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LESLIE KISH 
(1910-2000) 

This issue is dedicated to the memory of Leslie Kish. His 
infectious joie de vivre, his deep concern for the oppressed and 
the underprivileged, and his profound contributions to survey 
methodology and statistics have been, and continue to be, an 

inspiration to so many. 
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In This Issue 

This issue is dedicated to Leslie Kish, who passed away this fall at the age of 90. It is remarkable 
to note that to the end of his life Professor Kish continued to propose and develop new ideas in 
statistics and survey methodology, as evidenced by his article "Cumulating/Combining Population 
Surveys" which appeared one year ago in the 25"" anniversary issue of this journal. This issue of 
Survey Methodology opens with a reflection on his life and contributions to statistics written by Ivan 
Fellegi. 

The paper by Haines, Pollock and Pantula examines the estimates of a total when two incomplete 
list frames are combined with an area frame. The authors give suggestions on appropriate population 
totals to account for the incompleteness of the frames. In addition, their models allow for the fact 
that larger sampling units are more likely to be included on the incomplete list frames. 

Beaumont proposes an estimation method which reduces the bias induced by a response 
mechanism that depends on the variable of interest, known as a nonignorable response mechanism. 
The proposed method requires one model for the variable of interest and one model for the response 
probability. The method is considered robust with respect to the hypothesis of normality since it is 
constmcted in such a way that there is no need to specify the ertor distribution of model involving 
the variable of interest, unlike the method of maximum likelihood. The author also proposes a simple 
method of verifying the validity of the hypothesis of ertor normality whenever nonresponse is not 
ignorable. 

Spencer considers the problem of estimating the design effect due to weighting when the selection 
probabilities are cortelated with the variable of interest. Using a regression representation of the 
population, Spencer presents an approximation to the design effect when the selection probabilities 
are cortelated with the variable of interest. 

Biemer and Bushery use the Markov assumption on labour force transitions to identify classifi
cation ertors in labour force data. Using this methodology, they estimate response ertor rates in 
panels of monthly labour force data from the Curtent Population Survey (CPS). The general 
consistency of the results is taken as an indicator that Markov Latent Class Analysis is a useful 
method to assess the accuracy of responses in the CPS. Critical to this analysis is confirming the 
Markov assumption; the authors present some interesting empirical evidence for its validity over the 
short term in the CPS. 

Many statistical offices use modified half-sample-replication (MHS) for estimating the sampling 
variance of medians. This is an important practical problem because direct calculation of sample 
medians can be computationally intensive. An alternative estimation method is to group the 
continuous data into discrete intervals and use linear interpolation over the interval containing the 
median. In their paper Thompson and Sigman compare the effects of no grouping {i.e., the sample 
median), grouping with fixed-size intervals, and grouping with data-dependent-sized intervals on 
medians and associated MHS variance estimates. Their empirical study shows that the data-
dependent-sized intervals yielded variance estimates with the smallest bias, the best stability, and 
the best confidence intervals. 

McLaren and Steel consider the implications of different overiap patterns on the sampling 
variance of seasonally adjusted and trend estimates obtained from time series based on sample 
surveys by using the Census X-11 and X-11-ARIMA seasonal adjustment methods. They show that 
the "in for 8", "in for 6", "in for 4, out for 4, in for 4" rotation patterns are sensible if the one month 
change in seasonally adjusted estimates are the key statistics to be analyzed. If, however, the key 
statistics are the trend level and the difference between two consecutive trend estimates, then the "in 
for 1, out for 2, in for 1, for a total of 8 months" is a preferable rotation pattern to reduce the 
sampling variance. They also show that the "in for 2, out for 2, in for 2, for a total of 8 months is 
a reasonable compromise if the level and one months change in seasonally adjusted and trend 
estimates are both considered important. 

You and Rao present hierarchical Bayes multi-level models for small area estimation. The 
models allow random regression parameters that also depend on small area level covariates. The 
small area mean is estimated by the posterior mean and the posterior variance is taken as a measure 
of precision. Three variance models are considered: fixed equal, fixed unequal, and random. Details 
of Gibbs sampling for these models are presented and used for inference. Procedures are illustrated 
using county level household income data from Brazil. 
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Okafor and Lee consider a two phase sampling scenario, where a subsample of the non 
respondents at the second phase are revisited according to a fixed sampling rate. Based on this 
scheme, modified versions of the ratio and regression estimators are suggested. Optimal values for 
the sample sizes and the fixed sampling rate aredetermined, based on cost functions, so as to 
minimize variance. In addition variances and their estimators are given. A small empirical study 
looks at the relative efficiencies of the modified ratio and regression estimators relative to the 
standard Hansen-Hurwitz estimator. 

Pickery and Loosveldt bring an important analytical technique to the study of item non-response. 
Their models present a more complete picture of the factors affecting item non-response than in 
previous work in this area. One important aspect of this approach is that the authors make a 
separation between interviewer/respondent specific variation, variation attributable to interviewer/ 
respondent characteristics and ertor variance. 

Fuchs investigates the affect that screen design and question order have on interviewer behavior 
in a Computer Assisted Interview (CAI) environment. Through the use of experiments under 
laboratory conditions, it has been shown that screen design and question order do affect interviewer 
performance. In his paper, Fuchs presents results from a field experiment which tests two different 
screen designs together witii two different question orders in a 2x2 factor design. These results were 
based on time measures that were built into the CATI application and from 234 randomly selected 
interviews that were video taped and analyzed according to a coding scheme. 

M.P. Singh 
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Leslie Kish - A Life of Giving 

IVAN P. FELLEGI' 

1. INTRODUCTION 

I cannot believe that I am writing an article in memory of 
Leslie Kish. Just a few months ago I wrote a partly 
humorous little speech on the occasion of his 90"" birthday 
celebration. I jokingly asked why are we making such a fuss 
about a 90"" birthday - after all the Queen mother just 
celebrated her 100"'. I emphasized that that was something. 
He laughed heartily, with the well known "Kish twinkle" in 
his eye. I was stmck once again by the extent to which he 
remained fun-loving, vibrant, insightful, in fact young in all 
aspects of behaviour - even if somewhat limited in his 
mobility. He told me about his forthcoming partial knee 
replacement operation and confided that his doctor told him 
that he will either undergo this operation, or he will need to 
use a walker to get around. Of course, a walker was not to 
be contemplated: he needed to have his full mobility. And 
mobility, at 90, meant not just getiing around at home but 
traveling around the world several times a year. He died due 
post-operative complications, having fought for several 
weeks with his usual indomitable courage. 

In my mind the most characteristic feature of his life was 
his incessant giving. One of his last acts of giving was to 
inspire his friends and colleagues to establish the Leslie 
Kish International Fellows Fund to help students from 
developing countries obtain training in population 
sampling. 

Leslie was bom in 1910 in Poprad, then part of the 
Austro-Hungarian Empire, now in Slovakia. He used to 
relate how, at various times throughout history, Poprad 
belonged to five different countries - an appropriate symbol 
of his life motivated by a love of people from all parts of tiie 
world. In 1925 his parents decided to migrate to the U.S.A 
- together with hundreds of thousands of other Hungarians 
who left their country. As the great Hungarian poet Atiila 
Jozsef put it: "one and a half million of our people 
staggered out to America". Soon after their arrival Leslie's 
father died. The remaining family of mother and four 
children had to decide whether they will stay in the U.S.A. 
They did, but that meant that the two oldest children, 
including Leslie, who was then 16 years old, would have to 
work in order to help the others. 

Leslie continued his schooling in the evening. By 1937 
he was within a year of completing his undergraduate 
studies. But this 27 year old was once again ready to 
sacrifice himself in order to help the world improve. He 
intertupted his studies in order help fight the fascists in 

Spain as a member of the International Brigade. His love of 
things Spanish, and of people oppressed, stayed with him 
forever. 

At the end of the Spanish Civil War in 1939 he returned 
to the United States and completed his studies at City 
College of New York and received a degree in mathe
matics. He moved to Washington, where he was fortunate 
to have become a member of pioneering groups, first at the 
Bureau of the Census and then at the Department of 
Agriculture. 

Again, he intermpted his career to volunteer for service 
in the war. In 1947 he finally moved to the University of 
Michigan at Ann Arbor where, together with a small band 
of enthusiasts helped found the Institute for Social 
Research. He said later that he never worked as hard as he 
did in those early years: obtaining his M.A and Ph.D. while 
working full time but also finding time to teach. 

In statistics, he gave us several superb books. These 
include the pioneering Survey Sampling which became not 
just a bible of the field {i.e., like the original one, a source 
of lofty inspiration), as well as a day to day tool of practice. 
In that sense much of the world's statistical system has 
embedded in it the hundreds of pearls of practical wisdom 
oi Stirvey Sampling. In 1988 (when Leslie was a young 78) 
came Statistical Design for Research which integrated and 
organized a lifetime's worth of acquired statistical wisdom. 
In between, before and after came a stream of articles, 
lectures and talks. He, sometimes working with others, 
introduced the concepts into our thinking and the words 
into our language of design effects; he was among the first 
to explore the issue of inference from complex samples and 
developed the innovation now known as balanced repeated 
replication (actually with Marty Frankel); was among the 
pioneers of studying response errors; became the apostie of 
rolling samples and censuses; pioneered controlled 
selection; formulated the concept of multipurpose designs; 
did some of the early work on small area estimation; and so 
on. But important as these works are, I think just as cmcial 
were some of his other contributions. 

He was one of very few people whose early applied 
work made sampling respectable and admired. In addition 
to having been one of the founders of what became the 
Institute for Survey Research at Ann Arbor, he taught 
generations of statisticians, both Americans and foreign 
ones through the legendary Summer Program for Foreign 
Statisticians. After his formal retirement he continued to do 
so through lectures in the Summer Program; through 

Ivan P. Fellegi, Chief Statistician, Statistics Canada, 26'" floor, section A, R.-H. Coats Building, Ottawa, Ontario, Canada Kl A 0T6. 
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decades of editing or contributing to one or another of the 
questions and answers columns of the Survey Statistician; 
and through numerous lectures and consulting assignments 
At international meetings I used to "bump into" his past 
students and curtent friends. One no longer "bumps into" 
them, because they have become completely ubiquitous: I 
wonder how many better known foreign samplers there are 
who were not at some point Leslie's students. And I do not 
want to forget about two of my favourites among his many 
contributions. His years of faithful service to Statistics 
Canada as a founding member of our Advisory Committee 
on Statistical Metiiods; and his ASA presidential address of 
1977 (published in JASA in March 1978) - tiie best address 
that any President of ASA gave in my living memory. 

For his accomplishments he received world wide 
recognition. Of his dozens of awards I will just single out a 
few: he received an honorary doctorate from the University 
of Bologna on the occasion of its 900"' anniversary, the 
Samuel Wilks Medal which is ASA's highest recognition, 
the Henry Russell lectureship which is the highest reco
gnition of University of Michigan, the title Honorary 
Fellow of the ISI which I regard as a kind of Nobel price in 
statistics, and perhaps the most personally meaningful for 

him: a slew of the highest possible recognitions from 
Hungary (honorary doctorate from the largest university in 
Budapest, honorary membership in the Hungarian Academy 
of Sciences and the Officer's Cross of the Order of the 
Merit). 

Over and above what he gave us in statistics, he gave us 
the phenomenon known as "Leslie Kish, a force of nature": 
the Spanish Civil War fighter, the philosopher of all things 
statistical, the ever young agitator for human rights, 
raconteur, avid reader, author of the best annual Christmas 
letters, loving husband and father, and lifelong friend to 
hundreds, perhaps thousands. 

When I spoke at his 90"" birthday celebration, I ended by 
saying that I was hoping to be present at Leslie's really big 
anniversary - the one the Queen Mother had just passed. 
And that was not just a joke: he was so full of life, it was 
not only quite possible to contemplate him living to be a 
hundred, but rather it was impossible to think about the 
opposite. Unfortunately, he did pass away. His final act of 
giving was to donate his body to medical research. 
Wouldn't it be fitting if the resulting work gave us some 
insight into the human wonder that was Leslie Kish?... 
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Population Size and Total Estimation When Sampling From 
Incomplete List Frames With Heterogeneous Inclusion Probabilities 

DAWN E. HAINES, KENNETH H. POLLOCK and SASTRY G. PANTULA' 

ABSTRACT 

Information from list and area sampling frames is combined to obtain efficient estimates of population size and totals. We 
consider the case where the probabilities of inclusion on the list frames are heterogeneous and are modeled as a function 
of covariates. We adapt and modify the methodology of Muggins (1989) and Alho (1990) for modeling auxiliary variables 
in capture-recapture studies using a logistic regression model. We present the results from a simulation study which 
compares various estimators of frame size and population totals using the logistic regression approach to modeling 
heterogeneous inclusion probabilities. 

KEY WORDS: Logistic regression; List frame; Area frame; Capture-recapture sampling. 

1. INTRODUCTION 

In this paper, we estimate population size and totals 
when information from multiple independent sampling 
frames is available. Population elements are assumed to 
have varying probabilities of inclusion for different 
sampling frames. These heterogeneous inclusion proba
bilities may depend on a covariate. For example, suppose 
we are interested in estimating the number of hog farms and 
the total number of hogs in North Carolina. Covariate 
measurements such as hog farm acreage or number of 
employees indicate the size of hog farms. Larger farms may 
have a higher chance of being included on a list frame than 
smaller farms. In capture-recapture experiments, animals 
may have unequal capture probabilities. Capture (inclusion) 
probabilities for animals may vary with respect to age, sex, 
size, or species. 

List frames are physical listings of sampling units in the 
target population. Items found on a list frame can include, 
but are not limited to, names, addresses, telephone numbers, 
social security numbers, or physical descriptions of loca
tions. These and other miscellaneous stratification variables 
are used to identify persons, animals, businesses, or other 
establishments. List and area sampling frames are con
stmcted and maintained to obtain estimates of the unknown 
population size and totals. Since frame imperfections such 
as omissions, duplications, and inaccurate recordings are 
inevitable in any large data collection operation (Hansen, 
Hurwitz and Madow 1953), various solutions for dealing 
with frame imperfections have been proposed in the 
literature. One approach, first developed by Hartley (1962, 
1974), combines an incomplete list frame with an area 
frame. Further theoretical extensions are due to Cochran 
(1965), Lund (1968), Fuller and Burmeister (1972), and 
Bosecker and Ford (1976). Haines and Pollock (1998a) 
apply the dual frame method to a bald eagle population 

while Haines and Pollock (1998b) present a more general, 
theoretical approach to combining multiple frames. These 
two papers do not consider the case where the inclusion 
probabilities are heterogeneous. Fienberg (1992) presents 
an annotated bibliography of the capture-recapture literature 
specifically related to the census undercount problem, 
including Wolter (1986, 1990), and Cowan and Malec 
(1986). 

The National Agricultural Statistics Service (NASS) 
curtentiy employs a multi-frame approach for its sampling 
and estimation of numerous agricultural commodities. 
NASS collects and summarizes data on crop acreage, 
livestock, grain production and stocks, costs of production, 
farm expenditures, and other agricultural items. Fecso, 
Tortora and Vogel (1986) provide a review of sampling 
frames for the agricultural sector of the United States while 
Nealon (1984) details the multiple and area frame esti
mators used by the U.S. Department of Agriculture. 
Pollock, Turner and Brown (1994) offer a model-based 
capture-recapture solution for estimating frame size based 
on information from two incomplete list frames. According 
to Cochran (1977), it is often difficult to obtain a list that 
cortesponds exactly to the population of interest. Lists 
routinely collected for some purpose are usually found to be 
incomplete, partially illegible, or to contain an unknown 
amount of duplication. Since list frames are typically 
incomplete, estimates based solely on list frames may 
underestimate the population size. Supplementing available 
information with an area frame sample may provide 
efficient estimates of the population size and totals. 

An area frame is a collection of geographical areas de
fined by identifiable boundaries. Area frames are often used 
by survey practitioners in order to attain complete coverage 
of the target population. Populations such as farms are 
naturally associated with the land units comprising the area 
frame. For example, in an agricultural survey, the region of 

Dawn E. Haines, U.S. Bureau of the Census, Washington, DC 20233; Kenneth H. Pollock and Sastry G. Pantula, North Carolina State University, Department 
of Statistics, Box 8203, Raleigh, NC 27695-8203, U.S.A. 
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interest is divided into a set of geographic land masses 
called segments. Segments, which are the sampling units, 
are then selected using stratified multistage designs (Kott 
and Vogel 1995). Rules which link farms in the population 
to segments in the area frame are defined. Once the farms, 
or reporting units, within each sampled segment are 
identified, they are personally enumerated and the pertinent 
data collected. Nealon (1984) provides a detailed descrip
tion of the open, closed, and weighted segment estimators. 
Faulkenberry and Garoui (1991) formulate additional 
estimators specifically designed for area frames. More 
complex constmction and sampling methods for area 
frames are discussed in Fecso et al. (1986). Area sampling 
and subsampling from area frames are considered in detail 
in Kott and Vogel (1995). 

In section 2, we consider independent list frames where 
the list frame elements have heteroscedastic inclusion prob
abilities. We discuss methods which provide population 
size and total estimators when information from list 
frame(s) and an area frame sample is available. Section 3 
summarizes results from a simulation study that compares 
various estimators of frame (population) size and popula
tion totals. Finally, results are summarized and discussed. 

2. HETEROSCEDASTIC INCLUSION 
PROBABILITIES 

2.1 Population Size Estimation with List Frames 

In capture-recapture experiments, different animals may 
have different capture probabilities. Similarly, individual 
elements may have different probabilities of inclusion on a 
list frame. Different list frames may be viewed as different 
capture occasions. Model M^ denotes the heterogeneity 
model in the closed population capture-recapture literature 
(Otis, Bumham, White and Anderson 1978). In a capture-
recapture setting, capture probabilities, though assumed to 
vary from animal to animal, are assumed to be the same for 
all ti-apping occasions. The heterogeneity model may have 
up to Â  + 1 total parameters, namely A'̂  and Pj,i = I,..., N, 
where N is the population size and /?. denotes the inclusion 
probability for the /-th unit. For multiple list frames, this 
cortesponds to the assumption that the inclusion probability 
p. for element / is constant over all k list frames, 

Bumham (1972) and Bumham and Overton (1978, 
1979) investigate the problem of estimating N in the 
capture-recapture setting. The proposed estimator for A'̂  
given by Bumham (1972) is based on the jackknife method 
of bias reduction (Quenouille 1956). Chao (1988) develops 
an alternative moment estimator for this model based on 
capture frequency data (Pollock 1991). Under certain con
ditions, Chao's proposed estimator is less biased than 
Bumham's jackknife estimator. In general, it is difficult to 
find a completely satisfactory estimator of N under Model M^. 
Otis et al. (1978), as a result, suggest that one should design 

the entire study to minimize heterogeneity. Norris and 
Pollock (1996) propose a nonparametric MLE which is still 
not totally satisfactory. 

In capture-recaptiire experiments, the model expressed 
as Model M-th allows inclusion probabilities to vary both 
by trapping occasion (list frame) and individual. Define p.. 
as the inclusion probability of the /-th element on they-tn 
list frame. Model M-th is obviously not easy to estimate 
since it can have up to tN * I parameters where t = k, the 
number of list frames. Chao, Lee and Jeng (1992), using the 
idea of sample coverage, propose a nonparametric method 
of estimating the population size for Model Af-th. 

An alternative to the nonparametric approach is to model 
the inclusion probabilities as a function of an auxiliary 
variable. Pollock, Hines and Nichols (1984), Huggins 
(1989), and Alho (1990) address the role of auxiliary 
variables in capture-recapture experiments with unequal 
capture (inclusion) probabilities. The closed population 
capture-recapture experiments have / = I,..., Â  individuals 
and 7 = 1,..., t trapping occasions. Again, the y = 1,..., / 
trapping occasions are similar to t = k, the number of 
independent list frames. Huggins (1989) and Alho (1990) 
propose a conditional estimation procedure for estimating 
the size of a closed population based on one capture and a 
single recapture. Both of these papers assume the logistic 
model for the inclusion probabilities, given by 

Pii = 

exp(a^.-t-p^.x.) 

1 +e\p{a.j + ^jX.y (1) 

where x. is a covariate a and p are unknown parameters. 
Note that this parameterization yields 0 <, p.. <, 1 for all 
values of a and p . For P > 0, the inclusion probability 
increases with the covanate. This parameterization is 
different from the probability proportional to size (pps) 
sampling where p.. is assumed to be proportional to x.. 
The MLEs of a and p can be obtained using the like
lihood conditioned on the unit being on at least one list 
frame. Haines (1997) derives the conditional likelihood 
function for three independent list frames. 

Treating each individual as a separate stratum, define the 
following indicator variables for / = 1,..., Â : 

(1 individual / belongs to framey only 

0 otherwise 

and 

a.. = • 

j -B^,B2, 

I individual / belongs to both frames 

[0 otherwise. 

The value of the expression 

^i = ",S, + "/B, + «/ (2) 
is one if individual / is included on at least one of the two 
frames and zero otherwise. 
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Alho (1990) presents the conditional likelihood function 
for two list frames as 

exp{afl.A^H. ^ dg^^ * Pfl,E,efl, ^, ^ hX'^B, ^i] 
(3) 

where 

K.{Q) = exp {Oĝ  + Pg X,) + exp {â ^ + p^^x,} 

+ exp{ag +aj,^ + (p^_+Pa^)x.} 

and 9 = (a^. Pg. a^, Pg )'• Alho (1990) uses an iterative 
procedure based on the sufficient statistics to maximize (3) 
while we implement Newton's method Jo calculate condi
tional MLEs of 0, denoted 9 = (dg, Pg, dg, Pa )'. See 
Appendix A of Haines (1997) for details on Newton's 
method. The estimated probability that individual / is 
included on at least one list frame is denoted 

7 t , = l -
1 +exp(da +pax.)^ 

1 

where 

l+exp(d^^ + Pa^x,.)̂  

. exp(d^. + p̂ .x,.) 

'•' 1 +exp(d^.+ P .̂x.)' 

/ = 1,..., A ând j = 5,, ^ j . 

rt,(9), (4) 

(5) 

If 9 were known, the Horvitz-Thompson estimator of 
N is N = Y,!^ ^, 1 In. (Horvitz and Thompson 1952). From 
Cochran (1977), the variance of N is 

V{N) = Y. '-. 
i-i Ji, 

An estimate of the variance of N is 

1 - J i . 

(6) 

V{N) = Y, 
Mri n: 

Since 9 is unknown, we consider the population size esti
mate given by 7̂  = YM = i 1 /ii,,, where •it. is defined in (4). 
An estimate of the variance of 1^ is derived using Taylor's 
method and has the form 

where 
H ' l 71; (9) 

1 dn.{Q) 
(7) 

M( = 1 <(9) 39' 

and ^(9) is the inverse of the Hessian matiix. The second 
term in (7) is due to estimating 7t,(9) by 71̂ (9). 

Another population size estimator commonly used in 
capture-recapture experiments is the Lincoln-Petersen 
estimator. This classic estimator is due to Lincoln (1930) 
and Petersen (1896) and has the form 

Â , L-P 

where A'̂  and Â^ denote the size of list frames 5, and 
B2, respectively, and A'̂  ^ denotes the number of units 
common to both frames. This is a simple method of 
moments estimator based on the assumption that all units 
have homogeneous inclusion probabilities for each of the 
two independent list frames. It is possible for the denomi
nator A'j J to be zero. Chapman (1951) proposed a modi
fied version of the Lincoln-Petersen estimator, given by 

( ^ , M ) ( A . , . 1 ) _ ^ 
(8) 

This estimator is less biased than the Lincoln-Petersen esti
mator (Chapman 1951). According to Sekar and Deming 
(1949), the asymptotic standard ertor of N^^ is 

# ( ^ = 
\ 

where Â^ and N^ denote the number of units belonging 
only to lisl frames ^B^ and fij, respectively. 

The Lincoln-Petersen estimator is the unconditional 
maximum likelihood estimator of the population size A'̂  
when there are two independent list frames and the 
inclusion probabilities are homogeneous. Haines (1997) 
extends the estimation procedures to k list frames, each 
with homogeneous inclusion probabilities. This estimator, 
however, is not appropriate when the inclusion probabilities 
are heterogeneous. See the simulation results in section 3. 

2.2 Population Size Estimation with Area and List 
Frames 

Suppose we have access to an area frame in addition to 
two list frames, 5, and fij. The area frame consists of [/, 
segments that cover the entire population. A simple random 
sample of u^ segments is selected. We assume that all units 
in the sampled segments are observed. The probability of 
inclusion in the area frame sample is the same for all units 
and is the known quantity p^ = uJU^. Next, we maximize 
the conditional likelihood (3) with respect to 9 and calcu
late the estimated probability that individual / is included 
on at least one list frame or the area frame. This probability 
is denoted ft ^ = TT , + /?^ (1 - TI ,). The probabilities n. and p.. 
are defined in (4) and (5), respectively. An estimated 
Horvitz-Thompson estimator for population size is 
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N= E 4-- (9) 
16 sample t / 

This estimator can easily be extended to the case with k list 
frames, B^,..., 5^, and an independent area frame. 

From Cochran (1977), an estimate of the variance of N 
is given by 

V{N) 
M. = l K. i < I n.,Kin, 

^A^A', (10) 

where A is defined in (7) and £ is the inverse of the 
Hessian matrix. The variance formula for N in (6) and its 
estimate are valid only when 7t,,, the probability that units / 
and / are included in the sample, is equal to it. n,. When an 
area frame sample is included, however, n.^ is not 
necessarily equal to TÎ  TI,. Suppose units / and / belong to 
the same area frame segment. In this case, units / and / are 
both included or not included in the sample, depending on 
whether their cortesponding segment is selected or not. It 
can be shown that the joint inclusion probability, Jt̂ ,, can be 
estimated as 

p ^ + n , . n , ( l - p ^ ) 

if / and / belong to different 
area segments 

if; and / belong to the same 
area segment (11) 

where Ji, is defined in (4) and ff ̂  = n̂  "^P^(l " ^)- Hence, 
when / and / belong to the same segment, n.^ * n. ft, -
However, if p^ is small and n, and Ji, are large, then 
{a-I - •ft ••Ji i) will be close to zero. 

2.3 Population Total Estimation with List Frames 

Suppose y. values are available for all elements on two 
independent list frames 5, and Sj. If 9 were known, an 
estimate of the population total, Y, is the Horvitz-
Thompson estimator 

^H-T Z~i 
Yi 

M, = l 71,(9) 
(12) 

According to Cochran (1977), the estimated variance of 

^H-T '^ 

hh-T)= E 
M, = 1 

y-{\-Ti.{Q)) 

7lf(9) 

When G is unknown and is estimated by 9, an estimate for 
the population total is 

H - T = E 
A/, = 1 

Yi 

71,(9) 

An estimate of the variance of J'H-T *̂  derived using 
Taylor's method and has the form 

H = l 7l((9) 

where 

B-Y 
M, = 1 

y. 6 71,(9) 

n]{^) ^« ' 

and 51(9) is the inverse of the Hessian matrix evaluated at 9. 
These ideas extend easily to incorporate k independent list 
frames. 

In practice, >',.'s may not be observed for all units on the 
list frames. Consider the case where ^,'s are available for 
only a random sanple of «g and «g units fiom list fiames 5, 
and B^, respectively. By constmction, the inclusion proba
bilities, p.j, vary with the individual i and frame j . How
ever, once individuals are included on a list frame, they are 
subsampled using simple random sampling. As a result, all 
elements on list frame 5 have equal chance {n^ INg) of 
inclusion in the subsample. Note that we are selecting 
samples from each list frame rather than drawing a single 
sample from a combined list frame. Since the list frames are 
assumed to be independent, the estimated probability the 
/-th individual is included on at least one of the two list 
frames is 

"l , £: ''2 
" B " B 

B^ i>2 ^i =P,B, T T ^PiB, TT -PiB.PiB, JT TT- (14) 
N^ N ^R ^R 

An estimated Horvitz-Thompson estimate of Y is obtained 
by substituting (14) into (12). 

Another estimator of the population total, Y, in this case 
is 

Y=N CH 

2.^M,=i y^ 

N, +N, +N, 
*! *2 *1*2 

which is Chapman's estimator multiplied by the mean of the 
responses for those elements included on at least one list 
frame subsample. Again, this estimator is valid only when 
the inclusion probabilities are homogeneous. There are 
^b * ^6 ^ ̂ bb unique elements in frames 5, and ^ j . A 
similar estimator can be defined when information is avail
able only for subsamples from the list frames. 

2.4 Population Total Estimation with Area and List 
Frames 

Consider the case where, in addition to y. values for the 
units on the list frames (or subsamples from list frames), y. 
values are available for all elements in a random sample of 
segments from an area frame. Inclusion of the area frame 
information results in the estimated inclusion probability for 
the /-th individual, namely 
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",=",-^/'^(l -",) . (15) 

where 7t,. is defined in (4) or (14), depending on whether y. 
is observed for all units on the list frames or only for a 
subsample of units, respectively. An estimated Horvitz-
Thompson estimator of the population total in this case is 

^ H-T Z ^ 
/ 6 sample Tt • 

An estimate of the variance oi f^^_y is given by 

(16) 

^(^H-T)= E 
y^^-%) 

Mi = i a ^ 

^ 2 E E - - - YIYI^BYB', (17) 

where ft,., is defined in (11) and B and E ^^ defined in 
(13). 

3. SIMULATION STUDY 

3.1 Assumptions of the Study 

To study the properties of population size and total 
estimators, Haines (1997) considered eighty different 
models. Details for only two of those models are presented 
here. One assumption made is that the inclusion probabi
lities for two list frames depend on a covariate x.. 
Secondly, we assume that the covariate may be cortelated 
witii die response variable y.. Also, we assume tiiat x. and y. 
are lognormally distributed with cortelation p . The 
lognormal distribution is utilized which allows for a skewed 
distiibution of covariates. We generate x, as e "' and >>, as e ^', 
where u. and v, are generated as bivariate normal random 
variables with zero means, unit variances, and correlation p,,̂ ,. 
It can be shown that p„̂  = log [p^{e - 1) + 1]. 

Consider a population of size N. Assume that there are 
two independent list frames, B^ and fij, and an area frame, A. 
The area frame is assumed to be complete in the sense that 
it covers the entire population. A sample of area frame 
segments is selected and the units within each area segment 
are observed. Let p^ denote the inclusion probability for 
any element to be included in the area frame sample, where p^ 
is assumed to be the same for all individuals. 

The probability that the /-th element is included on the 
j-th list frame is given by the logistic regression model (1) 
for / = 1,..., N and j = By ^ j . We assume the probability 
that the /-th element is included on list frame 5, is inde
pendent of its inclusion status on list frame B2 and the area 
frame sample. 

3.2 Parameter Settings 

We consider various parameter values. For the popu
lation size, N, we take Â  = 300 or 1,000. We use 
p^ = -0.3,0.0,0.5, and 1 corresponding to negative, zero, 
positive, and perfect cortelation between the response 
variable and the covariate. Here, p = 1 cortesponds to 
X, =y., indicating that the inclusion probability is directly 
related to the response variable. 

For each of the above 2x4 = 8 parameter settings of Â  
and p , we consider two models cortesponding to different 
choices of OB̂ , Pâ , â ,̂ and p^. Recall that £(x,) = 
E[e"'] = e°^. Consider an element with covariate value 
given by the mean value e° ' . The probability that this 
element is included on they-th list frame is 

-, y -5 , ,5 , . 
(^_ exp(a,. + p̂ .e"-̂ ) 

' l+exp(a,. + p̂ .e°-̂ ) 

If a = -p e°^, then this element has a 50% chance of 
being included on list frame j . We use this relationship in 
Model 1. 

Extending the above idea, if we set 

a, = l o g ( - - ^ ) - p , e 
^ I - p -' 

0.5 

then the unit with mean covariate value has probability/J of 
being included on list frame j . If we assume that the 
inclusion probabilities are the same for list frames 5, and fij, 
then the chance of being included on at least one of the two 
list frames is given by 1 - (1 - p)^. This relationship is used 
in Model 2. Specific values of a. and p. for the two models 
are summarized in Table I. 

Model 

1 
2 

\ 

0 
-0.5478 

Table 1 
Summary of Model Parameters 

Pa, «a. \ Psr PB^ 

0 0 0 0.5 0.5 
0.8 -0.5478 0.8 0.6838 0.6838 

1-(1-P«,'^'). 

(1-P.;^>) 

0.75 
0.90 

For each of the 2 x 4 x 2 = 16 models, we consider tiiree 
p^ values given by 0, 0.05, and 0.20. Here, p^=0 
corresponds to using only the information from list frames B^ 
and B2. 

3.3 Generation of the Data 

For each of the above sixteen models, we first generate (x,., y) 
using the bivariate lognormal distribution for / = 1,..., Â . 
We then "generate" (identify) the units that belong to list 
frames 5, and fij. We use the probability p.j to include the 
/-th element on list frame y. Finally, using p^ = 0.05, we 
identify the elements belonging to area framed. We repeat 
the process for the case p^ = 0.20. For each parametric 
combination, we generate 1,000 Monte Carlo replications. 
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3.4 Estimators 

For population size, we consider Chapman's estimator, N^^^, 
given in (8). This estimator assumes that p^ = P^ =0 and 
does not utilize tiie information from the area frame sample. 
We also consider the estimated Horvitz-Thompson esti
mators discussed in section 2. 

For estimating the population total of a response 
variable, we consider the case where the response is 
observed for all list frame elements. Elements in an area 
frame are sampled with probabilities p^ = 0,0.05, and 
0.20. We do not consider population total estimates based 
on subsamples from each list frame. The population total 
estimate, Y , has the same form as (16) with ft. defined in 
(15). Similarly, the population size estimate, N , has the 
same form as (9). 

The estimator 

' CHs.p^ ^CH>^(p.)./'. =0.0.05,0.20 

is also considered where y^ ^ 
'.FA' 

is the sample mean of the 
>','s included in the "sample."'The performance of Y^^^^ ^ 
is dependent on N(.^^, which was observed to underestimate 
Â  considerably for Model 2. The results for Y^.^^^ are not 
included here. Another design-unbiased estimator of Y is 
given by 

t- E f 
ie "area sample" p^ 

This is the Horvitz-Thompson estimator based on the area 
frame sample alone. Since complete enumeration of area 
segments is expensive, p^ is typically small in practice. For 
small p^, Y^ is expected to have a much larger variance 
than Y since the estimator Y includes information fi-om 
list frames in addition to information from the area frame 
samples. Hence, results for Y^ are not included. 

3.5 Estimated Variance of the Estimator 

In our simulation study the values of p^ considered are 
very small. In contrast, the probability of inclusion on at 
least one of the list frames is large for each individual. As 
a result, ft. is close to n. and ft,, in (11) is close to ft, ft,. 
Hence, the second term in equations (10) and (17), 
involving ft^, - ft, ft,, are expected to be small. We have not 
included this term in our estimate of the variance. Despite 
this omission, we observe that the estimated variance is 
very close to the empirical variance of the estimator for the 
models we consider. 

3.6 Summary Statistics 

For the population size estimates, we present results 
averaged over the 4,000 replications cortesponding to the 
four values of p and 1,000 Monte Carlo replications for 
each p . For each model, we summarize the mean and 
standard deviation of the estimates, average of the estimated 
standard ertors of the estimators, the percent relative root 

mean square error (% RRMSE), and the empirical coverage 
probabilities of a 95% confidence interval. These measures 
are all standardized by the population size N. We report 
results for Models 1 and 2 in Tables 2 and 3, respectively. 

Table 2 
Population Size Estimates for Model 

N = 300 Nr N„ N„. K 
Average of estimates divided by N 

Standard deviation of estimates 
divided by N 

Average of estimated standard 
deviation of estimator divided by A' 

% RRMSE 

Coverage 

0.999 

0.059 

0.059 

0.003 

0.947 

1.011 

0.077 

0.072 

0.006 

0.955 

1.007 

0.059 

0.059 

0.004 

0.957 

1.004 

0.048 

0.047 

0.002 

0.950 

N= 1,000 

Average of estimates divided by A' 

Standard deviation of estimates 
divided by N 

1.000 

0.031 

1.003 

0.035 

1.002 

0.030 

1.002 

0.025 

Average of estimated standard 
deviation of estimator divided by A' 

0.032 0.034 0.030 0.025 

% RRMSE 

Coverage 

0.001 0.001 0.001 

0.954 0.959 0.958 

0.001 

0.956 

Table 3 
Population Size Estimates for Model 2 

N=300 N N N "CH "O "0.05 ''0.20 

Average of estimates divided by A' 

Standard deviation of estimates 
divided by A' 

Average of estimated standard 
deviation of estimator divided by Â  

% RRMSE 

Coverage 

0.922 1.006 1.005 1.003 

0.032 0.052 0.049 0.040 

0.028 0.052 0.048 0.040 

0.007 0.003 0.002 0.002 

0.271 0.953 0.954 0.951 

Af =1,000 

Average of estimates divided by A' 

Standard deviation of estimates 
divided by Â  

Average of estimated standard 
deviation of estimator divided by N 

% RRMSE 

Coverage 

0.921 1.001 1.001 1.001 

0.018 0.028 0.027 0.022 

0.015 0.027 0.026 0.021 

0.007 0.0008 0.0007 0.0005 

0.009 0.949 0.949 0.949 

Similarly, for the population total estimates, we present 
summary statistics averaged over the 1,000 replications 
cortesponding to each parametric combination. We summa
rize the mean and standard deviation of the estimates as 
well as the average of the estimated standard ertors of the 
estimators, where the estimates are scaled by the tme total 
{Y) for that replicate. In other words, for each replicate we 
divide the estimate by its replicate total, Y. We then 
compute the mean and the standard deviations of these 
standardized estimates. Similarly, for each replicate, we 
compute the estimated standard ertor of the total estimator 
divided by the total for the replicate and then compute the 
average of these standardized values. We report these 
because the totals change from replicate to replicate. 
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Finally, we report the coverage probabilities of the 95% 
confidence intervals for the total. Results for Models 1 and 
2 are respectively presented in Tables 4 and 5. 

3.7 Conclusions 

3.7.1 Population Size Estimation 

In Model 1, the inclusion probabilities do not depend on 
the covariate. In this case, Chapman's estimator Nf^^^ is 
very close to the maximum likelihood (Lincoln-Petersen) 
estimator and hence is expected to perform better than N^. 

The estimator ÂQ loses efficiency since it estimates the 
parameters a^ , p^ , a^ , and p^ , which have the value zero 
in this model. The estimator N^^^ has about the same effi
ciency as Nf^. The bias in all the estimates is minimal. For 
Model 1, we notice that the average of the estimated 
standard deviation is close to the standard deviation of the 
estimates. This indicates that the standard ertor estimate we 
use performs well. Also, we notice that the empirical cover
age probabilities are all within three standard ertors of 0.95. 
That is, all of the empirical coverage probabilities are 
within (0.95 ± 3 [0.95 x 0.05/4,000]'^) = (0.94,0.96). 

Table 4 
Population Total Subsampling Estimates Scaled by y for Model 1 

Prv 
-0.3 

0 

0.5 

1.0 

Average of estimates 
Standard deviation of estimates 
Average of estimated standard error 
Coverage 

Average of estimates 
Standard deviation of estimates 
Average of estimated standard error 
Coverage 

Average of estimates 
Standard deviation of estimates 
Average of estimated standard error 
Coverage 

Average of estimates 
Standard deviation of estimates 
Average of estimated standard error 
Coverage 

YJY 
1.004 
0.077 
0.076 
0.953 

1.013 
0.080 
0.081 
0.951 

1.053 
0.586 
0.233 
0.950 

1.064 
0.515 
0.277 
0.930 

A^=300 

Y lY 
^0.05 ' •* 
1.003 
0.073 
0.072 
0.951 

1.012 
0.070 
0.072 
0.954 

1.018 
0.104 
0.094 
0.951 

1.030 
0.162 
0.128 
0.929 

Y lY 
' 0.20' ' 
1.001 
0.062 
0.061 
0.949 

1.008 
0.059 
0.060 
0.951 

1.009 
0.072 
0.070 
0.945 

1.013 
0.090 
0.086 
0.930 

Y,IY 

1.002 
0.042 
0.041 
0.946 

1.001 
0.041 
0.040 
0.944 

1.004 
0.057 
0.051 
0.950 

1.013 
0.094 
0.070 
0.946 

7V= 1,000 

Y lY 

1.002 
0.040 
0.039 
0.942 

1.001 
0.039 
0.038 
0.942 

1.003 
0.045 
0.045 
0.955 

1.009 
0.066 
0.059 
0.949 

Y lY 

1.001 
0.035 
0.033 
0.942 

1.001 
0.033 
0.033 
0.946 

1.002 
0.037 
0.036 
0.955 

1.006 
0.047 
0.046 
0.951 

Table 5 
Population Total Subsampling Estimates Scaled by Xfor Model 2 

P^ 
-0.3 

0 

0.5 

1.0 

Average of estimates 
Standard deviation of estimates 
Average of estimated standard error 

Coverage 

Average of estimates 
Standard deviation of estimates 
Average of estimated standard error 
Coverage 

Average of estimates 
Standard deviation of estimates 
Average of estimated standard error 
Coverage 

Average of estimates 
Standard deviation of estimates 
Average of estimated standard error 
Coverage 

YJY 

1.010 
0.098 
0.094 

0.935 

1.008 
0.065 
0.064 
0.953 

1.002 
0.035 
0.035 
0.954 

1.001 
0.021 
0.021 
0.952 

A^=300 

Y lY 
• ' 0 .05 ' - ' 

1.009 
0.092 
0.089 

0.926 

1.007 
0.062 
0.061 
0.950 

1.002 
0.033 
0.034 
0.950 

1.001 
0.020 
0.020 
0.949 

Y lY 
' 0.20' •' 
1.006 
0.078 
0.074 

0.931 

1.005 
0.050 
0.051 
0.952 

1.001 
0.028 
0.029 
0.951 

1.001 
0.017 
0.017 
0.954 

K'Y 
1.003 
0.052 
0.051 

0.952 

1.002 
0.034 
0.034 
0.947 

1.001 
0.019 
0.019 
0.965 

1.000 
0.012 
0.012 
0.947 

Af= 1,000 

K.os'y 
1.003 
0.049 
0.048 

0.955 

1.002 
0.032 
0.032 
0.951 

1.001 
0.018 
0.018 
0.967 

1.000 
0.011 
0.011 
0.947 

YciofY 
1.002 
0.041 
0.040 

0.955 

1.001 
0.027 
0.028 
0.955 

1.001 
0.015 
0.016 
0.965 

1.000 
0.010 
0.009 
0.943 
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For Model 2, the inclusion probability is a function of the 
covariate. As a result, N^j^ is not an appropriate estimator 
for Â . We observe that N^^ significantiy underestimates 
the tme population size. On the other hand, N provides 
a good estimate of Â . The bias in N decreases as p^ 
increases in Model 2. Further, the relative bias decreases as 
the population size increases. 

As expected, the standard deviation of JN decreases as 
the area frame inclusion probability p^ increases. For 
example, in Model 1 where Â  = 300, the inclusion of a 5% 
area frame sample reduces the relative standard deviation 
from 0.077 to 0.059, a 23% reduction. When a 20% area 
frame sample is utilized, the relative standard deviation 
decreases from 0.077 to 0.048, a 38% reduction. When 
Â = 1,000, the inclusion of a 5% area frame sample 
decreases the relative standard deviation from 0.035 to 
0.030, a 14% reduction. Increasing the area frame sample 
to 20% reduces the relative standard deviation from 0.035 
to 0.025, a decrease of 29%. Generally speaking, the rela
tive standard ertors decrease as population size increases. 
Although the average of the estimated standard ertor of 
N is smaller than the empirical standard deviation, the 
difference is relatively small. Also, the coverage probabi
lities of the 95% confidence interval based on N are very 
close to 0.95. In contrast, the coverage probabilities of the 
95% confidence interval based on N^^^ are 0.271 and 0.009 
for A'̂  = 300 and Â  = 1,000, respectively. 

Based on our simulations, we recommend the use of N 
with a large value of p^. The choice of p^ is determined in 
practice by area frame sampling costs, which are not taken 
into consideration in our study. 

3.7.2 Population Total Estimation 

For population totals, we observe results that are very 
similar to what we observed for the population size. In gen
eral, relative biases and standard ertors decrease as p^ in
creases and as the population size increases. We also notice 
that the average relative estimated standard ertor is very 
close to the empirical standard deviation of the standardized 
estimator standardized by the total. This suggests that the 
approximate standard ertor formula in (7) is a good estimate 
of the standard ertor. Note also that the empirical coverage 
probabilities are mostly within three standard ertors of 0.95. 
That is, most of the empirical coverage probabilities fall 
within (0.95 ± 3 [ 0.95 x 0.05 /1,0001* )̂ = (0.929,0.971). 

4. SUMMARY 

In this paper, we studied the performance of the esti
mated Horvitz-Thompson estimator of the population size 
and total based on samples from area and list frames. We 
presented methods for estimating the parameters of the 
logistic regression model for the inclusion probabilities. 
Though numerous models and other estimators are 
considered in Haines (1997), we presented simulation study 
results for only two models and a few estimators. 

We believe the methods used in this paper are potentially 
very useful to survey researchers because list frame 
incompleteness is a fact of life. Our results are among the 
first to suggest a method of estimating population totals 
which account for incompleteness and model the inclusion 
probabilities as a function of the covariates. 
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An Estimation Method for Nonignorable Nonresponse 
JEAN-FRANCOIS BEAUMONT' 

ABSTRACT 

When a survey response mechanism depends on a variable of interest measured within the same survey and observed for 
only part of the sample, the situation is one of nongnorable nonresponse. In such a situation, ignoring the nonresponse can 
generate significant bias in the estimation of a mean or of a total. To solve this problem, one option is the joint modelling 
of the response mechanism and the variable of interest, followed by estimation using the maximum likelihood method. The 
main criticism levelled at this method is that estimation using the maximum likelihood method is based on the hypothesis 
of error normality for the model involving the variable of interest, and this hypothesis is difficult to verify. In this paper, 
the author proposes an estimation method that is robust to the hypothesis of normality, so constructed that there is no need 
to specify the distribution of errors. The method is evaluated using Monte Carlo simulations. The author also proposes a 
simple method of verifying the validity of the hypothesis of error normality whenever nonresponse is not ignorable. 

KEY WORDS: Nonignorable nonresponse; Maximum likelihood; Estimation equations; Regression imputation; 
Reweighting. 

1. INTRODUCTION 

When a survey response mechanism depends on a 
variable of interest measured in the same survey and 
observed for only part of the sample, the situation is one of 
nonignorable nonresponse. In measuring income, for 
example, it may be realistic to assume that low income 
earners will exhibit a lower tendency to respond than high 
income earners, or vice versa. Readers will find in Little 
(1982) a formal definition of the concept of nonignorable 
nonresponse. In such a situation, ignoring the nonresponse 
can generate significant bias in the estimation of a mean or 
of a total. To solve this problem, one option is the joint 
modelling of the response mechanism and the variable of 
interest, followed by estimation using the method of 
maximum likelihood, used for example in Greenlees, Reece 
and Zieschang (1982), and imputation of the missing 
values. The main criticism levelled at this method is that 
estimation using the method of maximum likelihood is 
based on the hypothesis of ertor normality for the model 
involving the variable of interest, and this hypothesis is 
difficult to verify. 

Rancourt, Lee and Samdal (1994) described simple 
cortection factors aimed at reducing the bias generated by 
nonresponse that is not ignorable without reference to the 
hypothesis of normality and in the absence of a response 
mechanism model. These cortection factors, however, are 
only available for ratio imputation. 

In this paper, the author proposes an estimation method 
that is robust with respect to tiie hypothesis of normality, so 
constructed tiiat there is no need to specify the distribution 
of ertors. The author also proposes a simple method of 
verifying the validity of the hypothesis of ertor normality 
whenever nonresponse is not ignorable. 

In section 2, the problem is defined and some notation is 
introduced. In section 3, various estimators of the mean of 
a population are introduced for a variety of hypotheses 
concerning the response mechanism and the distribution of 
data. In section 4, an estimation method is proposed for 
nonignorable nonresponse. In section 5, the author 
describes the results of a simulation study used to compare 
the estimators described in the two preceding sections. 
Finally, the last section contains a brief discussion. 

2. NOTATION 

In the following, we attempt to estimate the mean of a 
variable 7 for a certain population P. To do so, we select a 
sample S, and the variable 7 is observed for only part of the 
sample. The sample of respondents is denoted R, and the 
sample of nonrespondents is denoted O. We assume that 
there is at least one variable that is observed for all the 
sampling units and cortelated with Y. 

The estimator of the mean, p = Y^i^p Yj IN, where Â  is 
the size of the population, can be obtained by weighting the 
respondent units: 

. E, 
Mp 

ieR ^ / < / ^ / 

E, 
(2.1) 

eR ^i^R.i 

where w. denotes the sampling weights that cortespond to 
the inverse selection probability and Wpj denotes the 
weights that cortespond to the estimated inverse response 
probability. Another estimator of the mean can be obtained 
by imputing the missing values: 
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M/ 
TieR'^iYi + E/ .0^/^/* 

(2.2) 
^ies ^ / 

where Y,' denotes values that are imputed for the non-
respondent units. 

For the sake of simplicity, we assume, in the following, 
that the sampling weights are constant for all units of the 
population. Thus, we can eliminate w. from equations (2.1) 
and (2.2). We also assume that there is only one observed 
variable for all sampling units. This variable is denoted X. 

3. CURRENT ESTIMATION METHODS 

In this section, equations (2.1) and (2.2) are developed 
under a variety of hypotheses concerning the response 
mechanism and the distribution of data, and appropriate 
estimation methods are described. In section (3.1), we 
assume a uniform response mechanism; in section (3.2), we 
assume a response mechanism that depends on X, while in 
section (3.3), we assume a response mechanism that 
depends on Y. The response mechanisms in sections (3.1) 
and (3.2) are ignorable, whereas the one in section (3.3) is 
not ignorable. 

3.1 Uniform Response Mechanism 

Assuming a uniform response mechanism, we have the 
same response probability for all sampling units. Thus, 
estimator (2.1) becomes: 

M/..C/ = • 
•'ieR 

(3.1) 

where «^ is the total number of respondents. This 
estimator is the very same one we would have obtained by 
using equation (2.2) and by imputing the respondent mean 
for all nonrespondents. 

3.2 Response Mechanism Dependent on X 

When the response niechanism depends on variable X 
(cortelated with Y), estimator (3.1) might be strongly 
biased. It is then preferable to use this variable as addi
tional information for the estimation of mean p . 

Estimator (2.1) can be obtained by replacing 1 Iwp, by 
the estimated response probability using a logistic regres
sion. A response probability model is therefore needed. If 
we only have one observed variable {X) for all sampling 
units, the model can be written as follows: 

P{R. = 1 \X.) I 
1 +exp[-(ao-^aJ^;)] 

where a^ and a, are parameters to be estimated (using the 
maximum likelihood method, for example) and R. is a 

dichotomous variable equal to I if unit / responds and to 0 
otherwise. The estimator of the mean obtained in this way 
is denoted \ip x-

If we prefer to use estimator (2.2) instead, the missing 
values can be imputed using the following model: 

Yi = % + p,X + e., (3.2) 

where PQ and P, are unknown parameters and e, is a 
random error term of zero mean that is not correlated with X^. 
The imputed values are given by: 7/ = B^ + B^X^, where BQ 
and 5,* are estimates (obtained by means of the method of 
least squares using the respondent units) of B^ and 5, 
which are in turn estimates of P̂  and p,. In fact, B^ and 
B^ are the estimates that would have been obtained (using 
the method of least squares) if we had observed all the units 
of samples. The estimator obtained in this way is denoted \ij x-
Note that all the models considered in this document are 

assumed to be valid for all the units of sample S. 
We could also add a residual to the imputed values in 

order to better estimate the variance due to sampling (see 
for example Gagnon, Lee, Rancourt and Samdal 1996). 
However, this technique still does not make it possible to 
estimate the variance due to imputation. Moreover, it tends 
to produce estimates of the mean that are less precise than 
if no residual had been added. Since this paper does not 
deal with variance estimation, we have chosen not to add 
residuals to the imputed values. This has the added 
advantage of simplifying the calculation of \ij x-

3.3 Response Mechanism Dependent on Y 

All the estimators of the mean discussed so far can be 
strongly biased when the response mechanism depends on 
y (nonignorable response mechanism). For such a response 
mechanism, the response probability can be modelled as 
follows: 

P{R. = l\Y.) I 
I +exp[-(a(,•^a,y.)] (3.3) 

Since variable Yis only observed for respondent units, it is 
impossible to obtain an estimate for OQ and a, using the 
maximum likelihood method. Model (3.2) can also be 
used. However, the parameter estimates will not be 
consistent since E(e;Ii?, = 1) and E{E.X.\R. = 1) are not 
zero. Even if we had consistent estimates, the missing 
values could not be imputed as described in section (3.2) 
since E{Y.\R. = 0,X.)*^Q-*-^^X. (Greenlees, Reece and 
Zieschang 1982). If, for example, the response probability 
cortelates positively with the variable of interest Y, then, for 
a given value of X, the mean of nonrespondent units will be 
lower than that of respondent units, and will therefore be 
lower than the mean of all units taken together. A similar 
argument can be presented if the response probability 
cortelates negatively with the variable of interest. In fact, 
it can be shown that 
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E(r,i/?,=o.^,) = Po + p,^ . 
cov{Y.,p{Y.)\X.) 

I -E{p{Y.)\X.) 

where p{Y.)=P{Ri = l\Yi). 

The two approaches in section (3.2) are therefore invalid 
when the response mechanism is not ignorable. In such a 
situation, a better approach would be to estimate the para
meters of models (3.2) and (3.3) simuUaneously. The 
method of maximum likelihood can be used to this end. 
This method, however, requires as an additional hypothesis 
that ertors ê  follow a normal distribution (or any other 
distribution relevant to the type of data analyzed) with 
constant variance o^, and that they be mutually 
independent. The natural logarithm of the likelihood 
function / can be written as follows: 

/ = E , e « l n [ / ' ( W ( J ' , l ^ ) ] 

^ E , e o l " n - E ( p ( r , ) ^ . ) ] , (3.4) 

where f{Y.\Xj) is the probability density function of a 
normal distribution with a mean pg •*• P, X^ and variance a^. 
The method of maximum likelihood consists in finding the 
parameter values which maximize /. To carry out the maxi
mization, it must be possible to approximate E{p{Yi)\X.). 
This can be achieved by using a numerical integration 
method similar to that of Greenlees, Reece and Zieschang 
(1982). In tills paper, tiie following approximation (Zeger, 
Liang and Albert 1988) has been used instead: 

E{p{Y.)\X.) I 
I+exp{-A:[ao + a,(po + p,X.)]} 

(3.5) 

where k = 1 / ^ c V a f + l and c = 16v^/157c. This ap
proximation is based on the hypothesis that ertors follow a 
normal distribution with constant variance. This approxi
mation was preferted to a method of numerical integration 
because it is simpler and computationnally faster, an advan
tage that must be considered seriously before any simula
tion study is undertaken. Finally, equation (3.4) was maxi
mized using the Newton-Raphson algorithm and the NLIN 
procedure of the SAS software (SAS Institute Inc. 1990). 

Once the parameters of models (3.2) and (3.3) have been 
estimated, estimators of the mean (2.1) or (2.2) can be 
chosen. Estimator (2.1) is obtained by replacing Wpj by 
llp'{ y,), where p'{Y.) is the estimated response proba
bility. This estimator is denoted [ip_Y,ML- Estimator (2.2) 
can be obtained by determining imputed values 7/ in such 
a way that Y,ies ̂ f '* minimized and that the constraints 
E,6se, = 0 and £,g5e,X,. = 0 are met, where e. = Y. 
- Po - Pi'X,, for ieR, e. = X,' - po - ^\X., for ieO, and 
Po and p,* are the estimates of pp and p, respectively. The 
estimator of the mean can then be written as follows: 
V^'iYML = Po •*• PiZ/6s^/^"' where wis the size of samples. 

The reasoning behind this approach is that the two previous 
constraints would have been met if variable Y had been 
observed for all units in the sample and if this variable had 
been modelled using model (3.2). 

4. PROPOSED METHOD OF ESTIMATION 

This section describes the proposed method of estimation 
for a nonignorable response mechanism (section 4.1), as 
well as a graphic method (section 4.2) that can be used to 
verify the ertor normality hypothesis of model (3.2). 

4.1 Method of Estimation for a Response 
Mechanism Dependent on Y 

The method of maximum likelihood is valid when ertors 
exhibit a normal distribution and have the same variance. 
When this hypothesis does not hold, it is preferable to use 
a more robust method of estimation. 

If response probabilities p{Y.) were known and greater 
than zero for all sampling units, a robust method of estima
tion (in terms of both the ertor normality hypothesis and 
model 3.2) would consist in minimizing the ertor sum of 
squares weighted by the inverse response probability 
p{Y.). This minimization is equivalent to solving the 
system of equations 

1 
-tieR 

P(Y,) 
(r,-Po-p,J^.)Z,,=0, A: =1,2, (4.1) 

where Z.^ = 1 and Z.̂  =X.. This approach is considered 
robust with respect to the normality hypothesis since the 
method of least squares does not require that the distribu
tion of ertors be specified. Weighting by means of the 
inverse response probability also provides a certain robust
ness in terms of model (3.2). In fact, estimators B^ and B^ 
obtained using equation (4.1) are consistent with respect to 
the response mechanism for B^ and B^ (which are the 
estimators of PQ and P, that would have been obtained if 
there had been no nonresponse) regardless of the validity of 
the model. A similar argument may be found in Samdal, 
Swensson and Wretman (1992, p. 519), but in terms of the 
sample selection mechanism instead of the response 
mechanism. 

Likewise, if the probability density function /(Y. \X.) 
was known (not necessarily normal and yet not dependent 
on the parameters of model 3.3), we could then estimate 
parameters â  and a, of model (3.3) using the maximum 
likelihood method, for example, and solve the system of 
equations 

E,e« -ir^ri[p{Y,)^ 
da, 

+ E / . o ^ l " n - E ( ; 7 ( r ^ ) l ^ . ) ] = 0 , (4.2) 
da 

for A: = 0 and k= I. 
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Thus, the estimates of parameters P,,, P,, OQ and a, are 
obtained by solving the unbiased estimation equations (4.1) 
and (4.2). An algorithm that can be used to find the solu
tion consists in solving alternately the systems of equations 
(4.1) and (4.2) until convergence is achieved. This requires 
the possibility of calculating E{p{Y.)\X.) in equation 
(4.2). However, this last expectation requires that the distri
bution of ertors e, be known, and in all likelihood it is 
unknown. To get around this problem, we must use an 
approximation, and a number of them can be considered, 
including approximation (3.5). Another option would be to 
develop a strategy based on the bootstrap method by 
selecting the respondent units proportionally to their inverse 
response probabiUty. However, this method requires consi
derable computer processing time, and is not considered in 
this paper. Instead, we have chosen the following approxi
mation, obtained by linearizing p{Y.) using a Taylor series 
assessed at point E{Y.\X.) and by taking the expectation 
of the first two terms in this series: 

E{p{Y.)\X.)^p{E{Y^\X^))=p{%^^,X.). (4.3) 

It should be noted that the expectation of the second term 
in the series is zero. This approximation offers the advan
tage of requiring only the first moment of the distiibution of 
Y, conditional on A',. In this sense, it should be robust with 
respect to the ertor normality hypothesis since it does not 
require that the ertor distribution be specified. Of course, 
if the distribution of enors is known or can be properly 
estimated, it will be possible to find better approximations 
than (4.3) although, in this case, it may be preferable to use 
the maximum likelihood method. 

Another interesting property of approximation (4.3) is 
that alternately solving the systems of equations (4.1) and 
(4.2) might be achieved using the following algorithm: 

1. determine initial values for the response probabilities 
(or for parameters â  and a,), e.g., let p{Y.f°^ = 1 for 
all the respondent units; 

2. letj = 1, wherey is the number of iterations; 
3. solve the system of equations (4.1) by means of the 

curtent response probability estimates, p{Y.Y^'^\ 
using a weighted regression procedure to obtain Pg 
and PV>; 

4. impute the missing values using Y^-"^ = p[/̂  + ^\^^X. for 
ieO; 

5. solve the system of equations (4.2) by using a logistic 
regression procedure to obtain p{Y.Y^^; 

6. stop once convergence has been achieved, otherwise let 
j =j + I and return to step 3. 

It is sufficient then to simply have a linear regression 
procedure and a logistic regression procedure to obtain the 
desired estimates. This algorithm is a very efficient means 
of finding the solution although, in certain cases, many 
iterations might be needed before convergence is achieved. 

In actual practice, it did converge in all cases where it was 
used. It should also be noted that this algorithm shows 
certain similarities with the EM algorithm used by 
Dempster, Laird and Rubin (1977), except that here we do 
not maximize a likelihood function. 

For the simulations in the next section, we selected 
instead the Newton-Raphson algorithm which converges 
more rapidly. However, the above-mentioned algorithm 
had to be used for the few cases in which the Newton-
Raphson algorithm met with convergence problems. 

The proposed algorithm might be very useful as a means 
of providing initial values for a more rapid algorithm such 
as the Newton-Raphson one. The proposed algorithm could 
simply be used with a not very demanding convergence 
criterion so that, after only a few iterations, it could provide 
sufficiently good initial values to ensure convergence of the 
Newton-Raphson algorithm. In a different context, 
Beaumont and Demnati (1998) used a similar approach by 
beginning the iterative process using an algorithm of the 
EM type so as to provide the initial values for a more rapid 
algorithm of the Newton-Raphson type. They were able to 
show empirically that the combination of the two algo
rithms represents a sound compromise between processing 
time and efficiency in finding a solution. 

As in section (3.3), once the parameters of models (3.2) 
and (3.3) are estimated, we can select estimators of the 
mean (2.1) or (2.2). Estimator (2.1) is obtained by replacing 
Wpj by llp'{Y.), where p'{Y.) is the estimated response 
probability. This estimator is denoted lipy^poB- Estimator 
(2.2) is also obtained as in section (3.3) by determining the 
imputed values Y' in such a way that ^^^^ e, is minimized 
and the constraints £,^^ e^ = 0 and £ .̂ ^ e. X^ = 0 are met, 
where e. = Y. -BQ -B^X., for ieR, and e. = 
Yj' -BQ -B^X., for ieO. This estimator is denoted 
\ij YpoB - The quality of these two estimators of the mean 
will depend largely on the validity of models (3.2) and (3.3) 
and on the quality of approximation (4.3). 

A modification of step (5) for the algorithm presented in 
this section was proposed by Beaumont (1999). The results 
of a simulation study show that this modification provides 
results that are slightly better than those obtained using the 
method proposed in this paper. However, this no longer 
involves using the maximum likelihood method to estimate 
the parameters of model (3.3), given that f{Y.\X.) is 
known and a logistic regression procedure can no longer be 
used for step (5). It should nevertheless be mentioned that 
it is not absolutely necessary to use the method of maximum 
likelihood to estimate â  and aj, although it is the method 
preferted in this paper. 

4.2 Verifying the Error Normality Hypothesis 

In order to use the method of maximum likelihood, we 
might be interested in verifying the ertor normality hypoth
esis (or rather the residual normality hypothesis since the 
ertors are not observed). In the absence of nonresponse, a 
traditional method (D'Agostino 1986, p. 25, equation 2.11) 
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consists in producing the graph of O"' [F^(e,)] in terms of 
residuals ê , for ieS, where <I>(.) is the distribution 
function for a random variable having the standard normal 
distribution, and F^{.) is the empirical distribution 
function. Whenever ertors exhibit normal distribution, the 
points in this graph should more or less fall along a line 
having a slope 1 la passing through the origin. 

If tiiere is nonresponse, the same strategy can be used as 
in the previous paragraph, but the empirical distribution 
function must be estimated using the respondent units. 
Since the units in the sample respond with unequal proba
bilities, the estimated empirical distribution function can be 
given by the formula (Samdal, Swensson and Wretman 
1992, p. 199): 

K(e^) 
Y^j:jeR « ej^e, ^'P'(Yj) 

TjeR^fp'(Yj) 

Note that, in this last equation, the response probabilities 
are estimated as opposed to the Samdal, Swensson and 
Wretman formula, in which selection probabilities are 
known. Thus, the ertor normality hypothesis can be 
verified by producing the graph of O' ' [F^{e)] in terms of 
residuals e., for ieR. This method will be valid provided 
that F^{e) can cortectiy estimate F^{e.), as is the case 
when the response probabilities are cortectly estimated. 
When the nonresponse is not ignorable, and when the 
method of estimation proposed in this paper is used, the 
response probabilities should be properly estimated if 
models (3.2) and (3.3) are appropriate along with 
approximation (4.3). 

5. SIMULATION STUDY 

In order to compare the estimators of the mean presented 
in the two previous sections, we carried out a simulation 
study. We simulated 4 populations with a size of 1,000 
according to model (3.2) with Pg = 2 and P, =3. Random 
variables X. are independent of one another and tiiey follow 
an exponential distribution of mean 1. Ertors e. are inde
pendent of one another, are not cortelated with the X. and 
have a mean of zero and a variance o .̂ In two populations, 
the ertors follow a normal distribution (ê .~ Nor(0,a^)), 
and in the other two populations, the ertors follow an 
exponential distribution of mean a recentred at 
0(e,. ~Exp(o)-o). For each of these distributions, one 
population has a standard deviation a equal to 1.5 corte
sponding to a squared coefficient of cortelation (between X 
and Y) of 80% (/?^ = 80%), and the other has a standard 
deviation equal to 3 cortesponding to a square coefficient 
of cortelation of 50% (^ ^ = 50%). 

For each population, we simulated 1,000 samples of 
respondents according to model (3.3) with a, = 0.5. 
Parameter â  was determined separately for each of the 4 
populations, so that the mean response rate would be 70%. 

This parameter varied between -1.185 and -0.958. Note 
that we have here a census {n =N=l 000). The advantage 
of this is that we can concentrate solely on the nonresponse 
ertor since there is no sampling ertor. Moreover, the fact 
that populations of relatively large size (1,000) are gener
ated makes it possible to emphasize the bias of the esti
mators instead of their variance, since the variance should 
diminish as the size of the population increases (for a fixed 
mean response rate). 

For each of the 1,000 samples of respondents, we calcu
lated the 7 estimates of the mean described in the two 
previous sections. We then calculated, for each population, 
the mean and the variance of these 1,000 estimates, denoted 
p * and S . respectively. Finally, we calculated an estimate 
of the relative bias (expressed as a percentage), RB* = 
[ (p ' -p) /p]x 100%, an estimate of the standard ertor 
associated with this relative bias, SE* = 
(100/p)JS .11 000, and an estimate of the root mean 

square ertors, RMSE* = JS . + (p* -p)^. 

The results of the simulation study are shown in Table 1. 
An analysis of this table indicates that, regardless of the 
ertor distribution, the relative bias and the mean square 
ertor of all the estimators is lower when the cortelation 
between Jf and y is greater, which is not surprising. 

Table 1 
Simulation Results Used to Compare 7 Estimators of the Mean ^^ 

Estimator 

Mf.i/ 

i'p.x 
My.r.Aft 

I^P.r.ROB 

M/.A-

M/.l-.M. 
• 

i^/.r.ROB 

Mf.r.Affi 

\'p.r.ROB 

Hx 

^U.ROB 

RB*(%) SE' 

Population with 

16.90 
5.65 

-0.14 

1.14 
5.50 
0.13 
0.64 

0.03 
0.02 
0.03 
0.03 
0.02 
0.03 
0.03 

= 80% 

RMSE* RB*(%) 

R^=50% 

SE' 

nomially distributed enxjrs 

0.84 
0.28 
0.05 
0.08 
0.27 
0.04 

0.05 

Population with exponentially 

17.83 
5.44 

-0.54 
1.31 
5.19 

-3.42 
0.49 

0.04 
0.02 
0.02 
0.02 
0.02 

0.03 
0.02 

0.86 
0.26 
0.04 
0.07 
0.25 
0.17 
0.04 

26.68 
18.02 

1.27 
10.12 
17.74 

1.03 

7.53 

0.04 
0.03 
0.10 
0.06 
0.03 
0.07 
0.06 

distributed errors 

26.60 
16.06 
5.18 
7.43 

15.41 

-25.47 

4.07 

0.05 
0.04 

0.05 
0.03 
0.03 
0.05 

0.03 

RMSE' 

1.33 
0.90 
0.17 
0.51 
0.89 
0.13 
0.39 

1.29 
0.78 
0.26 
0.36 
0.75 
1.23 
0.20 

An analysis of the relative bias indicates tiiat the method 
of maximum likelihood provides best results when the 
ertors are normally distributed, followed by the robust 
estimation method described in section (4.1). Estimators 
which assume a nonignorable response mechanism have a 
lower relative bias than those which incortectiy assume an 
ignorable response mechanism. Among the latter esti
mators, the most biased is estimator p^^. For a given 
method, there is generally little difference between the 
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weighted estimator (2.1) and the estimator that includes 
imputed values (2.2). However, the latter must be given a 
slight advantage. 

The conclusions in the previous paragraph always apply 
when ertors are exponentially distributed, except that the 
robust estimation method becomes the best. This observa
tion should not be surprising since the method of maximum 
likelihood is based on the ertor normality hypothesis. How
ever, the weighted estimator \ipY,ML remains slighUy 
biased, and this is more difficult to explain. 

The conclusions drawn from an analysis of the relative 
bias still apply when analyzing the mean square ertor. In 
fact, estimators which are very biased show a strong 
tendency to having a high mean square ertor and vice versa. 

6. DISCUSSION 

When the hypothesis of a nonignorable response 
mechanism is realistic, and when the hypothesis of ertor 
normality for linear regression model (3.2) is justified, 
using the method of maximum likelihood may be appro
priate. However, when the latter hypothesis is not justified, 
the results of the simulation study described in section 5 
show that the robust estimation method presented in this 
paper is preferable. 

Moreover, Beaumont (1999) described the results of 
another simulation study indicating that the estimation 
method proposed in this paper is robust with respect to both 
the ertor normality hypothesis and model (3.2). As for the 
method of maximum likelihood, it has been shown to be 
even more sensitive to the validity of model (3.2) than to the 
hypothesis of ertor normality. The latter method should 
therefore only be used when all the hypotheses associated 
with models (3.2) and (3.3) are reasonable. 

Obviously, all estimators show litUe bias when non-
response is very low. Likewise, when the coefficient of 
cortelation between X and Y is very high, all estimators 
show littie bias, except for the estimator which assumes a 
uniform response mechanism p^ y. In either case, the 
choice of an estimator should be based on the criterion of 
simplicity, which favours the estimators in section (3.2), 
specifically estimator nj^. 

It should be noted that models (3.2) and (3.3) could be 
complexified according to the nature of the problem. For 
example, other independent variables could be included in 
these models. Variable 7 could also be categorized using 
dummy variables, and these dummy variables could be used 
in model (3.3) instead of variable 7 itself. 

In this paper, we have dealt only with the problem of the 
estimation of a mean when the response mechanism is not 
ignorable. However, the methods described in sections 3 
and 4 apply to other types of estimation. For example, 
weights or imputed values could be used for the estimation 
of parameters in a given regression. 

This paper has attempted to describe a robust estimation 
method with respect to the hypothesis of ertor normality for 
model (3.2), making it possible to reduce the bias due to a 
nonignorable response mechanism. In some future work, it 
would be interesting to evaluate simple methods of variance 
estimation using imputed data and this robust estimation 
method. 
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An Approximate Design Effect for Unequal Weighting 
When Measurements May Correlate With Selection Probabilities 

BRUCE D. SPENCER' 

ABSTRACT 

It is common practice to estimate the design effect due to weighting by 1 plus the relative variance of the weights in the 
sample. This formula has been justified when the selection probabilities are uncorrelated with the variable of interest. An 
approximation to the design effect is provided to accommodate the situation in which correlation is present. 

KEY WORDS: Weighting; Deff; Sampling variance; Complex samples. 

1. INTRODUCTION 

It is common practice to weight observations in an 
unequal probability sample by the reciprocals of selection 
probabilities. The rationale is that failure to use the weights 
will cause bias if the sampling weights cortelate with the 
variable of interest. A drawback to weighting is an increase 
in sampling variance when the weights vary excessively in 
the sample. This increase may be quantified by the design 
effect. T^e design effect is the ratio of the variance of the 
statistic of interest under the design of interest to the 
variance of the statistic under simple random sampling with 
the same sample size (Kish 1965). Design effects are 
important both for approximating standard ertors after the 
sample is in hand and for predicting standard ertors ahead 
of time, which is critical for efficient design of samples. 

Kish (1965, 1992) discussed an approximation for the 
design effect for weighted estimates from unequal proba
bility samples: I + rvw, with rvw defined as the relative 
variance of the weights in the sample. Thus, if w, is the 
weight of unit / in the sample and vv is the sample mean, 
rvw=n'^Y!i-i(^i~'^)^l^^- G^t'ls'"' Haeder, and Lahiri 
(1999) used a superpopulation model to derive a design 
effect when clustering is present as well. Their formula, 
which agrees with design-based results in Kish (1965), 
reduces to 1 -i- rvw when there is zero inti-aclass cortelation. 
The 1 -t- rvw approximation for the design effect is based on 
a model or design in which the weights are uncortelated 
with the variable of interest (and hence an unweighted 
estimate would serve as well or better than the weighted 
estimate). Here we develop an approximation to the design 
effect under a model in which cortelation may be present. 
In developing the approximation we do not assume that the 
population is sampled from a superpopulation. The accu
racy of the approximation depends only on the charac
teristics of the sample design and the population of interest. 

For simplicity, we will discuss single-stage unequal 
probability sampling with replacement. Heuristic extension 
of the results to sampling without replacement is indicated 
in section 4. 

2. REGRESSION REPRESENTATION OF 
POPULATION AND SAMPLE DESIGN 

hetyi denote the measurement of interest, P. the (draw-
by-draw) selection probability for a sample of size n, and 
w. = ll{nP) the sampling weight for unit / in a population 
of size M I ^i ^N. Observe tiiat P = Ef=,i',/iV = A^"'. 
Consider the least-squares population regression line 

3', = a + P^, + £/. (1) 

witha = f-p/M ^ = lUyi-Y){PrP)fT.UPi-P)^' and 
Y=Y.i=i Yil^- Denote the population variances of the y s, 
tiie e' s, the e '̂ s, and the vv's by o ,̂ o ,̂ o 2, and o^, with, for 
example, a = Ĵ ,=i(>', - Y)^IN. Denote the population corre
lation between y and P by p p, between e and w by p̂ ^̂ , 
and between ê  and w by p^ ^. It follows from the 
properties of least-squareSj, or equivalentiy from the defi
nitions of a and p, that X/=i^/^i^E; = i^//^=0 and Og = 
(1 - Pyp)ay. If data are available, we can fit the regression 
representation (1) and estimate a, p, a, and p by, say, 
a, p, 6j and p. 

Let Y =X"=î ,>', denote the usual weighted estimator of 
the population total, Y. The variance of Y is well-known 
(Cochran 1977,253) to be 

V{Y) =n-''£P.{y.lP^-Y)\ (2) 
/=i 

Using the regression formulation (1), we may re-express 
the variance as 

V{Y) = a''N{W-Nln)Hl -pl.p)<^l^^Np^^,^a^2a^ 

+ 2a7Vpg_^OgO, (3) 

where ^ = X/=i^//^-
This expression does not rest on any assumptions about 

the fit of the regression model. (See section 5 for deri
vation). 

If die regression model fits well enough so that p^ ^ and p̂  ^ 
are zero, then the variance in (3) simplifies to V{Y) = 
a^N{W - NIn)-^ {I -p p)a NW. If simple random sampling 
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with replacement had been used, the variance would have 
been n '^N^a . Therefore, if p^ ^ and p are negligible, 
the design effect is approximately 

deff = (1 -pyp)nWIN + {aJa/{nWIN-1). (4) 

This approximation does not require that the residuals 
from the regression are negligible, and it can hold when ô  
is large. A referee has pointed out that the condition that 
p^ ^ and pg ^ are negligible may seem unnatural in a model 
that regresses7 on P rather than on w^^llP. Note, however, 
that if we had not only zero correlation between e and P but 
also independence, then we would have zero cortelation 
between functions of e and functions ofP, and so p^i ̂  and p̂  ^ 
would be zero as well. 

3. ESTIMATION OF DESIGN EFFECT 

To estimate the design effect after the sample is in hand, 
we may use 1 -i- rvw to estimate nWIN. To understand the 
rationale for this, note first that 

n - 1 ^ wf 
I -i- rvw = ; = 1 (5) 

w^ 

The expectation of the numerator is NWIn. The expecta
tion of w is N/n, and so the denominator of (5) may be 
taken as an estimator of {N/nf. Dividing the expectation 
of the numerator by {N/nf, we obtain nWIN. Thus the 
design effect may be estimated from the sample by 

(1 - p;p){l + rvw) + (a/6 )2(rvw). (6) 

As a special case, note that if we set p ^ = 0, the case of 
"haphazard weighting" (Kish 1992), then the estimate of 
the design effect simplifies to 

1 + r v w + r v w ( a W ) . (7) 

This estimate is close to Kish's approximation when 
d/d is near zero. 

4. SAMPLING WITHOUT REPLACEMENT 

To derive the exact design effect for sampling without 
replacement would be more complex, as it would require 
consideration of joint selection probabilities for pairs of 
units. A heuristic extension of the results is easy, however. 
Recall that tiie ratio of the variance of a sample mean under 
simple random sampling without replacement to the 
variance under with-replacement sampling is approximately 
(1 - nIN). 

The results we have derived for the design effect will 
apply to single-stage unequal probability samples of n units 
without replacement if the variance of the Horvitz-
Thompson estimator of the total is approximately (1 -nIN) 
times the variance in (2), with Pi taken as n ' times the 
overall selection probability for unit / (Samdal, Swensson, 
and Wretman 1992, 154). 

5. DERIVATION OF VARIANCE FORMULA (3) 

From (2) we have V{Y) = «'^ZtiY^f^i " Y^). Next, 
note that (1) implies that 

Y^ = {Na + p)2 = Â â̂  + 2Na^ + p (8) 

and 
N 

Eyf'Pi = E [a'/^, ̂  P'^, + E?/̂ , + 2ap + 2aE.IP. * 2pe,] 
i = l 

= a T Pi' + P' + E e?/^, + 2iVap + 2af: £.//>. 
(=1 ;=1 1=1 

N N N 

= a^«53 w, "̂  P̂  •*• " E E?*̂ / "̂  ̂ A'iaP +2a«53 ̂ ,^r (9) 1=1 

Subtracting (8) from (9) and dividing by n yields 

E 
/ = i 

V{Y) = a^J2w.-Nyn + X) ef w. + 2aX) E;W. . 
) 1=1 1=1 

To obtain (3), note that 
N 

^e^w.=Np^^^a^2a^ + NWal 
1=1 

and 

= ̂ Ps\w<^e'^. + (1 -pL)o^AW 

E e.w.=Np a a . II rE,w E w 
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On the Validity of Markov Latent Class Analysis for 
Estimating Classification Error in Labor Force Data 

PAUL P. BIEMER and JOHN M. BUSHERY' 

ABSTRACT 

The primary goal of this research is to investigate the validity of Markov latent class analysis (MLCA) estimates of labor 
force classification error and to evaluate the efficacy of MLC analysis as an alternative to traditional methods for evaluating 
data quality. We analyze interview data from the Current Population Survey (CPS) for die first three months of each of three 
years - 1993, 1995, and 1996 - and conduct an additional analysis of the CPS unreconciled reinterview data for 
approximately the same time periods. The reinterview data provides another approach for estimating CPS classification 
error that, when compared with the MLC estimates, helps to address the validity of the MLCA approach. Five dimensions 
of MLCA validity are addressed: (a) model diagnostics, (b) model goodness of fit across three years of CPS, (c) agreement 
between the model and test-retest reinterview estimates of response probabilities, (d) agreement between the model and test-
retesl reinterview estimates of inconsistency, and (e) the plausibility of patterns of classification error. In addition, we 
consider the robustness of the MLCA estimates to violations in the Markov assumption. Our analyses provides no evidence 
to question the validity of the MLC approach. The method performed well in all five validity tests. 

KEY WORDS: Panel surveys; Nonsampling error; Unemployment; Data quality. 

1. INTRODUCTION 

The Curtent Population Survey (CPS) is a household 
sample survey conducted montiily by the U.S. Bureau of tiie 
Census to provide estimates of employment, unemploy
ment, and other characteristics of the general U.S. labor 
force population. National estimates from the CPS of the 
size, composition, and changes in the composition of the 
labor force are published each month by the U.S. Bureau of 
Labor Statistics in Employment and Earnings. The CPS 
labor force estimates comprise one of the Nation's key 
economic indicators; since 1942, the Federal govemment 
has used the CPS data series to monitor month-to-month 
and year-to-year changes in labor force participation. 

Given the importance of the CPS data series to public 
policy, there have been numerous evaluations of the accu
racy of the data. For example, since the early 1950s, the 
Census Bureau has conducted the CPS Reinterview 
Program to evaluate the quality of the labor force data. The 
program involves drawing a small subsample (less than 5 
percent) of the CPS respondents and re-asking some of the 
questions asked in the original interview - particularly the 
labor force questions. Until 1994, about one fourth of the 
sample received an unreconciled reinterview and three 
fourths received a reconciled reinterview. The reconciled 
reinterview component, which was used primarily for inter
view quality control purposes, was discontinued in 1994 
due to concerns about tiie quality of the data. However, the 
unreconciled reinterview continues today and is used to 
estimate the test-retest reliability (or response consistency). 
Forsman and Schreiner (1991) provide a detailed descrip
tion of the CPS Reinterview Program. 

Several papers prepared by researchers outside the 
Census Bureau analyze the CPS Reinterview Program data 
to estimate the classification ertor in the CPS {cf. Sinclair 
and Gastwirth 1996, 1998; Biemer and Forsman 1992; 
Chua and Fuller 1987; Poterba and Summers 1986; Abowd 
and Zellner 1985). Recently, Poterba and Summers (1995) 
used data from the CPS Reinterview Program to estimate 
the CPS classification ertor rates and to evaluate the impact 
of classification ertor on labor market transition rates. As in 
the 1986 paper, their more recent analysis is based on the 
assumption that the CPS reinterview reconciliation process 
yields data which may be considered as the truth. Abowd 
and 2^11ner (1985) took similar approach. 

Several authors (v/z., Sinclair and Gastwirth 1996, 1998; 
Biemer and Forsman 1992; Forsman and Schreiner 1991; 
Schreiner 1980) question the assumption that reconciled 
reinterview yields tme values. They provide considerable 
evidence that tiie reinterview data are subject to substantial 
classification ertors. In fact, this realization was respon
sible for the Census Bureau's decision to eliminate the 
reconciled reinterview portion of the CPS Reinterview 
Program in 1994. 

As an alternative to the infallibility assumption, Chua 
and Fuller (1987) and Fuller and Chua (1985) apply a type 
of latent structure model to the CPS reconciled reinterview 
data to estimate the CPS response probabilities. For model 
identifiability, they impose tight restiictions on the response 
probabilities, forcing the bias due to classification ertor to 
be zero for both interview and reinterview. In addition, tiiey 
assume independent classification ertors for the interview 
and reinterview (referted to as the ICE assumption in the 
literature) and across the months in sample. The ICE 
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assumption is a limitation of their analysis because evidence 
in the literature suggests that the assumption may not hold 
for the CPS (see, for example, O'Muircheartaigh 1991, and 
Singh and Rao 1995). Consequentiy, response probabilities 
estimated using the Chua and Fuller approach may be 
biased. 

Sinclair and Gastwirth (1996) and Sinclair and Gastwirth 
(1998) apply a latent class modeling approach to the CPS 
interview-reinterview data using model restrictions origi
nally proposed by Hui and Walter (1980) for medical 
diagnostic testing. Using the interview-reinterview data 
cross-classified by sex, Sinclair and Gastwirth assume that 
classification ertor probabilities are equal for males and 
females while labor force participation rates differ for these 
groups. Since the model parameters consume all the avail
able degrees of freedom for parameter estimation, no resi
dual degrees of freedom are available to test model lack-of-
fit. Consequently, their analysis does not directly address 
whether these model assumptions hold for the CPS data. 

In an examination of the determinants of rotation group 
bias, Shockey (1988) also applies latent class analysis to the 
CPS. His analysis suggests that the rotation group bias 
problem first reported by Bailar (1975) may be caused by 
response ertor arising from the interview administration. 
Shockey did not use reinterview data but rather relied on 
confirmatory factor analytic methods to support his claims. 
The sizes of his ertor rates were much larger than those 
reported by other authors which may be an indication of 
model bias. Unfortunately, like Sinclair and Gastwirth, 
Shockey's data set is not adequate to test fully the 
assumptions of the model he used. 

The method of Markov latent class analysis, a promising 
approach for estimating the classification ertor in panel 
survey data, previously has not been applied to the CPS. 
This method takes advantage of the repeating nature of 
panel surveys to extract information on classification ertor 
directly from the interview data. The MLCA model is 
really a combination of two models: a latent Markov chain 
model representing the month to month transitions among 
the tme labor force classifications and a classification ertor 
model representing the deviations from the true and 
observed labor classifications. 

Because MLCA takes advantage of the repeating nature 
of panel surveys to extract information on classification 
ertor direcUy from the interview data, it does not require 
external, infallible measurements or remeasurements 
obtained by reinterview methods. In that regard, the 
method offers some advantages over both the Census 
Bureau's traditional methods and the methods of Chua and 
Fuller, Abowd and Zellner, Porterba and Summers, and 
Sinclair and Gastwirth for evaluating survey data quality in 
surveys. In many panel surveys, reinterviews are not 
feasible due to budget constraints, field work complexity, 
and respondent burden. MLCA may be the only way to 
assess the measurement ertor in these surveys. For panel 
surveys, such as the CPS, where reinterview data are 

available, the reinterview and MLCA methods offer alter
native analytical approaches for evaluating classification 
ertor. For example, as in the present analysis, MLCA can 
be used to model and test the traditional reinterview 
analysis assumptions. Further, MLCA analysis provides a 
statistical framework for combining the panel data and 
reinterview data to obtain even more information about 
classification ertor (van de Pol and Langeheine 1997). 

Another advantage of MLCA is the potential for incor
porating the entire panel data set into the estimates of classi
fication ertor rather than only the relatively small sample 
selected for reinterview. As a result, a number of data 
quality issues for panel surveys that previously could not be 
explored for lack of data may now be tractable. 

This paper reports our findings regarding the utility of 
the MLCA modeling approach for evaluating labor force 
classification ertor in the CPS. Software for fitting a wide 
variety of MLCA and other latent class models is available 
from several sources. The software employed in our 
analysis is CEM (Vermunt 1997), which can fit a large class 
of log-linear models with or without latent variables. The 
flexibility and generality of this software allow the 
measurement ertor analyst to test a considerable range of 
classification ertor models and to explore hypotheses 
regarding the causes and cortelates of classification ertor. 

In the next section, we describe the MLCA model and 
estimation methodology and its theoretical underpinnings. 
In section 3, we develop the MLCA methodology for the 
CPS application, fit a series of models to the CPS, and 
examine the fit of these models. In this section, we also 
produce estimates of classification ertor based upon the best 
MLCA model. In section 4, we conduct a number of tests 
of the validity of the MLCA estimates including a compari
son of the MLCA estimates with those from new interview-
reinterview analysis. Finally, in section 5, we summarize 
our findings and make recommendations regarding the 
utility of the MLCA method for future evaluations of labor 
force classification ertor. 

2. MARKOV LATENT CLASS ANALYSIS 
FOR THREE TIME PERIODS 

Markov latent class models were first proposed by 
Wiggins (1973) and refined by Poulsen (1982). Van de Pol 
and de Leeuw (1986) established conditions under which 
the model is identifiable and gave other conditions of esti-
mability of the model parameters. In this section, we devel
op the MLCA model in the context of the CPS and suggest 
other applications and its generalizations. 

Let the CPS target population be divided into L groups 
(such as age, race, or sex groups) and let the variable G be 
the label for group membership. For example, G. = l if the 
/-th population member is in group 1, G. = 2 for group 2 
and so on. Let X ., Y ., and Z . denote the true labor 
force classifications for the /-th person in group 
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G 
as 

g(for g = l,...,L and / = !,.. . ,«) where X . is defined 

if person (g, /) is employed 

in time period 1 

if person (g, /) is unemployed 

in time period 1 

if person (g, /) is not in the labor force 

in time period 1 

^«.= 

with analogous definitions for Y . and Z . for periods 2 
and 3 respectively. Let 7t̂  . denote Pr(A' = x, Y = y, 
Z=z\G=g), let n .g^ denote Pr(y=;'IA'=jc, G=g) and let 
Tc. denote Pr(Z='zir=;',A'=x,G =g). Then, tiie proba
bility that an individual in group g has labor status x in 
period 1,>' in period 2, and z in period 3 is 

(1) ^x.y.zlg ~ ''^x\g^y\g.x''^z\g,x,y 

Finally, under the first order Markov assumption, a neces
sary condition for model identifiability (see Van de Pol and 
de Leeuw 1986), we assume 

'^rlg.jt,;' ".-Ig.;- (2) 

i.e., at period 3, the trae status of an individual does not 
depend on the period 1 status, once the period 2 status is 
known. An alternate interpretation is that the current status, 
given the prior period's status, does not depend upon the 
prior period's transition. 

One can conceive of a number of scenarios where the 
Markov assumption may not hold for monthly labor force 
status. The assumption would be violated, for example, if 
individuals who are unemployed in period 2 are more likely 
to be unemployed in period 3, given they were also 
unemployed in period 1. The group of people unemployed 
in period 2 and period 1 probably includes a higher propor
tion of chronically unemployed people than the group 
unemployed in period 2 but not in period 1. That group 
(unemployed period 2, not period 1) likely contains a higher 
proportion of people temporarily out of work while 
changing jobs. 

However, the validity of this assumption cannot be 
adequately explored using the observed data because the 
data are distorted to some unknown extent by the presence 
of classification ertors. At least two methods for assessing 
the validity of the Markov assumption for panel data are 
available. Van de Pol and de Leeuw (1986) suggest a 
method based upon four waves of panel data tiiat substitutes 
a second order Markov restriction for tiie first order restric
tion in (2). Another method, suggested by van de Pol and 
Langeheine (1997), uses a combination of labor force panel 
data and the reinterview data at each time period. Neither 
of these methods was employed in this paper to test the 
MLCA assumption directly. Instead, we assessed the 
overall validity of the MLCA estimates using the methods 
discussed in section 3.2 below. In section 3.6 we provide 

some results from a simulation study to illustrate the robust
ness of the MLCA estimates of classification ertor to viola
tions of the Markov assumption. 

Now, consider the observed labor force classifications 
from the CPS denoted by A ., B ., and C . for periods I, 
2, and 3, respectively, where 

1 if person (g, /) is classified as employed 
in time period 1 

2 if person (g, /) is classified as unemployed 
in time period I 

3 if person (g, /) is classified as NLF 
in time period I 

gi 

with analogous definitions for the response indicators, B ., 
and C for periods 2 and 3, respectively. Using an exten
sion of the notation established above, we denote the 
response probabilities in each of these classifications as 
1l^^g^ = Pr{A=a\G=g,X=x), with analogous definitions 
fo"" ^big.y ̂ ^^ "cig,2- Thus, 7ĉ  = i|g_, = 2 is the probability 
that the CPS classifies a person in group g as employed 
(^ = 1) when the tme status is unemployed {X = 2). 
Likewise, 7t„ = 2lg,j: = 2 is the probability that the CPS 
cortectiy classifies a person in group g as unemployed. 

Finally, we assume 
71 'a,b,c\g,x,y,z '"olgAT^AIgy'^clgz (3) 

or that classification ertor in the observed labor forces 
status is independent across the three months. This assump
tion, referted to as the local independence assumption, has 
been investigated for the CPS by Meyers (1988) in his 
review of the Abowd and Zellner (1985) estimation 
approach. Meyers concluded tiiat the assumption "seems a 
reasonable approximation." Singh and Rao (1995), who 
studied the robustness of the assumption under a number of 
labor force population scenarios, reached a similar conclu
sion. Van de Pol and Langeheine (1997) modeled the joint 
distribution of panel data and reinterview data using latent 
class models to test for local independence for various types 
of labor force transitions. They found some evidence that 
people who change labor force status have lower reliability 
than those who do not, however the effect was quite small. 
Therefore, we shall also assume (3) without attempting any 
further investigation of its validity in this paper. 

The CPS labor force classifications for each month of 
the first quarter of the year are the outcome variables in our 
analysis. Let A, B, and C denote the observed classifica
tions and let X, Y, and Z denote the (unobserved) true 
classifications for January, Febmary, and March, respec
tively. Let G denote some grouping (or stratification) 
variable to be defined later in the analysis. Under these 
assumptions, we can write the probability for classifying a 
CPS sample member in cell (g, a, b, c) of the GABC table 
as follows: 
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" g , o , 6 , c - E \^xlg^a\g,x^y\x,g'^b\y,g^z\g,y^c\g,z- (4) 
x,y,z 

Extensions to more than one grouping variable are straight
forward. 

Under multinomial sampling, the likelihood function for 
the GABC table is 

pr{GABC)=k n <:.v 
g, a, b, c 

(5) 

where k is the multinomial constant and FI denotes the 
product of the terms over the subscripts g, a, b, and c. 
Under the assumptions made previously, the model para
meters are estimable using maximum likelihood estimation 
methods. Van de Pol and de Leeuw (1986) provides the 
formula for applying the E-M algorithm to estimate the 
parameters of this model and describes the conditions for 
their estimability. The {EM software, applied to the CPS 
data sets in the next section, implements these methods. 

3. APPLICATION TO THE CPS 

3.1 Notation 
Part of our evaluation of the MLCA approach will 

compare the MLCA estimates of classification ertor with 
estimates derived fi'om the analysis of interview-reinterview 
data. Using the notation in the previous section, let A and 
A' denote the labor force classification for the original and 
reinterview, respectively, and define Jt̂  = Pr(^ =a)and 
7tg, = Pr(i4' = a'). hetAA 'denote the observed interview-
reinterview KxKcross-classification table and let n '^ '^ 
denote the KxK matrix of cell probabilities, Pr(.^ = a, 
A' = a' \X = x). If we assume that n^J =Vr{A = a, 
A' =a'\X = x) = 71̂  1̂  referted to in the literature as the 
assumption of parallel measures (Bohmstedt 1983), then 

.AA'\X . .A\Xf.^A\X\T j t " - - = « - • ' ' ( T t ^ ' - ^ ) ' ( 6 ) 

where (n'"'^)^ denotes the transpose of vector of condi
tional probabilities, n'̂ ''*̂ . 

Let n^ denote the /C-vector of true classification pro
babilities. Then 

(7) -AA' ^-AA'\X-X 
7 1 - 7 1 71 

i.e., the probability of the observed interview-reinterview 
classification table, 7r^, is equal to the product of the 
matrix of conditional response probabilities, it'^'^^, and 
the vector of true classification probabilities, 71"̂ . 

As described in the previous section, the MLCA of the 
CPS longitudinal data will provide maximum likelihood 
estimates of 71̂^ '''̂  and it^, allowing the estimation of n'*''' 
via (6) and (7). We can estimate the test-retest reliability, 
R, for any labor force category by applying the usual esti
mation methods (see, for example, Bohmstedt 1983) to this 
estimate of n"^ . For our analysis, we compute the index 

of inconsistency, 7=1 - R, which is the traditional reli
ability measure for CPS labor force data (see U.S. Bureau 
of the Census 1985). Let 7 ,̂ denote the index of inconsis
tency for category A = a. Then an estimator of 7̂  is 

gdr 
2ft,(l-7tJ . (»> 

where gdr is the gross difference rate defined by 

gdr^ = 2 E .̂ 
a * a' 

a,a' (9) 

and where TI and ft „, denote latent class estimates of 7t„ 
a a, a a 

and 71̂  ^,, respectively. 
U.S'. Bureau of the Census (1985, 88-91) provides the 

formulas for standard ertors as well as an aggregate 
measure of inconsistency for all K categories combined, 
referted to as the aggregate index of inconsistency, I^g. 
The aggregate index is a question-level measure of unrelia
bility equal to 1 - K (Hess, Singer and Bushery 2000) where 
K is Cohen's kappa reliability measure (Cohen 1960) and is 
a weighted average of the category-level indexes. 

Finally, given an estimate of n^ we can estimate the K-
vector of measurement biases, denoted by p^, associated 
with the /T categories of A using the identity 

P. 71 7t . (10) 

3.2 Assessing the Validity of the MLCA 
Methodology 

The primary objective of this paper is to assess the 
validity of the MLCA approach. Previous research in the 
measurement of CPS classification ertor has not fully 
addressed the validity of the estimation approaches used 
(Meyers 1988). We hope to determine whether the MLCA 
approach is informative and useful for studying classifica
tion ertor in the CPS. In particular, we aim to determine 
whether the model estimates of ertor probabilities, n'^ ^^, 
reflect the actual levels of ertor in the CPS labor force 
classifications. Unfortunately, for the reasons mentioned 
previously, no generally accepted gold standard exists for 
assessing the accuracy of the CPS (see, for example, 
Sinclair and Gastwirth 1996, 1998, Biemer and Forsman 
1992, and Schreiner 1980). Consequently, estimating the 
bias of MLCA estimates is not possible. 

In what follows, we will investigate the validity of the 
MLCA estimates of CPS classification ertor using five 
criteria: 

I. Model diagnostics. A necessary condition for model 
validity is that the model is plausible {i.e., the assump
tions are reasonable and are consistent with reality) 
and fits the data adequately. We use the traditional 
chi-square goodness of fit criteria and other diagnostic 
measures of model fit to assess the adequacy of the 
model specification and the degree to which the data 
are consistent with the model. 
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2. Model Goodness of Fit Across Years of CPS. An 
often-used technique for model validation is to assess 
the fit of the model for data that are independent of the 
data used for model building (see, for example, 
Kleinbaum, Kupper and Muller 1988, 330). This 
method is useful for avoiding model over-parameteri
zation and data-driven (rather than theory-driven) 
model selection. In the present study, fitting the same 
model to data for each year separately is a form of this 
independent model verification technique. Model 
agreement across the years would tend to support the 
validity of the model structure. This method has a 
difficulty in the present application. After 1993, the 
CPS paper and pencil questionnaire was redesigned 
for Computer Assisted Personal Interview (CAPI) 
administration, so the magnitudes of the response 
ertors may have changed after 1993. However, if the 
primary sources of response ertor in the CPS have not 
changed with the redesign, a model stmcture that 
adequately describes the ertor for 1993 should also 
describe the ertor for 1995 and 1996. 

3. Agreement of the MLCA Estimates and the Hui-
Water Test-Retest Estimates of Response Proba
bilities. The Hui-Walter (H-W) method (Hui and 
Walter 1980) for estimating CPS response proba
bilities uses unreconciled reinterview data (Sinclair 
and Gastwirth 1996; 1998). Although the MLCA and 
H-W methods both use latent class models, the model 
assumptions are very different. For example, the H-W 
method does not require the Markov assumption for 
model identifiability. Further, in this research, the 
data inputs to the H-W method are independent of 
those used for the MLCA method. Close agreement 
between the two sets of estimates supports the validity 
of both methods, while poor agreement suggests that 
at least one of the approaches is not valid. Strong 
agreement between the MLCA and H-W estimates 
also lend some assurance that the MLCA estimates of 
response probabilities are relatively robust to possible 
violations of the Markov assumption. 

4. Agreement of Model and Test-Retest Estimates of 
the Index of Inconsistency. This criterion is similar 
to Criterion 3 because it compares estimates derived 
from MLCA with estimates based upon unreconciled 
reinterview data. However, this analysis does not rely 
on the validity of the Hui-Walter estimation methodol
ogy to assess MLCA estimation validity. Instead we 
use the MLCA estimates of classification ertor to 
compute estimates of the index of inconsistency using 
(7) to (9). We compare these estimates of reliability 
directly to the estimates of reliability from the CPS 
Reinterview Program, obtained from unreconciled 
reinterview data. Good agreement between the 
Reinterview and MLCA estimates supports the 
validity of both methods, while poor agreement 

suggests that at least one of the approaches is not 
valid. 

5. Plausibility of Patterns of Classification Error. 
Finally, the plausibility (or face validity) of the 
response probability estimates can also provide a test 
of validity. For example, it seems implausible that 
proxy responses to labor force questions should be 
more accurate than self-responses. Other patterns of 
classification ertor can also be reviewed and evaluated 
for plausibility. To the extent that the model estimates 
seem plausible, the face validity of the estimates is 
supported. 

In the next section, we discuss our MLCA modeling results 
in the context of these criteria for validity. We begin with 
a description of the CPS data sets and the results of the 
model selection process. 

3.3 The CPS Data Sets 

In 1994, in conjunction with the implementation of 
computer assisted personal interviewing (CAPI), the CPS 
underwent a major redesign and a restmcturing of the 
questions used to determine labor force status. Rothgeb 
(1994) provides a description of the CPS redesign. As a 
result of these improvements, we expect to see a difference 
(specifically a reduction) in classification ertor for the post-
1994 CPS relative to 1993. Although not a primary objec
tive of this research, we compared the ertor in the CPS 
before and after the redesign. We tested the MLCA 
approach for tiiree years of the CPS - 1993,1995, and 1996 
- because the CPS unreconciled reinterview data were 
readily available for these time periods. 

The CPS households are interviewed for four consecu
tive months, drop out of the survey for eight months, and 
then re-enter to be interviewed for a second series of four 
consecutive months. MLCA requires at least three consecu
tive interviews for identifiability of the model parameters. 
We had a choice of data sets which included all persons 
interviewed in three or four consecutive months of the CPS. 
Since using four months of data would reduce the sample 
size for the analysis by half, we chose to focus the analysis 
on three consecutive months - January, Febmary, and 
March - for all three years of data. Nonresponse cases and 
cases where the whole household changed in one or more 
of the three months were excluded from the analysis. 

The simplest MLCA model specifies that the response 
probabilities, 71̂ ,̂ , TCJ,̂ , and Tt̂ ,̂ , and the ti-ansition proba
bilities, Tt̂ î , 7c,|̂  are the same for all persons in the target 
population (referted to as homogeneity). However, our pre
liminary analysis (Biemer, Bushery and Flanagan 1997) 
indicated that response and transition probabilities where 
not homogeneous. To account for this heterogeneity, we 
explored a number of covariates and stratification variables 
for inclusion in the models, including: gender, education, 
mode of interview, proxy/self-response, and race. Of the 
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those considered, a variable derived from the CPS proxy/ 
self response indicator best accounted for population 
heterogeneity. This variable, denoted by P, is defined as 
follows: 

1 if all three interviews are conducted 
by self-response (SELF) 

2 if two of the three interviews are conducted 
by self-response (MOSTLY SELF) 

3 if two of the three interviews are conducted 
by proxy response (MOSTLY PROXY) 

4 if all three interviews are conducted 
by proxy response (PROXY) 

Note, we now use P to represent the grouping variable, in 
place of G, which we used in section 2. Based upon 
previous research (for example, O'Muircheartaigh 1991), 
we expect that the Self group {P=l) to have less 
classification ertor than the Proxy group (7'=4). We test 
this hypothesis as part of the estimate plausibility criterion 
(criterion 4 above). 

The sample sizes for the three data sets used in our 
analysis are 

1993: 45,291 persons 
1995: 49,347 persons 
1996: 41,751 persons 

For 1993, approximately one-third of the sample is in the 
Self group, approximately one- fourth in the Proxy group, 
and the remaining sample members are distributed approxi
mately equally between the Mostly Self and Mostiy Proxy 
groups. For 1995 and 1996, slightly more sample members 
(one-third rather than one-fourth) are in the Proxy group. 

3.4 Fitting the MLCA Models 

To fit an MLCA model with a single grouping variable, 
P, the input data set was a 4x3x3x3 table of cell counts 
defined by the cross-classification of PxAxBxC, where ^, 
B, and C are the labor force classifications for January, 
February, and March, respectively. 

The CEM software and other software packages for 
fitting MLCA models assume simple random sampling, so 
the complex survey design of the CPS cannot be modeled 
exactiy. It is possible to account for the unequal probability 
sampling stiiicture of the CPS through the use of weighted 
and rescaled cell counts rather than the raw cell totals 
(Clogg and Eliason 1985). However, using unweighted data 
for the MLCA analysis affords two important advantages. 
First, we can compare the MLCA estimates with estimates 
from the previously cited studies on CPS classification 
ertor, all of which used unweighted data. Second, the CPS 
reinterview data used to assess Criteria 3 and 4 are 
unweighted and weights are not available. Consequentiy, 
at least part of the analysis requires unweighted data; using 
weighted data for the other criteria could produce spurious 
inconsistencies in the results. 

To investigate the validity of inferences to the total 
population using unweighted analysis, we estimated classi
fication ertors from both weighted and unweighted data and 
observed that the classification ertor estimates expressed as 
proportions were virtually identical, differing only at the 
third decimal place. Thus, the results we report below using 
unweighted cell counts are appropriate for inference beyond 
the CPS sample to the total population. 

Another consideration in using unweighted analysis is 
the estimation of standard ertors. Since they are computed 
using simple random sampling assumptions, the CEM 
standard ertor estimates may be understated as a result of 
ignoring the clustering effects in the CPS sample. To appro
ximately account for this, we can multiply the ?EM 
variances by a design effect computed from the CPS labor 
force estimates. U.S. Bureau of die Census (2000, 14-9) 
indicates that the design effects for the CPS labor force 
estimates do not exceed 1.3 and thus multiplying the ffiM 
standard ertors by (1.3)V2 should inflate the standard ertors 
sufficiently to account for clustering. An equivalent 
approach is to use a 3 percent rather than a 5 percent level 
of significance in declaring the difference between two 
estimates to be statistically significant. This latter strategy 
will be employed in the forthcoming analysis as appro
priate. We believe this produces a conservative test since 
the CPS design effect reflects the increase in variance due 
to both sample clustering and unequal weighting, while 
only clustering effects are present our unweighted 
estimates. 

Table 1 shows the results of fitting a sequence of 
increasingly complex MLCA models for each of the three 
data sets. The Base Model is the simplest MLCA model 
and specifies that transition probabilities and response 
probabilities are homogeneous {i.e., do not differ by group, 
7*) and stationary {i.e., are the same for all three months). 
This model may be written as 

which 

and 

\a,b,c'" I T ^p^x\g'^a\x^y\x, 
x,y,z (11) 

is obtained from (4) by imposing the constraints 

^z\yp ='^ylxp ='^y\x 

^a\xp ~ ^b\yp ~ ^clzp ~ \\x 

for all p. 
For Model 1 we relax constraint (12) to 

(12) 

(13) 

2\yp 
V/,forp = l,...,4 (14) 

and thus allow transitions from January to February and 
Febmary to March to vary by Self/Proxy Group, P. For 
Model 2, we further relax constraint (12) to 

'VkP •^ylx and ^zlyp ''z\y (15) 
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Table 1 
Model Diagnostics for Alternative MLCA Models by Year 

1993 Data df npar p-value BIC 

Base Model: Homogeneous and stationary transitions and 
response probabilities 

Model 1: Nonhomogeneous transitions 

Model 2: Non-stationary transitions 

Model 3: Nonhomogeneous and non-stationary transitions 

Model 4: Nonhomogeneous and non-stationary transitions and 
nonhomogeneous response probabilities 

90 17 645 0 -320 0.048 

84 

66 

42 

24 

23 

41 

65 

83 

632 

99 

64 

23 

0 

0.006 

0.016 

0.501 

-269 

-609 

-386 

-234 

0.047 

0.01 

0.01 

0 

1995 Data df npar p-value BIC 

Base Model: Homogeneous and stationary transitions and 
response probabilities 

Model 1: Nonhomogeneous transitions 

Model 2: Non-stationary transitions 

Model 3: Nonhomogeneous and non-stationary transitions 

Model 4: Nonhomogeneous and non-stationary transitions and 
nonhomogeneous response probabilities 

90 17 697 0 -275 0.044 

84 

66 

42 

24 

23 

41 

65 

83 

668 

146 

82 

25 

0 

0 

0 

0.41 

-240 

-567 

-372 

-234 

0.043 

O.OI 

0.01 

0 

1996 Data df npar' p-value BIC 

Base Model: Homogeneous and stationary transitions and 
response probabilities 

Model 1: Nonhomogeneous transitions 

Model 2: Non-stationary transitions 

Model 3: Nonhomogeneous and non-stationary transitions 

Model 4: Nonhomogeneous and non-stationary transitions and 
nonhomogeneous response probabilities 

90 17 632 0 -325 0.045 

84 

66 

42 

24 

23 

41 

65 

83 

585 

159 

82.6 

39.3 

0 

0 

0 

0.026 

-308 

-543 

-364 

-216 

0.044 

0.01 

0.01 

0 

Note that "npar" refers to the number of parameters in the model 

for all p. Model 3 relaxes both the homogeneity and 
stationarity constraints for transition probabilities so that 
71 I * '^-\yp- ^ " ^ 'his model allows ti-ansition probabilities 
to vary by group and by month. However, response proba
bilities are still constrained to be equal across groups and 
months. 

Model 4 is the most general, identifiable model we 
considered. Model 4 allows the January-February and 
Febmary-March transition probabilities to vary indepen-
dentiy across the four proxy/self groups. This model further 
species that the response probabilities are the same for 
January, Febmary, and March, but may vary across the four 
proxy/self groups. We obtained tiiis model from Model 3 by 
relaxing the constraints specifying homogeneous response 
probabilities; i.e., by relaxing constraint (13) to 

"•oljtp ~'^6l>'/7 '^clzp (16) 

for all p. Under these constraints, (4) can be written as 

x,y,z 

In Table 1, we show the basic fit statistics for all five 
models for all three years. Column 4 of tiie table provides L ̂ , 

the usual likelihood ratio chi-square statistic (see Agresti 
1990, 48), and column 5 the cortesponding p-value. A 
/rvalue of 0.05 or greater is the usual criterion for adequate 
model fit. However, due to the large sample sizes in our 
analysis, requiring ap-value this large could result in model 
over fitting. We consider a/?-value as small as 0.01 to be 
acceptable. The BIC measure in the table is defined as 

BIC=Z,2-(logiV)rf/ 

where N is the total sample size and <^is the degrees of 
freedom for the model. The BIC essentially summarizes tiie 
tradeoff between model fit (L2) and model parsimony {df). 
Since small values of the BIC are favorable, we will regard 
the model with the smallest BIC as best with respect to 
goodness of fit and parsimony. Liu and Dayton (1997) 
discuss this approach for latent class models. 

Finally, the dissimilarity index {dPj is the proportion of 
observations that would have to change cells for the model 
to fit perfectly. As rule of thumb, models having d <, 0.05 
{i.e., 5 percent model ertor) are considered to fit the data 
well (Vermunt 1997). 

For each year of data. Model 4 is the only model to 
provide an acceptable fit when the p-value criterion is 
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considered. Model 4 is also plausible from a response 
theory perspective since it postulates that classification 
ertor varies by self/proxy group. This, as we have said, is 
consistent with the survey methods literature (see for 
example, O'Muircheartaigh 1991 and Moore 1988). The 
dissimilarity index, d, for the model is 0.3 percent, which 
indicates a very good model fit. Thus, we use Model 4 to 
generate the estimates of labor force classification ertor. 

3.5 Estimation of Classification Error 

Table 2 shows estimates of the response probabilities 
from Model 4 for Employed, Unemployed, and Not in the 
Labor Force. For the tine Employed and those truly Not in 
the Labor Force, the probability of a cortect response is 
quite high: at least 98 percent for Employed and 97 percent 
for Not in the Labor Force. However, for the true 
Unemployed, the probability of a cortect response varies 
across years and groups from approximately 68 percent to 
approximately 86 percent. As expected, the Self group has 

the highest probability of a cortect response (statistically 
significant for 1993 and 1996). The Mostiy Self group also 
displays a tendency for a higher probability of a cortect 
response than the Mostiy Proxy group, but the difference is 
not statistically significant. 

A surprising result from Table 2 is the direction of the 
difference in reporting accuracy for the tme unemployed 
across the three years. Recall that the CPS interview 
questionnaire was redesigned in 1994 to increase reporting 
accuracy. However, these results suggest that reporting 
accuracy is higher for 1993 (the year prior to the major 
redesign) than for 1995 and 1996 (the years following the 
redesign). In 1993, the probability of a cortect response 
was 81.8 percent, compared with 76.1 percent and 74.4 
percent for 1995 and 1996, respectively (p-value <0.001)). 
This effect may be a consequence the redesign or may 
reflect actual changes in the population, or both. Investi
gations are curtently underway at the Census Bureau to 
understand the causes underlying these results. 

Table 2 
Estimated Labor Force Classitication Probabilities by Group and Year 

(Standard Errors are in parentheses) 

Observed 

Group 

Emp Self 

Mostiy 
Self 

Mostly 
Proxy 

Proxy 

Total 

Unemp Self 

Mostly 
Self 

Mostly 
Proxy 

Proxy 

Total 

NLF Self 

Mostiy 
Self 

Mostiy 
Proxy 

Proxy 

Total 

True Employed 

1993 

98.90 
(0.12) 

98.91 
(0.18) 

98.62 
(0.18) 

98.66 
(0.16) 

98.77 
(0.11) 
0.33 

(0.08) 

0.28 
(0.12) 

0.37 
(0.11) 
0.34 

(0.10) 

0.34 
(0.11) 
0.77 

(0.10) 

0.81 
(0.13) 

1.01 
(0.14) 

0.10 
(0.13) 

0.89 
(0.11) 

1995 

98.98 
(0.12) 

98.61 
(0.21) 

98.56 
(0.22) 

98.63 
(0.13) 

98.73 
(0.11) 
0.39 

(0.08) 

0.50 
(0.13) 

0.54 
(0.15) 

0.55 
(0.09) 

0.49 
(0.11) 
0.63 

(0.08) 

0.89 
(0.15) 

0.90 
(0.15) 

0.82 
(0.10) 

0.78 
(0.11) 

1996 

99.03 
(0.13) 

98.86 
(0.22) 

98.76 
(0.20) 

98.66 
(0.15) 

98.83 
(0.11) 
0.41 

(0.09) 

0.28 
(0.15) 

0.37 
(0.13) 

0.39 
(0.09) 

0.37 
(0.11) 
0.55 

(0.09) 

0.86 
(0.16) 

0.87 
(0.15) 

0.95 
(0.12) 

0.79 
(0.11) 

Tme 

1993 

4.24 
(0.96) 

8.11 
(1.89) 

11.19 
(1.96) 

6.60 
(1.43) 

7.06 
(0.70) 

85.92 
(1.62) 

82.68 
(2.48) 

76.54 
(2.55) 

80.09 
(2.19) 

81.81 
(0.90) 

9.84 
(1.39) 

9.21 
(1.83) 

12.27 
(1.97) 

13.31 
(1.83) 

11.13 
(0.90) 

; Unemployed 

1995 

5.66 
(1.28) 
7.66 

(2.50) 

12.86 
(2.97) 

7.77 
(1.44) 

7.86 
(0.90) 

80.52 
(2.04) 

71.71 
(3.40) 

68.09 
(3.37) 
77.12 
(2.18) 

76.09 
(1.21) 
13.82 
(1.76) 

20.63 
(2.94) 

19.05 
(2.58) 

15.11 
(1.86) 

16.04 
(1.21) 

1996 

5.78 
(1.52) 

12.20 
(2.96) 

10.18 
(2.73) 

8.30 
(1.62) 

8.57 
(1.00) 

79.66 
(2.44) 
73.60 
(3.71) 

72.74 
(3.70) 

71.63 
(2.49) 

74.42 
(1.21) 
14.56 
(2.11) 

14.20 
(2.94) 

17.08 
(3.16) 

20.07 
(2.22) 

17.00 
(1.21) 

1993 

1.05 
(0.13) 

1.73 
(0.27) 

1.68 
(0.27) 

1.56 
(0.20) 

1.41 
(0.11) 
0.48 

(0.11) 

1.03 
(0.23) 

0.81 
(0.22) 

0.95 
(0.19) 

0.75 
(0.11) 
98.47 
(0.17) 

97.24 
(0.35) 

97.52 
(0.35) 

97.49 
(0.27) 

97.84 
(0.11) 

Tnie NLF 

1995 

0.67 
(0.10) 

1.59 
(0.30) 

0.95 
(0.25) 

1.50 
(0.17) 

1.11 
(0.11) 
0.35 

(0.10) 

0.91 
(0.21) 

0.90 
(0.28) 

0.94 
(0.17) 

0.69 
(0.11) 
98.98 
(0.14) 

97.50 
(0.36) 

98.15 
(0.38) 

97.56 
(0.24) 

98.20 
(0.11) 

1996 

0.92 
(0.13) 

0.93 
(0.24) 

1.50 
(0.30) 

1.30 
(0.18) 

1.13 
(0.11) 
0.40 

(0.12) 

0.79 
(0.28) 

1.53 
(0.26) 

1.18 
(0.20) 

0.87 
(0.11) 
98.68 
(0.18) 

98.28 
(0.37) 

96.96 
(0.40) 

97.52 
(0.27) 

98.00 
(0.11) 
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Table 3 
Comparison of MLCA Estimates with Prior Published Estimates 

Classitication 

True Observed 

MLCA Chua & Fuller 
(1982 data) 

Poterba & CPS 
Summers Reconciled 

(1981 data) Reinterview 
(1977-1982) 

Employed Emp 

Unemp 

NLF 

Unemp Emp 

Unemp 

NLF 

NLF Emp 

Unemp 

NLF 

98.77(1993) 98.66 (month 1 
98.73 (1995) 98.65 (month 2 
98.73 (1996) 

0.34(1993) 0.32 (month 1 
0.49(1995) 0.34 (month 2 
0.37 (1996) 

0.89(1993) 1.02 (month 1 
0.78(1995) 1.01 (month 2 
0.79 (1996) 

7.06(1993) 3.52 (month 1 
7.86(1995) 3.51 (month 2 
8.57 (1996) 

81.81(1993) 88.27 (month 1 
76.09 (1995) 88.23 (month 2 
74.42 (1996) 

11.13(1993) 8.21 (month 1 
16.04(1995) 8.16 (month 2 
17.00(1996) 

1.41(1993) 1.60 (month 1 
1.11(1995) 1.61 (month 2 
1.13(1996) 

0.75(1993) 1.19 (month 1 
0.69(1995) 1.24 (month 2 
0.87(1996) 

97.84(1993) 97.21 (month 1 
98.20(1995) 97.15 (month 2 
98.00(1996) 

97.74 98.78 

0.54 

1.72 

3.78 

84.76 

11.46 

1.16 

0.64 

98.2 

0.19 

1.03 

1.91 

8.57 

9.53 

0.5 

0.29 

99.21 

The table indicates that misclassification of the 
unemployed as NLF is a bigger problem than misclassifi
cation as Employed. Averaging over all three years, 
approximately two thirds of the ertor in classifying the 
unemployed is misclassification as NLF. But the rates of 
both types of ertor are high. 

Next, we compare our estimates of the CPS classification 
probabilities with similar estimates from the literature. In 
Table 3, the MLCA estimates for each of the three years are 
compared with estimates from Chua and Fuller (1987), 
Poterba and Summers (1995), and the CPS reconciled 
reinterview program. Again, the latter three sets of esti
mates rely on reinterview data while the MLCA estimates 
are produced directly from the CPS interview data. In 
general, the relative magnitude of the MLCA estimates 
across the labor force categories agrees with the previous 
estimates. The greatest differences occur for the true 
unemployed population. For this group, the estimates of 
response accuracy from the literature are three to seven 
percentage points higher than cortesponding MLCA esti
mates for 1993, which is the time period that most closely 
cortesponds to the comparison estimates. 

One explanation for this difference is that the compa
rison estimates are biased upward as a result of cortelations 
between the ertors in interview and reinterview. Another 
explanation is that the MLCA estimates are biased 
downward as a result of the failure of the Markov 
assumption to hold. We suspect that both explanations may 
be tme to some extent. However, the next section provides 
some evidence tiiat failure of the Markov assumption likely 
has a small effect on estimates of classification ertor. 

3.6 Robustness of MLCA to Non-Markov Labor 
Force Transitions 

A number of authors have investigated the effects of 
current and previous employment status on future 
employment status (see, for example, Akerlof and Main 
1980; Heckman and Borjas 1980; Lynch 1989, and Corak 
1993). Heckman and Borjas show that examination of this 
issue is quite difficult due to selection biases, response 
ertor, and unobserved heterogeneity. These confounding 
influences may account for the inconsistent findings in the 
literature. For example, using data from the CPS, Akerlof 
and Main (1980) provide evidence that the probability of 
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future unemployment depends upon the number of previous 
unemployment spells experienced as well as the duration of 
those spells. However, in a study of male high school 
graduates, Heckman and Borjas (1980) found "no evidence 
that previous occurtences of unemployment or their 
duration affect future labor market behavior once we 
control for sample selection bias and heterogeneity bias." 
The results from the literature are also inconsistent and 
ambiguous regarding the extent to which the Markov 
assumption expressed in (2) may be violated for the CPS 
and other labor market surveys. Nevertheless, in this 
section, we attempt to provide at least a partial answer to 
question of how non-Markov labor force transitions affect 
MLCA estimates of classification ertor. 

To investigate the effect of violations of the Markov 
assumption in (2) for the present appUcation, we conducted 
a limited simulation study. To focus the investigation while 
simplifying the simulation framework, we considered latent 
stmctures involving only two classes or states at each time 
point: unemployed, denoted by A', y, or Z = 1, and other 
{i.e., employed or not in the labor force), denoted by A', Y, 
or Z = 2 with analogous definitions for the observed states 
A, B, and C. To create a population for the simulation, the 
latent probabilities 7t. 7i„, , and 7i., „ and the response 
probabilities 7t̂ , = Tt̂  î , = JĈ i. were specified to be consistent 
with the combined 1993, 1995, and 1996 data sets. 

We then defined two parameters, X^ and X̂  to be varied 
in the simulation, where 

and 

X , = . 

^ = . 

'•z = l | j t = 2 . > ' = l 

^i = l | ; t = !,>'= 1 

'•-- = l|Ar = 2 . j . = 2 ^ 

^r = l | ; f = 1,^ = 2 

(17) 

(18) 

Thus, X^ is the probability of being "unemployed" in 
March, given "unemployed" in February and "other" in 
January over the probability of being "unemployed" in 
March given "unemployed" in the two previous months. 
Consistent with the findings of Akerlof and Main (1980) 
who showed that the likelihood of remaining unemployed 
increases as the number of unemployment spells increases, 
we assume that 0^ X.j:£ 1. Similarly, Xj is the probability of 
being "unemployed" in March, given "other" in the two 
previous months, over the probability of being 
"unemployed", given "other" in Febmary and 
"unemployed" in January. Again, by Akerlof and Main, we 
assume O^A.2^1. Note that when X,, =\= I, unemploy
ment transitions from Febmary to March are Markov. 

The simulated data were generated to be completely 
consistent with a MLCA model having non-stationary 
transition probabilities when A.j = .̂j = 1. We simulated 
failure of the Markov assumption by varying A.j and X2 
between 0 and 1. To be consistent with the 1993-1996 data, 
we fixed the probability of a cortect "unemployed" 

response, ^a = 11 ̂ =j. at 0.80 and the probability of a correct 
"other" response, t^=2|;t=2'̂ * ^-^^ '" ^" simulations. In 
addition, the denominators of X, and Xj were fixed to their 
values as determined from the combined 1993-1996 data 
while the numerators were computed from (17) and (18) 
using the values of X^ and X.̂  specified in each simiilation 
run. 

Table 4 summarizes the results of the simulation for 
A,, =X2 = X where X is varied from 0.2 to 1.0 in steps of 0.2. 
Note that for A., = Xj = 1.0, which corresponds to a Markov 
model, the estimated probabilities of cortect response are 
exactly as specified. For smaller values of A,, and Â , the 
estimates become negatively biased and are most biased for 
the lowest value considered, 0.2. Nevertheless, the absolute 
biases due to non-Markov transitions probabilities are never 
more than 3 percentage points. The results in Table 4 are 
consistent with Bushery and Kindelberger (1999), who used 
a somewhat different approach to illustrate the same 
robustness property of the MLCA models for CPS data. 
Both studies suggest that failure of the Markov assumption 
to hold does not appear to be an important source of bias in 
estimating CPS classification ertor probabilities. 

Table 4 
Estimates of Correct Classification Under 

Non-Markov Transitions 
(Cell entries are percentages) 

Pr (Correct) 
)l. = 0.2 X = 0.4 X = 0.6 X = 0.8 X=1.0 

(Markov) 

Pr ("unemp"! true 
"""«"•?")="« = I U = l 
Pr ("other"! true 
"other")=7t^^^l^^^ 

77.6 78.1 78.7 79.3 80 

98.6 98.7 98.8 98.9 99 

4. COMPARING THE MLCA AND 
UNRECONCILED REINTERVIEW 

ESTIMATES 

4.1 Hui-Walter Estimation 

An alternative set of response probability estimates can 
be obtained from the CPS reinterview data using a type of 
latent class model first proposed by Hui and Walter (1980). 
Using the notation introduced above, let A'denote the true 
labor force classification for some time point and let A and 
A ' denote the interview and reinterview classifications, 
respectively. Let G denote a grouping variable defined as 
in (4). Consider the likelihood of the groupx interviewx 
reinterview table denoted by GAA '. Denote by t^a-the 
probability of classifying an individual belonging to group 
g into cell {a, a') of the table, 
proposed by Hui and Walter is 

The model for 7t„ 

\aa'=Y.\-^x\g^o\x'^a' 1 -̂

gaa 

(19) 
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In this model, the parallel measures assumption for the 
interview and reinterview responses is relaxed and response 
probabilities for the two measures, v/z.7t̂ , and 7t^u, are 
estimated separately. The ICE assumption is made as a 
condition of identifiability. It is further assumed that 
7t̂ , and Tt̂ î do not depend upon the group variable, G, 
while the prevalence of employed, unemployed, and NLF, 
i.e. 7t̂ | , still depends upon G. 

Sinclair and Gastwirth's (1996) analysis of CPS labor 
force classification ertor used Sex as the grouping variable 
and our analysis uses this grouping variable as well. 
Sinclair and Gastwirth confined their analysis to white 
males and females and two labor force categories: NLF and 
In the Labor Force. The latter category is the sum of our 
Employed and Unemployed categories. In our analysis, we 
consider sample members of all races and analyze the three 
category labor force classification used in the MLCA. 
Thus, the H-W analysis estimates 16 parameters for each 
year, which equals the number of degrees of freedom 
available from the GxA^A' table, leaving no degrees of 
freedom to test model fit. 

The CEM software was used to fit the H-W model to the 
interview and unreconciled reinterview data from three time 
periods that coincide with the three in our MLCA: pre-
1994,1995, and 1996. We attempted to restiict die analysis 
to only the first quarter of these time periods. Unfortuna
tely due the small sample sizes, the estimates were quite 
unstable. Thus, it was necessary to use the reinterview data 
from all four quarters of these time periods. The pre-1994 
data were collected from 1985 through 1988 using the 
unreconciled reinterview sample. 

The results of this comparison of MLCA and H-W 
estimates are summarized in Table 5. The MLCA estimates 
are the same as those in the rows of Table 2 labeled "Total." 
The H-W estimates are the classification probabilities 
associated with the original interview, i.e., measure ̂ 4 in 
(19). The table shows the comparison for all three years. 
Since the largest ertor rate in the MLCA occurted for the 
Unemployed, this category is of particular interest in the 
MLCA/H-W comparison. 

Overall, the two sets of estimates show fairly good 
agreement. The years 1995 and 1996 exhibit no statistically 
significant differences (at the 5 percent level) between the 
MLCA and H-W estimates for the unemployed population. 
The pre-1994 estimates display significant differences; 
however, they may be explained by the fact that the pre-
1994 reinterview data were from 1985 through 1988, rather 
than 1993. These differences will be explored further in the 
next section. 

4.2 Comparison of Indexes of Inconsistency 

As described in section 3.1, we compute estimates of the 
index of inconsistency for each time period using the 
MLCA model-based estimates of the response probabilities. 
Essentially, we estimate the expected interview-reinterview 
cross-classification table from the MLCA response 

probability estimates and then apply the formula for the 
index to this table as though the table were observed. A 
second expected interview-reinterview classification table 
be can estimated using the H-W response probability 
estimates. We then compared these two sets of estimates to 
the estimate of the index computed directly from the CPS 
reinterview data using traditional methods (U.S. Bureau of 
the Census 1985). Agreement of all the three estimates 
agree supports the validity of the three methods. 

Table 5 
Comparison of MLCA and H-W Model Estimates of CPS 

Response Probabilities by Year 
(Standards Errors are in Parentheses) 

Classification 

True 

Emp 

Unemp 

NLF 

Observed 

Emp 

Unemp 

NLP 

Emp 

Unemp 

NLF 

Emp 

Unemp 

N U 

1993 1 199* 199f 

H-W MLCA H-W MLCA H-W MLCA 

99.3 
(0.3) 

0.0 
(0.0) 

0.7 
(0.3) 

11.1 
(1.0) 

74.3 
(2.7) 

14.7 
(2.9) 

2.0 
(0.5) 

1.2 
(0.3) 

96.8 
(0.6) 

98.8 
(0.1) 

0.3 
(0.1) 

0.9 
(0.1) 

7.1 
(0.7) 

81.8 
(1.1) 

11.1 
(0.9) 

1.4 
(0.1) 

0.8 
(0.1) 

97.8 
(0.1) 

99.5 
(0.7) 

0.0 
(n/a) 

0.5 
(0.7) 

11.5 
(2.3) 

67.9 
(6.1) 

20.6 
(6.5) 

2.5 
(1.5) 

0.5 
(0.6) 

97.0 
(1.6) 

98.7 
(0.1) 

0.5 
(0.1) 

0.8 
(0.1) 

7.9 
(0.9) 

76.1 
(1.3) 

16.0 
(1.2) 

1.1 
(0.1) 

0.7 
(0.1) 

98.2 
(0.1) 

99.6 
(0.1) 

0.4 
(0.1) 

0.0 
(n/a) 

4.6 
(15.2) 

67.6 
(11.1) 

27.9 
(5.3) 

2.6 
(1.5) 

0.0 
(n/a) 

97.4 
(1.1) 

98.8 
(0.1) 

0.4 
(0.1) 

0.8 
(0.1) 

8.6 
(1.0) 

74.4 
(1.4) 

17.0 
(1.2) 

1.1 
(0.1) 

0.9 
(0.1) 

98.0 
(0.1) 

Table 6 shows the three methods estimates the index of 
inconsistency for all three time periods. As before, the 
Unemployed category is of particular interest because of its 
large ertor rate. Standard ertors are not available for the 
MLCA or the H-W estimates of the index so formal tests of 
hypothesis are not possible. However, standard ertors for 
the ti-aditional estimates are provided which can be used as 
rough approximations of the standard ertors for the H-W 
estimates. 

Overall, both the general patterns of the MLCA 
estimates and the magnitudes of the MLCA estimates 
generally agree quite well with the H-W and traditional 
estimates for all three years. However, for the NLF 
category in 1995 and 1996, the traditional estimates of 7 are 
somewhat larger than either of the latent class model 
estimates. Further analysis suggests that this difference is 
due to a bias in the traditional estimation approach resulting 
from the failure of the parallel measures assumption. 

U.S. Bureau of the Census (1985) shows that if the 
interview and reinterview processes have different reliabi
lities, then the traditional estimate of the index will be 
biased. For example, if the reliability of the reinterview 
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data is lower than the reliability of the interview data, the 
traditional test-retest reliability estimator will understate the 
actual reliability of the CPS data; i.e., the CPS index of 
inconsistency will be too large. 

Table 6 
Comparison of MLCA, H-W, and Traditional Estimates of the 
Index of Inconsistency by Year and Labor Force Classification 

Method of 
Estimation 

1993 

Traditional 
estimation 

H-W 

MIJCA 

1995 

Traditional 
estimation 

H-W 

MIX;A 

1996 

Traditional 
estimation 

H-W 

MLCA 

L.abor Force Classification 

Employed Unemployed Not in Labor 
Force 

8.16 
(0.24) 

7.37 

6.35 

6.69 
(0.44) 

6.82 

6.06 

5.93 
(0.39) 

5.67 

5.99 

33.49 
(1.16) 

34.93 

28.04 

36.28 
(2.85) 

37 

36.19 

35.97 
. (2.68) 

39.46 

37.39 

9.96 
(0.27) 

10.07 

7.63 

10.80 
(0.56) 

8.98 

7.2 

11.95 
(0.56) 

7.55 

7.76 

Aggregate 
Index 

11.05 
(0.26) 

10.78 

8.73 

10.42 
(0.53) 

9.7 

8.72 

10.61 
(0.51) 

8.56 

9.06 

The CPS interview and reinterview will have different 
reliabilities if the ertor distributions for the two interviews 
are not equal. A test of this is possible by comparing the fit 
of a H-W type model with and without the restriction 
^a\x ~ V|;t- The assumption of equal reliability is rejected 
if tne difference between the likelihood ratio chi-squares for 
the two models exceeds a chi-square with 6 degrees of 
freedom. This test was rejected for 1995 and 1996 at the 10 
percent level of significance. Thus, it appears that the 
difference in the NLF estimates for 1995 and 1996 may be 
due, in part, to bias in the traditional estimates of 7. 

Note further that the H-W and MLCA indexes agree 
quite well for 1995 and 1996, although they differ 
somewhat in 1993. However, as noted in the discussion of 
Table 5, the comparisons between the MLCA and H-W 
estimates for this year are confounded by the different time 
periods used to construct the pre-1994 interview-
reinterview data set. This could account for at least some 
of the discrepancy between the estimates for this year. 

5. SUMMARY AND CONCLUSIONS 

The primary goal of this research was to investigate the 
validity of MLCA estimates of CPS labor force classifi
cation ertor and to determine the efficacy of MLCA as an 
alternative to traditional methods for evaluating CPS data 
quality. We analyzed interview data from the CPS for the 

first quarter of three years - 1993, 1995, and 1996 - and 
conducted an additional analysis of the CPS unreconciled 
reinterview data for approximately the same time periods. 
The reinterview data provided another approach for 
estimating CPS classification ertor that, when compared 
with the MLCA estimates, helped to address the question of 
the validity of the MLCA approach. 

Five dimensions of MLCA validity were addressed as 
follows: 

1. Model diagnostics. We investigated a wide range of 
MLCA models with grouping variables defined by 
age, race, sex, education, mode of interview, and 
proxy/self response. The most parsimonious and best 
fitting model for all three years included one grouping 
variable defined by the proxy/self variable with four 
categories: all three waves conducted by self response, 
only two waves conducted by some self response, on
ly two waves conducted by proxy response, and all 
three waves conducted by proxy response. For this 
class of models, the best model was Model 4 (see 
Table 1) which specified non-homogeneous and non-
stationary transition probabilities and non-homoge
neous response probabilities. This model provided an 
adequate fit to the data for all three years. 

2. Model Goodness of Fit Across Years of CPS. 
Another indicator of model validity is its fit across 
independent samples of the same population. 
Assuming that labor force dynamics and the response 
probability structure for the CPS is stable across the 
span of four years, the same general model should fit 
all three years adequately. Model 4 displays multi-

, year goodness of fit (see Table I). In addition, other 
grouping variables were tested in the study, yet the 
proxy/self variable model emerged as the best variable 
for all three years. 

3. Agreement Between the Model and Test-Retest 
Estimates of Response Probabilities. Using the 
unreconciled interview-reinterview data from the CPS 
for the time periods pre-1994, 1995, and 1996, we 
applied the H-W method to estimate the response 
probabilities and compared these with the MLCA 
estimates. There was good agreement for 1995 and 
1996, the two years for which the time periods for the 
reinterview data and the CPS data were closely 
matched (see Table 5). For 1993, we observed small 
but significant differences between MLCA estimates 
and the cortesponding H-W estimates. These 
differences might be explained by differences in the 
time periods, since the reinterview data predated the 
CPS interview data by some years. 

4. Agreement Between the Model and Test-Retest 
Estimates of Inconsistency. We compared MLCA 
model-based estimates of the index of inconsistency 
with the cortesponding direct estimates from the CPS 
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reinterview program. The two sets of estimates agree 
fairiy well for all three years, with the exception of the 
NLF category (see Table 6). For 1995 and 1996, the 
differences can be partly explained by the bias in the 
traditional estimator resulting from the failure of the 
parallel measures assumption. The H-W method, 
which does not require the assumption of parallel 
measures, produces estimates of the index that agree 
well with MLCA estimates for 1995 and 1996. For 
1993, the difference between the MLCA and H-W 
estimates may be due to the difference in the time 
periods for the reinterview and the CPS data sets. 

5. Plausibility of the Patterns of Classification Error. 
The MLCA estimates of misclassification probabi
lities appear to be plausible. The estimates across 
proxy/self groups were consistent with prior expecta
tions that lower ertor rates should be observed for self 
respondents than for proxy respondents. In addition, 
the largest ertor rates were observed for the 
unemployed population and the magnitudes of these 
estimates were consistent with those of previous 
studies - for e.g., Fuller and Chua 1985; Abowd and 
Zellner 1985; Porterba and Summers 1986; and 
Sinclair and Gastwirth 1996 (see Table 3). 

In summary, we found no evidence from these analyses 
to question the validity of the MLCA approach. The method 
performed well in all five validity tests. We therefore 
recommend that the MLCA method be considered as an 
alternative method for evaluating the accuracy of the CPS 
labor force estimates. The strong agreement between the 
MLCA and H-W estimates supports the validity of the H-W 
method as well. We recommend that both methodologies 
be considered in future studies of CPS data quality. 

Although the MLCA approach performed well in our 
tests, we recommend caution in applying the methodology 
in other settings. In our analysis, reinterview data provided 
a means for assessing the validity of the MLCA estimates. 
However, reinterview data are typically not available in 
panel surveys and, consequentiy, analysts may only be able 
to apply criteria (1), (2), and (5) above to check model 
validity. The Markov assumption is key to the MLCA 
approach. Some panel data may seriously violate this 
assumption. Fortunately, failure of Markov assumption 
appears not to be an important factor in the validity of 
MLCA estimates of CPS labor force classification ertor {cf. 
Table 4). 
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Estimation and Replicate Variance Estimation 
of Median Sales Prices of Sold Houses 
KATHERINE J. THOMPSON and RICHARD S. SIGMAN' 

ABSTRACT 

The U.S. Census Bureau publishes estimates of medians for several characteristics of new houses, with a key estimate t)eing 
sales price of sold houses. These estimates are calculated from data acquired from interviews of home builders by the 
Survey of Construction (SOC). The SOC is a multi-stage probability survey whose sample design is well suited to the 
modified half-sample replication (MHS) method of variance estimation. The literature supports applying the MHS method 
to replicate sample medians to estimate the sampling variance of a median. There are several computational advantages, 
however, to using grouped data to estimate medians, with linear interpolation being used within the grouped-data interval 
containing die median. Using survey data and simulated finite populations, we compared the effects of no grouping {i.e., 
the sample median), grouping with fixed-size intervals, and grouping with data-dependent-sized intervals on medians and 
associated MHS variance estimates. We examined the mean squared errors and mean absolute errors of the median 
estimates and the relative bias and stability of the variance estimates and the coverage of the associated confidence intervals. 
We found that the data-dependent-sized intervals yielded variance estimates with the smallest bias, the best stability, and 
the best confidence intervals. 

KEY WORDS: Median; Modified half-sample replication; Survey of Construction. 

1. INTRODUCTION 

The U.S. Census Bureau publishes estimates of medians 
for several characteristics of new houses, with a key 
estimate being sales price of sold houses. These estimates 
are calculated from data acquired from interviews of home 
builders by die Survey of Constioiction (SOC). The SOC is 
a multi-stage probability survey whose sample design is 
well suited to the modified half-sample (MHS) replication 
method (balanced repeated replication with replicate 
weights of 1.5 and 0.5) for reasons outiined in section 3.B. 
In the near future, the SOC will move its curtent estimation 
and variance estimation systems to the Census Bureau's 
re-engineered post-data-collection system, tiie Standardized 
Economic Processing System (StEPS). When this occurs, 
SOC will change from its curtent non-replicate variance 
estimation procedure to the MHS replication variance esti
mation procedure (Thompson 1998). Because the SOC 
variance estimation methodology is changing, we decided 
to revisit the median-estimation methodology for contin
uous data. Our goal was to find a median-estimation 
method with good estimation and variance estimation 
properties, given the MHS replication. 

We considered two methods of median-estimation. The 
first method uses the sample weights to estimate medians 
via empirical cumulative-distribution functions. The second 
method uses linear interpolation of grouped continuous data 
to approximate the median. The latter method is imple
mented in VPLX (Variances from ComPLeX Survey, Fay 
1995), the replicate variance estimation software package 
developed at the Census Bureau. 

Direct calculation of sample medians can be computa
tionally intensive because it requires separate sorts for each 

value of a given classification variable. An alternative esti
mation method is to group the continuous data into discrete 
intervals (called bins) and use linear interpolation over the 
interval containing the median. Provided that the data are 
approximately uniformly distributed over the interval 
containing the median, interpolation yields a good approxi
mation while being considerably less computer resource-
demanding. However, optimal bin widths and locations may 
differ by domain and may change over time as the sample 
distributions change. 

In this paper, we compare six methods of median-
estimation, given MHS replication: the sample median and 
five variations using linear interpolation. Section 2 provides 
a brief overview of the SOC design. Section 3 presents 
general methodology. Section 4 describes the empirical 
results from four months of SOC data that motivated the 
simulation study presented in section 5. Section 6 provides 
our conclusions and recommendations. 

2. SOC SAMPLE DESIGN 

The SOC universe contains two sub-populations: local 
areas that require building permits and local areas that do 
not. The SOC sample-units selected from the first sub-
population comprise the Survey of the Use of Permits 
(SUP), and those selected fi-om the second sub-population, 
the Nonpermit Survey (NP). The SUP sample comprises the 
majority of the SOC estimate. The two samples are 
multi-stage probability samples stratified by variables with 
high expected cortelation with the survey's key statistics: 
housing starts, completions, and sales. 
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The first stage of the SUP and NP sample selection is a 
subsample of 1980 design Curtent Population Survey 
(CPS) Primary Sampling Units (PSUs), which are conti
guous areas of land with well-defined boundaries. Thus, 
both surveys are conducted in the same PSUs but are other
wise independent samples. The PSUs were stratified within 
region by weighted 1980 population 16 years and older, 
weighted 1982 residential permit activity, and percent of 
housing in nonpermit areas. When possible, strata consisted 
of PSUs from the same state with the same metropolitan 
status. One PSU per stratum was selected. Self-representing 
(SR) PSUs were included in the sample with certainty (the 
stratiim consists of one PSU). Nonself-representing (NSR) 
PSUs were selected with probability proportional to size 
(PPS) from strata containing more than one PSU. 

The second stage of SUP sample selection is a stratified 
systematic sample of permit-issuing places within sample 
PSUs (selected once a decade). These places were stratified 
by a weighted average of the ratio of permit-issuing activity 
in year i to the total US permit activity in year i (i = 78, 81, 
82). In many cases, only one second stage unit was selected. 
The third stage of SUP sample selection is performed 
monthly: each month. Field Representatives (FRs) select a 
systematic sample of building permits from the permit of
fices in each sampled permit-issuing place. One-to-four-unit 
building permits are selected systematically in such a way 
that an overall one-in-forty sample is achieved; five-or-
more-unit building permits are included with certainty. The 
third-stage samples are independent by month; the first and 
second stages are not. 

The second stage of NP sample selection is a stratified 
systematic sample of small land areas (1980 Census 
Enumeration Districts, or EDs), stratified by 1980 Census 
population size. For the third stage of NP sample selection, 
field representatives completely canvass all of the roads in 
the sampled EDs (called segments). To reduce canvassing, 
a few of the larger EDs were subsegmented and one subseg-
ment selected, or large EDs were l-in-2 subsampled. 
Curtently, there are a total of seventy-one active nonpermit 
segments. All new housing units are included in the NP 
sample with certainty. 

Median estimates are derived from the pooled SUP and 
NP samples and are calculated using a post-stratified weight 
for the SUP portion and an unbiased weight for the NP 
portion. 

3. METHODOLOGY 

A. Median-Estimation Procedures 

1. Sample Median 

One procedure for estimating the median of a popula
tion is to calculate the sample median from ungrouped 
data, using the sample weight to locate the median. 
This approach is recommended in Kovar, Rao and Wu 

(1988) and Rao and Shao (1996). The procedure uses 
the following steps: 

- sort the sample observations in ascending order; 

- accumulate the sum of the associated survey 
weights; 

- select the first observation for which the associated 
sum of the weights exceeds fifty percent of the total 
weight. 

2. Linear Interpolation 

Another approach for estimating the median of a 
population is to group the sample data and interpolate 
for the sample median. Woodruff (1952) provides the 
following formula for linear interpolation of a sample 
median: 

M = F •(^*) // + 

1 -
-N-
2 

cf 

fi 
*(/•) (3.1) 

where 
F = the cumulative frequency of the characteristic 

using sample weights 

// = lower limit of the bin containing the median 

N= estimated total number of elements in the 
population 

cf = cumulative frequency in all intervals preceding 
the bin containing the median 

f. = median class frequency (estimated total number 
of elements in the population of the interval 
containing the median) 

/ = width of the bin containing the median 

This is the method used by the curtent SOC production 
variance estimation system for monthly estimates and is 
also the linear interpolation method employed by VPLX. 

We considered two options for setting the class size (bin 
widths) for the interpolation. The first option develops bins 
based on the specific characteristic under consideration 
using the original data. The second option linearly trans
forms the data to a standard scale and then uses a standard 
set of bins for every characteristic. We used the following 
linear transformation: 

X'i •X:* 
1,000 

(3.2) 

where Q.^ is the third quartile of the sample distribution 
(estimated using the ordered observations and sample 
weight as outlined in section 2.A.1). The interpolated 
median of the X' is multiplied by (g j / I,(K)0) to obtain an 
estimated median on the original scale [If the distribution 
contains negative values (e.g., a distribution of net income), 
then use X'; = {X. -X^^) * l,0OQIQ^{Xi -X^^^), where X^^^ is 
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the first order statistic and Q^{X. -Xj)) is calculated from 
the distribution of {X^-X.^X To obtain an estimated 
median on the original scale, multiply the interpolated 
median by (g3(^.-^(,j)/1,000) and add X^^y] This 
procedure is equivalent to simply dividing the original 
sample from 0 to gj into x bins of equal width and placing 
the remainder of the data into one bin which, by design, is 
much larger than the others. 

This procedure is designed for symmetric or positively 
skewed distributions (usually the case with economic data). 
The data in the last bin is not used to estimate the median 
because it is greater than Q^, which is expected to be far 
from tiie median. If we based the Unear transformation on g, 
(the first quartile), the bin containing the median might be 
very close to the lowest bin in the distribution. In this case, 
the difference in variability between an interpolated median 
and the sample median would be small. 

Using the original data to develop medians has the 
advantage of producing production-ready estimates and 
SEs. Determining the appropriate fixed bin width is 
difficult, however. As the bin widths get small (approach 
width 1), the variance estimates become more unstable. As 
the bin widths increase, the bias of the estimate due to 
interpolation increases. The "optimal" bin size balances 
variance estimate stability and bias. Unfortunately, the 
optimal bin width may not remain constant between 
samples. Often, the disoibutions change over time, and the 
bins widths/locations in the sample should reflect this 
change in scale. Moreover, the optimal bin width may be 
different for different values of a classification variable: for 
example, the optimal bin width for the Midwest's sales 
price is probably different from the optimal bin width for 
the South's sales price. 

The desire to have the width of the bin depend on the 
sample motivated the linear transformation. The "standard" 
bin widths used for the transformed data less than gj are 
not standard on the untransformed scale: the bin width is 
data-dependent. Using the linearly transformed data re
quires more bookkeeping in terms of scaling constants but 
easily allows for changes in the scale and shape of the 
distribution. 

Figures 1 through 4 illustrate the effect of the linear 
transformation on the bin widths and location for two distri
butions. Figures 1 and 2 present a distribution that has a 
large spread of data values, including a few very large 
observations. Figures 3 and 4 present a distribution con
sisting of primarily small data values. 

Figure I presents a histogram of the original distribution 
for houses sold with conventional financing, with bin width 
of $25,000 [Note: the bin size was selected purely for 
presentation convenience, since this is a long-tailed 
distribution]. The median of this distribution is $167,130, 
and gj is $225,(X)0. Figure 2 presents the histogram of the 
linearly transformed distribution with bin width of 50. In 
this example, the transformed bins of width 50 are 
equivalent to bins of width $11,250 on the original scale 

(($225,000/1,000)*50). Recall that the original-data bin 
sizes considered are $1,000 and $2,000. Thus, the 
transformed-data bins of width 4 would have a width of 
$900 on the original untransformed scale. Notice the large 
"spike" at the last bin, which contains all of the sample 
greater than g^. 

These figures also illustrate the differences in distribu
tion of sample sizes across bins between the two methods. 
Using fixed bin widths with the original data results in quite 
variable bin sample sizes (see Figure 1). In contrast, by 
design the sample sizes within the data-dependent bins are 
much more uniform for all but the last bin (see Figure 2). 

Figure 1: Original Distribution of Sales Price of Houses Sold 
With Conventional Financing Bin Width = $25,000 

Figure 2: Transformed Distribution of Sales Price of Houses Sold 
With Conventional Financing Using Bin Width = 50 Bin 
Width on Untransformed Scale = $11,250 

Figure 3 presents a histogram of the original distribution 
of houses sold with FHA loans, with bin width of $4,000 
(again, the bin width is chosen for presentation conve
nience). The median of this distribution is $108,280, and 
gj is $124,990. Figure 4 presents the histogram of the 
linearly transformed distribution with bin width of 50. In 
this example, the transformed bins of width 50 are 
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equivalent to bins of width $6,250 on the original scale, and 
the transformed-data bins of width 4 would have approx
imate width $500 on the original untransformed scale. 

Figure 3: Original Distribution of Sales Price of Houses Sold 
With FHA Loans Bin Width = $4,000 

Figure 4: Transformed Distribution of Sales Price of Houses 
Sold With FHA Loans Using Bin Width = 50 
Bin Width on Untransformed Scale = $6,250 

Figures 1 through 4 demonstrate the flexibility of the 
bins developed for linearly-transformed data. The bin size 
on the untransformed scale expands or contracts, depending 
on the spread of the data. Moreover, the data-dependent bin 
sample sizes are less variable compared to those associated 
with fixed bins. 

To evaluate the first interpolation option (original-data-
interpolated medians), we used two different sets of bin 
widths (classification sizes): bins of size $2,000 (the same 
bin width used in the curtent production variance estimation 
system) and bins of size $1,000. [Note: The VPLX variance 
estimation software would not allow any bin size smaller 
than 1,000 because the number of classes exceeded the 
allowable anay range.] After examining several months of 
sales price estimates for the total U.S., we assumed that 
median sales price would always be larger than $36,(X)0 and 
smaller than $550,000, so the first original-data classifi
cation is always (low - 35,999) and the last original-data 

classification is always (550,000 - high): this yields 257 
bins of size $2,000 or 514 bins of size $ 1,000, plus one bin 
of size $36,000 and one bin whose width depends on the 
largest observation in the sample. One obvious problem 
with the locations of these bins is the potential effect of 
inflation. It is conceivable that within special financing 
categories or certain regions, the median sales price for 
houses sold could approach $550,000, and the interpolation 
would fail as a consequence. 

To evaluate the second interpolation option 
(transformed-data-interpolated-medians), we used three 
different sets of bin widths: bins of size 4, 25, and 50. The 
bins of size 4 were chosen to be analogous to the bins of 
size 2,000 in terms of the number of bins. There are 250 
bins of size 4 for the ti-ansformed data less than Q^, and one 
larger bin containing all data greater than Q^. The selection 
of widths 25 and 50 was somewhat arbitrary: we chose bin 
size 50 to get a total of twenty bins for the data less than g j ; 
and we chose bin size 25 to examine the effect of doubling 
the number of bins/halving the width of the bins for data 
less than Q.^. The transformed-data median is always less 
than 1,000, so the last transformed-data classification is 
always (1,000 - high). Thus, by definition the last bin 
contains up to twenty-five percent of the data and is 
considerably wider than the other bins. 

B. Variance Estimation 

We used the Modified Half-Sample (MHS) replication 
method (Fay 1989 and Judkins 1990) to estimate die 
variance of a median as supported in the literature (e.g., 
Rao, Wu, and Yue (1992); Rao and Shao (1996); 
Kovacevic and Yung (1997) for balanced repeated repli
cation; and Judkins (1990) for MHS replication). MHS 
replication is a variation of the "traditional" balanced half-
sample variance estimation described in Wolter (1985, 
110-152). Balanced half-sample replication (BRR) is a 
variance estimation method designed for a two-PSU per 
stratum design. With BRR, a half-sample replicate is 
formed by selecting one unit from each pair and weighting 
the selected unit by 2 (so that it represents both units). 
Thus, estimates for every PSU are included in each 
replicate although half are weighted by zero. Replicates 
(half-samples) are specified using a Hadamard matrix. See 
Wolter (1985, 114-115) for a detailed description of tiie 
replicate formation procedure using Hadamard matrices. 
MHS replication uses replicate weights of 1.5 and 0.5 in 
place of the 2 and 0. The standard ertor for a median 
estimate using MHS replication is given by 

SE(Med) 
N 

4 * E ( M H -Med/ 
R r=l 

where the r subscript refers to the replicate r median 
estimate (/•=), 2,..., R) and tiie 0 subscript refers to the full 
sample the median estimate. This expression contains a four 
(4) in the numerator because the MSE of the replicate 
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estimates is too small by a factor of 1/(1-0.5) .̂ See Judkins 
(1990). 

Neither the SUP nor the NP designs are two-sample-
unit-per-stratum designs. At the first stage, one PSU per 
stratum is selected. The second and third stages are sys
tematic samples, and often only one unit per stratum was 
selected at the second stage. A common approach used to 
address the one sample-unit per stratum problem is to 

- "split" the SR sample-units into two panels per sample-
unit using the original sampling methodology; 

- form collapsed strata by pairing two (or three) "similar" 
NSR sample-units; and 

- apply the half-sample approach in such a way that the 
elements contributing to the half samples are panels 
within sample-units for SR sample-units and are the 
first stage sample-units (PSUs) within collapsed strata 
for NSR sample-units. 

The curtent SOC production variance system uses a 
Keyfitz estimator (a paired difference estimator) for NSR 
sample and an approximate sampling-formula estimator for 
SR sample to produce level estimate variances (Luery 
1990). Because SOC metiiodologists had already collapsed 
NSR strata for their paired difference estimator, a BRR-like 
application was a logical extension of the pre-existing vari
ance estimation stmctiire. For MHS replication, we sort per
mits within predetermined sample-unit groups in SR units 
by geography and authorization date and systematically 
split the ordered sample into two panels as suggested in 
Wolter (1985, 131). Although this is essentially the only 
approach available for the SOC design, this method may 
not provide the cortect variance estimates since units in 
both panels are cortelated (in the original half-sample meth
od, the two PSUs in the stratum are assumed independent). 
For more details on the replicate assignments, see 
Thompson (1998). 

The SOC production system uses the Woodruff method 
(Woodmff 1952) to estimate the standard ertor of a median. 
The Woodmff method uses the estimated SE of a pro
portion E (E = 0.50 for median-estimation) and projects the 
interval (g ± SE(2)) through the cumulative frequency 
distribution to obtain the lower limit of a 62.86 percent con
fidence interval for the median (tiie SE(E) can be estimated 
using replicate methods). The SE of the median is then 
estimated by subtraction. This methodology has had mixed 
success in the past according to SOC survey analysts. 

4. EMPIRICAL DATA RESULTS 

Initially, we used four months of SOC sample data to 
examine the variances of the median-estimation methods 
for sales price of sold houses: March 1997, May 1997, June 
1997, and July 1997. We produced medians by region and 
by type of financing. We used the same weight used by the 

SOC production estimation and variance systems (post-
stratified for SUP sample and unbiased for NP sample), 
pooling both surveys' data to obtain medians. Each set of 
variance estimates was produced using 200 replicates. 

We found that the six median-estimation methods 
produced very similar estimates, but yielded three distinct 
sets of SEs: one set for the sample median, one set for the 
original-data-interpolated medians (fixed bin width), and 
one set for the ti-ansformed-data-interpolated medians (data-
dependent bin width). There was no clear relationship be
tween bin width and SE estimates within the two sets of 
interpolated medians. Indeed, within type of data (original 
or ti-ansformed), the SEs were all very close. Clearly, there 
was a linear transformation and an interpolation effect. 
None of the median-estimation methods yielded standard 
ertors resembling the published standard ertors, so there 
was no available argument for publication consistency. 

Moreover, there is some evidence that the Woodruff 
method publication SEs are underestimates or are at least 
inappropriate for the sample design used. Kovar, Rao, and 
Wu (1988) compared Woodruff SEs and BRR standard 
ertors and found that the two methods had similar 
properties except for the case of stratified samples, where 
the strata are based on highly cortelated separate variables 
(such as the SOC design). In this case, the Woodruff SE is 
often too small, and they concluded that "the BRR... 
methods (sic) are more robust to different population 
structures, since the ertor is extracted directly from the 
replicates." When the production system Woodmff SEs 
used the direcUy-calculated SE(2), the Woodruff SEs were 
generally smaller than the replicate SEs. 

The empirical results left us in a quandary. We had three 
distinct sets of variance estimates, and no "gold standard" 
against which to measure them. Because our empirical 
results were inconclusive, we conducted a Monte Carlo 
simulation study to evaluate the properties of the MHS 
variance estimates produced from the different median 
estimators. 

5. SIMULATION STUDY COMPARISON 

A. Procedure for Simulation Study 

We created four finite artificial populations based on a 
data analysis of four SOC sample populations: one type-of-
financing population (Conventional Financing) and three 
regional populations (Midwest (Region 2), South (Region 
3), and West (Region 4)). These populations represented a 
variety of the types of SOC populations from which 
estimates are produced. Note that the SOC type-of-
financing population is not independent of the SOC-region 
populations. 

To approximate the finite population of sales price for 
houses sold, we generated w. records for each sample-unit 
i, where w. is the sample weight associated with unit i. The 
distributions of sales price for single-unit sold houses could 
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be approximated by lognormal distributions. The lognormal 
distribution has the probability density function 

f{y) _i^_^exp(-l( . ( l2iOiie)zO).) 
y-^ 'Jlka 2 a 

for 0 <;'<«> 

where 9 is the threshold parameter, ^ is the scale parameter, 
and o is the shape parameter. 

From our models, we generated four simulated finite 
bivariate populations with expected cortelation p = 0.6 
using the method outiined in Naylor, Balintfy, Burdick and 
Chu (1968, 99). The first of the two variables in each 
population represented sales price of sold houses and was 
obtained by generating a random normal variable with mean 
^ and variance ô  using the parameters determined above, 
tiien exponentiating and shifting by the appropriate location 
parameters (G). The second variable was used to form strata 
and first stage clusters. This variable had a marginal 
standard normal distribution and was obtained by indepen
dently generating a second standard random normal value, 
multiplying it by 0.8, and adding this term to 0.6 x the 
standard normal random variable used to generate the sales 
price variable. Percentiles, sample skewness, and sample 
kurtosis of each simulated population's sales price variable 
were very close to the cortesponding statistics in the 
original population, especially when outiiers were deleted 
using the resistant outer fences rule described in Hoaglin 
and Iglewicz (1987). Each population's size was the N 
estimated from the sample populations. Model parameters, 
sample cortelations (between simulated sales price and 
stratifying variable), population size {N), and sample sizes 
(n) are reported in Table I. 

After generating the finite populations, we formed 50 
equal sized sti-ata in each population, then selected two sets 
of samples for two different survey designs: 

- The first design is patterned after the SUP sample of 
permits for four-or-less-housing units in SR permit 
offices in SR PSUs (approximately 28% of the SOC 
sample). In this study, we selected 5,000 stratified 
without-replacement random samples from each simu
lated population using the same sampling rate in each 
stratum. To perform MHS replication, we sorted the 
sample within each stratum by stratifying variable and 
then systematically split the sample into two panels. 

- The second design is patterned after the SUP sample of 
permits for four-or-less-housing units in NSR permit 
offices in SR PSUs and in SR permit offices in NSR 
PSUs (approximately 40% of tiie SOC sample). In this 
study, we selected 5,000 two-stage samples from each 
simulated population. The first stage is stratified 
without-replacement random sample of two PSUs per 
stratum (iV̂  = 5). The second stage is a systematic 
sample of units witiiin PSUs. Because all PSUs are the 
same size, this study does not take the SOC PPS sam
pling into account and does not include the collapsing 
of first-stage units. The MHS replication uses the first-
stage sample units (PSUs) within the same strata. The 
replicate weights do not account for large sampling 
fractions at the first stage of selection as recommended 
in Wolter (1985, 122), so all of the variance estimates 
are probably upwardly biased. 

We did not attempt to simulate the SUP sample of 
permits for four-or-less-housing units in NSR PSUs and 
NSR permit offices (a three-stage sample, approximately 
25% of the SOC sample); the SUP sample of permits for 
five-or-more housing units (approximately 2% of the SOC 
sample); or the NP sample of EDs (approximately 5% of 
the SOC sample). The three-stage sample, although non-
negligible in SOC, is rarely used by other surveys at the 
Census Bureau, and the other two sectors of the SOC 
design do not contribute enough to the estimates to wartant 
a separate investigation. 

To examine the precision of each median-estimation 
procedure over repeated samples, we estimated empirical 
Mean Squared Ertors (MSE) and Mean Absolute Ertors 
(MAE) from the 5,000 samples for: 

SM: the sample median of each half-sample 

IO2000: interpolated medians using original data, bins of 
size 2,000 (fixed bin width) 

lOlOOO: interpolated medians using original data, bins of 
size 1,000 (fixed bin width) 

IT4: interpolated medians using linearly transformed 
data, bins of size 4 (data dependent bin width) 

IT25: interpolated medians using linearly transformed 
data, bins of size 25 (data dependent bin width) 

IT50: interpolated medians using linearly transformed 
data, bins of size 50 (data dependent bin width) 

Table 1 
Characteristics of Simulated Populations and Sample Sizes of Stratified Samples 

Sales Price Parameters Correlation 
(Stratifier, Sales Price) 

Population 
Size 

Sample 
Size 

Population Distribution 
Conventional Financing lognormal 
Midwest lognormal 
Soiith lognormal 
West lognormal 

e 
27,578 

31,801 
29,414 

53,781 

a 
0.4895 

0.5957 

0.5549 

0.5822 

; 
11.84 

11.69 
11.55 

11.59 

P 
0.57030 

0.55835 

0.55929 

0.55525 

N 
25,150 

6,500 

14,550 

11,550 

n 
500 
150 
300 
250 
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Table 2 
Median, Third Quartile, and Bin Widths on Original Scale for Transformed Simulated Data 

Population 

Conventional Financing 
Midwest (Region 2) 
South (Region 3) 
West (Region 4) 

Median 

167,173 
151,312 
133,745 
162,130 

Q^ 

222,263 
210,647 
180,868 
214,320 

4 
889 
843 
723 
857 

Bin Width 
25 

5,557 
5,266 
4,522 
5,358 

50 
11,113 
10,532 
9,043 

10,716 

The linear transformation was performed once for 
procedures IT4, IT25, and IT50. The original data were 
transformed using the full sample gj , and these trans
formed data were assigned to the half-samples (including 
replicate 0, the full sample). Table 2 provides the median 
and third quartile of each finite population, along with the 
bin widths on the original scale for the transformed data. 

We calculated M(^), the empirical MSE of median-
estimation procedure i as 

M(̂ ,) = ' . ^ — ^ (^i - y ' 
5,000 

= A2, •" 2 / d^(g + bias'(g 

where L^ is the estimated median for sample i and estimator 
i, \ is the average of the ^ , and t^ is the population 
median. This is the empirical MSE described in Judkins 
(1990). 

We calculated the Mean Absolute Ertor (MAE) of each 
median-estimation procedure i as 

MAE(g 
E l ^ - y 

5,000 
(5.2) 

as defined in DeGroot (1986,209-211). 
To compare the variance estimation properties of the 

different median-estimation methods, we calculated an 
MHS variance estimate (Vy) cortesponding to each median-
estimation procedure i from 1,000 of the 5,000 samples. 
These variance estimates were compared in terms of 

Relative bias (Ev, /1 ,000)/My - 1 
7=1 

Relative Stability [ ( ^ (v^.-A/(Q)^/l,000)]"2/M(y 
7=1 

Error Rate Number of samples where (^< 9^ or Q, > 
9ui)/1,000 where 

9y is the lower end of a 90% confidence interval, and 

9ui is the upper end of a 90% confidence interval 

These criteria are used in Kovar, Rao, and Wu (1988) 
and in Rao and Shao (1996). The relative bias is a measure 
of the bias of the variance estimate as a proportion of the 
tme MSE. The stability is a measure of the variance of the 
variance estimates; it approximates a c.v. of the variance 
estimate Vj. Note that the relative stability is not the relative 
MSE defined in Wolter (1985, 297) which uses the 
squared-MSE in the denominator. With an "optimal" vari
ance estimator, both the relative bias and relative stability 
will be near zero, and the ertor rate will be ten percent. 

B. Results 

(5-1) I. Comparison of Median-estimation Procedures 

2. 

Table 3 presents the empirical root MSE, standard 
ertor, the bias, and the MAE for each median-esti
mation procedure from both simulation studies. Each of 
these statistics was calculated from 5,000 samples. 

These results reinforced our suspicions from the 
empirical data analysis described earlier. At least for 
sales price, all six median-estimation procedures per
form approximately equally well, with approximately 
equal root-MSEs and MAEs between procedures in 
each population. 

Comparison of MHS Replication Variance Estimation 
Properties of Median-Estimation Procedures 

When we examined the variance estimation properties 
for each procedure, the results were quite different. As with 
our empirical data analysis, we had three very distinctive 
sets of results. Table 4 summarizes the three different 
comparison measures for the variance estimates in the four 
populations. The numerators for the relative bias and stabil
ity and the coverage rates are based on 1,000 samples. The 
denominator for the relative bias and stability ("tmth") are 
based on 5,000 samples. An asterisk (*) in the last column 
of Table 4 indicates that the ertor rate is significantiy differ
ent from the nominal ertor rate of 0.10 using the normal ap
proximation to the binomial distribution at the 90% confi
dence level. 



160 Thompson and Sigman: Estimation and Replicate Variance Estimation of Median Sales Prices 

Table 3 
Empirical Root MSE, Standard Error, Bias, and MAE for Median-Estimation Procedures 

Population 

Conventional 
Financing 

Region 2 
Midwest 

Region 3 
South 

Region 4 
West 

Median-
Estimation 
Procedure 

SM 
IO2000 
lOlOOO 
IT4 
IT25 
IT50 
SM 
IO2000 
lOlOOO 
IT4 
IT25 
IT50 
SM 
IO2000 
lOlOOO 
IT4 
IT25 
IT50 
SM 
IO2000 
lOlOOO 
IT4 
IT25 
IT50 

Unclustered Single 
Root 
MSE 
3,345 
3,320 
3,387 
3,351 
3,304 
3,282 
6,316 
6,276 
6,343 
6,372 
6,273 
6,220 
3,670 
3,708 
3,742 
3,718 
3,699 
3,692 
4,385 
4,425 
4,477 
4,414 
4,376 
4,367 

SE 

3,345 
3,316 
3,368 
3,340 
3,293 
3,265 
6,287 
6,275 
6,297 
6,363 
6,272 
6,218 
3,658 
3,669 
3,740 
3,662 
3,638 
3,616 
4,382 
4,421 
4,469 
4,403 
4,364 
4,350 

-Stage Sample 

Bias 

-12 
161 

-354 
273 
276 
329 

-598 
-127 
-767 
328 
127 
160 
301 
539 
101 
639 
669 
745 

-140 
185 

-258 
318 
315 
391 

MAE 

2,671 
2,698 
2,642 
2,673 
2,617 
2,606 
4,966 
4,992 
4,939 
5,004 
4,937 
4,936 
2,931 
2,998 
2,941 
2,951 
2,924 
2,912 
3,509 
3,578 
3,530 
3,514 
3,460 
3,455 

Root 
MSE 

3,389 
3,346 
3,431 
3,378 
3,337 
3,305 
6,273 
6,335 
6,526 
6,294 
6,270 
6,224 
3,835 
3,796 
3,809 
3,814 
3,793 
3,778 
4,394 
4,362 
4,411 
4,383 
4,334 
4,320 

Clustered Two-

SE 

3,374 
3,341 
3,420 
3,364 
3,321 
3,283 
6,228 
6,207 
6,280 
6,228 
6,154 
6,114 
3,752 
3,739 
3,804 
3,736 
3,711 
3,680 
4,351 
4,339 
4,410 
4,342 
4,296 
4,271 

•Stage Sample 

Bias 

324 
189 

-278 
311 
322 
375 

-753 
-1,271 
-1,774 

-908 
-1,199 
-1,164 

796 
656 
212 
766 
787 
856 
616 
449 
-57 
599 
573 
644 

MAE 

2,733 
2,685 
2,774 
2,719 
2,664 
2,636 
4,959 
5,029 
5,204 
4,979 
4,971 
4,966 
3,054 
3,011 
3,066 
3,028 
2,992 
2,970 
3,506 
3,487 
3,535 
3,494 
3,439 
3,436 

In both studies, the variance estimates of the trans-
formed-data-interpolated medians perform best in terms of 
relative bias and stability. Specifically, 

- The variance estimates of the transformed-data-
interpolated medians (IT4, IT25, IT50) have the 
smallest relative bias. The difference in estimation 
method is quite pronounced in three of the four popula
tions, where the largest relative bias of the transformed-
data-interpolated medians is less than one-half the size 
of the smallest relative bias of the original-data-
interpolated and sample medians. These results are sur
prisingly strong for the two-stage clustered design, 
since the variance estimates are expected to be biased 
upwards (see section 5.A); 

- The variance estimates of the interpolated medians had 
the best stability. The variance estimates of the sample 
median had the poorest stability in all four populations. 
This result was expected due to the smoothing effect of 
interpolation. Again, the transformed-data-interpolated 
medians generally performed better than the original-
data-interpolated medians, although the difference is 
not as pronounced as in the case of relative bias. Gen
erally, the stability is close with all tiiree bin widths for 
the transformed-data-interpolated medians. 

The results for each median-estimation procedure's 
confidence interval coverage are not as consistent, varying 
by design. With the single-stage unclustered design, the 

confidence intervals constructed from transformed-data-
interpolated medians and SEs have the best coverage. In 
each population, tiie data-dependent bins (all widths) yield 
close to nominal or better coverage; in fact, none of these 
ertor rates is statistically different from the nominal 10%. 
The confidence intervals constmcted from original-data-
interpolated medians and SEs are extremely conservative. 
Here, the positive bias in the variance estimates makes these 
intervals unnecessarily wide, thereby reducing the power to 
make interesting findings. The coverage with the sample 
median is ertatic. 

Some of these coverage patterns are repeated in the two-
stage clustered design. Again, the coverage witii tiie sample 
median is ertatic, and the coverage rates for the confidence 
intervals constmcted from original-data-interpolated medi
ans are better than nominal (although only significantly 
better than nominal in two populations). The ertor rate 
pattern is quite different for the transformed-data-inter
polated medians. In all but the Region 4 population, the 
coverages rates for the three procedures are worse than 
nominal. However, with bins of widths 4 and 25, only one 
ertor rate is significantiy larger than 10%; for bins of width 
50, two of these three ertor rates are significantly larger 
than 10%. All of the interpolated-data-medians have sig
nificantly smaller than nominal ertor rates in the Region 4 
population; consistent with the other population's results, 
the ertor rates for the original-data-interpolated medians are 
the farthest from 10%. 
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Table 4 
Relative Bias and Relative Stability for Variance Estimates, and Error Rates for 90% Confidence Intervals 

Population 

Conventional 
Financing 

Region 2 
Midwest 

Region 3 
South 

Region 4 
West 

Median-
Estimation 
Procedure 

SM 
IO2000 
lOlOOO 
IT4 
IT25 
IT50 

SM 
IO2000 
lOlOOO 
IT4 
IT25 
IT50 

SM 
IO2000 
lOlOOO 
IT4 
IT25 
IT50 

SM 
IO2000 
lOlOOO 
IT4 
IT25 
IT50 

Unclustered Single Stage 

Relative Bias 

0.19 
0.25 
0.21 
0.06 
0.07 
0.05 

0.57 
0.33 
0.30 
0.15 
0.16 
0.15 

0.30 
0.31 
0.29 
0.04 
0.02 
0.01 

0.39 
0.32 
0.29 
0.11 
0.10 
0.08 

Relative 
Stability 

0.69 
0.35 
0.32 
0.25 
0.25 
0.26 

1.24 
0.44 
0.42 
0.41 
0.40 
0.42 

0.88 
0.42 
0.40 
0.29 
0.28 
0.29 

0.98 
0.42 
0.39 
0.32 
0.31 
0.31 

Design 

Error Rate 

11.0% 
6.9%* 
7.0%* 

10.0% 
10.9% 
9.5% 

7.3%* 
6.9%* 
7.0%* 

10.1% 
9.8% 
9.0% 

12.4%* 
6.7%* 
6.7%* 

11.0% 
11.0% 
11.1% 

8.9% 
6.2%* 
6.2%* 
8.6% 
9.4% 
9.5% 

Clustered Two-Stage Design 

Relative Bias 

0.11 
0.25 
0.19 
0.06 
0.06 
0.05 

0.41 
0.23 
0.17 
0.14 
0.11 
0.11 

0.15 
0.28 
0.27 
0.01 

-0.01 
-0.02 

0.25 
0.31 
0.28 
0.10 
0.09 
0.08 

Relative 
Stability 

0.58 
0.37 
0.33 
0.27 
0.27 
0.28 

1.07 
0.35 
0.30 
0.41 
0.37 
0.40 

0.71 
0.39 
0.38 
0.28 
0.27 
0.28 

0.79 
0.41 
0.38 
0.31 
0.30 
0.31 

Error Rate 

15.1%* 
9.0% 
9.3% 

11.3% 
11.8%* 
12.1%* 

7.9%* 
8.6% 
8.7% 

11.5%* 
10.4% 
10.4% 

11.1% 
7.5%* 
7.3%* 

10.8% 
11.3% 
11.9%* 

8.6% 
5.2%* 
5.2%* 
7.6%* 
7.5%* 
8.3%* 

In both studies, the transformed-data-interpolated 
medians have the best variance estimation properties in 
terms of relative bias and relative stability by a large 
margin, regardless of bin width. And, in both studies, the 
transformed-data-interpolated medians using bins of width 
4 or width 25 have excellent confidence interval coverage. 
Since the transformed-data-interpolated-medians using bins 
of width 50 or width 25 yielded the "best" estimators in 
terms of root-MSE and MAE in both studies, using linear 
interpolation on transformed data with bins of width 25 
appears to be the best median-estimation procedure in terms 
of estimation and variance estimation properties. 

6. CONCLUSION 

We explored the effect of using variations of two 
different methods of estimating the median sales price of 
sold houses: direct estimation versus linear interpolation. 
Linear interpolation requires classifying continuous data 
into bins of standard width. This width can be arbitrary, can 
differ greatly by domain, and may change as the sample 
distribution changes over time. The linear transformation 

based on the third quartile appeared to cortect this problem. 
With the transformed data, the bins' widths and locations in 
the distribution change depending on the data. 

Our empirical results indicated that the choice of method 
has a pronounced impact on the variance estimates given 
MHS replication. Our simulation study examined the 
properties of the different median-estimation procedures on 
the MHS replicate variance estimates. In all four simulated 
populations, the transformed-data-interpolated medians 
(data dependent bin widtiis) performed the best, usually by 
a wide margin. Most critically, this method greatly reduces 
the overestimation of the variance. Using bins of width 25 
on the transformed scale (41 bins total) yielded the best 
median sales price estimates and variance estimates, given 
MHS replication and is our recommended method for the 
Survey of Construction. 

The recommended method has several advantages. First, 
it is adaptive. It works well for a variety of distributions, 
because the bin widths themselves depend on the distribu
tion at hand. Second, it saves computing resources by 
avoiding sorting half-samples. Third, the data-dependent-
intervals can be easily incorporated into generalized survey-
processing software. Finally, it gives better estimates and 
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MHS replicate variance estimates (at least for sales price of 
sold houses). We expect that these results are generalizable 
for other continuous distributions as well, although obvi
ously this conjecture should be tested on other data sets. 
Other areas for future research include examining the 
relationship between sample size and precision of the 
median estimates, examining alternative bin sizes, and 
exploring the robustness of the recommended procedure 
with different replicate variance estimation procedures. 
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The Impact of Different Rotation Patterns on the Sampling 
Variance of Seasonally Adjusted and Trend Estimates 

C.H. McLAREN and D.G. STEEL' 

ABSTRACT 

Many economic and social time series are based on sample surveys which have complex sample designs. The sample design 
affects the properties of the time series. In particular, the overiap of the sample from period to period affects the variability 
of the time series of survey estimates, and the seasonally adjusted and trend estimates produced from them. The Census 
XI1 and XI1ARIMA packages are commonly used to produce seasonally adjusted estimates and can also be used to 
produce estimates of trend. This paper considers the implications of different overlap patterns on the sampling variance 
of seasonally adjusted and trend estimates obtained from time series based on sample surveys. 

KEY WORDS: XI1; XI1 ARIMA; Seasonal adjustment; Trend estimation; Rotation patterns. 

1. INTRODUCTION 

Many important time series are based on repeated sample 
surveys which have complex patterns of sample overlap from 
period to period. The use of sampling means that the 
estimated time series have a component of variability due to 
sampling ertors and for many series this will be a major 
source of variability. The sample design, in particular the 
overlap pattern, affects the variability of the time series of 
survey estimates. 

Increasingly, analysis of time series is concentrating on 
assessing underlying patterns of change or trends based on 
analysis of the seasonally adjusted series. Most govemment 
statistical agencies have calculated seasonally adjusted series 
for many years. Kenny and Durbin (1982) noted that policy 
analysts frequently say that they are more interested in 
underlying trends than following irtegular fluctuations in the 
de-seasonalized monthly values. A similar view is expressed 
by Smith (1997). For more than 10 years the Australian 
Bureau of Statistics (ABS) has published series of trend 
estimates obtained by applying Henderson Moving Averages 
(HMAs) (Henderson 1916) to the seasonally adjusted series 
to smooth out the irtegular components of the series (ABS 
1987). Other govemment statistical agencies also produce 
ti-end estimates using a variety of methods (Knowles 1997). 
Since seasonally adjusted and trend estimates are obtained 
by processes applied to the original series, they are also 
influenced by sampling ertors. Bell and Kramer (1999) note 
tiiat the variance of seasonally adjusted estimates will often 
be dominated by the contribution from sampling ertor. Some 
series are based on independent samples over time, but 
usually the samples used have a degree of overlap from 
period to period to reduce costs and the standard ertors of 
estimates of change between two consecutive time periods 
(Kish 1998). 

A key issue in the development of the design of a re
peated survey is the rotation pattern, that is, the pattem of 
a selected unit's inclusion in the survey over time, which 
will determine the sample overlap. The aim of this paper is 
to determine the effects of the rotation pattem used on the 
sampling variance of the estimated seasonally adjusted and 
trend series obtained using the Census XI1 method 
developed by Shiskin, Young and Musgrave (1967) and 
XI1 ARIMA developed by Dagum (1980 and 1988). We 
will focus on the estimates of the level and one period 
change in the seasonally adjusted and trend estimates. 

2. ROTATION PATTERNS 

Consider a univariate time series with values y^, 
t = l,...T, obtained from a repeated sample survey. The 
observed value at time / is related to the tme value of the 
series in the finite population, Y^, by 

yi Y +e 
t I 

where e, is the sampling ertor. The series Y^ is thought to 
consist of trend-cycle, seasonal and irtegular components 
r,, 5, and /,, so that 

Yi T,^S,^I,^e, 

In some cases a multiplicative decomposition may be 
more appropriate. Many statistical agencies produce sea
sonally adjusted series by attempting to estimate 5, and 
remove it from the series, usually using some combination 
of linear filters. Most commonly used is the Census XI1 
method developed by Shiskin et al. {1967) and X11 ARIMA 
developed by Dagum (1980 and 1988). Findley, Monsell, 
Otto, Bell and Pugh (1998) described further enhancements 
embodied in X12ARIMA. The ABS also publishes trend 
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estimates obtained by applying HMAs to the seasonally 
adjusted series and encourages users to base their interpre
tation of the series on these trend estimates (Linacre and 
Zarb 1991; ABS 1993). The HMAs were originally derived 
by Henderson (1916) for use in actuarial work and are used 
within XI1, XI1 ARIMA and X12ARIMA to de-ti-end series 
for seasonal adjustment purposes. Kenny and Durbin (1982) 
and Gray and Thomson (1996) explain the derivation of the 
HMAs. Users can also produce trend estimates by applying 
filters to the published seasonally adjusted estimates. Kenny 
and Durbin (1982) noted that there is no unique definition of 
trend and that different filters may be used according to the 
degree of smoothness and sensitivity required. Knowles and 
Kenny (1997) investigated methods of trend estimation for 
official statistical series. For monthly series they recom
mended the use of HMAs, with the length of the filter being 
13 or 23 depending on the volatility of the series in question. 

The autocortelation structure of the observed series is 
determined by the autocortelation of the series y, and e,, 
which will then affect the estimates of the trend, seasonally 
and irtegular components. The covariance stmcture of the 
sampling ertor series, e,, can be estimated from the unit 
level survey data. By obtaining such estimates, it is possible 
to obtain estimates of the sampling variance of the estimated 
trend, seasonally adjusted and irtegular series. Various meth
ods for doing this have been proposed; for example Steel and 
DeMel (1988) considered the effect of linear filters on the 
spectmm of the sampling ertor series and Wolter and 
Monsour (1981) used an approach based on the effect of 
linear filters on the autocovariance function. Sutcliffe (1993) 
adopted a similar approach using a linear approximation to 
the XI1 procedure. Pfeffermann (1994) proposed a method 
which develops an estimate of sampling ertor directly from 
the estimated time series using various simplifying assump
tions. These approaches do not explicitiy model the time 
series. Other authors, for example Bell and Wilcox (1993), 
Tiller (1992), Burtidge and WalHs (1985) and Hausman and 
Watson (1985), considered explicit ARIMA models for both 
the true series and the sampling ertor series, and concen
trated on the estimation of the parameters of the models. 
These papers do not consider the effect of different rotation 
patterns and concentrate on producing estimates of the va
riances of seasonally adjusted estimates for the particular 
rotation pattem used. 

The rotation pattem used in the survey will affect the au
tocortelation stmcture of the sampling ertor series and hence 
the sampling variance of the original, seasonally adjusted 
and trend estimates. Several considerations are taken into 
account in deciding upon a rotation pattem. High sample 
overlap between consecutive periods reduces the sampling 
variance of estimates of change between the periods and 
high sample overlap between periods 12 months apart 
reduces the sampling variance of estimates of annual change. 
The first occasion that a selected unit is included in the 
survey is usually the most expensive. By keeping selected 
units in the survey for longer the cost of the survey is 

reduced. This leads to rotation patterns in which a selected 
unit is included every period for as long as possible. How
ever, a selected unit must eventually be rotated out of the 
survey. Besides the ethical consideration of spreading re
spondent load, there is the possible deterioration in re
sponse rate and quality of data reported if the same unit is 
included for a large number of occasions (see Kalton and 
Citro 1993, for a discussion of these issues). 

Rotation patterns vary in terms of the number of times a 
unit is included in the survey and the time interval between 
inclusions. We concentrate on monthly labour force surveys 
(MLFSs). The rotation patterns used in practice are special 
cases of the a-b-a{m) rotation patterns where selected units 
are included for a consecutive months, removed from the 
survey for b months then re-included for a further a months. 
The pattem is repeated so that selected units are included 
for a total ofm occasions. Rao and Graham (1964) consid
ered the estimation of the finite population means and totals 
for this class of rotation patterns. The United States Curtent 
Population Survey (CPS) uses a 4-8-4(8) pattem (Fuller, 
Adam and Yansaneh 1992). Putting b =0 gives an in-for-m 
rotation pattem in which selected dweUings are included for 
m months after which they are removed from the sample. 
The case m =6 cortesponds to the Canadian rotation 
pattem (Singh, Drew, Gambino and Mayda 1990) and 
/w = 8 cortesponds to the Australian pattem (ABS 1992). 
Steel (1997) noted that the British quarterly labour force 
survey approximately cortesponds to a monthly survey with 
a 1-2-1(5) rotation pattem. 

We consider the sampling variance of the seasonally ad
justed and trend estimates associated with the rotation 
patterns currentiy used in MLFSs and a number of rotation 
patterns that, while not curtently used, may have some 
desirable properties. This will give an indication of which 
rotation patterns are better in terms of the component of the 
variability of the estimated series that is affected by the 
sample design. 

3. SAMPLING VARIANCE OF SEASONALLY 
ADJUSTED AND TREND ESTIMATES 

Let y^he the vector containing the values of the time 
series of survey estimates up to time T and Yj. be the vector 
containing the tme population values. The sampling vari
ance of the original series is denoted by V{y.j.\ F ,̂). Consid
er a linear filter which is used to obtain values from j ; j . by 
applying a vector of filter weights w,. The filter weights 
are non-random and have no connection with the survey 
weights used in calculating the survey estimates y^. The 
filter weight vectors w, depends on the time period for 
which the filtered value refers. The weights are constant 
within the body of the series but may be modified at the 
beginning and end. The filtered value at time / is 

yr^iYr (1) 
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Then 

V{y,\Yr)-»':y{yT\Yr)»', (2) 

is the sampling variance of the filtered value at time /. The 
sampling error of the filtered value is the difference between w'^y j. 
and w'jYj., which is conditional on the values of the tme 
senes, F^. This is the difference between the filtered value 
obtained from the series of estimates ending at time T and 
the value that would be obtained if that series was observed 
without sampling ertor. We focus on this component as it is 
the sampling variance that can be altered by changing the 
sample design. The variance associated with Y^. has not 
been taken into account. Wolter and Monsour (1981) dis
cussed the issue of total variance versus sampling ertor 
variance. There may be advantages in considering the total 
variance in interpreting the resulting series but when we are 
considering sample design issues, such as the choice of 
rotation pattem, we focus on the component that is directiy 
affected by decisions made about the sample design. If the 
sampling ertor does not contribute significantiy to the vari
ability of the series then decisions about the sample design 
are not as important as they are when the sampling ertor is a 
major contributor, although it still seems sensible to use as 
effective a sample design as possible. 

To determine the effect of different rotation patterns on 
the sampling variance of a particular filtered series, we need 
an estimate of V{yj.\Yj.) for different rotation patterns. 
Previous work on estimating variances of seasonally adjusted 
series has either ignored the rotation pattem and assumed 
independent samples at each time point, or taken it as fixed 
and used an estimation method that takes it into account. We 
need a model for V{yj.\Y.j.) that reflects the effect of the 
different rotation patterns that could be used. 

The analysis of the effect of different rotation patterns is 
simplified if the series of sampling ertors has a stable auto
cortelation structure. The precise form of the autocortelation 
function will depend on the series and should reflect the 
complexities of the design. For example Steel and DeMel 
(1988) suggested a model for the Australian Monthly Labour 
Force data and Bell and Wilcox (1993) suggested a model 
for the United States Retail Trade series. Bell and Hillmer 
(1990) and Miazaki and Dorea (1993) also considered 
modelling of survey ertors by time series models. Dempster 
and Hwang (1993) and Lee (1990) considered approaches to 
estimating and modelling sampling ertor cortelations for the 
US CPS. 

Our approach is to assume that the series of sampling 
ertors, e, has constant variance. A model is needed for the 
cortelation between the sampling ertors of y^ and y^^^. All 
the rotation patterns considered imply that the sample at any 
particular time will consist of a number of panels. A panel is 
a set of units that are included and removed from the survey 
at the same time. When a panel is rotated out of the survey it 
will be replaced by another panel. The set of panels related 
in this way is referted to as a rotation group. Most MLFSs 
use multistage sampling and when a panel is rotated out of 

the survey it is replaced by another panel of nearby house
holds (see ABS 1992; Singh et al. 1990). Hence it is as
sumed tiiat the sampling cortelation between estimates ob
tained from the same rotation group s periods apart is r{s) 
if no rotation has occurted and d{s) if rotation has occurted. 
We will assume that the estimate at time t is, at least ap
proximately, the average of estimates from each rotation 
group and that estimates from different rotation groups, 
which will usually be in different PSUs and spatially well 
separated, are independent. 

These assumptions imply that the sampling cortelation 
between y, and y^^^ is 

R{s)=d{s)^k{s){r{s)-d{s)) (3) 

where k{s) is proportion of the sample in common between 
the two time periods. The sample overlap factor k{s) is 
determined by the rotation pattem. For example, for an 
/«-^r-»7 rotation pattem k{s) = I - sIm, 5=0,..., m - I and 
zero otherwise, assuming that the same number of dwel
lings are added and dropped from the sample each month. 
If different panels in the same rotation group are indepen
dent, then d{s) = 0, but in general this will not be the case. 
This model is essentially the same as derived by Scott, 
Smith and Jones (1977). An example of an in-for-A rotation 
pattem over an eight month period is illustrated in Table 1. 
Different panels are denoted by different letters and the 
subscript indicates the number of times the panel has been 
included in the survey up to the time period indicated. 

Table 1 
Structure of in-for-4 Rotation Pattem 

Rotation 
Group 

/ + 1 r+2 

Time Period 

/ + 3 r+4 / + 5 « + 6 / + 7 

1 

2 

3 

4 

a^ 

c^ 

h 
h 

"2 

rf, 
f. 
h 

"i 

d2 

8i 

•i 

at 

d^ 

gi 

J, 

Al 

d. 

ft 

Ji 

A: 

e, 

8t 

A 

A3 

^2 

h: 

Jt 

A4 

e. 

h2 

*, 

In this case r(2) is the cortelation arising from say Oj and 
a^, whereas d{2) is the cortelation associated with aj and 
by Binder and Hidiroglou (1988) and Fuller et al. (1992) 
provided discussions of the data structure implied by some 
other rotation patterns. 

The assumption that the variance of the sampling ertor 
series is constant implies that no major changes to the 
sample design or the population structure occur, at least 
over the effective length of the filters being considered. 
The assumption of stable autocortelations, r{s) and d{s), for 
the population cortelation also implies no major changes to 
the sample design or population. Estimates for r{s) and d{s) 
in (3) were obtained from a study by Bell (1998). The 
values used are from the Australian Labour Force Survey 
(ALFS) for the proportion of persons employed and also tiie 
proportion of persons unemployed and are shown in 
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Table 2. These were obtained by treating the rotation groups 
in the ALFS as replicates and measuring the autocorrelation 
at the rotation group level. A model given in Bell (1998) was 
used to extrapolate values beyond the given lags. 

Table 2 
Autocorelations - A L F S 

Proportion of employed persons 

lag 1 
r(j) 0.80 
d(s) 0.15 

2 3 
0.71 0.64 
0.15 0.14 

4 

0.57 
0.13 

5 

0.50 
0.12 

6 

0.45 
0.11 

7 
0.40 
0.11 

8 
0.36 
0.10 

Proportion of unemployed persons 

1 
r{s) 0.62 
d(s) 0.11 

2 3 
0.52 0.44 
0.11 0.10 

4 

0.37 
0.09 

5 

0.31 
0.09 

6 

0.26 
0.08 

7 
0.22 
0.08 

8 

0.19 
0.07 

Sutcliffe and Lee (1995) studied the standard ertors of 
seasonally adjusted and trend estimates of level and move
ment under a small number of different rotation patterns. 
They assumed a simple geometric decay model for the cor
relations between survey estimates with a population corte
lation of p = 0.8, i.e., R{s) = p ,̂ which decreases more rap
idly than the values given in Table 2. 

4. LINEAR APPROXIMATIONS FOR 
SEASONALLY ADJUSTED AND 

TREND ESTIMATES 

The XII method consists of an iterative application of 
moving averages resulting in a symmetric filter for the cen
tral values, and asymmetric filters for the values at the begin
ning and end of the series. The final seasonally adjusted and 
trend estimates produced by XII can be approximated by 
linear filters. Several authors; for example, Young (1968), 
Cleveland and Tiao (1976), Wallis (1982), and Sutcliffe 
(1993), have produced linear approximations to the XI1 pro
cedure. The XI1 ARIMA procedure (Dagum 1980, 1988) is 
an extension of XII and extrapolates the original series at 
both ends by an ARIMA model. The effect of the ARIMA 
extrapolation can be incorporated into the filter weights and 
these weights can be applied to the data alone. Dagum, 
Chhab and Chiu (1996) considered a Cascade method ap
proach, where the Cascade filters are a result of the convo
lution of the various predetermined linear filters used within 
both XI1 and XI1 ARIMA. We used this approach to real
istically approximate both the XI1 and XI1 ARIMA pro
cedures. 

Define the matrix whose rows contain the filter weights of 
13 term HMAs for both symmetiic and asymmettic filters as Hjj. 
The matrix of weights cortesponding to a 3 x 3 moving 

average (ma) is denoted as Sj^j and that corresponding to a 3 x 5 
ma is denoted as Sj^j. These are used for estimation of 
seasonal factors. The matrix D is defined as a 12 term 
centered ma and I is an identity matrix. The notation c indi
cates the complement of a filter, for example D'̂  = I - D. 
The Seasonal Adjustment Cascade filters are written as 

S = I-D^S3,5[H,3(D^S3,3DTr. 

The trend Cascade filters used for the estimation of tiiend 
are then found by multiplying the seasonally adjusted filter 
by a trend filter. At the end of the series the Cascade filters 
for trend and seasonally adjusted estimates will differ ac
cording to whether XI1 or XI1 ARIMA is used. 

We consider the following different combinations of the 
intertial filters of XI1 and XI1 ARIMA: 

I. Standard XII Cascade filter: This cortesponds to a 13 
term HMA for estimation of trend (H13), 3 x 3 ma for 
the first estimation of the seasonal factors (SI3^3), 
3 X 5 ma for estimation of seasonal factors (523^5), 
and no modification for outliers. 

2. Standard XI1 Cascade filter with ARIMA forecasts: 
This cortesponds to use of a H13, 513^3, ^23^5, and 
extended forecasts from an ARIMA model of the form 
(I -B){1 -B^^)y, = {l -0.45)(I - 0.65'2)a,, where 
B is the backward shift operator and a, is a white noise 
process, and no modification for outiiers. 

3. Short XII Cascade filter witii ARIMA forecasts: This 
cortesponds to use of a H9, ^13^3, 523^5, and 
extended forecasts from a model of the form 
{I -B){1 -B^^)y, = {l -0.3B){1 -0.3B^^)a,, and no 
modification for outliers. 

4. Long XII Cascade filter with ARIMA forecasts: This 
cortesponds to use of a H23, SL^j, S2 "3x5' and 
extended forecasts from a model of the form ( 1 - 5 ) 
(1 -B^^)y, = {l -0.85)(1 -0.85'2) a,, and no modi
fication for outliers. 

Combinations 2 and 3 have been observed by Dagum 
(1983) to be applicable in a number of cases. The linear 
approximations chosen allow us to examine the effect of 
different rotation patterns for a range of filters used in 
practice, which involve HMAs of different lengths. 

For each combination of filters the cortesponding Cas
cade filter provides a vector of filter weights for the sea
sonally adjusted estimates and a different weight vector for 
the final trend estimates. These can then be substituted into 
equation (2) to obtain the sampling variances for a parti
cular rotation pattem by using the appropriate values for 
V{yj.\Y.j,). When computing change estimates the data 
vector j ' j . remains unchanged and the weights that are 
applied change. For example, w, ̂ , - w, can be used for a 
one month difference. This basic approach is the same as 
that adopted by Wolter and Monsour (1981) who proposed 
estimating the variance of seasonally adjusted estimates 
using (2) with weights chosen that reasonably approximate 
the seasonal adjustment process and using a survey based 
estimate of V{y ̂  \ Yj.). We also consider trend filters and 
different realisations of XII ARIMA and rotation patterns. 

The XI1 ARIMA models considered in this paper are 
representative of those commonly used in practice. 
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Additional complications arise from the use of ARIMA 
forecasts in the XI1 ARIMA approach. For example, we 
assume no misspecification of the ARIMA model. The 
ARIMA model is typically identified and estimated using 
previous survey data. The sampling ertor for previous time 
points could influence the choice of ARIMA model and XI1 
filters. This could be taken into consideration by modifi
cation of the variance in (2). 

The initial trend and seasonally adjusted estimates for 
time / will be made using the time series of estimates ending 
at time /, that is y^, giving the filtered value w',y,. The value 
that would be obtained if there was no sampling ertor is 
H'JF,. The sampling ertor considered in this paper is 
^'lYi ~^iYf ^^ estimates are added to the series the filtered 
value for time / may change, but there will come a time 
point, / -H 5, after which there is no appreciable change. The 
final filtered value for time t based on the survey estimates 
can be written as H'*'J',^^, for a final symmetric weight 
vector w^'. Similarly the final value that would be obtained 
if there were no sampling ertor would be w*' F,^^. Bell and 
Kramer (1999) considered the difference w'^y, - w*' F,^^, 
which includes the forecast ertor. This difference can be 
decomposed as 

"^tY. w Y..r^»>',yrKY,)HKYr>^%Y,,^). 

We have considered how different rotation patterns affect 
the first term in this decomposition. The second term in
volves the series observed without sampling ertor and is 
unaffected by the sample design, including the rotation pat
tem. Bell and Kramer (1999) considered the series of US 
Housing Starts involving five or more units and showed that 
the total variance of the trend series showed large increases 
at the end of the series due to forecasting ertors. This is due 
to the revisions in the initial trend estimates that are made as 
estimates are added to the series. Steel and McLaren (2000) 
considered the effect of different rotation patterns on the 
observed revision of the initial trend estimates, which is 
^'lYt ~ ^*i yi*s- "^^^y noted that the relative importance of 
the component due to sampling ertor will depend on how the 
tme series is evolving around the period being considered. 

5. RESULTS 

We use filters cortesponding to the level and one month 
difference for both the seasonally adjusted and trend esti
mates at the very end of the series. Tables 3 to 6 summarise 
the effect of different rotation patterns for each Cascade filter 
combination. These tables give, for a selection of rotation 
patterns, the ratio of the sampling variance of the estimates 
under consideration divided by the sampling variance that 
would be obtained when there is complete rotation each 
month. The ratios obtained in the middle of the series give 
the same general conclusions (McLaren 1999). 

Table 3 
Ratio of the Sampling Variance for Chosen Rotation Patterns 
Divided by the Sampling Variance for an Independent Design 

(Combination I) 

Rotation 
Pattem 

complete 
1-2-1(5) 

.1-2-1(8) 
1-1-1(6) 
2-2-2(8) 
2-10-2(4) 
3-3-3(6) 
4-8-4(8) 
6-6-6(12) 
in-for-6 
in-for-S 
no rotation 

SA, 
emp 
1.00 
0.99 
0.98 
1.01 
1.02 
1.04 
1.07 
1.10 
1.10 
1.10 
1.09 
1.08 

unemp 
1.00 
0.99 
0.99 
1.01 
1.02 
1.04 
1.06 
1.08 
1.08 
1.08 
1.08 
1.08 

SA„, 
emp 
1.00 
0.99 
0.97 
1.00 
0.61 
0.61 
0.48 
0.42 
0.36 
0.36 
0.33 
0.24 

,-SA, 
unemp 

1.00 
1.00 
0.99 
1.00 
0.71 
0.71 
0.61 
0.57 
0.52 
0.52 
0.50 
0.44 

emp 
1.00 
0.99 
0.98 
1.17 
1.26 
1.35 
1.52 
1.69 
1.76 
1.76 
1.78 
1.80 

T, 
unemp 

1.00 
1.00 
0.99 
1.14 
1.23 
1.30 
1.44 
1.57 
1.64 
1.64 
1.65 
1.69 

7-,., 
emp 
1.00 
0.68 
0.64 
0.7 

0.83 
1.32 
1.29 
1.42 
1.22 
1.22 
1.06 
0.75 

1-7-, 
unemp 

1.00 
0.79 
0.77 
0.82 
0.95 
1.26 
1.25 
1.34 
1.22 
1.22 
1.13 
0.95 

Table 4 
Ratio of the Sampling Variance for Chosen Rotation Patterns 
Divided by the Sampling Variance for an Independent Design 

(Combination 2) 

Rotation 
Pattem 

complete 
1-2-1(5) 
1-2-1(8) 
1-1-1(6) 
2-2-2(8) 
2-10-2(4) 
3-3-3(6) 
4-8-4(8) 
6-6-6(12) 
in-for-6 
in-for-S 
no rotation 

SA, 
emp 
1.00 
1.01 
1.00 
1.04 
1.05 
1.02 
1.08 
1.06 
1.08 
1.10 
1.11 
1.14 

unemp 
1.00 
1.01 
1.00 
1.03 
1.04 
1.03 
1.06 
1.06 
1.07 
1.08 
1.08 
1.11 

SA.,x 
emp 
1.00 
0.99 
0.96 
1.00 
0.60 
0.60 
0.49 
0.41 
0.35 
0.36 
0.32 
0.24 

-SA, 
unemp 

1.00 
1.00 
0.99 
1.00 
0.71 
0.71 
0.61 
0.56 
0.52 
0.52 
0.49 
0.43 

emp 
1.00 
1.06 
1.07 
1.22 
1.32 
1.26 
1.49 
1.56 
1.67 
1.69 
1.75 
1.89 

r. 
unemp 

1.00 
1.05 
1.05 
1.17 
1.26 
1.23 
1.40 
1.47 
1.56 
1.56 
1.61 
1.73 

T 

emp 
1.00 
0.69 
0.66 
0.65 
0.81 
1.19 
1.19 
1.13 
0.93 
0.94 
0.82 
0.59 

-T, 
unemp 

1.00 
0.80 
0.78 
0.77 
0.92 
1.17 
1.16 
1.13 
1.01 
1.01 
0.93 
0.78 

Table 5 
Ratio of the Sampling Variance for Chosen Rotation Patterns 
Divided by the Sampling Variance for an Independent Design 

(Combination 3) 

Rotation 
Pattem 

complete 
1-2-1(5) 
1-2-1(8) 
1-1-1(6) 
2-2-2(8) 
2-10-2(4) 
3-3-3(6) 
4-8-4(8) 
6-6-6(12) 
in-for-6 
in-for-% 
no rotation 

SA, 
emp 
1.00 
0.99 
0.97 
1.04 
1.07 
1.05 
1.15 
1.12 
1.14 
1.16 
1.17 
1.22 

unemp 
1.00 
0.99 
0.99 
1.02 
1.06 
1.06 
1.12 
1.11 
1.13 
1.13 
1.14 
1.17 

H., 
emp 
1.00 
0.96 
0.93 
0.99 
0.60 
0.61 
0.51 
0.44 
0.37 
0.38 
0.34 
0.25 

-SA, 
unemp 

1.00 
0.98 
0.97 
0.99 
0.71 
0.72 
0.63 
0.58 
0.53 
0.53 
0.51 
0.44 

emp 
1.00 
0.99 
0.98 
1.11 
1.23 
1.21 
1.41 
1.41 
1.47 
1.49 
1.52 
1.62 

T, 
unemp 

1.00 
0.99 
0.99 
1.08 
1.19 
1.20 
1.32 
1.35 
1.39 
1.40 
1.42 
1.50 

T-,., 
emp 
1.00 
0.68 
0.64 
0.6 

0.89 
1.07 
1.02 
0.85 
0.69 
0.70 
0.61 
0.44 

1 - ^ , 

unemp 
1.00 
0.79 
0.77 
0.72 
0.95 
1.08 
1.02 
0.93 
0.82 
0.81 
0.76 
0.64 
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Table 6 
Ratio of the Sampling Variance for Chosen Rotation Patterns 
Divided by the Sampling Variance for an Independent Design 

(Combination 4) 

Rotation 

Pattem 

complete 

1-2-1(5) 

1-2-1(8) 

1-1-1(6) 

2-2-2(8) 

2-10-2(4) 

3-3-3(6) 

4-8-4(8) 

6-6-6(12) 

m-for-6 

in-for-S 

no rotation 

SA, 

emp 

1.00 

1.02 

1.02 

1.06 

1.06 

1.00 

1.07 

1.05 

1.08 

1.09 

1.11 

1.17 

unemp 

1.00 

1.02 

1.02 

1.04 

1.04 

1.01 

1.05 

1.04 

1.06 

1.07 

1.08 

1.12 

S^i. 

emp 

1.00 

0.99 

0.97 

1.00 

0.60 

0.60 

0.48 

0.41 

0.35 

0.35 

0.32 

0.24 

-SA, 

unemp 

1.00 

1.00 

0.99 

1.00 

0.71 

0.70 

0.61 

0.56 

0.51 

0.52 

0.49 

0.43 

emp 

1.00 

1.25 

1.28 

1.49 

1.57 

1.30 

1.64 

1.73 

2.00 

2.00 

2.15 

2.56 

r. 
unemp 

1.00 

1.19 

1.21 

1.39 

1.47 

1.27 

1.54 

1.63 

1.84 

1.84 

1.96 

2.27 

f 

emp 

1.00 

0.75 

0.7 

0.92 

0.98 

1.49 

1.34 

1.92 

1.87 

1.90 

1.73 

1.11 

- f 

unemp 

1.00 

0.87 

0.84 

1.01 

1.09 

1.37 

1.36 

1.69 

1.68 

1.70 

1.62 

1.33 

5.1 Xll - Concurrent Standard Cascade Filters 
The results using the standard XII filters (combination 1) 

are shown in Table 3. Figures 1(a) to 1(d) show tiie sampling 

variance of the level and one month difference for the 
seasonally adjusted and trend estimates at the end of the 
series divided by the variance of the original estimate of 
level plotted against the total number of times a selected 
unit is included. Results for the variable employment have 
been plotted for selected a-b-a{m) patterns and the in-for-m 
rotation patterns for m going from 1 to 30. An in-jbr-30 
rotation pattem is indicative of having no rotation. 

Columns I and 2 in Table 3 show that for the variance of 
the seasonally adjusted level estimates, rotation patterns 
with no monthly overlap perform well. Using rotation pat
terns with annual overlap did not help appreciably: How
ever, for the one month change in seasonally adjusted esti
mates, the benefit of having high monthly overlap becomes 
evident (see Figure 1 (b) and columns 3 and 4 of Table 3). 
The variances associated with the in-for-m rotation patterns 
are effectively a function of llm, the proportion of the 
sample that does not overlap. Those rotation pattems used 
in Canada and Australia perform well. The best option is no 
rotation but, as discussed in section 2, this is not a practical 
option. Figures 1(a) and 1(b) show that rotation pattems 
that have the same degree of monthly sample overlap have 
similar variances for estimates of the level and one month 
change in the seasonally adjusted series. 
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Figure 1. Ratio of the sampling variance to the variance of the original series for chosen rotation pattems for combination 1 (XI1) for the 
variable employment where A = 4-8-4(8), B = 2-10-2(4), C = 2-2-2(8), D = 1-2-1(5), H = 1-2-1(8), J = 1-1-1(6). 
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For the level of trend estimates the variance increases as 
the amount of monthly sample overlap increases (see Figure 
1 (c) and columns 5 and 6 of Table 3). For the in-for-m 
rotation pattems there is a rapid increase in variance as m 
goes from 1 to 5. The rotation pattems of 1-2-1(5) and 
1-2-1(8) perform as well as having an independent sample 
each month and considerably better than rotation pattems 
that involve monthly overlap. This is primarily due to the 
fact that for a moving average, it is better to average over 
independent observations than positively cortelated ones. 
The larger variance of the 1-1-1(6) pattem compared with 
that of 1-2-1(5) and 1-2-1(8) suggest that, for those pattems 
with no monthly overlap, the interval between the re-
inclusion of units in the sample has some effect. 

Figure 1 (d) and columns 7 and 8 of Table 3, show that 
for one month changes in trend estimates the variance in
creases very rapidly as m increases from 1 to 3 and de
creases rapidly as m increases from 4. The in-for-3 rotation 
pattem seems to be the worst among those considered, and 
the curtently used rotation pattems can be significantly im
proved upon. For example, using a 1-2-1(8) instead of a 
4-8-4(8) rotation pattem would reduce the variance in the 
one month change in trend estimates for employment by 55 
percent and 43 percent for unemployment. While the degree 
of monthly overlap is still a key factor, the pattem of 
inclusion also plays a role, for example the 2-2-2(8) pattem 
has lower variance than the in-for-2 or 2-10-2(4) pattems. 
Moreover, for one month changes in the trend estimates the 
best performing rotation pattems are 1-2-1(5) and 1-2-1(8) 
which perform considerably better than using complete 
rotation each month. This result arises because one month 
changes in trend estimates effectively look at differences in 
the seasonally adjusted series a few months apart and the 
l-2-l(m) rotation pattems lead to positive cortelations be
tween estimates 3 months apart. Similar results were ob
tained in a study by McLaren and Steel (1997) using 
Sutcliffe's (1993) approximation to XI1. 

The results show that for the estimation of the curtent 
level of trend and the latest movement in trend, tiie 1-2-Km) 
rotation pattems give considerably lower sampling vari
ances than the rotation pattems curtently in use. 

5.2 Xll ARIMA - Concurrent Cascade Filters with 
Extrapolations 

Results for the filter combinations 2,3 and 4 are given in 
Tables 4,5 and 6 respectively. Figures 2(a) to 2(d) present 
results for combination 4 for employment. 

Columns 1 and 2 of Tables 4,5 and 6 show that rotation 
pattems with low monthly overlap perform almost as well 
as complete rotation for seasonally adjusted level estimates. 
Rotation pattems with high monthly overlap have higher 
variances, particularly for combination 3 which cortesponds 
to the use of the 9 term HMA. 

There is minimal difference between the ratios of the 
four different combinations for the one month change in the 
seasonally adjusted estimates (columns 3 and 4 in all 

tables). Rotation pattems with high monthly sample overlap 
still perform better than those with low or no monthly over
lap regardless of the XI 1/Xl I ARIMA combination used. 

For the level of trend estimates, rotation pattems with a 
higher degree of sample overlap again have a greater va
riance ratio. The 1-2-1(5) and 1-2-1(8) rotation pattems still 
out-perform the other rotation pattems for each combination 
of filters, although they do not perform as well as an inde
pendent sample for combinations 2 and 4. 

For one month changes in the trend estimates the better 
performing rotation pattems are again 1-2-1(5) and 1-2-1(8) 
which perform better than the independent sample for all 
four combinations of filters. For combination 3, rotation 
pattems with high monthly overiap perform equally as well 
as the l-2-l{m) rotation pattems. For combinations 2 and 3 
the 1-1-1(6) pattem is slightly better than tiie l-2-l{m) 
pattems. Substantial improvements over the curtently used 
rotation pattems can be achieved by using 1-2-1(OT) rotation 
pattems. For example, for the employment variable, 
changing from an 4-8-4(8) to a 1-2-1(8) would produce 
gains of 42,25 and 64 percent using combinations 2, 3 and 
4, respectively. 

These results are based on the ALFS cortelation esti
mates which, being based on survey estimates, will be 
subject to sampling ertor. The trend filters considered are 
not derived using these estimates. The same general conclu
sions concerning the impact of different rotation pattems 
are obtained for the two cortelation models which use rea
sonably different cortelations. We believe that the conclu
sions will apply for the range of cortelation models con
tained between these two models. Similar conclusions are 
also obtained by McLaren and Steel (1997) using a corte
lation model derived by Steel (1996) for UK employment 
and unemployment. 

6. DISCUSSION 

The rotation pattems curtently used, such as in-for-i, 
in-for-6 and 4-8-4(8), are sensible if the one month change 
in seasonally adjusted estimates are the key statistics to be 
analysed. We believe that examination of the one month 
change in seasonally adjusted estimates is often not a 
reliable way of assessing curtent trends. It is necessary to 
look at the pattem of change over recent months. This can 
be done using filters to obtain an estimate of the trend. The 
results here suggest if the main use of the survey is to 
provide an assessment of trend then quite different rotation 
pattems should be used. Specifically, the 1-2-1(7M) rotation 
pattems performed well for reducing the variance of the 
level of trend estimates and the difference between two 
consecutive trend estimates for a range of different filter 
combinations. The l-2-l{m) rotation pattems also per
formed well for the sampling variance of the seasonally 
adjusted level estimates. Hence, in designing the rotation 
pattem for a repeated survey, the relative importance of 
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seasonally adjusted and trend estimates needs to be care
fully considered. Examining Figures 1 and 2 shows that the 
rotation pattem 2-2-2(8), is a reasonable compromise if the 
level and one months change in seasonally adjusted and 
trend estimates are both considered important. Bell (1999) 
also considered the effect of four different rotation pattems 
on the sampling variance of the level and one month change 
in the original, unadjusted, estimates and also trend esti
mates obtained using XI1 and a 13 point HMA. He also 
identifies the 2-2-2(8) rotation pattem as a compromise 
design. 

Even if analysts do not formally use trend estimates, the 
assessment of trend will involve looking at changes in 
seasonally adjusted estimates a few months apart. McLaren 
(1999) gives results which show that the l-2-l(»j) rotation 
pattems will be suitable if the assessment of trends involve 
looking at changes in seasonally adjusted estimates over 3 
or 6 months. The results also suggest that such rotation 
pattems perform well for estimates of the change in trend 
estimates over the most recent 3 and 6 months. 

The evaluation criterion used in this paper is the sam
pling variance of the trend and seasonally adjusted esti
mates, which is the factor affected by the sample design. 
Steel and McLaren (2000) considered assessing different 
rotation pattems in terms of the degree of revisions of these 
estimates at the end points and reached similar conclusions 
regarding the rotation pattems. 
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Hierarchical Bayes Estimation of Small Area 
Means Using Multi-Level Models 

YONG YOU and J.N.K. RAO' 

ABSTRACT 

Standard multi-level models with random regression parameters are considered for small area estimation. We also extend 
the models by allowing unequal error variances or by assuming random effect models for both regression parameters and 
error variances. We present these models in a hierarchical Bayes framework and estimate a small area mean by its posterior 
mean. Posterior variance of the small area mean is used as a measure of precision of the estimate. It automatically takes into 
account the extra uncertainty associated with the hyperparameters in the multi-level model. Gibbs sampling is used to 
compute the posterior means and posterior variances of small area means. Rao-Blackwellized estimators that reduce the 
Monte Carlo errors are obtained. Bayesian model selection and sensitivity analysis are also studied. The procedure is 
illustrated using data on household income in some counties (small areas) of Brazil. 

KEY WORDS: Gibbs sampling; Hierarchical Bayes; Multi-level model; Sampling error variance; Small area. 

1. INTRODUCTION 

Small area estimation has received a lot of attention in 
recent years due to growing demand for reliable small area 
estimators. Traditional area-specific direct estimators do not 
provide adequate precision because sample sizes in small 
areas are seldom large enough. This makes it necessary to 
employ indirect estimators that bortow strength from 
related areas; in particular, model-based indirect estimators. 
Battese, Harter and Fuller (1988) proposed and applied a 
nested ertor regression model to provide model-based small 
area estimates. The model takes the form 

Yii S^P^ î 0/ •" ^ij'J l , . . . , /7. ; / = 1,...,7M, (1) 

where y^j are the observations associated with the sampled 
units in the /-th small area, / = 1,..., wj, x,.. is the /? x 1 vector 
of unit-level explanatory variables, p is a set of p fixed 
regression parameters, v^. are independent area effects with 
E{VQ.) = 0 and ^(VQ.) = <\. The e.'s are assumed to be 
independent random ertor variables with £(e,y) = 0 and 
V{e.) = Og. VQ, and e.. are also assumed to be independent. 
For the whole population, model (1) applies with n. 
replaced by Â ,, the small area population size. The model 
(1) may be expressed in matrix notation as follows 

Y>=X.^^v^.l„^*e.,i = l,...,m, 

where Y. = {y,^,...,yi^y,X. = {x.y...,x.^Y\san.xp matiix, 
l„ =(1,••, 1)^ is the unit vector of length n., and 

Holt and Moura (1993) extended the above framework 
to a multi-level model by introducing random regression 
coefficients and then relating them to area-level explanatory 

variables to explain some of the between small area 
variation. The model can be stated as follows: 

y,=^.p, + e,,P,=Z,Y + v, (2) 

where Z. isthepxq design matrix of area-level variables, y 
is a 9 X 1 vector of fixed coefficients, and v. = (v.,,..., v. )^ 
is a /? X I vector of random effects for the /-th area. The 
v/s are independent across areas and have a joint 
distribution within each area with E{v.) = 0 and V{v.) = O, 
where the variance covariance matrix O is unknown. Note 
that model (2) effectively integrates the use of unit-level 
and area-level covariates into a single model. Holt and 
Moura (1993) and Moura and Holt (1999) extended Prasad 
and Rao's (1990) framework to the above multi-level model 
to get the best linear unbiased predictor (BLUP) of the 
small area mean p. = xj^. assuming that N. is large, where X. 
is the pxl vector of known population means of the 
auxiliary variables for the /-th small area. They also 
obtained the empirical BLUP (EBLUP) and a second order 
approximation to the mean squared ertor (MSE) of EBLUP 
for the multi-level model. Using household income data in 
some counties (small areas) of Brazil, they demonstrated 
gain in efficiency of the EBLUP estimators over the 
EBLUP estimators obtained from nested ertor regression 
models. Ghosh and Rao (1994) and Rao (1999) provide a 
detailed overview of model-based methods for small area 
estimation. 

In this paper, we study the multi-level model (2) in a 
hierarchical Bayes framework and extend the model to 
more general multi-level models which allow fixed unequal 
ertor variances or random ertor variances. The small area 
mean p. is estimated by its posterior mean and its precision 
is measured by its posterior variance. Posterior variance 
automatically takes into account the extra uncertainty 

Yong You, Household Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, KIA 0T6; J.N.K. Rao, School of Mathematics and Statistics, 
Carleton University, Ottawa, Ontario, Canada, KIS 5B6. 
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associated with the hyperparameters in the multi-level 
model. We use the Gibbs sampling method to compute the 
hierarchical Bayes estimates and the associated posterior 
variances. Section 2 presents the hierarchical Bayes 
multi-level models with different assumptions on ertor 
variances and related Gibbs sampling inference. Section 3 
illustrates our methodology and studies model selection and 
sensitivity analysis by employing data on household 
incomes in some counties (small areas) of Brazil. And 
finally in section 4, we give some comments and 
concluding remarks. 

2. MULTI-LEVEL MODELS AND GIBBS 
SAMPLING INFERENCE 

2.1 Equal Error Variances 

We consider a hierarchical Bayes representation of the 
multi-level model (2) as follows: 

Model 1: 

(i) Conditional on P, and o^.j'. 's are independent with 

yy\^,al~N{xJp,a]), 
(3) 

(/• = l,...,m;j = l,...,n.); 

(ii) Conditional on y and <i>, p.'s are independent with 

p.|Y,<D-A^^(Z,.y,(I)),(/ = l,.. . ,m). (4) 

To complete our Bayesian model specification, we adopt 
the prior distributions for parameters as follows: 

(iii) Marginal prior distributions: y~N{0,D), 
x^~G{a,b) and Q~Wp{a,R), where T̂  = OJ , 
Q = O"', and D, a, b, a and R are known. 

In step (iii) of Model I, G{a,b) denotes a gamma distri
bution with density given by f{x) = b''ir{a)x'''^e''''', 
a>0,b>0,x^O, and W {a,R) is a Wishart distribution 
with density function 

/ ( ^ 
\R 

-I 

japi 

'̂ Mf) 
1̂1 1 2 exp[-^tr{RX)], 

where X>0,R>0 and F (a) is multivariate gamma 
function defined as 

r„(a)=7i 4 ^ ^ , ^ a + ^ ( 1 - 7 ) 

Remark 1.1: The prior distributions in step (iii) are conju
gate with the sampling and population distributions given 
by (3) and (4) in the sense that they lead to full conditional 
distiibutions for y, T̂  and Q that are again normal, gamma 
and Wishart distribution, respectively. The Wishart distri
bution is the multivariate version of gamma distribution for 

the inverse variance covariance matrix of random effects. 
The importance of conjugacy may be exploited as follows: 
(1) In the Gibbs sampling step, without conjugacy the full 
conditional distribution for any parameter will be known up 
to normalizing constants. In this case, more sophisticated 
random generation will be required. (2) Closed-form full 
conditional distributions may be employed to find the 
Rao-Blackwellized estimators of the posterior means and 
posterior variances, and thus to improve posterior estima
tion. In general, for Bayesian inference, choosing priors is 
not a simple job because any proper prior on the model 
parameters is a plausible candidate. This is a limitation of 
Bayesian methods. 

Remark 1.2: It is important to note that we have used 
proper priors on all the unknown parameters to ensure that 
all the posterior distributions are proper (Hobert and Casella 
1996). Hence we do not face the problem of some poste
riors being improper. Values for the parameters of the 
priors {i.e., hyperparameters) are chosen to reflect a fairly 
vague knowledge of the prior distributions. Details will be 
given in section 3 on data analysis. 

Remark 1.3: In Model 1, we assume equal ertor variance a^ 
for all small areas. In practice, however, variances of 
sampling ertor could be different for different small areas. 
A more general model should allow possibly different ertor 
variances. In sections 2.2 and 2.3, we will introduce 
unequal ertor variance and random ertor variance models. 

We are interested in finding the posterior distributions of 
P,'s given the data Y = {{y.j], / = 1,..., m;j = 1,..., n.), and 
in particular jn finding the posterior estimates of small area 
means p. =xj^., which depend on the estimates of p.. 
Direct evaluation of the joint posterior distribution involves 
high-dimensional numerical integration, and is not compu
tationally feasible. Therefore, we use the Gibbs sampling 
method (Gelfand and Smith 1990) to generate samples from 
the joint posterior distributions. To implement the Gibbs 
sampling under Model 1, we need the full conditional 
distributions given by: 

(i) 

(ii) 

(iii) 

(iv) 

For /• = l,...,m. 
ind [p.|Y,y, n , T] •"-'' N^{{^.X/X. + fi)-i 

(T.X/F. + fiZ.y), (T.X/^. + n ) " ' ) 

[y I y, p, n, tj-A^j(zr= ,z,'nz, + D-')"' 

[ n | y , p , y , t ] - w^ 

| a + m,i? + l E r = , ( P , - 2 , T ) ( P - Z j ) ^ 

h^^(r.iiY^-XimYi-Xi^i))-
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Since all the full conditional distributions have 
closed-form, it is easy to generate samples. Gibbs sampling 
method is as follows: (a) Using starting values y^°\ fi^°^ and 
xf\ draw p| ' \ /• = 1,.... m, from [pj F, y, fi, i j ; (b)Draw / » 
from [yl F. p, fi, TJ using p<'\ / = 1,..., m, fi(°) and xf\ (c) 
Draw fi(') from [fi|F p.y.xj using p | ' \ / = l,...,m,y"> 
and xf\ (d) Draw xf' from [xjF,p,y,fi] using p | ' \ 
/• = !,...,m,y^'^ and fi^'\ Steps (a)-(d) complete one 
sampling cycle. Perform a large number of cycles, say t, 
called "bum-in" period, until convergence and then treat 
{pf̂ *\/ = I m;y<'^'h fi<'^*>:xr*>;;t = 1,...,G} as G sam-
pies from the joint posterior of p,, / = 1,..., m, y, fi and x .̂ 

Suppose a sample of size G is obtained as 
{pf\ /• = I,.... m; yW; fi(*>; xf\ k = l,..., G}. To obtain an 
estimator of the posterior mean of p., one can use the 
sample mean of the {p' }. Since P, has a closed form full 
conditional distiibution, we can use the sample mean of the 
conditional expectations {£[P,|F, y^*\fî *\x^ ]} to im
prove our estimation, since £(p.|F) = £'(£(p.|F, y,fi,x^)), 
and Var(pJ10^Var(£(P,.|F,y,fi,xJ). This modification 
is based on the well-known Rao-Blackwell theorem and the 
corresponding estimator is the so-called Rao-Blackwellized 
estimator (Gelfand and Smith 1990, 1991). Thus we have 
the following two alternative estimators for p.: 

Py 
(£) 

TTEPI 
G t=i 

(*) 

and 

G*=i 

G*=i 

{xfx^^'Y. + fi<*)Z,y«), ^̂ ^ 

where p; is the empirical estimator and Py is the Rao-
Blackwellized estimator. Both a^P and B̂ "̂ ^ are unbiased 
for tiie posterior mean. However, p, is better than P, in 
terms of simulation stand^d ertor (Gelfand and Smith 
I99I). 

The corresponding estimators for the small area mean p. 
are given as 

jlf)=Xfpf) = l f z f p f > (7) 
t=i 

and 

Gk=i 

(xrx->',*"**^2,T^*^)- (8) 

We anticipate that both p* and p, will give almost the 
same point estimates. However, it will be of interest to 
compute and compare the simulation standard ertors of 
these two estimators to evaluate the effects of Rao-
Blackwellization; see section 3. 

To obtain the posterior variance of p̂ ., w£first find the 
posterior variance of p,, since V{ii^\Y) =XjV{^.\Y)X.. 
Note that 

V{ p, IF) = £( V{ p. IY, y, fi, X,)) ^V{E{^.\ Y, y, fi, x,)) 

=.£:( F( p. IY, y, fi, x̂ )) + £( £( p. IY, y, fi, xf) 

- [£(£(pjF,y, f i ,xX-(9) 

Using (9), the Rao-Blackwellized estimator of the posterior 
variance of P., denoted by V{ ^.), can be obtained using the 
Gibbs samples {p*, / = 1,..., m; ŷ *̂ ; fi*; xf; )t = 1,..., G}; 
see Appendix Al. The posterior variance of small area 
mean p. is then estimated by 

F(p.)=jrf F(p.)^,. (10) 

The same estimation procedure can be applied to the 
sampling ertor variance o .̂ Since conditionally a] has an 
inverse gamma distribution, the Rao-Blackwellized esti-

(5) mator of the posterior mean of ô  is obtained as 

-2(RB) 1 ^ 

fJk=l 

1 "" 

b-\T{YrXi^y(Y,-X,^h 
2 ,=1 

1 

2 ,=1 

A -1 

(11) 

Since we are mainly interested in estimating the small area 
means, calculation of the sampling variance is only for the 
purpose of model selection. Details on model selection will 
be given in section 3.2. 

2.2 Unequal Error Variances 

In practice, it is more realistic to allow unequal ertor 
variances for the sampling ertors. Let o, be the trae 
sampling ertor variance for the /-th small area. A straight
forward extension of Model I leads to the following 
hierarchical Bayes multi-level unequal ertor variance 
model: 

Model 2: 

(i) Conditional on p. and a^,y..'s are independent 
with 

;...|P,of-A^(x/p,of), 
(/• = l,...,m;j = 1 , . . . , « , ) ; 

(12) 

(ii) Conditional on y and O, p. 's are independent witii 
P,IY. <l>-A/p(Z,y, «D), (/• = 1, ...,m); (13) 
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(iii) Marginal prior distributions: y ~ N {0,D), 
X. 1"-̂  G{a.,b), and fi - Wp{a,R),^ where 
X, = o^ , fi = <D"', and D, a., b., a and R are 
known. 

Remark 2.1: Model 2 reduces to Model 1 when of = a] for 
all /. From a hierarchical Bayes perspective, extension from 
the equal ertor variance model to the unequal ertor variance 
model is straightforward. Also there is no difficulty in the 
Gibbs sampling implementation. 

Remark 2.2: x.'s are assumed to be independent and have 
prior distributions G(a., b.), where a. and b. are known 
hyperparameters and usually chosen to be very small to 
reflect a vague knowledge about x.'s. 

The full conditional distributions for Gibbs sampling 
under Model 2 are given by: 

(i) 

(ii) 

For /• = 1,. . . , ffj, 

[P,|Y,y, fi, X] '"-'̂  N^{{X^X^''X. + fi)-' 

{x.X,^Y.^i^Z,y),{x.X^%^n)-') 

[y | r ,p , f i ,x ] - Â^ 
-1 

\i-i 

\ i m ^-l 
E ^ , ^ " P , ' E 2 / f i z , + £>-' 

.'=1 ) \ '=1 , , 

[ f i |7 ,p ,y ,x] ~ W 
I .m 

a+/« , /? + i - i : ( P , . - Z , T ) ( p , . - Z j ) ^ 
2 i^l 

For /• = l,...,m, 

[x. |y,p,y,fi] ~ G(a. + 1«.,6,. + 1 

x{Y,-X.%)^{Y.-X,^.)). 

For Model 2, the empirical estimators of the posterior 
means of p. and p. have the same form as (5) and (7). The 

(iii) 

(iv) 

(RB) .T (RB) Rao-Blackwellized estimators p^ ' and p , ' are the 
estimators given by (6) and (8) with xf̂  replaced by xf. 
Estimator ofposterior variance is F(p.) given by (10) witii x f 

.(*) replaced by x; 
For the purpose of model selection and model compa

rison, we also find the Rao-Blackwellized estimator of the 
posterior mean of o, under Model 2 as 

^2(RB)_ 1 

Gt: *=! 
6,+l(r,-^.pf)'(F,.-x,pf>) 

x{a.*-n.-l) . (14) 

2.3 Random Error Variances 

In Model 2, we assumed unequal ertor variances for the 
sampling ertors. Kleffe and Rao (1992) used a simple 
random ertor variance model to derive the best linear 

unbiased predictors for small area means. In this section we 
extend their model to the multi-level case. We assume 
random effect models on both regression coefficients p 
and sampling ertor variances o,, which leads to Model 3 
given below. 

Model 3: 

(i) 

(ii) 

(iii) 

(iv) 

Same as in Model 2; 

Same as in Model 2; 

Conditional on r\ and X, x,'s are independent with 

x.\r\,X ''^ G{r\,X), (15) 
-2 

where x̂  = a', 

N,^{0,D), Marginal prior distributions: y 
fi- W^{a,R),r\~ U* and X~U\ where U* 
denotes a uniform distiibution over a subset of R* 
with large but finite length, D,a and R are 
known. 

Remark 3.1: In Model 3, we assume that x.'s are iid 
gamma random variables with unknown hyperparameters TI\ 
and X. Thus we have population models for both regres
sion coefficient p. and sampling variance of. In Model I 
and Model 2, we considered modelling p, only and as
sumed vague proper prior distributions on a] or of. 

Remark 3.2: Assumption (iii) may not be a good popu
lation model for all x.'s. Alternatively, we can model x. in 
a more realistic way, as in the case of p., by specifying a 
regression model for the logarithm of x,. This may require 
some auxiliary information related to x,. In the data analysis 
of section 3, however, we simply used G(r|, X,) as the 
population model for x.. Generally it is not easy to model 
the sampling variances when they are unknown. 

The full conditional distributions for Gibbs sampling 
under Model 3 are given by: 

(i) 

(ii) 

(iii) 

(iv) 

For /• = I, ...,m, 

[p,|F, X, y, fi,Ti, X] '"-'̂  Np{{x^X^% + fi)"' 

(x.^/F, + fiZ.y),(x,^/'^. + fi)"') 

For /• = l,...,m, 

[x.\Y,^,y,a,^,X] ' S ^ G 

r\-^A(YrXi^y(YrXi^i)-^ 

[y| F, p, X, Ti, X] - Ar^((Er=i^,''«2/ + D - | ' 

(r==iZi'n4(^.iZi'nZ,-D-f) 

[£l\Y,^,a^y,^,X] ~ W^ 

\^o.^m,R^^Y.liih-Z,y){%-Zj)A 
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m ..1 
(V) [Ti|F,P,x,y,fi,>.]«[r(Ti)]-"'>.'"i(nr.,x.> 

(vi) [).|F,p,x,y.fi,ii] ~ G(mi] + l ,Zr=i4 

For Model 3, the posterior estimators of p̂  and p. have 
the same forms as those given for Model 2. Under Model 3, 
the Rao-Blackwellized estimator of the posterior mean of 
o, is given by 

af'> = -Li:[5i<*> + l(F,-;ir,pf)' 
*=i 

x(F,-X,pf)](tl<*> + ^ « , - l ) . (16) 

Under Model 3, [r| | F, p, x, y, fi, X] is known only up 
to a multiplicative constant. However, since 
[T| IY, p, X, y, fi, X] is a log-concave function of T| (see 
Appendix A2), adaptive rejection sampling method of 
Gilks, Best and Tan (1995) can be used in the Gibbs 
sampler to generate samples from the conditional distri
bution [TI|F, p,x,y,fi,A.]. 

3. DATA ANALYSIS 

3.1 Data and Model Description 

Following Holt and Moura (1993) and Moura and Holt 
(1999), we considered the estimation of household income 
in some counties (small areas) of Brazil. Holt and Moura's 
original data contains 140 small areas with the sampling 
units taken from each area by simple random sampling. The 
hierarchical Bayes method does not require the number of 
small areas to be large, unlike in the case of EBLUP 
method, for getting standard ertors. Therefore, we used 
only a small part of tiie original data set in our data analysis 
for simple illustration. Our data set contains a subset of 10 
small areas with 28 sampling units obtained by simple 
random sampling in each area. 

Let y.j denote the7-th household's income in the /-th 
small area. There are two unit level auxiliary variables, 
namely x, and Xj, where x, denotes the number of rooms 
in a household and Xj denotes the educational attainment of 
Head of Household. The sampling model is given by 

Yii = ^ / P , + ^ii = Po, + ^1 / , Pi* * 2̂,7 P2, ^ «//' (17) 

where x,,. denotes the number of rooms in they-th house
hold of small area /' and Xj,. denotes the cortesponding 
educational attainment of Head of Household. Values of 
X,.. and Xj. are centered around their respective overall 
sample means and Cy is the sampling ertor variable with its 
distribution specified by the three ertor variance models 
discussed in section 2. 

In tiie sampling model (17), p. is the random regression 
coefficient cortesponding to the /-th small area and is 
modelled as 

Po, = YD ^ •̂ 'o,' Pi, = Yio * Yii^/ + ^ i , - P2, = T20 + ^21^, "̂  ^2,-

where y = (y ,̂ y,Q, y, j , ŷ g, yj,)^ is the unknown vector of 
fixed regression parameters, v, = (VQ,,V,., v^.)^ is the /-th 
small area random effect vector distributed as 
V,. - Â3 (0, <I>), and z,. is an area level variable defined as the 
average number of cars per household in each small area. 
Value of Zj is also centered around its overall sample mean. 

We used the three models discussed in section 2 for our 
data analysis. Vague proper prior distributions on unknown 
parameters are specified as follows: y ~ N^{0,D) where 
D = diag(I0^ 10\ 10*, 10\ 10"), thus y^,y,p,y„,y^^,y^, 
are assumed to be independent normal variables with a 
mean of 0 and a standard deviation of 100, so that a 95% 
prior interval is around ±200, and the prior will be locally 
uniform over the region supported by the likelihood. 
Alternatively a uniform prior on a suitably wide interval 
could be given, such as U(-200,200). A Wishart prior 
W^{a,R) is specified for the inverse covariance matrix 
fi = <I>"'. To represent vague prior knowledge, we have 
chosen the degrees of freedom a for this distribution to be 
as small as possible, i.e., a = 3, the rank of 
fi(Spiegelhalter, Thomas, Best and Gilks 1996). The scale 
matiix R is specified with diagonal elements equal to 1 and 
off-diagonal elements equal to 0.001, which represents our 
prior guess at the order of magnitude of the covariance 
matrix. For Model 1 and Model 2, a gamma prior G(0.001, 
0.001) is assumed for x̂  and x.'s. For Model 3, 
X, ~ G(TI, X.), and r\ and X are assumed to be indepen-
dentiy distributed as U(0,10000), i.e., the uniform distribu
tion over a large interval. We anticipate that the vague 
proper priors on the hyperparameters would approximate 
tiie flat priors reasonably well and thus would have minimal 
effect on the posterior estimation. 

We implemented the Gibbs sampler for the three models 
using the BUGS program (Spiegelhalter et al. 1996), aided 
by CODA Splus function (Best, Cowles and Vines 1996) 
for assessing convergence. The BUGS program constracts 
the necessary full conditional distributions and carries out 
the Gibbs sampling as long as we specify our models using 
the BUGS language. Priors and initial values of the 
parameters must be specified in the program. For each 
model, the Gibbs sampler was first ran for a "bum-in" 
period of 2,000 iterations, then 5,000 more iterations were 
ran and kept for model analysis and estimation. 

Our interest js to estimate the sjpall area mean 
p. = xf p. = Po,. + X^. p,. + Jr̂ , P2,' where X,. and ĴT̂ . are tiie 
/•-til small area population means of the auxiliary variables x^ 
and Xj, respectively. For this, we will first select a model 
for the data set, then we will present the model-based 
estimates for the small area means based on the selected 
model. 

3.2 Model Selection 
We have proposed three models in section 2 based on 

different assumptions on sampling variances. To examine 
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which model fits the data, we first obtained the posterior 
estimates of the sampling variances under the three models. 
We also calculated the ordinary least square (OLS) 
estimates of the sampling variances within each area using 
only the area-specific data. Table 1 shows the Rao-
Blackwellized estimates of the sampling variances under 
the three models as well as the OLS estimates. 

ftylY )=JiYL 

rfiY^j^^ ./(P,a,^|F)^P,^a,^ 
•' f{Y,^pa]) 

Table 1 
Estimated Sampling Error Variances 

Area 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

OLS 

38.17 

31.75 

81.26 

48.73 

115.98 

90.74 

101.67 

135.65 

59.10 

62.86 

Model 1 

76.86 

76.86 

76.86 

76.86 

76.86 

76.86 

76.86 

76.86 

76.86 

76.86 

Model 2 

40.18 

34.24 

94.77 

52.01 

121.65 

94.35 

101.67 

159.94 

63.37 

65.72 

Model 3 

63.60 

62.13 

79.58 

67.27 

87.70 

79.78 

82.14 

97.96 

70.57 

71.22 

From Table I, the OLS estimates indicate large varia
tions among the ten small areas. Model 1 assumes an equal 
ertor variance o„ for all areas and o^ is estimated by 
Og = 76.86, which is much smaller than the OLS esti
mates for some areas. Model 2 assumes unequal ertor va
riance o, across areas. Under Model 2, the estimated ertor 
variances o, to some extent show the feature of the 
areas; o, are consistent with the pattern of the OLS 
estimates. The most notable result is a. 2(RB) 

= 121.65 and 
= 159.94, which show that there are larger variations 

within small areas 5 and 8. Model 3 assumes of's to be 
random variables distributed as G{r\,X). Under Model 3, 

*2(RB1 \ 1' / ' 
all o, tend to be equal to and have moved toward 
2̂(RB) ^ -j^^f^ jj^g ^gjyjjg jjj y^jijg J suggest ti,at Model 2, 

the unequal ertor variance model, could be the best model 
for our data set. For further investigation, we now present 
a cross-validation study to select a best fit model. 

In order to study how the data support each model, we 
calculated the cross-validation predictive densities for each 
data point >>... The cross-validation density for y.. is the 
conditional density /(Vyl^m). where Y^..^ denotes all data 
except y... We looked at the value of / ( j ' ; |F,.,) at the 
observed data point, the so called conditional predictive 
ordinate, or CPO, for each of the three models. That is 

CPOy =/(; . , ij, obs Y ) 

where y.j ^^^^ denotes the observed data point. Since CPOs 
are nothing but the observed likelihoods, models with larger 
CPOs provide better fit to the observed data. By using the 
output from the Gibbs sampler, we can calculate the CPOs 
for all data points. For example, under Model 1, we have 

/ 
f<<yij\Y,jy?>A) 

-.f{%,a]\Y)d^fia] 

Now noting that the y.j's are conditionally independent, 
'•^•' /^lY^JJ^, P,, of) = /(j'yIP,, o]), the CPO values are 
calculated as 

CPO^ = 
1 yG 

-^U-i-
1 (18) 

5(*) 2(*) ) /(>',/.obslPf.< 
where / (j'jyl p,, a^) is the normal density function given by 
(3). For Model 2 and Model 3, the CPOs are calculated 

2(k) j-m with Og replaced by o / in (18). More detailed 
discussion can be found in Gelfand (1995). 

We present a CPO plot for the three models in Figure 1. 
Clearly Model 2 is the best model among the three, because 
a majority of CPO values for Model 2 are significantly 
larger than those for Model 1 and Model 3. Model 3 is 
slightly better than Model 1 in terms of CPO values. Also 
there are small CPO values for all three models, which 
indicate that our model assumptions may not be very well 
satisfied by our data set. 

According to the sampling variance estimates given in 
the Table 1 and the CPO plot, we conclude that Model 2 is 
a good model for our data. Therefore, we used Model 2 to 
find model-based estimates of small area means and 
associated posterior standard ertors. 

so 100 ISO 200 2S0 
Modtit IndlcBtid by nuntlMr 1.2, snd 3 

Figure 1. Model selection: CPO comparison plot 

3.3 Result of Estimation 

We now present the estimates of the small area means 
based on Model 2 only. Table 2 presents the estimated 
posterior small area means and the cortesponding posterior 
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standard ertors. Our study found that the empirical esti
mator p̂ ^̂  and the Rao-Blackwellized estimator p^"^ gave 
almost the same point estimates, thus we only reported the 
estimates obtained by using p ;'^\ For comparison, we 
also calculated the direct estimates (sample means) and 
cortesponding direct standard ertors for the ten areas. It is 
clear from Table 2 that the model-based estimates are 
substantially more efficient than the direct estimates. The 
posterior standard ertors are much smaller than the direct 
standard ertors. 

Table 2 
Estimates of Small Area Means 

Area JI. s.e. 
.(RB) 

s.e. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11.08 
7.91 

13.48 
6.53 

19.52 
11.21 
8.72 

12.81 
10.18 
10.01 

9.53 
6.82 

14.15 
8.01 

1496 
11.38 
11.24 
13.99 
8.76 

11.30 

10.23 
9.84 

13.01 
10.95 
17.87 
10.21 
9.58 

10.30 
11.34 
9.79 

0.81 
0.85 
1.08 
1.11 
1.57 
0.93 
0.97 
1.19 
1.01 
0.87 

3.4 Sensitivity Analysis 
In Model 2, the ertor variances x. = aJ are assumed to 

be independent with prior distributions G{a., b.) or of with 
the inverse gamma IG(a., b^), where a. and b. are known 
values chosen to reflect our prior knowledge about o,. In 
practice, it is always difficult to obtain accurate information 
about the sampling variances. Also, as the number of small 
areas m increases, the number of variance components o, 
will increase. We are interested in the possible effects 
caused by the choice of priors on o, 's; in particular, we 
would like to evaluate the sensitivity of the posterior means 
to the choice of priors on the sampling variances of. In our 
data analysis, a. and b^ were chosen to be 0.001. Thus we 
used proper priors with very small parameter values for the 
variance components to reflect our vague knowledge about of. 
In order to test the sensitivity of the posterior estimates to 
the choice of a. and b. under Model 2, we set a. = b- at six 
different values, i.e., 0.0001, 0.001, 0.01, 0.1, 1, and 10. 
Since 

{x.|F,p,y,fi] G{a^-\n^,b,-\{Y, 

(F.-J^.p.)), (19) 

In order to study the effects of Rao-Blackwellization, we 
calculated the simulation standard ertors of p, and p, , 
which are respectively the sample standard ertors of 
{A'fpf} and { XJE [ p. | Y, y(*\ fi<*>, xf ]}. Table 3 presents 
the simulation standard ertors. It is clear from Table 3 that 
the Rao-Blackwellized estimator p, has much smaller 
simulation standard ertor than the empirical estimator p, 

the sample effects n,./2 and {Y.-X.^.)^{Y.-X.^.)I2 
dominate the prior information a. and b^ when a. and 6. 
are small. Thus IG(0.0001,0.0001), IG(0.001,0.001), and 
IG(0.01,0.01) may be viewed as noninformative priors 
whereas IG(1, 1) and IG(10, 10) may be regarded as 
informative priors. Table 4 presents posterior means under 

(£) Model 2 using the different priors on o ,̂ and Table 5 
J. ,, T 11 .1- . J J c -(RB) • r ' presents the cortesponding posterior variances, 
for all areas. In all cases the standard ertor of p , is about *̂  r o r (P'\ 

50% to 75% of the standard ertor of p, , demonstrating 
the benefit of Rao-Blackwellization. Thus u, is more 
stable than p , when used to produce point estimates for 
the posterior means in computational Bayesian analysis. It 
should be mentioned that the simulation standard ertor of 

(f"\ 

p j is also an estimator of the posterior standard ertor. 
Thus the simulation standard ertor of p, in Table 3 is 

Table 4 
Comparison of Estimated Small Area Means 

almost identical to the estimated standard ertor of p, 
Table 2. 

Table 3 
Simulation Standard Errors 

(RB) 
m 

Area 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.817 

0.862 

1.090 

1.101 

1.583 

0.930 

0.978 

1.208 

0.997 

0.869 

-m 
0.506 

0.498 

0.548 

0.604 

0.878 

0.481 

0.480 

0.842 

0.524 

0.513 

Small 
Area 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 
10.23 
9.84 

13.00 
10.95 
17.86 
10.21 
9.58 

10.29 
11.34 
9.79 

0 
10.23 
9.84 

13.00 
10.95 
17.87 
10.21 
9.58 

10.30 
11.34 
9.79 

lG{a,,b,), 

0.01 
10.23 
9.84 

13.01 
10.95 
17.85 
10.21 
9.59 

10.30 
11.35 
9.80 

a, = b, 

0.1 
10.24 
9.83 

13.01 
10.95 
17.76 
10.21 
9.58 

10.26 
11.32 
9.79 

1 

10.25 
9.82 

13.07 
10.94 
17.78 
10.25 
9.63 

10.37 
11.32 
9.82 

10 
10.37 
9.62 

13.09 
10.61 
18.27 
10.28 
9.57 

10.86 
11.23 
9.92 

It is clear from Table 4 that the small area mean 
estimates are very stable: tiiey are not sensitive to the choice 
of a. and b.. However, as shown in Table 5, the posterior 
variances decrease as the priors on a, become more 
informative, and lead to smaller coefficients of variation 
(CV). This indicates that we can improve estimation results 
for small areas in terms of CV if we have more prior 
information on the sampling ertor variances. In our study, 
we only considered the case a. = b.. A more extensive study 
would involve different combinations of a. and b. 
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Table 5 
Comparison of Estimated Posterior Variances 

Small 
Area 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 

0 

0.658 
0.724 
1.167 
1.220 
2.455 
0.871 
0.933 
1.418 
1.015 
0.760 

0 

0.658 
0.724 
1.167 
1.220 
2.455 
0.870 
0.933 
1.417 
1.014 
0.760 

lG{a,,b, 

O.OI 

0.658 
0.724 
1.167 
1.218 
2.454 
0.870 
0.931 
1.418 
1.014 
0.760 

),a,=b, 

0.1 

0.656 
0.711 
1.161 
1.217 
2.462 
0.830 
0.930 
1.375 
1.011 
0.750 

1 

0.653 
0.684 
1.152 
1.202 
2.139 
0.826 
0.914 
1.351 

0.975 
0.745 

10 

0.499 
0.462 
0.917 
0.919 
1.335 
0.699 
0.779 
1.337 

0.790 
0.613 

Table 6 presents the posterior estimates of o, using the 
different priors on o,. As we can see from Table 6, when 
a. and 6. are small (< = 0.01), there is almost no difference 
among the estimates at all. As a and b. increase, the 
estimates o, become smaller. However, if there is 
strong prior information on a. and b., for example, 
a. = b. = 10, then the posterior estimates of o, will be 
significantiy different from the ones under noninformative 
priors. 

Table 6 
Comparison of Estimated Sampling Error Variances 

Small 
Area 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 
40.09 
34.19 
94.48 
52.08 

121.60 
94.03 

102.30 
160.10 
63.46 
65.88 

0 
40.1 
3418 
94.49 
52.08 

121.70 
94.03 

102.30 
160.00 
63.46 
65.87 

lG{a,,b,) 

0.01 
40.05 
3417 
94.42 
52.04 

121.60 
93.83 

102.20 
159.90 
63.38 
65.89 

a,=b, 

0.1 
39.64 
33.97 
93.76 
51.63 

121.40 
92.96 

101.40 
159.10 
62.99 
65.40 

1 
37.14 
31.74 
86.73 
48.21 

113.70 
87.21 
94.85 

147.60 
58.46 
60.76 

10 
22.29 
19.05 
50.60 
28.82 
66.75 
52.90 
57.58 
86.61 
34.85 
36.60 

sampling method. Nevertheless, the general hierarchical 
Bayes methodology is applicable to a wide variety of situa
tions for estimation of small area parameters. Model 
selection and choice is an important part of the hierarchical 
Bayes analysis. It is also important to compare the hierar
chical Bayes method with other widely used methods in 
small area estimation, such as empirical Bayes (EB) and 
empirical best linear unbiased prediction (EBLUP). Work 
is in progress on extending our work to account for survey 
design weights, along the lines of You and Rao (1999). 
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APPENDIX 

Al: 

The Rao-Blackwellized estimator of the posterior variance 
of p. is given by: 

1 ° 
Gi=i 

Gt=i 

i,Y:m\Yy''\^''\^?) 
Gk=i 

4. CONCLUDING REMARKS 

In this paper, we have presented hierarchical Bayes 
methods for small area estimation, using multi-level 
models. Clearly it is not easy to provide a suitable model for 
all small areas with satisfactory results, even if the Markov 
Chain Monte Carlo (MCMC) Bayesian metiiods such as tiie 
Gibbs sampling enable us to fit the data using Bayesian 
models of virtually unlimited complexity. The size and 
homogeneity of the areas and the availability of good 
auxiliary information will affect the final results. Models 
which prove suitable in some situations may be unsuitable 
in others. The hierarchical Bayes method also has some 
limitations such as the choice of priors on the model para
meters and some sampling issues related to the Gibbs 

Gk=i 

1 Y^ ^-(*)v?"v -i,T(<XXi-^''') (^>i'Y,-^'%y'') 

x(xfx/y, + fiWz/>)'(xfx/;f. + fiW)"' 

G^ 
E {xf%%+fiW)-'(xf;t;."F,+fi<*)Z,y<*)) 
i= l 

E (xf^'^.-n^^y (xf;ir,'F,+fi(*V* )̂ 
k=l 
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A2: 
Lemma: [T| | F, p, x, y, fi, X] is a log-concave function of TJ. 
Proof: Let // (TI ) = log [ri | F, p, x, y, fi. A,]. It is enough to 
show that 

Clearly, 

dr\ r(ii) 

Let V|/(T|) = r'(T|)/r(T|), then we have 

^hi3)-
â n 

= -m\\i'{r])<,0 

since /w>0 and \|/ '(T|) is positive on (0, «>)(Temme, 
1994, 54-55). 
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Double Sampling for Ratio and Regression Estimation 
With Sub-sampling the Non-respondents 

FABIAN C. OKAFOR and HYUNSHIK LEE' 

ABSTRACT 

Cochran (1977, p. 374) proposed some ratio and regression estimators of the population mean using the Hansen and Hurwitz 
(1946) procedure of sub-sampling the non-respondents assuming that the population mean of the auxiliary character is 
known. For the case where the population mean of the auxiliary character is not known in advance, some double 
(two-phase) sampling ratio and regression estimators are presented in this article. The relative performances of the proposed 
estimators are compared with the estimator proposed by Hansen and Hurwitz (1946). 

KEY WORDS: Hansen and Hurwitz estimator; Survey cost; Optimum sampling fraction. 

1. INTRODUCTION 

In many human surveys, information is in most cases not 
obtained from all the units in the survey even after some 
call-backs. An estimate obtained from such incomplete 
data may be misleading especially when the respondents 
differ from the non-respondents because the estimate can be 
biased. Hansen and Hurwitz (1946) proposed a technique 
for adjusting for non-response to address the bias problem. 
Their idea is to take a sub-sample from the non-respondents 
to get an estimate for the subpopulation represented by the 
non-respondents. 

Cochran (1977), using Hansen and Hurwitz (1946) 
procedure, proposed the ratio and regression estimators of 
the population mean of the study variable in which informa
tion on the auxiliary variable is obtained from all the sample 
units, while some sample units failed to supply information 
on the study variable. In addition, the population mean of 
the auxiliary variable is known. In this paper we shall 
assume that the population mean of the auxiliary variable is 
not known. We, therefore, use the double sampling method 
to estimate the mean of the auxiliary variable and then go 
on to estimate the mean of the study variable in a similar 
manner as Cochran (1977). 

In practice, non-response is often compensated for by 
weighting adjustment (Oh and Scheuren 1983) or by impu
tation (Kalton and Karsprzyk 1986). The procedures used 
for weighting adjustment and imputation strive for elimina
tion of the bias due to non-response. However, those proce
dures are based on untenable assumptions on the response 
mechanism. When the assumed mechanism is wrong, then 
the resulting estimate can be seriously biased. Moreover, it 
is difficult to eliminate the bias entirely when non-response 
is confounded in the sense that the response probability is 
dependent on the survey character. Rancourt, Lee, and 
Samdal (1994) provided a partial cortection for the 

situation. Hansen and Hurwitz's sub-sampling approach 
does not have this defect although it costs more because of 
extra work required for sub-sampling the non-respondents. 
Nonetheless, if the bias problem is serious, the procedure is 
a viable option to address the problem without resorting to 
100 percent response, which can be very expensive. 

In the next section, double sampling ratio and regression 
estimators are considered. Generally, the double sampling 
procedure is used when it is necessary to make use of auxi
liary information to improve the precision of an estimate but 
the population distribution of the auxiliary information is 
not known. The first phase sample is used to estimate the 
population distribution of the auxiliary variable, while the 
second phase sample is used to obtain the required infor
mation on the variable of main interest. The optimum 
sampling fractions are derived for the estimators for a fixed 
cost. The performances of the proposed estimators are 
compared both theoretically and empirically with the 
Hansen and Hurwitz estimator. 

2. THE DOUBLE SAMPLING RATIO AND 
REGRESSION ESTIMATORS 

2.1 Background 
To estimate the population mean X of the auxiliary 

variable, a large first phase sample of size n' is selected 
from Â  units in the population by simple random sampling 
without replacement (SRSWOR). A smaller second phase 
sample of size n is selected from n' by SRSWOR and the 
character y is measured on it. The ratio estimator of the 
mean of;' is y',. = {ylx)x', where x' is the sample mean 
from n' units, y and x are obtained from the second phase 
sample if there is no non-response in the second phase 
sample. If, however, there is non-response in the second 
phase sample, we may use an estimator obtained from only 

Fabian C. Okafor, Dept. of Statistics, University of Nigeria, Nsukka, Nigeria; Hyunshik Lee, fomierly Statistics Canada, now Westat, 1650 Research 
Boulevard, Rockville, Maryland, 20850, U.S.A. 
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the respondents or take a sub-sample of the non-respon
dents and re-contact them. The former option is much 
cheaper than the latter because securing missing informa
tion from the non-respondents by re-contact requires 
usually much more effort and cost. However, it is quite 
feasible that the non-respondents differ significantly in the 
main character from the respondents so that a serious bias 
results. In this situation, sub-sampling of the non-respon
dents may be beneficial. Hence, we pursue the sub-sam
pling idea of Hansen and Hurwitz for a double sampling 
situation. Basically, the estimators proposed here are double 
sampling version of Cochran (1977, p. 374), that is, double 
sampling ratio and regression estimators for Y adjusted for 
non-response by using the Hansen and Hurwitz (1946) 
procedure. 

Let's assume that all the n' units supplied information 
on the auxiliary variable x at the first phase. But let n^ units 
supply information on y and Wj refuse to respond at the 
second phase. From the Wj non-respondents, an SRSWOR 
of m units is selected with the inverse sampling rate k, 
where m =n2lk,k>l. All the m units respond this time 
around. This can be applied in a household survey where 
the household size is used as an auxiliary variable for the 
estimation of, say, family expenditure. Information can be 
obtained completely on the family size during the house
hold listing while there may be non-response on the house
hold expenditure. 

In the following presentation, we assume that the whole 
population (denoted by^) is stratified into two strata: one 
is the stratum (denoted by ^ , ) of Â , units, which would 
respond on the first call at the second phase and the other 
stratum (denoted by A2) consists of N2 units, which would 
not respond on the first call at the second phase but will 
respond on the second call. Let the first and second phase 
samples be denoted by a' and a respectively, and let 
flj = afl^j and 02 = aC\A2. The sub-sample of 02 will be 
denoted by cu. Summation over the units in a set s will be 
denoted by S^. 

As a general mle, population parameters are denoted by 
capital letters except for Greek letters and the sample 
statistics by cortesponding small letters. 

are subscripted by "2OT", {e.g., MJ^ = (l/w)E^ «.); those 
from a, are subscripted by "1" , {e.g., S, = (1/«,)E^ «.), 
and those for the first phase sample a' will be super
scripted by a prime {e.g., x' = {lln')'L^,x.). 

A large sample first order approximation to the variance 
of d', obtained by using the Taylor linearization, is given 
by 

V{d') .^-1 1 
" - ^ 1 ^ ' * 

where. 

n n 

W£-l) 
^2r 

S^=S^^R^S^-2RS^, 

^2r -^ly'^P ^2x~ ^^^Ixy' 

(2.3) 

(2.4) 

R is the population ratio of ? to X. S„ and S2,, are, 
respectively, the variance for the whole population and the 
population variance for the stratum of non-respondents of 
the variable u. S and 5, are the covariances for the 
whole population and the population of non-respondents 
respectively. 

The variance of d' can be approximately estimated by 

v{d')-

where, 

J__J_ 
[n'~N, 

s> M . n ^ 2 , ^ ! # i i ) ^ 2 ^ (2.5) 
n n' I n 

^ J = ^ { E . , yf^kY^a^yf -r'r'-^^ik-l)sl)^, 

s\-^^^.^yrr'^if^kY.^Jyrr%fYrid 

Sl-^Y..Jyi-r'xf. (2.6) 

2.2 The Double Sampling Ratio Estimator 

We define the double sampling ratio estimator as 
follows: 

d' =l-x' =r'x' 
X 

(2.1) 

where x' and y' are the Hansen-Hurwitz estimators for X 
and Y, respectively, and are given by 

M =Vi ' ,« i +W2M2„. U=X,y. (2.2) 

*2 2 

Note that Sy is an unbiased estimator of .S" . It seems 
natural to use S to estimate S^ since the expression 
obtained from S,. by replacing r* with Risa consistent 
estimator of S^. The same argument can be used to justify 
the use of 82^. 

An alternative estimator of V{d') can be obtained by 
replacing 5^ and Sj^ with 

s\-S]^r-^s'l-2r's'^and 

According to the general rule, we define W = N. IN and 
Wj = njin, j = I or 2. Sample statistics obtained from â ^ 

o 2 _ 2 , '2 2 _ r) , 
•̂  2r ~ ^2my '^ ^ ^1x ^^ ^2mxy' 

(2.7) 
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respectively, in (2.5), where. 

s'x—^E' (^,-^')'. 
X „ / 1 ^—la ^ I ' ' 

n -1 
^2my T^a. ^Yi y2m) ' 

m -1 " " 2 " 

where. 

^5-;^{E„fr,-.;)'**E,j.,-.;)j. 

^2/ = TY^O, (>',-7/')^and 
m - l ^ 

2 1 

AJj - 1 ^"^ 
T,a, (^-^2)'. 

'2mxy ^ ^ l ^ " - ^'^'-'"^"2™^2.) 

and j ^ is as in (2.9). This alternative estimator is likely to 
have a smaller variance than the estimator in (2.5) since the 
estimators 5!̂ ^ and Sj, are based on larger samples and 
therefore more precise. 

:>.;=/,-p-(x,-r). (2.12) 

Like (2.7), a slightiy improved estimator of V{t') can be 
obtained by using 

5 / = 5 / + p-2 5;2-2p*5;and 

2 2 
Sv=S^.y-rS^-2^'S2^. (2.13) 

2.3 The Double Sampling Regression Estimator 

We define the regression estimator by 

t'=y'*^'{Sc' -x') (2.8) 

where p* is an estimator of P = 5 IS^. There could be 
several choices for P*, but a natural choice would be given 
by p' =s^yls^ , where 

3. CHOICE OF SAMPLING FRACTIONS 

We shall now deduce the optimum k, n, and «' that 
minimize the variances of the proposed estimators for a 
specified cost, or that minimize the cost for a specified 
variance. 

Let's consider a cost function for d' given by 

C = c'n' + c/j + CjWj + Cj/w (3.1) 

s' = (Ea ^iYi ^*^Eo ^iYi ~ "^y']^^^ where the c's are the costs per unit defined as follows: 

.2 1 

7 7 - 1 V " " ' 
Ea, /̂ +*Ea, Xi -nxx']. (2.9) 

It is easy to show that s' and si are unbiased for S and 
„ 2 . . . xy X _ „ . . . •9 ' S^ respectively. An approximate variance of /* is given as 

V{tl 
n' N^ ^ 

1--L|5, 
n n 

->/ 

the unit cost associated with the first phase sample, 
a'; 

the unit cost of the first attempt on y with the second 
phase sample, a; 

the unit cost for processing the respondent data on y 
at the first attempt in a,; 

the unit cost associated with the sub-sample, Oĵ  of 

W£k-l) 2 
^21 

(2.10) 

2 2 

where 5, and Sy are obtained from (2.4) by replacing R 
witii p. 

To estimate V{t') we can use the following formula: 

Since the value of «, is not known until the first attempt is 
made, the expected cost will be used in the minimization. 
The expected cost is given by 

E{C) = C' = c'n' + c + Cj ^ j + 
C2W2 

(3.2) 

v(/-) = 
[n' N) ^ 

l__l_ 
n n' 

S] 

'^2/ 
(2.11) 

The optimum values of k, n, and n' that minimize the 
variance of d' for a fixed expected cost C* are obtained by 
using Langrange multiplier. The optimum values thus 
obtained are: 
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• 2 ^ ' - ^2-^2 ' ) 

^ S^,{c^c,W,) 

C'yfA 

DyfG 
and n' 

c'^sl-s] 
Dsfc' (3.3) 

where 

A=S^^W2{k^-\)Sl, 

c W 
G=c + c^W^+ ^ - ^ and 

D = xj{Sl-S^)c' ^sfAG. 

If we let Y = C2KC + c, W^), 6 = S.IS^, and % = S^IS,, tiien 
we have 

k^ = ^y{6-W2), 

4. COMPARISON OF THE ESTIMATORS 

In this section, the theoretical comparison of the perfor
mances of the proposed estimators with respect to the 
Hansen and Hurwitz (1946) estimator is made first without 
taking the cost into consideration and then with taking it 
into account. 

4.1 Without Considering the Cost 

The variance of the Hansen-Hurwitz estimator is 

( I 1 "1 2 ^i(f^ - 1) 2 V{y')= ± - l \ s ; . - ± isl (4.1) 
^ n N) n ' 

where y' is defined as in (2.2). 

V{y') - V{d*)={ 1 - -i j \^RS^ -R^S^) 

^— -(2RS2,y-R'sl). (4.2) 

n„ = 
Cyi * W2{k^-1)15 

and 
y/Gc'{^ - 1) + G^I + fr2(*„ - l)/5 

^ , ^ C'^/^ 

"" ' c 'v/FT + ^Gc'{l*W2{k„-l)l5}' (3.4) V{y') - V{t')= 

The optimum values n^ and /jj are proportional to the 
expected cost, C. To get the optimum values of^,«, and n' 
that, minimize V{t') we simply substitute 5̂ ^ and 82^ in 
the above expression in (3.3) with 5/ and S21, respectively. 
Table I shows optimum values of k,^, n^, and n^ for given 
parameters. 

This is positive {i.e., d' is more efficient than y') if 
/?<2p and R<2^2' where Pj 
hand, we have 

•Sj^lS^,. Ontheotiier 

l_ 
n' S. 

WJJc - 1) 
P4(2P, -P ) . (4.3) 

Table 1 
Optimum Values of k.n. and n' 

c 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 

c' 

0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

c c 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

1 '̂2 

2 
2 
2 
2 
4 
4 
4 
4 
2 
2 
2 
2 
4 
4 
4 
4 

5 

1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 

i. 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 
2 
4 

»'2 

0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 

Y 
1.67 

1.67 

1.67 

1.67 

3.33 

3.33 

3.33 

3.33 

1.67 

1.67 

1.67 

1.67 

3.33 

3.33 

3.33 

3.33 

*» 
1.08 

1.08 

1.68 

1.68 

1.52 

1.52 

2.38 

2.38 

1.08 

1.08 

1.68 

1.68 

1.52 

1.52 

2.38 

2.38 

G 
1.76 

1.76 

1.56 

1.56 

1.99 

1.99 

1.70 

1.70 

1.76 

1.76 

1.56 

1.56 

1.99 

1.99 

1.70 

1.70 

"» 
92 
81 
104 
91 
83 
74 
96 
85 
85 
72 
96 
80 
78 
67 
89 
76 

"0 

382 
580 
389 
590 
345 
531 
361 
553 
250 
366 
255 
372 
228 
338 
238 
351 

Therefore, / ' is more efficient than the Hansen-Hurwitz 
estimator if (4.3) is positive. One particular condition under 
which this can occur is that Pj ^ p/2 with p ^ 0. The 
conditions we discuss here are sufficient and thus, d* or t* 
can be more efficient than y' under more relaxed 
conditions. 

4.2 Considering the Cost 

We shall now compare the proposed estimators with the 
Hansen-Hurwitz estimator {y') making use of the cost 
function given in section 3. 

For the estimator J *, if a straight random sample is taken 
(without using double sampling procedure) for y, the 
optimum sample size for an expected cost. 

C c •>• c^Wj + • 
c.m 

n, 

similar to the one in (3.2) can be obtained by the same 
technique {i.e., Langrange multiplier) used in section 3 as 
follows: 
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C 
•oHH 

*oHH 

C+C,PF, ^Cj^Kj/^^HH 
and 

.̂,(5/ - W2SI) 

\\ Sl{c^c,w,)' (4.4) 

Then the optimum variance of the Hansen-Hurwitz 
estimator becomes 

v{y) I 

'oHH N 

^^2(*oHH-l).2 
^2y-

(4.5) 

•oHH 

If we compare this with V{d') with the optimum choices of 
k, n, and n' in (3.3), then the condition that d' will be 
more precise than y' is given by 

2p-Rh> I 
I - 9 , 

1-^(1-1 
IPA ^2'-Qy-^2QHHy)-hQx(-'^h-^ (4-6) 

where 

_ ^2(^oHH - ^)S2y 
^ " T ' ^ l - - 7 ' ® 2 ^ ' ^ H H y 

^y "o "oHH 

Qu 
w^{k, - mu 

•,u =x,y. 

and p is the cortelation coefficient between x and y. 
We can obtain a similar comparison between y' and t'. 

That is, /* is more efficient than y' if 

2 p - p / i > 1 
1 - e , 

fe< (1 -02-e -e^gHHj-Aa "2 «i>' "2i^HHy •,(2P2-p)|. (4.7) 

4.3 Empirical Comparison of the Proposed 
Estimators 

The relative efficiencies of the estimators d' and /'with 
respect to y' are compared using an artificially generated 
population. The parameters of the population are: 

R = 1.92, p = 1.52, p = 0.85, /?, = 1 -88, p, = 1.47, 

Pj = 0.83, Â  = 1,000, N2 = 302, S^ = 766.54, 

Sy = 2426.82,5^ = 1164.08, S^ 

S2y = 1350.05, and 5 ^ = 638.32. 

: 433.63, 

The relative efficiencies of d' and t' are presented in 
Table 2. Note that R is substantially different from P, which 
means that the regression line does not pass through the 
origin. Under this population, the regression estimator /* 
is more efficient than the ratio estimator d'. We notice also 
that the optimum initial sample size, «J for t' is more than 
for the estimator d'. The reverse is the case for the 
optimum second phase sample size ŵ . This is so because 
the regression estimator can be more precise with a smaller 
second phase sample size so that it allows to allocate more 
to the first phase sample. Finally the optimum inverse 
sampling rate k,^ is practically the same for the two 
estimators. 

When the linear regression line passes through the 
origin, tiie advantage of / ' over d' disappears, as expected 
and confirmed in another empirical comparison not shown 
here. 

Table 2 
The Relative Efticiencies of d' and I' with 

Respect to y' ( C =200, c =0.5, c, = 1) 

c' 

0.1 
0.1 
0.3 
0.3 

0.1 
0.1 
0.3 
0.3 

2̂ 

2 
4 
2 
4 

2 
4 
2 
4 

k 

1.58 

2.23 

1.58 
2.23 

1.58 

2.23 

1.58 

2.23 

"oHH 

127 
115 
127 
115 

127 
115 
127 
115 

K 
d' 
1.46 
2.06 

1.46 
2.06 
/* 
1.47 

2.08 
1.47 

2.08 

" 0 

92 
85 
78 
73 

89 
83 
74 
70 

K 

514 
477 
250 
234 

563 
523 
269 
253 

Efficiency 

1.85 
1.91 

1.23 
1.32 

2.11 

2.19 

1.34 

1.45 

5. CONCLUSIONS 

We proposed ratio and regression estimators based on 
the double sampling procedure when there is non-response 
on the main character and the population mean of the auxi
liary variable is not known. The potentially serious non-
response bias is eliminated by sub-sampling the non-
respondents as in the Hansen and Hurwitz procedure 
(1946). We derived optimum sample sizes for a given set of 
unit costs and compared theoretically and empirically the 
performance of our estimators with that of the Hansen and 
Hurwitz estimator. 
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When there is a strong linear relationship between the 
main character and the auxiUary character and the auxiliary 
data can be collected cheaply with a large sample size, our 
estimators are substantially superior to the Hansen and 
Hurwitz estimator. Our procedure can be useful when there 
is a serious concern about the nonresponse bias that is 
difficult to handle with the usual weighting adjustment or 
imputation. 
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Modeling Interviewer Effects in Panel Surveys: 
An Application 

JAN PICKERY and GEERT LOOSVELDT' 

ABSTRACT 

In this paper we will combine two applications of multilevel models. The multilevel model is suitable to analyze interviewer 
effects on survey data. It can also be used to analyze longitudinal - "repeated measurements" - data. We will analyze a data 
quality indicator of panel data that come from the Belgian Election Studies. These panel data consist of only two waves. 
The respondents that cooperated twice are for the most part not interviewed by the same interviewers. This results in a 
complex data structure with measurements nested in respondents, and respondents nested in interviewers, but without an 
overall hierarchical nesting structure: cross-classification. This complicated data structure will be analyzed in two different 
ways: an analysis of all respondents and an analysis of only those who are interviewed twice by the same interviewer. The 
results of these different analyses will be compared. We conclude that the multilevel cross-classified model is a very flexible 
and useful tool to analyze interviewer effects in panel surveys. 

KEY WORDS: Multilevel models; Cross-classifications; Panel surveys; Interviewer effects; Don't know answer. 

1. INTRODUCTION 

In this paper we analyze the effect of respondent and 
interviewer characteristics on the number of "don't know" 
answers in two waves of the panel survey from the Belgian 
Election Studies. We use different multilevel models for a 
subset of the dataset and for the entire dataset. The main 
purpose of the article is to illusti-ate how interviewer effects 
in a panel survey can be analyzed using multilevel models. 

A multilevel or hierarchical model is an appropriate tool 
to analyze data with nested stmctures, e.g., pupils nested in 
schools or patients in hospitals. A multilevel model can 
include variables of the different levels of nesting, but it 
also takes account of the variability associated with each 
level. The typical quality of the models is not the functional 
form relating tiie variables of the different levels, but rather 
a more sophisticated treatment of the ertor structure 
(DiPrete and Forristal 1994,334). In education research for 
instance a multilevel model can account for variation 
between schools and variation between pupils. Moreover 
the model tries to replace this variance attributed to both 
levels by variables of either level. These models are des
cribed in various textbooks like Bryk and Raudenbush 
(1992), Goldstein (1995), Kreft and de Leeuw (1998) and 
Snijders and Bosker (1999). 

Multilevel or hierarchical models also offer the best 
possibilities to analyze interviewer effects on survey data 
(Hox 1994). A hierarchical model is the best tool to tackle 
the "respondents nested within interviewers" - design. 
Other statistical techniques require mutual independence of 
interviewer and respondent characteristics, which is - most 
of the time - not the case because of the hierarchical struc
ture of the data. In a multilevel model both the regression 

coefficients and the variance components are conditional on 
the explanatory variables in the model, which is a useful 
property if there is no complete orthogonalization of inter
viewer and respondent variables (Hox 1994, 307). When 
respondents are not randomly assigned to interviewers, 
respondent and interviewer characteristics can become con
founded since respondents from a specific area will most 
likely be interviewed by interviewers from the same area. In 
such a situation, if the relevant respondent variables are put 
in the multilevel model, interviewers are equalized by statis
tical means. For that reason the assumptions of an analysis 
of interviewer effects with a multilevel model are more 
realistic than tiiose of an ANOVA or ANCOVA. Further
more the hierarchical model allows estimation of both the 
interviewer variance and the effects of explanatory vari
ables measured at the interviewer and the respondent 
model. This possibility of replacing variance attributed to 
respondents/interviewers with the effects of respondent/ 
interviewer characteristics allows for wider generalizations. 

The multilevel model can also fruitfully be used to 
analyze longitudinal - "repeated measurements" - data (see 
e.g., Goldstein 1995, 87-95; Snijders 1996 and Yang and 
Goldstein 1996). There are alternatives to analyze the 
"measurements nested in individuals" - design, but multi
level analysis has some clear advantages. Using a hier
archical model, it is feasible to handle unbalanced designs 
- not all individuals have the same number of measure
ments - and quite easy to incorporate changing covariates. 
Besides, the model allows more nesting levels. The 
individuals can be nested in another higher level unit. 

We will analyze respondent and interviewer effects on the 
number of "don't know" answers on a series of questions 
regarding political parties in a panel survey. We have 
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measurements (wave 1 and wave 2) nested in respondents 
(the longitudinal design) and respondents nested in inter
viewers. Our panel data consist of two waves. During the 
second wave the respondents are for the most part not inter
viewed by the same interviewers. The purely hierarchical 
nesting has broken down and a more complex data stmcture 
is the result. To handle this data stmcture it is necessary to 
conceive the measurements as being nested into two 
different classification structures: measurements nested in 
respondents and in interviewers. This is called a cross-
classified design, because the nesting of the levels is not 
purely hierarchical. 

In this article we'll start with a simple data structure and 
the appropriate model. Afterwards the model will become 
more complex. We'll perform two analyses. In our first 
analysis we work only with the respondents who are inter
viewed twice by the same interviewers. Afterwards we will 
analyze all the respondents, including those who were inter
viewed only once. In the first analysis the purely hier
archical structure remains intact. The model is a "simple" 
three level one: measurements nested in respondents nested 
in interviewers. Analysis 2 sets up a cross-classified model. 
In that model the measurements are classified by respon
dents and interviewers. 

The next section reflects on the nature of our dependent 
variable, the "don't know" answer, and the way to analyze 
it. In the third section we'll describe our data in detail to 
clarify the complex stmcture. The following section (4) 
treats in brief the different models that we will combine. 
Section 5 presents the variables in our analysis. In sections 
6 and 7 we discuss the setup of our 2 different models and 
report the results of the analyses. Section 8 concludes the 
article. 

2. ANSWERING "DON'T KNOW" 

It has become generally acknowledged that the use of a 
"don't know" or a "no opinion" filter increases the propor
tion of respondents who give this answer, and that the 
increase itself is a function of the nature of the filter used 
(Schuman and Presser 1981, 143). Krosnick argues that 
answering "don't know" is one form of satisficing. Satis-
ficing occurs when a respondent is not motivated to expend 
the mental effort necessary to generate optimal answers. A 
"no opinion" answer is an acceptable answer but it is the 
result of a "weak" cognitive process. Satisficing is a 
function of task difficulty, and the respondent's lack of 
knowledge, ability and motivation. This theoretical 
reasoning is consistent with the finding that offering a 
"don't know" response option increases the proportion of 
respondents who select it, particularly among respondents 
with little formal education and people who consider an 
issue to be less personally important. (Krosnick 1991). 
Following this argumentation, answering "don't know" is 
mainly explained by respondent characteristics that can be 

related to the cognitive aspect of answering questions. 
Previous research points us to the following characteristics 
of interest: education {e.g., Sudman and Bradbum 1974), 
age (see e.g.. Groves 1989, 441-443), sex {e.g., Hox, 
de Leeuw and Kreft 1991), and a measure of involvement 
or interest in the subject {e.g.. Groves 1989,419). 

However answering questions is not only a cognitive 
process of the respondent but it is also a communicative 
process (Schwarz and Sudman 1995). Within this process 
the interviewer plays an important role. There is a lot of 
literature about the interviewer as a source of survey 
measurement ertor (Groves 1989). The main idea is that 
interviewers are not "neutral" collectors of data but that 
they can influence the respondents' answers. Item non-
response too is subject to interviewer effects as has been 
shown long ago by e.g., Hanson and Marks (1958) and 
Bailar, Bailey and Stevens (1977). A social scientist 
interested in the explanation of "don't know" answers 
should therefore include respondents and interviewers in 
the analysis. The number of "don't know" answers will be 
the dependent variable of our analyses. 

3. DESCRIPTION OF THE DATA STRUCTURE 

After the 1991 General Election in Belgium a national 
survey was set up in which 4,544 face to face interviews 
were conducted in the three Regions in the early months of 
1992. A two-stage self-weighting sample (see e.g., Samdal, 
Swensson and Wretman 1992, 141-144) was used. The 
sample was representative for the population of 18-74 years 
old (ISPO/PIOP 1995). In this article we will use die data 
from the Flemish region, which cover 2,691 Flemish 
respondents, interviewed by 163 interviewers (Carton, 
Swyngedouw, Billiet and Beerten 1993). After the 1995 
Elections a similar survey was set up. Due to budgetary 
constraints the sample had to be smaller for the second 
wave. So the 2,691 respondents were used as a group to 
sample from and, in second order, there had to be new 
respondents to compensate for the aging of the youngest 
cohort from 1991. Finally 2,099 respondents were inter
viewed by 167 interviewers. This sample contained 1,762 
panel respondents and 337 new respondents (see Beerten, 
Billiet, Carton and Swyngedouw 1997 for a detailed 
technical report of the sample plan). Only 55 of the inter
viewers of the first wave collaborated again. So there were 
112 new interviewers in the second wave. 

This gives us a dataset with 3028 respondents (2,691 + 
337) and 275 interviewers (163 + 112). For 1,762 respon
dents we have a measurement in both waves, for the rest 
(1266) there is only one measurement. The stmcture of the 
dataset can be represented in a table similar to table 1 (see 
also Goldstein 1995, 114). Each x in the table reflects an 
observation. The complete dataset contains 4,790 observa
tions ((1,762 X 2) -I-1,266). Each type of respondent in the 
table represents a possible occurtence in the dataset. 
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Wave 
Interviewer 
Type A 
Interviewer 
Types 
Interviewer 
TypeC 
Interviewer 
TypeD 

N (Respondents) 

Table 1 
A Representation of the Dataset 

Respondent Respondent Respondent Respondent 
Type 1 Type 2 Type 3 Type 4 

1 2 1 2 1 2 

X X 

374 

X 

X 

X 

X 

1388 

X 

X 

929 

X 

X 

337 

N 
(Inter
viewers) 

47 

8 

108 

112 

This table illusti^tes that we have three kinds of respon
dents: panel respondents who are interviewed twice by the 
same interviewer (Type 1), respondents who cooperated 
twice but were interviewed by different interviewers 
(Type 2) and respondents who are only interviewed once 
(Type 3 and 4). Our 2 different analyses are based on these 
different types of respondents. In Analysis 1 we'll look at 
the respondents whose situation cortesponds with that of 
Type I. Only 374 Respondents satisfy this condition. They 
were interviewed twice by the same interviewer. Analysis 
2 takes all the 3028 respondents into account (Respondents 
1 to 4 of the table). 

Furthermore the table shows that we can also discern 
different interviewers: interviewers who collaborated twice 
(Type A and B) and interviewers who collaborated only the 
first wave (Type C) or only the second wave (Type D). The 
interviewers of Type B collaborated in both waves, but 
never interviewed the same respondents twice (unlike the 
interviewers of Type A). 

To analyze this complex data stmcture we will combine 
three different models that are presented in the next section. 

4. A SHORT DESCRIPTION OF THE 
DIFFERENT MULTILEVEL MODELS 

USED IN THE ANALYSES 

4.1 The General Multilevel Model 

The first model we need is the general multilevel model, 
which has the following form: 

Yij = %j^^ijXxij^e.j, (1) 

Poy = Po * S and p,̂ . = p, + u^j (2) 

or 

Po, = Po + Yoi ^ij * "oy and P,̂ . = p, + y„z,^. + u,j. (3) 

Subscript / refers to the level 1 unit and subscript '̂ to the 
level unit 2. In our situation level 1 indicates the respondent 
and level 2 the interviewer. So the response variable Y of 

respondent /, interviewed by interviewer^ is dependent on 
the X variable of that respondent. This relationship looks 
like an ordinary regression model but the parameters of the 
model are interviewer specific. The P's differ from inter
viewer to interviewer. For each p, there is an interviewer 
residual (MQ. or M, .). The P's can also be made dependent 
on higher level variables (interviewer characteristics), 
allowing for generalization across interviewers. We have 
one second level variable z. Substituting (3) into (1) results 
in the following overall model: 

^ = Po -̂  Pi^i/, + Yoî iy + Yu^iy^i/, * "ly^iy + "o, ^ ̂ ij- (4) 

Of course more x and z variables can be included in these 
relationships. We assume that the residuals MQ , u.. and e.. 
have means 0 given the values of the explanatory variables 
z and X. Furthermore it is assumed tiiat die level 1 residuals (e.) 
are independent. The level 2 residuals (UQ and u^.) are 
assumed to be independent from e. and to have a joint 
multivariate normal distribution with covariance matrix H. 
They don't have to be independent from each other. Usually 
they are cortelated. 

4.2 The Multilevel Model for Longitudinal Analysis 

The second model we need is tiie longitudinal multilevel 
model. In an analysis of a "repeated measurements" -
design with a hierarchical model, the measurements are 
considered to be the first level and the individual the 
second. Most of the time the individual units will be 
persons, but of course they can be other units, like e.g., 
schools or countries. In our analysis the individuals are the 
respondents. The analysis tries to estimate a growth curve 
on the base of the different measurements and to compare 
differences in curves given individual characteristics. Each 
observed value is made conditional upon the time of mea
surement - which can be a measure of time, but also age -
and possible transformations of this measurement. Usually 
the curve is assumed to be a polynomial, which has the 
following form: 

" 0 / + " l / ' + ' t2/^^^ ^ " * / ' + e ;/• (5) 

Y.J is the observed value for respondent / on moment t, 
t can be time of measurement or age. TĈ . {h = 0...k) are the 
trajectory parameters or growth parameters for subject /, k 
is the degree of the polynomial. In a simple case k has the 
value I and then there is a linear curve. If there are m 
moments of measurement, a polynomial with degree of 
m - I will result in an exact reproduction of the curve. Of 
course it is more interesting to use a polynomial with a 
lower degree if tiiat yields a satisfactory reproduction of the 
curve. You can test whether the model with degree yt + 1 
results in a significant improvement compared to the model 
with degree k. 

The growth parameters have also a subscript for the 
individual (respondent). The model states that these para
meters differ from individual to individual. The second part 
of the model defines these parameters: 
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or 
"0/ 

^0; 

^o^^iXxi+r. 0/-

(6) 

(7) 

The individual parameter equals a general parameter 
(7io)+ an individual residual {r^.). By the inclusion of 
individual characteristics {x) it may be possible to reduce the 
individual specific part, thus generalizing across respon
dents. In line with (1) and (2) we chose x to denote the indi
vidual (respondent) characteristics. But it is worth mention
ing that in this model the x variables are higher level (level 2) 
variables. The individual characteristics can be fixed (the 
same for all moments of measurement) or varying. 

4.3 Cross-Classified Models 

The third model we will use is the cross-classified 
model. Not all data stmctures are purely hierarchical. Units 
may be classified along more than one dimension (see 
Goldstein 1995, 113-116). For example students can be 
classified by the school they go to and by the neighborhood 
they live in. In our example measurements are classified by 
respondents and by interviewers. A cross-classified model 
has the following form (subscripts y, and ŷ  refer to the 2 
different classification structures): 

\j2 \ j 2 ^ ^yji ^iy,72"" ^i/.A' (8) 

KJ2 = Po ̂  %, * % and p,._̂ ^ = p,._ .̂  . u,j^ . «,.^. (9) 

Equation (9) can be reformulated the same way as 
equation (3). 

Yijj^ is the observed value for individual /, classified by y, 
and y'j. In our case: the observed value for measurement / 
on respondent/,, interviewed by intervieweryj. The para
meters associated with the independent variable x have a 
residual for both classifying stmctures. For this model the 
additional assumption is made that the residuals of the 
different classifying stmctures (in our case: the respondent 
and interviewer residuals) are mutually independent {UQJ 
and uij^ versus WQ/ and wy ). 

Raudenbush (1993) discusses this kind of models and the 
use of the EM algorithm to estimate them. Rasbash and 
Goldstein (1994) and Goldstein (1995, 123-124) show how 
these models can be specified and estimated using a purely 
hierarchical formulation and (consequently) standard multi
level software. The way to do this is to specify one of the 
classifications as a standard hierarchical one, then define a 
dummy for each unit of the other classification, specify that 
each of these dummy variables has a random coefficient at 
the higher level and constrain the resulting sets of variances 
to be equal. 

In section 6 and 7 we'll use these 3 different models. 
They can all be implemented in MLn/MLwiN, software for 

multilevel modeling. Firstly we take a closer look at the 
variables we will use in the analysis. 

5. VARIABLES IN OUR ANALYSIS 

One of the more difficult tasks during the interview of 
the election study was rating six parties on different 
11-point scales. Three scales were presented to the 
respondents: Catholicism, economic liberalism and feder
alism. An explicit "don't know" filter was included in the 
question, but it was not mentioned on the card with the 
alternatives given to the respondent. The entire question is 
included in the Appendix. We expected a considerable 
number of "don't know" answers because of the degree of 
complexity of the task. The explicit filter was expected to 
raise that number as well (see e.g., Schuman and Presser 
1981). 

In the first wave the average number turned out to mn up 
to more than 4 "don't know" answers per respondent. 
Almost 20% of the respondents made use of this possibility 
at least 9 times out of the 18. If we consider only the panel 
respondents the mean number is a bit lower (3.8). This is 
not surprising since we could expect that "multi-users" of 
the "don't know" answer would be undertepresented in the 
second wave because of lack of interest in the subject of the 
survey and/or difficulties in answering the questions. In the 
second wave the overall mean is 3.6 and the mean for the 
panel respondents 3.4. The numbers for the respondents 
that were interviewed twice by the same interviewer are 3.9 
and 4.2 respectively. There is no explanation why the 
number of "don't know" answers during the second wave 
is higher than the overall mean for these respondents. 

At the measurement level we'll use the year of the inter
view as indication of time of measurement. We've recoded 
this variable, so time has the value 0 for the first wave and 
3 for the second wave. 

At the respondent level we have 3 independent variables: 
sex (0 = man, I = woman), completed education (0 = low, 
1 = high) and the extent to which the respondents follow 
political news in the press (press: 1 = (almost) always - 5 
never). The first 2 variables are constant for the 2 times of 
measurement. The third is a time-varying covariate and the 
question phrasing also slightly changed for the second 
survey. The two different questions are also included in the 
appendix. The dissimilarity in the phrasing induces an 
additional difficulty in setting up the model. The way to 
handle such a variable is to standardize it (mean 0, variance 
1) for each time of measurement and (afterwards) to ascribe 
the value 0 to the time of measurement when the question 
wasn't asked. The reference value for those variables is 
their mean (see Snijders 1996, 422). This gives us 2 
variables: press I for the first occasion and press2 for the 
second. The former has the value 0 for all respondents for 
the second measurement and the latter for the first measure
ment. We don't take up the respondent's age in the model. 
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since this variable would cortelate too much with the time 
measurement at the occasion level. 

In order not to complicate the analysis too much we 
don't take up interviewer variables. We just assume there is 
an interviewer effect, without trying to explain that effect in 
terms of interviewer characteristics. 

number of "don't know" answers doesn't change over time, 
and both measurements can be considered as retests of the 
same constant value. The coefficients in the level 1 
equation are respondent and interviewer specific. 

At the respondent level we'll include 3 variables: sex, 
education and the 2 press variables. So our level 2 equation 
contains 4 variables: 

6. ANALYSIS 1: RESPONDENT TYPE 1 OF 
TABLE 1 

The first analysis considers only those respondents who 
are interviewed twice by the same interviewer (cfr. Type 1 
from Table 1). This analysis requires a "simple" three level 
model: measurements nested in respondents nested in inter
viewers. The hierarchical stmcture is unambiguous. This 
model is similar to the example in chapter 8 in the Bryk and 
Raudenbush book (1992). In that example the authors 
analyze the progress in academic achievement of students 
in schools. 

Our dependent variable is the number of "don't knows"s 
for respondent /' on moment /, interviewed by j {Y^^.). We 
have only 2 measurements so the degree of the polynomial 
cannot exceed 1. This results in the following level 1 
equation: 

"Oy = "O, + P Olj' 
SEX, + p„,. EDUCATION. 

^ i / 'toy + t,y YEAR+ e,̂ .. 

Our time variable {t) is the year of the interview which 
has the value 0 (1992) or 3 (1995). We will test whether 
71,.... is significant. If not, this leaves us a null model or 

model (see Snijders 1996, 411), in which the "naive' 

-Po3.PRESSI, + Po,.PRESS2.+ro... 

If tiie parameter estimate associated with year is signifi
cant we'll have a similar equation for n,. . 

At the third level (interviewer) we won't include any
more variables, but we will fit a random intercept and 
random slopes. So we have the following level 3 equations: 

^0j='^0^"0j and PQ, ; = Po, + " o , y . -

Implementing these model specifications in MLn gives 
us the following results. 

Model a in the table is the null model. This is a model 
without independent variables, neither at the measurement 
level, nor at the respondent level. In this model there is no 
evolution in the number of "don't know" answers. But the 
variance of the dependent variable is divided in a measure
ment part, a respondent part and an interviewer part. All 
variances are significant. This indicates that there is 
between wave variation, that some respondents use the 
answer more than others and that some interviewers will get 
more "don't know" answers than other interviewers. 

Table 2 
Analysis of Respondents who were Interviewed Twice by the Same Interviewers (s.e. in brackets) 

Fixed 
Measurement level 

constant 
year 

Respondent level 
sex 
education 
press 1 
press2 

Random 
Interviewer level 

2 
^constant 

education/constant 

^education 

Respondent level 
2 
conslant 

Measurement level 

-I 

model a 

4.136(0.322) 

2.249(1.040) 

14.470(1.714) 

13.320(0.974) 

model b 

4.028 (0.358) 
0.072 (0.089) 

2.251 (1.043) 

14.480(1.714) 

13.300(0.974) 

model c 

3.749 (0.442) 

2.393 (0.434) 
-1.675(0.425) 
0.911(0.263) 
1.483(0.236) 

2.666 (0.969) 

8.939(1.308) 

13.270(0.969) 

model d 

3.754 (0.523) 

2.458 (0.414) 
-1.778(0.446) 
0.887 (0.233) 
1.426(0.234) 

6.090(2.109) 
-4.099(1.816) 
1.396(1.819) 

8.692(1.332) 

13.250(0.969) 

-2LL 
A d f 

4519.35 4518.62 
1 

4414.52 
4 

4395.68 
6 

Note: * compared to model a 
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The inclusion of the variable YEAR does not provide a 
better fit of the model. The decrease in deviance (-2 Log L) 
is not significant, neither is the parameter of the variable 
significant (model b). We can conclude that there is no 
significant overall evolution in the number of "don't 
know"s. We can go on with a model without the time 
variable. 

The respondent variables do result in a considerable 
improvement of fit of the model. The decrease of the - 2 
Log L value is large and clearly significant (p<0.001). 
According to the analysis women use the "don't know" 
alternative more than men do and highly educated respon
dents less than respondents with lower education. Fol
lowing the political news in the press reduces your chance 
to answer "don't know". Both press) and press2 are signifi
cant (model c). The inclusion of respondent variables also 
results in a substantial decrease of the variance at the 
respondent level. 

We also tried to fit random slopes at the interviewer level 
(model d). Our analysis showed some variation in the para
meter associated with the respondent's education. This is 
the only independent variable with a varying coefficient at 
the third level. Ogd̂ âjî n is not significant, but there is an 
important covariance between the residual for the constant 
and the residual for education (Oeducation/constan, = "4-099). 
The covariance is negative, indicating that interviewers 
with a higher constant have a smaller coefficient for educa
tion. Since the fixed parameter for education is negative, it 
will be even more negative for those interviewers, thus 
having a larger absolute value. Hence for interviewers who 
stimulate more "don't know" answers, the difference 
between less educated respondents and more educated 
respondents will be larger. In model d the value of o^(,„j^, 
at the interviewer level has increased considerably, com
pared to model c. In this model the variance at the inter
viewer level is dependent on the values of the explanatory 
variable education and it will be larger for zero values of 
education. That is another interpretation of model d: the 
variance between interviewers is much higher for lower 
educated respondents than for higher educated respondents. 
This model with a more complex variance stiucture at level 
3 has a better fit than the previous models. 

When including YEAR in model c or model d, it turned 
out to be not significant either. Also in our final models 
there is no evidence for an evolution in the number of 
"don't know"s between the two waves. All models prove a 
significant interviewer effect. But the relative size of the 
variance shows that there is more variation between 
respondents than between interviewers. 

7. ANALYSIS 2: ALL RESPONDENTS 

In this analysis we look at all the respondents: the panel 
respondents that were interviewed twice by the same inter
viewer, the other panel respondents and those who were 

interviewed only once. This second analysis breaks down 
the hierarchical stmcture. Measurements are still nested in 
respondents and respondents are still nested in interviewers. 
But there is no overall hierarchical structure, since the 
interviewer can (and most of the time will) change between 
the two waves (see section 3). Our dependent variable is 
still the number of "don't know"s of respondent / inter
viewed byy on moment / (r,..). But the model has changed. 
The level 1 equation hasn't: 

r̂/, = 'toy+",yYEAR + e,̂ .. 

In this notation we use n, since the level 1 model is also 
a growth curve. But this equation matches the level 1 model 
of the cross-classified model (equation (8), section 4.3). 
Furthermore we still use / for the respondent andy for the 
interviewer. But it is important to notice that this is not the 
same model as the one of analysis 1. These subscripts 
cortespond to the y, and y'j of equations (8) and (9). 

There is no "real" third level. To fit the cross-classified 
model in MLn, we have to define a third level, but concep
tually the respondent and interviewer are at the same level 
in this model. This leads to the following level 2 equation: 

^Oij = ^0 + Poi SEX. + Po2 EDUCATION. 

+ Po3 PRESSl; + Po, PRESS2i ̂ r,. *r,j. 

The interviewer specific part (r-) is included in the 
second level, so there is no interaction between the inter
viewer variance and the respondent variables. This is the 
main difference with analysis 1. 

A cross-classified model requires enormous computa
tions. We have 3,026 respondents and 275 interviewers. 
This would mean 275 dummies with all varying coefficients 
at the artificial third level. Up till now it is impossible to fit 
such a model. The storage required by the worksheet is far 
too large (see Goldstein 1995, 118 and Rasbash and 
Woodhouse 1996,85-86 for details). It is possible to reduce 
these storage requirements and improve the speed of model 
estimation by dividing the dataset in subsets in which the 
cross-classification implies fewer cells. In our case we look 
for separate groups of measurements that are classified by 
fewer respondents and interviewers. The analysis of 1 
group of 1,000 measurements classified by 500 respondents 
and 100 interviewers is computationally more demanding 
than the analysis of a dataset consisting of 10 groups of 100 
measurements each, classified by 50 respondents and 10 
interviewers. Sometimes it is worth omitting some of the 
observations (measurements in combinations of respon
dents and interviewers that hardly occur) to make the 
partitioning more efficient. 

MLn/MLwiN provides some procedures (via the com
mands XSEArch and BXSEarch) that are designed for that 
partition (Rasbash and Woodhouse 1996, 89-93). We used 
tiie BXSEarch command. The command starts an enhanced 
procedure, which attempts to provide the maximum separa
tion with the minimum deletion of data. We started with 
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4,790 measurements, 3,026 respondents and 275 inter
viewers. After omitting the observations indicated by the 
BXSEarch command, we're left with 4,597 measurements 
on 3,026 respondents interviewed by 275 interviewers. No 
higher level units (respondents nor interviewers) are left 
out. The procedure resulted in 7 partitions with a maximum 
of 44 cells in the cross-classification of respondents and 
interviewers. The model converged sufficiently fast when 
implied this way. 

The results of the analysis are reported in Table 3. 

Table 3 
Analysis of all the Respondents (s.e. in brackets) 

Fixed 
Measurement level 

constant 
year 

Respondent level 
sex 
education 
press 1 
press2 

Random 
Ijevel2 

Interviewer 

^ccnsunl 

Respondent 
_2 
^oonsuiu 

Measurement level 

•'̂  

model a 

3.894(0.136) 

2.777 (0.373) 

11.810(0.635) 

13.130(0.475) 

model b 

3.967(0.155) 
-0.053 (0.055) 

2.716(0.368) 

11.800(0.635) 

13.150(0.476) 

model c 

3.864(0.165) 

1.808(0.153) 
-1.914(0.148) 
1.185(0.090) 
1.197(0.102) 

2.844 (0.363) 

7.017 (0.527) 

13.460(0.480) 

-2IX 
Adf 

27717.1 27716.3 27042.1 

Note: * compared to model a 

This table looks very much the same as Table 2 but there 
is an important difference. In the random part we marked 
level 2 - interviewer and respondent to make clear that the 
interviewers do not constitute a third level in this analysis. 

Model a is the null model: no explanatory variables, but 
the variance of the dependent variable separated in a mea
surement part, a respondent part and an interviewer part. 
There is a significant interviewer variance. Thus in this 
design we again have evidence for an interviewer effect. 
You have to be careful about the interpretation of the rela
tive sizes of the variances if one classification has far fewer 
units than the other (Goldstein 1995,117-118). It's not fully 
cortect to state that there's 5 times as much variation 
between respondents than between interviewers, but again 
there is much more variability between respondents than 
between interviewers. 

In the next model (model b) we've included the time 
variable (YEAR). Again this variable turns out to be not 
significant and its inclusion does not provide a better fit of 
the model. Again we can conclude that there is no signifi
cant overall evolution in "don't know" answers over time. 

Model c is the model with the respondent variables. They 
are all significant and this model has a far better fit than the 
previous ones. The substantive interpretation of the para
meters is the same as in analysis I. Women use the "don't 
know" answer more than men and a higher education 
results in less "don't know"s. The extent to which the 
respondents follow the political news in the press is also a 
predictor of the use of the "don't know" answer. The less 
they follow politics the more they answer "don't know". 

8. CONCLUSION AND DISCUSSION 

The general conclusions of this article are methodologi
cal as well as substantive. 

Our analysis confirms previous research findings about 
the use of the "don't know" answer. It is related to the 
respondent's education, sex and a measure of involvement 
or interest in the subject. Furthermore it is likely to diverge 
from interviewer to interviewer. All our analyses showed a 
significant interviewer effect. We did not find a significant 
evolution in the use of the "don't know" answer over time 
in the two waves of the survey. The interviewer effects 
prove that the "don't know" response alternative is not 
merely a result of the respondent answering the questions. 
It stresses the necessity of an interviewer training, which 
includes instructions on how to ask difficult questions and 
how to deal with "don't know" answers. 

As in most panel surveys, the nonresponse in the second 
wave of this panel survey was not totally random. It is 
related to the respondent's living artangement, his or her 
political interest and a few socio-demographic variables 
(Loosveldt and Carton 1997). This selective dropout puts 
limits to the generalizability of the results concerning the 
evolution in the dependent variable, but our analyses did 
not show a general evolution in the use of the "don't know" 
answer anyway. An impact of selective nonresponse in the 
second wave on the size of the interviewer effect is not 
unlikely either as interactions between the respondent 
characteristics and the interviewer effects are possible, as 
analysis 1 showed. But it is unlikely that this will affect the 
substantive conclusions about the interviewer effects. Given 
the results of analysis 1 and the conclusions in the 
Loosveldt and Carton paper, one could even expect that the 
interviewer effect in analysis 2 and consequently the overall 
interviewer effect might be somewhat underestimated. 
Loosveldt and Carton (1997, 1021) show that lower 
educated respondents are more likely to drop out of the 
survey than higher educated respondents and analysis 1 
showed that the interviewer variance is higher for lower 
educated respondents. 

The methodological conclusions consider the use of the 
different models to analyze interviewer effects in panel 
surveys. The analyses presented in this paper show that 
quite complex designs with complicated data stmctures can 
be analyzed by specifying the appropriate multilevel model. 



196 Pickery and Loosveldt: Modeling Interviewer Effects in Panel Surveys 

The first model (Analysis 1) only suits in a tiny number of 
cases. It is not so common to ascribe the same interviewers 
to the same respondents for different waves of a panel 
survey, neither is it always feasible. 

The second model (Analysis 2) is an appropriate tool but 
can require enormous computations. MLn is quite powerful 
and helps to decrease the storage requirements, at the cost 
of a small loss of information. Besides, the second model 
has its limitations too. Using this method it is not possible 
to model interactions between respondent variables and 
interviewer variance, as we did in the first analysis, or 
between respondent and interviewer variables. However the 
analysis showed that this model could be a very useful and 
flexible tool. The cross-classified model is also suitable 
when the number of measurements increases. A panel 
survey with 3 or 4 or even more waves, where some inter
viewers are retained and some are new at each occasion 
would require exactiy the same analysis. The multilevel 
model also knows how to handle respondents for whom 1 
or more measurements are missing, as our analysis showed. 
The pliability of this model outweighs the impossibility to 
include respondent - interviewer interactions in the model. 
That would be feasible when analyzing each wave of the 
panel survey separately. But those analyses could not model 
a possible evolution in the dependent variable, which is 
another important advantage of the joint analysis of all 
waves of the panel. 
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APPENDIX 1 

The rating question was: "Political parties are said to be 
"Catholic" or "non-Catholic". Please place the cards of the 
various parties on card No. 20 at the place that cortesponds 
best to the degree in which the party is "Catholic" or 
"non-Catholic". If two or more parties are just as "Catholic" 
or just as "non-Catholic" in your opinion, place the cards on 
the same square. If you do not know how "Catholic" or 
"non-Catholic" a party might be, then simply put its card 
aside." 

With the card: 

Catholic 0 1 2 3 4 5 6 7 8 9 1 0 Non-Catholic 

The press question was not identical for both surveys. 
For the first survey the press question was: "How often do 
you read the political news in the newspaper?" 

With the response categories: 

l=(almost) always, 2=often, 3=now and then, 4=seldom, 
5=never 

In the second survey it became: "How often do you 
follow the political news on the radio, on television or in the 
paper?" 

The response categories remained the same. 

APPENDIX 2 

Section 4 set the assumptions of the different models that 
were used. For the last model the most important assump
tions concern the random effects associated with the res
pondent and the interviewer. The assumption that the 
ĉonstant values for the respondent and for the interviewer 

are normally distributed can be assessed by looking at 
Normal probability plots for the residuals. Graph 1 presents 
the plot for the standardized respondent residuals and graph 
2 the plot for the standardized interviewer residuals. 

normal scores 

Graph 1. Standardized respondent residuals by Normal 
equivalent scores 

In this graph the departures from the diagonal are rather 
limited and no apparent violation of Normality can be 
inferted. On the other hand it is worth noting that this graph 
shows more observations at the upper right hand than at the 
lower left end. 

Graph 2 does not show any clear departures from the 
diagonal either. But in this graph some outiiers draw the 
attention. Especially the outiier at the upper right hand side 
of the graph seems to be outside the range of the other 
interviewer residuals. Moreover in this graph also there are 
more observations at the upper right hand side than at the 
lower left end. 
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normal scores 

Graph 2. Standardized interviewer residuals by Normal 
equivalent scores. 

The conclusions from these graphs are as follows: there 
is nothing clearly wrong with the residuals but the more 
numerous deviations upwards and the outliers of the inter
viewer residuals could possibly be further investigated. 
Efficient techniques for these checks are not yet available 
for multilevel models (Goldstein 1995 29). But it is of 
course possible to analyze a dataset without the outiiers. 
That is done in Table 4. 

Table 4 
Analysis of the Dataset Without the Interviewer Outliers 

(s.e. in brackets) 

Fixed 
Measurement level 

constant 
Respondent level 

sex 
education 

press 1 

press2 

3.853 

1.820 
-1.929 
1.160 

1.217 

(0.162) 

(0.153) 
(0.149) 

(0.090) 

(0.102) 

Random 
Level 2 
Interviewer 

Respondent 

constant 

Measurement level 

2.495 (0.333) 

7.109 (0.530) 

13.420 (0.481) 

cortespond. You will get 3,028 respondent residuals and 
275 interviewer residuals. An indirect check of this assump
tion is possible by attributing the interviewer residuals to 
the respondents. This is done in graph 3. 

.X 1^ X „ ^ 

Mefv. residuals 

Grapli3. Standardized respondent residuals by standardized 
interviewer residuals 

In this graph, again the more numerous deviations 
upwards and the interviewer outiiers draw the attention. 
Apart from that, no pattem can be discerned. Because of the 
interviewer outiiers, there are fewer observations at the 
right hand side of the graph. But the respondent residuals 
do not really tend to be smaller if the interviewer residuals 
are higher. Neither is there any evidence of the opposite. 

The check in graph 3 is imperfect as it attributes the 
interviewer residuals to the respondents. A better alternative 
might be to fit a more complex model with an interaction 
term between the two random effects. Goldstein (1995, 
119) proposes this model. A test for the model improvement 
due to the interaction term can give an indication for the 
presence of a cortelation between the residuals. Another 
alternative is the insertion of an additional level (the region) 
above interviewers and respondents. That model would 
include a term for the regional variation, which could cause 
a cortelation between the interviewer and respondent 
residuals. Snijders and Bosker (1999, 159-160) describe 
this model. But both models require a different parameteri
zation with various sets of dummies. Their clarification 
calls for a paper in itself and is consequently outside the 
scope of this paper. 

-2LL 26850.2 

For the analysis in Table 4 we excluded two inter
viewers, the one with the lowest and the one with the 
highest residual. The coefficients in this table are very 
similar to those of model c in Table 3. The interviewer 
variance has decreased a bit, as a result of the exclusion of 
extremes, but there is no evidence of a considerable impact 
of the outliers on the results. 

The other assumption about the interviewer and respon
dent random effects is their mutual independence. The 
interviewer and respondent residuals should not cortelate. 
That is of course more difficult to evaluate since both resi
duals are connected to their respective units, which do not 
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Screen Design and Question Order in a CAI Instrument 
Results From a Usability Field Experiment 

MAREK FUCHS' 

ABSTRACT 

Screen design and questionnaire design affect the interviewer behavior in a CAI environment. Previous research has shown 
that interviewers can work more properly and efficientiy if suitable functions and features are incorporated in the CAI 
insUiiment. Usability experiments with the household roster of two large govemment surveys have shown that using grids 
and tables is an important feature to facilitate the interviewer's performance. While these experiments were conducted under 
laboratory conditions, we have results from a first field experiment. In March of 1998 a CATI survey on immigrants was 
fielded in Germany (response rate 84%, n = 501). Four different versions of a household roster were compared in this 
production study, testing two different screen designs together with two different question orders in a 2x2 factor design. 
The four versions were randomly assigned to interviewers and respondents. Time measures were built into the CATI 
program, and 234 randomly selected interviews were video tap>ed and analyzed according to a coding scheme. Based on the 
data we assessed the usability of different CAI design features. The results show that the screen design as well as the 
question order have a significant influence on interview duration and interviewer behaviors. Especially the grid based and 
topic based version allows the fastest performance in terms of time used to complete the instrument. Results from the coding 
data suggest that the differences between versions are due to specific interviewer and respondent behaviors. The data 
indicates that the grid based topic version enables a respondent oriented interviewer behavior, and thus allows the best 
interviewer performance in terms of duration. 

KEY WORDS: Computer assisted interviewing; Usability Testing; Field experiment; Screen design; Question order. 

1. INTRODUCTION 

Computer assisted interviewing is on its way to 
becoming a standard survey technique (Couper, Baker, 
Betiilehem, Clark, Martin, Nicholls and O'Reilly 1998). In 
telephone surveys as well as with personal interviews, more 
and more studies are conducted using computer assisted 
interviewing techniques (CAI). Many of the large govem
ment surveys in the US are in the transition to CAI or have 
completed it already. Even in Europe, we observe a shift 
towards computer assisted interviewing (Schneid 1991; 
Fuchs 1994, 1995; Laurie and Moon 1997; Projektgmppe 
SOEP 1998) - even though, the methodological aspects of 
this development do not constitute the main focus of 
European research, so far. 

Researchers and people responsible for fielding surveys 
rely on computer assisted interviewing for several reasons: 
(Sometimes it seems, however, that substantial arguments 
are less important than just a specific market rush towards 
CAI.) 

- They hope to collect data of higher quality due to 
built-in consistency checks and range checks during the 
course of the interview. 

- CAI provides the possibility to use automated skip 
pattems and allows to design more complex instmments 
without putting too much burden onto the interviewers. 

- They hope to spend less time and money for inter
viewing and post-processing and decrease survey 

budgets once the up-front investment for hardware and 
software is payed off. 

- They hope to benefit from CAI's ability to read external 
data into the interview which is especially interesting 
with panel studies. 

The general movement towards CAI is evaluated posi
tively. Researchers and field directors benefit from it 
(Nicholls and deLeeuw 1996) and interviewers (Couper and 
Burt 1994) as well as respondents (Baker 1992), reveal a 
great deal of sympathy or at least acceptance. On the other 
hand, computer assisted interviewing has introduced some 
additional problems into the interview situation, too: in the 
early years methodological research was mainly concerned 
with hardware and software problems (see Couper, Groves 
and Kosary 1989; Weeks, 1992 for overviews). Instead, 
recent studies dealt with interview and respondent accep
tance, interview duration, and usability issues (Couper et al. 
1998 for an overview). The present paper contributes to this 
later discussion of "technology effects" (Fuchs, Couper and 
Hansen 2000). 

2. THEORETICAL BACKGROUND 

For the purpose of the following analysis the theoretical 
focus is mainly on two usability issues: (1) segmentation of 
the interview flow and (2) lack of interviewer flexibility. 
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I. Segmentation: in a CAPI environment the interviewer 
has an additional burden: the process of keying takes 
place in the interview situation. Usually, an interviewer 
reads a question, receives an answer, enters the data, 
presses [enter] and then the next screen with the 
following question appears. Compared to PAPI inter
viewers cannot look ahead and anticipate the next 
upcoming question while recording the answers to the 
previous one and they cannot start reading the next 
question before pressing [enter] - they cannot work 
simultaneously on both tasks. As a result of this proce
dure the interviewer respondent interaction is segmented 
by [enter] keys. So far we do not have quantitative 
evidence that this kind of segmentation harms the data 
or the interview situation. But it is argued that the 
interviewer loses the "big picture", and the relevance of 
questions and their relationship to each other may be 
unclear (House 1985; Groves and Mathiowetz 1984). 

Our findings from several series of usability tests in the 
lab concerning the screen layout of a household roster 
(Couper et al. 1997; Hansen, Couper and Fuchs 1998) led 
to the suggestion of a specific screen layout that allows the 
interviewer to develop a more complex understanding of 
the instmment, maintain the interaction with the respondent, 
and enter data at the same time: Two different versions of 
a series of questions were tested under laboratory condi
tions in terms of the time necessary in order to complete the 
questions and ease of use. We compared a so-called item 
based design with a grid based design. House and Nicholls 
(1988) distinguished between three approaches in screen 
design for computer assisted instruments: item based, 
screen based and form based design. In the item based 
approach one question and one input field are displayed at 
a time, and logic operations are performed in the transition 
from one item based screen to the next. This design is easy 
to program and focuses the interviewer's attention on the 
actual question. The screen based approach combines 
several items that need to be answered in sequence. All 
logic operations are executed after each item. On a form 
based screen, many items are presented at the same time in 
a table or grid and the interviewer may use the cursor keys 
to move from field to field and to complete them in any 
order. 

The item version tested in our experiment matches the 
characteristics specified by House and Nicholls (1988) for 
a screen based approach. In contrast, the grid based design 
is best described as a form based instmment. It allows 
interviewers to record the information in the order chosen 
by the respondent, it provides the interviewer with a better 
overview of the instmment and it more easily allows up
dates and backups (for details see Couper et al. 1997). Also, 
the design matches the interviewers' demand for more 
questions on one screen - both for speed of administration 
and for context knowledge. The following graph gives an 
impression of an item based and a grid based CAI screen 
design. 

We found evidence that the grid based design reduces 
the segmentation: interviewers could start reading the next 
upcoming question while still entering the data to the 
previous question. Even backing up seems to be easier 
within a grid design. On the other hand, we found only 
modest support for a grid based design in terms of time 
used to complete the task (for details see Couper et al. 
1997). This leads to the question: what can we do to 
decrease segmentation and to further improve the efficiency 
of a household roster in terms of duration? 

2. Lack of flexibility: The second feature that might cause 
problems in a computer assisted interview is the lack of 
flexibility. One of the advantages of a CAI instiument is 
the fact that an interviewer can hardly skip any 
questions. Although CAI instruments can make exten
sive use of skip pattems and filters, they apply a pre
defined question order. Usually, each question needs an 
[enter] key before the system goes on to the next screen. 
It is seen as an advantage that this rigid question order 
avoids any trouble the interviewer might have with the 
routing through the instmment, questions for specific 
respondents, filters and skip pattems and so on. He or 
she can abandon this task and focus on the adminis
tration of the actual items. On the other hand, this causes 
a very strict question order and provides the interviewer 
with little flexibility in terms of question order. A small 
example demonstrates this effect: most CAI instmments 
apply a question order to their household roster, where 
all items for one person are asked before the interviewer 
works through the same items for the next person 
("person based design" see Couper et al. 1997; Fuchs 
2001 or "grouped questions" see Moyer 1996). The CAI 
instmment, for example, might request the respondent's 
age, educational level, and other questions first before 
asking for the age of the respondent's wife. (This can be 
explained in part by the way computer programs and 
data bases work: households represent the main records 
and persons or other entities are treated as subrecords.) 
When completing the questions of a household roster it 
might happen (and in fact it happens quite often, see 
below) that the respondent provides not only the answer 
to the curtent question {e.g. "I'm 34 years old") but also 
to a related question: "I'm 34 years old and my wife is 
32 years old" or the respondent might answer "We are 
all Black" when asked about his or her own race 
(Oksenberg, Beebe, Blixt and Cannell 1992). 

While working with a paper instmment it is an easy task for 
an interviewer to make immediate use of the additional 
information provided by the respondent. In case he or she 
answers, for instance, "We are all black" the interviewer 
can easily mark the appropriate check boxes for all house
hold members at once. For someone interested in question
naire design this leads to the following question: given the 
lack of flexibility in a computer assisted environment, what 
is the best question order for collecting information about 
all household members? 
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Figure 1. Item Based Design vs. Grid Based Design 

Moore and Moyer report results from an experiment on 
two different quisstion orders designed for collecting infor
mation about all eligible persons in a household (Moore and 
Moyer 1998a, 1998b). The first question order asks all 
questions for the first eligible person in the household and 
moves on to the next person, when all questions are com
pleted. This question order is called a person based 
approach. In the second version, the topic based approach, 
the first question is asked for all eligible persons, then the 
second question for all persons and so on. Moore's and 
Moyer's results show strong support for a topic based 
design: the topic version leads to less item non-response, 
less break offs and refusals and is substantially shorter. 
Besides interviewers show significant preference for this 
version. 

In the experiment presented in this paper we tried to 
make use of the advantages of a topic based approach and 
of a grid based screen design: we combined the two screen 
designs (item based design vs. grid based design) with the 
two question orders (person based order vs. topic based 
order) and tested all four resulting versions in a field 
experiment. In doing this, we had the following assumption 
in mind: the usability of a CAI instmment is not only a 
programming issue, but it is also connected to the question
naire design and to the interview as a social situation. Both 
aspects of a computer assisted instmment, its screen design 
and its question order, support or hinder a smoothness of 
the interview flow. Based on the results of the previous 
research we had the following hypothesis: The combination 
of a grid based screen design and a topic based question 
order allows the most efficient interviewer respondent 
interaction. 

3. METHODS 

The experiment took place in Germany in March 1998. 
Immigrants of German origin from Poland, Rumania and 
the former Soviet Union were surveyed. Starting February 
28, 1998 and ending March 20, 1998 15 interviewers 
completed « = 501 interviews. All respondents received an 
advanced letter and were called by phone up to 15 times. 

The response rate reached 84% and item non-response was 
considerably low. The interviews were conducted using the 
CATI program CI3. About 95 questions on various topics 
were asked. The average interview lasted 23 minutes. 

Four versions of a small household roster with three 
items per person were included in the instrument: an item/ 
person version, a grid/person version, an item/topic version 
and a grid/topic version. All versions applied the same 
question wording and interviewer instructions, however, we 
modified the screen design and the question order 
according to the theoretical approach mentioned before 
(Figure 2). The item based person version is considered to 
be the standard version - it represents the questionnaire 
design usually applied to socio-demographic portions in 
CAI surveys. One of the four versions was randomly 
assigned to each interview - and thus to interviewers and 
respondents. We measured the total time needed for the 
household roster and in addition the time spent on each 
single item in that section of all 501 interviews. In addition, 
234 interviews were selected at random and the interviewer 
working through the household roster section was video
taped. The video segments were coded in terms of inter
viewer behavior and respondent behavior and the resulting 
data was combined with the time measurements. 

4. RESULTS 

The durations of the four versions differ significantly 
from each other: interviewers needed 6.6 seconds per item 
in the item based person version (which is considered to be 
the standard one). In contrast each item took 5.5 seconds in 
the grid based topic version. This is a reduction of about 
17% for the grid based topic version. The two other 
versions are in between. 

It is important to mention that both factors seem to 
contribute to the decrease in time used to complete the task. 
If we distinguish between the two factors, we end up with 
the following results: the two topic based versions are signi
ficantly shorter than the two person based versions and the 
two grid based versions take significantly less time than the 
two person based versions. The combined effect applies to 
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Figure 2. Four Versions Tested in the Experiment (Each Box Represents One Screen) 

the grid based topic version and leads to the value of 5.5 
seconds per item. (An analysis of variance reveals that both 
factors - the screen design as well as the question order -
contribute independentiy to the decrease in time (screen 
design: p<0.01, one third of total effect; question order: 
p<0.001, two thirds of total effect, no significant inter
action).) 

The loop effect is not specifically characteristic for this 
experiment. We recognized loop effects in our previous 
experiments with the NHIS household roster, too (Couper 
et al. 1997). It is, however, interesting to observe that the 
loop effect is significantiy larger for the topic based 
versions than it is for the versions that follow a person 
based question order (Table I). Thus the topic based 
versions do increase the acceleration for the second and all 
subsequent persons in a household and consequently show 
a larger loop effect. (One implication of our experimental 
design might be that interviewers did not know what 
version they were approaching. This may have decreased 
their performance on the very first item. But this effect 
should be the same across all versions, so the results should 
not be affected.) 

Table 1 
Duration and Lx)op Effect (Seconds) 

Item Age Arrival Status All items 

Item + person grid + person item + topic 
version 

Figure 3. Duration per Item by Version 

grid + topic 
p < 0.01 

But why is the grid based topic version faster? A detailed 
analysis shows that this version is especially faster when 
collecting the information for the second and all following 
persons in the household - a significant impact, that is 
called loop effect (Fuchs 2001). This term describes the 
following phenomenon: the interviewer takes much longer 
to collect the information for the first person in a household 
compared to all subsequent persons. The average loop 
effect sums up to 3.4 seconds per item which is a reduction 
of about 38% compared to the first person (Table 1). 

First person in household 
All other persons in 
household 
All persons 

Differenz between first 
and all other persons in 
the household 

Grid + topic 
Item + topic 
Grid + person 
Item + person 
Average loop effect 

Duration per item 

9.4 9.9 

6.6 5.7 

8.0*** 7.8*** 

Loop effect 

-2.8 -4.2 

Loop effect by version 

-6.8 
-5.2 
-0.5 
0.3 

-2.8*** 

-6.4 
-8.3 
-2.7 
-0.3 
-4.2** 

7.7 

4.5 

6.1*** 

-3.2 

-4.6 
-4.3 
-3.0 
-1.3 
-3.2** 

9.0 

5.6 

7.3*** 

-3.4 

-5.9 
-6.0 
-2.1 
-0.4 
-3.4** 

* p < 0 . 0 1 ; ***p< 0.001 
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Analyzing the video tapes we can provide reasons for 
these differences at least in part: given the topic based con
ditions, both interviewers and respondents adapt differently 
to the interview situation compared to the person based 
versions. When asking the questions for all persons in the 
household, the respondent recognizes the logic of the proce
dure very quickly. In quite a high proportion of all cases 
(about 30%) their reaction to this is "We all arrived in the 
same year" (meaning: "Don't ask me this question again 
and again"). 

If the instrument follows a person based design, the 
interviewer has to memorize this piece of information, and 
if it comes to the next person, he or she needs to remember: 
"Do not ask this question again, the respondent gave you 
the appropriate answer already!" Only in a few cases they 
really do, most of the time they just ask the question again. 
This is especially true when using an item based screen 
layout that gives no clues in terms of the answers to the 
same question for the other household members. In a topic 
based design instead, the interviewer can easily adapt to 
that situation. Thus he or she just enters the same code for 
all persons in the household without asking the question 
repeatedly. Both the interviewer and the respondent get 
used to the questions, and so the question answer process 
runs with less verbal contributions from the interviewer's 
side as well as from the respondent's. Both interviewer and 
respondent can anticipate the next question and the inter
view runs more smoothly. This is especially tme when the 
CAI instrument makes use of a grid and provides further 
context information, e.g., the responses for other household 
members to the same question. (Looking at the results 
reported in the lower part of Table 1 we conclude that the 
grid based person version does not benefit to the same 
extent from the advantages of the topic based approach. 
However, due to the grid design the loop-effect is 
considerably larger than in the item based person version.) 
As a result the time used per item is substantially shorter 
and the interviewer can provide respondent oriented 
interviewer behavior similar to Schober and Conrad's 
(1997) findings. 

Providing feedback by the interviewer sometimes works 
as a signal that he or she has recorded the answer to the 
previous question in order to stimulate the respondent, so 
that the latter guesses about the next question and reveals 
the appropriate answer even without an additional stimulus. 
In extreme this might lead to a respondent behavior where 
he or she provides the information about all persons in the 
household at once: "We all came in the same year". The 
different versions tested in this experiment impel and 
support such behaviors to different degrees. From our 
results we can conclude that the grid based topic version 
stimulates interviewers and respondents to deviate from the 
scripted interview to a higher degree than the other 
versions. As far as duration is concerned this version allows 
the interviewer to make efficient use of information 
provided for all household members at once. Evidence from 

the video coding support our interpretation of version-
specific occurtences of time saving interviewer behaviors 
(1) and respondent behaviors (2): 

1. By means of analyzing the video tapes we observe quite 
a lot of interviewer behaviors that do not follow standard 
interviewer procedures: besides the fact that about 78% 
of all items are read as worded, interviewers do not 
administer 9.3% of all items to the respondent. In 
another 5% of instances, the interviewer does not read 
the question but instead provides a different stimulus 
containing the relationship of the next person to the 
respondent {e.g., "... and your wife?"). (It is interesting 
to recognize that interviewers chose the same verbal 
expressions on their own that Moore and Moyer 1998a, 
1998b scripted in their experiments on question order.) 
In 5.5% of all cases the interviewer does not read the 
question but rather verifies the answer ("... and your 
wife is 32 years old?"). Some incomplete questions and 
wrong fills are observed, too. In total we have about 
22% of all items affected by at least one interviewer 
behavior that does not follow a standardized interview 
script - which is a surprisingly high value considering 
that all interviewers were aware of the fact the 
interviews were video taped! Compared to other studies 
on interviewer behavior, however, the values are 
considerable lower. For example Oksenberg, Cannell 
and Blixt (1996) applied behavior coding to the National 
Medical Expenditure Survey and reported 37% to 41% 
of such interviewer behaviors. We will come back to the 
question of whether or not these behaviors help obtain 
valid measurements. 

We draw the following conclusion from these particular 
findings: most of these behaviors indicate kind of a short
cut, e.g., the interviewer does not read the question text as 
worded, he or she tries to make the conversation smoother 
and more suitable in terms of conversational mles. From 
our point of view this indicates that interviewers do not 
want to ask for information the respondent provided 
akeady. They do not want to behave unresponsively toward 
the verbal contributions of the respondent, instead, they 
wish to follow conversational rules. As a side effect these 
behaviors are less time consuming than standard inter
viewer behaviors. In our perspective, the priority therefore 
lies not with saving time, but with customizing the question 
answer process to respondent behaviors not anticipated and 
not absorbable by the computer assisted instrument. 

In order to compare the four screen design versions in 
terms of the degree of interviewer deviations from the 
standard interview script we have computed the proportion 
of items per case affected by this kind of behavior. Large 
differences in interviewers not following the scripted inter
view between the four versions are to be noticed: Applying 
the grid based topic version to an interview results in more 
than twice as many such behaviors (the average proportion 
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of items affected is 0.48) than the item based person version 
(0.21) which is the standard for most studies so far. (An 
analysis of variance indicates that both factors contribute 
independently to the overall effect (screen design: p < 
0.001; question order: p < 0.001; no significant interaction 
effect). About 25% of the overall effect can be attributed to 
the screen design, about three quarter to question order.) 
And this contributes to the time used for interviewing: items 
affected by a interviewer behavior not scripted in the inter
view take substantially less time (4.0 seconds) than the 
regularly administered items (6.8 seconds; p < 0.001). 

Table 2 
Interviewer Behavior and Respondent Behavior by Version 

Grid + Item + Grid + Item + 
topic topic person person Total 

Average proportion of items 
affected by interviewer 
behavior not following the 
scripted interview per case 0.48 0.43 0.34 0.21 0.36*** 
Respondent provides 
information for all persons 
in the household at once 38.2% 44.4% 29.0% 10.8% 29.7%*** 

***p < 0.001 
In order to differentiate between the proportion of cases affected by 
a certain respondent behavior and the average proportion of items per 
case (!) affected by a certain interviewer behavior we used percent 
notation for the first and decimal notation for the later. 

2. Additionally an analysis of the respondents' behavior 
shows that the topic design leads to a higher proportion 
of cases (42,3% compared to 19.7% for the person 
approach; p < 0,001) where the respondent provides at 
least once in the household roster section the informa
tion for all persons or a group of persons at once {e.g., 
"We all came in the same year"; "We all have the same 
legal status"). By contrast, the difference of the grid 
based design from the item based design is considerably 
smaller (33,6% vs. 26.1%) but does not reach the level 
of significance. However, an analysis of the interaction 
reveals a significant interaction effect (p < 0.05): Using 
a topic oriented question order the grid design does not 
make a significant difference. However, on top of an 
topic oriented question order the grid design increases 
the number of instances where the respondent provides 
the information for all household members at once. 

It is surprising that results differ even for the two screen 
designs when using a person oriented question order. The 
study was administered by telephone, the respondents not 
being aware of the screen design at all. The only possible 
explanation is based on the fact that the interviewers modify 
their behavior in concordance with the screen design, stimu
lating the respondent differently. Accordingly, respondents, 
as well as interviewers, react to the screen design and the 
question order under the grid based person design in a way 
that facilitates the interviewer respondent interaction and 
thus helps smoothen the interview flow. (As seen before. 

the interviewers change their behavior even under the grid 
based person condition (Table 2), however, the question 
order does not stimulate respondents to behave accord
ingly.) 

One possible drawback of these interviewer and respon
dent behaviors might be a lack of data quality due to 
changes occurring in the predefined question answer 
process; instead, the respondent considers the answer less 
intensively and thoroughly. We observe only very few item 
missing values so an analysis of this standard indicator for 
data quality is not efficient. In fact, we do not expect a 
higher proportion of item missing values in either version. 
One might, however, be concerned about the homogeneity 
of the answers provided by the respondent. In a high pro
portion of cases he or she listens to the full question text 
only once and that could contribute to a less thorough 
consideration when answering the same question for 
subsequent household members. Additionally, answering 
for all household members at once ("We all arrived in the 
same year") might increase the homogeneity of the response 
and thus decrease data quality. 

Table 3 
Average Number of Different Categories (Homogeneity) 

per Household by Version 

Variable Grid + Item + Grid + Item + 
topic topic person person Total 

Year of arrival (19 
categories) 

Status (4 categories) 

1.2 1.2 1.2 1.3 1.2 

1.3 1.3 1.3 1.3 1.3 

No significant differences 

In order to assess this possible drawback we computed 
the number of different response categories chosen by the 
respondent on a particular item for all household members 
{e.g., for year of arrival: respondent 1985, partner 1987, 
daughter 1987, son 1988 = 3 different response categories). 
This should give us an idea of whether or not only those 
respondent make use of the short-cut ("We came all in the 
same year") for whom this is actually valid, or whether even 
other respondents provided one answer for all household 
members even though they should have chosen two or more 
different response categories because of the situation in 
their particular household (unfortunately we have no 
external validation for the responses provided). In looking 
at the average number of different response categories 
(Table 3) we do not notice any differences in terms of 
homogeneity of data. For the year of artival as well as for 
the legal status (as a German or a foreigner) there is no 
visible difference between the versions. For all versions the 
average number of different response categories chosen 
(one for each person in a household) shows no significant 
difference. 

These finding provide only weak evidence that a grid 
design does not harm data quality. Other standard data 
quality indicators need to be assessed with larger data sets 
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in order to decide whether or not data quality is affected. 
However, based on the data available, we are unable to 
proof a effect on the validity of the responses. 

5. DISCUSSION AND CONCLUSION 

Our results from a comparison of four versions for a 
household roster (using the same question wording across 
versions) indicate that interviewers as well as respondents 
perform more efficiently under the grid based topic condi
tion than with the other three versions. Combining a grid 
based screen design and a topic based question order 
reduces the average duration by about 17%. Two thirds of 
this reduction can be attributed to the question order, 
approximately one third to the screen layout. It is important 
to mention that the effect of the screen design is less 
pronounced than the one of question order and - compared 
to the effect on duration - even smaller on interviewer 
behavior and respondent behavior. 

Even though the effects of the grid design on interviewer 
behavior and respondent behavior are far from large, they 
help to elicited two reasons for the better performance of 
the grid based topic version in terms of interview duration: 
(1) in the grid based topic version, the interviewer as well 
as the respondent adapt better to the logic of the question 
answer process, both anticipate the next question more 
easily and tiie question answer process mns more smoothly. 
(2) This version leads to more occurtences in which the 
respondent provides the information for the persons in the 
household faster and more often the respondents reveal the 
information for all household members or at least for one 
group at once. Even though the results are not fully consis
tent, this particular version makes it easier for the inter
viewer to adapt to this situation, record the information and 
stimulate the respondent to give the next appropriate answer 
without repeating the full question text. 

Our findings contribute to the discussion of how to 
design survey instruments for interviewer administered 
computer assisted data collection. Based on the results 
reported in this paper we can draw the conclusion that 
making use of grids facilitates the interviewer respondent 
interaction and helps speed up data collection. Our experi
ments on item design vs. grid design conducted in the 
University of Michigan Survey Research Center's usability 
laboratory have shown that we can improve interviewer 
performance by providing grids (Couper et al. 1997). 
Moore and Moyer (1998a; 1998b) have demonstrated that 
one can improve interview efficiency by switching to a 
topic based question order, too. The present paper indicates 
that the interview situation benefit even more when com
bining both features. 

Using grids and a topic based question order causes a 
greater amount of instances where the interviewer deviates 
from the scripted interview. From a rigid methodological 
point of view this might be seen as an important drawback. 

especially, if the interviewer deviates from the standard 
interview script using global questions for all household 
members. For example, Martin (1999) showed a significant 
increase in the number of people enumerated in a household 
if extra questions were asked. In addition, Kindermann and 
colleagues (1997) demonstrated for non-household roster 
type questions, that additional cues on victimization signifi
cantly increase enumerations of crimes. Generalizing these 
results to global questions across persons, one would expect 
a decrease of data quality as interviewers use non-scripted 
behaviors that apply global questioning methods. However, 
the results reported in this article do not indicate that inter
viewers are using global questions and the author does not 
recommend to make extensive use of global questions when 
designing a survey instrument. Instead, the findings lead to 
a screen design that allows interviewers to make use of 
information reported when the respondent switches to a 
global mode and provides the information for several 
household members at a time. So, we do not want to 
encourage researcher to make extensive use of global 
questions and we do not want to see interviewer modify the 
scripted questions in order to ask global ones. However, 
when confronted with a respondent providing more infor
mation than actually asked for, the screen design of the CAI 
instmment should not prevent interviewers from making 
use of it. 

A grid based design has been proven to facilitate the 
interviewers job with respect to this task, because it allows 
interviewers to adjust their behaviors in concordance with 
general conversational rules. Basic findings of behavior 
coding suggest that interviewers frequently deviate from 
specific interviewing procedures. "These changes often 
reflect adjustments made by the interviewers to meet the 
exigencies of the situation: to melt it more congenially with 
communications immediately preceding it, or to adjust to 
the respondent's particular situation" (Oksenberg et al. 
1992: 3). This is especially necessary when respondents do 
not limit their answers to the information requested by the 
question, but elaborate it or provide additional information. 
"Avoiding the appearance of not paying attention to the 
respondent, interviewers in this situation frequentiy filled in 
the answer themselves without asking the question, or 
asking it only in part" (Oksenberg et al. 1992: 5). They thus 
try to switch to more respondent oriented procedures to 
avoid looking unresponsive. A grid based screen design and 
a topic oriented question order supports interviewers to 
interact according to these conversational rules and with 
respect to the interview situation's needs. This might be 
acceptable or even preferable as long as we are talking 
about factoid questions and as long as these interviewer 
behaviors do not harm data quality {e.g., leading question 
or probes). 

What needs to be done in order to improve the computer 
assisted instrument in its supporting function for the inter
viewer respondent interaction: Our data suggests that the 
grid based topic version leads to a specific interview flow. 
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so that interviewer and respondent can easily adapt to it. 
Jeff Moore (1996; Moore and Moyer 1998a, 1998b) has 
shown that interviewers prefer the topic based version. By 
contrast, we know little about the respondents' satisfaction 
with that question order. Assessing their opinion about the 
different version is consequently an important goal. More
over, we do not know whether this version matches the way 
in which information is stored in the respondents' brains. It 
might be, that respondents can easily adapt to this version, 
but that in terms of cognitive and social burden or in terms 
of cortectness of answers it is not the right method. Addi
tionally, we need to focus on the question whether or not 
we can transfer our findings from a household roster to 
other segments of a questionnaire. Right now we are 
conducting a series of field tests comparing different design 
solutions for factoid information other than household 
roster information and for attitude items. The versions 
tested in this experiment differ in the degree of contextual 
information provided to the interviewer while administering 
a particular item (previous questions, next questions etc.). 
The general question sounds: what happens if we use grids 
or form based screens more extensively? Under what 
conditions and circumstances does it help to improve 
interview efficiency and what are the limitations to this 
approach? However, it is too early to present any results at 
this time. 

In addition, there are more unanswered questions that 
need to be addressed in future research. Personally I would 
like to suggest a specific approach to assess these questions 
assuming that computer assisted instmment design is of 
importance to different clients: researchers, interviewers 
and respondents. Of course, it is important that a CAI 
instmment meets the researcher's needs to obtain his or her 
measurements and also that the question answer process be 
well designed for each single item. However, in my view 
considering the social dimension of the interviewer respon
dent interaction and the behaviors in between single items 
is also a matter of importance. If the CAI instmment 
disturbs the social dimension of the measurement process 
it might harm even data quality. So far we do not know 
which approach allows the best compromise between 
validity and reliability of the measurement process on the 
one hand and a smooth short and non-embartassing inter
view flow on the other hand. In order to find out to what 
respect a specific CAI screen design might harm data 
quality and how it helps save time, money and interviewer 
effort we need to conduct more usability studies. 

To assess the questions mentioned above we do need 
more field experiments. Due to the fact that we want to 
analyze the social dimension of the interview and its effects 
on interviewer behavior as well as on interview duration, 
laboratory experiments do not meet our needs completely. 
Of course laboratory experiments allow a more controlled 
setting, reveal more detailed information about both partici
pants, and - as a result - need smaller numbers of cases. 
Still, without going into the field, we will never confront 

our prototypes and design solutions with real pressure to 
maintain and facilitate the interviewer respondent inter
action and the question answer process at the same time. 
Usability testing should therefore be seen as a joint process 
of laboratory experiments and field tests. 
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