has A...̂  = X,.^.\., = A, ^A,/.' 
so that all arcs are independent. Now p. = a. a . and we 
obtain the maximum likelihood estimators as the solutions 
to the equations 

N-n^{s)/Q^ 

N-n^{s)I% 

and 

% m yi 

1 - a V my,^n.{sJpJQj{N-n,{s)/Q,) 

for / = 0, 1 y = 0, 1, where w,̂ ^ = w,^.^.{Sg,s). 
In particular, if we specify this asymmetric model by 

â^ = ija, so that arcs are possible with probability a only 
between marked nodes, then the equations to be solved are 

i^^l«iW/e,^(i_„p(.„) 
N-n^{s)/% 

and 

m HI 

1 - a w,,o + [iV9,-«,(5)]«,(5o) 

Again, iterative methods are appropriate. 

5.2 Predictive Likelihood for the Total of the 
Unobserved Node Values 

For predicting the value of the unobserved random 
variable n, {s) from the observed data, the relevant likeli­
hood is 

L[Q,X•,d,n^{s)] =p{s\y,.,x,^ y) 

n , ( i ) * n , ( j ) ne; 

ijk 

n{s) 

lA^i(^-)j ijkl 

l l \o« 
V y (15) 

Use of the term "prediction" implies only that the object of 
inference is a random variable rather than a fixed, unknown 
parameter, and does not necessarily imply forecasting in 
time. 

The estimative likelihood for«, (J) is obtained from (15) 
by substituting the estimates 9 and X that maximize the 
(marginal) likelihood (5). The value of n^ {s) maximizing 
the estimative likelihood would be the estimative maximum 
likelihood predictor of «, (J). While estimative likelihood 
methods tend to produce reasonable point predictions in 

many cases, they are less useful as a basis for prediction 
intervals, since the estimates of the parameters are in 
essence treated as the true values {cf., Bj0mstad 1990, 
1996, Lejeune and Faulkenberry 1982). For this reason, we 
emphasize the use of the profile predictive likelihood. 

Rather than substituting fixed estimators of the para­
meters into (15) and maximizing this estimative likelihood 
with respect to «, {s), the likelihood (15) is now simulta­
neously maxihiized with respect to both parameters and 
«, (J). This means that for each value of n, (J) there are 
parameter values 9,.[«,(j)] and K|^[{n^{s)] which 
maximize (15) with respect to 0 and X. Substitution of these 
values into (15) defines the profile likelihood L [n^ (J); d] 
for «,(J). The value of n^{s) maximizing the profile 
likelihood is the profile maximum likelihood predictor of 

"x (^)-
For any given value of «,(f), the likelihood is 

maximized where the derivatives with respect to the 
remaining parameters equal zero. The maximizing values 
of 9, are straightforward and are given by 

e. 
n.{s) •*• n.{s) 

(16) 

For the remaining parameters we use d log LI da., and 
d log Lld^i^ from (8) and (9), with the partial derivatives 
now given by 

a log Z _ '"ijuK^o) , '"ijk.^^o'^x) ,j J. ri.{s^)nj{s) 

d\jki \jki 
(17) 

•^ijk- yO-

Note that tiie nj{s) for j = 0, 1 are contained in (15) only 
in the factors 

^n{s)^ 

n.{s) J 

nj(s) 

i",(^o) 
where A = 9̂ TI.XjyQ. . Since Z is proportional to a binomial 
probability with parameters n{s) and A J / ( A Q + A,), it 
follows that the maximum of Z over n^ {s) is obtained for «, (J) 
equal to the integer closest to 

n{s)A. \ - \ 
Ao + A, 2(Ao + A,) 

or either of the integers closest to this number if there are 
two of them. In fact (see, for instance. Feller 1957, p. 140), 
the mode of a binomial distribution with parameters (n, p) 
is the integer in the interval [(« + l )p - 1, (« + l)p] or 
either of the endpoints if they are integers. Thus, the mode 
is the integer or the integers that are closest to the interval 
midpoint {n + l)p-{l/2)=np->-{p-q)l2, where q = I - p. 

If initial values of the parameter estimators are obtained 
from the solution of (7) and substituted into the A , then a 
predicted value n^ {s) is given as above. If this predicted 
value is inserted into (16) and (17), then new estimates of 
the parameters are obtained tiiat can be substituted into the A 
to find a new predicted value of «, (J), continuing until the 
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values converge to the solution minimizing (15). Altema­
tively, the solution can be found by direct computation of 
the likeHhood (15) for different values of n^{s), substi­
tuting the solutions obtained from (16) and (17) for the 
parameter values. 

5.2.1 Example: Symmetric Model 

The predictive likelihood equation (15) for the sym­
metric model is * 

LlQ,P;d,n,{s)]=p{s\y^,x )\IIQ^ 
M , ( j ) + n . ( j ) 

X np.;""'(i-P.^y ,'",yoo(-'o-')*",(-'o)''/^) 

•(18) 

Let rjj = ru{sQ, s) denote the count of node pairs in 5Q x s 
with total node value k and total number of links /. With the 
symmetric model, lean take only the values 0, indicating no 
link between the nodes, or 2, indicating a symmetric link. 
In particular, A-QZ ='"ooii(V^)' ''n ='"0111(^5)+'"1011 
(5o,5),and /-22 = /n,,,,(Jo,5) denote the sample counts of 
links between nodes of total value k, for /t = 0, 1, 2, 
respectively. With this notation the last factor in (18) can 
be written 

nP?'(i-Pi/*"'̂ ;i./'̂ ''̂ " '̂'"^ 
*=0 

Denote by ĉ  = c^[«, {s)] the number of possible node 
pairs in SQXU having total value k, so that 

'̂ t = '•*.+ E «/(5o)">(^) 
iJ 

i +j=k 

= E ni{So)[nj{s) + n.{s)]. 
iJ 

i +j = k 

For any given value of «, (5), the likelihood is maximized 
by 9. = [n.{s) + n.{s)]IN for / = 0^ 1 and p^ = r^^Ic^ for 
i = 0,1,2. Note that 0 and the p̂  are functions of the 
unobserved variable «, (J). 

The profile predictive likelihood function for «, (J) is 
obtained by substituting the maximizing values 9 and p^ 
for the parameters in (18), giving 

^p[«,(^);^]=p(5|y,,x^^j,) n n.{s)^n.{s) 

AT 

,̂ ^̂  

n ' 4 2 (• 1 - ^2^1, - 'n 

which is a function of «, (5) alone. The maximum profile 
likelihood predictor of «, (5), easily obtained by straight­
forward computation, is an integer between 0 and n{s) 
giving the largest value of (19). 

5.3 On Assessing Accuracy of Estimates 
For confidence intervals and other forms of inference, 

the inverse of the observed Fisher information I (9) is sug­
gested, where 9 is the vector of parameter maximum likeli­
hood estimates and I is the matrix of negated second deriva­
tives of the log likelihood function evaluated at those esti­
mated values. The use of the observed, as opposed to 
expected, Fisher information to assess the accuracy of an 
estimate is described in Efron and Hinkley (1978). More 
recently, Lindsay and Li (1997) argue that the observed 
information gives a better assessment of the realized, as 
opposed to expected, error of the estimate. In developing 
large-sample approximations to the properties of the 
estimators of 9 and X it is important to make appropriate 
assumptions about how X depends on N so that the graph 
model and the sample do not degenerate. See for instance 
the asymptotic results for some simple graph models given 
by Palmer (1985). 

As with the calculation of the maximum likelihood 
estimates themselves, the calculation of the observed 
information matrix is not affected by the link-tracing samp­
ling design, since the design is ignorable for likelihood 
based on inference. This is in contrast to the expected 
Fisher information, the value of which is affected by the 
design in addition to the graph model, unless the design is 
a conventional one not depending on any y or x values. 

For a (1 - e)-level prediction interval for a random vari­
able such as «, (s), one method would be to use a central 
region having mass (1 - e) of the normalized profile likeli­
hood function for «,(5) {cf, Bj0mstad 1990, 1996). For 
the symmetric model, the (1 - e) prediction interval for 
n,(5), is readily obtained by computing (19) for 
«, (J) =0,1,2,..., until the computed values become negli­
gible, normalizing by dividing by the cumulative total 
En,̂ (j)=ô p and using the e/2 and 1 - e/2 quantiles as the 
interval endpoints. 
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Calibration and Restricted Weights 
ALAIN THEBERGE' 

ABSTRACT 

To better understand the impact of imposing a restricted region on calibration weights, the author reviews the latter's 
asymptotic behaviour. Necessary and sufficient conditions are provided for the existence of a solution to the calibration 
equation with weights within given intervals. A more general formulation of the calibration problem leads to a compromise 
between the need to satisfy the calibration equation and the attempt to obtain weights that are close to Horvitz-Thompson 
weights. If the requirements for the calibration equation are relaxed, then various estimation methods with restricted weights 
can be used. The estimators that are introduced usually have the same asymptotic properties as the calibration estimator with 
no weight restrictions, and some have weights which can be calculated explicitly, without any iterative process. The author 
shows how these estimators can be adapted to take advantage of a synthetic estimator. An approach similar to that used to 
restrict weights is applied to outliers. 

KEY WORDS: Small domains; Moore-Penrose inverse; Inequality solutions; Asymptotic properties; Outliers. 

1. INTRODUCTION 

The calibration estimator has good asymptotic prop­
erties. However, for samples of small size, or if calibration 
is done at the domain level and some of the domains 
involve few observations, the weights of such an estimator 
can include extreme values. One way of overcoming this 
problem consists in using the calibration method with dis­
tance measurements which restrict the weights of observa­
tions to certain intervals about the sampling weights. This 
approach was developed by Deville and Samdal (1992). 
Other methods aimed at providing robust estimates satis­
fying the calibration equation can be found in Duchesne 
(1999). That paper contains an extensive bibliography on 
robust estimators. However, there is no guaranteed solution 
to the calibration equation with restricted weights. Even 
when such weights exist, the statistician might prefer 
solving the problem of extreme weights by relaxing some­
what the requirements for the calibration equation, instead 
of tightening the constraints on the weights by using a dis­
tance measurement that is more "restrictive". This paper 
provides a formulation of the calibration problem which 
offers more flexibility to the statistician. The problem in 
fact is one of minimization similar to that encountered in 
ridge regression. Bardsley and Chambers (1984) encoun­
tered this same minimization problem in their search for 
model-based estimators. This formulation of the calibration 
problem can be used to restrict weights without the use of 
special distances between calibrated weights and Horvitz-
Thompson weights. Rao and Singh (1997) combined tiiis 
approach with iterative methods using distance measure­
ments. Other ways of restricting weights will also be 
reviewed. 

In the next section, the calibration method is outlined 
without applying limits to the values of weights. The 

calibration problem thus outiined does not assume there is 
a solution to the calibration equation. The asymptotic prop­
erties of calibrated weights are discussed. These properties 
have a bearing on the asymptotic behaviour of the esti­
mators whose weights are restricted. In section 3, necessary 
and sufficient conditions are provided for the existence of 
restricted weights which satisfy the calibration equation. 
Section 4 discusses how the estimation problem can be 
formulated by varying the importance attributed to the cali­
bration equation. Section 5 provides various means of 
restricting weights without recourse to a specific distance. 
Section 6 introduces an estimator with restricted weights 
which is useful for small domains. Finally, in section 7, out­
liers are discussed in terms of a method similar to that used 
to deal with extreme weights. 

2. CALIBRATION 

Let Ye R^^ denote a matrix of d variables of interest 
for a population of size N, and let ceR^ denote a vector of 
known constants; a sample s of size n is drawn, and the sub­
script s is used to designate the sub-vectors or sub-matrices 
cortesponding to the sample. We wish to estimate Y'c 
using Y^w^, where w^eiR" is a weight vector for the 
sampled units. For a vector v and a positive diagonal matiix 
Fof identical dimension, we define ||v||^ = v'Fv. For an 
auxiliary infomiation matrix XER^'^P, AeR^"^ the dia­
gonal matrix of sampling weights, given positive diagonal 
matrices f/^eE""" and Tel'"' ' ' , we seek, among the 
weight vectors w^eR" which minimize || X^w^ -X'c \\j., 
the one which minimizes D^{w^) = \\ w^ - ^ / ^ Wu - This 
formulation of the problem, which does not assume the 
existence of weights satisfying the calibration equation, 
X'w =X'c, can be found in Th6berge (1999). The 
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solution represents the vector of calibrated weights w^^. 
We have 

>̂ cai =^A + U;XT'^{T''^X;U;'X^T''')' 

-1/2 r''{X'c-X'Ac),{l) 

Again for an asymptotic setup in which the sampling 
fraction converges to a positive number, we have D^{yv^^^) 
converging in probability to 0, if Y < 1. Thus there are 
cases, e.g. for the estimate of a total, where M'̂ ,̂ - A^c^ 
converges in probability to 0, but where D^{w^^^) = 

• ^ c a l - - ^ / . (J does not converge to 0. 

where F^ denotes the Moore-Penrose inverse of the matrix 
F. 

To better review the asymptotic properties of calibration 
estimators with restricted weights, let us now examine the 
behaviour of H'̂ .̂ ,̂ when « - «>. We assume there exists an 
asymptotic setup in which the size of the population and the 
size of the sample tend towards infinity (see for example 
Isaki and Fuller (1982)), and for which we have 

Y'c = 0^{Ny) (Y ^ 0) 

X'c-X'Ac^ = 0(n -^'^N'') 
s s s p^ •' 

T"^X;u;%T"^ = Op{n). 

(2) 

It follows that ( r"2A; ' (7; 'x T""^)^ = Op{n " ' ) , since one 
of the properties of the Moore-Penrose inverse of a matrix 
F is F^FF^ = F^. Usually, we can expect to have 
y = I when each element of the vector c has a value of 1 
(estimate of a total), and y = 0 when each element of c has 
a value of 1/Â  (estimate of a mean). For conditions (2) we 
therefore have, 

»'r.x-Ax, = U:%T^'^{T^'^X'U:%T^'^)'^ 
cal s s s s ^ s s s ' 

T"^{X'c-XlAff) 

= 0^{n-')0^{n-"^W) 

= Op{n -^^m). (3) 

Thus w^^ ~-^J^s converges in probability to 0, if 

Lim n '^'^N'' = 0. 
n, N - " 

For an asymptotic setup such as that of Brewer (1979) in 
which the sampling fraction n/N is constant, or any setup 
for which the sampling fraction converges to a positive 
number, this condition is verified if y < 3/2. 

V/ritingw^=A^c^^U;'xj''^HlP'' {X'c-X^A^c^), 
where H^ = T^'^X^U;%P'^, we have 

^Xa.) =(̂ '̂  -XI^SO'T'^'HIMX 

P'^{X'c-X'Ac) 

= {X'c -X^Af^)'r^HlT'^{X'c -X^Af^) 

= Op{n-"^Ny)Op{n-')Op{n-"^Ny) 

3. CALIBRATION EQUATION SOLUTIONS 
AND RESTRICTED WEIGHTS 

Even in the absence of weight restrictions, there might 
not be a solution to the calibration equation. By applying 
Graybill (1983,113) to the calibration problem, we find that 
the calibration equation X^w^ =X'c can be solved if and 
only if {Xlxf)'X'c = X'c. If there is a solution, the 
calibrated weights might be negative or exceptionally large. 
Deville and Samdal (1992) proposed using various distance 
measures other than a weighted sum of squares to measure 
the distance between Horvitz-Thompson weights and cali­
brated weights, so as to restrict the weights to certain inter­
vals while satisfying the calibration equation. This approach 
can only work if there are in these intervals weights which 
satisfy the calibration equation. The main goal of this 
section is to find necessary and sufficient conditions for the 
existence of a weight vector w^ within given bounds, such 
that the estimates of totals for auxiliary variables are also 
bounded. In other words, we are seeking conditions for the 
existence of a vector w^ such that w'^'^w^^w'-"^ and 
/(i) ^ X ; w^ ^ t'-"\ where w'-^\ w'-"\ t'-''^ and ('•"'> are given. 
In particular, by assuming t^^^ = t'-^^ = X'c, we would ob­
tain conditions for the existence of weights restricted to the 
intervals w^^^ ^^s^ w''"\ satisfying the calibration 
equation. 

A first step is provided by the following Fan (1956) 
theorem. It is formulated here for a matrix M of finite 
dimension, although the proof provided by Fan also applies 
to a matrix of infinite dimension. The theorem uses the 
kernel of M', N{M'), defined as the set of vectors a such 
that Af'a = 0. 

0 
,^weR" such that 
in N{M'), we have 

Theorem: Let M e K ""*" and / e : 
Mw ^ I if and only if for any X ^ 
I'X^O. 
Corollary: Let MeR"""" and l,hER'" ,3weR" such that 
/ ^ Mw <. h if and only if first I <. h and secondly 
XeN{M')'^ -l'X_<,h'X^, where X,̂  =max(X.,0) and 
X_ =min(X, 0) with the extrema taken elementwise. 

The corollary is obtained by using the theorem with 

-x^ 
X. 

M [%'-V^ and X, 

N 

= Op{n-^N^y). (4) 

Letp denote the dimension of N{M'). lip is equal to 
zero, then X e N{M') imphes X = Q, and the condition of 
the theorem (or the similar condition of the corollary) is 
obviously met. lip is equal to one, then XeN{M') implies 
that >. is a multiple of a vector z, and it is sufficient to 
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check the condition for X = z and X = -z. If we use the 
property {-X)_ = -{X)^, the problem outlined at the begin­
ning of the section can now be resolved if X^ is a vector. 
The corollary with 

M X' ,/ 

and the fact that 

-X. 

w («) 
»(W) 

1 

spans N{M'), provide the necessary and sufficient 
conditions 

{X)'^w'-'-^ + {xy._w^"^ ^ t'-"^ 

/<'-' <: {X)'^ w^"^ + (A;).' W^''\ 

(5) 

The third inequality in (5) states that the weighted total of 
the auxiliary variable must not be greater than t^"\ when 
the smallest possible weight ŵ ^̂  is given to units for 
which the auxiliary variable is positive, and when the 
greatest possible weight w^"' is given to units for which 
the auxiliary variable is negative. The fourth inequality in 
(5) states that the weighted total of the auxiliary variable 
must not be less than t'-^\ when the largest possible weight 
is given to units for which the auxiliary variable is positive, 
and when the smallest possible weight is given to units for 
which the auxiliary variable is negative. 

Even for p > 1, it is sufficient to check the condition of 
the corollary for a finite number of values of X. Let 
VeR"'^'', 2<.p^m denote a matrix whose columns form 
a basis for N{M'). It is always possible to constmct V 
such that/? of its rows, v,, v^,..., v ,̂ are the unit vectors of 
E'', and we will assume that V is of this form. It will be 
shown in Appendix A that it is sufficient to check the 
condition of the corollary for vectors X = V<p and X= -K(p, 
where <(> = (cp,, . . . ,©)' is a non-zero vector satisfying 
v/<p = 0 for a subset of {p - I) linearly independent 
vectors v,. We must therefore check the condition at the 

values 
( . " ) 

most for 
of X.. 

Using the corollary with 

vectors <(>, i.e. at the most 2 {;.) 

M = , / ,h w 
(H) 

t(H) 

and noting that the columns of 

V 

form a basis for N{M'), we obtain the following necessary 
and sufficient conditions for the existence of a solution to 

the problem mentioned at the beginning of this section 
whenever A'^eE""'' witii/7>1. We must have w'-''^ <.w''"\ 

(̂i.)̂ (̂//)̂  and for each subset of {p-l) linearly 
independent rows of 

it is necessary that 

(6) 

for a non-zero vector (p e E'' orthogonal to each row of the 
subset. The second inequality in (6) is obtained from the 
first by changing the sign of (p. 

If Kjjjb e E^'*'' is a non-singular matrix whose rows are 
rows of V, then each column of V^^^ is a vector perpendi­
cular to {p -I) linearly independent rows of V. Hence the 
following result: 
There exists a weight vector w^ such that w*̂ ^ ̂ w^<. w*-"^ 
and /(^) ^ X' w <. t^"^ if and only if w'̂ ^ ^ H'̂ '̂ ^ t'-'-^ ^ 
AH) and 

"'^'-•''^-(0:^^'^^-(^.0> (^sKl)> (H) 

(H) 

(7) 

for all non-singular matrixes V^^^ e RP^P whose rows are 
rows of 

These conditions are somewhat redundant. For example, 
if inequalities (7) are met for F̂ ^̂  = V^, tiien they are neces­
sarily met for any matrix V^ obtained from F, through a 
permutation of rows. 

Another example is provided by weighting observations 
in a contingency table. Assuming N.j = n.-w.. 
(/ = 1, 2,..., R;j = 1,2,..., C), where n.j is the number of 
observations in cell {i,j) of a contingency table and w.. is 
the weight of each of these observations, we wish to know 
if there are weights w.. such that Ny satisfies certain con­
straints. For example, motivated by the problem of conver­
gence of the raking ratio procedure, Bacharach (1965) pro­
vided necessary and sufficient conditions for the existence 
of weights ŵ  such tiiat N^ ^ 0, Xf=, N.j = N. {J=l,..., C), 
Y,j = 1 AA = N. {i=l,...,R), where tiie values of Nj and A',, 
are given, the following result, demonstrated in 
Appendix B, is more general. 
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For arbitrary constants NII-\ N^^, Nf\ Nf^, 
NI^\ NI"^, N^'-K and iv"^, there are Â .̂ such that 

Nf^^N-j^Nll^ i=l,...,R;j=l,...,C; 

/ = i -̂  

rW i=l,...,R; 

R C 

/=i y=i 

if and only if 

Nlj^^N^P i=l,...,R;j=l,...,C; 

^ W ^ ^ W y = i , _ c ; 

N^'-^iN^"^ i=l,...,R; 

A,(«,^W 

m 

(8) 

(9) 
EfA '̂̂ -EA^ 
jeT \ its 

^Ef^^'^-E^] 
ieS \ j(T ) 

E K ^ - E A ^ 
ieS \ jfT ) 

^Ef<^-E<^] 
jtT \ its ) 

^Efiv.̂ '̂ -E^VE^ 
ies \ jeT ) ; = 1 

EAf>^EfA?^-EA^rl 
(=1 jtT \ as ) 

ies \ jeT ) 

foranySQ{I,2, ...,i?}, Ts {1,2,..., C). 
The number of inequalities to be checked can be 

reduced. For example, instead of checking 

Ef^^-EAf] .EfA^^'^-E^l 
jeT \ its j ieS \ jiT J 

for any S c {1,2,...,/?}, and TQ {1,2,..., C), it can be 
readily shown that an equivalent procedure would be to 
check that 

j:N^.tmin((Nr-EN!r]'i:^ir] 
jeT / = 1 U jtT ) jeT ) 

for any Tc {1,2,..., C). 

4. MITIGATED CALIBRATION 

There may be dissatisfaction with the two-step approach 
of calibration, where an attempt is first made to find weight 
vectors that best satisfy the calibration equation, and then 
from this set of vectors to find the one which comes closest 
to Horvitz-Thompson weights. For small samples, this 
method may lead to weights which the statistician will find 
too far from Horvitz-Thompson weights. 

There may be a preference for varying the importance 
attributed to the calibration equation relative to the norm of 
w^ -Af^. Thus, there may be a desire to find a weight 
vector w, which minimizes 

^s-^s^^s 
,X'w -X'c 
\ s s 

\ 

where 

V = 
U-s 0 

l o aT] 

and a ^ 0. We then minimize 

\\w. ^ / J I ^ . + « I I ^ X - ^ ' ^ l i r 

D(w,)^a\\X'w-X'c T -

A similar minimization problem is encountered with ridge 
regression. For a = 0 the solution is provided by Horvitz-
Thompson weights w^ = ^ / j - For a>0, we seek M'̂ (a) 
minimizing \\K{w^ - A^c^) - b\\y, where K = 
(/„,X,)',6 = (0,,„,(X'c-A-;/l/,) ') ' and 0,,„6E" is a 
row vector of zeros. Ben-Israel and Greville (1980) yields 

w(a)-Ac={K'VK)-'K'Vb. (10) 

Thus by substituting the values of A", V, and b we obtain 

+ aX^rx; )-'X^T{X'c - X'Af^). (11) 

It is easily shown that 

a{U^^aXJX:)''XJ 

= u;'x^{a-'T-'^x;u;'xx\ 

hence 
)v^(a)=^,c, + f/;'x^(a->7-> 

^X;U;'X^)-HX'C-X:A^C^). {U) 
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The estimator Y^w^{a) thus becomes F'c + 

(K - J^.)'^.c.-where Y = A'p^(a) and 

p/a) = {x;u;%^a-'T-')-'x;u;'Y,. 
The vector of regression coefficients, then, is the one ob­
tained with ridge regression. Just as the calibration method, 
and the generalized regression method described by 
Samdal, Swensson and Wretman (1992), lead to the same 
estimators, a similar parallel can be drawn between miti­
gated calibration and ridge regression. 

On tiie basis of equation (12), we can also use Ben-Israel 
and Greville (1980), and the fact that F^ =F'{FF'y with 
F = P'^X: U:^'^, to show that 

Um H'̂ (a) = w^ 
cal' 

This result was to be expected, since finding the vector 
M'̂ (a) which minimizes £>̂ (M'̂ ) + a||X^'M'^-A''c||j. when 
a - oo is equivalent to finding the weight vector which 
minimizes E>^{w^) among those which minimize 
\\Xy^-X'cll. 

Rao and Singh (1997) defined tolerances for each of the 
p constraints of the calibration equation, and they estab­
lished a relationship between these tolerances and the 
matrix aT. 

For a e [0, oo[ the function M'̂ (a) is represented by a 
curve in E" which links point A^c^ to point w^^. If p = l, 
i.e. if A" is a vector, this curve is a line segment. In fact, in 
this case the matrix (a"' J" ' + A"/1/^' A"^)"' and the vector 
X'c - X^Af^ are scalars, and the weights M'̂ (a) given by 
(12) are therefore equal to Horvitz-Thompson weights plus 
a multiple of vector Uj X^. And again forp = I, we have 

lim »v^(a) = H'^„=>lA 

. [{X'c -x'Ac)i{x'u;'x)]u;% 

which leads to the estimator 

- UY'U-%)/{X:U-'X)]{X'c -X'Ac) 

Taking U = A 'diag(A'), we obtain the ratio estimator 

s s s 

[(y:^sK.i)nx:Ax.,)]{x'c-x;A^c^), 
where 1̂ ^̂  6 ""^ is a matrix of ones. 

Ben-Israel and Greville (1980, 111, exercise 15) showed 
that ^^(^^(a)) is an increasing monotonic function of a. 
Note however that for a unit ke s, \ ̂ '̂ (̂a) -a^C/^l is not 

weight vector w^{a) moves away from the Horvitz-
Thompson weight vector, but this does not necessarily 
apply to each coordinate of the vector. 

In this article, mitigated calibration is used to restrict 
weights, i.e. when the size of the sample is relatively small. 
It can easily be shown, however, that for an asymptotic 
setup satisfying (2) and for which p^(a) - P(a) - 0 in 
probability, with 

P(a) = {X'U-^X + a-^T-^)-^X'U-^Y, 

we have Y^ *v^{a) is an asymptotically unbiased estimator 
whose asymptotic variance is 

( F - y ) ' d i a g ( c ) ( / i n ^ - l ^ ^ ) d i a g ( c ) ( y - I " ) , 

where Y' = AT P( a ) ,n is the matiix of inclusion probabili­
ties of order 2, and diag(c) is the diagonal matrix formed 
from vector c. 

5. ESTIMATION METHODS WITH 
RESTRICTED WEIGHTS 

In order to avoid obtaining weights having extreme 
values, we may wish to force the weight vector to be within 
a given region. This restricted region will be assumed to be 
convex and closed, and A^c^ will be assumed to be a point 
in this region. For example, if MX̂> <-^S^S < ^"^' we may 
wish to restrict the weights to region R^ = {w^:w^^^i 
w <. vJ-"^}. We will assume that 

lim ŵ ^̂  - 4 ^ < 0 and lim w'^"^ -Ac > 0 

The approach described in section 3 consists in selecting a 
distance measure between calibrated weights and Horvitz-
Thompson weights which will provide weights that satisfy 
the calibration equation and which lie in the restricted 
region, should such weights in fact exist. The approach 
dealt with in this section is to temperate the requirement 
that the calibration equation be satisfied when the vector of 
calibration weights w^^ is outside the restricted region. 
Various means to temperate this requirement lead to 
different weighting methods. 

When w^^ lies outside tiie restricted region, we could for 
example look for those points on the curve M'̂ (a) para-
metered by a ^ 0 which are on the border of this region. 
One property of these points is that they solve the minimiza­
tion problem described in section 4 for corresponding 
values of a, thus through matrix T, the importance of each 
calibration equation can be weighted. Using the example of 
the restricted region provided above, if 

»̂ cai = 1™ »^.(a) 
a - •» 

lies within this region, then w^^^, = w^^^ can be used as a 
necessarily a monotonic function of a. As a increases, the restricted weight vector, otherwise w^^^^=w^{a) with 
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a < oo can be chosen such that M'̂ (a) is on the boundary of 
the restricted region. If the asymptotic setup is such that 
conditions (2) are met with y < 3/2 then for n sufficiently 
large, the probability that w^^^ will be within the restricted 
region is equal to one. In fact, we have w^^^ '^^s^s 
converging in probability to 0. The asymptotic properties 
of the estimator using the restricted weights, w^^^^, are 
therefore identical to those of the calibration estimator. It is 
worth noting that since Iw^ -̂a^c l̂ is not necessarily a 
monotonic function of a, it is possible for M'̂ (a) to be on 
the boundary of the restricted region for several values of 
a, even if the restricted region is convex. Finding all these 
values is not necessarily a simple matter, and a decision has 
to be taken as to which value to use. 

Another option for restiicting weights would be to use as 
a restricted region those weights w^ which satisfy 
D^{w^) ^ / for a bound / > 0. Then ŵ ^̂ j = '*'cai '̂  l^^^^ as 
a restricted weight vector if w^^^ lies in the restricted region, 
otherwise we seek a > 0 such that ^^(^^(a)) =/. This 
value of a is unique and can be found through iteration. 
Next we calculate the weights w^^^^ = WjC**) which cortes­
pond to this value of a using equation (12). If the 
asymptotic setup is such that conditions (2) are met with 
y < I, and if / does not vary with n, then for n sufficiently 
large, the probability that ŵ .̂ , will be within the restricted 
region is equal to one. In fact, we have ^^("'̂ 31) conver­
ging in probability to 0. The asymptotic properties of the 
estimator using restricted weights, w^^^ .^, are then identical 
to those of the calibration estimator. Unfortunately, when 
estimating a total, we must expect to have y = 1. In order to 
overcome this snag, we can use l\[n as,a bound, instead of 
/. We can justify this bound on the basis that the length of 
the main diagonal of a hypercube of E " is equal to the 
diameter of the sphere which circumscribes this hypercube, 
whereas the diameter of the sphere inscribed in this same 
hypercube is smaller by a factor of \Jn. The fact remains 
that a statistician might be uncomfortable using an asympto­
tic setup where the bound increases with the size of the 
sample. Furthermore, with this approach, the weights of the 
observations cannot be limited individually. Only the dis­
tance between the restricted weight vector and the Horvitz-
Thompson weight vector is controlled. 

With the methods described above, we look for those 
points on curve H'̂ (a) which lie on the boundary of the 
restricted region. The value of a for which M'̂ (a) lies on 
the boundary of the restricted region must often be found 
iteratively. It would be simpler to replace the curve M'̂ (a) 
by the line segment linking Af^ to ŵ .̂ ,. For the restricted 
region R^, the restricted weight vector would be 
'̂ ress'̂ '̂cai '^ '*'cai ^̂  '" ^̂ c restricted region, otherwise 
**'res 3 would be cqual to tiie point at which the tine segment 
crosses the boundary of restricted region, i.e. 

"'res3=^A^^(»* 'ca l -^A) ' 

where 

^ = min {max[(M'(̂ > -^A)/(»^cai ~^^^.) ' 
k 

{»''"'-Af^)l{w^^^-AfX}, 

vector division being elementwise, the maximum of the two 
vectors being elementwise, and min providing the mini­
mum element. We could also consider the weight vector of 
the restricted region, w^^^ ̂ , which comes closest to w^^y 
Again for restricted region R^, we would have 

M'̂ 5̂ 4=min [max {w^^,'i\f^^),w'^"^\. 

The asymptotic properties of estimators using restricted 
weights w ĝjj or w^^^^ are identical to those of the calibra­
tion estimator, as long as w^^^ - Af^ converges in probabi­
lity to 0, which is usually the case. 

One interesting property of all the approaches discussed 
in this section is that, no matter what the restricted region, 
the existence of restiicted weights is guaranteed. This is not 
always the case when using an approach based on distance 
measures. A simple example will now be introduced to 
allow comparisons between a few approaches. 

We wish to estimate a total on the basis of a simple 
random sample of size 2 in a population of size 20. In other 
words, c = Ijo^, and a = 10 (l2o^j). We use the auxiliary 
information vector A' = (1,2, 3,..., 20)', assume that the 
selected sample is 5 = {2,12} and choose Uasa diagonal 
matrix with M̂ ^ = X^ = k. A rectangular restricted region 
is provided using points ^^^^ = (0,0)' and M'̂ "̂  = (20 , 13)'. 
In other words, the weight of the first sample unit must be 
greater than O and less than 20, whereas the weight of the 
second sample unit must be greater than 0 and less than 13. 

Under these conditions, the calibrated weights 
**'cai = (15,5)' lie outside the restricted region. Since p = I, 
weights M'̂ (a) lie on the line segment which links 
Af^ = (10, 10)' to w^̂ ,. We therefore have w^^^, = w^^^^, 
which means that the two methods give the same result. In 
this case, we have w^^^, = ŵ ess " (1^' ^^)'- ^ ^ method 
which consists in choosing that point in the restricted region 
which lies closest to the calibrated weights yields 
M'_.̂54 = (15,13)'. On the otiier hand, if we look for w^^^^, the 
restricted weights obtained while requiring that the calibra­
tion equation be satisfied and while using a distance mea­
surement which assumes an infinite value outside the 
restricted region, then there is no solution. In fact, for any 
weight in the restricted region X/M'^^196, whereas 
A"c = 210. If we had, say, w^"'> = (30,13)', then using 
D^{w^) as a distance measurement within the restricted 
region we would have w^^^^ = (27, 13)'. These weights are 
fairly distant from ŵ ,̂ = (15, 15)' and from 
A^c^ = (10, 10)'. Such is the price to be paid for insisting on 
having weights which meet the calibration equation. 
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6. ESTIMATORS FOR DOMAINS WITH 
A SYNTHETIC COMPONENT 

Restricted weights are used because of the properties of 
the calibration estimator for small sample sizes. For large 
sample sizes, we normally have ŵ ,̂ - A^c^ converging in 
probability to 0, i.e. weights that are not problematic. A 
statistician faced with a problem of extreme weights must 
therefore in all likelihood also face another problem of 
small sample sizes, i.e. estimation for small domains. This 
section introduces an estimator whose asymptotic properties 
are those of the calibration estimator, but which uses 
restricted weights and takes advantage of a synthetic 
estimator. 

Let y = A'P^ denote a synthetic estimate for Y, we have 

Y'w^ = (X^k)'^^ 

In section 2, it was shown that under certain conditions 
for the asymptotic setup, w . -Af^ = 0 {n '^'^N''). We 

P'X'c 

= (^ , ) 'c 

= Y'c (13) 

with equality at the third step if the weights satisfy the 
calibration equation A'̂ 'ŵ  = A"c. The weights ŵ ,̂ given 
by (1) minimize IIA'̂ 'H' " ' "" " ' " """ '*" ' 
estimate Y'c using 

Af'cll^. We can therefore 

* = (n-n)'M'„,-rc. (14) 

There will be equality between this estimator and 
estimator Y^ w^^^ once the sample is sufficiently large for 
the calibration equation to be satisfied and for w^^^ to lie in 
the restricted region, i.e. once w^^^ = ŵ ,̂. The asymptotic 
properties of these two estimators are therefore identical 
under certain conditions discussed in the previous section. 
The advantage of using estimator f is that jt provides a 
synthetic estimate when columns of Y^ and Y^ are zero. 

7. OUTLIERS 

Outliers could be dealt with in much the same way as 
exti-eme weights. The strategy is the following: we adopt a 
restricted region for Y^w^^^, we show that when n is 
sufficiently large Y^ w^^,^ lies within the restricted region, 
and we adopt a more "reasonable" estimator to replace 

ĵ'**'cai '" those cases where Y^w^^^ lies outside the 
restricted region. For a stratified sample, we would 
normally have one restricted region per stratum. 

thus have y > , „ - y ; / l / , = Op{n-'^W), 
assume that 

Y^Af^-Y'c = 0p{n-'^W), 

and if we 

(15) 

tiien F/ ŵ ,̂ - Y'c = Op{n '^'^W). An expert (or a group of 
experts) could determine on the basis of information 
gathered independently of survey data that it would not be 
reasonable to have Y^ w^^^ outside a certain region. If Y'c 
lies within the restricted region {i.e. if the expert does not 
find it unreasonable to have an estimate of the parameter 
which would be equal to the trae value, Y'c, of the 
parameter), if y = 0, and if the restricted region does not 
vary with « or A'̂  (or if y = I, and the restiicted region varies 
in proportion to AO, then for sufficientiy large «, the proba­
bility that F̂ 'w âi will lie within the restricted region is 
equal to one. In those cases where Y^ M'̂ ,̂ lies outside the 
restricted region, we could use as an estimate the point in 
the restricted region that lies closest to F/ ŵ .̂ , or we could 
assume that the weight of the few observations that are 
deemed outiiers is equal to one, and distribute their original 
weights (less the number of outliers) among the observa­
tions that are not outiiers. The asymptotic properties of this 
modified estimator used to deal with outiiers are then 
identical to those of the unmodified estimator. 

In the case of a non-stratified sample, this method is 
relatively easy to apply. If however the sample is stratified, 
and if constraints are imposed on estimates for each 
sti-atum, then we have two additional problems. First, if the 
asymptotic setup is such that the number of strata increases 
in proportion to the size of the sample, then the assumption 
given in (15) does not hold, since the mean sample size per 
stratum remains constant as n - oo. We need to determine 
whether it is reasonable to adopt an asymptotic setup in 
which the number of strata is constant (or increases less 
rapidly than n). Such an asymptotic setup is less plausible 
if the number of observations per stratum is small. The 
second problem is linked to the difficulty for the expert to 
impose constraints on estimates for each of the strata. The 
greater the number of strata, the greater the risk that Y'c 
will not lie in the restiicted region defined by the expert. In 
fact, in the case of a stratified sample, it is preferable for the 
expert to use information that is independent of the survey 
data, in order to ensure strata homogeneity, prior to fina­
lizing stratification. In other words, it is preferable to use 
the information available before the survey, in order to 
prevent outliers, rather than to cortect them. If the informa­
tion has been used in such a way that, before the survey, 
there is no reason to believe that there is any unrepresen­
tative observation in any stratum, then there is no justifi­
cation for assuming the opposite once the data have been 
collected. 
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8. CONCLUSION 

If for large sample sizes the calibrated weights remain 
within a restricted region, then the asymptotic properties of 
the estimator with restiicted weights are obviously identical 
to those of the calibration estimator. For a given asymptotic 
setup, we can usually expect to have Wj.̂ , - /4̂ ĉ  converging 
in probability to 0, i.e. for sufficientiy large sample sizes the 
calibrated weights w^^ will remain within the restricted 
region R^ if Af^ lies within R^. However, we have seen 
that for the estimate of a total, we do not necessarily have 
convergence to 0 for D^{w^^). We must therefore avoid 
having a restricted region defined by || w^ - ^ / j \v ^ ' at 
least if we are estimating a total and not a mean. 

We have provided necessary and sufficient conditions 
for the existence of weights restricted to intervals which 
satisfy the calibration equation. If such weights do not exist, 
the idea of satisfying the calibration equation exactiy must 
be abandoned. The problem of calibration with restricted 
weights can be reformulated in such a way that a solution 
will always be possible. Some of the approaches described 
in this paper make it possible to obtain a solution without 
recourse to iterative methods. These are simple methods 
that are easy to interpret. The asymptotic properties of these 
estimators are usually identical to those of the calibration 
estimator without weight restrictions. 

The problem of extreme weights is encountered for small 
sample sizes, thus the problem of estimating for small 
domains should be considered simultaneously. It is possible 
to take advantage of synthetic estimators while using an 
estimator with restiicted weights having good asymptotic 
properties. 

It is also possible to modify the calibration estimator, or 
any other asymptotically consistent estimator, so as to deal 
with outliers. The conditions under which this modified 
estimator will have asymptotic properties identical to those 
of the unmodified estimator are not easily verified, just as 
it is difficult to verify whether an outlier is in fact unrepre­
sentative. However, such conditions make it possible to 
identify those factors which allow an estimator that is 
cortected for outiiers to be statistically valid. 
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APPENDIX A 

We wish to verify that Q((p) =/'(F((p). -/t'(K(p)^ has 
a value of zero or less. First, it is easily shown that this is 
tme for a vector (p, if and only if it is tme for a vector /tip 
with arbitrary k>Q. Only the direction of (p matters. It is 
therefore sufficient to verify the condition for (p of norm 

equal to one. For this proof, we will use the 1,-norm of (p, 
llcpli/ = Ef=i 1̂ ,1 • Vectors (p with ||(p||, = 1 are located 
in hyperplanes whose intersections lie on points orthogonal 
to the unit vectors, i.e. points at least one of whose 
coordinates is zero. Function Q varies linearly except at 
points (p orthogonal to one or more rows of V. Even when 
the domain of ^ is restiicted to vectors <p with ||(p||, = 1 
that are orthogonal to 0 <.j<{p-l) linearly independent 
rows of V, function Q still varies linearly except at points 
orthogonal to other rows of V or orthogonal to unit vectors 
(which are likewise rows of V). The maximum of Q for 
||(p||, = 1 is therefore reached at a point (p orthogonal to 
{p-l) linearly independent rows of V. It is therefore 
sufficient to verify the condition for two vectors of opposite 
direction which are orthogonal to {p-l) linearly 
independent rows of V, and this for each subset of {p - I) 
linearly independent rows of V. 

APPENDIX B 

Let vec{F) denote the vector obtained by piling 
successive columns of matrix FeE""* with the first 
column on top, and let the Kronecker product of two 
matrices F and G be defined as 

F®G 

fiiG • fx„G 

(Bl) 
/ ,G - f G 

\-'ml Jmn J 

The result is derived from the corollary in section 3 with 

M = 

^RC 

^ « ® l l x C 

llx/?®'^C 

V ^IxRC ) 

vec((iVj,̂ '̂ 

N,''' 

N'c'' 

N!'' 

)') 

> 

/ 

, h = 

\ 

w = vec((^^.)'). 

(HK yec{{N'"')') 

N, 

N, 

(H) 

(.H) 

N.l 
(H) 
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N 

c 
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Only a finite set of conditions need be verified, first by 
noting that the columns of 

V = 

-h ' C x l "•Rxl 1 /?Cxl 

' ^xC 

"Cxfi 

%.l 

0, 

0 
Ixfi 

0 IxC 

Cxi 

I 

(B3) 

form a basis for N{M'). In other words, M'V = 0, the 
columns of V are linearly independent, and N{M') is of 
dimension /?+C-f-l. Note also that the last R-i-C-i-l rows of V 
are the unit vectors. Finally, we verify the conditions of the 
corollary for all vectors X = V<f and X = - F(p, where (p is 
orthogonal to /?+C linearly independent rows of V. This 
last step is described in greater detail in the following 
paragraph. 

An arbiti-ary subset of i?+C linearly independent rows of 
V which includes the last row of V is denoted L, and the 
subset of all rows of V which are linear combinations of 
rows of Z, is denoted Z,*. If I* includes row RC-^-i (/ = I,..., 
R) if and only if /ff 5 c {1,2,...,/?}, and includes row 
RC-i-R-i-j (/= 1,..., Q if and only if; ff Tc {1,2 C), tiien 
we set (p = (cp^',-(py.',0)', where the /-th element of 
(p̂  6 E " is equal to 1 if / e 5 and to 0 otherwise, and the 

y-th element of (pj. e E'- is equal to I if y e T and to 0 
otherwise. Then 

F(p = ( ( - ( p 5 ® l c ^ , + l ^ ^ , ® ( P j . ) ' , ( p ; , - ( p / , 0 ) ' , 

therefore <p is orthogonal to all rows of i*, and all the more 
so (p is orthogonal to all rows of L. Likewise, vector 
<p * = (<p '̂, (p '̂, -1) ' is orthogonal to all rows of a subset of 
/?+C linearly independent rows of V which includes row 
RC+i (/ = 1,..., R) if and only if i f S, and includes row 
RC-¥R-¥j (/• = 1, ..., Q if and only if; f T, but does not 
include tiie last row of V. The condition -l'X_^h'X^ with 
X. = K(p provides the fifth set of inequalities in (9). 
Likewise, by assuming X equal to - K9, Ktp * and - F(p * 
we obtain the last three sets of inequalities in (9). 
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A Cautionary Note on Adjusting Weights for Nonresponse 
WILLARD C. LOSINGER, LINDSEY P. GARBER, BRUCE A. WAGNER and GEORGE W. HILL' 

ABSTRACT 

For surveys which involve more than one stage of data collection, one method recommended for adjusting weights for 
nonresponse (after the first stage of data collection) entails utilizing auxiliary variables (from previous stages of data 
collection) which are identified as predictors of nonresponse. In the final stage of data collection for the United States 
National Animal Health Monitoring System's Beef'97 Study, two variables were identified that clearly separated eligible 
producers by their propensity to respond. However, these variables were noticeably inferior to simple region by herd-size 
categories as predictors of responses that eligible producers gave for other questions in previous data-collection stages. 
Therefore, we decided to form weight-adjustment classes by region and herd size, even though other variables were greater 
predictors of response. When selecting auxiliary variables to adjust weights for nonresponse, we recommend that survey 
statisticians also evaluate the extent to which these auxiliary variables are related to data which nonrespondents would have 
provided. Using auxiliary variables which exhibit the greatest variation in response propensity may result in the greatest 
variation in weight-adjustment factors, but may bias population estimates for parameters unrelated to the chosen auxiliary 
variables. 

KEY WORDS: Nonresponse bias; Response propensity; Logistic regression; National survey. 

I. INTRODUCTION 

In multistage surveys where some participants fail to 
respond during the final stage of data collection, one has 
considerable information about final-stage nonrespondents 
from previous stages of the survey. Rizzo, Kalton and Brick 
(1996) presented several methods for selecting auxiliary 
variables and adjusting weights for nonresponse when a 
large number of characteristics of the nonrespondents were 
known. These methods concentrated on identifying and 
using characteristics that discriminated between respon­
dents and eligible nonrespondents. However, by adjusting 
weights based on specific variables which demonstrate the 
greatest difference in response rates, one may potentially 
introduce bias in the survey estimates if these variables are 
unrelated to responses that would have been given by 
nonrespondents during the final stage of data collection. 
Therefore, one should also utilize data from the previous 
stages of data collection to determine whether the chosen 
auxiliary variables are linked to other characteristics of 
those eligible to participate in the survey. 

The Beef '97 Study (of the National Animal Health 
Monitoring System (NAHMS) of the United States 
Department of Agriculture (USDA)) took place in 23 states 
and involved three stages of data collection. In the first 
stage (December 30,1996 through February 3, 1997), enu­
merators from the USDA: National Agricultural Statistics 
Service collected data on general management practices 
from 2,713 agricultural operations with one or more beef 
cows. First-stage respondents who had five or more beef 
cows on January 1, 1997 were eligible to continue in the 

second stage of data collection (from March 3 through 
May 23,1997), provided they had at least one beef cow and 
remained in business at the time of the second stage of data 
collection. A total of 1,190 producers participated in the 
second stage of data collection, which involved an on-farm 
visit by a veterinary medical officer or animal health tech­
nician and concentrated on the health management of the 
beef cattle. 

All operations that participated in the second stage of 
data collection were eligible to participate in the third and 
final stage of data collection (August I, 1997 through 
January 31, 1998). A total of 952 (80.0%) ehgible opera­
tions responded in the final stage. From the first two stages 
of data collection, a considerable amount of information 
was available on the 238 nonrespondents for the final stage 
of data collection. The purpose of this note is to describe 
the methods that were evaluated for adjusting the sample 
weights for nonresponse in the final stage of data collection 
for the NAHMS Beef '97 Study. 

In addition to region and herd-size (based on the number 
of beef cows) categories, 45 variables based on data col­
lected during the first two stages of interviews were eva­
luated for their impact on final-stage response rates. A 
stepwise variable selection procedure, with region and herd 
size forced into a logistic regression model and a signifi­
cance level of 0.05 for other variables to enter and remain 
in the model, was used (Table I). The logistic regression 
analysis demonstrated that there were some differences in 
final-stage response by region, but that differences in 
response by herd size were not significant. Increased 
nonresponse was associated with having only one breeding 

W.C. Ijosinger, L.P. Garber, B.A. Wagner and G.W. Hill, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary 
Services, Center for Epidemiology and Animal Health, 555 South Howes Street, Suite 200, Fort Collins, Colorado 80521 U.S.A. 
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season and not consulting a veterinarian to treat or diagnose 
disease during 1996. The potential use of the logistic-
regression variables as auxiliary variables in creating cells 
to adjust weights for final-stage nonresponse was examined. 
Four categorization schemes for nonresponse weight 
adjustment were proposed: 

1. The traditional region by herd size scheme with 15 
cells. 

2. Region by herd size except in the West, which was 
subdivided by the number of breeding seasons, for a 
grand total of 14 cells. 

3. Subdividing the cells of option 2 (by either of the 
auxiliary variables) if the difference in response rate 
(between the two new subdivisions) was at least ten 
percent and at least 20 respondents remained in each 
cell. Two subdivisions occurred, which yielded a total 
of 16 cells. 

4. Continuing the subdivision of categories, based on tiie 
greatest difference in response rate, until a minimum 
number of respondents (no fewer than 20) remained in 
each cell. This yielded a total of 24 cells. 

Table 1 
Results of Stepwise Logistic Regression to Identify Variables 

Associated With Nonresponse to the Final Stage of Data 
Collection for the National Animal Health Monitoring System's 
Beef '97 Study. Based on 1,190 Eligible Operations and 238 

Nonrespondents 

Variable/ 
Response 
Intercept 

Region 
Northcentral 
Southcentral 
Central 
Southest 
West 

Number of beef cows 
1-49 
50-99 
100 + 

Number of breeding Seasons 
1 
>1 or no set season 

A veterinarian was consulted to 
treat or diagnose disease in 1996 
Yes 
No 

Parameter 
Estimate 

0.369 

0.851 
0.822 
2.062 
1.164 
1.000 

0.299 
0.146 
1.000 

-.370 
1.000 

0.441 
1.000 

P 

0.181 

0.000 
0.000 
0.000 
0.000 

0.106 
0.151 

0.039 

0.005 

Adjustment factors for weights of final-stage respon­
dents were computed by dividing the sum of second-stage 
weights for eligible operations by the sum of second-stage 
weights for final-stage respondents within each cell. 

Since the establishment of cells for schemes 2 through 4 
was based on variables which demonstrated the greatest 
differences in response rates, differences in adjustment 
factors increased for particular subcategories from scheme 
I to scheme 4. For example, for the first scheme, adjustment 
factors for the Western region were 1.897, 1.504 and 1.579 
for the small, medium and large herd size categories 
respectively. For the second scheme, adjustment factors in 
the Western region were 1.334 for operations that did not 
have one defined breeding season, and 1.875 for operations 
that did have one defined breeding season. For the third 
scheme, operations in the West that had one defined 
breeding season were split into two cells based on whether 
they had used a veterinarian to diagnose or treat disease 
during 1996: operations that had indicated "yes" received 
a weight adjustment of 1.548, while operations that had 
indicated "no" received a weight adjustment of 2.326. 

To investigate how well the proposed auxiliary variables 
might have related to overall management strategies, we 
selected additional variables from the first two stages of 
data collection, and, within each region, examined differ­
ences in these variables by herd size category, number of 
breeding seasons, and whether a veterinarian had been 
consulted to diagnose or treat disease during 1996. Table 2 
presents some representative results for the Western region. 
Some herd-size differences existed in the percent of opera­
tions that had one set breeding season and the percent of 
operations that had consulted a veterinarian during 1996. 
However, the percent of operations that had consulted a 
veterinarian was practically identical for operations that had 
one set breeding season versus operations that did not have 
one set breeding season, and vice versa. In addition, the 
percent of operations that vaccinated heifers for bmcellosis 
and the percent of operations that implanted calves with a 
growth promotant exhibited a wider range by herd size 
category than by the other two proposed auxiliary variables. 
Moreover, mean weaning age and mean calf death loss 
varied more by herd size than by either number of breeding 
seasons or by whether a veterinarian was consulted. Similar 
patterns were noticed for other regions. 

Although herd size was not a statistically significant 
predictor of participation in the final stage of data collection 
for the NAHMS Beef '97 Study (table 1), herd size was 
found to be more highly related to a number of question­
naire variables than either of the additional proposed auxi­
liary variables which derived from the logistic regression 
analysis. Therefore, we utilized the tradional region by herd 
size category scheme to perform the nonresponse weight 
adjustment for the final stage of data collection for the 
NAHMS Beef'97 Study. 
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Table 2 
For 261 Western-Region Operations Eligible to Participate in the 

Third and Final Phase of Data Collection for the United States 
National Animal Monitoring System's 1997 Beef '97 Study 
(August 1 through January 31, 1998), Responses to Selected 

Variables From the First two Phases of Data Collection by 
Auxiliary Variables Examined for Weight Adjustment for the 

Final Stage of Data Collection 

Variables selected from the first two 
stages of data collection 

Auxiliary variables 
proposed for weight 
adjustment for third-stage 
nonresponse 

Number of beef cows 
1 -49 
50-99 
100+ 

Number of breeding 
seasons 

1 
>1 orno set season 

A veterinarian was 
consulted to treat or 
diagnose disease in 1996 

Yes 
No 

1 

69.2 
69.2 
88.2 

-
-

79.2 
80.0 

2 3 

Percent 

50.8 
59.6 
70.1 

62.3 
63.5 

-

63.1 
80.8 
85.4 

69.8 
81.3 

69.8 
84.2 

4 

15.4 
26.9 
52.8 

17.0 
43.8 

28.1 
44.2 

5 6 

Mean 

215 
232 
223 

223 
223 

222 
223 

6.3 
3.9 
4.1 

5.1 
4.5 

4.5 
4.6 

Variables selected from the first two phases of data collection: 

1 = Operations with one set breeding season 

2 = Operations that consulted a veterinarian to treat or diagnose 

disease in 1996 

3 = Operations that vaccinate any heifers for brucellosis 

4 = Operations that implanted any calves with a growth promotant 

prior to or at weaning during 1996 

5 = Average age (in days) of calves at weaning 

6 = Percent of calves that died in 1996 

predictors of nonresponse in the final stage of data collec­
tion. However, these variables were generally inferior to 
herd size in differentiating how producers responded to a 
number of key questions related to operation management. 
Using these two variables to establish categories for weight 
adjustment for nonresponse could have reduced bias in 
estimates of parameters (from the third stage of data 
collection) with which they were cortelated. However, 
estimates of parameters not cortelated with these variables 
could have been distorted. Therefore, we chose the tradi­
tional approach of performing the nonresponse weight 
adjustment by region and herd size categories. 

Identifying variables that are good predictors of panel 
nonresponse is a good practice in any multistage survey. 
Prior to using these variables to adjust weights for unit 
nonresponse, we recommend that survey statisticians first 
follow some procedures to determine the extent to which 
these variables are linked to other characteristics of those 
eligible to complete the survey. Adjusting the weights based 
solely on variables that prove to be good predictors of panel 
nonresponse could potentially result in warped population 
estimates if these variables are not also good predictors of 
data that nonrespondents would have provided on the 
survey instrument. 
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Researchers using survey data depend on sample weights 
to produce population parameter estimates that are approxi­
mately unbiased. In the final stage of data collection for the 
NAHMS Beef '97 Study, a logistic regression analysis 
identified two variables that were superior to herd size as 
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Local Unconditional Best Linear Unbiased Estimators: 
Applications to Survey Sampling 

JULIET POPPER SHAFFER' 

ABSTRACT 

Survey statisticians frequentiy use superpopulation linear regression models. The Gauss-Markov theorem, assuming fixed 
regressors or conditioning on observed values of regressors, asserts that the standard estimators of regression coefficients 
are best linear unbiased. Shaffer (1991) showed that the Gauss-Markov theorem doesn't apply when the regressors are 
random if some aspects of the population distribution of the regressors are known, and introduced an alternative estimator 
with better properties than the standard estimator under some conditions. This paper derives some generalizations, and 
notes an optimality property (locally best linear unbiasedness) of the generalized alternative estimator. Implications for 
estimation in surveys are noted. 

KEY WORDS: Regression analysis; Gauss-Markov theorem; Survey sampling; Unbiased estimation; Optimality; Best 
linear unbiased estimation. 

1. INTRODUCTION 

In the standard linear regression model for a sample of 
observations. 

y=xp + e, (1) 

the matrix of regressors, X, is assumed to be a known, 
fixed matrix. Shaffer (1991) showed that when X is 
assumed to be random, tiie Gauss-Markov theorem does not 
hold in general, and described an alternative estimator that 
is more accurate when p is close to zero. Shaffer gave two 
applications of her results, to estimates of p and associated 
population quantities in multivariate normal superpopula­
tion models and to ratio estimation of population means and 
totals. 

In the present paper, three generalizations of these results 
are derived. 

(a) The results are generalized from a model in which the 
sample covariance matrix of the ertors e is a^I, 
where / is the nxn identity matrix, to the case in 
which the covariance matrix ^ of e is a^B, where B 
is a known, fixed positive-definite matrix, and to some 
situations in which B is random (since it is the cova­
riance matrix of a randomly-selected sample of 
regressor values). 

(b) A generalized estimator is derived that performs well 
when tiie coefficient vector p is close to any pre-speci-
fied coefficient vector Pg. 

(c) A condition is given for design-unbiasedness of esti­
mators of population means and totals based on the 
generalized estimator of p. 

Some results under the general model (1) will be given 
first. Then, modifications that apply to the sample survey 
situation will be discussed. 

Under Model (1) with ^ =a^I, the Gauss-Markov 
theorem asserts that the sample estimator 

P = {X'Xy^X'Y, (2) 

is a best linear unbiased estimator (BLUE) if AT is regarded 
as a fixed matiix. If the rows of X are ti-eated as realizations 
of random vectors x.,i = l,...,n, the Gauss-Markov 
theorem can be interpreted as an assertion that the estimator 
in (2) has minimum variance in the class of estimators 
linear in F and conditionally unbiased, given these realized 
values of X However, the use of the term "unbiased" with­
out qualification generally means unconditional unbiased­
ness. If the requirement of unbiasedness is interpreted to 
mean unbiased unconditionally, i.e., on the average over 
random vectors with values in X, Shaffer (1991) showed 
that the Gauss-Markov theorem doesn't apply when 
E(Ar'X) is known. In that case, the conditionally biased 
estimator 

^' =[E{X'X)Y{X'Y) (3) 

is unconditionally unbiased and has smaller variance than p 
when p is small. In fact, when 'E{X'X) is known, no 
BLUE exists. 

Comparison of the variances of (2) and (3) under various 
modeling assumptions, aside from the implications for esti­
mating the coefficients themselves, gives insight into the 
conditions under which various estimators of other para­
meters of the populations have desirable properties, both 
model-based and design-based. 
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2. GENERALIZATION OF THE COVARIANCE 
MATRIX OF 6 

If the covariance matiix of 6 is of the form a^B, where 
5 is a known, fixed positive-definite matrix, the Gauss-
Markov theorem applies to the generalized estimator 

P = [X'B-^X]'^X'B-^ Y. 

The proofs in Shaffer (1991) generalize directiy to show 
that, if E{X'B '^X) is known, the estimator 

^'=[E{X'B-^X)\'^X'B-^Y (5) 

has smaller variance than (4) when p is sufficiently close to 
zero. The (unconditional) variances of (4) and (5) are 

E B =E[{X'B-^X)-^]a' 

and 

E» . =[^(X'B-'X)]-'a' 

y.ai.{[E{X'B-^X)]'^ {X'B-^X)p}. 

(6) 

(7) 

When p = 0, Shaffer shows that (7) is smaller tiian (6), and 
therefore, assuming continuity of (7) as a function of p, it is 
smaller than (6) when p is in a neighborhood of zero. 

The results will now be applied in the sample survey 
context. Let X^ refer to the Nxp matiix, and y^ to the 
Nx 1 vector, in a finite population. If the N population 
elements are considered to be a sample from an infinite 
hypothetical population of potential elements satisfying (1), 
and if a sample of size n of the finite population is taken, 
tiie proofs in Shaffer (1991) generalize directiy to show tiiat 

and 

pAf- ^(X^B^Xj^) 

K=E{x;,B-„X) 

^N^N ^yv 

X'BJY. 

(8) 

(9) 

have variances smaller than those of their cortesponding 
conditional versions p̂ y and p^ respectively, if p is close to 
zero, where the expectation in (8) is over the infinite popu­
lation of hypothetical elements, and the expectation in (9) 
is over either the same infinite population or over the finite 
population of A'̂  elements satisfying (1). In order to apply 
these results, the expectations in (8) and (9) have to be 
known. 

If X^ is to be regarded as fixed, the population model 
can be written as 

Y^=X^fi-e^, (10) 

where e^ is a vector of randomly distributed ertor terms as 
in (1). Under Model (10), p^ and p]^ are identical, but p„ 
is still distinct from p*. Under Model (10), for a random 
sample of size «, if 

-1 
(KKx„)/n ={x;,B-^x^)/N 

y^) the alternative estimator can be written in the form 

P:= {nlN){X;,B-^X^) 'KK'^n-

(11) 

(12) 

In model (10), Equations (11) and (12) will apply if 5 ^ 
is diagonal and the sampling plan is self-weighting, and 
under some other conditions and sampling plans, e.g., if B^ 
is block (cluster) diagonal and complete clusters are 
sampled. If 5 ^ is diagonal, B^ is not necessarily fixed. For 
example, suppose a population consists of both men and 
women, and the variances of the two sexes on the charac­
teristic of interest are known and are different. In that case, 
if a self-weighting sample is taken, and Model (10) is 
assumed to hold in both subpopulations, B^ will be 
diagonal, with entries that are a function of the proportions 
of the two genders in the sample. 

3. LOCALLY BEST LINEAR UNBIASED 
ESTIMATION 

Under tiie model (1), the estimator (5) is the locally best 
linear unbiased estimator (LBLUE) when p = 0; i.e., the 
estimator, linear in Y and unbiased for p with smallest 
variance in a neighborhood of p = 0. Furthermore, the 
generalized linear estimator 

P(*Po) = Po + [^{X'B-'X)]-' [X'B-\Y-X^^)\ (13) 

allowing for the addition of a constant, is the LBLUE at 
P = PQ, for an arbitimy vector p^. The proof of these results 
in given in Appendix A. This generalized estimator (13) 
could be useful in a survey sampling situation in which it 
was reasonably sure that p would be close to some specified 
value. The variance of (13) is easily shown to equal (7) 
with (P - PQ) substituted for p. (See Appendix A.) Under 
Model (10) estimators (8), (9), and (12) generalize to 

KKS) = Po * [ E ( ^ ; ^ X ) ] ' ' [ ^ ; ^ y v ' (Ys-^N Po) , (14) 

P(Po.J = Po 4^^^" K'xJi\x-„B-„' (F„ -X„%)], (15) 

and 

P(P„.-) = Po ^[("/^)^N BsX)]\x'„ B„' {Y„ -XJ,) 

respectively. 

,(16) 
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4. CONDITIONS FOR DESIGN 
UNBIASEDNESS 

Assume the Model (10) holds, and that the uncondition­
ally unbiased estimator can be expressed in the form (16). 
Suppose there exists a px I -vector^ such that B^X^^^g = 
1^ and, for every sample of size «, B'„X^g = 1^, where 1^ 
and 1„ are vectors of ones of length A'̂  and n, respectively. 
Then, given a simple random sample, 

model-unbiased estimator of Y^^ (unbiased conditionally on 
the obtained sample) is 

N Ei',-E^;p„ (20) 

(a) the estimator 

^(Po.»)"^^P(Po.») (17) 

is a design-unbiased estimator of y^, where Xi^ = 
(lW)i;jV^,and 

In some important cases, the first term in (20) is equal to the 
first term in (19), in which case (20) and (19) are identical. 
This will be tme, for example, if .8 = a^I and the model 
(10) contains an intercept, or if /? = 1 and B is diagonal 
with diagonal entries proportional to the values of the single 
regressor. In such cases, (20) and (19) are identical, and 
the design-unbiased and unconditionally-model-unbiased 
estimator (17) has a smaller expected squared discrepancy 
from ?^ than the best linear conditionally-model-unbiased 
estimator (20) when p is close to PQ. Furthermore, if the 
sampling fraction is negligible, (17) has smaller expected 

(b) y,. is a generalized difference estimator of y^. squared discrepancy than (20) when p is close to p, 

The proof is given in Appendix B. 

Note that a vector g satisfying the conditions of this 
theorem exists if the model includes an intercept {i.e., X^j 
includes a column of ones) or if B^ is diagonal and the 
variance is proportional to the values of one of the regres­
sors. Many applications of regression modeling to sample 
survey estimation are based on models that incorporate 
these assumptions. Samdal, Swensson and Wretman (1991, 
p. 231 and 232) discuss these and more general models, and 
Chapter, 6, section 4 of that reference has examples of 
commonly applied models incorporating these assumptions. 
Chapter 6 as a whole discusses both the general difference 
estimator of NYj^, and the analogous general regression 
estimator based on p^. The material in that Chapter also 
suggests generalizations of these results to more complex 
estimators and sampling plans. 

5. DISCUSSION 

To apply the results to estimates of properties of a finite 
population, it will be assumed that the matrix B is diagonal 
or has the special block-diagonal form and associated 
sampling plan discussed above. From the results in section 
3, it follows that the estimator (17) of y^ has smaller 
variance than the estimator 

V)=^/vP« (18) 

when p is close to PQ . Note that (18) can be written 

y* = = — 
P„ N 

E^'p„-E^;p„ 
ies its 

(19) 

and X'. is the /-th row of X, and S is the set of elements in 
the sample. Royall (1970) showed that the best linear 

even 
without the requirement that the first terms of (20) and (19) 
be equal. 

If p is replaced by p* in (20), the resulting estimator is 
no longer unconditionally unbiased. It can be shown, how­
ever, using concepts of dependence (Lehmann, 1966) that 
under the conditions on B noted at the beginning of this 
section, the resulting estimator will have smaller expected 
squared discrepancy from P^ than (20) and (19) even with­
out tiie further restrictions noted in the previous paragraph. 

6. CONCLUSION 

Since the conditions under which the estimator (5) of p 
is more efficient than the estimator (4) are very restrictive, 
and the estimators of population characteristics based on (5) 
can be derived in other ways, the results given here may be 
of more theoretical than practical interest. The results do 
give additional insight into some situations in which simple 
estimators like the sample mean and the generalized differ­
ence estimator are more efficient in estimating the popula­
tion mean than are ratio estimators, poststratified estima­
tors, regression estimators and other complex estimators. 
The equations (6) and (7) for comparative variances of (4) 
and (5) provide an alternative method of comparing respec­
tive variances under different regression models and differ­
ent values of p. Many of these results hold under very 
simple sampling plans, but it should be possible to general­
ize them to more complex, unequal probability sampling 
plans. 
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APPENDIX A 

Proof that Pp is LBLUE at p^ 

Assume model (1), with Var( yiA') = o^5. (The general 
proof given here applies directly to the model (10) as well.) 
Consider the sample estimator 

hlp^ = fio^[E{X'B-'X)]''X'B-\Y-Xfl,). 

Let T = p - Po and Z = y - Xp^. Then E{Z\X) = Xx, 
Yar{Z\X)=a^B, and i' =[E{X'B-^X)]'^X'B'^Z = 

P('Po)"Po-
Thus, the properties of P(p s at p = p^ are the same as 

those of p* = P(0) at̂  p = 0, so without loss of generality it 
will be shown that p̂ gj is LBLUE at p = 0. Also without 
loss of generality, it will be assumed that B =1. 

Let C'{X)Y be an arbitrary unconditionally-unbiased 
estimator of p, where C{X) is a matiix of functions of X, of 
the same dimensions as X. The requirement of uncondi­
tional unbiasedness necessitates the restriction E[C'(Ar)X] = / 
(Shaffer 1991). Conditioning first on X and then using the 
expression for unconditional variance, the variance of 
C'{X)Y is E[C'{X)C{X)]a'^ + Var(C'(X)Xp). Since we 
are considering variance at p = 0, only the first term is 
nonzero. Letting C'{X) = [E(X'X)]" 'X ' , tiie variance of p* 
is [E(X'X)]" 'O2. 

Let p be an arbiO-ary unconditionally-unbiased estimator 
of the fonn C'{X)Y. Then Var(p) = Var(p*)+ 
Var(p - p*) + 2Cov(p*, p - P'), so Var(P*) ^ Var(p) if 
Cov(p*, P - P*) ^ 0, or if Cov(^', p) ^ Var(P*). An easy 
calculation, using tiie restiiction E[C'(X)X]^ = /, shows that 
Cov(p*, p) = Var(p*), which proves that p*p , is LBLUE 
at Po. 

APPENDIX B 

Proof of the Result in Section 4 

;̂ P(Po) =^^Po * (1/^) i;x;v[«(i/^)(^X^;v)"'l 
KK\Y„-x„p,) 

= X'^h^{\ln)g'X'^B-^X^{X'^B-^XX' 

KK\Yn-Xnh) 

=x;pQ.(i / / i ) i ; (y„-x„p„) 

= ̂ ;^Po"'^n-^«Po- (B.l) 

where JJ^ and B^ are the appropriate population and 
sample matrices, respectively. The final expression in (B. 1) 
is the generalized difference estimator based on a value PQ 
chosen independentiy of the sample. This proves part (b) of 
the result; since the difference estimator is unbiased for Y 
in a self-weighting sample, the result in (a) follows. 
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